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“The universe is strange. Not only is the universe stranger the we think, it may
be stranger than we can think. One result is that the physicist, who must deal with the
real world, has at least three logics: one for ordinary state variables, classical
mechanics, one for the microscope, quantum mechanics, and one for the macroscopic,

relativity theory.

Thus consistency gi 'es way to utility. It is possible that one theory would handle
all three cases, but it wou:.? probably be too complex to use.

We definitely need mure logics to deal with uncertainty.”
{Bellman and Zadeh, 1977]
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ABSTRACT

This thesis documents the develoy..ent of a Model-based Self-Learning Prediceiv Fuzzy
Logic (MSPF) Controller for use in applications where the inhe sty rtaintvin the process
model and/or data precludes the use of conventional discretc coiitrol ais vrs Ttus work
required not only a translation of the concepts of discrete model-based conuvi systems into the
fuzzy domain but also significant extensions to fuzzy logic theory.

The extensions to fuzzy logic theory in this thesis pertain mostly to the max-product
composition, which several authors have shown to produce better results than the widcly used may-
min composition. The superiority of the max-product composition was also confirmed in this
thesis for a variety of process oriented applications. The new theory developed for tic max-
product composition includes eigen fuzzy stability, powers of R stability, an estimate of a
minimum R, and the complete Cartesian product solution, parts of which have becn published in
the Fuzzy Sets and Systems journal.

Since the max-product composition has not been used extensively, there was very lite
existing literature on effective identification algorithms for this composition. This thesis thercfore
reviews and compares several important fuzzy identification strategies for the max-min composition
and then applies them using the max-product composition. Based on this work, a new
identification algorithm was developed that is berter, from a least squares perspective, than the
existing algorithms when applies to the Box-Jenkins gas fumace data. The new identification
algorithm also includes a new procedure that permits an identification algorithm to adapt quickly to
process changes while maintaining a complete solution.

Most of the rule-based fuzzy logic controller designs in tue literature are based on a PI
controller structure. The development of the control algorithm in this thesis parallels that of
conventional k-step-ahead model-based predictive controllers, but implementation is significantly
different due to the fuzzy environment. An iportant feature of this new controller is that the
control action is determined based on the discrete error between the output and the setpoint.
Results from this thesis clearly show that minimization of a control objective defined by a fuzzy
criterion does not imply minimization of the corresponding discrete criterion. Therefore the
proposed MSPF controller is ideal for practical control applications because, in the majority of
cases, the objective is discrete even though the methodology is fuzzy in order to handie the
unavoidable uncertainties.

The MSPF controller gave very good closed-loop performance in simulation using
underdamped, overdamped and non-linear processes plus processes with large time delays and/or
disturbances. A direct comparison of the MSPF controller versus a conventional discrete PI
controller using a very (smoothly) non-linear process showed that (based on minimization of the
discrete control error) the MSPF controller gave better performances over the full operating
domain than PI control even when three-level gain scheduling was used.

The development and evaluating of the Self-Learning Predictive Fuzzy Logic Controller
described above is complemented by a extensive fuzzy logic tutorial which includes a literature
survey and examples for each aspect of the controller development.
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CHAPTER 1 INTRODUCTION

"The closer one looks at a real-world problem, the fuzzier becomes its solution”.
{Zadeh, 1973]

Conventional quantitative techniques currently employed in system analysis are not well
suited for dealing with systems of a humanistic nature, or any system that has a complexity
comparable to humanistic systems. Zadeh [1973) summarized this contention with his principle of
incompatibility, which states, "as the complexity of a system increases, our ability to make precise
and yet significant statements about its behaviour diminishes until a threshold is reached beyond
which precision and significance, or relevance, become almost mutually exclusive

characteristics".

With this perspective in mind, it is clear that traditional techniques of scientific analysis fail
with humanistic systems because they are unable to mimic the fuzziness of human thinking and
behaviour. What is required is a methodology which can tolerate data imprecision and model
vagueness. And so enters fuzzy logic.

1.1 What is fuzzy logic?

Fuzzy logic is a concept that brings together the reasoning used by computers and the
reasoning used by people. The concept of fuzzy logic was first presented by Zadeh [1965], known
as the father of fuzzy theory. Zadeh contends that human thinking does not embrace precise
definitions, but classes of definitions in which the transition from membership to non-membership
is gradual rather than abrupt. The degree of membership is specified by a number between 1, full
membership, and 0, non-membership.

The fuzzy logic approach has three distinguishing features:

(1) it uses linguistic variables in place of, or in addition to, numerical values

(2) simple relations between the variables are characterized by conditional fuzzy
Statements

(3) complete relations are characterized by fuzzy algorithms

The theoretical foundation of fuzzy logic is actually quite precise and mathematical. The
source of imprecision in this approach is not the theory but the way the data is described. The data
can be expressed vaguely, such as high temperature, medium pressure and take on linguistic
quantifiers, such as very high. This information is then combined and processed methodically to
produce a results which can be either vague or precise.



Fuzzy logic is not fuzzy. Fuzzy logic gets its name from the fuzzy sets which arc the building
blocks of the fuzzy logic system. These fuzzy sets differ from classical or crisp sets in that they
allow for partial degrees of membership.

The fuzzy set has three principal features, as shown in Figure 1.1:

(1) the domain or range of values over which the fuzzy set is valid (the X-axis)

(2) the degree of membership axis (the y-axis)

(3) the fuzzy set function which maps the domain to the degrec of membership

0.8 .
Degree
Of 0.6 1
Membership
1] 0.4 §
0.2 .

-10 10

Figure 1.1: Fuzzy Membership Functions

The fuzzy membership function is a measure of the degree of compatibility of the object with
its definition. So, if a value from the domain is known then the membership in the fuzzy set can be
determined. For example from Figure 1.1, a discrete value of -4 has a membership or u = 0.4 in
the fuzzy set low and membership or p = 0.6 in the fuzzy set medium.

Fuzzy logic involves gradual decision making. It attempts to model human thought
processes or the soft decisions that occur in these processes. Often the fuzzy membership values
are combined with membership values from other fuzzy states, through union, intersection and
complementation operators, to produce a composite truth value. The fuzzy inferencing or
implication has a mathematical basis so a fuzzy model can provide the same kind of discrete or
deterministic result that is obtained from conventional knowledge-based systems.



Fuzzy logic is a local logic in that the truth-values determined, as well as, the connectives
used (i.e. and, or, if... then,...) have a variable rather that fixed meaning. A distinctive feature of
fuzzy logic is that the meaning of terms such as beautiful, tall, small, etc. are not only subjective
but are also local in that they have a restricted meaning valid only in the domain that has been
specified. Thus the meanings are not universally valid and apply only to the local problem
[Bellman et al., 1977}

Fuzzy logic is not a probability. Probability describes event occurrence. Fuzzy logic
measures the degree to which an event occurs, not if it occurred. Both fuzziness and probability
describe their uncertainly numerically with numbers in the unit interval [0,1]. They also both
combine their sets and propositions through the operations of associativity, commutativity and
distributivity. But probability theory and set theory require that :

ANA=0Q (1.1)

where @ is the null or empty set.

Fuzzy set theory, on the other hand, begins with the contradiction:
ANAzQ (1.2)

The bivalent nature of equation (1.1) results in numerous paradoxes in which a statement S
and its negation S have the same truth value, ¥S). A typical example is a card on which one side
the statement is, “The sentence on the other side is true”. And on the other side the card says,
"The sentence on the other side is false”. Considering this problem analytically, we have:

S) = «8)
= H1-9) (1.3)
= 1-1(8)
With classical set theory:
Ifu(S)=1,

then#S)=1-1S)= 1=0

which is a contradiction.



Fuzzy logic simply solves for the value of «S):

1(S)=1-18)
2(8) =1
1(S)=1/

so the paradox is reduced to 1/ truths.

1.2 A Brief History

Many rule-based expert systems or applications of artificial intelligence are based on two-
valued or classical Aristotelian logic, which as the name suggests, was developed by the
philosopher, logician and scientist Aristotle about 400 B.C. The basic assumption of two-valued
logic is that truth is two-valued, it is either true (i.e. has a membership of 1) or false (i.e. witha
membership of 0). However, classifications in the real world often do not have these sharp
boundaries. Consider the characteristics of tallness or intelligence both of which, in many cases,
are only true to a degree. Classical two-valued iogic is not designed to deal with properties that are
a matter of degree. Three valued logic solved some of these vagueness issues with the categories;
truth, falsehood and indeterminacy. Then entered multi-valued logic in which an attribute can be
possessed to a degree (i.c. a person can be tall to degree 0.8 on a scale of O to 1).

The person who contributed the most toward the development of multi-valued logic was the
Polish mathematician J. Lukasiewicz (also the inventor of reverse Polish notation used in Hewlett-
Packard calculators). During the early 1920's Lukasiewicz extended the range of truth values from
the three-valued logic {0, 1/, 1} to all rational numbers in [0,1] and then finally to all numbers in
[0,1]. Inthe 1930's quantum philosopher Max Black applied continuous logic to sets of lists of
elements. Black also drew the first fuzzy-set membership functions and called the uncertainty of
the structures vagueness In 1951, Menger, a French mathematician, coined the term ensemble flou
which has become the Fioach counterpart of fuzzy set, with ensemble meaning set, group,
collection, series, and flow meaning blurred, hazy, vague, fuzzy, out of focus. But multi-valued
logic systems were not used extensively because they did not go far enough. It was not until the
landmark paper by Zadeh [1965], in which the work was expanded and given enough mathematical
theory, that meaningful work with the concept of fuzzy sets could begin.

Zadeh extended the two-valued indicator function of a non-fuzzy set A of X,

1 if xeA

IA(x)={O FoxeA (1.4)

to a multi-valued indictor called a membership function,
i, (x): X = [,1] (1.5

The membership value m,(x) = degree(x € A)



What differentiates fuzzy logic, as defined by Zadeh, from multi-valued logic is that in fuzzy
logic one can deal with fuzzy quantifiers, also called linguistic hedges, like very, somewhat, most,
few or several. Multi-valued logic has only two quantifiers, all and some. Another key difference
between the two is that with fuzzy logic, truth itself can be fuzzy. So it is acceptable to say
something is quite true. It is through these linguistic hedges that fuzzy logic provides a system
which is flexible enough to serve as a framework for linguistic control.

1.3 Comparison of Fuzzy Systems to Conventional Expert
Systems

When rule-based artificial intelligence (Al) was first conceived in the mid-1950's it was
supposed to provide the ability to simulate human decision making in an uncertain environment.
Based on symbol manipulation and first-order logic, Al served as the basis for expert systems and
had some success, (e.g. game-playing systems and to a lesser extent natural language processing).
However, Al has not been able to simulate common sense reasoning, and so has not lived up to its
expectations. Conventional rule-based Al has not contributed significantly to the solution of real-
world problems such as robotics, computer vision, speech recognition and machine translation and
as a result has not led to a better understanding of thought processes, concept formation or pattem
recognition [Kosko, 1992].

According to L.A. Zadch, Al may have made more progress toward its original goals if it
had not been so committed to symbol manipulation and first-order logic. Thus Al is unable to cope
with methods that involve numerical computations, the way neural networks and fuzzy logic
methods can, and cannot handle problems that involve uncertainty and imprecision. Unfortunately,
most real-world problems fall into the latter category. Thus, there are a wide range of numerically-
based real-world problems that conventional rule-based Al is unable to address or solve which are
easily handied through the numerical techniques of neural network theory and fuzzy logic theory
[Kosko, 1992].

In a typical rule-based Al system, the knowledge is acquired, stored and processed as
symbols, not numerical entitics. The collection of rules are defined as the knowledge base. The
framework of the if... then rules is chained through, firing a premise only if it is irue. This
symbolic framework allows quick representation of structured knowledge but prevents numerical
analysis. Knowledge is searched through logical paths of the knowledge tree via an inferencing
process. Forward chaining through the rule base is input-data driven, answers whai-if questions
and generates or identifies effects. Backward chaining answers how-come or why questions and
suggests a cause for an observed or specified effect. This chaining through large knowledge trees
may be prohibitive for real-time processes, thus requiring approximate search strategies. These
systems exploit structured knowledge when it is available, but in most cases the experts are unable
to define the propositional rules in the format required to approximate the behaviour of the expert .

Neural networks evolved from work done in the late 50's and early 60's {Saleem er al.,
1994]. This Al modeling system introduced numerical processing, a change from symbolic
processing, in order to reproduce the human thinking process.



Neural networks consist of numerous processing units, called neurons, which are connected
by synapses. These networks can be trained to store, recognize and retrieve pattern information, to
solve problems, to filter noise from measurement data, or, to provide a non-linear input-output
relationship for ill-defined processes. Neural nets store pattems of information by a distributed
encoding system. They superimpose the pattem information onto a synaptic web interconnecting
the neurons. However, the system superimposes several input-output samples on the same synaptic
black-box web, so it is difficult to tell what the system has learned, as well as, what it might Sforget
with additional leaming. Neural networks have an efficient numerical algorithm in order to exploit
numerical information, but they cannot directly encode structured knowledge.

Fuzzy systems are newer that neural systems, having been introduced in the mid '60's. Fuzzy
logic systems encode structured common sense rules or principles in a numerical framework.
Each entry describes an input-output relation. These fuzzy logic rules can also be represented in a
matrix format for numerical analysis. The fuzzy system fires each fuzzy rule in parallel, but to
different degrees and then infers a conclusion from a weighted combination of the consequence
from each fired rule. Fuzzy systems, like neural networks, have the ability to learn the sysiem
knowledge, using numerical or linguistic data as input, and produce an estimate of the input-output
relationships.

Neural networks and fuzzy systems process inexact information inexactly. Neural nets
recognize ill-defined pattemns without an explicit set of rules. Fuzzy systems estimate relations and
control systems with partial descriptions of system behaviour. Both neural nets and fuzzy systems
are trainable systems that define input-output relations. They are model-free estimators in that they
leam numerical and linguistic data from experience. Both systems use a numerical framework and
encode sampled information in a parallel-distributed framework [Kosko, 1992].

The main difference beiween neural networks and fuzzy logic is that fuzzy relational models
contain the relationships between qualitative states and therefore represent the same type of
qualitative models used in human reasoning. Neural networks on the other hand attempt to imitatc
the hardware involved in thinking. Thus results are generated from complex interactions between
the network elements.

Figure 1.2 relates fuzzy logic systems to Al expert systems and neural networks. Fuzzy logic
systems encompass both the structure knowledge of the expert system and the numerical framework
of the neural systems, giving it the best of both designs.

Figure 1.3 compares the architecture of the three systems just discussed. The strict rule-
based format of conventional Al expert systems, the information processing of fuzzy systems versus
the unstructured knowledge of neural nets. As shown in Figure 1.3, fuzzy systems are distinguished
from neural networks in that there are no hidden layers, so each input can be related directly to each
output.



Symbelic Framework Numerical Framework

Structured Representation Al Expert Systems Fuzzy Systems

Unstructured Representation § = - Neural Systems

Figure 1.2: Fuzzy Logic vs. Neural Networks vs. Al Expert Systems [Kosko, 1992]

Knowledge Rule-Base

IF (A) THEN (B)
IF (B) THEN (C)
IF (C) THEN (D)

etc.
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(a) Al Expert Systems (b) Neural Networks [Treleaven, 1991]

H v 4 a0

» - vz -

(¢) Fuzzy Logic Systems

Figure 1.3: System Architecture (a) Al Expert Systems, (b) Neural Networks, (c) Fuzzy Logic
Systems
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1.4 Motivation For Fuzzy Logic

The main purpose of fuzzy logic systems is to deal with systems which are inherently fuzzy.
The fuzziness is usually due to lack of knowledge about the system or the distortions associated
with the system. The main candidates for fuzzy logic control applications are those processes 100
complicated to be fully understood in terms of exact mathematical models and therefore incapabie
of being controlled in a precise way using classical control techniques. However, in many cases
these processes are being controlled successfully by human operators using rules of thumb
information. Fuzzy logic systems have demonstrated, since the mid-70's [Mamdani, 1974], the
ability to deal with the goals and constraints that are required of these ill-defined fuzzy systems.

Examples of the need for fuzzy technology can be seen in industries or processes :iuu nave a
vague measurement scale. Examples of fuzzy application areas from the recent literature are:

() Combustion Control of a Refuse Incineration Plant [Ono et al., 1989]

A refuse incineration plant operation involves many kinds of uncertainty, such
as, the variable physical properties of the refuse and the complexity of the buming process
which may extinguish due to oversupply of refuse, or, experience poor combustion due to
insufficient supply of refuse or oxygen. Attempts made with conventional control methods
have resulted in extremely complex control logic which resulted in inadequate system
robustness. The application of fuzzy logic to this situation resulted in stabilized combustion
that matched that of an experienced operator.

(i) Control of Biological Processes [Czogala et al., 1989]

The cultivation of microorganisms is an important process in biochemical research,
the fermentation industry and in the biological treatment of municipal waste. These
processes are usually not well defined and often depend on unpregic* “hle probability factors.
Control of these ill-defined processes using classical control techniqu. - - Aifficuit and
sometimes impossible due to the fact that:

o the biological mechanisms involved are not completely understood

. the measurement devices cannot be used for on-line measurements
becausc the existing sensors are not reliable or accurate enough

A fuzzy application in this area was ccmpared against open-loop response and PID
control in bringing the unbalanced growth rate 1o steady state after a stepwise change in the
dilution rate. Without control the new steady state was reached after 15 hours, with PID
control steady state was reached in 5 hours. Application of fuzzy control further reduced
this time to less than 3 hours with the additional benefit of minimal overshoot.



(iii) Meteorological Forecasting [Cao et al., 1983]

Most of the meteorological phenomena is of a fuzzy nature, such as today is hot.
There is no exact definition about which degree of temperature is considered hc.. For
weather forecasting, particularly long range forecasting, one usually predicts the trend of the

future weather rather than specific numerical values.

Fuzzy forecasting was accomplished by collecting historical seasonal circulation
pattems and partitioning these into membership functions. This information was stored year
by year and forecasting was determined by the resemblance of the current patterns with the
historic:: Jata. In spite of the simplicity of this approach, it proved quite effective.

(ir) Civil Engineering [Blockley, 1979]

The general public is prepared to accept the relatively hig’ probability of death while
driving in a car, but it expects an extremely low probability of death as a result of a bridge,
over which a car may pass, collapsing. Even though there is a vast amount of scientific
theory to help in making design decisions, there is still a large uncertainty concerning the
application of the theories to the actual problem and rules of thumb are used extensively.

The actual likelihood of a structure failing is a function of one or more of several
factors, such as,

. a random extremely high value of load or extremely low value of strength

. damage by an external random occurrence, (i.e. fire, earthquake)

e unknown or poorly understood system behaviour

. designer error

. error during construction

. misuse or improper alterations.
The current reliability theory used in civil engineering projects nommally only deals with the

first category and ignores the rest. However, through the use of fuzzy sets, an inclusive
analysis with respect to all these factors can be undertaken by investigating past failures.

From these examples it can be seen that a problem area is a candidate for fuzzy logic if
[Pedrycz, 1983]:

(1) the system being considered is complex or ill-defined
(2) there are major difficulties creating an exact mathematical model
(3) there is extensive experience and intuition available from process operators

(4) lack of measurements due to costs or noise makes it impossibie to apply
conventional statistical and/or control methods



So how is fuzzy logic applied to control situations? Fuzzy systems can be of two types: the
more common rule-based system, or, a relational-based system, which permits numerical analysis.

In Rule-Based Fuzzy Systems a series of rules are developed that equate the fuzzy input
membership functions to the fuzzy output membership functions. The rules can be formulated using
the same if ... then ... rules, typical of expert systems, or by using look-up-tables, which
consolidate all the rule-base information.

Rule-based systems are most commonly used in applications of fuzzy control. Other names
for the if... then rules are production, premise-action or antecedent-consequent rules. The rules
describe in qualitative terms how the controller output will behave when subjected to various
inputs. The consequent part of the rule assigns a value to the output set, based on the conditional
part of the statement. The degree of this assignment modifies the value of the output membership
by applying to it the degree of truth of the conditional expression. Each rule produces a fuzzy
output set, the union of which is the overall output.

The biggest problem with rule-based systems is obtaining the appropriate rules and once
obtained to ensure that the rules are consistent and complete {Graham er al., 1988]. Adaptive
techniques are available for some types of applications which allow the rule-base to learn and self-
modify [Graham er al., 1989). As well, genetic algorithm techniques allow the process to self-
generate the rules [Karr, 1991(a), 1991(b)].

Fuzzy logic can be applied to control problems through the use of fuzzy relational equations,
called Relational-Based Fuzzy Systems. These equations represent the relationships that exist
between input and output states. A relational model is a matrix composed of values which
represent the degrees of truth of all the possible cause-and-effect relationships that exist between
the inputs and outputs. The advantage of the relational-based system approach is that several
techniques >xists v “ich allow the relational matrix to be identified directly from input-output
data and pro. ide «: oasis for NUMERICAL analysis of system properties.

1.5 Focus of Thesis

Relational-based fuzzy systems will be the focus of this thesis because this representation
provides a basis for formal numerical analysis of control concepts such as stability, controllability
and reachability. Fuzzy relational equations provide a state space problem formulation and this
structure lends itself to both system identification and to goal oriented calculations of control

policy.

After considering the similarities between fuzzy control and conventional control the thesis
compares the applicability of the standard fuzzy composition of max-min versus the often superior
max-product composition. Stability theory for the max-product composition is established as a
basis for practical applications of the proposed controller.

Fuzzy relational equations have a non-unique inverse, as outlined in Chapter 5. The initial
thesis investigation focused on relational inverses as a possible basis for designing model based
controllers. However, the inverse formulation proved to be unsuitable for process control because
of the possibility of non-existent solutions. Iterative search or optimization techniques were
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therefore used in place of formal relational inverses. During the study of the relational inverses, the
theory was expanded in the area of fuzzy cartesian products for both the max-min and max-
product compositions as a potential basis for on-line identification.

Fuzzy identification and fuzzy objective function optinuzation are considered as part of the
self-learning or adaptive fuzzy logic control being developed in this thesis. Fuzzy identification
for relational equations is a relatively new area with publications v .ting back only to the early
1980's. Several of the identification and optimization algorithms currently available in the
literature are reviewed and a new identification algorithm is developed.

Finally, a predictive fuzzy logic controller is presented and tested using simulated plant data.
Results of the simulations presented show that the controller is capable of both servo and
regulatory control in noisy environments.

The fuzzy logic controller development is from a strictly conventional control perspective.
Someone with a very basic understanding of fuzzy logic theory and a strong interest in control can
start reading this thesis at Chapter 9, which presents the parallel fuzzy/conventional controlier
development, and then continue on with Chapter 10, which presents the applicational results of the
fuzzy controller. Chapters 2 to 8 contain some original contributions but, in a sense, are a fuzzy
tutorial for the reader which inchides fuzzy logic control theory and a literature survey for each
aspect of the controlier development.
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CHAPTER 2 FUZZY RULE-BASED SYSTEMS

The bottom line is that fuzzy rule-based systems are simpler, cheaper and
more robust than their conventional counterparts.
[Zadeh, 1992]

2.1 Introduction

Lee [1990] presents an excellent review of the research-to-date on rule-based fuzzy logic
controllers. This two paper series by Lee [1990] analyzes the structural parameters of rule-based
controllers, including a brief summary of fuzzy set theory and fuzzy logic. The concept of a fuzzy
logic controller is presented with strategies for fuzzification and defuzzification. As well, the paper
discusses the construction of a data base for a fuzzy logic controller. The section on rule bascs
explains the derivation of fuzzy control rules and techniques for rule-modification. Also discussed
are basic aspects of decision-making logic, including definitions for fuzzy implication,
compositional operators, the interpretations of connectives and fuzzy inferencing mechanisms. A
brief overview of some recent industrial and laboratory applications of fuzzy logic controllers is
also given.

Although relational systems, the basis of this thesis, are not discussed in depth in the papers
by Lee [1990}, there is a brief mention of this methodology and some references are given. Some
of the information provided in the papers by Lee [1990], such as, fuzzy implication, compositional
operators, interpretation of connective and fuzzy inferencing mechanisms can be applied to both
relational-based systems and rule-based systems.

Most of the commercial applications of fuzzy logic available today involve either rule-based
methodology or look-up table implementations. As well, most introductory level publications on
fuzzy logic controllers discuss these designs, so these are the concepts most universally understood.
Chapter 2 will review the development of a fuzzy rule-based control system, since most commercial
applications of fuzzy technology involve this structure. As well, rule-based structure reveal more
of the inner workings of the fuzzy inferencing used to obtain a solution, and is therefore a good
starting point to the understanding of fuzzy relational-based systems.

2.2 Fuzzy Rule-Based Controller Design
Design of a fuzzy logic controller, whether rule-based or relational-based involves:

(1) specification of the universe of the operating variables (operating range)

(2) specification of the terms or adjectives of the linguistic variabies (membership
function definition)

(3) the fuzzy mapping that relates specific values of the operating variables
to the linguistic variables (fuzzy model)
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2.2.1 Operating Range

The specification of the entire operating range of each input/output variable is known as
defining the universe of discourse. This operation must cover the complete operating range such
that each operating variable can be expressed by a fuzzy linguistic definition.

2.2.2 Membership Function Definition

Once the operating range has been specified, the range is divided into subsets or reference
ranges, known as referential fuzzy sets or membership function. Then the adjectives or linguistic
terms associated with these subset ranges are specified for each operating variable. These adjective
can be of the differential form:

. positive big

. positive small
. no change

. negative small

J negative big

The convention is to use an odd number of incremental adjective descriptions centered
around a ZERO or NO CHANGE function. Braae et al. [1979] suggests typically 2-10 term sets
or adjective with a compromise between flexibility (many terms) and simplicity (few terms). The
user can also specify adjectives using absolute values such as:

J Zero
. small
. medium
. large

Additionally, these adjectives can be quantized as:
2,1,0-1, -2
in reference to the ditferential linguistic adjectives above. So the 2 = positive big, 1 = positive
small, 0 = no change, etc. This quantization feature is more compatible with computer

implementation and manipulation. As well, it more readily lends itself to discritization or
defuzzification of the output, or transformatior: into a fuzzy relational-based system.
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The power of fuzzy logic is that one can deal with fuzzy quantifiers, also called linguistic
hedges. The developer can specify any number of linguistic hedges that will operate on the base

adjectives previously specified. Hedges such as:

) very
somewhat

not
The very kadge serves to concentrate the effect of the rule by squaring the membership

function, 0Sp < 1. So,
very small = small®

as shown in Figure 2.1.
The somewhat hedge functions to dilate the effect of the rule by taking the root of the

membership function. So,
somewhat large = large'”
as shown if Figure 2.2.
/"\.\ /“
FARR YRS
I/ ’ “‘\ . / \‘
/‘I:I N, / X
—— N eeesmnnitii? R
Figure 2.2: Fuzzy Dilation
large (—);
somewhat large (---)

Figure 2.1: Fuzzy Concentration
small (—);

very small (---)
The not is the complement of the membership function.
= 1~ medium

not medium
Care must be taken when using the not operator as the complement may no imply the opposite,
such as not small does not necessarily mean large.
The type or general shape of the ... >mbership function must be specified over the identified
range. These shapes can be quan. d. ~ontinuous, triangular, trapezoidal or open-ended.
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(1) Quantized

With quantized membership functions the range of the variable is divided into a number of
sub-ranges and the membership function for the fuzzy set consists of the grades of membership for
each sub-range, as shown in the Figure 2.3.

Figure 2.3: Quantized Membership Function [Postlethwaite, 1990]

Quantized membership functions can be represented in tabular form which have computational
advantages.

(2) Discretized
Discretized membership functions also offer computational advantages because of their

tabular form, shown in Table 2.1. Discretization is another ways of representing triangular or
trapezoidal membership, which will be discussed below.

(-2) (-1) ) (1) (2
Nepative Big 1.0 0.6 0.0 0.0 0.0
Negative Small 0.5 1.0 0.3 0.0 0.0
Zero 0.0 0.5 1.0 0.5 0.0
Positive Small 0.0 0.0 0.3 1.0 0.5
Positive Big 0.0 0.0 0.0 0.6 1.0

Table 2.1: Quantized Membership Function [Czogala et al., 1981]
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(3) Continuous

“The continuous membership functions are usually bell-shaped. as shown in Figure 2.4,
however other shapes are pemitted.

Figure 2.4: Continuous Membership Function

The normalized statistical formula for the normal distribution [Walpole er al., 1978.], can generatc

various widths and means for a fuzzy membership function depending on the values of ¢ and m,
respectively:

B,(x) =exp(-[(x - my/o}?)

@.n
where pL,(x) is the fuzzy membership function for A
(] is the standard deviation
m is the mean

The advantage of using continuous functions is they allow for the inclusion of a wide range
of values at low grades of membership. However, these functions produced edge-effects which
cause difficulties during defuzzification. These problems will be discussed later in this Chapter.

(4)  Triangular or Trapezoidal

Triangulzr and trapezoidal functions are semi-continuous functions which have the
advantage of being completely specified with three or four values, as Figures 2.5 and 2.6 illustrate.

Figure 2.5: Triangular Membership Function Figure 2.6: Trapezoidal Membership Function
[Kaufmann et al., 1988]

{Kaufmann et al., 1988)
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A triangular membership function is defined as [Kaufmann ez al., 1988]:

[0 x<a,
_{.:._a.l_. aleSaz
a,-4q,
Mo (x) =1 (2.2)
G X a,sx<a,
a,-a,
0 x>a,

[0 x<a,
x4 a,<x<a
a,-q,
p(x)=¢ 1 a,<x<a,
(2.3)
a,-x
— a,sx<a,
a,— oy
. 0 x>a,

Note that a triangular function is a special case of the trapezoidal function with a, = a,.
Pedrycz [1994] contends that not only are triangular fuzzy referential sets easy to work with,

they also satisfy entropy equalization criteria. which means that on average the membership
functions are activated to the same ex:cnt.
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(5) Open-Ended

For continuous, triangular and trapezoidal shapes. the shape of the membership function can
also be open-ended at either end of an infinite range. So for the case of the triangular or trapezoidal
shapes, p,(x)= 1.0 x2a,, as shown in Figure 2.7.

a,
l]:_/-__
0

a
1

Figure 2.7: Open-Ended Membership Function

Li er al. [1989] concluded from their work that the amount of overlap of the fuzzy
membership functions affected the efficiency of the fuzzy controller. Too much overlap results in
many rules being applied to a single input. To little overlap resulted in difficulty deriving the
lookup table.

Once the shape of the membership function has been decided, the size must be specified. As
outlined in Braae et al. [1979] the range of the membership must be large enough so that
measurement error 2nd process disturbance will not effect process performance. These authors
suggest that:

“the fuzzy sets be sufficiently wide to avoid undue noise transmission from the
base variable to the linguistic variable"

If the measurement noise of the inputs to the fuzzy logic controller can be characterized by a
probability density function then the fuzzy sets should be selected such that:

w, > 50, 24)

where w, is the width of the fuzzy membership function
o is the standard deviation of the noise

n
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This concept is illustrated in Figure 2.8.

A /™, Membership
,l 1Nobs // \\ Function

i ! / N\
s N

Figure 2.8: Fuzzy Noise [Braac er al., 1979]

Additionally, the membership functions should be small enough to be within the process
tolerance of the setpoint or quality specifications. The shape of the membership function should
reflect the resolution required. High resolution (i.e. a narrow fuzzy set) is often required near zero
to give a narrow dead-band in that region. Whereas low resolution (i.e. a wide fuzzy set) may be
sufficient as the distance from zero increases. This concept is illustrated in Figure 2.9.

/“',‘," . Low Resolution

/" Il \
. ‘,\ngh,ﬁesolunon

Figure 2.9: Fuzzy Resolution [Braae et al., 1979]

There are clustering algorithms, such as FUZZY ISODATA [Bezdek, 1981] available for
constructing the reference fuzzy sets from the available input-output data. However the usual
drawback of using these algorithms is that the predictions based on clustering are always below the
actual maximum values and above the actual minimum values {Valente de Oliveira, 1993].

223 The Fuzzy Rule Model

For the situation where a linguistic model does not exist data acquisition and model
development must be undestaken. However. correlation of the actual input/output data is more
applicable to relational-based systems. In many cases fuzzy rule-based controllers are applied to
control processes which have already proven controllable at the hand of an operator. Since these
process are already being controlled by linguistic rules of thumb, these rule ¢ easily be translated
into a fuzzy rule base.
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Usually, the fuzzy control rules are generated by [Qiao ez al., 1992]:

(1) translating operator experience into a fuzzy linguistic form verbally
(2) monitoring and capturing the control behaviour of the operators
(3) modeling the process to be controlled, using fuzzy set theory

(4)  self organizing or on-line rule leaming during the running of the control systcm

Rule-Based Systems develop a series of rules that equate the linguistic value of the fuzzy
input membership functions to the linguistic value of the fuzzy output membership functions. The
rule base can be formulated as:

(1) if... then ... rules typical of expert systems

(2) look-up tables [Rutherford et al., 1976]

(1) If...then... Rules

Rule-based fuzzy systems deduce fuzzy conclusions from fuzzy information by inferencing
that involves if...then rules. And, although the if ... then ... rules are typical of expert systems, the
inferencing mechanism used for fuzzy systems differs from the typical expert system. For example,
during the decision making process, the human brain often makes inferences in which fuzzy
membership are involved. Such as the quality hot can be somewhat hot or very hot. Thus
inferencing uses grades of belonging, so it can not be modeled using classical two-valued logic.
For fuzzy systems two methods of inferencing are used, generalized modus ponens and generalized
modus tollens.

The generalized modus ponens fuzzy inference:

Implication: IfxisA,thenyis B
Premise: xisA'

Conclusion: yis B'

In this example the x and y are the variables, such as temperature, pressure, or error, A, B, A'and
B are the linguistic labels over the universes of discourse of X, and Y, such as small, medium,
and large. This inference reduces to classical modus ponens for A' = A and B'=B.

The generalized modus tollens inference is:

Implication: IfxisA,thenyis B
Premise: yisB

Conclusion: xisA'
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The classical inference for this case is also when A' = A and B' = B.

The ruie-based system is the most common a;plication for fuzzy logic controllers. The
if...then... rules are also called production, premise-action or antecedent-consequent rules. The
rules describe in qualitative terms how the controller output will behave when subjected to various
inputs. The consequent part of the rule assigns a quantitative value to the output set, based on the
conditional part of the statement. The degree of tkis assignment modifies the output membership
function by capping it with the degree of truth of the conditional expression. Each rule will
produce a fuzzy output set, the union of which will be the overall output.

The biggest problem with rule based systems is obtaining the appropriate rules and the
appropriate membership functions. Adaptive techniques are available which allow the rule-base to
leam and self-modify [Graham e al., 1988, 1989]. As well, genetic algorithm techniques allow the
process to self-generate the rules [Karr, 1991 (a) & (0)).

A weighting for each rule can be determined for those cases when some rules may be more
precise than others. Weighting the rules serves to enhance the impact of precise rule and dilute the
effect of suspect rules. Additionally, weighting may be used to change the scale of the resolution of
the fuzzy rules. As the system approaches the setpoint a finer control action may be implemented.
Baldwin e al. [1980] discuss the dilution effect of a vague rule firing with a precise rule and
present a method to overcome this problem.

The min (A) and max () operators are used extensively in fuzzy logic theory when multiple
premises and/or conclusions are specified, with the min corresponding to and and the max
corresponding to or. The or is used in the case when for example either a large positive error or a
medium positive error will result in the same control action. Fuzzy rule bases can be structured in
a forward ‘haining manner for process monitoring or in a backward chaining manner to overcome
time delay or for process prediction.

(2) Look-up Tables

Rutherford et al. [1976) present a simple method of presenting the fuzzy rules called look-up
tables, and shown in Figure 2.10. Many of the most successful fuzzy applications on the market
today are simple look-up tables [Kosko, 1991].

uf
H{M|H|H
Ae, M| L |M|H
L|{L|L|M
L M H
e

-

Figure 2.10: Look-up Table
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Verifying rule completeness, for rule-base systems, is ofien accomplished through the use of
look-up-tables [Rutherford et al., 1976]. Additionally, Braae et a!. [1976] discuss some issues on
rule verification using graphical interpretation. Rule consistency can be determined during
controller tuning and will be discussed later.

Composition of the fuzzy input subsets and nuies to yield the fuzzy output universe can be
obtained by {Kosko, 1991}

(1) correlation-product inference

(2) correlation-min inference

as shown in Figures 2.11 and 2.12 below:

AN . / N
e N | / N
Figure 2.11: Correlation-Product Inference Figure 2.12;: Correlation-Min Inference
{Kosko, 1991] [Kosko, i991]

The correlation-product inference uses the membership value of the rule antecedent as a
multiplier and scales the whole fuzzy output set maintaining the original shape. The formulation is
as follows:

“’ij = MA(X,-) ’ un(xj) (2.5)

The correlation-min inference clips the resulting fuzzy output set at the membership value of
the rule antecedent. The result of this method is that the peaks of the output fuzzy sets are
eliminated and a flat surface results at the membership value of the antecedent. The formulation of
this method is:

m; = min (G, kex)) (2.6)

Comparing the two methods, the correlation-product preserves more information than
coirelatic minimum, and so the correlation-product method is selected more often in fuzzy
applicatio,  These composition procedures apply to either rule-based or relational-based
systems.
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2.3 Defuzzification

The output, from both the rule-based and relational-based fuzzy systems, is itself a fuzzy
set which may have to be converted to a discrete value for use as controller output. The procedure

for this is called defuzzification or more recently output interface [Pedrycz, 1994).

The methods of defuzzifying the results of a fuzzy composition are discussed following
[Mizumoto, 1989]. The first four (4) methods of defuzzification deal with the consolidated output
fuzzy set of the inference. That is the resultant j output membership functions, either clipped by
correlation-min inference or scaled by correlation-product inference, are overlaid on the output axis
to form an overall output membership function, as illustrated in Figure 2.13.

Figure 2.13: Resultant Output Membership Function [Postlethwaite, 1990]
(Overall Membership Function; )

(1) Average of Maxima

With the average of maxima method, if there is a single maximum membership value in the
output membership function, the value of the output, y, at this pcint is taken as the defuzzified
output. If the overall membership function is not unimodal and there are several points at which
the membership function is at a maximum, then the defuzzified value is the average of all the
output values where the membership function is at its maximum.

m

2.7

where Y is the output value where the membership value is a maximum

m is the number of maximal elements
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3)  Midpoint of Maxima

This method is a simplified version of the average of maxima method. Instead of taking all
the points, y,, which give maximal membership value, the smallest element, y', and the largest
element, y", are averaged to calculate a midpoint.

_ Oy ,
y="""; (2.8)

(3) Median or Center of Area

The median or center of area method of defuzzification involves finding the value of output
which defines the centre of the area under the resultant output membership function profile. This
method allows for smoother changes in the output value over the center of gravity method,
however, it is computationally more intensive.

Not only is this method computationally expensive but it is prone to problcins with edge-
effects. Edge-effect occur when a reference fuzzy set, at the end of the output range, extends to
very high values or even infinity. In these cases, when the reference fuzzy set is fired, cven with
very low grades of truth, it pulls the center of the area towards itself. Since relation matrix
identification often uses output reference fuzzy sets with these characteristics, the center of arca
method is not suited for relational matrix systems [Postlethwaite, 1990].

The next four (5) defuzzification methods deal with each output membership function
separately. For these next definitions the value y; is the output value of the j-th membership
function where the membership value is a maximum.

(4) Center of Gravity

The center of gravity method is widely used in fuzzy control. Each output reference fuzzy
sets is assigned a characteristic output value, y, For triangular reference fuzzy sets this valuc is
usually taken to be the centre point. With other reference fuzzy shapes it is usually the value where

the membership function is the largest. The defuzzification output is a weighted mean of the
characteristic output values with the degree of membership in the relevant reference fuzzy sct..

2%, M)

=t (29)
d Z u(y,)

where y is the d=fuzzified output
y, is the characteristic output value of the i-th reference fuzzy sct

n is the degree of membership
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(5) Height

This method obtains the discrete value as a weighted average of the resultant height, h;, of
the j-th membership function.

Zyi‘hj

y = (2.10)
2h
J

where h; = p( y)

(6) Maximal Height

The output value which corresponds to the maximum height, h;, from among all the
membership functions is considered the discrete output value.

y=h, .11

J

where h, is the maximal height

)

(7) AreaMethod

The area method obtains the output as the weighted average resultant area, S, of the J-th
membership function.

Zy,--S, :
= e 2.12
y ZS,- (2.12)
j
(8) Maximal Area

The representative output value, y, is considered the discrete output value, where j is the
output membership function with the maximal area.

y=y, @.13)
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(9) Heuristic Rules

And finally, in some instances, defuzzification can be through additional heuristic rules. In
the case where the membershup function is convex and unimodal a crisp maximizing decision can
be made. However, if the membership functions of the control statements are not unimodal a
heuristic rule such as "Take the action which is midway between two peaks or at the centre of a
plateau” can be used for defuzzification [Zimmermann, 1985].

All the methods above produce a continuous discrete output variable. In some cases the
results may be required in a fuzzy form (i.e.. large, medium, small, erc.) in which case the
continuous discrete output vaiiable would be compared against a fuzzy range to produce a single
fuzzy variable.

According to Tong [1980] there is no published evidence to suggest that any method is
superior. In other instances, [Xu et al., 1987] defuzzification can be consider as part of the
minimization criteria for the model structure of the specific application.

2.4 Tuning

A number of difficulties are encountered by the designer of a fuzzy logic controller. First of
all, for an even moderately complex process the number of rules required to obtain adequate control
in all operating regions may be extremely large. The task of obtaining all of these rules from the
process operator can itself be a formidable task. Secondly, once the initial rule set has been
established the designer must ensure that the rules are consistent and ccmplete. And finally, the
rules must be tuned so that the overall performance is optimal (or at least satisfactory).

Consistency means that no two rules are in conflict such that they have the same antecedents
but a different consequent. A rule set is complete when every possible input state has a
membership function value greater than an arbitrary cutoff level (e.g. 0.1) in at least one rule.

Tuning challenges include [Li et al., 1989]:
. completeness of the rule base
. shape of the fuzzy linguistic functions

. overlapping of subsets

J practical methods for controller calibration
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Tuning can be accomplished by [Li e al., 1989]:

. changing the rules

. changing the range of the membership functions

. changing the shape of the membership functions

) changing the gains on the fuzzy input

o adjusting the deadband about the setpoint (if coarse and fine control is used)

or a combination of the above.

Insight into rule consistency can be gained by observing the profile of the output fuzzy
membership functioned obtained after the rules have been fired for a given condition. The shape of
this curve can be used to assess the quality of the control rules used. As iliustrated in Figure 2.14,
curve (a) shows a single strong peak indicating one dominant control rule. The two peaks of curve
(b) show that two strong but contradictory rules are present. Tke flatness of curve (c) indicates an
absence of a strong rule set for the condition. For both of cases (b) and (c) some modification of
wie control rules may be necessary to obtain good control [King et al., 1977).

Figure 2.14: Rule Consistency [King et al., 1977]

2.5 Advantages

The big advantage of fuzzy logic controllers is that they are simple in structure and are
relatively easy to construct. They do not require the modeller to have an in-depth mathematical
knowledge of the process, only intuition or experience with the process.

Many ¢ .«aplex chemical processes are too complicated to be fully understood in terms of an
exact mathematical model and/or cannot be control in a precise way using classical control
techniques. Howsver, these same processes may be successfully controlled by operators using
rules of thumb and are the main candidates for fuzzy logic control applications.

2.5 Disadvantages
Some of the strengthis of rule-based fuzzy logic controllers can also their greatest

weaknesses. Because the process is not modeled in a conventional sense it is difficult to prove the
stability of the system since stability analysis relies on the existence of a mathematical model. But
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if a discrete mathematical model were available the controller could have been designed using
classical or modem control techniques.

Proving the stability of a fuzzy logic controller is one of the main concerns with fuzzy
applications. Some developers feel that it is not a question of whether the controller is stable but if
the process is stabie under control. In most cases it is felt that if a process can be controlled
successfully by a ;uman operator it should be possible to implement fuzzy control.

Although fuzzy rule-based controllers are simple to construct, they are difficult to tune
because of the large number of tunable features and the lack of quantitative performance measures.
As much as 90% of the development time of a fuczy logic controller is spent tuning the control
rules [Karr, 1991(b)]. There also seems to be a lack cf systematic methodology to optimize rule-
based solutions other than trial-and-error or adopting search techniques such as genetic algorithms
[Karr, 1991(a) & (b)].

2.7 Summary

Chapter 2 has presented a literature review of fuzzy rule-based systems theury as a starting
point for the development of the relational-based control system presented in this thesis. The
literature review cons~lidates the rule-based development theory from several sources. The format
of this development is consistent with the relational-based theory, which is the focus of the thesis.
Relational-based theory will be discussed in Chapter 3.
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CHAPTER 3 FUZZY RELATIONAL-BASED SYSTEMS

Fuzzy relational equations play a significant role as a platform for a uniform
development of techniques in fuzzy sets

[Pedrycz, 1991]

3.1 Introduction

Fuzzy logic can be applied to control problems through the use of fuzzy relational equations.
Relational-based fuzzy systems use a fuzzy relational equation which qualitatively relates the input
and output states. The relational model is a matrix composed of values which represent the degree
of truth of each possitle cause-and-effect relationship that can exist between the inputs and outputs.

Relational equations date back to the middle of the 1970's when they were studied by
Rudeanu and were devoted exclusively to processing Boolean variables in relational structures. In
the area of fuzzy research, relational equations were introduced by Sanchez [1976] as part of his
work of the application of relational equations to medical diagnosis [Pedrycz, 1991(a)).

The advantage of the relational equation approach is that several techniques exists which
allow the relational matrix to be identified directly from input-output data which is a more straight
forward approach and is less subjective than developing a rule set based on interviews with process
operators. Relational-based fuzzy equations exploit the numerical framework inherent in fuzzy
logic. The information available in the fuzzy relational matrix, can be expressed in a fuzzy state-
space design y; = yi.,°U;..°R, where ¢ is the fuzzy compositional operator. This design facilitates
numerical analysis of the fuzzy system which is a major advantage of relational-based systems over
rule-based systems.

The mathematical basis of fuzzy relational equations is reviewed in this section and then it is
shown how fuzzy relational systems can be translated o rule-based fuzzy systems and visa versa.

3.2 Fuzzy Definitions and Notation

A brief overview of fuzzy definitions and notation is required prior to the investigation of
fuzzy relational matrices. This is by no means an exhaustive coverage of the area. It is included as
background information and a reference for tcrminology that will be used later in the thesis
development.

3.2.1 Fuzzy Sets

Fuzzy sets, in which membership is gradual, are actually generalizarions of classical sets,
where membership function can take on only two values {0,1}, 1 being full membership and 0
being no membership. The term fuzzy is used for convenience.
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Let ‘U be a collection of objects or variables, either discrete {x;} or continuous {u}. Uis
called the universe of discourse and includes the range of all the elemeats u of ‘U. The universe is
never fuzzy.

A fuzzy subset, F, of a universe of discourse ‘U can be represented by a membership
function:

1y ThiD,1] @3B.n

This function assigns to each element u of U a number p(u) in the interval [0,1] which specifies
%~ grade of membership.

When U i~ continuous, the juzzy subset, F, can be written:

F= [, e, (3.2)

When ‘U is discrete, the fuzzy subset, F, can be written:

F=Y, Auu). (3.3)

i=l

In both of these definitions the integral sign and the summation sign are interpreted as union rather
than an arithmetic sum.

More commonly, for the case when ‘U is discrete, F can be written as a set of ordered pairs
of the grade of membership p(u;) and the elements u;:

F = {(ngu), u) tue U}. 34

If the elements of the universe of discourse are well known, the notation for the fuzzy set F can be
reduced to a vector notation:

F = {pu) ue U). 3.5)

The support of the fuzzy subset, F, is the set of all points « in ‘U where u(u)>0,
(. pp(u)0).

The crossover point in F is an element u of U whose grade of membership in F is
1p(u) =0.35.



A fuzzy singleton is a fuzzy set whose support is a single point in U. So if F is a fuzzy
singleton whose support is the point u, then:

F=plu (3.6)

where y is the grade of membership of u in F. For this notation to be consistent, a non fuzzy
singleton is denoted by 1/u, where the single point has full membership which equates to non fuzzy.

The height of F is:
hgt(F) = max ). (3.7

A fuzzy set, F, is said to be normalized iff:
3 uel, pu)=1. (3.8)

This definition implies that the hgt(F) = 1.

A set F is said to be included in G (i.e. F < G)iff:
Vuel, pu)s<pgu). 3.9

To determine whether an element u € U typically belongs to a fuzzy set, F, it may be
required that the membership value be greater than some threshold value o € ]0,1]. The set of
thesc elements is called the ot-cut, F,, of F:

F,={ueU, plu)2al. (3.10)
A fuzzy set, F is convex iff its a-cuts are convex. Or, Vu, € U, Vu,eU, Yie [0, 1]
ue(Au, + (1-A)u,) 2 min( ug(u,), Re(u,)). (3.11)

If F and G are convex, then so is FNG.

3.2.2 Fuzzy Set Operations
Let A B and C be fuzzy subsets in U with membership functions j,, iz and p,

respectively. The fuzzy set theoretic operations of union, intersection, and complement are
defined by their membership functions as follows:
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The membership function of the union AU B is defincd for all u € ‘U by:
Hop() = B U Hp(e) = max{p(u), pp(u)}. 3.12)

The union corresponds to the disjunction connective or.

The membership function of the infersection AN B is defined for all u € U by:
Mans (W) = Ha )N pgu) = min{p, (), ()} (3.13)

The intersection corresponds to the conjunction connective and.

The membership function of the complement of A is defined for all ue U by:

Me() = 1 |, (0. G.14)

The complement corresponds to the negation not.

The above definitions of uxion (or) and intersection (and) were given by Zadch [1965] in his
landmark paper "Fuzzy Sets". These definitions correspond to non-interactive disjunction and
non-interactive conjunction, respectively. The condition of nor-interactive requires that for either
AUB or AN B an increase in the first argument cannot be compensated by or traded oif with a
decrease in the second argument, or vice-versa. More formally this can be stated:

Let U={u},"V={v} and c be a mapping from Ux"V to the unit interval [0,1].
Then for all ue [0,1], there does not exist an o, Be [0,1] such that o>u, B<u (or o<u,
B>u) and (e, B) = c(u, u). For this to be true ¢ must be of the form:

¢ =min(u, v) = uAv 3.15)

On the contrary, interactive allows an increase in one argument to be
compensated for by a decrease on the other [Bellman et al., 1977).

