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Abstract

In underlay Cognitive Radio (CR) systems, secondary users may transmit while pri-

mary transmissions take place. However, the interference aggregates on the primary

system, and performance degradation will occur. Thus, quantifying and modeling

of the aggregate interference is important in characterizing the network’s perfor-

mance. An interference analysis for a Poisson process of CR nodes in a finite area

is undertaken while incorporating channel parameters, anda simple Gamma model

for the aggregate interference is proposed. Furthermore, amultiple-ring model to

replace the annular underlay model will be developed. This model is versatile and

mathematically tractable, while being highly accurate. Moreover, the interference

from the nearest interferer node is analyzed, and situations where the nearest inter-

ferer’s interference can approximate the aggregate interference are identified. An

outage and asymptotic analysis is carried out for the models. The effect of different

system and channel parameters are shown within the numerical results.
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Chapter 1

Introduction

1.1 Wireless Communications

Wireless communications is one of the most revolutionary engineering breakthroughs

of all time, and has grown exponentially in terms of technology and users over the

past decades. Today, wireless communications has enabled avariety of applications

and standards including [3]:

1. Mobile telephony 2. Broadcast technology

3. Wireless Local area networks 4. Fixed wireless access

5. Cordless telephony 6. Wireless sensor networks

7. Satellite communications 8. Radar and navigation

9. Body area networks 10. Personal area networks

Cisco states that the global wireless data traffic grew133% in 2011, and that it

was higher than anticipated [4]. Furthermore, the International telecommunication

Union (ITU) states that by 2012, the global mobile penetration was at6 billion,

which corresponds to86% of the world’s population [5]. Therefore, the demand

for services and bandwidth is extremely high. But, the radiofrequency spectrum

is a finite resource, and has to be utilized efficiently to allow all these services and

technologies to operate.

However, the spectral efficiency gains (data rate that can besent over a unit

1



Figure 1.1: Spectral efficiency over the years. Source : Qualcomm, from [1]

bandwidth) are slowing over the years [1]. This slowdown is clearly evident in

Fig. (1.1). Due to this, optimizing spectrum usage or developing ways to access

pre-allocated spectrum is essential for new technologies.

1.2 Methods to improve spectral efficiency

Several methods to improve spectral efficiency will be discussed next.

1.2.1 Cognitive radio

Many spectrum bands have already been allocated for different services and providers.

However, most of pre-allocated frequency spectrum has beenfound to remain idle

for much of the time [6]. This is a significant under utilization of available spec-
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trum, and can be mitigated via cognitive radio (CR) [7]. A CR node is a transmitting

entity which adapts its system parameters (e.g. frequency,power, multiple access

method, modulation) to suit its environment [3]. However, the most well known at-

tribute of CR is the ability to access spectrum pre-allocated to a licensed user. This

ability improves spectral efficiency.

In CR terminology, the licensed users are also called primary users. They have

reserved the particular frequency block from the governingauthorities after paying

a fee, and are thus licensed to transmit. The users who opportunistically access

primary users’ spectrum are termed the secondary users or cognitive radios. While

they are permitted to opportunistically access the spectrum, their interference on the

primary network should be either eliminated or managed below a prescribed level.

Cognitive radios can be broadly classified based on the access technology into

interweave CR networks, spectrum overlay CR networks, and spectrum underlay

CR networks [8–12]. However, other literature [10] classify CR networks into just

underlay and overlay networks.

• Interweave networks

In interweave CR networks, the secondary users sense the spectrum, and

transmit only when primary user transmissions are absent. The spectrum ac-

cess is thus opportunistic, and requires advanced spectrumsensing schemes

in order to begin and end transmissions immediately as necessitated [11]. In-

stead of spectrum sensing, CR nodes may also use an out-of-band beacon

transmission [13] from the primary network to detect the presence or absence

of primary transmissions.

• Underlay networks

In spectrum underlay CR networks, the secondary users are allowed to trans-

mit even while primary users are transmitting [8, 10, 11]. Tominimize or

eliminate interference to the primary network, several schemes have been

proposed. The first method is to have a centralized database with dynamic

information on the transmitters/receivers of the target frequency in a given

area. Therefore, the secondary users can transmit below a certain power level

3



if they are beyond a given distance. Due to this distance, thesecondary user

signals attenuate sufficiently so that interference on the primary receiver is

negligible. The second method is to use a beacon transmitterfrom either the

primary transmitter or receiver, where the secondary userstransmit only when

the beacon signal power is less than a certain amount (so thatthe secondary

user is beyond a pre-determined distance). Alternatively,Global Position-

ing System (GPS) based schemes and spread spectrum schemes have been

proposed for underlay networks [8, 10]. Interference generated by underlay

networks is the main focus of this thesis.

• Overlay networks

Concurrent primary and secondary transmissions are also allowed in overlay

CR networks. However, the differing assumption from underlay networks is

that the CR nodes have prior information on primary transmissions such as

codebook information and channel gains [10, 11]. Moreover,the CR nodes

can actively assist the primary transmissions by using a portion of their power

to relay primary user messages.

Standards

Since CR is a new technology, no previous standard existed for opportunistic spec-

trum access. While elements of CR are already included in standards such as IEEE

802.11 (WiFi),IEEE 802.15.4 (Zigbee), and IEEE 802.16 (WiMAX) [14], IEEE

802.22, the Wireless Regional Area Network (WRAN) standard[15] is the first to

fully incorporate CR techniques. Furthermore, the IEEE Dynamic spectrum access

networks (DySPAN) committee has developed the IEEE P1900.Xstandards.

IEEE 802.22 has been developed to access white spaces in television frequency

bands in order to provide wireless broadband access to ruralareas. With this stan-

dard, the CR users must be aware about the availability of spectrum at a given

instance. The two methods used for spectrum awareness are geo location/database

and spectrum sensing [15]. In addition, they should be able to dynamically adapt

transmissions to not interfere with licensed TV transmissions [15].

The IEEE P1900.x standards develop better dynamic spectrumaccess (DSA),

4



which includes new techniques for managing interference, sensing, network man-

agement and coordination of wireless networks [14]. For example, the IEEE P1900.6

standard is regarding spectrum sensing techniques for CR [16]. Furthermore, poli-

cies regarding DSA are being developed for current technologies such as 3G/4G,

and WiFi [14].

1.2.2 Heterogeneous networks

Heterogeneous networks, another approach to improve spectral efficiency, is a broad

concept where different cells co-exist dynamically while using similar frequen-

cies [17]. The cells differ in terms of sizes and power levelsdrastically. For ex-

ample, large macro cells (covering a radius of many kilometres) are needed for

basic coverage needs and moving subscribers. In contrast, picocells (put in place

by the operators to cover a radius of a few hundred metres or less) may be deployed

in dense urban areas to increase capacity. Femtocells (which have a small cover-

age area, and are restricted to a certain building or customer premises) which are

even smaller may be used in individual buildings where an extremely high capac-

ity is needed [18]. When services from different cells are available, the user may

choose the best cell or use multiple cells to increase their data rate and lower the

outage. The performance of heterogeneous networks critically depend on mutual

interference levels of the cells.

1.2.3 Small cell networks

The concept of small cells deals with the dense deployment ofcells within a given

geographical area to increase the capacity, spectral efficiency, and power usage [19].

They are especially useful in urban environments where the demand for wireless

data traffic is high. Apart from the obvious spectrum efficiency gains, small cells

can potentially provide significant energy savings [19]. However, administration,

organization, and maintenance of small cell networks are a challenge. Furthermore,

5



interference mitigation among different cells and guaranteeing a required Quality

of Service (QoS) are demanding [19].

1.3 Problem Statement

While all these techniques improve the overall spectrum efficiency, this thesis will

concentrate on underlay CR networks. The advantages of underlay networks are

their ability to access the frequency spectrum simultaneously with primary users,

and not requiring the secondary users to have a prior knowledge of primary trans-

missions [11]. Despite these advantages, interference on the primary users due to

simultaneous primary and secondary transmissions must be minimized. Therefore,

the aggregate interference generated by underlay networksmust be characterized

for differing operational conditions.

A comprehensive analysis of interference for different channel models, CR node

densities, and their spatial distributions is therefore necessary. Furthermore, due

to the complexity of existing interference models, simpler, and accurate models

are desirable. Therefore, characterizing the aggregate interference and developing

approximate models are the main focuses of this thesis.

1.4 Contributions and Outline

The main contributions of the thesis are regarding the analysis, approximation, and

modeling of aggregate interference (I). They are broadly listed below:

• Analysis of I for an underlay network consisting of a Poisson process of

interfering nodes in a finite annular area around the primarynetwork.

• Development of a Gamma model forI under a composite fading channel via

a moment matching method.

• Development of a multiple-ring model forI, and investigation of its accuracy.

6



• Characterization of the interference caused by the nearestinterfering node,

and investigation of when the nearest interferer can approximateI.

The outline of the thesis is as follows:

Chapter 2

In Chapter 2, basic background concepts and models for smallscale fading, shad-

owing, path loss, spatial distribution, and others will be presented.

Chapter 3

The first part of Chapter 3 comprises a comprehensive interference analysis for in-

terfering nodes spatially distributed as a Poisson point process in an annular region.

The moment generating function (MGF) of the aggregate interference is derived for

generic path loss exponent values and shadowing levels. Thecumulative distribu-

tion function (CDF) of the signal to interference and noise ratio (SINR) is obtained,

and an asymptotic analysis is performed. Subsequently, theaggregate interference

is modeled by a Gamma distribution using a moment matching method. The accu-

racy of this approximation is confirmed, and further calculations are facilitated by

this simple probability density function (PDF) to represent the aggregate interfer-

ence.

Chapter 4

Chapter 4 proposes a new model for interference, and also analyzes the effect of

the nearest interfering node. In the first part of the chapter, a new system model to

approximate the conventional annular underlay model is proposed. The new model,

named the multiple-ring model, consists of interferers constrained on multiple rings

around the primary receiver (PR) instead of being spread spatially. This model is

shown to be accurate, simple, and versatile. It can even be used as a stand-alone

system model for other types/shapes of node distributions.In order to evaluate

the accuracy, an MGF based performance analysis and an asymptotic analysis is

performed for Rayleigh fading, and composite fading and shadowing.

7



In the second part, the nearest node approximation for the aggregate interfer-

ence is investigated. The PDF of the distance of the nearest interfering node to the

PR, and the MGF of the interference from the nearest node are derived for Rayleigh

fading. The nearest node dominates the aggregate interference under certain condi-

tions, which include lower node densities and higher path loss exponent values.
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Chapter 2

Background

This chapter provides some brief mathematical background on key concepts used

in the thesis. They include wireless channel characterization, spatial distribution

models, and interference characterization.

2.1 The wireless channel

Characterizing the wireless channel is extremely important. In this section, channel

impairments such as multipath propagation, the Doppler effect, small scale fading,

shadowing, and path loss will be discussed briefly.

2.1.1 Multipath fading and the Doppler effect

Due to multiple obstructions and scatterers in the wirelesschannel, the received

signal is the superposition of many signals with different time delays and phases

[20]. These multiple copies will cause Inter symbol Interference (ISI), and will

severely degrade the performance of the receiver.

The received signal may be represented as [20]

r(t) = R







N(t)
∑

n=0

αn(t)u(t− τn(t))e
j(2πfc(t−τn(t))+φDn )







, (2.1)

whereu(t) is the complex envelope of the transmitted signal,αn is the channel gain
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for then-th multipath component,N(t) is the number of resolvable multipath com-

ponents,τn(t) is the time delay for then-th component,fc is the carrier frequency,

andφDn is the Doppler phase shift.

The power delay profile (PDP) represents the average power associated with a

given multipath delay (τ ) [20]. The average delay and the root mean square (r.m.s.)

delay are important statistics of a wireless channel. They are defined as

µτ =

∫

∞

0
τPτdτ

∫

∞

0
Pτdτ

, andστ =

√

∫

∞

0
(τ − µτ )2Pτdτ
∫

∞

0
Pτdτ

, (2.2)

respectively. If the time period of a transmitted signal is defined to beTs, frequency

flat fading occurs ifTs >> στ . Otherwise, the signal would experience frequency

selective fading which is not desirable. The term coherencebandwidth is usually

defined as

Bcoh ≈
1

στ
, (2.3)

which is roughly the frequency range in which a signal experiences frequency flat

fading.

