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Abstract

Cyclic adsorption processes are widely considered for various industrial gas separa-

tions, including CO2 capture. The flexibility to configure a variety of process cycles

is an attractive process design feature of these processes. Despite such flexibility for

process design, computationally expensive and time-consuming mathematical mod-

els used to simulate and optimize cyclic adsorption processes often limit the design

to few cycle configurations. Moreover, the potential of adsorption processes for CO2

capture is often poorly understood due to the lack of reliable techno-economic assess-

ments. This thesis focuses on developing models of varying complexity to advance the

understanding of adsorption processes for CO2 capture.

In the first part of the thesis, viable machine learning models are developed to sim-

ulate and optimize pressure swing adsorption (PSA) and vacuum swing adsorption

(VSA) processes for CO2 capture. To this end, two hybrid optimization approaches that

incorporate techniques such as artificial neural networks, partial least squares regres-

sion are proposed to accelerate the computational speeds of multi-objective optimiza-

tion for a fixed PSA cycle ten times. Next, physics-based deep neural network method-

ology is developed to synthesize and simulate vacuum swing adsorption (VSA) pro-

cesses. As a first step, a simple chromatography system is considered where the neural

network model is developed to simulate the spatiotemporal dynamics of generic pulse

injections in chromatography columns. In neural network training, residuals of gov-

erning partial differential equations are incorporated into the loss function. As a result,

the learning process required only small amounts of training data due to the addi-
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tional knowledge of physics. The results showed that the neural network predictions

of column dynamics for an arbitrary pulse injection were remarkably accurate. Fol-

lowing this, the framework is extended to synthesize and simulate VSA cycles. Here

individual neural networks are trained to learn the spatiotemporal dynamics of each

constituent step. For training the models, conservation laws of mass and momentum

are incorporated into the loss function. The results demonstrated that neural networks

were capable of synthesizing and simulating four different VSA cycles.

The second part of the thesis focuses on developing a rigorous techno-economic

optimization model for the systematic design of PVSA processes for CO2 capture. The

methodology incorporated a detailed process model, vacuum pump dynamics, ratio-

nal scale-up, and cost model consistent with best practices, combined with a stochas-

tic optimization routine to optimize process variables for determining the minimum

CO2 avoided cost. This methodology was first applied to post-combustion CO2 cap-

ture from steam methane reformer flue gas by considering a four-step VSA process

and three different adsorbents: Zeolite 13X and metal-organic frameworks, UTSA-16

and IISERP MOF2. The results showed that the four-step VSA process with IISERP

MOF2 performed the best among the adsorbents considered; however, it still obtained

10% higher CO2 avoided cost compared to the baseline monoethanolamine (MEA)

based absorption process. Finally, the techno-economic optimization methodology is

extended to optimize both adsorbent and process variables to determine the lowest

possible CO2 avoided costs of two PVSA cycles, namely, four-step and six-step dual

reflux cycles. The techno-economic investigation is carried out at different flue gas

flow rates and CO2 compositions to identify the potential of adsorption processes for

post-combustion CO2 capture. Compared to MEA based absorption process, PVSA is

attractive for flue gas streams with high CO2 compositions ≥7.5%. The ideal adsor-

bents needed to achieve the cost limits have fairly linear CO2 adsorption isotherms

and zero N2 adsorption.
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Chapter 1

Introduction

1.1 Cyclic adsorption processes

Separation and purification of gaseous mixtures using cyclic adsorption processes are

employed for many industrial applications such as gas drying [1], hydrogen purifica-

tion [2, 3], air separation [4, 5], removal of impurities from gases [6], and hydrocarbon

separations [7, 8]. Particularly for gas separations, cyclic adsorption processes have

emerged as economic alternatives to conventional cryogenic distillation [9]. Most re-

cently, these processes have been studied extensively for carbon dioxide capture ap-

plications [10]. From a perspective of process design, adsorption processes have more

flexibility compared to other separation techniques such as distillation, absorption, etc.,

because of an additional degree of freedom that arises from the modular nature of the

process.

The underlying principle of cyclic adsorption processes involves the molecules from

the gas-phase adsorb onto the solid (adsorbent) upon contact. Since the thermody-

namic interactions between the gas phase and the adsorbent depend on the type of

gas molecules and the adsorbent surface selected, the difference in the affinities of the

gas mixture components is usually the driving force for separation. If one of the gas

mixture components has a high affinity (or stronger thermodynamic interactions) to-

wards the adsorbent, it is usually the strongly adsorbing or the heavy component. The

component with weak affinity is usually the light component in the process.

1



Cyclic adsorption processes typically operated in one or more fixed-beds alternate

between two modes of operation: 1) adsorption, where the gas mixture that needs to

be separated is introduced as feed into the adsorbent bed, and the feed mixture is sepa-

rated by the preferential adsorption of the strongly adsorbing component whereas the

weakly adsorbing component passes through the adsorbent bed; 2) desorption, where

the adsorbent bed undergoes regeneration by varying pressure or temperature, etc. De-

pending on the bed regeneration strategies, several processes such as pressure swing

adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption

(TSA), temperature-vacuum swing adsorption (TVSA), concentration swing adsorp-

tion (CSA), electric swing adsorption (ESA), microwave swing adsorption (MSA), etc.

can be realized. For instance, Fig. 1.1 illustrates the concept involved in PSA/VSA pro-

cesses using an adsorption isotherm. An adsorption isotherm relates the gas phase and

the solid phase concentrations at equilibrium. The gas component adsorbs at pressure

PADS onto the adsorbent in the adsorption step, and the corresponding equilibrium

solid-phase concentration (or loading) is qADS. For regenerating the bed, a desorption

step is carried out to remove the adsorbed gas component from the adsorbent by utiliz-

ing the pressure swing. Since the adsorbent has a low capacity for the gas component

at lower pressures than PADS, the pressure is reduced to extract the gas component

from the adsorbent bed. It is worth noting that adsorption is generally exothermic,

while regeneration is endothermic.

Cyclic adsorption processes for industrial applications can be used to achieve two

types of separations. First, the undesired components in the gas mixture strongly ad-

sorb onto the adsorbent, and the desired product is a weakly adsorbing component.

The light product is typically collected in the adsorption step. The design and opti-

mization of processes to obtain high purity and high recovery of the light product have

been well studied and commercialized, e.g. air separation, H2 purification, etc. Second,

the desired product strongly adsorbs, and the unwanted components weakly adsorb.
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Figure 1.1: Concept of PSA/VSA processes.

Here, the heavy product is collected in the desorption step as the extract, e.g. CO2 cap-

ture. The design and optimization of processes for the heavy product separation are

still nascent and have recently gained attention for commercial implementation [11].

The purpose of this thesis is to address some key challenges involved in the design

and optimization of cyclic adsorption processes, particularly for the application of CO2

capture. This introductory chapter aims to:

• present an overview of process design and optimization strategies of cyclic ad-

sorption processes

• provide a general introduction to CO2 capture and the scope of adsorption pro-

cesses for CO2 capture, and

• highlight the key challenges and knowledge gaps leading to objectives of the

thesis

1.2 Process design of cyclic adsorption processes

Unlike distillation and absorption, which operate under steady-state conditions, the

cyclic adsorption processes are transient in nature. Steady-state operations are gov-
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erned by ordinary differential equations (ODEs), where the relation between the op-

erating variables and the process performance indicators is established by simply in-

tegrating the ODEs. However, transient systems like cyclic adsorption processes are

dictated by the set of nonlinear partial differential equations (PDEs) resulting from

mass, momentum and energy balances along with adsorption equilibria. Obtaining

the relation between the operating variables and the process performance indicators

for PDE governed systems is not straightforward [12]. Moreover, these processes un-

dergo several steps and operate at a cyclic steady state (CSS). Therefore, designing

these processes requires solving the detailed mathematical models based on nonlinear

PDEs repeatedly until CCS. The key process performance indicators are then calcu-

lated based on the transient profiles of state variables (composition, pressure and tem-

perature) at the CSS. Further, the modular nature of cyclic adsorption processes allows

for flexibility in tuning several operating conditions and design parameters. Hence,

process design also involves optimizing several decision (or design) variables for de-

termining the best performance of the process.

1.2.1 Optimization of cyclic adsorption processes

Since the optimal design variables are not known a priori, the rigorous process mod-

els are often coupled with the optimization routines. The transient, cyclic nature and

CSS criterion make the optimization of cyclic adsorption processes complex and chal-

lenging. Several approaches were proposed to develop optimization routines for these

processes [9]. In the equation-oriented approach [13–15], the PDEs are completely dis-

cretized in time and space. The resulting large number of algebraic equations coupled

with the objective functions and constraints are solved using a non-linear optimiza-

tion solver. This approach resulted in 30000 - 50000 optimization variables, making

optimization challenging [9]. Alternatively, the simultaneous tailored approach [16]

involves incorporating the CSS condition as a constraint while optimizing design vari-
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ables and initial states. Here the CSS condition is guaranteed only at the optimal point,

saving computational efforts for other points [9].

Finally, in the commonly used black-box approaches [17–20], the optimizer selects

a set of decision variables for every trial point. The objective functions and constraints

are calculated based on the rigorous process models at the CSS condition. The objective

function evaluations are returned to the optimizer, and based on this information, it

takes a new search direction [9]. The detailed PSA model runs inside an inner loop

each time the optimizer calls the black-box function. Although black-box approaches

are computationally expensive, global search methods such as non-dominated sorting

genetic algorithms (NSGA) are widely used for single [21] or multi-objective [19, 22–

25] optimization problems.

1.3 Applications for CO2 capture

An increase in atmospheric CO2 concentration levels over the years has led to global

warming and climate change [26]. In the sixth assessment report, the Intergovernmen-

tal Panel on Climate Change (IPCC) considered various emission scenarios limiting

global warming to 1.5 ◦C [26]. To meet this target, it is necessary to achieve net-zero

CO2 emissions by mid-century [27]. The decarbonization of global energy and indus-

trial sectors is essential for achieving climate goals. Carbon dioxide capture and stor-

age (CCS) remains promising for mitigating CO2 emissions from these sectors in the

near future and long term [28]. CCS involves capturing the CO2 emitted from point

sources (e.g. flue gas in power generation) or directly from air (direct air capture). The

captured CO2 is compressed to a dense phase for transporting to a geological storage

site.

There are several technological options for capturing CO2 from point sources: post-

combustion capture, pre-combustion capture and oxy-fuel combustion. In post-combustion

capture, CO2 from flue gases produced by the combustion of fossil fuels is concentrated
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from 3.5-30% to over 95%, usually at atmospheric pressures. The post-combustion

technology is mature and has been commercialized. The pre-combustion capture in-

volves separating CO2 from syngas produced by the combustion of fuel with air or

oxygen at high pressures (10 - 50 bar). The clean syngas is later used as fuel to gen-

erate electricity. Pre-combustion technologies have gained tremendous attention with

an increased interest in a hydrogen economy. Oxy-fuel combustion involves the sep-

aration of nitrogen from the air, followed by the combustion of coal in pure oxygen.

In this type of combustion, the flue gas stream comprises 70-85% of CO2 and the re-

maining H2O. Several factors such as CO2 composition, pressure, the flow rate of the

CO2-containing stream, system-level integration aspects etc. determine the feasibility

of CSS deployment in energy and industry sectors [29]. For example, post-combustion

CO2 capture can be retrofitted into existing chemical/power plants in a rather straight-

forward manner without restructuring the plant layout and has been identified as one

of the viable technologies in the short- to medium-term [30].

Adsorption-based processes have emerged as an attractive technology for CO2 cap-

ture for their applicability over a wide range of temperatures and pressures [10]. The

potential applications of cyclic adsorption processes are explored in each of the CO2

capture technologies: post-combustion CO2 capture, pre-combustion CO2 capture, and

oxy-fuel combustion. For instance, the VSA technology was commercially demon-

strated for CO2 capture from syngas in an SMR-based plant at Valero Port Arthur Re-

finery (Texas, USA) [31]. However, the bottleneck for the successful commercialization

of any technology is the associated energy penalty and cost expenditure for capturing

CO2. Major improvements have been made to develop adsorption technology for CO2

capture [10]. Adsorbents are one of the key factors for determining the performance

of cyclic adsorption processes. To this end, significant efforts have been directed to de-

velop different types of adsorbents for CO2 capture. Among them, activated carbons,

zeolites are the commercially used adsorbents. Activated carbons exhibit high adsorp-
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tion capacities at higher pressures and are preferred for pre-combustion CO2 capture

[25, 32, 33]. Zeolites are microporous crystalline aluminosilicates extensively studied

for CO2 capture because of their ability to separate CO2 based on the molecular sieving

effect and the strong interactions between CO2 and alkali-metal cations [34]. Particu-

larly, numerous studies were carried out on the current benchmark material, Zeolite

13X, for CO2 capture [19, 35–38]. Moreover, recent developments in material science

have allowed material chemists to discover several new classes of adsorbents, such

as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), etc., that

can be highly tuned for a variety of gas separations [30]. Each class usually consists of

hundreds of thousands of materials, including both real and hypothetical structures.

The design of cyclic adsorption processes for recovering the heavy product such as

CO2 is an active topic of ongoing research. Several cycle configurations have been pro-

posed for CO2 capture. While most of the configurations designed and optimized for

the operating conditions are based on heuristics [22, 25, 39–45], a superstructure ap-

proach was also proposed to optimize both the cycle configuration and the operating

conditions simultaneously [18, 46]. Although not an exhaustive review, few relevant

studies are discussed here. Reynolds et al. [39] evaluated nine different PSA cycles

with heavy reflux steps for post-combustion CO2 capture from stack and flue gas at

a high temperature (575 K). A 5-bed 5-step cycle containing heavy and light reflux

steps yielded the best separation performance. Agarwal et al. [18] demonstrated a

superstructured-based optimal synthesis of PSA cycles for post-combustion CO2 cap-

ture. Using this approach, a 2-bed 8-step PSA cycle with pressure equalization and

heavy reflux steps gave low power consumption while achieving high CO2 recovery

and CO2 purity. Haghpanah et al. developed and optimized six different VSA cycle

configurations for post-combustion CO2 capture. A four-step VSA cycle with counter-

current light product pressurization yielded the lowest energy consumption for given

CO2 recovery and CO2 purity constraints. Joss et al. [43] developed four TSA cycles

7



for post-combustion CO2 capture with comparable regeneration energies to solvent-

based processes. Khurana and Farooq proposed a six-step VSA cycle with dual reflux

steps to overcome the deep vacuum and low productivity limitations in single-stage

VSA cycles. On the other hand, Casas et al. [22] developed and optimized PSA cy-

cles with pressure equalization steps to achieve high CO2 purity and CO2 recovery for

pre-combustion CO2 capture. Subraveti et al. [25] proposed and optimized three PSA

cycles with steam purge to achieve low energy and high productivity while achieving

CO2 purity and CO2 recovery requirements for pre-combustion CO2 capture.

1.4 Motivation

Computational challenges in process design. Despite such a rapid growth of this

separation technique for many practical applications, there are still inherent challenges

associated with process design that need to be overcome to promote innovations in ad-

sorption process technology. For instance, detailed mathematical models are often re-

quired to design cyclic adsorption processes with the accuracy and reliability needed

for industrial applications. As previously mentioned, process simulations based on

these rigorous models require solving the set of nonlinear PDEs repeatedly in time

and space until the process reaches CSS. Typically, the CSS criterion in one simula-

tion is achieved after simulating the process for hundreds of cycles. Hence, adsorption

process simulations are computationally intensive. Moreover, process design involves

optimizing design variables that yield the best process performance, where thousands

of process simulations are carried out. Given that the process undergoes several se-

quence of steps in one or more fixed-beds (with or without interactions), this modular

nature allows configuring different processes by altering the sequence of steps or in-

teractions among the fixed-beds. Despite such flexibility available for process design,

the computational burden of designing and optimizing each process configuration lim-

ited the design to few process configurations for practical applications [25, 40]. Since
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a successful adsorptive gas separation process is generally an optimum combination

of adsorbent and process design [1], the selection of suitable adsorbents and the right

process is crucial for assessing the potential of adsorptive gas separations. With the

recent discovery of hundreds of thousands of adsorbents for gas separations [30], the

current simulation tools based on rigorous mathematical models are computationally

inadequate to handle several thousands of combinations of adsorbents and processes

for process design and evaluation.

Techno-economic feasibility. Although adsorption technology for light component

separations is commercialized, adsorption processes for CO2 capture are still in the

R&D stage [10]. To promote commercial interest, assessments of technical viability and

process economics are essential to determine the potential of adsorption technology for

CO2 capture. While several studies demonstrated the technical viability of this technol-

ogy [22, 25, 35, 41, 43, 44, 47], the scarcity of techno-economic analyses and system-level

integrated process studies resulted in knowledge gaps in the economic feasibility of

adsorption processes for CO2 capture. Techno-economic assessments play a significant

role in comparing various technologies, evaluating the complexities associated with

process scale-up, guiding adsorbents/processes selection in the early stages of process

design. While few techno-economic analyzes have been carried out previously [21, 48–

51], a wide range of financial parameters were used for cost estimations, making the

comparison of adsorption processes with other technologies challenging. Therefore,

a detailed techno-economic model based on established financial guidelines together

with accurate and reliable adsorption process design is absolutely necessary for com-

paring the cost performance of adsorption processes with other capture technologies.
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1.5 Objectives

One of the ways forward to overcome the computational burden of simulating cyclic

adsorption processes using rigorous mathematical models is to develop simplified

faster models so that the process features and the accuracy are not lost. The latest

groundbreaking advances in modern data science techniques like machine learning

opened up a new paradigm of modelling physical systems in science and engineering

through surrogates as faster approximations to rigorous mathematical models. The

first part of this thesis leverages the recent developments in machine learning to de-

velop viable methodologies for modelling and optimizing cyclic adsorption processes.

With this new alternative to rigorous process modelling, the following systematic stud-

ies are carried out:

• Two hybrid approaches incorporating machine learning methods into optimiza-

tion routines are proposed to accelerate the process optimization of a fixed cycle

configuration for the case of pre-combustion CO2 capture

• A modern physics-based deep learning framework is developed for simulating

physical phenomena characterized by adsorption equilibria where deep neural

networks are trained to learn the underlying PDEs

• The physics-based deep learning models are first implemented for simpler sys-

tems such as chromatography to simulate spatiotemporal dynamics of generic

pulse injections in chromatography columns

• The physics-based deep learning modelling is extended to construct and simulate

cyclic adsorption processes for post-combustion CO2 capture

• Finally, cycle synthesis capabilities of physics-based deep learning methodology

are demonstrated for the case of post-combustion CO2 capture
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The second part of the thesis aims to develop a rigorous techno-economic optimiza-

tion methodology for the systematic design of P/VSA processes for post-combustion

CO2 capture. The techno-economic model developed herein obeys both technical and

economic recommendations for adsorption processes and is consistent with best prac-

tices to obtain reliable cost values for comparing with other CO2 capture technologies.

The following studies are carried out based on the techno-economic model:

• Assessed the techno-economic performance of optimized VSA process for post-

combustion CO2 capture from steam methane reformer dried flue gas

• A techno-economic investigation is carried out to determine the cost limits of

PVSA processes for post-combustion CO2 capture to evaluate the potential of

adsorptive CO2 capture

1.6 Structure of the thesis

The thesis is structured in two parts. The first part of the thesis, titled Machine learning

(Chapters 2 to 4), deals with machine learning applications. The second part of the

thesis, titled Techno-economic assessments (Chapters 5 to 6), focuses on techno-economic

assessments for post-combustion CO2 capture.

Chapter 2 focuses on developing two different hybrid approaches that incorporate

machine learning methods into process optimization routines for accelerating the com-

putational speeds of process optimization. The accuracy, robustness, and reliability of

these approaches are tested by considering a complex eight-step PSA process for pre-

combustion CO2 capture.

In Chapter 3, a deep learning framework that incorporates underlying governing

laws of physics to learn the spatiotemporal dynamics of generic pulse injections in

chromatography columns is proposed. The framework’s effectiveness is demonstrated

by validating the predicted results with detailed model simulations.
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Chapter 4 deals with developing physics-based deep learning models to construct

and simulate cyclic adsorption processes. Individual models are trained for each con-

stituent step in cyclic adsorption processes to learn the spatiotemporal solutions of

state variables while obeying the underlying conservation laws of mass and momen-

tum. The proposed methodology is first tested on the four-step VSA cycle for post-

combustion CO2 capture. Next, the ability of physics-based deep learning models to

synthesize and simulate different cyclic adsorption processes is explored. The predic-

tive capabilities of this approach are demonstrated by constructing four VSA cycles for

post-combustion CO2 capture and validating the results produced with the detailed

process model.

In Chapter 5, a rigorous techno-economic optimization methodology is developed

to systematically design P/VSA processes for post-combustion CO2 capture. The techno-

economic model incorporates both the latest improvements in process modelling and

the best practices for costing CCS systems. Based on this model, techno-economic

assessments are carried out to determine the CO2 avoided costs of the optimized four-

step VSA cycle for post-combustion CO2 capture from steam methane reformer flue

gas.

Chapter 6 extends the techno-economic optimization model to simultaneously op-

timize both adsorbent and process variables to determine the cost limits of PVSA pro-

cesses for post-combustion CO2 capture. The potential of adsorptive CO2 capture is

assessed by identifying the cost limits for different industrial flue gas CO2 composi-

tions and flow rates and comparing them with the cost performances of solvent-based

CO2 capture.

Finally, Chapter 7 summarizes the key findings of this thesis and provides ways

forward for future research that could lead to potential improvements.

Chapters 2 to 6 are standalone works and are presented in a complete form with

required definitions wherever deemed necessary.
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Part I

Machine learning
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Chapter 2

Machine learning-based
multi-objective optimization of
pressure swing adsorption

2.1 Introduction

Pressure-swing adsorption (PSA) processes are widely employed for a variety of in-

dustrial gas separations [1, 2, 4, 5, 7, 8] owing to their flexibility in operation and the

ability to achieve high separation trade-offs [1, 52]. The inherent feature of PSA is

the cyclic mode of operation between preferential adsorption of one or more gases

in a gaseous mixture at high pressures and regeneration at low pressures. To this end,

fixed-beds packed with a suitable adsorbent undergo a sequence of multiple steps such

as adsorption, blowdown, feed pressurization, etc., to realize the PSA cycle. Such pro-

cesses reach a cyclic steady state (CSS). As part of PSA modelling and optimization,

a set of stiff nonlinear partial differential equations (PDEs) must be solved repeatedly

in time and space until the system attains CSS. Owing to the modular nature of PSA

processes, various configurations (called “cycles”) can be synthesized by constituting

basic operational steps. Depending on the cycle, many decision variables can arise that

have to be tuned to meet the separations goals. For this reason, the optimization of PSA

The results presented in this chapter have been reported in: S.G. Subraveti, Z. Li, V. Prasad, A.
Rajendran. Machine learning-based multi-objective optimization of pressure swing adsorption. Ind.
Eng. Chem. Res. 2019, 58, 44, 20412-20422.
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processes is inherently complex. Further, hard constraints on separation trade-offs, e.g.

product purity, recovery etc., make optimization more challenging.

PSA optimization has been a topic of interest over the years [13, 14, 16, 17, 19, 20, 46,

53]. In most cases, the PDEs are solved until CSS each time the optimizer calls for objec-

tive function evaluations. Therefore, obtaining solutions to the dynamic optimization

problem is computationally demanding since several PSA simulations are required.

Over the past two decades, reduced-order or surrogate models have been considered

for objective function calculations in PSA optimization [18, 48, 54–60]. Surrogate mod-

els are mathematical models constructed using statistical techniques and avoid the

computational costs associated with expensive PSA simulations, thereby improving

the convergence speeds of PSA optimization routines [9]. To this end, kriging-based

algorithms [57, 58, 60] and artificial neural networks [54, 55, 59] have been reported for

PSA design and optimization. Further, Agarwal et al. developed and incorporated a

proper orthogonal decomposition-based reduced-order model into optimization rou-

tines [18]. When surrogate models are used for function evaluations, it is important to

ensure that the chosen model converges to the global optimum or near the optimum

of the detailed PSA model [61]. However, the accuracy of these models depends on

factors such as the number of samples used and the position of samples in the design

space. Although the performance of surrogate models can be improved with more

samples, computational efforts significantly increase alongside, owing to the high di-

mensional design space. In the context of surrogate-based PSA optimization, an initial

random sampling (e.g. Latin hypercube sampling) over the entire design space is first

carried out; then, surrogate models are constructed based on those samples and incor-

porated into optimization routines. Previous work on constructing surrogate models

based on efficient sampling strategies is minimal. Furthermore, research on integrating

machine learning techniques with PSA optimization routines to reduce the dimension-

ality of the optimization problem is still nascent.
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Recent advances in model-based engineering supported by modern data science

techniques like machine learning accelerate the development of adsorption technology

for gas separations [62]. So, the present chapter aims to address the issues of compu-

tational costs associated with PSA optimization by efficiently incorporating machine

learning principles into the optimization routines. Two approaches, named surrogate-

assisted optimization (SOpt) and dimensional reduction-based optimization (DROpt),

are proposed in this chapter. The novelty of SOpt lies in the construction of surrogates

based on the large number of samples accumulated during the optimization runs. The

main advantage of this efficient sampling strategy is to guarantee the search direction

for the optimization while spending minimal computational efforts on poor designs.

In DROpt, data-based methods are utilized to reduce the dimensionality of the search

space for improving the computational run-times of the PSA optimization. Further,

dimensional reduction-based surrogate-assisted optimization (DR-SOpt), a third ap-

proach that is based on the combination of DROpt and SOpt is also considered.

The remainder of the chapter is organized as follows: Section 2.2 describes the case

study considered in this chapter and also formulates the optimization problem. The

modelling of the PSA process is explained in Section 2.3. Section 2.4 introduces the ap-

proaches proposed in the present chapter. Finally, the accuracy and reliability of these

approaches are discussed in Section 2.5 by applying them to the case study considered.

2.2 Problem statement

The PSA optimization for carbon dioxide capture and storage is challenging owing to

strict regulatory requirements for achieving high separation trade-offs, namely, CO2

purity and recovery. To this end, a complex PSA process designed for pre-combustion

CO2 capture applications [25] was considered as a case study to apply the proposed

optimization approaches. The PSA cycle aims to separate CO2 and H2 efficiently un-

der pre-combustion CO2 capture conditions [25]. The feed consists of a binary mixture
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of 40 mol % CO2 and 60 mol % H2 at 34.5 bar and 240 ◦C. The process configura-

tion comprises a high pressure adsorption step (where the separation occurs and light

product H2 is removed from the column), two pressure equalization steps (i.e. depressur-

ization and pressurization via pressure equalization of two columns), a counter-current

blowdown and a steam purge to remove the heavy product CO2 from the column at low

pressure, and light-product pressurization in order to pressurize the column back to high

pressure. The process schematic is illustrated in Fig. 2.1. The adsorbent used for the

PSA process is activated carbon which has been demonstrated to have high stability

and good CO2/H2 selectivity [33]. The CO2 and H2 isotherms on activated carbon were

expressed in terms of the Sips model and the related adsorption isotherm parameters

used are those reported in the literature [25, 32]. The Sips isotherm model and the

related parameters for CO2 and H2 are provided in Appendix B.
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Figure 2.1: PSA cycle designed for pre-combustion CO2 capture [25] used as the case
study in this chapter.

Owing to the fact that cyclic adsorption processes feature multiple conflicting per-

formance indicators, multi-objective optimization problems are formulated for PSA

process optimization [20]. For the case study considered, it is important to identify

the optimal design and operating variables for which the PSA process meets the US

Department of Energy (US-DOE) requirements of 95% CO2 purity and 90% recovery.
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Therefore, a nonlinear multi-objective optimization problem was formulated as:⎧⎨⎩max
x

Pu

max
x

Re

subject to: lb ≤ x ≤ ub

x ∈ ℜn

(2.1)

where

Pu, (%) =
Total moles of CO2 in the extract product within one cycle
Total moles of gas in the extract product within one cycle

× 100 (2.2)

Re, (%) =
Total moles of CO2 in the extract product within one cycle
Total moles of CO2 fed into the column within one cycle

× 100 (2.3)

x is a vector of decision variables that includes the adsorption step time (tADS), the

first and second pressure equalization step times (tPREQ1 and tPREQ2, respectively), the

counter-current blowdown step time (tCnBLO), the purge step time (tPUR), the low pres-

sure (PL), the feed velocity (v0) and the purge velocity (vPUR). lb and ub are the lower

and upper bounds on the decision variables x. Although tPREQ1 and tPREQ2 are not de-

cision variables from a practical perspective, it is assumed in the simulations that they

can be controlled independently. In this chapter, the column dimensions are fixed to

those of the pilot-scale unit reported in a different study. Hence, the goal here was to

demonstrate the use of surrogate modelling rather than to perform a comprehensive

design of a new PSA unit. However, it is important to note that within the framework

described in this chapter, other decision variables such as the column dimensions can

be incorporated in a rather straightforward manner.

2.3 Adsorption process model

The mathematical model for simulating adsorption column dynamics consists of non-

linear PDEs obtained by solving mass, momentum, and energy balances. A detailed

one-dimensional model developed in earlier work was used to simulate the PSA pro-

cess [19]. The model assumes an axially dispersed plug flow to describe the bulk gas
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flow through the column. No radial gradients were considered for concentration, tem-

perature and pressure across the column. The model also assumes that the gas obeys

ideal behaviour and an instantaneous thermal equilibrium between the gas and the

solid. The adsorbent properties and bed voidage remain uniform throughout the col-

umn while heat transfer across the walls was considered. The model accounts for

frictional pressure drop across the column using Darcy’s law, and the solid phase mass

transfer was described using a linear driving force (LDF) model. The model used in

this chapter has been validated experimentally both at the lab-scale [47] and the pilot-

scale [35]. The model equations and appropriate boundary conditions are provided in

Appendix A.

The spatial terms in the PDEs were discretized into 30 finite volumes using the van-

Leer flux limiter [19]. The resulting ordinary differential equations (ODEs) were solved

using ode23s, a stiff solver in MATLAB. All simulations were performed assuming that

a single bed undergoes all cycle steps in a sequence. The criterion for reaching CSS

was when a mass balance error equal to 0.5% or less was observed for five consecutive

cycles. The coupled cycle steps in the PSA cycle were solved by storing the stream

information in data buffers. The model provided detailed gas phase, solid phase and

temperature profiles across the column, which were essential for calculating perfor-

mance indicators of a given PSA process. The simulation parameters are provided in

Table 2.1. Note that the uni-bed approach has been used successfully in the literature

to simulate the PSA process. In order to adopt the process for continuous operation,

appropriate sequencing needs to be included. Such a sequencing might result in idle

steps to ensure that at least one column in the system receives the feed.
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Table 2.1: PSA simulation parameters used in the present chapter [25].

Parameter Value
Column properties
Length, L (m) 0.83
Outer radius, ro (cm) 5.715
Inner radius, ri (cm) 5.118
Particle radius, rp (mm) 0.3
Bed voidage, ε (-) 0.4
Particle voidage, εp (-) 0.57
Physical properties
Adsorbent density, ρs (kg m−3) 1361.00
Specific heat capacity of adsorbent, Cp,s (J kg−1 K−1) 1877.20
Specific heat capacity of gas phase, Cp,g (J kg−1 K−1) 1010.60
Molecular diffusivity, Dm (mm2 s−1) 0.0481
Fluid viscosity, µ (cP) 0.0251
Effective gas thermal conductivity, Kz (J m−1 K−1 s−1) 0.09
Inside heat transfer coefficient, hin (J m−2 K−1 s−1) 0
Outside heat transfer coefficient, hout (J m−2 K−1 s−1) 2.5
Universal gas constant, R (m3 Pa mol−1 K−1) 8.314
Mass transfer coefficient, CO2, kavg,CO2 (s−1) 0.53
Mass transfer coefficient, H2, kavg,H2 (s−1) 10
Heat of adsorption CO2, ∆HCO2 (kJ mol−1) 20.5
Heat of adsorption H2, ∆HH2 (kJ mol−1) 9.8 [32]
Operating parameters
Syngas feed pressure Pfeed (bar) 34.5
High pressure PH (bar) 34.5
Feed composition (CO2/H2), yfeed (-) 0.4/0.6
Feed temperature, Tfeed (◦C) 240

2.4 Optimization approaches

2.4.1 Traditional optimization (TradOpt) framework

One of the ways to solve the multi-objective optimization problem described in Eq.

2.1 involves the implementation of global search methods, such as the non-dominated

sorting genetic algorithm II (NSGA-II) coupled with detailed PSA models. This rigor-
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ous methodology was successfully implemented for PSA optimization in several stud-

ies [19, 23, 40] and has been validated experimentally [47]. This is referred to as the

traditional optimization (TradOpt) procedure in the present chapter. In TradOpt, the

optimizer sends a population of decision variables to the detailed PSA model, which

calculates and returns the objective functions. NSGA-II improves the population of in-

dividuals by mimicking the process of evolution. The result of this multi-objective opti-

mization problem is the set of Pareto optimal solutions that represent the best trade-off

between CO2 purity and recovery.

The TradOpt procedure was implemented using MATLAB global optimization and

parallelization toolboxes. Pareto solutions were generated based on all individuals

evaluated during the optimization run. It should be noted that although this method-

ology is easy to implement, a large number of NSGA-II function evaluations using the

detailed PSA model make it computationally expensive.

2.4.2 Surrogate-assisted optimization (SOpt)

In this approach, surrogate models replaced the computationally expensive detailed

PSA model for function evaluations within NSGA-II optimization routines. Surrogates

are alternate representations of the multivariate mapping structure of the input-output

space constructed based on samples obtained either from experimental or simulation

data. Surrogate models serve as faster approximations of PSA process metrics without

solving PDEs repeatedly until the CSS condition is met. Therefore, coupling surro-

gate models with an optimization algorithm should reduce the computational costs

significantly. Single or multiple surrogate models can be employed depending on the

optimization problem. Many surrogate modelling methods have been studied for engi-

neering design and optimization purposes [63–66]. Artificial neural networks (ANN),

kriging, support vector regression (SVR) and response surface methods are the popu-

lar techniques. For the current chapter, artificial neural networks were chosen as global
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surrogate models within the NSGA-II optimization algorithm because of their ability

to approximate any continuous function if properly constructed and trained [67].

There are a few ways to incorporate ANN models within an evolutionary algorithm

framework. One way is to construct ANN models in a pre-processing phase based

on systematic design of experiments such as Latin hypercube (LHC) sampling. Later,

couple those models with an optimization routine. An alternative approach involves

constructing ANN models based on the population evolved within an evolutionary

algorithm during the optimization process. The latter approach exploits the genes and

fitness values of individuals obtained during optimization for training the ANN mod-

els. It also allows the ANN models to learn the promising regions better than the

other areas in the design space, based on the characteristics of individuals present in

the training data. The main idea of this approach lies in implementing the NSGA-II

optimization using the detailed PSA model for function evaluations in the first few

generations of the optimization process so that the ANN models are trained based

on the individuals evaluated, and then the PSA model can be replaced with the ANN

models to evaluate the fitness values in the subsequent generations of the optimization

algorithm. Other examples of constructing surrogate models based on the population

generated during optimization runs can be found elsewhere in the literature in the

context of engineering design and optimization [68].

The surrogate-assisted optimization (SOpt) approach proposed in the present chap-

ter is described as follows:

1. Implement TradOpt for the first N generations of the NSGA-II optimization.

2. Construct ANN models for purity and recovery, respectively, based on the simu-

lation data generated in Step 1.

3. Implement ANN-based NSGA-II function evaluations for the remaining number

of generations until the stopping criterion is met
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4. Compute the final Pareto front using all individuals generated in Step 3.

5. Re-evaluate the Pareto solutions using the detailed PSA model for final validation

An individual ANN model was developed for each objective (purity and recovery).

Since the inputs have different units, they were normalized before being fed to the

network as shown below:

x̄ =
x− min x

max x− min x
(2.4)

A systematic learning-validation procedure was followed during ANN model con-

struction, where 70% of samples were used for learning purposes while the remaining

30% were used for validation. Conventional learning methods adopt mean-squared

error (MSE) between the original and the predicted data as the performance function

for error minimization of the network, which leads to overfitting problems (i.e. lower

bias and large variance) [69]. When the error on the training set is driven to extremely

small values, often, there arises a situation where new data presented to the network

results in large errors because the network was trained to memorize only training ex-

amples. Hence, to improve the generalization capacity of the ANN model, Bayesian

regularization (BR) was employed. BR is commonly used for improving generalization

ability and robustness while training ANN models [70]. Details of the ANN structure,

training and implementation are provided in Appendix B. The Levenberg-Marquardt

algorithm with BR was implemented using the Neural Network Toolbox in MATLAB

2018a.

Transformation of the output space

The PSA cycle considered as the case study was designed to achieve high purities

and recoveries, respectively. Hence, initial generations of an evolutionary algorithm

can produce purities and recoveries as high as 100%. To this end, a transformation

(as shown in Eq. 2.5) was applied to the training output data in order 1) to avoid

ANN model predictions violating the physical bounds of the outputs by imposing
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asymptotic behaviour at the boundaries through the transformation, and 2) to make

the best prediction of the highly skewed region of the training data that was generated

from the evolutionary algorithm. The transformation was implemented using,

u = −1

ζ
log

[︃(︃
κ− χ

y − χ

)︃ν

− 1

]︃
(2.5)

where u is the transformed output, y is the original output data, κ and χ are the up-

per and lower asymptotes, respectively, and ζ and ν are other constants. It is worth

mentioning that y ∈ [0,1] while u lies in the interval [0, 1+] on the real line. The pre-

dictions are again transformed back using: ŷ = χ+ (κ− χ)/(1 + exp(−ζû))1/ν . Similar

transformations were utilized by Beck et al. [58] to improve model robustness within

a multi-objective optimization framework.

2.4.3 Dimensionality reduction-based optimization (DROpt)

The second approach proposed in the present chapter focuses on reducing the dimen-

sionality of the design space. The PSA process consists of multiple cycle steps oper-

ating in a sequence. The number of decision variables for the optimization problem

depends on the number of design (or operating) variables pertaining to different con-

stituent steps. For example, the PSA process considered in this chapter has eight steps

and eight decision variables for optimization. The high dimensionality of the variable

space poses a challenge for the global-search method (NSGA-II) due to the significant

computational efforts incurred to investigate the entire space, thereby increasing the

burden on the cost of optimization.

The curse of dimensionality in PSA optimization problems can be addressed by se-

lecting a limited number of relevant decision variables for optimization. Data-driven

methods have recently gained attention for addressing the issue of high dimensional-

ity in many applications. Common algorithms for dimensionality reduction include

principal component analysis (PCA) and partial least squares (PLS) regression, which

are feature extraction methods. In the current chapter, PLS regression was employed
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to identify the most relevant variables. Once the most relevant decision variables for

the optimization problem are identified, the others are discarded as decision variables

and held constant. The basic idea involves the hybridization of PLS-based dimensional

reduction and NSGA-II optimization using the detailed PSA model. The dimensional

reduction-based optimization (DROpt) approach proposed in this chapter is as follows:

1. Implement TradOpt for the first N generations of the NSGA-II optimization.

2. Carry out the dimensionality reduction using PLS regression based on simulation

data generated in Step 1 to identify the most relevant input variables.

3. Perform NSGA-II optimization for the remaining number of generations until the

stopping criterion is met using the important inputs identified in Step 2 as deci-

sion variables while holding the remaining inputs constant at the sample means

of the data used in Step 2.

4. Compute the final Pareto based on all individuals from Step 3.

Note that there is no separate validation step for DROpt since the function evaluations

are carried out using the detailed PSA model. It is worth noting that simulation data

generated within an optimization framework was utilized to reduce dimensionality.

However, any sampling technique can be used to implement dimensionality reduction

techniques. More details on the theory of PLS regression are provided in Appendix B.

In the present chapter, the PLS regression was performed using the built-in function

‘plsregress’ in the Statistics and Machine Learning Toolbox in MATLAB 2018a.

2.4.4 Dimensional reduction-based surrogate optimization (DR-SOpt)

The main idea of this approach lies in combining DROpt and SOpt methods. This ap-

proach incorporates both dimensional reduction tools and surrogate models for the

NSGA-II optimization. The dimensional reduction-based surrogate-assisted optimiza-

tion (DR-SOpt) approach proposed here is as follows:
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1. Implement TradOpt for the first N generations of the NSGA-II optimization.

2. Carry out the dimensionality reduction using PLS regression based on simulation

data generated in Step 1 to identify the most relevant input variables.

3. Perform detailed model-based NSGA-II optimization for the next K generations

using the important inputs identified in Step 2 as decision variables while hold-

ing other inputs constant at the sample means of the data used in Step 2.

4. Construct ANN models for purity and recovery, respectively, based on the simu-

lation data generated in Step 3.

5. Perform ANN-based NSGA-II function evaluations for the remaining number of

generations until the stopping criterion is met.

6. Compute the final Pareto based on all individuals from Step 5.

7. Re-evaluate the Pareto solutions using the detailed model for final validation.

2.5 Results and discussion

2.5.1 Benchmarking

The performances of proposed hybrid optimization routines, SOpt, DROpt and DR-

SOpt, are compared to the conventional TradOpt. The stopping criteria in all optimiza-

tion routines were set to a total of 50 generations. An initial population for NSGA-II

was generated using LHC sampling, and the population size was specified to be 24

times the number of decision variables. Other NSGA-II parameters were kept the same

for all cases. The ranges for the decision variables are as follows: tADS (s): 20-100, tPREQ1

(s): 30-180, tPREQ2 (s): 30-180, tCnBLO (s): 30-180, tPUR (s): 10-80, PL (bar): 1-17.3, v0 (m

s−1): 0.08-0.5 and vPUR (m s−1): 0.1-1.
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2.5.2 Pareto computation using SOpt

As described in Section 2.4.2, the first step in the proposed SOpt approach involves im-

plementing the detailed PSA model-based-NSGA-II optimization for the first N gen-

erations. The simulation results obtained in this step are used as the training dataset

to construct ANN surrogate models for purity and recovery, respectively. It is worth

mentioning that the training data comprises eight input variables (tADS, tPREQ1, tPREQ2,

tCnBLO, tPUR, PL, v0 and vPUR) and two output variables, Pu and Re. The predictive

capabilities of ANN surrogate models depend on the choice of N . Since there is no

rule of thumb for determining the ideal N , empirical tests were performed to choose

N . To this end, simulation data generated by the TradOpt routine after 50 generations

were utilized. Out of 50 generations of simulation data, the first 20 generations were

kept aside for training purposes; generations 21-50 were used as test samples T and

were not involved in ANN training. Different subsets of training samples, G(i), were

generated by considering the first i generations, where i ∈ [1,20]. For each training

subset, G(i), ANN models were trained for purity and recovery, respectively, based on

the procedure outlined in Section 2.4.2. During this learning procedure, the number of

hidden neurons used in the ANN models was ten, and it was kept the same throughout

the process. The ANN training process was stopped after 1000 iterations. The trained

ANN models of purity and recovery were tested on the test dataset T . The root-mean-

squared error (RMSE) of the test dataset served as the metric to choose N . The RMSE

was defined as:

RMSE, (%) =

⌜⃓⃓⎷ 1

T

T∑︂
j=1

(︂
ŷj, ANN − yj, DM

)︂2
× 100 (2.6)

where ŷANN is the ANN model prediction (purity or recovery) of the test sample, yDM,

is the detailed PSA model output in the test sample, and the set T consists of 5622

samples.