As given in the example, the non-interactive conjunction is defined uniquely by the min
connection, while the interactive conjunction is strongly application specific and has no universally
valid definivn.
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The above definition for union, intersection and complementation adhere to the basic
identities which hold for ordinary sets, such as:

(1) Commutativity: AUBUC)=(AUBUL
ANBNC)=(ANBNC

(2) Associativity: AUB =BUA
ANB =BNA
(3) Idempotency: AUA=A
ANA=A
(4)  Distributivity: AUBNC) = (AUBNAUC)

ANBUC) = (ANB)UANC)

(5) Boundary: AUU=U
AND =0
(6)  Identwy: AUD = A
ANU=U
(7) Absorption: ANAUB)=A
AUMANB)=A
(8) De Morgan’s Laws: (AUB)=ANB
(ANB)=AUB
(9) Involution: A=A
(10) Equivclence Formula: (AUB)N(AUB) = (ANB)UANB)

(11) Symmetrical Difference Formula:
(ANB)UANB) = (AUB)N(AUB)

The only law of ordinary set theory that is not longer valid is:

(12) The Law of excluded middle: ANA 2D
AUA 2 U
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When computing composite terms the precedence rules governing the evaluation of Boolean
expressions is observed.

Precedence Oper ition
First not
Second and
Third or

The definition presented for unior and intersection are by no means the only definitions for
these fuzzy set operations, but they are ihe most popular. Two other equally important definitions,
one for union and the other for intersection are:

The membership function of an alternate union AU B is defined for all ue ‘U by:

Haup() = P (03U g(u) = p,(W)Bn1)
(3.16)
= W, (U)+ g (), (1) g(14)

The operation for the alternate union, in this case, is the algebraic sum. This definition of union
is associative, commutative and non-interactive.

The membership function of an alternate intersection AN B is defined for all ue ‘U by:
u,qns(u) = p'A(u)n un(u) = HA(M)'H.B(M) 3.17)

The operation for this aisernate intersection is the algebraic product. This definition of
intersection is also associative and commutative, but, it is interactive.

The complement for these two alfernate definitions of union and intersection is the same as
given abov=. These alternate definitions along with the complement follow De Morgan's Laws, but
they do nc! follow the Laws of Distribution, Idempotency, Excluded Middle, Absorption, the
Boundary and Identity condition, nor the Formulae of Equivalency or Symmetrical Difference.
The condition of Involution is unchanged under these new definitions.

Figure 3.1 gives a graphic comparison of the common and altemate definition for union,
intersection and complementation. This comparison is important for this thesis as the product
operator is substituted for the more commonly used minimum operator. The basis for this
substitution is discussed in detail in Chapter 4.
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1 - 1 T
,o-B- -0 ®
BF - 0.8F 5
0.8 . ~B ~A
0.6} . > 0.6 .
m ¢
< 0.4k 1 T o4l 1
0.2} : 0.2} a .
] “o- >}
0 . 0 ]
0] 0.8 1 0 0.5 1
1 - 1 Y
0.8r 0.BF .
m 0.6} m 0.6+
“ ©
(o) max g
< 0.4 - < 0.4}
0.2} = 0.2¢
0 L 0 1
0 0.5 1 0 0.5 1

Figure 3.1: Operations on Fuzzy Sets [Pedrycz, 1989]
(~A =A)

3.2.3 Other Fuzzy Sets

Occasionally in the literature, fuzzy sets are referred to ac L-fuzzy sets, where the L refers
10 a lattice structure, and the set is defined with infinite bounds. Under this structure, intersection
and union are defined:

V ue U, ppag) = inf(rpu), neu))
(3.18)
V oue U, pp,g(W) = sup(igu), pg(u))
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where inf and sup denote the greatest lower bound and the least upper bound, respectively. Another
lattice structure considered is Brouwerian lattice, L. such that:

V¥ aeL, V belL, {xeL,inf(a. x) <b}. (3.19)

In other words there is a least upper bound, x denoted a o b. The dual Brouwerian lattice, L,
is such that:

¥ aeL, V beL, {xeL,sup(a, x) 2 b}. (3.20)

In this case there is a greatest lower bound, x denoted a € b.

In cases where the bounds are finite, as is often the case with fuzzy sets, the sup is replaced
with max or the symbol Vv and the inf is replace with min or the symbol A.

3.2.4 Fuzzy Relations

If F,, ..., F, are fuzzy sets in U,, ..., U,, respectively, the Cartesian Product of
F,, ..., F, is a fuzzy set on the product space U, x...xU, with membership function:

uF,x...xF,.(ul’ u2’ cec un) = min{u}?,(ul)' veey up,,(u,.)} (321)

if the intersection is min, or

A3

W .xia o s oo ) = Wp (0 B, (). .. W () (3.22)

if the intersection is algebraic product.

A fuzzy relation, R, from a fuzzy set on the universe of discourse U to a fuzzy set on the
universe of discourse 'V, is a fuzzy set on the cartesian product ‘Ux'V. This fuzzy set or relation R
on Ux"V can be represented by the membership function:

e UxXV-([0,1]. (3.23)

This function assigns to the pairing of each element u of ‘U with each element of v of "V a number
Hg(u, v) in the interval [0,1] which specifies the grade of membership of the ordered pair (u, v).
This fuzzy relation can be expressed:

R={(ug(u, v).(u, V))(u, v)E UxVY) (3.24)
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Often this relation may be represex.ted as a relational matrix. For example, if u,, ue U,
v,, v,€ Vand R is the relation:

R = {(0.8, (u;, v))), (0.6, (u;, v;)), (0.2, (uy, v))), (0.9, (up, v,))} (3.25)

then R can be expresscd in relational matrix form as:

Vi W
oo (08 06 (3.26)
" u, \0.2 09

More generally, an n-ary fuzzy relation, R, is a fuzzy set in ‘U, x...xU, and is expressed as:
Ry e, = (g, Uy coos ), () gy s D) 1 (1, Uy, s 1)E Ux...xU,} (3.27)

A fuzzy relation, R can also be known as a fuzzy restriction. Letu= (u, u,...u,)bea
variable on ‘U = U, xU,x...xU,. Then a fuzzy restriction, denoted R(x), is a fuzzy relation that
acts as a constraint on the values of ‘U that may be assigned to the variable u.

The projection of a fuzzy relation, R, means the projection of the relation on its various
subspaces. For example:

He(u) = mvaxlug(u- 2] (3.28)

Hg(v) = max [ue(u, V)] (3.29)
Note that for this 2-dimensional sy='zm, the projection of a projection is the height.

hgi(R) = max max (Mg, V)] (3.30)

The result of the projection can be interpreted as a shadow appearing on the remaining axis.

Interactivity of a fuzzy relation, R, nas been described by Zadeh [1975] as follows:
An n-ary fuzzy relation R(u,, u,, ..., u,) as said to be separable iff

R(u,, s ..., u)) = Ru)}R@)X...xR(u,) (3.31)
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where x denotes the cartesian product and R(u;,) denote the projection of R on u,.
The variables u,, u,, ..., i, are said to be non-interactive iff the relation, R(u,, u,, '
..., 4,) is separable.

Figure 3.2 illustrates interactive and non interactive for fuzzy relations.

R(u) 1 R(u) Y,

(2) Non interactive () Imieractive

Figure 3.2: Interactive vs. Nen interactive Fuzzy Relations [Dubois and Prade, 1980]

Various properties of fuzzy relation have been defined so that the relational matrix can be
categorized according to its agreement with the definitions. Several of these definitions will be
given below, however, this method of definition and categorization is more appropriate 10 fuzzy
relations involved in circuitry.

A similarity relation, the fuzzy generalization of an equivalence relation, is a fuzzy
relation, R, which is reflexive, symmetrical and max-min transitive.

R is reflexive iff Yue U, pg(u, u) =1 (3.32)

R is symmetric iff Yue U, Vve V, pyu, v) = pg(v, u). (3.33)

The transitivity of a relational matrix can be described as the strength of the link between
the elements. That is the strength of the link between any two elements must be greater than or
equal to the strength of any indirect linkage, which might involve other elements.
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Let R be a fuzzy relation of %X VX W. R is considered max-min transitive iff
V(u, v, w) € UXVW:

Keu, w) 2 min(jL,(u, v), He(v, w)) (3.349)

Zadeh [1971] and Bezdek et al. [1978] have pointed out that max-min transitivity is too
strong a property to impose on a similarity relation. Bezdek et al. [1978] compared the strength of
the max-min transitivity with several other binary operators.

RY2<R_ .SRy<R_  SR.SRax (3.35)
where 2 a+b-ab (probabilistic sum)
max max(a, b) (union)
v 12(a + b) (arithmetic sum)
min min(a, b) (intersection)
ab (algebraic product)
A max(0, a+b—1) (bold intersection)

They found that the max-# and the max-product are the weakest of the transitivities and are
therefore described by Dubois et al. [1980] to be intuitively more appealing for fuzzy similarity
relations than the max-min transitivity.

A transitive closure of a binary fuzzy relation R, denoted cl(R), is a fuzzy relation
constructed from the union of powers of R,

cl(R)=RUR"U...U... (3.36)
where the powers of R are defined recursively,

R*=RNR
: (3.37)
Rk-r] - RknR

The Extension Principle, introduced by Zadeh [1975] is basic to the idea of fuzzy set
theory. It provides a method of extending non fuzzy mathematical concepts to the fuzzy domain.
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Let ‘U be a cartesian proGuct of universes, U = T xUx..xU,. and 4,, A,, ...A, ben
fuzzy sets in U,, U,, ... U, respectively. Let £be a mapping from U, xU,x...xU, to a universe
“Vsuch that v = f(u,, Uy,...u,). The extension principle allows us to induce from the n fuzzy sets of

A, a fuzzy set B on "V through f such that:

Kz(v) = maz( [min(uA‘(u,). cenn Ll,q_(u,.))]

iy o3}

1) =0 it f1) = @

where f'(v) is the inverse image of v.

A binary operation * in ‘U ="V is said to be increasing iff:

for u,>v, and u,>v,,

then w, *u,>v, *v,
In the same way, * is said to be decreasing iff
for u,<v, and u,<v,,

then u, *v,<u; *v,

(3.38)

(3.39)

(3.40)

(3.41)

Using the extension principle, an arbitrary operator, *, can be extended into the fuzzy domain, so

that two fuzzy sets, F and G, can be combined. The combination is defined in the following

manner:

r@cW) = max (ke(u) * Bg(v))

(3.42)

Now consider a graphical interpretation of a fuzzy composition. Let A be a fuzzy set in U,

B be afuzzy setin 'Vand R a fuzzy relation in Ux’V. Then

() = Haop(V) = max min(i,(u), helu, v))

(3.43)

can be interpreted as B = AR, where B is the fuzzy set induced from A through R. This is shown

graphically in Figure 3.3.



Figure 3.3: Graphical Interpretation of Fuzzy Relational Equation [Dubois and Prade, 1980]

The composition of two fuzzy sets can be performed by any opeiJtion that satisfies the
properties of a triangular-norm (t-norm) or a triangular-conorm (s-norm). The properties of a ¢-
norm are:

For x, ye [0,1]
(1) Commutativity: xty=ytx
(2) Associativity: xtytz=xt{ytz)

(3) Boundary Conditions: Otx= xt0=0

ltx= xtl=x

(4) Monotonicity: If x2vandy 2 wthen
xtyzvtw
(5) Continuity: For any fixed x€[0,1],

x t y is continuous on [0,1] for all ye [0,1].
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The properties of an s-norm are:

For x, ye [0,1]

(1) Commutativity: xSy=ySx
(2) Associativity: (xSy)sz=xs (yS2)
(3) Boundary Conditions: Osx=xs80=x

Isx=xsl=1

(4) Monotonicity: If x2 vand y2w
thenxsy2vsw
(5) Continuity: For any fixed xe I,

x S y is continuous on I for all ye L.

Triangular norms and co-norms will be discussed in more detail in Chapter 4.

If R and S are fuzzy relations in Ux'V and "Vx'W, respectively, then the max-¢ composition
of R and § is a fuzzy relatior: given by:

ROS = {[ max (g(u, V) t pg(v, w)), (4, w) ] lue U,ve Viwe W } (3.44)

In this example the t could be any triangular norm connector, such as, min, aigebraic product,
etc.

3.2.5 Fuzzy Logic

In fuzzy logic there are two important fuzzy inference rules, as briefly outlined in Chapter 2.
These are generalized modus ponens (GMP) and the generalized modus tollens (GMT).

Let x and y be fuzzy sets and A, A’, B, B’ be fuzzy linguistic variables. The generalized
modus ponens for a rule-based fuzzy systems can be stated:

Premise 1: XisA'
Premise 2: ifxisAthenyis B
Consequence: yisB'
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The GMP reduces to the mcdus ponens of traditional logic when A’ = A and B’ = B. This form of
implication is a forward data-driven inference and can be formulated as the compositional rule of
inference for fuzzy relations as follows:

If R is a fuzzy relation from U to VY, and x is a fuzzy subset of ‘U, then the fuzzy subset y
of "V which is induced by x is given by the composition of R and x:

y=xoR (3.45)

When o= max-min the compositional rule of inference is the one suggested by Zadeh [1973].

The generalized modus tollens for a rule-based fuzzy systems can be stated:

Premise 1: yisB'
Premise 2: ifxisAthenyis B
Consequence: xisA’

The GMT reduces to the modus tollens of traditional logic when A’ = not A and B’ = not B. This
form of implication is a backward goal-driven inference and can be formulated as the
compositional rule of inference for fuzzy relations as follows:

If R is a fuzzy relation from U to "V, and y is a fuzzy subset of 'V, then the greatest fuzzy
subset x of U which causes y is given by the composition of R and y:

x=R@y (3.46)

This definition of an inverse to the fuzzy compositional equation was first suggested by Sanchez
[1976].

The concepts of composition -nd resolution can be extended to fuzzy relational calculations
in both a system causal and system identification context. these concepts will be discussed further
in Chapter 5.

3.3 Discrete State Space Fuzzy Relationai Equations

In order to permit system analysis, fuzzy relational equations can be described by a state
space formulation, similar to conventional discrete state space equaticns. The fuzzy state space
model is described as follows.

Let u={u;li={1,2, ...in}}e U, x={x;lj={1,2, ... n}}e X, and y={y,! 1= {1,2, ..., n}}
€ Y be the fuzzy spaces of input, state and output, respectively, all defined on the finite fuzzy
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universes of discourses indicated. Then for a series of N state, output and control data points. the
fuzzy state space relationship is written:

Xp = Ug1®8p e 2% - OUpr p2Xg 1 °Xg20- .. °xk-p°R 347
¥i = X°8 (3.48)
where Xis Xp15--00 Xpp are the fuzzy states at the time instances indicated,

.o Upe2, Uiop are the fuzzy control instances,
yi is the fuzzy output at time &.

1 is the system delay

p is the order of the system

and o € 0, where 0 stands for a family of composition operators

(i.e. max-min, max-product, etc.)

The first equation, equation (3.47), is a state equation which relates the statc at the -th time
instant with; the states occurring at the previous instants, k~1, ..., k~p; and the fuzzy control at the
previous time instants plus a delay, k~t—1,..., k-t-p. Equation (3.48) transforms the statc x, into

the fuzzy output, y,. The fuzzy relations R and § model the system dynamics and arc defined on
the cartesian product spaces:

Re UxUx.. . xUxXxXxX...xX;and Se XxY . (3.49)

L —J 1 -
ptimes (p+1) times

Assuming the fuzzy states and the fuzzy outputs are the same, (i.e. x, =y, for all &), then S
is an identity matrix, with S(x;, y)) = 1 if x;= y,and 0 otherwise. For this case the equation (3.48)
can be ignored and only the state equation is considered, as follows:

Vi = Ui %82 Ut %V 1%Vk 2% -°J’k-p"R (3.50

Note that the fuzzy relation R expresses the relationship between the reference fuzzy sets not the
relationship between the actual input-output data.

The following proposition shows that a p-th order model can be transformed into a first order
model (p = 1) without lost of generality [Pedrycz, 1989, 1993]
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Proposition 1: The fuzzy p-th order model given in (3.50) can be reduced to a first order model
(p = 1), as follows:

Vi1 = Upra®Ve1°K (3.51)

where K=up,oo... Uy p%Y12% .- °y,,_,,°R (352)

Inserting equation (3.52) into (3.51) results in equation (3.50), the original p-th order equation
model.

Vi = Upo %802 OUpep?VeiVe2® - Ye,°R (3.50)

This analysis by Pedrycz {1989, 1993] is particularly important with regard to the
dimensionality problem often suffered by fuzzy relational models. This dimensionality deficiency
can be alleviated by exploiting this analysis.

Based on the generality of the first order fuzzy model, further discussion of the relational
equations will be restricted to a first order time delay model.

3.4 Fuzzy Discretization

For situations when the input-output data is discrete but the process is 100 complicated to be
modeled deterministically, the discrete data can be transform into a fuzzy format through fuzzy
discretization. The idea of fuzzy discretization is explained as following. Let X, X, .. X be

referential fuzzy sets defined in the space or universe of discourse, X, such that:

X,: X-101] fori=1{1,2, ..., p} (3.53)
and the condition of completeness is satisfied:
Vxe X: Jie {1,2,....,p}3X(x)=x>0 (3.54)

That is, the referential fuzzy sets cover the complete range of the input space X. Aswell, every
fuzzy set defined in X can be expressed in terms of the family of referential fuzzy sets and can be
represented by a p-tuple of numbers in the interval [0, 1] ac will be shown.
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The possibility of Z belonging to X, {i = 1, 2, ..., p} is defined [Pedrycz, 1984] as:
pi= rzle%‘x(x,.(x) t Z(x)) {i=12,...,p} (3.55)

where p;i€l0,11{i=1,2,....p}

and t is any triangular norm.

If Z is a fuzzy singleton where the membership function is equal to 1 in exactly one point of X, say
X, then:

Z(x)= box=x 56

©=10 X#X, (3.56)
and

pi=X(x) {i=1,2,...,p} (3.57)

The following example from Chen et al. [1994] clearly illustrates this concept.

Example 1

Assume X = {100, 200, 300, 400, 500} is the discrete temperature universe of

discourse. Let {X,, X,, X,} be the set of reference fuzzy sets defined in X, such that
X,={1,05,0,0,0}, X,={0,05, 1,05,0},and X, = {0,0,0,0.5, 1} represent the
linguistic values of low, medium and high temperature, respectively. Therefore any
temperature within the universe of discourse, X, can be expressed by reference fuzzy
sets {X,, X,, X,}. Thus a slightly low temperature denoted by the fuzzy sct {0.8,0.9,
0.7, 0, 0} can be expressed as {0.8, 0.7 0} through application of equation (3.55). A
non-fuzzy temperature, x = 200, can be expressed through equation (3.57) as {0.5,
0.5, 0}, which is the same result obtained through equation (3.55) when the accurate
temperatare (x = 200) is expressed as the fuzzy set {0, 1, 0,0, 0}.

The approach of approximating fuzzy sets by a family of referential fuzzy sets has two main
advantages [Pedrycz, 1984]:

(1)  areduction of the memory load in a computer implementation of the algorithms
dealing with the fuzzy data

(2) aunified treatment of fuzzy and nonfuzzy forms of information

50



The choice of the shape and . . ber of the referential fuzzy sets is still relatively subjective,
however, there are several methodolo,.es available in the literature to aid in their computation.
Fuzzy clustering methods by Bezdek [1981), and in particular the FUZZY ISODATA algorithm, is
often sited in the literature [ Valente de Oliveira, 1994, Pedrycz, 1984]. One of the drawbacks of
using clustering algorithms for the construction of the referential fuzzy sets is that predictions are
always below the maximum values of the state and above the minimum values, due to their
interpolating character [Valente de Oliveira, 1994).

Recently, Pedrycz [1994] pointed out that triangular fuzzy membership functions are
frequently used for the development of fuzzy controliers and classifications schemes mainly due to
their simplicity and limited information about the actual linguistic terms. However, in his paper he
validates the use of these membership functions for fuzzification in that they lead to entropy
equalization, based on assumptions for the underlying probability density function. Similarly for
defuzzification, triangular membership functions, with a 1/2 overlap level produce a zero value
reconstruction error. Pedrycz [1994) qualifies this work by pointing out that other membership
function shapes may produce the same results as these, but at the expense of the simplicity.

Shaw et al. [1992) provide the following detailed algorithm for the calculations of
fuzzification and defuzzification.

Definition 1: A given space Z can be partitioned into p referential fuzzy sets consisting of
isosceles triangles, which satisfy the requirements of being normal convex and
completely covering the space Z [Zadeh, 1965]. The referential fuzzy sets also
overlap, as shown in Figure 3.4. So every real value of z will generate a fuzzy
variable Z which is a set of p-terms. So

Z ={z), 25 ...s 2} (3.58)
1
a
Ié 0.8F .
[
o
E 0.6} i
(Y]
=
5 0.4} .
(V]
o
> 0.2f 1
o
0]
0 0.2 0.4 0.6 0.8 1

Universe of Discourse

Figure 3.4: Fuzzy Referential Sets
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Definition 2:  Panitioning the real space Z into p referential fuzzy sets, fuzzification is
defined as the 1-to-p mapping from the single real value to the p fuzzy
values. The fuzzifier operator ¢p defined over p referential fuzzy sets is:

Z=¢,0) (3.59)

Definition 3:  Panitioning the real space Z into  referential fuzzy sets, defuzzification is
defined as the p-to-1 mapping where the fuzzy p-term is converted into a
single real value. The defuzzifier operator ¢p" defined over p referential
fuzzy sets is:

z=9," (2) (3.60)
Combining equations (3.59) and (3.60):
z,= 0, [9," (2)) (3.61)

it would appear that theoretically the same referential sets can be used for both fuzzification and
defuzzification since they are inverses of the other. This is not necessarily the case as illustrated by
the following discussion on the problem of leakage.

One of the benefits of fuzzification and defuzzification is that the systems itself tends to filter
out the excitation of certain states [Braae et al., 1979]. However, Shaw et al. {1992] performed
experiments using uniformly distributed white noise as an input and showed that excessive noise
tends to distort the fuzzy relation causing leakage effects.

Leakage results when, using the earlier definitions of fuzzification and defuzzification, the
following inequality occurs:

Given 2, =Z°R (3.62)
calculate 2, =0,(0," Z)IR (3.63)
then Z,) #2, (3.64)

In general, th«: defuzzifier operator, ¢p" yields the inverse of the fuzzifier operator, ¢, only for

certain * alue:. of R. More normally, as a result of the process by which R has been identified, the
components of R have values such that defuzzification is not the inverse of fuzzification. More
specifically, operations on R introduce additional components to the fuzzy p-term set which are not
present originally and so the defuzzified value of z,’ contains errors. This phenomenon, called
leakage, prevents the use of the fuzzifier for defuzzification and results in the use of an
approximation or defuzzification techniques. Therefore defuzzification methodologies, such as
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mean of maximum or center of area discussed earlier, yield the most likely rather that the exact
real value corresponding to the fuzzy p-term set variable.

Since the defuzzifier and fuzzifier no longer function as inverse operators, distortion or
leakage results when calculated output states are fed back recursively to the fuzzy model. To
alleviate this problem, the estimated or calculated fuzzy states must first be defuzzified and then
fuzzified again before being applied recursively to the identification algorithm. This process acts to
restore the fuzzy state to the correct number of non-zero and zero values which conform to the
fuzzy states generated by the real variables. It does not, however, and can not eliminate the error
due to the defuzzifier and fuzzifier not being exact inverses.

3.5 Translation between Relational-Based and Rule-Based
Fuzzy Models
Rule-based fuzzy models are generally more recognizable due to there similarity to rule-
based expert systems. The structure is also more comprehensible for those systems consisting of
two inputs affecting one output with the construction of the relatively simplistic look-up table.
Most of the introductory articles dealing with fuzzy systems illustrate fuzzy rule-based systems.

Additional, almost every successful commercial or industrial design has been a rule-based fuzzy
system [Kosko, 1992].

This section will show that relational-based fuzzy models and rule-based fuzzy models can
actually represent the same information. While rule-based fuzzy system have a structure almost
universally understood without a strong mathematical background, relational based fuzzy models
possess a solid mathematical base that permits mathematical analysis.

3.5.1 Translation from Relational-Based to Rule-Based

Pedrycz [1984] describes the translation from a relational-based fuzzy system to a rule-based
fuzzy system as folows. Let U, U,, ..., U, bep, linguistic referential fuzzy sets defined on the
input space ‘U, such that foru € U:

u:U;—[01] (3.65)
and the conditions of completeness are satisfied:

Vue U 3ie (1,2, ...p,}3U)=u;>0 (3.66)

That is the referential fuzzy sets cover the complete range of the input space ‘U.
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Also correspondingly, let Y. Y,, ..., Ypy be p, linguistic referential fuzzy sets defined on the
input space VY.

y:Y,—[01] 3.67

and the same conditions of completeness are satisfied:
Vye Y: Jje (1,2, ..,p,} 3¥(y)=y,>0 (3.68)
Define the discrete first order state space fuzzy model, with y = x, as follows:
Vi = Upe1®Ve1°R fork=1,2,..,.N (3.69)

where k is a specific time instant

u is the fuzzy input, defined u = [u,, u,, ..., up“]
y is the fuzzy output, defined y = [y, y,. ... ypy]

and R is the fuzzy relational matrix for the first order model.

Since the relational matrix R has pupzy elements, this relational fuzzy model cau be

translated into a set of pupi fuzzy implication statements of the type:

If input is u; and output is y; (at the (k-1)-th time instant)

then output is y, (at the (k)-th time instant) with possibility measure A,

The possibility measure A, is the (ij))-th entry of the R matrix. From this format a simplificd

i

linguistic table can be constructed which is the same as the look-up table common in many fuzzy
controllers. The look-up table, illustrated in Table 3.1, has linguistic entries of systcm output at the
k-th time instant calculated from the formula:

At =, where p = I; the index from the calculation max A (3.70)

Thus the p,pi fuzzy implication statements above are reduced by a factor of p, to a look-up table
format.

And, if a rule-base.{ system is sought, information regarding the system can be leamed via
relational matrix techniques and then translated o a rule-based format
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OCutput at £-th Time Instant
Input at k-th Time Instant Yi Y2 - Y Yo
U,
u,
A
U
u,

Table 3.1: Linguistic Table of Translated Relational Matrix [Pedrycz, 1984]

3.5.2 Translation from Rule-Based to Relational-Based

Now consider a fuzzy rule-based systems generated from knowledgeable process personnel.
A rule-based system in the form of a look-up table, can be translated to the relational matrix for
stability analysis or to check the consistency of the rule-based model against a relational bascd
model learned from the /O data. Although a rule-based fuzzy logic system may appcar 10
resemble a typical rule-based expert system, which has a symbolic framework, the rule-based
fuzzy logic system is actually nume:ically based. The numerical framework of fuzzy system is
consistent between the rule-based and relational-based systems. And justas a relational-based
system can be translated to a rule-based system, the fuzzy logic rule-based systcm can also be
represented by a relational matrix.

The translation from rule-based to relational-based, or a relational matrix will be
demonstrated by the following example. Given a fuzzy control scenario:

If error = e and change of error = Ae

then input = u

where the values or e, Ae and u are represented linguistically by low (L), medium (M) and high
(H). This scenario can be easily represented the a look-up table format shown in Figure 3.5.
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H
M
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Figure 3.5: Example Look-Up Table

The fook-up table can be translated to a relational matrix by equating the value of low to the
fuzzy vector {1 0 0}, the value of medium to [0 1 0] and high to [0 0 1]. With these vectors, the
look-up table is expanded along an input axis, or, from the current 2-dimensional table to a 3-
dimensional relational matrix with an axis dimension for each of error, change of error and input.
This translation results in the Ae x € x u relational matrix shown in Figure 3.6

The ability of fuzzy rule-based systems 1o be represented by relational matrices is the reason
fuzzy systems can be classified under a numerical framework, as was outlined in the introduction.
As well, it provides these system with a basis for quantitative analysis superior to traditional rule-
based expert systems.

3.6 Summary

The aim of the literature review of relational-based fuzzy theory is to provide the background
terminology and theory required to differentiate relational-based fuzzy systems from rule-based
fuzzy systems and to emphasize the fact that rule-based fuzzy information can be translated into a
relational matrix format. This co-representation is the reason that fuzzy rule-based systems are
considered to have a numerical structure, while conventional expert rule-based systems are
considered symbolic.
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Figure 3.6: Translation from Look-up Table to Relational Matrix
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CHAPTER 4 COMPOSITION OF FUZZY RELATIONAL
EQUATIONS |

For those systems that possess an inherently fuzzy structure, a key objective is
to choose an implication operator or inferencing method that ensures the highest
rate of coherence between the knowledge acquisition and reasoning. However, for
those systems that are fuzzified, due tc lack of an adequate deterministic model, the
implication operator is chosen for guod performance at the non fuzzy or numerical
level.

[Pedrycz, 1991]

4.1 Introduction

With the introduction of fuzzy set theory there also came the question of logical connectors.
Fuzzy set applications, such as fuzzy decision-making, require the ability to connect the individual
fuzzy concepts. For example decision making for the purchase of a car may require the vehicle to
be cconomical and roomy and have 5-speeds or 4-doors. With such applications the question is
how to combine the fuzzy sets through the and and or operators [Yager, 1982].

There is no unique answer to this question since the answer depends on what conditions the
and and or are expected to satisfy (See discussion in Section 3.2.2). The statement of economical
and roomy implies that both criteria must be satisfied, so and represents the degree of simultaneous
satisfaction of both criteria. The statement of 5-speed or 4-door implies that satisfying either
condition is acceptable, so or is the degree of collective satisfaction of the conditions [Yager,

1982].

There are a large number of ways to meaningfully define and and or for use in decision-
making with fuzzy logic. Bellman er al. [1977] maintain that the selection of the fuzzy connectives
should be a choice that depends on the situation. The following sections will outline some of the
basic properties that the and and or connectors should possess, then detail some additional
properties that may be required for specific applications.

4.2 Basic Properties of the Intersection or And Connector

The development of the criteria for the definition and selection of and are such that there
should be a strong connection between the real and mathematical characieristics of the and. Thus
there are certain basic properties that every and should satisfy. Before describing these basic
properties of the and connector the following definition is required.
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Definition 1:  For the interval Ie (0,1}, let and be.
()  abinary operation ton I, and
Gi) amapping IXI-1,

suchthat xty=z, forx,y,zel

The basic properties for the and connector are listed below along with a short interpretation
of the property.

(1) Commutativity: xty=ytx
This property implies that when two expressions are connccted by and the order is not important.
(2) Associativity: Gty)tz=xt(ytz)

This property implies that when a finite number of expressions arc connected by and then the
expressions can be combined in any order.

(3) Boundary Conditions: 110=0t1=0
it1=1
0t0=0

This property requires that the and connector collapse to the and operation in conventional two-
valued logic.

(4) Monotonicity: If x2 v and y2w

thenxtyzvtw

This condition insures that the and operation is positively associated with the elements inits
argument. Any binary operation, (an operation on two variables) satisfying thesc four condition is
called a triangular norm (r-norm).

(5) Continuity: For any fixed xe I,

x t yis continuous on I for all ye L.

This property insures against a situation in whick a very small increase in one of the arguments
produces a large change in the resulting combination.
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ltiseasv’ .c that if all five conditions are satisfied, then the following two additional
properties iinld tor any x< I,

And Property 1: Otx=xt0=0
And Property 2: Itx=x

There are a number of definition which satisfy the five basic properties defined above, two of
them are:

xty = min(x,y) min operation

and xty = xy product operation

Based on these definitions of und, the set of and connectors on the interval [0,1] is non-empty and
non-unique.

4.3 Basic Properties of the Union or Or Connector

I'aving defined an and, a complementary or can be obtained by defining a negation and then

requiring the and and the or satisfy De Morgan's laws. The negation operator is defined and
denoted as follows:

x=1-x forxel

De Morgan's Laws require:
(xry) = xUy
(xy) = xy

Definition 2: For the interva: I€ [0,1), let or be:

() abinary operation son I, and

(i) amapping IXI->I,

suchthat xSy=z, forx,yze€l
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The basic properties for the or are outlined below:

(1) Commutativity: XSy=ySx
(2) Associativity: (xSy)Sz=x8 (yS2)
(3) Boundary Counaitions: 1s0=0s1=1
1s1=1
0sc 0
Note that the boundary ¢ «wiions 1~ the or dit;  trom the a~d.
(4) Monotunicity: If x> v ard y2w

thenxsS 2vsw

Any binary operation satisfying th-sc four condition is ~ailed a triangular conorm (¢-conorm or s-
norm).

(5) Continuity: For any fixed xe I,

x 8 y is continuous on I for all ye 1.

Again it is easy to see that if all five conditions are satisfied the following two additional
properties hold for any xe I,

Or Property 1: Osx=xs0=x

Or Property 2: Isx=1

There are a number of definitions which satisfy the five basic propertics for the or operation,
two of which are:

xSy = max(x,y) max operation

and xSy x+y—x-y @-sum operation

Based on these definitions of or, it is clear that the set of or on the interval [0,1] is also non-empty
and non-unique.
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4.4 Specific Properties of the Product and Min Operations

Based on De Morgan's Laws, it is clear that the max and ©-sum operations, used to define
the and connector, arc the conorms for ine min and product operations, respectively, which define
the or connector. This section will present the properties specific to each of these operations and
their associated conorms and negations.

1. The min t-norm and its associated z-conorm, max, and the negation were suggested by
Zadeh {1965] and are the most popular and widely used the in literature. They are defined

and denoted as:

t,(x, y) = min(x, y)
$,(x, ) = max(x, y)

n{x) = 1-x

2. The product t-norm and its associated ¢-conorm, @-sum, and the negation, called
probabilistic operators, are defined and denoted as:

tx, y)=xy
Sy(x, ) = xty=x-y
n(x) = 1—x

Additional conditions that can be imposed on the and operation which result in a uniquely
specified and are listed.

(1) Idempotency: xtx=x
for V xel

The significonce of the idempotency condition is that two proposition having the same degree of
truth combine *o form a value having that same degree of truth. This conditioz i5 satisfied only by
the min operation.

(2) Non-Compensatory: Ifv>w,

thenvtv>wtx

forVx,vywel

The unique solution to the non-compensat-. ~ ““perty is the min operation.

(3) Conservativenes. atb=(@-K)t(b+K)
forKsa-Kandb+Kel



The conservative property of adding a fixed amount to one arguu.. dsu He e

amount from the other argument with the same and rzsult is not satisticd by o product.
(4 Proportionate Interaction: xty= (k) t(yk)
forxkandyk el

The proportionate interaction prop<ity is uniquely defined by the product operation.

(5) Addition in Both Variables: +x)ty=xty+xty
xty+y)=xty +xty,

forVx,y, el
Addition in both variables is defined only for the product operation.

(6) Law of Contradiction: If not x is defined as not x = 1-x, then

xt(1-x)=0forV xel

The law of contradiction is satisficd by both min or product, for x # 0. This law is also called the
law of excluded middle.

Properties specific to a t-norm and its t-conorm combinations are as follows:

(7) Distributivity: xt(ysz)=(xty)s(xtz)
xs(ytz)=(xsy)t(xsz)
forallx,y,ze I

This property is satisfied only by the t-norm min and its associated t-conorm max [Bellman et al.,
1973 in Yager, 1982].

(8) Absorption: xt(xsy)=x
xS(xty)=x

forallx,ye I

This property is satisfied only by the t-norm min and its associated t-conorm max (Gupta et al.,
1991(a)].

The properties reviewed above have been given for the and or r-norms only [Yager, 1982],

but if a -norm possess a particular property or condition then its corresponding t-conorm also
possess that samne trait [Gupta et al., 1591(a)).
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Now consider the max-pr »duct composition, which is the focus of this thesis, and the
properties of distributivity and absorption. The combination of ¢-norm product with t-conorm

max are satisfied only for t over s for distributi

below.

(7) Distributivity:

Proof:

(8) Absorption:

Proof:

vity and S over t for absorption, as illustrated

xt(ysz)=(xty)s(xtz) 4.1
forallx,y,ze I

xt(ysz) =x-(max(y,z))
=max(x-y, x-2)
=(xty)s(xtz)
xS(ytz) =max(x,y-z)
#max(x, y)-max(x, z)
#xSy)t(xsz)
xS(xty)=x 4.2)
forallx,ye I
xt(xsy) =x-(max(x,y)
=max(x-x, Xx-y)
#X
xS(xty) =max(x,x-y)
=x
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4.5 Selection of an And Connector

Selection of the and connector depends of the type of scale that is being used. The scale
reflects the kind of relationship that exists between the elements or the amount of information
available when comparing the elements. There are three types of scales, ordinal, cardiral and
absolute. An ordinal scale is used when the only information available to relate the element” '
one another is larger or smaller. This type of scale effectively orders the elements according Lo size
or magnitude. A cardinal scale is used when, in addition to the order of the elemenis. the relative
intensity of the elements to each other is available. The absolute scale results wheii enough
information is available to assign a unique value to each element. As the amount of information
increases from the ordinal scale to the absolute scale so does the number of operatior:s to define the
and connector. Thus the absolute scale has the most operations for the definition of and.

Yager [1979] has shown that if x and y are elements from the same ordinal scale, the only
way to formulate the and operation, to satisfy the basic properties, is through the min operation,
which was suggest by Zadeh {1965]. Additionally, if the x and y are clements from two different
ordinal scales there is no meaningful way to formulate the intersection.

Yager {1982] has shown that if x and y are elements of two different cardinal scales then the
unique form of and for this situation is the product of the two arguments. So if only ordinal or
cardinal information is available, the form of the and connector is uniquely specified.

Information available from the absolute scale does not lead to a unique specification of the
and operation, as expected, since it relates the most information.

Di Nola et al. [1989] describe the cor:cept of modeling different types of and through the
following statements:

"red and new car”

"large and expensive house"

In the first statement the properties of the car are quite obviously unrelated to one another.
One can have a new car without it being red or visa versa. In the second statement the propertics
of the house are, to a certain extent, related to each other. One would expect a large house (o be
expensive. Modeling the and in these examples one might suggest min for the first statement and
product for the second.

Yager [1980] has proposed the following general intersection operator:

Definition 3:  Assume A and B are fuzzy subsets of X with grades of membership in the unit
interval. Then define:

C,(x)=A(x)N,B(x) 4.3)
where C,(x) =1-min[L,((1- A(x))" +(1- B(x)")""] (4.4)
forpz1

67



Yager showed that,
ifp=1, then C/(x)= max{0, A(x)+ B(x)-1]
ifp=co, then C.(x)=min[A(x),B(x)]

which is the original definition of fuzzy intersection by Zadeh [1965]. And forallp 2 1 the
definition collapses to the ordinary definition of intersection when the grades of membership lie in
the set [0,1]. Yager also showed that this operator possessed all the properties of a r-norm.

The significance of the selection of the p parameter is interpreted as the strength of the and
or intersection. In other words p is a measure of how strong the demand is for simultaneous
satisfaction. So when p = 1, we have the strongest and most demanding and and when p = o, we
have the least demanding and which corresponds to the suggestion by Bellman er al. [1977] that
when faced with no information the default selection should be min for intersection.

It can be shown that:
x+y-1 € xy < min(x, y)

The relationship of the product and min operators versus Yager's [1980] intersection operator is
illustrated in Figure 4.1. Clearly from the graph of Figure 4.1 the product < min, with the product
operator offering an averaged or less severe solution, similar to the Yager operator.
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4.6 Selection of the Or Connector
For the or connector, Yager [1980] proposed the following general union operator:

Definition 4:  Assume A and B are fuzzy subsets of X with grades of membership in the unit
interval. Then define:

D,(x) A(x)Up B(x) 4.5)
where D,(x)= min[1,(A(x)" + B(x)? )] 4.6)
forp21

Yager showed that,

ifp=1, then D,(x)=Min[l,A(x)+ B(x)]

ifp=o, then D,(x)= Max{ A(x),B(x)]

which is the original definition of fuzzy union by Zadeh [1965]. And for all p 2 1 the definition
collapses to the ordinary definition of intersection when the grades of membership lie in the set
[0,1). Yager also showed that this operator possessed all the properties of a t-conorm.

The significance of the selection of the p parameter is interpreted as a measure of the degree
of interchangeability of the or. Whenp =1, we have the least interchangeable or or exclusive or
(i.e. either... or) and when p = oo, when have the most interchangeable or. The situation of most
interchangeability corresponds to the suggestion by Bellman et al. [1977] that faced with no
information the default selection should be max for union.

It can be snown that:
X+y 2 x+y-xy 2 max(x,y)

The relationship of the algebraic sum and max Operators versus Yager's [1980] union operator is
illustrated in Figure 4.2. Again from the graph of Figure 4.2 the max < algebraic sum, with the
algebraic sur1 operator offering a less severe solution, similar to the Yager operator.
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4.7 Max-Product Composition versus Max-Min Composition

The min and max r-operators, as suggested by Zadeh [1965], have been used in almost every
design of fuzzy logic controllers [Gupta et al., 1991(a)). Thereis an increasing amount of work
that shows the other types of t-operators may work better in some situations, particularly for
decision making processes [Gupta et al., 1991(b)). Dubois et al. [1986] also suggest that the
product operator may be preferred to the min ope “ator in some situations.

Which ever operator is chosen to aggregate the fuzzy sets, the following eight important
criteria, suggested by Zimmermann {1985], should be considered in the selection.

() Axiomatic Strength

The axioms or properties which the operator must satisfy should be carefully considered. Oof
course, the less limiting are the axioms which must be satisfied the more flexible the operator.

(i) Empirical Fit

Fuzzy sets are used to model real situations or systems, so the operator chosen must be
appropriate to model this behaviour. The quality of the choice is normally proven by empirical
testing.

(iii) Adaptability

If it is required to use a smail number of operators t0 model a number of different situations,
then the operators must be adaptable to the specific context of the application. The max, min and
product operators cannot be adapted at all. They are only acceptable in the situations in which
they fit. On the other hand, Yager's operators can be adapted to varying applications by setting the
p's appropriately

(iv) Numerical Efficiency

Where Yager's operators may be adaptable, they are not numerically efficient. They require
considerable more computations than the max, min and product operatcrs. This is an important
consideration when a large problem: is involved.

(v) Compensation

Compensation, also known as interactivity, for the data operators of fuzzy sets requires that
an increase in one argument to the aggregation can be compensated by or traded off with a decrease
in the second argument, or vice-versa, to achieve the same result. The product operator is
compensatory, while the min operator is not.

(vi) Range of Compensation

If a convex combination is used with the min and max operators, a compensation could occur
in the range between min and max. The product operator allows compensation in the interval [0,1).
Generally the larger the range of compensatica the better the compensatory operator.
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(vii) Aggregatii:; - hraviour

When combining fuz.sy »cts the degree of membership of the aggregated set depends on the
frequency of a particular set ang the number of sets combined. If a product operator is used, each
additional fuzzy set will decrease the degree of membership of the resulting aggregate. This may or
may not tx a desirable feature,

(viii) Required Scale Level of Membership Functions

The scale level (ordinal, cardinal, or absolute) on which the membership information can be
obtained depends on the operator. In general, the operator which requires the lowest scale level is
the most preferable for information gathering.

According to Yager's generalize connectives [1980), the max-min composition corresponds
10 the situation of p = oo, which is the least interchangeable or exclusive or and the least demanding
and. The max-product composition corresponds to the situation of a least interchangeable or
exclusive or w1 a variably demanding and.

Thole et al. [1979] compared the min operator and the product operator for the formulation
of the fuzzy intersection. In this experiment the authors asked their subject to rate fifty presclected
objects to determine the belonging of each object in three given class. The results were then
combined using each operator and compared against a linearized standard. The results showed that
neither connective operator provided a suitable model for the intersection of the subjectively chosen
categories. However, the min operator appeared to be slightly better for this experiment.

However similar work carried out by Oden [1977] resulted in the product operator being
clearly superior in describing the cognitive conjunctic . and. In this study the author had his
subjects judge the truthfulness of the actual conjunction of two statements.

These two works illustrate the different psychological meanings for the connective and and
confirm the need for different mathematical operators to simulate the various processes.

Gupta et al. [1991(b)] compared various combinations of conorms and norms through
applications in a fuzzy logic controller. Performance was assessed based on the speed of responsc.
The r-operators of particular interest in this study are:

f=conorm f=norm
1. max(x, y) min(x, y)
2. X+y-xy Xy

The results of their study show that

max-product is faster than algebraic sum-product is faster than max-min
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Gupta et al. [1991(b)} generalized that the response is faster for the couples with a smaller t-
nom (i.e. f-norm, < f-norm,) and a larger t-conorm (i.e. t-conorm, 2 t-conorm;). This result
provides a basis for the superiority of the max-product composition Gver the max-min compositiocn
in some solutions.

In relational work. Pedrycz [1984(a))] used a Cartesian product formulation for a batch

identification of R using the Box-Jenkins data [1970]. Then 1-step ahead predictions were
calculated using the model obtained for both max-min and max-product compositions . The results
show that the max-product composition provided better results using a Euclidean minimization

criteria.

Xu et al. [1987] also identified the Box-Jenkins data [1970] using a on-line identi fication
algorithm. The Hamming minimization criteria then determined the best composition.
Demonstrating with two different examples these authors showed that the max-produc: composition
was superior to the max-min composition.

While much of the current research on fuzzy relational equations deals specifically with the
max-min composition solutions, there is a growing amount of work which generalize using max-t-
norm composition, DiNola et al. [1984]; Pedrycz, [1983]; Pedrycz, [1984(b)]; Pedrycz, [1985];
Miyakoshi er al. [1985]; Di Nola er al. {1989}, to which both the max-min and the max-product

belong.

4.8 Summary

Traditionally, relational-based fuzzy systems theory is based on the max-min composition, in
spite of research confiming that the max-product composition is superior in some instances. The
focus of this thesis is to explore the theory and applicat:ility of the max-product composition, in a
control setting, in light of this research.

Chapter 4 refereaces several source of research confirming the superiority of the max-
product composition, as well as presenting the reasons why this superiority exists. The literature
review of Chapter 4 compares, in several examples, the physical interpretation and ability of the
max-min and max-product compositions.

In the literature review of this Chapter, two properties of the max-product composition are
expanded.

(1)  Proof that the max-product composition is distributive foronly x t (y 8 2),
notxs(ytz).

(2) Proof that the max-product composition is absorptive foronly x S (x t y),
notxt(xsy)

This expansion increases the basis of theory available for the max-product composition which is a
composition in which the norm operator, . oduct, is not based on its associate conorm operator, &
sum, but with the conorm operator max.
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CHAPTER 5 RESOLUTION OF FUZZY RELATIONAL
EQUATIONS !

The existence of a family of solutions for fuzzy relational equations, instead of
a simple, unique solution, leads to a certain kind of robustness of this form of
equation, and confirms the fact that precise values (up to a certain limit) of the
membership function are nct necessary when working with fuzzy quantities.

(Pedrycz, 1990}

5.1 Introduction
The resolution of fuzzy relational equations means:

(1) identification of the fuzzy relation, R, of the fuzzy relational equation, y = xR, or
Given x and y, find R such that y = xR,

(2)  determining the causality, x, of the fuzzy relational equation, y = xR, or
Given R and y, find x such that y = x°R.

The concept of inverse calculations for fuzzy relational equations relates directly to:

(1)  fuzzy identification, and
(2) control of fuzzy processes.

The fact that fuzzy inverses are non-unique carries the positive aspect of robustness of the
relational matrix for identification, as well as the negative aspect of potential chatter of the input
signal calculated by the causal inverse. Unfortunately, as will be shown in Chapter 7, inverses are
not well suited to systems when the inverse is not exact.

Most of the literature available on inverse calculations deals with the max-min composition.
However, the calculations are the same, as shown by DiNola et al. [ 1984}, for all max-t-norm
compositions. This Chapter present a literature survey of research into the resolution of fuzzy
relational equations with max-min and/or max-t-norm compositions.

1 A version of this chapter has been published. Bourke M.M., Fisher D.G., 1994. (Fuzzy Sets and
Systems, 63: 111-115).
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5.2 Notation

The following definitions outline the notation which will be used throughout this chapier.

Definition 1:

Definition 2:

Definition 3:

Let U, 'V and ‘W be fuzzy universes of discourse and let u={ u; | i€ I,=
(1,2, ... mi}e U, v={ v;1 je J,={1.2, ..., n} }e Vand w={w; | ke K=
{1,2, ..., p} }€ W be the fuzzy sets associated with each universe o di ~ourse.

Let the fuzzy relations Qe UxV, Re Vx'W and Te Ux W he defined such
that:

g={((u;, v), g licl,; je J,.} is the mapping @: UxVY — [0,1]x[0,1],
R={((v1, Wy, rj,,) | je I ke K, } is the mapping R: YW = [0,1]x[0,1]

T={((u;, wp), 1) | i€, ke K, } is the : 1apping T: UxW —[0,1}x[0,1)

where g, r;, an - 1, € [0,1] are the grades of membership in (¥, v), (v;, w,) and
(u,, w,), respectively.

Let ae 'V and be "W be fuzzy sets defined as:

a={(v, a) | je J,} is the mapping a: V= [0,1]

b={(w,, b,) ke K,} is the mapping b: W— [0,1]

where a;, and b, € [0,1] are the grades of membership in v, and w, respectively

For simplicity of notation, the fuzzy sets and fuzzy relations will usually be identified only over
their universe of discourse (i.e. a(v), R(v,w)).

5.3 Problem Statements

The original work by Sanchez [1976] considered the resolution of the following fuzzy
relational equation with max-min composition :

T(w;, we) = Q(u;, Vj)°R(Vjv wy) = Y[Q(ub Vj)/\R(Vj» wy)] S.1)
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A short time later, Sanchez {1977] then considered the simplified version of equation (5.1), where
U is defined over a single point:

b(w,) = a(v)eR(v;, wy) = Y[“(Vj)/\R(V,'. wy) 5.2
In equations (5.1) and (5.2) the symbols Vv and A denote the fuzzy set operators or connectors max
and min, respectively. Arnd the symbol - denotes the max-min operator.
Di Nola et al. [1984] showed that if the min operator A in equations (5.1) and (5.2) was
replaced with a t-norm operator then the following fuzzy relation equations should be considercd:
T(u;, wp) = Qu;, vYOR(, v v = /0w, v) t R(v;, wy)) (5.3)

bwy) = a)OR;, wy) = Via() t RE; w) (5.4)

In equations (5.3) and (5.4) the symbol V still denotes the fuzzy set connector max while the
symbol t denotes any #-norm operator. The symbol (D represent the max-t-norm composition
operator.

There are two basic inverse problems to be investigated and resolved, that of fuzzy
identification and fuzzy cause. When these two problems are applied to each of equations (5.3) and
(5.4) the result is the four problem statements listed below:

(1) "Given the fuzzy relations R and b,
find all fuzzy sets a such that a®R =b".

(2) "Given the fuzzy relations R and T,
find all fuzzy relations Q such that OOR=T"

(3 "Given the fuzzy sets a and b,
find the fuzzy relation R such that a()R = b".

