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Abstract 

This dissertation investigates modeling, analysis and design of networked control 

systems (NCSs), which are of great interest due to the advantages presented, but 

also are technically complex because of the interaction between the plant dynamics 

and the discrete and sometimes random network environment. Three relevant issues 

are considered: packet dropouts, network-induced delays, and sampling. 

Firstly, Markovian jump linear systems with delays are briefly introduced. Stochas­

tic stability, stochastic stabilization and Hoo controller design are addressed with 

new model transformations and zero equations, and less conservative results are 

derived. Moreover, how delays affect the stochastic stability of the resulting closed-

loop systems is discussed. An approach for calculating the maximum delay while 

guaranteeing the system stability is also presented. 

Secondly, NCSs with packet dropouts are studied. Markov chains are introduced 

to describe historical behaviors of packet dropouts, the definition of which is different 

from those in the existing references. By this new definition, general models are 

derived under both single- and multiple-packet transmission protocols; furthermore, 

state feedback controllers are designed in the two cases to stabilize the resulting 

closed-loop systems. 

Thirdly, NCSs with network-induced delays are investigated, where the delays 

are modeled by Markov chains. To compensate the delayed data, a model predictive 

control (MPC) method is introduced. The control scheme is characterized as a 

constrained optimization problem of the worst-case quadratic cost over an infinite 

horizon at each sampling instant. Stochastic stability conditions with and without 

input/output constraints are then developed in terms of linear matrix inequalities. 

Finally, control design for a class of sampled-data systems with variable sampling 

rates is studied. The sampling rate is time-varying and bounded that brings new 



challenge in modelings. To solve this problem, a prediction period is introduced, by 

which signals both at and between sampling instants are considered for controller 

design. An modified MPC approach is formulated based on the minimization of a 

finite horizon quadratic cost with a terminal weighting matrix. 
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Chapter 1 

Introduction 

Networked control systems (NCSs) are spatially distributed control systems, in 

which the communication between sensors, actuators, and controllers is accom­

plished through a shared bandlimited digital network. The study of NCSs is an 

interdisciplinary research area, combining both control and communication theories. 

Most NCS research has focused on two areas: control design and communication 

protocol design. Advanced controller design is desirable to guarantee the control 

Quality of Performance (QoP), whereas a proper message transmission protocol is 

necessary to guarantee the network Quality of Service (QoS). Because of the integral 

link between network and control in an NCS, it is important to consider network 

and control parameters simultaneously to assure both network QoS and control QoP. 

However, due to the complexity of communication networks and different definitions 

of communication protocols, few general results for NCSs have been derived. The 

goal of this dissertation is to provide general modeling, controller analysis and design 

tools for NCSs. 

There are many control applications configured as NCSs. In general, these ap­

plications can be categorized in two general configurations as follows: 

Direct structure: NCSs in the direct structure are composed of a controller and a 

remote system containing a physical plant, sensors and actuators. The controller 

and the plant are physically placed at different locations and are directly linked by 

a data network as illustrated in Figure 1.1. The control signal is encapsulated in a 

frame or a packet and sent to the plant via the network. The plant then returns 

the system output to the controller by putting the sensor measurement into a frame 
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Figure 1.2: NCS setup in the hierarchical structure 

or a packet as well. In a practical implementation, multiple controllers can be 

implemented in a single hardware unit to manage multiple NCS loops in the direct 

structure, e.g., a distance learning lab [70] and a DC motor speed control system 

[92]. 

Hierarchical structure: A basic hierarchical structure consists of a main controller 

and a remote closed-loop system as depicted in Figure 1.2. Periodically, the main 

controller computes and sends the reference signal in a frame or a packet via a 

network to the remote system. The remote system then processes the reference 

signal to perform local closed-loop control and returns the sensor measurement to 

the main controller for networked closed-loop control. The networked control loop 

usually has a longer sampling period than the local control loop since the remote 

controller is supposed to satisfy certain performance requirements with current ref­

erence signal before it processes the newly arrival reference signal. Similar to the 

direct structure, the main controller can also be implemented to handle multiple 

networked control loops for several remote systems. This structure is widely used 

in several applications, including mobile robots [93] and teleoperation [91]. 

The use of either the direct structure or the hierarchical structure is based on ap­

plication requirements and preferences of designers. In this dissertation, we mainly 

focus on the analysis and design of NCSs in the direct structure. Nevertheless, the 
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control and analysis methodologies for the direct structure can be applied to the 

hierarchical structure by treating the remote closed-loop system as a plant. 

1.1 Motivation 

The implementation of distributed control can be traced back at least to the early 

1970s when Honeywell's Distributed Control System (DCS) was introduced. Control 

modules in a DCS are loosely connected because most of the real-time control tasks 

(sensing, calculation, and actuation) are carried out within individual modules. Only 

on/off signals, monitoring information, and alarm information are transmitted on 

the serial network. Today, with the help from application specific integrated circuit 

(ASIC) chip design and significant price drops in silicon, sensors and actuators 

can be equipped with a network interface. They become independent nodes on a 

real-time control network, which make more wider distribution possible. Hence, a 

steady increase has occurred for the past few decades in the use of network-based 

real-time control systems in a wide variety of fields. Examples include nuclear power 

plant control [17], industrial manufacturing control [66], and space navigation and 

guidance [61]. 

By taking advantage of the network, many good qualities are introduced, e.g., 

lower cost, reduced weight and power, simpler installation and maintenance, flexibil­

ity, and so on. However, the insertion of the communication network in the feedback 

control loop makes the analysis and design of an NCS complex and brings many new 

challenges. The first challenge is network-induced delays. They are inevitable not 

only due to limited bandwidth, but also due to overhead in the communicating 

nodes and in the network. These delays can be constant, bounded, or even random, 

depending on the network protocols adopted and the chosen hardware. It is well 

known in control systems that time delays can degrade a system's performance and 

even cause instability. As an effect of this, conventional control theories with many 

ideal assumptions, such as synchronized control and no-delay sensing and actuation, 

must be reevaluated before they can be applied to NCSs. The second challenge is 

packet dropouts. Typically, they result from transmission errors in physical network 

links (which is far more common in wireless than in wired networks) or from buffer 

overflows due to congestion. Long transmission delays sometimes result in packet 
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reordering, which essentially amounts to a packet dropout if the receiver discards 

"outdated" arrivals. Reliable transmission protocols, such as Transmission Con­

trol Protocol (TCP), guarantee the eventual delivery of packets. However, these 

protocols are not always appropriate for NCSs since the retransmission of old data 

will bring packet disordering and only hold for a limited time. Moreover, when 

the number of packet dropouts is large enough, the system can be considered as 

an open-loop system, which may be dangerous for unstable systems. Thus, how 

such packet dropouts affect the performance of an NCS is an issue that must be 

considered. Other issues, such as control problems for varying sampling interval, 

synchronization, scheduling, band-limited channels, etc., are also challenging topics 

in NCSs, all of which stimulate researchers' endless interests. 

This dissertation is primarily written from a control perspective. It attempts 

to systematically address several key issues in NCSs, develop general methods for 

system modeling, and design control strategies by using the limited network re­

source efficiently while maintaining good control system performance. Next, a brief 

literature review on the existing methods for several issues in NCSs will be given. 

1.2 Literature review 

1.2.1 NCSs with network-induced time delays 

Since an NCS operates over a network, data transfers between the controller and 

the remote system will induce network delays (namely, sensor-to-controller delay and 

controller-to-actuator delay) in addition to the controller processing delay. These 

delays, either constant or time varying, can degrade the performance of control sys­

tems designed without considering the delays, and can even destabilize the systems, 

see [9, 52]. Thus, many researchers have paid their attention to the stability analysis 

and controller design for NCSs in the presence of network-induced delays. 

Halevi and Ray [31] considered a continuous-time plant with a discrete-time 

controller and analyzed the integrated communication and control system (ICCS) 

using a discrete-time approach. They studied a clock-driven controller with mis-

synchronization between the plant and the controller. The system was represented 

by an augmented state vector that consisted of past values of the plant input and 

output as well as the current state vectors of the plant and controller. This resulted 
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in a finite-dimensional, time-varying discrete-time model. They also took message 

rejection and vacant sampling into account. 

Nilsson [68] also analyzed NCSs in the discrete-time domain. He further modeled 

the network delays as three different types, namely, constant, independently random, 

and random but governed by an underlying Markov chain. Then he solved the LQG 

optimal control problem for various delay models. Moreover, he pointed out the 

importance of the time-stamping, which allowed the past information of systems to 

be known. 

In [95], Walsh et al. considered a continuous-time plant and a continuous-time 

controller. The control network was only inserted between the sensor and the con­

troller. They introduced the notion of maximum allowable transfer interval (MATI) 

T, that is, the successive sensor messages were separated by at most r seconds. Their 

goal was to find the value of r for which the desired property (e.g., stability) of an 

NCS was guaranteed to be preserved. They also provided a novel scheduling policy, 

try-once-discard (TOD), and compared it with the token-ring-type static scheduling 

method by two experiments. 

There is significant amount of work done on NCSs with delays by different ap­

proaches [44, 47, 103]. Kim et al. [44] used a switched system approach to study 

the stability of NCSs with HQO norm constraints. Krtolica et al. [47] and Xiao et al. 

[103] used Markov chains to describe the network-induced random delays, where nec­

essary and sufficient conditions for zero-state mean-square exponential stability were 

given in [47] and a V-K iteration algorithm to design switching and non-switching 

controllers for resulting discrete-time closed-loop systems was presented in [103]. 

It is noticed that in all the references cited above, the total maximum network 

delay is less than one sampling period. However, in practice, the delay is usually 

more than one sampling interval, especially if the sampling is fast. Moreover, long 

time delay may disturb the order of the message received, which brings more chal­

lenges for the study of NCSs [29, 36, 55, 60, 99, 111, 113]. In [113], the authors 

derived two classes of closed-loop systems according to delays less than one sam­

pling period and longer delays, but no stability analysis was made for the resulting 

closed-loop systems. They also introduced a model-based compensator for network-

induced delays, which was extended by Wang et al. [99] to the system with unknown 
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and stochastic long delays. Hu et al. [36] generalized the results in [68] to the case 

with longer delays with either full or partial state information. Lincoln et al. [55] 

solved the LQG optimal control problem when the probability distribution of delays 

was known. Zhang et al. [Ill] obtained necessary and sufficient conditions on the 

existence of stabilizing controllers with two Markov chains. Goodwin et al. [29] 

and Liu et al. [60] presented model predictive control methods to compensate and 

predict the delayed data. 

The robustness and fragility of NCSs with delays have been rarely studied except 

in [54, 109]: in [54] the external disturbance on the system was considered and in 

[109] the system parameter uncertainties were discussed. Neither of them considers 

the uncertainties or disturbances from the point of view of a network. 

1.2.2 NCSs with packet dropouts 

Data packets through networks suffer not only transmission delay, but also, possibly, 

transmission loss/packet dropout. The network packet drops occasionally happen in 

an NCS when there are node failures or message collisions. Although most network 

protocols are equipped with transmission-retry mechanisms, they can only retrans­

mit packets for a limited time. After this time has expired, the packets are dropped. 

Furthermore, for real-time feedback control data, such as, sensor measurements and 

calculated control signals, it may be advantageous to discard the old, untransmit-

ted message and transmit a new packet if it becomes available. Therefore, packet 

dropout is another important factor in NCSs. How this factor affects the stability 

and performance of NCSs is an issue we will pay attention to. 

Prior work, examining the effect of dropouts on system stability and perfor­

mance, can be roughly categorized into three types based on the resulting closed-

loop systems: switching systems [108], asynchronous dynamical systems (ADSs) 

[113], and jump linear systems with Markov chains [58, 68, 81, 82, 103]. On the 

other hand, for the measurement of network quality of service (QoS), the rate of 

data dropouts is one of the most popular topics that researchers consider [56, 58, 59], 

where in [56], the output power spectral density (PSD) was expressed as a dropout 

probability function and a direct way of linking control system performance to net­

work QoS was given; Ling et al. [58] then extended the results in [56] by relaxing the 
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assumption that the dropout process was identically independently distributed; the 

authors also used the PSD method to determine an optimal dropout compensator 

in [59]. Sinopoli et al. [86] and Ling et al. [57] discussed the optimal control for 

NCSs with packet dropouts. 

It is noticed that all the stability conditions and controller designs given in the 

aforementioned references are derived based on the assumption that packet dropout 

exists only in the sensor-to-controller side. The effect of controller-to-actuator packet 

dropouts is neglected due to the complicated NCS modeling. 

Since the controller-to-actuator packet dropouts are inevitable in the data trans­

mission, more and more efforts have been paid to NCSs with both sensor-to-controller 

and controller-to-actuator packet dropouts recently. Several results have been ob­

tained [32, 39, 74, 114], where switching systems were introduced to model the 

NCSs [39, 114] and ADSs were presented to represent the closed-loop systems of 

NCSs [32, 74]. For the MJLSs approach, few results have been derived. Moreover, 

the reference discussed packet dropouts in a single-packet transmission, where the 

status of packet dropouts (namely, dropped or sent successfully) were modeled by 

either a Bernoulli process or a two-state Markov chain process. As to the multiple-

packet transmission, rare results have been formulated. In addition, the history 

dynamics of packets are seldom discussed. 

1.2.3 Other work 

There are many other topics addressed on NCSs in the literature, such as schedul­

ing problems [8, 73], quantization problems [22, 23], control with variable sampling 

rates [42, 94], asynchronization problems [32, 74]. In [8] a rate monotonic schedul­

ing algorithm was proposed to schedule a set of NCSs and an optimal scheduling 

problem was formulated under both rate-monotonic-schedulability constraints and 

NCS-stability constraints, whereas the proposed scheduling method in [73] could ad­

just the sampling period as small as possible, allocate the bandwidth of the network 

for three types of data (periodic data, sporadic data, and messages), and exchange 

the transmission orders of data for sensors and actuators. 
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1.3 Contributions of the dissertation 

In Chapter 2, both continuous-time and discrete-time Markovian jump linear sys­

tems (MJLSs) with delays are discussed. Based on a new model transformation 

of delays, a delay-independent condition for robust stochastic stabilization is firstly 

derived. The Hoo control law designed guarantees the robust stochastic stability 

of the system and a prescribed disturbance attenuation level. Secondly, stochastic 

stability, stabilization and H^ control problems for a continuous MJLS are con­

sidered. Delay-dependent conditions and corresponding controller designs are given 

by introducing some new zero equations, by which neither model transformation 

nor bounding for cross terms is required, and thus the results are less conservative. 

Moreover, an algorithm for calculating the delay upper bound with respect to system 

stability is given. Numerical examples show that, under the same initial conditions, 

our results are less conservative than those in existing references. 

The results of this chapter are published in 

• J. Wu, T. Chen, and S. Xu, Stochastic stabilization and H^ control for discrete 

jumping systems with time delays. Asian Journal of Control, vol. 7, pp. 223-

230, 2005. 

• J. Wu, T. Chen, and L. Wang, Delay-dependent robust stability and H^ 

control for jump linear systems with delays. Systems and Control Letters, vol. 

55, pp. 939-948, 2006. 

In Chapter 3, the stability and controller design of NCSs with packet dropouts 

are considered. Both sensor-to-controller and controller-to-actuator packet dropouts 

are considered and described by two independent Markovian chains, by which the 

resulting closed-loop NCSs can be transformed to a kind of MJLSs with time de­

lays. The Markov chains in this chapter describe the historical behavior of packet 

dropouts, which is different from what appears in existing references, where Markov 

chains were used to model the information on if a packet is dropped or not. Sys­

tem modeling, stability analysis and control design are presented for the NCS with 

single-packet transmissions, and then extended to the case with multiple-packet 

transmissions. Finally, how packet dropouts affect the system stability is discussed 

in the examples. 
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The results of this chapter are published in 

• J. Wu and T. Chen, Design of networked control systems with packet dropouts. 

IEEE Transactions on Automatic Control, vol. 52, No. 7, pp. 1314-1319, 2007. 

In Chapter 4, the stabilization problem for a class of NCSs with network-induced 

delays is investigated. Random but bounded sensor-to-controller and controller-to-

actuator network-induced delays are considered, the dynamics of which are modeled 

by Markov chains. To compensate controller-to-actuator delays, which happen after 

control decision has been made, a model predictive control method is introduced. 

Based on the minimization of an upper bound of the worst-case infinite horizon 

quadratic cost function at each sampling instant, a state feedback predictive con­

troller has been proposed to stabilize the resulting closed-loop NCS. The result is 

simulated on a classical angular positioning system. 

The results in this chapter are mainly from 

• J. Wu, L. Zhang, and T. Chen, Model predictive control for networked control 

systems. Submitted to International Journal of Robust and Nonlinear Control, 

revised, Oct., 2007. 

In Chapter 5, the stabilization problem for a class of sampled-data systems with 

variable sampling rates is addressed. A new stabilizing predictive control law, based 

on a finite input and state horizon cost with a finite terminal matrix, is proposed 

for the resulting time-varying discrete linear system, where the behavior at and 

between sampling instants is considered in the design. The terminal weighting 

matrix can be obtained by solving a linear matrix inequality (LMI), under which 

closed-loop stability is guaranteed with input and state constraints. The simulation 

on a continuously stirred tank reactor (CSTR) system illustrates the effectiveness 

of our method. 

The results in this chapter are mainly from 

• J. Wu and T. Chen, Stabilization of sampled-data systems with variable sam­

pling rates. Submitted for publication, Feb., 2008. 

1.4 Outline of the dissertation 

The outline of the dissertation is as follows: 
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• Chapter 1 presents the motivation of research, related research issues of NCSs, 

and the main contributions of this dissertation. 

• Chapter 2 discusses Markovian jump linear systems with uncertainties and 

time delays. Stochastic stability, stochastic stabilization and Hoo controller 

design are completely addressed; the methods are used in the modeling, anal­

ysis and design of NCSs. 

• Chapter 3 introduces general frameworks for the NCSs with packet dropouts, 

respectively, under single- and multiple-packet transmissions. State feedback 

controllers are designed to stabilize the resulting closed-loop NCSs. 

• Chapter 4 develops a jump linear system to model the NCSs with network-

induced time delays. To compensate the delayed data on the sensor-to-controller 

side as well as on the controller-to-actuator side, the control strategy at each 

sampling instant is characterized as a constrained delay-dependent optimiza­

tion problem of the worse-case quadratic cost over an infinite horizon. 

• Chapter 5 considers a stabilization problem of a class of sampled-data systems 

with variable sampling rates. A new stabilizing predictive control law, based on 

a finite input and state horizon cost with a finite terminal matrix, is proposed 

for the resulting time-varying discrete linear system. Based on the above 

modeling and design method, extensions to NCSs with fixed network-induced 

delays are formulated. 

• Chapter 6 gives conclusions and some suggestions for the future work of NCSs. 

Notation. Throughout this dissertation, 5ft stands for the set of real numbers and 

M for the set of nonnegative integers. For a given matrix A G 5ftnxn and vector 

x £ Sftn, \\x\\\ :— xTAx. diag{A B} is a block diagonal matrix with A and B on 

the diagonal. For symmetric matrices X and Y, the notation X > Y (respectively, 

X > Y) means that the matrix X - Y is positive semi-definite (respectively, positive 

definite); / is an identity matrix with appropriate dimensions; MT represents the 

transpose of the matrix M; £{•} denotes the expectation operator with respect to 

some probability measure V. Matrices, if not explicitly stated, are assumed to have 

compatible dimensions. 
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Chapter 2 

Markovian Jump Linear 
Systems with Time Delays 

Markovian jump linear systems (MJLSs) are a special class of hybrid systems with 

two components in their vector states: the modes and the states. The mode is 

described by a continuous/discrete Markovian process with a finite state space. The 

state in each mode is represented by a system of differential/difference equations. 

This class of system has the advantage of better representing physical systems with 

abrupt variations, e.g., solar thermal central receivers, economic systems, and so 

on. Therefore, over the past decades, noticeable achievements have been made on 

design, filtering and stability analysis of jump linear systems. 

In this chapter, we brief introduce this kind of systems with time delays, which 

will be used to model the networked control systems in the following chapters. 

The criteria for time delays can be generally classified into two categories: delay-

independent and delay-dependent, both of which are discussed in details. The chap­

ter is organized as follows. Section 2.1 addresses the delay-independent robust sta­

bility and Hoe control for discrete time MJLSs with delays. Section 2.2 discusses 

the delay-dependent robust stability and H^ control for continuous MJLSs with the 

delays. Finally, Section 2.3 gives some concluding remarks. 

11 



2.1 Delay-independent robust stability and HQQ control 
for MJLSs with delays 

2.1.1 Introduction 

Markovian jump linear systems (MJLSs) have been paid an increasing interest since 

they were firstly introduced by Krasovskii and Lidskii [46]. Such systems consist of 

a set of linear systems with transitions between the models determined by a Markov 

chain, which takes values in a finite set. Models obtained this way allow analysis 

and design results developed that are not only valid for approximate models but also 

hold for a given class of plants, including real processes. Hence, many researchers 

from the control community have been attracted by those characteristics of MJLSs. 

Boukas and his coauthors [4, 5, 6, 7, 43, 83, 84, 85] extensively contributed to 

problems like stability, stabilizability, #oo control, guaranteed cost control, and to 

the robustness of these techniques. Costa and his coauthors [16, 19] also contributed 

to different problems for this class of systems. Other researchers like Cao and Lam 

[10, 11], Xu and Chen [104, 105, 106], etc., have made contributions to the class 

of dynamical linear systems with Markovian jump and time delays. The methods 

used were mostly based on Lyapunov functions or Lyapunov-Krasovskii functions, 

which are quite general and lead to a complicated system of Riccati-type partial 

differential equations/inequalities [19], or a simpler (but likely more conservative) 

delay-independent [85] and delay-dependent sufficient conditions. 

Recently, a new system transformation by considering both the state and state 

difference was introduced [26] for linear systems. This approach significantly reduces 

the overdesign entailed in the existing methods since it is based on a model that is 

equivalent to the original system and fewer bounds are required. The bounds can 

now be made tighter using the recent (less conservative) bound on cross terms that 

was introduced in [65]. Extending these ideas to MJLSs from continuous time to 

discrete time is the focus in this section. 

In this section, a new model transformation and a corresponding Lyapunov-

Krasovskii function are presented for stability analysis of discrete time-delay MJLSs, 

which are based on an equivalent augmented model. By solving some linear matrix 

inequalities (LMIs), sufficient conditions for the stochastic stabilization and W^ 
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disturbance attenuation are derived for the resulting closed-loop discrete uncertain 

systems with Markovian jumping parameters. The corresponding controller design is 

also proposed. Finally, numerical examples are considered to illustrate the solvability 

and effectiveness of the proposed design methods. 