Figure 2.2 illustrates the RMSE for both purity and recovery, respectively, as a func-
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Figure 2.2: RMSE for purity and recovery ANN models as a function of the number of
generations to determine adequate N in SOpt.

tion of the number of generations. The RMSE for recovery models has a steep decrease

initially with an increase in the number of generations, and after five generations, the

change in RMSE was not significant. On the other hand, the RMSE for purity models

remains relatively constant after N=3 generations. This suggests that a choice of N ≥5

generations should generate accurate ANN models for both purity and recovery, re-

spectively, with the ability to provide good predictions for later generations when used

in an optimization framework. Therefore, N=5 with 1122 samples was chosen as this

was the smallest value of N for which the RMSE was nearly constant. Another consid-

eration is the probability distribution of the training data. The univariate probability

distribution of key input variables, tADS, PL, and v0, and the outputs, Pu and Re, (as

shown in Fig. B.2 in Appendix B) illustrates that the uniformly distributed individuals

in the initial generation evolve towards the most promising regions (i.e. regions where

there is a high probability of finding solutions that belong to the optimized Pareto

front) in the subsequent generations. As seen from the figure, the probability distri-

bution started advancing towards the promising areas of the search space from N=5.

This indicates that sampling the individuals accumulated in the first five generations
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can provide a promising search direction for ANN model-based NSGA-II optimiza-

tion. In other words, ANN models trained based on this sampling strategy can predict

the promising region reasonably well, thereby guarantee convergence to the global or

near optimum during function evaluations of the NSGA-II optimization. Besides, the

bivariate joint probability distributions of input and output variables for individuals

accumulated in the first 5 and 20 generations (as shown in Figs. B.4 and B.5, respec-

tively, in Appendix B) reinforce the observation that the probability distribution ob-

tained based on the individuals present in the first five generations proceed towards

the promising areas of the solution space. Table 2.2 presents the error summary of the

trained ANN models for N=5 generations along with the coefficient of determination

(R2). As can be seen from the table, the models achieve high R2 values of about 0.98.

Table 2.2: Summary of the training and validation accuracy of the purity and recovery
ANN models.

Model Etrain Eval R2 Nneurons

Purity 2.05×10−4 4.15×10−4 0.98 10
Recovery 1.7×10−3 7.4×10−3 0.98 10

In the next stage of the SOpt framework, the detailed PSA model-based function

evaluations are replaced with ANN models of purity and recovery, respectively, after

five generations for determining the Pareto front. The surrogate-based NSGA-II multi-

objective optimization was carried out for the remaining number of generations until

the stopping criterion was met. It should be noted that this stage of the optimization

was completed within a few seconds of CPU time. After that, the Pareto front was com-

puted independently based on all individuals evaluated during the ANN model-based

NSGA-II implementation and is shown in Fig. 2.3(a). The Pareto solutions obtained

from the average of three independent runs are reported. Figure 2.3(a) also illustrates

the Pareto front obtained using the TradOpt approach for comparison. It can be seen

that the Pareto fronts overlap significantly, indicating that the trained ANN models of
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purity and recovery have good predictive capabilities. However, towards the top right

corner of the Pareto region, it can be observed that the optimal points generated using

the SOpt approach slightly underestimate the front from TradOpt. This can be due to

the fact that ANN model-based NSGA-II has not converged for the given stopping cri-

teria. Nevertheless, the stopping criteria for both approaches were kept the same for

a fair comparison of computational efforts and accuracy, as explained in Section 2.5.5.

In order to understand the input-output mapping structure of the Pareto solutions ob-

tained from SOpt, the key decision variables (tADS, PL, and v0) corresponding to the

Pareto solutions in Fig. 2.3(a) are illustrated in Fig. 2.3(b). Decision variables tADS and

v0 are jointly shown as the product tADS · v0. It can be seen that the SOpt, in addition

to predicting the Pareto, also captures the mapping of optimal decision variables to

the performance indicators, purity and recovery. Note that a parallel coordinate rep-

resentation of the selected optimal solutions obtained using TradOpt and SOpt are also

illustrated in Fig. B.10 in Appendix B.

To demonstrate the reliability of the SOpt-based Pareto front, optimal decision vari-

ables obtained using ANN model-based NSGA-II implementation were re-evaluated

using the detailed PSA model for final validation. Figure 2.4 shows the comparison of

purities and recoveries obtained using the detailed PSA model with that of predicted

purities and recoveries from the ANN models, respectively, for the optimal decision

variables. Any point that lies on the 45-degree line indicates that both models predict

the same target value. It can be observed that most of the points lie along the line.

The maximum relative difference between the PSA model and ANN model for purity

and recovery was found to be 0.9% and 5.1%, respectively. In the region of interest

(Pu > 95% and Re > 90%), the ANN model prediction is highly accurate in reproduc-

ing the detailed PSA model’s estimates.
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Figure 2.3: Comparison of (a) Pareto fronts obtained with SOpt (circles), DROpt (trian-
gles) and TradOpt (squares) approaches and (b) the corresponding key optimal decision
variables obtained. Note that the bounds on tADS · v0 and PL in the optimization were
varied from 1.6 to 50 m and 1 to 17.3 bar, respectively.

2.5.3 Maximization of purity and recovery based on DROpt

Within the DROpt framework, PLS regression was first implemented to reduce the

high dimensional design space to a lower dimension. The initial data to perform the

dimensional reduction was obtained by implementing TradOpt for the first N=2 gen-

erations, comprising 576 samples (or simulations). Each sample in the data generated

by TradOpt implementation consists of eight design variables and two output vari-
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Figure 2.4: Purity-recovery parity plots corresponding to the optimal design variables
computed using SOpt. The shaded region represents an error range of ±1.5% .

ables, Pu and Re. The scope of PLS in this approach involves identifying important

input variables, and the posterior outcomes of this technique (i.e. regression models)

were not used elsewhere in this approach. An essential part of PLS modelling involves

finding the minimum number of latent variables (nLV) that best explains the variance

from the original data. A popular approach to choose an optimal value of nLV involves

constructing a PLS model with maximum nLV and subsequently analyzing the contri-

butions towards RMSE and variance in the output y by each of the latent variables [71].

To this end, a maximum of nLV=8 could be extracted as the rank of the input matrix is

8 for the given case. Therefore, a PLS model with maximum nLV was developed using

the entire dataset gathered from TradOpt implementation. During the training process,

a 10-fold cross-validation procedure was followed to validate the model. It was found

that the first three latent variables were sufficient to describe the PLS model as the re-

maining latent variables had negligible contribution with respect to both decreasing

the overall RMSE value of the model and increasing the total variance explained in

the output space (as shown by Figs. B.6 and B.7 in Appendix B). Based on the above

analysis, it was concluded that the optimum nLV is 3. A final PLS model was then
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constructed with nLV=3 using the entire dataset. To understand the influence of the

original input variables on the PLS latent variables, the PLS weights were inspected.

The PLS weights are simply the linear combinations of the original variables that form

a latent variable. Figure 2.5 shows the weights of the first two latent variables plotted

against each other. Since the contribution of the third latent variable towards lowering

the RMSE is relatively smaller than that of the first two latent variables, only the first

two latent variables were considered for easy interpretation. Data labels provided in

Fig. 2.5 correspond to the original input variables. It should be noted that the higher

the weight, the stronger the latent variable depends on the original variable. The origi-

nal input variables with high loadings on the first two latent variables were considered

to contribute most to the PLS regression model. From Fig. 2.5, it can be seen that vari-

ables tADS, PL and v0 are far away from the origin (i.e. have high loading) in both the la-

tent variables, indicating that these variables have a strong influence on the PLS model

while the remaining variables tPREQ1, tPREQ2, tCnBLO, tPUR, and vPUR are clustered closer

to the origin, indicating negligible contributions to both the latent variables. Table 2.3

shows the regression coefficients obtained from the PLS model. As can be seen from

the table, the regression coefficients for tADS, PL and v0 are higher than those for the

remaining variables. Therefore, it can be deduced that the variables tADS, PL and v0

contribute significantly to explaining the variance in both purity and recovery. To this

end, the remaining variables are discarded from the optimization problem by holding

them at constant values, which are: tPREQ1 = 100.4 s, tPREQ2 = 103.7 s, tCnBLO = 104.4 s,

tPUR = 45.5 s, and vPUR = 0.5 ms−1. These values were obtained based on the sample

means of the data used for PLS regression. Subsequently, the search space dimension

of the NSGA-II optimizer is reduced from 8 to 3.

The next step in DROpt involves the multi-objective NSGA-II optimization using

the detailed PSA model for function evaluations given the three input variables, tADS,

PL and v0. The final Pareto computation was done when the stopping criterion was

33



-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

w
ei

gh
ts

 o
f s

ec
on

d 
la

te
nt

 v
ar

ia
bl

e 
(w

LV
2)

-0.02 -0.01 0.00 0.01 0.02
weights of first latent variable (wLV1)

tADS

tPREQ1

tPREQ2
tCnBLO tPUR

PL

v0

vPUR

Figure 2.5: PLS weights for the first two latent variables in DROpt. Data labels repre-
sent the original input variables.

Table 2.3: PLS regression coefficients for nLV=3.

Pu Re

tADS 0.33 -0.44
tPREQ1 0.01 -0.02
tPREQ2 0.04 0.02
tCnBLO -0.07 0.07
tPUR -0.02 0.03
PL -0.41 0.09
v0 0.43 -0.58
vPUR 0.04 0.02

met for the aforementioned optimization after 50 generations. Figure 2.3(a) also shows

the Pareto front (triangles) obtained using the DROpt approach. The bounds for deci-

sion variables tADS, PL and v0 used in DROpt were kept the same as in TradOpt. DROpt

was reliable in predicting the purity-recovery optimal solutions, as the Pareto fronts of

DROpt and TradOpt overlap. It is also interesting to note that the optimal points gen-

erated by DROpt are spread throughout the Pareto space of TradOpt. The key decision

variables corresponding to the Pareto solutions in Fig. 2.3(a) are again illustrated in

Fig. 2.3(b). It can be noticed that DROpt captures the mapping of the optimal input
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space reasonably well.

2.5.4 Pareto computation based on DR-SOpt

In DR-SOpt, data was gathered from the first two generations of TradOpt implementa-

tion to carry out the dimensional reduction. For the process considered, the important

variables remain the same as in DROpt. Thereafter, PSA model-based NSGA-II opti-

mization was implemented based on the important variables, tADS, PL and v0, as deci-

sion variables for the nextK generations. The simulations performed herein were used

as the training data to construct ANN models of purity and recovery. The K value was

again determined using the RMSE of the test samples, which were all individuals from

generations 21-50 obtained in DROpt. K was varied between 2 to 20, and the influence

of K on the RMSE of the purity and recovery, respectively, is illustrated in Fig. B.8 in

Appendix B. As can be observed, K has no influence on the RMSE of the purity and re-

covery models after eight generations. The smallest value of K (=8) for which trained

ANN models of purity and recovery showed good accuracy was chosen. It is worth

noting that the inputs to the ANN models in this approach are tADS, PL and v0 while

the output was purity or recovery, depending on the ANN model used.

The remaining 40 generations of NSGA-II optimization were carried out based on

ANN models of purity and recovery, respectively. Subsequently, the optimization was

terminated after the stopping criterion was attained. All individuals generated dur-

ing ANN model-based NSGA-II implementation were considered for determining the

Pareto front. Figure 2.6(a) shows the Pareto solutions obtained using this hybrid ap-

proach. The results obtained were the average of three independent runs. The TradOpt-

based Pareto is also shown for comparison. It can be seen that DR-SOpt predicts the

Pareto reasonably well. Although most of the points are slightly underestimated com-

pared to the Pareto generated with TradOpt, the computational gains achieved through

this approach are significant. Figure 2.6(b) compares the purities and recoveries ob-

35



tained from the detailed PSA model to the predicted purities and recoveries from ANN

models based on optimal decision variables, tADS, PL and v0. The relative error for both

purity and recovery was found to be less than 1%. This approach also shows good per-

formance in predicting the optimal decision variable space (as shown in Fig. B.9 in

Appendix B) for the Pareto solutions illustrated in Fig. 2.6(a).
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Figure 2.6: (a) Comparison of Pareto fronts obtained with DR-SOpt (inverted triangles)
and TradOpt (squares). (b) Purity-recovery parity plots corresponding to the optimal
design variables computed using DR-SOpt. The shaded region represents an error
range of ±1%.

2.5.5 Performance of the different optimization approaches

The overall performance of the three approaches studied in the present chapter was

compared in terms of 1) computational costs incurred for computing the final Pareto

front after 50 (total) generations in each approach, and 2) accuracy of predicting the

original Pareto (obtained using TradOpt). The run-times are reported in terms of single-

core computation hours. It is worth noting that TradOpt and DROpt runs were carried

out using multiple CPUs run in parallel but were converted to single-core hours for a

fair comparison with other approaches. The accuracy of the Pareto curve obtained in

each approach was quantified in terms of the normalized area between Pareto fronts
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(A), which is defined as:

A, [%] =
AUCTradOpt − AUC

AUCTradOpt

× 100 (2.7)

where AUCTradOpt corresponds to the area under the curve of the TradOpt-generated

Pareto front in the region Pu ≥90% & Re ≥85% in Fig. 2.3(a); AUC represents the

area under the curve of the Pareto generated based on a given proposed approach, i.e.

SOpt, DROpt and DR-SOpt. Based on Eq. 2.7, the Pareto fronts obtained in each of

the proposed approaches were respectively compared to the Pareto front generated in

TradOpt.

Figure 2.7(a) shows the single-core hours (SCH) equivalent run-times of each opti-

mization approach after 50 generations of function evaluations. As expected, TradOpt

incurred high computational costs while the other approaches showed significant im-

provement in run-times. In SOpt, only five generations of function evaluations were

performed using the detailed PSA model, while the remaining 45 generations were

evaluated based on the developed ANN models. Because of this, computationally in-

tensive PSA model-based function evaluations were avoided for 45 generations, which

resulted in only ≈10% of computational demands as compared to TradOpt. Dimen-

sionality reduction in DROpt from eight variables to three variables also showed good

run-time performance. The first two generations used all eight variables; after that, op-

timization was carried out with a search space of only three dimensions; this showed

≈50% of improvement in run-time performances when compared to TradOpt. Finally,

DR-SOpt also demanded less computational resources of about ≈12% of TradOpt. To

determine the accuracies of the Pareto fronts obtained in each of the approaches, A was

plotted as a function of SCH in Fig. 2.7(b). A lower A implies that the Pareto front of

the proposed approach and TradOpt are very close, while a higher A implies that the

two Pareto fronts are far from each other. A value of A=0 represents the exact over-

lap of the Pareto fronts on each other. Any point that lies in the bottom-left region of

the figure corresponds to an ideal optimization approach with high accuracy and low
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computational efforts. The accuracies of Pareto fronts obtained after every generation

in the TradOpt (also shown as open markers in Fig. 2.7(b)) are used for comparison.

As can be seen from the figure, SOpt has relatively lower A and lower SCH when

compared to other approaches. To provide context, the accuracy of the Pareto front

computed based on the SOpt is the same as the Pareto front obtained in the TradOpt

after 46 generations (as can be observed from Fig. 2.7(b)), but the computational costs

incurred are approximately nine times less than that of the latter approach. DROpt has

comparable A performance to SOpt; however, the computational costs associated with

this approach are relatively higher than that of the SOpt, yet, two times faster than that

of the TradOpt. Of all the proposed approaches, DR-SOpt has the highest A (similar to

that of the TradOpt after 42 generations), indicating that the Pareto front generated un-

derestimates the conventional Pareto front. Nevertheless, all the proposed approaches

showed good performance in predicting the Pareto fronts with small computational

demands.
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Figure 2.7: Comparative performance of the proposed approaches in terms of (a) com-
putational costs incurred, (b) normalized area between Pareto fronts (A). A as a func-
tion of the number of generations in TradOpt (open squares) are also illustrated for
comparison.
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2.6 Conclusions and outlook

This chapter demonstrated the hybridization of the detailed PSA model and machine

learning principles for the multi-objective optimization of PSA processes. Two ap-

proaches, SOpt and DROpt, are proposed for accelerating the computation of Pareto

optimal solutions within the NSGA-II optimization framework. The proposed ap-

proaches were tested for accuracy, robustness and reliability by considering a complex

PSA cycle that was designed for pre-combustion CO2 capture as the case study.

The SOpt approach exploits nonlinear artificial neural networks as surrogate mod-

els, which act as alternate representations of the multivariate mapping between design

variables and performance indicators. The ANN models substitute the original PSA

model to achieve very fast NSGA-II function evaluations in the later generations of the

multi-objective optimization problem. Empirical tests were carried out to determine

the minimum number of generations required for ANN models to predict the latter

generations with high accuracy and stability. The Pareto front computed using this ap-

proach overlaps with the Pareto front obtained using the conventional procedure. The

fact that the surrogate optima lie in the close vicinity of the optima from conventional

methods can be attributed to the efficient sampling strategy and high accuracy of the

ANN models. Another interesting aspect of this approach is the accurate prediction

of optimal decision variables. The re-evaluation of optimal design variables using the

detailed PSA model demonstrated the reliability of this approach. As far as computa-

tional run-times are concerned, this approach utilized only about 10% of the run-time

required for the conventional optimization procedure.

The second methodology, DROpt, focuses on solving the issue of high-dimensionality

in PSA multi-objective optimizations. By employing PLS regression, relevant variables

for the optimization problem were identified. The optimization was carried out with

these important variables, reducing the computational costs associated with the high-

dimensional design space. The DROpt-based Pareto front was shown to be similar
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to that of the original Pareto. In addition, the input-output mapping structure in the

optimal design space was also captured well. The dimensional reduction from 8 to 3

improved the computational speeds of the optimization by ∼50%.

A third approach, DR-SOpt, that exploits both dimensionality reduction and ANN

model-based function evaluations, has also been investigated. Initially, sufficient data

was gathered from the first few generations to perform PLS regression for dimensional

reduction. Subsequently, based on the relevant variables, the optimization was carried

out for the next few generations using the detailed PSA model. The large number of

samples accumulated were then used to train the ANN models for function evaluations

in the later generations. It was found that the DR-SOpt predicts the original Pareto

front reasonably well by facilitating faster computations.

In the context of PSA design and optimization, the major barrier for solving the

multi-objective optimization problems has been the associated computational costs in-

curred. The present chapter shows the ability of machine learning in accelerating the

discovery of optimal operating conditions when efficiently incorporated into the opti-

mization routines. With the increased interest in model-based engineering for material

discovery and process development, the current work demonstrates the importance

of machine learning towards rapid progress in adsorption technology for different gas

separations.
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Chapter 3

Physics-based deep neural networks for
simulation and optimization of
chromatographic separations

3.1 Introduction

Many physical phenomena in science and engineering are mathematically described

by partial differential equations (PDEs). To this end, solving PDEs is of great research

interest for simulating and thorough understanding of scientific and engineered sys-

tems. Due to the lack of analytical solutions, the PDE solutions are often approximated

using numerical approaches such as finite difference, finite element, and finite vol-

ume methods. However, the numerical solvers take significant computational time

and resources to obtain the solutions with the desired accuracy, especially if many re-

peated simulations are needed. To avoid the computational burdens, surrogate mod-

els are used as fast approximations to the high-fidelity numerical simulations. The

latest groundbreaking advances in artificial intelligence, machine and deep learning

have allowed for the development of viable methodologies for surrogate modelling

[72]. For instance, neural networks are one of the machine learning algorithms widely

employed for learning the input-output mapping structures of complex systems [73,

74]. The neural networks consist of hidden layers with neurons which gives them the

ability to capture nonlinear dynamics. If the network has more than two hidden lay-
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ers, typically, it is called a deep neural network. The enhanced ability of deep neural

networks with several hidden layers in capturing very complex nonlinear dynamics

has spurred a lot of interest recently in modelling physical systems - particularly the

idea of learning PDEs through constraint-based loss functions [75–77]. For instance,

Raissi et al. [77] developed a physics-based neural network framework in which fully

connected deep neural networks can learn the PDE solutions anywhere on the do-

main with few training points by incorporating a physics-constrained loss function.

One of the advantages of this approach includes the presence of PDE-based terms in

the loss function, which automatically enables the physics regularization of the neural

networks. The philosophy of physics constraining the loss function was later adopted

for various applications [78–80].

As mentioned previously in Chapter 1, gas adsorption systems governed by a sys-

tem of nonlinear PDEs are computationally expensive to solve using numerical meth-

ods. To this end, physics-based neural network models can be potential alternatives

to simulate adsorption processes rapidly. Before implementing these approaches for

modelling such complex processes, a simpler physical phenomenon such as chromatog-

raphy with the same underlying principles of gas adsorption processes is considered in

this chapter to test the feasibility of implementing physics-based neural networks for

simulating column dynamics. Preparative chromatography is a powerful technique

employed in pharmaceutical, food, and agrochemical industries [81]. In most cases,

the binary solute mixture that needs to be separated is dissolved in a solvent (mobile

phase) and introduced into single or multiple chromatography columns containing ad-

sorbent particles (stationary phase). The driving force for the separation is the differ-

ence in the affinity of the solute mixture components towards the stationary phase. To

quantitatively describe the complex behaviour of solute movement inside the column,

hyperbolic PDEs must be solved, sometimes repeatedly. Due to the lack of analytical

solutions, especially when dispersive and mass transfer effects are present, the PDE
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solutions are often approximated using time-consuming numerical solvers to obtain

the desired accuracy. Most previous studies on physics-based neural networks have

shown their capabilities to learn a single PDE solution, i.e. for given initial and bound-

ary conditions, physical parameters, etc. However, the neural network models must

be retrained if the initial or boundary conditions or simulation parameters change.

Retraining the models every time does not provide the computational advantage for

chromatography systems because the numerical solver is computationally less expen-

sive than retraining the models. Therefore, a more generalized framework is required

to implement the physics-based neural networks for chromatography systems.

This chapter explores the ability of the physics-based neural network to predict the

complex dynamics of chromatography columns for generic pulse injections. Specif-

ically, the feed concentrations of binary solute mixtures and injection volumes pro-

foundly impact the solute movement along the column [81]. Different concentration

transitions arise depending on feed concentrations and pulse injection volumes that

will influence how the solute components interact with each other along the column

[81]. Therefore, a generic model that can quantitatively describe the solute movement

for any given binary mixture feed concentration and injection volume is desired for the

rapid design of chromatographic systems. To this end, the goal of the physics-based

neural network is to predict the binary solute mixture dynamics and capture critical

features such as the formation and propagation of shocks, waves, concentration transi-

tions and their evolution within the column. The predictive capabilities of the physics-

based neural network are assessed by comparing the results produced with the high-

fidelity numerical simulations. Ultimately, the neural network model is coupled with

the optimization routine to determine optimal conditions for baseline separation of

solute components of the feed mixture.
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3.2 Governing partial differential equations

The conservation of mass governs the solute transport in chromatographic columns.

Under the assumption of negligible mass transfer resistance, an equilibrium-dispersive

model is employed to describe the mass balance of each solute component in a binary

mixture along with adsorption equilibria [82]. In this model, there exists an instan-

taneous equilibrium between the fluid and the solid phases. Moreover, dilute solute

concentrations are considered so that the velocity of the fluid phase remains constant

along the column. Based on these assumptions, the mass balance equation for each

component is given by

∂ci
∂t

= Dax
∂2ci
∂z2

− v
∂ci
∂z

− 1− ε

ε

∂q∗i
∂t

i = 1, 2 (3.1)

where ci is the concentration of the solute i in the fluid phase; q∗i is the equilibrium

solid-phase concentration of the solute i; Dax is the axial dispersion coefficient that

accounts for both axial dispersion and mass transfer resistance due to non-equilibrium

effects; ε is the void fraction of the bed; and v is the interstitial velocity. The equilibrium

solid-phase concentration, q∗i , is calculated using a competitive single-site Langmuir

(SSL) isotherm model as shown below:

q∗i =
Hici

1 +
∑︁

i bici
i = 1, 2 (3.2)

In the above equation,Hi and bi are the Henry constant and the adsorption equilibrium

constant. The second component is assumed to be the strongly adsorbing component,

i.e., H2 > H1. Equations 3.1 and 3.2 together result in a system of two coupled non-

linear PDEs. For well-posed systems, appropriate initial and boundary conditions are

required. Normally, the chromatographic columns are initially saturated with a non-

adsorbing solvent, giving rise to an initial condition, ci(z, 0)=0. Binary concentration

pulses are injected into the column where Eq. 3.1 is subjected to the following bound-
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ary conditions at the column inlet and outlet, respectively:

ci(0, t) =

{︄
c0i 0 ≤ t ≤ τ

0 t > τ
(3.3)

∂ci
∂z

⃓⃓⃓⃓
z=L

= 0 (3.4)

where c0i represents the concentration of the solute i injected into the column, and τ is

the time of injection.

3.3 Methodology

3.3.1 Physics-based neural network

Physics-based neural networks are based on advanced deep learning algorithms that

can solve supervised learning tasks while obeying the laws of physics as described by

general nonlinear partial differential equations [77]. The basic idea involves training

the neural networks to match the labelled data while also minimizing the residuals of

PDEs to enforce the physics-based constraints. As previously mentioned, the solution

of Eq. 3.1 is unique for given inlet feed concentrations (c01, c02) and the injection time τ .

For computing the neural network approximated solutions of Eq. 3.1 at any c01, c02, and

τ , the neural network model is trained based on Nk different combinations of c01, c02,

and τ to enable generalized capabilities. Therefore, the physics-based neural network

model developed herein aims to learn the following mapping:

[z, t, c01, c
0
2, τ ]

θ−→ [c1(z, t), c2(z, t)] (3.5)

Here the neural network takes five inputs: spatiotemporal coordinates (z, t), inlet feed

concentrations (c01, c02) and the injection time τ , while the solute concentrations c1(z, t),

c2(z, t) are the outputs. The equilibrium solid concentrations q∗1(z, t), q∗2(z, t) can be

expressed in terms of c1(z, t), c2(z, t) based on Eq. 3.2 and are not explicitly considered

as the outputs.
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Figure 3.1: Deep neural network architecture.

Neural network architecture

This study employs a feed-forward, fully connected deep neural network to construct

a physics-based neural network model for chromatography. Figure 3.1 illustrates the

architecture of the deep neural network comprising Nh+2 layers with one input layer,

Nh hidden layers, and one output layer. Moreover, each layer has a predefined number

of neurons that are interconnected through a set of coefficients called weights. In ad-

dition to weights, each neuron also has a bias term. Each neuron combines the inputs,

weights and biases through a nonlinear activation function as shown below:

Xl = σl(Xl−1Wl + bl) (3.6)

where Xl−1 is the output of the l − 1 layer; Wl and bl represent the weight matrix and

bias vector of layer l, respectively and; Xl is the output of l layer. The dimensions of

weight matrix Wl and bias vector bl are Nl−1 ×Nl and Nl, respectively, where Nl−1 and

Nl are the number of neurons in l − 1 and l layer, respectively. This way each layer

receives outputs from the previous layer as inputs and feeds forward to the next layer.

All the hidden parameters of the neural network are denoted as θ, i.e. (W, b) ∈ θ. Here,

the activation function, σl, number of hidden layers, Nh, number of hidden neurons,

Nl form hyperparameters.
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Loss function

To enable such a mapping given in Eq. 3.5, the hidden parameters, θ, need to be de-

termined by optimizing the loss function. To this end, the loss function constructed

herein consists of two terms. Each part of the loss function is described in detail as

follows:

Loss function: Labelled data. This part of the loss function constrains the predictions

of the neural network to match the labelled data. Herein, the labelled data refers to the

training data that needs to be obtained either from experiments or simulations. The

initial and the boundary data from the simulations is introduced as the labelled data

[77]. The loss term expressed as the mean-squared error (MSE) between the neural

network predictions and the labelled data (for case #k) can be written as

Lk
data =

1

Nk
i

Nk
i∑︂

i=1

[︃
c1̂(z

k
i , t

k
i , c

0,k
1 , c0,k2 , τ k, θ)− c1(z

k
i , t

k
i , c

0,k
1 , c0,k2 , τ k)

τ k

]︃2
+

1

Nk
i

Nk
i∑︂

i=1

[︃
c2̂(z

k
i , t

k
i , c

0,k
1 , c0,k2 , τ k, θ)− c2(z

k
i , t

k
i , c

0,k
1 , c0,k2 , τ k)

τ k

]︃2
(3.7)

where c1̂ and c2̂ are the neural network predictions, whereas c1 and c2 denote the la-

belled data of two solute concentrations obtained using high-fidelity simulations. Nk
i

represents the number of labelled initial and boundary data points. zki and tki are spa-

tiotemporal coordinates on the bottom, left and right boundaries of the spatiotemporal

domain. Finally, k = 1, 2.., Nk, represent different cases of c0,k1 , c0,k2 , τ k.

Loss function: PDE residuals. This part of the loss function introduces the physics

regularization of the neural networks. To this end, the PDE residuals of Eq. 3.1 for two

solute components are defined as follows:

r1(z, t) :
∂c1
∂t

+ v
∂c1
∂z

−Dax
∂2c1
∂z2

+
1− ε

ε

∂q∗1
∂t

r2(z, t) :
∂c2
∂t

+ v
∂c2
∂z

−Dax
∂2c2
∂z2

+
1− ε

ε

∂q∗2
∂t

(3.8)

For evaluating the above mentioned residuals,Nr collocation points (i.e. (zr, tr)) within

the spatiotemporal domain are used. These collocation points are randomly chosen
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using Latin hypercube sampling. Notably, this part of the loss function requires no

additional training data from the simulations because the collocation points are just

auxiliary points that help calculate the partial derivatives. The loss term corresponding

to the residuals given in Eq. 3.8 can be written as

Lk
residual =

1

Nk
r

Nk
r∑︂

r=1

r1(z
k
r , t

k
r , c

0,k
1 , c0,k2 , τ k, θ) +

1

Nr

Nr∑︂
r=1

r2(z
k
r , t

k
r , c

0,k
1 , c0,k2 , τ k, θ) (3.9)

where Nk
r is the number of collocation points for case #k. rk1 and rk2 correspond to

the residuals of first and second solute component mass balances for case #k, where

k = 1, 2.., Nk.

Overall Loss function. By combining the loss terms Eqs. 3.7 and 3.9, the overall loss

function takes the following form:

L = λdata

Nk∑︂
k=1

Lk
data + λresidual

Nk∑︂
k=1

Lk
residual (3.10)

In the above equation, individual terms Lk
data and Lk

residual obtained for each case #k are

together summed over Nk cases of different combinations of c0,k1 , c0,k2 , τ k. The rationale

here is to constrain the neural network to match the labelled data and reduce the PDE

residuals close to zero for each case #k, then minimize the MSE values obtained from

all cases considered so that the neural network learns the unique spatiotemporal solu-

tions corresponding to different c0,k1 , c0,k2 , τ k. λdata and λresidual are the weight terms ([0,

∞]) in the loss function. The neural network learning process and the accuracy are de-

pendent on the choice of the weights. Although there is no rule of thumb for choosing

the optimal weights, limited numerical experimentation is carried out to estimate the

weights that give better accuracy.

Learning procedure

The neural network training aims to determine the optimal weights and biases (θ) by

minimizing the loss function described in Eq. 3.10. The weights are initialized using
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Xavier initialization [83], a standard strategy for neural network initialization, and the

biases are initialized with zeros. Equation 3.10 is minimized using L-BFGS, a quasi-

Newton full-batch gradient-based optimization method. During the training, the gra-

dients of the loss function with respect to each training weight are backpropagated

based on the chain rule, and after each iteration, the weights and biases are updated.

This procedure repeats until convergence is achieved. Although the convergence to

the global minimum with thousands of adjustable parameters is not guaranteed using

this approach, it is shown that the correct parameters for weights and biases that can

result in good prediction accuracies can be obtained [77].

To compute the partial derivatives in the PDE residuals, automatic differentiation

(AD) is used [84]. In AD, the partial differential operators are approximated using the

chain rule through backpropagation of derivatives from the output layer to the input

layer. Well-established modules are available to implement AD in deep learning frame-

works such as Tensorflow [85] and PyTorch [86]. In this study, the partial differential

operators are computed using “tf.gradients()” in Tensorflow.

3.3.2 Non-dimensionalization and normalization

The physical quantities in Eq. 3.1 have different orders of magnitude, which can lead

to difficulties while calculating backpropagated gradients during neural network train-

ing [78, 87]. In order to avoid this, non-dimensionalization of physical quantities with

appropriate scaling (i.e. ∼ O(1)) is essential. Here, the non-dimensionalized quantities

are defined as:

c̄1 =
c1
c01
, c̄2 =

c2
c02
, q̄∗1 =

q∗1
c01
, q̄∗2 =

q∗2
c02
, v̄ =

v

v0
(3.11)

where v0 is the interstitial velocity (m s−1), and the inputs are normalized to lie in the

range of [-1,1] as follows:

z̄ = 2
z

L
− 1, t̄ = 2

t

t0
− 1, c0̄ = 2

c0

c0max

− 1, τ̄ = 2
τ

τ0
− 1 (3.12)
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L is the length of the chromatography column (m), t0 is the total duration for which

the solute movement is tracked (s), c0max is the maximum inlet concentration, and τ0 is

the maximum injection time considered (s).

Based on the non-dimensionalized variables, Eq. 3.1 takes the form:

∂c̄i
∂t̄

= −ν1v̄
∂c̄i
∂z̄

+ ν2
∂2c̄i
∂z̄2

− ν3
∂q̄∗i
∂t̄

i = 1, 2 (3.13)

In the above equation, ν1 =
v0t0

L
, ν2 =

Daxt0

L2
, and ν3 =

1− ε

ε
.

The non-dimensionalization and the normalization ensures that all the variables and

inputs are scaled to order O(1). Before the training, the data provided to the neural

network is scaled based on Eqs. 3.11 and 3.12. The predicted quantities are finally

reverted to their original form.

3.3.3 Data generation: high fidelity ED model simulations

For generating both training and validation data, high-fidelity simulations are carried

out to solve Eqs. 3.1 and 3.2 together. The spatial terms in Eq. 3.1 are discretized

into 200 finite volumes using a finite volume method. Although fewer finite volume

elements would generally suffice, high-efficiency separations require finer discretiza-

tion. The resulting ordinary differential equations are integrated in time using ode15s

in MATLAB 2021a. Finally, the high fidelity simulations provided the entire spatiotem-

poral solutions of c1(z, t) and c2(z, t). Although the data generated in simulations can

be massive, only a tiny portion is gathered to train the neural network models. The

simulation data is also used to evaluate the neural network model’s accuracy. Since

the framework employed herein also has c01, c02 and, τ as inputs, multiple simulations

are carried out at different combinations of c01, c02 and, τ to have variation in the inputs,

thereby enabling the desired mapping in Eq. 3.5.
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3.3.4 Optimization

The neural network models are coupled with a non-dominated sorting genetic algo-

rithm II (NSGA-II), a stochastic optimizer, to optimize chromatographic separations.

The optimizer selects a population of decision variables for the neural network model

to evaluate objective functional values. Based on this information, the optimizer im-

proves the population by mimicking the evolution to carry out operations such as

crossover, mutation, etc., for obtaining the optimum solution. NSGA-II has been suc-

cessfully implemented for single-objective optimization problems [21, 88].

3.4 Results and discussion

3.4.1 Neural network training

The physics-based neural networks are trained to learn the column dynamics for generic

pulse injections by considering multiple training cases with varying c01, c02 and, τ . Here

ten training cases are considered where each case represents a unique combination of

c01, c02 and, τ and a unique solution to Eq. 3.1. The values of c01, c02 and, τ are chosen such

that several important features such as propagation of shocks, waves, concentration

transitions, along with interactions between adsorption and desorption fronts can be

noticed. To this end, both c01 and c02 are varied between 0.3 and 5 mg ml−1, whereas τ is

changed between 100 and 550 seconds, respectively. Table 3.1 shows the ten different

combinations of c01, c02 and, τ generated using Latin-hypercube sampling. The high fi-

delity simulations are carried out for these cases based on the parameters provided in

Table 3.2 to generate the simulation data.

The data acquisition for training involves gathering the simulation data from each

case and subjecting both the inputs and the physical quantities to normalization and

non-dimensionalization, respectively, as outlined previously. Following this, the initial

and boundary concentration data of two solute components from all training cases are
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gathered to form the labelled data, as illustrated in Fig. 3.2. To be more specific, 251

equidistant time steps of concentration profile at each boundary and initial concentra-

tion at 102 spatial locations are extracted from each training case. The total number

of labelled data points fed to the network can be visualized in Fig. 3.2. To infer the

PDE solution within the spatiotemporal domain, Nr=2000 collocation points are ran-

domly generated using Latin-hypercube sampling for each training case. It is worth

reiterating that no additional simulation data is required for the collocation points.

Table 3.1: Training cases generated using Latin hypercube sampling.

Case c01 (mg ml−1) c02 (mg ml−1) τ (s)
1 4.93 4.33 266.88
2 2.94 1.05 181.52
3 3.51 4.01 529.78
4 0.38 2.93 143.97
5 3.90 1.51 314.04
6 4.08 4.71 330.91
7 2.27 0.31 391.21
8 2.08 2.08 418.86
9 0.77 3.42 461.17
10 1.68 2.52 208.66

The neural network architecture employed herein consists of one input layer with

five neurons, five hidden layers with 50 neurons each, one output layer with two neu-

rons and a hyperbolic tangent function for the nonlinear activation. The weight terms

λdata and λresidual in the overall loss function (Eq. 3.10) are chosen as 100 and 1, re-

spectively. It is worth noting that the choice of hyperparameters is based on a series

of systematic studies presented in the following section. The learning procedure is im-

plemented in Tensorflow v1.15 [85], and the computations are performed based on a

single Telsa P100 GPU card where it took almost 15 minutes to train the neural network

model.
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Table 3.2: Simulation parameters.

Parameters Value
Column length, L (cm) 20
Interstitial feed velocity, v0 (cm s−1) 0.075
Total porosity, ε (-) 0.4
Axial dispersion, Dax (mm2 s−1) 0.087
Maximum injection time, τ0 (s) 550
Total duration, t0 (s) 2000
Maximum inlet concentration, c0max (mg ml−1) 5
Henry constant of 1st component, H1 (-) 1
Henry constant of 2nd component, H2 (-) 2
Adsorption equilibrium constant of 1st component, b1 (-) 0.1
Adsorption equilibrium constant of 2nd component, b2 (-) 0.1

Hyperparameter selection

The selection of the hyperparameters is essential before the neural network training.

The hyperparameters determine the model structure and can significantly affect the

model’s prediction accuracy. Since there is no rule of thumb to determine the right

hyperparameters, a series of systematic studies are carried out. For the neural network

methodology employed herein, the activation function, σl, number of hidden layers,

Nh, number of hidden neurons, Nl, and weight term, λdata, can be identified as the

hyperparameters. Since the network used here is relatively shallow, the hyperbolic

tangent activation function can lead to better results [87]. Numerical experiments are

carried out to choose appropriate Nh, Nl, and λdata. In each numerical experiment,

the neural network model is trained based on certain values of hyperparameters, and

the performance of the trained model is compared with the simulation data based on

relative L2 error defined as follows:

L2 =

√︂∑︁Nf
j=1(ĉ(zj, tj)− c(zj, tj))2√︂∑︁Nf

j=1 c(zj, tj)
2

(3.14)
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Figure 3.2: Visualization of (a) spatiotemporal domain. (b) initial and (c)-(f) boundary
labelled data of the first and the second component concentrations fed to the network
training.

where ĉ is the predicted concentration and c is the concentration obtained from high

fidelity simulations. Nf represents the number of spatiotemporal points.

The first set of numerical experiments are performed to select λdata. For this, other

hyperparamters are set to: Nh=5; Nl=50. Table 3.3 summarizes the relative L2 error

between the predicted and ED model concentrations of two solute components for all
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training cases. Although the variation in λdata did not impact the prediction accuracies,

λdata=100 resulted in a marginally better result. In the second set of numerical experi-

ments (see Table 3.4), the number of hidden layers is varied from 3 to 7 while keeping

λdata=100, Nl=50. Again, the general trend suggests that the Nh ≥ 5 gave slightly lower

L2 errors for most training cases. Finally, the third set of experiments, illustrated in

Table 3.5, are carried out to select Nl by setting λdata=100 and Nh=5. Here, Nl=20 gave

marginally higher L2 errors for most training cases. These results show that the hyper-

parameters have minimal influence on the overall model prediction accuracies, which

can be attributed to the efficient regularization achieved in the neural network training

due to the presence of physics-constrained loss terms.

Comparison of predicted and ED model solutions for training cases

The results produced by the trained physics-based neural network for the training

cases are first compared with high fidelity ED model simulations. Since the initial

and boundary data from the training cases are already used in the neural network

training, the emphasis remains on whether the neural network has accurately learned

the interior of the spatiotemporal domain. For the sake of brevity, the neural network

predictions for training cases 3 and 4 representing large- and small-volume pulse in-

jections, respectively, are discussed here. The rationale behind this is to find out the

neural network’s ability in capturing different behaviors of solute movement that oc-

cur in chromatography columns for large- and small-volume pulse injections. Since

other training cases are also examples of either large- or small-volume pulse injections,

the discussion will not be substantially different.

Figure 3.3 illustrates the comparison between neural network predicted and ED

model concentration solutions of both solutes when subjected to a large-volume in-

jection (training case 3). Consider the propagation of the first solute component, for

instance (Fig. 3.3(a)). Since the first solute component has a weaker affinity, it travels
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Table 3.3: Relative L2 norm between the neural network predicted and the ED model
solution of solute concentrations (c1(z, t), c2(z, t)) obtained based on all training cases
by changing λdata. Note that the number of layers and the number of neurons are fixed
to 5 and 50, respectively.

