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Abstract
We consider the problem of estimating the basic reproduction number R0 from data on prev-

alence dynamics at the beginning of a disease outbreak. We derive discrete and continuous

time models, some coefficients of which are to be fitted from data. We show that prevalence

of the disease is sufficient to determine R0. We apply this method to chronic wasting disease

spread in Alberta determining a range of possible R0 and their sensitivity to the probability of

deer annual survival.

Introduction
The basic reproduction number [1], R0, is one of the well-known epidemiological characteristics.
It quantifies the average number of secondary cases per infected individual in the beginning of a
disease outbreak. It’s most common use is to determine vaccination level needed to stop disease
spread. In the simplest case, when sex, age and social structure are not important, and the rate of
a disease spread depends only on the total number of infected individuals, R0 equals to the mean
number of new infections per a currently infected individual in a totally susceptible population. If
a part of the population is vaccinated, some of these R0 individuals do not develop the infection.
As a result, the disease spread slows down. For example, if R0 = 4, then the disease would not
spread if 3 out of 4 individuals are immune; that is, at least 1 − R0

−1 = 75% of individuals have to
be vaccinated and develop an immune response.

Generalization of R0 for the case where there are several categories of infected individuals
with differences in survival or disease spread rate, has been suggested by Diekmann et al. [2].
Here the basic reproduction number describes the ratio of the total number of individuals in
two successive generations provided the proportions of infected individuals of all types corre-
spond to the so-called the stable composition, a mixture of infection types that one would
expect to see if the disease were allowed to grow at low levels for many generations. Diekmann
et al. [2] describes this as the “typical number of secondary cases per infected individual”.
Mathematically, this definition of R0 is equivalent to the spectral radius (maximum eigenvalue)
of the next-generation operator and the stable distribution is given by the associated
eigenvector.
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In some instances, there is a problem of backward bifurcation [3], where disease can break
out even when R0 < 1. This is possible for certain kinds of dynamics, providing the infectives
are introduced at levels sufficient to induce nonlinear feedbacks. However, in numerical studies
of Chronic Wasting Disease, to which we apply our analysis, a backward bifurcation has not
been observed. Therefore it is not envisaged in our analysis, but is discussed further in the Dis-
cussion section

We present a generalization of the method for calculating R0 from the intrinsic growth rate
of infection in a population [1] for the case where there are multiple infectious compartments
reflecting individual age, sex and perhaps other characteristics. Similar to the method of intrin-
sic growth rate, we do not assume any specific disease transmission mechanism (e.g. density or
frequency-dependent), but approximate the matrix of marginal force of infection from
observed data. This matrix plays the role of the intrinsic growth rate. The second novelty is
that we base our approach upon the equation for the change of the disease prevalence over
time. The resulting model is linear and calculation of R0 is then done by standard methods.
Our approach is useful when the mechanisms of disease transmission are incompletely under-
stood or too complicated to fully model. However, it relies on a record of the growth in preva-
lence during the early stages of the disease outbreak when the prevalence is close to zero.

We apply the method to estimate R0 for chronic wasting disease (CWD), a slowly spreading
prion disease of cervids for which there is limited information about the exact mechanisms of
host transmission, but where data about the growth of disease prevalence were collected from
mandatory surveillance in Alberta programs over the past 8 years. CWD was first detected in
the wild in a mule deer in Saskatchewan (SK) near the Saskatchewan-Alberta border in 2000.
In Alberta 210 infected cases, primarily mule deer, have been detected since 2005 in the Battle
River and Red Deer/South Saskatchewan River drainages [4]. Our previous publications [5,6]
focused on developing models of CWD transmission and harvest management. Here we par-
tially relied on previously published transmission models [6] as one of the approaches to
reduce the number of parameters in the problem of R0 estimation. In this paper, we simplify
these models and fit them to early growth of the disease so as to obtain a range of possible R0

values. The obtained values of R0 may allow managers to evaluate risk of each infected individ-
ual for evaluating control strategies even during the early stages of the disease outbreak. We
note that models for CWD in cervids are considered in a number of papers, e.g. [7,8,9,10,11].
However, due to complexity of the processes involved, a reliable parameterization of a more or
less detailed model has not been possible. For this reason, here we consider a very basic linear
model, fit it to available data, and then estimate R0.

Theory
Disease models typically include several compartments indicating disease status (e.g., suscepti-
ble, infected, exposed individuals), which in turn could be subdivided into categories of popula-
tion structure such as sex or age. Below, we only keep track of infected individuals, assuming
that 1) all categories of susceptible individuals are at disease-free equilibrium S0k and 2) the
model including only susceptible and infected individuals can effectively describe the disease
dynamics even if the disease has an exposed (or latent) stage [6,12]. So, susceptible individuals
are implicitly present in the model.