The time variation of the channel is described by the Dopplereffect, which is

caused by the relative frequency shift between the receivedsignal and the transmit-

ted signal. If the transmitter and receiver are stationary,the Doppler shift is zero.

However, when the transmitter and/or receiver move/moves,the maximum Doppler

shift is given by

fd =
fcv

c
, (2.4)

wherefc is the signal frequency,v is the relative velocity between the transceivers,

and c is the speed of light. The Doppler spectrum of the channel represents the

power associated with a particular Doppler shift (between0 andfd). In a similar

manner to the PDP, the average and the r.m.s. Doppler spread can be calculated.

Furthermore, the coherence timeTcoh is defined to be approximately1
Bd

, whereBd

is the Doppler spread. If the signal periodTs << Tcoh, the signal is said to undergo

slow fading. Otherwise, the signal undergoes fast fading.
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2.1.2 Small scale fading models

Small scale fading is the random fluctuation of signal amplitude over short dis-

tances, and occurs due to the effects of multipath propagation. Small scale fading

can be characterized by various mathematical models. The best model for a given

channel depends on its characteristics.

Rayleigh fading

Rayleigh fading is the most common model to represent wireless channels includ-

ing broadcast and mobile systems. Popular due to its mathematical tractability, this

model is valid when there is no line-of-sight path between the transmitter and re-

ceiver [20]. The probability density function (PDF) of the received signal power

under this model is given by

fγ(x) =
1

γ̄
e−

x
γ̄ , 0 ≤ x <∞, (2.5)

where γ̄ is the average received signal power. It should be noted thatwhile the

Rayleigh distribution denotes the envelope amplitude, thepower is specified by an

exponential distribution.

Rician fading

Rician fading occurs when there is a dominant line-of-sightcomponent. This model

is especially useful for channels such as satellite links. The PDF of the received

signal is [21]

fγ(x) =
(K + 1)

γ̄
e−(K+x(K+1)

γ̄ )I0

(

2

√

xK(K + 1)

γ̄

)

, 0 ≤ x <∞, (2.6)

whereγ̄ is the average received signal power,K is the ratio between the line-of-

sight component power and the power of the other scatterer components, andI0(·)
is the modified Bessel function of the first kind.
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Nakagami-m fading

Nakagami-m fading is a model proposed by [22] which fits the empirical measure-

ments of wireless channels. Its PDF is given by

fγ(x) =
xm−1

Γ(m)

(

m

γ̄

)m

e−
mx
γ̄ , 0 ≤ x <∞, m > 0.5, (2.7)

wherem is a parameter describing the severity of fading. The model is versatile;

for example,m = 1 yields Rayleigh fading, andm→ ∞ yields the no-fading case.

2.1.3 Shadowing

Shadowing is the random variation of signal amplitude due toblockages from large

obstacles such as mountains and buildings in the transmission path. The distances

in which shadowing occurs depend on the dimensions of the obstacle causing the

shadowing effect [20].

Log-normal shadowing

The most common model for shadowing is the log-normal shadowing model. The

PDF of the ratio between transmit to receive powerψ is given by [20]

fΨ(ψ) =
ξ√

2πσψdBψ
e
−

(10log10(ψ)−µψdB
)2

σ2
ψdB , 0 ≤ ψ <∞, (2.8)

whereξ = 10
ln10

, µψdB is the mean ofψdB , andσψdB is the standard deviation ofψdB.

Because (2.8) is not mathematically tractable readily, several approximations

have been proposed. One such approximation is the Gamma model [23,24], where

the two distributions show a close match except in the lower tail region. Another

approximation is the mixture Gamma model developed in [25].

Composite shadowing and fading models

As shadowing and fading occurs simultaneously, it is convenient to have the com-

bined channel effect in a single PDF, rather than work with separate distributions.

Thus, several composite models incorporating shadowing and fading have been

12



proposed [21]. Rayleigh-lognormal, and Nakagami-lognormal models have been

proposed [26].

However, the log-normal model (2.8) does not lend itself easily for mathemat-

ical analysis. Therefore, by approximating (2.8) by a Gammamodel, and incorpo-

rating Rayleigh fading, [27] has derived the Generalized-K distribution.

According to this distribution, the composite parameter characterizing Rayleigh

fading and shadowing has the formX = XsXf , whereXs andXf respectively

denote shadowing and Rayleigh fading.Xf is modeled as a unit exponential random

variable, and thus the PDF ofX can be written as [23]

fX/Xs(x) =
1

Xs

e−
x
Xs , 0 ≤ x <∞. (2.9)

The shadowing componentXs can be modeled as a Gamma random variable, with

the PDF

fXs(y) =
1

Γ(λ)

(

λ

Ωs

)λ

yλ−1e−
λ
Ωs
y, 0 ≤ y <∞, (2.10)

whereΓ(x) is the Gamma function. It has been shown in [28] thatλ = 1

eσ2−1
and

Ωs =
√

λ+1
λ

, whereσ2 is the variance of corresponding log-normal shadowing.

When expressed in the decibel scale,σdB = 8.686 σ.

The composite PDF of Rayleigh fading and Gamma shadowing is obtained by

averaging (2.9) over (2.10) as [28]

fX(x) =
2

Γ(λ)

(

b

2

)1+λ

x
1+λ
2 Kλ−1

(

b
√
x
)

, 0 ≤ x <∞, (2.11)

which is the Generalized-K distribution, whereb = 2
√

λ
Ωs

. This composite model

will be subsequently used to characterize channels where both fading and shadow-

ing are present.

Gamma approximation to the Generalized-K distribution

However, because the Generalized-K distribution (2.11) may still be cumbersome

for analysis, it has been further approximated by a Gamma PDF[29]. The scale and

shape parameters of the Gamma distribution have been chosenby moment match-

ing. Therefore, (2.11) can be approximated as

fX(x) =
1

θkΓ(k)
xk−1e−

x
θ , 0 ≤ x <∞. (2.12)
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The scale and shape parametersθ andk are
(

2
λ
+ 1
)

Ωs and 1
2
λ
+1

, respectively.

2.1.4 Path loss

Path loss is the reduction in signal amplitude over distancebetween the transmitter

and receiver. Path loss variations only occur over large distances [20].

Free space path loss model

The free space path loss (FSL) model is the most simple path loss model. It can be

written as

FSL =

(

4πd

λ

)2

, (2.13)

whered is the distance between the transmitter and receiver, andλ is the wavelength

of the transmitted signal.

Empirical path loss models

Because free space conditions do not hold for the wireless environment which en-

compasses many variable factors such as buildings, trees, hills, and houses, the path

loss modeling is difficult. Thus, several empirical models have been developed us-

ing real world experimental data. These include the Okumuramodel, Hata model,

COST 231 Hata model, and COST 231 Wolfisch-Ikegami model [20].

The COST 231 Hata model for path loss (PL) can be written as [20]

PLdB(d) = 46.3 + 33.9log10 (fc)− 13.82log10 (ht)− a(hr)

+ (44.9− 6.55log10 (ht))log10 (d) + CM , (2.14)

whereht is the transmit antenna height,hr is the receiver antenna height,fc is the

transmit signal frequency, andd is the distance between the transmitter and receiver.

For suburbs and small cities,a(hr) is defined as

a(hr) = (1.1log10 (fc)− 0.7)hr − (1.56log10 (fc)− 0.8). (2.15)

CM is 0 for small cities and suburbs, while it is3 for large cities.
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Simplified path loss model

The most common path loss model used in analysis is the simplified path loss

model, and will be used in the subsequent chapters. According to this model, the

power at a certain distancer from the transmitter is given by

P (r) = P0

(r0
r

)α

, (2.16)

whereP0 is the observed power at a distancer0 from the transmitter, andα is the

path loss exponent. This model includes the free space path loss model (2.13) as a

special case whenα = 2.

2.1.5 Power control

Power control is the variation of transmit power according to the situation such as

distance from the receiver, other users’ activities, and channel conditions. Power

controlling schemes have a dual benefit of saving transmitter power as well as re-

ducing unwanted interference. They can be based on numerousfactors such as

QoS feedback from the receiver, distance to the receiver, and locations of other

co-channel nodes. Several schemes have been proposed for CRnetworks [30, 31].

However, this thesis mostly ignores power control schemes,except when a simple

power control scheme based on distance to the receiver is considered in Chapter 4.

2.2 Spatial distribution models

Spatial distribution refers to the random locations of interferer nodes in a given

area. For interference analysis, modeling the spatial distribution of the interfering

nodes (Fig. 2.1) is essential. Several spatial distributions have been used in liter-

ature to model the random locations of nodes. The two most popular ones are the

Poisson point process [32], and the binomial point process [33]. A point process is

a random pattern of points in d-dimensional space (where usually d = 2 or d = 3
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in applications) [34]. For modeling the distribution of interferers, a2 dimensional

space is commonly used.

2.2.1 Poisson point process

The Poisson point process (PPP) is the most common spatial distribution used to

model the distribution of interfering nodes in a given area [35–40]. The average

number of spatial points in a given area is the intensity. A PPP is termed homo-

geneous if the intensity parameter is constant. For non-homogeneous PPPs, the

intensity parameter is a function of the location. For a2-dimensional homogeneous

spatial PPP, the probability of havingn nodes in a regionB is given by [33]

P (N(B) = n) =
(λv(B))n

n!
e−λv(B), n = 0, 1, 2, . . . (2.17)

whereλ is the intensity parameter, andv(B) is the area ofB. The PPP model used

in the thesis will be explained in detail within the following section.

Thinning

Thinning refers to the process of removing certain points from the total set of

points [34]. Thinning comes in extremely useful while modeling interference where

the whole set of nodes may not be active (not transmitting). In such a scenario, the

thinned set of points will model the active nodes. The thinning process occurs by

marking the set of points by an indicator random variableIX (which can take the

values 0 or 1), and deleting the points marked with0. Thinning has two forms: de-

pendent thinning and independent thinning [34]. WhenIX are independent random

variables, it is independent thinning. In dependent thinning, any point in the PPP

which has a neighboring node closer than a certain distance will be deleted.

Clustering

Clustering is the process of taking a set of spatial pointsA, and replacing the point

A by a random set of pointsZA for each pointA ∈ A [34]. Fig. 2.2 shows an ex-

ample for the clustered PPP. Clustering is important when modeling the interfering
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Figure 2.1: Random spatial distribution of interferer nodes.

nodes distributed around secondary base stations. In such ascenario, the secondary

base stations will be the original set of points, and the nodes will be the clustered

points after the transformation. References [35, 41–43] consider clustering in their

analysis.

2.2.2 Binomial point process

The Binomial point process (BPP) is useful to model interferers when the total

number of nodes is fixed. Reference [44] argues that the BPP isa better model

to represent the spatial distribution of nodes because the total number of nodes is

often fixed. For a given area ofZ, the total number of nodes inB (B ∈ Z) is given

by [45],

P (N(B) = n) =

(

N
n

)

pn(1− p)N−n, n = 0, . . . , N (2.18)
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Figure 2.2: Clustered PPP. The right image shows the original set of points, and the
image on the left shows the clustered points after the transformation.

whereN is the total number of nodes inZ, andp = v(B)
v(G)

.

2.3 Annular underlay networks

The importance of CR networks in improving spectral efficiency was discussed

in Chapter 1. However, although underlay CR nodes are intelligent, residual in-

terference to the primary system is unavoidable. A comprehensive understanding

of the aggregate interference is critical when designing interference management

schemes. Interference analysis in cognitive radio networks has thus been a hot re-

search topic in recent times [30,46–53]. One method which has been used to reduce

the interference in an underlay network is the use of an exclusion region (contention

control) [30, 54, 55] . In such a setup, nodes in an exclusion zone around the pri-

mary transmitter or receiver are not permitted to transmit,and nodes outside this
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RE

RG

R

Figure 2.3: Annular underlay network. Legend: black dot = interferer nodes, black
square = PR, yellow square = PT.

zone are permitted to transmit below a certain power level. As discussed in Chap-

ter 1, this process may be enabled by a beacon signal from the primary transmitter

or receiver, prior location knowledge, or Global Positioning Systems. In a beacon

setup, if the beacon is from the primary transmitter or from the primary receiver,

the exclusion region would be around the transmitter or receiver respectively. We

will be considering an exclusion region around the PR.