λdata 1 10 100
c1(z, t)

Case 1 3.36e− 02 3.05e− 02 3.08e− 02

Case 2 3.54e− 02 3.06e− 02 3.98e− 02

Case 3 2.96e− 02 2.54e− 02 2.50e− 02

Case 4 5.02e− 02 3.86e− 02 3.54e− 02

Case 5 3.15e− 02 2.76e− 02 2.93e− 02

Case 6 3.84e− 02 3.07e− 02 3.99e− 02

Case 7 3.54e− 02 2.53e− 02 2.28e− 02

Case 8 3.74e− 02 2.56e− 02 2.38e− 02

Case 9 2.69e− 02 2.65e− 02 2.60e− 02

Case 10 4.80e− 02 3.86e− 02 3.35e− 02

c2(z, t)

Case 1 3.10e− 02 3.46e− 02 2.03e− 02

Case 2 4.74e− 02 3.69e− 02 2.68e− 02

Case 3 2.01e− 02 2.61e− 02 1.66e− 02

Case 4 5.39e− 02 4.98e− 02 4.21e− 02

Case 5 3.60e− 02 2.71e− 02 1.59e− 02

Case 6 3.14e− 02 2.87e− 02 2.19e− 02

Case 7 3.53e− 02 2.60e− 02 1.68e− 02

Case 8 2.59e− 02 2.45e− 02 1.88e− 02

Case 9 2.41e− 02 3.55e− 02 2.41e− 02

Case 10 4.53e− 02 3.56e− 02 2.88e− 02

relatively faster than the second solute component along the column. In large-volume

pulse injections, this naturally causes an overshoot in the concentration, i.e. concentra-

tion greater than the feed concentration, in the regions where only a weaker component

is present. As can be seen from the figure, the physics-based neural network accurately

captures this phenomenon inside the spatiotemporal domain even in the absence of la-

belled data. The neural network also describes the dispersion related to the desorption

on the rear-end of the pulse propagation. In Fig. 3.3(b), the spatiotemporal solution
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Table 3.4: Relative L2 norm between the neural network predicted and the ED model
solution of solute concentrations (c1(z, t), c2(z, t)) obtained based on all training cases
by changing the number of hidden layers. Note that the number of neurons are fixed
to 50 and the λdata=100.

# hidden layers 3 4 5 6 7
c1(z, t)

Case 1 4.92e− 02 5.11e− 02 3.08e− 02 3.89e− 02 3.10e− 02

Case 2 4.03e− 02 2.84e− 02 3.98e− 02 3.55e− 02 2.97e− 02

Case 3 2.38e− 02 2.37e− 02 2.50e− 02 2.68e− 02 2.78e− 02

Case 4 3.71e− 02 3.09e− 02 3.54e− 02 3.45e− 02 3.84e− 02

Case 5 3.26e− 02 3.22e− 02 2.93e− 02 3.23e− 02 2.83e− 02

Case 6 5.00e− 02 5.07e− 02 3.99e− 02 4.03e− 02 3.98e− 02

Case 7 2.51e− 02 2.12e− 02 2.28e− 02 2.55e− 02 2.11e− 02

Case 8 2.57e− 02 2.13e− 02 2.38e− 02 2.42e− 02 2.07e− 02

Case 9 2.29e− 02 1.98e− 02 2.60e− 02 2.19e− 02 2.33e− 02

Case 10 3.27e− 02 3.33e− 02 3.35e− 02 3.27e− 02 3.44e− 02

c2(z, t)

Case 1 2.31e− 02 2.08e− 02 2.03e− 02 2.25e− 02 2.26e− 02

Case 2 2.45e− 02 2.24e− 02 2.68e− 02 2.60e− 02 2.32e− 02

Case 3 1.76e− 02 1.73e− 02 1.66e− 02 1.85e− 02 1.88e− 02

Case 4 5.54e− 02 7.36e− 02 4.21e− 02 4.57e− 02 4.46e− 02

Case 5 1.75e− 02 1.48e− 02 1.59e− 02 1.64e− 02 1.67e− 02

Case 6 2.37e− 02 2.36e− 02 2.19e− 02 2.26e− 02 2.32e− 02

Case 7 1.75e− 02 1.48e− 02 1.68e− 02 1.68e− 02 1.81e− 02

Case 8 1.93e− 02 1.83e− 02 1.88e− 02 1.79e− 02 1.71e− 02

Case 9 2.39e− 02 2.21e− 02 2.41e− 02 2.35e− 02 2.35e− 02

Case 10 3.39e− 02 3.00e− 02 2.88e− 02 3.18e− 02 2.77e− 02

of the concentration of second solute component obtained from both neural networks

and ED model is illustrated. The neural network predictions are remarkable, espe-

cially, the intermediate transition plateau on the desorption front of the pulse injection

is well described. Finally, the relative L2 error between the predicted and ED model

concentrations of two solute components are given in Tables 3.3-3.5.

Moreover, the ability of neural networks to predict the spatiotemporal concentra-

tion solutions of first and second solute components in the case of short pulses can be
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Table 3.5: Relative L2 norm between the neural network predicted and the ED model
solution of solute concentrations (c1(z, t), c2(z, t)) obtained based on all training cases
by changing the number of hidden neurons. Note that the number of layers are fixed
to 5 and the λdata=100.

# neurons per layer 20 50 100
c1(z, t)

Case 1 2.90e− 02 3.08e− 02 4.19e− 02

Case 2 3.42e− 02 3.98e− 02 4.00e− 02

Case 3 3.04e− 02 2.50e− 02 2.42e− 02

Case 4 3.89e− 02 3.54e− 02 3.89e− 02

Case 5 3.11e− 02 2.93e− 02 3.05e− 02

Case 6 5.48e− 02 3.99e− 02 5.40e− 02

Case 7 2.87e− 02 2.28e− 02 2.44e− 02

Case 8 2.11e− 02 2.38e− 02 2.18e− 02

Case 9 2.25e− 02 2.60e− 02 2.20e− 02

Case 10 3.08e− 02 3.35e− 02 3.46e− 02

c2(z, t)

Case 1 2.38e− 02 2.03e− 02 2.28e− 02

Case 2 2.35e− 02 2.68e− 02 2.35e− 02

Case 3 1.95e− 02 1.66e− 02 1.70e− 02

Case 4 5.73e− 02 4.21e− 02 5.29e− 02

Case 5 1.92e− 02 1.59e− 02 1.39e− 02

Case 6 2.63e− 02 2.19e− 02 2.33e− 02

Case 7 1.93e− 02 1.68e− 02 1.49e− 02

Case 8 2.05e− 02 1.88e− 02 1.73e− 02

Case 9 2.17e− 02 2.41e− 02 3.44e− 02

Case 10 3.17e− 02 2.88e− 02 3.07e− 02

visualized in Fig. 3.4. Owing to small pulses, the waves from adsorption and desorp-

tion fronts interact within the column, leading to a more dispersed concentration band,

especially for the second component, which the neural network model captured well.

Again, this can be attributed to the fact that the neural network learned the governing

coupled PDEs well along with the constraints of matching the labelled data.
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Figure 3.3: Comparison between the neural network predicted and the ED model spa-
tiotemporal solutions of solute concentrations of (a) the first and (b) the second com-
ponents for training case #3.
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Figure 3.4: Comparison between the neural network predicted and the ED model spa-
tiotemporal solutions of solute concentrations of (a) the first and (b) the second com-
ponents for training case #4.
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3.4.2 Model performance for test cases

The neural network model prediction abilities are evaluated by considering two test

cases. The two test cases considered herein are as follows: Test case 1: c01 = 3.5 mg ml−1,

c02 = 2.5 mg ml−1, and τ = 477 s; Test case 2: c01 = 4 mg ml−1,c02 = 3.5 mg ml−1, and τ

= 265 s. The test cases that are different from training cases (provided in Table 3.1)

are randomly chosen to determine the model’s generic ability to capture the complex

dynamics of solute transport in chromatography columns. The spatiotemporal con-

centration solutions are obtained based on the trained neural network and ED models.

The solutions from high fidelity ED model simulations serve as the reference for com-

paring predicted results from the neural network model. It is worth mentioning that

the neural network model predictions are almost instantaneous and up to 500 times

faster than the ED model simulations.

Figure 3.5 illustrates the spatiotemporal solutions of two solute concentrations ob-

tained by the neural network model for test case 1. Here, test case 1 is an example

for large-volume pulse injections. As can be seen from the figure, the predictions from

neural network and ED models are in excellent agreement. The relative L2 error be-

tween the predicted and the ED model concentrations for the first and the second com-

ponents are 1.35e − 02 and 9.20e − 03, respectively. Similar to training cases, the im-

portant features such as overshoot in the concentration profiles of the first component,

plateaus on the desorption front of the second component are well captured. The test

case 2 represents the dynamics of solute transport when subjected to a pulse injection

between small- and large-volumes. In Fig. 3.6, the predictions from the neural network

model are illustrated where the relative L2 error between the neural network predicted

and the ED model concentrations for the first and the second components are 1.76e−02

and 9.6e − 03, respectively. Since the width of the pulse injection is not large enough,

the first component moves faster than the second component such that the entire peak

of the pulse overshoots, unlike in the previous test case, where a portion of pulse of
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the first component returns to the feed concentration as it traverses along the column.

The neural network accurately describes this feature, even for new values of c01, c02,

and τ where no information on the spatiotemporal domains was provided. This again

indicates that the neural network model remarkably learned the underlying physical

laws.

Extrapolation capabilities

The goal here is to investigate the extrapolation capabilities of the trained neural net-

work model. To this end, two additional test cases are introduced. The values of c01, c02,

and τ are chosen such that they fall outside the limits of the training range (i.e. outside

of 0.3 and 5 mg ml−1 for c01, c02, and outside of 100 and 550 s for τ ). The two additional

test cases are as follows: Test case 3: c01 = 0.1 mg ml−1,c02 = 5.5 mg ml−1, and τ = 50 s; Test

case 4: c01 = 5.5 mg ml−1,c02 = 0.1 mg ml−1, and τ = 600 s. High fidelity ED model simu-

lations are also carried out on these cases for comparison. The neural network model

predictions for the additional test cases are illustrated in Figs. 3.7 and 3.8. The relative

L2 error between the neural network predicted and the ED model concentrations for

the first component in test cases 3 and 4 are 1.08e + 00 and 1.35e − 01, respectively,

whereas for the second component, the L2 error was calculated to be 7.18e − 01 and

1.66e − 01 in test cases 3 and 4, respectively. While the L2 error is higher compared

to previous cases, the overall model performance is reasonably good. For instance, in

Fig. 3.7, the neural network predicted dynamics of small pulse injection for two solute

components is in good agreement with the ED model. Especially, the movement and

width of the solute bands are captured very well by the neural network model. One

feature that the neural network model failed to describe is concentration peaks of the

first and the second component as it traverses along the column. In the other test case

where the pulse injection is very large, the neural network predictions are comparable

to the spatiotemporal solutions obtained from the ED model. Solute movement, inter-
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Figure 3.5: Comparison between the neural network predicted and the ED model spa-
tiotemporal solutions of solute concentrations of (a) the first and (b) the second com-
ponents for the test case #1.
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Figure 3.6: Comparison between the neural network predicted and the ED model spa-
tiotemporal solutions of solute concentrations of (a) the first and (b) the second com-
ponents for the test case #2.
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mediate plateaus are reasonably predicted well, although not identical to the ED model

solutions. Probably, increase in the number of training cases or labelled data could po-

tentially improve the model’s accuracy to capture these fine details. The incorporation

of the physics-based constraints in the neural network training, as opposed to tradi-

tional approaches, has definitely contritubed to the model extrapolation capabilities.

3.4.3 Process optimization of a chromatographic separation

In most practical separations, the operation of chromatography cycles to achieve com-

plete separation of solute components with shorter cycle times is desired, thus enabling

rapid baseline separation of the components of the feed mixture. To this end, appropri-

ate pulse injection times (τ ) must be determined such that the outlet concentration pro-

files of the solute components are baseline separated, i.e, the baseline of the desorption

front of the first component at the outlet overlaps with the baseline of the adsorption

front of the second component’s outlet concentration profile. Although equilibrium

theory can rapidly estimate τ for ideal cases with no dispersion [81], computation-

ally expensive numerical simulations based on the ED model are often coupled with

optimization routines to determine optimal τ for practical systems with finite disper-

sion. Here the trained neural network model is coupled with the NSGA-II algorithm to

quickly optimize τ for baseline separation of four randomly chosen binary feed concen-

tration mixtures shown in Table 3.6. For each case, unique optimizations, comprising

300 NSGA-II evaluations, are carried out to determine optimal τ that leads to baseline

separation. In these optimizations, the objective function J is minimized as follows:

J = χ1(tD,1 − tA,2)
2 +

χ2

τ
(3.15)

where tD,1 is the residence time of the baseline (defined as the 2% of the concentra-

tion peak) of the desorption front of the first component at the outlet and tA,2 is the

residence time of the baseline of the adsorption front of the second component at the

outlet. χ1 and χ2 are the penalty factors. The second term in the objective function
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Figure 3.7: Test of extrapolation capability of the neural network model. Comparison
between the neural network predicted and the ED model spatiotemporal solutions of
solute concentrations of (a) the first and (b) the second components for the test case #3.
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Figure 3.8: Test of extrapolation capability of the neural network model. Comparison
between the neural network predicted and the ED model spatiotemporal solutions of
solute concentrations of (a) the first and (b) the second components for the test case #4.
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ensures that the maximum possible injection time is chosen to achieve baseline sepa-

ration.

Table 3.6: Different binary feed concentration mixtures considered for the optimization
of pulse injection times to achieve baseline separation.

c01 (mg ml−1) c02 (mg ml−1)
2.04 3.16
3.66 1.28
3.51 3.07
0.57 3.87

Figure 3.9 illustrates the baseline separated outlet concentration curves of the two

components of four different feed concentration mixtures based on optimal pulse in-

jection times obtained from neural network-based optimizations. The corresponding

outlet concentration curves calculated based on ED model simulations are shown for

comparison. The optimal pulse injection times obtained in each case are reported in

Fig. 3.9. As can be seen from the figure, the neural networks were accurate in pre-

dicting the optimal injection times for baseline separation of the four different feed

concentration mixtures considered. It is worth noting that the neural network-based

optimizations took minimal computational time. In fact, the time required to complete

the entire optimization, comprising 300 evaluations, was shorter than the time required

to run one simulation using the ED model.

3.5 Conclusions

This study demonstrated the effectiveness of physics-based neural networks to predict

the complex dynamics of generic pulse injections in chromatography columns. The

capabilities of physics-based neural networks were tested by investigating the impact

of feed concentrations of binary solute mixtures and injection volumes on the solute

movement along the column. To this end, a generic neural network model was devel-
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Figure 3.9: Baseline separated outlet concentration profiles (dashed lines) of the two
components of four different feed concentration mixtures based on optimal pulse in-
jection times obtained from the neural network-based optimizations. For comparison,
ED model simulation-based outlet concentration profiles (solid lines) are also shown.

oped that takes five inputs, namely, spatiotemporal coordinates, inlet binary feed con-

centrations, and the injection time to predict the spatiotemporal solutions of two solute

concentrations. A deep neural network architecture consisting of 7 layers with 50 hid-

den neurons was trained using ten different cases representing a unique combination

of inlet binary feed concentrations, the injection time, and a unique spatiotemporal

solution. For the neural network learning, labelled data comprising the initial and

boundary data from the high fidelity simulations was first gathered across all training

cases and then, the inputs and the physical quantities are non-dimensionalized and

normalized, respectively, to ensure appropriate scaling. Subsequently, a loss function

that accounts for terms constraining the predictions of the neural network to match the

labelled data and the PDE residuals was minimized.
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The results demonstrated that the trained neural network accurately predicts the so-

lute movement in chromatography columns. Particularly, important features such as

concentration transitions, front interactions typically encountered in chromatography

systems were well-captured by the neural network model, even though no information

inside the spatiotemporal domains were provided. Compared to traditional neural

network approaches, physics-based modelling requires only a small amount of data.

In terms of computational speeds, the neural network-based simulations are approx-

imately 500 times faster than the ED model simulations. Although the physics-based

neural networks are applied for a specific case study, the framework, in principle, can

be extended to represent a more general system. For instance, adsorption isotherm pa-

rameters, mass transfer coefficients, column sizes, and operating parameters can also

be introduced as input variables. Such models can be used for applications such as

online monitoring, control, etc.
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Chapter 4

Physics-based deep neural networks for
synthesizing and simulating cyclic
adsorption processes

4.1 Introduction

Cyclic adsorption processes are particularly attractive for their flexibility in process

configurations and hence, are extensively used in industrial gas separations such as

hydrogen purification, oxygen enrichment, methane purification, carbon dioxide re-

moval, etc. [1, 12]. In the most commonly used processes such as pressure swing

adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption

(TSA), etc., one or more fixed bed adsorption columns (with or without interactions)

packed with a suitable adsorbent undergo several sequence of steps through a cyclic

variation of pressure or temperature in order to perform the separation. Several pro-

cess configurations (or cycles) can be synthesized by altering the sequence of steps or

interactions among the adsorption columns. Given the transient and modular nature,

adsorption processes are rather complex and operate at cyclic steady state (CSS). Rigor-

ous mathematical models based on the underlying physical laws are required to better

understand, simulate and design such complex processes [19]. Process simulations in-

volve solving these rigorous models characterized by a system of coupled nonlinear

partial differential equations (PDEs) repeatedly in time and space until CSS. Further,
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each process configuration needs to be thoroughly optimized where thousands of sim-

ulations are carried out in order to identify the optimal set of design variables that

yield the best process performance. Inherently, this makes the design and optimiza-

tion of cyclic adsorption processes computationally expensive, thereby limiting the

design to few process configurations for practical applications [25, 40]. With the recent

discovery of hundreds of thousands of adsorbents for gas separations [30], the current

simulation and optimization tools based on rigorous mathematical models are compu-

tationally inadequate to handle such huge databases of adsorbents for process design

and optimization.

To address the computational challenges posed by adsorption process design and

optimization, the use of machine learning techniques such as artificial neural networks

(ANNs) have emerged as alternatives to rigorous mathematical models. To this end,

Sant Anna et al. [59] developed three-layer feed-forward ANN (input layer, one hid-

den layer and one output layer) models for the separation of methane and nitrogen

using PSA. Using these models in the optimization, the authors show that the com-

putational times significantly reduced from 15.7 h to 50 s. Subraveti et al. [73] con-

structed three-layer feed-forward ANN models initially within an optimization frame-

work and subsequently used them to determine the Pareto solutions of multi-objective

maximization of CO2 purity and recovery for a complex eight-step PSA cycle designed

for pre-combustion CO2 capture. As a result, the relative error of Pareto solutions in

both objectives was less than 1% and accelerated the optimization routine by ten times.

Xiao et al. [89] instead used a multi-output feed-forward ANN architecture to predict

process performances in the PSA optimizations. Pai et al. [74] extended the use of

feed-forward ANN models to predict the axial profiles of the intensive variables for

a four-step VSA process at CSS, and the models were experimentally validated. Fur-

thermore, Oliveira et al. [90] developed a real-time soft sensor for a PSA unit based

on neural network models. Three types of ANN architectures, namely, feed-forward,
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recurrent and long short-term memory (LSTM) based on multi-input and a single out-

put, are used to predict the PSA process performance over the number of cycles. The

LSTM-based deep neural networks were found to be reliable for optimization, control

and online measurements of PSA units. However, in these studies, ANN models were

trained to learn the mapping between the inputs and the outputs for a fixed process

configuration. This means that the models need to be retrained if the process config-

uration is changed. Therefore, a more generalized framework is required in order to

facilitate the adsorption cycle synthesis and allow for the evaluation of several process

configurations. For instance, Leperi et al. [45] used ANN to model individual steps

in typical PSA processes for post-combustion CO2 capture. Each step was modelled

using 12 four-layer ANN (input layer, two hidden layers and multi-output layer). The

trained ANN models predicted the five state variables, i.e. absolute pressure, CO2 gas

phase mole fraction, CO2 molar loading, N2 molar loading and column temperature,

at ten different locations across the column. In the ANN models training, the normal-

ized mean squared error between the neural network predictions and the training data

from rigorous simulations was minimized. While this approach allowed synthesis of

different PSA cycles, such models can require a large amount of training data to obtain

accurate predictions.

The latest groundbreaking advances in artificial intelligence, machine and deep

learning have allowed for the development of viable methodologies to model vari-

ous physical systems comprising governing PDEs [72]. To this end, ANNs with sev-

eral hidden layers, also known as deep neural networks (DNNs), have shown an en-

hanced ability to capture very complex nonlinear dynamics that led to tremendous in-

terest for modelling physical systems. Particularly the idea of learning PDEs through

constraint-based loss functions [75–77]. For instance, Raissi et al. [77] developed a

physics informed neural network framework in which fully connected DNNs are ca-

pable of learning the PDE solutions anywhere on the spatiotemporal domain with few
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training points by incorporating a physics-constrained loss function. The presence of

PDE-based terms in the loss function inherently facilitates the physics-constrained reg-

ularization of the neural networks. Owing to the additional knowledge of physics, the

learning process for neural networks require only small amounts of training data, com-

pared to the complexity of the systems described. The philosophy of physics constrain-

ing the loss function was later adopted for several applications [78–80]. However, most

of these studies focused on demonstrating the capabilities of physics-based neural net-

works to learn a single PDE solution, i.e. for given initial and boundary conditions. If

initial or boundary conditions change, then the physics-based neural networks have to

be retrained. In cyclic adsorption processes, the initial condition of each step depends

on the previous step’s final condition that changes every cycle. This means that the

PDE solutions differ from step to step and also every cycle. Therefore, a more general-

ized framework is required to implement the physics-based neural networks for cyclic

adsorption systems.

In the present chapter, a physics-based neural network modelling framework is de-

veloped to synthesize and simulate different adsorption processes. By choosing the

appropriate training philosophy, the framework developed herein does not require

any system-specific inputs such as isotherm parameters. Accordingly, unique neural net-

works models are trained for different constituent steps typically encountered in cyclic

adsorption processes. The trained neural network model for each constituent step

aims to predict the entire spatiotemporal solutions of state variables for a given ini-

tial gas composition profile and step-parameters obeying underlying physical laws.

The proposed methodology is first tested by constructing and simulating a four-step

VSA cycle for post-combustion CO2 capture. The performance of neural network mod-

els is then assessed by comparing the results from the neural network predictions with

rigorous process simulations for a variety of operating conditions. Subsequently, the

methodology is extended to synthesize and simulate four different VSA cycles for post-
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combustion CO2 capture. The cycle synthesis capabilities of this approach are demon-

strated by comparing the neural network- and the detailed process model-based sim-

ulations based on the four VSA cycles considered.

4.2 VSA governing equations

The one-dimensional mathematical model describes the adsorption column dynamics

in VSA cycles after incorporating the following assumptions:

1. Axially dispersed plug flow model to describe the gas phase.

2. No radial gradients exist for composition and pressure across the column.

3. The gas-phase behaves ideally.

4. Uniform bed properties along the column.

5. The linear driving force model accounts for the solid-phase mass transfer.

6. Pressure drop calculations are based on Darcy’s law (valid for the column sizes

and the operating conditions considered here).

7. System operated under isothermal conditions.

Based on the above assumptions, the model comprises a system of coupled nonlin-

ear PDEs based on the conservation of mass and momentum and takes the form:

∂ci
∂t

=
∂

∂z

[︃
cDL

∂yi
∂z

− civ

]︃
− 1− ε

ε

∂qi
∂t

(4.1)

1

P

∂P

∂t
= − 1

P

∂(Pv)

∂z
− RT0

P

1− ε

ε

ncomp∑︂
i=1

∂qi
∂t

(4.2)

− ∂P

∂z
=

150

4

1

r2p

(︂1− ε

ε

)︂2
µv (4.3)

Here Eqs. 4.1 and 4.2 are component and overall mass balances for the gas phase, re-

spectively. In Eq. 4.1, ci, yi, qi are the gas-phase concentration, the gas-phase molar
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composition, and the solid-phase loading of the component i, v is the interstitial veloc-

ity, ε is the bed void fraction, and DL is the axial dispersion coefficient. The ideal gas

law relates ci and yi as follows: ci = yiP
RT0

, where P is the total pressure, R is the universal

gas constant, and T0 is the reference temperature. Using Eqs. 4.1 and 4.2, the gas-phase

molar composition of the first component, y1, and the the total pressure P are calcu-

lated, respectively. From the solution of y1, the gas-phase molar composition of the

second component can be obtained simply by: y2 = 1− y1. Equation 4.3 represents the

Darcy’s law for calculating the pressure drop throughout the column, where rp and µ

are the particle radius and the gas-phase viscosity.

In addition to above equations, the linear driving force model describes the mass

transfer in the solid phase:
∂qi
∂t

= ki(q
∗
i − qi) (4.4)

where q∗ is the equilibrium loading and k is the mass transfer coefficient expressed,

based on the assumption that the molecular diffusion in the macropores controls the

transport into the solid phase, as follows:

ki =
ci
q∗i

15εpDp

r2p
(4.5)

The adsorption equilibria was quantified using the competitive dual-site Langmuir

(DSL) isotherm model as shown below:

q∗i =
qsb,ibici

1 +
∑︁

i bici
+

qsd,idici
1 +

∑︁
i dici

(4.6)

where q∗i is the equilibrium solid-phase loading of the component i, qsb,i and qsd,i are

saturation capacities for the two sites and, bi and di are the adsorption equilibrium

constants. It is worth noting that the heat effects that are prominent in gas adsorption

systems are deliberately not considered in the present chapter for simplicity. In the fu-

ture, heat effects will be accounted for to represent gas adsorption processes accurately.
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4.3 Physics-based neural networks

Physics-based neural networks adopt modern deep learning techniques to infer the

underlying physical laws that involve PDEs [77]. The framework used for this study

is illustrated in Fig. 4.1. Here the neural networks are trained to learn the conserva-

tion laws of mass and momentum along with adsorption equilibria. To this end, the

residuals of PDEs are incorporated into the loss function so that the neural networks

are trained to match the labelled data while penalizing them for violation of physical

laws. Such formulation allows the neural networks to learn the spatiotemporal solu-

tions with small amounts of labelled data. It is worth noting that the labelled data

represents the training data obtained from the high fidelity simulations.

The spatiotemporal solutions of PDEs are unique to initial and boundary condi-

tions. Since the position of valves at the two ends of adsorption columns in VSA pro-

cesses periodically change to implement different steps in the cycle, boundary condi-

tions in each constituent step are different. Depending on the state (open or close) of

the valves, constituent steps can be categorized into generalized boundary conditions,

such as open-open, open-closed, closed-open, etc. Hence, it is reasonable to construct

separate neural network models to predict the dynamics of each step. Moreover, in a

cyclic process, the initial condition for each step depends on the final condition of the

preceding step. This means that the initial conditions change based on the sequence

and the duration of steps. To account for such variations in initial conditions, neural

network models of each step type must be able to learn the solutions for an arbitrary

initial condition. Another feature that affects the dynamics of adsorption columns is

the step parameters such as operating pressures, inlet gas conditions, etc. Here the

neural network models are trained based on Nk different initial profiles and the step

parameters to have generalized capabilities.

One deep neural network is defined for each constituent step s in the VSA process,
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Figure 4.1: The physics-based neural network framework used for simulating each
constituent step in cyclic adsorption processes. Top: Deep neural network architec-
ture. Bottom left: Spatiotemporal domain with collocation points (blue), initial (red)
and boundary (black) data from the simulations. Bottom right: Underlying governing
equations of cyclic adsorption processes.

and the goal of the neural network is to learn the following mapping:

[z, t, ys0(z), ζ
s]

θs−→ [ys1(z, t), P
s(z, t), qs1(z, t), q

s
2(z, t)] (4.7)

Here the neural network takes the following inputs: spatiotemporal coordinates (z, t),

initial gas-phase molar composition profile, ys0(z), of the first component, and step pa-

rameters, ζs, for the step s. The neural network f s(z, t, ys0(z), ζ
s, θs) outputs the four
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state variables, namely, gas-phase composition of the first component, ys1(z, t), the col-

umn total pressure, P s(z, t), and solid loadings, qs1(z, t) and qs2(z, t). The symbol θs

represents the parameters of the neural network used for the individual step s. In

other words, the neural network approximates the spatiotemporal solutions of four

state variables of the step s for a given initial gas composition profile ys0(z) and step

parameters ζs based on θs.

Based on the component and overall mass balances in Eqs. 4.1 and 4.2, the residuals

can be defined as follows:

rc(z, t) :=
∂c1
∂t

+
∂

∂z

[︃
c1v − cDL

∂y1
∂z

]︃
+

1− ε

ε

∂q1
∂t

rp(z, t) :=
1

P

∂P

∂t
+

1

P

∂(Pv)

∂z
+
RT0
P

1− ε

ε

[︃
∂q1
∂t

+
∂q2
∂t

]︃
(4.8)

And v = 4
150µ

(︁
ε

1−ε

)︁2
r2p
(︁
− ∂P

∂z

)︁
is directly substituted in Eq. 4.8 to account for Darcy’s

pressure drop through the column without defining Eq. 4.3 as a separate residual.

Moreover, Eqs. 4.4-4.6 are not required to calculate q1(z, t) and q2(z, t). Instead, the

neural networks are expected to learn solutions for q1(z, t) and q2(z, t) through con-

straints imposed on the right hand side of Eq. 4.8 to be zero while also matching the

labelled data corresponding to q1 and q2. More details on the neural network architec-

ture, the loss function, and the learning procedure are provided below.

4.3.1 Neural network architecture

Feed-forward deep neural networks are considered in this chapter, comprising Nlayers

layers (one input layer,Nlayers - 2 hidden layers and one output layer) with a predefined

number of neurons. The neurons are interconnected to form a fully-connected complex

network as shown in Fig. 4.1. The inputs to each neuron are combined with a set of

coefficients called weights which can either dampen or amplify the input depending on

its significance. In addition to weights, each neuron also has a bias. The inputs, weights

and biases are combined in each neuron through a nonlinear activation function as
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shown below:

Xl = σl(Xl−1Wl + bl) (4.9)

where Xl−1 is the output of the l − 1 layer; Wl and bl represent the weight matrix and

bias vector of the layer l, respectively and; Xl is the output of the l layer. The dimen-

sions of weight matrix Wl and bias vector bl are Nl−1 × Nl and Nl, respectively, where

Nl−1 andNl are the number of neurons in the l−1 and l layer, respectively. Collectively,

the weight matrices (W) and biases (b) of the entire neural network are denoted using

θ, i.e., (W, b) ∈ θ. In this way, each layer receives the outputs of a previous layer as

inputs and feeds forward to the next layer. The number of hidden layers, Nlayers, num-

ber of hidden neurons, Nl, and the activation functions (such as tanh, sine, sigmoid,

etc.) are considered model hyperparameters and selected based on limited numerical

experimentation.

4.3.2 Loss function

For enabling the mapping in Eq. 4.7, the hidden parameters, θ, need to determined

by optimizing the loss function. The loss function constructed herein comprises two

parts. Details of each part of the loss function are provided below:

Loss term: Labelled data

In this part of the loss function, the predictions of the neural network are constrained

to match the labelled data. Here the labelled data refers to the training data obtained

from the high fidelity simulations. The PDE solutions are unique to initial and bound-

ary conditions of the each step s and proper enforcement of initial and boundary con-

ditions is essential to have well-posed systems. Hence, the initial and the boundary

data from the simulations are introduced as the labelled data. The loss term is ex-

pressed as the mean-squared error (MSE) between the neural network predictions and
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the labelled data. The loss term (for index #k) can be written as
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Lk
data,rb =

1

Nk
i,b

[︄
λrb,y1

Nk
i,b∑︂

i=1

[︂
y1̂(z

k
rb, t

k
i , y

k
0(z), ζ

k, θs)− y1(z
k
rb, t

k
i , y

k
0(z), ζ

k)
]︂2
+

λrb,P

Nk
i,b∑︂

i=1

[︂
P̂ (zkrb, t

k
i , y

k
0(z), ζ

k, θs)− P (zkrb, t
k
i , y

k
0(z), ζ

k)
]︂2
+

λrb,q1

Nk
i,b∑︂

i=1

[︂
q1̂(z

k
rb, t

k
i , y

k
0(z), ζ

k, θs)− q1(z
k
rb, t

k
i , y

k
0(z), ζ

k)
]︂2
+

λrb,q2

Nk
i,b∑︂

i=1

[︂
q2̂(z

k
rb, t

k
i , y

k
0(z), ζ

k, θs)− q2(z
k
rb, t

k
i , y

k
0(z), ζ

k)
]︂2]︄

(4.12)

Here Lk
data,0, Lk

data,lb, and Lk
data,lb represent the MSE on the initial, the left and the right

boundary data, respectively. y1̂, P̂ , q1̂, and q2̂ are the neural network predictions whereas
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y1, P , q1, and q2 denote the labelled data of four state variables. Nk
i,0 and Nk

i,b represent

the number of labelled initial and boundary data points. zklb and zkub are spatial coordi-

nates on the left and the right boundary of the spatiotemporal domain. k = 1, 2.., Nk,

represents different cases of initial profile and operating parameters. Finally, λ0, λlb,

and λrb are the weight terms ([0, ∞]). The choice of weights influence the constraints

of matching the labelled data. Although, there is no rule of thumb for choosing the op-

timal weights, limited numerical experimentation is carried out to estimate the weights

that tend to give better accuracies. In addition to initial and boundary data, final col-

umn profiles of gas-phase composition are also provided in the training to improve

prediction accuracies. The corresponding loss term, Lk
data,f , for index #k can be written

as
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Combining the four terms above leads to the first part of the loss function as shown

below:

Lk
data = Lk

data,0 + Lk
data,lb + Lk

data,rb + Lk
data,f (4.14)

Loss term: PDE residuals

This part of the loss function introduces the physics regularization of the neural net-

works. The PDE residuals defined in Eq. 4.8 are incorporated here. For evaluating

these residuals, Nr collocation points, i.e., (zr, tr), within the spatiotemporal domain

are used as illustrated in Fig. 4.1. These collocation points are randomly chosen us-

ing Latin hypercube sampling. Notably, this part of the loss function requires no

additional labelled data from the simulations because the collocation points are just

auxiliary points that help calculate the partial derivatives. The loss term for index #k

expressed as the MSE is shown below:

Lk
residual =

1

Nk
r

[︄
λr,c

Nk
r∑︂

r=1

rkc (z
k
r , t

k
r , y

k
0(z), ζ

k, θs) + λr,p

Nr∑︂
r=1

rkp(z
k
r , t

k
r , y

k
0(z), ζ

k, θs)

]︄
(4.15)
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where Nk
r is the number of collocation points for case #k. rkc and rkp correspond to the

residuals of component and overall mass balances for case #k, where k = 1, 2.., Nk. λr,c

and λr,p are the weight terms.

Overall loss function

The overall MSE L defined by combining the loss terms from Eqs. 4.14 and 4.15 takes

the following form:

L =

Nk∑︂
k=1

[︂
Lk

data + Lk
residual

]︂
(4.16)

Here, individual terms Lk
data and Lk

residual obtained in each case k are together summed

over Nk cases of different initial profiles ys0(z) and operating parameters ζs for step s.

The idea here is to minimize L such that the neural network aims to learn the unique

spatiotemporal solutions corresponding to different initial profiles and operating pa-

rameters. Hence, the constraints of matching the labelled data and reducing the PDE

residuals close to zero are imposed for each case k and together minimize the MSE

values obtained from all cases considered.

4.3.3 Training

The objective of training the deep neural networks is to determine the optimized weights

and biases associated with each neuron in such a way that minimizes the loss function

described in Eq. 4.16. Initially, the weights are specified using Xavier initialization [83]

and the biases are initialized with zeroes. The training follows a backpropagation ap-

proach where the gradients of loss function with respect to each of the training weight

computed based on the chain rule along with the learning rate are used to update

the weights and the biases. This procedures continues to iterate until convergence is

achieved. The loss function was minimized using L-BFGS, a quasi-Newton full-batch

gradient-based optimization method. It is worth noting that the convergence to the

global minimum with hundreds of thousands of adjustable parameters and the com-
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plex loss function may not be possible, however, studies show that this approach is

capable of determining the correct parameters for weights and biases to obtain good

prediction accuracies provided an appropriate selection of hyperparamters are made

[77].

Since the loss function requires computation of residuals of the PDEs, the spatial

and temporal derivatives of outputs of the neural network are calculated using au-

tomatic differentiation [84]. Automatic differentiation uses chain rule to approximate

the partial differential operators in the governing equations through backpropagation

of derivatives from the output layer to the input layer. The analytically defined con-

nections between the layers of the deep neural network enable the implementation of

this technique. In terms of accuracy, the automatic differentiation offers higher accu-

racy compared to the numerical differentiation as errors arising from the truncation

and rounding-off errors are avoided [84]. Automatic differentiation has been well-

implemented in the deep learning frameworks such as Tensorflow [85] and PyTorch

[86]. The training procedure was implemented using the deep learning library Ten-

sorflow and the partial differential operators are computed using “tf.gradients()” in

Tensorflow. It is important to reiterate that the neural network model is trained for

each step defined by a unique set of boundary conditions and the cycles are not used

for the training.

4.3.4 Non-dimensionalization and normalization

The state variables, ys1(z, t), P s(z, t), qs1(z, t), and qs2(z, t) have different orders of mag-

nitude that can lead to difficulties while calculating backpropagated gradients during

neural network training [78, 87]. Hence, the physical quantities are non-dimensionalized

in Eqs. 4.1 - 4.3 to have an appropriate scaling, i.e.∼ O(1). The non-dimensionalized

quantities are defined as follows:

P̄ =
P

P0

, cī =
yiP̄

P0

q1̄ =
q1
qs1,0

, q2̄ =
q2
qs2,0

, v̄ =
v

v0
(4.17)
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Here P0 is the reference atmospheric pressure, qs1,0 and qs2,0 are the equilibrium load-

ings of the first and the second component at feed conditions, and v0 is the feed inter-

stitial velocity (m s−1). Since the gas-phase composition y is a molar fraction that lies

in [0,1], this state variable is not non-dimensionalized.

The inputs are normalized to scale between [-1,1] to enhance the robustness of the

neural network training [77, 78, 87] as follows:

z̄ = 2
z

L
− 1, t̄ = 2

t

t0
− 1, y0̄(z) = 2

y0(z)−min(y0(z))

max(y0(z))−min(y0(z))
− 1 (4.18)

where z̄, t̄, and y0̄(z) are the normalized inputs to the neural network. The operating

parameters ζ are scaled such that the values lie in the range of [0,1].

Based on the non-dimensionalized variables, Eqs. 4.1-4.3 can be rewritten as

∂cī
∂t̄

=
∂

∂z̄

[︃
− ψ1cīv̄ + ψ2

∂yi
∂z̄

]︃
− ωi

∂qī
∂t̄

(4.19)

1

P̄

∂P̄

∂t̄
= −ψ1

1

P̄

∂(P̄ v̄)

∂z̄
−

ncomp∑︂
i=1

ωi
∂qī
∂t̄

(4.20)

− ∂P̄

∂z̄
= ψ3v̄ (4.21)

The dimensionless groups in the above equations are given by

ψ1 =
v0t0
L
, ψ2 =

DLt0
L2

, ψ3 =
150

4

1

r2p

(︂1− ε

ε

)︂2µv0L
P0

, ωi =
RT0qs,i,0
P0

1− ε

ε

The non-dimensionalization and the normalization ensures that all the variables and

inputs are scaled to order O(1). Before the training, the labelled data provided to the

neural network is scaled based on Eqs. 4.17-4.18 and the residuals are defined based

on Eqs. 4.1-4.21. The predicted quantities are finally reverted to their original form.

4.3.5 Detailed model simulations

The VSA cycles are simulated using our detailed one-dimensional mathematical model

[19]. The system of coupled nonlinear PDEs are numerically solved by discretizing the
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spatial terms into 50 finite volumes using the total variation diminishing (TVD) scheme

with van-Leer flux limiter. The resulting ordinary differential equations (ODEs) are in-

tegrated in time based on ode23s solver in MATLAB. Individual steps are simulated

by imposing appropriate boundary conditions [19]. All cycle simulations are carried

out using standard unibed approach, i.e. a single column undergoes all steps in the

cycle sequentially, until it reaches CSS. The CSS was considered to be achieved when

the mass balance error for the entire cycle equals to 0.5% or less in the five consecu-

tive cycles. The simulations provide detailed composition, pressure and temperature

spatiotemporal profiles from the initial cycle to CSS which are then used to calculate

process performance indicators. It is worth noting that the detailed simulations are

validated elsewhere against both lab-scale [47] and pilot-scale experiments [35].

4.4 Results and discussion

4.4.1 Case study

Four simple VSA cycles, illustrated in Fig. 4.2, are considered to demonstrate the abil-

ity of the proposed methodology to synthesize and simulate different cyclic adsorp-

tion processes. The feed consists of a binary mixture of 20 mol% CO2 and 80 mol%

N2 at 1 bar and 25 ◦C. The constituent steps used to construct these cycles can be cat-

egorized into four different step types: the adsorption step, the blowdown step, the

evacuation step and the pressurization step. The first cycle, shown in Fig. 4.2(a), is a

simple three-step VSA cycle consisting of the following steps: 1) In the adsorption step

(ADS), the feed mixture introduced in the column with constant interstitial velocity

(v0) at PH = 1 bar undergoes separation through preferential adsorption of the heavy

component CO2. On the other hand, the light component N2 leaves the column. 2) In

the evacuation step (EVAC), the column pressure is reduced to a low pressure (PL) in

the counter-current direction using a vacuum pump with constant interstitial velocity

(vEVAC) at the boundary, similar to realistic conditions [21, 88], to collect the CO2 rich
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Figure 4.2: Four different VSA cycles considered for demonstrating the cycle synthesis
capabilities of physics-based neural networks.

product at the feed end of the column. 3) The feed pressurization step (FP) pressurizes

the column to 1 bar using the feed mixture through a blower with constant interstitial

velocity at the boundary, vFP. The second cycle in Fig. 4.2(b) is a variant of the first

cycle. Instead of using the fresh feed for pressurizing the column in the pressuriza-

tion step, the light product from the adsorption step is used to pressurize the column

from the light product end. In the third and the fourth cycles, the blowdown step is

included after the adsorption step in the first and the second cycles to depressurize
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the column to an intermediate pressure PI in the co-current direction through the light

product end to remove N2 from the column. The vacuum pump is used to remove the

gas by implementing a constant interstitial velocity (vBLO) boundary condition at the

light product end. Although the underlying constituent steps are the same in these cy-

cles, in principle, these cycles can yield different performances and considered unique

from a process design perspective. The VSA cycle performs the separation with IISERP

MOF2, a novel metal-organic framework, as an adsorbent. Previous screening studies

have shown superior performance of IISERP MOF2 for post-combustion CO2 capture

[88, 91]. The CO2 and N2 isotherms on IISERP MOF2 at 25 ◦C are shown in Fig. 4.3

and the DSL isotherm parameters are reported in Table 4.1. Each step in the VSA cycle

can be distinguished based on boundary conditions provided in Table 4.2. Hence, sep-

arate neural network models are developed for each step to predict its spatiotemporal

dynamics. As can be seen from Table 4.2, the durations of blowdown, evacuation, and

pressurization step can be calculated through implementation of a constant velocity

boundary condition based on the pressures PH, PI, and PL.
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Figure 4.3: CO2 and N2 isotherms on IISERP MOF2 at 298.15K [91].