General assumptions about the disease transmission function
Consider the case with n types of infected individuals, describing sex and age classes. If we
denote the number of infected individuals in class k at time t by Ik(t), then the disease preva-
lence in the k-th type at time t is ik(t)� Ik(t)/S0k << 1. Growth in the number of the k-th type
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of infected individuals is described by a force-of-infection function fk(i1,. . .,in), which is
unknown. Individuals leave the infected class at a per capita ratemk due to mortality or recov-
ery or both, which are equivalent within the frame of our approach. For CWD, there is no
recovery class, so we use the terms mortality and survival rate only. We assume that, at low
prevalence, the transmission function is proportional to ik(t), which is typical of the most com-
monly used transmission functions. In other words, we exclude dependencies having the lead-
ing terms like ik

q, q 6¼ 1; see an example in [13] for the case 0< q< 1. Because there is no
transmission in the absence of the disease, fk(0,. . .,0) = 0. For ik << 1, higher order terms ik

2,
ikim,. . . become negligible, and the linear approximation of the force of infection suffices:

fkði1; . . . ; inÞ � Fk1i1 þ Fk2i2 þ . . .þ Fknin ¼
Xn
j¼1

Fkjij; ð1Þ

where Fkj describes the disease transmission from individuals of type j to type k.
It is possible to construct both continuous-time and discrete-time models of the disease-

prevalence growth, either of which can be used to calculate R0. The choice of model is a matter
of convenience, and should most probably be determined by whether mortality rate or per-
year survival is available.

We consider the case when infected individuals do not change their compartment; that is,
they only become infected due to the force of infection, and then die or become uninfected.
This is true, for example, when there is no age structure for the infected individuals, juveniles
are practically noninfected, or the disease duration is short, such that change of age class of
infected individuals (juvenile/adult) can be neglected. In the end of this section, we discuss the
changes in the approach if age structure is necessary.

Discrete-time model
Here we derive a linear matrix model for the disease prevalence and show that it alone is suffi-
cient to obtain R0. In the case of the discrete-time model with time step τ, mortality is described
by per-time-step survival probability of infected individuals, sIk, and healthy individuals, sHk.
The latter appears in the term of new infections where in most cases it is reasonable to assume
that, during the first time step, mortality of newly infected individuals should be the same as
that of the healthy ones. The dynamics of the infected compartment is described by the equa-
tion

Ikðt þ tÞ ¼ ð1� expð�tf ði1; . . . ; inÞÞÞsHkSkðtÞ þ sIkIkðtÞ: ð2Þ
Using approximation (1) and taking into account that, for 0� x<< 1, 1 – e−x � x, we obtain
the following model for the number of infected individuals:

Ikðt þ tÞ ¼ tsHkS0k
Xn
j¼1

Fkjij þ sIkIkðtÞ; ð3Þ

Or, for the prevalence,

ikðt þ tÞ ¼ tsHk
Xn
j¼1

Fkjij þ sIkikðtÞ: ð4Þ

This equation allows us to fit F, which we call the matrix of “marginal force of infection”, from
the data on change in the observed disease prevalence. However, to estimate the basic repro-
duction number, which is the number of new infections per one typical individual, we need to
operate in terms of the number of individuals rather than prevalence. To connect these two
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quantities we introduce the diagonal matrices of both numbers of susceptible individuals and
per time step survival probabilities. Denoting

D ¼ diagðS01; . . . ; S0nÞ; SH ¼ diagðsH1; . . . ; sHnÞ; SI ¼ diagðsI1; . . . ; sInÞ; ð5Þ

and using the matrix D to relate prevalence and the number of infected individuals, I = Di or
i = D−1I, it is possible to write a simplified form of Eq (3) in matrix form as

Iðt þ tÞ ¼ ðtSHDFD�1 þ SIÞIðtÞ: ð6Þ
The basic reproduction number R0 is the spectral radius ρ(�) [2,14,15] or the maximum eigen-
value of the next-generation matrix G,

R0 ¼ rðGÞ; G ¼ tSHDFD
�1ð1� SIÞ�1

; ð7Þ

[16]. However, it is simple to show that eigenvalues of the matricesM = τSHF(1 − SI)
−1 and G

coincide provided D−1(1 – SI)
−1 = (1 − SI)

−1D−1, SHD = DSH, which is always true if the matrices
are diagonal. Since in this case

G ¼ DðtSHFð1� SIÞ�1ÞD�1 ¼ DMD�1; ð8Þ
Gu = λu impliesMv = λv where v = D−1u, and hence

R0 ¼ rðMÞ; M ¼ tSHFð1� SIÞ�1
: ð9Þ

Note that we do not need to know the matrix D and the equation for the prevalence (4) is
enough to obtain R0. Therefore, if the matrix of marginal force of infection F can be estimated
from data by fitting model (4), calculation of the basic reproduction number is straightforward.
Survival matrices S (5) must be obtained elsewhere.

