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Abstract

A discrete Bayesian network is a factorization of a joint distribution over random variables. 

The most common use of these networks is for the computation of conditional probabilities 

(query responses). The parameters of these networks are often learned from data. Thus 

network parameters are themselves uncertain, which induces a distribution for any query 

response. When data sets are small, the effects of parameter uncertainty can be severe. 

In this thesis we argue that when data sets are small, the distribution of a query response 

is accurately modelled by a Beta distribution. Procedures for the modeling of the query 

response are also reviewed. Furthermore, we examine proposed techniques for parameter 

learning when data sets are small and only one query is of interest.
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That theory is worthless. It isn’t even wrong!

-  Wolfgang Pauli
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Chapter 1

Introduction

Bayesian networks are probabilistic models that factor complicated probability distributions 
over many variables. A Bayesian network is composed of a directed acyclic graph that rep­
resents the qualitative dependency structure of the distribution and network parameters that 
define the distribution. The most common use of Bayesian networks is statistical inference, 
the calculation of a conditional probability (query response) of a configuration of variables 
given the observed state of other variables.

While networks can be constructed with parameters instantiated by human experts it is 
far more common to learn (estimate) from data. In this thesis, we concern ourselves pri­
marily with issues stemming from parameter estimation in Bayesian networks. When data 
is abundant, it is easy to produce accurate estimates. When data sets are small, problems 
arise. The phrase “small data set” in machine learning is often a catchall explanation of 
why an algorithm did not work. Assuming the data is uncorrupted and the structure of 
the model correct, more data eventually leads to better estimators. It should be noted that 
smallness of a data set is relative. For example, estimating the mean of a univariate normal 
distribution requires fewer samples than its multivariate analogue. The former has fewer 
parameters than the latter; ceteris parebus it will require less data to produce an accurate 
estimate. Other factors, such as the underlying complexity of the distribution, play a role as 
well. In practice though, one is often presented with a single data set and no possibility for 
further samples.

This thesis examines issues that arise from limited data in two scenarios. The first 
problem involves calculating the variance of a query response. When network parameters 
are learned using data, a distribution over the parameters is formed to model parameter 
uncertainty. This in turn induces a distribution over a query response. When the data set is 
sufficiently large, the distribution of the query response is approximately normal. When the 
data set is small, we show that the Beta distribution provides a more accurate model of the 
query response.

The second problem considers parameter estimation when it is known that the estima­
tor models all independencies between network variables. We consider the variant problem 
where the user cares only about one query response, and has reason to be concerned about 
the size of the data set.

Overview
Chapter 2 contains a short introduction to Bayesian networks, introducing both the no­

tation and concepts required to understand this thesis. Estimation of the query response 
is covered in chapter 3. The mathematical foundations are discussed in section 3.3. The 
derivation of the algorithm used to estimate variance is contained in section 3.4, with de­
tails provided in appendix B. The method used to produce a model of the query response 
is described in section 3.5. The central experiments used to support our claim are found in 
section 3.6. Sections 3.7 and section 3.8 round out the discussion. Chapter 4 studies the sin­
gle query small sample learning problem. A formal description of the problem and review 
of classical techniques are presented in sections 4.2 and 4.3 respectively. We consider re­
lated works and propose several algorithms for addressing this problem in sections 4.4 and 
4.5. Experimental design and results are found in section 4.6. The virtues of the Beta model
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of the query response are extolled in section 4.7, while the possibility for improvement in 
each algorithm is acknowledged. Appendix A describes the multivariate Delta rule, which 
is used in chapter 3. Appendix B describes an algorithm for computing the derivatives of 
a query with respect to network parameters. Appendix C studies the variance of queries 
on Naive Bayes networks. A derivation of Fisher information for Bayesian networks is 
covered in Appendix D. Finally, we urge the reader to familiarize himself with the list of 
symbols in the front matter.

2
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Chapter 2

Background

2.1 Bayesian Networks
Definition 2.1. A Bayesian network (V, A , 0 )  encodes the joint distribution o f a set o f ran­
dom variables X =  { X ± . . .  X n}. The graphical component is a directed acyclic graph 
(DAG) (V, A) which maps each node v € V to a random variable X v E X and each di­
rected arc (u, v) £ A  to a dependency between variables X u and X v. Let F„ denote the 
variables whose nodes are parents ofv.  The parameters © consist o f conditional probabil­
ities © ^ if  =  P r ( X v = x\F v =  f) which quantify the network.

An example of a Bayesian network is presented in figure 2.1. Because of the correspon­
dence between nodes and random variables, references to the graph are understood to be 
statements about the underlying random variables (and vice versa). Associated with each 
variable is a local function that maps an assignment of the parents to the conditional distri­
bution of that variable. The joint distribution is simply the product of these local functions.

In practice the graphical component of a Bayesian network is sparse, only a small frac­
tion of the possible arcs exist. Since the complexity of conditional probability distributions 
is largely dependent on the number of parents a variable has, sparseness allows for a com­
pact factored representation of a joint probability distribution. Because the space require­
ment of a local conditional probability distribution is exponential in the number of parents, 
unfactored representations almost always require more space.

Bayesian networks are predicated on the notion that conditional independencies exist 
within the distribution being modelled. We introduce I-maps [40] to describe whether a 
particular directed acyclic graph captures all the dependencies in a distribution.

Definition 2.2. An directed acyclic graph is an 1-map o f the distribution it models iff each 
random variable in the graph is independent o f its non-descendants, given an assignment 
to its parents.

Colloquially, a directed acyclic graph is an I-map if it is not missing any dependencies in 
the underlying distribution. However, I-maps may also contain extra dependencies, which 
do not exist in the distribution. The graph can still represent the distribution, but 0  will 
be larger than necessary. For example, a complete graph is always an I-map, but is space 
inefficient. A minimal I-map is one which contains no extraneous dependencies.

While Bayesian networks can be built on any combination of continuous and dis­
crete variables, we restrict ourselves to networks containing only discrete variables with 
finite domains. Under this restriction the conditional probability distributions of a vari­
able can be placed into a lookup table indexed by the conditioning event, which is an 
assignment to the variable’s parents. We shall refer to these lookup tables as CP-tables. 
The conditional probability distribution of a variable that takes on r  states will be denoted
® u | f  ( ® v , l | f  ■ • • ® u , r | f ) -

Definition 2.3. A query is the probability o f a configuration o f variables Q =  q given the 
configuration o f variables E =  e where Q, E C X and QflE =  0. The value o f probability

3
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m.f\ | Pr { A  =  1) Pr ( A  -  0) 
100 0A  0.6

a "M=a P r { B = l \ A  =  a) P r { B  =  Q\A =  a)
1 40 0.325 0.675
0 60 0.45 0.55

a m A=a Pr { C =  l \ A  =  o) Pr ( C =  0| A  =  a)
1 40 0.20 0.80
0 60 0.367 0.633

6 c mB=b,c=c M B = 0|2 =  e)
1 10 0.30 0.70
1 0 20 0.333 0.667
0 30 0.25 0.75
0 0 40 0.45 0.55

Figure 2.1: Diamond network

P r(  Q =  q |E  =  e) is sometimes called the query response. For a fixed network structure 
this value is dependent only on network parameters and is therefore denoted q{&).

The primary use of Bayesian networks is for inference, the calculation of query re­
sponses. Both exact and approximate inference on Bayesian networks is NP-hard [10,11]. 
However, inference on Bayesian networks is almost always more efficient than marginal­
ization of the unfactored joint distribution.

Thus far we have not considered how Bayesian networks are constructed. While both 
the DAG and the CP-tables may be constructed by human experts, it is far more common 
to induce a Bayesian network using data drawn from the distribution being modelled [9, 
21, 27, 28, 44]. This is commonly called learning. Using data to construct the graphical 
component is referred to as structural learning. Estimation of the CP-tables is referred to as 
parameter learning. Throughout this thesis we presuppose knowledge of a minimal I-map, 
avoiding the need for structural learning.

A data set is a collection of independent and identically distributed assignments of the 
variables, random samples from the distribution being modelled. While both structural 
and parameter learning are possible given incomplete samples {i.e. samples where variable 
assignments are missing) [28] we restrict ourselves to the case of complete data.

There are two schools of thought on parameter learning -  Bayesian and Frequentist. The 
former assumes that there is a prior distribution for each conditional probability distribution, 
and that data is integrated using Bayes’ rule to derive a posterior conditional probability 
distribution. The latter does not assume the existence of a prior distribution1. In both cases 
learning is greatly simplified if we assume that the graphical stmcture partitions the data 
into multinomial samples [27]. That is, given an assignment to the parents of a variable, 
the samples whose assignments concur form a multinomial sample from the variable in 
question. In Frequentist parameter learning this allows conditional probability distributions 
to be learned using sample statistics. In Bayesian learning, if the prior is assumed to be 
Dirichlet distributed, data can be easily integrated using only sample statistics. This is 
because the Dirichlet distribution is the conjugate prior of the parameters for multinomial 
distributions [48].

2.2 Dirichlet Distributions
The Dirichlet distribution is a distribution over multinomial parameters. Thus they provide 
an ideal representation of parameter uncertainty. In the networks we consider, each CP-

'While these schools o f thought appear throughout statistics, and are subject to endless philosophical debate 
and subdivision, the stance on prior distribution is a relatively uncontroversial way to differentiate them.