The VSA cycle performance can be tuned based on the following operating param-
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Table 4.1: Dual-site Langmuir isotherm parameters.

Parameter CO2 N2

qsb (mol kg−1) 3.29 3.29
qsd (mol kg−1) 1.89 1.89
b0 (m3 mol−1) 9.39 × 10−8 2.55 × 10−7

d0 (m3 mol−1) 5.23 × 10−7 2.55 × 10−7

∆Ub (J mol−1) -31135 -11890
∆Ud (J mol−1) -31135 -11890

Table 4.2: Boundary conditions for different steps considered in this study.

Step z=0 z=L

Adsorption

v|z=0 = vfeed

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

P |z=L = PADS

∂yi
∂z

⃓⃓
z=L

= 0

Blowdown

∂P
∂z

⃓⃓
z=0

= 0

∂yi
∂z

⃓⃓
z=0

= 0

v|z=L = vBLO

∂yi
∂z

⃓⃓
z=L

= 0

Evacuation

v|z=0 = vEVAC

∂yi
∂z

⃓⃓
z=0

= 0

∂P
∂z

⃓⃓
z=L

= 0

∂yi
∂z

⃓⃓
z=L

= 0

Pressurisation

v|z=0 = vFP

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=L (yi,feed − yi|z=L)

∂P
∂z

⃓⃓
z=L

= 0

∂yi
∂z

⃓⃓
z=L

= 0

eters. For the adsorption step, feed velocity (v0) and duration of the adsorption step

(tADS) can be varied. In blowdown and evacuation steps, pressures PI, PL, and vacuum
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pump velocities, vBLO, vEVAC are the variables. The pressurization inlet velocity, vFP,

is an operating parameter in the pressurization step. In the present study, v0, vBLO,

vEVAC, and vFP are held constant and are not considered operating parameters in neu-

ral network training. In other words, the VSA cycle simulations are restricted to fixed

vacuum pump and blower sizes.

4.4.2 Neural network training

Unique neural networks are trained to learn the spatiotemporal dynamics of four dif-

ferent constituent steps: the pressurization step, the adsorption step, the co-current

blowdown step, and the counter-current evacuation step. To gather training data for

each model, individual steps are separately simulated. Since initial column profiles

and step parameters are inputs to the neural network, each step must be simulated

at different initial column profiles and step parameters to enable the mapping in Eq.

4.7. As previously mentioned, the column profiles drastically change depending on

the sequence of steps implemented, step parameters, and the number of times the cy-

cle is simulated until CSS. To ensure appropriate sampling of different initial column

profiles for training, knowledge of various column profiles encountered in cyclic ad-

sorption processes is essential. One way to learn about the types of column profiles

typically encountered is to simulate various adsorption processes using the detailed

model and gather different column profiles of individual steps for various operating

conditions. The other approach involves synthetically generating different types of col-

umn profiles based on mathematical functions, splines, etc. The drawback of the latter

approach is the loss of column profile characteristics specific to adsorption processes.

Here, the former approach is used to gather different initial profiles by first simulat-

ing different VSA cycles using the detailed model based on the simulation parameters

provided in Table 4.3. The detailed model-based cycle simulations are carried out at

different operating conditions generated randomly using Latin hypercube sampling.
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For each set of operating conditions, VSA cycle simulations are carried out until the

CSS. At the same time, the gas-phase composition column profiles after every step are

gathered from the initial cycle to the CSS. From these, Nk=60 different initial column

profiles and the corresponding step parameters of each step are randomly chosen and

used for training the model. Figure 4.4 illustrates the different initial profiles used in

the neural network training for each step.

Table 4.3: VSA simulation parameters used for this study [19].

Parameter Value
Column length, L (m) 1
Inner column radius, ri (m) 0.1445
Outer column radius, ro (m) 0.1620
Particle radius, rp (mm) 1
Column void fraction, ε (-) 0.37
Tortuosity, τ (-) 3.0
Adsorbent particle density, ρs (kg m−3) 1442.6 [91]
Molecular diffusivity, Dm (cm2 s−1) 0.16
Fluid viscosity, µ (cP) 0.0172
Universal gas constant, R (m3 Pa mol−1 K−1) 8.314
Adsorption pressure, PH (bar) 1
Reference temperature, T0 (K) 298.15
Adsorption feed velocity, v0 (m s−1) 0.5
Pressurization feed velocity, vFP (m s−1) 0.2
Blowdown vacuum pump velocity, vBLO (m s−1) 0.05
Evacuation vacuum pump velocity, vEVAC (m s−1) 1

Next, individual steps are separately simulated based on these initial profiles and

step parameters to obtain the labelled data for model training. The temporal domains

defined for the individual steps in the step simulations are larger than the typical oper-

ating ranges used in the cycles. For instance, the blowdown and the evacuation steps

are simulated for durations where the column pressures reach lower than the desired

pressures in the cycles. The rationale behind defining such large temporal domains in

the individual step simulations is the flexibility to extract different slices of temporal
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Figure 4.4: Different initial profiles used in neural network training.

solutions within the larger domain, when using a trained neural network. It is worth

noting that a unique simulation is carried out for each set of initial profiles and step

parameters. In the data acquisition procedure, the simulation data from each case is

first gathered, and then the inputs and the physical quantities are subjected to normal-

ization and non-dimensionalization, respectively. Following this, the initial and the

boundary data of four state variables based on Nk = 60 cases are gathered for each step

to form the labelled data. Although the data generated in simulations is massive, only

a tiny portion is extracted as the labelled data. As an example, the labelled data fed to

the blowdown step model training can be visualized in Fig. 4.5. For inferring the PDE

solution within the spatiotemporal domain, Nr = 250 collocation points are randomly
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generated using Latin hypercube sampling for each initial profile and step parameter.

It is worth reiterating that no additional simulation data is required for the collocation

points.

(a)
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(c)
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0.6

0.4
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y 
(-)

1.00.80.60.40.20.0
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(d)

Figure 4.5: Labelled data fed to the blowdown step neural network training. Labelled
data corresponds to (a) the initial (b) left boundary (c) right boundary data of four state
variables and (d) final column profile of CO2 gas-phase composition.

The neural network architecture employed for all steps consists of an input layer,

ten hidden layers with 100 neurons each, and one output layer with four neurons (four

state variables). However, the number of neurons in the input layer varies from step to
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step. The common inputs for all steps are the spatiotemporal coordinates (z, t), and the

initial gas composition at 50 spatial locations (based on the finite volume discretization

of the detailed model). In addition to these 52 inputs, other inputs related to the step

parameters are included depending on the step. For this study, the only variable in

the adsorption step is the step duration tADS. Since time t is already one of the inputs

to the neural networks, the variation of tADS can be achieved by extracting different

slices of spatiotemporal solutions of the four state variables. Therefore, tADS is explic-

itly not considered as step parameter input. As the blowdown step occurs after the

adsorption step, the column pressure at the z = 1 boundary is always at 1 bar initially.

Subsequently, it reduces to a final column pressure, PI, when subjected to a constant

vacuum pump flow. Similar to the adsorption step, slices of spatiotemporal solutions

can be extracted for any PI. Again, there is no need for an additional step parameter.

In the evacuation step, the initial column pressure, P0, will be either PH or PI and then

depressurizes to PL. Here initial column pressure, P0, depends on the preceding step

and the spatiotemporal solutions of evacuation step are dependent on P0. Hence, P0 is

considered as an input to the evacuation step model. Similarly, the initial column pres-

sure, P0, in the pressurization step is also an input for the pressurization step model.

Moreover, the inlet gas-phase composition (yin,P ) in the pressurization step can be a

variable depending on the stream (i.e. feed or light product) used for pressurizing the

column. This makes yin,P a pressurization step parameter. Hence, P0 and yin,P are the

additional inputs for the pressurization step. To summarize, the adsorption and the

blowdown step neural networks have 52 inputs, the evacuation step neural neural net-

work has 53 inputs, and the pressurization step input has 54 inputs. Since the proposed

approach requires the calculation of first and second order derivatives using automatic

differentiation, the nonlinear activation in the neural networks must be differentiable.

Hence, a hyperbolic tangent function is used for the nonlinear activation in the adsorp-

tion and sinusoidal function for other steps. It is worth noting that the neural network
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hyperparameters such as the number of hidden layers, the number of hidden neurons,

activation function, and weight terms (λdata,0, λdata,lb, λdata,rb, λdata,f , λr,c, and λr,p) are

chosen based on limited numerical experimentation. The learning procedure is imple-

mented in Tensorflow v1.15 [85] and the computations are performed based on a single

Telsa P100 GPU card where it took approximately 4-8 hours training each model. It is

worth reiterating that no system-specific inputs such as mass transfer coefficients, CO2

and N2 isotherm parameters are fed to the neural networks in the learning process.

After training the models for each step, the capabilities of physics-based neural net-

works in learning the spatiotemporal solutions of the four state variables are assessed

for different initial profiles and step parameters used in training. For this, the results

produced by the trained physics-based neural networks are compared with the de-

tailed model solutions and the averaged relative L2 error between the neural network

predictions and the detailed model solutions across all training cases is used as the

metric to quantify the performance of the trained models. The averaged relative L2

error for state variable S is defined as:

L2 =
1

Nk

Nk∑︂
k=1

√︂∑︁Nf
j=1 |Ŝj,k − Sj,k|2√︂∑︁Nf

j=1 |Sj,k|2
, S = y, P, q1, q2 (4.22)

where Ŝ is the neural network predicted state variable and S is the corresponding

detailed model solution. Nf represents the number of spatiotemporal points. Table 4.4

summarizes the averaged relative L2 error between the neural network predictions and

the detailed model solutions across all training cases for the four state variables. As can

be seen from the table, the prediction accuracies of the neural network models for each

step are very good. For instance, the adsorption step model can predict the ys1(z, t)

spatiotemporal solutions of Nk=60 different training simulation cases with an 4.31%

averaged deviation from the original solutions. It is worth noting that the evacuation

step averaged relative L2 error for qs2(z, t) is higher compared to others because the

original solution itself has values close to zero.
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Table 4.4: Averaged relative L2 norm between the neural network predicted and the de-
tailed process model spatiotemporal solutions of four state variables (ys1(z, t), P s(z, t),
qs1(z, t), and qs2(z, t)) based on Nk=60 different training cases.

Step ys1(z, t) P s(z, t) qs1(z, t) qs2(z, t)

Pressurization 6.70e− 02 1.30e− 03 8.80e− 02 2.77e− 02

Adsorption 4.31e− 02 6.60e− 03 4.36e− 02 1.38e− 02

Blowdown 2.73e− 02 4.92e− 04 3.40e− 02 1.40e− 02

Evacuation 6.03e− 02 1.36e− 02 6.58e− 02 1.24e− 01

The effectiveness of the neural network models in learning the spatiotemporal solu-

tions of VSA governing equations can be visualized in Fig. 4.6, where the spatiotempo-

ral solutions based on both neural network predictions and detailed model simulations

are compared for one initial profile used in the training. For the discussion, the blow-

down step is shown as an example. Here, the emphasis remains on whether the neural

network model has accurately learnt the interior of the spatiotemporal solutions of the

four state variables by simply using the initial, final and boundary data in the training.

As can be seen from the figure, the results produced by the physics-based neural net-

works are in very good agreement with the detailed model solutions for all four state

variables. Remarkably, this also means that the neural networks accurately learnt the

underlying interdependencies of each state variable in the VSA process. The predic-

tion accuracies indicate that the methodology employed herein can successfully enable

the desired coupling of the state variables by simultaneously minimizing the residuals

of component and overall mass balances along with labelled data. It is worth reiterat-

ing that the use of physics-based residuals in the loss function has allowed the neural

networks to learn the adsorption column dynamics with one fully connected multi-

output architecture instead of conventional approaches of having multiple surrogate

models for each state variable. Another interesting feature is the ability of predicting

q1 and q2 solutions. The detailed model calculations of q1 and q2 require the adsorp-

tion isotherm and the linear driving force model. In the present methodology, instead
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of explicitly providing these equations, the initial, final and boundary data of q1 and

q2 are provided. By simultaneously allowing the neural networks to match this data

along with minimizing the overall PDE residuals, the q1 and q2 terms in the PDEs are

forced to obey the imposed constraints, thereby predicting the interior solutions of q1

and q2 reasonably well.

4.4.3 Application: Cycle simulation of four-step FP cycle

The four neural network models constructed for the constituent steps are used to sim-

ulate the four-step FP cycle at various operating conditions to test the effectiveness

of the proposed methodology. These operating conditions are randomly generated

using Latin hypercube sampling such that tADS is varied from 20 to 100 seconds, PI

and PL range between 0.3-0.5 bar and 0.1-0.2 bar, respectively, and are independent

of the training operating conditions. Here the neural network predicted profiles of

the state variables are first compared with the detailed model simulations. Later on,

performance metrics such as CO2 purity and CO2 recovery calculated from the neural

network predicted profiles are validated against the detailed model calculations. The

CO2 purity and CO2 recovery are defined as follows:

CO2 purity =

[︄
moleout,CO2|evac
moleout,total|evac

]︄
× 100 (4.23)

CO2 recovery =

[︄
moleout,CO2|evac

molein,CO2 |press + molein,CO2|ads

]︄
× 100 (4.24)

where

molein,CO2 =
P0v0
RT0

εA

∫︂ t̄step

0

[︂
v̄z̄=0(t̄)yz̄=0(t̄)P̄ z̄=0(t̄)

]︂
dt̄ (4.25)

moleout,CO2 =
P0v0
RT0

εA

∫︂ t̄step

0

[︂
v̄z̄=1(t̄)yz̄=1(t̄)P̄ z̄=1(t̄)

]︂
dt̄ (4.26)

moleout,total =
P0v0
RT0

εA

∫︂ t̄step

0

[︂
v̄z̄=1(t̄)P̄ z̄=1(t̄)

]︂
dt̄ (4.27)

For a fair comparison, both neural networks and the detailed model are initialized with

the same initial condition and simulated from the initial cycle to CSS for each set of
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Figure 4.6: Comparison of spatiotemporal solutions of the four state variables based on
the detailed process model (left hand panel) and the blowdown step neural network
predictions (right hand panel) for one of the initial column profiles used in training. In
both the simulations, the blowdown step is initialized with a column pressure of 1 bar.
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operating conditions. In both neural networks and detailed model-based simulations,

different steps of the cycle are simulated such that the final state for each step will

be the initial condition for the next step in the cycle. To achieve CSS criterion, the

PDEs are repeatedly solved for each step of the cycle in detailed simulations until the

mass balance error equals 1% or less for five consecutive cycles. At CSS, the profiles of

state variables across the column in each step and the process performance indicators

remain invariant when cycling repeatedly. In neural network-based simulations, the

CSS is assumed to be achieved when there is no variation in the column dynamics of

each step in the cycle and the process performance indicators remain constant during

repeated cycling. It is worth noting that the moles in or out integrated in each step

based on neural network approximations may not necessarily lead to overall mass

balance convergence less than 1% due to small deviations in the predictions of profiles.

In such cases, the CSS was assumed to be achieved if the overall mass balance error is

less than 5%.

For the sake of brevity, let us consider one specific operating condition: tADS=45 s,

PI = 0.37 bar, and PL = 0.13 bar for the discussion. Both the neural network and the

detailed model simulations are carried out for this operating condition from the ini-

tial cycle until the CSS. The column profiles after cycle #1 and at CSS obtained from

the two models are illustrated in Figs. 4.7 and 4.8, respectively. As can be seen from

the figure, the predictive capabilities of the neural network models are remarkable.

It is worth reiterating that both neural network and the detailed model simulations

are initialized with the same initial condition. Interestingly, the neural network simu-

lations have accurately captured the dynamics from the initial cycle to the CSS. Such

predictive capabilities of neural network simulations can be attributed to the use of dif-

ferent initial profiles as inputs in the neural network training of each step. The results

also demonstrate that this methodology successfully predicted the CSS profiles for the

given initial profile and operating conditions by simultaneously minimizing the resid-
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Figure 4.7: Comparison of cycle #1 profiles of four state variables obtained from the
neural network (markers) and the detailed model (lines) simulations for the operating
condition: tADS=45 s, PI = 0.37 bar, and PL = 0.13 bar.
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Figure 4.8: Comparison of cyclic steady state (CSS) profiles of four state variables ob-
tained from the neural network (markers) and the detailed model (lines) simulations
for the operating condition: tADS=45 s, PI = 0.37 bar, and PL = 0.13 bar.
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uals of PDEs and the labelled data across all initial profiles and operating conditions.

The calculated moles in each step and the performance indicators for this case are re-

ported in Table 4.5. The CO2 recovery from the neural network simulations is higher

than one calculated from the detailed model simulations because the neural networks

slightly overestimated the duration of the evacuation step, as can be seen in Fig. 4.8(e).

In terms of computational efficiencies, the neural network simulations were almost 40

times faster than the detailed model simulations.

Table 4.5: Summary of moles calculated from the state variables at CSS based on neural
networks and detailed process model simulations for the operating condition: tADS=45
s, PI = 0.37 bar, and PL = 0.13 bar. The number of cycles to reach CSS and the com-
putational time are also reported. Note that CPU seconds on a 128 GB and 3.10 GHz
workstation.

Detailed model Neural network
molein,CO2|FP 0.25 0.26
molein,CO2|ADS 4.53 4.50
moleout,CO2|ADS 2.56 2.21
moleout,CO2|BLO 0.18 0.17
moleout,CO2|EVAC 2.03 2.47
CO2 purity (%) 88.4 90.2
CO2 recovery (%) 42.5 51.9
mass balance error (%) 0.02 1.79
#cycles to CSS (-) 17 5
Computational time (s) 125.9 2.9

Next, the simulations are extended to 200 different operating conditions spanning

the entire range. The neural network’s predictive ability is expressed in terms of CO2

purity and CO2 recovery obtained at CSS. Figure 4.9 illustrates the parity plot for CO2

purities and CO2 recoveries between the detailed model and the neural network sim-

ulations. As shown, the purity predictions from the neural network simulations are

within the 6% error margin. On the other hand, the some of the recovery predictions

from the neural network simulations slightly have a higher error margin of 20%. As
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mentioned previously, this discrepancy can be attributed to the slight overestimation of

the duration of the evacuation step neural network model. Nevertheless, the accuracy

of the results produced by the neural network simulations are very good for design-

ing and optimizing different cycles for initial material screening purposes. Based on

these 200 simulations, the neural network simulations were 30 times faster than the

detailed model simulations on a 128 GB and a 3.10 GHz workstation. It is expected

that the computational advantages will be more significant when optimizing different

cycle designs.
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Figure 4.9: Parity plots of CO2 purity and CO2 recovery based on 200 different simula-
tions between the detailed process model- and the neural network-based simulations.
The error margin for CO2 purity and CO2 recovery are 6% and 20%, respectively.

4.4.4 Application: Cycle synthesis

In the previous section, the neural network models successfully demonstrated the sim-

ulation capabilities for one VSA cycle. Here, the effectiveness of the proposed approach

is tested for cycle synthesis by constructing and simulating the four VSA cycles illus-

trated in Fig. 4.2. For this, the cycle simulations are carried out in slightly different

operating ranges of tADS, PI and PL by varying them between 5-45 seconds, 0.7-0.99

bar and 0.08-0.13 bar, respectively. Both neural networks and the detailed process are
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simulated until CSS and the results produced by the two approaches are compared at

CSS. In detailed process simulations, the CSS condition is reached when the overall

mass balance error equals 1% or less for five consecutive cycles. The CSS was assumed

to be achieved in neural network-based simulations when there is no variation in the

column dynamics of each step in the cycle during repeated cycling or the overall mass

balance error is less than 5%.

Simulation of three-step FP cycle

First, a simple three-step VSA cycle with feed pressurization (FP) is constructed based

on the individual feed pressurization, adsorption, and evacuation step models. A spe-

cific process operating condition: tADS = 25 s, PL=0.1 bar is considered randomly to

test the ability of neural network-based simulations to predict CSS profiles. Figures

4.10 and 4.11 illustrate the column profiles of four state variables after cycle #1 and at

CSS from neural network- and detailed process model-based simulations, respectively.

Overall, there is an excellent agreement between the two results. However, the neu-

ral network model over-predicted the CO2 gas-phase composition profile at the end

of evacuation step at CSS. Moreover, CO2 solid loadings of adsorption step are also

slightly overestimated. In Table 4.6, the CO2 purity and CO2 recovery calculated based

on both neural network and detailed process simulations are reported. Moreover, the

number of cycles to reach CSS and the computational times are also provided. The

neural network-based calculations of CO2 purity and CO2 recovery have an error de-

viation of 13% and 43%, respectively. Such a high CO2 recovery difference is because

the neural network simulations overestimated the duration of the evacuation step (see

Fig. 4.11(e)), which resulted in the calculation of higher moles out of the evacuation

step. Since the constant velocity boundary condition is used in the evacuation step, the

step duration also depends on the initial CO2 gas-phase composition in the column,

apart from intermediate and low pressures. Owing to this, the smallest deviation in
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the final CO2 gas-phase composition profile in the preceding adsorption step can sig-

nificantly affect the evacuation step duration calculated by the neural network model.

The neural networks simulations are almost 35 times faster than the detailed model

simulations.

Table 4.6: Summary of CO2 purity and CO2 recovery calculated based on neural net-
works (NN) and detailed process model (DM) simulations for the operating condition:
tADS=25 s and PL = 0.1 bar. For four-step cycles, PI = 0.75 bar was used. The number
of cycles to reach CSS and the computational time are also reported. Note that CPU
seconds on a 128 GB and 3.10 GHz workstation.

VSA cycles
CO2 purity (%) CO2 recovery (%) #cycles to CSS Computational time (s)

DM NN DM NN DM NN DM NN
Three-step FP cycle 62.5 70.7 64.0 91.6 37 13 250.4 7.4

Three-step LPP cycle 64.8 67.9 78.5 87.5 42 5 265.1 3.2
Four-step FP cycle 69.5 76.3 62.6 88.9 35 10 258.8 7.2

Four-step LPP cycle 71.8 73.6 77.3 81.1 25 7 183.1 5.3

Simulation of three-step LPP cycle

Another three-step cycle can be constructed by pressurizing the column using light

product from the adsorption step instead of feed pressurization, as illustrated in Fig.

4.2(b). In the light product pressurization (LPP) step, the inlet CO2 gas-phase composi-

tion depends on the outlet stream of the adsorption step. For simplicity, it is assumed

that the outlet stream of the adsorption step is first directed into a well-mixed tank

before feeding to pressurize the column in the LPP step. Both neural network and de-

tailed process model simulations are carried out based on this additional assumption.

The same operating condition as earlier is used to compare the CSS profiles from both

models. Figures 4.12 and 4.13 illustrate the column profiles of four state variables after

cycle #1 and at CSS from both simulations, respectively. The neural network profile

predictions are remarkable. The impact of pressurizing the column with outlet stream

of the adsorption step can be visualized from the CO2 gas-phase compositions/solid

loadings at the light product end. The final CO2 solid loading at z = 1 at the end of
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Figure 4.10: Comparison of cycle #1 profiles of four state variables obtained from the
neural network (markers) and the detailed model (lines) simulations of three-step FP
cycle for the operating condition: tADS=25 s and PL = 0.1 bar.
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Figure 4.11: Comparison of cyclic steady state (CSS) profiles of four state variables
obtained from the neural network (markers) and the detailed model (lines) simulations
of three-step FP cycle for the operating condition: tADS=25 s and PL = 0.1 bar.
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the LPP step at CSS is ≈ 0.5 mol kg−1, whereas in the previous case with FP, the fi-

nal CO2 solid loading at z = 1 at CSS is ≈ 1 mol kg−1. It is worth mentioning that

the pressurization step neural network model learnt the impact of inlet CO2 gas-phase

composition on the spatiotemporal dynamics very well. As can be seen from Table 4.6,

the calculated CO2 purity and CO2 recovery from the neural network simulations are

5% and 11% higher than the values from the detailed model simulations. The detailed

model took 85 cycles to reach CSS wheres the neural network simulations took 5 cy-

cles. As a result, the computational speeds for neural networks simulations were up to

80 times faster than the detailed model simulations.

Simulation of four-step FP cycle

Here the four-step FP cycle, shown in Fig. 4.2(c), is constructed using the pressuriza-

tion, the adsorption, the blowdown, the evacuation step models. For the operating

condition of tADS = 25 s, PI=0.75 bar, and PL=0.1 bar, the column profiles after cycle #1

and at CSS from both neural network- and detailed model-based simulations can be

visualized in Figs. 4.14 and 4.15, respectively. The profiles calculated from both the

simulations are in good agreement, although the neural networks over-predicted the

CO2 gas-phase composition at the end of the evacuation step. As can be seen from

Table 4.6, the inclusion of the blowdown step between the adsorption and the evacua-

tion step improved the CO2 purity while the CO2 recovery remained almost the same

compared to the first case. This is because the blowdown step removed some residual

N2 from the column, as can be seen from the increase in the CO2 gas-phase compo-

sitions across the column before the evacuation step. Finally, the CO2 purity and the

CO2 recovery from the neural network simulations are overestimated by 10% and 42%,

respectively, compared to the detailed model simulations. Such high error in the CO2

recovery can be attributed to the slight over-prediction of the evacuation step duration

by the neural network model, as illustrated in Fig. 4.15. Nevertheless, the overall ef-
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Figure 4.12: Comparison of cycle #1 profiles of four state variables obtained from the
neural network (markers) and the detailed model (lines) simulations of three-step LPP
cycle for the operating condition: tADS=25 s and PL = 0.1 bar.
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Figure 4.13: Comparison of cyclic steady state (CSS) profiles of four state variables
obtained from the neural network (markers) and the detailed model (lines) simulations
of three-step LPP cycle for the operating condition: tADS=25 s and PL = 0.1 bar.

110



fectiveness of the neural network models in predicting the CSS profiles are excellent.

In terms of computational efficiency, neural networks simulations saved up to 35 times

the computational run-time.

Simulation of four-step LPP cycle

Finally, the four-step LPP cycle is constructed and simulated for the operating condi-

tion: tADS = 25 s, PI=0.75 bar, and PL=0.1 bar. The profiles of four step variables after

cycle #1 and at CSS are shown in Figs. 4.16 and 4.17, respectively. Again, the pre-

dictions from the neural network simulations are in good agreement with the detailed

model simulations. The CO2 gas-phase composition final profile of the evacuation step

is overestimated by the neural network models. Based on Table 4.6, the CO2 purity and

the CO2 recovery are overestimated by 3% and 5%, respectively. The computational

speeds achieved were 35 times higher than the detailed model.

Comparative performance for various operating conditions

The performance of the neural network models are tested based on 50 different ran-

domly chosen operating conditions spanning the entire range considered for cycle

synthesis study. Here, CO2 purity and CO2 recovery calculated at CSS from neural

network and detailed process model simulations are compared. Figure 4.18 compares

the CO2 purities obtained from both the models and the error band represents 10%

deviation. For all the cycles, the CO2 purity calculated based on neural network sim-

ulations lie within the 10% error. On the other hand, the parity plot for CO2 recovery

illustrated in Fig. 4.19 show that the most of the predictions based on neural network

simulations are within the 20% error margin. It is anticipated that the accuracy of CO2

recovery calculated from the neural network simulations can be improved by increas-

ing Nk, i.e., the number of different initial profiles and step parameters, in the neural

network training. Finally, the computational times incurred for 50 simulations of all

four cycles are reported in Table 4.7.
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Figure 4.14: Comparison of cycle #1 profiles of four state variables obtained from the
neural network (markers) and the detailed model (lines) simulations of four-step FP
cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL = 0.1 bar.

112



1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
O

2 g
as

 p
ha

se
 c

om
po

si
tio

n 
(-)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Blowdown
 Evacuation

(a)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ol

um
n 

pr
es

su
re

 (b
ar

)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Blowdown
 Evacuation

(b)
2.0

1.5

1.0

0.5

0.0

C
O

2 s
ol

id
 lo

ad
in

g 
(m

ol
/k

g)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Blowdown
 Evacuation

(c)

0.010

0.008

0.006

0.004

0.002

0.000

N 2
 s

ol
id

 lo
ad

in
g 

(m
m

ol
/k

g)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Blowdown
 Evacuation

(d)
1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ol

um
n 

pr
es

su
re

 (b
ar

)

706050403020100
Cycle time (s)

FP ADS BLO EVAC

(e)

Figure 4.15: Comparison of cyclic steady state (CSS) profiles of four state variables
obtained from the neural network (markers) and the detailed model (lines) simulations
of four-step FP cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL = 0.1
bar.
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Figure 4.16: Comparison of cycle #1 profiles of four state variables obtained from the
neural network (markers) and the detailed model (lines) simulations of four-step LPP
cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL = 0.1 bar.
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Figure 4.17: Comparison of cyclic steady state (CSS) profiles of four state variables
obtained from the neural network (markers) and the detailed model (lines) simulations
of four-step LPP cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL =
0.1 bar.
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Figure 4.18: Parity plots of CO2 purity obtained from the detailed process model- and
the neural network-based simulations of (a) three-step FP cycle (b) three-step LPP cycle
(c) four-step FP cycle (d) four-step LPP cycle at 50 different operating conditions. The
error band represents 10%.

Table 4.7: Summary of computational times for carrying out 50 simulations using neu-
ral networks and the detailed process model. Note that CPU seconds on a 128 GB and
3.10 GHz workstation.

VSA cycles
Computational time (s)

Detailed model Neural network
Three-step FP cycle 15771 384

Three-step LPP cycle 29499 166
Four-step FP cycle 16573 989

Four-step LPP cycle 30137 626
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Figure 4.19: Parity plots of CO2 recovery obtained from the detailed process model-
and the neural network-based simulations of (a) three-step FP cycle (b) three-step LPP
cycle (c) four-step FP cycle (d) four-step LPP cycle at 50 different operating conditions.
The error band represents 20%.

4.5 Conclusions

For the first time, physics-based neural networks based on modern deep learning tech-

niques are developed to rapidly synthesize and simulate cyclic adsorption processes.

The deep neural networks employed herein are trained to learn the full spatiotemporal

solutions of different state variables in cyclic adsorption processes by obeying the un-

derlying conservation laws of mass and momentum along with adsorption equilibria.

Unique neural networks are trained for different constituent steps of cyclic adsorption

processes. The generalization capabilities are enabled by training the neural network
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models based on different initial conditions and operating parameters. In the present

study, the proposed methodology was tested on the case of post-combustion CO2 cap-

ture by first constructing and simulating a four-step VSA cycle using individual neural

network models of each step. Subsequently, individual neural network models are

utilized to synthesize four simple VSA cycles for post-combustion CO2 capture.

The results demonstrated that the trained neural network accurately predicts the

spatiotemporal solutions of four state variables: CO2 gas phase composition, column

pressure, CO2 solid loading, and N2 solid loading. Particularly, the dynamics of state

variables interior of the spatiotemporal domain were well-captured, even though no

labelled data was provided. Moreover, the column profiles predicted by the neural

network models at the cyclic steady state were in excellent agreement with the pro-

files obtained from the detailed model simulations. The effectiveness of the neural

network-based simulations was further demonstrated by comparing the CO2 purities

and the CO2 recoveries predicted at various operating conditions with the detailed

model calculations.

With this initial success, the methodology was extended to demonstrate the cycle

synthesis capabilities of neural network models. Using the trained neural network

models, a three-step VSA cycle with feed pressurization, adsorption, and evacuation

steps are constructed and simulated. The results showed that the neural network-

based simulations accurately predicted the CSS profiles of each step in the cycle. Later

on, the a three-step VSA cycle with light product pressurization is simulated and the

neural network predictions were found to be in excellent agreement with the detailed

process simulations. Finally, the complexity was increased by synthesizing two four-

step VSA cycles with feed and light product pressurization steps. The comparative

performances between the neural network and the detailed model simulations were

found to be in good agreement, although the evacuation CO2 gas-phase composition

final profiles and step durations were slightly over-predicted by the neural networks.
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Nevertheless, the results demonstrated the effectiveness of the proposed methodology

to synthesize and simulate different cycles, a step towards superstructure-based opti-

mal cycle synthesis. In the future, this methodology will be extended to incorporate

more steps in order to synthesize and optimize complex adsorption cycles. In terms

of computational speeds, the neural network simulations were at least 40 times faster

than the detailed model simulations. The proposed methodology will be extended to

synthesize and optimize different cyclic adsorption processes.
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Part II

Techno-economic assessments
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Chapter 5

Techno-economic assessment of
optimized vacuum swing adsorption for
post-combustion CO2 capture from
steam methane reformer flue gas

5.1 Introduction

Hydrogen is a clean fuel that plays an important role in the transition towards a low-

carbon sustainable energy future. With growing demands in various sectors such as

power, heating, industry, transportation, global hydrogen production is expected to in-

crease in the next few decades substantially [92]. Although hydrogen can be produced

through renewable sources, over 95% of global hydrogen production relies on fossil

fuels [92, 93]. Since this production route involves high CO2 emissions, CO2 capture

and storage (CCS) is a path forward to enable large-scale hydrogen production with

low-carbon emissions in hydrogen plants to meet growing demands. Steam methane

reforming (SMR) of natural gas is the leading technology for large-scale hydrogen pro-

duction [11], accounting for almost 50% of the hydrogen produced globally [94]. In

SMR-based hydrogen plants, natural gas undergoes steam-reforming followed by a

The results presented in this chapter have been reported in: S.G. Subraveti, S. Roussanaly, R. Anan-
tharaman, L. Riboldi, A. Rajendran. Techno-economic assessment of optimised vacuum swing adsorp-
tion for post-combustion CO2 capture from steam-methane reformer flue gas. Sep. Purif. Technol. 2021,
256, 117832.
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water-gas shift to obtain shifted syngas. Owing to the highly endothermic reforming

reactions, combustion of natural gas in the reformer remains inevitable [11]. Pressure

swing adsorption (PSA) then purifies the shifted syngas to produce ultrapure hydro-

gen. Based on the aforementioned process steps, CO2 sources can be associated with

SMR furnace flue gas and shifted syngas from reforming and water-gas shift reactions.

While up to 60% CO2 can be captured from shifted syngas [92], post-combustion CO2

capture from SMR furnace flue gas must be deployed to achieve higher overall cap-

ture rates from SMR-based hydrogen plants [11], thus enabling low-carbon-footprint

hydrogen. The current state-of-the-art separation technology for post-combustion CO2

capture in SMR plants involves monoethanolamine (MEA) based absorption [11].

Alternative post-combustion CO2 capture technologies such as membrane separa-

tion and vacuum swing adsorption (VSA) have emerged as promising technologies

currently in the R&D stage [10]. The VSA technology was also commercially demon-

strated for CO2 capture from syngas in an SMR-based plant at Valero Port Arthur Re-

finery (Texas, USA) [31]. With growing interest in developing adsorption technology

for CO2 capture, major improvements have been made to develop new adsorbents and

processes [10]. Recent model-based material screening studies have enabled the dis-

covery of potential adsorbents for CO2 capture applications [23, 45, 95, 96]. Alongside,

novel processes that are efficient in terms of energy and productivity are being de-

veloped [40]. It is worth noting that majority of studies in the literature focus on the

development of materials. Most process studies have focused either on developing

novel processes or the screening/evaluation of adsorbents. These studies often per-

form assessments based on process metrics such as parasitic energy consumption and

productivity. While these are important metrics, they seldom provide an idea of the

cost of capture. Without a proper estimate of the cost, it is problematic to compare

various technologies, evaluate the complexities involved in scale-up, etc. Hence, it is

important that process studies go beyond evaluating process metrics and consider the
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cost of capture. Such detailed analyses are not common in the literature, with a few

exceptions that are discussed here.

Table 5.1 summarizes a sample of relevant techno-economic studies that focused

on P/VSA technology for post-combustion CO2 capture. As can be seen from the ta-

ble, many studies have focused mainly on coal-fired power plants, and there are no

studies reported for post-combustion CO2 capture in hydrogen plants using the VSA

technology. Most previous studies also overlooked the dynamics of the vacuum pump

in P/VSA simulations which can lead to two major concerns. Typically, predefined

pressure histories used to approximate the dynamics of vacuum pumps can signifi-

cantly overestimate the productivity of the capture plant. Another shortcoming comes

from the assumption of high vacuum pump efficiencies to calculate the VSA energy

consumption. This is a critical aspect since the production of high purity CO2 at high

recovery requires very low vacuum pressures at which pump efficiencies are known

to drop dramatically [35, 97]. Practical considerations on the vacuum pump perfor-

mance are often omitted in cost estimations. Previous research has not considered the

scale-up and proper column scheduling in their optimal cost estimations, with a no-

table exception being the work of Khurana and Farooq [21]. Given the complexity

of the CO2 capture problem, multiple trains of VSA columns are required to treat the

flue gas. Under such circumstances, it is important to carefully perform the column

scheduling and the scale-up to ensure continuous feed. One more limitation relates to

the adsorbent cost. As can be seen from Table 5.1, some studies estimated the costs of

novel adsorbents such as metal-organic frameworks to be the same as that of Zeolite

13X. This assumption may no longer be valid, especially when the raw materials used

to synthesize these adsorbents are expensive. Further, a wide range of financial param-

eters were used for cost estimations which makes the comparison of VSA performance

with other technologies challenging. The P/VSA cost estimations are not straightfor-

ward, and the literature has not rigorously assessed the techno economics apart from
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the work of Khurana and Farooq [21]. Therefore, a detailed cost model based on estab-

lished financial guidelines together with the full complexity of VSA remains essential

in order to compare VSA with other capture technologies. Improvements in VSA mod-

elling in recent years to perform reliable calculations are another factor to consider for

the need for up-to-date cost estimation. In order to enable cost-efficient designs, inte-

grating the detailed cost model with the design and optimization is essential [98].

In the present chapter, an integrated techno-economic optimization model is de-

veloped that takes into account a detailed VSA process model, peripheral component

models, vacuum pump performance and a comprehensive costing model. This model

is used to assess the techno-economic performance of an optimized VSA process for

post-combustion CO2 capture in SMR-based hydrogen plants. Three different adsor-

bents are evaluated for their technical and cost performances based on a four-step VSA

cycle with light product pressurization and tested for their competitiveness by compar-

ing with state-of-the-art MEA-based absorption. In addition, different optimization

cases are considered to highlight (1) the critical choice of process design objectives, (2)

the importance of incorporating vacuum pump performance into the techno-economic

optimization model, (3) the effect of adsorption column sizing and (4) the influence of

adsorbent costs.
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5.2 Case study

The SMR process for hydrogen production without CO2 capture considered in this

chapter is based on a single steam methane reforming train with a production capacity

of 450 tonnes of hydrogen per day. A simplified process flow diagram of the SMR-

based hydrogen production system is shown in Fig. 5.1. First, natural gas is converted

to syngas through a pre-reformer and a reformer. After the reformer, the CO in the

syngas is converted to CO2 through a high-temperature and a low-temperature water-

gas shift. It is also worth noting that the water-gas shift enables the production of HP

steam used to generate electricity. A PSA unit then separates H2 from the rest of the

converted syngas to produce high purity hydrogen (the main product of the plant).

The PSA tail gas is sent back to the furnace to burn with the natural gas and deliver

heat for the reforming process. Without CO2 capture, the hydrogen plant results in

an exhaust flue gas of 233.9 kg/s at 1.02 bar and 353.15 K and the following molar

composition: 16.23% CO2, 63.31% N2, 17.87% H2O, 1.84% O2, 0.75% Ar [100]. The

scope of this chapter is identified in Fig. 5.1.

To benchmark the adsorption-based process, a standard MEA-based CO2 capture

is considered as the reference technology, as illustrated in Fig. D.1 in Appendix D.

After CO2 capture, the CO2 is pressurized to 200 bar before being transported to an

offshore saline aquifer located 140 km away. While a summary of the performances

of the hydrogen plant with and without MEA-based CCS is presented in Table D.1 in

Appendix D, more details can be found elsewhere [100].

5.3 Systematic design of VSA systems

An integrated techno-economic optimization framework is proposed for the design of

VSA processes. Most VSA studies for CO2 capture deal with process optimizations

involving either energy reduction or productivity maximization, or both. While these
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Figure 5.1: Process flow diagram of the hydrogen production plant and the overview
of CCS chain. The dotted box represents the scope of this chapter.

are good proxies for operating and capital costs, the true estimate of technology should

be based on a thorough techno-economic study that accurately incorporates the trade-

offs involved. In this chapter, a techno-economic analysis coupled with a rigorous

process optimization approach is used. The key features of this approach are following:

1. The use of a process cycle demonstrated at a pilot plant facility to produce high

CO2 purity and recovery.

2. Rigorous modelling of the adsorption process that explicitly accounts for full

transient column dynamics and cyclic-steady state performance of the process.

3. A rational scale-up approach that determines the number of columns and parallel

trains to ensure continuous operation.

4. A costing framework that is consistent with best practices in order to improve

the reliability of the cost values.

The framework used for this chapter is illustrated in Fig. 5.2. The inputs to this

framework are technical and economic design basis, VSA cycle and physiochemical

properties such as adsorption isotherms. Based on the inputs provided, integrated
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simulation and costing framework coupled with stochastic optimization output the

cost optimal design of the VSA process. More details of these components are pre-

sented below.