Although interferers can be distributed over arbitrary shaped regions, analysis

of such may be intractable. Furthermore, the interferers may be located in a polygon

shaped area (e.g. square or hexagonal). An annular region (Fig. 2.3) [49, 50, 56,

57] is a good approximation for arbitrary and polygon shapeddistributions, and is

mathematically conducive for further analysis.

The interferer nodes form an underlay CR network which is intelligent enough

to adhere to the exclusion region around the PR. This region has an inner radius

(guard distance) ofRG and an outer radius ofRE. The guard distance ensures a

minimum performance on the PR. The interference from the nodes beyondRE is

assumed to be negligible due to path loss. An infinite region (RE → ∞) is a special

case of the model.

The primary transmitter (PT) to PR distance is denoted asR, and it doesn’t
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depend on the guard distance. The number of interferer nodesN is random. The

nodes are distributed according to a homogeneous Poisson point process which has

the distribution of (2.17), whereβ is the interferer density, andAI = π(R2
E −

R2
G) is the total area encompassing the interferer nodes (v(B)). Non-homogeneous

situations will be application or geography specific, and thus not very useful for a

general analysis.

Not all interferer nodes may be active at a given time, and some may be inhibited

from transmitting due to interference between the CR nodes themselves. However,

an ad-hoc network of interferer nodes where all the nodes concurrently engage in

transmission is assumed. Our results thus give a worst-caseupper bound for the

aggregate interference and outage when interferer nodes use a medium access con-

trol protocol. Such cases however can be handled by introducing an activity factor.

Conversely, without the loss of generality, we can considerβ as the density of all

the active nodes.

For the purposes of this thesis, we will only consider one PR,and that other PRs

are located a sufficient distance away. If the next closest PRis less than2RG away

from the PR under consideration, the exclusion region will be of a complex shape.

Furthermore, if it is less than a distance of2RE away, the interferer area will not be

annular. However, these considerations are out of the scopefor this thesis.

2.3.1 Aggregate interference

The aggregate interference experienced at the primary receiver is the sum of in-

terference from all the active interferer nodes transmitting in the same frequency

spectrum block. Therefore, the aggregate interferenceI can be written as

I =

N
∑

i=1

Ii, (2.19)

whereIi is the interference caused by thei-th interferer, andN is the number of

interferers.

As the PDF of the aggregate interference is intractable, this thesis develops an

MGF based approach. The MGF can be obtained relatively easily because, for a
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sum of independent interferers, the total MGF would be the multiplication of each

interferer’s individual MGF. The MGFM i
I(s) of the interference from a single node

can be written as

M i
I(s) = E[e−sIi], (2.20)

whereE[·] denotes the expectation, ands is the Laplace variable. The aggregate in-

terference is dependent upon various factors. They includethe channel parameters

such as path loss, shadowing, and small scale fading. Furthermore, power control-

ling schemes and transmit powers of the nodes, the spatial distribution of nodes,

and the design of exclusion regions also play a vital role. The sensing procedures

of the beacon transmission/ frequency spectrum and missed detection of these by

the nodes also need to be considered.

Modeling of aggregate interference to fit well known distributions has been ex-

tremely popular due to the intractability of exact analysis. These include approxi-

mation by Gaussian distributions, log-normal distributions, tailedα-stable distribu-

tions, and as a sum of normal and log-normal distributions [58–61].

In the following chapters, several different models for theaggregate interference

will be developed.

2.4 Conclusion

This section provided background material for the thesis. Fading and shadowing

models, spatial distributions, and the annular underlay network model were de-

scribed.
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Chapter 3

Aggregate Interference Analysis

Chapter 2 provided introductions and justifications to the system model, and ex-

plained the need to characterize aggregate interference. This chapter develops an

exact analysis and a Gamma approximation of the aggregate interference for the

annular underlay network model introduced in Section 2.3.

3.1 Introduction

In Chapter 2, the annular underlay model for investigating the aggregate interfer-

ence was presented. The random aggregate interference depends on several factors

such as channel parameters, spatial distribution of the interferer nodes, activity fac-

tors, and power control. These parameters were briefly described in Chapter 2.

As the modeling of aggregate interference at the primary receiver (PR) is criti-

cal to characterize performance degradation, it has received much attention recently.

Reference [56] analyzes the average aggregate interference when transmission con-

straints among CR nodes are considered, while [57] analyzesthe capacity-outage

of a CR network due to aggregate interference. Reference [58] shows that under

certain conditions, the aggregate interference is not lognormal. In reference [59],

the authors suggest that the aggregate interference can be modeled as the sum of a

normal random variable and a lognormal random variable. Reference [52] consid-

ers different activity models for the CR nodes and obtains cumulants of the aggre-

gate interference by using Campbell’s theorem. Reference [49] derives the moment
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generating function (MGF) of the combined interference without shadowing for a

number of different path loss exponent values.

The aggregate interference will be investigated further inthe subsequent sec-

tions. First, the moment generating function of the aggregate interference will be

derived for the annular underlay model (Fig. 2.3). The exactand asymptotic outage

performance will be analyzed. Second, the aggregate interference will be modeled

with a Gamma model.

3.2 Aggregate interference of annular underlay net-
works

3.2.1 Introduction

This section provides a comprehensive analysis of the aggregate interference for

the annular underlay model (Fig. 2.3). The analysis considers all relevant channel

impairments. The interfering signals are assumed to undergo composite fading and

shadowing, and path loss (arbitrary exponents). The exact closed-form MGFs of

the aggregate interference for both the generalized-K distribution, and the Gamma

approximation to it are derived. Closed-form expressions for the outage and an

asymptotic performance analysis are provided.

3.2.2 System model

The system model of Fig. (2.3) is used for the analysis, with the same parameters.

From the simplified path loss model, the received power at distancer from the

transmitter is given by (2.16). For brevity, we define the quantity P0r
α
0 to be the

power level of the transmitter (which depends on the transmit power, gains, and

frequency). The total interference power received at the PRis given by (2.19). The
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interference powerIi is given by

Ii = Psri
−αXi, (3.1)

wherePs is the power level of an interferer, andri is the distance between thei-th

interferer and PR.Ps is a constant, and no power control occurs.Xi characterizes

the combined effects of small-scale fading and shadowing. The PDF ofXi follows

the Generalized-K distribution of (2.11).

3.2.3 Interference Statistics

In this subsection, the exact MGF of the aggregate interference and an approximate

MGF to the aggregate interference are derived.

MGF of the aggregate interference

Becauseri andXi are independent, the MGFM i
I(s) of the i-th interferer (i =

1 . . .N) is given by (2.20),

M i
I(s) = EXi,ri[e

−sIi] = EXi[E[e
−sIi ]]. (3.2)

For the homogeneous PPP considered, the CDF ofri whenRG < ri < RE can be

written as

FRi(ri) = P (Ri < ri)

=
r2i − R2

G

R2
E − R2

G

. (3.3)

Therefore, the PDF ofri can be obtained by differentiating the CDF as

fR(ri) =

{

2πri
AI

,RG < ri < RE

0 , otherwise
. (3.4)

By averaginge−sIi using the the PDF of interferer distance (3.4), we get

M i
I/Xi

(s) =

∫ RE

RG

e−sPsr
−αXi

(

2
πr

AI

)

dr

=
2π

AI

∫ RE

RG

e−(sPsXi)r
−α

r dr

=
2π

αAI

(

R2
EE 2+α

α

(

PssXi

Rα
E

)

−R2
GE 2+α

α

(

PssXi

Rα
G

))

, (3.5)
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whereEn(x) is the generalized exponential integral. Averaging further respect to

the composite fading model (2.11), the MGF of the interference from thei-th inter-

ferer is derived as

M i
I(s)=

π (Pss)
2
α
−2 b−

4
α
−2

(−1)λ+
2
α4α2(1 + α)Γ(λ)AI

(Q(RE)−Q(RG)) , (3.6)

whereQ(R) is defined as

Q(R) =
b4+

4
α (−1)

2
α
+λα2Γ(λ− 1)R2α+2

(Pss)
2
α

2F2

(

2, 2 +
2

α
; 3 +

2

α
, 2− λ;

Rαb2

4Pss

)

+
25+

4
α (Pss)

2 (1 + α)π

sin(πλ)

×
(

(2 + α)Γ(1 + λ+
2

α
)

+ α

(

λΓ(1 + λ+
2

α
,−R

αb2

4Pss
)− Γ(2 + λ+

2

α
,−R

αb2

4Pss
)

))

. (3.7)

The special functions2F2(, ; ; ) andΓ(x, a) are the generalized Hypergeometric

function and the upper incomplete Gamma function respectively [2]. Due to the

complexity of (3.6), an accurate approximation is desirable. To this end, the Gamma

approximation to the generalized-K distribution (2.12) can be used.

Using this approximation, we getM i
I,approx(s) as

M i
I,approx(s) =

1

2 + kα

(

2π

AIθk

)(

Rαk+2
E

(Pss)k
I

(

Rα
E

Pssθ

)

− Rαk+2
G

(Pss)k
I

(

Rα
G

Pssθ

))

. (3.8)

where I(x) is given by

I(x) = 2F1(k, k + 2/α; 1 + k + 2/α;−x) , (3.9)

and 2F1(, ; ; ) is the Gauss’ Hypergeometric function [2].

Because each interferer is assumed to be independent, the MGF of I givenN

can be written as

MI/n(s) =

n
∏

i=1

M i
I(s) =

(

M i
I(s)

)n
. (3.10)

By averagingMI/N (s) over the probability distribution (2.17), we find

MI(s) =
∞
∑

n=0

MI/n(s)
(βAI)

n

n!
e−βAI . (3.11)

Substituting (3.10) into (3.11), we get

MI(s) = eβAI(M
i
I (s)−1). (3.12)
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3.2.4 Performance Analysis

This section derives the outage probability, the asymptotic outage and the diver-

sity/coding gains.

Receiver SINR characteristics

Here, we derive the CDF and the PDF . The SINRγ at the PR can be written as

γ =
PpR

−αY

I + σ2
n

, (3.13)

wherePp is the power level of the PT,σ2
n is the noise variance, andY is the channel

gain between the primary transmitter and receiver. We only consider the case where

the primary signals undergo path loss and Rayleigh fading due to the mathematical

complexity of analyzing for other cases. Then,Y is a unit exponential PDF with

the distribution of (2.5). The variablesY andI are independent, and the CDF ofγ

is

Fγ/I(x) = P

(

PpR
−αY

I + σ2
n

≤ x

)

= P

(

Y ≤ x(I + σ2
n)

PpR−α

)

= 1− e

(

−
x(I+σ2n)

PpR−α

)

. (3.14)

Averaging with respect toI, we get

Fγ(x) = 1− e

(

−
xσ2n

PpR−α

)

EI

[

e
−I

(

x

PpR−α

)
]

= 1− e

(

−
xσ2n

PpR−α

)

MI

(

x

PpR−α

)

. (3.15)

SubstitutingγTh instead ofx gives the outage equation, whereγTh is the threshold

SINR level for the PR.
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The PDFfγ(x) can be obtained by differentiation of (3.15) as

fγ(x) =

(

A− BV

x

(

H
(

k + 2
α

)

(Ux + J)k
− I

(

J

Ux

)

+
Hk

(Ux)k
I

(

J

Ux

)

− F
(

k + 2
α

)

(Ux+G)k
+ I

(

G

Ux

)

− Gk

(Ux)k
I

(

G

Ux

)

))

× e

(

−B−Ax+BV

(

F
(Ux)k

I
(

G
Ux

)

− H
(Ux)k

I
(

J
Ux

)
))

, (3.16)

whereA = σ2n
PpR−α , B = βAI , U = 1

PpR−α , V = 1
2+kα

(

2
AIθk

)

, F =
Rαk+2
E

P ks
, G =

−RαE
Psθ

,H =
Rαk+2
G

P ks
andJ =

−RαG
Psθ

.