The continuous-time model can be considered in a similar way (see Appendix A1 in S1
File). It also is possible to show the equivalence of both approaches (Appendix A1 in S1 File):
for small time steps τ (9) turns into the relation for the continuous-time case. Therefore both
continuous and discrete time approaches are equivalent, and the choice of discrete or continu-
ous time model is a matter only of preference.

Meaning of matricesM andG = DMD−1

The next-generation matrix G can be called the matrix of secondary infections, because its
entry Gij is the number of secondary infections of type i produced by one infected individual of
type j during its lifetime (see e.g. [14,17]). Therefore the sum of the entries in column j,

qGj ¼ G1j þ G2j þ . . .þ Gnj; ð10Þ

is the total number of new infections produced by one infected individual of type j during its
lifetime. It is sometimes true that qGj may be greater than R0. That is, if we have only one
infected individual of this type, in the next generation the number of infections will be greater
than R0. However, after many generations, when the proportions of infected individuals of dif-
ferent classes stabilize, the number of new infections will grow as R0.

Consider a simple example. Let there be two types of infected individuals—e.g. males (i = 1)
and females (i = 2) of some species—and

G ¼ 2 4

0 3

 !
: ð11Þ

(Instead of zero there may be a small number, but conclusions remain the same.) Here R0 = 3,
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but qG1 = 2 and qG2 = 7. Such an asymmetry may arise because, for example, one sex may infect
the other during mating, but not vice versa. Therefore one male leaves behind two infected
males, while one female infects 4 males and 3 females. If infection starts from one infected
female—that is, with the state (0,1)—then the first 4 generations look as follows

ð0; 1Þ ! ð4; 3Þ ! ð20; 9Þ ! ð76; 27Þ ! ð260; 81Þ ! . . .

After 6 generations, the ratio of infected males to females becomes about 3:1, and when it
reaches 4:1 then at the next generation the ratio is 12:3 = 4:1. That is, this proportion repro-
duces itself exactly at the rate R0. Note that this description in terms of generations of infected
individuals may differ from the dynamics of the total number of infected since the generations
often overlap in time. At any given moment there may be infected individuals belonging to sev-
eral generations.

In practical management, when short-term goals are considered, other characteristics can
be important as well. For example, if the management goal is to minimize the number of infec-
tions in the next generation, it would be optimal to concentrate on removal of infected individ-
uals with the maximum qGj, which in the example above is infected females.

In contrast with Gij, which is the number of infected individuals in successive generations,
Mij relates prevalence in the next generation of infected individuals of type i to the current gen-
eration of infected individuals of type j. In general, it does not make sense to sum up prevalence
for different types of individuals, and therefore it is hard to define analogs of qGj forM. The
relation between G andM depends on population proportions of individuals of different types,
Gij = (S0i/S0j)Mij; therefore only weighted sums ofM entries make sense.

Non-diagonal mortality or survival matrix
The above analysis was done for the case of diagonal mortality matrix V or survival matrix S,
when infected individuals cannot change their compartment except for leaving the infected
state. For age-structured models, when infected individuals may change their age class, in gen-
eral G 6¼ DMD−1 and eigenvalues ofM and Gmay be different. Then the population structure
becomes important for the disease dynamics and, like the calculation of qG, information about
population proportions is necessary. Fitting a model based on disease prevalence still gives a
marginal force of infection F, but calculation of R0 now requires the matrix DFD−1, whose
entries are Fkj × (S0k / S0j). The mortality/survival matrix in the equation for prevalence also
changes to D−1VD or D−1SID. For deer, one needs to know population ratios like buck:doe and
fawn:doe to estimate R0.

Fitting the marginal force of infection matrix F from the observed data
The specific algorithm of fitting depends on the nature of the data. In our case, we have a sam-
ple from the deer population provided by hunters, where we know the number of positive and
negative cases, and sex of each deer. We used a stochastic model of population harvest (see
Appendix A2 in S1 File) and maximum likelihood estimates of model parameters to derive
AIC-based selection models.