4
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table row 0,„jf is modelled by a Dirichlet distribution with density

P ' r (@v , l \ f i  ■ ■ • > ®v, r \ f ) (2 .1)

with mean and variance

(2 .2)

(2.3)

However, inference algorithms require fixed network parameters. The common solution 
is to replace each 0,u|f with its expectation. As will be seen in chapter 3, this effectively 
ignores parameter uncertainty.

2.3 Interval Estimates
When the quantities being estimated are uncertain, providing a range to which the estimate 
likely belongs is common. In statistics, this is referred to as interval estimation. An (1 — 6) 
interval estimate of parameter £ G M” is a compact region u G P  such that Pr[(  Ew] =

The semantics of intervals differs in the Frequentist and Bayesian world view. In Fre­
quentist literature, (  has a fixed unknown value. A (1 -  5) interval means that 100(1 -  8) 
percent of intervals with coverage (1 — (5) placed on the distribution will contain £. In 
Bayesian literature, (  is a variable unknown. A (1 — J) interval is fixed with the belief 
that the probability (  is in the interval is (1 — S). Because of the prior distribution in 
Bayesian procedures the two viewpoints produce different estimates given finite data. To 
differentiate the viewpoints we call interval estimates credible regions in Bayesian models 
and confidence regions in Frequentist models. We shall not consider confidence regions 
further.

( ! - « ) ■

5
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Chapter 3

Variance Propagation for Bayesian 
Error Bars

3.1 Introduction
Bayesian network parameters can be elicited from domain experts. However, elicitation is 
time consuming and prone to logical inconsistency. Estimating network parameters using 
data provides an objective, and less arduous, alternative. Both procedures admit uncertainty 
in model parameters; but queries are often computed as if there is no uncertainty.

Even restricting our discussion to parameter estimates in Bayesian networks with dis­
crete variables and the “correct structure”, uncertainty is first modelled and then ignored. 
Uncertainty in local conditional probability distributions can be modelled using Dirichlet 
distributions [28]. However, inference algorithms assume that each network parameter is 
a single real value. Invariably the Dirichlet distributions are replaced with their expected 
values, thus dispensing with parameter uncertainty. Query responses, which are random 
variables, are replaced with point estimates.

The desirability of query variance in addition to a point estimate is readily apparent. 
Interval estimates (error bars) and techniques that require them become possible. In clas­
sification, high probabilities are frequently taken as a proxy for confidence. Error bars 
provide a more rigorous measure of confidence. In decision theory, variance can be used as 
a measure of risk. Applications of Bayesian networks to outlier detection could use query 
variance to differentiate sampling variation from true outliers [35].

An algorithm to estimate the first-order variance of a queiy response exists (section 3.4). 
Furthermore, it has been proven that q(Q) is asymptotically normal [45, 47]. However, 
when the normality assumption is made, credible intervals are often inaccurate if £%(©)] 
is near 0 or 1. Two causes have been posited for this behavior: the quality of the variance 
approximation and the normality assumption. This paper shall show that, in practice, the 
normality assumption is the primary source of error. Moreover, we propose the use of the 
Beta distribution to model q(@).

This chapter is structured as follows. The problem is formally introduced in section 3.2. 
Because of the subtlety of the question, theoretical foundations of variance estimation in 
Bayesian networks are covered in section 3.3. This result provides a first-order approxima­
tion; but the straightforward approach is impractically slow as it would require calculation 
of partial derivatives of the query response. Section 3.4 introduces BE+ , a relatively effi­
cient algorithm for calculating the required partial derivatives. Distributional assumptions 
for the query response are also considered. Section 3.6 provides experimental support in 
favor of the Beta hypothesis. Section 3.7 is an overview of related literature. Section 3.8 
concludes in favor of our thesis, discusses future extensions, and presents the reader with 
open questions.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Problem Definition
When a query response Pr  (q|e) is computed on a network with no uncertainty, the response 
is a single number. When the same query is computed on a network with uncertainty, the 
response itself is uncertain and modelled by a distribution. The only source of variance we 
consider is that induced by parameter uncertainty. To emphasize the source of variation, the 
query response is sometimes denoted q(@) -  a function of random variables 0 .

Throughout this chapter a Bayesian stance is taken. There is a prior distribution over 
parameters, which induces a prior distribution for q(@). Furthermore, we impose the fol­
lowing assumptions:

1. T r u e  S t r u c t u r e :  (V, A)  is an I-map of the underlying joint distribution.

2. F in it e  D o m a i n : Each  variable has a finite num ber o f  values.

3. Pa r a m e t e r  I n d e p e n d e n c e : The distribution of a variable conditioned on one as­
signment to its parents is independent of the distribution conditioned on any other 
assignment to its parents. If fi ^  { 2  then ©?J|fl and 0 „|f2 are independent (local pa­
rameter independence). Furthermore, the local conditional probability functions are 
independent (global parameter independence). Both requirements were first formal­
ized in [44].

4. D i r i c h l e t  A s s u m p t i o n :  The distribution of a variable given an assignment to its 
parents is Dirichlet distributed.

5. F i x e d  P o s t e r i o r  M e a n s :  The expected posterior parameters 0 ,);I|f remain fixed 
strictly between 0 and 1.

These concur with the assumptions made for mean posterior (MP) learning of Bayesian 
network parameters. We note that assumption 4 implies that no parameter can be 0 or
1. The algorithms described herein can be applied to such scenarios, albeit at the loss of 
guaranteed asymptotic normality.

Two methods will be used to verify hypothesized distributions. By sampling each 
Dirichlet row distribution a sample from © is drawn, which induces a sample from q(Q). 
Statistical tests exist to determine whether random deviates were generated by a particular 
distribution. A similar test draws a (1 — <5) credible interval [a,b\. If the hypothesized 
distribution is correct one expects the fraction of samples that fall within this interval to be 
(1 — 5). The validity of this test is a consequence of the Glivenko-Cantelli theorem1 [12].

3.3 Derivation
In this section we apply the multivariate delta method [4] to derive an estimate of the vari­
ance of a query response. We introduce the following notation. 0* denotes the network 
parameters formed by replacing each Dirichlet row distribution with its expectation. q'(€>*) 
denotes vector of partial derivatives of scalar q(@*) with respect to each @„)X|f and <?"(©*) 
denotes the matrix of second derivatives of <?(©*). Consider a first-order Taylor series ex­
pansion of q(Q) around 0 *:

q(B) = q(@*)+q'(Q*)[e - e * ] T + R  (3 .1)

R  =  1 [©  -  © * ] / ( © * ) [ ©  _  ©*]T 3@ * G [© *5 ©j (3 .2 )

Since q(Q) is twice-differentiable it can be shown (Appendix A) that

^ ( B ) - m9( 0 ) ) 2] «  d ?2(0 ) = < / ( © * ) ( 3 . 3 )

li.e. the empirical distribution uniformly converges in 5 as the number of samples from q(Q) tends towards 
infinity. It also forms the basis for the Kolmogorov-Smimov goodness-of-fit test.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This also requires the following result from [9]:

p g{e) =  E[q(e)\  =  g(P[0]) =  g(0*)

To compute a Bayesian credible interval around g(0*) the cumulative distribution func­
tion of the query response is required. Theorem 1 argues that for sufficiently large sample 
size, a normal approximation is reasonable.

Theorem 1. Under assumptions 1 through 5 as m ,in{av x^}  —> oo the standardized ran-

converges in distribution to the standard normal distribution.

Proof. Under assumption 5 each Dirichlet row converges in law to a multivariate normal 
distribution [1]. Moreover, the remainder term in equation 3.1 is asymptotically negligible 
(all the second partial derivatives are bounded in a neighbourhood around 0 *), ensuring 
that R  converges to 0 more rapidly than the linear term. Thus, asymptotically, g(0) is a 
linear function of Gaussians and therefore itself Gaussian. □

Given that each CP-table row is an independent Dirichlet distribution the (i, j )  element 
of covariance matrix E is non-zero iff ©j and Qj are from the same distribution. We can 
therefore decompose formula 3.3 into the sum of row contributions

Theorem 2, described in [46], provides an alternate form of equation 3.4. Solving this 
equation requires only the ability to calculate arbitrary queries and the effective sample size 
of each Dirichlet row distribution, 0 „ |f .

Theorem 2. Under assumptions 1-4 the approximate variance o f query response g(0) =  
P r(q |e )  is

dom variable
g(0 ) -  P[g(0 )]

CTg(0)

(3.4)

where E1'^  is the covariance matrix of 0„|f =  D ir{av i |f, . . . ,  a„)r|f) and

noting from [24, 13] that

dq(0)  __ 1 Pr ( Q  = q , X v = x , F v =  f |E  =  e ) -
d@*v,x\f ~  L P r (Q =  *llE  =  e ) ■ P r (x v = X , ¥ V = f |E  =  e)

(3.5)

(3.6)

variance o f row v \f

v Wu|f
B  = [P r(f, q |e) — P r (q |e )P r ( f |e )]2

A  =  E  f ’ ^ le) -  Pr ( q \e)Pr(v,  f  |e )]2 (3.7)

(3.8)

8
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Proof. The covariance matrix of row wjf is

'  -  ©;,ijf>/(“ »K+ ! ) ,  * = i

k - 0 ^ |f0 ^ |f /K |f  + X)’ * ^ 3
s t,!f =

13
(3.9)

If we let In denote a n  x n  identity matrix then the covariance matrix can be factored as 
follows:

£ " l f  =

Thus equation 3.4 becomes 

1

a v |f +  1 5 1 ' ] ' (3.10)

&g(0) E
u|f a v |f +  1

(3.11)

By substitution of the partial derivatives by their corresponding value in equation 3.5 and 
algebraic simplification we arrive at the required result. □

For specific graph structures, it may be possible to avoid computation of equation 3.6. 
Naive Bayes is one such example (Appendix C). However, in general computing partial 
derivatives using equations 3.5 or 3.6 directly would be unpractically slow.