(4) "Given the fuzzy relations Q and T,
find the fuzzy relation R such that QR = T*.

Problem statements (1) and (2) represent the search for a fuzzy cause, while statements (3) and (4)

represent fuzzy identification. All four problem statements are valid when G) represents either
max-mi.: of max-product composition.
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5.4 Inverse Structure

An interesting aspect of the inverse solution of fuzzy relational equations is that the inverse
solution is most ofien non-unique. As shown by Czogala et al. [1982] and Higashi et al. [1984),
the solution is bounded above by a unique maximum solution and is bounded below by several
minimum solutions. In some instances a unique solution does exist and this situation has been

investigated by Sessa [1989].

A schematic of the soluiion relationship is illustrated in Figure 5.1. As shown, the solution
is bounded above by the single maximum solution, R__, . The branches of the iower solutions
converge to a single point which is the union of all the minimum solutions, UR_;..

Resoiution of fuzzy relational equations, composed by max-min composition, was first
presented by Sanchez [1976). Since this beginning there has been continued research into the
properties and solutions of fuzzy relatioral equations with the max-min and max-t-norm
compositions. The literature survey that llows reviews the current and relevant theory for
resolving the max-min composition of the fuzzy relational equations presented by problem
statements (1) to (4), since this information has a greater availability. Relevant literature for max-
product and max-t-norm compositions is then cited in the next section and a Tabular Summary of
all referenced material is provided.

UR*
min

R R? RN

min min min

Figure 5.1: Dlustration of Solution Relationships
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5.5 The Greatest Solution

Studying problem statement (2) and (4) for the max-min composition Sanchez [1976]
established the existence of the inverse solution by determining the greatest solution , and the
greatest solution R, for problem statements (2) and (4), respectively. Prior to presenting the two
fundamental theorens of Sanchez {1976] the following definitions are required.

Definition 4: For o and b € [0,1], the a-operator is defined as:

b 1 if as<b S5
ab= .
? b if a>b -5

The composition a o b is call the relative pseudo-complement of a in b.

Definition 5:  Let Qe UxVand Te UX'W be two fuzzy relations. Definc R = Q@T.,
Te Vx'W, the (@-composite fuzzy relation of @ and T by:

R, w) = 0@T, w) = Q(u, vV@T(u, w) = A1Qw. VT wi  (5.6)

Note for the special case when ‘U is a single point, then:

R, w) = a@b(v, w) = a()@b(w) = a(v)ab(w) 5.7

Definition 6:  Let Re VX'W be a fuzzy relation, then the fuzzy relation R'e Wx'V, the
inverse or transpose of R, is defined by:

R'w, v) = R(v, w) (5.8)

for all (w, v)e WXV

The two fundamental theorems for the greatest solution of problem statements (2) and (4),
respectively, are:

Theorem 1: Let Re VW and Te Ux'W be two fuzzy relations and let © be the set of
fuzzy relations Qe ‘Ux"Y such that Q=R = T, then

Q={0cUxXVIQ-R=T} #Q iff RQT"'e @ (5.9)

If Q # @, then (RE@T")" is the greatest element in Q,
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Theorem 2: Let Qe UxVand Te UxW be two fuzzy relations and let R be the set of
fuzzy relations Re VW such the Q=R =T, then

R={Re VxWIQ-R=T}#2 iff 0"@Te R (5.10)

If R 3, then Q' @T is the greatest elementin R

The proofs for these theorems can be found in Sanchez [1976]. A comment made by
Sanchez regarding these two theorems is that either theorem can be chosen as a unique fundamental

theorem and the other can be deduced as a corollary.

Sanchez applied the results of this work to medical diagnostics. To illustrate, let S be a set
of symptoms, D be a set of diagnosis, and P be a set of patients. Then, given Qe PxS, the fuzzy
relation between the patients and the symptoms, and Te PxD, the fuzzy relation between the same
patients and the diagnosis, the problem is to determine the medical knowledge provided by Q and
T. The information sought is Re SxD, the fuzzy relation between symptoms and diagnosis, and is

calculated by the formula Q" @T
Following these results, Sanchez [1977] then established the existence and the greatest
solution for the simpler cases outlined by probiems statements (1) and (3). For these results,

Sanchez assumed that the set U contained only a single point, so that @ = ac Vand T = be Wto
form the relational equation a(v)R(v, w) = b(w). The previous results can then be applied directly.

These simpler fuzzy relational equations are often called @-fuzzy relational equations.

Extension of the previous two theorems, for the existence of the greatest solution, to the
simpler case of problem statements (1) and (3), is as follows [Sanchez, 1977]:

Theorem 3: Let Re VW and be ‘W be two fuzzy relations and let A be the set of fuzzy
relations ae "V such the a°R = b, then

A= {acViaR=b} O iff R@b")'e A (5.11)
If A+, then (R@b™)" is the greatest element in A.

Theorem 4: Let ae 'V and be ‘W be two fuzzy relations and let R be the set of fuzzy
relations Re VW such the a°R = b, then

R={Re VxWlaR=b} D iff a'@be R (5.12)



An interesting note is that Kiszka et al. {1985] undertook an experiment involving the
modeling of power systems to determine R given @ and b (i.e. problem statement (3)). The results
of these experiments showed that the o-operator, as given by Sanchez [1976]. proved to be the best
for their experimental modeling, both in accuracy and computational efficiency.

Pedrycz [1988] has stated that the necessary and sufficient condition ior the set R# @ for
problem statement (3) is:

dje ), 3 av)2bw) Vke K, (5.13)

Pedrycz [1988] then states that there is not a simple straightfi:rward conditions which can assure
the solvability of an entire system of equations, such as problem statement (4). This is due to the
fact that a large number of complex constraints must be satisfied in order to make the system
solvable. This theory is extended to the max-product composition in Chapter 7.

5.6 The Minimal Solutions

A second paper by Sanchez {1977} is significant for the theory establishing the existence of
the least elements of the inverse solution, which is applied to the simpler case of problem statement
(3). The definitions required for these results are as follows.

Definition 7:  Fora and b € [0,1), the o-operator is defined as:

b 0 i a<b (.14)
CD= .
? b if azb

The minimization properties of this operation are noted through the following analysis:

if O<a<b then aob=0
and a/A\b=a, fora#0
therefore acb<aAlAb

Definition 8:  Let ac Vand be "W be two fuzzy G-sets, then the fuzzy relation
a'©be Vx'Wis denoted by:

a' @b, w) = a(v)" © b(w) (5.15)

for all (v, w)e YxX'W



Definition 9:  Letae 'V and be W be two fuzzy sets, then the fuzzy relation a@be VW
is denoted by:

a'@b(v, w) = a™(v) & b(w) (5.16)
for all (v, we YxW
Definition 10:  Given the fuzzy sets ae 'Vand be ‘W, define:

@ R={Re VxWia®)R(>, w)= bw)} 5.17)

@ T,={veViaw)=2bw,)) forall keK, (5.18)
ITl denotes the cardinality, or number of elements of the set I'.

A summary of the theory developed by Sanchez [1977], for problem statement (3}, is best
presented by Sessa [1984] in the following propositions:

Proposition 1: If R= @, then T, # @ forall ke K,

Proposition 2: If T, # @ for all ke K,, then a@be R and a(@be R, and in particular
a@bc R ca@b (5.19)

Proposition 3:  a(@b is the greatest element of R

Proposition 4:  a(@b is the minimum of Riff, for all ke K:
either IT,\=1, or b(w)=0 (5.20)

Proposition 5: If R# @, Rhas minimal elements M. In order to determine these
elements a non-zero element in each column of a@b must equal to

b(w,) for some w,e .

Proof of these propositions can be found in Sanchez [1977] and Di Nola [1985]. An
importart corollary, to these propositions, made by Sanchez [1977], is:



Corollary 1:  If R @, then the union of all minimal solutions of R is equal to a©d.

The following definition from Di Nola et al. [1983] determines the number of permutations

of the minimal solution union.

Definition 11:  Let J be the set defined as:
J = {je K, such that b(w) = 0}

Then the number of elements M, R is determined by:

g= [] T

heK » ~J
An example detailing with the solution of problem statement (3) follows.

Example 1: Let m=p=3 and let ac "V and be "W be defined by:

a=[0.1 0.0 0.5] b=[05 0.1 0.5]
Then r; = {v3}, F2= {vi,vs} and Ty = {v3},

10 1.0 10
ane a@b=[10 1.0 10
1.0 01 1.0

0.0 0.1 00
a©@b=|0.0 0.0 0.0
05 0.1 05

The number of lower solutions ¢ = II" I, = 2, which are:

00 01 00 0.0 0.0 00
M,=|00 00 00 M,={00 00 00
05 00 0.5 05 01 05

(5.21)

The two papers by Sanchez [1976,1977) provided the ground breaking work and created
research interest in fuzzy relational equations. Since then there has been considerable contributions



Miyakoshi et al. [1986) provide lower solutions for both problems (3) and (4). Sessa
[1984), DiNcla et al. [1984] and Di Nola [1985] provide excellent summaries for the theory
necessary for the complete resolution of problem statement (4) by showing that it is equivalent to n
equations of problem statement 3).

Definition 12:

Let the fuzzy relations Qe UxVand Te UxW be given and Re 'V W be the
unknown to be determined, as defined in problem statement (4). The max-min
fuzzy relation is defined:

QR=T (5.22)

Let the fuzzy sets Q; and T'; be defined as Qi ux Vand Tie uxw,
respectively, for i€ I,. Then the max-min fuzzy relation can be defined:

Q-R=T,; (5.23)

Let R be the set of solutions for problem statement (3), and, for any i€ I,1let

R, be the set of all solution for problem statement (4), as defined by equation
(5.23). Then;

R=( R, (5.24)

So the study of fuzzy equation (5.22) is equivalent to the study of a fuzzy system of n equations
described by equation (5.23).

The Sessa [1984] presents the following propositional summaries for the solution of problem

statement (4):

Proposition 6:

Proposition 7:

Proposition 8:

Proposition 9:

If R, # @, then there exists a lower solution M; < R for any Re R, where
the M matrices are calculated as stated in Proposition 5.

If R+, the set A; = {M:e R,| M, < S} is non empty for any i€ I, where
Stv,w)=A [Q“(u, v) o T(u, w)).

If R#Q, the set A = {Me VsxWM = v/,_M;, Mic A} is a finite subset of

R. The minimal elements of A are the minimal elements of R and vice
versa.

If R # @, for any Re R there exists an element Me A such that M < R.



Proposition 10: The fuzzy relation £ = (\/}_, W)AS belongs to R where W, = 0.@T:
for any ic I, and RAZ liesin Rfor any Re R

The proof of these propositions can be found in Di Nola [1985). Example 2 demonstrates the
applications of Propositions 6 - 10 to provide the complete lower solution.

Example 2: Let n= m = p =3 and Qe ‘Ux'Vand Te Ux'W be defined by:

0.1 00 05 05 01 05
0=102 07 03 T=|06 05 0.6
04 09 10 0.6 0.5 09

Then S, W, and X for ieI; are given by:

10 1.0 10
$=106 05 06
0.6 0.1 09
0.0 01 00 0.0 0.0 0.0 0.0 0.0 0.0
wW,=/00 00 00| W,=|{0.6 05 06| W,=[06 0.5 0.9
05 01 05 0.0 0.0 0.0 0.6 0.5 0.9
0.0 01 00
=06 05 0.6
0.6 0.1 09
00 01 00 0.0 0.0 0.0 0.0 0.0 0.0
M,=|00 00 00| M,={06 05 06| M,=|06 05 0.6
05 01 05 0.0 0.0 0.0 0.6 0.1° 09

Note that the two entries in the W, matrix, marked with the asterisk, are greater than the
corresponding entries in the S matrix, and so will not contribute to a minimal solution. These
entries are adjusted with the X calculation.



From M, two lower solutions are contributed:

0.0 01 00 0.0 0.0 00
M!=|00 00 00 M?2=|0.0 0.0 00
05 00 05 0.5 0.1 05

From M, only one lower solutions is contributed:

0.0 0.0 00
M =|06 05 06
00 00 00

From M, eight lower solutions are contributed:

0.0 00 0.0 0.0 0.0 0.0
M!=|06 05 00 M2=|0.0 05 00
00 00 09 0.6 00 09
0.0 0.0 0.0 0.0 0.0 0.0
M}=10.6 0.0 0.0 M/'=10.0 00 0.0
0.0 01 0.9 0.6 0.1 0.9
0.0 0.0 0.0 0.0 0.0 0.0
M =|0.6 05 0.6 Mf=|0.0 0.5 0.6
0.0 0.0 0.0 0.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
M/=|06 0.0 0.6 M!={0.0 00 0.6
0.0 01 0.0 0.6 0.1 0.0

The total number of lower solutions is equal to: M1 = 1M tM1- M5l = 16



These M solutions are:

0.0
M, =M'vM'vM'=|06
0.5

0.0
M,=M!'vM'vM!=106
0.6

0.0
M.=M'vM}'vM>)=|06
0.5

0.0
M=M'vM'vM'=|06
0.6

0.0
M.=M}vM'vM:=|06
0.5

0.0
M=M'vM'vM=|06
0.6

0.0
M=M'vM'v M’ =|06
0.5

0.1
0.5
0.0

0.1
0.5
0.0

0.1
0.5
0.1

0.1
0.5
0.1

0.1
0.5
0.0

0.1
0.5
0.0

0.1
0.5
0.1

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.5

0.6
0.5

0.0
0.6
0.5

|
:



0.0
M,=Mv M}'vM’=|06
0.6

0.0
M=M2vM'vM'=[06
0.5

0.0
M=M}vM'vM:=|06
0.6

0.0
M =M>vM'vM’)=|06
0.5

0.0
M=M>vM'vM'=|06
0.6

0.0
M,=M}2vM'vM:=]|06
0.5

0.0
M,=M?vM)'vM*=|06
0.5

0.1
0.5
0.1

0.0
0.5
0.1

0.0
0.5
0.1

0.0
0.5
0.1

0.0
0.5
0.1

0.0
0.5
0.1

0.0
0.5
0.1

0.0
0.6
0.5

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.9

0.0
0.6
0.5

0.0
0.6
0.5



0.0 0.0 0.0
M,=M}VvM,'vM'=|06 05 06
0.5 0.1 0.5

0.0 0.0 0.0
M,=M}vM!vM'=|06 05 0.6
0.6 01 0.5

Consider M, - M, clearty M, <M, M, <M M, <M;and M. <M M. <M ,M.<M,. Bul
M, < M, so M, is a minimal clement of A. Because of the symmetry of the problem the same
analysis is made for M; — M,, that is M, <M, M, <M, M; < M,and M, < M,,, M. <M, ,M_<
M, And M; < M, so M; is also a minimal element of A. Thus there are only 2 non-redurdant
minimal solutions to this problem.

Many authors have contributed numerous algorithms to determine the complete family of
inverse solutions to the various problem types. Prévot [1981] presented an algorithm for the
solutions of fuzzy relational equations of problem statement (2). Czogala et al. [1982] have
contributed an algorithm to determine the lower solutions for problem statement (1), however, the
algorithm may also produce some non-solutions. Additionally, these authors have provided an
estimate of the number of lower solutions that exist. Xu ez al. [1982] provide a solution algorithm
for problem statement (1).

In response to the work by Prévot [1981] and Czogala er al. [1982], Higashi et al. [1984]
clarified and extended these works by completing the theory and generalizing the algorithms.
Higashi et al. [1984] solved problem statement (2) using the decomposition technique outlined in
Definition 12.

Pappis et al. [1985] have provided the background and theory for a clearly defined analytical
inverse solution for problem statement (1) and provided a methodology to eliminate some, but not
all, of the redundant solutions from the calculation of the lower elements. Pappis et al. [1991] then
developed a computer algorithm based on this theory. Additionally, Pappis [1987] extended this
work to a two-input, one output system, and then more generally to a multi-input, multi-output
systems, or to the dimension of problem statement (2) and higher. In his most recent work Pappis
et al. [1992] extend the computer algorithm of [1991] to the multi-input, multi-output system of
problem statement (2).

The analytical inverse solution by Pappis et al. [1985] for problem statement (1) is given in
the following theorem:



Theorem 5: Given Re Vx'W and be ‘W, assume that there exists an ae 'V such that
a°R = b. Then:

() VeszaR=bthenI¢R Sb)edRIb)> V(R b)) <a< AR ob) (5.25)

(i) Va VORIB)cDREb)3VORIb) <a< AR ob) thenaR=b (5.26)

The 8 operator is defined as:
Definition 13:  Given an nxp matrix R = [r,] and a row vector b = (b1by,....by), the
S-operator of R with b is defined:
R3b=S=[s] (5.27)
S = ( /\(r;,- o b,) ) g (r,-,, (o] bk) (5.28)
i=1
for je J, and ke K,
oo § =ARab'cRocb) (5.29)
The @ sets are described as:

Definition 14:  Given an mxn matrix R = [r,-j], letr; be the j th column vector of R. The set @
(R) of the matrices ¢(R) is defined as follows:

®(R) = {¢(R)} (5.30)

where ¢(R) = [¢(rl)' q’(rZ)v- . "¢(rn)]
00D = (01.921-- 0m)'

o;=0or 7, for ie 1,

Fi=v(r)



An exaniple of ®-scts follows.

(0 05 03
Example 3: Let R={01 O 0.3] then
01 0 0

(0 05 03Y(0 05 0Y(0 05 03Y(0 05 O
oR)=1{l01 0 o [lo1 0 o3}jo o o}|Oo o0 03
Lo o o0jlo o ojlor o o0)ior 0 0O

Definition 15: The cardinality or number of matrices in ®(R) is given by:

n

z= H zj (5.3D)
Jj=1
h number of non zero elements in ¥; if Zr;#0

Definition 16: Let a, and a, be two solution vectors of a°R = b, then solution vector a, s
said to be redundant if a, 2 a,.

©appis and Sugeno [1985] improve their inverse solution by analytically determining and
dele.. - redundant column vectors from the solution matrix. The basis for determining the
redundant column vectors is defined as follows:

Definition 17: Let s, and s, be the k-th and /-th column vectors of the matrix S = R 3 b,
respectively. A column vector s; is said to be dominated by a column vector s;:

if for Si * 0; S * 0 and Sik < Sin (5.32)

or, iffors;=0; ;i is arbitrary (5.33)

The improvement to the solution S = R & b is made as follows:

1.  LetS, be the matrix obtained from S by deleting all its zero column vectors. It is casy
to see that:

vo©S)' = vo(So) (5.34)



2 Let S; be the matrix obtained from S, be deleting a column vector s, such that:
3 §(SHe B(SH 3 V(O(S)' 2 V(@(SH)', Vo(S)e D(S) (5.35)

3. LetS" be the matrix obtained from S, be deleting all dominant column vectors. Then
the improved solution of the inverse problem is given by:

VoS ) ca< AR ab), VoS e S (5.36)

The authors state th:: any further reduction of the dimensions of S * would result in some
non-redundant vectors of Vv {Z*S))! being eliminated. The following example illustrates the

improved inverse solution algonu.».

Example 4: Let m = p = 3 and let Re 'Vx'W and be Y be defined by:

04 08 09
2={07 08 03 b=[0.6 08 09]
0.6 04 03
Then
10 1.0 10
Rab=(06 10 10
10 1.0 10

AR ab)=[10 0.6 10]

00 08 09
Rob=(06 08 00
0.6 0.0 0.0

00 08 09
R&b=]|06 00 00
06 00 0.0

]
7}



0.0 0.9
s*=106 0.0
0.6 0.0

From S" the number of minimal solutions is: z = 2x1 = 2

0.0 0.9
08" =06 0.0 VoS =[09 0.6 0.0]
0.0 0.0

0.0 09

9.8 =100 0.0 Vo8 =[09 0.0 0.6)
0.6 0.0

In most cases the lower solution of the fuzzy inverse problem is non-unique, the question
then arises as to how many lower inverse solutions exist. Pei-Zhuang et al. [1984] have developed
an algorithm to determine this value for problem statement (1). Guo et al. [1988] have given the
sufficient, but not necessary, condition of the existence of a unique minimal solution to problem (1),
with Sessa [1989] providing both necessary and sufficient conditions for problem (2) by
decomposing it to i vector problems of the form of problem (1). More recently, Li [1990] has
presented the necessary and sufficient condition for the existence of a single minimal solution for
problem (1). Sessa [1984) provides this same theory ior a single minimum for problem statcment
).

Under certain conditions, however, the greatest and the least solutions are the same and a
unique inverse solution exists. Lettieri er al. [1984),{1985] have provided the necessary and
sufficient conditions to guarantee the uniqueness of the solution for problem statement (4), while
Sessa [1984] has presented similar results for both problem statements (3) and (4). Li [1990] has
provided these results for problem statement (1)

There are cases when the inverse of a fuzzy relational equation does not exist analytically.
Several authors {Pedrycz, [1983(b)], [1990], {1991(b)]; Ikoma et al., [1993]; Valente de Oliveira
[1993]} present some algorithms which permit the study of fuzzy relational equations when the
solution set is empty. These algorithms will be examined in Chapter 8.




5.7 Literature Survey Summary

The theory .ur the resolution of the max-t-norm composition is virtually identical to the max-
min composition. Di Nola er al. [1984] provide a extensive literary survey of the resolution of ¢-
norms for the years 1976-1984, concentrating specifically on the complete resolution (maximum
and minimum solutions) of problem statements (3) and (4). Di Nola et al. [1989] provided the
theory, with examples, for the complete resolution of all the problem statements, except for the
minimum solutions for problems (1) and (2).

According to Di Nola ez al. [1984], Pedrycz [1982] defined problem statements (3) and (4)
for the max-t-norm composition, and then provided the proof for the maximum solution of problem
(3), while Di Nola et al. [1982] summarized the lower solutions. Pedrycz [1984(b)] provides a
proof for the maximum solution of problem statement (3) specifically for the max-product
operations and then in [1985] gives the proof for the maximum solutions of all the problem
statements for the general max-t-norm composition. Miyakoshi ez al. [1985] have shown that the
results of Sanchez [1976) (proofs for the maximum solution of problem statements (2) and (4) for
the max-min composition) can be generalized to the max-t-norm compositions

Pedrycz [ 1983(a)) provides the proof for the maximum and minimum solutions from
probicms (3) and (4) for the genei:l class of fuzzy connectives defined by Yager [1980], in which
both the max-product and max-min compositions are eiiibedded. The existence condition for
problem (3) has been documented by Pedrycz [1991] for the max-t-norm composition.

The reference summary presented in Table 5.1 summarizes the literature coverage of the
proofs of the theorem presented. It is not an exhaustive coverage but indicates some of the research

available.



Max-min Max-t-norm Max-product
Problem 1 - Max Solution |[241.[25],(27],[44] }I9).[35]
(54]
1 - Min Solutions [3]vlll]v[24]v[25]’
[26],[41],[54]
Problem 2 - Max Solution }{31.[14],[21),(27],  |(9].[21}.[35])
(281,[42],[43]
2 - Min Solutions | [3],[14],[25],[26].
[391.144)
Problem 3 - Max Solution  }[31.[61.[71,[8).[14], }[71[9].1291.[35] (301.[34]
[30],[36].{44].[46],
[47]
3 - Min Solutions  |(31,16),{7].[8],{14], J51.[7).[9].[35] (30]
[22],[30],[36],[44],
{46],(47]
Problem 4 - Max Solution  |[6],(7),191,[22],(31], }[81,(10].{22},[36] [31]
[441,[47]
4 - Min Solutions  §(6],{71.18],{22},[30], }[71.[91.{35] (30]

[46]

Table 5.1: Fuzzy Relationa! Equation Resolution References




5.8 Cartesian Product of Fuzzy Sets

On-line identification of a process input/output relationship is one possible application for
the combination of problem (1) and (3) into a single problem statement. Pappis [1988] combines

problem (1) and (3) as follows:

For a,a'e Vand b. b'e W, given @, b, and b’ find all @' such that a'+(axb) = b'

The condition placed on this work is that @ and b must be normal, with normal is defined as:

Definition 18: Denote a = {a;, ay, ..., a,} and b= {b,, by, ..., b,},if max(a) =d = 1 and
max(by) = b = 1, for je J, and ke K,, respectively, then & and b are said to be

normal.

Along with the solution for this combined problem statement, Pappis [1988] provides the necessary
and sufficient conditions for the existence of the solution.

Kim et al. [1991] extend this work for the more usual case when @ and b may not be normal.
The necessary and sufficient conditions for the existence of a solution for this case are:

Theorem 6: Leta={a, a, ..., a,le "’, b={b, b, ..., ble W and
b = (b, b'y ..., b's}e W. Then there exists an @' = {d'), 'y, ..., '} € V
such that:

a'e(axb) = b' 5.37)

iff () bby.forall keK,

(i) ifb,>b) thenb'=(a"a'),
else b, = b';, for all ke Kp

(i) b < (a'a') forall ke K,
(iv) there exists a € J, such that:
ay= 5' andd'y 2 5'

or a2b'anda=b'



The combined problem is formulated in the following manner:

a'~(axb) = b' = b = (g Na;Aby) (5.38)
j

b, = (\/(aj Aa)) Ab, (5.39)
J

by = (a'-a" Y Aby (5.40)

Taking the maximum of both sides results in:

= b =\v(@-a)Ab) (5.41)
k k
(vb) =(@ed)ri by (5.42)
k k
b' = (a'ea)AD (5.43)

The condition that b is normal (i.e. 5 = 1) reduces equation (5.43) to:
b' = a'°d" (5.44)

However, equation (5.43) also reduces to equation (5.44) when b>b ', as specified above in
Theorem 6(i).

Pappis et al. [1985] show that the solution of equation (5.44) is given by:
@@ by <a<@ab? (5.45)
where (@' 6 b")e d@' o b").

The development of the solution for the non-normal b is the same as for the normal b up to
equation (5.43).

~

b'  =(aa)Ab (5.43)



From this point two solution possibi” :ies exist:
W b'<b (5.46)

Q) b'=b (5.47)

Note that the possibility b' > b does not exist due to necessary and sufficient condition of
Theorem 6(7).

The condition I;' <bh = b'= (a'°a") from the necessary and sufficient condition of
Theorem 6(i). This situation can also be solved by the method presented by Pappis [1988].

The condition '=b => b’ <(a'°a’) has been partially solved by Kim et.al [1991].
The solution provided by Kim et al. [1991] correctly identifies the lower solution of a under both
solution conditions, but the upper solution of a' is not correct for either condition.

The solution for the case when b'= bis addressed by Bourke et al. [1994].
From equation (5.43), the condition is that b'= b = b'< (a'~a"). So the solution for a must be
such that:

~

b'<(aa')< 1 (5.48)

For this situation to be valid the necessary and sufficient condition of Theorem 6(iv) must be
modified as follows:
Gv) (@ ifb'=#b
there exist a 7€ J,, such that:
= I;' anda', 2 b
or a2 I;' anda', = 5'
® ifb'=b
there exist a te J, such that:

a,z2b'andd, 2 b'

So for the case when b= I; if the necessary and sufficient condition of Theorem 6(iv)(b) is
satisfied then the largest a which satisfies b' < (@"a')isthevectora=[1, 1, ..., 1), .



The complete general solution for the combined problem can now be given as:

®ap by<a'<@a b’

where aiB5'= 9 ¥ a‘<lf
b if az2¥
1 if b'=b
and aa b'={1 if b'#b and a <P’

b if b'=b and a,>b

(5.49)

(5.50)

(5.51)

The concept of the Cartesian Product of Fuzzy Sets can be extended to the max-product

operator as follows:

Fora,a'eV and b, b'c W, given a, b, and b’ find all a' such that a'«(axb) = b’

Since the objective of this work is to provide a complete solution, there will be no conditions place
ona, b, and b'. The necessary and sufficient conditions for the existence of a solution for this casc

are:

Theorem 7: Leta={a,, a5, ...,a,}e V,b={b, by, ..., by}e Wand

b = {b'), by, ..., by}e W. Thenthereexists ana’ = {d', d', ..., d', } €'V

such that:
a'«(axb) = b'
iff by 2 by, for all ke KP
Proof: Formulate the problem as follows:
a'o(axb) = b' = b = V(aj"(aj'bk))
j
b = (\((aj"aj))‘bk
J

b =(a'a')b,

(5.52)

(5.53)

(5.54)

(5.55)



Let (a'=a") = o, such that 0 < a < 1 since both a' and @ are bounded by [0, 1].
b, =a-b; for all ke KP (5.56)

and b/ S b (5.57)

Corollary 2: Since (a'~a') = a (a constant), then b' = o-b and & = b,/b, for any k. (Note:
from Theorem 7, b, 2 by, for all ke KP)

The next step is to determine the @' based on the values of o. The solution possibilities are
as follows:

(1) 1fb =b, then a.= (a'a’) = 1.0
and V(aj"aj) =1.0
j
iff a’ and a are both normal and PP(a)<PP(a'), where PP stands

for peak pattern [Tong, 1978]

Proof: In order for \/(a;-a) =1 there must be at least one entry 1 in each of @' and a
J

and this entry must occur at the same j in each fuzzy set. So the peak pattern
of @ must bv: contained in the peak pattern of a'.

(2 1Ifb'=0 then a= (a'sa) =0
and V(a,-'-aj) =0
i
iff supp(a') # supp(a)

Proof: If supp(a') # supp(a) then for each j=1, ..., n either



(3) IfO0<by<b<l1 then 0 < a = (a'°a') < 1.0
or0< V(aj"aj) <1.0
i

iff supp(a') overlaps with supp(a) and
if @' and a are normal then the peak pattern must be

different.

Proof: For a result > 0 the support of @' and @ must overlap. In order that the result
# 1, the peak pattern must be different if both are normal.

The solution algorithms for each of the cases presented above are as follows:

1) Ifb'=b thena = 1.0
) , ' 0 if a;#1
@ Ud'gy 4= 11 i a;=1
(1) I — a'=1 for all j
2 Ifbe=0 thena=0
()  @'pp a'=0 for all j

. , , 0 if a;>0
(1) I — aj= 1 if aj=0

3) If0<b'<b<1 thenO<a<1l.0

. , , 0 if a;=0 or a/a;>1
0 Uty aj= o/a, otherwise
.. , , 1 if a;=0 or o/a;>1
@) O’ % a/a, otherwise



Fuzzy Cartesian Product calculations have by completed for the max-min composition and
then extended to the max-product composition. As with the inverse calculations, for application of
these resuits the Cartesian Product calculations must also be exact.

5.9 Summary

Chapter 5 begins with a literature review that consolidates the solutions to the various the
inverse problems presented in the literature.

(1) "“Given the fuzzy relations R and b,
find all fuzzy sets a such that a°R = b".

(2) "Given the fuzzy relations R and T,
find all fuzzy relations Q such that Q-R = T".

(3) "Given the fuzzy sets @ and b,
find the fuzzy relation R such that a°R = b".

(4) "Given the fuzzy relations Q and T,
find the fuzzy relation R such that QR = T".

Problem statements (1) and (2) represent the search for a fuzzy cause, while statements (3)
and (4) represent fuzzy identification. All four problem statements are valid when © represents
either max-min or max-product composition.

A complete program, written in MATLAB®, to determine fuzzy inverses using either the
max-min or the max-product composition for all the problem statements is available and a listing is
provided in Appendix 1.

A table is provided in Chapter 5 which details the literature source for all the problem
definitions for max-min, max-product and max-t-norm. Additionally, a complete solution guide for
these problems for the max-product composition is provided in Appendix 2. The consolidated
literature review for fuzzy inverse problems, available in this Chapter, provides an important
reference itself to the abundant material available in the subject.

Also available in Chapter 5 is the complete solution of cartesian product of fuzzy Sets for
the max-min composition, published in Fuzzy Sets and Systems, [Bourke et al., 1994]. This paper
completes the work of two other papers, by different authors, and has potential for control systems
from a on-line identification perspective. The complete solution theory of cartesian product is
extended to the max-product composition for control applications under this composition.
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CHAPTER 6 FUZZY CONTROL versus CLASSICAL
CONTROL !

Since fuzzy systems are, by their very nature, somewhat imprecise, it is not
unreasonable to ask for fuzzy solutions to relational equations.

[Tong. 1976]

6.1 Introduction

The most straightforward applications of fuzzy sets occur when there is direct agreement
between the fuzziness and the systems structure. In general, however, fuzzy control applications
tend to artificially fuzzify and defuzzify deterministic data in order to handle complex non-
deterministic systems. It has become evident, through the abundant commercial applications
developed in Japan, that the most successful implerrentations of fuzzy controllers are simple look-
up tables [Kosko, 1992). This does not mean that fuzzy controllers are only look-up tables.
Unfortunately this narrow thinking has extremely biased the views of some researchers who fcel
that extensive mathematical formalism is lacking in these controller developments [Pedrycz,
1991(b)].

This Chapter reviews the most widely demonstrated fuzzy controller, the Fuzzy P!
controller, and relates this design, as well as, the design analysis (i.c. stability, controllability, ctc.)
to conventional classical control.

1 A version of this chapter has been accepted for publicaiion. Bourke M.M., Fisher D.G., 1995. (Fuzzy
Sets and Systems).
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6.2 Conventional PID Control

Conventional PID controllers employ three basic feedback control modes; Proportional (P),
integral (I) and derivative (D). For this basic control system, shown in Figure 6.1, the controller
compares the measured value to the set point and takes the appropriate corrective action.

e p u
Controlier | Element Process
L Yy

Figure 6.1: Basic Feedback Control System

A\ 4

The original form of the PID controller for systems that are continuous functions of time is:

)=+ K [e(ty+ 3 [l e(tar +, 40 6

where p(p s the controller output at time ¢
P  is the controller bias
e(r) istheerrory (1) - ¥

is the controller gain

1, isthe integral time or reset time

T, isthe derivative time

However, with widespread application of digital control systems, the form of the PID
controller changed with the introduction of digital control techniques. Basically, the changes
involved replacing the integral and derivative terms by their discrete equivalents, a summation and
a first order backward difference, respectively. The digital form of the PID controller is:

n
p.=P+K|e, +4L Y e+ (e, -¢,.) 62)
k=1

where Ar s the sampling period
p, s the controller output at the nth sampling instant, n = 1, 2,...

e, is the error at the nth sampling instant, y,,(n) - y(n)



Equation (6.2) is known as the positional form of the PID control algorithm because it
calculates the actual output. An altemnate approach is the velocity form of the algorithm which
calculates the change in the controller output. ‘The velocity form is:

Ap = pn - pn-l = Kc[(en _en—l)+€'en +%(eu -zen-l - n—2)] (63)
or P,=Duat Kc[(e,, -e,,) +él‘-e,l +%‘}(e,_ -2e, - en_z)] (6.4)

Equations (6.3) and/or (6.4) are the algorithmic basis for the fuzzy PID control algorithms which
are discussed in the next section.

6.3 Fuzzy PID Control

The fuzzy PI controller is the control methodology encountered most often in the literature
for fuzzy rule-based controller design. Based on the literature search for this thesis, there are few
fuzzy relational-based controller designs (Graham et al., 1988], although some self-organizing or
on-line leaming controller designs involve relational matrix leaming techniques [{Qiao, et al. 1992,
Song et al. 1993, Shao, 1988]. The most comprehensive paper related to overall rule-based fuzzy
logic controller development, including fuzzy PID, is a 2 part publication from Lee {1990}, which
references a extensive bibliography. This section provides an overview of fuzzy PI and PID
controller designs and a brief survey of research encountered in literature which compliments the
paper by Lee [1990].

The first and most noted fuzzy controller design was by Mamdani [1974] for the control of a
highly interactive model steam engine. The control of the speed and the pressure of the enginc was
obtained by manipulating heat addition and throttle position. The controller was calculated based
on the error of each of the pressure and speed and the change of error of each. The results of this
MIMO controller, consisting of 4 input and 2 outputs, clearly demonstrated the ability of fuzzy
logic in the control application area.

The design of the fuzzy PID controller is very similar to the conveniional PID controller. As
with the conventional PID controller, various combinations of proportional (P), integral (I) or
derivative (D) may be chosen for the final impicmentation in order to mect the control objective.
The format of the rule-based design is as follows:

If error, is e and change of error, is Ae
and rate of change of error, is A’e

then change of input is Au



where input, = u(k) — uk-1)

error, = y,p(k) —y(k)

change of error, = error, — error, ,

rate of change of error, = change of error, — change of error, ,
and Au, e, Ae, and A?e are linguistic descriptions such a big, small, etc.

with quantifiers positive (P), zero (Z) and negative (N)

More commonly, however, it is the error and change of error which are used in the
formulation of the fuzzy PI controller. Implementation is usually in the form of a look-up table, as
shown in Figure 6.2 and discussed in Chapter 2.

Auis AeisN AeisZ Aeis P
eisN N N Z
eisZ N Z P
eisP Y/ P P

Figure 6.2: Look-up Table
(N = Negative; Z = Zero; P = Positive)

Peng et al. [1987] have published a 2 part paper on the design and development of fuzzy
rule-based PI, PD and PID controllers. In these papers, the rule-based fuzzy controller is
established and remains constant through the test. The controller is then funed through the use of
scaling factors on the values of Au, e, Ae, and A?e. Tests by these authors [Peng et al., 1987}
to determine the best implication operator for the leaming of R, for 1st and 2nd order fuzzy
systems, showed that the max-product operator was superior when control was initiated with their
rule-base. A more recent paper [Peng et al., 1988] continues the earlier work and discusses a self-
learning PID controller. The controlier is self-learning in that it varies the scaling factors on-line
as a function of the ervor.

Tang et al. [1987] relate the parameters of fuzzy controllers to the parameters of a
conventional linear PI controller, where the fuzzy controller is defined:

K3'[Au(k)] =.ﬂK|e(k)9 Ker(k)] (6.3)
and the conventional linear PI controller is defined:
Au(k) = Kp [Kye(k) + Ae(k) ] 6.4



Thus (K, K,, K,) are related to (K, K,). The technique described can also be applied to lincar PD
controllers, linear multiband and multilevel relay controllers.

Maeda et al. [1988] designed a fuzzy rule-based PID controller for two examples; control of
vehicle speed an stabilization of an inverted pendulum. From their examples, the graphical results
clearly show that control action from the fuzzy contioller is significantly smoother than with
manual or operator control of the same problem.

Shao [1988] modified the learning algorithm, which has been presented in detail by Chen er
al. [1994] and reviewed in Chapter 7, for large relational matrices (i.e. 15x15x15) in order to
produce a computationally efficient, rule-based fuzzy controller for on-line implementation. Qiao
et al. (1992] simplify the method of leaming the fuzzy control rules which are represented by an
analytical expression with a rzgulating factor o.. The fuzzy controi rules for this system arc
described:

If Ais A, and B is B; then C is C, 6.5)
where i, j and k are quantization levels
and k= @G, j) = {oi + (1-v)j), ae [0,1] (6.6)

Jang et al. [1992] extended the controller presented by Shao [1988] from the regulation
control level to the optimization level. This optimization was achieved by introducing a mndificd
form of the reduced gradient search procedure. The modification in the search procedure is that
past experience is learned in the form of a linguistic process model which is used to improve future
calculations. The results of these authors compare favourably against several well-known heuristic
and gradient search algorithms.

Song e al. [1993] presented a dynamic learning fuzzy rule-based Pl controller which utilizes
a variable universe of discourse. That is, the range of the universe of discourse widens or narrows
according to the magnitude of the error, thus permitting finer control than would be possible using
a fixed universe of discourse. The leaming algorithm is again similar to that outlined by Chen et
al. [1994]. The controller design presented by these authors is compar >d against other fuzzy logic
controller designs with good results.

Based on this review, it is quite evident that there is a large amount of research into the
development of fuzzy logic controllers that parallels classical control d:sign. Following behind the
development of fuzzy control techniques is fuzzy control theory [Xu, 1990]. Because of the
imprecise nature of fuzzy systems it is »rguable whether precise analysis of fuzzy systems makes
sense. But analysis of fuzzy system m.y make sense, for two reasons. First, fuzzy models built
through the aid of operator knowi ‘ze .~ not likely to be optimal, and secondly, techniques for
fuzzy identification from plant dat. -su: .n a numerical models in a form which lends itself readily
to analysis [Xu, 1990].

The next two sections discuss fuzzy control theory as it pertains to systems analysis. The

concepts of conventional control theory dominate in this review, however, the concepts are applied
to a fuzzy environment.
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6.4 Stability

Key to the analysis of any control systems is the determination of stability. However, this
concept is not easily extended to fuzzy systems. The main reason for this is that by describing the
state of the system as fuzzy, the concept of the system being unbounded becomes unclear. Consider
the example by Tong [1980], for the statement "X is large" with the fuzzy membership function
described in Figure 6.3. Clearly, from the distribution indicated in I :gure 6.3, there is a possibility
of x taking an infinitely large value. Tong [1980] questions whether this system would be stable.
Also, for finite discrete systems described by fuzzy relations, would the imposiiion of finiteness
ensure that the system can never become unbounded? It is Tong's [1980] opinion that stability
should have a fuzzy definition. He sugges.s that the black or white definition of whether a system is
stable or unstable should be replaced by the concepts of a system as having degrees of stability (or,
instability).

0.5 large

T
!

X

Figure 6.3: Membership Function for Large [Tong, 1980]

For fuzzy relational equations composed with max-min or max-product there exists, in most
cases, a non-unique family of solutions. This family of solutions can be represented in two forms:

(1) different fuzzy relational matrices, R = flu, y) will yield the same fuzzy output, y, for
a given fuzzy input, u.

(2)  different fuzzy inputs, u = (R, y) will yield the same fuzzy output, y, for a constant
relational matrix, R.

This property of a non-unique solution, as indicated in form (1), in some cases leads to a type of
robustness for these forms of equations but in other cases leads to insensitivity to changes in
control. However, considering form (2), the non-uniqueness can result in the undesirable feature of
contmller chatiering, even though the output solution remains constant. This non-uniqueness of the
solution is also an indication that precision is not essential when working with fuzzy systems.
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Proving the stability of a fuzzy logic controller is one of the main concems for industrial
applications. Since the analytical nature of the controller is quite different from conventional
controllers, classical stability analysis techniques are not applicable. The key question is often not
whether the controller is stable but whether the process is stabilizable. In many cases it is felt that
if a process can be controlied successfully by a human operator it should be possible to implement
fuzzy control.

Some of the key issues of fuzzy stability are:

J Completeness which is concemned with ensuring that the controller is always
able to compute a meaningful control action given the current process conditions.
In other words, a controller should never be in a situation in which it does not know
what to do [Tong, 1985]. A rule set is complete when every possible input state has
a membership function value greater than an arbitrary cutoff level in at lcast one rule
[Graham et al.. 1988].

Vue U 3Jje {1,2,....,n}3pm)=u>¢€ € {0,1] 6.7

| Consistency means that no two rules are in conflict such that they have the
same antecedents but different consequences [Graham ez al., 1988).

. Interaction of the control rules occurs if:

Jke (1,2, ...N} 3u, @ (3 * B ®yia (6.8)

where * is a t-norm operator (e.g. min, product)

(® s the comesponding inverse composition

With interaction, the fuzzy relation, R, and the composition operator together modify
the original fuzzy input causing a deformation. So the system, in these situations, is
irreversible.

. Robustness of the fuzzy controller is concemed with esrors in the closed-loop
dynamics of the systems, as well as, the reaction of the controller to input
disturbances. The numerical framework of the :1zzy relational equation allows for
numerical analysis of the system which enables analysis to determine the
influence of noise on the fuzzy controller.

Pedrycz [1989] dis::<ses these issues in detail with recommendations to overcome some of these
problems.
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Several stability indexes consistent with Tong's [1980] suggestion of degrees of stability
have been proposed. Kiszka e al., [1985] proposed an index based on the energy of fuzziness of
the fuzzy set. For the fuzzy state x,, the energy E(x,) is defined as:

Z W(X‘-) : f(llx(x,- ))

6.9)

E(x,) = &=
n
where w: X3x—R
£ F(X) 3 pyx)»R
and R

is the mapping that takes into account the fuzzy set

position on the universe of discourse X.

is the mapping that takes into account the maxima,
the shape, the surface, the spread, the contrast and the
degree of fuzziness of the fuzzy membership function.

is \ne set of non-negative real numbers

Stability is determined by the changes in E(x,) over time. Thus:

() the system is stabie if:

E(x) - E(x,)<0

(i)  the system is unsiable if:

E(x) - E(x, ) 2"

(iii) the system is osciliatc:  if:

E(x,) - E(IH)I = 1E(X},.) — E (xk-l+t)|

fork = o0 (6.10)
fork — o 6.11)
fork = o (6.12)

Based on this definition it is possible te measure the energy of a fuzzy relation by
considering its important physical properties, £.ich as position of the support set, maxima of the
membership function, shape, surface spread, contrast, ... Avexity, degree of fuzziness, cardinality
and volume. The inclusion of the physical piopeities depends on the specific form of the function f.
However, the authors [Kiszka et al., 1985] point out that the energy of a fuzzy system, based on
the definition of equation (6.9) is more general, and in some cases better, than that of the strict

physical definition.
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Another stability index, described by Gupta et al. [1986], is directly related to the fuzzy
system itself and is therefore more intuitive. Let ® be a measure of fuzziness, expressed as:

Gx)= Y X (6.13)

1<isa

for x={x;1i= 1,2, ... n}}& X. Then for x,€ X, an arbitrary initial state, and x, = x°R", thc
desired state, the index of stability S(x,) is defined as:

So(x) = min[®(xAx),), V(X)) (6.14)
where 0 <€ a £ 1 is the o-cut parameter.

S, (+) can be considered the normalized measure of the distance between x, and the farthest
element in the sequence {X,, X,, ...,X,}. The parameter o is introduced to filter out the noisc caused
by the fuzzifying property of the relational matrix R. The properties of S,(-) are such that:

H 0=8,(x)=l 6.15°

(i) S x)=1 iff (x), c(x),forevery k (6.16)

So the closer S (x,) is to 1 the more stable is the system. However, the authors [Gupta et al.,
1986] point out that S (x,) may be close to 1 and yet the system is unstable, This situation can
take place if the relational matrix R is not sufficiently described or leamed.

Stabilization of the closed-loop system by proper choice of the control action, u, is a key
issue for relational-based systems. Consider the first order system without delay.

Y = U ?a°R 6.17)

The stabilizing control for this fuzzy system, with a optimal output given in th¢ form of the fuzzy
set Yo, refers to determining if there exists a stabilizing control u = u, such that u,, satisfies the
following equation [Czogala et al., 1982]:

Yopr = UsYop®R (6.18)
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The solution of this problem can be computed easily through the inverse calculation presented in
Chapter 5:

Uy = Vot * )G Yo (6.19)

Altematively, consider determining the fuzzy states, y, stabilized by the control action U
From the first order non-delay system:

Vi1 = UK (6.20)
Combine u, and R:

P=uyR (6.21)
Substituting equation (6.21) into (6.20) results in:

Yin = Poy, (6.22)

At steady state y,,; = Y, and the collection of output states stabilized by u, is the family of all eigen
fuzzy sets of P.

The theory to determine the existence of the eigen fuzzy set for equation (6.22), and if it
exists, the greatest element of the same was developed by Sanchez [1978] for the max-min
composition. A brief review of this theory is presented next.

Using the same notation as established in Chapter 5, define “V="W. Then an eigen fuzzy set
ac 'V of a known fuzzy relation Re VxVis a fuzzy set on “V such that a°R = a. The proof of the
existence of the greatest eigen fuzzy set (GEFS) is established as follows:

(@) LetayeV be the fuzzy set such that the grades of membership are equal to the
greatest element for each column of R.

a,(v) = VR, v) for VveV (6.23)

() Leta,c V be aconstant fuzzy set of the minimum of these values.
a,(v) = a;(v) for Vve Y (6.24)

This constant fuzzy set is an eigen fuzzy set of R, but not always the GEFS.
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(¢) Define the sequence of fuzzy sets a, by:

a; = Rea,

ay= R°a; = R2°al

Gn1 = Reay = R"a,
It is obvious that the sequence &, is decreasing and bounded by a, and a,.
AC...C0n 1SS0S, .. S0:C0,Ca, (6.25)

Additionally, Sessa [1984] has proyided the conditions necessary for an eigen fuzzy solution
to problem statement (4) defined in Chapter 5, and these are presented next.

Definition 1: Tu={ve VI10Qw,,v) 2 T(u,wp) for any ic L, ke K,

Theorem 1: If U="Vand Ty = {x;]} forany iel, keK,wehave Z=T.
Moreover, T = Q-T

Sanchez [1978] also presents three methods of determining the greatest eigen fuzzy sct
(GEFS) of R. The results of these methodologies were used to solve problems of invariants in
therapeutic recommendations. The knowledge being sought was:

Given a fuzzy relation R between medical symptoms expressing the action of a
drug on patients in a specific therapy, what is the greatest intensity of each
symptom on which R produces no effect?

Now consider repeated application of equation (6.22) from an initial point in time, y..

= P °Yo

¥z = Pey, = P’oy,

: (6.26)
yi =Py,
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The stability of the powers of P for the max-min composition has been analyzed by Thomason
[1977), where the powers of any matrix R are defined recursively by:

Given R =1, where 1 is the nxn unit diagonal matrix 6.27)

then R'=R"'R, fork=1,2.3.... (6.28)
The paper by Thomason showed that for the max-mir composition, the powers of R:

()  converge to an idempotent R°

(i) oscillate with a finite period T

This same stability of powers theory is now extended to the max-product composition to
ensure stability of the predictive fuzzy logic controller proposed in this thesis. This theory, as
applied to the max-product composition, is of particular interest and concemn due to the fact that for

some relational matrices, R:

LimR" = [0] (6.29)

A=

When a contn} application is being considered, this degradation of the relational matrix is
unacceptable for stable servo control. Being abie to predict or test for this degradation would be a
requirement for any control system using the max-product composition. And then once stability of
the powers is established, determining the family of eigen fuzzy sets of the matrix R or
alternatively, determining the range of R required to maintain a desired output must then be
considered.

For this discussion a simple measure of the shape of the fuzzy sets of the relation will be
utilized. Tong {1978] proposed a measure using the position of the peaks in the membership
function which defines the set and found it to be a satisfactory definition for discussing the concepts
of stability and controllability.

The following definitions taken from Tong [1978] will formalize the concept of a peak
pattem for eigen fuzzy stability discussion.
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Definition 2: A peak pattern, PP, of a fuzzy set X on a finite set X is a binary map of the
discrete membership function of X and p_ with

PP, (x)= (6.30)

1 l:f ux-_—u’mx

where p_,, is the maximum value of the membership function (i.c. p,, =1).

Definition 23: A peak pattein covers an element xe X if PP(x) = 1.
Definition 24:  Two fuzzy sets X, and X, are equivalent if they have the same peak paticrn.

Definition 25: A fuzzy set with a peak pattemn which covers only one element in X is called a
singular set.