Note that survival probabilities or mortality rates could be obtained from separate studies.
Nonetheless, the number of model parameters to be fitted is still greater than the size of the
matrix F. First, it is necessary to fit the prevalence at the initial moment. Second, the specific
tasks may require accounting for management actions and/or immigration or emigration of
infected individuals, which also creates additional parameters. If the amount of data is insuffi-
cient for estimating all the parameters, or there are other problems with parameter estimability,
it may be necessary to simplify the model. This can be done with the help of simplifying
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hypotheses, both empirical and mechanistic. Then methods of statistical model selection may
be very helpful for obtaining the results. An example of estimating the basic reproduction num-
ber in such a situation is presented in the next section.

Application to CWD in Mule Deer in Alberta

3.1 Methods and data
In Alberta, ongoing voluntary submission of hunter-harvested deer heads for testing on CWD
began in 1998. Mandatory head submission began in 2006 within an area of CWD risk that
increased from 131,000 km2 in 2006 to 565,900 km2 in 2010–2012. The area of mandatory test-
ing seems to be large enough to cover the affected area during this study. We assume that
CWD prevalence in hunter-harvested deer is equal or proportional to that in the wild popula-
tion. At present, there is no agreement whether a hunter harvest prevalence estimate is biased
or non-biased. However, in our case, for estimating R0, proportionality is enough. It means
that the prevalence in harvested individuals and in the population is related as ik,harvest = Bkik,
provided the coefficients Bk do not change with time (the non-biased case corresponds to Bk =
1). Then it can be shown that, in the case of diagonal survival matrices, ik,harvest leads to the
same R0 estimate even if the bias is different for each deer category (when all Bk are equal, the
diagonality of survival matrices is not necessary).

The complication of modeling CWD prevalence in Alberta is related to two things. First, in
2005–2008, a winter herd-reduction program was implemented with the goal of removing all
deer within 10-km circles around the location of each fall hunter-harvested infected deer. In
these open Prairie and Parkland areas, a total of over 7,000 deer were removed during winter
disease-control programs. At the same time, there may be a continuing inflow of infected indi-
viduals from Saskatchewan, most probably young males because they are more likely to dis-
perse [18,19,20]. Indeed, Nobert [21] found newly detected CWD positive cases in deer were
influenced by their connectivity of sources in Saskatchewan. We adapted the above models to
account for these influences.

Alberta CWD surveillance data includes the number of CWD-positive and negative males
and females killed by hunters each year in 2006–2011 (Table 1) and in the herd-reduction pro-
gram in 2006–2008 (Table 2) but do not report their age. Therefore only two classes of infected
individuals (n = 2), males and females could be considered. We index k = 1 for males and k = 2
for females; hence matrix Fki is a 2 × 2 matrix.

Annual survival rates for healthy mule deer in eastern Alberta were taken fromMerrill et al.
[22], where sH1 = 0.58 (males) and sH2 = 0.87 (females). Survival rates of infected deer in
Alberta have not been measured directly. As a result, we used data fromMiller et al. [23] indi-
cating that the survival rate for infected mule deer females decreases by a factor of 0.64 (from
0.82 to 0.53), such that sI2 = 0.87 × 0.64 = 0.56; we assumed equal survival reduction for males
where sI1 = 0.58 × 0.64 = 0.37.

Immigration of infected deer from outside Alberta requires the inclusion of an additional
term. If there were a positive annual difference between the number of immigrated and emi-
grated infected individuals, ΔI, this would mean an increase in prevalence by j = ΔI / S0. We
assume these values are constant across years.

The influence of the herd-reduction program can be estimated in a similar way. If, in year t,
ΔIC individuals were removed by culling programs, this would result in a prevalence reduction
of Δi = ΔIC / S0 = γΔI, γ = 1 / S0. However, because the numbers of susceptible males and
females are unknown, the coefficients γk should be fitted from the data as well.
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The full model to be fitted to data is as follows:

i1ðt þ 1Þ ¼ tsH1F11i1ðtÞ þ tsH1F12i2ðtÞ þ sI1i1ðtÞ þ j1 � g1DIC1ðtÞ; ð12Þ

i2ðt þ 1Þ ¼ tsH2F21i1ðtÞ þ tsH2F22i2ðtÞ þ sI2i2ðtÞ þ j2 � g2DIC2ðtÞ: ð13Þ
The model contains up to 10 unknown parameters; to obtain the estimate of the basic repro-
duction number, we reduce this number down to 4−7 using simplifying hypotheses and model
selection. The full set of parameters includes the matrix Fki, net immigration rates jk, culling
factors γk, and initial prevalence ik(2005). Because the surveillance data provide the number of
positive and negative cases for males and females for 6 years—that is, only 24 numbers—we
assume that either some jk or γk are zero, or that the matrix F has a special structure or a fixed
proportion in the initial data. We compare the models resulting from each of the assumptions
with the help of AIC and AICC. In the latter case, we estimate the correction term for n = 24
data points.