3.4 Efficient Calculation of Partial Derivatives
In this section we describe the BE+algorithm [45], which simultaneously computes q(&*) 
and all the partial derivatives required for equation 3.3 in 0 ( n  ■ exp(w))  time and space 
complexity, where n  is the number of nodes in the network and w is the induced tree width 
of the variable ordering, 7r, used.

3.4.1 Bucket Elimination

BE+extends the bucket elimination framework [15], a class of variable elimination algo­
rithms that include methods for belief net inference. We introduce the following notation. 
Let /(S )  represent a function over a set of named variables /  : S' —> ®L That is, /  maps 
each assignment S  = s to a real number. Bucket elimination is based upon two operators: 
jo in  and elirn. Join combines an arbitrary number of functions together to produce a new 
function

f {T )  =  join{(?i(Si),. . .  ,gr (Sr)}

where T  = U[=i St and
r

f ( t ) = n & w  
1

It is understood that t is an assignment to the variables of T  and gl (t ) is the function when 
its arguments are set to their corresponding values in t, an assignment to a superset of the 
arguments of gi(-). Elim marginalizes a set of variables from a function, producing a new 
function:

f ( T )  =  elim* [<?(£)]

where T  =  S  — R  and

/(*) = E ^ : r)
r e R

9
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It is understood that t  : r is an assignment to the variables in S  using the corresponding 
assignments in t and r. Assignments to a subset of the arguments of a function are allowed. 
Instead of returning a single value, the result is a new function on the unassigned variables 
t £ T.

If we denote the set of CP-tables in a network {/ii(S'i),. . . ,  hn (Sn)} and fix variables 
E  =  e in all the table then

P r ( E =  e) =  elimUn=i s .\jow{hj(e) | 1 < j  < n}]

However, direct evaluation of this expression is impractically slow and memory inefficient 
-  it enumerates the full joint distribution (exponentially large in the number of variables) 
and then marginalizes. The key to bucket elimination is that it factors functions across the 
sums and products (elims and joins).

Given an ordering of variables tt =  v \ . . .  vn bucket elimination creates a series of buck­
ets bo, b i , bn, and for each evidenced CP-table hj (e) places it in the bucket of maximal 
variable. The buckets are processed in order bn, . . . , b i .  For each bucket b% associated with 
variable X{ compute

f j ( T ) = elim{x.}[join{c/i (S'i) | gi(Si) e  k}]

and place f j {T)  in the bucket corresponding to the maximal variable (i.e. the variable of 
maximum index in the ordering). Degenerate functions, those lacking variables, are placed 
in 60. The marginal probability P r (E =  e) is simply the product of functions in bo-

3.4.2 Bucket Elimination Plus (BE+)

Our description of BE+, which computes both the query response and partial derivatives, 
is based upon a constructive proof from [45]. First, we simplify the problem with the 
following:

Lemma 1. I f  a function f ( S )  has a counterpart function f ~ l (S) such that 

y = P r (q|e) =  elims \join{f(S),  / _1(5)}]

then
r l {s) =__ dy

df ( s )

Proof By definition

y = ^ 2 f ( s ) ■ / _1(s )
ses

The result follows by simple differentiation. Note that the functions map to unknown real­
valued parameters, which is why the derivative is not 0. □

Theorem 3. Every function f ( S )  placed in a bucket has a counterpart function f ~ l {S) 
such that

y = elims \ jo in{ f (S) , f~1{S)}]

Moreover, / -  l (S) can be computed using the potentials produced during bucket elimina­
tion.

Proof We shall prove the result inductively.
B ase: Bucket bo contains only degenerate functions (real numbers) which when combined, 
produce y. Therefore for all functions u £ bo

-1u = elim.0[join{Vv € bo,v 7̂  u}]

10
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I n d u c t i v e  S t e p :  Consider an arbitrary bucket bj where f j (T)  is the result of processing 
bj. By inductive assumption the counterpart function f ~ l (T) exists. Let the contents of bj
be denoted {91 (M i ) , . . .  ,gr (Mr)}. For any gi(Mi) we shall show its counterpart g~1(Mi) 
exists. Recall that

}j{T)  =  e l in ^ x . jp o in ^ M i) ,  . . . , g r (Mr)}] 

and also by assumption that

V =  elim rtjoin{/j(T), f ^ ( T ) } ]

Therefore

y  =  elimrOoin{/T1(T),elimXj[join{g1(M1) , . . . , ( / r (Mr )}]}]

=  E0 )E n ^ :i)
teT xeXj j =1

{t,x)eTx Xj j=1

Since Mi C T  U X j  define S  = T  U X j  — Mj. Consequently

V  =  52 : s ) Y l 9 j ( m i  '■ s )
mGAfj sGS

=  elimMibi(M i),elim s [join{{/“ 1(T)} U {.9j ( M 3) | 1 < j  < r , j  ±  *}}]]

Finally

g~l {Mi) = e lim sp o in d /r^ T )}  U {gj(Mj)  | 1 < j <  r , j  + *}}]

□
The proof is constructive. After processing the buckets under a given ordering to calcu­

late Pr(E  =  e) or P r ( Q =  q, E  =  e) a second pass in reverse order computes the partial 
derivatives of a marginal with respect to each CP-table. Given the partial derivatives, com­
puting equation 3.4 is straightforward.

Note that BE+refers specifically to the algorithm used to calculate partial derivatives. 
The entire process will be called InfEB, and is illustrated in figure 3.1. Before the process 
begins we assume that uncertain network parameters 0  have been given to us as Dirichlet 
rows. Steps 1 and 2 illustrate this as mean posterior parameter estimation. It should be 
noted that InfEB also applies to networks whose parameters were constructed by maximum 
likelihood (as long as all the parameters are specified). In step 3 the posterior network and 
query are used to initialize data structures and run BE+ . Posterior parameters are replaced 
with their expectations to produce a mean network. The parameters of the mean network 
are denoted 0 * . The forward pass of bucket elimination on the mean network outputs 
the expected marginal; the reverse pass produces the partial derivatives of the marginal 
evaluated at 0 *. Thus the expected marginals Pr@. (e) and Pr©* (q, e) as well as the 
partial derivatives (step 4) are produced. The outputs of BE+are used in step 5 to calculate 
equation 3.4. This yields the variance of the query response. Additionally, the mean and 
variance of the query response can be used to produce a model of the distribution. Given 
a coverage probability 8 € (0,1] the quantile function of the normal or Beta distribution is 
used to produce an approximate credible interval [a, b] on q(0 ).

11
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(V, A)  D a ta  P r io r©

Param eter Learning

Posterior ©

Q = q 
E =  eO Init & BE+

Estimate Variance

Error Bars
(1 - 5)

Figure 3.1: The flow of the algorithm used for estimating the variance of query response. 
The steps outside the dotted box are not part of InfEB.

3.5 Bayesian Error Bars

The outputs of BE+are the first and second moments of the query response. Using the nor­
mal approximation advocated by theorem 1 is straightforward. Fitting a normal distribution 
to the query response given the calculated mean and variance is done using the method of 
moments [48]. Approximate credible intervals are formed by taking confidence intervals for 
the fitted normal distribution. Formally for any 5 € (0,1] an approximate credible interval 
of coverage probability (1 -  S) centered at q(&*) is defined as

[q(G*)-e,  q(G*)+e]  
where e =  —&~1(d/2) ■

and 4>-1 (-) is the inverse cumulative distribution function of a standard normal variable.
In practice, it is often dangerous to assume that the query response is normally dis­

tributed. While the query response is asymptotically normal, no claim is made about the 
rate of convergence. It has been observed in [47] that, on the Diamond network with ef­
fective sample size 10, the samples of several query responses deviated significantly from 
normality. The normal distribution is defined on M, while the query response is by defi­
nition restricted to the [0,1] interval. In many cases significant probability mass is placed 
outside the unit interval. Moreover, the empirical distribution of the query response is often

12
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skewed when the expected response is near 0 or 1. This cannot be accurately modelled by 
a normal distribution. We therefore propose the use of the Beta distribution to model g(0). 
It can take on positive, negative, or zero skew. Its parameters are also readily estimated 
using the method of moments. Finally, the normalized Beta distribution converges in law to 
the standard normal distribution. For sufficiently large sample sizes, it will produce results 
close to the asymptotic behaviour of g(0 ).

3.6 Experiments
We claim that Beta distribution is a better model of the query response than the normal 
distribution. To validate this claim we use a simple Monte Carlo strategy to sample from 
the distribution of the query response. Generate r  replicates from 0 , denoted {0*}[= I. Each 
replicate instantiates a Bayesian network with fixed parameter values. For each instantiated 
network calculate Q t — q{®1) using any algorithm for Bayesian network inference. These 
{ Q i }  are samples from the true distribution of the query response. Our experiments are 
based on r  =  1000 samples.

Two network topologies are used in our experiments: Diamond and Alarm. The former, 
illustrated in figure 2.1, is a small network that allows for a variety of inferential patterns. 
The latter, described in [29], was designed by medical experts for monitoring intensive care 
patients. Since Alarm is not specified with Dirichlet rows, and often contains probabilities 
that are 0 or 1, we use our own parameters instead. We gave both networks an effective 
sample size of 100.