• Technical design basis

• Economic design basis

• VSA cycle

• Physicochemical properties

NSGA-II algorithm

Process simulator & scheduler

Cost model

• Cost-optimal design

• VSA train configuration

• Process operating conditions

Inputs Optimization model Outputs

Figure 5.2: Integrated techno-economic optimization methodology.

5.3.1 VSA capture system

Process layout

The process layout of adsorption-based CO2 capture is illustrated in Fig. 5.3. Given

the detrimental nature of water on many adsorbents, the wet flue gas of the hydrogen

plant is first cooled to 313.15 K by a direct contact cooler and then dehydrated using

a molecular sieve to remove the water [98]. The dry flue gas requires compression to

overcome the pressure drop in VSA columns. Two identical single-stage compressors

are employed to compress the entire dry flue gas to the desired pressures. Coolers

follow each compression unit to cool the feed mixture to 298.15 K.

A feed header splits the dry flue gas as feed into M identical VSA units [49]. The

feed mixture to VSA units is considered to contain 20% CO2, 77% N2, 2% O2, 1% Ar.

For simplicity, a binary mixture of 20% CO2 and 80% N2 was used to simulate the VSA

process. This can be justified by the fact that both O2 and Ar adsorb weaker than N2

on most adsorbents, specifically those considered in this chapter and hence, can be

considered to be adequately represented by N2. Each VSA unit consists of N identical

columns operating out of phase to implement the cycle operation. Several switching
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valves, dedicated vacuum pumps are employed to remove N2 and collect CO2 sepa-

rately. The CO2 after capture undergoes a multi-stage compression with intercooling

from 1 bar and 298.15 K to the target conditions prior to offshore pipeline transport

(200 bar and 318.15 K). More details on the technical modelling of various peripheral

components are summarized in Appendix D.

Evacuation 
pumps

Blowdown 
pumps

CO2 product to 
conditioning plant

N2 to atmosphere

M trains

Dry flue gas

Water

Cooling & drying

Header

Compressors

Coolers

N columns N columns N columns N columns

Molecular 
sieveFlue gas

Direct contact 
cooler

Figure 5.3: Process layout for CO2 capture using vacuum swing adsorption.

Four-step VSA cycle

The cycle configuration considered in this chapter is illustrated in Fig. 5.4. It is worth

noting that this process is widely used in the research community as a benchmark cycle

and has been successfully demonstrated at a pilot scale [21, 24, 35, 101, 102]. Naturally,

more complex cycles can be synthesized, resulting in better performance. However, it
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is anticipated that for a process of this scale, simple cycles would be preferred. The

cycle consists of adsorption (ADS), co-current blowdown (BLO), counter-current evac-

uation (EVAC) and light product pressurization (LPP) steps. The separation of feed

mixture occurs in the adsorption step at atmospheric pressure (PH) where the heavy

product CO2 adsorbs in the column, and N2 leaves the column as a light product. Al-

though the adsorption step occurs at atmospheric pressure, the feed mixture needs to

be compressed to a higher pressure (PF) to overcome the pressure drop across the col-

umn. In the co-current blowdown step, the column pressure is reduced to an interme-

diate vacuum (PI) in order to remove N2 present in the column. The column pressure

is further reduced to a low vacuum (PL) in the counter-current evacuation step to col-

lect the heavy product CO2 at the feed end of the column. The light product from the

adsorption step is used to pressurize the column back to atmospheric pressure.

Adsorbent materials

Three adsorbents were considered: Zeolite 13X [19], the current benchmark material

for CO2 capture [35, 36]; Metal-organic frameworks, UTSA-16 [103], a widely studied

metal-organic framework for CO2 capture [21, 24, 51, 104]; and IISERP MOF2 [105],

which showed a better performance than Zeolite 13X and other MOFs in terms of en-

ergy consumption and productivity in a recent screening study [91]. The adsorption

equilibria for all these adsorbents were described using a competitive form dual-site

Langmuir (DSL) model (for each component i):

q∗i =
qsb,ibici

1 +
∑︁

i bici
+

qsd,idici
1 +

∑︁
i dici

(5.1)

where qsb,i and qsd,i are the saturation loadings for the two sites and, bi and di are the

adsorption equilibrium constants with Arrhenius temperature dependence as follows:

bi = b0e

(︂
−

∆Ub,i
RT

)︂
(5.2a)

di = d0e

(︂
−

∆Ud,i
RT

)︂
(5.2b)
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Figure 5.4: Four-step VSA cycle schematic.

∆Ub,i and ∆Ud,i are the internal energies of the two sites. It is worth mentioning that

the extended dual-site Langmuir isotherm model in Eq. 5.1 explicitly takes into ac-

count the competition between CO2 and N2. In this chapter, the equal energy site

(EES) form of the DSL isotherm is used [101]. In this formalism, the saturation capac-

ity of each site is kept identical for both components and the enthalpy of adsorption

for N2 is kept identical for both sites. Experimental evidence supports this for the case

of Zeolite 13X [47]. The DSL isotherm parameters for Zeolite 13X pellets were obtained

based on previously performed experiments [19]. The CO2 and N2 isotherm parame-

ters for UTSA-16 extrudates and IISERP MOF2 were obtained from the literature [91,

104]. Note that the IISERP MOF2 was assumed to form uniform particles of 1.5 mm

using a structuring agent (binder). Figure 5.5 shows the CO2 and N2 single component
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isotherms for all three adsorbents, and related isotherm parameters are provided in

Table D.2 in Appendix D.
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Figure 5.5: Single component (a) CO2 and (b) N2 isotherms on the three adsorbents at
298.15 K.

5.3.2 Technical modelling

VSA process model

A non-isothermal, one-dimensional mathematical model obtained by solving mass,

momentum and energy balances was used to simulate the VSA process [19]. Both

lab-scale and pilot-scale experiments have been reported in the literature to validate

the model [35, 47]. The model assumes that the gas behaves ideally, and an axially

dispersed plug flow model represents the bulk flow. No radial gradients exist for com-

position, pressure and temperature across the column. Adsorbent properties and bed

porosity remain uniform throughout the column. There also exists an instantaneous

thermal equilibrium between the gas and the solid. The linear driving force model

describes the solid-phase mass transfer, and Ergun’s equation accounts for the pres-

sure drop across the column. The adiabatic operation, i.e. no heat transfer across the

walls, remains valid given the large column sizes considered. The resulting governing

equations are listed in Appendix A.
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Appropriate boundary conditions were defined to solve each cycle step (provided

in Table D.3 in Appendix D). Unlike previous studies [19, 25], the volumetric flow

rate of vacuum pumps was assigned as boundary conditions at the exit of the column

to simulate blowdown and evacuation steps instead of using predefined exponential

pressure histories. This modification allows for reliable estimations of cycle times and

the vacuum pump size/cost. Note that most of the vacuum pump costs are based on

volumetric flow rates [21]. In addition, recent studies also show that incorporating

vacuum pump volumetric flow rate-based boundary conditions improve the overall

accuracy of the model to predict process performance indicators [21, 106]. Therefore,

the volumetric flow rate of vacuum pumps was given as inputs, and the model calcu-

lated the times of blowdown and evacuation.

The partial differential equations (PDEs) were numerically solved by discretizing

the spatial terms using the finite volume method with a weighted essentially non-

oscillatory (WENO) scheme as a flux limiter [19]. The PDEs were discretized into 30

finite volumes, and the resulting ordinary differential equations were integrated using

a stiff ode solver, ode23tb, in MATLAB. All simulations were initialized with a feed mix-

ture at PL and were performed based on a unibed approach, i.e. a single bed undergoes

all cycle steps in a sequence, a standard technique used in P/VSA simulations. The

coupled cycle steps were modelled by using data buffers to store the stream informa-

tion. The blowdown and evacuation steps were terminated once the column pressure

reaches the desired pressure. The cyclic steady state (CSS) criterion was when the mass

balance error equal to 1% or less was observed for five consecutive cycles. Simulations

were run for a large number of cycles to confirm that this criterion was adequate. If the

system fails to attain the CSS criterion, simulations were performed until a maximum

of 500 cycles after which it was assumed that the CSS was attained. At CSS, the model

provided a detailed composition, temperature and pressure profiles that were essen-

tial to calculate key performance indicators. The simulation parameters are provided
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in Table D.4 in Appendix D.

Column scheduling

Owing to the transient nature of the VSA system, scheduling the cycle with the mini-

mum number of columns is required to make the operation continuous. The schedul-

ing procedure proposed by Khurana and Farooq [21] was adopted. The main consid-

erations are summarized here: (1) Continuous feed with constant throughput. (2) Sep-

arate blowdown and evacuation vacuum pumps to avoid contamination of effluents

from respective steps and to maintain the modular nature of the process. (3) Coupled

steps must occur simultaneously in two columns in order to avoid storage. (4) At any

given time, one vacuum pump serves only one column. More details on calculating

the number of columns per unit train (N ), the number of vacuum pumps per unit train

(Nv) and the number of parallel trains (M ) are provided in Sections D.3.1 and D.3.2.

Vacuum pumps

Vacuum pumps were assumed to deliver constant volumetric flow rates over wide

vacuum ranges. Although vacuum pump flow rates obey specific performance curves

in practice, a constant volumetric flow rate assumption allows for a more generic de-

sign framework employed herein. It is worth mentioning that the vacuum pump effi-

ciency was considered to be dependent on the vacuum level instead of a fixed value.

Based on earlier studies, it was found that the vacuum pump performance significantly

drops at deep vacuum levels (<0.1 bar) while it remains constant for moderate vacuum

(>0.1 bar) [35, 97]. Although the true vacuum pump efficiency depends on the specific

vacuum pump, a generalized vacuum pump efficiency function regressed based on

vacuum levels between 0.01 bar and 1 bar after analyzing the several vacuum pump

performance curves in a previous study [97] was used. The relation for vacuum pump
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efficiency is defined as follows:

ηV =
15.84P

1 + 19.80P
(5.3)

where P , in bar, is the suction pressure. Note that Eq. 5.3 was was used to quantify the

vacuum pump performance in this chapter unless otherwise stated. The efficiency, ηV,

includes that of the driver.

5.3.3 Cost assessment

The cost assessment was performed on the basis of an Nth Of A Kind (NOAK) ap-

proach wherein it was assumed that the VSA technology was mature for CO2 capture

and demonstrated on a commercial scale [107]. The cost methodology for VSA technol-

ogy involves the estimation of both capital costs (CAPEX) and operating costs (OPEX).

All costs are provided in ¤2016 price levels. Costs based on older estimates than 2016

were updated using Chemical Engineering Plant Cost Index (CEPCI) and inflation.

Capital costs

A bottom-up approach was adopted to estimate the capital costs and is illustrated in

Fig. 5.6 [108]. First, the direct cost of process equipment was estimated using As-

pen Process Economic Analyzer®. The direct cost of each equipment represents both

equipment and installation costs. The estimation was carried out based on key design

characteristics of each equipment, such as pressure, diameter, flow rate, etc. For eas-

ier implementation within the optimization framework, cost functions were regressed

for each type of equipment and were directly used to assess the direct cost of each

equipment of the process. Multiple economic evaluations were performed based on a

wide range of relevant key design characteristics for each equipment. The accuracy of

cost functions remains valid for different operating conditions evaluated in the opti-

mization (see Appendix C for more details). In addition to process equipment, initial
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adsorbent purchase, transport and installation costs were also accounted for in the total

direct cost (TDC).

A process contingency factor of 15% of total direct cost without contingencies, which

is in line with NETL guidelines, was added to the total direct cost to calculate the

total direct cost with process contingency (TDCPC) [109]. Then, indirect costs and

project contingencies were added to the total direct cost with process contingencies

to obtain the total plant cost (TPC). Indirect costs, which include engineering costs,

consultancies, service facilities, yard improvement, building and sundries, were set to

14% of TDCPC. The project contingencies were set to 20% of TDCPC in accordance

with NETL guidelines [109]. Finally, the owner costs and interest over construction are

added to the TPC to calculate the total capital requirement (TCR). The owner costs are

considered to represent 7% of TDCPC [110]. The interest over construction is calculated

assuming that the construction costs are shared over a three-year construction period

following a 40/30/30 allocation.

Due to its specificity, it is worth noting that the direct cost of each adsorbent was

estimated differently than presented above. While the cost of an adsorbent is key for

the design and evaluation of adsorption-based CO2 capture processes, estimating the

cost of an adsorbent can be challenging in practice, especially if the material has not

been commercialized. Amongst the adsorbents considered in this chapter, Zeolite 13X

is the only one that has been deployed industrially, and its purchase cost was estimated

to 1500 ¤ per tonne [51]. However, UTSA-16 and IISERP MOF2, and more generally

MOFs, are still in early development stages with no information on large-scale pro-

duction and thus with no well-established cost. While the cost of synthesizing MOFs

is currently very high, as these are mainly grams-level quantities synthesized at the lab

scale. The potential for scale-up through an application like CCS would be expected

to significantly reduce the production cost for MOFs reaching the commercial stage

[51]. Under such circumstances, the cost of raw materials could be expected to repre-
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sent a similar level of the MOF cost to the synthesis cost. Therefore, in this chapter,

the purchase cost of MOFs was assumed to be twice the cost of metals used to synthe-

size them as the metals of these MOFs can be expected to be the main material cost as

they typically are orders of magnitude more expensive than the organic components.

For both UTSA-16 and IISERP MOF2, the costs of their underlying metals, cobalt and

nickel, respectively, were determined based on bulk prices per tonne from the United

States Geological Survey website [111]. Based on the assumptions mentioned above,

the potential purchase costs at a larger production scale were estimated in terms of rel-

ative metal content and calculated to be 16640 and 4440 ¤ per tonne for UTSA-16 and

IISERP MOF2, respectively. Finally, in addition to adsorbent purchase costs, transport

and installation costs associated with adsorbents were set to 1500 ¤ per tonne for all

adsorbents to reach the adsorbent direct cost, irrespective of the adsorbent considered.

For commercial adsorbents, transport and installation costs are usually in the same

range as the adsorbent purchase cost. This was set as the cost of Zeolite 13X.

Direct cost Equipment 1

Direct cost Equipment i

Direct cost Equipment n

Initial adsorbent cost

Total Direct Cost
(TDC)

Process contingency
(15% of TDC)

Total Direct Cost
including

Process Contingency
(TDCPC)

Indirect cost
(14% of TDCPC)

Project contingency
(20% of TDCPC)

Total Plant Cost
(TPC)

Owner cost
(7% of TDCPC)

Interest during construction
(Based on cost allocation

 and discount rate)

Total Capital
 Requirement

(TCR)

Figure 5.6: Illustration of the adopted bottom-up approach for calculating investment
costs [108].
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Operating costs

Operating costs consist of fixed and variable operating costs. The annual fixed operat-

ing costs include maintenance, labour, insurance and administrative costs. The annual

maintenance cost was calculated as 2.5% of TPC, of which the maintenance labour cost

accounts for 40%. The annual insurance and location taxes, including overhead and

miscellaneous regulatory fees were set to 2% of TPC. The labour costs were calculated

based on the assumption that the CO2 capture unit requires five operators (5 shift pat-

terns with one operator per shift as adsorption processes are highly automated) with

an annual salary of 60000 ¤ per person. Administrative costs were set to 30% of the

operating and maintenance labour cost.

One important operating cost can be associated with adsorbent replacement over

time due to thermal or mechanical degradation. While some commercial adsorbents

can be operated for up to 20 years without replacement by careful design and proper

control strategies [112], the lifetime of MOFs is still unknown. Hence, to be conser-

vative, the replacement time for all adsorbents was set to 5 years [50, 51]. The adsor-

bent replacement costs, which include purchase, transport and installation costs, are

incurred every five years after the start of the plant to replace the adsorbent.

Variable operating costs include utilities, electricity, cooling water, and adsorbent

replacement. The annual cost for utilities was calculated based on estimated consump-

tion from process simulations. The unit costs of utilities are provided in Table 5.2.

Table 5.2: Unit costs of utilities

Utility Price
Electricity (¤ ·MW−1h−1) 58.1 [113]
Specific direct emissions (kg CO2 ·MW−1h−1) 38 [100]
Cooling water (¤ ·m−3) 0.039 [113]
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5.3.4 Key performance indicators

Key technical performance indicators

The CO2 purity, CO2 recovery, overall power consumption, specific energy consump-

tion and productivity were defined as follows:

CO2 purity (%) =
total moles of CO2 in the product step
total moles of gas in the product step

· 100 (5.4a)

CO2 recovery (%) =
total moles of CO2 in the product step

total moles of CO2 in the feed step
· 100 (5.4b)

Overall power consumption (Pel) was defined as the product of the power consump-

tion in each unit train and the number of parallel trains (M ) [21].

Overall power consumption, Pel (MWe) =M ·
(︄
NADS ·

EADS(Je)

tADS(s) · 106
+

NBLO · EBLO(Je)

tBLO(s) · 106
+NEVAC · EEVAC(Je)

tEVAC(s) · 106

)︄
(5.4c)

The power consumption in the unit train was calculated by averaging the energy con-

sumed in each step of the VSA cycle over the duration of each step. In other words, it

represents the integral average of the power demand in each step of the VSA cycle. In

Eq. 5.4c, NADS=1 in the adsorption step; NBLO represents the number of dedicated vac-

uum pumps per unit train for the blowdown step and; NEVAC represents the number

of dedicated vacuum pumps per unit train for the evacuation step.

It is worth noting that the power demand calculated based on Eq. 5.4c assumes that

all movers operate continuously throughout the cycle duration. This always holds true

for the compressor in the adsorption step due to continuous feed consideration in the

column scheduling. On the contrary, the number of blowdown and evacuation vac-

uum pumps that are active will be less than or equal to NBLO and NEVAC, respectively,

at any given time of the cycle duration. To elaborate, consider, for instance, evacuation

vacuum pumps. There would be a certain portion of the cycle schedule that operates

with exactly NEVAC vacuum pumps, yet, there also exists other portions of the cycle
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schedule which would operate with fewer than NEVAC vacuum pumps. Under such

circumstances, the power demand from the evacuation step will be based on vacuum

pumps, less than NEVAC, operating actively to implement the cycle. Moreover, there

will be no power consumption from the remaining evacuation vacuum pumps that are

inactive. Accounting for such variations in the power consumption for blowdown and

evacuation steps may provide a slightly lower estimate for the overall power consump-

tion, albeit the assumption that all vacuum pumps operate continuously performing

the same work throughout the cycle duration will conservatively estimate the overall

power consumption and will also comply with the realistic operation. In addition to

overall power consumption, specific energy consumption was also defined as follows:

Specific energy consumption (kWhe tCO2
−1) =

Overall power consumption (kWe) · Operating hours (h year−1)
CO2 captured (tonne year−1)

(5.4d)

Productivity was defined by considering the entire VSA capture unit as shown below:

Productivity, Pr (mol m−3 s−1) =
CO2 capture rate for the plant (mol s−1)

total adsorbent volume used in the plant (m3)
(5.4e)

Note that CO2 capture rate (mol s−1) was defined as the product of CO2 recovery (-)

and CO2 molar flow rate in the flue gas (mol s−1).

Key economic performance indicators

The CO2 avoided cost was considered as the key economic performance indicator to

compare the cost performance of adsorption-based CO2 capture technology with MEA-

based CCS. It approximates the average discounted CO2 tax or quota over the dura-

tion of the project that would be required as income to match the net present value of

additional capital and operating costs due to CCS infrastructure [107]. Since the imple-

mentation of CCS does not impact the hydrogen production of the plant (key product),

CO2 avoided cost was calculated through a net present value approach [114]. The CO2
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avoided cost, in ¤/tCO2 avoided (where tCO2 avoided is metric tonnes of CO2 avoided), is

defined as shown below:

CO2 avoided cost =
Net present value of the CCS implementation cost

Net present value of the CO2 avoided
(5.5)

Or more specifically,

CO2 avoided cost =

∑︁
i

TCRCCS implementation (i) + Annual OPEX CCS implementation (i)
(1+d)i∑︁

i
Annual amount of CO2 emissions avoided by the CCS implementation (i)

(1+d)i

(5.6)

where i is the year index (-).

The amount of CO2 emissions avoided by CCS implementation was defined as the

difference of the annual amount of CO2 captured by CCS implementation and direct

emissions due to heat and electricity associated with CCS implementation. Direct emis-

sions due to electricity can be calculated using the following equation:

Direct emissions = eel · Pel (MWe) · Operating hours (h year−1) (5.7)

where eel is the specific CO2 emissions associated with each unit of electric power con-

sumed (kg CO2 MWe
−1 h−1). By taking into account direct emissions, the equivalent

CO2 avoided indicates the true overall reduction in CO2 emissions of the SMR plant

when adsorption capture technology is implemented and allows for a fair comparison

with different capture technologies [113]. The financial parameters used to calculated

CO2 avoided cost are listed in Table 5.3.

The CO2 capture cost was also considered to optimize the VSA process and to com-

pare the cost performances of different adsorbents. The CO2 capture cost, in¤/tCO2 avoided

is defined as follows:

CO2 capture cost =

∑︁
i

TCRVSA capture plant (i) + Annual OPEX VSA capture plant (i)
(1+d)i∑︁

i
Annual amount of CO2 emissions avoided by the VSA capture plant (i)

(1+d)i

(5.8)

It is worth noting that the CO2 capture cost corresponds to the CO2 avoided cost

in Eq. 5.6 without the cost of flue gas cooling and drying, CO2 conditioning, CO2

transport and storage, since these costs are expected to be identical for all adsorbents.
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Table 5.3: Financial parameters used for calculating CO2 avoided costs [100].

Parameter Value
Economic lifetime (years) 25
Capacity factor (%) 91.3
CO2 capture plant construction time (years) 3
Allocation of CO2 capture construction costs by year (%) 40/30/30
Discount rate (%) 8

5.3.5 Techno-economic optimization model

The VSA process design was approached as an integrated techno-economic optimiza-

tion framework by identifying optimal design and operating variables of the process,

as illustrated in Fig. 5.2. The optimization methodology integrates process and mate-

rial aspects with cost models in order to minimize CO2 capture cost while ensuring a

minimum of 90% CO2 recovery and 95% CO2 purity. The set of variables include ad-

sorption step duration (tADS), blowdown step interstitial velocity (vB), evacuation step

interstitial velocity (vE), intermediate vacuum (PI), evacuation vacuum (PL), interstitial

feed velocity (v0) and column length (L).

The choice of design and operating variables depends on the VSA cycle and the ad-

sorbent used. For the four-step VSA cycle considered, tADS and v0 can be tuned in the

adsorption step to control the feed flow rate and also the CO2 front propagation along

the column. Since this step operates at atmospheric pressure, the feed pressure can be

calculated based on Ergun’s equation. For blowdown and evacuation steps, vacuum

levels, PI and PL, respectively are variables. In addition, volumetric flow rates of blow-

down (SB) and evacuation vacuum pumps (SE) can be also varied for respective steps.

To this end, SB and SE were implicitly varied in terms of the interstitial velocities, vB

and vE, respectively. This was done to provide an appropriate vacuum pump sizing

range for the columns, and also, a limit of 20000 m3 h−1 was implicitly enforced on the

maximum vacuum pump size. It is worth mentioning that the durations of blowdown
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and evacuation steps are calculated by the model based on SB and SE, respectively.

Finally, the duration of light product pressurization depends on tADS and is not con-

sidered as the variable in the optimization. Owing to the scale-up design, the column

length, L was considered as a variable. As both column length and column diame-

ter can be varied simultaneously, the column length-to-diameter (L/D) ratio was kept

constant in the optimizations. The lower and upper bounds defined for the variables

are provided in Table 5.4.

Table 5.4: Decision variable bounds used in the optimization.

tADS vB vE PI PL v0 L

(s) (m s−1) (m s−1) (bar) (bar) (m s−1) (m)
Lower bound 50 0.2 0.2 PL + 0.01 0.01 0.1 3
Upper bound 400 3 3 0.9 0.05 1.2 9

The constrained optimization problem was transformed into an unconstrained prob-

lem by adding penalty terms to the objective function, which impose high costs when

constraints are violated and was solved using a non-dominated sorting genetic algo-

rithm II (NSGA-II), a global search method that converges towards an optimal solu-

tion(s) by mimicking the process of evolution. In other words, the algorithm initial-

izes a unique set of decision variables chosen within the bounds using Latin hyper-

cube sampling and evaluates for objective functional values based on the integrated

VSA process and cost models. This set of decision variables represents a generation.

NSGA-II improves the objective functional values by utilizing some additional opera-

tions such as mutation and crossover over multiple generations. Global optimization

and parallelization toolboxes in MATLAB 2018b were employed to implement the op-

timization. The population size was set to 24 times the number of variables, and the

stopping criterion for the optimization was 50 generations.
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5.4 Results and discussion

5.4.1 Design and cost of the optimal adsorptive CO2 capture

The VSA process for each adsorbent was optimized for the minimum CO2 capture

cost with requirements of 95% CO2 purity and 90% CO2 recovery. Table 5.5 shows the

process variables optimized for the minimum capture cost together with technical per-

formances and other design details of the VSA process. In these optimizations, for the

base-case scenario, the length-to-diameter ratio of adsorption columns was fixed at 3.

For the cycle considered, all three adsorbents met the purity-recovery requirements by

demanding a deep vacuum, i.e. ≤ 0.036 bar, to evacuate the CO2 product out of the

column. It can be observed that the size requirement of the vacuum pump depends on

the intermediate vacuum (PI) and low vacuum (PL) levels. Owing to the larger swing

between PI=0.31 bar and PL=0.036 bar for IISERP MOF2 in the evacuation step, the

optimizer chose very large evacuation vacuum pump (>16000 m3 h−1) to avoid long

durations of the evacuation step, thereby, limiting the number of columns and evacu-

ation vacuum pumps needed for scheduling. For Zeolite 13X and UTSA-16, vacuum

pumps of capacity ≈ 8500-13000 m3 h−1 seemed to be sufficient to reduce the vacuum

levels from PI of 0.11 bar to PL of 0.022 and 0.026 bar, respectively, in the evacuation

steps. Although larger vacuum pumps might perhaps be used for these cases, it can

be inferred that the optimizer found the trade-off between the size requirement and

the vacuum pump power consumption as the optimal flow rates have not approached

the limits of the specified ranges in the optimization. The non-linear nature of the CO2

isotherms on Zeolite 13X and UTSA-16 compared to linear CO2 isotherm on IISERP

MOF2 could have also contributed to this choice. Similar observations can be made for

optimizer’s choice of blowdown vacuum pumps based on the intermediate vacuum

(PI). As can be seen from the table, longer columns (>5 m) are needed to reduce the

total number of columns. Also, interstitial feed velocities for all cases are either close
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to or at the upper bound to reduce the number of parallel trains. Due to long columns

and high interstitial velocities, the flue gas is compressed (>1.5 bar) to overcome the

pressure drops across the column. Though the upper limit for the column length was

kept at 9 m, power losses due to large pressure drops and very long evacuation times

might have discouraged the optimizer from choosing column lengths in close proxim-

ity to the upper limit.

Table 5.5: Process performances of the four-step VSA cycle for different materials that
were optimized for the minimum capture cost.

Base case
Adsorbent Zeolite 13X UTSA-16 IISERP MOF2
Vacuum pump efficiency Variable Variable Variable
Objective function Min. cost Min. cost Min. cost
Operating conditions

Adsorption time (s) 212 159 118
Blowdown pump flow rate (m3 h−1) 7784 6086 5434
Evacuation pump flow rate (m3 h−1) 12682 8631 16341
Maximum feed pressure (bar) 1.92 1.53 2.03
Intermediate pressure (bar) 0.11 0.11 0.31
Low pressure (bar) 0.022 0.026 0.036
Feed velocity (m s−1) 1.14 1.20 1.20
Column length (m) 8.0 5.4 8.8
Length-to-diameter ratio (-) 3.0 3.0 3.0

Train configuration
Number of columns per train (-) 7 4 4
Number of blowdown pumps per train (-) 1 1 1
Number of evacuation pumps per train(-) 5 3 3
Number of parallel trains (-) 42 97 29

Process performance
Purity (%) 94.9 95.0 95.1
Recovery (%) 91.0 90.0 91.4
Productivity (mol m−3 s−1) 1.89 4.45 3.61
Compressor power (MWe) 12.00 7.91 14.10
Blowdown power (MWe) 4.39 8.78 1.24
Evacuation power (MWe) 41.77 39.22 22.45
Overall power consumption (MWe) 58.15 55.90 37.79
Specific energy consumption (kWhe/tCO2) 307.86 299.53 199.33

The VSA cycle schedule is illustrated in Fig. D.3 in Appendix D based on the opti-
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mized process variables. Idle times are included wherever deemed necessary. To treat

the entire dry flue gas in a continuous manner, a total of 42 parallel trains with seven

columns per train, 97 parallel trains with four columns per train and 29 parallel trains

with four columns per train are necessary for Zeolite 13X, UTSA-16 and IISERP MOF2

cases, respectively. Clearly, the MOFs achieved higher productivities, i.e. less adsor-

bent volume as compared to Zeolite 13X. For this scale of capture unit, the total power

consumption based on compressors, all blowdown and evacuation vacuum pumps

pertaining to all parallel trains is shown in Table 5.5. As expected, the evacuation step

consumes most of the total power. UTSA-16 and Zeolite 13X require high power con-

sumption, while IISERP MOF2 has the lowest power consumption. This observation

is consistent with previous studies that have shown that this can be explained by the

low N2 affinity of an adsorbent [91, 115].

The cost breakdowns for all adsorbents corresponding to the lowest capture cost

are provided in Table 5.6. In addition, other costs pertaining to flue gas pre-treatment

(i.e. cooling and drying), CO2 conditioning, transport and storage costs are also re-

ported for all adsorbents. It is worth noting that all cost breakdowns are reported in

¤/tCO2, avoided. Since the overall framework remains the same for all adsorbents, cap-

ture costs are compared to assess the performance of each of the adsorbents. As can

be seen from the table, IISERP MOF2 is the best performing adsorbent for the VSA

process. For IISERP MOF2, the capital costs constitute about 36%, where the contri-

butions from columns (≈6%), compressors (≈5%) and vacuum pumps (≈6%) have

similar magnitudes. On the other hand, the operating costs for IISERP MOF2 sum

up to 64%, including both fixed and variable operating costs. As expected, the major

contribution arises from power consumption (≈38% of the capture cost). It is worth

noting that the fixed operating costs are dependent on the total capital requirement.

UTSA-16 has the highest capture cost as compared to the other two adsorbents. This

is primarily due to exorbitant adsorbent costs. Adsorbent costs constitute 20% of the
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total capture costs. This is strikingly high compared to IISERP MOF2 (≈13%) and Zeo-

lite 13X (9%) due to the presence of expensive metal source cobalt. The high adsorbent

costs prohibited the optimizer from increasing the column volume, thereby increasing

the number of parallel trains. This observation was corroborated by a case study in a

later section where the influence of MOF prices on the capture cost was considered. In

addition, high power consumption also remains a significant contributor. Zeolite 13X

requires more number of columns per unit train as compared to MOFs because of the

non-linear nature of the CO2 isotherm. For this reason, huge capital is needed while

relatively higher N2 affinity increased the electricity costs.

5.4.2 Importance of process design objectives

The most common choice of process design objectives while designing or comparing

optimal VSA processes for post-combustion CO2 capture has been either energy con-

sumption linked to the VSA or productivity or both [19, 24, 97, 102]. Besides, few

studies also considered lowering total costs in their process designs [21, 48–50]. Gener-

ally, the rationale behind the choice of design objectives is that the energy consumption

approximates the operating costs, and productivity gives a rough estimation of capital

costs as well as operating costs related to the adsorbent. Although this might hold true

when the adsorbents under consideration have similar costs and designing a single

unit VSA train. The CO2 capture problem, on the other hand, requires several VSA

trains in order to treat the entire flue gas. Thus, choosing an appropriate design objec-

tive remains critical, especially when optimizing or comparing VSA with different CO2

capture technologies. To this end, different process design objectives were examined

through an optimization study to comprehend the influence of each design objective

towards achieving lower cost of CO2 capture. Three optimization problems that are

commonly used in the literature were considered in addition to the minimization of

CO2 capture cost and are described below.

147



Table 5.6: CO2 avoided costs breakdown of the four-step VSA cycle for different mate-
rials that were optimized for the minimum capture cost. A value of 0.0 indicates that
the contribution was less than 0.1 ¤/tCO2, avoided.

Base case
Adsorbent Zeolite 13X UTSA-16 IISERP MOF2
Vacuum pump efficiency Variable Variable Variable
Objective function Min. cost Min. cost Min. cost

¤/tCO2, avoided ¤/tCO2, avoided ¤/tCO2, avoided

Cooling & drying 2.8 2.8 2.8
CAPEX cooling & drying 2.2 2.2 2.2
Fixed OPEX cooling & drying 0.3 0.3 0.3
Variable OPEX cooling & drying 0.3 0.3 0.3

VSA capture 48.6 62.1 30.8
CAPEX 18.6 25.1 11.1

Total direct cost 11.5 15.5 6.9
Column cost 3.8 3.6 1.7
Compressor cost 1.5 1.5 1.5
Vacuum pump cost 3.8 4.8 1.9
Heat exchanger cost 0.0 0.0 0.0
Valves cost 0.4 0.5 0.1
Initial adsorbent cost 1.9 5.1 1.6

Process contingency 1.7 2.3 1.0
Indirect cost 1.9 2.5 1.1
Project contingency 2.6 3.6 1.6
Owner cost 0.9 1.2 0.5

OPEX 30.0 37.0 19.7
Fixed OPEX 9.0 12.1 5.5
Electricity cost 18.1 17.6 11.7
Adsorbent cost 2.7 7.2 2.3
Cooling water cost 0.2 0.1 0.2

CO2 conditioning 8.7 8.8 8.7
CAPEX conditioning 2.4 2.4 2.4
Fixed OPEX conditioning 0.4 0.4 0.4
Electricity cost conditioning 5.9 6.0 5.9

CO2 pipeline 12.2 12.4 12.2
CAPEX pipeline 10.9 11.0 10.8
Fixed OPEX pipeline 1.3 1.4 1.4

CO2 storage 18.6 18.8 18.5
CAPEX storage 15.2 15.3 15.1
Fixed OPEX storage 2.5 2.5 2.5
Variable OPEX storage 0.9 0.9 0.9

CO2 avoided cost 90.9 104.9 73.0
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• Problem 1: Minimization of overall power consumption

• Problem 2: Maximization of productivity

• Problem 3: Minimization of overall power consumption and maximization of

productivity

Optimization runs were performed for each of these cases based on both IISERP MOF2

and Zeolite 13X as adsorbents. The reason for choosing IISERP MOF2 and Zeolite 13X

for the case study is that the IISERP MOF2 provides a representative case for VSA be-

cause of its superior performance as compared to other adsorbents, and Zeolite 13X

represents the case for commercial adsorbents. The base results pertaining to the min-

imization of the capture cost are shown in Table 5.6. Note that the optimal techno-

economic performance obtained from the minimization of capture cost is referred to

herein as the minimum capture cost case unless otherwise stated. After unique op-

timization runs, the techno-economic performances corresponding to the minimum

overall power consumption and maximum productivity were evaluated and reported

in Table 5.7 as Case I and Case II, respectively. Consider, for instance, the minimiza-

tion of overall power consumption. For IISERP MOF2, the lowest power consump-

tion obtained was 25.56 MWe, notably, a 34% difference when compared to the power

consumption linked to the minimum capture cost case. The optimizer selected smaller

columns and small-sized vacuum pumps in order to minimize the pressure drop losses

and power consumption associated with the vacuum pumps. However, the capture

cost of the four-step adsorption cycle optimized based on the minimum overall power

consumption was almost 184% higher than that of the reference minimum capture cost.

This strikingly high capture cost comes from the enormous capital expenditure and re-

lated footprint required to treat the entire flue gas based on smaller columns. The total

number of columns required was 1593, owing to which the column cost increased by

≈760% compared to the minimum capture cost case. Considering the scheduling, the
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total number of vacuum pumps needed has also increased from 116 to 1416. While the

total power consumed by all of these vacuum pumps is minimal, the capital expen-

diture related to these vacuum pumps has increased by ≈3.5× that of the minimum

capture cost case. In addition, adsorbent, valves and fixed operating costs associated

with the capital expenditure have also increased. On the other hand, the electricity

costs are almost 32% lower than the minimum capture cost case. Similar observations

can be made for Zeolite 13X. The capture cost related to the minimum overall power

consumption is 244% more than the minimum capture cost. The power consump-

tion lowered to ≈35 MWe, i.e. a difference of ≈23 MWe, at the expense of 432% more

capital expenditure compared to the minimum capture cost case. Owing to the pro-

cess behaviour of achieving lower overall power consumption at lower productivity,

the productivity obtained in these cases will be lower than the minimum capture cost

scenario. This clearly explains that the process design must not solely focus on mini-

mization of overall power consumption but must also take into account the associated

capital and operating costs.

Case II in Table 5.7 shows techno-economic performances corresponding to the max-

imum productivity. Again, the capture cost related to the maximum productivity re-

mains 124% higher than the minimum capture cost for IISERP MOF2. Interestingly,

the optimized column length has reached the lower bound in the optimization. This

is because the optimizer selected the lowest possible adsorbent volume to increase the

productivity of the process. Further, the cycle duration has also shortened, thereby

facilitating the increase in productivity by reducing the number of columns per train.

The overall power consumption rose to ≈53 MWe compared to ≈38 MWe in the min-

imum capture cost case, resulting in ≈44% more electricity costs. For Zeolite 13X, the

capture cost corresponding to the maximum productivity was ≈124% higher than the

minimum capture cost.

Figure 5.7(a) shows the Pareto solutions obtained from the multi-objective optimiza-
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tion where overall power consumption was minimized simultaneously by maximizing

productivity. For comparison, results obtained from minimization of CO2 capture cost,

minimization of overall power consumption, i.e. Case I, and maximization of produc-

tivity (Case II) are also shown. Generally, the Pareto solutions represent the best trade-

off between the overall power consumption and productivity and provide approxima-

tions for the best cost performances. Any point below the Pareto curve remains in-

feasible, while any point that lies above the curve corresponds to a suboptimal point.

As can be observed from the figure, the minimum capture cost lies in the suboptimal

region of the Pareto plot, indicating that the multi-objective optimization formulations

involving productivity and energy consumption do not provide complete information

about costs. This can be clearly seen in Fig. 5.7(b). It is, therefore, clear that the best

objective for optimizing VSA processes related to CO2 capture problem is the capture

cost [49].

5.4.3 Effect of overestimating the vacuum pump efficiency

Clearly, the costs linked to the electricity consumption influence the minimum over-

all capture cost. As the vacuum pump is a major power consumer, quantifying the

realistic vacuum pump performance in terms of efficiency (ηV) is crucial. Most litera-

ture studies assume a constant theoretical ηV ≈ 70− 80% for VSA energy calculations,

which, in practice, holds true for low to moderate vacuum levels (≥0.1 bar). How-

ever, the production of high purity CO2, at high recovery, based on VSA processes,

requires deep vacuum pressures. To achieve deep vacuum (<0.1 bar), it was found

in an earlier study that the vacuum pump performance significantly drops to a lower

value [97]. This is also consistent with observations from pilot plant experiments [35].

The dependence of ηV on vacuum was regressed to formulate an efficiency function

[97]. The same efficiency function was used in the present chapter, although not rig-

orous, captures the essential features of most of the vacuum pumps at deep vacuum.
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Figure 5.7: (a) Pareto solutions obtained from the multi-objective optimization and
(b) the corresponding capture costs for IISERP MOF2 (blue circles) and Zeolite 13X
(red circles). For comparison, optimization results pertaining to minimum capture cost
(diamonds), minimum overall power consumption (triangles), maximum productivity
(squares) are also illustrated.

To understand the impact of ηV on the VSA process design and minimum capture cost,

two optimization cases are compared. The two cases considered are a fixed efficiency

case where ηV=72% and a variable efficiency case ηV is a function of the pressure. The

reference cases reported in Table 5.6 for IISERP MOF2 and Zeolite 13X are represen-

tative of variable ηV case. Independent optimization runs were performed for both

IISERP MOF2 and Zeolite 13X with ηV=72%.

The minimum capture cost results pertaining to constant ηV=72% case for both IIS-

ERP MOF2 and Zeolite 13X are presented as Case III in Table 5.8. For IISERP MOF2, the
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overall power consumption was estimated as 29.02 MWe compared to 37.79 MWe for

the reference variable efficiency case. As expected, this difference primarily stems from

the evacuation step and translates to roughly 24% lower electricity costs. On the other

hand, the overall power consumption for Zeolite 13X in the case of ηV=72% was under-

estimated by ≈20 MWe (≈35%) compared to that of the variable efficiency case. The

productivity remained fairly constant as compared to reference cases for both materi-

als. When the variable efficiency is considered for the vacuum pumps, the electricity

consumption for IISERP MOF2 remained almost the same as that of the MEA-based

capture case (see Table D.1 in Appendix D) while Zeolite 13X demanded almost 1.5×

the electricity needed for the MEA case. On the contrary, the electricity consumption

based on constant ηV=72% for IISERP MOF2 and Zeolite 13X remains ≈25% and ≈3%,

respectively, lower than that of the MEA-based capture. This result corroborates the

fact that the energy calculations based on theoretical vacuum pump efficiencies can

optimistically lead to lower energy demands than that of MEA-based capture and,

moreover, can underestimate the realistic energy consumption [10].

As can be seen from Table 5.8, the vacuum pump efficiency directly influences the

minimum capture cost. Using ηV=72% reduced the overall minimum capture cost by

almost 8% and 17% for IISERP MOF2 and Zeolite 13X, respectively. As expected, these

savings come mainly from the reduction in OPEX related to electricity cost. While most

other costs remained the same for IISERP MOF2, for Zeolite 13X, improved efficiency

leads to a change in the VSA process design. It is interesting to notice that in the case of

Zeolite 13X, some of the energy savings with ηV=72% goes towards increasing the col-

umn length leading to an increase in pressure drop. This leads to the reduction in the

number of parallel trains and the overall capital cost. Therefore, this study highlights

the fact that an appropriate quantification of vacuum pump performance is important

for calculating the realistic power consumption, and thereby, costs of VSA processes.
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Table 5.7: Techno-economic performances for case studies relating to the choice of ob-
jective function, i.e., overall power consumption (Pel) and productivity (Pr). Note that
∗ indicates the change made with respect to reference cases in Tables 5.5 and 5.6.