2.1.2 Problem statement 

A mathematical representation of discrete uncertain system with Markovian jump 

parameters and time delay is described by equations in a fixed complete probability 

space (fi, F, P), where fi is the sample space, F is the algebra of events and P is the 

probability measure defined on F. Suppose the measurement is exact, then we have: 

Xk+x = A (%) xk + Ad (%) xk-d + Bi (%) wk + B2 (%) uk, 
Zk = C (%) xk + D (r)k) uk, (2.1) 
Xk = ipk, k e [-d, 0], r?0 = r0, k 6 Z, 

where 

A (r)k) = A (rjfc) + AA (%, A;), Ad (%) = Ad (%) + AAd (%, k). 

xk € 5ft" is the state, uk £ 5ftm is the control input, zk 6 5ftp is the system output, 

Wk € ffl is the deterministic disturbance input which belongs to £2(0,00), ro is 

the initial discrete sequence, Vfe is the initial condition of the state and the model, 

{r)k,k 6 Z}, is a discrete-time homogeneous Markov chain taking values in a finite 

set S = {1,2, • • • , h} with transition probabilities 

Pr (rjfc+i =j\r}k = i)=pij, pt = Pr (rj0 = i), (2.2) 

where pij > 0 for i, j € 5 and 

X>j = L (2-3) 
3=1 

For r]k = i, i £ S, A (rjk), Ad (%), ^ (%), B2 (%), C (%) and £> (%) are known 

constant matrices of appropriate dimensions, and AA(r]k,k), AAd(r]k,k) are un­

known matrices which represent time-varying parametric uncertainties and are as­

sumed to belong to certain bounded compact sets. Throughout this section, it is 

assumed that the initial state ipk is independent of {rjk,k € Z} . 

13 



The admissible parameter uncertainties are assumed to be of the following forms: 

AA(r)k,k) = Mi (jjfc) Ai (%,k) Ni (%), 

AAd(r]k,k) = M2 fa) A2 (%, k) N2 (%), (2.4) 

where Mj (7%), Nj (%), j = 1,2, for any nk = i, i € S, are known constant matrices 

of appropriate dimensions, and Aj (%, k), j — 1,2, satisfy 

A j (%, fc) A,- (%, fc) < J, V i e 5, fc € Z. 

It is assumed that the elements of Aj(nk,k) are Lebesgue measurable. When 

&j{Vk,k) = 0, then the system in (2.1)-(2.4) is referred to as a nominal jump 

linear system. It is said to be a free system if u (t) = 0 and w (t) = 0. We introduce 

the following definitions. 

Definition 2.1 [10] The free nominal jump discrete-time system in (2.1)-(2.3) is 

said to be stochastically stable, if for all finite tpk € 5Rn defined on [—d, 0] and initial 

model ro, there exists a finite number E (ipk, ?"o) > 0 such that 

f N 

11±11 ' T " 7 „.,i2 

l fc=0 
lim S I J2 Wxk W', ro) i>o, r0, w = 0 > < E (ijJk, r 0 ) (2.5) 

holds. 

Definition 2.2 The jump system in (2.1)-(2.4) with w (t) = 0 is said to be robust 

stochastically stabilizable if for all finite tpk G ^n defined on [—d, 0] and initial model 

ro, there exist a state feedback control law 

uk = K (nk) xk (2.6) 

such that the closed-loop system 

( xk+1 = Txk + Ad (%) xk^d + Bi (rjk) wk, ^ ?x 
\ «fc = [C(rjk) + D{r]k)K(r]k)}xk, 

where T = A (%) + Bi (nk) K (nk), is stochastically stable. 

Definition 2.3 [106] The system in (2.1)-(2.4) is said to be robustly stochastically 

stable with disturbance attenuation level 7 > 0 if for all wk £ £2 [0,00), the system 

is stochastically stable and the response {zk} satisfies 

(-00 "j 1/2 

Il*fcll2 = \ Yl£{zIzk\xo,m) > <7lKII 2 - (2-8) 
U=o J 
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R e m a r k 2.1 These definitions are consistent with those of stochastic stability and 

stochastic stabilizability of jump discrete-time linear systems without time delays. 

Under Definition 2.2, stochastic stabilizability of a system means that there exists a 

state feedback control law which drives the state x from any given initial condition 

(^fcjf'o) asymptotically to the origin, in the mean-square sense, which implies the 

asymptotic stability of the closed-loop system. In other words, as is obvious from 

inequality (2.5), stochastic stabilizability implies 

lim S { \\xl (V, r0) w = 0) ||2| 4>o, r0} = 0, 

which is generally called mean square stability. 

In this chapter, we will discuss stochastic stabilization and fioo control in the 

stochastic sense. To obtain our main results, we need the following lemmas. 

Lemma 2.1 (Schur complement) Given constant matrices A, B, C with appropri­

ate dimensions, where A = AT and C = CT > 0, then A + BTC~1B < 0 if and 

only if 
" A BT " 

B -C < 0 or 
' -C B~ 

BT A 

Lemma 2.2 [11] For any vectors x, y 6 Un, matrix R € 3?" x n and R > 0, the 

following holds 

2xTy < xTR~lx + yTRy. 

For notational simplicity, in the sequel, for nk = i € S, we will denote A (%) = 

At, Ad (%) 4 Adi, Bj (r/fc) = Bn, C (%) £ Q, D (Vk) 4 Dit AA (rjk, k) ± AA (i, k), 

AAd (jjfc, k) = AAd (t, k), Mj (%) = Mji, Nj (%) = Njt, and A,- (%, k) = Aj (t, k), 

J = 1, 2. 

2.1.3 Delay-independent robust stochastic stability 

Firstly, a sufficient condition for the robust stochastic stability of the system in 

(2.1)-(2.4) with u{t) = 0 and w(t) = 0, namely the free system, is presented. 

T h e o r e m 2.1 The free jump system is stochastically stable if there exist Qn = 

Qli > 0, Q2i, Qsi, R - RT > 0, en > 0, e%{ > 0, i = 1,2, • •• ,h, satisfying the 
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< 0 , 

following LMIs 

—Qu 

0 

©r 
NuQu 
NiiQn 

where * denotes blocks that are readily inferred by symmetry and 

Ti = (Ai + Adi-I)Qu-Q2i, R = R-\ 

T2 = -Qzi-Qli + euMuMl + eiiMuMl, 

3 = diag 

* 
T2 

™l 
@l 
0 
0 

* 
* 

-a* 
0 
0 

N2iR 

* 
* 
* 
77 

0 
0 

* 
* 
* 
* 

-£iil 
0 

* 
* 
* 
* 
* 

-£2il . 

-jtQn, •j^Qih, -\R 

6 i 

e2 

Qu + Q2i-> • • • i Qu + Q2i> Q2i 

h+l 

Ql Ql Q 3i *°6Zi 

h+1 

Proof: Let 

Then we have 

Vk = %k+i -Xk-

fc-l 

xk-d = %k - 5 Z y*-
t=k-d 

By equations (2.11) and (2.12), the system can be rewritten as 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
fc-i 

0 = -yk + \Ai + Adi -Ijxk- Adi ^2 Vt-

t=k-d 

Let the stochastic Lyapunov-Krasovskii function be 

o fc-i 
V(xk,Vk) = xkpuxk + ^2 Yl VtRVu 

8=-d+l t=k-l+8 

where Pu = P^ > 0, R — RT > 0. Then along the state trajectory of system (2.1), 

we have 

£ {Vk+i(xk+i,r)k+i)\xk,ilk = i}-Vk(xk,r)k = i) 
h / o fc \ 

= Ylp(%+i=ft ?:) xl+ipi3xk+i + 52 Yl vtRyt) 
j=l \ e=-d+lt=k+6 ) 
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0 fc-1 

-xlpuxk - Y^ E yfRyt 
e=-d+i t-k-i+e 

= {xk + Vkf Pu (xk + Vk) ~ xJPiiXk + dykRyk - ^ yj Ryt 
t=k-d 

fc-1 

X- Y, VtRVt + ta%Piiyk, (2.14) = X 
Pu ~ Pu 0 

0 Pu + dR 
t=k-d 

where x = [ x\ y£ ] , Pu = £ j = 1 PijPij. 

By Lemma 2.2 and equation (2.13), we have the following inequality transfor­

mation: 

T ,,T 2xfc Pii2/fc = 2 [ x£ y{ 

2XTP? 

PU P2i 
0 Plij 

Vk 
0 

[Ai + Adi - I) xk - yk 

0 

Adi 

fc-i 

E y 

- 2X
T/f 

< 2X
TP? 

0 / 
Ai + Adi-I -I 

0 / 
i j + i d i - J - J 

fc-i 

x~2 S xT^ 

J t=fc-d 

X + ^X J Pi 

t=k-d 

T n T 0 

4 K 

0 
Adi 

R-1 

yt 

o 
Adi 

PiX 

fc-i 

£ 
t=k-d 

+ 53 y f ^ 

where 
" P i i 0 

P a P3i 
Substituting the above inequality into equation (2.14), we have 

P = 

€ {Vk+i(xk+i,r]k+i)\xk,r]k = i} - Vk (xk,r]k = i) 

< X1 Pu - Pu 0 
0 Pu + dR 

+dP? 0 
Adi 

R - l 0 

Adi 

+ 2P( 

Pi)X 

0 / 
A\ + Adi-I -I 

= -xT*x- (2.15) 

Thus by Lyapunov stability theory, the system is stochastically stable if there exists 

a matrix $ > 0 such that 

£ {Vk+i(xk+i,rik+1)\xk,r]k = i} - Vk (xk, r\k = i) < -A m i n (*) ||xl|2 
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holds. By Schur complement, inequality (2.15) can be rewritten as the following 

inequality: 

= - * = 
A PT 

% 
* 

0 1 

Adi - a * " 
<0 . (2.16) 

Here 

A = 

f 

Vu -Pu 0 
0 Pu + dR + PT 

0 (Ai + Adi-i)
T 

1 -I 
Pi-

0 
Ai + Adi-I 

I 
-I 

Pre-multiplying and post-multiplying (2.16) by diag[ Qj I ] anddiag[ Qi I ] , 

respectively with 

0 
Qi 

Qu 0 
Q2i Qii 

p - 1 

-P^i PliP\i P%i 

and using Schur complement again, we can derive the inequality in (2.9). Thus the 

proof is completed. • 

2 .1 .4 D e l a y - i n d e p e n d e n t robust H.^ control 

Then our attention will be focused on the design of a state feedback controller such 

that the corresponding closed-loop system is robustly stochastically stable with a 

disturbance attenuation level 7 > 0. 

Theorem 2.2 Consider the closed-loop system in (2.7) and the performance index 

function in (2.8). The system is robustly stochastically stabilizable with disturbance 

attenuation level 7 > 0 if there exist matrices Qu — Q^ > 0, Q21, Qzi, Y%, R = 

RT > 0 and scalars en > 0, e%i > 0, i = 1, 2, • • • , h, such that the following LMI 

holds: 
An * 
A21 A22 

Here * denotes blocks that are readily inferred by symmetry and 

U l 

A = <0 . (2.17) 

Qu 
n 
0 

* 
T2 

RAl 

* 
* 

- 4 * 
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^21 

^22 

Tx 

= 
NuQii 
N2iQu 

0 
. CiQu + DiYi 

= diag [ 5 -e^I 

= (Ai + Adi-I)Q: 

®T
2 0 1 

0 0 
0 N2iR 

Bu 0 
0 0 

5 

-e2iI - 7 2 / 

Li — Q2i + $2% Yi 

T2, 0 i , 02, 3 , R are expressed in equation (2.10). In this case, the state feedback 

control law is given by (2.6) with 

Proof: Similarly, we have the following equation 

0 = -Vk+ (Ai + Adi-I + B2iK^j xk - Adi Y^ Vt + Bu 

(2.18) 

fc-i 

t=k-d 

Wk. 

By the same Lyapunov-Krasovskii function, we derives 

E { Vk+i (xk+i,Vk+i)\ %k, m = i}~ Vk (xk, m = i) + zk zk - 7 wk wk 

< X1 {{ 
*i 0 
0 Pu + dR 

R-1 
T 

0 / 
Ai + Adi + B2iKi - I -I 

TuT 0 
B\i 

wk - f2Wkwk +dPT - Br1 - Pi\x + 2X
xPi 

•rt-di J [ * J J 

= -STV8, (2.19) 

where $* = Pu - Pu + (d + DiKif (C; + DiK-), 8 = [ X
T « £ ] T and 

V + 2P? 
* 

0 0 
B2iKi 0 

[ 0 ~B£ } ^ -fl * 
d + DiKi 0 ] 0 - / . 

v2i > 0 . (2.20) 

Here * denotes blocks that are readily inferred by symmetry. By Schur complement, 

pre-multiplying and post-multiplying (2.20) by diag [Qf, I, I] and diag[Qi, / , / ] , 

respectively, we get the results in Theorem 2.2. Since the steps of proof are similar 

to that of Theorem 2.1, the details are omitted. • 
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Corollary 2.1 Consider the nominal closed-loop system in (2.7) and the perfor­

mance index function in (2.8) with A^ (%) = 0. The system is stochastically stabi-

lizable with disturbance attenuation level 7 > 0 if there exist matrices Qu = Q^ > 0, 

Q21! Q31, and Yi> i = 1) 2, • • • , h, such that the following LMI holds: 

-Qu 
Ti 

ef 
0 

dQu + DiYi 

* * 
-Qs% - Qli * 

ê  s 
Bu 0 
0 0 

* 
* 
* 

- 7 2 / 
0 

* 
* 
* 
* 

- / 

< 0 . (2.21) 

Here * denotes blocks that are readily inferred by symmetry and 

f i = (Ai - I) Qu - Q2i + B2iYi 

S = diag ~¥TiQn ]LQlh 

0 i = 

e2 = 

Qu + Qli Qu + Q^ 

Ql Ql (2.22) 

In this case, the state feedback control law is given by (2.6) with 

Ki = YiQ£. (2.23) 

The proof is similar to the proof of Theorem 2.2, hence omitted. 

Remark 2.2 By Corollary 2.1, a better disturbance attenuation level 7 can be ob­

tained than the results in [16] {Theorem 2). In our method there is only one con­

straint and the optimal solution is based on J2j=i VijPji while the optimal solution in 

[16] is subject to two constraints and the second constraint, L^ > ^2j=iPijPj, niay 

increase the overdesign of the system. This is illustrated in the example given in the 

following section. It should be noted that the optimal disturbance attenuation level 7 

in our method can be solved by LMIs with the corresponding constraint conditions. 

So the optimal Tioo performance index algorithm can be given as follows: 

N,2 
J mm 7 ' 
\ s.t. (2.17) and (2.10) or (2.21) and (2.22) 

which can be easily solved by mincx(-) in the LMI toolbox. 

(2.24) 
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Remark 2.3 If h = 1, then the nominal jumping linear system in (2.1)-(2.3) is 

changed to a traditional linear discrete system. The theorems and corollary still 

hold for this case and the results can be simplified. 

2.1.5 Numerical examples 

To illustrate the proposed results, two examples are considered, where the Markovian 

jump system has two modes, namely, h — 2. 

Example 2.1: Consider the following uncertain time-delay system with Markovian 

jumping parameters. For mode 1, the system matrices are given by 

Ai 

Mn = 

1 0 
0.1 0.5 

, Adl = 
0.1 0 
0 0.02 > Bn > # 2 1 

1 
0.1 

Cx = [ 0.8 0.5 ] , £>i = 1, 

0.1 
0.1 

Nu = [ 0.01 0.02 ] , M2i 
-0.03 
0.05 

, N2i = [ 0.03 0.04 ] 

For mode 2, the system matrices are given by 

A,= 
0.5 0 
0 0.6 

-0.2 0.05 
0.02 0.03 

B 12 

M12 
-0 .1 
0.2 

, Ad2 = 

C2 = [ 0.1 0.5 ] , £>2 = 1, 

Ni2=[0 0.01 ] , M22 = 

0.2 
1 J B22 

0.5 
1 

0.3 
0.05 

N22 = [ 0.12 0.04 ] 

Assume that the transition probability matrix is 

P = 
0.5 0.5 
0.2 0.8 

the time-delay is d — 2. Then by Theorem 2.2, the optimal attenuation level 7 and 

corresponding controller gains are 

7 = 0.0011, Ki = [ -0.8000 -0.5000 ] , K2 

and other related parameters are as follows: 

-0.1000 -0.5000 ] , 

e n = 2.4997e + 006, e12 = 3.1642e + 006, 

£21 = 2.6989e + 006, e22 = 4.2256e + 006. 
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Figure 2.1: Jump disturbance and closed-loop state responses (Example 2.1) 

Simulation indicates that the states always converge to zero under any given initial 

conditions. Here, suppose the initial conditions are 

a;fc = [0.5 -0.5 ]T, k e [ -d, 0 ] , r0 = 1, 

and the simulation results are shown in Figure 2.1. 

Example 2.2: This example is borrowed from [16], which is a discrete-time jump 

linear system without time-delay and uncertainties. The system matrices are given 

as 

Ax = A2 = 

B22 = 

C\ = C2 = 

0.9974 0.0539 
-0.1078 1.1591 

, -821 
0.0013 
0.0539 

0.0013 
0.1078 

> Bn = £12 = 

, D1 = D2 
- 1 1 
0 0 

1 0 
1 0.1 

0 

with the transition probability matrix given by 

P = 
0.7 0.3 
0.2 0.8 
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Figure 2.2: Jump disturbance and closed-loop state responses (Example 2.2) 

Then by Corollary 2.1, we have the following optimal performance index and the 

corresponding controllers 

7 = 55.4546, K\ = [ -17.3951 -13.3547 ] , K2 = [ -11.0488 -8.0204 ] , 

while in [16] the optimal Hoo performance index 7 = 66.0984. This confirms Remark 

2.2 that our method reduces the overdesign entailed in [16]. In fact, both the state 

information and state difference information are used in our method; so the sufficient 

condition for stability is less conservative. Suppose the initial conditions are 

xk = [ 0.5 -0 .5 } T , ke[ -d, 0 ] , r0 = 1. 

Figure 2.2 depicts the state responses of the closed-loop system by our method 

(#11^2) and the method in [16] {xx\,xx2). It is easy to see the convergence rate in 

our method is better than that of [16]. 
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2.2 Delay-dependent robust stability and 11^ control 
for MJLSs with delays 

In section 2.1, the stability and controller design have been discussed for a dis­

crete MJLS, where the conditions hold for any time delay d € [0, oo), namely, 

delay-independent. In this section, delay-dependent conditions for stability and 

corresponding controller design will be derived for a continuous MJLS, which are 

dependent on the length of delays. The method can be readily extended to the 

discrete MJLS in (2.1). For the conciseness of the dissertation, the extensions are 

omitted. 

2.2.1 Introduction 

To improve system performance as well as reduce system overdesign and cost, less 

conservative results or algorithms are always expected. Since delay-dependent crite­

ria make use of information on the length of delays, they are usually less conservative 

than delay-independent ones, especially when the time delays are small. Thus more 

and more attention has been paid on delay-dependent stability conditions recently 

[6, 14, 15, 28, 30, 33, 65, 72, 101]. In [6], delay-dependent stability conditions were 

obtained based on a first-order model transformation. Since additional eigenvalues 

are introduced, the transformed system is not equivalent to the original system. In 

[30], a neutral model transformation was presented, where no additional eigenval­

ues were needed; but an additional assumption was required to obtain the stability 

condition for the system. In [72], a new model transformation was introduced to 

guarantee the equivalence of the transformed system and the original system; it also 

obtained a less conservative inequality by introducing a free matrix. The method 

was further extended to a more general form in [65]. But the work in [65, 72] only 

replaced some delay terms x(t — T) by the Leibniz-Newton formula to derive the 

stability condition. Since all delay terms affect the result, which one should be re­

placed is difficult to decide. References [14, 15, 28] combined a descriptor model 

transformation with Park and Moon's inequalities to yield a new transformed sys­

tem; however, they were also based on the substitution for some x(t — r), and 

did not entirely overcome the conservatism of the methods in [65, 72]. References 

[33, 101] introduced some zero equations to reduce the conservatism induced by 
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model transformations; therefore, the results were least conservative. But both ref­

erences considered only the stability of a class of linear time-delay systems; the 

system performance analysis and controller synthesis were not studied. 

In this section, we focus on both delay-dependent stability analysis and #00 con­

trol synthesis for a class of jump linear time-delay systems. By some zero equations, 

which are similar to those in [33, 101], sufficient conditions for robust stochastic sta­

bility and stochastic stabilization are derived in the form of LMIs, where no model 

transformation is needed. Note that in computing the derivative of our Lyapunov 

function, both the state and its derivative are maintained, by which substitution 

and bounding for cross terms are not needed. Thus the results obtained are less 

conservative and over-design is avoided to some extent. 

2.2.2 P r o b l e m s t a t e m e n t 

Given a probability space (fi, F, P), where fi is the sample space, F is the algebra of 

events and P is the probability measure defined on F, {rjt, t > 0} is a homogeneous, 

finite-state Markovian process with right continuous trajectories and taking values 

in a finite set S = {1,2, • • • , s} with generator A = (Ay)- The transition probability 

from mode i at time t to mode j at time t + A, i, j £ S, is 

P r ( i 7 t + A t - j | f f c - 0 - | 1 + XijAt + o(At), i=j, ( 2 ' 2 5 ) 

where At > 0, limA4->o (° (At) /At) = 0 and the transition probability rates satisfy 

Xij > 0 for i,jeS,i^= j and Xu = — J2"j=i,j=ii ^ij- We consider a class of stochastic 

uncertain systems over the space (CI, F, P) described by 

f x(t) = [A fa) + AA {r]U t)} x (t) + [AT (%) + AAT {rju t)] x(t-r) 
+ [B (m) + A S (TH, *)] «(*) + Bw (Vt) w (t), 

C(Vt)x {t) + Dw(rjt)w(t) 
z (t) = C r (r]t) x(t-r) 

L D(Vt)u(t) 
, x(t)=ip(t), -T < t < 0 ,770 = r0, 

(2.26) 

where x(t) £ W1 is the state vector, u(t) € 5Rm is the control input, z(t) £ W is the 

system output, w(t) € ffl is the deterministic disturbance input which belongs to 

£2 [0,oo). Here £2(0,00) stands for the space of square integrable vector functions 

over the interval [0,oo). A(r)t), AT(rjt), Bw(r]t), B(r)t), C (r)t), CT(r)t), Dw(r\t) 
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and D (rjt) are known matrices of appropriate dimensions, AA(rjt,t), AAT (r]t,t), 

AB(r)t,t) are unknown matrices which represent time-varying parametric uncer­

tainties and are assumed to belong to certain bounded compact sets to be defined 

later. The quantity r is the constant time delay of the state in the system which 

satisfies 0 < r < h. ip (t) is a vector-valued initial condition of the continuous state 

of the mode. For notational simplicity, in the sequel, for rjk = i G S, we will denote 

A (•%) by Ait AA (•rjt, t) by AAi (t), and so on. 