Using the Diamond network the following queries are studied:

1. P r ( A  = 1)
2. P r ( A  = 1|B  = 1)
3. P r ( A  = l \ B  = 1 ,C  = 1)
4. P r ( B  = 1,C = 1\A =  1)
5. P r ( A  =  1|D = 1)
6. Pr{D = 1|A = 1)

Using the Alarm network, 100 queries were generated by choosing a single query variable
and three to five evidence assignments (using [29] to determine which variables could be
query variables, and which could be evidence variables).

For a given network, the samples {Q?;}[=1 are used to answer two questions. One, while 
q(Q) is asymptotically normal, is it reasonable to assume normality in practice ? Two, how 
accurate are the error bars produced by our algorithm ?

3.6.1 The Normality Assumption in Practice

It was observed that queries on the Diamond network with effective sample size 10 exhibit 
significant non-normality. We formally define significant deviation from normality as a p- 
value of less than 0.01 on a Shapiro-Wilk test {i.e. the probability that the data is drawn 
from a normal distribution with population mean and variance is less than 0.01). Even 
if the effective sample size is increased tenfold, queries 2, 3, and 4 continue to deviate 
significantly from normality. For the Alarm query responses, 85 deviated significantly from 
normality. The problem is especially pronounced when q{@*) is near 0 or 1.

When the normal distribution is replaced by a Beta distribution, as discussed in sec­
tion 3.5, the results improve tremendously. The Shapiro-Wilk test, which applies only 
to normality testing, cannot be applied here. The Kolmorogov-Smimov test [12] is a 
goodness-of-fit test that can be used with arbitrary distributions. It should be noted that 
when the Kolmorogov-Smimov test is usually used, only the sample moments are known. 
The test is conservative in this situation. Since we are using the tme mean and an estimate 
of the variance not dependent on the samples, the test is accurate. A stringent significance 
threshold of 0.001 is used {i.e. if the p-value is less than 0.001, the data is deemed not to
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Query 4

Query 8Query 7

(a) Normal Hypothesis (b) Beta Hypothesis

Figure 3.2: Alarm network: Quantile-quantile plots comparing query samples against es­
timates of q(@) using calculated mean and variance. The line y — x  indicates perfect 
concordance between the data and proposed distribution. If the samples deviate substan­
tially from this line the data does not accord with the proposed distribution.

conform to the hypothesized distribution). We evaluated the 100 Alarm queries: 58 con­
formed to the normal model; 96 conformed to the Beta model.

Quantile-quantile plots provide an anecdotal, but more persuasive illustration of our 
thesis. Sample quantiles are plotted against the theoretical quantiles of the fitted normal 
and Beta distributions. In figure 3.2 nine representative queries were chosen to illustrate the 
quality of the normal approximation. When the true distribution is skewed the failure of the 
normal model is most prominent. The Beta distribution appears to model all the queries at 
least as well as the normal distribution, and often much better.

3.6.2 Accuracy o f Error Bars

A common use of variance is to produce interval estimates: confidence regions in the Fre­
quentist framework and credible regions in the Bayesian framework. Since BE+is predi­
cated on a Bayesian stance we concern ourselves only with credible intervals.

We restrict our examination to the Alarm network. The 100 queries chosen contain 
results with both high and low variance, as well as many queries with expected response 
near 0 or 1. A wide variety of inferential patterns can be observed on one network. Similar 
behavior was observed with the Diamond network; the results are elided for brevity. For 
each query a posterior coverage experiment is performed. A normal or Beta distribution is 
constructed as per section 3.5. We then approximate a 90% credible interval and record the 
fraction of query samples { Q i }  in the interval. To address sampling variation, the procedure 
is repeated 100 times for each query. Results are presented in figure 3.3.

Assuming the query response is normally distributed tended to produce overly large in­
tervals on Alarm. This may be due to higher kurtosis of the normal distribution compared 
to the beta distribution. However, we cannot claim that the algorithm is always conserva­
tive. On a different network, interval estimates could be systematically liberal. On the other 
hand, the Beta distribution tends to produce more accurate intervals. It should be remem­
bered that the variance estimate is only a first-order approximation.* For certain queries, 
the remainder term (R  from equation 3.1) can still have a noticeable effect. A few of the 
outliers also correspond to cases where the Beta distribution is degenerate (e.g. U-shaped).
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(a) Normal Hypothesis (b) Beta Hypothesis

Figure 3.3: Query sample coverage of computed 90% Bayesian credible intervals. Each 
point represents a query on Alarm. On the left we assume q{@) is normally distributed. On 
the right we assume q(@) is Beta distributed. The points and lcr error bars represent the 
sample mean and deviation over 100 coverage experiments. The line represents the desired 
result, 90% coverage.

In such scenarios neither the normal nor the Beta model is appropriate. These cases can be 
marked by looking at the hyperparameters of the Beta model.

It should also be noted that the presentation of results in figure 3.3 helps explain certain 
anomalies found in [45]. In that work, the error in empirical coverage of an interval is 
averaged over 30 networks, formed using different data sets of size m.  Failure to report the 
variance in coverage errors due to training set variation could mislead the reader to conclude 
that for certain queries, the algorithm becomes less accurate as m  increases.

3.7 Related Work
This paper continues the work of [47] by proposing an alternative to the Gaussian approx­
imation of the query response. The algorithm itself essentially propagates uncertainty in 
CP-table rows through a system of partial derivatives. While the mathematical founda­
tions are a straightforward application of techniques from error analysis, the application to 
Bayesian networks has not been widely explored.

Kleiter [31] is closest in motivation to this work. It presents a framework for estimating 
query variance given complete or missing data. However, it (1) assumes all variables in a 
Bayesian network are independent, (2) ignores correlations within rows, (3) does not take 
advantage of local parameter independence, and (4) is dependent on stochastic simulation 
to approximate its variance estimate. Moreover, our results present empirical support with 
regards to the accuracy of variance estimates.

A larger body of related work considers sensitivity analysis, exploring how sensitive 
network parameters and queries are to changes in other network parameters [19, 43, 7]. 
These papers do not consider variance, but sometimes assume that parameters are inter­
vals to be propagated throughout the network. In contrast, our assumption of independent 
Dirichlet rows is in accord with common MP models of learning Bayesian network pa­
rameters. We explain the source of the intervals, instead of treating them as user-defined 
ranges.

Of especial note are Query-DAGs [13], which provide an alternate algorithm for com­
puting the first partial derivatives of a query with respect to network parameters. While 
asymptotically no faster than BE+ , in practice it avoids the creation of intermediate CP- 
tables, a bottleneck in our implementation.
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Throughout our experiments we used samples from q(@). The samples themselves 
can be used to draw approximate credible intervals. This technique is computationally 
expensive, requiring an exponential time algorithm to produce each sample. There are 
applications of sampling methods to other problems in Bayesian networks which can easily 
be confused with our concerns. In stochastic sampling inference algorithms, confidence 
intervals on the posterior [8] refer to the distribution induced by sampling. The underlying 
network has no parameter uncertainty.

3.8 Discussion
In this chapter we put forward the thesis that the Beta distribution provides a better model 
for q(@) than the Gaussian model. This has been shown to be the case on a wide variety 
of inferential patterns by both theoretical measures (goodness-of-fit tests) and applications 
(posterior coverage experiments). Furthermore, our results reinforce the argument that a 
first-order variance approximation is almost always sufficiently accurate.

While our current system takes advantage of many optimizations available to bucket 
elimination algorithms (e.g. optimized variable orderings), it would be desirable to use a 
multiple query algorithm to amortize memory allocations over many queries. Query-DAGs
[14], given their similarity to bucket elimination, are an obvious choice.

Another possible criticism is that missing data is not handled. The problem lies in over­
estimation of the effective sample size by the EM algorithm of [32], Solving this problem 
immediately allows one to use the methods of this chapter to estimate the variance of query 
response. A related stance criticizes the assumption of discrete variables. However, many 
alternative representations (e.g. Noisy-OR [40], CP-Trees [5]) do not encode parameter 
uncertainty. Gaussian networks [22] are a notable exception. Local conditional probability 
distributions are represented as normal distributions. The joint distribution is thus multi­
variate Gaussian. The covariance matrix of the joint distribution is readily generated, but 
no consideration has been given to the question of the distribution of a query response.

One promising direction of research is the development of specialized versions of equa­
tion 3.3 that, for specific types of structures, bypass BE+altogether. We have derived a 
closed form solution for the variance of query response in Naive Bayes networks (Appendix 
C). We further believe that a similar derivation is possible for the second partial derivatives, 
allowing the error term of equation 3.1 to be easily calculated.

Does the query response belong to a single parametric family, regardless of the network 
and query ? The results of the chapter suggest that the Beta distribution is a viable candidate. 
Alternately, one can take a less stringent approach and explore richer representations of 
q(@). Mixture models or Bernstein polynomials of Beta distributions [23] are two possible 
directions, albeit both bearing the cost of sampling.
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Chapter 4

Learning from Small Data Sets

4.1 Introduction
The estimation of Bayesian network parameters is a frequently addressed problem [9, 21, 
28, 44], This is especially true for discrete variable networks and complete data sets. How­
ever, relatively little attention has been given to parameter estimation when the data sets are 
small and only one query is of interest1. In this chapter we examine this issue. Section 4.2 
defines the problem. Section 4.3 introduces classical approaches to parameter estimation 
in Bayesian networks. Section 4.4 discusses related work, none of which quite address this 
problem. Section 4.5 proposes three approaches to small sample estimation of the query re­
sponse. Section 4.6 describes the experimental design, and presents the results. Discussion, 
including an argument on how algorithms should be compared, is presented in section 4.7.

