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Abstract—Wireless Sensor Networks (WSNs) are typically used to
collect values of some phenomena in a monitored area. In many ap-
plications, users are interested in summaries of the observed data, e.g.,
a histogram reflecting the distribution of the collected values. However,
processing a histogram query efficiently on top of WSN is a topic that
has not received much attention in the literature. In this paper we
propose two main contributions: (1) an efficient algorithm for answering
histogram queries in a WSN, and (2) how to efficiently use the obtained
histogram to process other types of aggregate queries approximately
and exactly. Our experimental results using both synthetic and real data
sets show that our proposed solutions are able to extend the lifespan of
the WSN by up to one order of magnitude and at least double it.

1 INTRODUCTION

A typical Wireless Sensor Network (WSN) consists of
sensor nodes distributed in an area and connected, via
a tree-like topology, to a base station. Typically, WSN
nodes have limited resources in terms of power, CPU
and memory. Battery lifetime is considered the most
important resource in WSN nodes. The required power
for transmission is significantly higher than the required
power for data processing in a WSN node. For example,
sending one bit using the Berkeley Mica motes needs as
much energy as processing 1000 CPU instructions [9].
For this reason, it is very important that all algorithms
run on top of a WSN minimize the transmission. The
base station is a full-fledged computer system with light
limitations on memory, CPU, or bandwidth. Nodes are
typically used to observe some phenomena about a
monitored area and are becoming common in many
applications. Examples include smart nursing, security
monitoring, structural health monitoring, and monitor
environmental variables [3], [7], [15].

Simple aggregate queries like Max, Average and Sum
are sufficient for a large number of applications where
a high-level (summary) view of the data suffices, e.g.,
when looking for abnormal behavior. However, complex
aggregates like Histogram provides a broader picture
and is mandatory for many applications. A Histogram
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query is an aggregate query, which provides a statistical
summary of the available values. It consists of a set of
bins representing numerical ranges and the answer is
the count of how many values belong to each bin. These
bins’ ranges are adjacent, consecutive, non-overlapping
and often are chosen to be of the same size. It is also
useful for estimating the values distribution and then
for computing approximate answers for other aggregate
queries.

Many applications need the broader view provided
by Histograms. For example, in the Electronic Nose
project [1], any single value is not important by itself,
but, the distribution of the sensor values is used as
a chemical signature to classify the material as being
safe or unsafe. In engineering, many applications use
Histogram queries on WSN for different purposes. A civil
engineer that needs to measure the pressure along a
bridge can obtain a Histogram that finds pressure distri-
bution in all bridge’s areas [7]. Petrochemical engineers
would use the Histogram function to understand the
fluid directions inside a tube (Fluid direction gives an
intuition about fluid pressure in the pumps and pumps
network design).

We assume that a WSN has N nodes sj ∈ S (1 ≤
j ≤ N ) spread in a monitored area. Each node sj in S

periodically measures a value vj . In fact, every value has
an associated timestamp, however in order to lighten the
notation we do not denote it unless necessary. Nodes are
connected to the base station by a routing tree, where
the base station is the root and, they can reach the
base station by multi-hop routing through other nodes.
Typically, this tree is constructed to minimize number of
hops between any node and the base station with respect
to the maximum range of each node. We assume that the
connection between nodes are reliable (no link failure),
and we focus on the data aggregation problem only.

Users are connected to the WSN through the base
station where they can submit their queries. The base
station forwards a query to the WSN, collects its result,
and then sends its answer back to the user.

A Histogram query of B bins is formally defined
as: Q = (Lb, Ub, b1, b2, b3, ...bB, epoch), where epoch is
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Symbol Meaning

S A set of all sensors in the WSN
sj A single sensor in the WSN S

vj The value of a sensor sj

T The tree-like topology connecting all sensors
L The hight of tree T

Q A Histogram query
H A Histogram answer
N Number of sensors
B Number of bins in the Histogram query
bi A bin range in the Histogram query
hi Number of values in bin bi

Ij Initial state in a node sj

Pj Partial state in a node sj

Uj update-message sent from a node sj to its parent
M Array of received messages

TABLE 1
Summary of the notation used in this paper

the time lapse between any two consecutive Histogram
answers. The lower and upper bound values of the
measured phenomena are Lb and Ub. Each bi is a bin
in the Histogram query and it is defined as an interval
between Lb and Ub, where:

• bi = [Lbi, Ubi) ∀1 ≤ i < B and bB = [LbB, UbB]
• Ubi ≤ Lbj ∀i < j

•
⋃

1≤i≤B{bi} = [Lb, Ub]
• Lb1 = Lb and UbB = Ub

The answer for a Histogram query is H =
(h1, h2, ..., hB), where hi = | {(sj, vj) | Lbi ≤ vj < Ubi,
sj ∈ S} |. Naturally, a sensor’s value vj may change
every epoch and so does the query answer. Table 1
summarizes the notation used in this paper.

This paper presents two main contributions. The first
is an efficient distributed algorithm to answer Histogram
queries. This algorithm require less than half amount of
energy used by the classical TAG algorithm to construct
a Histogram thus, it can at least double the network
lifetime. Our second contribution is a set of algorithms to
answer other aggregate queries including Median, which
has not received its due share of attention in the related
literature. The proposed algorithms find approximate
as well as exact answers. Approximate answers can
be obtained with no overhead, whereas exact answers
require a very small overhead on the WSN.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the classical TAG approach answers a
Histogram query and explains in details our proposed
algorithm. How to compute approximate as well as exact
answers for other aggregate queries using a Histogram
as a starting point is discussed in Section 3. Section 4
presents our experiments and Section 5 shows the related
work in the literature to the proposed algorithms. Finally,
Section 6 concludes the paper and introduces a few
future directions for further research.