The admissible parameter uncertainties are assumed to be of the following forms: 

[ AAi (t), AATi (t), ABi (t) } = HiAi (t) [ EXi E2i E3i } . (2.27) 

Here Hi, En, E^% and E^ are known real constant matrices with appropriate dimen­

sions and the elements of A; (t) are Lebesgue measurable for any rjt G S satisfying 

Af (t) Ai (t) <I, Vt> 0. (2.28) 

Let the Lyapunov-Krasovskii function be 

V (x, t, T)t) = xT (t) P (r]t) x(t)+ / xT(a)Qx(a)da + / x(a)Rx(a)dadd, 
Jt-T J-T Jt+e 

(2.29) 

where P (r]t) = PT (rjt) > 0, Q = QT > 0, and R - RT > 0 are to be determined. 

We introduce the following definitions. 

Definition 2.4 The free jump system ( u(t) = w (t) = 0 ) in (2.25)-(2.28) is said 

to be robustly stochastically stable if for all finite tp (t) defined on [—r, 0] and initial 

mode ro, there exists a finite number H (tp (•), h, ro) > 0 such that 

lim ( / £\\x(il>,h, t) fdt\ < H(V(-)> h,r0) (2.30) 
N^°° {Jo ) 

holds for all admissible uncertainties satisfying (2.21)-(2.28), where £ is the statis­

tical expectation operator. 

Definition 2.5 The system in (2.25)-(2.28) is said to be robustly stochastically 

stable with disturbance attenuation level 7 > 0 if for all w (t) € £2 [0, 00), the 

system is robustly stochastically stable and the response {z(t)} under zero initial 

condition, i.e., tp — 0, satisfies 

£ 
poo I r roo 
I zT (t) z (t) dt < 72 / wT (t) w (t) dt 

Jo . Jo 
(2.31) 
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Definition 2.6 The jump system in (2.25)-(2.28) is said to be robustly stochas­

tically stabilizable with disturbance attenuation level 7 > 0 if there exists a state 

feedback control law 

u(t) = K(rH)x(t) (2.32) 

such that the resulting closed-loop system satisfies the inequality in (2.31). 

In this section, delay-dependent techniques will be investigated for testing robust 

stability and solving robust stabilization and robust H^ control problems. Our 

purpose is to develop criteria for stochastic stability and stabilization of the system 

in (2.25)-(2.28), examine its robustness and design appropriate H^ state feedback 

controllers that guarantee stochastic stability with a prescribed performance 7. 

2.2.3 Delay-dependent robust stability and stabilization 

We will consider the stability and stabilization of the system in (2.25)-(2.28) with 

w(t) = 0. First we introduce the following zero equation which will be used in our 

main results: 

rt 
Si = 2 [x1 (^Yi + x1 (t-T)Ti] r 

x(t) — x(t — r ) — / x(cr)da 
Jt-T 

= 0, (2.33) 

where Yi and Tj are unknown constant matrices with appropriate dimensions. On 

the other hand, for any semi-positive-definite (SPD) matrix 

X = Xu X\2 
X\2 ^22 

> 0 , 

we have 

where 

E2 = hf(t)XZ(t) - I f(t)Xt(t)da > 0, (2.34) 
Jt-T 

£(t)=[xT(t) XT(t-T)f. 

It is easy to see that equations (2.33)-(2.34) are always satisfied. 

Theorem 2.3 The free jump system in (2.25)-(2.28) is robustly stochastically stable 

for any constant time delay r satisfying 0 < r < h, if there exist Pi — Pj > 0, 

Q = QT > 0, R > 0, aj > 0, a symmetric SPD matrix 

X = 
X\l X\2 
XJ2 X22 

> 0 
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and appropriately dimensioned matrices Mu, M2i, M&, Yi and Ti such that the 

following LMIs are satisfied: 

0 1 = 

-^11 -^12 Yi 
* X22 Ti 
* * R 

> 0 , 

e2 = 

n u 1112 n13 MuHi oiEfc 
* n22 n23 M2iHi a ^ 
* * II33 MZiHi 0 < 0 . 

(2.35) 

(2.36) 
* * * —otil 0 

* * * * —O-il 

Here * denotes a block that is readily inferred by symmetry and 

s 

n u = Q + J^^jPj + hXn + MuAi + AfMfi + Yi + Yi 

n12 - hX12 + MliATi + A?MT + Tl-Yh 

II13 = -Mu + Pi + AfMl, 

n22 = -Q + hX22 + M2iATi + A^Ml - Ti - if, 

n23 = -M2i + A^Ml, 

n33 = -Mv-Mg + hR, 

a; = sT1. 

•T 
i i 

(2.37) 

Proof: The weak infinitesimal operator Qf [•} of the stochastic process {x (t) ,rjt,t > 0}, 

acting on V (x, t, rjt) at the point {t, x, r}t — i}, is given by 

8V_ 

dt 

8V 
*nv] = ^ + iT(t)^ + ^2XijV(t> x> i, j) 

Then we have 

%*[V] = xT{t)Qx(t)-xT(t-T)Qx{t-T) + Tx(t)Rx(t)- x(o-)Rx(o)do 
Jt-T 

S 

+xT (t) PiX (t) + xT (t) Ptx (t) + Y, hi*? (t) PjX (t) • (2.38) 
3=1 

Introducing the following equation 

~3 = 2[xT(t)Mu + xT(t-T)M2i+±T(t)M3i][-x(t) + (Ai + AAi(t))x(t) 

+ {ATi + AATi (t)) x(t- T)] = 0, (2.39) 
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where Mu, Mii, and M& are unknown constant matrices with appropriate dimen­

sions, it is obvious to see this free equation is obtained by the free jump system in 

(2.26). Adding equations (2.33), (2.34) and (2.39) to equation (2.38), we have the 

following inequality: 

<%[V] < 3? [V]+S i+52 + 33 

< x- \t)Qx{t) - xT(t - r)Qx(t - r) + hx(t)Rx(t) - f x(a)Rx{a)d 
Jt-T 

+xT (t) Pix (t) + xT (t) PiX (t) + Y^ Aij-xT (*) PJX (t) + Si + H2 + H3 

= n<) 
"flu 

* 
* 

Si2 flis " 
1I22 n23 

* n 3 3 _ 
/•* 

m - 1 cr(^)eic(^)^ 
Jt-T 

= fWe 2 ( ( t )~ / (T(a)Q1C(a)da, 
Jt-T 

(2.40) 

where 

at) = [ e(t) iT(t) f, cw = [ xT(o xT(t-T) &{?) \ 
and 

s 

flu = Q + Y, XvPJ + hXn + {Aj + &Aj) Ml + Mu (Ai + AAt) + Yt + Y?, 

Aw = hXi2 + Mu{ATi + kATi) + (AT + AAT)M?i + T?-Yi, 

flu - -Mu + Pi + (Af + AAf)Ml, 

n22 = -Q + hX22 + M2i (ATi + AAri) + (AT
Ti + AAT

Ti) Ml -T{- 2f, 

n2 3 - -M2i + [AT
Ti + AAT

Ti) Ml, 

n3 3 = -M3i-Ml + hR. 

By the proof of the Lyapunov stability theory in [11], we know that the system is 

stochastically stable if there exist Oi > 0 and 02 < 0 such that 

rt 
Q?[v] < Amax(e2) \mm - Amin(eo / IICW 

Jt-T 
\da < 0 

holds. Then by Lemma 1 [101] and Schur complement, 02 < 0 can be easily obtained 

from inequality (2.36). Thus the proof is completed. • 
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Remark 2.4 We can easily derive equation (2.30) in Definition 2.4 from 9f [V] < 

0; the details are given in [11, 12]. For simplicity, we choose to omit the proof 

here. Note that by substituting equation (2.39) to inequality (2.40), the process of 

deriving the sufficient condition is simplified. The LMIs we obtained do not include 

any terms containing the product of the Lyapunov matrices and the system matrices; 

hence they are easily solvable, and no iteration is needed. 

If the system mode set S — {1}, the jump linear system is simplified into a 

general linear system. Then we have the following simplified result. 

Corollary 2.2 The free system in (2.25)-(2.28) with i 6 S = {1} is robustly stable 

for any constant time delay T satisfying 0 < r < h if there exist P — PT > 0, 

Q — QT > 0, R> 0, a > 0, a symmetric SPD matrix 

X 
Xn X\2 

Xu ^22 
> 0 , 

and appropriately dimensioned matrices Mi, M2, M3, Y and T such that the fol­

lowing LMIs are satisfied: 

6o== 
Xn Xl2 Y 

* X22 T 
* * R 

> 0 , 

e 0 0 = 

n u 0 II120 II130 MiH aE\ 
* II220 n23o M2H aET 
* * II330 M3H 0 
* * * —al 0 
* * * * —al 

< 0 . 

Here * denotes a block that is readily inferred by symmetry and 

l ino = Q + hXn + MXA + A1 M{ + Y + Y1, 

n i 2 0 = hX12 + M1AT + ATM2
T + TT-Y, 

n 1 3 0 = ~M1 + P + ATM^, 

n22o = ~Q + hX22 + M2AT + A^M? 

n 2 3 0 = ~ M 2 + A^M3
T, 

n 3 3 0 = ~M3-Mj + hR, 

a — e~x. 

T-T1 
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Next we will present a solution to the robust stabilization problem for the system 

in (2.25)-(2.28) with w (t) = 0. In order to obtain an LMI solution, we have to 

restrict ourselves to the case of Mn — M2j — M&, i e S, in the free equation in 

(2.39), where Mjf exists. Then we have the following theorem. 

Theorem 2.4 The jump system in (2.25)-(2.28) with w{t) = 0 is robustly stochas­

tically stabilizable for any constant time delay T satisfying 0 < r < h if there exist 

Pi = PJ > 0, Q = QT > 0, R > 0, Si > 0, a symmetric SPD matrix 

X = 
Xn X12 

X"[2 X22 
> 0 

and appropriately dimensioned matrices Mu, Ni, Y% and T{ such that the following 

LMIs hold: 

e2 = 

Xu Xn Yi 
0 1 = * X22 fi >0 , 

* * R 

fin fii2 fii3 eiHi MuEfi + NTgr 
* n22 fi23 8^ MuEl 
* * fi33 eiHi 0 
* * * —Eil 0 

^K *K T* *fi &t-L 

< 0 . 

(2.41) 

(2.42) 

Here 

fin 

fil2 

fil3 

Q + J2 xaPj + h*n + AiMfi + MuAj + Y + Y? + B^ + N?B?, 
. 7 = 1 

TaT = hX12 + AriNfii + MUA1 +Tt -Yi + Nt B( 

= -Ml + h + MuAj + NfBj, 

n2 2 = -Q + h ^ + AnMli + MuA^-fi-fT, 

fi23 = -Mu + MuAZi, 

fi33 = -Mu-Mjl + hR. 

In this case, the control law is given by 

Ki = NiM^T. (2.43) 

Proof: With the memoryless state feedback control law u(t) = Kix(t), where the 

matrix Ki e RmXn is to be designed, the resulting closed-loop system becomes 

x (t) = (Ai + AAi) x (t) + [An + AATi] x(t-r), 
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where 

Ai = Ai + BiKi, AAi = AAi + ABiKi. 

Hence, the result follows immediately by applying the proof of Theorem 2.3, repre­

senting A{ by Ai, AAi by AAi, pre-multiplying and post-multiplying the resulting 

inequality (2.36) by 

diag{ M^ M ^ 1 M^ eil sj } 

and 

diag { M^T M x - r M^ Eil Ed } 

respectively, and setting 

Q = M^QM[T, R = M~lRM-T, Pi = M^PiM^, 

Yi = M^YiM^, Ti^M-'TiM-r, Xn = M~1X11M^, 

Xvi = M - 1 X 1 2 M - T , X22 = M 1 - 1 X 2 2 M- T , Ni = KiM£. 

Thus the proof is completed. • 

Remark 2.5 Theorems 2.3 and 2.4 provide delay-dependent conditions for robust 

stability and robust stabilization of uncertain time-delayed jump linear systems. 

Corollary 2.2 simplifies the results to a general linear system. These results do 

not need any system transformation, do not require any parameter tuning, and can 

be tested numerically very efficiently by using standard LMI techniques. Note that 

in Theorem 2.4, we restrict the results to the case of Mu = M2i = Mzi, i € S, which 

are the free weighting matrices used to express the relationship of the terms x(t), 

x (t) and x(t — r ) in the free equation. Moreover, the Leibniz-Newton formula in 

(2.33) is also employed to make the criterion delay-dependent. Another advantage is 

that the problem of finding the largest r in the context of Theorem 1 can be computed 

by solving the following quasi-convex optimization problem in X\\, X\2, X22, Pi, Q, 

R, a i .Mii , M2i, M3i, Yi, Ti and v = \: 

min v > 0 (2.44) 

s.t. 
X\\ X\2 

X?2 X22 
> 0, Pi = f f > 0, Q = QT > 0, 

R > 0, ai > 0, inequality (2.35), 8 > 0 and A < vB, 
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where 

A = 

B 

hi = 

Xn X12 0 

* X22 0 
* * R 
* * * 

# * * 

-£11 -612 -

* — 2̂2 -
* * 

* * 

* * 
s 

0 0 " 
0 0 
0 0 
0 0 
* 0 _ 

-II13 -

- n 2 3 -
-£33 -

* 

* 

) 

-MXiHi 
-M2iHi 
-M3iHi 

aj 
* 

-ati^u 

- a » ^ 2 i 
0 
0 

on I 

«5l2 

<522 

#33 

M i i ^ + ^fMa^ + l f - y i , 

- Q + M2iATi + AT
TiMl -Ti- Tj, 

- M W - Af£. 

A similar optimization problem for Theorem 2.4 can also be obtained by re-arranging 

inequalities (2.41)-(2.42). We omit it here for saving space. Note that the above 

problem has the form of a generalized eigenvalue problem and can be solved efficiently 

using the LMI algorithm "GEVP" [5]. 

2.2.4 D e l a y - d e p e n d e n t robust H^ Control 

Next, we will focus on the design of a delay-dependent robust Hoc controller for the 

system in (2.25)-(2.28). In order to solve this problem, we first consider the problem 

of robust Hoc performance analysis for the unforced system, namely u(t) = 0. 

Assume the initial condition is zero; then we have the following theorems. 

Theorem 2.5 Given a scalar h > 0, the system in (2.25)-(2.28) is robustly stochas­

tically stable with disturbance attenuation 7 for any constant time delay r satisfying 

0 < r < h, if there exist Pi — Pf > 0, Q — QT > 0, R > 0, Qj > 0, a symmetric 

SPD matrix 

X = 
Xn X]_2 

xTo x, L12 22 
> 0 

and appropriately dimensioned matrices Mu, M2i, M^i, Y% and Ti such that the 
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inequality in (2.35) and the following LMI are satisfied: 

e3 = 

n u n12 n i3 MXiH{ aiEl n 1 6 
* ft22 n 2 3 M2iHi oaE^ M2iBwi 
* * n 3 3 MZiHi 0 M3iBwi 
* * * —ail 0 0 
* * * * -o.il 0 
* * * * * Ilgg 

< 0 . (2.45) 

Here * denotes a block that is readily inferred by symmetry, and 

fin = n u + Cj Ci, IIi6 = C{ Dwi + MuBWi, II22 = II22 + CTiCTi, 

n6 6 -7 I + DwiDwi, ai = ei
i. 

Proof: Similarly, we introduce the following free equation 

E3 = 2 [xT (t) Mu + xT(t- T) M M + x (t) M3i] [-x (t) + (J4* + AA; (t)) x (t) 

+ (ATi + AATi (t)) x(t-r) + Bwiw (t)} = 0. (2.46) 

By the same Lyapunov-Krasovskii function, we derive 

roo 

J = E (zT (t) z (t) - 72wT (t) w (*)) dt 
Jo 

= E / (271 (t) z (t) - 72wT (t) w (t) + 9? [V]) dt-E{V (x, 00, i)} 
Jo 

/•oo 

< / ( z r (t) z (t) - j2wT (t) w (t) + 9? [VI) dt 
Jo 

f°° r /"* 
= / 4>T(t)e3<i>(t)- c T W e i C W ^ 

VO L •/«—r 

where <j>{t) = [ xT (t) xT (t - r ) xT (t) wT (t) ]T and 

fin+CTQ 

dt, (2.47) 

G, = 

1I12 IJ13 rii6 
n22 + c £ c T i n2 3 M2iBwi 

* n 3 3 M3jBwi 

* * ri66 

Using Lemma 1 in [101] and Schur complement, we can easily obtain O3 < 0 from 

inequality (2.45). With inequality (2.35), we get J < 0. By Definition 2.5, we know 

that the system in (2.25)-(2.28) is robustly stochastically stable with disturbance 

attenuation 7. Thus the proof is completed. • 
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T h e o r e m 2.6 Given a scalar h > 0, the system in (2.25)-(2.28) is robustly stochas­

tically stabilizable with disturbance attenuation 7 for any constant time delay r sat­

isfying 0 < r < h if there exist Pi = PJ > 0, Q = QT > 0, R > 0, e* > 0, a 

symmetric SPD matrix 

X 
X12 X22 

> 0 

and appropriately dimensioned matrices Mu, Ni, Yi and Ti such that the inequality 

in (2.41) and the following LMI are satisfied: 

$ hi 
* 
* 

* 

* 

* 
* 

$12 

$ 2 2 
* 

* 

* 

* 
* 

$13 

$23 

$33 
* 

* 

* 
* 

$14 

Bw 

Bw 

$44 
* 

* 
* 

Si Hi 

CiHi 

^i Hi 

0 
-£%I 

* 
* 

$16 

MuEl 
0 
0 
0 

-£%I 
* 

$17 

$27 

0 
0 
0 
0 

-I 

< 0 . (2.48) 

Here 

$11 Q + Y^ xijPj + hXn + AiMl + MuAf + NfBj + BiNi + Yt + Y?, 

T hXu + AriM'ii + MuAi + NfBj + fj 

-Ml + Pi + MuAj + NfBj, 

Bw + MuCi Dwi, 

•T , )srTrr,T 

$12 

$ 1 3 

$14 

$ 1 6 = MuEii + NtE^ 

$ 1 7 = [NfDj Mud? 0 ] , 

Y, 

$22 = -Q + hXm + AriMS + Mudrt-Ti-T?, 

$23 - -Ml + MuA^i, $ 2 7 = [ 0 0 MuC^i ] , 

$33 - -Mu-Mfi + hR, $u = -12I + DliDwi. 

Moreover, the controller gain can be given by 

Ki = NiM^f. 

Proof: The proof is similar to the proof of Theorem 2.4, hence omitted. 

(2.49) 

R e m a r k 2.6 Theorems 2.5 and 2.6 provide delay-dependent methods for robust HQO 

analysis and robust Hoo synthesis, respectively, for a class of uncertain linear time-

delayed jump systems. Note that using the methods of Theorems 2.5 and 2.6, the 
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problems of finding the largest h for a given 7, or the smallest 7 for a given h can be 

easily solved without the need of explicitly tuning any parameters. For instance, the 

smallest 7 for a given h obtainable from Theorem 2.6 can be determined by solving 

the following convex optimization problem: 

,,2 
mm 

s.t. 

7 

X = 
Xu -X12 

-^12 ^ 2 2 
> 0, Pi = P? > 0, Q = QT > 0, 

R > 0,Ei > 0 and inequalities (2.41) and (2.48). 

These results can also be reduced to the case of linear time-delay systems. For 

example, for the following simplified linear system 

f x(t) = [A + AA (t)} x (t) + [AT + AAT (t)} x (t-r) + Bu (t) + Bww (t) 
\ z(t) = col{Cx(t), Du(t)} 

the simplified results for robust H^ control can be given as below. 

(2.50) 

Corol lary 2.3 Given a scalar h > 0, the simplified system in (2.50) is robustly 

stabilizable with disturbance attenuation 7 for any constant time delay r satisfying 

0 < r <h if there exist P = PT > 0, Q - QT > 0, R > 0, e > 0, a symmetric SPD 

matrix 
Xu X\2 X > 0 
*i r2 X2 

and appropriately dimensioned matrices Mi, N, Y and T such that the inequality 

in (2.41) and the following LMI holds: 

$11 

* 
* 

* 

$ 1 2 $ 1 3 

$22 $23 
$ 33 

* 
* 

Bw 

Bw 

Bw 

* 

eH MiE? 
eH MxEl 
eH 0 
0 

-el 
* 
* 

Here 

$11 

$12 

$13 

$17 

$22 

0 
0 

-el 
* 

$17 
0 
0 
0 
0 
0 

-I 

< 0 . 

Q + hXn + AMI + MiAT + NTBT + BN + Y + YT, 

hXi2 + ATM( + MiA + NTBT + fT -Y, 

-M[ + P + MiAT + NTBT, 

[ NTDT MXCT } , 

-Q + hX22 + ATMl + MiA? -f-fT, 
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i23 = -Mf + MiJZ, 

$33 = -Mi - Mi + hR. 

Moreover, the controller gain can be given by 

K = NM^T. 

2.2.5 Numerical examples 

Some examples are used to demonstrate that the methods presented for delay-

dependent conditions are effective and are an improvement over the existing meth­

ods. 

Example 2.3: Consider the nominal free jump system with w(i) = u(t) = 0, 

AAi = AATi = 0, and the following parameters as used in [43, 12]: 

0.5 -0.2 " 
0.2 0.3 J ' 

-0 .3 0.5 
0.4 -0 .5 

The initial condition is assumed to be x (t) = [ 1 1 ] and ro = 1 for —r < t < 0. 

The generator matrix of the stochastic process nt is 

. _ —Ai Ai 
A2 —A2 

When Ai = 7 and A2 < 6, the result of [43] cannot be applied for stability. When 

Ai — 7 and A2 = 6, based on the result of [11], the system is found to be delay-

independent stable. If we decrease A2 further, e.g., Ai = 7 and A2 = 3, the result of 

[11] cannot guarantee system stability. But Theorem 1 in [12] can be used to obtain 

a feasible solution with r < h = 0.404. Moreover, by Theorem 2.3 of our results, we 

can obtain a feasible solution with r < h — 0.7316, which is much larger than that 

of [12]. The state trajectories are shown in Figure 2.3 when h — 0.7316. By this 

example we can see that our stability criterion gives a less conservative result than 

those obtained by the methods in [43, 11, 12]. 