Case I Case I Case II Case II
Adsorbent Zeolite 13X IISERP MOF2 Zeolite 13X IISERP MOF2
Vacuum pump efficiency Variable Variable Variable Variable
Objective function Min. Pel

∗ Min. Pel
∗ Max. Pr∗ Max. Pr∗

Operating conditions
Adsorption time (s) 265 188 213 107
Blowdown pump flow rate (m3 h−1) 355 707 3195 3040
Evacuation pump flow rate (m3 h−1) 439 1045 2241 2584
Maximum feed pressure (bar) 1.30 1.24 1.17 1.22
Intermediate pressure (bar) 0.22 0.35 0.10 0.35
Low pressure (bar) 0.023 0.032 0.014 0.018
Feed velocity (m s−1) 1.08 0.79 0.88 1.10
Column length (m) 3.7 5.4 3.0 3.0
Length-to-diameter ratio (-) 3.0 3.0 3.0 3.0

Train configuration
Number of columns per train (-) 18 9 4 3
Blowdown pumps per train (-) 1 1 1 1
Evacuation pumps per train (-) 16 7 3 2
Number of parallel trains (-) 263 177 533 420

Process performance
Purity (%) 95.0 94.9 95.0 95.0
Recovery (%) 90.2 90.0 90.8 89.9
Productivity (mol m−3 s−1) 1.13 1.10 4.68 8.01
Compressor power (MWe) 4.63 3.86 2.63 3.39
Blowdown power (MWe) 1.19 1.33 27.12 15.85
Evacuation power (MWe) 28.77 20.37 57.29 34.20
Overall power consumption (MWe) 34.59 25.56 87.04 53.44
Specific energy consumption (kWhe/tCO2) 184.93 136.98 461.98 286.52

Cost performance
CAPEX (¤/tCO2, avoided) 99.0 48.7 54.7 34.5

Total direct cost (¤/tCO2, avoided) 61.0 30.1 33.7 21.3
Column cost (¤/tCO2, avoided) 34.4 14.6 14.1 8.4
Compressor cost (¤/tCO2, avoided) 1.5 1.5 1.5 1.5
Vacuum pump cost (¤/tCO2, avoided) 16.1 6.7 14.6 9.1
Heat exchanger cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0
Valves cost (¤/tCO2, avoided) 5.8 2.0 2.6 1.6
Initial adsorbent cost (¤/tCO2, avoided) 3.2 5.3 0.8 0.7

Process contingency (¤/tCO2, avoided) 9.2 4.5 5.1 3.2
Indirect cost (¤/tCO2, avoided) 9.8 4.8 5.4 3.4
Project contingency (¤/tCO2, avoided) 14.0 6.9 7.8 4.9
Owner cost (¤/tCO2, avoided) 4.9 2.4 2.7 1.7

OPEX (¤/tCO2, avoided) 62.2 38.8 54.4 34.4
Fixed OPEX (¤/tCO2, avoided) 46.8 23.2 25.9 16.5
Electricity cost (¤/tCO2, avoided) 10.8 8.0 27.3 16.8
Adsorbent cost (¤/tCO2, avoided) 4.5 7.5 1.1 1.0
Cooling water cost (¤/tCO2, avoided) 0.1 0.1 0.1 0.1

VSA capture cost (¤/tCO2, avoided) 161.2 87.5 109.1 68.9
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Table 5.8: Techno-economic performances for case studies relating to the impact of the
vacuum pump efficiency (Case III) and the length-to-diameter ratio (Case IV). Note
that ∗ indicates the change made with respect to reference cases in Tables 5.5 and 5.6.

Case III Case III Case IV Case IV
Adsorbent Zeolite 13X IISERP MOF2 Zeolite 13X IISERP MOF2
Vacuum pump efficiency 72%∗ 72%∗ Variable Variable
Objective function Min. cost Min. cost Min. cost Min. cost
Operating conditions

Adsorption time (s) 235 117 189 119
Blowdown pump flow rate (m3 h−1) 11922 4797 13549 17748
Evacuation pump flow rate (m3 h−1) 19291 16638 14641 18482
Maximum feed pressure (bar) 2.14 2.00 1.69 1.97
Intermediate pressure (bar) 0.10 0.30 0.10 0.28
Low pressure (bar) 0.023 0.034 0.026 0.045
Feed velocity (m s−1) 1.15 1.19 1.13 1.19
Column length (m) 8.9 8.7 6.8 8.5
Length-to-diameter ratio (-) 3.0 3.0 2.0∗ 2.0∗

Train configuration
Number of columns per train (-) 7 4 7 5
Blowdown pumps per train (-) 1 1 1 1
Evacuation pumps per train (-) 5 3 5 4
Number of parallel trains (-) 31 30 28 14

Process performance
Purity (%) 94.9 95.1 95.0 95.2
Recovery (%) 90.5 91.6 89.9 90.2
Productivity (mol m−3 s−1) 1.82 3.58 2.03 2.87
Compressor power (MWe) 13.90 13.53 9.69 13.37
Blowdown power (MWe) 4.47 1.13 5.36 2.35
Evacuation power (MWe) 19.29 14.36 31.86 16.57
Overall power consumption (MWe) 37.66 29.02 46.91 32.29
Specific energy consumption (kWhe/tCO2) 200.67 152.75 251.55 172.51

Cost performance
CAPEX (¤/tCO2, avoided) 17.3 11.3 15.8 10.9

Total direct cost (¤/tCO2, avoided) 10.6 7.0 9.7 6.7
Column cost (¤/tCO2, avoided) 3.2 1.7 3.2 1.6
Compressor cost (¤/tCO2, avoided) 1.5 1.5 1.5 1.5
Vacuum pump cost (¤/tCO2, avoided) 3.6 2.0 2.9 1.4
Heat exchanger cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.3 0.1 0.3 0.1
Initial adsorbent cost (¤/tCO2, avoided) 2.0 1.7 1.8 2.1

Process contingency (¤/tCO2, avoided) 1.6 1.0 1.5 1.0
Indirect cost (¤/tCO2, avoided) 1.7 1.1 1.6 1.1
Project contingency (¤/tCO2, avoided) 2.4 1.6 2.2 1.6
Owner cost (¤/tCO2, avoided) 0.9 0.6 0.8 0.5

OPEX (¤/tCO2, avoided) 23.1 17.0 25.0 18.6
Fixed OPEX (¤/tCO2, avoided) 8.4 5.6 7.7 5.4
Electricity cost (¤/tCO2, avoided) 11.7 8.9 14.7 10.1
Adsorbent cost (¤/tCO2, avoided) 2.8 2.3 2.5 2.9
Cooling water cost (¤/tCO2, avoided) 0.2 0.2 0.1 0.2

VSA capture cost (¤/tCO2, avoided) 40.4 28.3 40.8 29.5
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5.4.4 Impact of length-to-diameter ratio

In this section, the effect of the L/D ratio of adsorption columns on minimum capture

cost was investigated by considering IISERP MOF2 and Zeolite 13X as case studies.

While higher L/D (∈ {4, 5}) could be considered for the analysis, previous simulations

from the literature revealed that the high L/D might not favour the overall cost re-

duction [49]. Given the goal to reduce the overall CAPEX, lower L/D ∈ {2, 3} were

examined based on rigorous optimizations. The results shown in Table 5.6 for IISERP

MOF2 and Zeolite 13X were considered as the reference for L/D=3. The minimum

capture costs corresponding to L/D=2, obtained after unique optimization runs, are

reported as Case IV in Table 5.8. As can be seen from the table, the size requirements

of vacuum pumps have increased due to large diameters. Reducing the L/D ratio has

been demonstrated to have a limited effect on the minimum capture cost when using

IISERP MOF2. The total number of columns reduced from 116 to 70 while the col-

umn costs remained constant. It is interesting to notice that the vacuum pump costs

have been reduced by ≈26% owing to fewer vacuum pumps. Contrarily, an increase

in adsorbent volume has resulted in increase in adsorbent costs by 28%. Therefore,

the CAPEX remained nearly constant. Note that the electricity costs decreased by 14%

because of the reduction in the power consumption mainly from the evacuation step

(since PL increased to 0.045 bar from 0.034 bar in the reference L/D=3 case). Overall,

changing L/D from 3 to 2 has reduced the minimum capture cost from 30.8 to 29.5 ¤

per tonne of CO2 avoided.

The minimum capture cost was reduced to 40.8 ¤ per tonne (lowered by ≈16%)

for Zeolite 13X when the L/D was modified from 3 to 2. Clearly, there are a num-

ber of factors contributing to the decrease in minimum capture cost. By using wider

columns, the number of parallel trains reduced from 42 to 28, which also reduced the

total number of columns from 294 to 196. This resulted in ≈16% reduction in column

costs. Consequently, the adsorbent and valves costs have also decreased. Another
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contribution comes from a fewer vacuum pumps. The vacuum pump costs have been

lowered by ≈1.3× owing to 33% reduction in the total number of vacuum pumps. As

a result, the CAPEX requirements were lowered by ≈15%. It is interesting to note that

the overall power consumption reduced by ≈19% and also a 17% reduction in OPEX.

Most industrial VSA columns in operation have reasonably large diameters indicating

that wider columns can indeed be used to reduce the number of parallel trains and

thereby cost of capture. Naturally, there should be caution in terms of challenges re-

lated to implementation when designing wider columns such as those pertaining to

flow distribution.

5.4.5 Comparative analysis with MEA-capture

Although MEA- and adsorption-based CO2 capture technologies are on different lev-

els of technological readiness levels, the key economic performance indicators were

determined for both based on the assumption that the technologies are mature and

ready for large-scale deployment. The cost performances of both technologies for post-

combustion CCS implementation in SMR plants are illustrated in Fig. 5.8. The IISERP

MOF2 cost performance reported in Table 5.6 was used as a representative case for the

VSA system in order to compare with the reference MEA case. In addition, Zeolite 13X

was also considered for the discussion as it represents the case for commercial adsor-

bents. Figure 5.8 shows the breakdown of CO2 avoided costs (¤/tCO2, avoided) for CCS

implementation of both technologies. As can be seen from the figure, CO2 avoided cost

for VSA based on IISERP MOF2 is almost 10% higher than that of the MEA case. The

VSA performance with Zeolite 13X deteriorates further with a CO2 avoided cost of 90.9

¤ per tonne of CO2 avoided. It is worth noting that the CO2 capture remains the major

contributor to CCS implementation in both technologies. For MEA-based absorption,

the CO2 capture costs were determined to be 30.1 ¤ per tonne of CO2 avoided [100].

The capture costs for the VSA system based on IISERP MOF2 are 12% higher than that
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of MEA-based capture, whereas 71% higher when Zeolite 13X is used. Note that the

capture costs for VSA also include flue gas cooling and drying costs. The CO2 condi-

tioning, transport and storage costs are marginally higher (i.e. <10%) for VSA because

of slightly higher flow rates as compared to that of the MEA case. Upon close exam-

ination of capture costs, the components responsible for higher capture costs for the

VSA system include CAPEX, fixed OPEX and costs linked to energy consumption, as

illustrated in Fig. 5.8. The VSA-based capture based on IISERP MOF2 and Zeolite

13X results in 7% and 68% higher CAPEX, respectively, as compared to the MEA case,

due to a large number of parallel trains and associated footprint together with flue gas

pre-treatment. This shows that MOFs have ability to reduce huge capital costs signif-

icantly. The fixed operating costs, which depend on the total capital requirement, are

21% higher in the VSA system based on IISERP MOF2 compared to the reference MEA

case. Finally, the costs linked to electricity consumption for capture are again 15% and

77% higher in the VSA cases for IISERP MOF2 and Zeolite 13X, respectively, which

comes from the power consumption due to the requirement of low vacuum levels and

a large number of vacuum pumps. This is an interesting result because VSA-based pro-

cesses are often reported as low energy-intensive processes for capture. While most of

the studies assume high vacuum pump efficiencies at deep vacuum, the practical lim-

itations of vacuum pumps at deep vacuum are often overlooked. The analysis related

to fixing the vacuum pump efficiency in the earlier section showed that the energy

numbers for the VSA process are indeed lower than that of the MEA-based capture.

Altogether, the MEA-based capture outperforms the four-step VSA process based on

the adsorbents considered in terms of the CO2 avoided cost for post-combustion CO2

capture in SMR plants.
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Figure 5.8: Cost performance of the VSA technology as compared to MEA solvent for
CCS implementation. Note that VSA-based CO2 capture also includes cooling and
drying costs.

5.4.6 Cost of metal-organic frameworks

As mentioned earlier, given the wide uncertainties involved in the large-scale pro-

duction of metal-organic frameworks, estimating an actual price remains a critical

challenge while evaluating the techno-economic feasibility of MOFs for CO2 capture.

Although cost estimations based on the raw materials provide a reasonable approxi-

mation for purchase costs, the scale-up for CCS application is expected to reduce the

production costs for MOFs. Given such variability of MOF prices, it is important to un-

derstand the MOF price for which adsorption processes are attractive. To this end, the

influence of MOF price on the CO2 capture cost was examined through an optimiza-

tion study where the VSA process was optimized for the minimum capture cost for

different MOF prices. Both UTSA-16 and IISERP MOF2 were considered for the anal-

ysis as each MOF represents a unique scenario. The synthesis of UTSA-16 involves an

expensive metal source, cobalt, as the raw material, while IISERP MOF2 composes of

comparatively cheaper metal, nickel. The MOF price was varied over a broad range

of 0 and 10 times the cost of relative metal content. In each case, unique optimiza-

tion runs were performed for both IISERP MOF2 and UTSA-16, and minimum cap-

ture costs were determined. The minimum cost performances of UTSA-16 and IISERP
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MOF2 presented in Table 5.6 represent a baseline case where the MOF price assumed

was twice the cost of the relative metal content in the MOF structure.

Figure 5.9 shows the overall trend of MOF price on the minimum cost of capture.

Every point on the figure represents a unique optimization run. Note that optimization

runs corresponding to zero MOF price are shown at the left-most portion of the plot.

A MOF price of zero indicates that the MOF is available for use at no cost. Although

never encountered in practice, it provides the absolute lower bound for this case study.

A factor of 1× represents a case where the production cost equals the cost of bulk

purchase of metals, and the cost of organic linkers, solvents, and other production

costs are negligible subject to the economics of scale. In other words, 1× is the lowest

possible estimate that can be practically achieved when the MOF price is the same as

the cost of the raw materials. On the other hand, a worst-case situation involves MOF

price amounting to 10 times the metal purchase cost, which is a representative case

of poor scale-up. For UTSA-16, the minimum capture cost increases as the MOF price

increases. As can be seen from Fig. 5.9, the UTSA-16 prices vary between 0¤ and 83200

¤ per tonne. Clearly, higher UTSA-16 costs discourage the practical implementation in

a VSA process. Such exorbitant costs can be attributed to the presence of an expensive

metal source, cobalt. The advantages UTSA-16 offers in terms of process performance

are limited by its expected price. As can be seen from Fig. 5.9, a slight reduction in

the MOF price leads to a significant decrease in the overall capture cost. It is worth

noting that the UTSA-16 performs better than commercial adsorbent like Zeolite 13X

when the production costs are as close as zero but still is expensive compared to MEA-

capture. For this case of zero price, it is worth mentioning that both the column length

and the interstitial feed velocity have approached the upper limit as the optimizer

was seeking to reduce the number of parallel trains, which otherwise was impeded

by exorbitant adsorbent costs. IISERP MOF2 prices, on the other hand, were varied

between 0 ¤ and 22200 ¤ per tonne. As expected, higher IISERP MOF2 price resulted
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in gradual increase in minimum capture cost. As can be seen from Fig. 5.9, IISERP

MOF2 always outperforms Zeolite 13X over this broad range. It is also interesting

to notice that the IISERP MOF2 outperforms the reference MEA-capture case when the

price IISERP MOF2 price is less than 1×, i.e. less than the raw materials cost. However,

caution should be used in this regard as the MEA is the baseline case, although other

solvents can lead to lower capture costs. The overall trend suggests that the MOF’s

superior technical performance outperforms the cost characteristics when the metal

sources are cheap and available in abundance. The deployment of MOFs, especially

with expensive metals, seems to be prohibitive. It is therefore important to search for

high-performance adsorbents that are cheaply available.
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5.5 Conclusions

A systematic approach for the design and techno-economic assessment of vacuum

swing adsorption (VSA) processes was developed. The methodology incorporates

a detailed VSA process model, peripheral component models, vacuum pump per-
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formance, scale-up, process scheduling and comprehensive costing model, includ-

ing the cost of adsorbent. This methodology was applied to a case study on post-

combustion CO2 capture from a steam methane reformer (SMR). Here, the techno-

economic methodology, consistent with best practices, combined with stochastic opti-

mization, was used to calculate the minimum CO2 capture cost and the corresponding

process design and operating parameters. The key results of this chapter can be sum-

marized as follows:

• Optimizing the VSA process for proxy objectives such as minimizing energy and

maximizing productivity does not guarantee the minimum cost. The minimum

cost configurations did not lie on the minimum-energy vs maximum-productivity

Pareto curves. This arises because of the complexities that exist in the scale-up of

VSA processes from single-column simulations, a technique commonly used in

the literature.

• The study clearly shows that the realistic efficiencies for vacuum pumps, espe-

cially at low pressures, need to be accounted for in order to obtain better estimates

of the capture cost. It was shown that efficiencies that are used in literature, typi-

cally ≈ 72%, can indeed underestimate the overall power consumption as much

as 24- 35% resulting in 8 - 17% lower minimum capture cost for specific cases in

this chapter.

• The choice of adsorbent and its cost has a major impact on the cost of CO2 capture.

Three different adsorbents that include Zeolite 13X and metal-organic frame-

works, UTSA-16 and IISERP MOF2, were compared based on minimum CO2

capture costs and benchmarked against state-of-the-art MEA-based absorption

process. IISERP MOF2 was found out to be the best-performing adsorbent with

a minimum CO2 capture cost of 33.6 ¤ per tonne of CO2 avoided, inclusive of

flue gas pre-treatment costs. The current benchmark adsorbent material, Zeolite
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13X, ranked second with a minimum capture cost of 51.4 ¤ per tonne of CO2

avoided. Higher power consumption and lower productivity resulted in higher

overall costs for Zeolite 13X. UTSA-16 remains performing poorly with a mini-

mum capture cost 64.9 ¤ per tonne of CO2 avoided, primarily due to exorbitant

adsorbent costs. The presence of an expensive metal source, cobalt, inhibited the

superior technical performance of UTSA-16.

• Adsorbents that were found to be better candidates based on their superior en-

ergy/productivity performance did not necessarily result in lower costs. For in-

stance, UTSA-16, which has consistently been touted as an excellent candidate for

CO2 capture compared to the benchmark material Zeolite 13X, did not provide

better cost performance. This was clearly shown to be a direct result of exorbitant

adsorbent cost.

• The baseline MEA outperforms the best-performing adsorbent IISERP MOF2

with 10% lower CO2 avoided cost. The MOF prices were varied over a wide

range, given the variability in MOF scale-up, to comprehend the potential pro-

duction costs at which MOF gives an advantage over commercial adsorbents like

Zeolite 13X and the baseline MEA process. It was shown that UTSA-16 outper-

forms Zeolite 13X only when its production costs are less than the costs of raw

materials, a seemingly impossible proposition. On the other hand, capture costs

for IISERP MOF2 are less than Zeolite 13X over the entire range considered and

on par with reference MEA-capture when IISERP MOF2 prices are almost equal

to the raw material costs.
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Chapter 6

How much can novel solid sorbents
reduce the cost of post-combustion CO2
capture? A techno-economic
investigation on the cost limits of
pressure-vacuum swing adsorption

6.1 Introduction

Carbon dioxide capture and storage (CCS) from point sources are expected to play a

key role in decarbonizing the global energy and industry sectors [27, 28]. The feasibil-

ity of implementing CCS may vary from one industry to the other since several factors

such as CO2 composition, pressure, the flow rate of the flue gas, system-level integra-

tion aspects etc. affect the attractiveness of CCS [29]. In the context of system-level inte-

gration, post-combustion CO2 capture can be retrofitted into existing chemical/power

plants in a rather straightforward manner without restructuring the plant layout and

has been identified as one of the viable technologies in short- to medium-term [30].

While the majority of industrial sources emit CO2-containing gases at atmospheric

pressure, the variation in CO2 composition is typically in the range of 3.5-30% across

The results presented in this chapter have been reported in: S.G. Subraveti, S. Roussanaly, R.
Anantharaman, L. Riboldi, A. Rajendran. How much can novel solid sorbents reduce the cost of post-
combustion CO2 capture? A techno-economic investigation on the cost limits of pressure-vacuum swing
adsorption. Appl. Energy 2021, Accepted.
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industries [116]. Although there are several CO2 capture technologies considered for

post-combustion CO2 capture, the associated energy penalty and cost expenditure re-

mains a barrier for the large-scale implementation [10]. Among all, solvent-based CO2

capture is at the forefront owing to its technological maturity and commercial imple-

mentation. Adsorption-based processes are proposed as an alternative to the tradi-

tional solvents for their ability to lower the energy penalty and the costs related to the

capture [10].

One of the main drivers determining the performance of adsorption processes is the

choice of adsorbents. Recent developments in material science have facilitated material

chemists to discover several new classes of adsorbents, such as metal-organic frame-

works (MOFs), covalent-organic frameworks (COFs), etc., that can be highly tuned for

CO2 capture applications [30]. Since each class can typically consist of hundreds of

thousands of materials, including both real and hypothetical structures, the selection

of suitable adsorbents remains crucial for assessing the potential of adsorptive CO2

capture. The quest for the best performing adsorbents has resulted in several in-silico

material screening studies that use various performance metrics to rank materials [23,

45, 51, 102, 117–122]. While the initial focus primarily relied on simplified process

metrics (derived under equilibrium conditions) as means to evaluate the performance

of adsorbents in the real process, integration of dynamic process modelling and op-

timization into adsorbent screening was later identified as a reliable tool to evaluate

the realistic performance of adsorbents [23, 45, 91, 101, 102, 120, 123]. As a result,

studies focusing on the multiscale screening of known material databases have emerged

wherein the adsorbent properties determined through molecular simulations are later

incorporated into the process simulation and optimization routines to identify/rank

top material performers based on key process-oriented metrics such as the CO2 pu-

rity, CO2 recovery, energy penalty, productivity or cost of the CO2 capture [45, 91, 101,

102]. Alternatively, the problem of identifying the desirable adsorbent properties in
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processes was also approached through process inversion [21, 24]. The process inversion

approach focuses on determining the “ideal” adsorbent properties that result in the

best process performance through an integrated adsorbent-process optimization. In

other words, the adsorbent properties are simultaneously optimized along with the

process variables in the optimization. This approach helps in identifying the best per-

formance limits of adsorptive CO2 capture [24]. Both simplified and detailed process

models have been used in this approach. For instance, feature spaces of adsorbent

properties such as CO2 and N2 adsorption isotherms, heat of adsorption, Henry’s con-

stant, etc., were probed using process inversion approach in order to determine the low-

est energy penalty [24, 115, 124] and CO2 capture costs [21, 51] for post-combustion

adsorptive CO2 capture. More recently, Pai et al. explored adsorbent properties such as

CO2 and N2 adsorption equilibria that minimize the energy penalty and maximize the

productivity for different flue gas compositions using a machine learning model [125].

In Chapter 5, it was demonstrated that the realistic performance of adsorbents should

be assessed by incorporating a comprehensive techno-economic analysis framework

with detailed process modelling and optimization. This is primarily because the cost

assessment captures the inherent complexities associated with the scale-up of the pro-

cesses for industrial applications, which otherwise are not quantified when using pro-

cess performance metrics such as energy penalty or productivity.

While previous studies provide some insights into understanding the underlying

relationships between the adsorbent properties and the process performance, in this

chapter, the following key questions are posed:

1. If “ideal” adsorbent(s) were discovered, what are the cost limits of adsorptive

post-combustion CO2 capture from industrial flue gases?

2. How do the costs compare with the benchmark technology, i.e. absorption?

Addressing these questions is critical to understand the true potential of adsorption
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processes and thus allow for advances in both material discovery and process design.

This chapter aims to answer the questions mentioned above by employing a process

inversion approach. The analysis is restricted to single-stage pressure-vacuum swing

adsorption (PVSA) technology, a widely studied class of adsorption processes for CO2

capture applications. In this chapter, the cost limits are defined as the lowest possible

achievable costs for capturing CO2 from post-combustion industrial flue gases using

“ideally” desired adsorbent features in the PVSA process considered. The impact of

parameters such as the vacuum level required in the process, pellet morphology and

adsorbent costs on PVSA costs is also demonstrated through an optimization study.

Further, a one-to-one comparison with benchmark monoethanolamine (MEA) solvent

cases for various industrial applications. Finally, the cost performance of two “real”

adsorbents are evaluated and compared with the limits to identify the potential for

“material innovation”.

The present chapter is organized as follows: the next section summarises the dif-

ferent cases considered to encompass the wide range of industrial applications. In

the computational details section, the process inversion approach through integrated

techno-economic optimization framework is explained, and details of adsorbent prop-

erties, process model, scale-up and economic assessment are provided. The results

and discussion section reports the findings obtained from optimizations and compares

them with benchmark MEA-based CO2 capture cases. The merits and demerits of

PVSA for post-combustion CO2 capture are discussed in the concluding remarks, along

with some perspectives towards the advancement of adsorptive CO2 capture.

6.2 Case study

For this study, a case matrix comprising a wide range of CO2 compositions at different

flue gas flow rates is considered to represent various industrial post-combustion flue

gas sources adequately [116]. Under dry conditions, the flue gas consists of CO2/N2
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binary mixture and the CO2 molar compositions in the flue gas are varied between

3.5% and 30%. This range corresponds to flue gas sources from simple cycle gas turbine

plants, natural gas combined cycle power plants, coal-fired power plants, cement and

steel industries. Further, the analysis is extended to different flue gas flow rates ranging

from 303 tonnes/h to 3696 tonnes/h to account for the effect of the scale of operation.

Table 6.1 illustrates the case matrix used in this chapter. In all cases, the flue gas is

available at 1 bar and 35 ◦C for post-combustion CO2 capture.

The system under consideration includes CO2 capture from dry flue gas. The fol-

lowing is excluded while estimating the costs: the process that emits CO2 containing

flue gas, CO2 conditioning, CO2 transport and CO2 storage. The process layout of

adsorptive CO2 capture is provided in Fig. E.1 in Appendix E. The dry flue gas fur-

ther undergoes compression followed by cooling to 25 ◦C. Multiple adsorption process

trains with N columns each are employed to treat the dry flue gas. The CO2 rich prod-

uct and N2 are collected separately using separate vacuum pumps.

Further, adsorptive CO2 capture is benchmarked against the baseline monoethanolamine-

based (MEA) technology to fully understand the potential of adsorption process tech-

nology for various industrial applications. To be consistent, the system boundaries for

both PVSA- and MEA-based CO2 capture were kept the same. The MEA-based CO2

capture performances based on Fu et al [116] are summarized in Tables E.1 and E.2 in

Appendix E.

6.3 Computational details

The cost limits of adsorptive CO2/N2 binary mixture separations are determined us-

ing a recently developed integrated techno-economic optimization model [88]. The

computational framework integrates adsorbent, process and economic aspects to de-

termine the cost-optimal performance of adsorptive post-combustion CO2 capture on

industrial scales, as shown in Fig. E.2 in Appendix E. Both adsorbent properties and
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Table 6.1: Case matrix related to different CO2 compositions and flue gas flow rates
considered in this study. Industrial examples are also highlighted where vertical text
was used to represent specific industrial cases that have similar flow rates as consid-
ered in this study, while the horizontal text was used to indicate industrial examples
with similar CO2 compositions.
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process design parameters are simultaneously optimized herein to determine the low-

est possible costs.

6.3.1 Adsorbent features

Adsorbent properties required for process modelling include CO2 and N2 adsorption

isotherms, crystal density, isosteric heats of adsorption, pellet porosity, pellet diameter

and specific heat capacity. Physicochemical properties such as CO2 and N2 adsorption

isotherms, crystal density and isosteric heats of adsorption are inherent crystal prop-

erties, while pellet porosity, pellet diameter and specific heat capacity are properties of

adsorbent within the adsorption column.

A practically deployable sorbent for CO2 capture should have several critical fea-

tures, e.g., low cost, scalability, stability, etc. However, the ability to separate CO2

and N2, i.e., the two key components of flue gas, is arguably the most important fea-

ture. Most practical adsorption-based CO2 and N2 separations exploit the differences

in affinity between CO2 and N2 on a specific sorbent. The affinity is expressed in the

form of an adsorption isotherm that relates the fluid and solid phase concentrations

at equilibrium. The hypothetical CO2 and N2 adsorption isotherms were expressed

in terms of the competitive dual-site Langmuir (DSL) isotherm model. The advan-
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tages of using the competitive DSL isotherm model involve computational simplicity

(because of the explicit formulation) and also the ability to adequately represent the

mixture equilibrium predictions from single component parameters for many practi-

cal systems [120, 126]. The competitive DSL isotherm model (for component i) is given

by,

q∗i =
qsb,ibici

1 +
∑︁

i bici
+

qsd,idici
1 +

∑︁
i dici

i = CO2,N2 (6.1)

In Eq. 6.1, ci is the fluid-phase concentration of the component i, q∗i is the equilibrium

solid-phase loading of the component i, qsb,i and qsd,i represent saturation capacities

for the two sites and, bi and di are the temperature dependent adsorption equilibrium

constants defined as:

bi = b0,ie

(︂
−

∆Ub,i
RT

)︂
(6.2a)

di = d0,ie

(︂
−

∆Ud,i
RT

)︂
(6.2b)

where ∆Ub,i and ∆Ud,i are the internal energies of the two sites. Different hypotheti-

cal CO2 and N2 adsorption isotherms can be generated by varying the parameters qsb,

qsd, b0, d0, ∆Ub and ∆Ud. For many known adsorbents, CO2 adsorption is heteroge-

neous and the DSL isotherm model can reasonably describe the equilibrium while N2

adsorption is homogeneous [24]. Consequently, the DSL isotherm parameter variation

was constrained such that both thermodynamic consistency and homogeneity of N2

adsorption are maintained. This can be accomplished by describing the competition

between CO2 and N2 between the two sites using equal energy site (EES) formulation

[101]. Here, the saturation capacity of each site remains the same for both components,

i.e., qsb,CO2 = qsb,N2 and qsd,CO2 = qsd,,N2 . Also, the internal energy of adsorption and con-

stants b0 and d0 for N2 are kept identical between the two sites, i.e., ∆Ub,N2 = ∆Ud,N2 and

b0,N2 = d0,N2 . Experimental evidence also supported this type of formalism for Zeolite

13X [47]. The physicochemical properties for achieving lowest costs are examined by

considering the following parameters qsb,CO2 , qsd,CO2 , ∆Ub,CO2 , ∆Ud,CO2 , b0,CO2 , d0,CO2 ,

∆Ub,N2 , b0,N2 .

170



In a recent study, Farhamini et al [102] showed that both pellet porosity (ϵp) and

pellet diameter (dp) can significantly affect the process performance. Hence, the vari-

ation of ϵp and dp was also considered in the optimization. Other properties such as

crystal density and the specific heat capacity of the adsorbent are held constant to that

of Zeolite 13X. While specific heat capacity can potentially impact the process perfor-

mance[102], especially under adiabatic conditions, it is held constant because of lack

of data.

6.3.2 Process model and economic analysis

Two pressure-vacuum swing adsorption (PVSA) cycles are considered in this chapter.

The first cycle illustrated in Fig. E.3 (in Appendix E) consists of four steps:

1. Adsorption step (ADS): Feed mixture introduced in the column for a duration of

tADS at high pressure (PH) undergoes separation through preferential adsorption

of the heavy component CO2 while the light componentN2 leaves the column.

2. Blowdown step (BLO): Co-current blowdown to an intermediate vacuum (PI) to

remove N2 from the column. If PH >1 bar, then the column pressure first reduces

to atmospheric pressure using a valve and further down to PI using a vacuum

pump. If PH =1 bar, then only vacuum pump reduces the column pressure to PI.

3. Evacuation step (EVAC): Column pressure further reduced to a low vacuum (PL)

using a vacuum pump in the counter-current direction to collect CO2 rich product

at the feed end of the column.

4. Light product pressurization step (LPP): Light product from the adsorption col-

umn pressurizes the column back to high pressure.

Owing to its simple features, this cycle has been benchmarked by various studies [21,

24, 101, 102] and was also demonstrated at a pilot plant facility [35]. Further, a more

complex six-step PVSA cycle with dual reflux (DR) is considered as the second cycle
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[21, 24, 44]. The cycle schematic is shown in Fig. E.4 in Appendix E. In addition to the

four steps above, this cycle comprises two reflux steps:

5. Light reflux (LR) step after the evacuation at PL where the light product from the

adsorption column is used as reflux to purge the column in the LR step.

6. Heavy reflux (HR) step after the adsorption step at PH by using the product from

the LR step in order to increase the CO2 partial pressure in the column.

The process simulations were carried out using a non-isothermal, one-dimensional

mathematical model obtained by solving mass, momentum and energy balances [19].

The model comprises a set of partial differential equations (PDEs) after incorporat-

ing the following assumptions: 1) gas-phase obeys ideal gas law, 2) axially dispersed

plug flow represents the bulk flow, 3) linear driving force model characterises the solid

phase mass transfer, 4) there exist no radial gradients for composition, pressure and

temperature across the column, 5) Ergun’s equation accounts for the pressure drop

across the column, 6) adsorbent properties and bed porosity are uniform, 7) the process

operation remains adiabatic and, 8) instantaneous thermal equilibrium exists between

the gas and the solid. More details on the appropriate boundary conditions used for

each step in the cycle and the simulation parameters can be found in Appendix E. The

PDEs were numerically discretized into 30 finite volumes along the spatial domain

using the finite volume method with a weighted essentially non-oscillatory (WENO)

scheme [19]. The resulting ordinary differential equations (ODEs) were then integrated

using ode23tb, a stiff ODE solver in MATLAB. The cycle simulations were carried out

based on a standard uni-bed approach where a single column undergoes all cycle steps

in a sequence. The column was initialized with a feed mixture at PL and simulated un-

til the process reached cyclic steady state (CSS). When the mass balance error for the

PVSA process equals 1% or less was observed for five consecutive cycles, the process

was considered to attain CSS. A minimum number of 50 cycles were simulated to en-
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sure that the CSS criterion was adequate. For simulations where the system fails to

achieve CSS, a maximum number of 500 cycles were simulated, after which it was

assumed that the system attained CSS. At CSS, state variables such as composition,

pressure and temperature profiles were determined to calculate key performance indi-

cators. The process model was previously demonstrated to reproduce both lab-scale,

and pilot-scale experiments [35, 47].

The column scheduling was carried out based on the method proposed by Khurana

and Farooq [21] to determine the number of columns required for continuous oper-

ation. The main assumptions are reiterated as follows: 1) Continuous-feed operation

with constant throughput, 2) Separate vacuum pumps used to collect CO2 and N2 from

respective steps to avoid contamination, 3) One vacuum pump serves only one column

at any given time and, 4) Coupled steps occur simultaneously to avoid using storage

tanks. More details on the column scheduling are provided in Section E.3.3. The mod-

elling of a vacuum pump performance plays a crucial role in process simulations. Two

key approaches, used in Chapter 5, are incorporated here. First, the flow rate of the

vacuum pump is incorporated as the boundary condition. This provides a realistic

estimation of blowdown and evacuation times. Second, the efficiency of the vacuum

pump is made a function of the pressure, i.e., the vacuum pump efficiency drops as

per the expression provided in Appendix E. This ensures a realistic estimation of the

power consumption.

The economic analysis was carried out based on the cost model developed in Chap-

ter 5 and the cost assessment was performed on an aspirational Nth Of A Kind (NOAK)

basis [127] wherein it was assumed that the adsorptive CO2 capture is mature for com-

mercial deployment. The cost estimates are provided in ¤2016 price levels. Costs with

older estimates were updated using Chemical Engineering Plant Cost Index (CEPCI)

and inflation. While undertaking techno-economic analyses, the outcomes can signifi-

cantly change depending on the assumptions and the design choices [128]. Hence, it is
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worth noting that the techno-economic model used in this chapter obeys both techni-

cal and economic recommendations for adsorption processes [128] and are consistent

with best practices [127].

6.3.3 Integrated techno-economic optimization

The integrated techno-economic optimization problem was formulated to minimize

the CO2 avoided cost (defined in Section E.5) of the PVSA technology while achiev-

ing a minimum of 95% CO2 purity and 90% CO2 recovery. To this end, both process

and adsorbent design variables were used as decision variables in the optimization

problem.

Process decision variables: adsorption step duration (tADS), high pressure (PH), inter-

mediate vacuum (PI), low vacuum (PL), column length (L), reflux fraction (θR), frac-

tional duration of reflux steps (ft), volumetric flow rates of blowdown (SB) and evacu-

ation (SE) vacuum pumps.

Adsorbent decision variables: CO2 DSL isotherm parameters (qsb,CO2 , qsd,CO2 , ∆Ub,CO2 ,

∆Ud,CO2 , b0,CO2 , d0,CO2), N2 DSL isotherm parameters (∆Ub,N2 , b0,N2), pellet porosity (ϵp)

and pellet diameter (dp).

Most of the process decision variables were kept the same as that of Chapter 5.

Additionally, the high pressure (PH) in the adsorption step was also varied. Although

feed velocity in the adsorption step can be explicitly varied in the optimization, it was

not considered as a decision variable in the present chapter. This was because the

optimizer in Chapter 5 always approached the upper bounds in the techno-economic

optimizations in order to reduce the total number of trains required for the separation.

[88] Hence, in the present chapter, the feed velocity was calculated as the minimum

fluidization velocity, which is the maximum velocity at which the packed beds can

operate theoretically. Since the fluidization velocity depends on the decision variables

PH, ϵp and, dp, feed velocity can be considered as a dependent variable. Reflux fraction
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(θR) was defined as the fraction of the adsorption outlet flow that goes as the feed

to the LR step in the six-step DR cycle while the fractional duration of LR and HR

steps relate to the LR and HR step durations as: ti = fttADS, where i = HR, LR. The

length to diameter ratio of the adsorption columns was fixed to 3. The lower and upper

bounds defined for the decision variables are provided in Table E.5 in Appendix E. A

global search method, a non-dominated sorting genetic algorithm II (NSGA-II), was

used to solve the constrained optimization problem in MATLAB 2018b. The constraints

were handled as penalty terms in the objective function. The initial set of decision

variables were generated using Latin hypercube sampling, and at least 20000 NSGA-

II evaluations were carried out in each optimization to ensure that the solution has

converged.

6.4 Results and discussion

6.4.1 Cost limits of four-step PVSA cycle

Unique optimizations were carried out to determine the minimum CO2 avoided cost

for each of the cases specified in Table 6.1. The optimization was performed by vary-

ing both adsorbent and process design variables simultaneously in the optimizations.

Note that the requirements of minimum 95% CO2 purity and 90% CO2 recovery were

considered as constraints for all optimizations in this chapter. The costs of adsorbents

have been set to zero in these optimizations, which were based on the assumption

that the “ideal” hypothetical adsorbent(s) identified using process inversion can be syn-

thesized or available for zero-cost. Although not plausible practically, this assumption

will determine the absolute minimum costs of building and operating simply the PVSA

process alone without additional expenditures related to the adsorbent.
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Figure 6.1: (a) Cost limits (or the lowest possible CO2 avoided costs) of the four-step
PVSA cycle at different CO2 compositions. (b) Comparison between the cost limits
of both four-step and six-step DR PVSA cycles with CO2 avoided costs obtained us-
ing the MEA-based CO2 capture with two steam supply scenarios (natural gas boiler
and waste heat recovery). CO2 avoided costs reported here exclude CO2 conditioning,
transport and storage. (c) Breakdown of investment costs (CAPEX) related to the cost
limits of the four-step cycle. (d) Breakdown of investment costs (CAPEX) related to the
cost limits of the six-step DR cycle. (e) Breakdown of operating costs (OPEX) related to
the cost limits of the four-step cycle. (f) Breakdown of operating costs (OPEX) related
to the cost limits of the six-step DR cycle.
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Figure 6.1 (a) illustrates the minimum CO2 avoided costs (or the cost limits) obtained

over a range of CO2 compositions for a flue gas flow rate of 2004 tonnes h−1 at atmo-

spheric pressure. The CO2 avoided costs increase with a decrease in CO2 compositions.

For instance, the minimum CO2 avoided cost obtained for 30% CO2 composition is 12.2

¤ per tonne of CO2 avoided, and the CO2 avoided cost increases 1135% when the CO2

composition is reduced from 30% to 3.5%. In Fig. 6.1(c) and (e), the breakdown of

the capital and operating costs that add up to the minimum CO2 avoided costs are

shown. Note that the individual cost breakdown of capital and operating costs along

with optimal decision variables for all optimizations reported in this study are tabu-

lated in Tables E.5-E.13 in Appendix E. As can be observed from Figs. 6.1(c) and (e),

the capital costs contribute to about 24-32% of the avoided costs over a range of CO2

compositions, and operating costs drive the techno-economic of PVSA. The operating

costs amount to about 68% of the total costs for the case of 30% CO2 composition, and

this relative contribution increases to about 76% when the CO2 composition is reduced

to 3.5%. The major contribution to operating costs comes from electricity consumption,

which varies between 77% and 84% of the operating costs. The electricity requirements

cost 6.4¤ per tonne of CO2 avoided for 30% CO2 composition case; however, when the

CO2 composition is reduced to 3.5%, the electricity costs escalate to 95.5 ¤ per tonne

of CO2 avoided. Such high electricity demands with the decrease in CO2 composition

can be attributed to the PH and PL required in the process and due to low efficiency of

the vacuum pumps at low pressures.

Figure 6.2 shows the optimal values of PH and PL obtained over a range of CO2

compositions. The shaded region around the optimal values represents the upper and

lower limits of the solutions obtained within the 5% vicinity of the minimum CO2

avoided costs. The rationale behind this is to account for the variation of PH and PL

on the minimum avoided cost. As expected, PL decreases from ≈ 0.11 bar to 0.01 bar

with lowering CO2 composition from 30% to 3.5%, respectively; contrarily, PH increases
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from 1.8 bar to 2.9 bar. This trend is observed because the process requires a certain

amount of working capacity from the adsorbent to meet the 95% CO2 purity and 90%

CO2 recovery constraints. Hence, a higher pressure ratio, PH/PL is required.
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Figure 6.2: Optimal high pressures (PH) and low pressures (PL) corresponding to the
cost limits obtained at different CO2 compositions. Shaded region represents the range
of PH and PL within the 5% vicinity of the lowest possible CO2 avoided costs.