4.2 Problem Definition
Assume a fixed distribution V  can be modelled by a minimal I-map (V, A) and parameters 
0*. That is, the distribution of interest can be modelled by a Bayesian network. Given the 
following:

1. True Structure: A minimal I-map of V

2. Complete, Noiseless Data: A  small finite data set drawn from the fixed distribution 
V, without missing or incorrect variable assignments.

3. Explicit Conditional Distributions: Each conditional probability distribution must be 
either a multinomial (in a Frequentist framework) or Dirichlet (in a Bayesian frame­
work) distribution2

4. Single Query: There is only one query of interest. The probability of this query is 
known as the response, q(Q), a. function on the unknown network parameters 0 . The 
true query response is denoted q(Q*).

induce a parameter estimate 0  that minimizes L 2 error with respect to the query of 
interest:

e r r q(&) =11 9(©*) -  7(0) ||2= [7 (0 *) -  7(0)]2 (4.1)

'This is not inductive learning, where the goal is to calculate P r(q je ) for different sets of observations 
E  =  e. Rather we fix the observations and consider a particular set of query variables.

2This is often called the unrestricted multinomial model for conditional probability distributions [28]. The 
term refers to the way data is generated, but becomes confusing when reference is made to Bayesian methods 
which use a Dirichlet distribution to estimate the parameters of an unrestricted multinomial model.
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If two estimators are compared, the one with lower L 2 error is referred to as more accu­
rate. As the size of the data set tends towards infinity, both the maximum likelihood and 
mean posterior estimators will produce arbitrarily accurate estimates. However, in practice, 
data sets are often too small to produce very accurate estimators. Another consequence of 
small data sets is the smoothing problem. Maximum likelihood estimators do not assume 
a prior. Without data matching the conditioning event, no estimate can be produced. This 
frequently occurs for conditional probability distributions with many conditioning events. 
Only samples whose assignments match the conditioning events can be used to estimate the 
distribution.

The simplicity of the problem also allows us to address the question of training sample 
variation. The normative practice in the machine learning community is to use a single 
training set to construct a classifer. Either the entire training set is used or a subset is 
withheld to assess generalization error. Neither method takes into account the variation 
between training sets. It is obvious that different training sets of the same size can produce 
radically different estimates of 0  (and thus q(&)) -  especially if the training sets are small. 
Our goal is to determine which of the proposed algorithms is best suited for this problem. 
One would expect a superior algorithm to produce more accurate estimators given a variety 
of training sets.

4.3 Classical Techniques
Given the graphical component of a Bayesian network there are two common techniques for 
estimating ©: maximum likelihood (ML) and mean posterior (MP). Both are used through­
out statistics. A more general discussion of ML and MP can be found in [48]. An under­
standing of the following sections is requisite to later discussions in this chapter.

4.3.1 M aximum Likelihood

Given a data set D  of independent samples and a density function of known form with 
unknown parameter £ the principle of maximum likelihood argues that one should maxi­
mize the likelihood of the data given (. The same principle applies to vectors of unknown 
parameters.

For our purposes the likelihood function is simply P r(D |0 ) , or equivalently log Pr(D \Q ). 
Let N VjX\f be the number of samples that correspond to X v taking on value x  given an as­
signment f  to the parents of X v.

0 argmax [log Pr(L>|0)] 
0

argmax
©

argmax
©

'“s I H K s "
u|f X

^  ^  ̂N VjX\f log ©u,x|f
l>|f X

This is equivalent to maximizing the innermost sum for each conditional probability dis­
tribution. Because 0„ |f is a probability distribution the constraint Yhx ©v,x|f =  1 applies. 
The maximum likelihood solution for each parameter is as follows:

0,
N,v ,x \i

ILiX N v,:,x|f

If no samples match the conditioning event F„ =  f  then the estimator is undefined. If 
q(Q) is a one-to-one function the invariance property implies that q(Q) is also a maximum
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likelihood estimator [48], In general, this does not hold for <7(0 ). While not the goal of this 
chapter, a novel contribution of this work is the ability to calculate the covariance matrix of 
the generative distribution under maximum likelihood (Appendix D).

4.3.2 M ean Posterior

Just as with maximum likelihood, we are presented with a data set D  of independent sam­
ples and a density function of known form and unknown parameter(s) (. The mean posterior 
approach is Bayesian. A prior over the parameters is established. Data is integrated to de­
rive a posterior distribution. The mean of the posterior distribution constitutes our estimate. 
Unlike maximum likelihood, we are forced to make an assumption about the prior distri­
bution over parameters, P r (0 ) .  Without domain knowledge, it is common to choose a 
uniform distribution. For parameter estimation in Bayesian networks local parameter inde­
pendence [44] allows this prior to be factored over each conditional probability distribution 
0 «|f •

Calculating the posterior distribution Pr(@\D) is a process of integrating data into the 
prior distribution. For arbitrary types of prior distributions, this step is computationally in­
feasible. However, we have assumed the data is multinomially distributed. By [48, 28] if 
the prior is assumed Dirichlet distributed, then integrating multinomial data yields a Dirich­
let posterior. Moreover, integration requires only the computation of counts over the data 
set. This is called the conjugate prior relationship between multinomial and Dirichlet dis­
tributions.

One advantage of this technique over maximum likelihood is that parameters are always 
defined, even in the absence of data. The uniform prior is numerically identical to Laplacian 
smoothing of parameter estimates:

A  ^ v , x \ t  +  1

which is equivalent to modeling each row as an average of the maximum likelihood estimate 
and the uniform prior mean [41].

4.3.3 Counting Statistics

Given a query P r(q |e )  the required marginals P r(q , e) and P r(e ) can be approximated 
using their empirical distributions on the data set. That is, the number of samples matching 
Q =  q  A E  =  e divided by the number of samples matching E  =  e. If we assume 
P r (Q |e) is a multinomial distribution the problem can be viewed as maximum likelihood 
estimation. Likewise, if we assume a Dirichlet prior parameter learning can be viewed as 
mean posterior estimation.

Computation of the variance of query response is trivial. Given n tuples which match 
the conditioning event apply the multinomial variance.

P r(q |e )[ l -  P r(q |e )] 
n

for the maximum likelihood model or

P [P r(q |e )]( l -  P [P r(q |e )]) 
a  +  1

where a  is the effective sample size of the Dirichlet distribution on P r (Q |e).
This is a poor algorithm if the data sets are small. The variance of the distribution can be 

high (or infinite in the case of maximum likelihood). This happens frequently if the query 
involves many conditioning events. However, the algorithm becomes attractive in certain 
scenarios. For example, when the query Pr(C ') is required and the network has an inverted 
Naive Bayes topology (figure 4.1(a)).
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4.4 Related Work
A natural formulation of our problem is in the discriminative learning framework. Gener­
ative techniques like ML and MP maximize a log-likelihood function on the data to find 
parameters that best model the joint distribution. The discriminative formulation maxi­
mizes a conditional log-likelihood function on the data to find parameters that best model 
one conditional distribution, the query of interest. This is equivalent to finding a model that 
minimizes the conditional cross-entropy of the query response [21]. While generative for­
mulations are criticized for being indirect, optimizing the joint distribution when we often 
care only about one query, there are two limitations to the discriminative version. Tractable 
procedures for discriminative parameter estimation are not known to exist [26, 39]. Further­
more, the second reference strongly suggests that while discriminative parameter estimation 
leads to lower asymptotic error; the generative formulation asymptotes with fewer samples. 
The high sample complexity of the discriminative algorithm leads to lower accuracy than 
MP. For this reason, we focus on improving generative learning algorithms.

Other approaches simply ignore the I-map altogether. More generously, these algo­
rithms do not presume foreknowledge of an I-map. If one is working with small amounts 
of data an approximate structure with fewer parameters often produces more accurate esti­
mates of a query response than the true structure. This argument underlies the ubiquity of 
Naive Bayes [33] and the promise of tree-augmented networks [21].

Ignoring the I-map is a waste of useful information. A less radical alternative is to 
replace CP-tables with approximate representations. Such techniques reparameterize © 
while respecting known dependencies. The oldest reparameterization technique, Noisy- 
OR [30, 40], predates learning algorithms for Bayesian networks. Noisy-OR is limited 
to distributions with binary variables. It treats each node like an logical-OR gate with its 
parents as inputs. However, there is a non-zero probability that when one parent is set to 
1, the node will not output 1. Each such probability is independent of the state of all other 
parents. Finally, an extra “leak” node L  is often added to account for exogenous effects:

P r(X v = 1|F„ =  / )  =  ! — P r (X v = 0|L) H  P r (X v = 0|F) =  1) 
F«(zFv , F j = l

CP-table representations require space exponential in the number of parents; Noisy-OR 
representations require space linear in the number of parents. Under the assumption of 
independent causes other logical gates can be used similarly. Sigmoidal networks [38] rep­
resent conditional probabilities as sigmoid functions of weighted inputs from independent 
parent nodes. Conditional probability trees [5] exploits dependencies between CP-table 
rows. A CP-table can be viewed as a tree where the inner nodes contain assignments to a 
subset of variables F„. The value P r (X v = aj|Fv =  f) is on the leaf. CP-trees replace 
subtrees with a leaf when the loss of accuracy in the CP-table representation is minimal. 
This is similar to pruning in decision trees.