Asymptotic Outage

Since the outage probability (3.15) is complicated, a mathematically tractable asymp-

totic expression is useful. An asymptotic outage probability expression is derived

for, when Pp
T

is significantly larger thanPs andσ2
n. By expandingI(Cx), we can

obtain

I(Cx) = 2 + αk

2xkCk +
k(2 + αk)

xk+1Ck+1(α− 2)
+O

(

1

xk+2

)

, (3.17)

whereC is a constant. Thus, by using (3.17), for the expression of the MGF (3.8) in

(3.15), and with some algebraic manipulations, the CDF for high Pp
γTh

with respect

to the noise and interference can be obtained as

FγAsy(x) =1−e
(

−
xσ2n

PpR−α

)

e
2βπθkRα

α−2
Ps
Pp
(R2−α

E −R2−α
G )x. (3.18)

For smallx, ex can be written as1 + x. Therefore, (3.18) can be approximated by

FγAsy (x) = 1 −
(

1− xσ2
n

PpR−α

)

×
(

1 +
2βπθkRα

α− 2

Ps
Pp

(

R2−α
E −R2−α

G

)

x

)

. (3.19)

DefiningA = σ2n
R−α andB = 2βπθkRα

α−2
Ps
(

R2−α
E − R2−α

G

)

, we get

FγAsy(x) = 1−
(

1−A x

Pp

)(

1 + B x

Pp

)

≈ (A− B) x
Pp
, (3.20)
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which is the asymptotic CDF.

Diversity Gain and Coding Gain

The diversity gain and coding gain fully characterize the asymptotic performance

of a system. The outage probability at high SINR can be written as

Pout(γ) ≈ (Gcγ)
−Gd , (3.21)

whereGc is the coding gain andGd is the diversity gain. Increasing the SINR

is analogous to increasingPp while having a constantσ andPs. Therefore,Pout

becomes

Pout ≈
(

1

(A− B)
Pp
x

)−1

. (3.22)

From (3.22), we observe thatGd = 1 andGc =
1

(A−B)T
.

3.3 Gamma model approximation

3.3.1 Introduction

In the previous section, the exact and approximate MGFs wereobtained for the

annular underlay model. However, the complexity of these results is high, and even

the approximate MGF (3.8) is complicated. Although the CDF (3.15) and PDF

(4.6) of the SINR when the primary signals undergo Rayleigh fading were derived,

obtaining the CDF and PDF of the aggregate interference (I) itself is extremely

difficult. A simple approximation to the aggregate interference PDF will help in the

analysis of systems such as multiple antenna (MIMO) systemsand relay networks.

Therefore, an accurate but simple approximation for the aggregate interference is

useful. A proper approximation should be valid under varying inner and outer radii,

path loss exponent values, shadowing variances, and node densities. In the rest of

this section, the Gamma approximation forI will be derived. The accuracy of the

approximation will be described later in the numerical results section.
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3.3.2 The Gamma Approximation

The Gamma approximation would use the approximate MGF (3.8)for analytical

purposes. Due to the use of Gamma shadowing, the aggregate interference may

also follow a Gamma model, rather than a Gaussian model whichcan be obtained

via the use of the Central Limit Theorem. The aggregate interference (2.19) is thus

assumed to be modeled by a Gamma random variable. Therefore,the PDF of the

aggregate interferenceI, is given by

fI(x) =
1

θa
kaΓ(ka)

xka−1e−
x
θa , (3.23)

whereka is the shape parameter andθa is the scale parameter. Suitable values ofka

andθa to approximate the distribution ofI are needed.

These parameters can be obtained by employing a moment matching method

[29]. For the Gamma approximation, the first and second ordermatching of mo-

ments are sufficient to find the shape and scale parameters. Higher order moment

matching is not needed.

The first- and second-order statistics of the aggregate interference are important

performance means by themselves.E[I], the expected value of the interference is

βAIE[Ii], where the interference from a single interferer,Ii is given by

Ii = Psri
−αXi. (3.24)

Becauseri andXi are independent,E[Ii] can be written as

E[Ii] = PsE[ri]E[Xi]. (3.25)

After performing the expectations, it can be shown that

E[I] = 2πPsβ
√
eσ2
(

R2−α
E −R2−α

G

2− α

)

. (3.26)

But, there will be a singularity underα = 2. Therefore, by applying the L’Hospital’s

rule, we can obtainE[I] whenα = 2 as follows;

E[I]α=2 = 2πPsβ
√
eσ2
[

d
dα
(R2−α

E − R2−α
G )

d
dα
(2− α)

]

α=2

= 2πPsβ
√
eσ2 (log (RE)− log (RG)) . (3.27)
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The variance is defined as,

V ar[I] = E[I2]− E[I]2. (3.28)

After obtaining an expression forE[I2], V ar[I] is found out to be

V ar[I] = πβP 2
s kθ

2(1 + k)

(

R2−2α
E − R2−2α

G

1− α

)

. (3.29)

The expected value and variance can be matched with those of aGamma dis-

tribution. The expected value and variance of the Gamma distribution arekaθa and

kaθ
2
a respectively. Therefore, by matching these moments, the shape parameter and

the scale parameter of the Gamma approximation can be found out to be(E[I])2

V ar[I]
, and

V ar[I]
E[I]

respectively. By substitutingE[I] andV ar[I], we can find that

ka =
2πβ

eσ2
(1− α)

(2− α)2
(R2−α

E − R2−α
G )2

(R2−2α
E −R2−2α

G )
, (3.30)

and

θa = Ps

(

eσ
2
)

3
2 (2− α)

(1− α)

(R2−2α
E − R2−2α

G )

(R2−α
E − R2−α

G )
, (3.31)

respectively. The accuracy of the approximation, and distribution will be discussed

in detail in the numerical results section.

3.4 Numerical Results

This section provides the numerical results, simulations and comparisons of the

aggregate interference for the annular underlay model, andthe Gamma model of

the aggregate interference.

3.4.1 Numerical results of Aggregate interference for annular
underlay networks

Here, we show the exact and asymptotic characteristics of the outage probability

with the variation of the primary power level, interfering CR power level, and node
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Figure 3.1: The outage probability vsPp andPs, underγTh = 1, α = 2, σ = 2,
σ2
n = 0.001, β = 0.0001,R = 30,RG = 15 , RE = 100.

density under differing conditions. A Gamma shadowing environment has been

considered for the simulation, andM i
I,approx has been used for our theoretical cal-

culations. Whenσ → 0, we have the situation where shadowing is negligible.

In Fig. 3.1, the outage probability is plotted with respect to both the primary

power levelPp and interferer power levelPs for fixed values ofR, RG, RE and a

noise varianceσ2
n = 0.001. It uses free space propagation (α = 2), shadowing index

σ = 2, and the interferer densityβ = 0.0001. The outage probability decreases

slowly at highPs and, approaches the noise limited scenario for lowPs values. Even

if Pp is increased, ifPs increases correspondingly, the outage probability remains

unchanged.

Fig. 3.2 depicts the same scenario of Fig. 3.1 except for the fact that in this

case, the shadowing varianceσ = 0. It is interesting to observe that at higherPs,
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Figure 3.2: The outage probability vsPp andPs, underγTh = 1, α = 2, σ = 0,
σ2
n = 0.001, β = 0.0001,R = 30,RG = 15,RE = 100.

theσ = 0 plot has worse performance and vice versa at lowerPs.

Fig. 3.3 shows the exact and the asymptotic outage probability with respect to

Pp for differing levels of shadowing and path loss exponents. At highPp, the asymp-

totic curves are a perfect match to the exact outage plots. Animportant observation

is that at this interferer node density, when the path loss exponent increases, shad-

owing has little effect on the outage. When the path loss exponent is4, the plots

for both shadowing index values show little difference; however, under free space

propagation, the plots vary significantly for the two differentσ values. This result

is consistent with the derivation obtained earlier in (3.22). For the values forRG,

RE andR that we selected, the outage probability increases withα. If R << RG,

a higherα will ensure a lower outage probability.

Fig. 3.4 compares the outage probability when the interferer densityβ varies,
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Figure 3.3: The exact and asymptotic outage probability vs the normalized transmit
powerPp, for different values ofσ andα underσ2

n = 0.001, β = 0.0001, Ps =
30dBm,R = 30, RG = 15, RE = 100, andγTh = 1.

for different values of path loss exponents and shadowing. This figure shows that

the effect of the shadowing index on environments with different path loss expo-

nents depends on the interferer node density. When the number of interferer nodes

increase to very high values,Pout approaches 1, while at low interferer node densi-

ties,Pout is governed primarily by noise. It is interesting to note that at high node

densities, the effect ofα on the outage probability is minimal.

Fig. 3.5 compares the outage probability when the interferer densityβ varies,

for different values of path loss exponentα and shadowing indexσ for RG = 25

andRE = 500. Unlike Fig. 3.4, this figure has a constant primary signal received

power, e.g. when power controlling is enabled on the primarysystem. It can be

seen that the effect of the shadowing index on environments with different path loss
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Figure 3.4: The outage probability vs interferer density (β) for different values of
σ andα underPs = 30 dBm, Pp = 70 dBm, σ2

n = 0.001, R = 30, RG = 15,
RE = 100, andγTh = 1.

exponents depend on the value of interferer node density. For low node densities,

the effect of shadowing when the path los exponentα = 4 is lower than that when

α equals2 or 3. When the number of interferer nodes increase to very high values

Pout approaches 1, while at low node densities,Pout is governed primarily by noise.

Fig. 3.6 compares the outage probability with respect to theprimary transceiver

distanceR. In this simulation, we varyR from 10m to 30m such that it lies within

the exclusion region, and also within the CR transmitting region. As we can see, the

outage probability increases withR, and also increases when the path loss exponent

α increases. It can also be observed that at lowerα values, the outage for the

shadowing indexσ = 0 andσ = 2 differs considerably. This is not the case at

higher path loss exponents. Also, at lowerR values, the outage forα = 2 and
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Figure 3.5: The outage probability vs interferer density (β) for different values of
σ andα underPs = 30 dBm,PpR−α = 25 dBm,σ2

n = 0.001,RG = 25,RE = 500,
andγTh = 1.

σ = 2 almost coincides withα = 3 andσ = 0. Therefore, the effect of shadowing

is extremely high at lower path loss exponent values.

3.4.2 Numerical results for the Gamma approximation

Fig. 3.7 shows the CDF of the simulated aggregate interference, and the CDF of

the Gamma equivalent aggregate interference. This figure reveals that the aggre-

gate interference roughly follows a skewed alpha-stable distribution [61], where the

skewness parameter reduces asβ is increased. The two curves show a tight fit for

both large and small node density (β) values. Therefore, the Gamma approximation

of the aggregate interference is accurate.

Fig. 3.8 depicts the PDF of the approximated aggregate interference for dif-

ferent node densities. As expected, when the node density increases, the average

value of the aggregate interference increases and the tailsbecome heavier due to the
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Figure 3.6: The outage probability vs primary transceiver distance (R) for different
values ofσ andα underPs = 30 dBm, γTh = 1, Pp = 70 dBm,RG = 15, RE =
100, andσ2

n = 0.001.

increased variance. It is interesting to note that as the node density increases, the

PDF becomes more symmetric, and shows a similarity to the Gaussian distribution

suggesting that the central limit theorem would be appropriate for use in high node

density environments.

In Fig. 3.9, the PDF is plotted whenRG, RE , and the shadowing varianceσ

are varied. Asσ is increased while keeping the other parameters constant, the PDF

flattens out and shows a heavier tail. As the guard distanceRG is increased for

fixed shadowing, the interference power reduces as expected, and the PDF is much

tighter. Conversely, whenRE is increased while keeping the shadowing indexσ

constant, the PDF shows a similarity with the Gaussian distribution because many

interferer nodes are in the network.
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Figure 3.7: The CDF of the aggregate interference and the Gamma approximation
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shadowing.

3.5 Conclusion

This chapter investigated the aggregate interference on the primary receiver from

interferers for the annular underlay model. A Poisson pointprocess of interferer

nodes, a composite fading model with the Generalized-K distribution, and arbitrary

path loss exponent values were considered. The exact and approximate MGFs of

the aggregate interference, and the exact and asymptotic outage probabilities of the

PR were derived. Our numerical results confirmed the analysis and showed that the

effect of shadowing is significantly lower with higher path loss exponent values.

The aggregate interference was further modeled as a Gamma random variable.