Next, the adsorbent properties that link to the cost limits are considered. Figures

6.3(a)-(f) show the optimal (or “ideal”) single component CO2 and N2 isotherms for

different CO2 compositions. The CO2 isotherms of the ideal adsorbent (shown in red)

indicate that they are all quite linear for all CO2 compositions. The corresponding N2

isotherms invariably converged close to zero loading. When the solutions near the

minimum cost value for each case are analyzed, it was found that more than one CO2

isotherm resulted in similar CO2 avoided costs. Hence, in addition to the optimal CO2

isotherms, all the corresponding CO2 isotherms obtained within the vicinity of 5% of

the minimum CO2 avoided costs are included. These CO2 isotherms are illustrated as

Box and Whisker plots in Figs. 6.3(a)-(e) to statistically represent the entire region of

distribution along with minimum and maximum values. As can be seen from Figs.

6.3(a)-(e), there is a wide range of CO2 isotherms resulting in similar cost performance.

As illustrated in the figure, this band of CO2 isotherms is generally closer to linear

with varied adsorption capacities. It is worth noting that the box and whisker plots
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are obtained from CO2 isotherms evaluated as a part of the optimization algorithm.

Hence, these should be viewed as a subset of all possible isotherms that would yield

cost values within 5% of the minimum value. The goal here was not to find the entire

range but to highlight how widely varying CO2 isotherms can indeed result in similar

costs. Such a wide range CO2 adsorption capacities can be attributed to trade-offs

between competing capital and electricity expenditure towards overall CO2 avoided

costs. This is a key observation that points to the possibility that multiple adsorbents

may be able to provide the comparable (low) cost of CO2 capture. However, they may

display widely varying CO2 isotherms. This also highlights why the interplay between

material property and process performance should be studied together. The optimal

N2 isotherms are shown in Fig. 6.3(f). Since the N2 affinity for all cases was almost zero,

the isotherms around the optimum were not considered. This again confirms that low

N2 adsorption is a very desirable property of an ideal adsorbent.

Limiting PL to 0.1 bar. One of the challenges of large-scale implementation of PVSA

involves deep vacuum (PL < 0.1 bar) requirements to achieve very high CO2 purity-

recovery targets. Acknowledging the practical limitations to implement deep vacuum

in industrial applications, the lower limit of PL in the optimizations is increased from

0.01 bar to 0.1 bar and investigated the impact on cost limits. After running unique

optimizations for the case of the lower limit of PL =0.1 bar, the obtained cost limits are

compared to the previous case. Figure 6.4(a) illustrates the ratio of cost limits obtained

in both cases at different CO2 compositions. For 3.5% and 7.5% CO2 compositions,

CO2 purity-recovery constraints were not met in the optimizations and hence, these

compositions are not considered for the discussion. The cost limits decreased with an

increase in CO2 compositions. The difference between two cases remains minor (≤6%)

for CO2 compositions from 20% to 30% while at 13% CO2 composition, a difference of

14% was observed. This indicates that the four-step PVSA process can still be operated
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at higher PL (≥0.1 bar) for higher CO2 compositions but requires ultra-deep vacuum

for lower CO2 compositions in order to meet purity-recovery requirements.

Effect of pellet porosity and pellet size. One set of adsorbent decision variables

in the cost limit optimizations relates to adsorbent properties in the pelletized form,

namely, pellet porosity and pellet diameter [102]. Here, the influence of pellet prop-

erties towards achieving the cost limits at different CO2 compositions is investigated.

This study was conducted by comparing two optimization cases: in the first case, pel-

let porosity and pellet diameter were treated as decision variables along with other

adsorbent and process decision variables in the optimizations, while the second case

involves keeping pellet porosity and pellet diameter as fixed values. The cost limits

discussed earlier represent the first case; meanwhile unique optimizations were car-

ried out for the second case using fixed values of pellet porosity (ϵp=0.37) and diameter

(dp=1.5 mm) from Chapter 5 representing typical experimental values [35, 47].

Figure 6.4(a) illustrates the comparison between the two cases. For the entire range

of CO2 compositions considered, the difference between the minimum CO2 avoided

costs for the two cases varies between 9 to 22%. The cost limits for fixed pellet prop-

erties are about 9-11% higher than the cost limits where pellet properties were varied

at higher compositions (i.e. ≥13%). This difference increases to 19-22% at lower CO2

compositions (i.e. <13%). The improvement in CO2 avoided costs through optimiza-

tion of pellet morphology can be attributed to the increased values of optimal ϵp and

dp as shown in Fig. 6.3(g)-(h). The optimal values of ϵp vary between 0.42 and 0.76,

whereas the optimal dp lies in between 3.0 and 5.0 mm, which are greater than the typ-

ical pellet sizes used in PVSA operations. It is worth noting that Farmahini et al also

report similar ranges for ϵp and dp in their energy-productivity optimizations [102].
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Figure 6.3: Optimal adsorbent properties corresponding to the cost limits of the four-
step PVSA cycle.(a)-(e) show the optimal CO2 adsorption isotherms (red lines) at dif-
ferent CO2 compositions. Box and whisker plots in (a)-(e) represent the range of CO2

adsorption isotherms in the 5% vicinity of the lowest possible CO2 avoided cost. (f) the
optimal N2 adsorption isotherms at different CO2 compositions. For comparison, CO2

isotherms on Zeolite 13X (black lines) and IISERP MOF2 (green lines) are also shown
in (a)-(e) and (f), respectively. (g) and (h) illustrate the optimal pellet porosity and di-
ameter (red squares) along with box and whisker plots that represent the values within
the 5% vicinity of the minimum CO2 avoided costs, respectively.
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Figure 6.4: (a) Impact of different process parameters on the cost limits of the four-
step PVSA cycle. (b) Comparison between the cost limits of the four-step PVSA cycle
with minimum CO2 avoided costs obtained for real adsorbents (Zeolite 13X and IIS-
ERP MOF2). Note that the cost ratio was defined as the ratio between minimum CO2

avoided costs obtained for the examined cases and the cost limits reported in Fig. 1 (a)
at each CO2 composition.

The choice of such increased values of ϵp and dp by the optimizer is a result of an

interplay between mass transfer characteristics and pressure drop. To elaborate, larger

dp favours lower pressure drop across the adsorption columns and also increases the

maximum feed velocity (minimum fluidization limit) in the adsorption step. Hence,

the adsorption columns can be operated at increased feed velocities with lower com-

pression energy consumption, thereby facilitating the reduction in the number of paral-

lel PVSA trains. Consequently, lower capital costs and compression costs are attained.

Contrarily, the mass transfer is hindered by the increase in dp, as given by the following

relationship: kLDF ∝ ϵp
d2p

, where kLDF is the mass transfer coefficient. Keeping all other

parameters constant, increase in dp, reduces kLDF which means that the mass transfer

resistance is increased. This consequently increases the durations of constituent steps

to meet constraints. To counter this effect, the optimizer chose high ϵp values to allow

for enhanced mass transfer. As a result, there will be a lower amount of adsorbent

present in the column, along with shorter PVSA cycle times. Shorter adsorption cycles

lead to a fewer number of columns in a single PVSA train. This contributes to reducing
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capital costs from fewer columns and vacuum pumps needed to implement the cycle

scheduling. As can be seen from Fig. 6.3(g), the optimal ϵp values have not approached

the upper limit as the adsorption column requires a certain minimum amount of adsor-

bent in the column to meet the CO2 purity-recovery constraints. While higher ϵp and

dp are preferred theoretically, practical considerations such as the mechanical stability

and the ability to synthesize high porosity pellets must be considered [102].

Influence of adsorbent costs. While an adsorbent cost of zero is interesting to un-

derstand the cost limit of PVSA, adsorbent costs cannot realistically be expected to be

zero. Although the adsorbent costs are dependant on the raw materials used to syn-

thesize them, scale-up methods, etc., the question posed is: if hypothetical adsorbents

could be synthesized at similar costs as that of commercial adsorbents, what would be

their contribution in bringing down CO2 avoided costs? Hence, the influence of adsor-

bent costs on the cost limits is studied by considering three different adsorbent costs:

1) zero; 2) 1500 and; 4500 ¤ per tonne of adsorbent. To provide context, commercial

adsorbents like Zeolite 13X costs about 1500 ¤ per tonne. [51, 88] Like previous case

studies, unique optimizations are carried out for each case where the CO2 avoided cost

was minimized by varying both adsorbent and process decision variables. The cost

limits at zero adsorbent cost serve as a reference. As can be seen from Fig. 6.4(a), the

adsorbent costs considered have a marginal effect on the cost limits for all CO2 compo-

sitions. For the case of 1500 ¤ per tonne, the cost limits obtained are <10% higher than

the cost limits with zero adsorbent cost, whereas 7-13% higher when the adsorbent

costs are increased three times the cost of Zeolite 13X.

6.4.2 Comparison with real adsorbents

Figure 6.4(b) shows the comparison of minimum CO2 avoided costs obtained for Zeo-

lite 13X (black line) and IISERP MOF2 (green line) and cost limits. Of the two “real” ad-

sorbents, Zeolite 13X always resulted in higher CO2 avoided costs than IISERP MOF2.
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At 30% CO2 composition, the minimum CO2 avoided cost obtained for Zeolite 13X

was 18.7 ¤ per tonne of CO2 avoided (see Table E.11 in Appendix E) which is about

53% higher than the cost limit at the same CO2 composition. The gap monotonically

increases with reducing the CO2 composition. For instance, the difference in CO2

avoided costs between the Zeolite 13X and the cost limits at 3.5% CO2 composition

is approximately 175%. Higher CO2 avoided costs for Zeolite 13X can be attributed to

its non-linear CO2 and high capacity N2 isotherms, as shown in Fig. 6.3. While the

band of hypothetical CO2 isotherms from the cost limit optimizations are fairly linear,

the non-linearity of the CO2 isotherm for Zeolite 13X results in long blowdown and

evacuation steps and, consequently, the capital costs.[88] On the other hand, previous

studies have consistently shown that lower N2 affinity significantly reduces electricity

consumption. [91, 115] Since the Zeolite 13X higher N2 affinity as compared to hy-

pothetical N2 isotherms, higher electricity costs are incurred compared to the “ideal”

adsorbents (see Table E.11 in Appendix E).

As can be observed from Fig. 6.4(b), the marginal gap between the green line and

the reference value 1.0 indicates the superior performance of IISERP MOF2, and this

can be attributed to features of CO2 and N2 isotherms illustrated in Fig. 6.3. For all CO2

compositions, the CO2 isotherms of IISERP MOF2 are within the band of hypothetical

CO2 isotherms from the cost limits case. In addition, lower N2 affinity similar to hy-

pothetical N2 isotherms contributed to lower electricity costs [88, 115]. Further, when

the CO2 compositions are lowered, the difference between the minimum CO2 avoided

costs of IISERP MOF2, and the cost limits also decrease non-monotonically from 20%

to 9%.

Based on these results, it can be inferred that the dual-site Langmuirian-type “real”

adsorbents can achieve relatively low CO2 avoided costs at high CO2 compositions,

while their performances are discouraging at low CO2 compositions. Conversely, the

performances obtained by IISERP MOF2, an adsorbent approaching those “ideal” fea-
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tures previously outlined, are consistently close to the cost limits.

3.5% 7.5% 13% 20% 30%
CO2 composition in the flue gas

31
3

11
59

20
04

28
50

36
96

Flu
e 

ga
s f

lo
w 

ra
te

s (
to

nn
e 

h
1 ) -4 -42 -62 -74 -82

11 -36 -60 -73 -81

13 -36 -59 -73 -81

14 -35 -59 -73 -81

15 -35 -60 -73 -81
PVSA

MEA-NG

(a)

3.5% 7.5% 13% 20% 30%
CO2 composition in the flue gas

31
3

11
59

20
04

28
50

36
96

Flu
e 

ga
s f

lo
w 

ra
te

s (
to

nn
e 

h
1 ) 72 12 -23 -47 -61

113 31 -15 -43 -59

121 32 -12 -41 -59

124 36 -12 -42 -59

127 36 -13 -42 -59
PVSA

MEA-PWH

(b)

Figure 6.5: Heat maps illustrating the cost performance of the six-step DR PVSA cycle
as compared to standard (a) MEA solvent using natural gas (NG) for steam generation
(b) MEA solvent using process waste heat (PWH) for steam generation. The text in
the heat maps represents the percentage by which the CO2 avoided costs of PVSA
are higher/lower compared to the MEA. A (+) sign indicates that the PVSA costs are
higher than the MEA and a (-) indicates that the PVSA costs are lower than the MEA.

6.4.3 Cost limits of six-step DR cycle

As discussed previously, the four-step PVSA cycle relies strongly on the deep vacuum

(< 0.1 bar) to meet CO2 purity-recovery constraints for CO2 compositions lower than

30%. Although limiting the lower limit of PL to 0.1 bar in the optimizations resulted in

minimum CO2 avoided costs slightly higher (≤ 14%) than the cost limits for CO2 com-

positions ≥ 13%, the CO2 purity-recovery constraints were, however, not met for lower

CO2 compositions, i.e. < 13%. Hence,a more complex six-step cycle with DR [21, 24,

44] is investigated by carrying out unique optimizations to determine if this cycle can

yield lower cost limits than the four-step PVSA cycle while facilitating process opera-

tion at industrially feasible vacuum levels over a range of CO2 compositions. Figure

6.1(b) shows the comparison of cost limits between the two PVSA cycles. As can be

observed that the cost limits obtained for the six-step DR cycle are lower than the four-

step cycle. For 30% CO2 composition, the difference between the cost limits is 1.8¤ per
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tonne of CO2 avoided (i.e. ≈ 15% lower for six-step DR cycle). When the CO2 compo-

sition is lowered to 20%, the cost limits of the six-step DR cycle were found to be 24%

lower than the cost limits achieved for the four-step cycle. The cost reduction (≈ 42%)

is more significant as the CO2 composition is lowered from 20% to 3.5%. As can be

seen from Figs. 6.1(d) and (f), the decrease in capital and, more significantly, operating

costs have contributed to the cost reductions of the six-step DR cycle. As compared to

the four-step cycle, the electricity costs have significantly dropped, especially at lower

CO2 compositions. This can be attributed to the optimal PH and PL (shown in Fig. 6.2)

required to achieve the lowest CO2 avoided costs. Optimal PH for the six-step DR cycle

always remained lower than that of the four-step cycle over a range of CO2 composi-

tions which indicate lower compression costs. Another interesting aspect remains that

the six-step DR cycle can be operated with PL ≥ 0.1 bar over the entire range of CO2

compositions. This is a significant result because the industrially used vacuum pumps

can now be employed. The ability to operate vacuum pumps at milder vacuum levels

further entails lower electricity consumption, not only connected to the higher PL but

also the higher vacuum pump efficiencies. The better performance of the six-step DR

cycle over the four-step cycle can be attributed to the dual reflux steps, i.e. the HR

and LR steps. The LR step in the six-step DR cycle helped recover the residual CO2

from the column after the evacuation step, and the effluent of this step was used as the

heavy reflux before the depressurization steps. The HR step increased the overall CO2

partial pressure in the column. Hence, the CO2 purity-recovery targets can be achieved

without depressurizing the column to deep vacuum levels [44].

The optimal adsorbent properties linked to the cost limits of the six-step DR cycle

are shown in Fig. E.5 in Appendix E. Similar to the four-step cycle, a huge variation is

noticed in CO2 isotherms and pellet properties within a 5% range from the minimum

avoided costs. The CO2 isotherms for the six-step DR cycle were also found to be fairly

linear with almost zero N2 adsorption (see Fig. E.5 in Appendix E). For CO2 compo-
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sitions of 3.5%, 7.5% and 13%, the CO2 isotherms of the six-step DR cycle showed a

huge variation with higher loadings as compared to the four-step cycle. The band of

CO2 isotherms for both the cycles were comparable for 20% and 30% CO2 composi-

tions. On the other hand, the pellet diameters were closer to the upper limit of 5 mm,

whereas the pellet porosity lies in the range of 0.36-0.63.

6.4.4 Comparison with MEA absorption

Here, the competitiveness of PVSA for post-combustion CO2 capture is analyzed by

comparing its cost limits with current benchmark MEA absorption. The CO2 avoided

costs for MEA obtained from two scenarios are considered: in the first scenario, the

source of steam supply for MEA-based capture comes from a natural gas (NG) boiler,

whereas in the second scenario, the steam is considered to be generated through heat

recovery from the industrial facility. While the first scenario serves as a more gen-

eral representation of standard MEA-based capture, the second scenario is highly site-

specific, i.e. depends on the availability of suitable process waste heat in the industrial

facility or nearby industries. The choice of these MEA scenarios comes from the fact

that the steam supply source strongly affects the overall CO2 avoided costs obtained

using the MEA solvent [116]. Such variations must be considered when assessing the

techno-economic performance of PVSA for a fair comparison. Figure 6.1 (b) compares

the CO2 avoided costs obtained using the MEA solvent from these scenarios at differ-

ent CO2 compositions for a constant flue gas flow rate of 2004 tonnes h−1. The cost

limits of both PVSA cycles are lower than the CO2 avoided costs obtained for the MEA

solvent with NG boiler case when CO2 composition ≥7.5%. At 3.5% CO2 composition,

the cost limits of both PVSA cycles escalate very quickly due to significant electricity

demands, thus, resulting in a poor performance as compared to the MEA absorption.

The six-step DR cycle shows better cost performance than the MEA solvent with pro-

cess waste heat (PWH) case for CO2 compositions ≥13%. The MEA-PWH scenario,
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although site-specific and subject to the availability for CO2 capture, represents the op-

timistic case for the MEA. This indicates that the PVSA could potentially outperform

MEA-PWH in terms of CO2 avoided costs for all CO2 compositions ≥13% should the

right adsorbent be deployed.
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Figure 6.6: PVSA trains (squares) and column footprint (circles) required to treat (a)
2004 tonne h−1 flue gas at different CO2 compositions based on the cost limits of four-
step (dashed lines) and six-step DR (solid lines) cycles (b) different flue gas flow rates
at 20% CO2 composition based on the cost limits of four-step cycle. Shaded region
represents the range within the 5% vicinity of the lowest possible CO2 avoided costs.

Effect of plant scale. So far, a single flue gas flow rate of 2004 tonnes h−1 is con-

sidered in the analysis. Here the effect of plant size on the cost performance of the

PVSA. As specified in Table 6.1, five different flue gas flow rates spanning the entire

spectrum of various post-combustion industrial point sources are considered. The two

MEA scenarios mentioned above are used for comparison. Given the inherent way

in which the PVSA operates as multiple modules, it is expected that the overall CO2

avoided costs will not be influenced by the plant size (or flue gas flow rate). To cor-

roborate this assumption, optimizations are carried out to determine the cost limits of

the four-step PVSA cycle at different flue gas flow rates from Table 6.1 for a fixed CO2

composition of 20%. The results are presented in Fig. E.7 in Appendix E. As expected,

the minimum CO2 avoided costs obtained at different flue gas flow rates from unique
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optimizations are almost identical (<2% difference). Based on these results, the same

values of the cost limits obtained for both PVSA cycles in Fig.6.1(b) at different CO2

compositions are extended over a range of flue gas flow rates considered without re-

running the optimizations for each case. Figure 6.5 illustrates the impact of both plant

size and CO2 composition on the overall competitiveness of the PVSA. The six-step

DR cycle is considered as the representative case for PVSA owing to its superior per-

formance. The red-shaded portions of the figure indicate better performance of MEA

over PVSA, while the blue-shaded portions show the superior performance of PVSA

over MEA. The text in each box represents the percentage by which the CO2 avoided

costs of PVSA are higher/lower compared to the MEA. A (+) sign indicates that the

PVSA costs are higher than the MEA and a (-) indicates that the PVSA costs are lower

than the MEA. For the MEA-NG case as reference, the PVSA outperforms MEA for

all flue gas flow rates and with CO2 composition>3.5%. Notably, one exception was

found where the PVSA performs slightly better than MEA for a flue gas flow rate of

313 tonne h−1 at 3.5% CO2 composition. When MEA-PWH is considered as the basis,

the PVSA results in lower costs for all flue gas flow rates with CO2 composition≥13%.

These results indicate that the PVSA has a cost advantage compared to the benchmark

MEA solvent for CO2 compositions ≥13% over a range of flue gas flow rates provided

low-cost adsorbents with appropriate separation capabilities can be developed.

Complexity of the PVSA plant. One of the challenges of the implementation of the

PVSA involves integrating multiple PVSA trains. Depending on the plant size and the

CO2 composition, several PVSA trains might be needed for operation. The required

number of PVSA trains are presented for both four-step cycle and six-step DR cycle in

order to treat 2004 tonne h−1 flue gas flow rate in Fig. 6.6(a). In addition, the range

within the 5% vicinity of cost limits is also shown. As can be seen from the figure,

the overall trend, considering the ranges for the 5% vicinity, is that both the number
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of trains and the column footprint remain fairly constant. This trend is consistent as

the amount of flue gas to be treated is the same, immaterial of the CO2 composition.

The required number of PVSA trains for a fixed CO2 composition linearly increases

with the flue gas flow rates as shown in Fig. 6.6(b) (also see Table E.14 in Appendix E).

For instance, 8 PVSA trains are needed to treat 313 tonne h−1 of flue gas at 20% CO2

composition. On the contrary, 79 PVSA trains are required if the flow rate increases

to 3696 tonne h−1. Moreover, the footprint of the columns when stacked side by side

for the case of the 2004 tonne h−1 flow rate is illustrated in Fig. 6.6(a). As can be seen

from the figure, the column footprint ranges between ≈1000-2200 m2. Over a range of

flue gas flow rates at 20% CO2 composition, the column footprint, as illustrated in Fig.

6.6(b), varies almost linearly from 209 m2 to 2234 m2 when the flow rate changes from

313 to 3696 tonne h−1, respectively. It is to be noted that the total footprint of the plant

will be higher than the values reported after adding the area occupied by compressors,

vacuum pumps and piping.
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Figure 6.7: Cost limits of (a) four-step and (b) six-step DR PVSA cycles when two
alternative electricity scenarios are considered: Scenario 1 - electricity price of 29.0
¤ per MWh and specific direct emissions of 38 kg CO2 per MWh and; Scenario 2 -
electricity price of 58.1 ¤ per MWh and specific direct emissions of 262 kg CO2 per
MWh. The base case with the cost of electricity 58.1 ¤ per MWh and specific direct
emissions of 38 kg CO2 per MWh is also shown.
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Electricity scenarios. As previously described, the electricity demand remains the

significant factor towards achieving the minimum CO2 avoided costs for PVSA. In

this chapter, the standard European electricity price of 58.1 ¤ per MWh was used [88,

129]. For the electricity consumed, the specific direct emissions of 38 kg CO2 per MWh

are also accounted for based on the assumption that the electricity consumed by the

PVSA is supplied through a deeply decarbonized power system based on a fossil-

based power plant with CCS and renewables [88]. As indirect CO2 emissions asso-

ciated with electricity consumption increase the CO2 avoidance cost [130], the premise

of a deeply decarbonized power system is consistent with the search for the cost limit.

Since the source of electricity generation and its characteristics depends on several pa-

rameters such as plant location and electricity mix, an optimization study is conducted

with alternative scenarios to investigate the impact on PVSA cost limits. For this anal-

ysis, the electricity price of 58.1 ¤ per MWh and the specific direct emissions of 38 kg

CO2 per MWh remain as the base case. In the first scenario, the cost of electricity is

reduced to 50% of the base case while the specific direct emissions were kept the same

as the base case. This scenario is representative of cases in which the PVSA facilities

access low-cost renewable electricity production with preferential industrial tariffs ex-

cluding transmission costs as can happen, for example, in Norway [131]. The second

scenario considers the electricity generation with higher CO2 intensity, i.e., the cost of

electricity remains the same as that of the base case while the specific direct emissions

are increased to 262 kg CO2 per MWh corresponding to the CO2-intensity of the Euro-

pean average electricity mix [113, 129]. The motivation for the second scenario comes

from the existing power production systems that are significantly based on fossil-fuel

power plants without CCS.

The PVSA cost limits are optimized based on the two alternative electricity scenar-

ios. Figure 6.7 illustrates the cost limits obtained for two PVSA cycles under the two

alternative scenarios. As can be seen from the figure, the cost limits of both PVSA cy-
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cles are lowered (≈23-32%) when the electricity prices dropped to 29.0 ¤ per MWh in

the first scenario. Under these circumstances, the six-step DR cycle outperforms MEA

with NG boiler for all CO2 compositions, whereas the four-step cycle gives lower costs

for CO2 compositions ≥7.5%. If MEA-PWH is considered as reference, then the six-

step DR and four-step cycles perform better than MEA for CO2 compositions ≥7.5%

and ≥13%, respectively. On the contrary, the PVSA cost limits have either increased or

remained the same when the second scenario is considered. The high CO2 intensity in

the second scenario showed a substantial effect on two PVSA cycles at a 3.5% CO2 com-

position where the CO2 avoided cost increased to 246.4 ¤ per tonne of CO2 avoided

(64% higher than the base case) for the four-step cycle. When the six-step DR cycle

is considered, the CO2 avoided cost increased to 105.1 ¤ per tonne of CO2 avoided,

i.e. almost 21% higher than the base case. This is because the electricity consumption

is significantly higher at 3.5% CO2 composition (see Fig. 6.1(c)-(d)) than other higher

CO2 compositions. The four-step cycle, however, obtained 68.4 ¤ per tonne of CO2

avoided, i.e. 17% higher costs compared to the base case at 7.5% CO2 composition.

For CO2 compositions ≥13%, the CO2 intensity has negligible effect on the PVSA cost

limits.

6.5 Conclusions

Cost limits of two single-stage PVSA cycles for post-combustion CO2 capture are inves-

tigated through techno-economic optimizations based on a process inversion approach.

Using this approach, both adsorbent and process variables are simultaneously opti-

mized based on NSGA-II algorithm to calculate the lowest possible cost of CO2 avoided

(excluding the costs of CO2 conditioning, transport and storage) or cost limits at dif-

ferent flue gas flow rates and CO2 compositions. The key results of this chapter can be

summarised as follows:

• The CO2 composition in the flue gas significantly impacts the cost limits of PVSA,
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i.e., the lowest possible CO2 avoided costs decrease with increase in CO2 com-

positions. Between the two cycles considered, the six-step DR cycle achieved

15-42% lower costs compared to the four-step cycle, depending on the CO2 com-

position.

• When compared with the established MEA solvent based on NG boiler as a steam

source, the four-step PVSA cycle has at least 8% lower costs compared to the

MEA-based CO2 capture, whereas the six-step DR PVSA cycle has at least 35%

lower costs for CO2 compositions ≥7.5% over a range of flue gas flow rates.

• The optimizations indicated that the “ideal” adsorbents that facilitate lowest pos-

sible CO2 avoided costs have fairly linear CO2 adsorption isotherms and N2 ad-

sorption close to zero.

• It was found that modifying the pellet morphology can result in ≈9-22% lower

CO2 avoided costs based on a four-step PVSA cycle. The optimal pellet porosities

and diameters were between 0.42-0.76 and 3-5 mm, respectively.

• The complexity of the PVSA plant in terms of the number of trains, equipment,

piping, area, etc., significantly depends on the flue gas flow rate. The smallest

plant considered in this study with a size of 313 tonne h−1 flue gas flow rate

requires about eight PVSA trains with four columns each based on a four-step

PVSA cycle. Almost 79 PVSA trains with four columns each are needed to treat

a plant size of 3696 tonne h−1.

Although the PVSA costs seem favourable, the practical implementation involves

limitations due to the plant complexity in terms of the number of PVSA trains required

to treat the flue gas, the footprint of the total plant and the associated complexities

in plant integration. Some of the challenges can be offset by choosing horizontally-

oriented columns instead of vertically-oriented columns, and potentially considering
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hybrid processes, e.g., PVSA+cryogenic [132, 133]. Finally, the key outcome of the

study is the demonstration that PVSA processes can be promising for treating flue

gas streams with high CO2 compositions, provided suitable low-cost adsorbents be

developed. The fact that adsorbents with a variety of CO2 isotherms can indeed yield

similar costs is encouraging and motivates adsorbent discovery and development.
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Chapter 7

Concluding remarks

The flexibility in process design makes cyclic adsorption processes attractive for in-

dustrial gas separations, particularly a potential alternative to liquid solvents for CO2

capture. Another advantage is the minimal environmental impacts due to the use of

solid adsorbents compared to the issue of solvent degradation into toxic and corrosive

compounds associated with liquid solvents. However, the bottleneck for promoting in-

novations in the adsorption process technology has been using computationally inten-

sive detailed mathematical models to design and optimize processes with the accuracy

and reliability needed for industrial applications. With the discovery of numerous ad-

sorbents, the current simulation and optimization tools are insufficient to design cyclic

adsorption processes optimally. Moreover, the potential of adsorptive CO2 capture is

often poorly understood due to the lack of standardized techno-economic assessments

that can play a significant role in evaluating both the technical and the economic via-

bility.

The overall aim of this thesis was twofold. One, to develop machine learning-based

methodologies for rapid simulation of cyclic adsorption processes. Two, to develop

a rigorous techno-economic model for assessing the performance of adsorption pro-

cesses for post-combustion CO2 capture. This chapter summarizes the key outcomes

achieved in this thesis. Moreover, the directions for future research are discussed to

promote significant improvements in the proposed modelling strategies.
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7.1 Summary

Machine learning-based process optimization. In Chapter 2, hybrid approaches were

proposed to accelerate the computational speeds of PSA optimizations. The proposed

approaches were implemented to maximize CO2 purity and CO2 recovery that can be

obtained from a complex eight-step PSA cycle designed for pre-combustion CO2 cap-

ture. The first approach, SOpt, exploited artificial neural networks for objective func-

tion evaluations in the multi-objective optimization routines. The neural networks are

trained using the individuals evaluated by the detailed process model in the initial

optimization and are utilized for function evaluations in the subsequent optimization.

The Pareto front computed based on this approach overlapped with the Pareto front

from the traditional optimization routine. In terms of computational speeds, this ap-

proach offered 10× speed while achieving the same performance as the traditional

routine. The second approach, DROpt, focused on reducing the dimensionality of the

optimization problem. Through PLS regression, relevant variables for the optimiza-

tion were identified. Based on these few relevant variables, Pareto fronts are calcu-

lated by coupling detailed process model in the multi-objection optimization. For the

case considered, the dimensional reduction from eight to three doubled the computa-

tional speeds of the optimization. Finally, a combination of the first and the second

approaches has also been investigated. This third approach also predicted the original

Pareto front reasonably well through faster computations.

Physics-based deep learning for cycle simulation and synthesis. Leveraging the

latest advances in physics-based deep learning of partial differential equations, vi-

able methodologies are proposed for rapid adsorption cycle simulation and synthesis.

Chapter 3 explored the ability of physics-based deep neural networks to predict the

complex dynamics of generic pulse injections in adsorption columns. The effective-

ness of the methodology was tested by investigating the impact of feed concentrations
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of binary solute mixtures and injection volumes on the solute movement along the

column. The deep neural networks are trained to learn the spatiotemporal dynam-

ics for different combinations of binary feed concentrations and the pulse injection

time by designing a loss function that constrains neural network predictions to match

the training data while minimizing the PDE residuals. The results demonstrated that

the trained model accurately predicted the solute movement in adsorption columns,

capturing important features such as concentration transitions even in the absence of

training data. Next, in Chapter 4, the complexity of the framework was increased by

developing physics-based neural networks for rapid simulation of cyclic adsorption

processes and cycle synthesis. Here individual deep neural networks are trained for

each step in the adsorption cycle to learn the full spatiotemporal solutions of differ-

ent state variables by obeying the underlying conservation laws of mass and momen-

tum along with adsorption equilibria. The methodology was successfully tested and

validated by constructing and simulating a four-step VSA cycle for post-combustion

CO2 capture based on individual neural network models. Next, four different VSA cy-

cles, namely two three-step and two four-step VSA cycles with feed and light product

pressurization steps, respectively, were constructed using the proposed methodology

to demonstrate the cycle synthesis capabilities. The results indicated that the trained

neural networks accurately simulated all the four VSA cycles.

Techno-economic assessments of P/VSA processes for post-combustion CO2 capture.

In Chapter 5, a systematic approach for the design and techno-economic assessment of

VSA processes was developed. The methodology developed herein incorporated a

detailed process model, vacuum pump dynamics, rational scale-up, and cost model

consistent with best practices, combined with stochastic optimization to calculate the

minimum CO2 capture cost. This methodology was applied to post-combustion CO2

capture from steam methane reformer flue gas by considering a four-step VSA process
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and three different adsorbents: Zeolite 13X and metal-organic frameworks, UTSA-16

and IISERP MOF2. The results demonstrated that optimizing the VSA process using

proxy objectives such as minimizing energy and maximizing productivity does not

guarantee the minimum cost because of inherent complexities involved in the process

scale-up. Among the three adsorbents, IISERP MOF2 showed better performance. It

was also shown that the choice of adsorbent and its cost has a major impact on the cost

of CO2 capture. Finally, the baseline monoethanolamine based absorption process out-

performed the best performing adsorbent IISERP MOF2 with 10% lower CO2 avoided

cost.

Chapter 6 focused on a techno-economic investigation to determine the cost lim-

its of two PVSA cycles, namely, four-step and six-step dual reflux cycles, for post-

combustion CO2 capture. Here, a process inversion approach was employed, where both

adsorbent and process variables are optimized simultaneously to calculate the lowest

possible cost of CO2 capture at different flue gas flow rates and CO2 compositions. The

results demonstrated that the CO2 composition in the flue gas significantly impacts the

PVSA cost limits, i.e., costs decrease with increase in CO2 compositions. Moreover, the

six-step dual reflux cycle outperformed the four-step cycle by achieving 15-42% lower

costs depending on the CO2 composition. Compared to monoethanolamine based ab-

sorption process, PVSA was found to be attractive for flue gas streams with high CO2

compositions ≥7.5%. Finally, the “ideal” adsorbents facilitating lowest possible CO2

capture costs have fairly linear CO2 adsorption isotherms and zero N2 adsorption.

7.2 Way forward

Towards a superstructure-based optimal cycle synthesis. Designing an optimal ad-

sorptive gas separation process requires the right selection of adsorbents and cycle con-

figuration. The plethora of novel adsorbents for gas separations and the flexible cycle

design requires a superstructure-based approach to design an optimal cycle configura-
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tion for evaluating many adsorbents. The physics-based neural network methodology

developed in this thesis was demonstrated to synthesize and simulate different cycles.

The next step is to extend this framework for superstructure optimization. Despite

the initial success, the physics-based neural network is still in its infancy and requires

further advancements before integrating with the superstructure formulation. First,

the current methodology was developed based on the isothermal operation. In prac-

tice, the process is operated under adiabatic conditions. This means that the neural

networks will also need to learn the conservation law of energy along with the conser-

vation laws of mass and momentum with column temperature as an additional output.

Second, a systematic study must be carried out to determine the neural network hy-

perparameters, such as the size of the architecture and optimal weights for the loss

terms. Since the choice of weights for the loss terms can influence the overall training

procedure, determining an optimal combination of weights will improve the overall

accuracy of the neural network models. Third, the initial column profiles form inputs

to neural networks. The initial column profiles are unknown in most cases, especially

when many complex steps are included for the superstructure optimization. While a

detailed process model can generate few samples of initial column profiles by simu-

lating different cycle configurations based on heuristics, it might be a computationally

desired approach. Instead, mathematical functions can be used as such or as a combi-

nation of several functions to mimic the initial column profiles typically encountered

in various processes. Finally, several step models need to be trained in the future to in-

corporate pressure equalization steps, reflux steps, etc. The neural networks must also

be trained at different step operating parameters such as column pressure, velocities,

etc., to enable the variation of operating conditions in superstructure optimization.

Lessons from techno-economic assessments and future opportunities. The detailed

techno-economic optimization model developed in this thesis provided several key
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perspectives when designing and assessing the techno-economics of P/VSA processes

for CO2 capture. Major learning involves the requirement of deep vacuum pressures,

i.e. < 0.1 bar for VSA processes, which arise from the high CO2 purity and CO2 re-

covery constraints enforced on the separation. Alternatively, pressurizing the feed to

slightly higher pressures, i.e. operating as PVSA, might avoid the necessity of deep

vacuum requirements depending on the CO2 composition in the flue gas. Moreover, a

more complex cycle designs like the six-step dual reflux cycle can facilitate the opera-

tion at industrial vacuum pressures.

The use of beaded adsorbents in typical adsorption processes can limit the overall

process performance. This limitation comes from the maximum velocities employable

for operating the P/VSA processes. As a result, the requirement of multiple P/VSA

parallel trains arises. Future research on process design should focus on drastically

different approaches, such as the use of monoliths or parallel-passage contacts to en-

able rapid cycling and increase the maximum feed velocities.

Even though PVSA costs are favourable for some cases, the practical implementa-

tion involves limitations due to the plant complexity in terms of several P/VSA trains

required to treat the flue gas, total plant footprint, and the associate piping and con-

trol systems. The flow gas flow rate significantly determines the complexity of the

P/VSA plant. For instance, treating flue gas flow rate of 313 tonne h−1 requires about

eight PVSA trains with four columns each based on a four-step PVSA cycle, whereas

79 PVSA trains with four columns each are needed to treat a plant size of 3696 tonne

h−1. The complexity of the PVSA plant can be reduced by adopting a different design

philosophy. For instance, choosing horizontally-oriented columns instead of vertically-

oriented columns can decrease the number of P/VSA trains [132]. Moreover, hybrid

processes, e.g., PVSA+cryogenic, should be considered for CO2 capture as potential

alternatives to reduce the plant sizes [133].

Finally, adsorbents with earth-abundant materials are critical for the large-scale im-
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plementation of P/VSA processes for CO2 capture. The cost limit analysis demon-

strated that a variety of CO2 isotherms could yield similar costs, thus encouraging

the adsorbent discovery and development. However, the novel adsorbents developed

for CO2 capture should be manufactured in large-quantities for practical deployment.

Future adsorbent development research must be directed towards improving: the ca-

pabilities of synthesizing adsorbent materials on a large scale, forming macroscopic

shapes, and increasing the stability towards cycling and impurities to promote com-

mercial implementation.
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[140] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: A basic tool of chemo-
metrics,” Chemometr. Intell. Lab. Syst., vol. 58, no. 2, pp. 109 –130, 2001.

[141] H. Deng, S. Roussanaly, and G. Skaugen, “Techno-economic analyses of CO2

liquefaction: Impact of product pressure and impurities,” Int. J. of Refrig., vol. 103,
pp. 301–315, 2019.

212

https://doi.org/10.5281/zenodo.4646284
https://doi.org/10.5281/zenodo.4646284
https://doi.org/10.5281/zenodo.4646284


[142] E Lemmon, M Huber, and M McLinden, “NIST standard reference database
23: Reference fluid thermodynamic and transport properties-REFPROP, Ver-
sion 9.1,” 2013.

[143] S Roussanaly, A. L. Brunsvold, and E. S. Hognes, “Benchmarking of CO2 trans-
port technologies: Part II – Offshore pipeline and shipping to an offshore site,”
Int. J. Greenh. Gas Control, vol. 28, pp. 283–299, 2014.

[144] S Roussanaly, A. A. Grimstad, and E. S. Hognes, “The economic value of CO2

for EOR applications,” Energy Procedia, vol. 63, pp. 7836–7843, 2014.

[145] G. Skaugen, S. Roussanaly, J. Jakobsen, and A. Brunsvold, “Techno-economic
evaluation of the effects of impurities on conditioning and transport of CO2 by
pipeline,” Int. J. Greenh. Gas Control, vol. 54, pp. 627–639, 2016.

[146] M. Knoope, W. Guijt, A. Ramı́rez, and A. Faaij, “Improved cost models for opti-
mizing CO2 pipeline configuration for point-to-point pipelines and simple net-
works,” Int. J. Greenh. Gas Control, vol. 22, pp. 25–46, 2014.

[147] E. T. P. for Zero Emission Fossil Fuel Power Plants (ZEP)”, “The costs of CO2

storage, post-demonstration CCS in the EU, Brussels, Belgium,” 2011.

[148] C. T. Choi and H. Wen-Chung, “Incorporation of a valve equation into the sim-
ulation of a pressure swing adsorption process,” Chem. Eng. Sci., vol. 49, pp. 75–
84, 1994.

213



Appendix A: Modelling of cyclic
adsorption processes

A one-dimensional mathematical model is used to describe adsorption column dynam-

ics in cyclic adsorption processes. The following general assumptions are incorporated

into the model:

1. Axially dispersed plug flow model to describe the bulk gas phase.

2. The gas-phase behaves ideally.

3. No radial gradients exist for composition, pressure and temperature across the

column.

4. The mass transfer resistance is mainly due to macropore diffusion and described

by the linear driving force (LDF) model

5. Instantaneous thermal equilibrium between the gas and the solid phases.

6. Bed properties along the column remain uniform.

7. Pressure drop calculations are based on Ergun’s equation for long columns (>1

m) and Darcy’s law for shorter columns (≤1 m).

A.1 Model equations

Based on the above assumptions, the following system of coupled nonlinear PDEs

based on the conservation of mass, momentum, and energy can be derived:
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Component mass balance:
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Total mass balance:
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Pressure drop (Ergun’s equation):
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Linear driving force model:
∂qi
∂t

= ki(q
∗
i − qi) (A.5)

Mass transfer coefficient (macropore controlled):

ki =
ci
q∗i

15εpDp

r2p
(A.6)

Adsorption equilibria (generalized form):

q∗i = f(ci, T ) (A.7)

Ideal gas law:

ci =
yiP

RT
(A.8)

A.2 Initial and boundary conditions

For simulating cyclic adsorption processes, the above mentioned system of PDEs and

algebraic equations are solved together with appropriate initial and boundary condi-

tions. For initializing the cycle simulations, it is convenient to assume that the bed of
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the first step is equilibrated with feed mixture at specified temperature and pressure.

Subsequently, the final condition of one step will be the initial condition of the subse-

quent step. The boundary conditions in cyclic adsorption process can be generalized

based on the position of the valves at two ends of the adsorbent bed as: open-open,

open-closed, and closed-open.

Open-open. Here both valves are open and represent a constituent step in which an

inlet stream is conveyed through the column and an outlet stream exiting from the

other column end. Dankwert’s boundary conditions for a dispersed plug flow system

apply to component mass and energy balances. For the total mass balance, the flow

rate (in terms of velocity) at the inlet and the exit pressure at the outlet are controlled.