Fitting the model to data was done using maximum likelihood; standard error was estimated
from Fisher information. Statistical models for the likelihood of the number of positive cases
given prevalence and the total number of harvested individuals is in Appendix A2 in S1 File.
The models were compared by likelihood estimates, and AIC and AICC values. To improve the
accuracy of R0 estimates, in some cases we have chosen R0 as an estimated parameter instead of
one of F entries. The idea of the approach is as follows: for example, we have a 2 × 2 matrix
with the entries a,b,c,d and the largest eigenvalue λ. They are related by bc = (λ − a)(λ − d).
Assuming c is nonzero, we can express b through λ and estimate parameters a,λ,c,d.

3.2 Results
Observed CWD prevalence for all deer sampled in 2006–2011 and the trajectory of the fitted
model are plotted in Fig 1. We attempted to fit models (12) and (13) with different combina-
tions of culling γ1,γ2 and net immigration j1,j2 terms to determine which of them are essential
for assessing model fit (Table 3). The lowest AIC and AICC supported by the model are in line
12 of the table, which includes a culling term only for females γ2 � 3.4 × 10−4 and has R0 � 4.0.

Table 1. Hunter harvest and CWD prevalence estimates for 2006–2011.

year Male negative Male positive male prevalence female negative female positive female prevalence

2006 727 2 0.0027 1059 2 0.0019

2007 1252 5 0.0040 1923 1 0.00052

2008 1184 6 0.0050 1455 1 0.00069

2009 1104 9 0.0081 1488 3 0.0020

2010 1450 13 0.0089 1471 5 0.0034

2011 865 18 0.0208 1060 12 0.0113

doi:10.1371/journal.pone.0140024.t001

Table 2. Cull data for adult mule deer and comparison of prevalence in cull and hunter harvest animals. Two numbers marked with bold show very
high ratio of CWD prevalence in culled and hunter-harvested animals.

year male neg/
pos

male prev.,
cull

male prev.,
hunt

male cull/
hunt

female neg/
pos

female prev.,
cull

female prev.,
hunt

female cull/
hunt

2006 509 / 5 0.00973 0.00274 3.5 651 / 4 0.0061 0.00189 3.2

2007 190 / 4 0.02062 0.00398 5.2 315 / 6 0.0187 0.00052 36.0

2008 350 / 11 0.03047 0.00504 6.0 484 / 4 0.0082 0.00069 11.9

doi:10.1371/journal.pone.0140024.t002
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The corresponding matrix F was

F � 1:1 3:3

0:1 2:0

 !
: ð14Þ

However, the standard error exceeded values of the parameters. This happens because the pro-
file of log-likelihood is close to flat in some directions and large changes of parameters along
them lead to small changes in likelihood. To find these directions, we found eigenvalues and
eigenvectors of the Hessian matrix at the point of likelihood maximum. There were two small
eigenvalues, and the direction of the one of the eigenvectors almost exactly coincided with the
initial prevalence for males, while the second eigenvector was a mixture of all parameters with
the weights between 0.1 and 0.6, and did not allow for a simple interpretation.

To avoid the problem of estimating the initial prevalence, we fixed 7 different male:female
ratios in 2005 as 1:0, 3:1, 2:1, 1:1, 1:2, 1:3 and 0:1, which reduces the number of initial preva-
lence parameters from 2 to 1. These ratios may be considered as alternative hypotheses about
the initial disease state; we tested all of them and chose one with the least AIC.

Hypotheses about the initial state solved the problem with estimability of the initial preva-
lence, but the second dimension of flatness in parameter space still did not allow us to obtain
reasonable error estimates (Table 4, row 1). For this reason, additional hypotheses about the
matrix F—that is, about CWD transmission—were necessary.

Empirical hypotheses about F. The values of F entries correspond to hypotheses about
CWD transmission. These are formulated in [6]. Important components in CWD transmission
may be sexual segregation (transmission within male and female social groups), between-
group or within-mixed-group transmission, and transmission from females to males during
mating. The four entries of F can be interpreted as characterizing the intensity of these
mechanisms:

F11 (males to males)—transmission within male groups;

F22 (females to females)—transmission within female groups;

F12 (females to males)—combined transmission within mixed groups, between groups, and
mating (rut) transmission from females to males;

F21 (males to females)—combined transmission within mixed groups and between groups;

We tested 10 types of matrix F, depending on 1, 2 and 3 parameters. The results are pre-
sented in Table 4 as models 2 to 11. We assume some of the entries are zero or equal. Column
2 shows the assumed type of the matrix F (template) with a,b,c,d being parameters to fit. Col-
umn 3 describes the corresponding hypothesis. Other columns show the details of the estimate.
Formally, the best hypothesis is #8 with AIC = 49.4 and diagonal F with the same disease trans-
mission both in males and females. However, five other cases cannot be totally rejected. Three
models with the lowest AIC values have R0 equal to 3 or higher.