2 IN-NETWORK ALGORITHMS FOR Histogram
QUERIES

2.1 Background

The straightforward technique to build a Histogram is to
periodically gather all values from all sensors at the base
station and then build a histogram. The classical TAG al-
gorithm decreases the number of required messages ex-
tensively comparing to the straightforward technique [8].
The authors define a model to answer aggregate queries
using an in-network algorithm in the WSN context. Each
node has initial and partial states. Nodes send their
partial states to their parents1. Received partial states are
merged together to construct the parents’ partial states.
The process can be visualized as a routing tree where
the base station is the root and nodes send their partial
states as messages up the tree towards that root. This
process continues until constructing a partial state in the
base station. Finally, the base station runs an evaluation
function to compute the aggregate result from its partial
state.

The authors classify aggregate queries based on their
properties. One of these properties is the partial state
size. Since what is the format of the initial and partial
state in this case is not discussed in details in [8], we
assume they have the following format:

• Ij is the initial state in a node sj with a value vj ,
represented by a pair pi = (i, hi) where vj ∈ bi and
hi is number of values in bin bi.

• Pj is the partial state in a node sj , and is an array of
pairs pi. It is constructed by merging partial states
received from the children of sj along with its own
initial state.

Using the above assumptions, a TAG-base algorithm
takes the Histogram query Q, the tree-like topology T ,
and starts a bottom-up merging of partial states. The
pseudo-code for this algorithm is illustrated in Algo-
rithm 1 where M is an array of all received messages
from sensor sj ’s children. In general, a message in M

could be a single value or a partial state and occasionally
include other information, but in the TAG-Histogram
algorithm all messages in M have partial states only.

The MERGE function (illustrated in Algorithm 2) re-
ceives an array M of all received messages and an initial
state Ij and returns a partial state. If M is empty then
the sensor sj is a leaf node and its partial state Pj = Ij .
Otherwise, the MERGE function sums up all his relative
to the same bin bi from different messages, and adds a
new pair pi to the result array R.

When the collected partial states are merged together
in the base station, level l = 0, the evaluation function
computes the query result, H . The proposed evaluation
function finds hi in the final partial state Pj and copy it
into the query answer H . If a count hi (1 ≤ i ≤ B) is not
present in Pj , then its value is zero.

1. In case of leaf nodes, the partial state is identical to the initial state
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Algorithm 1 TAG-Histogram(Histogram Query Q, Log-
ical Routing Tree T )

1: l ← L {L is number of levels in tree T }
2: while l ≥ 0 do {Iterate on all levels using}
3: for each sensor sj with a value vj in level l do
4: Ij ← (i, 1) | i ← arg{bi | vj ∈ bi} {Initial state

for sj}
5: Pj ← MERGE(M ,Ij) {The sensor sj ’s partial

state is based on Ij and all messages M from
its children}

6: Send Pj to sj ’s parent
7: l ← l − 1 {move to the upper level}
8: return Pj in T ’s root

Algorithm 2 MERGE(Array of Messages M , Current
Sensor’s initial state I)

1: if M is empty then
2: return I

3: else
4: R = { } {R will contain a set of pairs pi = (i, hi)}
5: R← I

6: for each message m in M do
7: Pm = { } {Partial state Pm will contain a set of

pairs pi = (i, hi)}
8: if the message m is a value vm then
9: Pm = (i, 1) | i← arg{bi | vm ∈ bi}

10: else {the message m is a set of pairs}
11: Pm ← all pairs in the message m

12: for each pair pi = (i, hi) ∈ Pm do
13: if ∃ pk = (k, hk) ∈ R | k = i then
14: hk ← hk + hi

15: else
16: Copy pi from Pm to R

17: return R

In this approach, each sensor should send exactly one
message on every epoch but the message sizes (in bits)
are different depending on the node type. The size of
a message from a leaf node is size(Pj) = size(pi) =
log2 N+log2 B, whereas the size of a message from a non-
leaf node is size(Pj) = size(pi)×B. If the distribution of
sensor values is wide and covers most of the Histogram
bins, then the message format is not efficient because
it includes the bin id (i) with each pair. In that case, if
an array of all his, including the zero’ed ones, is sent
without any bin id, the message size will be smaller
(log2 |S| ×N ).

TAG [8] is the current state-of-the-art approach to
build a Histogram based on WSN nodes’ values. In the
next section we propose an algorithm that requires less
and smaller messages sent in the network. The main
idea is using in-node caching and sending incremental
updates instead of actual values.

2.2 Histogram Incremental Updates (HIU) Algorithm

A sensor does not change a Histogram answer if its value
changes within its current bin’s lower and upper bounds.
This Histogram property motivates us to look into more
details of the Histogram construction process. Instead
of sending its information every epoch, a sensor can
build an update message based on the previous round’s
information. This idea was used in several algorithms in
the literature. For example, in [5] the authors proposed
algorithms to maintain materialized views incrementally.
In our algorithm, sensors receive incremental Histogram
updates, merge them together and then forward to their
parents, and so forth. The process continues until the
Histogram in the base station is updated.