This was necessitated by the mathematical complexity of using the MGF for fur-

ther analysis. The first two moments of the aggregate interference were derived

and matched to the respective moments of a Gamma distribution. This resulted in

a simple yet highly accurate approximation of the aggregateinterference which in-
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corporated all the variable system and channel parameters.The approximation is

highly accurate in comparison to the actual distribution for varying node density

values.

∼

xr
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Chapter 4

Approximation models for the
aggregate interference

In Chapter 3, an exact analysis and a Gamma approximation to the aggregate in-

terference were developed. This chapter will introduce twomore models for the

aggregate interference: the multiple-ring model, and the nearest interferer model.

4.1 Introduction

Previously, Chapter 2 introduced the annular underlay model, and Chapter 3 pro-

vided an exact analysis and a Gamma approximation to the aggregate interference.

This chapter will develop several different models to characterize the aggregate in-

terference which can be used to approximate the annular underlay model, and which

are derivatives of that model.

Many approximations and statistical models for the aggregate interference have

been widely investigated in literature. For example, [59] proposes a model for the

aggregate interference as the sum of normal and log-normal random variables. Ref-

erence [59] also obtains an upper bound for the complementary cumulative distri-

bution function (CCDF) of the total interference. In [30], the authors model the

aggregate interference when the CR nodes employ power control, contention con-

trol, and hybrid power and contention control schemes. The authors fit some of the

interference PDFs with log-normal PDFs to reduce complexity. Reference [52] pro-

poses a new statistical model for aggregate interference using cumulants obtained

via the application of Campbell’s theorem, while [61] showsthat when the CR ex-
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clusion region around the primary receiver (PR) is zero, theaggregate interference

can be accurately modeled as a heavy tailedα-stable distribution. Reference [61]

further says that when a significant exclusion region is defined, the tails of the ag-

gregate interference PDFs shorten considerably. Reference [60] investigates the

aggregate interference distribution via the central limittheorem. It is shown that

interferers in the near field cause the aggregate interference to be a heavy tailed dis-

tribution, and in the far field to be a Gaussian distribution.Furthermore, it is shown

that the presence of fading reduces the convergence of the aggregate interference

to a Gaussian distribution. Moreover, reference [50] presents a statistical model for

cognitive radio networks.

This chapter makes two main contributions. First, a new multiple-ring model

for the aggregate interference from the annular underlay network is developed. This

model is accurate, versatile, and mathematically tractable. Second, a nearest inter-

ferer model to approximate the aggregate interference is developed. This model is

useful when one particular interfering CR node is more dominant. In some practical

situations, this is indeed the case and this analysis will help in developing better in-

terference mitigation procedures. The accuracy of this approximation is evaluated

for different parameters.

4.2 A multiple-ring model for underlay interference

4.2.1 Introduction

The annular underlay model in Section 2.3 consists of a Poisson field of cognitive

radio (CR) nodes over an annular area with a guard region to reduce interference

(Fig. 4.1.a). However, the analysis developed in Chapter 3 is fairly complicated.

Therefore, we propose a new model that yields simpler analytical results, and which

provides flexibility and versatility to handle different parameters. This model is

developed as an approximation of the annular underlay network configuration (Fig.

4.1.a), repeated here for covenience from Section 2.3.
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Figure 4.1: System model. Legend: Black circle = interferernodes, black square =
PR,R2 = 2R, andRM =MR.

This new model consists of a set of multiple rings around the PR (Fig. 4.1.b)

with a set of interferer nodes on each ring. The system parameters of the new

model are chosen to match those of the annular underlay model. The MGF of the

aggregate interference for this model will be analyzed under both Rayleigh fading,

and composite fading and shadowing. The probability density function (PDF) of the

aggregate interference will be obtained for deterministicinterferer node numbers,

and the exact and asymptotic outage probabilities are derived.

The approximation error of the proposed model is small, and can be further

reduced by fine tuning the parameters.

4.2.2 Proposed System Model

The common model for an interferer system is the annular underlay model (Fig.

2.3) discussed in the preceding chapter, with a guard regionof radiusRG, and an

outer radius ofRE . Usually,RE
RG

is taken to be between3 to20 [49]. For this system,

we will develop a new multiple-ring model (Fig. 4.1).

In the proposed model, the interferer nodes are distributedin multiple rings

around the PR (Fig. 4.1.b). The radius of thet-th ring is tR, wheret = 1 . . .M .
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ForM rings in total,MR is taken for the distanceRE. The radius of the first ring

R can be treated as the guard distanceRG. If a smaller value thanRG is used, the

guard distance can be taken as the distance to theν-th ring,νR.

The total number of interferer nodes in a certain ring is modeled as a Poisson

random variable arising from a linear Poisson point process. It is independent of the

number of interferer nodes in other rings, and the interferer nodes are distributed

uniformly on the ring. LetNk be the number of interferer nodes located on thet-th

ring. P (Nt = n) can be written from (2.17) as

P (Nt = n) =
(βt2πtR)

n

n!
e−βt2πtR, n = 0, . . . (4.1)

wheret is any integer from1 toM , andβt is the interferer density of thet-th ring.

The densityβt is chosen such that the average number of interferer nodes inthe

multiple ring model is equal to that of the annular underlay model:

β(R2
E − R2

G) =

M
∑

t=ν

βt2tR. (4.2)

For the considered homogeneous scenario,βt will not depend on the ring, and will

be a constantβl.

4.2.3 Interference Statistics

To demonstrate the validity of the multiple-ring model, we will next derive the MGF

of its aggregate interference. This derivation will consider Rayleigh fading, and

combined Rayleigh fading and Gamma shadowing. These MGF expressions are

simple, exact, and can be compared against the exact MGF of the annular underlay

model (Fig. 4.1.a).

As observed, the average number of interferer nodes in a given ring increases

with t. The worst case where all the interferer nodes in the rings are transmitting is

assumed. Even if activity factors of the interferer nodes are considered, the distri-

bution can be considered to be that of the active nodes without loss of generality.

The path loss will be modeled to follow the simplified path loss model of (2.16).

In our system model, we assume that all the interferer nodes are transmitting at the

43



same transmit power, and thus, the power level (defined asP0r
α
0 ) of each interferer

isPs. The total interference power received at the PR may be written as (2.19)

I =

M
∑

t=1

It, (4.3)

whereIt is the total interference generated from the interferer nodes of thet-th ring.

It can be written as

It =
Nt
∑

l=1

PsXt,l[tR]
−α, (4.4)

whereXl is the channel gain corresponding to fading or combined shadowing and

fading, for thel-th interferer in thet-th ring. We assume that all the fading and

shadowing of the interferer signals are independent of eachother, even when they

are from the same ring.

If only Rayleigh fading is considered,Xt,l can be modeled to follow the expo-

nential distribution (2.5). Similarly, if both Rayleigh fading and Gamma shadow-

ing are considered,Xt,l was shown to be modeled as a generalized-K distribution

(2.11). In Chapter 2, it was stated that the generalized-K distribution can be ap-

proximated by a Gamma distribution as proposed under [29].

Using (4.4) in (4.3), the total interference can be written as

I =

M
∑

t=1

Nt
∑

l=1

PsXt,l[tR]
−α. (4.5)

LetMI(s) be the MGF of the aggregate interference given by (2.20). Using (4.5),

the MGF can be written as

MI(s) = E[e−s
∑M
t=1

∑Nt
l=1 PsXt,l[tR]

−α

]

= E[e−sPsR
−α

∑M
t=1 t

−α
∑Nt
l=1Xt,l]. (4.6)

Rayleigh fading

Under Rayleigh fading, all theXt,l values will be independent exponential random

variables. Therefore, we can write (4.6) after expanding as

MI(s) = E [EX1,1 [e
−sPs1−αR−αX1,1 ] . . . EX1,N1

[e−sPs1
−αR−αX1,N1 ] . . .
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× EXM,1 [e
−sPsM−αR−αXM,1 ] . . . EXM,NM [e−sPsM

−αR−αXM,NM ]], (4.7)

where the first expectation is with respect toN1 . . . NM . After performing the inner

expectations, the MGF becomes

MI(s) = E

[

1

(1 + sPsR−α1−α)N1
. . .

1

(1 + sPsR−αM−α)NM

]

= E

[

M
∏

t=1

1

(1 + sPsR−αt−α)Nt

]

. (4.8)

Because the number of interferer nodes in thet-th ring is independent of the number

of interferer nodes in any other ring, we can write (4.8) as

MI(s) =EN1

[

1

(1 + sPsR−α1−α)N1

]

. . . ENM

[

1

(1 + sPsR−αM−α)NM

]

. (4.9)

Using (4.1), the expectation with respect to the number of interferer nodes in the

t-th ringNt can be written as

ENt

[

1

(1 + sPsR−αt−α)Nt

]

=
∞
∑

Nt=0

1

(1 + sPsR−αt−α)Nt
(βl2πtR)

Nt

Nt!
e−βl2πtR

=

∞
∑

Nt=0

(

βl2πtR
1+sPsR−αt−α

)Nt

Nt!
e−βl2πtR

= e
βl2πtR

(

1
1+sPsR−αt−α

−1
)

. (4.10)

Using this result (4.10), (4.9) can be written as

MI(s) = e
βl2πR

(

1
1+sPsR−α1−α

−1
)

e
βl2π2R

(

1
1+sPsR−α2−α

−1
)

. . . e
βl2πMR

(

1
1+sPsR−αM−α−1

)

=
M
∏

t=1

e
βl2πtR

(

1
1+sPsR−αt−α

−1
)

, (4.11)

which is the MGF of the aggregate interference.

Composite Rayleigh fading and shadowing

When composite Gamma shadowing and Rayleigh fading are considered, it was

shown earlier in the section thatXt,l values can be represented by a Gamma PDF.
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It is assumed that all theXt,l coefficients are independent. Therefore, similar to

Rayleigh fading, we can writeMI(s) as (4.7). After performing the expectations

with respect to theXt,l values,MI(s) becomes

MI(s) = E

[

1

(1 + θsPsR−α1−α)kN1
. . .

1

(1 + θsPsR−αM−α)kNM

]

= E

[

M
∏

t=1

1

(1 + θsPsR−αt−α)kNt

]

. (4.12)

Similar to the case with Rayleigh fading, the number of interferer nodes in thet-th

ring is independent of the number of interferer nodes in any other ring. Therefore,

the MGF can be written as

MI(s)=EN1

[

1

(1 + θsPsR−α1−α)kN1

]

. . . ENM

[

1

(1 + θsPsR−αM−α)kNM

]

.(4.13)

Similar to the derivation of (4.10), the expectations with respect to the number of

interferer nodes in the rings can be performed. Finally, theMGF of the aggregate

interference for Rayleigh fading and Gamma shadowing becomes

MI(s) =
M
∏

t=1

e
βl2πtR

(

1

(1+θsPsR−αt−α)k
−1

)

. (4.14)

Extended guard region

When the guard region is extended, the MGF of the aggregate interference is de-

pendent on the rings beyond theν-th ring (1 < ν < M). Thus, the MGF of the

Rayleigh fading scenario becomes

MI(s) =

M
∏

t=ν

e
βl2πtR

(

1
1+sPsR−αt−α

−1
)

. (4.15)

The MGF of the combined fading and shadowing case is similar.
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4.2.4 Suitability as a stand-alone system model

This section will discuss the suitability of the multiple ring model as a stand-alone

system model, and the special cases which may occur.

The analysis of the annular underlay network model (Fig. 4.1.a) presents several

challenges.

• The incorporation of different transmit powers, path loss exponents, and shad-

owing variances is complicated.

• Non-homogeneous setups and areas with different CR node densities are dif-

ficult to analyze.

The proposed multiple ring model can be used to incorporate these conditions.

Moreover, the multiple-ring model may be used to approximate non-annular shapes.

For example, interfering nodes over a different polygon region may be approxi-

mated.

Differing parameters for interferer nodes

Substitutingβt instead ofβl, αt instead ofα, andPt instead ofPs, in equations

(4.11) and (4.14) will give the desired MGF when the node densities, path loss

exponents, and the transmit powers of the interferer nodes are unique. The symbols

βt andPt denote the node density and transmit power of an interferer in thet-th ring,

respectively. Therefore, this multiple-ring system modelis extremely versatile to

handle general cases. Comparatively, the MGF obtained in the previous chapter for

the standard system model is fixed for a particular interferer transmit power and a

node density.