Example 2.4: Consider the free uncertain time-delay system, namely w (t) — 

u (t) = 0, rjt = i, i E S = {1}, where 

" - 2 0 
0 -0 .9 

, AT — 
" - 1 0 

- 1 - 1 , H = 
"0.2 0 

0 0.2 

A, = 
0.5 - 1 
0 - 3 

, Ari 

1 
0.2 i r 2 
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Table 2.2: The disturbance attenuation 7 due to different h 

[18] 
Our result 

/i = 0.3 
7 = 1.95 

7 = 0.1642 

/i = 0.2 
7 = 0.66 

7 - 0 . 1 0 9 3 

Table 2.3: The disturbance attenuation 7 and controller gain with same h 

[25] 
[50] 

Ours 

h 
1.28 
1.25 

1.4075 

h = 0.999 
7 = 0.1287 
7 = 0.1015 
7 = 0.6331 

Controller gain K 
0, -1.0285 x 10d 

[3.6828, -827.0898] 
[-0.0000, -4.8400] 

Iteration 
No 
74 
No 

Consider the following linear time delay system: 

" 1 ' 
1 , B = 

' 0 " 
1 

When D = 0, comparing Theorem 3.4 in [18] with Corollary 2.3 in our results, we 

have Table 2.2, by which we can see that for a given time delay, the disturbance 

attenuation 7 obtained by our method is smaller than that of [18]. 

On the other hand, when AA = AAT - 0, D = 0.1, we obtain Table 2.3 

by comparing Theorem 3.1 in [25], Theorem 4.1 in [50] with Corollary 2.3 in our 

section. 

The state trajectories and the output are shown in Figure 2.4 and Figure 2.5, 

where the disturbance is a uniformly distributed random signal over [—1, 1], and 

the initial condition of the states is [1, 0.03] . Table 2.3 shows that the distur­

bance attenuation 7 we obtained is larger than those from other references for this 

particular example. But our controller still gives good performance under the same 

disturbance, and the state trajectories are very similar to those of the other refer­

ences, see Figure 2.4. It is worthy to note that our controller gain is much smaller 

than the other two and less overshoot in the output trajectory is observed (Figure 

2.5). Furthermore, no iteration is needed for calculation and our upper bound of 

the time delay for stability is the largest. 

A = 
0 0 
0 1 

, AT 
- 1 - 1 
0 -0 .9 

C = 0 1 H 
0.2 
0 

0 
0.2 
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Figure 2.3: The state trajectories of the free jumping system (Example 2.3) 

Table 2.1: The upper bound of the time delay for robust stability 

Delay bound 
h 

[67] 
0.1958 

[98] 
0.2010 

[51] 
0.3199 

[18] 
0.4437 

Our result 
2.3970 

By comparing the robust stability criterion of Corollary 2.2 with those of [18, 51, 

67, 98] for the above system, we have Table 2.1. Hence, for this example, the robust 

stability criterion we derived for linear time-delay systems is less conservative than 

those reported in [18, 51, 67, 98]. In addition, we also compare Corollary 2.2 with 

the results in [101]: The delay bound we obtained is 1.1491, which is slightly larger 

than that in [101] with constant time delays, 1.1490. However, in [101], only the 

stability problem is discussed; the stabilization problem and performance analysis 

were not considered. 

Example 2.5: This example illustrates that better control performance can be 

obtained by our methods. Let us consider the disturbance rejection ability first. 
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0.03 

0.02 

0.01 

-0.01 

10 20 
J-0.015L 

0 10 20 0 10 20 
[15] our result 

Figure 2.5: The outputs (Example 2.5) 
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2.3 Summary 

In this chapter, some delay-independent sufficient conditions are developed firstly 

for the stochastic stabilizability and Hoo control problems of a class of MJLSs with 

norm-bounded parameter uncertainties and constant time delays. Secondly, new 

delay-dependent conditions for robust stochastic stability and stabilization of MJLSs 

with time delay are derived, where none of model transformation, bounding for cross 

terms and substitution is needed. The Hoo controller guarantees the robust stability 

of the delayed jump linear system, while providing a certain level of disturbance 

attenuation. Moreover, an algorithm for calculating the delay upper bound for 

system stability is given. All the results are presented in terms of standard LMIs, 

which are very easy to be solved in Matlab. Numerical examples illustrate the 

effectiveness of our methods. 
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Chapter 3 

Design of NCSs with Packet 
Dropouts 

In this chapter, we consider the problem of modeling, design and analysis of net­

worked control systems (NCSs) with packet dropouts. When the history behavior 

of packet dropouts are described by independent Markovian chains, the problem of 

finding a controller to stabilize the closed-loop NCSs can be cast as that for some 

kind of MJLSs. 

The chapter is organized as follows. Section 3.1 introduces the problem and 

presenting the relevant prior work. Section 3.2 presents the basic preliminary of 

our setup. Section 3.3 and Section 3.4 provide the modeling of NCSs with packet 

dropouts in single- and multiple-packet transmissions, respectively. According to the 

resulting NCSs, their stochastic stabilities and controller designs are then discussed. 

Section 3.5 validates the effectiveness of our results by two numerical examples. 

Finally, Section 3.6 gives some concluding marks. 
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3.1 Introduction 

In networked control systems (NCSs), control loops are closed through real-time 

networks. Such networked systems bring new functionalities that were not available 

in the past, such as low cost, reduced system wiring, simple system diagnosis and 

maintenance, and increased system agility. However, the insertion of communication 

networks in feedback control loops makes the NCS analysis and synthesis complex, 

see [47, 64, 115] and the references therein, where much attention has been paid to 

the delayed data packets of an NCS due to network transmissions. In fact, data 

packets through networks suffer not only transmission delays, but also, possibly, 

transmission loss/packet dropout [110, 111]; the latter is a potential source of insta­

bility and poor performance in NCSs because of the critical real-time requirement 

in control systems. How such packet dropout affects stability and performance of 

NCSs is an issue focused in this chapter. 

There are many results on NCSs with packet dropouts [58, 68, 81, 82, 103, 108, 

113], where all the stability conditions and controller designs are derived based on 

the assumption that packet dropout exists only on the sensor-to-controller (S/C) 

side. The effect of controller-to-actuator (C/A) packet dropouts is neglected due 

to the complicated NCS modeling and analysis. However, C/A packet dropouts 

are not only inevitable in the transmission but also the main factor for system 

instability and poor performance. Moreover, the controller cannot compensate these 

dropouts in time since they happen after the control decisions have been made, 

which brings risks for open-loop control or inappropriate compensation. Thus, more 

and more attention have been focused on NCSs with both S/C and C/A packet 

dropouts, and some results were obtained [32, 39, 74, 87, 114]. In [32, 74], ADSs 

were introduced to model NCSs with packet dropouts on both S/C and C/A sides. 

The controller gain in [32] is obtained by solving bilinear matrix inequalities (BMIs) 

with rate constraints on the occurrence of events, while in [74] the controller gain 

is chosen in advance by a pole placement method considering rate constraints on 

the occurrence of discrete states of a dynamical system. In [39, 114], switching 

systems were used to model NCSs, where the controller in [39] was event-driven 

and the controller in [114] was time-driven. In [87], a linear system with stochastic 
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variables was discussed to describe NCSs with both-side packet dropouts, where the 

linear/nonlinear LQG optimal controllers were designed to minimize a cost function 

according to the Transmission Control Protocol (TCP) and User Datagram Protocol 

(UDP). Those references discuss packet dropouts in the single-packet transmission. 

As to the jump linear system approach, to our best knowledge, no work has been 

done at present for modeling NCSs with both S/C and C/A packet dropouts histories 

simultaneously. Note that packet dropouts denned in the aforementioned references 

have two cases, dropped or sent successfully, which are modeled as a Bernoulli or a 

two-state Markov chain process. 

In this chapter, Markov chains are introduced to describe S/C and C/A packet 

dropouts. The Markov chains here describe the quantity of packet dropouts between 

current time k and its latest successful transmission instead of only the information 

on if a packet is dropped or not, which is different from what were in the above 

references. By this definition, the number of states of Markov chains is larger than 

two and the history of packet dropouts can be seen clearly. Under consideration 

of network packet size constraints, new models of NCSs with packet dropouts are 

presented according to the single-packet and multiple-packet transmissions. By 

augmenting the state vector, the resulting closed-loop system can be transformed 

to a standard jump linear system with time delays, which enables us to apply the 

results of jump linear systems to the analysis and synthesis of such NCSs. Sufficient 

conditions for stochastic stability are given and corresponding controller design steps 

are provided. Examples are finally given to show the effectiveness of our method. 

3.2 Problem formulation 

Consider the NCS setup with data packet dropouts in Figure 3.1, where sensors, 

controllers and actuators are clock-driven. The linear time-invariant (LTI) plant we 

consider here is: 

x(k + l) = $x(k) + Tu(k), (3.1) 

where x(k) € 5ft" is the state, and u(k) € SRm is the input. $ and T are known real 

constant matrices with appropriate dimensions. Suppose buffers are long enough to 

hold all the packets arrived, which will be picked up according to the last-in-first-out 
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u(k) 

Packet loss d™ 

u(k) 
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*(*) 

Packet loss df 

Controller 
x(k) 

Buffer 

Figure 3.1: An NCS with data packet dropout via state feedback 

rule. For example, when a sensor data x(k) is lost, the controller will read out the 

most recent data x(k — 1) from the buffer and utilize it as x(k) to calculate the new 

control input, which will be sent to the plant; otherwise, the new sensor data x(k) 

will be saved to the buffer and used by the controller as x(k). Thus for the buffers, 

we have: 

u(Jfe) = 

x(k) = 

u{k) if transmitted successfully, 
u(k — 1) otherwise, 

x(k) if transmitted successfully, 
x(k — 1) otherwise. 

(3.2) 

(3.3) 

Moreover, due to the bandwidth and packet size constraints of the network, the 

packet transmission can be classified into two types, single- and multiple-packet 

transmissions. By this classification, we will have two new NCS models for the 

setup in Figure 3.1, which are given in the following sections. 

3.3 Modeling and controller design of NCSs with single-
packet transmissions 

In this section, system modeling, stability analysis and controller design are consid­

ered for the NCSs with single-packet transmissions. The single-packet transmission 

means that data is lumped together into one network packet and transmitted at 

the same time. This type of transmission is suitable for networks with large packet 
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sizes, e.g., Ethernet which can hold a maximum of 1500 bytes of data in a single 

packet. 

3.3.1 M o d e l i n g N C S s w i t h s ingle-packet t ransmiss ions 

Assume that ds
k is the quantity of packets dropped at time k on the S/C side, which 

is calculated from the current time k to the last successful transmission (happened 

at time k — ds
k), d™ is the packet quantity dropped on the C/A side between the 

current time k and its last successful transmission at time k-dc
k
a, and both of them 

are bounded. Thus we have 

0<d£<du 0 < C < ^ 2 , 

where di and di are non-negative integers. We model ds
k
c and dk

a as two homoge­

neous independent Markov chains, which take values in Si = {0, 1, • • • , d{\ and 

Si — {0, 1, • • • , cfo} with the generators f\x — (pij) and / \ 2 = (Amn), respectively. 

The transition probabilities of ds
k
c (jumping from mode i to j) and d™ (jumping 

from mode m to n) are defined by 

Pij=Fr(ds
k
c
+1=j\ds

k
c = i), Xmn = Pr(dk

a
+1=n\dc

k
a = m), (3.4) 

where ptj > 0, i, j £ Si, Xmn > 0, m, n £ S2, and YfjLoPiJ = *> En2=oA™« = 1-

It is obvious that the transition probabilities satisfy 

Pij=0 iij^i + l k j ^ 0, Xmn = 0 i f n ^ m + l & n ^ 0, 

which can be derived by packet dropout definitions. Assume the state feedback 

control law is 

u{k) = F{df)x{k), (3.5) 

where F{ds
k) is a set of controllers and will be designed based on ds

k. Substituting 

Eqs. (3.2) and (3.5) into the system in (3.1), we have the following closed-loop 

system 

iu . n - / * * ( * ) + rF(dkcMk) i f d t = °. to fi\ 

*{* + >-) \§x(k) + Tu(k-l) otherwise df > 0. l } 

Note that x(k) — x(k — dk
c), which can be easily derived by iterations based on Eq. 

(3.3). To simplify the expression of the closed-loop system, we introduce a function 
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a(-) to combine the above closed-loop system as 

x(k + l) = ^x(k) + a(dc
k
a)Tu(k-l) + {l-a(d^)}TF(ds

k
c)x(k-ds

k
c), (3.7) 

u(k) = a{dc
k
a)u{k-l) + [l-a{dc

k
a)]F{df)x{k-dic), (3.8) 

where 
r 1 jca v, 

R e m a r k 3.1 The value of a(-) depends on whether the designed control signal 

is successfully transmitted or not (namely, dc
k = 0 or dc

k > 0), instead of how 

many designed control signals are dropped (the value of dk
a). This classification can 

simplify the modeling of the closed-loop system since the control input u(k) will not 

be updated no matter what value dc
k > 0 will be. That is, the control signal u(k) will 

be the same when d™ = 1,2,3, • • • , ofo- Another advantage of this classification is to 

avoid introducing this unknown dc
k in the augmented state vectors and controller 

design. Thus, we replace u(k) with Eq. (3.2) instead of u(k) — u(k — dc
k), the 

deriving method being the same as the iteration method for x(k). 

Concatenating plant and controller state vectors to obtain a global vector z (k) = 

[xT(k) uT(k — 1)}T by Eqs. (3.7)-(3.8), we can obtain the closed-loop system for the 

NCS with single-packet transmissions in Figure 3.1 as: 

z(k + l) 
$ Ta(dc

k
a) 

0 a(df) 
x(k) 

u{k - 1) 

+ 
(1 - a(d?))rF(df?) 0 
{l-a(df))F{df) 0 

x(k - ds
k
c) 

u{k-df-l) 

A{d<£)z{k) + B{dt,df)z(k-df). (3.9) 

R e m a r k 3.2 The resulting closed-loop system in (3.9) is a jump linear system with 

two modes (dk
c and dk

a) and one mode-dependent time-varying delay dk
c, where their 

transitions are described by two Markov chains, which give the history behavior of 

S/C and C/A packet dropouts, respectively. This also enables us to apply the 

results of jumping linear systems with time-delays to the analysis and synthesis of 

such NCSs. 

Before proceeding, we need the following definition. 
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Definition 3.1 [100] The free nominal jump discrete-time system in (3.9) is said 

to be stochastically stable, if for all finite zk = <p € Rn+m defined on k G [—di,0] 

and initial model dff, dga, there exists a finite number S (tp, dff, CJQ°) > 0 such that 

( N 

lim Si y\\\zk\. 
./b=0 

M M ° ^Ofod^dg0) (3.10) 

/io/ds, w/iere 5 is i/ie statistical expectation operator. 

3.3 .2 S tab i l i ty analys i s a n d control ler des ign of N C S s w i t h s ingle-
packet t ransmiss ions 

In this subsection, a sufficient condition on the stochastic stability of the system in 

(3.9) with single-packet transmissions is derived. For notational simplicity, in the 

sequel, for df = i £ Su dc
k
a = m e S2, we denote A{df) = Am, B{df, dj») 4 B i m , 

and 

p = min{pu, i 6 Si}, di = min{o^c, k € Z}, 

/, = l + (l-p){dl-d1),K = {I + TTT)-l[TT I}. 

Then we have the following theorem. 

T h e o r e m 3.1 The system in (3.9) is stochastically stable if there exist Xj>m > 0, 

Q > 0, and \I/i,m such that the following LMI 

* -Q * i , m e o 
* * — D, 0 
* * * —-Q 

< 0 (3.11) 

holds for all i,j 6 Si and m,n 6 S2, where * denotes blocks that are readily inferred 

by symmetry and 

© = [y^mlPill, ••• , ^JXrrmpijI, ••• , \J\md2Pid1I\, 
V 

Q = i T 1 , tt^diaglX^i,---,Xjin,---,Xdud2}. 

Here didi is the number of matrices. The control law we have is 

' u(k - 1) df > 0, 

(3.12) 

u(k) = 
K*T0Q-i[i oYx(k-df) d f = 0. 
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Proof: Let the Lyapunov-Krasovskii function be 

V(z(k),k) = zT{k)P{df,df)z{k) + J2 *T{T)RZ{T) 
r=k-df 

+a-£) E E ZT(T)R*(T), 
e=~di+iT=k+e 

where P{df, df) = PT{df, df-) > 0, R = RT > 0 are to be determined. Then we 

have 

£{V{z(k + 1),k + l)\V(z(k),k)} - V(z(k),k) 

< zT{k + l)P(i, m)z(k +1) + zT(k)[iJ,R - P{i, m)]z(k) - zT(k - i)Rz(k - i) 

+ E PVI E ZT(T)RAT)- E ZT(T)R*(T)} 
J=0|J5^» T=k—d\-\-l T=k—di+l 

k—d\ 

"( ! -£) E °?(T)RZ(T) 
T=k-di + l 

< 5{k)TW(k,i,m)S(k), (3.13) 

where 
di di 

S(k) = [ zT(k) zT(k -i)]T, P(i,m) = £ J2XmnPijPti, n), 

W(k,i,m) = 

n-0j=0 

-P(i, m) + iiR + A^P(i, m)Am A^nP{i,m)Biim 

-R + BlmP(i,m)Bi, m 

Let XitTn = P l(i,m), \&;)m — R 1Bfm, Q = R 1. By Schur complement and Eqs. 

(3.11)-(3.12), we know that W(k,i,m) < 0. Thus we have 

£{V(z(k + 1),k + 1)|V(«(A;)) fc)} - V(z(k), k) 

< -Vmin[-W(k,i,m)]8T(k)5(k)<-pzT(k)z(k), (3.14) 

where r]min[—W(k,i,m)} denotes the minimal eigenvalue of —W(k,i,m) and P — 

mi{r)min[—W(k,i,m)], i € Si, m e S2}. Prom Eq. (3.14), we derive that for any 

N>1, 

N 

£{V(z(N + l),ds^+1,d^+1)}-£{V(z(0),ds
0

cJc
0

a)}<-p^£\\zT(k)z(k)\\-
k=0 
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This yields, for any N > 1, 

N 1 
J2s\\zT(k)z(k)\\ < -£{V(z(Q),ds

0
c,d^)}, 

fc=0 
N 

lim ] r£p T ( f c )2 (£0 | | < ^ { n v . d o c , d o ° ) } = S(v.doc,do°)-
v—><x> f — ' n fc=0 

/3 

By Definition 3.1, the system in (3.9) is stochastically stable. In addition, by *,,„, 

R lBjm, we have 

%,m = (l-a(df))Q 
TFt 0 
Ft 0 

(l-a(dta))Q F?[YT I 

Ff[TT I], a(d<j?) = 0 « ^ = m = 0, 

a{d^) = 1 €> d<£ = m > 0, 

(3.15) 

then the controller F{ in (3.5) is obtained by pre-multiplying [ / 0 }Q~X and post-

multiplying [TT I } T to both sides of Eq. (3.15). Note that TTT + I is of full rank. 

The proof is completed. • 

3.4 Modeling and controller design of NCSs with multiple-
packet transmissions 

Prom the above section, we know that the single-packet transmission is usually used 

for networks with enough capacity for large-size packets. However, some packet-

switched networks can only carry limited information in a single packet due to 

packet size constraints, e.g., DeviceNet which has a maximum 8-byte data field in 

each packet. Thus, in such networks, the multiple-packet transmission is widely 

used, where sensor or actuator data is transmitted in separate network packets and 

may not arrive at the controller and plant simultaneously. 

3.4.1 M o d e l i n g N C S s w i t h mult iple-packet t ransmiss ions 

Due to the characteristic given above, the NCSs are modeled with M + N (M + 

N > 2) Markov chains. Split the plant state into M separate packets as x(k) = 

\Xj{k), X^ik), • • • , XjA{k)]T and the controller output into N separate packets 
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as u{k) = [U?(k), U?(k), ••• , U%{k)]T, where 

X,(k) = [x[(k), xT
2{k), •••,xJl(k)]T, 

XM{k) x f M - l + l W. t r M _ 1 + 2 w. #(*) ] r , (3.16) 

and 1 < r i < • • • < rjw-i < n, then we have the corresponding input of the controller 

x(k) as 

*(*) = [Xftfc), X?(k), • • • , ^ ( f c ) ] r , 

Xi(fc) = [aiftfc), * 1 » , . • • l a£ (A; ) ] T
) 

XM(fc) = [i?i,.1+i(*!), ^ M . 1 + 2 W . • • • .* f l (*0 ] r -

Similar definitions are used for the signals u(fc) and u(k), and are omitted. For the 

sake of simplicity, in this section we assume two-packet transmission on the S/C 

side and single-packet transmission on the C/A side; i.e., M — 2 and N = 1. Thus 

x(fc) *i(*0 X1(k-d{l) 
X2(k-dfk) J 

, w(/c) = t/1(A;) = i71(A ;-4a), 

where we set r i = r, d\c
k and aĴ fc reflect the quantities of S/C packet dropouts 

in channels 1 and 2, and o!£a reflects the quantity of C/A packet dropouts. Their 

transition probabilities are given by 

(Hj = Pr(dJ^.+1) = j\dlc
k = i), Pij > 0, i,j e S n = {0, 1, • • • , dn}, 

npq = Pr(d2(fc+i) = q\ds
2

c
k = p), nPq > 0, p , ? € 5 1 2 = {0, 1, • • • , d12}, 

\mn = Pr(dla
+1 = n | 4 a - m), Amn > 0, m, n € S2 = {0, 1, • • • , d2} (3.17) 

with Y^=oPiJ = ! ' Z ^ o ^ w = 1, and £ f 2
= 0 A m n = 1. Similarly as in the single-

packet transmission case, the closed-loop system in this case can be modeled by 

" $ r«(4a) 1 . . 
0 a(dla) \Z[K) 

(1 - aidl^TFrnxridlDilr 0px(fi_r)] 0 ' 
(1 - a{dla))FrnXr{dfk)[Ir 0 r x ( s _ r ) ] 0 _ 

(1 - a(^ o ) ) r i^ x ( f i _ r ) ( r f - f c ) [0 ( f t _ r ) x r h-r] 0 

(I - a(dla))F^x{n_r)(d
s
2
c
k){0{n_r)xr In-r] 0 

= ^(4a)^(fc) + £ i ( C > dfc
fc)«(fc - rfffc) + B2(dt\ ds

2
c
k)z(k - d%)t (3.18) 

?(fc + 1) 

+ 

+ 

z(k - d\k) 

z(k - d\ •sc\ 
2k) 
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where the control law to be designed is 

F{dSk) - [Frhxr(d{C
k) i ? mx(n-r) (^2fc)] - (3.19) 

Remark 3.3 It is easy to see that the complexity of the closed-loop models depends 

on M and N: The larger M and N are, the more complicated models we obtain. 

However, we remark that this complication will not affect our method for stability 

analysis and controller design; only the mathematical calculation is complicated. 

Definition 3.2 [100] The free nominal jump discrete-time system (3.18) is said to 

be stochastically stable, if for all finite zk = (p € 5R"+rTl defined onk £ [— max(dn, eta), 0] 

and initial model d\%, d8^ d™, there exists a finite number E(ip, dfg, e^O' ^o") > 0 

such that 

( N 

lim £ I V||2fc| 
J—>m 1 ' ' iV-*oo 

. fe=0 

M E , dig, d8°,} <s(<p,d?0)d%,<ff) (3.20) 

/io/ds, w/iere £ is the statistical expectation operator. 