In-node caching is an essential component in the HIU
algorithm. Each node sj caches its value and its partial
state from the previous round in ṽj and P̃j , respectively.
In the first round, ṽj is undefined and assume that P̃j is
{0, 0, 0, ..., 0}.

The HIU algorithm works as follows (Pseudo-code is
shown in Algorithm 3). The initial and the partial states
in HIU are both equivalent to the partial state in TAG.
The initial state has two pairs if the current value vj

belongs to a different bin than the previous cached value
ṽj , and has one pair only if ṽj is undefined which means
bin id = −1.

Nodes do not always send their partial states to their
parents. A leaf node sends its partial state if the new
value leads to a change of its bin. A non-leaf node
may receive multiple values and update-messages from
its children (array M ). Update-messages have the same
format as a partial state. If a message in M is a single
value, MERGE converts it to the partial state format and
continues. Merging all received messages in a sensor sj

with its initial state Ij yields its update-message Uj . The
update-message Uj is applied to the cached partial state
P̃j to keep it up-to-date. This step adds each hi in Uj

to hk in P̃j iff i = k. Note that hi values in Uj could
be negative values. In fact, for all update-messages Uj ,
ΣB

i=1hi = 0.

Received update-messages in any non-leaf node may
cancel each other in which case nothing is sent forward.
For example, consider non-leaf node C that has two
subtrees, A and B. Subtree A has x nodes where their
value moved from bin bk to bl. On the other hand, the
subtree B has x−1 nodes where their values moved from
bin bl to bk. If these two updates are merged together,
then subtree C has only one value moved from bk to bl.
Moreover, if node C’s value moved from bl to bk, then
C should not send any update to its parent at all.

As discussed earlier, the Encoding function (in line 21)
decides whether to send Uj as a set of pairs (i, hi) or send
all his without the need to identify them with bin ids i

then attach E,if an exact answer is required, with the
message. The smaller representation, based on number
of bits, is chosen. A more complex compression can be
implemented for this function, e.g., [12], [16]. However,
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Query Approximate Answer Equation Error Margin

Max Ubm+Lbm

2
| hm 6= 0, ∀i > m, hi = 0

Ubm−Lbm

2Min Ubm+Lbm

2
| hm 6= 0, ∀i < m, hi = 0

Median Ubm+Lbm

2
| Σm

i=1
{hi} ≥ Count

2
∧ ΣB

i=m
{hi} ≥ Count

2

Count ΣB
i=1

{hi} 0

Sum ΣB
i=1

{hi ×
Ubi+Lbi

2
} ΣB

i=1
{Ubi−Lbi

2
× hi}

Average Sum
Count

1

Count
ΣB

i=1
{Ubi−Lbi

2
× hi}

TABLE 2
A summary for supported aggregate queries

a detailed discussion about compression algorithms in
WSN is beyond the scope of this paper.

In the next section we show how a Histogram could
be used to compute approximate answers for aggregate
queries. We also show how the ExtraInformation func-
tion (in line 20) works to collect necessary values and
send them through in-network to facilitate computing
exact answers for other aggregate queries in the base
station.

3 OTHER AGGREGATE QUERIES

A Histogram provides a broad picture for values in the
WSN and is a starting point for more statistical analysis.
Occasionally, a user might like to know more specific
information (e.g. Max or Average) about those values
represented by the histogram. In this section, we present
algorithms to compute approximate and exact answers
for several aggregate queries using a previously obtained
Histogram in the base station. The approximate solutions
have bounded accuracy levels and the exact solutions
can be computed with very low extra overhead on the
WSN.

Recall that we consider a Histogram query is defined
as: Q = (Lb, Ub, b1, b2, b3, ...bB, epoch) and its answer is:
H = (h1, h2, h3, ...hB), where hi = | {(sj, vj) | Lbi ≤
vj < Ubi, sj ∈ S} |. Table 2 shows how to compute
approximate answers for some aggregate queries in the
base station using a Histogram result. Because, all compu-
tations are made on the base station, there is absolutely
no overhead on the WSN.

Table 2 also shows the error margin limit for each ap-
proximate aggregate answer. Trivially, a Histogram query
can provide an exact answer for Count aggregate query.
All margin limits depends on the bin size (Ubi − Lbi).
Decreasing the bin size in the Histogram query will lead
to answers with higher accuracy. However, this will
increase the overall cost of the Histogram result because
it increases number of sent bytes.

Next we propose algorithms to compute exact answers
for different types of aggregate queries. We can obtain
exact answers using two strategies: (1) adding some
overhead to the HIU messages but not extra messages,
or (2) sending a refinement query, thus extra messages,
with no overhead on HIU Histogram messages.

3.0.1 Exact answers using per Message overhead

Communication devices in some WSN mandate the sen-
sor to send messages of fixed size only [11]. In this case,
sending less information will not decrease the energy
consumption because all buckets should have the same
size. These idles bytes can be used to send the extra
information, with no extra cost, to facilitate computing
the exact answer. We use this strategy to compute exact
answers for Max, Min, Sum, and Average queries.

While obtaining a Histogram answer, the ExtraInforma-
tion function ( line 20 in Algorithm 3) collects required
information and aggregate them to facilitate computing
the exact answer in the base station. If an exact answer
is required, then leaf nodes values are needed even if
the value’s bin did not change.