Definition 26: A relation R is a maximal relation if each row has at least onc element of
value 1.

The analysis for the powers of a matrix R, for the max-product composition, is for matrices
which are < maximal.

Proposition 12: For the max-product composition, the powers of R:
(i)  converge to the null matrix (0]
(ii) converge to an idempotent R°
(iii) oscillate with a finite period T

Proof:

. rij<lforalli,j5nmen

tmr =0 (6.31)

n—yes
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(i) If a dominant factor is present in all powers of R and that factor is 1, then the matrix
will converge to a finite R*. For example, the powers of the diagonal elements are 2l functions of
themselves, so if they are set to the value 1, they will remain at the value 1.

SRR 632)

(iii) If the dominate factor, 1, does not occur in the same position in all powers of R, then
the matrix will oscillate. For example in a 3X3 matrix,

100 1 00 1 00
R=|0 0 1 R:=|0 1 0|=R R=10 0 1]|=R
010 0 01 010

Proposition 13: If the peak pattern equivalent of a matrix, R, converges then the matrix R also
converges

Proof: In the peak pattern equivalent, all matrix elements whose values are < 1 are replaced
by zero (0), and matrix multiplication quickly eliminates all non-dominate factors.
Only those values of 1 remain that <an be sustained in repeated powers. This same

elimination of non-dominate factors take place in the original matrix, however,
convergence is slower.

Theorem 8: The powers of a matrix R will converge to an idempotent R* for a finite ¢ if!

(i) there exists at least one i < nsuchthatr; = 1

and (ii) there does notexistaj, k<nsuchthatr,=r;=1,
wherej, k#i

Proof: Direct from Proposition 12(ii) and (iii).

Theorem 9: The powers of a matrix R will ocillate with a finite period 7T if:

(i) thereexistsani <nsuchthatr;,=1
and (ii) thereexitsaj k,iSnsuchthatr,=r; = 1, where j, k #i.

or (i) the matrix is maximal and there does not existani <n
suchthatr; = 1.

122



Proof: Direct from Proposition 12(iii).

Theorem 10:  The powers of a matrix, R, will coir-gige ¢ s (he null matrix (0] if:

@ alr;<lforalli,j<n
or (i) allr,<l1 foralli<n

and (iii) R <maximal

Proof: Direct from Proposition 12(i)

Definition 27:  The determinant R of the fuzzy matrix R is defined:

Ri= Y PP T, (6.33)
P1P2"Pn
where 2 denotes the max for all permutations (p,, p,, ..., p,)
PiP2 P

of the indices (1, 2, ..., n)
Definition 28:  The nxn adjoint matrix of R, adj(R), is defined:
a.=IR.| (6.34)

where a;; is an element of the adj(R), and (R ;! denotes the determinant of the

(n-1)x(n-1) matrix formed by deleting row j and column i from R.

Proposition 14: If R > I then the powers of R converge to R° and R* = adj(R)

Proof: Similar to proof of Proposition 4 of Thomason [1977]

Due to the complexities and interaction of the multiplicative operator, the number of
iterations, ¢, to reach the stable matrix formation may be greater than n. However, analysis on the
peak pattern matrix equivalent, as defined by Tong [1978] can be performed to ensure convergence
to a stable matrix form. For these matrices the operations max-min and max-product are
equivalent. Thus all the results of Thomason [1977] are applicable to these matrix equivalents and
convergence to ¢ will be in < n-1 iterations.
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The eigen fuzzy analysis is now concemed with the convergence of a initial nx1 state vector,
D, with elemen:s d€ {0,1], to final state, D°. Define the fuzzy state process,

Theorem 11:

Proof: =
SO
&
but

D'=D

Dk = ReD*!, fork=23,...

(6.35)

(6.36)

D converges to D%, iff R converges to R,

D2 =ReD!
D* = ReD? = R=D!

Dcd = Rc°D
Dc+2 = R“l"D = RC°D

D“l = Dc+2

D' = ReD* = R*D
De+2 = RoDu»l = Rc+l°D
Dc = Dc+l = Dc+2

Rc-l = Rc

since R has converged to R°

oonverges

since D has converged to D°

converges

The solutions to the problem of the eigen fuzzy set for the max-product operator will now be
considered. The solutions will be address the following problem definitions:

@
(b)
©
()

where GEFS stands for the greatest eigen fuzzy set.

Given R, find the GEFS of D
Given D, find the GEFS of R
Given R, find R*

Given D, and R find D*



Problem (a):  Algorithm to determine D gy, given R
Assume R has a peak pattern that converges, therefore R converges.
(1) Calculate R* = R with all columns without 1's deleted

(2) Calculate D* = max((R")")'
(3) Then D gy = ReD*

If D gggs contains only one element with the value of 1, then all other eigen fuzzy vectors are
linear multiples of Dgggs.

Problem (b):  Algorithm to determine Ry, given D

This is the straight inverse of the problem D = ReD
Rgeps = D@D

Problem (c):  Algorithm to determine R°, given R

() If R is maximal and the ones are along the diagonal, then Rcan be determined directly
by Proposition 3.

R°=adj(R)

(i) If R has only a single diagonal element with the value of 1 and any other non-diagonal
1's such that R converges or no other additional 1's, then R‘can be determined as follows:

(1) Calculate R

(2) Delete all entries from R? except the ith row and column, where i is the row and
column positioning of the diagonal 1.

(3) The blank column entries calculated by multiplying the one non-blarnk column
entry in each incomplete column by the ith column vector.

Example:

0.2 07 04 0 0 04 0224 0.28 0.4
R=|08 09 05 R=l 0 0 05| R'=|028 035 05
04 07 10 056 0.7 1.0 056 07 10



(ili)  All other combinations have to0 many interactions for a simplified solution. Solutions
are obtained by repeated iteration.

Problem (d):  Algorithin to determine D, given D and R
()  If the matrix, R, has only one diagonal 1, then the following algnrithm provides the D
for the given D:
(1) Calculatc R®
(2) Delete all entries from R? except the ith row and column, where i is the row and
column positioning of the diagonal 1.
(35  Determine the max-product of D and the ith row.
(4) Multiply this result by the ith column
Exampie:
0.2 0.7 04 [o o0 o4 0.8
R=|08 09 05| R=| 0 0 05| D={05
04 67 10 {056 0.7 1.0 0.3
o =0.448
[0.1792
D¢ =l 0.224
| 0.448

(i)

All other D®'s must be calculated as follows:

(1) Invert or transpose R.
03 0.7 09 0.3 04 0.2

R=|04 10 07 R'=|07 10 06
02 06 10 09 07 10

(2) Calculate the max-product of D with each column of R with a diagonal 1.
0.3 04 02]]07

R'=[07 10 0.6]0.6

09 07 10||0.3



D'=[0 0.6 0.36]

(3)  Calculate the max-product of D* with each column of R™.

03 04 02} O
R'=(07 1.0 0.6} 0.6
09 0.7 1.0{|0.36

D =[0.42 0.6 0.36]

From a control perspective, set-point tracking requires both relational matrix stability and
eigen fuzzy set Getermination, with the latter being impossible if the relational matrix is unstable.
As evident from the stability of powers of R, from this thesis and the work by Thomason [1977],
the requirements assigned to the relational matrix to ensure stability are rigorous. In many cases,
these requirement may be impossible to ensure while maintaining acceptable control performarice.
So can practical fuzzy logic applications be formulated to meet control objectives and overcsme
instability caused by the powers of R? The following discussion explains how fuzzy logic
applications maintain stability during setpoint tracking and offers a method to ensure stability for
control situations when the output must be defuzzified for a discrete result.

In their work on fuzzy learning and identification, Shaw et al. [ 1992] introduced the term
leakage and presented a method to overcome the problem that this distortion causes. Leakage
occurs when a relational matrix, R, introduces additional non-zero terms into the calculated fuzzy
output data that are not present in the actual output data. In these instances, the operations of
fuzzification and defuzzification are no longer reciprocal. This phenomenon of leakage
necessitates the use of approximate defuzzification techniques, such as max of maximum or center
of area. To overcome the problem of leakage in their identification algorithm, Shaw et al. [1992]
suggested defuzzifying the calculated output and then refuzzifying it before applying the value as a
state estimator into the first order fuzzy system model. This same methodology can be used to
stabilized control systems when the servo requirements of the system generate powers of R.

Inmost identification 7.\d control situations, the methods of fuzzification and defuzzification
are not reciprocal. Now consider cquation (6.22) and the stabilization of fuzzy outputs, y, Giey=
¥i.1) by the control actic: Uy,

Yin =Py 6.22)

Feeding back the defuzzified and then refuzzified previously calculated output, s, climinates
the problem of instability caused by the powers of R, because it prevents increasing powers of R
from being calculated since the fuzzified values of y..; and y, are not equal. The discrete or
defuzzified values of y,,, and y are equal at steady state so there is no effect from this procedure
on the measured outpul.



The presence of system noise can also eliminate this stability problems in practical discrete
control applications. Consider equation (6.22) with y = Yr.1, and y,, calculated by the method of
fuzzification. The value of y, is the previous actual discrete output, fuzzified by the same method
as Y, so there is a possibility that y; = Y. In applications with noise, when the actual output is
tracking in an acceptable region about the setpoint, the values of y., and y,, may not be equal for a
sustained length of time, and therefore the powers of R generation is limited and model instability is
prevented.

This method of defuzzifying and fuzzifying the previous output, y, prevents both the max-
product and max-min compositions from oscillating, and, prevents the relational matrix of the max-

product composition from conve zing to zero.

As a final note, since this Chapter deals with the similarities between the analysis of fuzzy
and conventional control systems, it seems important to point out here that the term eigen used in
fuzzy systems is not directly related to eigen values, poles and/or process stability as it pertains to
conventional control. This is just a coincidence of terminology.

This completes the review of stability analysis for relational matrices using either the max-
min or max-product composition. The analysis presented in this section was chosen to demonstrate
the similarities between conven:ional and fuzzy control.

6.5 Tontrollability

For a conventional first order system, the definition of controllability is to be able to drive
an arbitrary state to the origin in one step. Or more generally, to drive the state to the origin in
N < oo steps.

The classical definition of complete or hard controllability is inappropriate for the fuzzy
relational equation being considered here. There are two reasons for this [Gupta et al., 1986}

()  fuzzy relational equations ofien have mapping defects, meaning that a state
derived from a relational equation is not necessarily exactly equal to the states
used in the construction of the relational matrix.

(ii) for these fuzzy or soft systems it is often adequate to attain a state close to
the desired fuzzy state.

Consider the controllability of the fuzzy first order model with no time delay (T = 0):
Yiu = u,°y,,°R (637)
The problem or goal of the fuzzy controller is to [Pedrycz, 1985(a)]:

Find the fuzzy control uy that allows the fuzzy systeri to obtaii: 2 fuzzy goal G(Yu)
starting from a previously specified y;.



Or, in other words, find the fuzzy cause. So equation (6.37) can be r~written:
G(r1) = Uy °R (6.38)

It is known from the inverse formulation that there may exist a family of solutions, u,(G. y).

for this fuzzy goal, the greatest element of which is 4,. Soif the set uy(G, y,) is non empty, the

fuzzy model is controllable for (G, y»). The property of controllability is tied to the current output
and the goal simultaneously. It should be noted that the property of controllability is local, that is a

system may be controllable for y, but uncontrollable for y',.

For the case when the family of solutions, u(G, y,), is empty, Pedrycz [1985(b)] discusses
approximate controllability of the fuzzy system. In this work by Pedrycz [1985(b)] a fuzzy index
of equivalence is defined and treated as the controllability index.

The fuzzy index of equivalence or the degree of equivalence of fuzzy sets x and x', [x = x'|,
is calculated:

[x=x'] = min [x(x) y x'(x)] t m‘,in [x'(x) ¥ x(x)] (6.39)

where t and y are a ¢-norm operation and its associated inverse, respectively, which have been
defined in Chapter 5. Results of this calculation span the range {0,1], with a value of 1 indicating
complete equivalence and a value of 0 meaning completely different.

A threshold level, a € [0,1], can be introduced into the equivalency measure under the
assumption that small values of the membership function are meaningless and equivalence of fuzzy

sets should be evaluated with reference to higher values. So the index of equivalence can be
restated as:

[x=x'Wo) = mln [xXa(x) W xa'(x)] ¢ mm [xa'(x) ¥ Xa(x)] (6.40)

where x, and x,' are the original fuzzy sets x and x', respectively, modified by a in the following
manner:

Xog=xVa 6.41)

X' =xva (6.42)

With this definition of o-equivalency, x is exactly equal to x' if [x = x')(c) = 1 for all o, and x is
completely different from x' if [x = x'}(1) = 1 and O otherwise.
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This concept of a-equivalency is applied to the controllability index in the following
manner. With a known fuzzy model, R, a given goal, G(¥:.;) = Y, and the previous output, Y. the
fuzzy control is calculated as:

i, = - @y, (6.43)
The prediction of the next output, J,,, is then calculated as:
Fen = @oyeeR (6.44)

The (G, y,)-controllability of the system is determined by the value of [ Fra =Ygl If[ Fin =Ygl =
1, the system has absolute controllability. If { §,,, = ¥] =0, the system has total uncontrollability.

Now consider a fuzzy constraint, C(u), on the fuzzy input, u, that must be satisfied
simultaneously with the goal, G(y;.,). To solve this problem C(u) is introduced to both sides of
cquation (6.38) [Pedrycz, 1985(a)):

G() - C(1) = w2y, *PRC(1) (6.45)
Define:
WO, #) = GOra) * T1) (6.46)

So to determine (W, y;)-controllability of the constrained system, the following equations must be
considered:

&, =(C-y - ROW (6.47)
W = &, 2y,°ReC (6.48)
and (W =W]. (6.49)
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Gupta ez al. [1986) also define an index of controllat.iity based on the closeness of a
calculated state x, = x,ouooup...ou,.lck" to a final state x, after a sequence on control moves u,, 4,.

..s U5 Due to i 5241 ying property of R, the expectation that x, is exactly equal to x, for some
k, is unrealistic. 7. *h controllability index, C, (x., x,) is defined as:

C,\x, x)= max Q((xe A% )%((Xk)a) (6.50)

o0 MR -]

where ® is .n1e measure of fuzziness defined earlier. Equation (6.50) is interpreted as; the larger
C, (x,. xp. 1 \1e closer the state x, is to X, or, the better is the controllability. Again the a-cut is
introduced into this index to filter the fuzzification caused by the fuzzy relatior, R.

Xu [1990] equates a fuzzy r -reachability with controllability in linear systems. A system:
Ve = Yea® Ure Ve PR 6.51)

where ¥u Ui, and v, are the fuzzy output, control and disturbance variables
at time instant k

R is the fuzzy relational matrix

o is the max-min composition

is considered r -reachable if for any 7,-normal y,.., and v, a fuzzy control variable u,.,, can be
found such that the fuzzy output y, can be transferred to a given point yi. This point yi is such that
the membership function of y, has a unique peak at yi and y,(yi) 2 r,, for r,€[0,1]. Theterm r-
normal is defined as follows.

Let X be a universe and xi be a point in that universe. Let xe X be the fuzzy sct for the
point xi with membership functions x(xi). Then:

(a)  xis said to be r-unimodal, iff
I xoeX, x(x0) 2 r, and x(xilvo) <r, (6.52)
(3! = there exists one and only one)
(b) xissaidto be r -normal, iff
()  xisr-unimodal, (6.53)
and (i) xisconvex, (6.54)

(or, for all i, j, k, xi < xj < xk, x(xj) 2min[x(xi), X(xk)])
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It should be noted here that the definition by Xu [1990] for normal is slightly different from the
standard definition. Based on the theory presented for reachability of an open-loop fuzzy systems,
Xu [1990] developed a theoretical fuzzy feedback/feedforward control law for one-step ahead

reachability.

Several methodologies presented above indicate that controllability of fuzzy relational
systems can be calculated in a manner analogous to classical systems, however in a form more

suitable for the analyses of fuzzy relational systems.

6.6 Summary

The controllers that have been reviewed in this chapter are basically fuzzy feedback
controllers, and, as was noted, fuzzy feedback or fuzzy PID control closely mirrors conventional
PID control. However, as with the conventional PID controller, there is no predictive ability built

into the fuzzy PID controller.

Chapter 6 is important from a control perspective as it consolidates fuzzy design stability
theory and demonstrates the agreement between fuzzy control and conventional classical control.
Two important results from this Chapter are:

(1)  Stability analysis and convergence properties for relational matrices combined with
the max-product operator [Bourke et al., 1995)

(2)  Eigen Fuzzy Sets analysis for max-product compositions [Bourke et al., 1995]

The stability analysis and convergence property results of this work are critical for relational
matrices combined with the max-product composition because of the possibility that these
relational matrices may converge to a {0) or null matrix. Therefore, before the development of a
control policy with the max-product composition, the conditions for the existence of the unstable
solutior: matrices must be determined.

Ability of a systems to obtain and maintain a setpoint under a control is also critical, and
knowledge of the conditions under which deterioration may result is crucial. Eigen fuzzy set
analysis reveals the ability of a relational matrix, combined by successive max-product
compositions, to maintain a setpoint under a control scenario. As well, a method to overcome poor
or deteriorating response for those matrices that do not meet the criteria of stability with successive
composition is provided for both max-min and max-product composition.

The stability and controllability analyses that have been reviewed deal with fuzzy models and
can therefore be applied to fuzzy model-based control. With this basis of fuzzy control theory now
established, the development of on-line identification algorithms will be considered, in the next
Chapter, leading to the development of a self-leaming fuzzy model-based predictive controller.
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CHAPTER 7 FUZZY IDENTIFICATION ::

"We cannot learn without changing and we cannot change withcut learning"
[Kosko, 1992}

7.1 Introduction

Fuzzy models are appropriate in situations where goals, constraints arid physical
mechanisms of the process can not be clearly defined deterministically. Yet even in these
environments, a fuzzy system must learn the relationship between the input and output data.

Fuzzy identification usually involves the formation of a set of control rules or fuzzy
implications, as well as, the generation of the membership functions that will be used. These tasks
are accomplished either manually by interviewing knowledgeable proce~  erators, or
automatically by means of relational-based equations which utilize fuzz..; .4on procedures and
referential fuzzy sets. This latter method offer a systematic design procedure for the construction
of fuzzy models while avoiding the problems associated with fuzzy control rules, such as
consistency, optimum number, interactivity and the need for a intelligent humar operator [Shaw et
al., 1992). Identification methodologies, utilizing fuzzy relational equations, are *iscussed in this
chapter.

7.2 The Fuzzy Model Identification Process

Consider the fuzzy identification problem:

Given fuzzy input, u and fuzzy output, y,
find R such that: y = u°R (7.1)
Fuzzy relational identification problems are solved in a manner similar to deterministic

identification problems, once the data has been assigned to representative referential sets and fuzzy
discretization has been completed. Fuzzy identification consists of the foliowing steps:

1 A version of this Chapter has been accepted for publication. Bourke MM., Fisher, D.G., 1995. (Fuzzy
Sets and Systems, 74 225-236).

2 A version of this Chapter has been submitted for publication. Bourke M.M., Fisher, D.G., 1995.
(Fuzzy Sets and Systems).
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Fuzzification of Data:

(i)  define the universes of discourse for the input-output variables
(i) determine referential fuzzy sets and the shape of the membership functions
(ii) express all the I/O data in terms of the referential fuzzy sets.

Model Identification:

(iv) define the model structure (e.g. order, composition, etc.)
(v) calculate the parameters of the fuzzy relational matrix
(vi) validate the model

Each of these points is discussed in the following six subsections.

7.2.1 Universe of Discourse

The universe of discourse defines the entire space or range for each of the input-output
variables. For N pairs of input-output data, u, and y,, the universes are defined such that:

ue U and yeVY forallk=1,2,...N. 1.2)

For the discussions in this Chapter, a fuzzy variable, u, is italicized and a discrete variable, u, is
not.

7.2.2 Referential Fuzzy Sets and Membership Functions
The choice of the number of referential fuzzy sets and the shape of the associated
membership functions can be determined statistically, by clustering, or subjectively. There is no
evidence to show that any analytic or computational method is better than a subjective decision [Xu
et al., 1987]. However, to ensure the performance of the fuzzy model the fuzzy membership

functions should be normal, convex and satisfy the completeness condition outlined next.

The partitioning of the universe of discourse, U, (or V) into referential sets,

U.U, ..U, (rY,Y,.., Yp)) must be such that the complete space is covered, that is;
Vuel 31<isp, 3Um)>0 (7.3)

forallk =1, 2, ...N. This ensures that each point of U has a finite (nor-zero) membership in at
least one of the U;'s. The output space Y can be defined in a similar manner.

137



Let p be the number of referential fuzzy sets for any given universe of discourse. The
number of referential fuzzy sets, p, for a universe of discourse, should be se’ccied by weighing
model accuracy against computational efficiency. Model accuracy may be impreved by increasing
p, however, a large p requires more computer memory and CPU time. Pedrycz [1984(a)] showed
that increasing the number of referential sets indefinitely does not necessarily continue to improve
the solution and there appears to be an optimum number. However, it seems intuitive that
increasing the number of referential fuzzy sets infinitely (p — =) should result in fuzzy
singularities and discrete control. The choice of the number of referential fuzzy sets depends on the
developer/user of the fuzzy model. The number should be chosen consistent with the number of
linguistic labels which represent the level of knowledge available for the system being modeled.

7.2.3 Fuzzification of the Data

If the input data is not inherently fuzzy (i.e. it is discrete), then fuzzification of the data is
necessary. Fuzzification is defined as the 1-to-p mapping whereby a real value is converted into p
fuzzy values [Shaw et al., 1992]. So during fuzzification discrete data is transformed via the
referential fuzzy sct, into membership vaiucs as defined by the corresponding membership
functions. ‘This is accomplished by calculating the degree of membership of each u, € Uin each

of the referential fuzzy sets U,, U, ..., U, .
p ) =AU W) = ¥ fori=1,2,..., P, (7.4)

The fuzzified value of u, defined u (italicized), is the vector:

u = [u,, Uy, Uy, ....upn.] 1.5)

7.2.4 Model Structure

The structure of the relational fuzzy model is normally defined a priori by imposing the form
of the fuzzy relational equation, the order, p, the system delay, T, and fixing the composition, °,
resulting in a state space design. The benefit of fuzzy relational models is that the state-space
methodology permits numerical systems analysis.

A fuzzy state space model was outlined ir: detail in Chapter 3, Section 3.3. The following is
a short summary. Let u={u;1i={1,2,...m}}e U, x={x1j={12, .., n}}e X, and y={y, |l =
{1.2, ..., n}}& Y be the fuzzy spaces of input, state and output, respectively, all defined on the finite
fuzzy universes of discourses indicated. Then for a series of N state, output and control data
points, the first order fuzzy state space relationship with delay is written:

138



Xy = Uiy )%Up1.2°. - OUp.c p°%X.19%4.2%... °xk.,°R 1.6)
Ye=Xx08 1.7

where X Xp.15.--0 Xip arc the fuzzy states at the time instances indicated,
Upc1s Up.c2, Upc ., are the fuzzy control at the time instances indicated,
¥ is the fuzzy output at time 4.
¢ is the system delay,
p is the order of the system

and o € 0, where 0 stands for a family of composition operators

(i.e. max-min, max-product, €ic.)

By assuming that the fuzzy states and the fuzzy outputs are the same, (i.e. Xx =Y for all k).
S is reduced to an identity matrix, with S(x;, y,) = 1 if x;= y, and O otherwise. Therefore cquation
(7.7) can be ignored and the fuzzy p-th order state space equation is as follows:

Ve = Upe P82 Uk p Ve 1 Ve ViR (7.8)

7.2.5 Parameter Calculation

The optimization problem for parameter estimation can be formulated as follows:

min Q. R) = @t ° R ) (1.9)

20

where 0 stands for a family of composition operators (i.e. max-min, max-product, €ic.). Q stands
for the sum of the distances between the respective fuzzy sets,

N
0= 15:-nr (7.10)
k=t+2 |
where yi= “k4-1°xk-1°§
(7.11)

y={y 1= {12, .., n}}
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and q is an arbitrary integer power. Forg =1, Q is referred to as the Hamming distance, for g = 2,
Q is referred to as the Euclidean distance.

Parameter estimation is done through batch identification runs with a sample of input-output

data to determine R with systematic combinations of T and p. The values of Q are then plotted to
determine the best combination (i.e. lowest value of Q) for the application being considered.

For any identificatior: the quality of the model prediction is of key importance. The goal in
parameter selection is to incorporate enough parameters so that the model is flexible enough to
describe different system behaviour, and yet not so over parameterized so that the system is costly
to run and maintain. In short, the system should be minimized with respect to the model structure

[Graham et al., 1988].

7.2.6 Model Validation

Once a model, R, has been calculated from the input-output data, (as described in Section
7.3 - Identification Algorithms), the model must be validated. As with discrete systems, this
validation is accomplished by comparing predicted output data, based on the model developed,
against actual data. Whether the actual output data is inherently fuzzy or discrete, the model
validation procedure is similar. However, if the fuzzy predicted output data is be compared against
discrete actual output data, then the fuzzy predicted output data must be defuzzified.

7.2.5.1 Defuzzification

Defuzzification is defined as the p-to-1 mapping where the p fuzzy values are converted into
a single discrete output value [Shaw et al., 1992). Defuzzification for relational systems is
accomplished in the same manner as discussed in Chapter 2 for rule-based systems.

While fuzzification and the choice of fuzzy membership functions tends to be subjective,
several authors have shown the benefits of several defuzzification procedures [Tong 1978(a); Xu.
et al. 1987; Mizumoto 1989). Tong [1978(a)] and Xu. et al. [1987) compare defuzzification
methodologies which operate on the overall consolidated output membership function, while
Mizumoto |1989] compared overail consolidated output defuzzification as well as methods that
deal with each output membership function separately.

Tong [1978(a)} compared the defuzzification methods of average of maxima and median.
The results of this testit.,g showed that the median method always gives a lower mean square error
than the average of maxima methcd. This result is due to the fact that the median method generates
a less extreme output estimate, so that it will give smaller errors when the model is not accurate.

Xu et al. [1987) compare the three defuzzification methods; average of maxima, median and
center of gravity. The results showed that for the majority of the simulations conducted the median
method produced the best results, followed by the center of gravity. The average of maxima
method consistent’y produced poorer results than the other two methodologies. These results are
consistent with Tong [1978(a)].
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Mizumoto [1989) showed that the height mcthod and the area method obtained better control
results than the center of gravity method, which is widely used in fuzzy control. The height and
area methods produced results similar to the median method, sho - as the preferred method by
Tong [1978(a)] and Xu et ai. [1987].

7.2.6.2 Minimization Criteria

Once the predicted and output data are in a form such that they can be compared, a
minimization criterion must be selected. !f the data is inherently fuzzy, then the minimization

criterion is generally of the form:

N q
2 2y, -5,
k=x+2 !
= 7.12
Qq N1 (7.12)

where g=1o0r2

For g = 1, Pedrycz [1991(b)] and Valente de Oliveira [1993] provided a neural leaming
strategy for thic minimization problem for the max-min and max-product composition.

For g = 2, Pedrycz [1983] provides a quasi-Newton method to solve this minimization
problem for a max-min and a max-product composition. Wang (1993] presents the properties of
the quasi-Newton method for several compositions, but does not include the max-product
composition in this analysis. Ikoma et al. [1993] propose the probabilistic descent method for the
minimization problem with ¢ = 2, for the max-min composition, only.

If the actual output data is not inherently fuzzy, the predicted output data must be defuzzified
and then compared against the actual as follows:

3 g

ly -y |

J, = E%f——;—k— (7.13)
.—1_

where g=1,2

These minimization procedures will be discussed in more detail in Chapter 8 along with some
of the problems associated with these methodologies.
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7.3 The Challenge of Fuzzy Identification

Given, N input-output data points and keeping the idea of parsimony in mind, do not use
more parameter that necessary [Ljung, 1987], the fuzzy state space relational model, R, will be
leamed or identified by a first order system, p = 1, with a time delay, T .

Vi = Bira?ea°R (7.14)

As with detemministic systems, the first order model with time delay structure of equation
(7.14) is normally a good approximation for higher order overdamped processes. The problem
with fuzzy relational 2quations, is that the size >f the relational matrix, R, grows exponentially with
the order of the model, as does execution time. So for systems with long sampling intervals (i.e. >
30 seconds), higher order systems, (i.e. p > 1) canbe considered because there is enough time
available at each control interval to do the extensive calculations. But with higher order systems,
there are extensive storage requirements. Chen ez al. [1994] have outlined an algorithm to reduce
the storage requirements for such systems.

There is an important difference between the on-line identification of a fuzzy scheme and
that of a deterministic or stochastic scheme [Graham et al., 1988]. With deterministic processes,
an initial model is proposed and as the identification algorithm proceeds iteratively the parameters
of the model normally become increasingly accurate. The important point is that at each time step
the model is complete, although inaccurate. Therefore the currently available deterministic model
can always ve used to make predictions whict: are more or less accurate.

Fuzzy identification usually starts with a completely empty relational matrix from which it
is impossible to make any predictions. At each iteration entries are added to the model which are
essentially accurate but which cover only a portion of the input-output space. So, at any particular
time step, the model may not be complete and so outputs will only be able to be obtained for certain
inputs. This is not a desirable feature when using fuzzy mcdels in a control scheme and this
problem will be addressed later in this chapter.

Some of the concems with fuzzy relational identification are:
(i)  alarge number of input-output points must usually be considered

The main concem with fuzzy relational matrices is model completeness. Fuzzy
relational identification requires a large number of input-output points that must cover the entire
operating range. Thus the larger the range the greater the nuraber of input-output points that must
be processed in order to complete the leaming. . uzzy models are unable to extrapolate their
learning from one point of the operating range to ~nother. The fuzzy model must learn from
experience.

(i)  discontinuous data or pciiods of non-representative data arise in practical applications
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Similar to discrete identification, discontinuous data or periods of non-representative data do
not offer valid experience to the fuzzy model. For batch leaming these periods can simply be
omitted. For on-line leaming, the effect of this data will be forgotten with time.

(iii) input or output variables may saturate

Input or output variable saturation provides the opportunity to confirm the limits of the
operating range. However, extended periods of saturation offer little additional model information.

A good deal of the liter::ure pertaining to fuzzy identification deals with fuzzy systems ina
batch sense [Czogala and Pedrycz, 1981; Pedrycz, 1984(a); Pedrycz, 1985; Pedrycz, 1987;
Pedrycz, 1988]. It is assumed that their is a large sample of input-output data available and
various techniques are applied to this data to determine the relationship between the two. Recently
some new results [Shaw et al., 1992; Chen et al., 1994; Bourke et al., 1995(b)] show that a
recursive or self-learning algorithm can produce comparatively better results than the batch
algorithms previously propcsed. The Box-Jenkins {1970] gas fumace data is widely used for
testing fuzzy identification algorithms, [Tong, 1980; Pedrycz, 1984(a); Xu et.al, 1987; Ridley er
al., 1988, Xu, 1989; Sugeno et al., 1991; Shaw ez al., 1992; Valente de Oliveira, 1993} so it is
fairly easy to rank the various identification algorithms based on this benchmark.

7.3.1 The Exact Solution
Again consider the first order time delay model, equation (7.14).
Ve = Ur1Ver°R (7.14)
If every ordered triple, (#y.c.1, Yi.1o Yo), for k=1, 2, ..., N, satisfies equation (7.14), without crror,

then the solution is considered exact and the greatest fuzzy relation, R , which satisfics this
equation, as proposed by Di Nola et al. [1984], is given by :

N
R = ﬂ [(Upet * 1)) {7.15)
k=1+2
where * is - for the max-product composition

and min for the max-min composition.

and ® s the W-composition for max-product composition

and the a-composition for max-min composition

As shown by Pedrycz [1990] and discussed in the next section, this conclusion is flawed.

143



7.3.2 Approximate Solutions

The fuzzy relation R resulting from the input-output data available may be such that not all
of the input-output triples satisfy the model equation proposed. It is very difficult to obtain a
system of equations by a purely analytical calculation such that an exact overall solution exists

because of:

. model mismatch (i.e. the model structure differs from the system structure)

. choice of composition operator (i.e. operators may not infer the solution
appropriately)
) corrupt data (i.e. by noise or other disturbances)

Data inconsistencies that effect the solution to a system of equations have two forms:

() individual input-output data triples do not satisfy the condition for the existence of a
solution

(i)) each individual input-output triple satisfies the condition for solution existence, but
the intersection of all the solutions is empty

Pedrycz [1988) has shown for the max-min composition and then later [1991(a)] for the
max-t-norm composition, the necessary and sufficient conditions for the set R# @, for the case of
the input-output data pair.

Considering data inconsistency, point (i), Proposition 1 provides the necessary and sufficient
condition for the existence of a solution for the data triple of a first order model.

Proposition 1: Foru={u;li= 12, ..m}},x={xlj= {1,2,...,n}}, and
y={ yi1=1{12 .., r}}, lets;= (u*x)), where * is product for the max-product
composition and min for the max-min composition.

Then for all R= {Rly = uex°R}, the necessary and sufficient condition
forthe set R QD is:

Jie (1.2,...m}, je (1,2, ..., n}
3 max(max(s;)) 2 max(y;) Vie{l,2,...n} (7.16)
i J
Orinterms of ¥, x;andy,, 3ie {/,2, om}), je{l,2,...n} %

for max-product [max(u) - max(x)] 2 max(y,) Yie{l,2,..,n} (7.17)

for max-min min{max(u;), max(x)} 2 max(y)) Vie {l,2,...,n} (7.18)
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Proof:

By definition of the inverse functions, , for max-product and a., for max-min

ifs,-ij, foralli.jandl

(7.19)
then ry; = 1 foralli,jand!

and rio solution exists. Thus it is enough that just one element of s.: is greater than or
equal to the maximum element of y, for a solution to exist.

Now considering data inconsistency point (ii), each individual input-output triple satisfies the
condition of solution existence but the intersection of all the solutions is empty. This concept has
been demonstrated by [Pedrycz, 1990] as follows.

It has been proven that if the intersection of all the families of equations forms a non empty
set:

N
R=(\R,»@ (7.20)
k=1

then its 4.-eatest element is:
A N ~
R=R, (7.21)

where R , is the greatest element of each k-th pair of input-output data. This intersection gives the
minimal relational matrix from the maximal elements of R,

According to Pedrycz | 1990], the above statement contains a very strong assumption. It can
be easily seen that the case might exist for one pair of input-output data (u,, y,) such that the

solution set R is non empty, but thai the intersection with all the remaining families R,, k #q, is
empty. That is:

N
R'=(\R,>2, but R[\R'=9 (1.22)
ki
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So if the entire system of equations is treated together, it has no solution. Additionally, the
possibility of this increases as the number of input-output pairs (N) grows [Pedrycz, 1988]. In
general the condition that:

N
(\R.*2 (7.23)
kai

can not be expected to be completely fulfilled. However, the information obtained from equation
(7.23), in these situations, should not be considered as totally irrelevant, but may infact form an
approximate solution for the set of equations and is therefore valuable [Pedrycz, 1991(c)).

Although the procedure, as described by equation (7.15) provides good results [Pedrycz,
1984(a)], based on a minimization criteria such as Hamming distance or least squares, for exact
and consistent data, it encounters problems when considering inexact data. The major problem lies
in the fact that the intersection of the maximum solution or the union of the minimum solutions are
unable to recover or unlearn erroneous information. Thus an averaging procedure, such as the one
proposed by Shaw ez al. [1992] and discussed in the next section, provides a method of forgetting
erroneous data.

Another procedure has been recently presented by Chen ez al. [1994], which updates the
fuzzy model on-line by adding new entries to the fuzzy relational matrix while gradually deleting
old unreasonable entries.. The method, presented by these authors, permits the unleamning of
previous data by taking its complement. This procedure will also be reviewed in the next section.

Analyzing these situations, one should consider eliminating inconsistent data during
calculations to determine a suitable relational matrix, R. This situation hus been addressed by
several authors who have attempted to define inconsistent data and then detect it and measure or
eliminate its effect on the solution of R. Gottwald [1985] and Gottwald e al. [1986] have studied
the solvability property of a system of fuzzy relational equations. They have proposed a solvability
index on [0,1] which is an indication of how well a pair of input-output data contribute to a
consistent solution, wi.> 1 being completely solvable. So if those equations which lead to
extremely low values of the solvability index are removed, a consistent solution would exisi. This
index is useful not only as a means of detecting situaticns where there is no solution, but also as a
measure of how easily fuzzy systems of equations or a single fuzzy equation can be solved.
However, this work represents a passive solution in that it evaluates the solvability property, but it
does not give an indication of the structure of the fuzzy sets analyzed nor does it provide a means of
data modification in order to ensure a solution.

Pedrycz [ 1985] has proposed a structured fuzzy model where the fuzzy relation is associated
with a probability matrix which specifies the structure of the system and summarizes the
frequencies of the links between the elements of the fuzzy relation. This same author [1988]
investigated the structure of the system of equations with a consistent subset of the input-output
data used to calculate the solution of the entire system. In this work the author introduces a
feasibility index which measures the similarity of the pairs of input-output data and indicates the
degree to which the system of equatior:; can be solved. This index is not equivalent to the
solvability index, proposed previously, ut it is related to it. In [1990) Pedrycz proposed two
algorithms to construct a fuzzy relation- matrix from inconsistent data. The first method gathers
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statistics concerning the distribution of results for an a-composition (or a-cut) of the elements of
the fuzzy input-output pairs and then looks for consistent pairs. The second method uses the
results of the a-composition and then transforms them into a probabilistic set. The compositional
operator is then extended to handle both the fuzziness and the probability. Wagenknecht et al.
[1986, 1987) propose an interval-valued fuzzy set where intervals on the membership grades of the
input-output are considered as tolerances and the fuzzy relational matrix is constructed with
tolerances or an applicable interval is provided for each entry.

But is removal of the inconsistent data a valid procedure in fuzzy modeling? Unlike
deterministic process, where the noise and unmeasurable disturbances are usually estimated
separated from the process model, the fuzzy relational matrix of a fuzzy process incorporates not
only the process but noise and disturbances 2s well. Therefore removing input-output data that is
considered corrupted may rob the fuzzy model of required process information.

Pedrycz et al. [1981] have overcome the problem of inconsistent data by applying the
concept of probabilistic sets. Pedrycz [1933], Ikoma ez al. [1993], Pedrycz [1991(h)] and Valente
de Oliveira [1993] all suggest an optimization approach to solve fuzzy relational equations. The
optimization procedure proposed consists of finding a fuzzy relational matrix which minimizes a
specified performance index. These numerical approaches will be considered in more detail in
Chapter 8.

7.3.3 Estimate of Minimum Solution

Both exact and approximate solutions have been considered in this Chapter. Now consider
an estimated solution, or more specifically, an estimate of a minimum solution. For this
discussion, let the fuzzy relation R={((w;, y). r;) 1i={12,...m}; j={1,2, ..., n}} be thc mapping
R: UxVY - [0,1)x[0,1] where ; € [0,1]is the grade of membership between (i, ). Let u € U
and y € VY be the fuzzy sets u={ u, ! i= {1,2, ... m}} and y={ y;!j = {1.2, ..., n}} where u, and y; €
[0,1] are the grades of membership in U, and Y, respectively. Now for a given series of N input-
output data pairs, (u,, ¥,), consider the identification problem of finding Re UxY such that:

y=ucR k=1,2,...N (7.24)
where © represents the max-min composition.

Baboshin et al. [1990] have shown, for the max-min composition, that to minimize the
Hamming distance between the actual, v, and the estimate, y:

Q0. =2y, -7, (7.25)

i=1

the identification of R should be through an estimate of the minimum inverse calculation rather
than by the Mamdani identification operator [Mamdani, 1974). These authors present a method of
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determining the smallest fuzzy relation R for the case when u is a normal fuzzy set (i.e. max(u;) =

1, for i=1,..., m). The resulis are then applied to a multi-dimensional fuzzy system.

The condition of a normal u presents a problem when actual process input is considered

since there is no guarantee that any given input, &,, will be normal. Therefore the work by

Baboshin er al. [1990] was extended, to the case when the input data, u,, is unrestricted and can
therefore be non-normal, and then to the case of unrestricted input data, u,, for the max-product

composition.

As a brief review for the development of this theory, the following definitions are provided.

Definition 1:  The greatest fuzzy relation Re Rsuchthat R= {Re UxY |y = u-R}*D

Definition 2:

is given by:
R =@y
where @) is defined for the max-min composition as:

N Y; if u>Yy;
Fi=hOYi=1, otherwise

and for the max-product composition as:

Y .
Fij:uiayﬁ{ I thel:wi e
O Se

The union of all the smallest fuzzy relations R e R such that
R={Re UxViy=u-R}#D is given by:

R =u@y
where (0) is defined for the max-min composition as:

Foeway=14 i w2y
§=%9Y=10  otherwise
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and for the max-product composition as:

_ Y ; ,
ry=u.~0)’i={A if 2y, (7.3

Definition 3: The Mamdani identification method for R € R such that
R = {Re UxVY |y =u-R}#D is given by:

RY =u'xy (7.32)
where X is defined for the max-min composition as:

Y; if W2y,

U otherwise (7.33)

Y =min(u, y) = {

Although Mamdani did not work in the domain of max-product it is standard practice to
assume the cartesian product identification for the max-product domain to be the product operator.
Therefore X is defined for the max-product composition as:

M =u-y for all i and j (7.34)

The operation proposed by Baboshin et al. [1990] which determines a smallest fuzzy
relation R, with the ccwition that u is a normal fuzzy set, is summarized as follows:

Theorem 1:  Givenu e U and y € V, then the smallest fuzzy relation R € R, where
R = {Re UxVY |y = u-R}#2, with u a normal fuzzy set and meeting the
condition 7 ;<r; is specified by the operation:

- - Y; if u =1
Fy=u0,¥=1 otherwise (7.35)

Theorem 1 can be extended to all fuzzy sets, normal or non-normal as follows:
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Theorem 2: Given u € U and y € V, then a smallest fuzzy relation Re R, where
R = {Re UxVY1y=uR}#D, with u an unrestricted (i.e. normal or non-
normal) fuzzy set and meeting the condition 7; < r; is specified by the

operation:
- - Y; if u; = max(u)
ri=u u)’j‘:{ol otherwise (7.36)

Proof:

() Provethaty= uR:

Yi uer;

Yj max (min (&;, ry))

max (min (¥;, r;)} v max (min (u;, ;7))

ix;=max(x) i:x, wrmax (x)

max , (min (u;, y;))

i, =max (x

Ji
This proves that ueR =y and so ReR
(i) Provethat R SRor7;<r

Assume that there exists an R'e R such that R' € R, then:

r,-j< r ij
but 7;=y; for i: u; = max(u)

ri<y; for i: u; = max(u)

If R' exists then:

\J

Yi

uer ','j

Yi

max (min (;, r';))

= max (min (u;, r‘,-j ))

ix; =max (x)

= max (ry)

i =max(x)

<yl
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Since y; # y; then R'e R which contradicts the original premise. So R SRand R isthe
smallest fuzzy relation.

Theorem 2 can be extended to the max-product domain as follows:

Theorem3: Givenue Uandy € VY, then a smallest fuzzy relation R € R, where
R = {Re UxVY |y = u-R}#J, with u an unrestricted (i.c. normal or non-
normal) fuzzy set and meeting the condition 7 ;< r; is specified by the

operation:
- - Y if 1, = max(u)
r;j=uo,y= u; (1.37)
0 otherwise
Proof’
() Provethaty= uR:
Y = uery
yp = max (u; - ry)
= max (u,-ry)v max (u-ry)
ix;=max(x) i:x, wmax (x)

max (w,-r)=, max (- %)

i:x; =max(x i:x,=max (x)

Yj
This proves that ueR =y and so Re R.
@(ii) Prove that RC<Ror7 iSry

Assume that there exists an R'e R such that R' € R, then:

r',-j < i: if
but 7=y for i: u; = max(u)
ri<y; for i: u; = max(u)
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If R' exists then:

Yi

i}
u,'°r,‘j

il

Yi max - r'y)

max (u;-r'y

i:x, =max (x)

]

max (r'y)

£2x, =max (x)

<Yy

Since y'; # y;then R'¢ R which contradicts the original premise. So R < R and R is the
smallest fuzzy relation.

The conditions for the existence of an inverse solution to the identification problem given by:
y=u°R (7.38)

has been shown by Pedrycz [1988] to be:
max (4,) 2 max (y;) (7.39)

This result is the precursor to Proposition 1, provided earlier. When this condition, which is the
same for both max-min and max-product, is satisfied the corresponding relational matrices are
assured of a solution.

When a system is being identified, the efficiency of the identification algorithm is as
important a factor as the accuracy. Thus, if the relational matrix identification, based on an
estimate calculation, results in superior performance, and is also computationally more efficient, it
should be considered for on-line identification. It has been shown by Baboshin er al. [1990] that
the estimate of the minimum, R , determined from Theorem 1, with u normal, will ensure the
minimum Hamming distance and is superior to the Mamdani identification operation. The
questions to be considered now are: (i) will these results extend to the rore general unrestricted
case, as outlined in Theorem 2, (ii) is there another formulation that can produce better results
using the same performance criterion, and (iii) can the performance results be generalized from the
fuzzy domain to the discrete (or defuzzified) domain.
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It is known from the properties of r-norms that:

@  Given ue(()" R;)=y" and us((), R, )=y" (7.40)
if RR<R" (7.41)
then y' <y"
N ' "
G en u(|J) R,)=y and ue(( ]} R,)=»" (7.42)
if "< R" (7.43)
then y' <y"

Consider the definitions of R:’ , R " R , and R ; for the k-th input-output pair, and the condition
for the existence of a solution, it is easy to see that:

R, s R, = RY c R, (7.44)
Let R be the actual relational matrix that generates the output data, as defined in equation (7.24).
y.=u°R fork=1,...,N. (7.24)

Then for each &-th pair of data points:

R,<Rc< R, (7.45)

It is unknown at this point what the exact relationship is between R, R cand RY.

Now consider the definitions of R p and R . for a single input-output data pair. Fora
particular matrix location for these inverses, r; is the maximal element and 7 ; is the minimal
element. But when x; > y;then r; = 7 ;. The existence criteria require that there is at least one
occurrence of x; 2 y; for all j, so for each input-output pair there are locations in each of the
maximum and minimum matrices where the values are equal. Since the global R is determined by
taking the maximum over all the R ¢S and the global R is determined by taking the minimum over
all the R .'s, as the number of input-output pairs, or N, approaches infinity, and the occurrence of x;
> y; becomes adequate to cover the range of the relational matrix, and:
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N N
Lim JR, = Lim[\ R, (7.46)

An equally importance factor, which guarantees the equality of equation (7.46), is that for a
series of data pairs, the calculation of each k-th minimum is a function of the maximum inverse for

the series of V data pairs, (i.e. the global ﬁ). The calculation of R is illustrated in Example 1 of
Sessa [1984].

Now consider the global picture, that is the union or maximum, over all N data pairs, for R "

RY and R ¢ and the intersection or minimum for R ¢ Since the global value of R bounds the

values of R . the global R is bounded, and therefore the order of the global form of these matrices
changes from that given by equation (7.44). Based on the results of equation (7.46), clearly

— N & )
ULR.< o Re (1.47)

k=1

. _ . N 5 .
Since there is no limit on the maximum values of U -, R »» other than the maximum of 1 place on

the fuzzy domain, these values, for large N, can exceed ﬂ:;l R SO the ordering of the global
matrices is:

N5 N
e S U Res U RY (7.48)

C
7=
ad
n
D)
n E4
=

and

<)
A
>
IN
@
‘2

(7.49)

The theoretical development, made thus far, is based on a series of equations with exact

. N & . .
solutions. Thus [ | _ R , still represents the maximum value for the series so that the actual

matrix, R, can be positioned such that R < ﬂ:; R  and equation (7.48) as can be expanded as
follows:

Rc ULIE = ﬂllﬁ = Ullﬁk < Uf:; R (1.50)

and ySysysysyM .51
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Clearly, U:;l RY and U:=1 R, are outside the range of valid R's, if ﬂ::l R, is considered

the true maximum, and as such will be unable to predict representative output values, y,. However,
the results of Baboshin ez al. [1990] extend to the unrestricted u, in that:

ySy<gM (7.52)
and ly— FI<iy—yMi (7.53)

Thus, the unrestricted estimate of the minimum relational matrix will ensure a minimum Hamming
distance compared to the Mamdani identification operation.

Now consider the calculations for estimation of the minimum and the maximum relational

matrices. According to equation (7.50), R < R<R , S0 by equation (7.51),y < # <y. Thus the
maximum relational matrix identification st.ould produce a Hamming distance smaller than either
the estimate of the minimum or the Mamdani identification.

This same analysis holds true for the max-product composition, except for the Mamdani

equivalent. From the definition of this operation, it is easy to see that for each k-th input-output
pair;

RY < R, (7.54)
However, no conclusion can be made between R and cither of R or R + As well, no conclusion
- N
can be made between ﬂ:v:l R, and Uk=l RY.

The analysis above has considered only input-output pairs. It can however be expanded to
the first order state space equation. The following definitions describe the solution algorithms.

Definition 4:  The greatest fuzzy relation R € R such that
R = {Re UxXxVY |y = uex-R}# is given by:

R = (u+x)@y (1.55)
where * is min for max-min and product for max-product
and @ is defined for the max-min composition as:

» if U Ax;)>y,

7.56
1 otherwise (7.56)

fijz=(ui/\xj)ﬂ)’l={
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Definition 5:

Definition 6:

and for the max-product composition as:

y if x)>
Fa=w-xyay=1{/%:x;) -x;)>y,

1 otherwise

The union of all the smallest fuzzy relations R € R such that
R = {Re UxXxVY |y = uxR}#D is given by:

R = (w*x)Oy
where * is min for max-min and product for max-product
and (©) is defined for the max-min composition as:

Y, if (u,.ij)Zy,

ra=UAX) Gy =
it = (UAX) O Y1 {0 otherwise

and for the max-product composition as:

r Y if u-x.)
rijl-_-(ui 'xj)cyl= (u,"x]) ( (i j)—yl

0 otherwise

The Mamdani identification method for R € R such that
R = {Re UxXxY |y = uox-R}*#@ is given by:

RY =uxxxy

where X is defined for the max-min composition as:

R = minGu =1 i Ax)2Y,
" = (U, Ax;) otherwise
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and x is defined as the cartesian product for the max-product composition as:
ry =uxy for all i, jand / (7.63)

Definition 7:  The estimate of the minimum fuzzy relations R € R such that
R = {Re UxXxY |y = usx-R}#D is given by:

R = 0@y (7.64)
where * is min for max-min and product for max-product
and @ is defined for the max-min composition as:

P - Y if (U Ax;)=V(U AX;) T 6
rua=UNAx)cy= Y .
ijl ) O Y 0 otherwise ( )
and for the max-product composition as:
. - ) if W-x;)=v(u -x)
¥, = x)Sy =1/ x;) CTTNT T (7.66)
otherwise

With the addition of Proposition 1, the existence condition for a solution, it is clear that the
ordering of the identified matrices is the same as for the input-output pair case, for both max-min
and max-product. Again the Mamdani identification for the max-product case exhibits the same
problems in the first order state space domain as it did previously.