3.4.2 Stability analysis and controller design of NCSs with multiple-
packet transmissions 

In this subsection, the stability of NCSs with multiple-packet transmission is inves­

tigated. Denote 

£ = min{pii, ieSu], K- min{7rpp, p e Su}, 

dn = min{dlc
k = i, k € Z}, dj2 = m i n j ^ = p, k <E Z}, 

/xi = l + ( l - £ ) ( d n - d i i ) , /J2 = 1 + (1-7[)(rfi2-rfi2)-

Then we have the following theorem. 

Theorem 3.2 The system in (3.18) is stochastically stable if there exist Xi<p<m > 0, 

Qi > 0, Q2 > 0, ^1 i m ond ^2,p,m such that the following LMI 

s*-i,p,m "J 
Qi 0 * i , i , m e i 0 0 
* -Q2 *2,P,mei 0 0 
* * —fii 0 0 
* * * — Q i 0 
* * * * — C?2 

< 0 (3.21) 
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holds for all i, j G Sn, p, q £ Su end m, n £ S2, where * denotes blocks that are 

readily inferred by symmetry and 

®1 = WPilKpl^mll, ••' i \/PidiiKpd^mdJ], 

du-di2-d2 

Qi = R\ , Qi = &2 ' ^1 = diag[Xiti^, • •• )-^j,?,n, • '• i ^ u A 2 , ( i 2 ] - (3.22) 

Here dnd^di is the number of matrices. In this case, the control law is 

-1 
FrnxrKk) = # * U o < 2 l 

Ffhx{n-r){dfk) ~ K^2,pfiQ2 

Proof: Define a Lyapunov-Krasovskii function as 

V(n—r)xr 
0 

-*n—r 
0 

(3.23) 

k-i 

V(z(k),k) = zT(k)P(dtl,ds
2
c
k,dta)z(k)+ Yl ZT(T)RIZ(T) 

T=k-d\% 

—d\\ A;—1 h 1 

+(!"£) E E ZT(T)RIZ(T)+ J2 *T(T)R2Z(T) 
6=-dn+lT=k+e T=k-ds

2% 

-d±2 k-l 

+(1-20 E E ^ W ^ ( r ) , 
e=-di 2 +iT=A;+e 

where P{d?k, d%, d%a) = PT(d{%, ds
2%, df) > 0, Rx = i?f > 0, i?2 = / # > 0 

are to be determined. Then the proof follows a similar procedure as that for the 

single-packet dropout case; hence is omitted. • 

R e m a r k 3.4 Theorem 3.2 gives a sufficient condition for the stochastic stability of 

NCSs with packet dropouts, which are described by 3 Markov chains. This method 

can also be extended to the case of NCSs with both dropouts and networked-induced 

delays. 

3.5 Numerical examples 

To demonstrate the effectiveness of the methods presented, two examples are pre­

sented. We compare our method with the traditional pole placement method, which 
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shows that the packet dropouts do affect the system stability. For simplicity, we 

just do this comparison in single-packet transmission case. 

Example 3.1: (Single-packet transmission case) Consider the following discrete 

time system 

§ = 
-0.7 2 
0 -1 .5 r = 

-0.03 
- 1 

(3.24) 

It is clear that the discrete-time system is unstable. 

By pole placement method, we have the controller gain K — [-0.9684, 3.6292] 

(closed-loop poles are {0.7, 0.7, 0}), which is designed without considering the 

packet dropouts. Suppose the initial condition is z(0) — [0.1, 0.1, 0]T , we have (a) 

and (b) in Figure 3.2, from which we can see that the system in (3.9) can be stabilized 

by this pole placement controller when there is no packet dropout. However, this 

method fails when there are packet dropouts, see (c)-(f) in Figure 3.2; Figure 3.2 

(c) and (d) give the changes in packet dropout numbers. ds
k
c = i, i 6 {0, 1, 2} 

means i packets on the S/C side are dropped during the transmission. Similarly, 

dc£ = m, m £ {0, 1} means that m packets on the C/A side are dropped. Figure 

3.2 (e) and (f) are the state trajectories of the system in (3.9), by which it is easy 

to see that packet dropouts destroy the system stability. In fact, if we place the 

eigenvalues closer to the origin, the state trajectories will converge finally but with 

poor dynamics, e.g., when the poles are placed at {0.3, 0.3, 0}, the state trajectories 

are oscillatory; when the poles are with magnitude less than 0.3, then the state 

trajectories start converging but with poor ripples in our example. 

By these two sequences, we can calculate their transition probability matrices as 

Ai = 

0.5385 0.4615 0 
0.8333 0 0.1667 

1 0 0 
A2 = 

0.75 0.25 
1 0 

Then by Theorem 3.1 of our method, we have the following controllers 

F0 = [-0.0451 - 1.5041], f i = [-0.0902 - 3.0081], F2 = [-0.1354 - 4.5122]. 

With same initial conditions, we have (g)-(h) in Figure 3.2, by which we know that 

the system in (3.9) can be stabilized by our designed controller. So our method is 

more effective. 
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Figure 3.2: The state response with single-packet transmissions (Example 3.1): (a)-
(b) with zero packet loss by pole placement method; (c)-(d) packet dropout history; 
(e)-(f) with packet loss by pole placement method; (g)-(h) with packet loss by our 
method. 

Example 3.2: (Multiple-packet transmission case) This example demonstrate that 

our method is also feasible for the multi-packet dropout case. The system is 

$ 
-1.43 0.1 

0 -0 .3 r = 
-2 .5 
-0.15 

For simplicity, we suppose dfk £ {0, 1, 2}, dfk £ {0, 1}, and dc
k
a e {0, 1}. Their 
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Figure 3.3: The state response with multi-packet transmissions (Example 3.2) 

transition probability matrices for df£, d^., d™ are 

Ai, A ; = 0.4615 0.5385 
1 0 

, A2, 

respectively, where Ai, A2 are the same as those in Example 1. There are two 

channels, namely, X\ — xi(k), X2 = X2(k). Then by Theorem 3.2, we can obtain 

the control law as 

F10 = -0.3966, Fn = -0.4231, Fu = -0.4495, F20 = -0.0265, F2i -0.0280, 

where Fu, i = {0,1,2}, belong to the controller set Fmxr{dl%); F2p, p = {0,1}, 

belong to the controller set î rn.x (fi—r) (<̂ 2fc) • ^ n e s t a t e trajectories versus the time is 

shown in Figure 3.3, which illustrates that the controllers we designed can guarantee 

the stochastic stability of the NCSs with multiple-packet transmissions. 

3.6 Summary 

In this chapter, the problem of stability analysis and controller design has been 

proposed based on a new model of the NCSs with single-packet transmission. In 
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this model, S/C and C/A packet dropout history behaviors are described by two 

independent Markov chains, the definitions of which are different from those in 

existing references. Moreover, NCSs with multiple-packet transmission are also in­

vestigated. The derived control laws guarantee stochastic stability of the resulting 

closed-loop systems. Simulation results illustrate the feasibility and effectiveness of 

our methods. 
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Chapter 4 

Design of NCSs with 
Network-induced Delays 

In Chapter 3, we designed controllers to stabilize the NCSs with packet dropouts, 

which are one of the main research issues in NCSs. We now proceed to model and 

study the second main issue in the design of networked control systems: network-

induced time delay. 

In this chapter, the sensor-to-controller and controller-to-actuator delays are 

described by Markovian chains, by which the resulting closed-loop NCSs are written 

as MJLSs with delays. Then we introduce a model predictive control (MPC) strategy 

to stabilize the resulting closed-loop NCSs. The control scheme is characterized as 

a constrained delay-dependent optimization problem of the worst-case quadratic 

cost over an infinite horizon at each sampling instant. A linear matrix inequality 

approach for the controller synthesis is developed. It is shown that the proposed 

state feedback model predictive controller guarantees the stochastic stability of the 

closed-loop system. 

The chapter is organized as follows. Section 4.1 presents some relevant prior work 

and our objective. Section 4.2 introduces the basic setup, closed-loop NCS modeling 

and the MPC problem formulation. Section 4.3 considers the feasibility of the 

optimization problem presented in Section 4.2. Section 4.4 discusses the stability of 

the resulting closed-loop NCS. Section 4.5 provides a numerical example to illustrate 

the design procedure. Finally, Section 4.6 gives some concluding remarks. 
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4.1 Introduction 

With the development of large-scale or complex industrial systems, communication 

networks play a more and more important role, by which tremendous amount of in­

formation is sensed, processed and transmitted. The data exchanged between these 

NCS components (sensors, controllers, and actuators) are exposed to stochastic or 

deterministic delays [113, 111], losses [40, 81, 87], and asynchronization [32, 74], 

which may degrade performance and even cause instability of the feedback control 

loops. To solve these problems, various methods and many results have been de­

veloped. Network-induced delay, as one of the main issues, has been the focus of 

attention [36, 47, 54, 69, 103]. In [69], the stability analysis and control design 

of NCSs were studied when the network-induced delay at each sampling instant is 

random and less than one sampling time. The results in [69] have been extended 

to the case with longer delays in [36]. The stability of NCSs was also formulated, 

respectively, by a hybrid system approach with deterministic delays in [113], by a 

switched system approach with constant controller gain in [54], and by a jump linear 

system approach with random delays in [47, 103]. Moreover, some optimization and 

compensation methods were presented, see [53, 97] and the references therein. 

Model predictive control, also known as moving horizon control or receding hori­

zon control, has received much attention in the past decades due to its extensive 

applications in the control of industrial processes such as distillation and oil fraction­

ation, pulp and paper processing, and so on [75, 76, 77]. Its essence is as follows: at 

every sampling instant, solutions to an optimization problem over a fixed number of 

future time instants, known as the time horizon, are obtained; only the first optimal 

control move is implemented as the current control law; at the next sampling time, 

the measurement is used to update the state estimate and the same procedure is 

repeated. This feature renders the MPC approach very appropriate to incorporate 

the input/output constraints into the on-line optimization as well as compensate 

time delays, which increases the possibility of its application in the synthesis and 

analysis of NCSs [29, 37, 60, 90, 102]. In [29], an MPC strategy for multivariable 

plants was presented. The sensor-to-controller delays were described by stochastic 

and deterministic quantities, respectively, but controller-to-actuator delays were as-
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sumed to be known and fixed; a communication constraint was imposed to restrict 

that all transmitted data were specified into a region in which the measurements 

lied and that at any time, only one plant and one actuator were permitted to be 

addressed. The choice between these alternatives was a function of prior knowledge 

about the nature of the noise and computational requirements. In [37], two proto­

cols, TCP and UDP, were considered for NCSs with packet losses. The MPC method 

was used to compensate the packets dropped at the sensor-to-controller side, while 

zero control was applied when the control packet was lost. In this case, control 

signal equals to zero when a packet is dropped at the controller-to-actuator side. In 

[60, 90, 102], modified MPC methods were introduced to compensate the delayed 

or missing control signals. In [90] both current and future control increment signals 

were used to update control signals of the plant; an adaptive predictive controller 

with variable horizon was designed, but no stability was considered. In [60, 102], 

future control move was chosen from the received control sequences to compensate 

the delayed control signals. The stability of the system was discussed with the con­

sideration of fixed delay in the sensor-to-controller side and fixed or random delay 

in the controller-to-actuator side [60] and a constant control gain was designed with 

the assumption that the delay increases at most 1 at each step [102]. 

The goal of this chapter is to design a predictive control strategy for an NCS such 

that at each sampling instant the infinite horizon quadratic objective is minimized 

while guaranteeing the stochastic stability of the closed-loop system. The actuator 

will implement most recently received signal directly to the plant and only the first 

control move will be used. The networked communication delays are assumed to be 

random and bounded, without loss of generality, which are described by Markovian 

chains. Delay-dependent conditions for the existence of such controllers are given 

and an LMI approach is developed. Moreover, a set of corresponding time-varying 

control laws is presented, which is different from the existing references [60, 90, 

102]. A numerical example [45] is given to show the feasibility and efficiency of the 

proposed method. 

4.2 Problem formulation 

Consider the networked control setup in Figure 4.1, where the plant is a linear time-
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Figure 4.1: The setup of the networked control system 

invariant discrete-time system, rk > 0 is the random time delay from the sensor to 

the controller, dk > 0 is the random time delay from the controller to the actuator, 

and the controller Fk is to be designed by the MPC method at time instant k. 

Suppose that the buffer is long enough to hold all the data arrived and that the 

delay introduced by the buffer can be omitted compared to the network-induced 

delays. By this assumption, all the past control signals will be available and most 

recently received control signal will be used by the actuator with the rule of the 

buffer, namely, first-in-last-out. v(k) is the output of the controller and satisfies 

v(k) = Fkx(k - rfc). 

u(k) is the control input of the plant, which equals to 

u{k) - v(k - dk) = Fk-dkx{k - dk - r f c_dJ . 

(4.1) 

(4.2) 

Assume that p is the prediction horizon and q is the control horizon, q control moves 

u(k + m\k), m = 0,1, • • • ,q — l, are computed by minimizing a nominal cost Jp(k) 

over a prediction horizon p as follows: 

min Jp(fc), 
u(fc-fm|A:),m=0,l,"' ,q—l 

(4.3) 

subjecting to some constraints on the control input u{k + m\k), m = 0,1, • • • , q — 1 

and on the state x(k+m\k), m — 0,1, • • • ,p, where x(k + m\k) is the state predicted 
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at time k + m based on the measurements of time k, x(k\k) is the state measured 

at time k; u(k + m\k) is the corresponding predicted control input at time k + m, 

and u{k\k) is the control move to be implemented at time k. 

In this chapter, we consider the case as p = q — oo, which is refereed to as the 

infinite horizon. Let Tk = <r{x'o, To, do, • • • , Xk, Tk, dk} be the a-algebra generated by 

{(#/,TJ, di), 0 < I < k}. The quadratic objective is 

oo 

Joo(k) = ^2 £{(x(k + m\k)TQx(k + m\k) + u(k + m\k)TRu(k + m\k)) |.Ffe} , 
m=0 

(4.4) 

where Q > 0, R > 0 are symmetric weighting matrices. It is assumed that both Tk 

and dk are bounded, that is, 

Z < Tk < T, d<dk<d. 

Without loss of generality, we assume that T = 0 and d — 0. Since current 

time delays are usually correlated with the previous time delays, Tfe and dk can 

be modeled by two independent homogeneous Markov chains that take values in 

M = { 0 , 1 , . . . , T } and ftf = { 0 , 1 , . . . , d}, and their transition probability matrices 

are A — [Ay] and LT = [iTrs] respectively [69, 103, 111]. That is, Tk and dk jump 

from mode i to j and from mode r to s, respectively, with probabilities A^ and nrs, 

which are defined by 

Xij = Pr(Tfc+i = j \rk = i), Trrs = P r ( 4 + i = s\dk = r), (4.5) 

where Xij,Trrs > 0 and 
f d 

for all i,j e M and r,s € Af . 

Suppose that the model of the plant is a linear time-invariant discrete-time model 

as follows 

x(k + l) = Ax{k) + Bu{k), (4.7) 

and that the exact measurement of the system state is available at each sampling 

time k, i.e., 

x(k\k) - x(k). (4.8) 

The controller design scheme can be stated as follows: At each sampling time k, 
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1. measure the state x(k); 

2. compute the state-feedback gain Fk in 

u(k + m\k) = Fk_dk+m]kx(k + m - rfe+m_dfc+m|)= - dk+m\k\k) (4.9) 

such that the performance objective in (4.4) is minimized; Tk+m^.d \k is 

the sensor-to-controller delay, which is an m-step ahead prediction based on 

the measurement of time k, namely, Tk-dk, where dk+m\k is the predicted 

controller-to-actuator delay at time k + m; 

3. implement the first control move u(k\k), that is, 

u(k) = u(k\k) = Fk-dkx{k - rk-dk - dk). (4.10) 

By the control input given in (4.10), the resulting closed-loop system can be written 

as 

x(k + 1) = Ax(k) + BFk_dkx{k - rfc_dfc - 4 ) . (4.11) 

With the modelings of rk_dk and dk as two Markov chains, it can be seen that the 

system in (4.11) is a Markovian jump linear delay system with two modes, and the 

time delays are mode-dependent. Furthermore, it can be seen from the 2nd step and 

the plant model in (4.7) that the predicted state x(k + m\k) satisfies the following 

difference equation: 

x(k + m + l|fc) 

= Ax(k + m\k) + Bu(k + m\k) 

= Ax(k + m\k) + BFk_dk+mlkx(k + m - Tk+m_dk+m{k\k - dk+m\k\k). (4.12) 

The key to solving the MPC problem is to find a way to solve the optimization 

problem in step 2 at each sampling time k. In the following, we will give the sufficient 

conditions for the 7—suboptimal problem 

Joo(fc) < 7 (4-13) 

for a given 7 > 0. At each sampling time, define X(k + m\k) as 

X(k + m\k) = [ xT(k + m\k) xT(k + m-l\k) ••• xT(k + m - f - d\k) ]T . 
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Consider the quadratic function which is given by 

V (X(k + m\k), Tfc+m_4+m|fc|fc) 4+m|fc) 

4 

+ m|fc),Tfe+m_dfc+m|fc|fc,oifc+Tn|feJ , (4-14) 
t=i 

where 

^i(X(/! + m|A;),rfe+m_dfc+m|j t |fc)4+m |fc) 

= XT (k + m\k) P [Tk+m-dk+mVc\k> dk+m\k) x(k + m\k) > 

V2(X(fc + m\k), rfc+m_d/b+m|fc|fc, 4+TO|fc) 

0 fc+ro-l 

E E yT(*i*ww. 
e =- r f c+m-d A . + m | t . | / b - c ( Jc + m|fc + 1 l=k+m+6-l 

V3(X(k + m\k), Tk+m_dk+mlk\k, 4 + m | f c ) 

fc+m—1 

E xT(i|fc)5cc(i|/c), 
J=fc+m-T fc+m_dfc+m| fcH.-d fc+m | fc 

Vi(X(k + m\k),Tk+m_dk+m{k\k,dk+m\k) 

- 1 fc+m-l 

= (I-ATT) E E [xTmsx(i\k) 
6=-r-d+l l-k+m+e 

+yT (l\k) Wy (l\k) (l-k-m-e + 1)], 

and y(k + m\k) = x(k + m + l\k) -x{k + m\k). P{rk+m_dk+m^k,dk+m]k), W and 

S are positive definite matrices with appropriate dimensions. At the sampling time 

k, suppose that the following inequality holds for all x(k + m\k) and u(k + m\k), 

m > 0 satisfying (4.12): 

£{V(X(k + m+ l\k), Tk+m+1_dk+m+1[k\k, 4+m+i|fc) 

- V(X(k + m\k), Tk+m_dk+m[k\k, 4+m|/e)l-^fc} 

< -£ {x(k + m\k)TQx(k + m\k) + u(k + m\k)TRu{k + m|/c)|.Ffc} . (4.15) 

For the control performance Joo(k) to be finite, we must have 

SiViXiooltf^oo^d^k)} = 0. 

Thus, from (4.15), we obtain 

-V(X(k\k), r ,_4 | f c , 4 | f c) < -Joo(fc) (4.16) 
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Before proceeding, we introduce the following definition and lemma. 

Definition 4.1 [14] The system in (4-H) is stochastically stable if for all finite 

x(k) = ip defined on [—f — d, 0] and initial mode To, do, there exists a finite number 

E(ip,To,do) > 0 such that 

( N 

ton £ ^ H*(*)HS 

N—>oo 
. fc=0 

f,To,do > < E(ip,T0,d0) (4.17) 

holds. 

Lemma 4.1 [27] Let a 6 %n% b 6 W» and M 6 Kn°xn<\ Then, for any matrices 

Z e SR"°X"°, Y e sft™<>x™(>; and W £ sft"f-x«(> satisfying 

Z Y 
YT W 

> 0 , 

the following holds 

-2aTMb < 
Z Y-M 

YT-MT W 

Theorem 4.1 Consider the stochastic system in (4-11) and let x{k\k), x(k — 1|A;), 

. . . , x(k — f — d\k) be the measured state x at time instant k, k — 1, • • • ,k — f — d 

respectively. Then there exists a state feedback controller in (4-10) such that both 

(4-13) and (4-15) hold if there exist matrices P(i,r) > 0, P\{i,r), P2(i,r), Y(i,r) 

W > 0, S > 0, Z(i, r) and a scalar 7 > 0 such that the following optimization 

problem is feasible: 

min7 (4-18) 

subject to 

0 fc-i 
x(k\k)TP(i,r)x(k\k)+ ^ 3 ^ y(l\k)TWy(l\k) 

e=-i-r+ll=k+6-l 
fc-1 -1 fc-1 

+ 5 3 xT(l\k)Sx(l\k) + (l-\]L) ] T 5 Z [xT(l\k)Sx{l\k) 
l=k—i-r g=-Y—d+ll=k+Q 

+ yT (l\k) Wy (l\k) (I - k - 6 + 1)] < 7. (4.19) 

and 

Z(i,r) Y(i,r) 
* W > 0 (4.20) 
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9 ( i , r ) = * + 
Q 0 
0 0 

GT(i 
0 

BFk-r 
S+~FT_rB

TRBFk„ 

-Y(i,r) 
< 0 (4.21) 

for any i € M and r € TV, w/iere A = mirij Xa, Tt_— mmr 7rrr, and 

* 
P (i, r) - P (i, r) + pS _ 0 

0 P~(i,r)+n(i,r)W 
+ (t + r ) Z ( i , r ) 

+ G T ( i , r ) 

+ [F(i,r) 0] + 

0 I 
A-1 -I + 

YT{i,r) 
0 

0 I 
A-1 -I 

f d 

G(i,r) 

p = [l + (l-A2E)(r + d)], ^(i,r) = J]Z)A«'r™i'0'.*), 
j'=0 5=0 

M (*,'*) = ^ ^ A»j7rrs (j + s) + (1 - M ) 
j=0 s=0 

(T + d-1) (r + d) 

Proof: See the Appendix for details. • 

Prom (4.19)-(4.21), it can be observed that when r > 0, Pfc_r is known, and 

thus, (4.19)-(4.21) are LMIs. However, when r = 0, since Fk is unknown, inequality 

(4.21) is not linear with unknown variables. In the following theorem, we will give 

an equivalent LMI condition for (4.21) for any i £ M and r e N. 