The behavior of ExtraInformation function (Algo-
rithm 4) depends on the required aggregate query. Max
and Min queries are handled from line 2 to line 12,
while Sum and Average are starting on line 14 to line 22.
For simplicity, Algorithm 4 handles only one aggregate
function at a time, but it can be easily extended to
support multiple aggregate queries.

In order to find the exact answer for Max (or Min)
queries, all intermediate nodes who construct a partial
status should report information about the maximum (or
minimum). The code between lines 2- 12 in Algorithm 4
will compute the maximum for each subtree. The pseudo
code assumes that each message sent from an interme-
diate node sj to its parent includes Ej , that includes the
maximum value over the node’s subtree.

Because the base station (and all intermediate nodes)
already has an exact answer for Count, they can compute
the exact result for Average if the exact Sum is available.
The exact answer for Sum can be computed if each
intermediate node sends the total sum of its subtree
while leaf nodes send their own values only. The code
between lines 14 - 22 in Algorithm 4 computes the sum
of all values in a subtree rooted by each intermediate
node.

If the used communication device allows variable
message size, then every bit is counted when calculat-
ing the energy consumption. We can decrease the size
of the Max(Min) and Sum(Average) overheads using
extracted information from the Histogram because each
intermediate node will send an update for its partial
state (histogram) to its parent.
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Algorithm 3 HIU(Histogram Query Q, Logical Routing
Tree T , Aggregate Query Agg)

1: l ← L {L is number of levels in tree T }
2: while l ≥ 0 do {Iterate on all levels using bottom-up
}

3: for each sensor sj in level l do
4: b ← arg{bi | vj ∈ bi} {b is the bin id for the

current value vj}
5: if the cached value ṽj of sensor sj is undefined

then
6: b̃← −1 {-1 is an alias for an undefined bin}
7: else
8: b̃← arg{bi | ṽj ∈ bi}

{b̃ is the bin id for the cached value ṽj}
9: if a sensor sj is a leaf-node then

10: if b 6= b̃ OR Agg 6= NULL then
11: Send vj to sj ’s parent

{No data sent if current and cached bins are
equal}

12: else
13: {Construct Initial state (Ij)}
14: if b̃ = −1 then
15: Ij ← (b, 1)
16: else
17: Ij ←[(b,1), (b̃,-1)] {increase the counter of

the current bin by 1 and decrease the cached
by 1}

18: Uj ← MERGE (M , Ij ) {Build sensor’s update
message Uj using sensor’s Ij and messages in
M}

19: if Agg= NULL then
20: E ← ExtraInformation (sj, Agg) {It returns

the necessary value to allow computing the
exact answer for an aggregate query Agg.}

21: Send Encode(Uj ,E) to sj ’s parent
22: else
23: Send Encode(Uj) to sj ’s parent
24: {Update the cached partial state P̃j from the

previous round}
25: for each pair pi = (i, hi) ∈ Uj do
26: if ∃ pk = (k, hk) ∈ P̃j | k = i then
27: hk ← hk + hi {Recall that in Uj , hi could

be positive or negative}
28: else
29: Copy pi from Uj to P̃j

30: ṽj ← vj

31: l ← l − 1 {Go to the upper level}
32: return P̃j in T ’s root

Instead of reporting the real value of the Maximum
(Minimum), nodes select a bin id (m) that includes the
maximum value and send the difference between bin’s
lower bound (LBm) and this value (MAX−Lbm). In the
worst case, the overhead will be number of bits required
to represent the bin size (Ubm−Lbm) which is log2(Ubm−
Lbm) bits per node, every epoch.

Following the same idea, instead of sending the real
Summation of all values in a node’s subtree which
might need large space, each the node will send dif-
ference = SUM −ΣB

i=1
Ubi+Lbi

2
× hi. The maximum pos-

sible value of SUM in any node is ΣB
i=1Ubi × hi, if all

values in all bins equal the upper bound of this bin.
The maximum possible overhead per node per round is
log2(Σ

B
i=1

Ubi−Lbi

2
× hi).

Algorithm 4 ExtraInformation(Sensor Node sj , Aggre-
gate Query Agg)

1: E = 0 {E is the returned value to allow computing
the exact answer for an aggregate query Agg}

2: if Agg = Max then
3: MAX = vj {vj is the current value of sensor sj}
4: for each message m sent to a sensor sj do
5: if m is a value vm then {m was sent by a leaf

node}
6: temp← vm

7: else {m was sent by an intermediate node}
8: temp← Em

9: {Em is a value in m represents the max of
sender’s sub tree.}

10: if MAX < temp then
11: MAX ← temp

12: E ←MAX

13: {The code for Min is very similar to Max and om-
mited from this code}

14: if Agg =Sum or Agg =Average then
15: SUM = vj

16: for each message m sent to a sensor sj do
17: if m is a value vm then {m was sent by a leaf

node}
18: SUM ← SUM + vm

19: else {m was sent by an intermediate node}
20: SUM ← SUM + Em

21: {Em is a value in m represents the sum of
sender’s sub tree.}

22: E ← SUM {This is sufficient for both Avergae
because Count is known}

23: return E

3.0.2 Exact answer using refinement queries

Typically, Median and Kthvalue queries require sending
all values to the base station [8]. Recently a new algo-
rithm for Top-K [10] query was proposed to find exact
top K values and can be used to find the kth value,
hence the median. However, this algorithm will require
sending all K values to the base station. If the WSN has
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large number of sensors (values), computing the Median
value might have a large cost.