Non-random number of interferer nodes

Another special case that can arise is the rings having deterministic interferer node

numbers. Therefore, the number of nodes on thet-th ringNt is not random. In such
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RG RE

Figure 4.2: Linear interferer network. Legend : black dot = interferer nodes, black
square = PR.

a scenario, the MGF for the Rayleigh fading case becomes (from 4.8)

MI(s) =
M
∏

t=1

1

(1 + sPsR−αt−α)Nt
. (4.16)

The PDF of the aggregate interference is difficult to obtain whenNt is random. But,

it can be derived for this special case using the method of [62]. It can be clearly

seen that (4.16) is equivalent to the MGF for a sum of Gamma random variables.

Therefore, using (2.9) of [62], the PDF of the aggregate interference can be written

as

fI(x) = C
∞
∑

t=0

δtx
ρ+t−1e

−
x

PsR−αM−α

Γ(ρ+ t) (PsR−αM−α)ρ+t
, x > 0 (4.17)

whereρ =
∑M

t=1Nt, C =
∏M

t=1

(

t
M

)αNt, δt+1 = 1
t+1

∑t+1
i=1 iγiδt+1−i, δ0 = 1,

andγi =
∑M

t=1
Nt
i

(

1−
(

t
M

)α)i
. The PDF for the combined Rayleigh fading and

shadowing case can be derived similarly.

Approximating interferers in a linear network

To approximate a homogeneous linear interferer network (Fig. 4.2), the guard dis-

tanceRG is taken as the distance to theν-th ring νR, andMR is approximated as

RE . The interferers will be distributed on the rings accordingto the Poisson point

process of (4.1). The densityβt is chosen such that:

βln(RE − RG) =

M
∑

t=ν

βtπtR, (4.18)

whereβln is the interferer density per unit length in the linear interferer network.

Unlike the approximation for the homogeneous annular underlay model,βt values

will not be equal. The average number of interferers in each ring will be a constant

carrying the form;

βt2πtR = C, (4.19)
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whereC is a constant.

Approximating interferers in a square shaped area

The interfering nodes may be distributed homogeneously in polygon shaped areas.

As an example, lets consider a square shaped area (Fig. 4.3).Similar to the previous

cases,RG is taken as the distance to theν-th ringνR. However, the distance to the

M-th ringMR is taken as
√
2RE . While tR < RE, the interferer density on the

t-th ring is a constant,βl. However, whenRE < tR <
√
2RE , the interferer density

for the t-th ring will be proportional to the percentage of distance that it is within

the square. Therefore, the approximation will be as follows;

βsq(4R
2
E − πR2

G) =

M
∑

t=ν

βt2πtR, (4.20)

whereβsq is the interferer density of the square region. The values for βt are,

βt = βl, t <
RE

R
,

βt =

(

1− 8ω

2π

)

βl,
RE

R
< t <

√
2RE

R
, (4.21)

whereω = arccos
(

RE
tR

)

in radians.

4.2.5 Performance analysis

CDF of the SINR

Here, we derive the CDF of the aggregate interference . The SINR γ at the PR can

be written as

γ =
PpR

−α
pr Y

I + σ2
n

, (4.22)

wherePp is the power level of the PT,Rpr is the distance between the primary trans-

mitter and receiver,σ2
n is the noise variance, andY is the channel gain between the

primary transmitter and receiver. Similar to the previous section, due to the math-

ematical complexity of analyzing for other cases, only the case where the primary
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RG

RE

Figure 4.3: Square shaped interferer network. The shaded area contains the inter-
ferers. Legend : black square = PR.

signals undergo path loss and Rayleigh fading is considered. Then,Y is a unit ex-

ponential PDF given by (2.5), with̄γ = 1. The variablesY andI are independent.

Similar to the derivation of the previous chapter, the CDF ofγ is

Fγ(x) = 1− e

(

−
xσ2n

PpR
−α
pr

)

MI

(

x

PpR−α
pr

)

. (4.23)

For Rayleigh fading, substituting (4.11) forMI(s) in (4.23), the CDF ofγ becomes,

Fγ(x) = 1− e

(

−
xσ2n

PpR
−α
pr

)







M
∏

t=1

e
βl2πtR





1
1+ x

PpR
−α
pr

PsR−αt−α
−1










. (4.24)

For Rayleigh fading and Gamma shadowing, substituting (4.14) forMI(s) in (4.23),

the CDF ofγ becomes,

Fγ(x) = 1− e

(

−
xσ2n

PpR
−α
pr

)

















M
∏

t=1

e

βl2πtR











1


1+θ x

PpR
−α
pr

PsR−αt−α





k−1



























. (4.25)

SubstitutingγTh instead ofx gives the outage equation, whereγTh is the threshold

SINR level of the PR.
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The PDF of the SINR can be found out by differentiatingFγ(x) for distinct

values ofM . But, the PDF for a generalM value is extremely complex to obtain.

Asymptotic analysis

The aim in this part of the subsection is to develop an asymptotic equation for the

outage probability under Rayleigh fading and both Rayleighfading and Gamma

shadowing, ie. whenPp is considerably larger thanPs, γTh, andσ2
n.

We first consider the Rayleigh fading case. By expandingex = 1 + x+O (x2)

for smallx, we obtain

e
βl2πtR





1
1+ x

PpR
−α
pr

PsR−αt−α
−1





= 1− (βl2πtR)
PsR

−αt−α

PpR−α
pr

x+O
(

x2
)

. (4.26)

Therefore,

M
∏

t=1

e
βl2πtR





1
1+ x

PpR
−α
pr

PsR−αt−α
−1





≈
M
∏

t=1

(

1− βl2πtR
PsR

−αt−α

PpR−α
pr

x

)

≈ 1−
(

βl2πR
PsR

−α

PpR−α
pr

M
∑

t=1

t1−α

)

x. (4.27)

Substituting (4.27) in (4.24) and expandinge

(

−
xσ2n

PpR
−α
pr

)

via ex ≈ 1 + x,

FγAsy(x) ≈ 1−
(

1− xσ2
n

PpR−α
pr

)

(

1−
(

βl2πR
PsR

−α

PpR−α
pr

M
∑

t=1

t1−α

)

x

)

≈
(

σ2
n

PpR−α
pr

+ βl2πR
PsR

−α

PpR−α
pr

M
∑

t=1

t1−α

)

x+O
(

x2
)

. (4.28)

DefiningA1 =
σ2n

PpR
−α
pr

andB1 = βl2πR
PsR−α

PpR
−α
pr

∑M
t=1 t

1−α we get

FγAsy (x) = (A1 + B1) x+O
(

x2
)

, (4.29)

which is the asymptotic CDF for the Rayleigh fading scenario.

Similarly, the asymptotic outage for composite Rayleigh fading and Gamma

shadowing is given by

FγAsy (x) = (A2 + B2) x+O
(

x2
)

, (4.30)
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whereA2 =
σ2n

PpR
−α
pr

, andB2 = βl2πR
θkPsR−α

PpR
−α
pr

∑M
t=1 t

1−α.

Moments

The first and second order moments of the aggregate interference are important

statistics. The, expected value is found as,

E[I] = (−1)
d

ds
MI(s)|s=0

E[I] = 2πβlR
1−αPs

√
eσ2

M
∑

t=ν

t1−α. (4.31)

The second moment is found as

E[I2] =
d2

ds2
MI(s)|s=0

E[I2] =

(

2πβlR
1−αPs

√
eσ2

M
∑

t=ν

t1−α

)2

+2πβlR
1−2αθ2k(k + 1)P 2

s

M
∑

t=ν

t1−2α.(4.32)

Error statistics

For any new model, it is important to investigate its error statistics. The root mean

squared error (RMSE) [63] will be investigated in this regard. If IAn andI are the

aggregate interference powers of the annular underlay model, and the multiple ring

model, the RMSE can be written asRMSE =
√
MSE, where

MSE = E[(IAn − I)2]. (4.33)

Expanding this, and using (4.31), (4.32), (3.26), and (3.29),

MSE = E[I2An] + E[I2]− 2E[IAn]E[I]

=

(

2πβlR
1−αPs

√
eσ2

M
∑

t=ν

t1−α

)2

+2πβlR
1−2αθ2k(k + 1)P 2

s

M
∑

t=ν

t1−2α

+ πβP 2
s kθ

2(1 + k)

(

R2−2α
E − R2−2α

G

1− α

)
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+

(

2πPsβ
√
eσ2
(

R2−α
E − R2−α

G

2− α

))2

− 2

(

2πβlR
1−αPs

√
eσ2

M
∑

t=ν

t1−α

)

(

2πPsβ
√
eσ2
(

R2−α
E −R2−α

G

2− α

))

.(4.34)

Substitutingβl using (4.2),MR for RE , andνR for RG, we obtain

MSE = πk(1 + k)θ2P 2
s βR

2−2α

(

M2−2α − ν2−2α

1− α
+

(M2 − ν2)
∑M

t=ν t
1−2α

∑M
t=ν t

)

+ 4π2k2θ2P 2
s β

2R4−2α







(M2 − ν2)2
(

∑M
t=ν t

1−α
)2

4
(

∑M
t=ν t

)2 +
(M2−α − ν2−α)

2

(2− α)2

−
∑M

t=ν t
1−α(M2 − ν2) (M2−α − ν2−α)

(2− α)
∑M

t=ν t

)

. (4.35)

Coefficient of Variation of the Root Mean Squared Error (CVRM SE)

The coefficient of variation of the root mean squared error isgiven by

CV RMSE =
RMSE

E[IAn]
. (4.36)

Normalized error of the mean

The normalized error of the mean (NEM) value is defined as

NEM =
|E[IAn]− E[I]|

E[IAn]
. (4.37)

TheCV RMSE andNEM values for different parameter combinations have

been tabulated in Table 4.2.5 and Table 4.2.5. While the statistics for theR =

1,M = 100 pair are better, theNEM only depends on the path loss exponent value

for a givenR,M pair. The multiple ring model shows better performance for higher

interferer densities, lower path loss exponents, and lowershadowing variances.
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CV RMSE NEM
β = 0.1, α = 2, σ = 0 0.0654 0.0318
β = 0.1, α = 2, σ = 1 0.0995 0.0318
β = 0.1, α = 3, σ = 0 0.1380 0.1061
β = 0.1, α = 3, σ = 1 0.1800 0.1061
β = 0.01, α = 2, σ = 0 0.1836 0.0318
β = 0.01, α = 2, σ = 1 0.2999 0.0318
β = 0.01, α = 3, σ = 0 0.2984 0.1061
β = 0.01, α = 3, σ = 1 0.4720 0.1061

Table 4.1: Error statistics forR = 5 andM = 20.

CV RMSE NEM
β = 0.1, α = 2, σ = 0 0.0552 0.0062
β = 0.1, α = 2, σ = 1 0.0907 0.0062
β = 0.1, α = 3, σ = 0 0.0831 0.0203
β = 0.1, α = 3, σ = 1 0.1343 0.0203
β = 0.01, α = 2, σ = 0 0.1736 0.0062
β = 0.01, α = 2, σ = 1 0.2861 0.0062
β = 0.01, α = 3, σ = 0 0.2555 0.0203
β = 0.01, α = 3, σ = 1 0.4205 0.0203

Table 4.2: Error statistics forR = 1 andM = 100.
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4.3 Nearest Interferer approximation

4.3.1 Introduction

Until now, several models for the aggregate interference were developed. In Chap-

ter 3, a Gamma model was proposed, while in Section 4.2, a multiple-ring model

was developed. This section develops another approximation called the nearest in-

terferer approximation.

With exclusion regions and path loss included, the nearest interferer may dom-

inate the aggregate interference. Furthermore, when thereare relatively few inter-

ferer nodes (low interferer density), Central Limit Theorem (CLT) based approxi-

mations are less accurate. Therefore, characterizing the interference from the near-

est node, and analyzing the conditions for its dominance arethe focus points of this

section. As an intermediate step, the distance distribution of the nearest interferer

in the annular underlay network is derived. Moreover, another factor of interest is

the impact of power controlling on the aggregate interference.