Theorem 4.2 The matrix inequalities in (4-20)-(4-21) are equivalent to the follow­

ing LMIs: 

(4.22) 

* 
* 
* 
* 

* 
* 

e12 
©22 

* 
* 
* 
* 
* 
* 

0 
e23 
-s 
* 
* 
* 
* 
* 

Zi(i,r) 
* 
* 

0 
A 
* 
* 
* 
* 

Z2(i,r) 
Z3(i,r) 8 

* 

X?(i,r) 
X%(i,r) 

0 
0 

—r-rW 
* 
* 
* 

0 
(i,r)W 

W 

0 
0 

UTBT 

0 
0 

-R 
* 
* 

>o 

X(i,r) 
0 
0 
0 
0 
0 

-Q 
* 

X(i,r) 
0 
0 
0 
0 
0 
0 

-J5 

< 0(4.23) 
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for any i e M and r € TV, where X(i,r), X\(i,r), X2(i,r), W, S, U, Z\(i,r), 

2*2(1, r), and Z^(i,r) are unknown variables, and 

011 = -X(i,r) + (i + r)Zi(i,r) 

0i2 = -X1(i,r) + X(i,r)(A-I + 5(i,r)lf + (i + r)Z2(i,r) 

614 = [X(i,r)+Xf(i,rj\T 

0 2 2 = -X2(i,r)-Xj(i,r) + (i + r)Z3(i,r) 

0 2 3 = BU-8(i,r)S 

U = Fk-rS, S = S~\ W = W~1, R = RTl, Q = Q " 1 

T = [ \Ai07TrO-f ' • ' \Z\jKrsI • • ' \/^if^r2^ ] 

A = diag[~X (0,0) ••• -X(j,s) ••• -X ( r ,d) ] 

Zi(»,r) Z 2 ( t , r ) 
^ ( i , r ) Z2

T(i ,r) Z3(»,r) . 

Zi(i,r) Z2(i,r) 
Zl(i,r) Z3(i,r) 

Z(i,r) = GT(i,r)Z(i,r)G(i,r) = 

Moreover, if (4-19), (4-22) and (4.23) are feasible, then 

Fk = US'1. 

Proof: Pre-multiplying and post-multiplying the matrices diag GT (i, r) S and 

diag G(i,r) S to (4.21), where 

G(i,r) = 
X (», r) 0 
Xi(i,r) X2(i,r) 

P _ 1 ( t , r ) 0 
-P2

l (i, r) Px (i, r) P-1 (i, r) P2~
l (i, r) 

then inequality (4.23) can be easily obtained by Schur complement. Here in order to 

obtain the LMI, it is restricted to the case of Y(i, r) = 5(i, r)GT (i, r) T , where 

5(i, r) is a scalar. Similarly, inequality (4.22) can be derived by pre-multiplying and 

post-multiplying diag GT(i,r) W G (i, r) W to (4.20) and diag 

Note that the optimization problem can be rewritten as minimizing 7 subject to 

(4.19), (4.22) and (4.23) for sllieM and r € M. 

If the dimension of system matrix A is small, an augmented MJLS without delays 

can be used to represent the closed-loop NCS, which can be written as 

X(k + m + l\k) = {A + BFfc_dfc+m|fcE(Tfc+ro_dfc+m|fc|fc, dk+m\k)X(k + m\k) (4.24) 
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where 

A = 

r A o • 
/ 0 • 
0 / • 

_ 0 0 • 

• 0 0 " 
• 0 0 
• 0 0 

• / 0 _ 

6 jjn(1+T+d)><n(1+r+d) B — 

B 
0 

c. Sf>n(l+T+d)xnu 

E(rk+m_dk+mlklk,dk+mlk)=[0 . . . 0 I 0 ••• 0 ] G 8«xn(l+f+<i) 

and .E(Tfc+m_dfc+m|fc|fc, 4+m|fc) has all elements being zeros except for the (l+dk+m\k+ 

Tfc+m_dfc |fc|fc)th block being identity. Then the quadratic function in (4.14) is sim­

plified to V\(X{k + m\k), Tk+m-d .h\k, <4+TO|/fc> k) since no delay exists. Therefore, 

we have the following theorem: 

Theorem 4.3 Consider the stochastic system in (4-11) and let x(k\k), x(k — l\k), 

..., x(k — f — d\k) be the measured state x at time instant k, k — 1, • • • ,k — f — d 

respectively. Then there exists a state feedback controller in (4-10) such that both 

(4-13) and (4-15) hold if there exist matrices X(i,r) > 0, U(i,r), and a scalar 7 > 0 

such that the following optimization problem is feasible: 

subject to 

and 

min7 

1 X(k\k)T ' 
X{k\k) X(i,r) 

> 0 

< 0 

-X(i,r) [X(i,r)AT + UBT}T X(i,r)T UT{i,r)B}/2 

* - A 0 0 
* * —7/ 0 
* * * —7/ 

for any i € M, r € Af , where 

X(i,r) = iP-\i,r), T = [ g 1 / 2 0 n x n ( f + ( j ) ] , 

A = diag[-X (0,0) ••• -X(j,s) ••• -X (?,!) 

T = [ vAj07rrO^ " " ' \f\j^rsi ' ' ' \Z^ifnrd^ J ' 

Moreover, if (4-26) and (4-27) are feasible, then 

Fk_r = U{i,r)X-l{i,r)ET{i,r). 

(4.25) 

(4.26) 

(4.27) 
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Proof:The proof is similar to that in Theorem 4.1. Hence, omitted here. • 

Remark 4.1 Both Theorem 4-1 and Theorem 4-3 provide the controller design 

method. Theorem 4.3 is much simpler than Theorem 4-1 in the derivation, while 

the speed for calculating controller parameters by Theorem 4-3 is much slower than 

that by Theorem 4-1- The larger the dimension of system matrix A is, the slower 

the controller parameters are calculated with Theorem 4-3. This is because of the 

highly increased augmented system matrix in the closed loop. 

For conciseness of the dissertation, the following analysis in this chapter is dis­

cussed for Theorem 4.1. All the results are applicable for Theorem 4.3. 

4.3 Feasibility analysis 

Theorem 4.1 has given the sufficient condition for the existence of the MPC controller 

at sampling time k. For simplicity, throughout the rest of this section, denote rk\k — 

Tk, Tk+i\k+i - Tk+i, dk\k - dk, and 4+i|fc+i - 4 + 1 -

Theorem 4.4 If the matrix inequalities in (4-19)-(4-21) are feasible at time k, then 

they are also feasible for all time t > k. 

Proof: Let us assume that the optimization problem in Theorem 4.1 is feasible at 

the sampling time k. The only LMI in the problem that depends explicitly on the 

measured state x{k\k) — x(k) of the system is the constraint in (4.19). Inequalities 

(4.20) and (4.21) can be easily proved by setting the decision variables at time 

k + 1 equal to be the optimal values computed at time k since the parameters are 

independent of the state of x(k\k). Thus, to prove this theorem, we need only to 

prove that inequality (4.19) is feasible for all the future measured states X(k+m\k+ 

m) — X(k + m), m > 1. We will show that the theorem holds at the sampling time 

k + 1 first. 

By Q > 0 and R > 0 in (4.15), we have 

£{V(X(k + m + l\k),Tk+m+l_dk+m+1]klk, 
dk+m+l\k) 

-V{X(k + m\k),Tk+m_dk+m{klk,4+m|fc)l^fc} < 0 
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if X(k + m\k) ^ 0. Iteratively applying this inequality for m = 0,1, • • •, we obtain 

S{V{X{k+m\k),Tk+m_dk+m^k,dk+m\k)\Tk} < £{V(X(k\k),rk-dk,dk)\Fk}. (4.28) 

Since the inequalities in (4.19)-(4.21) are feasible at time k, we can easily derive 

that 

£{V(X(k + m\k),Tk+m_dk+mik\k,dk+m\k)\Fk} < 7, m > 1, 

for any rfc+m_dfc+m|fc|fc & M and 4+m|fc S Af by the proof of Theorem 4.1. Prom 

equations (4.8) and (4.12), it follows that 

x(k + l|fc) = Ax(k) + BFk-dkx(k - Tk^dk - dk). 

As a result of (4.11), we obtain that 

x(k + l\k)=x(k + l\k + l), 

based on Tk\ namely, X{k + l\k) — X{k + l\k + 1). Then 

£{V{X{k + \\k + l),Tk+1_dk+llk{k, dk+1]k)\Fk} < T 

Therefore 

S{V(X(k + l\k + l),Tk+1_dk+1,dk+l)\Fk+1} 

= £{V{X{k + l\k + 1), rfc+i_dfc+l|fc|fc) dk+1\k)\Fk+1} 

= e{£{V(X(k + l\k + l),Tk+1_dk+llk\k,dk+Mk)\Fk}\Fk+1} < 7 -

Hence the optimization problem is feasible at time k + 1. This argument can be 

continued for times k + 2, k + 3, • • •, to complete the proof. • 

4.4 Stability analysis 

Now, we are in a position to give our main result on the stability of the model 

predictive control problem. 

Theorem 4.5 Let x(k\k) be the measured state x(k) at the sampling instant k, 

and suppose that the optimization problem in Theorem 4-1 is feasible. Then the 

closed-loop system (4-11) is stochastically stable by the feasible receding horizon state 

feedback control law in (4.10), which is obtained from Theorem 4.1. 
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Proof: To show the stochastic stability of (4.11), we shall show that the Lyapunov 

function V(X(k\k), rk-dk,dk, k) is strictly decreasing. Assume that the optimization 

problems established in Theorem 4.1 are feasible for time instant k — 0. Theorem 

4.4 then ensures that these optimization problems are also feasible for all k > 0. 

Denoting the optimal solutions at time k and k 4- 1 respectively by Pk{i,r) > 0, 

Pf(i,r), P$(i,r), Yk{i,r), Wk > 0, Sk > 0, Zk(i,r), Pk+1{i,r) > 0, P?+1(i,r), 

Pk+1(i,r), Yk+1(i,r), Wk+1 > 0, Sk+l > 0, and Zk+1(i,r), we have 

£{V(X(k + l\k+l),Tk+i-dk+1,dk+i)\Jrk+i} 

< £{V(X(k + l\k + l),Tk+1_dk+llklk,dk+1]k)\rk} (4.29) 

This is because Pk+1(i,r) > 0, Pf+1(i,r), P^l{i,r), Yk+1(i,r), Wk+1 > 0, Sk+1 > 

0, and Zk+1(i,r) are optimal values at time k + 1, while Pk(i,r) > 0, Pk(i,r), 

P2
fc(i,r), Yk(i,r), Wk > 0, Sk > 0 and Zk(i,r), are only feasible at time k + 1. By 

(4.15), we have 

S{V(X(k + l\k),Tk+1_dk+llklk,dMlk) - V(X(k\k),Tk_dk,dk)\Fk} 

< -£{xT(k\k)Qx(k\k) + xT(k - rfc_dfc - dk)Fk_dkRFk-dkx(k ~ Tk-dk - dk)\fk} 

< -£{xT(k\k)Qx(k\k)\Fk} (4.30) 

with m — 0. Since the measured state x(k + l\k + 1) = x(k + 1) equals Ax{k) + 

BFk-.dkx{k — Tk-dh — dk), x(k + l\k) = x(k + l\k + 1). Combing the inequalities 

(4.29) and (4.30), we have 

£{V(X(k + l\k + l),Tk+l_dk+l,dk+l)-V(X(k\k),Tk_dk,dk)\Fk} 

< -£{xT{k\k)Qx{k\k)\Tk) < -\m^{Q}£{\\x{k\k)\\2\Tk}. 

From the above inequality, if letting e = Amin{Q} > 0 (since Q > 0), we can see 

that for any N > 1, 

N 

£{V(X(N))\<p, TO, d0} - £{V{X(0))\<p, TO, d0} < -t £{J2 \\x(k\k)\\2\<P,r0, d0} 
fc=0 

or 
N . 

£{J2 \\x(k\k)\\2\<p, ro, d0} < -{£{V(X(0))\<p, TO, d0} - £{V(X(N))\<p, T0, d0}} 
fc=0 

< -££{V(X(0))\ifi,r0,do} 
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which implies that 

N 1 
lim 5{V| |x ( fc ) | | 2 | ^ ro ,do} < -£{V(X(0))\ip,T0,d0} = E(<p,T0,d0) (4.31) 

N—>oo *—' e 
fc=0 

From Definition 4.1, the stochastic stability is obtained. • 

Remark 4.2 It is noted that the LMIs given in (4-19)-(4-21) can be solved numer­

ically efficiently by using standard LMI techniques, and no tuning of parameters are 

involved. The solution derived is general since it is solved under consideration of all 

the value of i and r at each time k. Therefore, the model predictive control scheme 

proposed in Theorem 4-1 makes the on-line implementation possible. 

Our MPC formulation of NCSs can also be extended to the case with input/output 

constraints. Assume that the output of the linear time-invariant system in (4.7) is 

given by 

z{k) = Cx{k) 

Then we have the following input and output variance constraints: 

lim £{{u{k + m\k) — £{u(k + m\k)})T(u(k + m\k) — £{u(k + m\k)})\Tk\ < umax, 
m—>oo 

lim £{(z(k + m\k) — £{z(k + m\k)})T(z(k + m\k) — £{z(k + mjA;)})!^} < zmax, 
m—*oo 

where z(k + m\k) = Cx{k + m\k) is the predicted output, umax > 0 and zm a x > 0 . 

They can be rewritten in LMIs as follows: 

-z2
maxI + CSCT<0. (4.32) 

U "max- ' 

UT -S 
< 0, (4.33) 

For simplicity, the proof is omitted, which is similar to that in [112]. Thus, we have 

the following corollary. 

Corollary 4.1 Consider the stochastic system in (4-H) and let x(k\k), x(k — l\k), 

..., x(k — f — d\k) be the measured state x at time instant k, k — 1, • • • ,k — f — d 

respectively. Then there exists a state feedback controller in (4-10) such that both 

(4-13) and (4-15) hold if there exist matrices P(i,r) > 0, P\{i,r), P2(i,r), Y(i,r) 
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i K .r 

Figure 4.2: Cart and inverted pendulum 

W > 0, 5 > 0, Z(i, r) and a scalar 7 > 0 such that the following optimization 

problem holds: 

min7 

subject to (4.19)-(4.21) and (4.32)-(4.33) for all i 6 M and r 6 A/". 

Remark 4.3 The input and output variance constraints have been often considered 

for control designs of stochastic systems, see [88] and the reference therein. The 

variance constraints on the inputs refer to the control energy or power constraints, 

and the mission requirements can be naturally stated in terms of the variance con­

straints on the outputs. 

4.5 Numerical examples 

In order to demonstrate the proposed model predictive control algorithm, two simple 

examples will be investigated in this section. 

Example 4.1: (Without constraints) Consider the cart and inverted pendulum prob­

lem in Figure 4.2, see [111], where m\ is the cart mass, ra% is the pendulum mass, 

L is the length from the point of rotation to the center of gravity of the pendulum, 

x is the cart position, 6 is the pendulum angular position, and u is the input force. 

The state variables are 

X\ = X, X2 = X, X-j, = 0, £4 = 9 
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Assume that mi = 1 kg, mi = 0.5 kg, L = l m , and the surface is friction free. The 

sampling time is Ts = 0.1 second, and the random delays exist in TJ, 6 {0,1, 2} and 

dk € {0,1}, and their transition probability matrices are given by 

" 0.5 0.5 0 
A 0.3 0.6 0.1 

0.3 0.6 0.1 
n = 

0.2 0.8 
0.5 0.5 

The controllers are designed using the discretized model, linearized when the pen­

dulum is in the up-position (6 — 0), with a state-space model 

x (k + 1) = Ax (k) + Bu (k) 

where 

1.0000 
0 
0 
0 

0.1000 
1.0000 
0 
0 

-0.0166 
-0.3374 
1.0996 
2.0247 

-0.0005 ' 
-0.0166 
0.1033 
1.0996 

, B = 

" 0.0045 
0.0896 
-0.0068 
-0.1377 

It is obvious to see that the discretized system is unstable since A has eigenvalues 

at 1, 1, 1.5569, 0.6423. In [103], this example was considered with the assumption 

that dk — 0. Comparing our augmented MPC method in Theorem 4.3 with the 

general linear control method presented in [111], we have the state trajectories of 

the closed-loop system shown in Figure 4.3, where a; (—3) = a; (—2) = x(—1) = 

x(0) — [ 0 0 0.1 0 ] . The solid lines in Figure 4.3 are the state trajectories 

by our MPC method. The dash lines are the state trajectories by the method in 

[111]. By Figure 4.3, we can see that the dynamics by MPC method have better 

performance and the closed-loop system is stochastically stable. 

Example 4.2:(With constraints) Consider a classical angular positioning system in 

Figure 4.4 [45], which consists of a rotating antenna at the origin of the plane and 

is driven by an electric motor. The control target is using the motor to rotate the 

antenna so that it always points to the direction of a moving object in the plane. 

Assume that the angular position of the antenna B (rad), the angular position of 

the moving object 6r (rad) and the angular velocity of the antenna 6 (rad • s~l) are 

measurable. The motion of the antenna can be described by the following discrete-

time counterparts by discretization, using a sampling time of 0.1s and the Euler's 

first-order approximation for the derivative 

x(/c + l) = 
9(k+l) 
9(k + l) 

1 0.1 
0 l-O.la(ifc) 

x(k) + 0 
Q.IK 

u(k), (4.34) 
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Figure 4.3: The state trajectories of the closed-loop system 

where K = 0.787 rad lV ls 2 and 0.1s * < a(k) < 10s 1. The parameter a(k) is 

irts of the antenna. 

, the infinite MPC 

proportional to the coefficient of viscous friction in the rotating parts of the antenna, 

Assume that a{k) = 0 . 1 and the initially state x(k) = 

optimization to be solved at each time k is 
0 

min Joo(k) = Y J £{xT(k + m\k)Qx(k + m\k) + uT{k + m\k)Ru(k + m\k)\!Fk} 
m=0 

subject to \u(k + m\k)\ < 0.1V with Q — hxi and R — 0.1. The system dynamics is 

shown in Figure 4.5, where Figure 4.5 (a) is the upper bound of the above quadratic 

function. Figures 4.5 (b) and (c) give the changes of network-induced delays. T\. = 

i, i £ {0, 1, 2} means data are delayed by iTs on the sensor-to-controller side at 

time k during the transmission, where T3 is the sampling time. Similarly, dk = 

r, r E {0, 1} means that data are delayed by rTs on the controller-to-actuator side. 
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Goal :6 = 9, 

Target object 

Antenna 

Figure 4.4: The angular positioning system 

By these two random serials, we assume their transition probability matrices as 

A -
0.5 0.2 
0.4 0.5 
0.3 0.2 

0.3 " 
0.1 
0.5 

, n = 
0.5 0.5 
0.8 0.2 

Figure 4.5 (d) is the state trajectories, which show that the closed-loop system is 

stable by the controller we designed. Moreover, it is easy to see that our designed 

control sequence, Figure 4.5 (e), lies in the area [—0.1,0.1]. 

4.6 Summary 

In this chapter, the problem of model predictive control for networked control sys­

tems has been studied. Based on the minimization of an upper bound of the worst-

case infinite horizon quadratic cost function at each sampling instant, a state feed­

back predictive controller has been proposed by using the LMI approach. Only 

the first control move is implemented to the plant. The stochastic delay-dependent 

stability conditions with and without input/output constraints have been presented 

respectively for the closed-loop system resulting from the proposed controller. The 

numerical example shows the effectiveness of our method. 

APPENDIX 

P r o o f o f T h e o r e m 4 . 1 : Assume tha t rfc+m_dj,+m|fc |fc = i, dk+m\k = r. First , we 

will show that (4.20) and (4.21) implies (4.15). Following [14, 27] and the methods 
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Figure 4.5: The state dynamics of the positioning system 

Chapter 2, we introduce the system transformations: 

y(k + m\k) = x(k + m + l\k) — x(k + m\k), 

0 = -y (k + m\k) + (A - I) x (k + m\k) 

+BFk-rx (k + m — i — r\k), 
/c+ro—1 

x(k + m — i — r\k) = x(k + m\k)— YJ 2 /W0-
l=k+m~ i—r 

(4 
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Notice from (4.12) and (4.35) that 

£ \yx(X{k + m + l\k), r fc+m+1_4+m+i | fc | fc, dk+m+1]k) 

-Vi [X{k -\- m\k),Tk+m_dk+rnW\k,dk+m\kJ \Fk} 

= £ {? \[x(k + m\k) + y(k + m\k))TP(rfc+m+1_4+m+i|fc|fe, dk+m+llk)[x(k + m\k) 

+y(k + m\k)]\Fk} - xT(k + m\k)P(Tk+m_dk+m[klk, dk+m\k)x(k + m\k)\Tkj 

= £ {[x(k + m\k) + y(k + m\k)]T~P{i,r)[x(k + m\k) + y(k + m\k)) 

-xT(k + m\k)P(i, r)x(k + m|fc)|J"fc} 

= £ {xT (k + m\k) [F(i, r) - P(i, r)] x{k + m\k) + yT(k + m\k) ~P{i, r) 

xy(k + m\k) + 2nf (k + m\k)GT(i,r) 
y(k + m\k) 

0 Fk > , 

where 

T d 

P(i,r) = ^^Xij-KrsPiJis), r](k + m\k) = 
j=0 s=0 

" P ( i , r ) 0 
Pi(i,r) P2(i,r) 

x(k + m\k) 
y(k + m\k) 

G(i,r) = 

P\(i,r) and P2(i,r) are constant matrices with appropriate dimensions. Thus, by 

the relation in (4.20), (4.35) and Lemma 4.1, we have 

£i 2r]T(k + m\k)GT(i,r) 

< £ \r]T(k + m\k) <GT(i,r) 

+ [Y(i,r) 0 ] + 

y(k + m\k) 
0 

0 / 
A-I -I 

^k 

+ 
0 I 

A-1 -I 
G(i,r) 

YT(i,r) 
0 

l—k+m—i—r 

+(i + r)r]T(k + m\k)Z(i, r)r](k + m\k) + 2r]T (k + m\k) 

•. k+m—1 

\r){k + m\k)+ Yi yT(l\k)Wy(l\k) 

x [-Y(i,r) + GT(i,r) 

Therefore, 

0 
BFk_r 

x (k + m — i — r\k) ^ • 

£ |Vi [X{k + m+ l|fc),rfc+m+1_dfc+m+1|/,|fe,dfc+m+1|fcj 

-Vi [X(k + m\k),Tk+m_dk+m]k\k,dk+mlk) .Ffcj 

< £ LT(k + m\k)i P(i,r)-P(i,r) _ 0 
0 ~P(i,r) 
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+ 
0 I 

A-1 -I 
G(i,r)+[Y(i,r) 0] + YT (i, r) 

0 r](k + m\k) 

k+m—1 

+ {i + r)vT(k + m\k)Z(i,r)r)(k + m\k)+ E yT {l\k)Wy{l\k) 
/=fc+m—i—r 

0 
+2T]1 (k + m\k) -Y (i, r) + G1 (i, r) 

BFk. 
x (k + m — i - r\ Tk\. 