Using a Histogram result, we can narrow the require-
ments from collecting all values in the WSN to collecting
all values in the median bin. A bin that contains the
median value can be identified based on the Histogram
answer in the base station. It is a bin where total number
of values in all preceding and all following bins in
the Histogram are both less than half the number of
values in the whole histogram. Table 2 uses this formula:
m = arg{bm | Σ

m
i=1{hi} > Count

2
, and ΣB

i=m{hi} > Count
2
}

to identify the bin id2. Instead of reporting the average
of the median bin as an approximate answer, the base
station may send another query to the WSN requesting
all values in this bin. The query will be guided to the
relevant nodes only using the cached partial states. The
full algorithm is presented in Algorithm 5. It has two
parameters: the WSN logical routing tree (T ) and the
Histogram answer (H) in the base station and returns the
exact median.

Function GetVALUES returns all values in the me-
dian bin as an array. After sorting the returned values
and using the number of total values in the WSN,
the ExactMEDIAN algorithm computes and returns the
exact Median. The algorithm for function GetVALUES
is straightforward and is represented in Algorithm 6. It
collects all values between values L and U in the given
tree T . However, instead of sending the request to all
sensors in the tree, it uses the cached partial states to
prune branches leading to subtrees that have no values
within the requested boundaries. In the worst case, all
values would be in leaf nodes in the maximum tree’s
level L. The maximum possible overhead every round
is the number of bits to retrieve these values which is
log2(hm × L ×max(vj)) where 1 ≤ j ≤ N and m is the
bin id that contains the median value.

Algorithm 5 ExactMEDIAN(Logical Routing Tree T ,
Histogram Answer H)

1: Count← ΣB
i=1{hi}, ∀hi ∈ H {Histogram query Q has

B bins}
2: bm ← A bin in query Q of index m | Σm

i=1{hi} ≥
Count

2
and ΣB

i=m{hi} ≥
Count

2
,∀hi ∈ H {Find the

median bin to use its boundaries}
3: V = GetVALUES(T, Lbm, Ubm) {V is an array of all

values in T within bm boundaries (Lbm and Ubm)}
4: V = SORT (V ) {Sort V values in ascending order}
5: C ← Count

2
− Σm−1

i=1
{hi}

6: return Median← Cth value in V.

4 PERFORMANCE EVALUATION

In our simulation we implemented TAG and HIU assum-
ing both of them are using a Shortest Path (logical) Tree

2. The formula can be easily changed to solve a Kthvalue instead of
a Median query

Algorithm 6 GetVALUES(Tree T , Lower bound L, Upper
bound U )

1: {This function uses the partial state Pj in each node
sj to collect required values efficiently.}

2: V = { } {It will contain a set of collected values}
3: sj ← The root of tree T

4: if vj ∈ [L, U ] then
5: Insert vj in V {vj is the value of sensor sj}
6: if ΣB

i=1{hi} = 1 | bi∩ [L, U ] > 0, ∀hi ∈ Pj and ∀bi ∈
Histogram query Q then

7: return V {The single value in the tree is already
found}

8: if ΣB
i=1{hi} > 0 | bi ∩ [L, U ] 6= φ, ∀hi ∈ Pj and ∀bi ∈

Histogram query Q then
9: for each children c of sj do

10: Insert GetV ALUES(c’s Tree, L, U) to V {Insert
returned values to the array of values V }

11: return V

(SPT) for the underlying tree T . We make the following
assumptions about the required storage: (1) A node
value consumes 2 bytes, and (2) a complete Histogram
size depends on the number of bins, i.e., it requires
2 × B bytes, where B is the number of the bins in the
histogram, and (3) updating a Histogram bin require 3
bytes, 1 for the bin id and 2 for bin’s count.

We investigate our algorithms with respect to two
datasets (the synthetic dataset and a real dataset) and
five parameters (Radio range R, Histogram size in terms
of number of bins B, average amount of change in
sensor’s value δ, the probability that a sensor’s value
change ρ, and number of nodes in the WSN N ).

The radio range controls the logical network topology
and may increase/decrease network depth. Varying the
Histogram size shows the scalability of our algorithm
from the point of view of the Histogram size. Studying δ

and ρ shows the sensitivity of our algorithm against the
behavior of the values in the WSN field. It is important to
show the influence of these two parameters because our
algorithm depends on incremental updates which might
be very large if many changes happen. Finally, increasing
the number of sensors N , shows the algorithm scalability
from the point of view the WSN density.

Table 3 has a list of all tested values for all parameters.
While testing one parameter, we use the default value
(denoted in bold) of all other parameters. The reported
show the average values obtained over 20 runs. During
each run, the sensor locations are randomly distributed
and the base station is randomly selected among one of
the sensors. In order to ensure a fair comparison, both
TAG and HIU use exactly the same setup.