Deriving F from frequency-dependent disease transmission model. In [6] we have
derived a number of expressions for force-of-infection terms corresponding to possible trans-
mission paths for CWD that produce the observed 2:1 prevalence in males:females. The expres-
sions for force of infection depend on population proportions, seasonality, transmission
coefficients, and the disease prevalence. Assuming reasonable values for population parameters
and linearizing the expressions with respect to prevalence, we obtain the entries of matrix F
depending on two unknown transmission coefficients; see details in Appendix A3 in S1 File. It
can be presented as a template with two parameters to fit, similar to empirical templates in
lines 2 to 11 of Table 4. We tried six combinations of population parameters (see Appendix A3
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in S1 File). Four of them gave close values of AIC, and one of the two models is shown in
Table 4 in row 12. It appears second best in Table 4 with respect to AIC value.

Fig 1. Circles show CWD prevalence in Alberta from hunter-harvest data in Table 1. Solid lines show
Eqs (12) and (13) fit to the data. Various models correspond to different hypotheses about “fecundity”matrix F
and are explained in Table 4.

doi:10.1371/journal.pone.0140024.g001
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Sensitivity of R0. For model 8, which has the lowest AIC and AICC, the estimate of R0 is
quite simple and allows us to see the sensitivity of the results to survival rates. Because the matrix
F is diagonal, R0 = F22sH2/(1 − sI2), provided the survival rates satisfy sH2/(1 − sI2)> sH1/(1 − sI1)
(typically, survival rate for males is lower than for females [6]). Then, by differentiating with
respect to sH2 and sI2, one obtains:

sensitivity: @R0 / @sH2 = R0 / sH2 � 1.18R0, @R0 / @sI2 = R0/(1 − sI2)� 2.78R0;

elasticity: @ln R0 / @ln sH2 = 1, @ln R0 / @ln sI2 = sI2 /(1 − sI2)� 1.78.

Therefore R0 is sensitive to survival rates of both infected and uninfected females.
Which sex leaves more secondary infections?. The number of secondary infections per

one male qG1 and per one female qG2 depend on population proportions, in our case on buck:
doe ratio. Assuming buck:doe = 1:3 and 1:6, we calculated the values of qG1 and qG2 for all mod-
els in Table 4, and the results are presented in Table 5. In both cases, the four models with the
lowest AIC have qG2 > qG1, which means that females create more secondary infections than
males. For a buck:doe ratio of 1:3, qG2 is even greater than R0. Fig 2 shows the values of R0 plot-
ted vs AIC for the best models with 49<AIC<55 (circles) with qG1 and qG2 for buck:doe = 1:3
denoted by letters M and F respectively.

One explanation for this effect is higher survival rate for females: they live longer, have
more time to transmit the disease to more individuals, and have more opportunity to infect
more individuals through social and/or maternal behaviours. In addition, models 1, 2, 7, 10
and 12 in Table 4 support a higher transmission rate from females to males than vice versa.
This may happen due to mating transmission and because of a higher proportion of females;
see the derivation of the F template in Appendix A3 in S1 File.

This result means that removal of one infected female prevents more new infections than
removal of one infected male. It may be one of the reasons why the lowest-AIC model in
Table 3 accounts for the culling of females, but not males (γ1 = 0, γ2 > 0).

Table 3. Fitting 6 to 10 parameter models to data, with culling terms γ1,γ2 and immigration terms j1,j2
present (+) or absent (–); see Eqs (12) and (13). The model in row 12 with the lowest AIC and AICC is
shown in bold; it shows no culling effect for males. AICC also supports model in row 16 with no culling effect
for either males or females. None of the best models show significance of immigration terms.