7.4 Literature Review of Identification Algorithms

As ameans of leading into the development of a new identification algorithm presented as
part of this thesis, this section reviews and compares seve, il current batch and on-line identification
algorithms that have been presented in the literature.

It appears to be customary in the fuzzy literature [Tong, 1980; Pedrycz, 1984(a); Xu et al.,
1987; Ridley et al., 1988; Sugeno et al., 1991; Shaw et al., 1992; Valente de Oliveira, 1993] to
test and compare ones algorithm with the Box-Jenkins gas furnace data [1970]. In keeping with
this precedent, the identification algorithms reviewed and the algorithm developed in this thesis are
tested using the Box-Jenkins [1970) data. The reviewed works are implemented to determine the
computational requirements of the algorithm and the fact that different referential fuzzy sets and
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different defuzzification techniques, used by the various authors, can substanuall* change the
output results. Thus the identification results based on these alge ithms can be compared using the
same basis.

7.4.1 The Comparison Basis

The Box-Jenkins gas furnace data [1970] consists of 296 pairs of input-output
measurements. The input, u,, is the gas flow rate into the furnace and the output, y,, is the CO,
concentration in the outlet gas. The sampling interval is 9 seconds.

Since the Box-Jenkins gas fumace data [1970] is discrete, it must be fuzzified. This requires
the partitioning of the input and output space such that the complete space is covered. Since
partitioning of the data is subjective [Pedrycz, 1983; Xu ez al., 1987}, the 296 input-output data
points were plotted and the data fit to a line in a least squares sense. From the plot a one-to-one
mapping was determined based on this line of best fit. Subjectively, p = 5 referential fuzzy sets
were chosen for each of the input, state and output data, since a 53 (= 125) relational matrix
provided adequate definition of the data and is computationally expedient. The shape of the
referential fuzzy sets was chosen to be isosceles triangles, which are easy to work with and which
satisfy entropy equalization criteria [Pedrycz, 1994] as well as the requirements of being normal
and convex. These fuzzy membership functions were distributed over the input-output space, via
the blocks illustrated in Figure 7.1, so that the space was completely covered and the referential
sets had a 50% overlap, which produces a zero value reconstruction error [Pedrycz, 1994). The
final input and output fuzzy referential sets are shown in Figure 7.2, (a) and (b), respectively.

The defuz:ification formulation was chosen to be the weighted average center of area method
because it uses all the information in the fuzzy output vector, and other than the fact that this
defuzzification formula involves a division, and is therefore non-linear, its is one the simplest
computationally.

== (7.67)

where y is the defuzzified output

C; is the center of area of the i-th reference fuzzy set

p;  isthe degree of membership in the i-th reference fuzzy set

The fuzzy solutions will be compared by calculating the average deviation per point, shown
in equation (7.12), while defuzzified solutions will be compared using equation (7.13), both for g =
1or2,
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N q
S Sv,-5,

k=t+2 !
= 7.12
L, N-1-1 7.12)
i
ly -y 19
k k
J, = e 7.13
7 N-1-1 (7.13)

where § and ¥ are the fuzy and non-fuzzy (or discrete) output estimates, respectively.

The time delay is chose:* i0 be T = 3 for both max-min and max-product identifications as
per previous work [Pedrycz, 1234(a); Xu et al., 1987; Shaw et al. 1992]. This choice is contrary
to some evidence [Pedrycz, 1984(a)) that T = 2 may improve the max-product solution, but
consistency between the max-min and max-product composition is preferred for comparison
between the two operations.

To fully analyze the capability of relational matrix identification methodologies, the
relational matrices are cross identified. That is, a matrix identification by product formulation is
applied o the max-min composition and conversely, a matrix identified by minimum is applied to
the max-product composition. This cross application also prevents the formation of rigid lines
separating the identification of the two compositions, such as, product only with max-product and
min only with max-min. The identification algorithm by Shaw et al. [1992] applies such a ct sss
identification with improved results.

Normalization of the relational mar-ix is also considered as a method of improving the model
results. A normalized relational matrix is calculated as follows.

Dn _ ﬁ; (u;,x-,)’)
Rl (ul’xl’y) - / %‘ax(ﬁ, (Il‘,xl,y)) . (7'68)

foreachi={1,2,...,m}andj= {1, 2, ..., n}. Anadded feature of a normalized matrix is that if
there has been sufficient leaming of the relational matrix such that:

Zﬁ(u.,xj,yl) 2€ (7.69)
l [

for all i and j and an arbitrary O < € < 1, then normalization of the matrix ensures a complete
matrix, since each ; and x; can determine a y,.
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The Box-Jenkins output data ranges in value from 45.6 to 60.5 %CO,, with an expected
value of 53.5 %. Therefore a value of J, <0.5 would translate approximately to an average error
of 1.3 %. From a process control point of view J, < 0.5 would be considered a good result. As the
ultimate comparative reference, the Box-Jenkins {1970] non-fuzzy, linear, time-series model, has
a value of J, = 0.202, when applied on-line using six predictor variables [Sugeno et al., 1991], and
a value of J, = 0.71, when applied in batch [Xu et al., 1987]. Since J, is the discrete performance
index used in papers that publi V. . value for a performance index [Tong, 1980; Pedrycz,
1984(a); Xu et al., 1987; Ridley ¢1 .2/.. 1988; Sugeno et al., 1991], it will be the index used here to
Jjudge the quality of the /">~rete (v ricr snce of the various identification procedures.

Figure 7.1: Input-Output Data Mapping
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Figure 7.2: Referential Fuzzy Sets;

(a) Input Fuzzy Sets;
(b) Output Fuzzy Sets
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7.4.2 The Identification Algorithrs by ""i%alq ¢f 2l [1984]

The batch identification algorithm proposed by DiNola et al. [ 1984 is based on the inverse
operation provided by Sanchez [1976].

N
R = n (RO A (7.18)
k=t+2
where * is product for the max-product composition

and min for the max-min composition.

and ® s the W-compositiv.. for max-product composition
and the a-composition for max-min composition

defined as:

Definition 8:  Foraand b € [0.1], the W-composition is defined as:

) 1 if a<b .0 a=b=0
avy b= : ) (7.70)
bla if uzb
Definition 9:  Foraand b € (0.1]. the a-composition is defined as:
1 if a<b
aob= . (1.7Y)
b if a=2b

As noted in Section 7.3.2 there are two data inconsistencies that effect the solution when this
equation is used. First, an exact solution does not exist if the data triples do not satisfy the
condition of existence of a solution, and second, the inizrsection of valid solution sets may be empty
{Pedrycz, 1990].

When the 296 data points of the Box-Jenkins data [1970], were tested for inconsistent data
defined by equation (7.16), the condition for existence of a solution excluded 38 peints for the max-
product composition and 93 points for the max-min composition.

To address the problem of a solution existing for each instant of data, but the intersection of
all solutions resulting in a empty solution, the following data screening algorithm was employed in
conjunction with the model identification. The objective of the data screening was to prevent the
identification algorithm from minimizing the relational matrices to an incomplete solution.
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Define:

R, = , :rjz (et * X)) (1.72)
Calculate:

R(u. %,y) = (Urc 1 *x.))@y, (1.73)

R/ xy)=RNR,, (7.74)

Equation (7.74) must be tested to ensure model completeness before it can be redefined as i?k.

Model completeness is determined by summing the R;' (u, x, y) along the y axis.

R/, x)= Zil['(u, xy) (7.75)

!

If any position of the R} (u, x) matrix is zero, then the model will become incomplete if it is

intersected or minimized with the new entry, i(,: (u, x, y). For some small € = 0, the data selection
algorithm can be summarized:

If min (min (R (4, x))) > €

Testing with this algorithm resulted in the rejection of an additional 6 points for the max-
product composition and 43 points for the max-min composition.

Eliminating inconsistent data anc testing for an incomplete solution results in a poor solution
with J, = 1.078 for the max-product composition and J, = 1.775 for the max-min composition,
shown in Figure 7.3. When the DiNola et al. [1984] algorithm was tested only for an incomplete
relational matrix, the prediction improved, with J, = 0.9668 for the max-product composition and
J, = 1.222 for the max-min composition, shown in Figure 7.4. It should be noted that without
testing for an incomplete relational matrix, the prediction from the relational matrix was unable to
track the data.
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Using all the inconsistent data points is considered a brute force method of identification
[Pedrycz, 1987]. However, intuitively it would seem that it is better to use all the data since the
relational model must leamn both process information and disturbances.

65 2 , . . — :

65 (b) T T 1 T

t———>

Figure 7.3: Batch ID for DiNola et al. [1984] Algorithm with Inconsistent Data and Zero Solution
Adjustments;
(a) Max-Product: R(prod; reject (i) & (ii)), J, = 0.7828; J, = 1.0780; 0, = 0.5804; 0, = 0.2427;
(b) Max-Min: R(min; reject (i) & (i), J, = 1.038; J, = 1.7750; Q, = 0.8752; Q, = 0.5361;
( Actual; - — — ~ Model)
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Figure 7.4: Batch ID for DiNola et al. [1984] Algorithm with Zero Solution Adjustment only;
(a) Max-Product: R(prod; reject (i), J, = 0.7321; J, =0.9668; Q, = 0.6176; 0, =0.2647;
(b) Max-Min: R(min; reject (ii), J, = 0.8522; J, = 1.2220; 0, = 0.8766; Q, = 0.5369;
¢ Actual; — — — — Model)
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7.4.3 The Identification Algorithm by Pedrycz [1984(a)]

Pedrycz [1984(a)] presented a rather simple yet effective batch identification technique. For
the first order delay process the fuzzy relational matrix, R, was calculated: by

N
R = U Uy XX, XY, (71.76)
k=142
where X = product for max-product composition
X =min for max-min composition

The published results [1984(a)] for this algorithm for both a max-min and a max-product

composition using the Box-Jenkins gas furnace data [1970] showed that forn=m =5 (R = 125
points) and T = 2, that the max-product composition was preferred with J,=0.776. Increasing n
and m decreased J, as follows; forn=m=7, J,=0.478 (R =343 points) and for n=m =9, J,
=0.320(R = 729). Increasing n and m results in an exponential increase in the size of R, as well

as processing time.  1'hus other methods of identification, as will be shown, should be considered
before increasing une number of referential fuzzy sets in order to improve the solution.

Testing this algorithm with the referential sets as defined in Figure 7.2 show that forn=m =
5and 1 = 3, J, = 0.5450 for max-product and J, = 0.6378 for max-min. Comparing this J, value
for the max-product composition with that by Pedrycz [1984(a)) show that a simple change in the
referential fuzzy sets resulted in an improved solution.

The cross application of the identification showed an imprcvement for max-min composition
only (J, = 0.4993). No improvement in solution resulted for the mex-product case (J, = 0.5947).

Now considering only the product generated relational matrices. Both output results
improved if the relational matrices were normalized. By definition, the product operation produces
results that are smaller than the min operation. Normalizing the relational matrix identified by
product increases the values of the relational matrix which repeated leaming has reduced.
Predictions by these normalized relational matrices are also increased and offer an improved
prediction as is evident for this example and several of the other examples that will be shown later.
Thus for Pedrycz's [1984(a)] batch identification the best identification for both max-product (J, =
0.3787) and max-min (J, = 0.4484), shown in Figure 7.5, was from a R identified by product
formulation and then normalized. This same improvement is not evident for relational matrices

identified with the minimum. A listing of the performance results for this algorithm are provided in
the summary in Table 7.1.
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Author ID Method |Prediction J J, 0, 0,
[Pedrycz [1984(a)] Prod Max-prod § 0.5956 | 0.5450 | 0.5733 | 0.1558
Max-min_§ 0.5342 | 0.4993 | 0.6675 | 0.1603
R(non-normal) Min Max-prod § 0.6293 | 0.5947 | 0.7742 | 0.2135
Max-min_§ 0.5899 | 0.6378 | 1.1060 | 0.3978
[Pedrycz [1984(a)) Prod Max-prod § 04813 | 0.3787 | 0.5395 | 0.1248
| _Max-min_§ 0.5155 | 0.4484 | 0.7514 | 0.2031
R(normal) Min Max-prod | 0.5616 | 0.4796 | 0.7878 | 0.2186
Max-min_] 0.6096 | 0.6837 | 1.1890 | 0.4531

Table 7.1: Identification Results of Pedry~z [1984(a)] Algorithm
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Figure 7.5: Batch ID for Pedrycz [1984(a)] Algorithm;
(a) Max-Product: R(prod; normal), J, = 0.4813; J, = 0.3787; Q, = 0.5395; 0, = 0.1248;
(b) Max-Min: R(prod; normal), J, = 0.5155; J, = 0.4484; Q, = 0.7514; O, = 0.2031;
Actual; — — — — Model)
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7.4.4 The Identification Algorithm by Chen et al. [1994]

This section considers an on-line adaptation of the off-line identification algorithm by
Pedrycz [1984(a)]. The algorithm presented by Chen et al. [1994] possesses the ability to forget
old or invalid data. The methodology is simple, the old unwanted data is removed from the

aggregated relational matrix, R ,,,, by minimizing over the complement of the current
estimate,'ITk’ . At each sampling instant the algorithm leamns the relational matrix is as follows:

R, ={R,AR }VR/ (7.77)
where R, =u.nx, Ay, (7.78)
is an estimate based on the prediction y; ;.

Yea =wox,°R, (1.79)

is the predicted value based on the last estimate, R ,,
R, =1-R] (7.80)
is the complement,

and R =urx, Ay, (7.81)

is the current estimate based on the actual -th data triple.

The technique, as presented, does eliminate old data entries. The fo:getting does not effect
the whole matrix since only specific entries are discarded. However, the same technique used to
remove old and invalid data may also result in the loss of valid data.

The Chen et al. [1994] algorithm produced no improvement over the simpler methodology by
Pedrycz [1984(a)]. Almost all indices were higher for the algorithm proposed by Chen et al.
[1994], as shown in Table 7.2. This algorithm was also considered for a batch identification.
Again, there was virtually no improvement as compared to the original Pedrycz [1984(a))
algorithm. These batch results are also given in Table 7.2.

This technique of deleting old data was also incorporated into the DiNola et al. [1984)
algorithm, again with no improvement in results. As well, a modification of this algorithm was
made so that it only deleied data that would result in a 0 (zero) entry any position of the y, fuzzy
vector of the DiNola et al. [1984] algorithm, again with no improvement in results.
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In conclusion, «:» i.i»a to unlearn or forget unwanted results is good, however, the technique
that these authors pre:«+.. i. accomplish this goal does not, in general, appear to be effective.

Author ID Method [Prediction } J, J, 0, 0,
Pedrycz [1984(a)] Prod Max-prod | 0.6184 | 0.6141 | 0.5696 | 0.1689
Max-min_} 0.5545 | 0.5647 | 0.6340 | 0.1548

On-Line Min Max-prod ] 0.6320 | 0.6426 | 0.7373 | 0.2081
Max-min | 0.6070 | 0.6636 | 1.013 | 0.3465

WChen et al. [1994] Prod Max-prod ] 0.6416 | 0.6662 | 0.6613 | 0.2327
Max-min | 0.5730 | 0.5814 | 0.6735 | 0.1702

On-Line Min Max-prod | 0.6447 | 0.6661 | 0.8233 | 0.2685
Max-min | 0.6093 | 0.6668 | 1.0120 | 0.3363

Pedrycz [1984(a)] Prod Max-prod | 0.5956 | 0.5450 | 0.5733 | 0.1558
Max-min | 0.5342 | 04993 | 0.6675 | 0.1603 §

Batch Min Max-prod | 0.6293 | 0.5947 | 0.7742 | 0.2135
Max-min | 0.5899 | 0.6378 | 1.1060 | 0.3978

Chen et al. [1994) Prod Max-prod | 0.6065 | 0.5658 | 0.6818 | 0.2236
Max-min | 0.5422 | 0.5089 | 0.7991 | 0.1705

Batch Min Max-prod | 0.6522 | 0.6298 | 0.8873 | 0.2834
Max-min | 0.6030 | 0.6635 | 1.1150 | 0.3886

Table 7.2: Comparison of Identification Results by Pedrycz [1984(a)] and Chen ef al. [1994]

7.4.5 The Identificatior. Algorithm by Xu et al. [1987]

Xu et al. [1987] started with the same batch identification algorithm presented by Pedrycz
[1984(a)] and tested it on-line for both a max-min and a max-product composition with the Box-
Jenkins data [1970]. It is of interest to note that differences between the values of J, quoted in the
paper by Pedrycz's [ 1984(a)] (J, = 0.776 for max-product) and the paper by Xu et al. [1987] W, =
0.8501 for max-product) is a result of the different shape of the referential fuzzy sets used, since
both papers had the same number of referential fuzzy sets and defuzzified using the center of
gravity method.

By extending the batch algorithm of Pedrycz [1984(a)] to a self-leaming formulation these
authors attempt to overcome the main problem inherent in the identification algorithms proposed by
DiNola er al. [1984] (i.e. the minimization of the R,'s to determine the overall process R) and
Pedrycz [1984(a)], (i.e. the maximization of the R,'s ). This gross minimization or maximization
can leave the overall relational matrix unrecoverable if the process drifts, or if there are large
inconsistencies in the data which in effect minimizes or maximizes the R such that the matrix can
not recover. Since fuzzy models do not normally contain a disturbance term, the disturbance must
be modeled in the R matrix along with the process information. Discarding all inconsistent data
would result in discarding part of the process information. Therefore, an effective identification
algorithm must have the ability to recover from process drift and large data inconsistency which
could render the model ineffective.
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The largest obstacle in the analysis of this paper by Xu et al. [1987] is the unconventional
notation used to develop and express the algorithm. Chen et al. [1994] referenced this work by Xu
et al. [1787] but did not compare their algorithm against it for the stated reason that:

‘tiie formulas are not completely expressed and calculated in fuzzy scts, and this
makes it difficult to systematically analyze and develop the fuzzy model in fuzzy set
theory'.

This same difficulty was also encountered during the preparation of this work. A paper by Ridley
et al. [1988] reviewed the algorithm by Xu et al. [1987], however, the same unconventional
notation was used as in former paper. An attempt has been made in this thesis to interpret the work
by Xu et al. [1987] for comparative purposes, using a more conventional notation. Its i< this
interpretation that is presented below.

Xu et al. [1987] adapted the batch ID procedure to the on-line format by introducing a
tuning parameter, a,, which adjusts the speed of leaming so that the relational matrix is calculated
by the formula:

R (u,x,y) =aRux,y) +(1-a)R,_ (w.x,y) (7.82)
for I=(1,2,....,n)
where R =ul AXAY, (7.83)

is the current estimate of the actual &-th data triple

and W= > g, izl )
x* ={xlx>q, ,j=1.. .n}

are the a-cuts equivalents, or in this case the g-cuts of the contributing fuzzy input and state,
respectively. The values of the ¢,'s may or may not be unique.

When a, = 0, there is no modification, when g, = 1, the relational matrix is completely
replaced. So selecting a value for a involves a tradeoff between the rate of leaming and the
sensitivity to noise. A large value of g, will result in a faster learning rate, however, the model will
be more easily affected by noise and disturbances. A smaller a, will reduce the effect of noise on
the model, but it will also result in a slower leaming rate.
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The autho.s [Xu ez al., 1987] determined a, based on two factors:

() the amplitude of the non-fuzzy error:

leg = Iy~ (7.84)

where ¥, is the defuzzificationof:  §,=uf_ o x!* o R,

Thus a large error will contribute to a large a,, and a,= 0 if le,| = 0.

(i)  the relative contribution, b,, of each of the n rules (i.e. y, forl=1, ..., n)
of R, to y,

where Jiy=ul _°x**R,,

So that if /-th slice of the matrix R, (i.e. R _(wx,3))

contributes more to y, it will undergo more of a modification due to a larger a,.

So a, is defined as:

a,=hblel (7.85)
b, is calculated as:

b=173,1 (7.86)
and A is a constant used to control the range of g, and all are calculated for /=1, , ..., n

The entire algorithm can be summarized as:

if le) <e¢

then Rk =R

k-1
else R (u,x,y) =aR(u,x,y) +(1-a)R _ (u,x,y)

forl=(1,2,....,n)
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As will be discussed in Chapter 8, many of the minimization criteria used in the optimization
of fuzzy systems are based on the following fuzzy difference, [Pedrycz 1983; Pedrycz 1991(b);
Ikoma et al. 1993; Valente de Oliveira 1993):

Y Gi-wy (7.87)

I=1

There are some problems with minimizations based on this fuzzy criterion, when the actual
criterion for good identification is based on the discrete difference:

(y -y¥ (7.88)

The algorithm by Xu er al. [1987] is based on the discrete difference which is a practical
contribution from a control perspective.

Xu et al. [1987] report a decrease in the value of J, from 0.4555, in a batch algorithm based
on Pedrycz [1984(a)] to 0.328 for their on-line algorithm. However, to achieve this value of J,=
0.328, the same Box-Jenkins [1970] data was processed through the identification algorithm at
least 3 times, once using the Pedrycz's [1984(a)] algorithm and twice using their algorithm in batch.
Although, this reduction in J,, illustrated in Figure 7.2 of their paper, demonstrates the ability of
the algorithm to improve a relational matrix by leaming, the opportunity to leam a set of data
several times and then predict using the same data is seldom available in practical applications.
Even the practice of predicting on the same data that was used during identification, and used here
with these comparisons, is currently finding less favor in the realms of fuzzy identification [Shaw er
al., 1992}, as well as in the realms of discrete identification.

The results from the application of the interpreted Xu et al. [1987] algorithm to the Box-
Jenkins data [1970] both for batch and on-line approaches are listed in Table 7.3. Clearly, the
interpretation of the work by Xu et al. [1987], which produced a J,=0.6308, did not produce the
expected results expected since any improvement in J, can be attributed entirely to the g-cuts of the
original batch leaming. Thus it appears that the interpretation of this work is in error.
Consequently the dissemination of information anticipated by the publication of the paper by Xu er
al. [1987] has not been achieved since the algorithm could not be reproduced from the information
provided.
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Author ID Method |Prediction | J, J, 0, 0,

Xu er al. [1987] Prod ¢=0.225] Mux-prod ] 0.6247 ]| 0.6301 | 0.5438 | 0.1786
h=0.05,e=1.0§ Max-min_|] 0.5189 | 0.4696 | 0.5112 | 0.1305

On-Line Min ¢=03 | Max-prod ] 0.6240 | 0.5641 ] 0.7401 | 0.2242
h=0.03;e=1.0 } Max-min ] 0.6249 | 0.6021 | 0.9766 | 0.3746

Xu et al. [1987] Prod Max-prod { 0.5337 | 0.5076 | 0.5164 | 0.1503
| q=0225 Max-min_} 0.5023 | 0.4717 | 0.5429 | 0.1396

Batch Min Max-prod ] 0.6345 | 0.5749 | 0.7091 | 0.2065

q=0.3 Max-min_} 0.6425 { 0.6308 | 0.9669 | 0.3737

Table 7.3: Resuits of Xu et al. [1987] Identification Algorithm

7.4.6 The Identification Algorithm by Shaw et al. {1992]

Shaw ez al. [1992] propose a weighted average fuzzy relational identification algorithm for
determining R. Their algorithm is based on a first order discrete-time model which utilizes a
moving average window after the initial identification priming and is therefore considered self-
leaming. The moving average window introduces a bandpass characteristic into the identifier so
that non-stationary effects present in the data can be rejected. Although their approach provides
smooth averaging of the information, the idea of a windowed approach in a fuzzy system may be
ill-advised due to the problem of model completeness. The procedure estimates the relational
matrix, R, as follows:

N
(k-1~1) (k-1) (k)

2 II(“.' X W)
k=142 1<4Sm
1sj<r
1sigp

Ry Xt ) = (7.89)

ENZ H (u‘_(k-t—l) ’x;k—l))

k=t+21Sism
1$jsn

The procedure in the paper by Shaw ez al. [1992] is to combine the data with a product
operation for the max-min composition. No values of J, for this algorithm are directly quoted in
the paper by Shaw er al. [1992]. However, an earlier publication by Ridley et al. [1988], involving
the same procedure as Shaw et al. (1992}, quotes a value of J, = 0.239 for the max-min
composition.

Verification of this work for a batch product identification resulted in J, = .3923, for a max-
product composition and J, = .3640, for the max-min composition. When the leamed relational
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matrix, R , was nommalized for this identification, the max-product composition results improved to
J, = 3545, and the max-min results only deteriorated slightly to J,=.3683.

The batch computations were repeated using a min formulation, as shown in equation (7.90).
The max-product prediction result improved to J,=.3589 and the max-min compositicn resuited in
a poorer prediction with J, = .4650.

N

2 H( A (ui(k-c-l),x;k—l)),y,(k))

k=1421<i<n 1Sism
1S jsn

N (7.90)
k-t-1 k-1)
2 AW LX)

k=142 1Sism
1S jsn

R (Brr1s Xep, Y1) =

Since the paper by Shaw et al. [1992" deals specifically in a max-min environment it is clear why
the product operation was chosen for their identification algorithm since it produced the superior
results. A summary of the batch results for the Shaw ez al. (1992] identification algorithm are
listed in Table 7.4.

The moving average window for on-line identification, presented by Shaw er al. [1992] is
calculated as follows:

k
Z H(ui(r T 1)’xy l)’y'(:))
1=k-W 1Sism
1S jsn

1sisn

R e, 300, y) = (7.91)

i H (ui(l—r—l) ,xj(.l—l))

1=k-W 1SiSm
1sjsn

where the width of the moving average window is W.
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Figure 7.6: Batch ID for Shaw et al. [1992] Algorithm;
(a) Max-Product: R(prod; normal), J, = 0.4473; J, = 0.3545; Q, = 0.4602; Q, = 0.1098;
(b) Max-Min: R(prod; non-normal), J, = 0.4390; J, = 0.3640; Q, = 0.4988; 0, = 0.1021;
¢ Actual; - ~ — — Mode})
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Author ID Method |Prediction | J, J, 0, 0,
Shaw et al. [1992] Prod Max-prod_§ 0.4959 | 0.3923 | 0.5549 | 0.1780
Max-min_} 04390 | 0.3640 | 0.4988 | 0.1021
R(non-normal) Min Max-prod | 0.4678 | 0.3589 | 0.5000 | 0.1189
Max-min_§ 04844 | 04650 | 0.6522 | 0.1641
Shaw et al. [1992] Prod Max-prod | 0.4473 | 0.3545 | 0.4602 | 0.1098
i Max-min_| 0.4308 | 0.3683 | 0.5747 | 0.1388
R(rormal) Min Max-prod | 04584 | 0.3547 | 0.5076 | 0.1202
Max-min ] 0.4911 { 04768 | 0.6820 | 0.1797

Table 7.4: Batch Identification Results by Shaw ef al. [1992] Algorithm

As mentioned previously, the mov ing average window approach is not well suited to
relational matrix leaming, since one can i *: guarantee that the relational matrix can be totally
leamed and remain in that state in the windcw specified. Windowing the learning, as outlined by
Shaw et al. [1992], can render the relational matrix incomplete and present serious stability issues
in a control application.

The continued summation of the input-output data required for this averaging procedure
provides the algorithm with a robustness to disturbances, which on the other hand could render the
algorithm slow to respond to process changes. A method to overcome the slow response inherent in
this identification system will be presented in the next section.

7.5 Proposed Identification Algorithm
7.5.1 The Basic Algorithm

The development of this new on-line identification procedure begins with the inverse
algorithm presented by DiNola et al. [1984]. As observed when comparing the results of the
identification methods of DiNola et a/. [1984] and Pedrycz [1984(a)), solving a system of fuzzy

relation equations by aggregating the solutions of the individual equations (i.e. R = Ne. R £)
may produce poor results if the relevant existence conditions are violated and ignored. Chen et al.
[1994] attempted to improve the solution by unleaming or deleting old and presumably invalid
results. However, as shown previously, the methodology presented did not improve the solution for
the Box-Jenkins [1970] data tested. Xu ez al. {1987] proposed a gradual leamning with a forgetting
factor, which appears to produce the desired results of a improved solution, however the results
could not be duplicated. Shaw et al. [1992] improved the solution by summing the individual
solutions and then determining a weighted average. This last algorithm has the distinct advantage
of not requiring any tuning. A new identification algorithm is developed by combining the
techniques of DiNola ez al. [1984] and Shaw et a!. [1992] .
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For this new identification algorithm the relational matrix, R , leams by making the
following adaptations to the algorithm by Shaw er al. [1992], equation (7.89):

N

(k=t-1) _(k-1) )

$ (a1 9. st
k=142 ISism Slsn

1<j%n

Ruuper %y = (7.92)

2: Il k k
1 -1
(U‘»( ' ),x; ))

k=t+21Sism
1sjsn

where @ is the minimum inverse operation for the max-product composition defined as follows.

Definition 10: For a and b € [0.1], the 8-composition is defined as:

0 if a<b or a=b=0
b= 7.93
a9 {b/a if axb (7.9%)

This identificatiun algorithm can also be applied to the max-min composition by making the
appropriate modifications to equation (7.92) as shown (i.e. A for I, and & for 8) so that:

N
2 ( (U(k_t_“,x(-k_“) G y(k))
=, ,S{}m ! / 1sisn !

tsssn N (7.94)
(k-t=1) (k-1
A (u; s X )
k=42 1SiSm

1S/<n

R (Upcs Xep o Yo) =

where o is the inverse operation for the max-min composition with the following definition.

Definition 11: For a and b € (0,1}, the 6-composition is defined as:

0 ] <b
{ i a (7.95)

b if a2b

Cross identification for the algorithm consists of exchanging the product and min operations
between the 4 and x fuzzy vectors only, not the inverse operations.
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The results of a batch identification, provided in Table 7.5, applying this algorithm to the
Box-Jenkins data [1970] shows that the J, values for all batch identifications decreased, for the
unadjusted R, versus the Shaw et al. [1992] algorithm. Graphical results are shown in Figure 7.7.
However, normalization did not result in the same solution improvement as with the previous
algorithm. This is due to the matrix check which this algorithm performs to ensure that the values
of the estimated relational matrix remain in the unit interval. As a result the relational matrix
remains close to normal at all times. So even though normalization of the relational matrix does
not result in an improved solution as noted with the other algorithms, it does not result in a
substantial degradation of the solution either.

The proposed fuzzy relational matrix identification algorithm was also tested on-line. The
results of the on-line learning for this new algorithm, provided in Table 7.6, when compared
against the algorithm by Shaw er al. [1992] show that the proposed algorithm is consistently better
for the max-product composition, under either identification. Results for max-min composition are
comparable, with the values of J, slightly higher for the new proposal.

The problem with the data averaging that takes place under the proposed identification
system and similarly the algorithm by Shaw et al. [1992], is that if the system is changing quickly,
the averaging operation makes the identification algorithm slow to react. Restarting the
identi “~tion from scratch is not a viable altemative as valid information may be lost. A
comprouuse between these two extremes is to reset the matrix. This on-line adaptive approach is
presented in the next section.

Author ID Method {Prediction J, J, 0, o,
Shaw ez al. [1992] Prod Max-prod | 0.4959 | 0.3923 | 0.5549 | 0.1780
Max-min_ ] 0.4390 | 0.3640 | 0.4988 | 0.1021
Batch Min Max-prod | 04678 | 0.3589 | 0.5000 | 0.1189
Max-min | 0.4844 | 0.4650 | 0.6522 | 0.1641
New Proposal Prod Max-prod § 04732 | 0.3826 | 0.5314 | 0.1243
Max-min_} 0.4433 | 0.3640 | 0.4878 | 0.1005
Batch Min Max-prod { 0.4301 | 0.3359 | 0.4557 | 0.0993
Max-min_} 04535 | 04127 | 0.4911 | 0.1017

Table 7.5: Comparison of Shaw et al. [1992] and New Proposal Batch Identification Techniques
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Figure 7.7: Batch ID for New Proposal Identification Algorithm;
(a) Max-Product: R(min; non-normal), J, = 0.4301; J, = 0.3359; O, = 0.4557; @, = 0.0993;
(b) Max-Min: R(prod; non-normal), J, = 0.4433; J, = 0.3640; Q, = 0.4878; 0, = 0.1005;
( Actual; — -~ — — Model)




Author ID Method [Prediction J, J, 0, 0,
Shaw et al. [1992] Prod Max-prod § 0.5784 | 0.5495 | 0.5663 | 0.1871
Max-min_§ 0.5067 | 0.4748 | 0.5300 | 0.1193
On-Line Min Max-prod | 0.5596 | 0.4970 | 0.5205 | 0.1309
Max-min | 0.5392 | 0.5246 | 0.6741 { 0.1803
New Proposal Prod Max-prod § 0.5373 | 0.4674 | 0.5518 | 0.1370
Max-min _§ 04649 | 04114 | 0.5132 | 0.1160
On-Line Min Max-prod | 05493 | 0.5142 | 0.5173 | 0.1263
Max-min ] 0.5147 | 0.5105 | 0.5233 | G.1189

Table 7.6: Comparison of Shaw et al. [1992] and New Proposal On-Line Identification Algorithms

7.5.2 Matrix Completeness and Matrix Reset

The basic on-line learning algorithm used in both the proposed aigorithm and the algorithm
by Shaw et al. [1992] is outlined as follows:

Using the proposed new max-product identification formulation, at any instant ¢, the
relational matrix, R ,, is calculated:

Rden,= Rden,, + [ (", x4™) (7.96)
1Sism
1Sjsn
Rnum,= R num,, + Rden v y (7.97)
- _ Rnum / '
R.,= A den, (7.98)

fort=1+2, ..., N. As N increases the values of I?den, and R num, increase such that new input-
output data containing information of a recent process change would have little effect on the
calculated value of R, Thus amethod to reset the matrix is required such that the information
contained in the overall relational matrix, R » is preserved, yet the cumulative values of R den, and

R num, are reduced so that the model can respond more quickly to process changes. Such
Sforgetting of old data is common in discrete identification.



Analyzing the affect of normalization for the various identification algorithms, summarized
in Table 7.7, normalization of the relational matrix generally improves the solution, with only a
small degradation for those solutions without improvement. Another benefit of normalization is
that if there has been sufficient leaming of the relational matrix such that:

Zé(u,,x,yl) e forall i and j (7.99)
] £
for an arbitrary 0 < € < 1, then normalization of the matrix ensures a complete matrix, since each
u; and x; can determine a y,.

The methodology for resetting the identification matrix consists of normalizing the current
R, and then reassigning the values of R den. and R num, such that they are consistent with the
normalized R, The reset algorithm is as follows.

Let R,"(ui,x,»,y)=R‘ (u"x’"’%x(ﬁl .%,)) foreachi= {1,2,....m}andj={I,

2, ..., n} be the normalized relational matrix. Then:

(1) R, (u,x,y)=R'(u,x,y) (7.100)
(2) Rnumu.x.y)=R (u,x,y) (7.101)
(3) Rden(u,x.y) =1l (7.102)

The values of R den, and R num, have been reset to values in the unit interval. Any new input-

output data added to these matrices will now have a larger impact of the calculation of R . The
following example illustrates this feature.

Example 1:

A relational matrix, R, was identificd in batch using the averaging algorithm of equation
(7.89) and 12,000 points of data generated from an arbitrary process, P,. The process was
changed to P,, and identification continued on-line. Relational matrix R,, continued leaming with
the information from R,. Relation matrix R,, was reset from the information contained in R, so
that learning was continued with the reset matrix. As shown in Figure 7.8(a), predictions from the
reset mairix were better and responded more quickly than for the unreset matrix. Figure 7.8(b)
graphs the J, values for the predictions from each of tiiz reset and unreset matrices.

Since predictions from normalized matrices for the averaging algorithm do not deteriorate
from those of the unadjusted matrices, resetting or normalizing a matrix to reduce the quantity of
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matrix is complete prior to matrix resetting, resetting the matrix does not change that status, an
important consideration for fuzzy control.

Ba tch On- Line
R(un- R R(@un- R
adjusted) | (normal) | adjusted) | (normal)

Author ID OSA J, J, J, I,
edrycz {1984(a)] | P:od | Max-prod | 0.5450 | 0.3787 [ 0.6141 0.4590
Max-min 0.4993 | 04484 | 0.5647 0.4499
Min | Max-prod | 0.5947 0.4796 0.6426 0.5602
Max-min |} 0.6378 | 0.6837 0.6636 0.6704
Chen et al. [1994)} Prod | Max-prod § 0.5658 0.4190 0.6662 0.5409
Max-min 0.5089 | 04896 | 0.5814 0.5455
Min | Max-prod | 0.6298 0.5937 0.6661 0.6318
Max-min 0.6635 0.7882 | 0.6668 0.7433
Xu et ai. [1987] Prod | Max-prod | 0.5076 | 0.4339 | 0.6301 0.5014
Max-min 04717 | 0.4957 0.4696 0.6174
Min )} Max-prod | 0.5749 | 04629 ] 0.5641 0.4957
Max-min | 0.6308 0.6745 0.6021 0.6532
Shaw eral. [1992]] Prod | Max-prod § 0.3923 0.3545 0.5495 0.5126
Max-min | 0.3640 | 0.3683 0.4748 0.4827
Min | Max-prod | 0.3589 | 0.3547 | 0.4970 0.4942
Max-min 04650 | 0.4768 0.5246 0.5361
New Proposal Prod § Max-prod | 0.3826 0.3835 04674 0.4684
Max-min 0.3640 | 0.4128 04114 0.4528
Min | Max-prod | 0.3359 | 0.3681 0.5142 | 0.5219
Max-min 0.4127 04972 | 0.5105 0.5888

Table 7.7: Comparison of J, for R(unadjusted) and R(normalized)
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Figure 7.8: Comparison of Predict’:as with and without Matrix Reset

(a) Discrete output, y; y(actual) —— ; y(with reset) — — — —; y(without reset) — - — - —

(b) Performance Index, J,; J,(with reset)

0.0097 — - — - —

0.0062 — — — —; J,(without reset)



7.6 Summary of Identification Algorithms Presented

The identification algorithms reviewed in this section provide a wide range of identification
possibilities. Some conclusions regarding the identification algorithms tested are now provided. It
should be noted that these conclusions do not include the results from the Xu et al. [1987)
algorithm since it did not produce the expected results.

Identification Strategies

(1) The max-min composition predicts better when identified with a product operator.

(2) The max-product composition: predicts berter with a product operator for
Pedrycz [1984(a)] based identifications and berter with a min operator for the
averaging procedures such as Shaw et al. [1992] and the New Proposed Algorithm.

Normalization of the Relational Matrix

Normalization of the relational matrix improved the predictive results except in the following
cases:

(1)  Normalizing relational matrices, identified with an inverse operation, does not
improve the predictive solution (i.e. the New Propusal).

(2) Normalization does not improve a max-min composition predictive solution when the
relational matrix is identified with a min operator.

Best Predictive Results

(1)  Batch Unadjusted

. Max-min prediction with a product identification for Pedrycz [1984(a)] based
algorithms

. Max-prod prediction with a min identification for averaging algorithms
(i.e. Shaw et al. [1992] and the New Proposal)

(2) Batch Normalized

. Max-product prediction with a product identification for Pedrycz [1984(a))
based algorithms

o Max-prodct prediction with a min identification for averaging algorithms
(i.e. Shaw ez al. [1992] and New Proposal)



(3) On-Line Unadjusted

. Max-min prediction with a product identification.

(4) On-Line Normalized

. Max-min prediction with a product identification.

Of these results the most significant are the improved prediction results from cross

identification, and, the improved results from matrix normalization. Cross identification permits a
wider range of learning capability for relational matrices. Matrix normalization can be used with
batch or on-line identifications as a method of sensitizing the relational matrix to process changes.

The strengths and weakness of the various identification algorithms have been discussed in
the preceding sections, and will not be reiterated here. However, the algorithms can be ranked,
based on the J, criterion. The algorithms are ranked by averaging the J, values for each author,
after discarding the highest J, value. Table 7.8 shows the new proposed algorithm is ranked the

best of the algorithms tested, with the Shaw et al. [1992] algorithm a very close second.

Ba tch On- Line

Author R(un- R R(un- R Overall
adjusted) | (normal) | adjusted) | (normal) | Rank

New Proposal 1 2 1 1 1
(0.3608) | (0.3881) | (0.4631) | (0.4477)

Shaw et al. {1992] 2 1 2 3 2
(0.3717) | (0.3592) | (0.4988) | (0.4965)

Pedrycz [1984(a)] 4 3 4 2 3
(0.5463) | (0.4356) | (0.6071) | (0.4897)

Xu er al. [1987] 3 4 3 4 4
(0.5181) | (0.4642) | (0.5453) | (0.5382)

IChen et al. [1994] 5 5 5 5 5
(0.5682) | (0.5008) § (0.6379) { (0.5727)

Table 7.8: Identification Algorithm Ranking Based on J,Criterion




It should be pointed out that the results from this work are dependent upon the Box-Jenkins
{1970] data used in the evaluations. Being able to rank these algorithm using the same data,
fuzzification, defuzzification and referential fuzzy sets provides a basis for judging their relative
capability. However, the ranking of these identification algorithms is not absolute, and only
reflects their relative capability for the data tested. Another set of data would, in all likelihood,
produce a different ranking. But then again, an algorithm that produced poor predictive results
with this data would most likely produce poor results with other data, and vice versa. Tables A3.1
to A3.4 of Appendix 3 summarize all the results from the test cases presented in this Chapter.

7.7 Summary

The literature review of Chapter 7 involves the evaluation, implementation and comparison
of several identification algorithms [Pedrycz, 1984; DiNola er al., 1984; Xu er al., 1987; Shaw ez
al., 1992; Chen et al., 1994] using the same fuzzification and defuzzification methods, the same
reference fuzzy sets and the Box-Jenkins [1970] gas fumnace data [Bourke e al. 1995(b)]. This
review is important in that it confirms the validity and ranks the relative ability of each of the
algorithms tested.

Based on the identification techniques described by DiNola et al. [1984] and Shaw er al.
[{1992] a new identification algorithm is developed. The new algorithm uses the averaging
technique, as described by Shaw et al. [1992], to determine the overall relation matrix R from the
individual inverses calculated from a series of input-output data. The predictive results from this
new algorithm are better than the other identification algorithms tested in this Chapter.

The new identification algorithm developed in this thesis is based on a batch leaming
technique. However, this new technique can be applied on-line, as well as the algorithm by Shaw et
al. [1992], by using a matrix resetting mechanism developed in this thesis. The resetting technique
maintains model completeness while increasing the speed at which leaming can be performed, both
important features for fuzzy identification systems.

The research into the development of the new identification algorithm, presented in Chapter
7, resulted in several other notable contributions.

(1) The necessary and sufficient condition for the existence of a solution to the first-order
state space representation (i.e. p = 1) for input-output data triples for both max-min
and max-product composition

This condition is key to the efficient on-line determination for the existence an exact solution
in a control setting. The altemative is to determine the actual inverse and then apply the inverse
result to the original equation to determine if the equation is satisfied or not. If the original
equation is not satisfied, then an exact solution does not exist.



(2) Extension of estimate of the minimum relational matrix to include:

- non-normal input data [Bourke et al., 1995(a)]
- the first process model representation
- the max-product composition

(3)  Ordering of the relational matrix identification for the max-min composition
[Bourke et al., 1995(a)}:
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and for the max-product composition:
N N -~ N =~
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so that YSy<y<y

On-line identification requires an algorithm which can be completed within the sampling
interval of the given process. Identification of relational matrices through a procedure that
estimates, assumes that the results are comparable to an exact procedure. The estimation theory
presented by Baboshin et al. [1990] is analyzed in detail with the theoretical extensions as outline
in point (2), above. The analysis and ordering of the variously identified relational matrices, as
shown in point (3) above, are independent of the data used and are therefore representative of the
capability of the estimation algorithms used.
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CHAPTER 8 MINIMIZATION ALGORITHMS FOR
FUZZY PERFORMANCE OBJECTIVES !

Since fuzzy systems are by their nature imprecise, it is not unreasonable to consider
approximate solutions for those times when an exact solution can not be determined.

[Tong, 1980]

8.1 Introduction

When the simple fuzzy control problem, given y and R, find & such that
y= u°R (8.1)

satisfies the conditions for the existence of a solution, the results of Sanchez [1976] can be used to
solve the problem. However, if the conditions for existence of a solution fail, then some
approximate solution must be sought.

This chapter deals with inexact solution algorithms and the idea of minimization of a
performance objective for fuzzy systems. In classical control when one considers minimization of
an objective function the solution generally involves a derivative calculation and in many cases an
iterative solution. This situation is paralleled in fuzzy systems.

'The theory of derivatives for fuzzy systems is reviewed and shown to be valid. Then this
functionality is applied to various minimization criteria using the Box-Jenkins gas fumace data
[1970], as outlined in Chapter 7. The problems and results of applying three numerical procedures
that utilize fuzzy derivatives are then reviewed in this Chapter.

8.2 Fuzzy Differential

The existence of a differential for a fuzzy relation, R, will be shown to exist through the
existence of a differential for a fuzzy mapping. f. To achieve this it must first be shown that the
properties of a fuzzy relation are equivalent to a fuzzy mapping.

8.2.1 Properties of Fuzzy Relations

The extension principle, introduced by Zadeh [1975] is basic to the idea of fuzzy set
theory. It provides a method of extending non-fuzzy mathematical concepts, such as arithmetic
operations and calculus, to the fuzzy domain. This definition, presented in Chapter 3, lays the
foundation for the development of a fuzzy derivative and is repeated here for convenience.
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Let U be a Cartesian product of universes, U= UxUx..xU,,and A, A,, ...A, ben
fuzzy sets in ‘U,, U,, ... U,, respectively. Letfbe a mapping from U, xU,x...x U, to a universe
'V such that v = f(u,, u,,...u,). The extension principle allows us to deduce from the n fuzzy sets of
A, a fuzzy set B on "V through f such that:

Mp(v) = max min(i, (), ..., by () (8.2)
i '
BM=0 if [fN=0 (8.3)

where f'(v) is the inverse image of vand B = fiA,, A,....A,)

Now let A be a fuzzy set in ‘U, B be a fuzzy setin 'V and R a fuzzy relation in UxXV. The
extension principle can be shown to be a particular case of the composition of an n-dimensional
fuzzy relations by writing it as follows [Dubois and Prade, 1980]:

Ma(¥) = Ppop(¥) = max (min(h,(u), 4, V) (8.4)
which can be interpreted as:
B=A°R (8.5)

B is the fuzzy set deduced from A through R.

8.2.2 Equivalency of Fuzzy Relations and Fuzzy Mappings

The fuzzy differentials will be developed using fuzzy mappings. Prior to this it will be
shown that a fuzzy mapping is equivalent to a fuzzy relation.

Proposition 1: A fuzzy mapping is strictly equivalent to a fuzzy relation R such that:

Yue U, 3IveV, pu,v>0 (8.6)



Proof [Dubois et al., 1982(a)]:

Let fbe a fuzzy mapping from U to V. The equivalent fuzzy relation is defined by R
such that:

V (u, v) € UXY, e, ¥) = () 8.7

Conversely, a fuzzy relation can be viewed as a fuzzy mapping if p,(u, x) determines a non empty
fuzzy set fu)

8.2.3 Differentials of Fuzzy Mappings

Fuzzy differentiation can be considered in a number of ways:

* (1)  Differentiation at a fuzzy point of a non-fuzzy differentiable mapping
[Dubois et al., 1982(c)]

(2) Differentiation of a fuzzy mapping at an ordinary point
[Dubois et al.. 1982(c)].

(3) Differential equations with fuzzy coefficients
[Kandel e al., 1978)

In many practical situations it is the knowledge about the mappings that is fuzzy, so it is situation
(2) that will be briefly reviewed here.

The concept of a derivative is defined for a fuzzy mapping, f , from an interval [a, b] to the
set of fuzzy sets of U. Forall x € |a, b], f is assumed to be:

() nomalized dye U 3;17(37):1
(ii)y continuous u?m is continuous
(iii) support-bounded there is some interval [y,, y,]

such that S(f oNly,, 3,

(iv) strictly convex Vs, Vi>s, Vyels 1,
u?(x)(y') > min(u?(x)(s) ! "?(x)(t))

This dsfinition implies that f' (x) is a fuzzy number and that . (y) increases when y is in the

Jx)
range ]—=, y[, is 1 when y = y, and then continuously decreases for y in the range ]y, +eo[.



For all o € ]0, 1[, the a-section of f , defined as:
sof =l y)e Ul )=a} (8.8)

is non-empty, because f is continuous, normal and support-bounded.

Lets, f or fl , aiso called a 1-curve, denote a single mapping due to the strict convexity of

f . Fora<l1,s, f , splits into two mappings, f " and f; , called lower and upper a-curves,

respectively, of f , and such that:
V x€ [a. b). vi’(x‘) < fl W< fre (8.9)

If V o € ]0, 1{ the inappings f' " and f * are differentiable on [, b], then the membership
a a

function of the fuzzy value f '(xo). the derivative of f at x_, is defined by"

e )= SUD o) (8.10)

hey=k(%o)
where ()} =(S. [ 1ael0 1U(f ) @.11)
and B F ) =l (F =0 e (F =1 (8.12)

The membership value of y of the fuzzy derivative f '(xo) is the greatest level o of all the o~
section curves whose slope at x_is y. So f’ '(xo) is an estimation of how parallel the bundle of o-

section curves is at x,. The less fuzzy f’ (x,), the more parallel the are curves at x,..



8.2.4 Summary

It has been shown that a fuzzy mapping, fis equivalent to a fuzzy relation, R, so the results
from the section on differentials of fuzzy mappings can be applied to fuzzy relations. Therefore the
differential of a fuzzy relation exists if the fuzzy relation meets the same property definitions as the
fuzzy mapping (i.e. nommalized, continuous, support-bounded and strictly convex) [Dubois et al.,
1982(c)1.

8.3 An Analytical Analysis

Since derivatives have a solid basis in fuzzy set theory, this theory can be used to determine
an analytical solution for the minimization of a objective function. Consider the simple control
problem of equation (8.13), given R and y find u such that:

y=uR (8.13)

Let us extend the necessary and sufficient conditions for a solution to the single input-single
output from the identification problem [Pedrycz, 1988 (max-min); Pedrycz, 1991(b) (max-t-norm))
to the fuzzy cause problem for both max-min and max-product.