Our synthetic dataset consists of N nodes uniformly
distributed in an area of 200m × 200m. The values
of all sensors are initialized uniformly between 1 and
216. In each round, a sensor’s value could change with
a probability ρ. In case of change, a sensor value is
increased by an exponential random variable (equally
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Parameter Used Values

R (WSN node’s radio range) 20, 30, 40, 50, 60
B (Histogram size in terms of number of bins) 5, 10, 20, 40, 60
δ (Average amount of change) 1%, 25%, 50%, 75%, 100%
ρ (Probability of change) 1%, 25%, 50%, 75%, 100%
N (Number of Sensors) 1000, 2000, 3000, 4000, 5000

TABLE 3
Studied parameters and their values (default values in Bold)

likely to be negative or positive). The average of the
exponential random variable is δ% of 216. We assume
that all sensors capable of sensing values between 0 and
216 only. If a value exceeds that range in either direction,
it is assumed to be either 0 or 216, respectively.

The real dataset was generated by Intel Berkeley Re-
search Lab [6]. It has 54 WSN nodes deployed in a
50m×50m area. The dataset has values for about 65, 000
rounds. Missing values from the original dataset were
placed using simple interpolation. In this dataset, we
only studied two parameters: the radio range (R) and the
Histogram size (B), because the number of nodes (N ), the
change probability (ρ) and the average amount of change
(δ) are all fixed in any real dataset.

Since the main typical goal within the realm of WSN
research is the minimize energy consumption we use
network lifetime as the performance indicator. Network
lifetime is counted in number of rounds until the first
node dies. In all our experiments we assume that each
battery’s initial budget is 30mJ . Energy consumption is
calculated after [4] :

• Et = S + t× b× d2

• Er = r × b

where S = 50 nJ is the setup cost to send any message,
t = 10 pJ and r = 50 nJ are the required amount
of energy to send or receive one bit for one meter,
respectively. The message size in bits is b, while the
euclidean distance (in meters) between the sender and
the receiver is d.

4.1 Performance Evaluation for Histogram and Ap-
proximate Aggregate Queries

Figure 1 shows the HIU and TAG performance when
changing each of the studied parameters using the
Synthetic dataset. Because TAG performance does not
depend on changes in sensors’ values, a network using
TAG algorithm died after about 2700 rounds regardless
of the change probability (ρ) or amount of change per
round (δ). Figures 1(a) and 1(b) show that HIU performs
better when the changes of nodes’ values happen less
frequently because it caches the result of the previous
round and send updates only, if required. In case of
a higher update frequency (ρ) or update with large
changes (δ), HIU performance becomes stable. The rea-
son for that is two fold. First, HIU selects whether
to send updates only (update pairs) or send the full
histogram. This arbitration saves HIU from sending non

useful data if all bins are required. Second, because the
partial state (local histogram) is constructed in network,
many of these changes do not get communicated as they
cancel each other in the early stages of the routing tree.

Figure 1(c) shows that both TAG and HIU perform
better when the radio range is small. This seems to
contradict the following intuition: the smaller the radio
range the more hops are required from leaf nodes to
reach the base station, the more messages and then the
shorter network lifetime. In reality, each node sends a
message to reach all the other nodes within its range
regardless of the real distance between the sender and
the receiver. The larger the radio range the larger the
energy consumed, because energy consumption is based
on how far a message can reach and is not based on the
euclidean distance between the sender and receiver. The
Figure shows that even though the performance of both
HIU and TAG is better when the radio range is smaller,
HIU multiplies the network lifetime three or four times
comparing to TAG.

Figure 1(d) is an evidence that HIU can still multiply
the network lifetime by at least a factor of two as number
of bins increases. A larger number of bins means a
higher probability that the number of changed bins gets
higher and then HIU performs worse. However, TAG
requires all intermediate nodes to send their partial state
regardless of number of nodes, i.e., TAG also performs
worse when increasing number of bins.

Figure 1(e) shows that HIU can scale efficiently and
handle WSNs with large number of bins better than
TAG. We basically increase the network density in the
field. HIU has the same performance regardless of num-
ber of sensors in the field. TAG’s performance decreased
dramatically because the more sensors in the field the
higher probability of occupying all Histogram bins. Recall
that TAG sends the bin’s count if the bin is occupied by
one or more values. On the other hand, because of our
encoding, the values distribution does not influence HIU
performance. The key factor is the how frequent values
change and by how much.

The performance of TAG and HIU on the Intel Berke-
ley dataset is better than their performance on a synthetic
dataset because the number of nodes (54) is significantly
smaller and is the amount of communication. However,
the performance of HIU on the Intel Berkeley dataset
is much better because nodes’ values in a real dataset
do not usually change with a high probability or high
amount. Figure 2 shows that HIU allows the network to
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Fig. 1. Network lifetime analysis using a Synthetic dataset
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Fig. 2. Network Lifetime analysis using the Intel Berkeley
dataset

last significantly longer than TAG (sometimes by a factor
of 10). In the real dataset, there is a limitation on number
of rounds because the dataset has about 65,000 rounds
only. HIU curves in Figure 2 reaches the upper limit for
number of rounds but none of the nodes die.

4.2 Performance Evaluation for Exact answers

Regardless of the algorithm used to construct a Histogram
in the base station, a Histogram allows computing ap-
proximate answers for several other aggregate queries
without any overhead as discussed in Section 3. The
base station can also compute the exact answer for an
aggregate query by using HIU algorithm with some
overhead, i.e., extra message.

Because the main target of our experiment is to study
the HIU overhead cost for computing an exact answer,
we use the average amount of bytes sent per sensor
per round as our performance indicator. Every round,
the total number of sent bytes from all nodes during
all previous rounds are calculated and then divided by
number of sensors.