The discriminative model assumes only one class of queries P r (Q |e) is of interest. 
What if there is a distribution of queries ? What parameters maximize performance across 
the query distribution ? In [24] it is shown that under the error function

err[g(©)] =  F7,(0 ) [g(0) -  g (0 )]2

approximation of optimal parameters is NP-Hard. This does not imply that our problem, 
having a degenerate query distribution, is also NP-Hard. Another difference is our concern 
with small data sets.

4.5 Proposed Methods
In this section we propose methods that address the problems exhibited by classical tech­
niques: sample complexity, smoothing, and training set variance.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5.1 Bagging

Bootstrap aggregation, or bagging [6], uses a single data set to produce multiple estimators 
and then aggregates to output a single estimate. This is done through the creation of multiple 
data sets by a process known as bootstrapping [18]. Given a fixed data set D, another 
equally sized data set is produced by sampling cases from D  with replacement. When the 
bootstrapped data set is smaller than D, the bagging algorithm is referred to as m-bagging. 
Each data set is independently used to produce an estimate. Aggregation usually consists of 
averaging estimators for regression or voting schemes, such as plurality, for classification. 
Since q(@) is a real-valued quantity we use averaging.

Formally let D t represent one of the nu possible data sets generated by bootstrapping. 
For any estimator of a real-valued parameter £ the bagged estimate is as follows:

Since this is computationally infeasible for even relatively small data sets approximate in­
tegration using l < n "  must suffice:

Our motivation for using bagging is straightforward: it tends to lower variance at the 
cost of higher bias [3]. Small data sets lead to high variance estimators of <?(©*). The 
tradeoff should lead to lower overall error. Furthermore, while bagging can make poor 
estimators far worse, because of the effect small changes have near the decision boundary, 
such criticisms have not been observed in regression.

A salient criticism of bagging is computational cost. This is especially true when the 
underlying estimation procedure C(A) is costly. The additional cost of generating data is 
nominal. In our experiments, the underlying routine is MP, which for complete data is quite 
efficient3. Finally, parallelization of bagging algorithms is trivial, requiring communication 
only to dispatch data sets and aggregate estimates.

4.5.2 Network Reduction

Standard inference algorithms effectively operate through the marginalization of variables 
from the network. It may be the case that variables (and their associated arcs) can be 
similarly removed, creating a new model with fewer parameters to estimate. Herein lies the 
motivation for a technique known as network reduction.

Our focus on network reduction will be on a hitherto unverified approach described in
[25]. It addresses the problem of section 4.2, but assumes “a fixed set of independency 
claims” instead of a minimal I-map. While I-mapness is a property of directed acyclic 
graphs, independency claims can be made with respect to any graphical model. However, 
the examples used to motivate the paper are all I-maps -  the difference is moot.

The technique allows one to remove a set of nodes Y  from the network, producing a 
reduced graph. The variables associated with Y  are removed from the data set, producing 
a reduced data set, until ML can be used to estimate all the parameters of the reduced 
network, 0 '.  Finally, an estimate of the query response is produced by inference on the 
reduced network. Reduction is subject to three constraints:

1. For each @'v in the reduced graph there is at least one data sample matching the 
conditioning event F„ =  f.

2. Evidence nodes that influence the query in the original graph must continue to do so 
in the reduced graph.

3This is especially true with the introduction of more efficient data structures for computing counting statis­
tics, as discussed in [36].

1

i=1
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(a) Inverted Naive Bayes (b) Triangle

Figure 4.1: Two models used to study network reduction. While inverted Naive Bayes net­
works can have an arbitrary number of parents, we shall work with a three parent example.

3. The subgraph is an I-map over the remaining nodes
The first criteria ensures that ML is possible on the reduced network. The second criteria 
ensures that the query itself is not altered. For a query P r(Q |E ) if nodes in Q or E  are 
disconnected, arcs must be added to ensure that this requirement is met. The third criteria 
is true when the original network is an I-map. However, these desiderata do not define an 
algorithm. Neither is there any theoretical result to argue that estimates produced using the 
reduced network will outperform MP. The goal of our experiments with network reduction 
is to determine whether it is a viable solution to learning with small data sets.

One example cited in support of this procedure is inverted Naive Bayes (figure 4.1(a)) 
when the query of interest is Pr[C). The number of possible configurations of the parents is 
exponentially large. Most configurations will not be observed in a small data set. Removing 
a few parents can reduce the number of configurations drastically. With the same training 
set, it eventually becomes possible to estimate all the parameters in the network. Ideally, 
this will lead to a better estimate of the query response.

We also introduce an even simpler problem, the triangle network (figure 4.1(b)). If the 
query of interest is P r(A \B )  or P r(B \A )  network reduction is simplified to the following 
choice -  should node X  be removed ?

4.5.3 Finite M ixture M odels

There are two common criticisms of Laplacian smoothing. One, no consideration is given 
as to whether too much or too little probability mass is withheld for unseen events. Two, 
Laplacian smoothing is only a mixture of the maximum likelihood estimate and the uni­
form distribution. It may be advantageous to smooth using more elaborate mixture models. 
Herein we propose the use of finite mixture models (FMMs) to address both concerns.

Finite mixture models4 represents a distribution as a weighted mixture of distributions 
from a chosen parametric family. Since CP-table rows in Bayesian networks are indepen­
dent, each 0,u>xjf =  P r (X v = x \ f i . . .  fk )  can be treated as a single estimation problem.
Our choice of classes is naive: remove the last I conditioning events to create the Ith class. 
Note that we first impose a arbitrary ordering on the parents of each node. For notational 
simplicity we let /o act as a nonexistant conditioning event. Each class is estimated us­
ing either maximum likelihood or mean posterior. To calculate mixing parameters {Aj}f_0 
expectation-maximization [16] on a hold-out set D h C D  is used. Note that dl denotes the 
value of variable X t in sample d:

E-Step: (4.2)

M-Step: A* =  — “ —
E t o A

(4.3)

4Commonly referred to as linear interpolation in natural language processing [34].
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and the estimated local conditional probability distribution is as follows:

k

P r ( X v \ fu  ■ ■ ■, fk) =  E  A* ' M X v l h ,  ■■■Jk) (4.4)
i= 0

One minor complication is how to deal with classes that have no data samples associated 
with them. While these classes can be simply removed, instead we use Laplacian smoothing 
when required. This prevents the algorithm from representing ©v a-|f with only one or two 
classes simply because of a lack of data. Furthermore, finite mixture models are only used 
when the number of samples corresponding to 0 „jf is below a certain threshold.

This technique has been used in Hidden Markov Models for information extraction in 
text corpora [20] and interpolated Markov models for prokaryotic motif finding [42],

4.6 Experiments

4.6.1 Experiment Design

In this section we describe the design of two experiments. The first explores the viability of 
network reduction. The second evaluates the relative performance of algorithms for small 
sample estimation of the query response.

It has been claimed that inverted Naive Bayes is a topology where network reduction 
will outperform MP -  at least when the query of interest is q(Q) = P r(C ). Network reduc­
tion under the constraints described in section 4.5.2 is straightforward: only remove parents 
of C. We shall assume all nodes are binary. The experiment begins with a noiseless sample 
of size 10. Network reduction removes parents of C, at random, until all the reduced net­
work parameters can be specified by maximum likelihood. The value of P r(C  = 1) on the 
reduced network is then returned. An MP estimate of the network parameters is produced 
using the original network. Finally, counting statistics can be used to produce an estimate 
solely from the data set. We average the results for each algorithm over 500 different data 
sets. If the expected L 2 error of network reduction is lower than the alternatives, we have 
reason to believe it will be a viable algorithm.

The second experiment uses a more realistic Bayesian network topology, Alarm [29], 
to compare our proposed algorithms. Our baseline is MP. The alternatives are finite mixture 
models on selected rows (FMMs), bagged MP estimators, and m-bagged MP estimators. In 
all scenarios the prior distribution over 0  is uniform.

The data flow of the second experiment is illustrated in figure 4.2. We are given the true 
distribution in the form of a Bayesian network. By assumption the graphical component is 
a minimal I-map. A single query is given. The true value of the query response, q(Q*), is 
derived by inference on the true distribution. This is the quantity each algorithm is trying 
to estimate. First, a noiseless data set of size n  is generated. Next, this data set is used 
to produce t  bootstrapped data sets for bagging and m-bagging. For bagging each data set 
is size n. For m-bagging each data set is size m  =  [v^J • Each algorithm produces an 
estimate of the query response. To mitigate (and measure) the effect of training sample 
variability the experiment is repeated over 75 independent data sets. The choice of 75 data 
sets is motivated by pragmatism rather than sampling theory. The convergence rate of EM 
in the FMM algorithm is quite slow, and several applications are required to learn a network. 
M oreover, w e  consider the behavior o f  these algorithm s w ith  100 different queries.

4.6.2 Results

The results of network reduction on inverted Naive Bayes (figure 4.3) show that, contrary to 
the claims made in [25], network reduction does not beat MP. In the first parameterization, 
network reduction often removes all the parents of node C. This is equivalent to ignoring 
the original structure altogether. Hence the similarity in expected L 2 error between counting 
statistics and network reduction.
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Figure 4.2: Experimental flow

To illustrate another limitation of network reduction, consider the triangle network in 
figure 4.1(b). We chose a single set of parameters 0  for the network and considered two 
queries: P r(A  — true\B  =  fa ls e ) and P r(B  =  fa lse \A  = true). In each case the only 
variable that can be removed is X .  In every other respect the experimental setup is the same 
as for the inverted Naive Bayes experiment. Network reduction beats MP on the first query; 
but loses to MP on the second query5. The algorithm could not decide whether or not to 
remove a single variable.