γ1,γ2 j1,j2 AIC AICC R0

1 +,+ +,+ 62.2 79.1 3.95

2 +,+ +,– 60.2 73.1 2.78

3 +,+ –,+ 60.2 73.1 2.63

4 +,+ –,– 58.2 67.8 4.58

5 +,– +,+ 64.6 77.5 3.05

6 +,– +,– 62.6 72.2 3.04

7 +,– –,+ 62.7 72.3 3.02

8 +,– –,– 60.7 67.7 2.98

9 –,+ +,+ 60.3 73.2 3.67

10 –,+ +,– 58.3 67.9 4.37

11 –,+ –,+ 58.3 67.9 3.64

12 –,+ –,– 56.3 63.3 3.89

13 –,– +,+ 62.6 72.2 3.05

14 –,– +,– 60.6 67.6 3.03

15 –,– –,+ 60.7 67.7 3.02

16 –,– –,– 58.7 63.6 3.03

doi:10.1371/journal.pone.0140024.t003

Empirical Estimation of R0 for CWD in Alberta

PLOS ONE | DOI:10.1371/journal.pone.0140024 October 9, 2015 10 / 15



Conclusions. For all models in Table 4 with low AIC, we can see the following common
features:

• there is strong disease transmission within each sex; therefore sexual segregation is important
for disease transmission;

• there is no strong disease transmission from males to females;

• data cannot exclude strong disease transmission from females to males, because of the higher
proportion of females and probably transmission during rut and doe interactions with male
fawns and yearlings in the early social groups.

The estimates of R0 vary from 2.2 to 4.5 with most of the estimates exceeding 3.

Discussion
In this paper, we develop a technique for estimating the basic reproduction number R0 from
data on disease-prevalence dynamics in case of a structured population. R0 shows the mean
number of secondary infections per one infected individuals. The disease spreads provided
R0 > 1. On the other hand, if the disease-control measures (vaccination, removal of infected

Table 4. Testing hypotheses on the details of disease transmission (structure of the matrix F in Eqs (12) and (13)). Hypotheses with ΔAIC < 2 are
marked with bold font. The same four models have the lowest AICC as well.

# F type Hypothesis R0±se AIC AICC F γ2 × 10−4

8 a 0

0 a

 !
No f$m 3.95±0.41 49.4 50.6 2:01 0

0 2:01

 !
4.0±1.0

12 1:1a b

0:1a 1:27a

 !
From FD transmiss. 3.51±0.61 50.5 52.6 1:46 1:82

0:13 1:69

 !
3.5±2.0

10 a a

0 a

 !
All equal, no m!f 3.07±0.19 50.8 52.0 1:56 1:56

0 1:56

 !
1.7±0.5

5 a 0

0 b

 !
No f$m 4.58±1.61 51.1 53.2 1:98 0

0 2:33

 !
5.1±1.2

7 a a

b b

 !
Equal reception 2.20±0.23 51.6 53.7 1:47 1:47

0:43 0:43

 !
2.9±1.4

2 a b

0 c

 !
no m!f 4.56±0.92 52.3 55.7 1:02 3:61

0 2:32

 !
3.3±2.2

3 a 0

b c

 !
no f!m 3.20±0.38 53.0 56.3 1:95 0

0:15 1:63

 !
4.1±1.5

4 a b

b c

 !
Equal f$m 2.82±0.71 53.0 56.3 1:87 0:20

0:20 1:40

 !
3.7±1.3

1 a b

c d

 !
None 4.00±9.11 54.3 59.2 1:08 3:31

0:09 1:95

 !
3.5±9.1

9 a a

a a

 !
All equal 2.72±0.08 69.9 71.1 0:94 0:94

0:94 0:94

 !
9.4±1.8

6 a b

a b

 !
Equal spread 3.56±1.17 71.2 73.3 0:69 1:49

0:69 1:49

 !
9.6±2.0

11 a 0

a a

 !
All equal, no f!m 2.03±0.01 101 102 1:03 0

1:03 1:03

 !
12±0.9

doi:10.1371/journal.pone.0140024.t004
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individuals etc.) can make R0 < 1, then the disease would not spread. For example, if R0 is
obtained for the totally susceptible population, the disease would be stopped if proportion of
immune individuals after vaccination exceeds 1 – R0

−1.
There are several caveats to make against blind application of R0 analysis to disease out-

break [24]. For example, in the presence of a backward bifurcation it is possible that a disease
will actually persist when R0 < 1, providing it is introduced at a sufficiently high level [3]. In

Table 5. The number of new infections in the next generation (10) per one infectedmale qG1 and female qG2 for models in Table 4. Estimates are
made for buck:doe ratio of 1:3 and 1:6. In the last column, there is management action giving the biggest reduction of secondary cases per one removed
individual.