Very few work has analyzed the spatial distribution of the nearest CR interferer,

and the approximation of the aggregate interference with the interference from the

nearest node. The works of [64] and [65] have approximated the aggregate interfer-

ence by that of the nearest node. Reference [64] investigates the trade-off between

outage probability and node density, and further studies the effects of interference

cancellation. Reference [65] checks the validity of the nearest node approxima-

tion and a Gaussian approximation to the aggregate interference. However, none

of the prior work do a performance analysis for the nearest node interference us-

ing a moment generating function (MGF) based approach. Furthermore, they do

not consider any power control schemes used by the interferer nodes. Also, none

have compared how the approximation will vary in accuracy asone or more system

parameters change.

This section’s main objective is to mathematically characterize the interference

caused by the nearest interferer, and approximate the aggregate interference with

it. In situations where the nearest interferer is more dominant, this analysis will
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provide useful insights when designing CR networks. Furthermore, this will help

find the situations in which interference cancellation schemes where the dominant

interferer is cancelled provide the best results.

The following subsections will evaluate the probability density function (PDF)

of the nearest interferer distance, analyze its distribution, and approximate the ag-

gregate interference with the nearest CR interference. Using the approximation, the

MGF of the interference is obtained in closed-form for two cases. Namely, where

all interferer nodes transmit at a constant power, and wherea basic distance based

power controlling scheme takes place. A closed-form solution is obtained for the

outage probability using the derived MGF. Finally, it will be shown that the nearest

CR interference is a lower bound to the aggregate interference which becomes tight

as either the interferer density or the distributed area of the interferers decreases, or

when the path loss exponent value increases.

4.3.2 System model

The annular underlay network model defined in Fig. 2.3 will beconsidered. The

interferer nodes are assumed to be distributed uniformly ina ring shaped area (Fig.

4.4) with the PR at the center, which has an inner radiusRG, and an outer radius

RE .

The aggregate interference at the PR can be written as (2.19). From the general

path loss model (2.16),Ii is expressed as

Ii = Piri
−αXi, (4.38)

wherePi is the power level (defined asP0r
α
0 ) of thei-th interferer,ri is the distance

from thei-th interferer to the PR. When Rayleigh fading is considered, Xi can be

written as a unit exponential random variable of the form (2.5). In our model, we

consider independent fading of the interfering signals.
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rmin

RE

RG

Figure 4.4: System model. Legend: black circle = interferernodes, black square =
PR.

4.3.3 Distribution of the nearest interferer node

Our aim is to approximate the aggregate interference with the interference from the

nearest interferer. Therefore, the aggregate interference can be written as

I ≈ Pminr
−α
minX, (4.39)

wherePmin, rmin andXmin respectively denote the power level, distance to the PR

and the fading coefficient, of the nearest interferer node.

The MGF of the aggregate interference can be obtained from (2.20). In order to

evaluate this equation, we need to obtain the PDF ofrmin, which is defined as

rmin = min ((r1, r2, . . . rN)) .

Using the fact thatPr[rmin < x] implies at least one element of(r1, r2, . . . rN) is

less thanx, the CDF ofrmin givenN can be obtained as

Frmin/N(x) = Pr[rmin < x] = 1− [Pr(ri > x)]N . (4.40)

The PDF ofri can be expressed as

fR(ri) =

{

2πri
AI

, RG < ri < RE

0 , otherwise
. (4.41)
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From (4.41),Prob(ri>x) can be found out to beπ
AI

(R2
E − x2). Substituting this in

(4.40) and differentiating, we get

frmin/N(x) = 2N

(

π

AI

)N

x
(

R2
E − x2

)N−1
. (4.42)

Averaging (4.42) with respect to (2.17) forN 6= 0, we get

frmin(x) = 2x

∞
∑

N=1

N

(

π

AI

)N
(

R2
E − x2

)N−1 (βAI)
Ne−βAI

N !

= 2πβe−βAIx

∞
∑

N=1

(πβ (R2
E − x2))

N−1

(N − 1)!
. (4.43)

With some mathematical manipulations, and substituting for AI , we can obtain

frmin(x) for N 6= 0 as

frmin(x) = 2πβxeπβ(R
2
G−x2), RG < x < RE . (4.44)

WhenN = 0, frmin(x) is non-existent with probabilitye−AIβ .

Fig. 4.5 shows the distribution offrmin(x) under differingβ for twoRG values.

It is observed that whenβ is higher, the PDF offrmin(x) shows a sharp drop-off.

Conversely, at lowerβ values, the curves show a more gradual drop with respect to

rmin. Therefore, it is concluded that at higherβ, we can expect a significantly lower

value forrmin, and thus a higher aggregate interference. At higherRG, the curves

for all β values show increased skewness towardsRG. It is interesting to note that

frmin(x) is not dependent onRE .

It is more insightful to obtain the PDF ofrmin
RG

. f rmin
RG

(x) can be obtained through

a simple variable change of (4.44) as

f rmin
RG

(y) = 2πηyeπη(1−y
2), 1 < y <

RE

RG
, (4.45)

whereη = βR2
G. Fig. 4.6 shows the distribution off rmin

RG

(y) whenN 6= 0 under

differing η for RE
RG

= 4. It is observed that whenη is higher, the PDF offrmin(x)

shows a sharp drop-off. Conversely, at lowerη values, the curves show a more

gradual drop with respect tormin
RG

. Whenη gets significantly low,f rmin
RG

(y) does not

drop off with respect toRE
RG

, and increases. Therefore, it is concluded that at higher
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Figure 4.5:frmin(x) for varyingβ values whenN 6= 0
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.

η, we can expect a significantly lower value forrmin
RG

, and thus a higher aggregate

interference. It is interesting to note that the shapes of the curves are not dependent

on RE
RG

.

We can observe that the nearest interferer terminal would have a much higher

effect on the PR’s aggregate interference whenη is lower. Moreover, in practice,

when designing a CR system at higherη values, increasing the inner radius instead

of reducing the node density is a more effective technique toensure a guaranteed

PR performance while maximizing the amount of CR nodes employed.

4.3.4 Derivation of the MGF

In the following subsections, we will derive the MGF of the aggregate interference

when the CR nodes employ constant transmit power and when theCR nodes employ

a distance based power control scheme.
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Constant power interferer nodes

When the power levels of each interferer is constant, and notdependent on distance,

(2.20) can be written as

MI(s) = EX,rmin [e
−sI ] = Ermin [EX [e

−sPsr
−α
minX ]], (4.46)

wherePs is the constant power of a interferer. Averaging with respect toX, we find

MI(s) = Ermin

[

1

1 + Pssr
−α
min

]

. (4.47)

WhenPssr−α < 1, we can expand (4.47) as an infinite series, and get

MI(s) = Ermin

[

∞
∑

t=0

(

−Pssr−αmin
)t

]

. (4.48)

For most practical values of system parameters, the summation will converge. Us-

ing (4.44) and averaging (4.48), we obtain the MGF as,

MI(s) = e−AIβ + πβeπβR
2
G

×
∞
∑

t=0

(

(−Pss)t
(

E tα
2
(πβR2

G)

Rtα−2
G

−
E tα

2
(πβR2

E)

Rtα−2
E

))

. (4.49)

The exact MGF can be obtained similar to the derivation of (3.12) as

Mexact
I (s) = eβAI (M

i
I(s)−1), (4.50)

whereM i
I(s) is the MGF of the interference from a single interferer, given by

M i
I(s) = E[e−sPsriXi ]. (4.51)

The PDF ofri is given by (4.41), and the PDF ofXi is given by (2.5). Averaging

with respect to these gives the result

M i
I(s) =

π

AI

(

R2
G(W(

Rα
G

Pss
)−1)− R2

E(W(
Rα
E

Pss
)− 1)

)

, (4.52)

whereW(x) = 2F1(1, 2/α; 1 + 2/α;−x).
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rmin

RCR

θ

Figure 4.7: System model for a CR setup employing power control. Legend: black
circle = nearest interferer node, black square = PR, red square = CR receiver.

interferer nodes employing power control

In this subsection, we consider a distance dependent power control scheme [30] [66]

where the interferer nodes control their power in order to ensure a constant average

received power level to a single CR receiver. A practical example for such a scenario

would be wireless sensor nodes transmitting information totheir base station.

Without loss of generality, we can take the PR to be located atthe origin and the

CR receiver be located a distanceRCR from the PR along thex-axis (Fig. 4.7). Let

θ be the angle from the positivex-axis to the nearest CR transmitter. We assumeθ

to be uniformly distributed between0 and2π. LetPrec be the average power level

ensured at the CR receiver.RCR is assumed to be a constant in the analysis. But,

if required, it can be modeled as a random variable. The average transmit power of

the nearest interferer can be written as

Pmin = Prec
(

r2min +R2
CR − 2rminRCR cos θ

)
α
2 . (4.53)

Let IPC be the interference from the nearest interferer node when the power control

scheme takes place. The the MGFMIPC(s) of this can be written as

MIPC (s) = Eθ[Ermin [EX [e
−sPminr

−α
minX ]]]. (4.54)
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Substituting forPmin and carrying ou the expectation with respect to X, (4.54)

becomes,

MIPC (s) = Eθ

[

Ermin

[

1

1 + sPminr
−α
min

]]

. (4.55)

After performing a series expansion, (4.55) becomes,

MIPC (s) =
∞
∑

t=0

(−sPrec)t

× Eθ

[

Ermin

[

r−αtmin

(

r2min+R
2
CR− 2rminRCRcosθ

)
αt
2

]]

. (4.56)

Whenα is an even number, we can simplify (4.56) using the binomial expansion

and obtain the following equation forMPC
Iapp(s) after averaging with respect toθ and

rmin;

MIPC(s) = e−AIβ

+ 2π2βeπβR
2
G

∞
∑

t=0

(−Precs)t
αt
2
∑

k=0

(

αt
2

k

)bk2c
∑

l=0

(

k

2l

)

× R2k−2l
CR

(4l − 1)!!

(2l)!

(

Ek−l(πβR
2
G)

R2k−2l−2
G

−Ek−l(πβR
2
E)

R2k−2l−2
E

)

, (4.57)

wherebxc denotes the largest integer less thanx. The convergence of (4.56) is

relatively lower compared to (4.49). In the case thatRCR is a random variable,

further averaging needs to be done on (4.57).

4.3.5 Moments

Moments of the nearest nodes’ interference may be importantwhen cconducting

further research on the approximation. Specially, the firstand second moments are

highly important.

Constant power interferer nodes

The general nth order moment of the interference from the nearest node can be

obtained from (4.49) as

E[In] = (−1)n
dn

dsn
MI(s)|s=0
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= n!πβP n
s (−1)neπβR

2
G

(

Eα
2
(πβR2

G)

Rα−2
G

−
Eα

2
(πβR2

E)

Rα−2
E

)

. (4.58)

interferer nodes employing power control

Similar to above, the general nth order moment for the power controlling scenario

is obtained from (4.57) as

E[InPC ] = 2n!π2βP n
rec(−1)neπβR

2
G

∞
∑

t=0

(−Precs)t
αt
2
∑

k=0

(αt
2

k

)b k2c
∑

l=0

(

k

2l

)

× R2k−2l
CR

(4l − 1)!!

(2l)!

(

Ek−l(πβR
2
G)

R2k−2l−2
G

−Ek−l(πβR
2
E)

R2k−2l−2
E

)

. (4.59)

4.3.6 Outage Analysis

In this section, the outage probability at the PR will be derived. The signal to

interference and noise ratio (γ) at the PR is denoted similar to the previous section.

The CDF ofγ can be obtained as

Fγ(x) = 1− e

(

−
xσ2n

PpR−α

)

MI

(

x

PpR−α

)

. (4.60)

For the constant transmit power interferer nodes,Fγ(x) becomes

Fγ(x) = 1 −e−
(

AIβ+
xσ2n

PpR−α

)

− πβe

(

πβR2
G−

xσ2n
PpR−α

)

×
∞
∑

t=0

(

(

− Psx

PpR−α

)t
(

E tα
2
(πβR2

G)

Rtα−2
G

−
E tα

2
(πβR2

E)

Rtα−2
E

))

. (4.61)

For interferer nodes employing power control (4.3.4),Fγ(x) becomes

F PC
γ (x) = 1 −e−

(

AIβ+
xσ2n

PpR−α

)

− 2π2βe

(

πβR2
G−

xσ2n
PpR−α

)

∞
∑

t=0

(

− Precx

PpR−α

)t
αt
2
∑

k=0

(

αt
2

k

)bk2c
∑

l=0

(

k

2l

)

× R2k−2l
CR

(4l − 1)!!