Letu={u;1i={1,2,...,m}}e Uand y={ y;1j= {1,2, ..., n}}€ Y be the fuzzy spaces cf
input and output, respectively, both defined on the finite fuzzy universes of discourses. And let Re
UxY be the fuzzy relation mapping U—Y

Proposition 1: The necessary and sufficient conditions for u # @ for the max-min

composition are that forevery j = {1,2, ..., n} there exists an i = {1,2, ..., m}
such that:

r“>yj (8.]4)

Proposition 2: The necessary and sufficient conditions for u # @ for the max-product
composition are for every j = {1,2, ..., n} there existsa i = {1,2, ..., m}
such that:

r2y, (8.15)

and [—y-’-] < (y—) for se {1,2, ..., n) (8.16)
o



If several columns { j } are mapped to one row {i } then the ratio (LJ
i

must be the same for all the { j }'s mapped to the same {i }.

Figure 8.1 illustrates this concept, with the symbol x,, (* = 1, 2, 3) representing the minimum
y/r ratio for the given row. Figure 8.1(a) shows a one-to-one mapping of i to j. Figure 8.1(b)
illustrates that two of the minimum y/r ratios must be the same, (i.e. x,), since there are more j
columns than i rows. And Figure 8.1(c) represents the case when there are more j columns than
rows, so a minimum y/r ratio is not required for every row.

iNj 123 N1 2
1 (x 1 (x
2 X 1 X, X
2 2 X,
X, 3 X,
(a) ®) (c)

Figure 8.1: Illustration of Existence Condition of Proposition 2

If the necessary ":n4 sufficient conditions are followed then, from Sanchez [1976, 1977], an

exact solution exists. Ii. m:.:y and perhaps most applications this is not the case. Thus the
problem becomes one of minimizing an objective function such as:

0,=Y ;- (8.17)
j=1
where ﬁj =\ (d;try (8.18)
1<Sism
and i ; is the input estimate

t is a max-t-norm composition (i.e. max-min or max-product)

q is aninteger

'The most commonly used objective functions are for ¢ = 1 or 2. Consider the analytical
calculations for each of these cases.



8.3.1

The analysis of the absolute case (i.e. ¢= 1) will minimize Q, with respect to & to

Analysis of the Minimization of @,

determine the optimum & to minimize the absolute sum of the distance between the fuzzy actual

output, y and the fuzzy estimate of the output, y.

Define:
Ql=z 'y,—y/l
j=1
;s.nr.if‘ﬁ 2,
0 - d & 5 |
a .s - a ~.r Jj=1 yl yl
KB .
8'1 if 3>y
=24 0 if =y,
j=1
dy, -
TR
oy, 0
d ~— = iitr;
an AR A
d

- {V(ﬁit’ij)v(ﬁ:t";j)}

u, ins

8.19)

(8.20)

8.21)

(8.22)

(8.23)



If t = product:

L if U, \ 8.24)
dii, |0 otherwise - '
If t =min:
1 if U nr; 2\ (i Ar)
a S)j - ing
37 = and <, (8.25)
|0 otherwise
fors={1,2, ..., m).
Based on these equations, 3 )_i = 0 only if i, = O for all i or under the conditions listed.
u&
Now consider the equation analytically.
0 d ¢
—_— = — Iy, ~yi=0 (8.26)
35, a5z
Jd ¢ ;
=—2, v utry)-y (8.27)
d i 1<igm



If an exact solution exists, then:

I\ (@;tr)-yj=0 (8.28)

1SiSm

utR-y=0

u t R =y

u=y®R (8.29)
where (® is the appropriate inverse for the t operator

which corresponds to the results of Sanchez [1976,1977]. This analysis also shows that for the
case of g = 1 the analytical derivative reduces to the exact solution, when it exists.

8.3.2 Analysis of the Minimization of Q,

The analytical analysis of the quadratic case (i.e. ¢ = 2) will minimize @, with respect to &
to determine the optimum § to minimize the sum of the square of the distance between the fuzzy
actual output, y and the fuzzy estimate of the output, y.

Define:

Q=3 ;- ®.30
j=

qu.l}.iPﬁ 2,

d J &

a a, a a, j=1 1sism

n _ a .
=2Y (v @Eitr)-y)y=—— v ;tr)=0 (8.32)

j=1  1Sism 9 i, 1sism



Based on this equation, there are three possible ways of achieving a minimum:

M Y (v @itr)-y=0 (8.33)
j=1 1Sism
2 0 (@;tr))=0 (8.34)
u;try)= .
A0, i
€)) (v (@;try)-y)and —— \/ i, tr;=0are orthogonal (8.35)
j=1  1sism 0 il 1sism

If case (1) is true, then:

Y, (v @itrp-y)=0 (8.36)

j=1 1Sism
u(R—y:O

utR:y
u=y®R (8.37)

where @ is the appropriate inverse for the t operator

which again are the results of Sanchez [1976,1977] and proves that the analytical derivative
reduces to the exact solution, when it exists.

If case {2) is true, then:

d d
v (tr) = 37 {(vu;tryv@atry} (8.38)

d 17, 1Si<m U, ins



If t =product:

d if  dery2\(Er)
-a_"—;sx,,(a' . ry) = {5 otherwlse 7 ins / (839)
If t =min:
3 1 if U Ar; 2\ (d Ary)
S v @it = and i, <r, (8.40)
o 1o 0 otherwise

If case (3) is true, and the vectors are orthogonal, then a global minimum will not be
outained.

As seen from the minimization criteria for ¢ = 1:

30, 9 ¢
==— Iy @@ try)-y 8.41
PR SRAVACICRS 4D
and for g = 2:
90, 2 , (v @tr)-y) J (@;tr)=0 (8.42)
- . u‘. r‘.. —Y.)e — u‘- r‘»~ = L
aa_‘. j=1 lS)gm ’ ‘ au, ISXM ’

to achieve an analyticai minimum for i ¢ it is necessary to separate the value & , from each
equation. This is not possible for two reasons:

(1) there is no direct inverse for the max function

(2) the summation over which the expression is calculated.

Additionally, in control problems, often the emphasis is on minimization of the absolute
discrete difference (¢=1) or the discrete distance squared (¢=2) as follows:

J, = y-§r (8.43)



8.4 Numerical Methods

This section reviews three (3) minimization algorithms which numerically optimize a fuzzy
performance index, neural leaming minimization of @, [Pedrycz, 1991(b); Valente de Oliveira,
1993], quasi-Newton minimization of @, [Pedrycz, 1983] and probabilistic descent minimization of
Q, (Ikoma et al., 1990].

The calculations that are presented in this Chapter minimize the causal performance index
with respect to the input, 4, however, minimization can also be performed under identification with
respect to the relational matrix R. A review of these latter calculations is provided by Bourke et al.
[1995]. The identification results of Bourke et al. [1995] are provided in Section 8.5 and then the
identified matrices and the causal performance criterion is used to follow a set trajectory. Results
of the minimization algorithms with a causal criterion are presented in section 8.6.

8.4.1 Neural Learning Minimization of 0,
A numerical method for solving the optimization problem withg = 1:
Q=) Ky, - (8.44)

for the case of identification is provided by Pedrycz [1991(b)] and then expanded by Valente de
Oliveira [1993]. It should be noted that the procedure given by these authors can easily be

extended to the fuzzy cause problem. These papers maximize (0, using the following equality
index:

0= =35)={ 0 if y=y (8.45)

This maximization is the exact inverse of the minimization of Q|, (analyzed in Section 8.3.1
Analysis of the Minimization of Q,) and defined as:

M0N4



Q,=ly,-yl=¢ 0 if y=y, (8.46)

Lyj_)-’j if yj<yj

A brief extension of the neural lcaming method [Pedrycz, 1991(b); Valente de Oliveira,
1993] for the fuzzy cause problem with either a max-product or max-min composition is presented
here. The paper by Valente de Oliveira [1993] deals only with identification. Additionally, the
learning of relational matrix in this same paper takes place in the presence of a bias term which the
paper later shows can be ignored. Thus the bias term will also be ignored for this analysis. So for
the fuzzy control nrotiem:

§y = ilioxoR (8.47)
where x is the fuzzy state, and ° represents the max-product or the max-min composition, the

objective function is:

Q1 =3 ( AV (ﬁi*x,*rijl)—)’l)l (8.48)

=1 Igizm

The minimization: min_ Q,

is obtained by:
-a—Q:‘- =0 (8.49)
o
Calculation of this derivative results in the following system of equations:
°0 _9 3 15, =/ (8.50)
oa, om= Y )

205



If x = product:

If * = min:

fors=1,2,...,m.

( a >
Y e =~
3 -‘ if y >y,
=24 0 if y,=y (8.51)
1=1
d J,
- if y,<y,
| 94
dy, o N
———a — = ——a a ‘v (u i*xj*rijl) (852)
s s SS’"
Sjsn
d _ -
= 5—'2-{ V(@ xpry) V(lv U Fx¥rg)) (8.53)
s ins <jsn
1sjsn
9 ¥, 1S\£ (xj"}jl) if 1\‘2 (ﬁ.\"xj.r.sjl)z \'4 (i;.'xj";‘jl)
oa | o omerwise b (854)
1 if V (@ AX; A2\ ([l AX AT
- 18jsn ins
ayl 1S8n -
37 = and ls\/sn(xjArsj,)zus (8.55)
s J
0 otherwise

206




The estimate of the fuzzy input, @, is updated iteratively according to the formula:

ﬁ(hl) = ﬁ(k) + .n[Aii(hl) + uAa(‘)] (8.56)
d
where Ad =- —-a—%- 8.57

In equation (8.56) the superscript (k) refers to the iteration number, 0 < < 1 is the learning rate or
step size parameter, and o 2 0 is the momentum term.

The paper by Valente de Oliveira [1993] illustrates the functionality of the maximization
algorithm with the Box-Jenkins [1970] data, however a calculated value of the resulting @, is not
provided. The graphical comparison for the identification (Figure 8; Valente de Oliveira [1993])
between actual and predicted results shows reasonable agreement between the two values,
however, the author points out that to achieve this agreement, the maximum value of the relational
matrix, R, was allows to exceed the unit interval [0, 1]. As will be shown in the next section, when
this algorithm is required to remain within the unit interval consistent with the definition of a fuzzy
relation, the identification results are within the range of identification techniques considered to
provide good results. Valente de Oliveira [1993] also provided a method to improve the
convergence property of their batch identification algorithm. This improvement has not been
included in the identification analysis for this algorithm so that all three numerical algorithms are
tested on the same level. Results given in Section 8.5 confirm that the improvement is in fact

required.

8.4.2 Quasi-Newton Minimization with Q,

Numerical methods for solving the basic optimization problem for g = 2:

Q0,=), G -y (8.58)
I=1

are provided by Pedrycz [1983], who presents algorithms for fuzzy identification and fuzzy cause
for both the max-min and max-product compositions. The numerical solution algorithm is a
modification of the iterative Newton method for a derivative called the quasi-Newton method. The
main adaptation of this quasi-Newton method over the original Newton method is that the inversion
of a second derivative of Q is not required. Wang [1993] presents the properties of this quasi-
Newton method for various composition, however, the max-product composition is not included in

this analysis.



A brief review of the quasi-Newton method [Pedrycz, 1983] for fuzzy cause problem with
either a max-product or max-min composition is presented here. For the fuzzy control problem:

-~

¥ =i°xR

where x is the fuzzy state, and ¢ represents the max-product or the max-min composition, the

objective function is:

The minimization: min_ Q,

wrdt.

is obtained by:

79,
di

=0

Calculation of this derivative results in the following systemn of equations:

00 0 &
_— = — (Vv (ﬂsxm‘--kr-)—y)2
d 3 d U =1 15jsn e l
n - R
=22 (v (U,*x,*’;ﬂ)-)’l)_y.’
=1 1sj<n d il
where 9%, d (th #3%r )
= m———— 1 g8y
3 ..: 3 -, e n s )l

9
i

5

{\ (xxkry) v (i %xrrg))

ins

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)



If * = product:

27 vV (x;-1r) if \V4 (as'xj"'.q:)2 \Y4 (izi'xj";jl)

=J1sjsn 1Sjsn ins 8.66
d ﬁ‘ 0 otherwise 18/sn ( )
If * = min;
1 if V @ Ax;Ar )2\ AX; AT
9% 1sjsn ins
f L= and V (X Ar) 2, (8.67)
a (] 15j<n
0 otherwise
fors=1,2,....,m.
The quasi-Newton iteration method to solve for & is a follows:
a®V=g®_q Az® (8.68)
d
where Aill = ——Q} (8.69)
o

The superscript, (k) in equation (8.68) is defined the same as for neural leaming. The scalar
multiplier, o, , which replaces the inverted second derivative of the Newton method, is a function of
the number of iterations required for convergence. This simplification results in a slow linear
convergence rate, ratier than the quadratic rate of the Newton method, however, Pedrycz [1983]

claims that good convergence can be achieved with the proper choice of o,



In order to obtain a good convergence rate, o, was defined as a non increasing gain factor:

1

o, = 8.70)
o erk® (
n - a ~I
where ¢ = max 22 Vv @*rx*r)=y ls==¢t=2n 8.71)
=] { 1SjSn a e
k is the iteration number
and w20  is chosen to based on experience to achieve yood convergence

properties and to avoid oscillation.

This identification algorithm methodology was not tested by Pedrycz {1983] with the Box-
Jenkins data [1970], however, testing with other data showed that under that same tuning
parameters, the max-product composition was slower to converge than the max-min, but
convergence was to a smaller value of Q,.

843 Probabilistic Descent Minimization with Q,

Ikoma er. al. [1993] propose the probatilistic descent method for the same minimization
criteria, @,, as Pedrycz [1983], and applied this methodology for identification only under the max-
min composition. The probabilistic descent method presented by these authors is computationally
very similar to the quasi-Newton method. The main feature that differentiates this method of
calculating the derivative is the replacement of the non-differentiable maxinium and minimum
functions by a differentiable approximations.

The probabilistic descent methodology is briefly revicw here for the fuzzy cause problem
with either a max-product or max-min composition. Again, for the fuzzy control problem:

y= iR (8.72)

where x is the fuzzy state, and e rem. ents the max-product or the max-min composition, the
objective function is:

n

0Q,= Z (v (0 dxpry) ")’l)z (8.73)

1=1 i
s



The minimization: min_ Q,

is obtained by:
9% _, 8.74)
i
Calculating of this derivative:
- @ ) — 8.75
94, 94 % ((:‘::"l ) = YD) (8.75)
JRY L)
n . a .
=23/ @mapurg) = y)——( s i #+ry) = 0 (8.76)

= g

U \szm

It is required that the derivative be taken over the maximum, which is piecewise differentiable.

Consider the derivatives taken over the maximum and minimum operations given as follows:

a[ | _{l,
ox max(x. )l = 0,

a[ in(x, y)] = L
axmmx,y = 0,

x>
Y 8.77)
x<y
x<
Y (8.78)
x>y

Both derivatives are not defined at x = y. This means that the probabilistic descent method
cannot be applied directly to equation (8.76) when the max is defined as in equation (8.77) In order
to overcome this problem, it has been proposed to define the derivatives as follows [Ikoma et al.,

1993]:

d 1
—[max(x, y)] = {
ox

0,

X2y
x<y

(8.79)
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O tmince, =4 * =7 8.80
ax["""x‘y 10, x>y (8.80)

Both these formula retum 0 and 1 and can be treated a two-valued predicates (i.e. Oor 1).
However, the use of these formula can cause problems in that the minimization may find only local
minima. As well, under specific initial conditions a zero value could result for all predicates
[Ikoma et al., 1993]. To avoid these conditions these authors proposed approximating the
discontinuous derivatives of equations (8.79) and (8.80) by smooth functions. The functions that
were considered are as follows:

ok, (a,x) 1
S e (8.81)
ok, (a,x) 1

ox - 14 =/t 8.82)

where k> 0 is used to controi the shape of the function. Figure 8.2 (a) and (b) show the plots of
equations (8.81) and (8.82), respectively, for various k along with the original derivatives,
equations (8.77) and (8.78). Although the plots for the original derivatives and the approximation
when k = 0.01 are not identical, the difference would be negligible in a control setting.

1} 1 — i
N\
\:
\r
0.5} 0.5}
/:
/o
e
O - 2 - Or'
0 0.5 1 0 0.5 1

Figure 8.2: (a) Derivative of &, (.5, x), equation ;.78);
(b) Derivative of h_, (.5, x), equation (8.79)
(k=0.1, ; k=0.05,— - —-; k=001,. - )
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Making the appropriate substitutions into equation (8.76) produces the following equations:

If « = product:

00 8 i 1
__z = 22 (v uixrg)—-y) \V4 (xj 'r;jl) ~b,—a)k (8.83)
d i, =l ggn 1$j%n 1+
where b=\ (i,-x;-ry) (8.84)
1Sjsn
a= s (#;-x;-1;) (8.85)
If * = min:
d o, “ - 1 1
24, = 2; (({;:mu N KAL) = ) L+ @ : 14 ¢~ Gk (8.86)
/s
wherz b=\ (U, Ax;11,) (8.87)
1Sjsn
l;:én
d =i (8.89)
c= vV (x;Ar) (8.90)
l;;;»
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The updated value of # is calculated iteratively by the formula:

i*V=g®+eAa® (8.91)
d
where Ail =- -é-%- (8.92)

In equation (8.91) the superscript (k) refers to the iteration number and 0 < 1} < 1 is a small positive
constant used to scale the modification term, & .

The strength of the probabilistic descent algorithm [Ikoma et al., 1993] is that it avoids the
problem of converging to local minima and other difficulties caused by specific initial conditions
that are inherent in the other two methodologies. Testing of the identification algorithm in the
paper by Ikoma er al., [1993] is performed with exact data or under ideal conditions. The ability
of this algorithm using plant data is not demonstrated in the paper.

8.5 Comparison of Identification Minimization Results

In order to evaluate the effectiveness of each of these strategies in a predictive capacity, the
minimization algorithms were considered for the case of identification. The assumption being
made is:

if the performance is good from an identification perspective, it will be good from a
causal perspective,

The identification algorithms associated with neural leaming [Va'ente de Oliveira, 1993; Pedrycz,
1991(b)}, quasi-Newton minimization [Pedrycz, 1983] and probabilistic descent minimization
{Ikoma er al., 1993] are compared using the same data and performance indexes used for the
identification analysis in Chapter 7. In doing so these iterative algorithm can also be compared
versus the algorithms discussed and analyzed in Chapter 7.

For each of the cases being considered, the initial R value used to initiate the learning was
set at:

1) R=[0],.,
@ R=[5)m,
(G) R=[1],,.
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Studying these initial values of R will indicate which, if any, algorithms experience difficulties
caused by specific initial conditions.

For each of the algorithms tested, the data was leamed in batch over 50 iterations and the
convergence factors were funed to improve the performance of the algorithm. The convergence
factors were chosen large enough to ensure good convergence properties and small enough to avoid
oscillations. Graphical results of the convergence trajectories of these simulations are given in
Figure 8.3 to 8.6. Comparative data for the optimization algorithms are presented in Tables 8.1
and 8.2.

Consider the optimized results of the max-product composition. For all methods, neural
leaming, quasi-Newton and probabilistic descent, the algorithms performed well with the resulting
J,<0.5. Tuning was performed for R = [.5],,,,., and then the other two initial R's were optimized
based on the convergence factor tuned for R = [.5}, ..., S0 comparison could be made using the
same tuning basis. Between the three methods, the convergence rates for quasi-Newton and
probabilistic descent, were virtually the same, which seems reasonable since both methods are
minimizing the same objective function. The neural leaming required more time for convergence
but the final results are equivalent to the other two faster methodologies. This slower leaming rate
confirms that need of a method to improve the convergence property of the neural learning
algorithm which is provided in the work by Valente de Oliveira [1993].

For the example tested, neither of the max-product optimizations of neural leaming or quasi-
Newton methods exhibited problems with a local minimum, which the probabilistic descent method
has teen formulated to overcome.

As mentioned previously, the paper by Valente de Oliveira [1993] illustrates the
functionality of a maximization algorithm for neural leaming with the max-product composition,
using the Box-Jenkins [1970] data, but includes no calculated value of the resulting Q,. The author
states that to achieve good agreement between that actual and predicted data the maximum value of
the relational matrix, R » was allows to exceed the unit interval [0, 1]. However, as is evident by
the results in Table 8.1, when the neural leamning algorithm is required to remain within the unit
interval, consistent with the definition of a fuzzy relation, the identification results are within the
range considered to provide good results.

The max-min composition results are spurse beczuse the algorithm is unable to converge for
an initial R = [1],,,.,. This non-ccnvergence for initial R = (1] ..., for each method, is due to the

second condition on the derivative for the max-min composition. The conditiors for calculation of
the max-min composition derivative for neural leaming and quasi-Newton ar- . follows:

1 if U AX AT 2\ (U AX;AT,)
93, 2
— = and U,Ax, 2r1,, (8.93)
a R vsl .
0 otherwise
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It is easy to see from equation (8.93) that if R = [1], then from the second condition of this
equation:

=0 forall v, sand . (8.94)

and no change in R can occur. Although this second condition is not explicitly stated in the
probabilistic descent method, its is implicit in the calculation of the exponential:

1
______1 Py (8.95)
where d, =r, (8.96)
c=(u,Ax,) (8.97)

This second condition for the derivative is not present in the max-product composition because of
the product calculation.

The inability of the max-min composition algorithms to converge for an initial R = {0],,.,.., is
due to the aggressive setting of the convergence term. Thc large convergence term causes a large
initial oscillation in R and the updated R is outside the un:: interval. All the optimization
algorithms check to ensure each R remains in the unit interval. So after checking the update of the
first oscillation of R, the update is reset to R = [1],.., and hence the algorithm is unable to
converge. A smaller value of the convergence factor could be chosen for the max-min composition
for an initial R = {0] ... however, the convergence rate would be slower.

The neural leaming algorithm for the max-min composition found a local minimum, as
shown in Figure 8.6, however, the algorithm was able to move off of the local minimum due to
aggressive tuning of the convergence factor.

For all methodologies with the max-min composition, the final values of J, > 0.5. So not

only is the max-min composition more sensitive to the tuning factor and initial values of R, than the
max-product composition, but the final results also are poorer.

Cross-leaming of the relational matrix did not produce the same improvements noted with
the non-optimized algorithms of Chapter 7. Max-product prediction was never improved with
cross-leaming. Max-min prediction improved only slightly for the neural leaming and probabilistic
descent methods.
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As with the non-optimized identification algorithms, discussed in Chapter 7, the optimized
algorithms can be ranked, based on the J, criterion. The ranking, given in Table 8.3 is based on the
max-product composition J, values for an initial R = [£]. The results show that the probabilistic

descent method is the best, although the results of all three methods are very close.

Method | Composition|ID Method] Initial R | J, J, 0, 0,
Neural Max-Prod Prod [0} 0.4528 | 0.3628 | 0.3784 | ©.0986
Leaming n=0.009 [.5] 0.4467 | 0.3530 | 0.3759 | 0.0967

a=0 (1] 0.4591 | 0.3852 | 0.3875 | 0.0974
Max-Min Min [0} n/a n/a n/a n/a
n = 0.005 [.5] 0.6244 | 0.8297 | 0.4171 | 0.0867
oa=0 (1] n/a n/a n/a n/a
jQuasi- Max-Prod Prod [0] 0.4442 | 0.3322 | 0.3818 | 0.0971
Newton w=1 [.5] 0.4626 | 0.3630 | 0.3882 | 0.0963
1] 04911 | 04261 | 0.3979 | 0.0971
Max-Min Min 0] n/a n/a n/a n/a
w=3 [.5] 0.5901 | 0.7216 | 0.3837 | 0.0825
[1] n/a n/a n/a n/a
Probabilistic Max-Prod Prod [0] 0.4357 | 0.3224 | 0.3800 | 0.0970
Descent €e=0.15 (5] 0.4505 | 0.3410 | 0.3822 | 0.0962
k=0.01 [1] 0.4650 | 0.3760 { 0.3867 | 0.0965
Mi-Min Min [0} n/a n/a n/a n/a
£=0.05 [.5] 0.5690 | 0.7150 | 0.3690 | 0.0802 i
k = 0.01 (1) n/a n/a n/a n/a_|
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| Method |Composition|ID Method] mitial R | J, 5L, | o | o
INeural Max-Prod Min [0] n/a r’a n/a n/a

Leaming n =0.005 .51 0.4645 | 04232 | 04251 | 0.1188
a=0 1] n/a n/a n/a n/a

Max-Min Prod [0} 0.4297 { 0.3264 | 0.3774 | 0.1008

7N =0.009 5] 0.4994 | 0.5173 | 0.3940 | 0.1030

a=0 [1] 0.5706 | 0.7307 | 0.4245 | 0.1075
Quasi- Max-Prod Min [0] n/a n/a n/a n/a

Newton w=3 {.5] 0.5049 | 0.4261 | 04053 | 0.1134
[1] n/a n/a n/a n/a

Max-Min Prod 0] 0.4412 | 0.3368 | 0.3972 | 0.1036

w=1 .5) 0.6341 | 0.8068 | 0.4510 | 0.1102

{1} 0.6862 | 0.9155 | 04731 | 0.1143
Probabilistic Max-Prod Min [0} n/a n/a n/a n/a

Descent £=0.05 {.5] 0.4555 | 0.3874 | 04180 | 0.1230
k=0.01 1] n/a n/a n/a n/a

Max-Min Prod 0] 0.4332 ] 0.3272 | 0.3908 | 0.1033

€=0.15 [.5] 0.5722 | 0.6823 | 0.4202 | 0.1071

k=0.01 (1) 0.5850 | 0.7466 | 0.4257 | 0.1086

Table 8.2: Comparison of Identification Algorithms with Optimization for Cross Identification

Method Rank/(J,)
Probabilistic Descent
(0.3410)
Neural Leamning
(0.3530)
Quasi-Newton

(0.3630)

Table 8.3: Optimization Identification Algorithm Ranking Based on J,Criterion
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8.6 Comparison of Causal Minimization Results

The applicability of the optimization algorithms for a causal or control situation is
considered in this section. Tesiing is undertaken using the probabilistic descent method [Ikoma ez
al. 1993, since the identification results using this algorithm were the best. The foilowing
overdamped, second order, unit gain process was used:

Ye=8 Y+ 8 Yo +tb iy, +byu,, (8.98)

where a, =0.8519

a, = -0.0970
b, =0.1672

b, = 0.0779

Leamirig of the relational matrix, R, is via the probabilistic descent method [Ikoma ez al.
1993] for the first order model discussed in Chapter 7. 'The one step ahead (OSA) prediction of the
output, without state estimation of the past output (i.. using actual output values) is given in
Figure 8.7 to illustrate the ability of the idertificd relational matrix.

O I
0 50 100 150 200 250

tm——>

Figure 8.7: Plot of One Step Ahead Prediction of y using actual u
J; = 0.0164; J, = 0.0008;
Actual; — - —-—- — Model)

¢

Figure 8.8 shows the performance of the algorithm when used to determine an optimizec
input in a control situation. The calculated process output is based on the input optimized by the

current output setpoint and past output setpoint. The resulting process output, based on the
optimized calculated input, u, versus setpoint show extremely poor tracking using the optimization



algorithm for th< input calculation. So not only is the determination of the input for the control
situation poor using the optimization algorithm but the algorithm requires extensive iteration and
convergence tuning. Therefore using an optimization algorithm to perform the control calculation
does not yield good results. This is in contrast to discrete, model-based controller formulations
where optimization has been used with great success.

O 1 L. 1 Il
0 50 100 150 200 250

t———>

Figure 8.8: Plot of One Step Ahead Prediction of y using optimized u
J, =0.299; J, = 0.0760;

¢ Actual; — - —- - — Model)

8.7 Correlation between Q, and J,

For process systems that are inherently fuzzy, a performance objective based on @ , I8
adequate, as its minimization should ensure a fuzzy minimum. However, if the actual output data
is not inherently fuzzy, and a fuzzy structure is imposed mainly due to lack of an adequate
deterministic mcdel, the predicted output data must be defuzzified and then compared against the
actual at the non fuzzy or numerical level. Thus a minimization criteria based the defuzzified data
should be considered as follows:

J, = ly- (8.98)
where ¢ is a integer.

For these non-fuzzy or discrete problems, minimization by a Q criteria does not guarantee
minimization of 2 7 criteria. The poor correlation of these indexes is shown in Figure 8.9, with the
graphing of Q_ versus J_ for a representative number of simulations performed during the
compilation of Chapter 7 and 8.
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Figure 8.9: Comparison of Qq versus J,

Figure 8.9 clearly shows that the indexes of Q, versus J, tend toward an inverse
relationship. Thus the objective function minimization of Qq will not necessarily result in
minimum J .. The results of these graphs reinforce the need for a minimi- ation criteria, as
presented by Xu ez al. [1987], where the discrete error is involved in the minimization.



8.8 Summary

The literature search for Chapter 8 provides a brief review of fuzzy analytical derivative
theory which confirms the existence of a differential for a fuzzy relational matrix and validates this
theory for application in the fuzzy domain. Application analysis of this theory is applied to the
minimization problem:

Q,=) ;- (8.99)

j=1

where g=1lor2

Results of this analysis confirms that under the conditions of the existence of an exact solution the
derivative reduces to the inverse theory of Sanchez [1976, 1977]

The minimization of the control objective function or criterion is considered from an
identification perspective and a causal perspective. For the work with identification it was
necessary to extend the necessary and sufficient conditions from a solution of the single input-single
output identification problem [Pedrycz, 1988 (max-min); Pedrycz, 1991(c) (max-t-rorm)] to the
single input-single output fuzzy cause problem for both max-min and max-product. These results,
particularly for the max-product composition, demonstrated the need for numerical solution
techniques.

Several optimization algorithms have been reviewed {Pedrycz, 1993; Ikoma et al., 1993;
Valente de Oliveira, 1994]. The algorithm for neural leaming [Pedrycz, 1991(b); Valente de
Oliveira, 1993] was extended to the fuzzy cause problem. The probabilistic descent algorithm
{Ikoma et al., 1993] was extended to both the fuzzy cause problem and the max-product domain.
The suitability of these optimization algorithm for identification were compared using the same
fuzzification and defuzzification methods, the same reference fuzzy sets and the Box-Jenkins gas
fumace data {1970], as the identification algorithms compared in Chapter 7 [Bourke er al., 1995].
The identification results showed that some non-optimized algorithms of Chapter 7 are capable of
providing similar results with fewer calculations and less tuning.

A key result from a control system point of view is that the minimization of the fuzzy criteria
of zither Q, or Q, does not imply a minimum J, which is defined by a discrete criteria. This
kriowledge is particularly important for those discrete control systems that are handled in the fuzzy
domain due to lack of an adequate deterministic mociel.

Although optimization algorithms are used effectively in many discrete model based coiitrol
formulations, they are not recommended for fuzzy control formulation because the resulting
controller output does not give good control performance.
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CHAPTER 9 DESIGN OF SELF-LEARNING
PREDICTIVE FUZZY CONTROLLER

The most effective way to improve the performance of a fuzzy controller is to
optimize the fuzzy control rules.

[Tong, 1976]

9.1 Introduction

The equivalent of optimizing the control rules in self-leaming relational-based fuzzy control
systems iranslates to updating the relational matrix. This optimization or identification was
discussed thoroughly in Chapters 7 and 8. Chapter 9 deals with the design of a predictive fuzzy
logic controller and the incorporation of the previously discussed identification into this design so
that the resulting controller is self-learning, as well as predictive.

The quality of a fuzzy prediction is a function of the mapping performed by the fuzzy model.
In many cases the accuracy of the fuzzy model is limited due to imprecision of the input/output
data and the vagueness of the model structure. As the length of the prediction horizon increases, so
also does the degree of uncertainty of the results. Therefore, the longer the prediction horizon, the
more approximate is the information obtained, until a point is reached where predictions from the
model may be totally irrelevant [Pedrvcz, 1993].

Graham et al. present the results of a fuzzy relational-based (1988] and a rule-based [1989]
one step ahead predictive fuzzy logic controller. The relational-based controller [1988] is tested
on a variable area liquid level rig and the paper compares favourably their adaptive algorithm
against conventional PI and Pl/feedforward controllers. The height of the water in the tank is
regulated using 4 inputs, the past two height deviations and the past two differences between inlet
and outlet flow rates. Since the relational model to be developed from this scenario proved to be
too large (i.e. 21x21x11x11x21 = 1 120 581) the authors combined a deterministic model of
heiznt deviations with a fuzzy model of flow differences, reducing the relational matrix to 2541
elements.

*1; the subsequent paper [Graham et al., 1989] an adaptive rule-based fuzzy logic controller
is applied to a first order process with varying gain and time constant. The process model
developert by Graham et al. [1989] for this application uses a rule-based look-up table to predict
the neat change in error given the current change in error and the current process input. The aim of
the controiler was to reduce the error as much as possible over the next sampling period, so the
control a<...: - that gives the smallest predicted error was chosen as the current change in control.

The fuzey PI controller design by Song er al. [1993] is able to handle a system with a dead
time of 2 sam:piing intervals. Fuzzy models are not strongly predictive due to the limited dynamics
contained in the rclational matrix, a result of the averaging effect of the identification
methodologies. However, this does not mean of course that prediction using fuzzy models is
impossible, as will be shown in this chapter.
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9.2 Fuzzy Process Structures

One of the advantages of relational-based fuzzy logic is that the identification algorithms can
lea™ directly from input/output dats. Another advantage is predictive control, either 1-step or
mwlti-step ahead, can be implemented in a manner similar to classical predictive controllers. This

chapter will demonstrate the parallels netween classical predictive control and fuzzy predictive
control.

Starting with the basics, a process of interest can be represented by a standard input/output
discrete model as illustrated in Figure 9.1. That is, a discrete (non-fuzzy) input, u, is fed to a
deterministic process and a discrete non-fuzzy) output, y, results. It should be noted here that the
notation throughout this chapter hae fuzzy variables (i.e. u, y) in italics and discrete (non-fuzzy)
variables (i.e. u, y) are not italici~ad.

Process [—>

Figure 9.1: Standard Process Model
(u = input, y = output)

Fuzzy processes can be illustrated by a similar schematic which can also be used to describes
the three basic problem scznarios for which fuzzy logic is ideally suited. These problem scenarios
are:

(1)  Fuzzy Process Dynamics (fuzzy model)
(2)  Fuzzy Process Input (fuzzy input)

(3) Fuzzy Process Measurement (fuzzy output)

(1) Fuzzy Process Dynamics

The fuzzy dynamic system model is the ~ne most often encountered in the literature. This is
the case of discrete input and output data, but t. .. process is considered too complicated to be
modeled by conventional techniques. Thus interface techniques of fuzzification and defuzzification
are introduced in order to model the process from a fuzzy perspective. The system model for this
scenario is illustrated in Figure ©.2, with the hatched box marking the fuzzy boundaries.
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In most instances in the literz.ure, clearly deterministic processes are artificially fuzzified to
demonstrate the capabilities of the various fuzzy controlless. ‘This artificial application of fuzzy
logic leads to some confusion as to the need for the fuzzy techr.ology. However, there are several
application areas where the process dynamics are inherently fuzzy in the sense that the process
input, output and/or the model are uncertain {e.g. tar sands extraction, bio-treatm::it and mincral
processing). These example processes are all being controlled today using conventional
technologies with discrete data. However, fuzzy logic can compliment thes¢ areas thereby
permitting the use of vague or indexci; data which conventional control systems can not include.
When discrete and fuzzy data arv: to be considered together, it is customary to fuzzify the discrete
data so that all information is .:valuated on the same basis.

T
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Figure 9.2: Fuzzy Process Dynamics Model
(u = discrete input, y = discrete output)
(u = fuzzy input, y = fuzzy output)

(2) Fuzzy Process Input

The fuzzy process input scenario is encountered when the process is inherently fuzzy due to
the control law. In these situations the output measurement is discrete and accurate, and it is
pezsiitle to set the discrete process input to any desired value. However, the problem is that the
cos:.70l law or relationship between the input and output of the controller is only approximate (e.g.
whether the error is 1.234 or 1.888 the control law may still call for only a small change in input).
Although the error is known precisely there is not enough information available to determine a
precise value for the manipulated variable, u. An industrial example would be mineral processing
using flotation. The current error (or setpoint change) may be known exactly but it is not possible
to calculate precise values for the flotation chemicals required to drive the error to zero. Another
example is where the manipulated variable can be accurately set to any discrete value but the key
component (i.e. composition) of the manipulated variable changes with time and is currently
vrknown. Thus the manipulated variable can be set accurately to a discrete value but the effect of
the process output is approximate or fuzzy. This scenario is illustrated in Figure 9.3.
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(3) Fuzzy Process Measurement

The final fuzzy process scenario is fz:y pre..ess measurements. In this situation the process
measurement is inherently fuzzy (i.e. qualitaiive cr indexed). The manipulated input into the
process is discrete, but the controller is fuz”y because of the fuzziness inherent in the process
measurement. An industrial example would be i.1 tar sands processing where the clay content or oil
content can only be estimated approximately on-line. This process model is illustrated in Figure
94.

Figure 9.3: Fuzzy Process Input Model
(y = discrete output; y = fuzzy output)
(u = fuzzy input,)

Figure 9.4: Fuzzy Process Measurement Model
(u = discrete input)
(u = fuzzy input, y = fuzzy output)

The three process situations illustrated by Figures 9.2, 9.3 and 9.4 can be combined to
produce other process situations, such as a totally fuzzy process where the dynamics, inputs and
measurements are all fuzzy. However, the modeling and control would be executed the same as the
other problem scenarios, without the need to artificially fuzzify or defuzzify.
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Although the fuzzification and defuzzification may seem artificial in some instances, the
power or benefit of the technique is that it permits the handling of both fuzzy and non-fuzzy data in
the same model.

Since it is clear that the fuzzy model can handle both discrete and fuzzy data, via
fuzzification and defuzzification interfaces, these interfaces will be assumed to be an implicit part
of the modeling and control structure. Therefore these procedures will not be shown explicitly in
the block diagrams during the following controller development. This will simplify the controller
diagrams that follow permitting a one-to-one comparison between the conventional predictive
control structure and the fuzzy logic predictive control structure being developed in this thesis. The
fuzzification and defuzzification interfaces will be included, however, in the final controller design
schematic (Figure 9.18).

9.3 Fuzzy Control vs. Classical Predictive Control

This section will show that the development of fuzzy model-based control paralleis the
development of conventional model-based control. The starting point is simple servo and
regulatory control leading to the Smith Predictor model, closed-loop stability results and finally to
model-based predictive control.

9.3.1 Simple Servo Control

The fuzzy controller development starts with the basic control problem of the discrete system.
The first structure considered is the simple servo control system, illustrated in Figure 9.5.

ysp u L
Ge Gp —45—9

Figure 9.5: Servo Control
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If Gp is known exactly, the best model-based controller is simply the invarse of the process
model:

Ge= Gp-l ©.1)

and perfect control is obtained in the sense that y = y,, for all time. However, Gp does not always
exist or if it does the direct inverse in not always practical.

In terms of a fuzzy model a similar analogy can be made.

Process Model: y=uGp 9.2)
Control Law: u = yupoGe 9.3)
For perfect control,

Y=y (9.4)

Combining equations (9.2), (9.3) and (9.4).
Ysp = ¥3p°GeoGp 9.5)

Clearly equation (9.5) represents the eigen fuzzy problem discussed in Chapter 6.

Let
E = GeoGp (9.6)
then

Gc= E@Gp 9.7)

where @ is the inverse operator defined in Chapter 5. As with conventional model-based control,
the inverse calculation of equation (9.7) may not always exist.
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9.3.2 Feedforward Control

The servo based control system in Figure 9.5 can not handle disturbances. Regulation of the
system faced with these challenges must alo be considered. So consider thc structure of
regulatory feedforward control, illustrated in Figure 9.6.

For perfect feedforward control, the conventional feedforward control law is:

G
Gpg=-—4 9.8)
GP

Again this design has a fuzzy equivalent. Letd = {d;1i=1, 2, ...n}. Then

Y (dGrGp +d-Gq] =0 9.9)

Y, d[GeGp + Gq] =0 (9.10)

Therefore Gff*Gp + Gd must be such that it either produces a zero sum for all values of d (i.e. d
is orthogonal to GieGp + Gd is some fuzzy sense) or it must equal zero.

GrGp+Gqa=0 9.11)

s0 Gir=-Ga®G, ©.12)

The negative sign (=) in equation (9.12) can be interpreted as increasing the universe of
discourse to include the negative or opposite domain, if the universe is absolute, or inverting the
results if the domain uses data that is differenced (i.e. u or Au, respectively).

9.3.3 Modified Feedforward Control

For conventional feedforward control the problem is formulated in terms of the disturbance,
d, measured at the input to the process. However, for later comparison with model-based
predictive controllers, it is convenient to formulate feedforward control in terms of L, (i.e. the
effect of the disturbance, d. cn the process output, y). Regulatory feedforward control can be
represented, as shov/n in Figure 9.7. even though in many process applications it is not possible to
measure L.
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For perfect feedforward control for the modified case, the conventional feedforward control
law is:

1
G _— e e—— R
i G, 9.13)

Note that the feedforward controller is simply the process inverse, as in servo control.

a_|

‘\L Gd
Gfr
L
u | y
Gp O

Figure 9.6: Regulatory Feedforward Control
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Figure 9.7: Modified Regulatory Feedforward Control
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For the fuzzy equivalent,Jet L= {L,|i= 1, 2, ...n}. Then

Y, [LGpeGp+ L} =0 (9.14)
Y, LiGmeGp+E]=0 (9.15)
where E is the eigen fuzzy relation such that L=E°L

Again assume that L°[Gnva + E] does not produce a zero result for all L, then

GrGp+E=0 9.16)

and G =-E@G, (9.17)

9.3.4 Coinbined Servo-Regulatory Control
Now both the servo and the modified feedforward regulatory control schemes, from Figure
9.5 and 9.5. can be combined to produce a servo-regulatory control representation. The schematic
for this scenario is illustrated in Figure 9.8

For perfect control for the servo-regulatory system, the conventional control law is:

1
Ge= G_ 9.18)
P
For the fuzzy equivalent,lety= {y 1i=1,2, ...ntand L= {L;li=1, 2, ...n}. Then
Y, =yGeoGp + L~ LG¢>Gpl = 0 9.19)
Y. »lE, - GeGpl+ Y, L[E; — GeoGpl= 0 (9.20)
where E, isthe eigen fuzzy relation such that y=Eyy
E, isthe eigen fuzzy relation such that L=E,°L
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So for equation (9.20) to be true

G.=E,®Gp N E,OG, 9.21)

where [ is the intersection.

ysp

Figure 9.8: Serv:i—Regulatory Control

9.3.5 Model-Based Control

As has been shown, discrete and fuzzy systems can be represented by the same schematic
diagrams for servo-regulatory control. Model-based control Jollows directly from standard
feedback control, and is equivalent to servo-regulatory control, as will be shown next during the
model-based control development. The following controller development is valid for both discrete
and fuzzy systems. The validity of this design for fuzzy systems will be confirmed by the fuzzy
predictive controller design outlined later in this chapter.

For the predictive development, start with the standard feedback control model, shown in
Figure 9.9. This feedback control strategy can be translated into a model-based control strategy by
adding and subtracting a process model, Gm, as shown in Figure 9.10, which is mathematically
equivalent to Figure 9.9,
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ysp € u y

® 1 G | Ge | ~

Figure 9.9: Standard Feedback Control

The process model, G, is then combined with the controller, G¢, and a new controller, G,
developed. The controller, G; . is now model-based. This new control scenario is illustrated in

Figure 9.11. Note that G; is simply the closed-loop transfer function for a standard feedback loop
containing G¢ and Gpy. That is:

. G
Ge=—-%t— 9.22
€ 1+GGy, ©-22
Gl
Ge= —=—— 9.23
or c -GGy (9.23)

Gy = Gp then L =L and Figure 9.11 reduces to the servo and regulatory control

schematic of Figure 9.8. A simplified schematic of this reduced sysizm is shown in Figure 9.12.
Using the same arguments used in conjunction with Figures 9.5 and 9.8, it follows that for perfect

* -
control G¢ = Gyp.

40



Figure 9.10: Feedback Control +/— Process Model

ysp e u
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y

Figure 9.11: Model-Based Feedback Control
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Figure 9.12: Simplification of Servo-Regulator and Model-Based Control

9.3.6 The Advantages of Model-Based Control

There are several advantages to using model-based control, which follow from the preceding
developments.

o the basic principles of open-loop servo anvi feedforward control led to Figure 9.8

with a model-inverse controller (ie. G¢ = G;)

. the standard fzedback control scheme in Figure 9.9 can be re-arranged to the form
shown in Figure 9.11 which for the ideal case of perfect modeling (i.e. Gm = Gp)
reduces to the simplified form of Figure 9.12.

. Figure 9.8 and 9.12 are equivalent so it can be concluded that the basic principles of
conventional servo, feedforward and feedback control are incorporated in Figure 9.12
for the ideal case of perfect modeling.

The simplicity of Figure 9.12 make it easy to derive the following characteristics for this
cc-ntrol scheine:

(1)  The response of the controlled variable, y(k), to changes in the setpoint, y,(k) and/or
the disturbance/load. L(k). is given (in transfer function notation) by:

¥=1GpGelyg + [1- GpGeIL ©24)

Note that (9.24) is much easier to derive and interpret than the closed-loop relationships that apply
to the conventional feedback control scheme of Figure 9.9.
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(2) The basis for designing the best possible controller is obvious, (i.e. make G; = G;).
The design procedures for conventional feedback (Figure 9.9) are more complex and the controller

for best possible control performance is not as obvious. Also note that model-inverse control, G;

= G}, give perfect control in the sense that:

Y=Yy Vypand V L 9.25)

(3) The system in Figure 9.12 is obviously stable if both G; and Gp are stable. There is

no need * use stability analysis procedures typically applied to conventional feedback control
systems.

(4)  The stability and performance analysis for Figure 9.12 is not complicated if
constraints are added to the controller output, u(k). This is important because in practice, u(k)
always has finite upper and lower bounds (i.e. a control valve must operate between the limits of
0% and 100%).

The ideal case of perfect modeling has been assumed throughout this discussion. However,
in reality this is seldom the case. When Model-Process-Mismatch (MPM) is present (i.e. G #

Gp) then the model-based controller of Figure 9.11 can be unstable even if G: and Gp are stable.

However, it can be shown that for most systems a filter, f, exists such that replacing G: by G: fin
Figure 9.11 will result in stable, but less than perfect control. Because fuzzy models are not as
amenable to analytical analysis as transfer functions, it is recommended that the design of the
proposed controller be made on the tasis of perfect modeling and that the final tuning of the
controller and the analysis of control performance be done by simulation and field trials.

Although the arguments presented in this chapter are mainly heuristic, it is reasonable to
conclude that:

the model-based control structure shown in Figures 9.11 and 9.12 is appropriate
and desirable for fuzzy, as well as conventional control systems.

The next step in this development is to show that the model-based control system of Figure
9.11 is berter than conventional feedback control for processes containing time delays. This will be
done in the next subsection by analyzing the Smith predictor control scheme. Extending the model-
based control system of Figure 9.11, to include predictive control systems will be done following
the discussion of Smith predictors.
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9.3.7 Time Delay Compensation using a Smith Predictor

Now consider the model-based feedback control illustrated in Figure 9.11, again. Perfect

control for setpoint and load disturbances requires model-inverse control (i.e. Gg = G;). This is
not physically possible if the process contains a time delay since a time delay is not invertable.

The Smith predictor technique, shown in Figure 9.13, handles dead time processes by using

two process models, one with dead time, Gy, , and other without, G:n. Note that for the ideal
case with perfect modeling r(k) = L(k) (as in Figure 9.11) and Figure 9.13 reduces to the standard

feedback control scheme of Figure 9.9 with the controller, G, designed for a process without
delay, G:n. The controller cutput is sent to the actual process, Gp, as well as to the delay-free

model, G:n . Therefore the actual process output is a delayed version of the output of G:n or

conversely the output of G:n is a prediction of the actual plant output (assuming L = constant
over the period of prediction).

To see the similarity of the Smith predictor and the model-based controllers, discussed
earlier, compare Figure 9.13 versus Figure 9.10. The two figures are the same except that in

Figure 9.10 both G, transfer functions are assumed to be identical. In model-based control

(Figure 9.11) perfect control required that G; = G;. However, as stated earlier, if the process

contains a pure time delay the inverse is not realizable. The simplest approach for model-based
control (Figure 9.11) is to neglect the delay and simply invert the process transfer function without

the delay (i.e. G: = [G:n ]"). The Smith predictor design is equivalent. This is shown by

combining G, and Gy, in Figure 9.13 into a standard feedback loop as was done when reducing
C m

Figure 9.10 to 9.11. The performance of a standard feedback loop improves as the controller gain
increases. As the controller gain approaches infinity the control becomes perfect in the sense that

Y=Y This means that Figure 9.13 reduces to Figure 9.11 with G: = [G:n ]'l and hence the

Smith predictor and the model-based controller are identical. The importance of this discussion is
to show how model-based controllers compensate for process time delays through predictin.
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Figure 9.13: Smith Predictor
(~ = estimate; d = time delay; k = k-th sample instant)

9.3.8 Model-Based Predictive Control

Model-based predictive control (MPC) includes a very broad classification of control
techniques that have evolved in the control literature over the past 2 or 3 decades. These include
Model Predictive Heuristic Control (MPHC) (Richalet et al., 1978), Dynamic Matrix Control
(DMC) (Cutler, 1980), Internal Model Control (IMC) (Rivera et al., 1986) and Generalized
Predictive control (GPC) (Clarke et al., 1987). However, the basic concepts required for
derivation of the fuzzy controller in this thesis can be deduced from the simplified representation
shown in Figure 9.14,

The basic structure of Figure 9.14 is equivalent to that of Figure 9.13 (Smith Predictor) and
Figure 9.10 (which is equivalent to the conventional feedback of Figure 9.9 and the model-based
controller in Figure 9.11) except that a single block with two outputs is used to represent the
model rather that two separate blocks. (The filter is discussed below) This leads to the correct
Sunctional interpretation but is obviously not consistent with the conventions for block diagrams.

The key difference in predictive control is that the control error e(k+d+1) used by the
controller is based on future and/or predicted values of the setpoint, yg,(k+d+1), and the process

output, ¥ (k+d+1), rather that the current values ysp(k) and ¥ (k) used in the figures preceding
Figure 9.13. (Note that k represents the current time or current control interval).
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A very simplified explanation, of predictive control is as follows:

(1) One step ahead predictive control based on e(k+1) is required for discrete control
systems (e.g. those implemented using a digital control computer) because the output, y(k), of the
practical process does not respond instantly to changes in the input u(k). More specifically, the
effect of a change in the process input at the k-th control interval is not observed (measured or
predicted) until the (k+1)-th control interval. Therefore, for perfect control the controller must

calculated, u(k), such that ¥ (k+1) will equal y,(k+1).