Model AIC R0 qG1, 3:1 qG2, 3:1 qG1, 6:1 qG2, 6:1 Primary removal

8 49.4 3.95 1.9 3.9 1.9 3.9 Infected females

12 50.5 3.51 1.6 2.4 1.9 4.1 Infected females

10 50.8 3.07 1.4 3.7 1.4 3.4 Infected females

5 51.1 4.58 1.8 4.6 1.8 4.6 Infected females

7 51.6 2.20 3.1 1.5 4.9 1.2 Infected males

2 52.3 4.56 0.94 6.13 0.94 5.34 Infected females

3 53.0 3.20 2.4 3.2 3 3.2 Infected females

4 53.0 2.82 2.6 2.8 3.4 2.8 ~equal

1 54.3 4.00 1.4 5.3 1.7 4.5 Infected females

9 69.9 2.72 4.8 2.3 8.7 2.1 Infected males

6 71.2 3.56 3.5 3.6 6.4 3.2 ~equal or males

11 101 2.03 5.2 2.0 9.5 2 Infected males

doi:10.1371/journal.pone.0140024.t005

Fig 2. The number of secondary infections per one infected individualR0 (black circles), per one
infectedmale qG1 (blue M) and per one infected female qG2 (red F) for buck:doe ratio 1:3.Most models
predict that infected females create almost twice as many secondary infections than infected females. See
Table 5 and Eq 10 for details.

doi:10.1371/journal.pone.0140024.g002
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this case, R0 > 1 is a sufficient condition for disease outbreak, but not a necessary condition.
Furthermore, when there are multiple infection types, leading to cross infection dynamics, sub-
tly different definitions for R0 (spectral radius of the next generation operator versus number
of new infections arising from an initial infection of a particular type) can give different values
for the quantity. Fortunately, both quantities cross the stability threshold R0 = 1 at the same
parameter values. This leaves the utility of R0 as stability criterion unchanged, but brings into
question how to interpret the concept of control when vaccination proportion exceeds 1 −
R0

−1. Here the key requirement is that the class of individuals vaccinated should then be corre-
lated with the initial infection type.

The approach described in Section 2 is quite simple, and to the best of our knowledge has
not been applied before to animal diseases with more than one infection compartment. How-
ever, as our results show, its implementation may encounter difficulties related to parameteriz-
ing the model because of a lack of data and necessity to estimate nuisance parameters like
initial values of prevalence in Section 3. One more general problem is that growth of prevalence
may be related mainly with the largest eigenvalue of F, and there may be many matrices with
the same largest eigenvalue. This may create problems with estimability of all F entries and
necessity for additional assumptions reducing the effective number of parameters. However,
mechanistic models of disease transmission even with unknown parameters may still be helpful
for interpreting the results and developing simplified templates for F.

When all types of individuals have close survival rates and disease transmission rates, then
it may be simpler to use only one infected class and use classical methods for obtaining R0.
However, for CWD in deer, this is not the case: males and females typically behave differently
for a significant part of the year and have very different survival rates due to natural mortality
and hunter preferences. The use of only one infected class may lead to an underestimation of
the basic reproduction number.

In spite of some difficulties with obtaining error estimates for R0, our work provides new
information about CWD spread among mule deer in Alberta. First, most R0 estimates are
between 3 and 4, showing that CWD is quite contagious, so its control will be difficult without
aggressive management. For example, if R0 = 3.5, then to stop the disease it is necessary to vac-
cinate more than 70% of the deer population, or the population should be harvested so
intensely that the mean lifetime of deer decreases to less than one third.

Results of this paper agree with conclusions that were obtained in Potapov et al. [6] about
the significant role of sexual segregation and transmission within deer bachelor and family
groups. In spite of the observed higher prevalence in males compared to females, our analysis
shows that infected females produce more secondary infections than males due to their higher
survival rates and transmission to males during mating. This may mean that the major source
of CWD spread may be female groups. If this disease pattern is close to reality, then male-only
management harvest may reduce the number of infected individuals, but cannot stop the trans-
mission of infection.

Estimates of model parameters related to the herd-reduction program in 2006–2008 show
that removal of infected deer is efficient among females but not among males. The reason may
be behavioural differences between males and females. The latter tend to stay within smaller
areas, and the cull may cover a significant proportion of an infected female’s home range and
stop the transmission among females. Indeed, Cullingham et al. [25] found that female deer
harvested with 2 km were more genetically related than males, and CWD-positive deer were
more likely to be related. In contrast, males move within larger areas than females [22,26], and
if males contact individuals over a larger area they will increase the spatial spread of the
disease.
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On the other hand, the conclusions about the efficiency of culls in females (but not on the
number of secondary infections left by females) are based mainly on the decline in estimated
female prevalence between 2006 and 2007–2008. Therefore additional data are necessary to
come to a more definite conclusion.

Supporting Information
S1 File. Appendix A1. Basic reproduction number for continuous-time model. Appendix
A2. Likelihood for hunter-survey data. Appendix A3. Matrix F for a model of CWD trans-
mission.
(PDF)
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