(4.36) 

For V2 (X(k 
+ m\k),Tic+m_cik+rn]k\kidk+m\k), w e have 

S |V2 [X{k + m + l\k),Tk+m+1_dk+m+ilklk, 4+m+1 | f cJ 

-V2 [X(k + m\k) 
|fci"fc+m|fc 

= £ | £ \V2{X(k + m + l\k), Tk+m+1_dk+m+llklk, dk+m+1\k)\Pkj 

-V2(X(k + m\k), rfc+m_4+m|fc|fc, 4+m|fc)| -̂ fc} 

-J ^ i EEAy'7iv 
0 k+m 

E E yT(mwy(i\k) 
$=-j-a+l l=k+m+6 

0 fc+m-1 "1 "J 

- E E yT(l\k)Wy(l\k) Fk\ 
0=-i-r+l l=k+m+6-l J J 

E E ^ " 0 ' + s)yT(k + m\k)Wy{k + m\k) 
j=Q * = 0 

( d f d f 

Ajj / _, 7Trs + 7Trr / _, Ajj + ^ ^ / ^ Aij7Trs 

s=0,s^r j=0j5^i s=0,s^r j=0,ji£i 
0 E E yT(^)^l*0 

9 = - j - s + l (=fc+m+0 

0 fc+m-1 

E E yr('l*WI*0 
9=—*—T-+1 (=fc+m+0 

fc+m—1 

- E yT(*i*wifc) 
Z=£;-|-m—i—r 

•M-
Notice that 

{ 0 fc+m-1 0 fc+m-l 

E E yTaifc)̂ y(/|fc)- ]r E yTai*)^ai*)i^ 
6 » = - j - s + l Z=fc+m+0 S = - i - r + l ;=fc+m+0 

{ - 1 fc+m-1 1 

E E »r('i*)^ai*)i^[-
e = - r - d + l '=fc+m+e I 
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Thus, it can be seen that 

£ {v2(x{k + m + l\k), Tk+m+i_dk+m+i^k, dk+m+i\k J 

-V2 (x(k + m\k), Tk+m_dk+m^k, dk+m\kJ | J"fc | 

{ T d 

E E Xi^rs 0' + s) VT (k + m\k) WV (k + m\k) 
j=0 s=0 

- 1 k+m-l 

+ (1-A2E) J2 E yTmWy(l\k) 
e=-7-d+l l=k+m+6 

- Yl yT(l\k)Wy(l\k) ?A 
l—k+m—i—r J 

(4.37) 

since 1 — \unrr < 1 — \n. 

Similarly, for Vz {x{k + m\k), Tk+m_dk+m[klk, dk+m\^j, we have 

+ m + l|fc), T fc+m+1_d/ t+m+1|fc |fc, dk+m+i\kj 

-V3 (X{k 

{ r d fc+m 

E E A ^ S E zT(^WI*0 
fe+m-1 1 

- ] T XT (l\k) Sx (l\k) fA 
l=k+m—i—r ) 

< £ [x (k + m\k) Sx (k + m\k) — x (k + m — i — r\k) Sx (k + m — i — r\k) k+m 

+ (1-ATT) J2 xT (l\k) Sx (l\k) 

l=k+m+l—T—d 

?k). (4.38) 

For V4, (X(k + m\k),Tk+m_dk+m[klk, dk+m\k), we have 

£ j Vi [X(k + 171+ l\k), Tk+m+l-dk+m+Uk\k, 4+m+l|feJ 

-V4 (X(k + m\k), Tk+m_dk+m^k, 4+m|fcJ Jfcj 

{ - 1 k+m 

(1-Azr) E E [yT(l\k)Wy(l\k)(l~k-m-d) 
e=-r—d+l l=k+m+l+9 

- 1 fe+m-1 

+xT{l\k)Sx{l\k)} - ( 1 - A T T ) J ^ J 2 [ z T ( ^ ) f e ( ^ ) 
0 = - r - 3 + l /=fc+m+0 

+j/T(i|A:)Wy(J|*)(* - A; - m - 5 + 1)] | Tk) 80 



- g { ( I - A T T ) (T + d ) ^ + d 1 ) ^ ( f c + m|fc)^j/(fc + m|fc) 

+ (1 - AE) (r + d - l) xT (jfc + m\k) Sx (k + m\k) 
k+m—l 

Fk 

- ( 1 - A T T ) E E 3/T(J |*0WI*0 

fc+771 —1 

- ( l - A j r ) E z T (^ ) f e ( / | f c ) 
/=A;+m—T—d+1 

Combining (4.36), (4.37), (4.38) and (4.39) together, we obtain 

s{v{x{k + m + l|fc), rfc+m+1_rffc+m+1|/_|fe, dk+m+1\kj 

-V [X{k + m\k),Tk+m_dk+mlk\k,4+m|fc) I Fk] 

< £ | r f i k + m\k)Vr](k + m\k) + Irf {k + m\k) [GT(i,r) 

(4.39) 

0 
BFk. 

-Y(i,r) 

xx (k + m — i — r\k) — xT (k + m — i — r\k) Sx (k + m — i — r\k) \!Fk] 

= £ \^{k + m\kY 
* GT(i,r) 0 

BFk-r 

-s 
•Y(i,r) 

£,{k + m\k) 

(4.40) 

where 

£(k + m\k) = 

As a result, it can be seen that 

r\ (k + m\k) 
x(k + m — i — r\k) 

E{V [X(k + 171 + l|fc), Tfc+m+1_dfc+m+1|fc |fc, 4+m+l|fc) 

-v (x(k + m\k),Tk+m_dk+mik\k,dk+m\k) \Fkj 

+£ {xT(k + m\k)Qx(k + m\k) + uT(k + m\k)Ru(k + m\k)\Fk} 

< £{£T(k + m\k)G(i,r)S(k + m\k)\Fk}. 

On the other hand, from (4.16), it follows that (4.13) holds if 

V(X(k\k),Tklk,dk]k) < 7 , 
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IS, 

0 fc-1 

x(k\k)TP(Tk-dk,dk)x(k\k)+ Y, £ y(l\k)TWy(l\k) 
9=-Tk..dk-dk+l l=k+d-l 

fc-1 - 1 fc-1 

+ £ xT(l\k)Sx(l\k) + (l-X2L) £ £ [yT(l\k)Wy(l\k) 
l=k-Tk-dk-dk 0=-f-d+ll=k+<) 

x (I-k-0 + 1) + xT{l\k)Sx(l\k)} < 7. 

Since (4.19) holds for % € M and r G M, the proof is obtained. 
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Chapter 5 

Control Design with Variable 
Sampling Periods 

In Chapter 3 and Chapter 4, We have discussed the stabilizability problem for NCSs 

with packet dropouts and network-induced time delay respectively, where the results 

have been derived under the assumption that sensor nodes are sampled regularly at 

a constant sampling period h. However, in some situations, the sampling period can 

not be predetermined or may change according to certain system variables, which 

are time-varying. Therefore, the study of NCSs with variable sampling periods is of 

theoretical and practical importance. 

The chapter is organized as follows. Section 5.1 summarizes several reasons for 

considering variable sampling period, applications of systems with variable sampling 

period, and the relevant prior work. Section 5.2 introduces the basic setup and the 

MPC problem formulation for a class of sampled-data (SD) systems. Section 5.3 

presents the stabilization problem for the resulting closed-loop system. Section 5.4 

discusses the tracking performance of our SD system with the corresponding control 

law. Section 5.5 extends the method derived to NCSs with fixed network-induced 

time delays. Section 5.6 provides the CSTR simulation to illustrate the design 

procedure. Finally, Section 5.7 gives some concluding remarks. 
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5.1 Introduction 

Sampled-data (SD) control systems are hybrid dynamical systems which usually 

consist of a continuous-time plant and a digital controller, along with appropriate 

interface elements (A/D and D/A converters). The study of SD systems is strongly 

motivated by the fact that modern controllers are typically implemented digitally. 

Over the past two decades, numerous results have been derived for controller design 

of SD systems, using three main approaches. The first one is to design a continuous-

time controller for the continuous-time plant and discretize the obtained controller 

for a digital implementation. The second one is to discretize the continuous-time 

plant and do a discrete-time design. The last one is to design a discrete-time con­

troller directly for the continuous-time plant. These approaches provide sufficient 

stability conditions for SD systems in the single-rate case [2, 13, 24] and the multi-

rate case [35, 63]. It should be pointed out that all the main results of the afore­

mentioned references have been presented under the assumption of a constant or 

periodic sampling period. 

Sampled-data systems with varying sampling rates arise for several reasons: 

• the optimal allocation of limited computing resources, namely, central pro­

cessing unit (CPU) time and communication bandwidth; for example, several 

control loops share the same CPU of an embedded control system in [21]. 

When the execution times of all tasks, the number of tasks, or the desired 

CPU utilization (workload) vary over time, the feedback scheduler will adjust 

the control loop sampling frequencies to optimize the total control performance 

while keeping the workload at the desired level. This leads to variations in 

sampling periods. 

• the situation that the sampling rate depends on certain system variables; for 

instant, the time between consecutive measurements in a brushless DC motor 

[107] was dependent on the motor speed. That is, the sampling time is ve­

locity dependent and not predetermined. Similar applications are frequently 

encountered in industrial applications such as the computer hard disk drive 

[38] and the CD-ROM servo systems [41]. 
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• the global stability of some algorithms, which is guaranteed by using the sam­

pling rate as an extra control variable; for example, digital versions of globally 

stable adaptive stabilization algorithms are, at best, locally stable due to the 

incompatibilities between the gain adaptation algorithms and the choice of 

sampling rates. This fact suggested a wide range of sample interval adaption 

schemes for stabilizing a single-input-single-output (SISO) system [71]. 

Therefore, the study of systems with variable sampling rates has begun to gain more 

and more attention [34, 79, 80, 89]. In [34], the stability and instability of a digital 

control system were studied for the fixed and non-fixed sampling points, respectively. 

No general control design method was proposed except a specific controller was given 

for a specific switched system in the example. In [79], the controller was designed by 

an LMI gridding approach, which needed a posteriori negative definite checking to 

guarantee the decay-rate analysis for a whole interval of sampling rates, especially in 

the case when the grid points were close enough. If the condition was not satisfied, 

a finer grid sequence was needed to redesign the controller. This means that the 

fulfillment of the LMIs at the grid points does not give any guarantee that they 

are also satisfied for all sampling rates, which leads to conservativeness. In [80], a 

piecewise constant control law was given to stabilize the resulting closed-loop SD 

system under all possible switching sequences of sampling rates, where the system 

performance was minimized only by one-step ahead prediction. In [89], three types of 

controllers were introduced for SD systems with variable sampling period to achieve 

a certain level of disturbance rejection. 

In this chapter, we will consider the stabilization problem for SD systems with 

variable sampling rates. Different from the existing methods in SD systems with 

time-varying sampling, we develop a predictive control strategy to stabilize the SD 

system by a modified MPC approach. At each sampling instant, a finite horizon 

quadratic objective function with terminal weighting matrix is minimized and an 

LMI approach for solving the terminal weighting matrix is presented. The optimal 

predicted control sequence guarantees the stability of the closed-loop system. Our 

design can incorporate the input/output constraints into the online optimization. 

Moreover, the signals both at and between sampling instants are considered in the 

controller design. No posteriori checking is needed. Simulations on a CSTR system 
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Figure 5.1: Schematic diagram of the sampled-data control system 

show the feasibility and efficiency of the proposed method. 

5.2 Problem formulation 

Consider the sampled-data control setup in Figure 5.1. The continuous time-invariant 

plant we considered in this chapter is 

x(t) = Ax(t) + Bu(t), (5.1) 

where x(t) € 5ft™ is the state, u(t) € 5ft"1 is the control input, and A, B are system 

matrices with appropriate dimensions. The sampling instants are tk € 5ft, k € M 

with tk+i > tk, to — 0. Then we have the sampling period as hk — tfc+i — tk, which 

is obviously time-varying. Discretizing the plant at the sampling instants tk, we get 

a linear time-varying discrete system as follows: 

x(tk+i) = eAh*x(tk) + / eA^+^^Bu((7)di 
Jtk 

(5.2) 

The objective in this chapter is designing a digital state feedback control law to 

stabilize the system in (5.2), where the controller at time instant tk depends on the 

sampling rate hk, and will be designed by a modified MPC method. 

The following assumptions are made throughout the remainder of the chapter: 

Assumption 5.1 h<hk = tfc+i — tk < h, Vfc € A/". 

Assumption 5.2 Let the period of predictions be r\ and hk = nkV, VA; G TV, nk > 

1, nk € N. 

Remark 5.1 Assumption 5.1 means that the sampling period does not exceed given 

bounds, and time-varying. Therefore, the sequence of our sampling rates is less 
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conservative than that in [71], where the sequence of sampling rates was assumed to 

be non-increasing. 

Remark 5.2 Note that in Assumption 5.2, we use n as the predictive period instead 

of the real sampling period hk at time tk • This is to simplify the design and imple­

mentation of the MPC strategy since hk is unknown at time tk. Another advantage 

is that not only the signals at sampling instants, but also the intersampling signals 

are taken into account on the design. Moreover, by this definition, the sampler works 

at the period hk while the zero-order-hold (ZOH) works at the period n, which means 

our sampler and ZOH are asynchronized. 

Remark 5.3 The predictive period n always exists since we can find a common 

divisor for all hk, k € W. At least, we can choose the internal clock time increment 

as r\. The smaller the r\ is, the more the computational burden will be. 

By Assumption 5.1 and Assumption 5.2, the sequence of sampling rates [ho, h\, 

• • • , hk, • • •] can be represented as [non, n\r), • • • , n^, • • • ], where n, > 1, i 6 J\f, are 

arbitrary positive integers and lie in the set [a, b] with a = = and b — | . Assume 

that p is the prediction horizon, q is the control horizon, and b < p. q control 

moves u{tk + M?|*fc)> * = 0,1, • • • ,q — l, are computed by minimizing a nominal cost 

J(xtk,tk) over a prediction horizon p as follows: 

min J(xtk,tk) = y2\\u(tk+ ^^11%+ y2\\x(tk + ir]\tk)\\Q 
u{tk+iv\tk), t=0,l,-,g-l f̂ jj ~ 

+ ||x(tfc+P»?|*fc)||p, (5-3) 

subject to constraints on the control input u(tk + in\tk), i — 0,1, • • • , q — 1, and on 

the state x(tk + in\tk), i = 0,1, • • • ,p, where x(tk + irj\tk) is the state predicted at 

time tk + ir] based on the measurements of time tk, x(tk\tk) is the state measured at 

time tk; u{tk + ir}\tk) is the corresponding predicted control input at time tk + in, 

and u(tk\tk) is the control move to be implemented at time tk- R — RT > 0 and 

Q — QT > 0 are weighting matrices, P = PT > 0 is the terminal weighting. Besides, 

we have the terminal constraints 

u(tk + in\tk) = u(tk + (q- l)r?|tfc), q<i<p. (5.4) 
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Assume that the exact measurement of the system state is available at each 

sampling instant tk, i.e., 

x(tk\tk)=x(tk), (5.5) 

we will have the following predictive equation: 

x(tk + (i + l)n\tk) = Adx(tk + irj\tk) + Bdu{tk + iri\tk), i G {0,1, • • • ,p - 1}, (5.6) 

where 

Ad = eA\ Bd= I* eA°daB. 
Jo 

By the discrete-time representation in (5.2) and the predictive model in (5.6), we 

can easily obtain the predictive state at time tk+\ based on the measurements at 

time tk as follows: 

x(tk+i\tk) = x(tk + nkrj\tk) = $(nk)x(tk\tk) + T{nk)U{tk), (5.7) 

where 

Hnk) = {Ad)
n\ E = A2-qBd + An

d*-q-1Bd + --- + Bd, 

p/ \ _ J l Ad Bd Ad Bd ••• Bd Onxm "•• Onxm Inxmqy ^k S Q, 

W " \[A^-lBd Anr2Bd ••• An/-i+1Bd ZUmq,nk>q. 

and the control sequence is 

U(tk) = [ u(tk\tk)
T u(tk + r]\tk)

T • • • u(tk + (q- l)v\tk)
T f • (5.8) 

Then the controller design scheme is: at each sampling time tk 

1. measure the state x(tk); 

2. compute the optimal control sequence U{tk) with the state feedback controller 

of the form 

u(tk + ir)\tk) = Fi(tk)x(tk + irf\tk) (5.9) 

such that the performance objective in (5.3) is minimized; 

rp 

3. implement the first nk control moves [ uj(tk\tk) • • • uj(tk + (nk — l)?7|ife) ] > 

and 
u(tk) = Uopt(tk)(l) = u»(*fc|tfc). (5.10) 



u(t) 
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Figure 5.2: Moving horizon strategy 

The subscript * means optimal values. The detailed graphical representative of the 

moving horizon strategy is shown in Figure 5.2. To tackle the MPC problem, the 

key is to find a solution for the optimization problem in step 2 at each sampling 

instant t\~. 

Remark 5.4 At each sampling instant tk, the optimal control sequence U(tk), namely, 

q control moves, is obtained. The first n\. control moves are implemented, which is 

different from the traditional MPC method, where only the first control move is used. 

This modified method provides enough optimal control signals for systems before the 

information at the next sampling instant is available. The larger the sampling period 

is, the more control moves of the optimal control sequence are used. 

For notational simplicity, we denote F;(-) in (5.9) by F;. In the following we will 

give a sufficient condition for the 7-suboptimal problem 

J(xtk,tk) < 7 (5.11) 

for a given 7 > 0. Throughout this chapter, we assume that the terminal weighting 

matrix P satisfies the following condition: 

Assumption 5.3 At time tk, the following inequalities hold for the terminal weight­

ing matrix P in (5.3) and control law Fq-i,i £ {1,2, • • • , n^} in (5.9): 

ei = -P+ (Ad + BdFq„i)TP{Ad + BdFq-i) + Q + F^RFg-i < 0, i = 1, • • • , n k . 

(5.12) 
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The equation in (5.12) can be transformed to standard LMIs by Schur comple­

ment, which can be easily solved. 

R e m a r k 5.5 In this chapter, we will consider the case that the prediction horizon 

is the same as the control horizon, namely, p = q = N, for simplicity. The results 

can be readily extended to the case when q < p, which will not affect our method for 

stability analysis and controller design. Only the mathematical calculation is more 

complicated. 

5.3 Stability analysis and controller design for the SD 
system 

In this section, we will show that if we select the terminal weighting matrix sat­

isfying Assumption 5.3, the closed-loop stability for the system in (5.2) with the 

unconstrained receding horizon control law in (5.8) is guaranteed. Before proceed­

ing, we introduce the following lemma, which will simplify the proof of our theorems. 

L e m m a 5.1 Assume that {P,F^-j,j = 1,2, 

tion 5.3. Then the following inequality holds: 

, n,fc} with P > 0 satisfy Assump-

" " i t — " 

-\T 

~[[(Ad + BdFN-j) 

+FN-nk
RFN-nk + 2 j 

i=\ 

x(Q + FN_nk+iRFN-nk+i) 

]\{Ad + BdFN^) 
j = i 

+ Q 

- l T 

[[(Ad + BdFN-nk+i-j) 
3 = 1 

[[(Ad + BdFN-nk+i-j) 
3=1 

< 0 

Proof: See the Appendix. 

(5.13) 

T h e o r e m 5.1 Consider the system in (5.2) and let x(tk\tk) be the measured state at 

time tk- Suppose that Assumption 5.3 is satisfied. If there exist a terminal weighting 

matrix X > 0 and Ypj-i, i — 1,2, ••• , n^, such that the following optimization 

problem is feasible: 

mm 7 (5.14) 
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subject to 

- 7 x(tk\tk)
T x(tk\tk)

T$T 

x{tk\tk) -Q 0 
. $x(tk\tk) o -v-mrT <o (5.15) 

and 

-X 
+ BdYN_i 

X 

YN-i 

*AT
d + Y^BJ 

-X 
0 
0 

X 
0 

-Q 
0 

YT 1 xN-i 
0 
0 

-R . 

<o, (5.16) 

where 

Q = Q~\ R = R-\ X = P~\ 

tf = diag{Q, • • • , Q, X}, fl = diag{£, • • • , R}, 

$ = 

Ad 

Al 

AN , 

r = 

Bd 

AdBd 

0 

iJV—2 i 

0 
0 

Bd 

(5.17) 

M L 5 , ^ - ^ „ •• 

iften i/ie staie feedback control law in (5.9) exists and equation (5.11) holds. More­

over, if equations (5.15) and (5.16) are feasible, then the control prediction sequence 

U(tk) in (5.8) is 

where 

U{tk) = -(R + T1 Q I T T J Q$x{tk) 

Q = diag{Q, ••• ,Q,P}, R = diag{R, R,--- ,R}. 

(5.18) 

(5.19) 

Proof: It is easy to see that inequality (5.12) is equivalent to inequality (5.16) by 

Schur complements, by which the terminal weighting matrix is determined. The 

cost function in (5.3) with q = p = N can be rewritten as the following equation: 

mmJ(xtk,tk) = UT(tk)RU(tk) + zT(tk)Qz(tk)+xT(tk)Qx(tk), (5.20) 

where U(tk) is denned in (5.8) and 

z{tk) = 

x{tk + r)\tk) 
x(tk + 2n\tk) 

x(tk + Nn\tk) 

$x(tk\tk) + ru(tk). (5.21) 
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Substituting equation (5.21) to (5.20), we have 

j(xtk,tk) = \\u(tk) + (B, + rTQr)-1rTQ$x(ifc)ll|+rrQr 

+xT{tk\tk)[Q + $T(* + mrT)-l$}x(tk\tk) 

Note that the cost function is quadratic (and always positive) and hence has a unique 

minimum which can be located by setting the first derivative with respect to U(tk) 

to zero [78], that is, 

dJ{xtk,tk) _ . — T — 1 T -

dU{tk) 

and 

= 0 =» U{tk) = -(R + T1 QT)-1^ Q$x(tk) (5.22) 

mmJ(xtk,tk) = xT(tk\tk)[Q + $T(% +mrT)-1$}x(tk\tk). (5.23) 

Uytk) 

By inequality (5.15) and Schur complements, inequality (5.11) can be easily derived. 

Thus, the proof is completed. • 

Remark 5.6 The optimization problem we adopted is with the finite horizon cost 

and the finite terminal weighting matrix. It is noted that the zero terminal con­

straint, which has been widely involved for stability in the existing results [3, 48], is 

not required. Moreover, the proposed method is more flexible than the conventional 

results, where the cost horizon size was required to be larger than the system order 

[48] or the number of the unstable modes [75]. 

Theorem 5.2 Let x(tk\tk) be the measured state at sampling instant tk. Suppose 

that Assumption 5.3 is satisfied. Then the feasible receding horizon control law in 

(5.18), which stems from the optimization problem in Theorem 5.1 by minimizing 

the cost function J(xtk,tk), asymptotically stabilizes the system in (5.2). 