(2) Multi-step-ahead prediction is used for systems with time delays since by definition
the effect of a change (e.g. step) in the process input does not affect the output until after the delay,
as discussed in the previous section on Smith predictors (Figure 9.13). In terms of discrete

controllers this means that the best possible output control is to calculate u(k) so that Y (k+d+1) =
Yep(k+d+1).

(3)  Multi-step ahead predictive control is also used to give more practical (detuned, sub-
optimal) control. Consider a step change in setpoint at time k on a process without delay operating
at steady state. The best possible output control would be achieved with one-step-ahead optimal or
deadbeat control such that y(k+1) = ysp(k+l). However, this type of control is often impractical.
For example, the required control action, u(k), could be greater than available (i.e. exceeds the
upper limit on the input) or simply larger than desired for operational reasons. Obviously a much
smaller control change, u(k), would be required to achieve a given setpoint change in (d+1) control
intervals rather that in a single control interval and the output would change more slowly. The

objective of the controller is therefore to calculate u(k) such that ¥ (k+d+1) = y(k+d+1), where d is
the tuning parameter.

Note that more advanced controllers can be formulated that make it possible to specify the
path or trajectory that the output foilows as it moves from the current value, y(k), to the desired
value, y(k+d+1). Similarly, it is possible to formulate optimal controllers that calculate a series of
control moves {u(k), u(k+1), ..., u(k+Nu)} such that the process output follows the desired
trajectory. Most of tie-¢ multi-step and/or multivariable discrete controllers use an optimization
algorithm to calculz:e the control action, u(k). However, as noted in the concluding section to
Chapter 8, numericzi optimization or matrix inversion does not appear to work well in the fuzzy
domain. This thesis therefore focuses on the (single-point) d-step ahead predictive controller.

The: filicr shown in the feedback path is added primarily to achieve the following two
objctives:

(1) To convert the scalar residual, r(k) (which under ideal conditions of perfect modeling
is equal to L()) into a prediction of the residual at time (k+d+1). In principle this could be done
using single series forecasting (time series) techniques based on the known and past values {r(k-
i+1),i=1,2,3,...}. However, in practice it is common to simply assume that r(k+d+1) = rk).

(2)  To prevent the controller from over-reacting to noise in the measured output and/or to

the effect of model process mismatch. For this purpose a simple low-pass filter or averaging
operation is usually adequate.
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Figure 9.14: Predictive Control at Control Interval &
(~ = estimate; d = time delay; k = k-th sample instant)

rk)

From the preceding discussion it is obvious that model-based control techniques require a
process model for use in the output prediction and/or control calculation steps. For simple, time-
invariant processes it may be sufficient to derive a suitable model a prior and include it, for

example in the G, block of Figure 9.14. However, in many practical applications it is necessary
to update the model on-line due to changes in operating conditions, raw material, product
specification, etc. In principle, this is easily accomplished by adding an identification block to
Figure 9.14. As shown in Figure 9.15, the identification block supplies an updated process model
to the prediction and control blocks, This can be done at some regular multiple of the control
interval or on an as required basis.

Figure 9.15 is the basis for the formulation of the Fuzzy Predictive Control algorithm

developed as part of this thesis. The next section describes the fuzzy control algorithm and leads to
Figure 9.17 which represents the fuzzy-equivalent of discrete controllers described by Figure 9.15.
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Figure 9.15: Self-Learning Predictive Control
(~ = estimate; d = time delay; k = k-th sample instant)

9.4 Fuzzy Predictive Controller Design

9.4.1 Introduction

A brief functional description, in conventional terms, of the fuzzy controlier that is developed
in this section is:

An adaptive, SISO, d-step ahead predictive controller based on a first order plus
time delay relational fuzzy model.

The design of the proposed Self-Learning Predictive Fuzzy Logic Controller of this thesis
parallels that of classical and modem control techniques as discussed in the previous sections. The
specific design of the fuzzy logic controller developed here assumes that the process variables, both
input and output, are discrete and control optimization is performed through the minimization of the
discrete scalar dis-ance:

lysp — y (9.26)

This controller is for applications with Fuzzy Process Dynamics, as defined in Section 9.2.
However, this does not preclude the use of tihe proposed controller for systems with Fuzzy Process
Input and/or Fuzzy Process Measurement.
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The self-leaming portion of the control scheme can be accomplished through the usc of any
of the identification algorithms discussed in Chapters 7 and 8. The identification algorithm is a
separate module from the controlier and should be chosen for model accuracy for the specific
system being controlled. However, leaming of the process information should be in the form of a
fuzzy first order plus delay model consistent with this controlier development.

9.4.7 . rocess and Prediction Models

For this discussion of the controller design, define ue U and ye Y as the discrete input and
output (i.e. uandy are non-italic), respectively. And, let u={u;li={ 1,2, ....m}}e U and y={y
11={1,2, ..., n}}€ VY be the fuzzy spaces of input and output (i.c. u and y are ifalic), respectively,
all defined on the finite fuzzy universes of discourses indicated.

The Process Model is assumed to be the first order plus delay, T, fuzzy statc model
y(k+1) = Rey(k)ou(k—T) 9.27)

where °cEOD

o stands for the family of composition (i.e. max-min, max-product, cic.)

T is the time delay

The Prediction Model is alse a first order plus delay, T, fuzzy statc model which, since there
is no explicit disturbance modeling, is obtained by simply shifting the time index in 9.27).

y(k+T+1) = Rey(k+Tt)ou(k) 9.28)

9.4.3 Calculation of the Controller Output

For a deterministic system, a 1-step ahead predictive model is a function of the current input
and the past known inputs.

y(k+1) = fu(k), uk-1), u(k-2), ...) (9.29)

The basic approach used in model-based predictive control is to develop a model such as (9.29)
that relates the process input and ouiput values. The future predicted output value is then set eqgual
to the desired or setpoint value at that future time. The current control action, u(k), is calculated so
that the predicted output will be equal to or close to the desired value. For a N,-step ahead
predictive model, the number of unknown inputs increases to N,

y(k+N,) = fu(k+N,~1), u(k+N,-2), ..., u(k), uk-1), ...)) (9.30)

and at the k-th time instant, u(k+N,~1), u(k+N,~-2), ..., u(k) are all unknown.
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Some model-based predictive controller solve for all the elements of the future control vector
{u(k+N,-1), u(k+N,-2), ..., u(k)} using a search or estimation algorithm. However, the simplest
approach, and the one used here, is to calculate u(k) assuming that the controlier output is held
constant, {u(k+) =uk), i=1, 2,....N~1}. In practical applications, the control calculation is
repeated at every control interval and hence the actual controller output m2y change at each
interval.

In practice, N, represents that actual process delay, T or d, pius the unit delay associated
with the discrete process, plus an additional prediction added to detune the controller. In order to
calculated -ongest possible control action N, = 7+ 1 in the following controller development.

In the ideal model-based controllers, discussed in Section 9.3, if G = G; theny = y,, for

all time which represents perfect output control. However, in practical control algorithms it is
necessary to include a tuning parameter to accommodate individual user preferences, model-
process-mismatch, noise, robustness etc. The approach adopted for the fuzzy predictive controller

being developed was:

(1)  to calculate the mean-level or steady state control action, ,,(k), which will result
in y(k+i) = y,p(k+i) for large values of i, (i.e. at steady state). This equates to the
smallest single-step control action that will achieve the desired setpoint.

(2) to calculate the one-step-ahead or deadbeat control action, Uy, (k), that will
drive the output from its current state to the desired state in one control interval,
yk+1) = y,p(k+l). This is the strongest possible control action.

(3) to calculate the actual controller output as a linear combination of u,,,(k) and
“dync(k)

u(K) = 0ty , (k) + (1-0) gy (K) ©.31)

so that the user can specify conservative, mean-level control (o = 1), aggressive
deadbeat control (o = 0) or any combination (0 <o < 1).

The procedure for calculating the controller output is illustrated by Figure 9.16 and
discussed in the following three subsections.
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Figure 9.16: Flow Diagram of the Predictive Controller
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9.4.3.1 Calculation of the Mean-Level
Control Action, Uy,

The mean-level control action, ug,(k), is calculated using a relational gain matrix,
G(y(k+t+1), u(k)):

Ugn(k) = G°y,p(k+t+1) 9.32)

Thus the discrete gain input, ug,;,(k) = defuzz(U g, (k) results in an output trajectory that is equal
10 the natural open-loop step response of a stable process to reach the setpoint. The output
response from this input represents the slowest or most conservative control move and is usually

the lower limit of acceptable responses.

9.43.2 Calculation of the One-Step-Ahead or
Deadbeat Control Action, Ugy,c

A second value for current unknown input, u(k}, is calculated using a predictive fuzzy
algorithm based on the identified relational matrix, R, so these calculations take into account the
process dynamics. The strategy for the development of this dynamic input calculation, B,y (k). is
that the output should move from the current state (o the desired setpoint state within one control
interval. Thus the output response is considered to be fast or deadbeat, and is therefore the upper
limit of possible responses. The development of these calculations is as follows.

Information available at time k includes the process model and the predictive model
[Pedrycz, 1981}:

Process Model: y(k) = R, . ,oy(k-1)eu(k-T-1) (9.33)
Predictive Model: yk+t+1) = R, _ ey(k+T)ou(k) 9.34)

where R, ., istie model identified at the k-th time instant using y(k), y(k-1), and u(k-t-1). The
predicted outpu: in equation (9.34) is set to the required setpoint value,

yk+t+l) = y,p(k+1:+1) (9.35)

and u(k) is determined. Since y(k+7) is unknown, equation (9.34) must be re-written such that
y(k+t+1) is dependent on known values, that is:

ylk+t+1) = fy(k), u(k) ). (9.36)

252



The required calculations are:

y(k+1) = R,_,cy(k+‘t—1)°u(k—l) 9.37)
yk+t-1)=R 22y k4 T-2)eu(k-2) (9.38)
yk+1-2) = R,_3°y(k+1—3)°u(k—3) (9.39)
y(k=1) = R, ey(k)ruk-1) (9.40)

Substituting equations (9.38), (9.39) etc. into equation (©.37):

yk+t) = [R, ouk=DJe[R, uk=2)]  °..o[R, cuk-Dl yk) (9.41)
yk+t) =K, °K, 0. 2K, ey(k) (9.42)
where K,, = R, cu(k-1),etc. are all known values.

Combining equation (9.42) with equation (9.34):
yk+t+1) = K, oK, 0. oK, cy(k)eu(k) (9.43)

as required. Since y(k) and the K's are all known at the k-th time instant, efficient on-line
calculations can be obtained by combining these values once at the start of the sampling interval
such that:

yk+t+1) = Qou(k) (9.44)
where 0 =K, °K,»...°K,2yk)

The results from Chapter 8 show that minimizing the fuzzy control error does not minimize
the discrete control error:

min | y,,(k) - y(k) 5 miniy, k) - y k&) (9.45)

Because of this, the calculated value of the fuzzy dynamic input is adjusted iteratively by

minimizing the discrete difference, ly,,(k+¢+l) ~ § (k+t+1) — r(k)l at each step. The residual, r(k),
as implied by Figure 9.14 and 9.15 includes the structured disturbance, L(k), the measurement
noise, and the model-process-mismatch. In the proposed fuzzy controller, the filtered value of r(k)
is calculated from:
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r (k) = 1K) = § R + (1) (k) — § () = (3, p(k+ 41— ¥y (ktt+1)) (9.46)

In equation (9.46), the first difference, y(k) — ¥ (k), would be equal to the disturbance, L(k), if the

modeling were exact and the second difference, y,,(k) - ¥ (k), is a measure of the prediction of
modeling ermor. The parafi..er 0 <m « 1 is chosen by the control system designer to determine th-

weighting of the disturbance versus the modeling error in the calculation of r(k). The third
difference is added to improve the prediction capacity of the fuzzy logic controller. The value

y (k+t+1) is the defuzzified value of the prediction estimate:
k1) = R, .. cy(keu(k-1) (9.47)

The fuzzy input L 4, (k) is calculated by iteratively searching for the process input that

minimizes the discrete error, Iyw(k+t+1) — Y (k+T+1) - r(k)l. The search is made by adjusting the
values of the individual components of the fuzzy input vector as a function of the discrete error.
This calculation is performed as described below.

Assume that the control application has a fuzzy input vector of dimension 5 with an initial
valuc of {0 a b ¢ 0]. The initial value could be equal to U, (k) or the previous Uy, (k-1). Let

the discrete error be, e = y,p(k+t+1) — ¥ (k+T+1) + r(k). Then:

u(k) = {0 a—fe) b c+fle) 0} ife>0 (9.48)
u(k) = {0 a+Re) b c—fe) 0} ife<O (9.49)
where fle) = s-ylel (9.50)

41 if ulT =2y7T
and 5= (9.51)
-1 if ul =2y

y21 is a tuning parameter for the convergence rate.

The adjustment of the fuzzy input vector, Uy (k), by equations 9.47 to 9.49 is carried out

iteratively until the error, e, is sufficiently small but with a maximum on the iterations per control
interval (set to 10 for examples in this thesis).
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The process input calculated by this iterative algorithm may not be aggressive cnough for
the process to reach the setpoint by the next step. This is mainly due to the poor predi .ive
capabilities of the relational matrix for large N,. To compensate for any shortfall that may r_..alt
from the calculated discrete input, u(k) = defuzz(u(k)), an input tuning factor, a(k), is in’ oduced,
based on the final error, e, of the iterative input procedure.

ack)=1+ f-lel (9.52)

where 0 <P <1 determines the aggressiveness of the input tuning factor.

If the final predictive error, e, is very small, the tuning factor a(k) = 1, and there is no adjustment to
the input value that was obtained from the iterative search algorithm.

The input tuning factor, a(k), is applied to the change in the input, Au(k), defined by:
Au(k) = u(k) — u(k-1) (9.53)
The final calculated dynamic input, U, (k), is calculated:
Uyync(K) = uk—1) + a(k)-Au(k) 9.54)

where u(k—1) is the control action actually sent to the process at the previous control interval. The
calculated controller output value, u,., (k). represents an aggressive 1-step ahead deadbeat type
control move.

Song et al. [1993] also use an aggression or reinforcement factor similar to a(k) which is
applied to the control action in the next cycle. For their PI controller design, these authors computce

the reinforcement from a fixed look-up table based on error and change of error. The final PI
design is tested with a second order plus dead time process, where T= 1, with good results.

9.43.3 Calculation of the Final Controller Output

The calculations of u,,n(k) and u‘,m(k) are now cor. :7lete. The final input value to be
implemented in the process is a weighted average of the gain (mean-level) input, v, (k). and the
dynamic (deadbeat) input, Uy (k) and is therefore a balance between the two input extremes.

(k) = 0ty () + (1-00) Ugpy(K) 9.55)

where 0< o<1 and is a function of the accuracy of the predictive model.
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94.4 s ~matic of the Fuzzy Predictive Controller

A <implisied block diagram of ° : iterative algorithm to determine the process input is
illustrated in Figur ".17. The iterative calculations take place inside the dashed block at each
control interval.

The niext section details the steps of the entire fuzzy predictive controller.
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Figure 9.17: Iterative Control Algorithm
(discrete / fuzzy, sp = setpoint, ~= estimate)
(d = 1 = delay)
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9.5 Fuzzy Predictive Controiler Algorithm

The final block diagram of the fuzzy predictive controller is illustrated in Figure 9.18.

Figure 9.18 is virtually identic

al to the self-leaming predictive control scheme of Figure 9.15.

except that the modules for fuzzification and defuzzification have been include for completeness.

Each component of this

controller design has been investigated separately, in the various

chapters of this thesis, and analyzed for theoretical soundness and applicational practicality. These

investigations include:

Fuzzification

Identification

Modeling

Controller

Defuzzification «

a fuzzification methndology to ensure referential set completeness
and compatit 1ty between the input and output fuzzy data

_ondw entification alg rithm that is computationally efficient
adabl . tectand adapt: process changes

a first order plus time delay model developed using relational
equation 1s the ' isis for the controller design

the max-product composition operator is used as the fuzzy
inf renc ing mechanism based on its superior performance

the controller design is that of a fuzzy k-step predictive controller
it is composed of 5 parts:

(1) Initial calculations

(2) Identification

(3) Gain Input Calculations

(4) Dynamic Input Calculations

(5) Weighted Average Input Calculation

the algorithm for defuzzification is the commonly used fuzzy
area method

Step-by-stcp detail of the controller algorithm is available in Appendix 4. Application of this
controller algorithm, under various process situations, is demonstrated in Chapter 10.
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9.6 Controller Contributions

This proposed controller design is non-apnlication specific and therefore applicable te a wirle
range of open-loop stable industrial prcblems. . .. main contribution associated with the
completion of this thesis on self-learning predictive fuzzy control i< a industri~*v viable controtler
design, applicable to areas of fuzzy technology, suct as water quality ¢ atrol, PO SSINg,
or building environmental controls, where goals are not quantitatively detined. i uestinguishing
features of this design which characterize the contribution are:

() useofa relational-based model which is superior to the traditional rule-bascd modcl
in that it permits numerical and analytical analysis

(i) employment of the max-product compositional operator which has been showr to
provide better results, in a least squares sense, than the traditional max-min
compositional operator

(iif)  incorporation of self leamning or adaptive identification capabilities

(iv) predictive model-based controller structure

(v)  ageneralized design which is not application specific and contains enough flexibility
so that it can be easily modified for different classes of applications

The development and integration of these features results in an original fuzzy controller
design based on relational matrices. This work is a contribution to the area of fuzzy control in that
it is model-based (as opposed to a relational matrix formulation of PI control) and parallels the
development of discrete model-based control.
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CHAPTER 10 SIMULATION RESULTS

In our view, it is this fuzzy, and as yet not well-understood, logic that plays a
basic role in what may well be one of the most important facets of human thinking,
namely, the ability to summarize information.

[Zadeh, 1973]

10.1 Introduction

This Chapter presents the simulation results from applications of the predictive fuzzy logic
controller developed in Chapter 9. The controller is applied to several processes situations (i.e.
high order overdamped and underdamped; inverse non-linear and inverse overdamped with dead
time systems). Results of these simulations clearly show that the predictive controller is capable of
good control, in the least squares sense, for the test cases used. Additionally, the predictive fuzzy
logic controller is compare against a PI controller for a highly non-linear process. The results of
this comparison show that fuzzy logic is most applicable to arcas where conventional contsol fails.

10.2 The Fuzzy Model

A first order fuzzy state space model is used for the identification and modeling regardless of
the order of the actual prezess. Let u={u;li={1,2, ..., m}}€ U, x={xlj=1{1.2, ... n}}e X, and
y={y11={1.2, .., n}}e Y be the fuzzy spaces of input, state and output, respectively, all defined
on the finite fuzzy universes of discourses indicated. Then for a series of N data points:

¥ = X 1%Usca°R (10.1)
where Xg.1 = Vi1
and 1 is the time delay.

Since the data generated from the simulation studies is discrete, it must be fuzzified and the
resulting controller output defuzzified. Partitioning of the data is subjective [Pedrycz, 1983, Xu er
al. 1987], however p = S referential fuzzy sets (or clusters) appeared adequate for both the input
and the output. The shape of the referential fuzzy sets was chosen to be isosceles triangles, which
satisfy the requirements of being normal and convex. These fuzzy membership functions were
place evenly over the input-output space so that the space was completely covered and the
referential sets had a 50% overlap.
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The defuzzification formula was chosen to be the weighted average of the center of area
method which uses all the information in the fuzzy output vector.

;Cs'u;
= Zu.-

(10.2)

where C; is the center of area of the i-th reference fuzzy set

p;  isthe degree of membership in the i-th reference fuzzy set

The minimization criterion used to judge the performance of the controller is based on the
difference between the defuzzified or discrete output and the output setpoint and is defined in
equation 10.3.

N
Y lys, =F,1°
J, = E— (10.3)
N-1-1
where g=1,2

10.3 The Simulation Data

Four process test cases are used to evaluate the fuzzy logic predictive control algorithm.
These include an overdamped process, an underdamped process, a non-linear negative steady statc
gain process and a negative steady state gain process with dead time. The discrete models used for
these simulations are listed in this section along with additional information about the individual
processes (i.e. noise, disturbances). The simulation results are discussed later in Section 10.5 with
Figure 10.5 to 10.21.
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10.3.1 Overdamped Model

Since most chemical processes are high order and over-damped, the test data for this
scenario has been generated from an arbitrary second order over-damped process with unit gain. A
unit gain was chosen for this process to simplify fuzzification and defuzzification since the same
membership function can be used for each calculation. There was no time delay for this test data.

The overdamped process model is:

;=8 Y B Vot b,u,+bu, (104)

where a, =0.8518
a,=-0.097
b, =0.1672
b, =0.0779

The open-loop step response of process (10.4) is shown in Figure 10.1

0 50 100 150 200

t ————>

Figure 10.1: Open-Loop Step Response of the Overdamped Process
(Actual ; Setpoint - - - =)
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10.3.2 Underdamped Model

In order to show the flexibility of the controller, a fast-responding underdamped sccond order
process with unit gain was then tested. Again, rio time delay was added to this data. The
underdamped process model is:

;=8 Yt Yo t bu,+bu, (10.5)

where a=15
a,=-05
b, =-0.5
b,=0.5

The open-loop step response of process (10.5) is shown in Figure 10.2

08} l
0.6 ]
y
0.4} 1
0.2+ \NA \f\'w‘ LVW -
0 . . .
0 50 100 150 200

t ———>

Figure 10.2: Open-Loop Step Response of the Underdamped Process
(Actual ; Setpoint - - - -)
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10.3.3 Nonlinear Negative Gain Model

A highly nonlinear negative steady state gain model was used for the third example. The
model is a first order model with a hyperbolic input, followed by a sigmoid function [Herndndez
et al., 1991] so that the system is physicaily bounded in [0, 1].

y(k) = o(a,y(k-1) + b,sinh(u(k-1))*) (10.6)
where a, =05
b, =0.75
The sigmoid function is:
o(x) = -———l—-— 10.7;
1+ exp(—x) )

The open-loop step response of process (10.6) is shown in Figure 10.3

0.5 T T T
04l i ! ]
y 03 ] n___\’__’
0.2} : : | i
0.1 L L \
0 50 100 150 200

t ————>

Figure 10.3: Open-Loop Step Response of the Negative Gain Process
(Actual ; Setpoint - - - -)

No noise or disturbances were added to this system in order to demonstrate the accuracy of
the fuzzy logic controlicr.
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16.:.4  Shell Process Model

The Shell process dz s - the distillate bottoms impurity, made available for the 1992
Canadian Chemical Engines: . ’rocess Identification Workshop [Cott, 1995(a); Arifin er al..
1995; Bailey, 1995; Chan, 1993, Tott, 1995(b); Banerjee et al., 1995}, was also used for the
control application. This data is particular applicable since the problem has proven io be realistic
arid relcvant from a process point of view. The significant features of this data are that the process
has a negative, mildly non-linear steady-state gain relationship between the input and output data
and the length of the time delay is 6 sampling instances. The process model is

500000
X(k) = 0.0765- + 0.9235-X(k-1 10.8
® Q(k-7)-1500 ®D (10-8)
where X is bottoms impurity

Q s the reboiler duty

The open-loop step response of process (10.8) is shown in Figure 10.4
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Figure 10.4: Open-Loop Step Response of Shell Process
(Actual ; Setpoint - - - -)
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104 Tuning and Implementation

There are six tuning parameter associated with the fuzzy predictive control.

o  varies the weighting between u_,, and u,,, for the final value of u
[Egn. 9.31].
B varies the intensity of the tuning factor a for u,,,. {Eqn. 9.52].

n a filter parameter that varies the weighting between current actual error
and predicted error [Eqn. 9.46).

€ is the difference tolerance (i.c. ly,, — ¥!< €) for testing the convergence
of the u,,,, search algorithm and identification of G [See Appendix 4 -
Section (4) - Dynamic Input Calculations and Section (2) - Identification,
respectively].

Y is the tuning factor for the iterative input search algorithm [kgn. 9.50).

@ afilter parameter that varies the length of the window over which the
errors are averaged [See Appendix 4 - Section (3) - Gain Input
Calculations].

The first three parameters regulate the smoothness and accuracy of the control. These
parameters required the most tuning in order to obtain acceptable control. The last three
parameters were arbitrarily set and maintained at the same value for all the simulations performed.
In other words, no tuning was performed on the parameters &, ¥, and . That is not to say that they
can not be tuned, just that the values for these parametery, determined during preliminary testing,
were found to be adequate for all the simulations presented.

Two relational matrix models are required for this predictive controller, the dynamic matrix
model, R, and the gain matrix model, G. Since the gain model is a steady state model which relates
steady state input to steady state output, the dimensions of this relational matrix can be larger than
the dynamic matrix model. For example an 11x11 two dimensional gain model requires less
computation than a 5» 55 three dimensional model. With the increased size of the gain model
there is an increase in of accuracy for the controller, particularly when the process is close t° the
setpoint.

Additionally, when the gain model, G, is identified by an averaging technique then the same

model is valid for prediction of either input or output. The averaging identification technique for
the gain matrix is:
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G (Upr1, Y1) = N e (10.9)
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1spst
1 if u-y>0
where KWy = (10.10)
0 otherwise
Because of the commutative property of the product operation:
Gu,y)=G'(. v (10.11)

which is consistent with Definition 6 of Chapter 5. Thus the same model can be used to predict the
steady state input:

u=Gu, yyry (10.12)
or predict output:
y=Guyru (10.13)

The product operation in equation (10.10) can be replaced with the minimum operation and the
preceding analysis would still be valid since the minimum operation is also commutative..

Finally, for tuning processes with a fast response the tuning factor a(k) for the dynamic input
calculation, u,,,,(k), can be adjusted so that it is not as aggressive as required for overdamped
process. Thus the control algorithm line:

ak)=1+Ple (10.14)
can be redefined for underdamped processed by replacing the 1 by 0. So that:
a(k) = Ple ) (10.15)

This adjustment reduces the aggressiveness of the calculated input and therefore reduces overshoot.
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10.5 Simulation Results

The following graphical results are presented for the 4 test cases discussed in Section 10.2.
The 4 test cases were evaluated for both the max-product and max-min compositions. The tuning
objective for these simulations was to minimize the J 7 (g = 1 or 2) values, for each composition,

while maintaining a smooth (i.e. non-oscillatory) control action.

For completeness and reproducibility of this work, the complete solution for the Shell
Process Model (Section 10.5.4) is included in Appendix 5.

10.5.1 Overdamped Process

Using the overdamped process model of equation (10.4), white noise with standard deviation
o = 0.002 was added to the process output. A step disturbance of 0.03 output units was added at
simulation time instances 110 and removed at 150. The disturbance profile for the overdamped
process is shown in Figure 10.7

Simulation results using the overdamped process disturbance model show that the max-
product and max-min compositions produce similar results, with the max-product composition
being slightly better. The minimization criteria results for the max-product composition are J, =
0.0348 and J, = 0.0074 and for the max-min composition are J, = 0.0354 and J, = 0.0078. This
simulation example was tuned so that the process reached the setpoint quickly (i.e. <open-loop
response) while minimizing the overshoot. Control of the overdamped process encountered some
difficulty with the disturbance step change, as shown in Figures 10.5 and 10.6, by a slight
oscillatory response during the period of this disturbance (i.e. sampling instances 110-150).
However, the self-leaming during this process disturbance resultzd in the reduction of the
oscillatory behavior with time.

10.5.2 Underdamped Process

Using the underdamped process model of equation (10.5), white noise with standard
deviation 6 = 0.002 was added to the process output. A step disturbance of 0.05 output units was
added at time instance 110 and removed at 150. The disturbance profile for the underdamped
process is shown in Figure 10.10

For the underdamped process disturbance model the max-product composition results were
again better (i.c. fewer/smaller overshoots) with J; = 0.0226 and J, = 0.0015 for the max-product
composition versus J; = 0.0260 and J; = 0.0018 for the max-min composition. Tuning of this
model, as shown in Figures 10.8 and 10.9, was conservative in order to minimize the overshoot of
this very responsive process. The controller response to the step disturbances (at time 110 and
150) was less oscillatory than for the overdamped process discussed in Section 10.5.1. This
improvement in the oscillatory response is attributed to the less aggressive controller tuning
required for this process.
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Figure 10.5: Control of Overdamped Process with Max-product Composition
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Figure 10.6: Control of Overdamped Process with Max-min Composition
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Figure 10.8: Control of Underdamped Process with Max-product Composition
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Figure 10.9: Control of Underdamped Process with Max-min Composition
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Figure 10.10: Noise for Underdamped Process
(White with change in mean)
(o =0.002; step = 0.05)

10.5.3 Non-linear Negative Gain Process

The strength of fuzzy logic controllers is that they can control processes which cause
difficulties for conventional controllers. The highly non-linear inverse relation of the process model
tested in this section is illustrated in Figure 10.11. This process was controlled without noise so
that the accuracy of the controller could be demonstrated.

For the non-linear process model of equation (10.6 and 10.7) the results of the max-product
controller are better than for the max-min controller, as shown in Figures 10.8 and 10.9. For the
max-product composition, J, = 0.0069 and J, = 3.632><10'4 versus J; = 0.0079 and J, = 4.140x
10~%for the max-min composition. The tuning for this test case was not aggressive as indicated by
the lack of overshoot and a closed-loop process response slower than the open-loop response of
Figure 10.3.

During steady state operation the gain model, G, and dynamic model, R, are required to
calculate a process input that minimizes the process output error (i.e. lysp —y|). Asshown during
the steady state intervals in Figures 10.12 and 10.13, the calculated process input does not result in
the exact process output required to track the setpoint. This is indicated by the offset between the
process output and the setpoint. However, this discrepancy is to be expected since the model is
fuzzy or non-exact. Yet even for this highly non-linear process, the fuzzy model was able to predict
and control over the entire operating range, shown in Figure 10.11.
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Figure 10.11: Non-linear Negative Gain Process Model
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Figure 10.12: Control of Non-linear Negative Process with Max-product Composition
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10.5.4  Shell Process

For the Shell process model [Cott, 1995(b)] the process coloured noise, described in the
paper by Cott [1995(b)] was not used as the distortion from the noise did not allow for adequate
assessment of the capability of the controller. Instead white noise was added with a standard
deviation, 6 = 1.0. A disturbance step of 5 output units is added at simulation time instance 75 and

removed at instance 325. The disturbance profile is shown in Figure 10.14.

For the Shell process disturbance model, results based on the performance indices again
show that the max-product composition is better than the max-min composition, with J, = 25.445
and J, = 1.289x10° for the max-product composition and J, = 26.979 and J, = 1.450%10° for the
max-min composition. The controller performance for the max-min composition is more oscillatory
compared to the max-product composition, as shown in Figures 10.15 and 10.16. The max-min
controller also has more difficulty controlling the step disturbance (i.e. sampling instances 75-

325).

Although the process output does not track the setpoint exactly, for the two approaches using
the Shell Data, the closed-loop response time has been significantly reduced versus the open-loop
response of Figure 10.4. Offset from setpoint is due to the step disturbance and slow leaming of
the changed operating conditions on the part of the identification algorithm, as well as reflecting

inaccuracies in the gain matrix, G.
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Figure 10.14: Noise for Shell Process

(White with change in mean)
(o = 1.9; step=5.0)
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Figure 10.15: Control of Shell Process with Max-product Composition
(@=05p=20;1=03; €= 0.01;y=3.0; 0=10)
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Figure 10.16: Control of Shell Process with Max-min Composition
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10.6 Fuzzy Control vs. Conventional PI Control

As mentioned previously, fuzzy logic control is ideally suited to those situations when
conventional control methodologies fail. An example of this would be control of a highly non-
linear process. This section compares the control results of a non-linear process using the fuzzy
logic controller developed in this thesis versus a PI controller.

The highly non-linear process chosen for this comparison is such that there are 3 areas of
gain, low, medium and high, as shown in Figure 10.17. The actual process model is defined by:

yk) = o(ayk-1)+ b,sinh(O.S-u(k-l))‘) (10.16)

where a, =001
b, =10.0

The sigmoid function is as defined as:

2
= 10.1
o() = 0,995 (1+ exp(—x)) (1017

The PI controller configuration used for these studies is:

Au = Kc[(e“ —en_,)+Qfe,,] (10.18)

where At = one sampling interval and K and 7; are the proportional and integral tuning constants
respectively.

For this study, the PI controller was initially tuned for the medium gain region of the given
process and the controller was then required to provide servo control over the entire process range.
Figure 10.18 shows the results of this application. Clearly from Figure 10.18(c), good control is
evident in the medium gain region. Figure 10.18(b) illustrates the slower yet stable control in the
low gain region. However, control in the high gain region is unstable, as shown in Figure
10.19¢a). Thus PI controllers produce poorer and/or unstable results in regions outside the tuned
range.

The obvious direction to take, based on the results of Figure 10.18, is to reduce the controller
gain. Thus the PI controlier as retuned for the high gain region and servo control was again tested
over the entire process range. Figure 10.19 shows the results of the retuning. The PI controlier
produces good results in the high gain region, however, setpoint tracking is slow in both the
medium and low gain regions.
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Gain scheduling of the PI controller was then applied in an attempt to obtain good control
response in all regions. As shown in Figure 10.20, response has improved in the low gain region
and the change :a gain criterion is quite evident from the input response figure. However, response
is poon it the medium gain region due to the detuning required to improved control in the high gain
reg:on. 7 his improved control is the elimination of the oscillatory response at the 200 sampling
instance. Overall control results of PI gain scheduling have improved, with J; = 0.0150, over the
results of tuning for only the high gain region.

The proposed fuzzy logic controller was then applied to the same non-linear process
problem. Tuning of the fuzzy logic controller was based on good overall control, with minimum
overshoot. Figure 10.21 illustrates the results of the fuzzy logic controller. Clearly good overall
control is obtained over the entire process range. Comparing the J, results of the fuzzy logic
controller, J, = 0.0131, and the best PI controller, tuned for with gain scheduling, J, = 0.0150,
show that the fuzzy logic controller operates better over the entire process range, based on this
minimum distance criteria.
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Figure 10.20: PI Control with Gain Scheduling
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10.7 Summary

With cor ventional control it is assumed that a process is represented by the linear model Gm
in a small region about the operating point. Basically Gm is the same for all operating regions.
With fuzzy control, the input-output relationship is divided into a user chosen number of regions
that define a functional form and the relational model provides the best fit in each region. With
judicious choice of the fuzzy membership functions, the transition from region to region is smooth.
Thus there is continuity in the modeling and predictive capabilities of the fuzzy model.

Chapter 10 shows that the fuzzy controller design in this thesis produces good control for 2
variety of realistic processes (i.e. underdamped process, overdamped process, negative gain
process, non-linear process, large system delay, large step disturbance). Additionally, the max-
product composition provided consistently better control than the max-min composition, based on
the miniinum distance criterion.

For all the test cases the absolute error, J,, was less than 5% of the process output. Thus the
fuzzy predictive control algorithm has demonstrated that it is applicable to process applications.
The test simulation with the Shell data also demonstrated that the algorithm can handle a large
delay (d = 6 sampling instances). The non-linear test case comparing the fuzzy controller to the PI
controller clearly demonstrates the ability of the fuzzy controller to provided good control over the
entire operation range of a highly non-linear process.
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CHAPTER 11 CONCLUSIONS

"The universe is strange. Not only is the universe strunger the we think, it
may be stranger tha: we can think. One result is that the physicist, who must deal
with the real world, has at least three logics: one for ordinary state variables,
classical mechanics, one for the microscope, quantum mechanics, and one for the
macroscopic, relativity theory.

Thus consistency gives way to utility. It is possible that one theory would
handle all three cases, but it would probably be too complex to use.

We definitely need more logics to deal with uncertainty,”
[Bellman and Zadeh, 1977]

11.1 Thesis Overview

Fuzzy logic is a powerful technique for control applications that are not deterministic enough
to be handled by traditional model-based control systems. It can address ill-defined systems with
vague data specifications. In many instances complex processes are controlled manually due to the
inappropriateness of traditional control methodologies. Fuzzy logic is not meant to replace
classical control theory. Its purpose, as with classical mechanics, quantum mechanics and
relativity theory, is to provided solutions in those areas where classical control theory breaks down.

This thesis applies fuzzy logic to the construction of a Self-Learning, Predictive, Fuzzy-
Logic Controller. The controller developed in this thesis is based on a relational matrix
formulation which has the advantages of being able to leam directly from experimental input/output
data. The matrix format of this design clearly indicates how output depends on input and the
numerical format permits quantitative analysis.

The fuzzy controller design is based on a max-product composition which has been shown to
be superior to the max-min composition in many instances. The thesis analyzes the stability of this
fuzzy composition and presents a method of stabilizing this composition in control situations.

A new on-line identification algorithm is proposed in this thesis. Since max-product
composition has not been extensively used, there is little literature on effective identification
algorithms which feature this composition. Thus this thesis compared several identification
techniques using both max-min and max-product composition to determine the "best" from a least
squares perceptive.

Many of the rule-based fuzzy controller designs in the literature are based on a P/ structure,
so there is little or no predictive ability. The controller algorithm presented in this thesis is model-
based and the predictive capabilities of this algorithm make it more suitable for controlling systems
with dead time.

The resulting controller design parallels the design of a conventional model based predictive
controller but the application is in areas where conventional control fails.



11.2 Contributions

One objective of this thesis was to review and/or expand the fuzzy logic theory, starting with
the basics, in order to provided a solid basis for the development of a self-learning, predictive,
fuzzy logic controller. Chapters 2 through 8 of this thesis progress logically and comprehensively
through the theory required for the final controller development. The chapter by chapter
contributions of this thesis to the area Fuzzy Logic Theory are summarized in Section 11.2.1.
Section 11.2.2 then summaries the main contributions in the area of Fuzzy Process Identification
and Control.

11.2.1  Contributions in the Area of Fuzzy Theory

Chapter 2 presents a literature review of fuzzy rule-based systems theory as a starting point
for the development of the relational-based control system presented in this thesis. The literature
review consolidates the rule-based development theory from several sources into a format
consistent with the development of relational-based theory, which is the focus of this thesis. The
aim of the literature review of rule-based fuzzy theory and relational-based fuzzy theory, presented
in Chapter 3, is to emphasize the fact that rule-based information ~an also be presented in a
relational matrix format.

Chapter 4 references several sources of research confirming the superiority of the max-
product composition, as well as presenting the reasons why this superiority exists. The litcrature
review of Chapter 4 conipares, using several examples, the physical interpretation and ability of the
max-min and max-product compositions.

Chapter 5 begins with a literature review that consolidates solutione to the various inverse
problems presented in the literature.

(1) "Given the fuzzy relations R and b,
find all fuzzy sets a such that a-R = b".

(2) "Given the fuzzy relations RandT,
find all fuzzy relations Q such that Q-R =T".

(3) “Given the fuzzy sets @ and b,
find the fuzzy relation R such that a°R = b".

(4) "Given the fuzzy relations Q and T,
find the fuzzy relation R such that QR = T".

A complete program, written in MATLAB®, to determine fuzzy inverses using either the
max-min or the max-product composition for ail the problem statements is available and a listing is
provided in Appendix 1.

A table is provided in Chapter 5 which details the literature source for all the problem

definitions for max-min, max-product and max-t-norm. Additionally, a complete solution guide for
these problems for the max-product composition is provided in Appendix 2. The consolidated
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literature review for fuzzy inverse problems, availabie in Chapter S, provides an important
reference itself to the abundant material available on the subject.

Chapter 5 also presents the complete solution of the cartesian product of fuzzy sets for the
max-min composition. This work was published in Fuzzy Sets and Systems, [Bourke et al. 1994].
This paper completes the work of two other papers, by different authors, and has potential for
control systems from a on-line identification perspective. The complete solution theory of the
cartesian product is then extended to the max-product composition for possible on-line
identification applications.

Chapter 6 is important from a control perspective as it consolidates fuzzy logic design
stability theory and demonstrates the agreement between fuzzy control and conventional classical
control. Two important results provided in Chapter 6 are:

(1) Stability analysis and convergence properties for relational matrices combined with
the max-product operator (Bourke et al., 1995(b)]

(2) Eigen Fuzzy Sets analysis for max-product compositions [Bourke et al., 1995(b)]

The stability analysis and convergence property results of this work are critical for relational
matrices combined with the max-product composition because of the possibility that these
relational matrices may converge to a [0] or null matrix. Therefore, before the development of a
control policy with the max-product composition, the conditions for the existence of the unstable
solution matrices must be determined and addressed.

The ability of a system to obtain and maintain a setpoint under a control policy is critical,
and the knowledge of the conditions under which deterioration may result is crucial. Eigen fuzzy
set analysis reveals the ability of a relational matrix, combined by successive max-product
compositions, to maintain a setpoint under a control scenario. As well, a method to overcome poor
or deteriorating response for those matrices that do not meet the criteria of stability with successive
composition is provided for both max-min and max-product composition.

The literature review in Chapter 7 involves the evaluation, implementation and comparison
of several identification algorithms [Pedrycz, 1984; DiNola et al., 1984; Xuetal., 1987; Shaw et
al., 1992; Chen et al., 1994] using the same fuzzification and defuzzification methods, the same
reference fuzzy set basis and the Box-Jenkins [1970] gas fumace data [Bourke e? al., 1995(c)}.
This review is important in that it confirms the validity and ranks the relative ability of each of the
algorithms tested.

The literature search for Chapter 8 provides a brief review of fuzzy analytical derivative
theory which confirms the existence of a differential for a fuzzy relational matrix and validates this
theory for application in the fuzzy domain.

Several optimization algorithms were reviewed in Chapter 8 [Pedrycz, 1993; Ikoma et al.,
1993; Valente de Oliveira, 1994]. The algorithm for neural leaming [Pedrycz, 1991; Valente de
Oliveira, 1993] was extended to the fuzzy cause problem. The probabilistic descent algorithm
[Ikoma et al., 1993] was extended to both the fuzzy cause problem and the max-product domain.
The suitability of these optimization algorithms for identification were compared using the same
fuzzification and defuzzification methods, the same reference fuzzy sets and the Box-Jenkins
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[1970] gas fumace data, as the algorithms compared in Chapter 7 {Bourke et al., 1995(c)]. The
identification results showed that some non-optimized algorithms of Chapter 7 are capable of
providing similar results with fewer calculations and less tuning.

11.2.2  Contributions in the Area of Fuzzy Process
Identification and Control

Based on the identification techniques described by DiNola et al. [1984] and Shaw et al.
(1992] a new identification algorithm was developed. The new algorithm uses the averaging
technique, as described by Shaw et al. [1992], to determine the overall relation matrix R from the
individual inverses calculated from a series of input-output data. The predictive results from this
new algorithm are better than the other identification algorithms tested in Chapter 7.

The new identification algorithm developed in this thesis is based on a batch leaming
technique. However, this new technigue can be applied on-line, as well as the algorithm by Shaw et
al. [1992], by using a matrix resetting mechanism developed in this thesis. The resetting technique
maintains model completeness while increasing the speed at which leaming can be performed, both
important features of fuzzy identification systems.

On-line identification requires an algorithm which can be completed within the sampling
interval of the given process. Determination of relational matrices through an estimation procedure
assumes that the results are comparable to an exact procedure. The estimation theory presented by
Baboshin et al. [1990] is analyzed in detail and extended to the non-normal case. The final results
of this work is the ordering of the variously identified relational matrices which are independent of

the data used and are therefore representative of the capability of the estimation algorithms used.

The minimization of the control objective function or criterion is considered from an
identification perspecti- 27d a causal perspective. For the work with identification it was
necessary to extend the necessary and sufficient conditions from a solution to the single input-single
output identification problem [Pedrycz, 1988 (max-min); Pedrycz, 1991 (max-t-norm)] to the single
input-single output fuzzy cause problem for both max-min and max-product. These results,
particularly for the max-product composition, demonstrated the need for numerical solution
techniques.

A key result from a control system point of view is that the minimization of fuzzy criteria @,
or @, does not imply a minimum J, or J,, which are defined for the discrete domain. This
imowledge is particularly important for those discrete control systems that are handlcd in the fuzzy
domain due to lack of an adequate deterministic model.

Chapter 9 presents a new predictive fuzzy controller design based on relational matrices
using a max-product composition. This work is important with respect to fuzzy control theory in
that the controller is model-based and not an relational matrix application of P/ control.
Development of the model-baszd controller closely parallels the development of discrete model-
based control theory.
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Chapter 10 shows that the proposed controller design produces good control, from a fuzzy
perspective, for a variety of control scenarios (i.e. underdamped process, overdamped process,
inverse process, non-linear process, large system delay, large step disturbance). Additionally, the
max-product composition provided consistently better control than the max-min composition, based
on minimum distance criteria. The new controller algorithm also performed better than a discrete
PI controller, with gain scheduling, for a highly non-linear process.

For all the simulations performed the absolute error, J;, was less than 5% of the process
output. Thus the fuzzy predictive control algorithm has demonstrated that it is capable of
successfully controlling a variety of process situations. As well, the simulation with the Shell
process data [Cott, 1995), demonstrated that the algorithm can handle large (T = 6) process dead
time.

The final result of this work is a practical fuzzy logic controller suitable for industrial
applications. Applications of fuzzy control to the Edmonton Water Treatment plant are currently
planned as part of my NSERC PDF work.

113 Recommendations
Future work in the area of fuzzy model-based control could include:

(1) modification of the control algorithm presented in this thesis so that the dynamic
matrix, R, is larger (i.e. 7X7x7) however, the dynamic calculation is only implemented for large
errors. Near the setpoint, mean level control or the 2-dimensional gain matrix, G, would be
employed.

(2) with regard to the fuzzy identification algorithm developed as part of this thesis,
versus the averaging algorithm by Shaw ez al. [1992], a study could be made to determine under
what conditions each algorithm is ideally suited. Preliminary work in this area would suggest that
the identification algorithm proposed in this thesis is more suited to systems with large
noise/disturbances.

(3) the effect K and T on a first order process system are well known. The entries of the
relation matrix, R, however, do not clearly indicate their effect on the dynamic performance of the
relational model. As study could be undertaken to relate the shape or fuzzy measure of the
relational matrix, R, to T.

(4) the controller algorithm presented in this thesis does not include the defuzzification
algorithm in the overall optimization. Thus the defuzzification procedure chosen may results in
some auxiliary error which in tum weakens the fuzzy model at the numeric level. Modification of
the controller algorithm to include a joint optimization of the defuzzification and the relational
model might then be considered in future work.
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APPENDIX 1:  INVERSE CALCULATION PROGRAM

A1l Contents
The contents of this appendix includes:

Al.l Contents

Al2 Summary of Program
Al.3  Getting Started

Al4  Program Structure
ALS  Program Descriptions
Al.6  Program Listing
REFERENCES

Al.2  Summary of Program

The inverse calculation program, written in MATLAB®, determines the range of analytical
inverses for a fuzzy relational equation. The inverse can be determined either as a fuzzy cause (i.e.
Given R and y, find x such that x°R = y) or fuzzy ID (i.e. Given x and y. find R such that xR =
y). The inverse is given as the unigue maximum solution and the set of non-redundant minimum
solutions.
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A1.3  Getting Started

Function:
[Smax,Smin,USmin] = inverse(Q,R,T,oper,prob,tol)

The inverse function determines a unique maximum solution, Sy, the union of all the
minimum solutions, US p;,, and all non-redundant minimum solutions, Syin.

S

us*
min

s! 5?2 s\

min min min

Figure AL1: Illustration of Solution Siructure

Inputs:

Test Tolerance: tol = 0.000001
The test tolerance for equality or approximate equality.
(i.e. Ifla-bl <tol, thena =b)

Operation: oper=0; for max-prod

oper=1; for max-min

The fuzzy sets can be combined either with the max-prod
composition or the max-min composition.
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(1) Fuzzy Cause:

(2) Fuzzy ID:

Outputs:

prob=1;

Problem 1 is that of fuzzy cause (i.e. Given R and y,
find x such that xeR = y)

For fuzzy cause problems, R and T are inputs and Qisset
to a null matrix (i.e. @ = [ ]) as it is the quantity being
determined.

[Smax,Smin,USmin] = inverse({ ].R, T oper,prob,tol);

R is the relational matrix, (ie. R={2.59:;3.6.8;.1.5.7)
and T is the result of the relational equation and is either a single
vector (b = [.3 .6 .8]) or several vectors that comprise a matrix
(T=[3.6.28.4.7.2)

prob = 2;

Problem 2 is that of fuzzy identification (i.e. Givenx and y,
find R such that x°R = y)

For fuzzy identification problems, @ and T are inputs and R is set
to a null matrix (i.e. R =[]) as it is the quantity being determined.

(Smax,Smin,USmin] = inverse(Q.{ ].T.oper,prob,tol);

Q is the fuzzy input to the relational equation and is either a single
vector, (a = [.5 1.0.7]) or several vectors that comprise a matrix
ie. 0=(.2.5.9;.3.68)and T is the resull of the

relational equation and is either a single vector (b =1{.3 .6 .8]) or
several vectors that comprise a matrix (T = (.3 .6 .8; 4.7 .2)).
Note that the size of the resultant 7' must correspond to the size of

the input Q.

As shown in Figure Al.1, the inverse function determines:

Smax
USmin
Smin

- the unique maximum solution
- the union of all the minimum solutions
- all non-redundant minimum solutions
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Al.4  Program Structure

INVERSE —-—
|

— —

!