(2l)!

(

Ek−l(πβR
2
G)

R2k−2l−2
G

−Ek−l(πβR
2
E)

R2k−2l−2
E

)

. (4.62)

Substituting the threshold levelγTh for x gives us the outage probability.
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4.4 Numerical Results

In this section a comparison is done between simulation results and the theoretical

equations in order to assess their accuracy. Furthermore, performance trends due to

parameter changes will be examined.

4.4.1 Numerical results of the multiple-ring model

This section shows the accuracy and performance of the multiple-ring model. The

exact and asymptotic variation of the outage probability with Pp is shown. Sim-

ulations are performed for both shadowing and non-shadowing environments to

confirm our theoretical results. Moreover, comparisons between the multiple-ring

model and the annular underlay model are performed. The following parame-

ter values will be used: noise varianceσ2
n = 0.001, interferer node power level

Ps = 30 dBm,γTh = 1 andRpr = 30 for all the plots for comparison purposes.

It is necessary to establish the accuracy of the multiple-ring model for varying

path loss exponent (α) and shadowing levels (σ). In Fig. 4.8, the theoretical results

match perfectly with the simulations, and asPp increases, the asymptotic curves co-

incide with the exact curves. When the path loss exponent increases, shadowing has

little affect on the outage. But, for free space propagation(α = 2), the shadowing

effects are substantial, and the curve forσ = 2 underα = 2 has worse performance

than the curve for Rayleigh fading underα = 3. For the chosenRpr, the outage

increases withα, but this may not be the case ifRpr had been significantly smaller

thanR.

We now compare our proposed model (Fig. 4.1.b) with the annular underlay

model (Fig. 4.1.a) in Fig. 4.9. We simply consider all rings with equal density such

thatβl = 0.01. Then, the equivalent node density in the annular underlay model

is 6.25× 10−4. For these curves, the outage probabilities are virtually identical for

higher path loss exponent values, and extremely close underfree space propagation,

while shadowing doesn’t seem to affect the accuracy of the outage significantly.
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Figure 4.8: The exact and asymptotic outage probability vs the primary system
power levelPp, for different values ofσ andα underβl = 0.01, R = 20, and
M = 5.

However, as was shown before, the error statistics of the model deteriorates when

shadowing is present. The perceived increase in accuracy ofthe outage at higher

path loss exponents is mainly due to the affects of noise.

It is important to calculate the error of the proposed model,and to observe

how the error changes as a function of ring radii. In Fig. 4.10, the percentage

error of the multiple-ring model is compared for differentR andM values. The

parameters for the annular underlay model areβ = 0.001, a guard distance of 20,

and the outer distance of100. R andM pairs of (20,5), (10,10), and (5,20) are used

for comparisons. The node densityβl for each case will be0.016, 0.008889, and

0.004706 respectively. ForR = 10, t is taken from2 to M , and forR = 5, t is

taken from4 to M . The percentage error reduces withR. With respect toPp, the
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Figure 4.9: Comparison of the outage probability vs primarysystem power level
Pp with different values ofσ andα, for the multiple-ring model and the annular
underlay model underβl = 0.01, R = 20, andM = 5. The values forβ, RG and
RE have been chosen accordingly.

percentage errors for all 3 cases rise up to a certain level, and then keeps constant.

Furthermore, it is necessary to compare the performance of the proposed model

under varying CR node densities. In Fig. 4.11, the outage forthe proposed system

model is almost identical to the annular underlay model. Moreover, there is no

increase of error as the interferer node densityβ increases. The approximation

error probability underPp = 60 dBm is2.9% for β = 0.001, 2.9% for β = 0.01,

and1.9% for β = 0.1.
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Figure 4.10: The error percentage of the outage of the multiple-ring model vs the
primary system power levelPp, for different values ofM andR underβ = 0.001,
α = 2, andσ = 0. The value ofβl has been chosen appropriately for each case.

4.4.2 Numerical results for the nearest interferer approximation

In this subsection, we show the behaviour of the exact outageprobability, and the

nearest interferer approximation with respect to changingthe primary power level

Pp and the guard distanceRG, for different conditions, and obtain insights into the

situations where the nearest interferer approximation is applicable.

The outage with respect to the primary transmit power levelPp for the scenario

when interferer nodes employ basic power control is plottedin Fig. 4.12. We con-

clude that the approximation is very tight for lowPrec values. WhenRCR increases,

the outage probability increases correspondingly becauseof the need to transmit at a

higher power, and the approximation diverges from the exactvalue. Thus, although
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Figure 4.11: The outage probability vs the primary system power levelPp, under
different values ofβ, for the annular underlay model and the multiple-ring model.
α = 2, σ = 0,R = 5, andM = 20.

the approximation shows a tight match whenRCR = 0, it shows a significant vari-

ation atRCR = 275. The rest of this section will compare the performance of the

constant powered CR case.

Fig. 4.13 compares the outage probability of constant powered interferer nodes

under different primary transceiver distanceR values. AsR increases, the outage

probability increases significantly. This is because, whenR increases, the primary

signal power diminishes and the interference power has a more significant effect on

the receiver. But, it is interesting to note thatR does not have any bearing on the

error between the exact outage probability and the approximation. In addition, Fig.

4.13 compares the theoretical values of the outage probability to the ones obtained

through Monte-Carlo simulations. We see that the simulations and theory match

69



25 30 35 40

10
−1

10
0

P
p
 (dBm)

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

R
CR

 = 0 exact

R
CR

 = 0 approximation

R
CR

 = 275 exact

R
CR

 = 275 approximation

Figure 4.12: Outage probability vsPs for power controlled interferer nodes under
RCR = 0 andRCR = 275 for β = 0.0001, α = 2, RE = 200, RG = 25, R = 30,
Prec = −30 dBm,γTh = 1, andσ2

n = 0.001.

well.

Fig. 4.14 shows the variation of the outage probability withrespect to the guard

distanceRG, under three different node densityβ values. It is observed that at

higherRG, the exact outage probability, and the outage given by the nearest in-

terferer approximation converge. This is because the average number of interferer

nodes reduces asRG is increased and therefore, the nearest interferer is more dom-

inant. In addition, we see that the accuracy of the approximation depends on the

interferer density. At lowerβ values, the approximation is a close to the outage

probability, while at higherβ, the two curves are more divergent. ASRG is in-

creased further, the performance of the PR is mainly inhibited by noise due to the

interference power reducing due to path loss. Therefore, the curves flatten out.

In Fig. 4.15, we plot the variation of the outage probabilitywith respect to the

interferer power levelPs. It is seen that when the path loss exponentα is high,

the approximation is extremely accurate to the actual aggregate interference. This
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Figure 4.13: Outage probability vsPp for different values ofR, with RE = 500,
RG = 50, Ps = 20 dBm,β = 0.0001, α = 2, γTh = 1, andσ2
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is because at higher path loss factors, the interference is dominated by the nearest

interferer. In many practical wireless channels such as in dense urban environments

or hilly terrain,α is particularly high and the nearest interferer approximation is

extremely valid. For a path loss exponent value of 2 (free space propagation), when

Ps is low, the aggregate interference can be validly approximated by the interference

from the nearest interferer. Even whenPs is increased for free space propagation,

the error is minimal and when we reduceβ, the error gets further reduced.

Therefore, the nearest interferer approximation is reasonably accurate under

several conditions. These include high path loss exponent values, lower interferer

node densities, and higher guard distances (RG).

4.5 Conclusion

This chapter included 1) a new multiple-ring model to analyze the aggregate inter-

ference, and 2) the nearest interferer approximation to theaggregate interference.

71



20 40 60 80 100 120 140 160
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

R
G

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

actual

approximate

β =  1 ́  10−4

β =  2 ́  10−4

β =  5 ́  10−5

Figure 4.14: Outage probability vsRG for different values ofβ, with RE = 200,
R = 40, Pp = 50 dBm,Ps = 30 dBm,α = 2, γTh = 1, andσ2

n = 0.0005.

For the proposed multiple-ring model, channel effects suchas path loss, fading, and

shadowing were incorporated while shadowing was not considered for the nearest

interferer approximation due to mathematical complexity.

For the multiple-ring model, the number of interfering CR nodes in a partic-

ular ring was modeled as a Poisson process, and two fading models were consid-

ered; namely, a Rayleigh fading channel, and a composite fading model with the

Generalized-K distribution. The exact MGF of the aggregate interference was ob-

tained for both the cases. For the special case of a fixed number (deterministic) of

interferer nodes in the rings, the PDF of the aggregate interference was also derived.

The exact and asymptotic outage probabilities were derived, and it was shown that

the multiple-ring model can be used to accurately approximate the annular underlay

model.

In the nearest interferer approximation, the interferencefrom the closest inter-

ferer node was approximated to the aggregate interference.The distribution of the

distance from the PR to the nearest interferer was derived and analyzed. The ex-
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Figure 4.15: Outage probability vsPs for different values ofβ andα, with RE =
200,RG = 20,R = 10, Pp = 60 dBm,γTh = 1, andσ2

n = 0.001.

act MGF of the interference for the approximation was derived for two scenarios;

namely, when the interferer nodes employ no power control, and when they employ

a distance based power control scheme. The outage probability was analyzed using

the derived MGFs when the primary signals also undergo Rayleigh fading. Simu-

lations confirmed the analysis and established that the approximation is extremely

tight under certain conditions. These conditions are higher path loss exponents,

lower node densities, and larger exclusion regions. Furthermore, the transmitter re-

ceiver distance of the primary network has minimal bearing on the accuracy of the

approximation.

∼
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Chapter 5

Conclusions and Future Research
Directions

5.1 Conclusions

This thesis investigated the aggregate interference on theprimary receiver from a

random number of cognitive nodes accessing the licensed spectrum concurrently

with the primary system. The annular underlay network of cognitive radio nodes,

which was modeled as a Poisson point process, was considered.

Chapter 2 analyzed the aggregate interference under composite Rayleigh fading

and Gamma shadowing from interferer nodes in the annular model. The MGF

of the aggregate interference, moments, outage, and asymptotic expressions were

derived. The variation of outage under different shadowingconditions was lower at

high path loss exponent values. Furthermore, the aggregateinterference was shown

to be reasonably approximated by a Gamma distribution.

In Chapter 3, a new Multiple-ring model for the interferencewas proposed. The

proposed model was shown to be highly versatile and mathematically simple while

being extremely accurate. The accuracy vs complexity was shown to be adjustable

by varying system parameters. Moreover, the ability of the proposed model to

accurately model different systems was discussed. Furthermore, the interference

from the nearest interferer node was analyzed. Under certain system conditions,

the nearest interferer dominates the aggregate interference, and yields a reasonable
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approximation.

5.2 Future Research Directions

Several improvements and extensions can be performed in thefuture.

• Secondary medium access control

The analysis did not consider mutual interference among CR nodes. For ex-

ample, if a particular CR is receiving, another nearby CR transmission will

cause interference. Thus, medium access in the secondary network can be

considered for a more realistic analysis.

• Non-homogeneous cases

While interferer nodes were assumed to be a homogeneous Poisson process,

this may not always be a valid assumption, and non-homogeneous analysis

could prove useful. For example, in a city, node density decreases as the

distance from the city center increases. Moreover, interferer nodes distributed

in clusters can also be considered where the aggregate interference is due to

signals from multiple clusters.

• Mobility of nodes

The interferer nodes have been assumed to be static. In practice, these nodes

can move around randomly. Such mobility leads to time varying interfer-

ence, and analytical results may be derived for those cases.Moreover, the

power level of the interferer nodes has been assumed to be static in most

cases. However, due to various dynamic power control schemes and system

configurations, the power levels of the different interferer nodes vary in time.

• Correlated fading/shadowing

The work has assumed independent fading/shadowing on the links between

the different interferer nodes and the primary receiver. A possible extension

is to consider correlations in these variables.
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• Analysis of different channel models

This extension to the work includes carrying out the interference analysis for

different fading/shadowing and path loss models.

∼
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