Proof: To show the asymptotical stability of the system, we shall show that its 

Lyapunov function is strictly decreasing. Let the Lyapunov function for the closed-

loop system be 

N-l 

V(xtk,tk) = Jopt(xtk,tk) = ^2 {\\x(tk + iv\h)\\Q + \\u*{tk + ir)\tk)\\2
R} 

i=0 

+\\x(tk + Nn\tk)\\
2
P, (5.24) 
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where the optimal control sequence at time tk will be 

Uopt(tk) = [ u^(tk\tk) vZ(tk + r]\tk) u?{tk + {N- l)r,\tk) (5.25) 

We assume that the control sequence of the cost function J(xtk+1, tk+\) is denned 

as 

u(tk+i\tk+i) 
u(tk+1 +?7|*fc+1) 

U(tk+1) 
u(tk+i + (N- nk - l)rj\tk+i) 
u{tk+i + (N- nk)rj\tk+1) 
u{tk+1 + (N -nk + l)r)\tk+x) 

u(tfc+i + (JV - l)v\tk+l) 

u*(tk + nkr}\tk) 

u*{tk + (nk + l)r)\tk) 

u*{tk + (N - l)V\tk) 
FN-nk(tk+i)x(tk+1 + (N - nk)r)\tk+i) 
FN-nk+\{tk+i)x(tk+i + (N -nk + l)r)\tk+i) 

(5.26) 

L FN-i{tk+1)x(tk+i + (N- l)ri\tk+1) 

Following the idea from [49], the optimal value of J(xtk,tk) can be written as 

n » , - l 

Jopt{xtk,tk) = J{xtk+l,tk+\)+^{\\x{tk + in\tk)\\% 
i = 0 

+||u,(tfc + tJ7|«fc)||fl} + Mfc) (5.27) 

where 

Mk = \\x(tk + NV\tk)\\
2
P - \\x(tk+l + Nr)\tk+1)\\

2
P 

J V - 1 

- Yl {ii^+i+^fc+oiiQ + w^+i+^fc+oiifl}- (5-28) 
i=N-nk 

With the control sequence in (5.26), we obtain 

x{tk+i -t- iv\tk+l) = x(tk + (nk + i)ri\tk), i = 0 ,1 , • • • , N - nk, 
i 

x(tk+i + (N - nk + i)rj\tk+i) = Y[(Ad + BdFN-nk+i-j)x(tk + Nr)\tk), 
J = I 

t = l , - - - ,n f c . (5.29) 
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Substituting the above equations to (5.28), it follows that 

T 

Mk = xT(tk + NV\tk){ 

-Q-F]<_nkRFN 

" i t 

~[[(Ad + BdFN-j) 

-nk 

3=1 

nk-l 

E 

n/c 

l\(Ad + BdFN^) 
3 = 1 

-\T 

x(Q + FN_nk+iRFN-nk+i 

] j [(^d + Bd,FN-nk+i-j) 
3 = 1 

l[(Ad + BdFN 

3 = 1 

-xT(tk + M7|tfc)3»fca;(*fc + Nrj\tk). 

x(tk + Nrj\tk) 

(5.30) 

By Lemma 5.1, we have Mk > 0. Then it is easy to see from equation (5.27) that 

n j f c - l 

J(xtk+1,tk+i) ~ JoPt(xtk,tk) < - 5 Z {Wxttk + iv\tk)\\2Q + \\u*(tk + iv\tk)fR} < 0. 
i=0 

(5.31) 

Therefore, 

V(xtk+1,h+i) = Jopt(xtk+1,tk+i) < J(xtk+l,tk+i) < Jopt(xtk,tk) = V(xtk,tk) 

(5.32) 

since V(xtk+l, tk+i) is the optimal value at time tk+i while J(xtk+1, tfc+i) is a feasible 

value at time tk+\. Thus, the proof is completed. • 

Our MPC formulation of sampled-data systems can be extended to the case 

with input/output constraints. Generally, the input constraints should be satisfied 

because of physical limitations inherently in process equipment; while performance 

specifications impose constraints on the process outputs. Here we consider the 

Euclidean norm constraints at sampling instant tk as follows: 

\u(tk + ir)\tk)\\2 < u. 

\\y(tk + iv\tk)h <U. 

•max j l ?H U, tk > U, 

maxi 1 <- U, tk ^ U, (5.33) 

where y(-) is the system output satisfying y(t) — Cx(t). Then we have the following 

corollary. 

Corol lary 5.1 Consider the system in (5.2) and let x(tk\tk) be the measured state 

at time tk. Suppose that Assumption 5.3 is satisfied. Then the feasible receding 
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horizon control law in (5.18) asymptotically stabilizes the system in (5.2) if there 

exist a terminal weighting matrix X > 0, YN-I, % = {1,2, ••• ,rik} and a scalar 

7 > 0 such that the following optimization problem is feasible: 
min 7 

subject to (5.15), (5.16) and 

-yLj + CXCT < 0, (5.34) 

Proof: The constraints in (5.34) and (5.35) are easily derived from the inequality 

in (5.33) by the method in [45]. The rest proof is similar to the proof of Theorem 

5.2, hence omitted. • 

5.4 Tracking performance 

In this section, we will enhance the MPC algorithm with a reference tracking scheme. 

Once the intersampling system responses are estimated, i.e., y(tk + in\tk), i — 

1,2, ••• ,N, the next step of the predictive control strategy developed here is to 

predict the required n^-step-ahead future control signals that will drive the system 

to track a desired trajectory. We introduce the cost function as 

J V - l J V - l 

J(U(tk),tk) = ^ I K t f c + tfjItfcJII^+^IKtfc + i j j J - ^ f c + i ^ O l l g 

+ \\r(tk + Nn) - y{tk + Nn\tk)fP (5.36) 

with Q = QT > 0, R = RT > 0, and P = PT > 0. r(-) is the reference signal and 

represented by a state model: 

xr{t) — Gxr{t) ,. _„^ 
r(t)=Hxr(t) • (b-6{) 

Then we have the following theorem. 

Theorem 5.3 Consider the system in (5.2) and let x(tk\tk) be the measured state 

at time tk. Then the tracking error of the system in (5.2), with the resulting receding 

horizon control law 

Uopt(tk) = (R + TTCTQ CV)-1TTCTQ{f - C$x(tk)), (5.38) 
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will be bounded, if there exist a terminal weighting matrix X > 0, Y/v-i> i = 

1,2, ••• ,nk, and a scalar 7 > 0 such that the following optimization problem is 

feasible: 

mm 7 

subject to 

(r - C$x(tk\tk)) 

(f - C$x{tk\tk)Y 

- * - crarTc7 

-x 
AdX + CBdYN„i 

X 
YN-i 

7 T 
XAd+YT_iBTCT X Y^ 

-X 0 0 
0 -Q 0 
0 0 -R 

(5.39) 

< 0, (5.40) 

< 0, (5.41) 

and (5.34), (5.35), where \P, Q, $, T, Q and R are expressed in equations (5.17) 

and (5.19), and 

Ad = (CAdC
T+ HeGr>HT)(CCT+ HHT)~\ C = diag{C, C, • • • , C} 

r = [ rT(tk + rj) rT{tk + Nn) 

Proof: By recasting the system in (5.6) and the discretized reference signal in 

(5.37), we have 

t(tk + (i + l)v\tk) 
xr(tk + {i + l)v) 

x(tk + (i + l)r)\tk) 
eG?? 0 

0 Ad 
£(tk + iv\tk) + 

0 
Bd 

u(tk + ir)\tk) 

and 

N-l N-l 

J(U(tk),tk) = J2 IK '* + ^l*fc)Hfl + 5 3 H (̂*fc + "?!**)& -CpQlH -C] 
t=0 i = l 

+ U(tk + NV\tk)f[H _c]Tp[H _c]. 

The rest of the proof is similar to that of Theorem 5.1; thus, omitted here. Note that 

the strictly decreasing Lyapunov function, which is the same as the cost function in 

(5.36), guarantees the boundedness of the tracking error. • 
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5.5 Extensions 

The method derived for SD systems in this chapter can be extended to the case of 

networked control systems (NCSs) with network-induced time delays/packet dropouts, 

where sensors, controllers and actuators are working at variable sampling rate. To 

show how it works, the NCSs with fixed time delays are discussed as an example in 

this section. 

Assume that the fixed network-induced time delay r in the transmission satisfies 

T = dn, d € {1, • • • , TV — 1}. We have the following prediction equations: 

x(tk + (i + l)n\tk) = Adx{tk + in\tk) + Bdu(tk + (i - d)n\tk), i € {0,1, • • • , TV - 1}, 

x{tk+i\tk) = x(tk + nkri\tk) = $(nk)x(tk\tk) + QiUPast + ®2U(tk), 

where Ad, Bd, <&(nk), and U{tk) are denned in (5.6)-(5.8), and 

9 i = 

Go = 

[Af^Bd Af~2Bd ••• An
d*-dBd],nk>d, 

[Af-'Bd, Af-2Bd, ••• , Bd},nk<d, 

[ An
d

k-d-lBd ••• Bd 0 n x m ••• 0„,<m ]. nk>d, 

Upast = [ uT{tk-dr]\tk) uT{tk - (d - l)r)\tk) ••• uT(tk - rj\tk) ] . 

Remark 5.7 Here nk > d means that the delay is less than the sampling period at 

time tk, while nk < d means that the delay equals or is longer than the sampling 

period at time tk. Since nk is time-varying, both cases may be included in our 

prediction equations, which make our model more general. 

The cost function in (5.3) can be written as 

min J(xtk,tk) = UT(tk)RU(tk) + zT(tk)Qz(tk) + xT(tk)Qx(tk), (5.42) 
U{tk) 

where 

z{tk) 

x(tk + n\tk) 
x(tk + 2n\tk) 

_ x(tk + Nrj\tk) 

*x(tk\tk) + TiUpast + r2u(tk), 
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$ = 

Ad 

AN
d 

r i = 

Bd 

AdBd 

Ad
d~

lBd A^Bd 

0 
Bd 

td-2] 

A^Bd A»-'Bd 

r2 = 

\N-2 
J->d J-

0 

0 

0 

Bd 

AN
d

LdBd 

A 

0 

Bd 

AdBd 

N-d-l : 

0 
0 

Bd 

iN-d-2-, 

• 0 0 • 

• 0 0 • 
• 0 0 • 
• 0 0 • 

• Bd 0 • 

• 0 " 

• 0 

• 0 
• 0 

• o . M lBd A»-*-'Bd 

and R and Q are denned in (5.19). With the methods presented for SD systems, we 

have following theorem: 

Theorem 5.4 Consider the system in (5.2) and let x(tk\tk) be the measured state at 

time tk. Suppose that Assumption 5.3 is satisfied. Then there exists a state feedback 

control sequence in (5.8) such that equation (5.11) holds if there exist a terminal 

weighting matrix X > 0, Y/v-ii i = {1> 2, • • • , nk} and a scalar 7 > 0 such that the 

following optimization problem is feasible: 

subject to 

and 

- 7 
x(tk\tk) 

<$>x{tk\tk) + TiUpast 

-X 
AdX + BdYN-i 

X 

YN-i 

mm 7 

x{tk\tk)T ($x{tk\tk) + T^pastf 

-Q 0 

0 -$-r2f t i f 
<o 

(5.43) 

(5.44) 

-X 
0 
0 

X 
0 

Q 

YT 

xN-i 

0 
0 

<o. (5.45) 

0 -R 

Moreover, if equations (5.44) and (5-45) are feasible, then the control prediction 

sequence U(tk) in (5.8) is 

U(tk) = - ( i ? + YlQT2)-
lYlQ{$x{tk) + I W p a s 4 ) . (5.46) 
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Figure 5.3: A continuous stirred tank reactor 

Proof: The proof is similar to that in Theorem 5.1. Thus, omitted here. • 

Remark 5.8 Theorem 5.4 is obtained under the constraints that the communica­

tion delay is fixed and that its value is an multiple integer of prediction period n, 

which bring conservativeness. Loosening those constraints, such as random delays, 

is significant and difficult. New iterative prediction equations are needed. Same 

problem exists for NCSs with random packet dropouts. This research direction is 

quite new and no general results have been derived till now. We enumerate them in 

the future work. 

5.6 Numerical example 

In order to illustrate the proposed model predictive control algorithm for the SD 

system, a simple example will be investigated. Consider the following single non-

isothermal continuously stirred tank reactor (CSTR) [62] in Figure 5.3. The com­

ponent material balance on the reactant gives 

V^f- = F(CA0 - CA) ~ Vk0e-E>RTCA. (5.47) 

The energy balance for reacting system is 

VpCp^ = pCpF(T0-T)- aq[ 
b+l 

dt <ic -t- 2Pccp 

-{T-Tcin)H-^Hrxn)VkQe-ElRTCA. (5.48) 

The parameters of the plant and their steady state operating condition used for the 

CSTR process are reported in Table 5.1, by which we have the linearized equations 
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Table 5.1: Steady-state operating data 
Process variable 
Reactor concentration (CAS) 
Reactor temperature (Ts) 
Coolant flow rate (qcs) 
Process flow rate (F) 
CSTR volume (V) 
Reaction rate constant (ko) 
Activation energy term (E/R) 
Heat of reaction (—AHrxn) 
Feed temperature (To) 
Inlet coolant temperature (Tcs) 
Liquid density (p) 
Specific heats (Cp) 
Overall heat-transfer coefficients (UA) 

Normal operating condition 
0.265 kmol/m3 

394 K 
15 m3 /min 
1 m3/min 
1 m3 

1010 / m m - 1 

8330.1 K 
108 cal/kmole 
323 K 
365 K 
106 g/m3 

1 cal/gK 
5.34 x 106 cal/K 

in deviation variables are as follows [96]: 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

where x = CA 

T 

(5.49) 

with CA the reactor concentration and T the temperature, and 

u = 
CAO , with CAO the feed concentration and qc the coolant flow. A and B 

depend on the operating condition as follows: 

A = 
-F_kQe-E/RTs 

-AHrXnkoe-E/RT° 

B = 

pCp 

£ 
V 
0 

£ 
V vPcv ^n' 

0 
2.098 x 1 0 5 2 ^ P 

rxnpCpRT2 

1 0 
0 1 

koe-E/RTsCAs 

c = (5.50) 

Assume that the initial state x(0) = [0.5 1]T, Q=0.1I, R=I, N = 10, rj = 

0.05 min, and h^ € [0.05, 0.5] min, the system dynamics under the proposed MPC 

controller is shown in Figure 5.4. Figure 5.4 (a) is the trajectories of the reactor 

concentration and temperature, which show that the closed-loop system is stable by 

the controller we designed. Figure 5.4 (b) is a sequence of the changing sampling 

periods, and Figure 5.4 (c) is the upper bound of the cost function. 

Moreover, in order to assess the tracking capability of the proposed controller 

based on the MPC scheme, a square wave reference input as shown in Figure 5.5 
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Reactor Concentration 
Reactor Temperature 

j i i 
4 5 6 

J i— J 
4 5 6 

J i I 
4 5 6 

Time [ \min ] 

Figure 5.4: State trajectories of the plant 

(a) has been introduced. The goal is that the reactor temperature should track the 

reference waveform and satisfy 392 < T < 396 K, by adjusting the coolant flow. The 

change in coolant flow satisfies |Agc| < 15 m3/min. Assume that G = 0, H — 1, 

C — [0 1], Q — 50, R — 0.01 and XQ is the steady state, then we have Figure 5.5, 

where Figure 5.5 (a) shows that the output of the plant can track the reference input 

effectively and Figure 5.5 (b) is a sequence of the time-varying sampling period. Note 

that the change of the coolant flow in Figure 5.5 (c) is less than 15 m3/min. 

5.7 Summary 

In this chapter, the problem of model predictive control for sampled-data systems 

with variable sampling periods has been studied. Based on the minimization of the 

finite horizon quadratic cost function at each sampling instant, a state feedback pre­

dictive control sequence has been derived. In order to achieve stability, a condition 

on the finite terminal weighting matrix P, which has some free parameters and can 

be converted to an LMI, has been proposed. The asymptotical stability conditions 

with and without input/output constraints have been presented respectively for the 

a -o.i i i i L_ 
= > 0 1 2 3 

(c) 
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Figure 5.5: Tracking performance of the predictive controller 

closed-loop system resulting from the proposed control sequence. Simulation results 

show the feasibility and effectiveness of our method. 

APPENDIX 

Proof of Lemma: We prove it by Mathematical Induction method. By Assump­

tion 5.3, we have 

Hi = -P+[(Ad + BdFN-l)}
TP{(Ad + BdFN-l)) + Q + Fj;_1RFN_1 = el<0 

S2 - -P + [(Ad + BdFN-X)(Ad + BdFN„2)]
TP[(Ad + BdFN-x)(Ad + BdFN_2)} 

+Q + F%_2RFN„2 + [(Ad + BdFN.2)]
T(Q + i ^ - i ^ - O K A * + BdFN_2)} 

= [(Ad + BdFN-2)]
TEi[(Ad + BdFN-2)) + 6 2 < 0 

Assume that the inequality in (5.13) is true for n^ = m,m £ {1,2, ••• , nfc — 1}, 

namely, 

Hm - -P + Y[(Ad + BdFN. H(Ad + BdFN-j) + Q + FN_mRFN-m 
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m—1 

+ E 
t = i 

l[(Ad + BdFN 
—m+i—j) 3=1 

(Q + FN-m,+iRFN-m+i) 

l[(Ad + BdFN 

—m-\-i—i) 

3 = 1 

<o 

Then we have 

5m + i = -P + 
\m+l) 

J ] {Ad + BdFN-j) 
3 = 1 

'(m+1) 

J! {Ad + BdFN„j) 
3=1 

+ Q 

( m + l ) - l 

+FN-(m+l)RFN-(m+l) + / _ / 
i = l 

11 {Ad + BdFN_^m+1-)+i_j 

3=1 

\\iAd + BdFN_{jn+l-)+i_j) 
3=1 

X(Q + ^ V - ( m + l ) + i - R - F J V - ( m + l ) + ' 

Hm+i + {Ad + BdFN_{m+1))
TP{Ad + BdFNAm+1)) 

-{Ad + BdFN_{m+l))
TP{Ad + BdFN_{m+l)) 

= 6 m + 1 + {Ad + BdFN_{m+l))
T I -P + Y[{Ad + BdFN^} 

3 = 1 

xP Y[{Ad + BdFN-j) 
7 = 1 

+ Q + Fj,_mRFN_m ) {Ad + BdFN_(m+1)) 

( m + l ) - l 

+ E 
i=2 

- ] T 

\[(Ad + BdFN_(m+i)+i_j) 
3=1 

{Q + FN_(m+1j+iRFN_(m+1)+i) 

[[(Ad + BdPN-(m+l)+i-j) 
3=1 

= 0 m + i + {Ad + BdFN_{m+l))
T {-P + Q + F%_mRFN„ 

-\T 

]J{Ad + B^^) 
3 = 1 

( m - l ) + l 

f[{Ad + BdFN-j 
3 = 1 

+ E 
»- i 

11 (̂ <i + BdFN-m+{i-V)-j) 
3 = 1 

{Q + FN-m+(i-l)RFN-m+(i-i-)) 
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i - 1 

(Ad + BdFN_(m+1)) lJ,(Ad + BdFN_m+(^i_1yj) 

\{Ad + BdFN_(m+1))}
TEm[{Ad + BdFN_(m+1))} + Qm+1 < 0. (5.51) 

Thus, the proof is completed. • 
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Chapter 6 

Conclusions and Future Work 

This dissertation has presented general models for a class of NCSs, provided corre­

sponding controller designs with the consideration of network and control parame­

ters, formulated and solved optimal control problems to compensate for communi­

cation delays/packet dropouts, and validated the analysis and design of NCSs. The 

main contributions of this dissertation are summarized below: 

• The problem of control using MJLSs has been formulated and studied. Ear­

lier approaches exist, for instance, de Souza [18], Niculescu [67], Costa [16], 

Benjelloun [43], Cao [11, 12], Fridman [25], and Lee [50], but this dissertation 

gives methods that allow comparison with earlier results within a common 

structure. The simulations show that the results in this dissertation are less 

conservative. 

• Using the method developed for MJLSs in this dissertation, NCSs with ran­

dom packet dropouts has been investigated. The modeling of the closed-loop 

NCS is a nice generalization of MJLSs with time delays, where the Markov 

chains are used to describe not only the information that if a packet is dropped 

or not, but also how many packets have been dropped since the last success­

ful transmission. This study has been enriched by extending the case in a 

single-packet transmission protocol to that in a multiple-packet transmission 

protocol. 

• The stabilization problem of NCSs with communication delays has also been 

discussed with the developed method for MJLSs. While sensor-to-controller 
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delays can be known by using synchronized clocks and time-stamped pack­

ets, the upcoming controller-to-actuator delay is unknown, which makes the 

compensation difficult. To compensate the delayed data, a standard MPC 

method has been introduced in the controller design. The control scheme has 

been characterized as a constrained optimization problem of the worst-case 

quadratic cost over an infinite horizon at each sampling instant. 

• Several reasons for plants with variable sampling rates have been investigated, 

which motivated the study of SD systems with variable sampling rates in this 

dissertation. An modified MPC approach has been formulated to stabilize the 

resulting closed-loop system, where the controller has been obtained based on 

the minimization of an upper bound of the worse-case finite horizon quadratic 

cost function with a terminal weighting matrix. The results have been finally 

extended to NCSs with fixed delays. 

The research presented in this dissertation has provided general methods for 

modeling, analysis and design of NCSs. It lays a foundation for future research 

efforts in NCSs. We conclude this dissertation by listing some future research direc­

tions: 

• In Chapter 5, we discussed the control problem for NCSs with variable sam­

pling period under the assumption that the communication delay is zero or 

fixed. The case that the communication delays are time-varying or random is 

not discussed. Since the controller-to-actuator delays are unknown and diffi­

cult to compensate, how to get a general mathematical model is an important 

problem needed to be solved at first. New system analysis and controller 

design are required for NCSs with variable sampling rates. The problem also 

exists for NCSs with packet dropouts, where the sampling period changes with 

time. The study for NCSs with variable sampling rate is quite new and many 

problems are still open. Thus, this research is of importance in both theory 

and practice. 

• Throughout the dissertation, we considered three related issues in NCSs. 

There are several more interesting problems in the area of NCSs worth in­

vestigation, such as problems with system uncertainties, perturbations, noise, 
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packet disordering, scheduling, nonlinearity and so on. How do these issues 

affect the performance of NCSs? How to design controllers to stabilize the 

NCSs with these issues? 

• The hidden Markov case, where the state of the Markov chain is unknown, 

is not treated in the dissertation. A method for prediction of controller per­

formance when using an estimated Markov state would be very useful. This 

problem is very hard. An interesting study would be to try the theory from 

adaptive control [1, 20]. 
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