-— -

l

-— —

|

- —

l
|
i

—_—

ALPHA

MAXOP

BETA

DELTA —— BETA

PHISETS T—- SSTAR
—— BINARY

PHITEST —— MAXOP
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Al.5  Program Description

ALPHA.m

function [Mmax] = alpha(Q,R,T,oper.prob)

Determines the maximum inverse of fuzzy relation equations
for max-min and max-product compositions

INPUT:

Q is a ixj relational matrix (for row vector i=1;a)
R is an jxk relational matrix
Tis a ixk relational matrix (for row vector i=1;b)

oper - determines the composition: 0 = maxprod; 1 = maxmin
prob - determines problem type: 1 =cause; 2=id

COMPOSITION: 00, )*Ry, k=T, k)
OR a()*R(, K)=b(k)

OUTPUT:

Mmax - maximum solution

BETA.m

function [Mbeta] = beta(Q.R,T,oper.prob)

Determines the initial estimate of minimum solutions of fuzzy
relation equations for max-min and max-product compositions

INPUT:

Q is a ixj relational matrix (for row vector i=l.a)
R is an jxk relational matrix
T is a ixk relational matrix (for row vector i=1.b)

oper - determines the composition: 0 = maxprod; 1= maxmin
prob - determines problem type: 1 =cause; 2=id

COMPOSITION: QG, H)*R(y., k=T, k)
OR a()*R(, k)=b(k)

OUTPUT:

Mbeta - union of minimum solutions
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BINARY.m

function [bin] = binary(n)
Converts a number to its binary equivalent in vector format

DELTA.m

function [Mdelta] = delta(Mmax,Mbeta,oper,prob,tol)

Determines the union of all minimum solution including
redundant solution of fuzzy relation equations
for max-min and max-product compositions

INPUT:
Mmax - output from ALPHA.m

Mbeta - output from BETA.m

oper - determines the composition: 0 =maxprod; 1 = maxmin
prob - determines problem type: 1 =cause; 2=id
tol - is the calculation tolerance

OUTPUT:

Mdelta - maximum solution

INVERSE.m

function [Smax,Smin,USmin] = inverse(Q.R,T,oper,prob,tol)

Determines the analytical inverse of fuzzy relation equations
for max-min and max-prod compositions

INPUT:

Q is a ixj relational matrix (for row vector i=1;a)

R is an jxk relational matrix

T is a ixk relational matrix (for row vector i=1;b)

oper - determines the composition: 0= max-prod; 1 = max-min
prob - determines problem type: 1=cause; 2=id

tol - is the calculation tolerance

Fuzzy Cause Example: [Smax,Smin,USmin] = inverse([ 1.R,T,oper,prob,tol);
Fuzzy ID Example: [Smax,Smin,USmin] = inverse(Q,[ }.T,oper.,prob,tol);
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INVERSE.m (Cont'd)

COMPOSITION: Qd, )*Ry, k=T, k)
OR a()*R(j, k)=b(k)

OUTPUT:
Smax - maximum solution
Smin - all non-redundant minimum solutions
USmin - union of all non-redundant minimum solutions

MAXOP.m

function T = maxop(Q.R,oper)

Determines the analytical solution of fuzzy relation equations
for max-min and max-product compositions

INPUT:

Q is a ixj relational matrix (for row vector i=1;a)
R is an jxk relational matrix

oper - determines the composition: 0 = maxprod; 1= maxmin

COMPOSITION: QG, ))*R(, =T, k)
OR a()*R, ky=b(k)

OUTPUT:

Tisa ixk relational matrix (for row vector i=1;b)

PHISETS.m

function [Phimax] = phisets(Mdelta)
Determines all non-redundant minimum solutions of Mdclta
for the fuzzy cause case (prob = 1) for max-min and
max-product operations
INPUT:

Mdelta - output from DELTA.m
OUTPUT:

Phimax - non-redundant solution matrix
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PHITEST.m

function [Phisub] = pmtest(Phimax,R.B.oper.tol)

Brute force check for additional redundant minimum
solutions for the fuzzy cause cas¢ (prob = 1)
for max-min and max-product compositions

INPUT:
Phimax is the 1xj row vector from PHISETS.m
R is the jxk relational matrix
T is the 1xk output row vector

oper - determines the composition: 0 = maxprod; 1= maxmin
tol - is the calculation tolerance

COMPOSITION: Phimax(j)*R(, k)=b(k)
OUTPUT:

Phisub - complete non-redundant minimum solution

SSTAR.m

function [Sast] = Sstar(Mdelta)

Delete the vectors of Mdelta that results in redundant solution
vectors
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A1.6 Program Listings

MATLAB™ M-File Listing: ALPHAM

function [Mmax] = alpha(Q.R,T.oper.prob)

%

% alpha composition for maxmin & maxprog

%

% Qs a ixj relational matrix (for row vector i=1;A)

% R is an jxk relational matrix

% T is a ixk relational matrix (for row vector i=1;B)

%

% Composition: Q(i.j)*R(.Kk)=T(.k) or A(*R(Kk)=B(k)
%

% oper - determines the composition: 0= maxpr; 1 = maxmin
% prob - determines problem type: 1 = cause; 2=id

%

% Fuzzy Cause Calculation:
if prob==1,

[Rr Rc] = size(R);
[Tr Tc] = size(T);

Qmax = [J;
for j= 1:Rr,

Qtmp = [};
fori=1:Tr,
fork = 1:Rc,
if R(j.k) <= T(i.k),
Qump(ik) = 1;
else
if oper==1,
Qtmp( k) = TG.k);
else
Qmp(ik) = T(.K)./RGK);
end
end
end
end
Qtmp = min(Qtmp’)
Qmax = [Qmax ; Qu "
end
Mmax = Qmax";
end
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MATLAB™ M-File Listing: ALPHA.M (Cont'd)

% Fuzzy ID Calculation:
if prob==2,

[Qr Qc] = size(Q);
[Tr Tc) = size(T);

ifTr>1,
Q=Q"

end

T=T,

{Qr Qc] = size(Q);
[Tr Tc] = size(T);

Rmax = (;
fori=1:Qr,

Rtmp = {};
for j = 1:Qc,
if Tc==1,
I=1i;
else
1=}
end
fork = 1:Tr,
if Q(i,j) <= T(K.L,
Rtmp(k,;) =1
else
ifoper==1,
Rump(k.j) = T(k.1);
else
Rtmp(k,j) = T(kD)./QGj):
end
end
end
end
ifTc>1
Rtmp = min(Rtmp');
end
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MATLAB™ M-File Listing: ALPHA.M (Cont'd)

Rmax = [Rmax ; Rtmp};
end
Rmax = Rmax’;
ifTc> 1,
Q=Q:
Rmax = Rmax’;
end
T=T,
Mmax = Rmax;
end
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MATLAB™ M-File Listing: BETA.M

function [Mbeta] = beta(Q.R.T.oper,prob)

%

% beta composition for maxmin & inaxprod

%

% Qisa 1xjrelational matrix (for row vector i=1;A)

% R is an jxk relational matrix

% Tisa 1xk relational matrix (for row vector i=1;B)

%

% oper - determines the composition: 0 = maxprod; 1= maxmin
%

% Fuzzy Cause Calculation:
if prob==1,

[RrRc] = size(R);
[Tr Tc]) = size(T);

Qbeta = [};
forj= L:Rr,
fori=1:Tr,
fork = 1:Rc,
if R(j.kK) < T(i k),
Qbeta(j k) = 0;
else
ifoper==1,
Qbeta(jk) = T(1k);
else
if R(jK) == & T(ik) == 0,
Qoeta(jh) = 0;
else
Qbeta(G.k) = T{i.k)./RGK);
end
end
end
end
end
end

Mbeta = Qbeta;
end
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MATLAB™ M-File Listing: BETA.M (Cont'd)

% Fuzzy ID Calculation:
if prob==2,
T=T,

[Qr Qcl = size(Q);
[Tr Tc) = size(T);

Rbeta = [};
fori=1:Qr,
for j = 1:Qc,
fork = 1:Tr,
if Q(i,j) < T(K,i),
Rbeta(k,j) = 0;
else
ifoper==1,
Rbeta(k,j) = T(k.i);
else
if Q(i,j) == 0 & T(k,i) == 0,
Rbeta(k,j) = 0;
else
Rbeta(k.j) = T(k,i)./Q(i.j):
end
end
end
end
end
end
Mbeta = Rbeta’;
end
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MATLAB™ M-File Listing: BINARY.M

function [bin] = binary(n)
9% Converts a number to its binary equivalent in vector format
i=0;

whilen> 0,
i=i+l;
if (n-2/\(i-1)) < 27(-1),
M@ =1;
n = n-2°3-1);
i=0;
end
end

bin = fliplr(M);
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MATLAB™ M-File Listing: DELTAM

function [Sdelta] = delta(Smax,Sbeta,oper.prob,tol)
%

% delta composition for maxmin & maxprod

%

% Qis a 1xj relational matrix (for row vector i=1;A)
% R is an jxk relational matrix

% Tisa 1xk relational matrix (for row vector i=1;B)
%

% oper - determines the composition: 0 = maxprod; 1 = maxmin
9 prob - determines problem type: 1 = cause; 2=id
%

[Br,Bc] = size(Sbeta);
Sdelta = [];

%Fuzzy Cause

if prob==1,
Qdelta=[];
fori=1:Br,
for j= 1:Bc,
ifoper==1,
Qdelta(i,j) = beta([},Smax(i).Sbeta(i,j).oper,prob);
else
if abs(Sbeta(i,j) - Smax(i)) <= tol,
Qdelta(i,j) = Smax(i);
else
Qdelta(i,j) = 0;
end
end
end
end
Sdelta = Qdelta;
end
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MATLAB™ M-File Listingg DELTA.M (Cont'd)

%Fuzzy Identification

if prob == 2,
Rdelta=[];
fori=1:Br,
for j= 1:Bc,
ifoper==1,
% Note: This is the beta operation
if Sbeta(i,j) <= Smax(i.j),
Rdelta(i,j) = Sbeta(i.j);
else
Rdelta(i,j) = 0;
end
else
if abs(Sbeta(i,j) - Smax(i,j)) <= tol,
Rdelta(i,j) = Smax(i,j);
else
Rdelta(i,j) = 0;
end
end
end
end
Sdelta = Rdelta;
eri

314



MATLAB™ M-File Listing: INVERSE.M

function [Smax,Smin,USmin] = inverse(Q.R,T.oper,prob.tol)
%

%, Determines the inverse of the relation equation AR =B

% for maxmin & maxprod compositions

%

% Qis a ixj relational matrix (for row vector i=1;A)

% R is an jxk relational matrix

% T is a ixk relational matrix (for row vector i=1;B)

%

% Composition: Q(ij)*R(Kk)=T( k) or AG)*RGK)=BK)

%

9% oper - determines the composition: 0= maxprod; 1 = maxmin
% prob - determines problem type: 1 =cause; 2=id

%
%
Smax = [};
Smin=1{];

% Fuzzy Cause:

if pob==1,
[Tr Tc] = size(T);
[Rr Rc] = size(R);
Zvector = zeros(1,Rr);

fprintf('For the Relational Matrix:")
R

fprintf(For the Solution Matrix:")
T

Qmax = };
Qmin={};
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MATLAB™ M-File Listing: INVERSE.M (Cont'd)

% Determine Qmax

Smax = alpha([).R,T,oper,prob);
Ttmp = maxop(Smax,R,oper);

if abs(sum(sum(Timp-T))) > tol,
fprintf(No inverse solution exists! \n")
return

end

% Determine Qmin

USmin = zeros(Smax);
forl=1:Tr,

Tvector = T{,:);

Qbeta = beta({].R,Tvector,oper,prob);
Qdelta = delta(Smax(l,:),Qbeta,oper,prob,tol);

9% Remove Redundant Solutions

phimax = phisets(Qdelta);
phisub = phitest(phimax R, Tvector,oper.tol);

[pr.pc] = size(phisub);
ifpr>1,

phivect = max(phisub);
else

phivect = phisub;
end
USmin = max(USmin,phivect),
Smin = [Smin ;phisub];
ifl<Tr,

Smin = [Smin ;Zvector];
end

end
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MATLAB™ M-File Listingg INVEKSE.M (Cont'd)

% Print Solutions

fprintf( The maximal inverse solution is:")
Qmax = Smax

fprintf(The minimum inverse solution(s; amz)
Qmin = Smin

fprintf('The union of the minimum inverse solution(s} are:")
UQmin = USmin

end

% Fuzzy 1D

if prob == 2,
[Tr Tc] = size(T);
[Qr Qc] = size(Q);

Zvector = zeros(1,Tc);

fprintf(For the Input Matrix:")
Q

fprintf('For the Solution Matrix:")
T

Rmax = (];
Rmin = [];

% Determine Rmax

Smax = alpha(Q,(},T.oper,prob);
Ttmp = maxop(Q,Smax,oper);

if abs(sum(sum(Ttmp-T))) > tol,
fprintf('No inverse solution exists! \n")
return

end

% Print Max Solution

fprintf('The maximal inverse solution is:")
Rmax = Smax
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MATLAB™ M-File Listing: INVERSE.M (Cont'd)

% Determine Rmin
9% Print Min Solutions Banner
fprintf('The minimum inverse solution(s) are:)

USmin = zeros(Smax);
forl1=1:Qr,

Tvector = T(1,:);
Qvector = Q(1,);

Rbeta = beta(Qvector.Smax.’l‘vector.oper,prob);
Rdelta = delta(Smax,Rbeta,oper,prob,tol);

USmin = max(USmin,Rdelta);
Smin = [Smin ;Rdelta];

if1<Qr,
Smin = [Smin ;Zvector];
end

% Print Min Solutions

Rmin = Rdelta
fprintf(\n")

end

fprintf('The union of the minimal inverse solution is:")
URmin = USmin

end



MATLAB™ M-File Listing: MAXOP.M

function T = maxop(Q,R.oper)

%

% maxop composition for maxmin & maxprod

%

% Q is a ixj relational matrix (for vector i=1;A)

% R is an jxk relational matrix

% T is a ixk relational matrix (for vector i=1;B)

%

% oper - determines the composition: 0 = maxprod; 1 = maxmin
%

[Rr Rc) = size(R);
[Qr Qc] = size(Q);

T=(}
fork = 1:Qr,
tmp ={];
fori= 1:Rc,
for j= 1'Rr,
ifoper==1,
tmp(j.i) = min(Q(k,j).RG.1));
else
mp(j.i) = Qk.j).*R(.):
end
end
end
T = [T ; max(tmp)};
end
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MATLAB™ M_-File Listing: PHISETS.M

function [Phimax) = phisets(Qdelta)

%

% phiset operation for maxmin & maxprod

%

% A is a pxn relational matrix (for vector p=1)

% R is an nxm relational matrix

% B is a pxm relational matrix (for vector p=1)

%

% oper - determines the composition: 0 = maxprod; 1 = maxmin
%

Sast = sstar(Qdeira);

{Sr Sc] = size(Sast);
onernat = ceil(Sast):
sumc = sum(onemat);
comb = prod(sumc);
numcol = sum(sumc);

% Expand matrix to column vectors with a single entry
%
AA=[}
fori= 1:5c,
for j = 1:5r,
onev = zeros(Sr,1);
onev(j)=1;
tmp ={};
tmp = Sast(j,i)*onev;
if sum(tmp) ~= 0,
AA = [AA tmp];
end
end
end

¢ Detesmine the number of repetitions for each column
%
reps = zeros(1,5¢);
last = comb;
fori = 1:Sc,
if sumc(i) ~= 1,
reps(i) = last./sumc(i);
last = reps(i);
end
end
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MATLAB™ M-File Listing: PHISETS.M (Cont'd)

% Determine the remainder for each column
%
rem = zeros(1,S¢);
fori= 1:Sc,

if reps(i) ~=0,

rem(i) = comb./(reps(i)*sumc(i));

end

end

9 Calculate the matrix of possible combinations
%
mcomb = ones(comb,Sc);
forp = 1:Sc,
if sumc(p) ~= 1,
index=1;
fori = 1:rem(p),
for k = 1:sumc(p),
for j = 1:reps(p)
mcomb(index,p) = k;
index = index + 1;
end
end
end
end
end

% Calculate the maximum for each Phi matrix
%
Phimax = [];
fori = 1:comb,
mvect = [];
fork = 1:Sc,
if sumc(k) == 1,
mvect = [mvect 1];
else
xn = mcomb(i,k);
tmp = binasy/(xn-1));
q = sumc(k) - length(tmp);
forr = 1:q,
tmp = [0 tmp};
end
mvect = [mvect tmp];
end
end
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MATLAB™ M.File Listing: PHISETS.M (Cont'd)

Phi=(];
for p = 1:numcol,
if mvect(p) == 1,
Phi = [Phi AAC.D));
end
end

{Pr,Pc] = size(Phi);
ifPc==1,
Phimax = [Phima: ; Phi'};
else
Phimax = [Phimax ; max(Phi")};
end
end
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MATLAB™ M-File Listing: PHITEST.M

function [Phisub] = phitest(PhimaxR ,B,oper,tol)

%

%, subset of Phi which satisfies AR=B

%

% A is a pxn relational matrix (for vector p=1)

% R is an nxm relational matrix

% B is a pxm relational matrix (for vector p=1)

%

% oper - determines the composition: 0 = maxprod; 1 = maxmin
%

% Phimax is a matrix of row vectors
[r, c] = size(Phimax);

% Test for equal solutions:
%
fori= 1,
forj= 11,
if i ~=j,
if Phimax(i,:) == Phimax(j..),
fork=1:c,
Phimax(j.k) = 0;
end
end
end
end
end

Phisl = [}
fori=I:r,
Btmp = [J;
Btmp = maxop(Phimax(i,:),R.oper);
if abs(sum(Btmp - B)) < tol,
Phis1 = [Phis1 ; Phimax(i,:)];
end
end
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MATLAB™ M-File Listing: PHITEST.M (Cont'd)
9 Test for greatest lower bound solution
%
[r.c]= size(Phis1);

tmp = zeros(r.r);

fori= 1.r,
forj= L,
if i ~=j,
if Phis1(i,:) >= Phis1(j,),
tmp(i,j) = 1
else
tmp(i,j) = 0;
end
end
end
end
% Zero greatest lower bound solution vectors
%
fori= L,
if max(tmp(i,’}) == 1,
forj= 1,
Phis1(i.j) = 0;
end
end
end
% Delete zeroed vectors
%
Phisub = [];
fori=lir
if max(Phis1(,:)) ~=0,
Phisub = [Phisub ; Phis1(i,)};
end
end
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MATLAB™ M-File Listing: SSTAR.M

function [Sast] = Sstar(Rdb)
% Imp i:vec iniverse solution
[rc)=si7siRe%),

% Delete the vectors of Rdb that results in redundant solution
% vectors
%
fori= 1,
farj= 1,
tmp = (J;
fork = lL:r,
if (i ~= j & sum(Rdb(..i)) ~=0)
tmp(l,k)=(Rdb(k.i)~=0 & Rdb(k,j)~=0 & Rdb(k.i)>=Rdb(k,j));
tmp(2.k)=(Rdb(k,i)==0);
end
end

tmp(3,:)=sum(tmp);

if min(tmp(3,)) >= 1,
forp=lir,
Rdb(p,j) = 0;
end
end
end
end

tmp = (};
tmp = sum(Rdb);
Sast=[};
fori=1:x,
if tmp(i) ~= 0,
Sast = [Sast Rdb(:,i)];
end
end
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APPENDIX 2: SOLUTION GUIDE FOR INVERSE

PROBLEMS FOR THE MAX-PRODUCT
COMPOSITION

A2.1 Contents

The contents of this appendi> includes:

A2.1
A2.2
A23
A24
A25
A2.6

Contents

Introduction

1. Given R:and b, find a
2. Given Rand T, find Q
3. Givn g and b, find R
4. GivenQand T, find R

A2.2 Introduction

The original work by Sanchez [1976] considered the resolution of the following fuzzy
relational equation with max-min composition :

T(u;, wi) = Qu;, v)oR(v;, wy) = Y[Q(u;. VYA R®;, wy)) (A2.1)

A short time later, Sanchez [1977] then considered the simplified version of equation (A2.1), where
U s defined for a single point:

blwp = a(v,-)oR(vj, Wk) = \j/[a(vj)AR(v,-, wpl (A2.2)

In equations (A2.1) and (A2.2) the symbols V and A denote the fuzzy set operators or connectors
max and min, respectively. And the symbol ¢ denotes the max-min operator.
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Di Nola et.al. [1984] showed that if the min operator A in equations (A2.]) and (A2.2) was
replaced with a ¢-norm operator then the following fuzzy relational equations should be considered:

T(w;, we) = Q;, vYORWY;, w) = YlQ(u.-. v) t Rv;, wp) (A2.3)

bwd) = a)OR; wo = Via) L RO wol (A24)

In equations (A2.3) and (A2.4) the symbol V stil} denotes the fuzzy set connector max while the
symbol t denotes any #-rnorm operator. The symbol 0] represent the max-t-norn: composition
operator.

There are two basic inverse sroblems to be investigated and resolved, that of fuzzy
identification and fuzzy cause. When these two problems are applied to each of equations (A2.3)
and (A2.4) the result is the four problem statements listed below:

(1) "Given the fuzzy relations R and b,
find all fuzzy sets a such that a(OR = b".

(2) "Given the fuzzy relations Rand T,
find all fuzzy relations Q such that QOR =T".

(3) "Given the fuzzy sets a and b,
find the fuzzy relation K such that a@®R =b".

(4) "Given the fuzzy relations Q@ and T,
find the fuzzy relation R such that QOR=T".

Problem statements (1) and (2) represent the search for a fuzzy cause, while statements (3) and (4)

represent fuzzy identification. Al four problem statements are valid when () represents either
max-min or max-product composition.

‘The complete inverse solution algorithms, with examples, for when (1) = max-product
composition are provided in this appendix. Each partition in the appendix corresponds to the
appropriate Problem Statement.
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In order to consider the problem of resolving the inverse of e fuzzy relational equation the
following definitions are required:

Definition 1: For a and b € [0.1], the Y-composition is defined as:

- 1 if asb
avb= \pie  f a>b

The composition a ¥ b is call the relative pseudo-complement of a in b.
Definition 2: For a and b € [0,1], the 8-composition is defined as:

40b= 0 if a<b or a=b=0
- bla if a2b

Definition 3: For a and b € [0,1], the y-composition is defined as:

b= a if a=b
aye= 0 if a#b

Definition 4: For the max-product composition the B-composition can be specifically defined
fora and b € [0,1] as:

aPb=(@0b)y(@avb)

Other definitions required for this appendix can be found in Chapter 5.
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A2.3 1. GivenR and b, finda

Greatest Solution

Given the fuzzy relation Re VW and the fuzzy set be ‘W, the greatest solution, d e A,
such that @ WOR® w) = b(w), is:

am) =R w) @ dw'T"
= AR, WV bwy')!

Minimal Solutions

The union of the minimal solutions, @ € A, such that @ V)R, w) = b(w), is:
@ v) = \VIPR, w) B bW
w
= \/[®(R(, w) 8 bwy IR, w) @ bw)'D°T"
w

= IR, w) 8 bwy"1 Y [@a W)
w

where z is the cardinality of @(R(v, w) B bw)™)".

Solution Example

0.6 02 0.6
Let R(v,w)=[04 02 0.7| and bw)=[05 0.4 0.42] be given.
05 04 03

Find @ and @
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Solution Maximum:

(0.6 02 0.6) (0S5
am) = A|[04 02 071¥ 04
“|lo5 ¢4 03) \042

[(0.83 1.0 0.7
1.0 10 06
{10 10 10

[0.7 06 10]

0
>

Solution Minimum:

0.6 02 06)(05
G =\/|®||04 02 07[p 04
“1 [los 04 03)1042

0.83 00 0.7) (0.7
@ 0.0 00 0.6y 0.6
| 10 10 00/ {10

"
=<

(00 00 07
0.0 06
] Ll.o 1.0 00

n
: <
o
o

1
0.0 0.7

=y/| ®| 0.0 0.6 (redundant columns removed)
v 1.0 00

z=1x2=2

@ =[0.0 0.6 10]
am=[07 00 10]
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The complete solution is: [0.0 0.6 10]<as[07 06 10]
[0.7 00 10]sac[07 06 10]

A24 2. GivenRandT,iind Q
Greatest Solution

Given the two fuzzy relations Re VW and T'e Ux'W the greatest sulution, Qe Ux Ve
9, such that Q(u, vWORE, w) = T(u, w), is:

Owv)  =[Rvw® T w'T’
= ARG, Wy Tw, w)!

Minimal Solutions

The union of the minimal solutions, Q€ Ux Ve Q, such that 0 u, VOR®E, w) = T(u, w),

is:
Ouuyy) = \IBERE W) BT, w1
= VIR, w) 8 Tow, u)] Y [R(, w) @ T(w, wD*1!

= VI®R, w) 0 Tow, 1)1 7100, w))*)

where z is the cardinality of ®(R(v. w)BT (u;, w)'

Solution Example
Let R(v, w) = g.j g'i gg d T(u,w)= 05 03 042 be given
t Rv.w)=104 02 07)and T@W=|,,45 g36 042) " ©
05 04 03
Find 0 and Q5.
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Solution Maximum:

1

(0.6 02 06) (05 045
Ow.v) =A||04 02 07|¥ 04 036
*{los 04 03) (042 042
(08333 10 0.7\|
Ow,v) =al] 10 10 06 =[0.7 0.6 10]
“IL 10 10 10
(075 10 0.7
Ow,v =Aall10 10 06 =[0.7 06 0.9]
*1Lo9 09 10

Q( ) _ 0.7 06 10
WY =lo7 06 09
Solution Minimum:

06 02 06) (05 045Y]]
ollo4 02 0.7]p| 0.4 0.36

0 u.v) =V
| [\os 04 03) 042 042 )
08333 00 0.7) (0.NT' 0.0 00 0.7
O u.v) =v|® 00 00 06[y]06]} =v ®| 0.0 00 06
| L 10 10 00/\10 »| {1.0 1.0 0.0
- * 1
0.0 07
= y|® 0.0 06 (redundant columns removed)
1 (1.0 00
i
z=1x2=2
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él(up v) =[00 0.6 1.0]
Gxu,» =[07 00 10}

075 00 ©7) (0N’ 00 00 07\]
O, v) =v|® 00 00 06[y|06]| =\|®00 00 06
*I Lo9 09 00)109 *1 0.9 09 00
* 1
0.0 07
=+ ®/ 00 0.6 (redundant columns removed)
"| o9 00
z=1x2=2

Q1w v =[00 0.6 09]
Qs ) =[0.7 00 09]

For the complete solution of Q there a 4 possibilities: 2 ways to choose Qz(u,.v) and 2 ways to
choose from Qz(ul.v). Thus:

01wy =1Q1, ) Qi v>r‘=[3',g 32 ;.g)
B -ty Bsm'=(03 0 o)
Gy =@ Giwor'=(G oo o)
T Y R v
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1=
N ]
) S

0.6 0.6
00 06 10 07 06 L
cQs
07 00 09 0.7 0.6 O.
07 00 10 07 0.6 10
cQc
00 0.6 09 07 0.6 09
07 00 10 07 06 10
cQc
0.7 0.0 09 0.7 06 09

A25 3. Givenaandb,findR

e complete solations: 00 06 10) _, (07 06
e complete solution 15: 0.0 0.9 0.7 .

v ©
N’

Greatest Solution

Given the fuzzy sets ae 'V and be W the greatest solution, Re Ve R, such
that a0 R(v, w) = bw), is:

Ro.w)  =a()' @ bw)
= a(vy' y b(w)

Minimal Solutions
The union of the minima solutions, R,e Ve R, such that aO RAv, w) = b(w), is:

R v.w) =@’ pbw)
= ®AM)™* 8 bw)hla()" v bW)D
= ((a)" 8 bw)] Y[R, W)D

where z is the cardinality of ®@()” B b(w)).

Solution Example

Let a)=[05 0.2 09] and b(w)=[0.63 0.54 0.2] be given.
Find R and R,
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Solution Maximum:

(0.5
Rww =|l02]|¥(063 054 0.2)
(0.9
(1.0 1.0 04
={10 10 10
0.7 06 02222
Solution Minimum:
(0.5
Rv.w) =o|l0.2]p(0.63 0.54 0.2)
L\O.9
(0.0 00 04 1.0 1.0 04
=olloo 00 10 jl10 10 10
o7 06 02222) (07 06 02222
(00 0.0 04
=®/00 00 10
(07 06 02222
z=1x1x3=3
(0.0 0.0 0.4)
Ryv,w)=100 00 00
0.7 0.6 00)
(0.0 0.0 0.0)
Ry(v.w)=|0.0 00 10
(0.7 0.6 00
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00 00 00
Ryv,w)={00 00 00
0.7 0.6 0.2222/

0.0 0.0 04 1.0 1.0 04 }
The complete solution is: 00 00 00|€sR<|10 10 1O

0.7 0.6 0.0 0.7 0.6 0.2222)

00 0.0 0.0 1.0 1.0 04 )

00 00 10|<R<|10 10 10

0.7 06 0.0 0.7 0.6 0.2222)

00 00 00 } 10 1.0 04

00 00 00 |SR<|10 1.0 10

0.7 0.6 0.2222 J 0.7 0.6 0.2222

A26 4. GivenQandT,find R
Greatest Solution

Given the fuzzy relations Q¢ UxVand Te UXW, the greatest solution, Re ZWe R,
such that Q(u, VO R, w) = T(u, w), is:

Rov.wy  =[Cu W' ® Twu w)

= A1Q, v v T(u, )]

338



Minimal Solutions

The union of the minimal solutions, R VxWe R, such that
Ou, WO R A, w) = T(u, W), is:

Rivow) = vI0Q, W' BTw, W)

= O[O, v 8Tw, wIQw, vy' @ Tw. W)
= ®(Q, v 0T, IR, W)

where z is the cardinality of ®(Q(u;, v)"'BT(u;. w)).

Solution Example
Let Q)= 05 02 09) o o 063 054 02) .
'‘M=l06 05 0.8 WW=10s6 0.6 025) CEvoT
Find R and R,
Solution Maximum:
0.5 O. _
feo. ) oi 0: o063 054 02
v, = . .
A 056 06 0.25
09 0.8
R, v.w = 10 10
0.7 0.6 02222
09333 1.0 0.4167
Ruy,v,w) = 1.0 0.5
0.75 0.3125
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Rv.w) = A[ft(u.. v, W), Rz, v, w))

Solution Minimum:

R v, w)

ﬁz(ul, vww=®

=

=

I.h(u,. v, W) =

i2(“1' v, W) =

=

(0.0

0.7

(0.0

(0.7

09333 1.0 04
10 1.0 05
0.7 0.6 0.2222

(0.5 0.6

0.63 054 02
0.2 05 B(o :6 056 0 25)
109 08 ' ) )

(0.5
0.2 [p(0.63 054 0.2)
0.9

1.0 04
1.0 05
0.6 0.2222

0.9333
1.0
0.7

(0.0 00 04
00 00 10
(0.7 0.6 02222

(00 0.0 04
00 0.0 0.0
(07 0.6 0.2222

z=1x1x2=2

0.41
0.0

00)

0.0
0.0
0.2222

0.0
0.0
0.6

0.0

0.0
0.0
0.6

0.0
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-

(0.6
RAu,, v, w) = ®|] 0.5 8(0.56 0.6 0.25)
0.8

—

[(0.9333 1.0 0.4167) (09333 1.0 04
=oll oo 00 05 ly 10 10 0S5
L 07 075 03125) 07 06 02222

0.9333 1.0 0.0
=@ 00 0.0 05
07 00 0.0

z=2xIx1=2

(0.9333 1.0 0.0
Ry, v,wy=| 0.0 00 05
{ 00 0.0 00

(0.0 1.0 0.0
Ry, vvw) =100 00 05
\0.7 00 00

For the complete solution of R there a 4 possibilities: 2 ways to choose from ﬁ,(u,, v,w) and 2
ways to choose R(u;, v, w) . Thus:

Ry, w)

AR @, v W), Ry(y, v, W)

09333 1.0 04
=| 0.0 00 05
0.7 06 00
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N\ ‘\l(ulv v, W), RZ(“L v, W)}

Ry(v, W)

0.0 1.0 04
0.0 00 05
0.7 0.6 00

il;(v. w)

AR, v, W), Ry(uz, v, w))

09333 1.0 0.0
00 00 05
0.7 06 0.222

Ry(v, W)

ARG, v, W), Rotz, v, W)

00 10 00
=100 00 05
0.7 0.6 0.2222

Clearly, it can be seen from these results that Rz(v, we ﬁl(v, w) and Ih(v, w) & R;(v,
w), therefore there are only 2 minimums, I~¢; and I~l4.

(0.0 1.0 04 09333 1.0 04
The complete solution is: 00 00 05|<R<| 10 1.0 OS5
(07 06 00 07 06 02222
(0.0 1.0 00 09333 1.0 04
00 00 05 |SR<| 1.0 10 05
\0.7 0.6 02222 07 06 0.2222
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APPENDIX 3: RESULTS TABLES FOR CHAPTER 7
Author ID Method |Prediction | J, J, 0, 0,
DiNola et.al. [1984] Prod Max-prod | 0.7321 | 0.9668 | 0.6176 0.2647

Max-min | 1.0950 | 1.9050 | 0.5967 | 0.2944
Min Max-prod | 0.7507 | 1.0020 | 0.7921 0.4201
~Max-min 1 0.8522 | 1.2220 | 0.8766 | 0.5369
Pedrycz [1984(a)} Prod Max-prod ] 0.5956 | 0.5450 | 0.5733 0.1558
Max-min ] 0.5342 | 0.4993 | 0.6675 | 0.1603
Min Max-prod | 0.6293 | 0.5947 | 0.7742 0.2135 |
Max-min | 0.5899 | 0.6378 | 1.1060 | 0.3978
Chen et.al. [1994] Prod Max-prod ] 0.6065 | 0.5658 | 0.6818 0.2236
Max-min ] 0.5422 | 0.5089 | 0.7991 0.1705
Min Max-prod | 0.6522 | 0.6298 | 0.8873 0.2834
Max-min ] 0.6030 | 0.6635 | 1.1150 0.3886
Xu et.al. [1987] Prod Max-prod | 0.5337 | 0.5076 0.5164 | 0.1503
q=0.225 Max-min | 0.5023 | 04717 | 0.5429 0.1396
Min Max-prod | 0.6345 | 0.5749 | 0.7091 0.2065
q=0.3 Max-min | 0.6425 | 0.6308 | 0.9669 | 0.3737
Shaw et.al. [1992] Prod Max-prod ] 0.4959 | 0.3923 0.5549 | 0.1780
Max-min | 0.4390 | 0.3640 | 0.4988 0.1021
Min Max-prod ] 0.4678 | 0.3589 | 0.5000 0.1189
Max-min | 0.4844 | 0.4650 | 0.6522 | 0.1641
New Proposal Prod Max-prod ] 0.4732 | 0.3826 0.5314 | 0.1243
Max-min | 0.4433 | 0.3640 | 04878 0.1005
Min Max-prod 1 0.4301 | 0.3359 | 0.4557 | 0.0993
Max-nin. 104535 | 04127 | 049i1 | 0.1017

Table A3.1: Comparison of Batch Identification; (R unadjusted)



ID Method |Prediction

Author J, J, Q, Q,
DiNola et.al. [1984] Prod Max-prod ] 0.8484 [ 1.3290 | 0.5226 | 0.1916
Min Max-min_ ] 0.8435 | 1.3990 | 0.4702 | 0.1705

Pedrycz [1984(a)] Prod Max-prod ] 0.4813 [ 0.3787 | 0.5395 | 0.1248
Max-min 1 0.5155 | 0.4484 | 0.7514 | 0.2031

Min Max-prod ] 0.5616 | 0.4796 | 0.7878 | 0.2186

Max-min | 0.6096 | 0.6837 | 1.1890 | 0.4531

Chen et.al. [1994) Prod Max-orod ] 0.5162 | 0.4190 | 0.1513 | 0.6098
Max-min ] 0.5515 | 0.4896 | 0.8679 | 0.2726

Min Max-prod ] 0.6321 | 0.5937 | 0.9709 | 0.3383

Max-min | 0.6577 | 0.7882 | 1.4050 | 0.6552

Xu et.al. [1987] Prod Max-prod ] 0.4884 | 0.4339 | 0.4635 | 0.1156
g=0.225 Max-min | 05184 | 0.4957 | 0.5790 | 0.1639

Min Maxprod ]| 0.560S | 04629 | 0.7108 | 0.2084

q=0.3 Max-min | 0.6594 | 0.6745 | 1.0240 | 0.4180

Shaw et.al. [1992] Prod Max-prod | 0.4473 | 0.3545 | 0.4602 | 0.1098
Max-min 104308 | 0.3683 | 0.5747 | 0.1388

Min Max-prod ]| 0.4584 | 0.3547 | 0.5076 | 0.1202

Max-min | 04911 | 0.4768 | 0.6820 | 0.1797

New Proposal Prod Max-prod | 0.4724 | 0.3835 | 0.5356 | 0.1263
Max-min ] 04766 | 0.4128 | 0.5399 | 0.1272

Min Max-prod | 04461 | 0.3681 | 0.4757 | 0.1087

Max-min 10.5086 | 0.4972 | 0.2531 | 0.1313

Table A3.2: Comparison of Batch Identification; (R normalized)
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Author ID Method |Prediction § J, J, Q, 0,
Pedrycz [1984(a)] Prod Max-prod | 0.6184 | 0.6141 | 0.5696 | 0.1689
Max-min } 0.5545 | 0.5647 | 0.6340 | 0.1548
Min Max-prod § 0.6320 | 0.6426 | 0.7373 | 0.2081
‘ Mazx-min ] 0.6070 | 0.6636 | 1.013 | 0.3465
Chene... ,1994] Prod Max-prod ] 0.6416 | 0.6662 | 0.6613 | 0.2327
Max-min ] 0.5730 | 0.5814 | 0.6735 | 0.1702
Min Max-prod | 0.6447 | 0.6661 | 0.8233 | 0.2685
Max-min_§ 0.5093 | 0.6668 | 1.0120 | 0.3363
Xu et.al. [1987] Prod ¢=0225 ) Max-prod | 0.6247 | 0.6301 0.5438 | 0.1786
r=0.05;e=1.0 | Max-min_} 0.5189 | 04696 } 0.5112 | 0.1305
Min ¢=03 | Max-prod } 0.6240 | 0.5641 0.7401 | 0.2242
#=0.05;6=1.0 § Max-min ] 0.6249 | 0.6021 | 0.9766 | 0.3746
Shaw er.al. [1992] Prod Max-prod }§ 0.5784 | 0.5495 | 0.5663 | 0.1871
Max-min § 0.5067 | 04748 | 0.5300 ; 0.1193
Min Max-prod | 0.5596 | 0.4970 | 0.5205 | 0.1309
Max-mir ] 0.5392 | 0.5246 { 0.6741 | 0.1803
Mew Proposal Prod Max-prod | 0.5373 | 04674 | 0.5518 | C.1 370
Max-min ] 0.4649 | 04114 | 0.5132 | 0.1160
Min Max-prod ] 0.5493 | 0.5142 | 0.5173 | 0.1263
Max-min | 0.5147 | 0.5105 | 0.5233 | 0.1189

Table A3.3: Comparison of On-Line Identification; (R unadjusted)
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Author ID Method |Prediction J A 0, 0,

Pedrycz [1984(a)} Prod Max-prod | 0.5182 | 0.4590 | 0.5320 0.1314
Max-min | 0.5042 | 0.4499 | 0.7050 | 0.1889

Min Max-prod 1 0.5839 | 0.5602 | 0.7574 0.2126

Max-min ] 0.5950 | 0.6704 | 1.1090 { 0.4077

Chen et.al. {1994) Prod Max-prod ] 0.5702 | 0.5409 | 0.5837 0.1496
Max-min ] 0.5743 | 0.5455 | 0.8204 0.2548

Min Max-prod | 0.6220 | 0.6318 | 0.8779 | 0.2802

Max-min ] 0.6363 | 0.7433 | 1.2780 | 0.5465

Xu et.al. [1987] Prod ¢=0.225| Max-prod_{ 0.5513 0.5015 | 0.4628 | 0.1220

#=0.05;e=10 | Max-min | 0.5978 | 0.6174 | 0.5674 | 0.1757

Min ¢=03 | Max-prod } 0.5779 0.4957 | 0.7604 | 0.2368

h=005;e=1.0 § Max-min ] 0.6460 | 0.6532 1.1090 | 0.4900

Shaw et.al. [1992] Prod Max-prod | 0.5435 | 0.5126 | 04873 0.1256
Max-min | 0.5135 | 0.4827 | 0.6019 | 0.1568

Min Max-prod ] 0.5467 | 04942 | 0.5327 0.1349

Max-min | 0.5477 ] 0.5361 | 0.7026 j 0.1959

New Proposal Prod Max-prod § 0.5373 | 04684 | 0.5544 0.1381
Max-min ] 0.4927 | 04528 | 0.5595 | 0.1406

Min Max-prod | 0.552 | 05219 | 0.5211 0.1273

Max-min ] 0.5586 | 0.5888 | 0.5780 { 0.1482

Table A3.4: Comparisen of On-Line Identification; (R normalized)
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AYPPENDIX 4: FUZZY PREDICTIVE CONTROLLER

ALGORITHM

The fuzzy long range predictive controller algorithm is composcd of 5 parts:

eY)
(2)
3
@
&)

Initial calculations
Identification

Gain Input Calculations
Dynamic Input Calculations

Weighted Average Input Calculation

For this discussion of the controller design, define ue U and ye Y as the discrete input and
output, respectively. And, let u={y;1i={1,2,...mtlc U and y={y t1={12,..,n}}e Yand
be the fuzzy spaces of input and output, respectively, au defined on the finite fuzzy universes of
discourses indicated.

So that the controller is not application specific, the error calculation made by the controlicr
is determined and tested using normalize variables. Therefore:

norm

= Iy mx—ymlnl

For this algorithm presentation the superscript, =, gnifies an estimated variable. The overview of
the controller algorithm is provided next:

(1) Initial Calculations: fork>1

0]

K, k+1), ylk+1-1)) = R, ou(k-1)

() K, 0k+i-1), yk+1=2)) = R, ou(k-2)

)

K, (y(k+1), y(K)) = R, cu(k-1)
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(2)

3)

Identification:
0 yk) = fuzz(yk))
(i) R, =fK), yk-1), u(k—-1))

Gin If Iy.,(k) —y(k)/norm < € where 0 < ¢ is a indication of controller
tolerance

then G, =f(y(k), u(k—1-1))

where f; is a predetermined identification algorithm

Gain Input Calculations:

() F*k) =Ry yk-Deuk-t-1)

()  §@&) =defuzz(y k)

i)  §k+t+1) = R, oy(kpulk-1)

(v)  §(k+t+1) = defuzz(F(k+T+1))

v lerr(®) =yk) - y®)

i) perr(k) =y, () — ¥ (k)

ii) ferr(k) =y, (k+T+1) - ¥ (k+1+1)

(viii) (k) = [n-lerr(k) + (1-)-perr (k) — ferr(k) }/nom

where 0< 1 <1 is atuning parameter

k
i) e)= Y, e+

izk-o
where ® € {0, 1, 2, ...} is the *vindow of efror
() § k-1 =y kr-1) e k)
(i) Jlktt-1)= fuzz(§ , (k+1-1))
(i) Ug(k)= G, 4_,°_§,p(k+’c—l)

(i) oK) = Gefuzz (2t g (K))
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(4) Dynamic Input Calculations:

) Py, y®) = K, °K,0.. oK, .

(i)  Fk+r)=Peyk)

i) @y k+t+1), u(k)) = K, 2§ (k+7)

@) w(1)=uk-1)

(v) Fori=1tor where r is an arbitrary iteration value
(@)  §k+r-1)=Qeu,d
®) §k+t-1) = defuzz(§ k+1-1))
(©) e =y k=) - ¥ (k+t-1)
(d) Ife/i) <€ continue at (ix)
@ u@)=fui el where y21 is a tuning parameter
(H i=i+1, Reoeatfrom (v)

i) yk+t-1) = Qeou (i)

i) §(k+t-1) = defuzz(y (k+1-1))

iil) efi) =y, (k+t-1) - § (k+7-1)

) w)=u

() u k)= defuzz(u k)

xi)  Augk) = ufk) —u(k-1)

(xii) a(k)=0/i + Ple () where 0 < B < 1is a tuning paramcter

(xiii) u,,m(k) = u(k-1) + a(k)-Au k)

where f; is the shifting function defined separately below.
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(5) Weighted Average Input Caiculation:
i wk)= a-u‘m(k) + (l—a)-u’,n(k) where 0< o< ! is atuning parameter
(i) ulk) = furz(u(k)
(i) K+t 1), y(k+1) = R,ou(k)
(iv) k=k+l

(v) repzat from (2)
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The Adjusting Function, f; is defined:
u, (i) = f(u,0). eLD, V) v21 isatuning , rameter for thc convergence ratc.
@@ adjfactor= ¥-le (i)
(@) uold=u(i) where uold = {uold;1j = {1,2, ..., m}}€ U

(iii) If R represents and inverse relationship process
efi) =—e[f)
(iv) Ife(N>0
(a) adj= adjfactor
(b) forl<j<m
If uold; >0
unew; = uold; — adj
If unew; <0
unew; =0
adj = —(uold-adj)
Else adj=0
(c) adj= adjfactor
uold = unew
d formz2j21
If uold;>0
unew; = uold; + adj
If unew;> 1
unew; = 1
adj = (uold—adj)-1
unew;, = uold;, + adj

() u,i)= unew

) Ifef)<O0

execute an algorithm in the opposite sense to (iv)

352



APPENDIX : FUZZY PREDICTIVE CONTROLLER
EXAMPLE

" his appendix provides all the additional information required to reproduce the Shell Process
Model {Cott, 1995] controller simulation from Section 10.5.4. Included in this appendix are:

(1)  The dynamic relational matrix, R

«2)  The gain relational matrix, G

(3) The input and output universes for the R matrix

(4)  The inout and output universes for the G matrix

(5) The fuzzification algorithm

(6) The defuznfication algorithm

The identification algorithm used for on-line identification in the controller algorithm is the

Shaw et al. [1992) algorithm. The dynamic reladonal matrix, R, and the gain relational matrix, G,
are leamed prior to the simulation until the relational matrices are complete (~50,000 data points).

(1) The dynamic relational matrix, R

"0.0786 0.0036 0.0 0.0 0.0]
6.1775 0.007 0.0 00 0.0
Ry, =|0.2045 0.0014 0.0 0.0 0.0
0.1934 0.0462 0.0 0.0 0.0
0.3941 0.2925 0. 0001 0.0 0.0

[0.8768 0.3893 0.0365 0.0  0.0]
0.8175 0.3890 0.0424 0.0 0.0
RO, =|0.7946 0.5436 0.2918 0.0 0.0
0.8066 0.8164 0.5416 0.0001 0.0
0.6059 0.6864 0.4946 0.0007 0.0
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[0.0446 0.6013 0.5908 0.0301
0.0050 0.6033 0.7158 0.1910
R(y;) =|0.0009 0.4550 0.6677 0.4933
0.0 0.1375 0.4464 0.2932
| 0.C  un21 04802 0.3668
' (57 0.3725 ( A854
06 0.0002 2418 0.7596
R.. =100 0.0 0.0405 0.4676
07 vO0 v.0121 06213
0.0 07 00252 0.5802
0.0 0.0 0.0002 0.2845
0.0 0.0 0.0 0.0493
R(ys)=|0.0 0.0 0.0 0.0391
0.0 0.0 0.0 0.0854
0.0 0.0 0.0 0.0523

354

0.0 ]
0.0
0.0003
0.0005
0.0017 |

0.1213
0.6226
0.4625
0.4701
0.5635 |

0.87871
0.3773
0.5372
0.5293
0.4347 |




(2) The gain relational matrix, G

1

O O 0O DO O o C Qo

ﬁ
(=]

O O 0O o © O

1118
.2433
.4178
.5159

OO OO

1262
.2957
.4953
.5029
.3366
.2099

0
0
0

2778
.5179
.3268
1351

0

0
0
0

0 0
0 .1995
.2696 .4933
.5364 .2891
.2806 0
0 0
0 0
0 0
0 0
0 0
0 0
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1134
.3894
.3593
1159

0

o CcC O o © O

.2348 .4116

5114 .3240

1708 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

.5251]
.1739
0

o I =T = - B o B e T = e



Degree of Membership

Degree of Membership

(3) The input and output universes for the R matrix.
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Figure AS.1: Universe of Discourse for R
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Degree of Membership

Degree of Membership

(4) The input and output universes for the G matrix
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Figure A5.2: Universe of Discourse for G
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(5) The fuzzification algorithm
The following fuzzification algorithms are written in MATLAB™ and assume that the fuzzy
membership functions are either triangular or trapezoidal.

MATLAB™ M-File Listing: FUZZIL.m

This program fuzzifies a discrete value. It calls the fuzzification algerithm p:  'ram
FUZZ.m

function muy = fuzzi(y,univy)

9% fuzzifies & discrete valuc y

%
% Definitions:
%
% muy - is the fuzzified valuc
% y - is the discrete value
% univy - is the corresponding universe of discoui.
n = length(y);
fori= 1,
muy(i,:) = fuzz(y(i),univy);
end

MATLAB™ M-File Listing: FUZZ.m

This program is the fuzzification algorithm. The fuzzification algorithm assumes that the
fuzzy membership functions are either triangular or trapezoidal.

function [muy] = fuzz(y,univy)

% calculates the fuzzy value muy from the universe univy

%

% Definitions:

%

% muy - is the fuzzified value

% y - is the discrete value

% univy - is the corresponding universe of discourse
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MATLAB™ M-File Listing: FUZZ.m (Contd)

[r,c] = size(univy);
U = univy;

ifc==4, %trapezoidal calculation
fori= I,
if y<U(,l),
muy(i) = 0;
elseif (y < U(,2) & y >= U(i.1)),
muy() = (y-U(i,1))./UG.2)-UG.1);
elseif (y < U(i,3) & y >= U(i,2)),
muy(i) = 1;
elseif (y <= U(i4) & y >=U(@,3)).
muy(i) = (UG.4)-y)./(UG4)-UG.3));
elseif y > U(i4),
muy(i) = 0;
end
end
end

ifc==3, %triangular calculation
fori=1:r,
if y < UG,1),
muy(i) = 0:
elseif (y < UG,2) & y >=U(,1)),
muy(i) = (y-UG.1))./(UG,2)-UG D),
elseif (y <= U(i,3) & y >= U(i,2)),
muy() = (U(Gi,3)-y)./(U(.3)-UG,2));
elseif y > U(i,3),
muy(i) = 0;
end
end
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(6) The defuzzification algorithm
The following defuzzification algorithms are written in MATLAB™ and assume that the
fuzzy membership functions are either triangular or trapezoidal.

MATLAB™ M-File Listing: DEFUZZI.m

This program defuzzifies the fuzzy value. It calls the defuzzification algorithm program
DEFUZZ.m

function y = defuzzi(muy,univy)

% fuzzifies the discrete value y

%

% Definitions:

%

% muy - is the fuzzified value

% y - is the discrete value

% univy - is the corresponding universe of discourse

[r,c] = size(muy),

fori= 11,
y(i) = defuzz(muy(i,:),univy);
end

MATLAB™ M-File Listing: DEFUZZ.m

This program is the defuzzification algorithm. The defuzzification algorithm assumes that
the fuzzy membership functions are either triangular or trapezoidal.

function [y] = defuzz(muy,univy)

% calculate the discrete value y from the universe univy

%

% Definitions:

%

% muy - is the fuzzified value

% y - is the discrete value

% univy - is the corresponding universe of discourse
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MATLAB™ M-File Listing: DEFUZZ.m (Contd)

[r.c] = size(univy);
U = univy;

ifc==4, %trapedoidal calculation
fori=1l:r,
if muy(i; > ¢
weentrosd(i) = {(. -~ uy(@)*(UG, 1A UG,4)+muy@)*(U(@,2)+U(,3))) ...

J2*muy(i);
else
wcentroid() = U,
end
end
end
ifc==3, %triangular calculation
fori=l:r,
if muy(i) >0
wcentroid(i) = ((1-muy(i))*(U(i.1)+U(i.3))+muy(i)*2*U(i,2))
J2*muy(i);
else
wcentroid(i) = 0;
end
end
end
if sum(muy) >0
y= sum(wcentroid)./sum(muy);
else
y=0;
end
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