The results of the second experiment are presented in figures 4.4 and 4.5. Immediately 
clear is that certain queries have a higher sample complexity than others. This holds even 
when we consider two queries with similar expected responses -  one often has a much 
higher squared error than the other. If we consider only the average squared error the 
following results arise. Bagging beats MP on 93 queries, m-bagging beats MP on 18 
queries. FMM beats MP on 26 queries. Almost identical results hold when the sample 
size is increased to n = 400. However, it is our contention that one must also consider 
the stability of each algorithm to training set variation. FMMs can create overly sensitive 
estimators. Small perturbations in the mixing parameters can cause drastic changes in the 
conditional probability distributions. Given the tendency of EM to fall into local minima, 
the results are unsurprising. The use of EM introduces algorithmic variation, which is 
reflected in the stability of the estimator. In contrast, the aggregation estimators tend to 
provide increased stability. This holds moreso for bagging than for m-bagging as the latter 
is working with much smaller data sets, m-bagging tends to shrink the estimator towards 
the query response on the prior network, 0.5. A minority of the queries examined have 
responses near 0.5, which explains the poor performance of m-bagging against MP.

5The actual squared errors are as follows. For the first query network reduction had an error of 0.0049 
compared to 0.0103 for MP. For the second query network reduction had an error of 0.0202 compared to 
0.0129 for MP.
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(a) Parameterization 1 (b) Parameterization 2

Figure 4.3: The performance of MP, network reduction, and counting statistics on two 
instances of the inverted Naive Bayes topology with four parents. Data sets are size 10. 
Frame denotes the counting statistics algorithm, NR denotes the network reduction algo­
rithm, and MP denotes the mean posterior algorithm. For parameterization 1 the true value 
of the query response is 0.568. For parameterization 2 the true value of the query response 
is 0.209. Reported results are averages over 500 data sets.

4.7 Discussion
The behavior of network reduction is vexing. It has been argued that node removal is analo­
gous to marginalization of variables from a distribution function [25]. Since marginalization 
does not cause the query response to change, network reduction should work. Such reason­
ing is specious, using the mathematics of inference to justify reparameterization. Removing 
a node from the network indirectly changes the parameters involved in q(0). The problem 
is that the criteria used do not even attempt to minimize the error of the resulting estimator. 
Neither do these rules attempt to indirectly minimize the error between q(O) and q(Q') by 
ensuring that the generative distributions are relatively close in a metric space. The criteria 
haphazardly attempt to approximate one function with another. Sometimes chance will be 
kind, and a better estimate is wrought. The same can be said when rolling dice.

If we knew when a data set will mislead MP, it might be possible to use network re­
duction as a fallback estimate. Consider the results for Alarm queries. Certain queries are 
accurately solved with a small number of samples; others are not. Cross-validation is com­
monly used to estimate the mean squared error of g(0). On small data sets this can lead 
to pessimistic estimates. Also, the estimate can itself have high variance [37]. Most im­
portantly, cross-validation does not indicate whether the L 2 error is unusually large for data 
sets of that size. Neither can we use the variance of q(Q), described in chapter 3. For small
sample sizes the estimated query response P r (Q ,E ) /P r (E )  is not an unbiased estimator 
of P r  (Q, E ) /P r  (E ). Finite sample bias is large enough that variance cannot be taken as an 
approximate measure of error. Finally, the marginal likelihood P r(D |(V, A}) was applied 
in the hope that data which is improbable given the structure will produce poor estimates of 
the query response. Under the assumptions of this chapter this marginal can be computed 
using the Bayesian scoring metric [9]:

n  A W  T T  T T  r ( a „ | f )  j -j  ^ ( a v , x \ f  +  -Wt;,x|f)
Pr(D| (v,A» -  [I r /a'~ + 11 — —

v e v  f e F v 1 +  1 v \f )  x e x v 1

To prevent numerical overflow the log score is computed. Two queries with typical behavior 
are presented in figure 4.6. There is no significant correlation between the performance of 
MP and the data score. This result has also been observed on the Diamond network. The
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Figure 4.4: Squared error of queries given samples of size 100. Each point on the horizontal 
represents a query. Points represent the mean squared error (an average across 75 data 
samples). Vertical bars indicate the range of squared errors.

critical flaw is that while variables can have different degrees of influence on a query, all 
contribute to the data score with roughly equal effect. Even variables that are d-separated 
from the query nodes contribute to the data score.

The failure of finite mixture models as an alternative to MP is readily explained. The 
choice of classes is less than ideal. Randomly removing conditioning events produces sim­
pler classes, but accurately estimating the mixing coefficients with small data sets is dif­
ficult. The EM step is optimizing P r(D  |A). Since the data set is small, the empirical 
distribution represented by D  could be quite different from the true distribution. The in­
troduction of stochasticity often increases the instability of the estimator to training set 
variation. Finally, the EM step makes this algorithm unbearably slow. Over 50 hours of 
CPU time was spent running these experiments, with the vast majority of the effort being 
allocated to solving EM problems.

Most promising are the bagging algorithms. It is not surprising that bagging tends to 
produce more accurate estimators than MP. Given the size of the data sets q(Q) will have 
significant variance. Bagging is known to reduce variance. Another consequence of this 
tendency, previously unnoted in the literature, is that bagging is also stable in the face of 
training set variability. The L 2 error on one small data set is representative of bagging’s 
performance on any equally sized data set.

The role of training set variability has generally been ignored by the machine learning 
community. This is understandable given the focus of many researchers on creating accurate
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Figure 4.5: Squared error of queries given samples of size 400. Each point on the horizontal 
represents a query. Points represent the mean squared error (an average across 75 data 
samples). Vertical bars indicate the range of squared errors.

estimators rather than accurate algorithms. In the former scenario the goal is to produce 
an estimator that minimizes a loss function. In the latter scenario the goal is to determine 
whether one algorithm tends to produce better estimators than another. Accurate algorithms 
produce accurate estimators on a wide variety of problems and inputs -  hence our focus on 
error across many equally sized data sets. Even if one focuses on a single problem one data 
set may make an algorithm look better than another; while other data sets lead to the reverse 
conclusion.

Our notion of accurate algorithms is prone to epistemic reduction. Averaging squared 
error over many data sets does not provide a rigorous statistical test of significance. Fur­
thermore, current research [17, 37] indicates that proposed tests of significance either suffer 
from high type I error6 or make unreasonable independence assumptions. Insofar as we can 
measure the superiority of learning algorithms, bagging MP estimators is advisable.

6That is, the null hypothesis is incorrectly rejected, and significance is falsely ascribed to the results.
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Chapter 5

Conclusion

The necessity of better procedures for estimation with small data sets is readily apparent. 
While the most elegant results of classical statistics often deal with large sample properties 
of estimators, the practice of machine learning often dictates the need for better techniques 
for small sample estimation in nonparametric models.

To that end we have studied discrete Bayesian networks where parameter uncertainty 
is encoded in Dirichlet row distributions. A common parameter estimation algorithm used 
in this scenario, mean posterior, produces a representation of parameter uncertainty which 
induces a distribution over the query response. In this paper we presented the question of 
whether the limitations of [45, 47] were due to the linear variance approximation or the 
normal approximation. Our results clearly show that for parameterizations learned with 
small data sets, the major problem is with the normal approximation. Furthermore, we have 
established the Beta distribution as a viable alternative model.

Continuing with the theme we have explored the problem of learning with small data 
sets in order to optimize a single query. We consider the problem in its most uncompromis­
ing formulation. A structure is given that may not have sufficient data to support accurate 
estimation and reparametrization of 0  is precluded. It has been suggested that altering the 
structure may lead to better estimates of the expected query response. A particular formu­
lation of this idea was introduced in [25], but until now has not been experimentally tested. 
With simple examples we have illustrated the limitations of this technique. By projecting 
a function of all the network variables onto a lower dimensional space improvements may 
be had, but not with the criteria provided. Furthermore, we have explored other approaches 
and their viability when compared to the mean posterior technique. Finite mixture models 
represent an attempt to use hold-out smoothing as an alternative to Lidstonian smoothers. 
While it did not improve upon the results of MP, it illustrates the possibility of using data 
for smoothing in parameter learning. We further posed aggregation methods, of which bag­
ging proved particularly promising. Not only does it almost always improve upon MP, but 
it is also resilient to training set variation. This behavior is, to our knowledge, unreported 
in the literature. This alludes to the epistemic question, “How do we know one algorithm is 
superior to another” ? We submit that these studies, and the questions they raise, constitute 
a meaningful contribution to the study of Bayesian networks.
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Appendix A

Multivariate Delta Rule

Herein we present a derivation of the approximate mean and variance for any differentiable 
function of random variables, f ( X i , . . . ,  X n). The presentation is based largely on [2] and 
is included here for completeness. Consider an approximation to f ( X i , . . . ,  X n), namely 
the first-order Taylor expansion around (h i , . . . ,  /in).

df_
dXi (A*li ■ ■ • j Mn) [Xi Hi]

Let

—  / ( / H j  ■ • • j  ftn)
Of

CLi —
d X .