Based on [8], every sensor should send exactly 2 bytes
to collect the maximum value using TAG. HIU collects
the Max information while constructing the histogram.
HIU’s performance depends on the amount of changes
in the network because it uses in-network caching and
send data to update this cache. Initially HIU requires
more bytes to be sent, but as time goes, the average
total number of sent bytes per round is decreased and
eventually reaches a steady state. Recall that the first
round in HIU consumes a large amount of energy due to
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Fig. 3. Cost of running exact-Max query

sending the largest amount of bytes comparing to other
rounds because there is no cached information.

4.3 Max queries

Figure 3 shows the amortized analysis for TAG and
HIU algorithms in computing the exact Max using three
parameters: ρ, δ, B, N , and R. While testing one param-
eter, other parameters are assumed to have their default
values (Table 3). The main goal is to show that HIU can
outperform TAG in terms of the total cost on the long
run. We use the synthetic dataset to have more control
on the experiment. Moreover, Figure 2 shows that HIU
performs even better on the real dataset any way.

Figure 3(a) shows the influence of change probability
on HIU. If the probability is 100% then HIU needs one
extra byte from each sensor (on average) per round. As
the probability gets smaller, the overhead decreases. The
figure shows that lower values of ρ leads to a smaller
HIU cost but TAG’s performance stay the same. If the
probability is 1% only, HIU outperforms TAG by about
1.8 bytes which means 90% less bytes than TAG. It is
worth mentioning that HIU’s cost includes, also, con-
structing an accurate Histogram in the base station while
TAG (in this experiment) computes the maximum value
only. The Histogram in the base station offers computing
approximate answers for many other aggregate queries.
This means, if the target is computing the Max query
only, then HIU is better only if sensors change their
values not very often (ρ ≤ 40%).

In Figure 3(b) we assume that ρ = 50% and investigate
the influence of the amount of change (δ). If δ is very
small (1%) HIU will outperform TAG. If δ is very large
(100%), HIU ties with and slightly out performs TAG.
Recall that a sensor can sense a specific range of values.
If the value is bigger than maximum value, a sensor
will report its maximum limit. If the average amount
of change is 100% then there is a high probability that
all sensors end up detecting only the maximum and
minimum limits because the change could be positive
or negative. It is clear that the amount of change does
not have a significant influence on the results. In fact,
regardless of the amount of change, the probability of
change (ρ=50%) has the main influence not the amount
of change. The only exception is the change of 1% curve
because changing a sensor value by 1% on average will
unlikely changing its bin in the histogram, if the bin’s
width is reasonably big, and then unlikely to cause a
sensor to send any data.

HIU performance depends on the bin size (number of
bins) because the number of values in smaller bins is
more likely to change every epoch. Although the error
bound of all approximate answers get worse when bin
size increase, the HIU algorithms performs better while
computing exact Max. Figure 3(c) shows that decreasing
number of bins can make HIU outperforms TAG very
early even if the probability of change and amount
of change are both 50%. Recall that TAG outperforms
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HIU in Figures 3(a) and 3(b) when δ or ρ equals 50%.
The major fraction of the HIU cost is paid to construct
the histogram. Decreasing Histogram size decreases the
Histogram overhead but increases the Max overhead
(log(Ubi − Lbi)), if the maximum value changes. This
overhead is already very small comparing to Histogram
cost.

Network density depends on the number of sensors
(N ) that reside in the same fixed area. Network density
has no influence on the TAG algorithm to compute Max.
In all cases, each sensor should report its value. In the
case of HIU, the more sensors available in the area the
more opportunities to save and decrease the amount
of sent messages. Figure 3(d) shows that increasing the
network density more than 3000 sensors in 200×200 area
(0.075 sensor/m2), makes the HIU outperforms TAG.

The sensor’s radio range influences the logical tree
structure. A short radio range requires the WSN to build
a logical tree with larger depth than a long radio range.
Increasing the average number of hops for sensors to
reach the base station does not have any influence on
TAG because every sensor will send a single message of
fixed size (2 bytes) any way. The shorter the radio range,
the more the number of hops which requires HIU to send
more bytes. Figure 3(e) shows that increasing the radio
range makes HIU’s total cost less than TAG’s total cost
after 3 rounds only.

4.4 Median queries

Based on [8], TAG suggests collecting all values to
the base station in order to compute an exact answer.
Overall, Figure 4 shows that collecting all values to
compute an exact Median cannot outperform HIU even
in the first round. The cost of the Median query using
HIU is twofold: histogram’s cost and values collection’s
cost. In the first round, HIU does not reuse any existing
information. However, in the consecutive rounds, HIU
reduces number of bytes sent by each sensor per round
to construct the Histogram. Typically, HIU requests a
smaller number of values to be collected than TAG.
Instead of sending the collection query to all nodes in the
WSN, the cached information (in each node) is used to
direct the query only to relevant nodes as we explained
earlier in Section 3.0.2.

In Figures 4(a)and 4(b) we show the influence of
changing ρ and δ which affect Histogram’s cost only with
no influence on the values collection’s cost. The smaller
the ρ, the cheaper the Histogram and then the cheaper
the Median. Figure 4(b) confirms our earlier finding that
δ does not have a significant influence on the query cost.
On the other hand, the smaller the ρ, the less expensive
the Histogram and then less expensive is the Median.

In Figure 4(c), changing the Histogram size affect both
histogram’s cost and values collection’s cost. The less
number of bins in the histogram, the cheaper the His-
togram cost but the more values required in the values
collection phase. However, the overall query cost is
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reduced for two reasons: (1) All nodes are guaranteed
to participate in the Histogram construction and then
guaranteed to pay its cost. (2) Values collection phase
uses the local histogram in each node which makes the
cost of this phase is fairly small comparing to Histogram
construction phase.

Figures 4(d) and 4(e) shows the influence of number
of sensors in the area (N ) and sensor’s radio range
(R) on the Median query cost. These two parameters
affect the TAG cost as well as the HIU cost because
they change the logical routing tree. However, TAG cost
is fixed regardless to number of rounds. Figure 4(d)
shows that increasing the network density (Number of
sensors / area) decrease the average cost per sensor for
both TAG and HIU. HIU becomes cheaper because the
more sensors connected to a parent the more efficient
aggregation can be done and better query guidance can
be provided while collecting values in the chosen bin.
TAG is also becomes less expensive because the cost
of intermediate sensors will be shared with more leaf
sensors and also because sensors can find a shorter route
to the base station. In Figure 4(e), the larger the sensor
range, the smaller the number of hops to reach the base
station and then the smaller number of bytes sent for
both TAG and HIU.

5 RELATED WORK

There has been not much work done in the literature to
construct a Histogram of WSN values since Madden et.
al. proposed TAG algorithm in 2002 [8]. Chow et.al.
proposed an algorithm to construct a spatio-temporal
histogram [2]. The main idea is to construct an ap-
proximate spatio Histogram that is updated with every
time any sensor reading reaches the base station. This
approximate Histogram is used for location monitoring.
The authors proposed a basic and adaptive approach to
construct an approximate Histogram in the base station.
The main idea is collecting values at the base station and
then construct the histogram. The energy saving comes
from constructing an efficient approximate Histogram
instead of an exact one. Since our algorithm construct
an exact Histogram using an in-network algorithm and
we don’t require all values to be sent to the base station,
we did not compare their approach with HIU. However,
their innovative algorithms for location monitoring can
work on top of our exact histogram and still save sen-
sors’ energy.

On the other hand, there are a few algorithms pro-
posed in the literature to answer complex aggregate
queries like Median. Algorithms proposing approximate
answer for Median have a bound on the median’s rank
not the median’s value (e.g. [14], [13]). A median value
is supposed to be exactly in the middle of a sorted list
with a rank of N

2
, where N is number of values in the

list. They ensure the rank of an approximate answer is
N
2
± ε.
A median value supposed to be the one in the middle

of an ordered list if the number of values is odd or the

average of two values with ranks of N
2

and N+1

2
. Our

proposed algorithm to calculate an approximate median
does not guarantee a bound on the median’s rank but
on the median’s value. We ensure that the approximate
answer of a Median query cannot be worse than ε =
Ubm−Lbm

2
| Ubm and Lbm are the upper and lower bounds

of the bin contains a median value.
In [14], Shrivastava et. al. proposed a data structure

called query digest (Qdigest). The Qdigest data structure
is very similar to an equi-depth Histogram but its ranges
can overlap with each other. The authors propose using
Qdigest to compute an approximate median with an
error bound ε. HIU ensures the error of the approximate
median value is (itself) bounded, regardless of its rank
in the values’ list.

6 CONCLUSION

In this paper we proposed a new algorithm (HIU) that
uses in-network aggregation and in-node caching to
reduce the energy consumption for constructing a His-
togram query. Obtaining a Histogram in the base station
helps in computing bounded approximate answers for
other aggregate queries including Median. Moreover, we
proposed algorithms that use HIU to compute exact
answers for these aggregate queries.

HIU outperforms the TAG algorithm (current state-of-
the-art to answer a Histogram query) in the synthetic and
real datasets. On average, HIU multiplies the network
lifetime about three times.

HIU outperforms TAG’s algorithm to compute Max
if the amount and/or probability of values changes are
low. Figures show that a small Histogram size can com-
pute an exact answer for Max cheaper than TAG. HIU
also outperforms TAG in terms of amortized number
of bytes sent in the network when computing an exact
Median regardless of the change probability or Histogram
size.

7 FUTURE WORK

Despite the importance of the Histogram query in indus-
try, we find a potential for Histogram to help computing
an exact answer for Median. In our future work we
would like to propose a cost model that helps computing
an exact answer for a Median query with the optimum
cost. This answer requires (according to HIU) to build
a Histogram first. Instead of building a Histogram once,
we can build it in several iterations. For example, if
it is required to have a Histogram size of 100, we can
compute it in two steps, first a Histogram with size 10,
then send another Histogram query for the median bin
only of size 10. The cost of two Histogram queries of size
10 is much cheaper than cost of one Histogram with size
100. Another alternative is to use GetValues function to
collect all values in a specific bin. The cost model will
minimize the cost by choosing the optimum method in
each bin during each iteration.
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In our work, we assume that network communication
between sensors is perfect with no losses. In real world
application, this is not possible. In node caching can be
useful to help reduce the impact of any network failure.
How to make HIU able to reduce the impact of any
network failure is an interesting question that we would
like to answer in the future.
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