( / i i , . . . ,  fin)

The mean of variance of Y  are approximations to the respective moments of f ( X i , . . . ,  X n) 

Hy  = E[Y] = E[ao + ^ 2  a,i(Xi — m)}
i

= E[ao\ +  a,i(Xi — Hi)]
i

=  T 'y  ̂ — ®iE[fJii\)
i

— °o +  (aifJ"i ~
i

=  f (/H) • ■ ■ i l^n) 

o \  = E [ ( Y  -  E [ Y ] f ]  = E i C ^ a i i X i - m ) ) 2}
i

aj {Xi H ^ i X j  alj)]
i i f t

=  2  a2£ [(* i -  /ii)2] +  -  ^ X 3 -  n)]
i i ^j

=  ^ ^ O j C r i  +  ŷ âiajOij
i i ^j
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where

/'(/O  =
df df

d x x d x n

and S is the variance-covariance matrix of { X \ , . . . ,  X n}

(m)
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Appendix B

Description of InfEB

In this section we provide pseudo-code for the InfEB algorithm for variance estimation 
depicted in figure 3.1. The descriptions herein depend heavily on notation introduced in 
section 3.4.

Algorithm 1: Initialize data structures for BE+
Input: Variable ordering -k, network CP-tables { h i ( S i ) , . . . ,  hn (Sn)}, and
a set of variable assignments A  =  a
Output: Operation stack S  and bucket list bo ■ ■ ■ bn
Description: ixj denotes variable X j  in the variable ordering. 7To denotes
a variable not in the network
I n i t i a l i z e ( t t ,  { h i ( S i ) , .. . , h n (Sn)}, A  =  a)
(1) Create a list of bucket where bi corresponds to variable X t . bo is

the nil bucket. All buckets are initially empty sets
(2) for i =  1 to n
(3) h'^Sl) 4- hi(a) (i.e. Apply evidence)
(4) j  m ax{j : 0 <  j  <  n  A ixj € S'-}
(5) bj «- bj U {/j'(S')}
(6) push record {h^S^^h '^S '^^noB ucket^j) onto S
(7) return 60, . . . ,  bn , S

Note that the records pushed onto S  in this algorithm indicate that the function /i'(S ') 
was not created by processing a bucket, but by applying evidence to ht (St) and placing it 
in bucket br
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Algorithm 2: Calculate expected marginal probability and partial derivatives of the 
marginal w.r.t. each network parameter 
Input: Bucket list bo .. .bn, Operation stack S
Output: Marginal probability P r (A =  a), Derivative stack V,  Function stack V  
Description: While naive implementations of BE+might keep all partial derivatives in 
memory, only the most recent one w.r.t. a given CP-table needs to be stored.
BE+(6o,- . - , bn, S)
(1) Let V  <— 0 be a stack of functions.
(2) Let V  «— 0 be a stack of Dirichlet CP-tables
(3) for i = n  to 1
(4) if 6 j ^ 0
(5) f ( T )  «- elim ^[join(6j)]
(6) j  <— max{j : 0 < j  < i A itj £ T j
(7) bj bj U { /(T )}
(8) push record (nil, onto S
(9) Initialize all elements of D eriv[l. . .  n] to the unity function (n is the number of

nodes in the network)
(10) while 5 ^ 0
(11) ( q ( L ) , f ( T ) , i , j ) ^ Vop(S)
(12) g(R) <- elimL- T \ join( f (T)  U bj -  Deriv[y'])]
(13) if* =  noBucket
(14) push g(R)  onto V
(15) push q(L) onto V
(16) else
(17) Derivf*] t— g(R)
(18) P r(a) <—join(6o)
(19) return Pr(a),T>, V
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Algorithm 3: Estimate the variance of query P r(q |e )
Input: For each marginal probability p = P r(q, e) and q =  Pr(e), the outputs of BE+ . 
Also, the evidence associated with each marginal: Q =  q, E  =  e.
Output: Estimated variance of the query response: dp r(q|e)
Description: Note that conforms!-, •] returns tme iff the two arguments do not disagree on
any variable assignment
E s t i m a t e V a r i a n c e ( . . . )

(1) variance E- 0
(2) while P Pr.(q jE) not empty
(3) / (A)  E- pop V p r(Q,E)
(4) g(B)  E- pop P p r(E)
(5) h(C)  E- pop V Pr(E)
(6) Let X  and Y  be the dependent and conditioning variables of h(C)
(7) foreach assignment to Y , h ( y )
(8) Calculate covariance matrix E for current row
(9) foreach values of X  (denoted x)
(10) if conformsfy : x :q : e]
(11) d p ^ f {  y : x )
(12) else
(13) dp e -  0
(14) if confirms[y : x, e]
(15) dq E- g(y : x)
(16) else
(17) dq e -  0
(18) PD \i\ 4 - ( q - d p - p -  dq)/q2 (i.e. f f ®J f )

(19) variance E- variance +  P D  ■ E ■ P D T
(20) return variance
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Appendix C

Variance of q(Q) under Naive Bayes

In this section we derive a specialized form of equation 3.4 for Naive Bayes networks that 
precludes the need for partial derivatives of the query. Consider the covariance matrix of 
0 ,6,|f ~  Dirichlet (av>nf,  ■ ■ ■, «y,r|f)- For notational simplicity we let

Given a Naive Bayes network with root node H,  evidenced children E  =  { E \ , . . . ,  Ek},  
and unevidenced children { X i , . . . ,  X t} we seek to calculate the variance of query response 
q(Q) = P r ( H  =  /i|E  =  e) =  Pr(h\e).  Equation 3.6 is impractically slow in general. 
However, for Naive Bayes networks we derive a tractable form. We consider the variance 
contribution of the class node, a row in an unevidenced child node, and a row in an evi­
denced child node independently. For notational compactness we let

noting that when H  is binary C (True) =  C(False).  This allows even further simplifica­
tion of the following equations.

Class node: There are no parents for this node, so f  =  0. By substitution into equation 3.6 
and straightforward algebra the contribution of the class node is as follows:

Row in an evidenced child: There is only one parent, f  = H.  We take advantage of the 
fact that for an evidence node Ej  — e7

r

s ; k =

C(h) — [Pr(Ii|e) — Pr(h\e)2]2

Pr(H)

Pr(h\e),  if Ej  =  ej 
0, otherwise
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By substitution into equation 3.6

aP r ( E j  |/i)
m Ej \h  +  1 

1

m Ej \h +  1 

1

m Ej \h  +  1

J ]  0 i~~ t-P r (e^ ^le ) “  Pr{h\e)Pr(ei,h\e)]2 -  C(h)

e ej\h 

C(h)

ei\h

-C{h) -  C(h)

P r (ej \h)

Row in a nonevidenced child: There is only one parent, f  =  H.  We take advantage of the 
generalized product rule:

Pr(x i , h \ e ) =  Pr(xi\h,  e)Pr(h\e)
= Pr(xi \h)Pr(h\e)

By substitution into equation 3.6

aP r ( X j \ h )
™ X j \ h  +  1

m X j \ h  +  1 

1
m X j \ h  +  1 

1

m X j \ h  +  1 

0

Qi—  [Pr(x u h\e) -  Pr{h\e)Pr(xi ,h\e)]2 -  C(h)
_ i X{\h

^  qT— [Pr(xi\h)Pr(h\e)  -  Pr(h\e)Pr(xi \h)Pr(h\e)]2 -
_ i X{\h

J 2 ^ P ^ C ( h ) - C ( h )
_ i %i\h

1

^ P r ( Xi\h)C{h) -  C(h)

To calculate the overall variance of the query response simply sum the variance contri­
bution from the query node with the variance contribution from each evidenced child node. 
The only inputs required are the network parameters, the effective samples size of each CP- 
table row, and the expected query response. There are no additional space requirements. 
The algorithmic time complexity is linear in the size of the network.
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Appendix D

Fisher Information on Bayesian 
Networks

Given an I-map of the true distribution and iid data D  =  { d \ . . .  d ^ }  we want to find the 
maximum likelihood estimator of network parameters 0 . Let 0 WjX|f =  P r { X 1 = x |F w =  
f} and N V:X\f be the corresponding counts in the data. The maximum likelihood estimator 
of 0  is

0  =  argmax [P(D|©)] 
e

=  argmax [log P(D\Q)] 
©

argmax
0

argmax
©

v|f X

y  ' y  \ Nv>x\f i°s
uif x

For notational simplicity we denote the log-likelihood I =  log P (D |0 )  and ©M and 0 „  to 
be two network parameters. The Fisher information F(Q)  is as follows:

d l

50,,

F(@) =  E
d 2 l

5 0 u50„j

v , x \ i

2—j 2—j  @
■y|f X  v ’x \1

N„

50 U,x|f
50 , 

52©, ?  + EE 50'u,x|f
©2

df X V,x|f
N S

l)|f X

-EE
«|f X

-N Y Y d— x l f + N Y Y ------------------
^  ^  d & u d @ v  xlf 5©v \ f  X  u  V x  t ) ,X |I

1

50,, 50„

[v , x \ f  d 2 ® v , x \ f  \r ~ ^  N @ v M f

@v,x|f d & u d & v  ^

5 0
0 2 .. v,a?|f

5 0 u,x|f
50,, 50„

1 5© 5 0
50,:

^  5 0 u50„ V ^ O ^ x l fulf »lf 1 v ’x v

5 0 50 v,x|f
50 , 5 0 ,
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"rr' —'  ©i;,x|f 3 0 u dQv
V \ I  X  ’ 1

The Cramer-Rao variance lower bound for an unbiased estimator is just the inverse matrix 
of the Fisher information. Calculation of this quantity is possible. The derivatives required 
can be produced using BE+. It should be noted that this is a variance estimator for the gen­
erative distribution; not the query response. However, when q(&) is injective the invariance 
property of maximum likelihood can be used to extend this result to estimate the variance 
of q(@).
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