The boundary conditions can be written as,

DL
∂yi
∂z

⃓⃓⃓⃓
z=0

= −v
⃓⃓
z=0

(︁
yin − yi
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(A.9)
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Kz
∂T

∂z

⃓⃓⃓⃓
z=0
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(A.11)

∂T

∂z

⃓⃓⃓⃓
z=L

= 0 (A.12)

v
⃓⃓
z=0

= vin (A.13)

P
⃓⃓
z=L

= Pout (A.14)

Open-closed. Here the column inlet is open and the column outlet is closed. Equa-

tions A.9-A.12 remain valid. Depending on the constituent step, v
⃓⃓
z=0

can be calcu-

lated based on either Eq. A.13 or change in pressure at the column inlet. Equation A.14

changes to:
∂P

∂z

⃓⃓⃓⃓
z=L

= 0 (A.15)
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Closed-open. Here the column inlet is closed and the column outlet is open. Equa-

tions A.10, A.12 remain valid while Eqs. A.9, A.11, A.13 reduce to:

∂yi
∂z

⃓⃓⃓⃓
z=0

= 0 (A.16)

∂T

∂z

⃓⃓⃓⃓
z=0

= 0 (A.17)

v
⃓⃓
z=0

= 0 (A.18)

Depending on the dynamics of the constituent step at the column outlet, the boundary

condition for the total mass balance can be implemented either in terms of pressure

profile or constant velocity, i.e.,

P
⃓⃓
z=L

=P (t) or,

v
⃓⃓
z=L

=vout (A.19)
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Appendix B: Supplementary material
for Chapter 2

B.1 Adsorption equilibria

The Sips isotherm model used to describe the adsorption equilibria of CO2 and H2 on

activated carbon is given by

q∗i =
qsat,i (kipi)

si

1 + (kipi)
si (B.1)

where qsat,i is the temperature dependent saturation solid phase concentration, ki is the

adsorption equilibrium constant, si is a parameter which can take values between 0

and 1 and, pi is the partial pressure of component i. The quantities qsat,i, ki and pi are

defined as follows:

qsat,i = ωie
− ψi
RT (B.2)

ki = θie
− ϕi
RT (B.3)

si = s1,i arctan(s2,i(T − Tref)) + sref,i (B.4)

The parameters used for CO2 were obtained from previous publication [25] and are as

follows: ωCO2=3.74 mol kg−1; ψCO2=-7.87 kJ mol−1; θCO2 =26.9 × 10−9 Pa−1; ϕCO2=-2.05

kJ mol−1; s1,CO2=0.136; s2,CO2=0.110; sref,CO2=0.760 and; Tref,CO2=281 K. The H2 param-

eters used were obtained from literature [32] and are: ωH2=6.66 mol kg−1; ψH2=0.0 kJ

mol−1; θH2 =0.7 × 10−9 Pa−1; ϕH2=-9.83 kJ mol−1; s1,H2=0; s2,H2=0; sref,H2=0.956 and;

Tref,H2=273 K. The extended Sips isotherm model used to predict the multi-component
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behavior is as follows:

q∗i =
qsat,i (kipi)

si

1 +
ncomp∑︁
i=1

(kipi)
si

(B.5)

where ncomp is the total number of components in the multi-component system.

B.2 Artificial neural networks

Feed-forward neural networks (as shown in Fig. B.1) were used as ANN models owing

to their applicability to a variety of problems [134, 135]. The network architecture

illustrated in Fig. B.1 consists of one input layer, one hidden layer and one output

layer. A distinct neural network was developed for each output, and the mathematical

representation can be written as

û = f(x̄) = f2

(︄
n∑︂

k=1

w
(2)
k f1

(︃ p∑︂
j=1

w
(1)
kj xj + θj

)︃
+ ϕ+ ϵ

)︄
(B.6)

where f1 is an activation function of the hidden layer; f2 is an activation function of

the output layer; w(2)
k is the weight parameter between neuron k in the hidden layer

and the output neuron; θ corresponds to the bias in the hidden layer; ϕ is the bias of

the output neuron and ϵ is a random error with zero mean. In this work, the activation

function of the hidden layer was a tan-sigmoid transfer function:

f1(x) =
(ex − e−x)

(ex + e−x)
(B.7)

A linear transfer function was considered as the activation function of the output layer:

f2(x) = x (B.8)

The weights and bias in Eq. B.6 were determined during the neural network training

process. In the training process, the networks were modified using supervised learn-

ing algorithms by adjusting the weights and bias based on the inputs presented to the

network along with the output so that the network attempts to produce the desired
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output. Conventional ANN training methods such as back-propagation of errors in-

volve providing a set of input-output data to the network and minimizing the mean

squared error (MSE) between the predicted and actual outputs of the network using

first-order or second-order optimization methods. However, this procedure often leads

to issues of overfitting the ANN model [69]. To overcome this, Bayesian regularization

was applied to the training data to minimize the model errors and avoid overfitting

problems.

... ...

x1

x2

x3

xp

h1

h2

hn

y1

Figure B.1: Neural network architecture

B.3 Bayesian regularization

In this analysis, Bayesian regularization was implemented using the Levenberg-Marquardt

algorithm [136, 137], a second-order optimization method, for minimizing both errors

and weights. To improve the generalization ability, the performance function is mod-

ified by adding a term Ew that consists of a MSE of the network weights as shown

below:

F = βED + αEw (B.9)
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where α and β are hyperparameters or regularization parameters [138]. The network

error, ED, is the MSE and can be expressed as follows:

ED =
1

MSamples

MSamples∑︂
k=1

(︂
ŷk, ANN − yk, DM

)︂2
(B.10)

where MSamples is the number of samples; ŷk, ANN is the predicted value of the ANN

model and yk, DM is the actual value from the detailed PSA model. The MSE of network

weights, Ew, is given by

Ew =
1

m

m∑︂
i=1

w2
i (B.11)

In the Bayesian learning framework, the optimal weights and performance function

parameters α, β are obtained in the training process [139]. For detailed discussions

on BR, the readers are referred to elsewhere in the literature [138, 139]. The learning-

validation procedure was repeated for 50 times until the lowest performance function,

F , was achieved.

B.4 Partial least squares

The theory of partial least squares (PLS) regression is well documented in the literature

[140]. In this section, a brief overview of the technique is provided. PLS is a multivari-

ate linear regression technique that aims to describe the relationship between the input

and output variables by projecting them onto a new space of latent variables that are

linear combinations of the original variables. The latent variables (or principal compo-

nents) are extracted from the standardized data sets containing the original variables xs

∈ ℜN×P and ys ∈ ℜN×M through singular value decomposition [140] of the respective

data matrices as shown below:

xs = tp′ + ex (B.12)

ys = sq′ + ey (B.13)

where t=[t1,t2,..td] ∈ ℜN×d and s=[s1,s2,..sd] ∈ ℜN×d are the scores (or latent variables)

of xs and ys, respectively, p=[p1,p2,..pd] ∈ ℜP×d and q=[q1,q2,..qd] ∈ ℜM×d are the load-

221



ings for xs and ys, respectively, ex and ey are the model residuals of xs and ys, respec-

tively, and d is the number of latent variables. Scores, which are also known as PLS

components, form a set of uncorrelated variables orthogonal to each other. The latent

representation allows the PLS model to explain most of the variability of both input

and output variables using fewer latent variables.

Finally, the PLS model can be expressed in compact form as

ys = xsbPLS +R (B.14)

where bPLS is the PLS regression coefficient matrix relating to xs and ys. The key idea

behind obtaining PLS regression coefficients involves maximization of the covariance

between the score vectors t and s subject to: ∥w∥=1 and ∥c∥=1, where w and c are the

input and output weights, respectively.
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Figure B.2: Probability distributions of (a) adsorption time (tADS), (b) low pressure (PL), (c) feed velocity (v0), (d) purity (Pu)
and, (e) recovery (Re) for different number of generations i. Note: All individuals after generation i from TradOpt imple-
mentation were used to plot the probability distributions. The distributions are obtained using kernel density estimation.
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(a) (b)

(c) (d)

Figure B.3: Bivariate distribution plots of key input and output variables in the initial
population of TradOpt. The distributions are obtained using kernel density estimation.
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(a) (b)

(c) (d)

Figure B.4: Bivariate distribution plots of key input and output variables at the end of
generation 5 in TradOpt. The distributions are obtained using kernel density estima-
tion.
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(a) (b)

(c) (d)

Figure B.5: Bivariate distribution plots of key input and output variables at the end of
generation 20 in TradOpt. The distributions are obtained using kernel density estima-
tion.
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Figure B.6: RMSE of the PLS calibration model as a function of the number of latent
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of Y that is explained.
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Figure B.9: Comparison of optimal decision variables obtained using DR-SOpt (in-
verted triangles) and TradOpt (squares).
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Table B.1: Selected optimal solutions obtained for TradOpt.

tADS tPREQ1 tPREQ2 tCnBLO tPUR PL v0 vPUR Pu Re

A[s] [s] [s] [s] [s] [bar] [m s−1] [m s−1] [%] [%]
45.5 67.8 91.5 73.8 45.9 2.2 0.09 0.2 90.4 99.8
40.7 67.4 87.6 69.0 49.9 2.1 0.10 0.1 88.4 99.9
60.3 69.8 103.9 88.2 33.6 1.6 0.09 0.4 94.8 98.6
50.0 69.0 94.9 78.5 42.3 1.8 0.09 0.3 91.9 99.7
42.1 67.5 88.7 70.2 48.8 2.0 0.10 0.1 88.9 99.9
70.5 74.3 112.8 102.4 24.7 1.2 0.09 0.6 96.5 93.7
71.4 72.3 112.9 100.9 24.1 1.3 0.08 0.4 96.5 93.8
62.7 81.0 106.6 100.2 31.1 1.2 0.09 0.5 95.7 97.7
65.1 77.9 108.4 100.3 29.4 1.2 0.09 1.0 96.4 94.6
61.6 70.4 105.0 90.6 32.3 1.5 0.09 0.4 95.2 98.3
70.2 74.9 112.5 101.8 25.0 1.2 0.09 0.5 96.5 93.8
70.2 74.9 112.5 101.8 25.0 1.2 0.09 0.5 96.5 93.8
64.0 80.0 107.6 100.7 29.9 1.1 0.09 0.5 96.1 96.6
64.0 80.0 107.6 100.7 29.9 1.1 0.09 0.5 96.1 96.6
70.5 75.3 112.8 102.4 24.7 1.2 0.09 0.6 96.5 93.7
81.0 74.7 121.7 111.3 15.9 1.0 0.10 0.7 97.1 69.2
79.5 73.2 120.1 109.2 17.2 1.1 0.08 0.7 96.9 88.8
81.5 73.4 121.8 111.1 15.6 1.0 0.08 0.7 96.9 87.7
80.9 75.2 122.0 111.2 15.8 1.0 0.11 0.8 97.1 65.7
81.0 74.2 121.5 111.2 15.8 1.0 0.10 0.7 97.1 69.2
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Figure B.10: Parallel coordinate representation of selected optimal solutions obtained
using TradOpt (red), SOpt (green), DROpt (blue) and DR-SOpt (gray) optimization ap-
proaches. The ranges for the decision variables (x) used in the optimization were as
follows: tADS [s]: 20-100, tPREQ1 [s]: 30-180, tPREQ2 [s]: 30-180, tCnBLO [s]: 30-180, tPUR [s]:
10-80, PL [bar]: 1-17.3, v0 [ms−1]: 0.08-0.5 and vPUR [ms−1]: 0.1-1. The coordinate values
represented in the figure were normalized using: x̄ = (x− min x)/(max x− min x).
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Appendix C: Direct cost functions for
process equipment

The direct costs of individual process equipment were estimated using Aspen Eco-

nomic Process Analyzer®. Several economic evaluations were performed for each

equipment based on a wide range of key design characteristics in order to develop

reliable direct cost functions for the optimization. DataFit was used to carry out the

regression and it was ensured that the obtained direct cost functions are continuous in

the ranges used for the optimization. It is worth mentioning that a design margin of

1.1 in the flows was used at the desired pressure and temperature for the evaluations.

However, the regressions are always related to operating conditions without design

margins. More details on the regression including the adjusted coefficient of multiple

determination (R2
ADJ), average absolute error (avg. abs. error) and maximum absolute

error (max. abs. error) are summarized below.

C.1 Columns

In an attempt to develop a generic direct cost function for columns, 156 cases with a

wide range of characteristics were considered. Economic evaluations were performed

for different diameters, length-to-diameter (L/D) ratios and pressures. The direct cost

function based on three variables is given in Eq. C.1. The obtained regression parame-

ters are provided in Table C.1. Figure C.1 illustrates the regression.

Column direct cost (¤) = exp(a·diameter (m)+b·L/D (-)+c·pressure (bar)+d) (C.1)
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Table C.1: Regression characteristics of columns

Parameter Column
Coefficient a 0.4148138
Coefficient b 0.0738133
Coefficient c 0.0231138
Coefficient d 10.807870
R2

ADJ 0.986
Avg. abs. error (%) 4.71
Max. abs. error (%) 15.74
Number of cases evaluated 156
Diameter range (m) 1-5
Length-to-diameter ratio range (-) 2-6
Pressure range (bar) 1-4

C.2 Compressors

Based on 63 evaluations, a two-variable direct cost function was obtained for single-

stage compressors as shown in Eq. C.2. Actual inlet volumetric flow rate and outlet

pressure were varied to represent accurate cost estimations for compressors. The ob-

tained regression parameters and characteristics are listed in Table C.2, while Fig. C.2

shows the regression.

Compressor direct cost (¤) = a ·
(︁
Inlet flow rate (m3 h−1 )

)︁b · cPressure (bar) (C.2)

C.3 Vacuum pump

For a reliable vacuum pump direct cost estimation, 19 cases were considered for eco-

nomic evaluation in Aspen Economic Process Analyzer®. The key design character-

istics of the vacuum pump include the volumetric flow rate and the suction pressure.

The cases are representative of a wide span of volumetric flow rates. For all the cases,

the suction pressure operating range remains the same, between 0.01 bar and 1 bar.
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Table C.2: Regression characteristics of rotating equipment

Parameter Compressor Vacuum pump
Coefficient a 121.412 423.900
Coefficient b 0.900 0.653
Coefficient c 1.032 30000.000
R2

ADJ 0.998 0.999
Avg. abs. error (%) 1.43 0.61
Max. abs. error (%) 3.95 1.94
Number of cases evaluated 63 19
Flow range (m3 h−1) 100000-500000 250-20000
Pressure range (bar) 1-4 0.01-1

Hence, a direct cost function with volumetric flow rate was regressed as shown in Eq.

C.3. The regression parameters and characteristics can be found in Table C.2, while the

regression is shown in Fig. C.3.

Vacuum Pump direct cost (¤) = a ·
(︁
Inlet flow rate (m3 h−1)

)︁b
+ c (C.3)

C.4 Heat exchangers

The direct cost function of heat exchangers with both heat exchange area and pressure

as variables was obtained from Deng et. al [141]. Suitable factors were used to update

costs to ¤2016 using Chemical Engineering Plant Cost Index (CEPCI) and inflation. The

two-variable cost function is shown in Eq. C.4 and the regression parameters are pro-

vided in Table C.3.

Heat exchanger direct cost (¤) = a ·
(︁
Area (m2)

)︁b · cPressure (bar) (C.4)

C.5 Switching valves

Owing to the cyclic nature of the VSA operation, switching valves are essential to im-

plement the cycle sequence. Based on the VSA cycle considered, the number of switch-
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Table C.3: Regression characteristics of heat exchangers [141].

Parameter Heat exchanger
Coefficient a 12003
Coefficient b 0.603
Coefficient c 1.011187
R2

ADJ 0.959
Avg. abs. error (%) 14.2
Max. abs. error (%) 32.6
Number of cases evaluated 53
Area range (m2) 30-4000
Pressure range (bar) 2.7-81

ing valves required per column was estimated to be 3. Given the several number of

columns required to capture the flue gas, the cost of valves will no longer be insignif-

icant. Hence, the direct cost of each valve was set to 6000 ¤. Note that the valves

related to the control and instrumentation are accounted for in the indirect costs of

process equipment.

C.6 Adsorbent costs

The adsorbent direct costs comprise purchase costs (PC) and transport and installation

costs (TIC) and were calculated as follows:

Adsorbent direct cost (¤) =M ·N · Column volume · (1− ε) · ρs · (PC + TIC) (C.5)
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Figure C.1: Direct cost regression of columns. Note that the points represent the Aspen
Economic Process Analyzer® evaluations and the lines are regressed cost functions.
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Aspen Economic Process Analyzer® evaluations and the lines are regressed cost func-
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Appendix D: Supplementary material
for Chapter 5

D.1 Baseline MEA-based CO2 capture

Figure D.1: Detailed process flow diagram of the MEA-based CO2 capture process for
the hydrogen production plant with CO2 capture [11].
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Table D.1: Key performances of hydrogen production plant without and with MEA-
based CCS [100].

Parameter Without CCS With CCS
Natural gas to feedstock (t h−1) 51.66 51.66
Natural gas to fuel (t h−1) 26.59 26.59
Natural gas LHV (MJ kg−1) 46.49 46.49
Total energy input (MW) 1010 1010
H2 to battery limit (t h−1) 18.77 18.77
H2 to battery limit (Nm3 H2 h−1) 208700 208700
Total energy in H2 product (MW) 626 626
Gross power output from steam cycle (MWe) 123.8 91.6
H2 plant and co-generation power consumption (MWe) -3.5 -3.5
CO2 capture plant (MWe) - -6.7
CO2 conditioning plant (MWe) - -18.3
Net power output (MWe) 120.3 63.1
Total energy in H2 product compared to total energy input (%) 61.9 61.9
Total energy in H2 and electricity produced compared to total
energy input (%)

73.8 68.2

Emissions (kgCO2 Nm−3 H2) 0.994 0.100
Levelized cost of hydrogen (c¤Nm−3 H2) 12.20 18.07
CO2 avoidance cost (¤/tCO2,avoided) - 66.6
CO2 capture cost (¤/tCO2,avoided) - 30.1

D.2 Adsorbent materials
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Table D.2: Dual-site Langmuir isotherm parameters.

Zeolite 13X [19] UTSA-16 [104] IISERP MOF2 [91]
CO2

qsb (mol kg−1) 3.09 4.08 3.29
qsd (mol kg−1) 2.54 1.29 1.89
b0 (m3 mol−1) 8.65 × 10−7 2.52 × 10−7 9.39 × 10−8

d0 (m3 mol−1) 2.63 × 10−8 1.75 × 10−9 5.23 × 10−7

∆Ub (J mol−1) -36641 -32800 -31135
∆Ud (J mol−1) -35690 -35040 -31135
N2

qsb (mol kg−1) 3.09 1.33 3.29
qsd (mol kg−1) 2.54 1.77 1.89
b0 (m3 mol−1) 2.69 × 10−6 9.17 × 10−5 2.55 × 10−7

d0 (m3 mol−1) 2.69 × 10−6 9.42 × 10−9 2.55 × 10−7

∆Ub (J mol−1) -15710 -7500 -11890
∆Ud (J mol−1) -15710 -27760 -11890

D.3 Technical modelling of vacuum swing adsorption

D.3.1 Design of a unit train

The procedure proposed by Khurana and Farooq [21] was used to determine the col-

umn scheduling. Each train comprises minimum number of columns and vacuum

pumps necessary for a continuous operation. The minimum number of columns per

train was calculated as follows:

N = ceiling

(︄∑︁
i=steps ti

tADS

)︄
(D.1a)

ti represents the duration of step i in the cycle. The minimum number of blowdown/e-

vacuation vacuum pumps required is given by,

NV,j = ceiling

(︄
tj
tADS

)︄
j = blowdown/evacuation (D.1b)

If sum of the individual steps in a cycle is not a multiple of the adsorption time, an idle

step has to be included after evacuation step so that the bed profiles are least affected
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Table D.3: Boundary conditions for the 4-step VSA cycle.

Step z=0 z=L

Adsorption

v|z=0 = vfeed

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

∂T
∂z

⃓⃓
z=0

= −ε v|z=0 ρgCp,g(Tfeed − T |z=0)

P |z=L = PH

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Blowdown

∂P
∂z

⃓⃓
z=0

= 0

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

v|z=L = vvac.pump

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Evacuation

v|z=0 = vvac.pump

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

∂P
∂z

⃓⃓
z=L

= 0

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Light Product Pressurisation

∂P
∂z

⃓⃓
z=0

= 0

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

v|z=L = vADSPADS|z=L

P |z=L

DL
∂yi
∂z

⃓⃓
z=L

= −v|z=L (yi,feed − yi|z=L)

∂T
∂z

⃓⃓
z=L

= −ε v|z=L ρgCpg(Tfeed − T |z=L)

[21]. The duration of an idle step was calculated as follows:

tIDLE = NtADS −
∑︂

i=steps

ti (D.1c)

D.3.2 Parallel trains

A single VSA train might not be sufficient to treat the large volume of flue gas. Hence,

several trains of VSA units in parallel are required to capture 90% CO2 [21, 49]. The

number of parallel trains can be calculated as:

M = ceiling

(︄
Ḟ flue

Ḟ train

)︄
(D.2)

Here Ḟ flue is the total flue gas flow rate in kmol h−1 and Ḟ train is the average molar

flow rate of the feed to each train in kmol h−1. It is worth mentioning that the inlet
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Table D.4: VSA simulation parameters.

Parameter Value
Column properties
Particle diameter, dp (mm) 1.5
Column void fraction, ϵB (-) 0.37
Particle void fraction, ϵP (-) 0.35
Tortuosity, τ (-) 3
Operating conditions
Adsorption pressure, PH (bar) 1.02
Inlet feed composition, yCO2/yN2 (-) 0.2/0.8
Inlet feed temperature, Tfeed (K) 298.15
Physical properties
Adsorbent density, ρs (kg m−3)

Zeolite 13X 1130.0 [19]
UTSA-16 1171.0 [104]
IISERP MOF2 937.7 [91]

Molecular diffusivity, Dm (cm2 s−1) 0.16
Fluid viscosity, µ (cP) 0.0172
Specific heat capacity of adsorbent, Cp,s (J kg−1 K−1)

Zeolite 13X 1070.0
UTSA-16 1070.0
IISERP MOF2 1070.0

Specific heat capacity of gas phase, Cp,g (J mol−1 K−1) 30.7
Specific heat capacity of adsorbed phase, Cp,a (J mol−1 K−1) 30.7
Inside heat transfer coefficient, hin (J m−2 K−1 s−1) 0
Outside heat transfer coefficient, hout (J m−2 K−1 s−1) 0
Effective gas thermal conductivity, Kz (J m−1 K−1 s−1) 0.09
Universal gas constant, R (m3 Pa mol−1 K−1) 8.314

pressure varies over the duration of the adsorption step owing to the constant velocity

boundary condition at the feed end. Therefore, the average molar flow rate of feed to

each train was calculated based on an integral average of the molar flow rate over the

duration of the adsorption step (shown in Eq. E.2e) and then, used to calculate the
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number of parallel trains.

Ḟ train =
1

tADS

∫︂ tADS

0

Ḟ dt (D.3)

D.4 Technical modelling of peripheral units

The implementation of CO2 capture using VSA technology requires several peripheral

units extending from flue gas pre-treatment to CO2 conditioning. In this section, the

technical modeling related to each component unit is discussed below.

Flue gas cooling and drying. The wet flue gas was first cooled to 313.15 K by a direct

contact cooler and then dehydrated using a molecular sieve 3Å [98].

Compressors. Single-stage compressors were modeled as an isoentropic compres-

sion process. The motor efficiency was assumed to be 100%. The energy consumption

was calculated as follows:

EC (Je) =
1

ηC

γ

γ − 1

∫︂ t=tADS

t=0

QP

[︃(︃
P

Pref

)︃ γ−1
γ

− 1

]︃
dt (D.4a)

Here ηC is the compression efficiency which was assumed to be 80%, γ is the adiabatic

constant obtained from a linear regression as a function of CO2 composition (see Fig.

D.2), P is the pressure, Pref is the reference pressure of flue gas, tADS is the adsorption

step time and Q is the volumetric flow rate of the feed mixture.

Vacuum pumps. The energy consumption by a vacuum pump was modeled as an

isentropic expansion process as given by,

EV (Je) =
1

ηV

γ

γ − 1

∫︂ t=tstep

t=0

QP

[︃(︃
Patm

P

)︃ γ−1
γ

− 1

]︃
dt (D.4b)

In the above equation, tstep is the step duration of blowdown/evacuation step, ηV is the

vacuum pump efficiency.
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Heat exchangers. Two identical counter-current heat exchangers were considered to

cool the dry flue gas after compression to 298.15 K. The design was evaluated based

on the cooling duty and the log-mean temperature difference (LMTD) for the counter-

current flow. The dry flue gas represents the hot side of the heat exchangers while the

cooling water is the cold side. To determine the cooling duty, input and output stream

characteristics of the hot dry flue gas were used. While the mass flow rate, input and

output temperatures of the dry flue gas were known, the specific heat capacity was

obtained from the National Institute of Standards and Technology (NIST) REFPROP

v.9 database [142]. The mass flow rate of the cooling water was then determined by

dividing the cooling duty by the heat capacity [142] and an allowable temperature

increase of the cooling water. The inlet and outlet temperatures of cooling water were

set to 283.15 K and 291.5 K, respectively. The heat exchanger area (AEX) was obtained

using,

AEX =
Q̇EX

UEXLMTD
(D.5)

whereQEX is the cooling duty (W) and UEX is the overall heat transfer coefficient which

is assumed to be around 1000 W m−2 K−1 for all process heat exchangers [141].

CO2 conditioning. The CO2 after capture undergoes compression from 1 bar, 298.15

K to offshore pipeline transport conditions at 200 bar and 318.15 K. The CO2 condition-

ing before pipeline transport was modelled as a four-stage compression system with

intercoolers and a pump to deliver the CO2 at desired pressure in Aspen HYSYS. The

readers are referred elsewhere [100] for detailed modeling of CO2 conditioning.

CO2 transport and storage. The costs of the transport and storage are assessed using

the iCCS tool developed by SINTEF Energy Research [131] and previously documented

[143–145]. The transport cost model relies on the pipeline cost model developed by

Knoope et al. [146] and the storage cost model relies on the Zero Emission Platform for

Zero Emission Fossil Fuel Power Plants [147].
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(a) Zeolite 13X

(b) UTSA-16

(c) IISERP MOF2

Figure D.3: Optimal cycle schedules for all three adsorbents.
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Appendix E: Supplementary material
for Chapter 6

E.1 PVSA plant layout

Evacuation 
vacuum pumps

Blowdown 
vacuum pumps

CO2 product to
conditioning

N2 to atmosphere

M trains

Flue gas header

Feed compressors

Inter-coolers

N columns N columns N columns N columns

CO2-containing flue gas

Figure E.1: PVSA process layout [88] that represents the scope of the study.

E.2 MEA-based cost performances
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Table E.1: CO2 avoided costs (¤/tCO2 avoided) obtained for MEA-based CO2 capture at
different CO2 compositions and flue gas flow rates [116]. The steam for MEA-based
CO2 capture is generated using natural gas boiler.

CO2 composition (%)
Flue gas flow rate (tonne h−1)

313 1159 2004 2850 3696
3.5 91.2 78.7 76.8 76.3 75.5
7.5 71.8 65.0 64.8 63.7 63.7
13 62.5 59.2 57.9 57.7 58.2
20 58.8 56.5 55.7 56.0 56.1
30 56.3 55.2 54.8 54.9 54.7

Table E.2: CO2 avoided costs (¤/tCO2 avoided) obtained for MEA-based CO2 capture at
different CO2 compositions and flue gas flow rates [116]. The steam for MEA-based
CO2 capture is generated using process waste heat.

CO2 composition (%)
Flue gas flow rate (tonne h−1)

313 1159 2004 2850 3696
3.5 50.5 40.8 39.4 38.9 38.3
7.5 36.9 31.5 31.3 30.5 30.5
13 30.4 27.8 26.7 26.6 27.0
20 28.1 26.2 25.6 25.9 25.9
30 26.5 25.6 25.4 25.4 25.2

E.3 Techno-economic optimization model

• Technical design basis

• Economic design basis

• PVSA cycle

• Adsorbent properties

NSGA-II algorithm

Process simulator & scheduler

Cost model

• Cost performance limits

• PVSA train configuration

• Process operating conditions

• Ideal adsorption isotherms

• Pellet properties

Inputs Optimization model Outputs

Figure E.2: Integrated techno-economic optimization methodology [88].
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E.3.1 PVSA cycle

Four-step cycle
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ADS

Feed 
(CO2 / N2)

EVAC

N2 Rich

CO2 Rich Product

LPPBLO

N2 Rich

BLO

Cycle Time
tADS tBLO tLPPtEVAC

PL

PH

PIPr
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Figure E.3: Four-step PVSA cycle schematic.
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Six-step DR cycle
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Figure E.4: Six-step DR PVSA cycle schematic.
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E.3.2 Boundary conditions

Table E.3: Boundary conditions used for PVSA cycles.

Step z=0 z=L

Adsorption

v|z=0 = vfeed

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

∂T
∂z

⃓⃓
z=0

= −ε v|z=0 ρgCp,g(Tfeed − T |z=0)

P |z=L = PH

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Blowdown

∂P
∂z

⃓⃓
z=0

= 0

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

v|z=L = v∗BLO

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Evacuation

v|z=0 = vvac.pump

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

∂P
∂z

⃓⃓
z=L

= 0

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Light Product Pressurisation

∂P
∂z

⃓⃓
z=0

= 0

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

v|z=L = vADSPADS|z=L

P |z=L

DL
∂yi
∂z

⃓⃓
z=L

= −v|z=L (yi,feed − yi|z=L)

∂T
∂z

⃓⃓
z=L

= −ε v|z=L ρgCpg(Tfeed − T |z=L)

Heavy Reflux

v|z=0 = vHR

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

∂T
∂z

⃓⃓
z=0

= −ε v|z=0 ρgCp,g(Tfeed − T |z=0)

P |z=L = PH

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Light Reflux

P |z=0 = PL

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

v|z=L = θRvADSPADS|z=L

P |z=L

DL
∂yi
∂z

⃓⃓
z=L

= −v|z=L (yi,feed − yi|z=L)

∂T
∂z

⃓⃓
z=L

= −ε v|z=L ρgCp,g(Tfeed − T |z=L)
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*The velocity boundary condition at z=L for the blowdown step was defined as:

vBLO =

{︄
vvalve if 1 bar < P ≤ PH

vvac.pump else if P ≤ 1 bar
(E.1)

where P is the column pressure at z=L; vvac.pump is the velocity of the vacuum pump

and; vvalve is the velocity of gas leaving blowdown step when PH > 1 bar and modelled

using a valve equation as recommended by Fluids Control Institute Inc [148].

Table E.4: PVSA simulation parameters.

Parameter Value
Column Properties
Column void fraction, ϵB (-) 0.37
Tortuosity, τ (-) 1/ϵp [102]
Operating Conditions
Adsorption pressure, PH (bar) 1.02
Inlet feed temperature, Tfeed (K) 298.15
Physical Properties
Adsorbent crystal density, ρs (kg m−3)

Hypothetical materials 1738.5
Zeolite 13X 1738.5 [19]
IISERP MOF2 1442.6 [91]

Molecular diffusivity, Dm (cm2 s−1) 0.16
Fluid viscosity, µ (cP) 0.0172
Specific heat capacity of adsorbent, Cp,s (J kg−1 K−1) 1070.0
Specific heat capacity of gas phase, Cp,g (J mol−1 K−1) 30.7
Specific heat capacity of adsorbed phase, Cp,a (J mol−1 K−1) 30.7
Inside heat transfer coefficient, hin (J m−2 K−1 s−1) 0
Outside heat transfer coefficient, hout (J m−2 K−1 s−1) 0
Effective gas thermal conductivity, Kz (J m−1 K−1 s−1) 0.09
Universal gas constant, R (m3 Pa mol−1 K−1) 8.314

E.3.3 Column scheduling and parallel trains

Column scheduling was determined based on the procedure proposed by Khurana

and Farooq [21]. The minimum number of columns and vacuum pumps needed in
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each PVSA train for a continuous operation are calculated as follows:

N = ceiling

(︄∑︁
i=steps ti

tADS

)︄
(E.2a)

N is the minimum number of columns per train and ti represents the step duration i in

the cycle. Idle step is included after the evacuation step when the sum of the individual

steps in a cycle is not a multiple of the adsorption time and the idle step duration was

calculated as follows:

tIDLE = NtADS −
∑︂

i=steps

ti (E.2b)

NV,j = ceiling

(︄
tj
tADS

)︄
j = blowdown/evacuation/lightreflux (E.2c)

NV,j is the minimum number of blowdown/evacuation/light reflux vacuum pumps

per train.

The number of PVSA parallel trains are calculated as:

M = ceiling

(︄
Ḟ flue

Ḟ train

)︄
(E.2d)

where Ḟ flue represents the total flue gas flow rate (kmol h−1) and Ḟ train represents the

average molar flow rate of the feed to each train (kmol h−1) defined as follows:

Ḟ train =
1

tADS

∫︂ tADS

0

Ḟ dt (E.2e)

E.4 Modelling of other equipment

Rotating equipment

The energy consumed by compressors was determined by assuming single-stage isoen-

tropic compression with 100% motor efficiency as follows:

EC (Je) =
1

ηC

γ

γ − 1

∫︂ t=tADS

t=0

QP

[︃(︃
P

Pref

)︃ γ−1
γ

− 1

]︃
dt (E.3a)

where ηC=80% is the compression efficiency; γ represents adiabatic constant defined as

a linear function of CO2 composition (see Eq. E.3c) [88]; Q is the volumetric flow rate
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of the feed mixture; P is the pressure; reference pressure Pref=1.02 bar and; tADS is the

adsorption step time.

The vacuum pump energy consumption was calculated assuming an isentropic ex-

pansion process and is given by,

EV (Je) =
1

ηV

γ

γ − 1

∫︂ t=tstep

t=0

QP

[︃(︃
Patm

P

)︃ γ−1
γ

− 1

]︃
dt (E.3b)

ηV is the vacuum pump efficiency defined in Eq. E.3d and; tstep is the step duration of

blowdown/evacuation step.

γ = −0.105yCO2 + 1.395 (E.3c)

ηV =
15.84P

1 + 19.80P
(E.3d)

where P , in bar, is the suction pressure. The efficiency, ηV, includes that of the driver.

Heat exchangers

Counter-current heat exchangers were used to cool the flue gas after compression to

298.15 K. The heat exchanger area was determined using Eq. E.4.

AEX =
Q̇EX

UEXLMTD
(E.4)

where QEX is the cooling duty (W); LMTD is the log-mean temperature difference for

the counter-current flow and; UEX=1000 W m−2 K−1 was assumed for the overall heat

transfer coefficient [88]. It is worth noting that the inlet and outlet temperatures of

cooling water were fixed to 283.15 K and 291.5 K, respectively in order to determine

the cooling duty.

E.5 CO2 avoided cost

The CO2 avoided cost, in¤/tCO2 avoided (where tCO2 avoided is metric tonnes of CO2 avoided)

is defined as shown below:

CO2 Avoided Cost =

∑︁
i

TCRPVSA capture plant (i) + Annual OPEX PVSA capture plant (i)
(1+d)i∑︁

i
Annual amount of CO2 emissions avoided by PVSA capture plant (i)

(1+d)i

(E.5)
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where i is the year index (-). The amount of CO2 emissions avoided by PVSA capture

plant is the difference of annual amount of CO2 captured by PVSA process and direct

emissions due to electricity consumption in the PVSA plant. It is assumed that the elec-

tricity consumed by the PVSA is supplied through a deeply decarbonized power sys-

tem based on a fossil-based power plant with CCS and renewable [88]. Since the direct

emissions due to electricity consumption increase the CO2 avoided cost, the premise

of a deeply decarbonized power system remains consistent, given the goal is to deter-

mine the cost limits of PVSA. Note that CO2 avoided cost excludes CO2 conditioning,

transport and storage [130].

E.6 Optimization

Table E.5: Lower and upper bounds of decision variables used in the optimizations.

Decision variable Lower bound Upper bound
Adsorption time, tADS (s) 50 400
Blowdown vacuum pump flow rate, SB (m3 h−1) 1500 20000
Evacuation vacuum pump flow rate, SE (m3 h−1) 1500 20000
High pressure, PH (bar) 1 3.6
Intermediate pressure, PI (bar) PL + 0.01 0.99
Low pressure, PL (bar) 0.01 0.2
Column length, L (m) 6 9
Reflux fraction, θR (-) 0.008 0.08
Fractional reflux duration, ft (-) 0.1 0.9
Saturation capacity for b site, qsb (mol kg−1) 0.1 8
Saturation capacity for d site, qsd (mol kg−1) 0.1 8
CO2 equilibrium constant for b site, b0,CO2 (m3 mol−1) 1×10−11 1×10−5

CO2 equilibrium constant for d site, d0,CO2 (m3 mol−1) 1×10−11 1×10−5

CO2 internal energy for b site, ∆Ub,CO2 (J mol−1) -7000 -46000
CO2 internal energy for d site, ∆Ud,CO2 (J mol−1) -7000 -46000
N2 equilibrium constant, b0,N2 (m3 mol−1) 1×10−12 1.58×10−6

N2 internal energy, ∆Ub,N2 (J mol−1) -5000 -17000
Pellet porosity, ϵp (-) 0.2 0.8
Pellet diameter, dp (mm) 1 5
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Table E.6: Techno-economic performances of the four-step PVSA cycle optimized for
cost limits at a constant flue gas flow rate of 2004 t h−1 over a range of CO2 composi-
tions. A value of 0.0 indicates that the contribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 111 94 105 142 58
Blowdown pump flow rate (m3 h−1) 1649 1686 1623 2592 3415
Evacuation pump flow rate (m3 h−1) 12143 15004 19234 14699 17523
High pressure (bar) 2.89 2.49 2.06 2.05 1.81
Intermediate pressure (bar) 0.12 0.18 0.32 0.76 0.56
Low pressure (bar) 0.010 0.025 0.030 0.054 0.116
Feed velocity (m s−1) 1.29 1.26 1.36 1.58 1.63
Column length (m) 8.4 8.4 8.7 9.0 8.6
Particle porosity (-) 0.58 0.69 0.69 0.57 0.43
Particle diameter (mm) 4.2 4.8 4.9 4.7 3.6

Train configuration
Number of columns per train (-) 5 4 4 4 4
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 3 2 2 3 2
Number of parallel trains (-) 50 60 59 45 50

Process performance
Purity (%) 95.1 95.3 94.9 95.2 94.9
Recovery (%) 90.1 90.1 92.2 90.6 90.4
Productivity (mol m−3 s−1) 0.98 2.16 3.32 5.84 8.63
Compressor power (MWe) 84.23 68.06 52.81 53.37 44.90
Blowdown power (MWe) 1.59 1.70 1.28 0.59 1.50
Evacuation power (MWe) 64.76 47.74 51.37 41.80 33.70
Overall power consumption (MWe) 150.59 117.50 105.47 95.75 80.09
Specific energy consumption (kWhe/tCO2) 1547.3 576.1 300.3 187.1 109.9

Cost performance
CAPEX (¤/tCO2, avoided) 36.6 16.0 9.4 5.8 3.9

Total direct cost (¤/tCO2, avoided) 22.5 9.9 5.8 3.6 2.4
Column cost (¤/tCO2, avoided) 7.3 3.2 1.9 1.0 0.7
Compressor cost (¤/tCO2, avoided) 9.0 4.0 2.2 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 5.3 2.3 1.5 1.0 0.6
Heat exchanger cost (¤/tCO2, avoided) 0.2 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.6 0.3 0.1 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0

Process contingency (¤/tCO2, avoided) 3.4 1.5 0.9 0.5 0.3
Indirect cost (¤/tCO2, avoided) 3.6 1.6 0.9 0.6 0.4
Project contingency (¤/tCO2, avoided) 5.2 2.2 1.3 0.8 0.6
Owner cost (¤/tCO2, avoided) 1.8 0.8 0.5 0.3 0.2

OPEX (¤/tCO2, avoided) 114.1 42.3 22.3 13.9 8.3
Fixed OPEX (¤/tCO2, avoided) 17.7 7.8 4.5 2.8 1.9
Electricity cost (¤/tCO2, avoided) 95.5 34.2 17.6 11.0 6.4
Adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0
Cooling water cost (¤/tCO2, avoided) 0.9 0.3 0.2 0.1 0.0

CO2 avoided cost (¤/tCO2, avoided) 150.7 58.3 31.7 19.7 12.2
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Table E.7: Techno-economic performances of the four-step PVSA cycle optimized for
cost limits with PL ≥ 0.1 bar at a constant flue gas flow rate of 2004 t h−1 over a range
of CO2 compositions. A value of 0.0 indicates that the contribution was less than 0.1
¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) - - 64 80 67
Blowdown pump flow rate (m3 h−1) - - 5167 2001 2762
Evacuation pump flow rate (m3 h−1) - - 11784 10430 14236
High pressure (bar) - - 3.59 3.13 2.52
Intermediate pressure (bar) - - 0.26 0.51 0.87
Low pressure (bar) - - 0.10 0.12 0.14
Feed velocity (m s−1) - - 0.89 0.93 1.49
Column length (m) - - 9.0 9.0 8.3
Particle porosity (-) - - 0.47 0.66 0.50
Particle diameter (mm) - - 2.3 3.4 4.5

Train configuration
Number of columns per train (-) - - 4 4 4
Blowdown pumps per train (-) - - 1 1 1
Evacuation pumps per train (-) - - 2 2 2
Number of parallel trains (-) - - 50 54 45

Process performance
Purity (%) - - 95.0 94.9 94.9
Recovery (%) - - 90.3 90.6 90.4
Productivity (mol m−3 s−1) - - 3.55 4.85 10.43
Compressor power (MWe) - - 96.37 78.33 61.65
Blowdown power (MWe) - - 4.40 1.12 0.39
Evacuation power (MWe) - - 32.09 26.20 25.37
Overall power consumption (MWe) - - 132.87 105.65 87.41
Specific energy consumption (kWhe/tCO2) - - 386.45 206.46 119.96

Cost performance
CAPEX (¤/tCO2, avoided) - - 8.8 5.8 3.6

Total direct cost (¤/tCO2, avoided) - - 5.4 3.6 2.2
Column cost (¤/tCO2, avoided) - - 1.7 1.2 0.7
Compressor cost (¤/tCO2, avoided) - - 2.4 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) - - 1.1 0.7 0.5
Heat exchanger cost (¤/tCO2, avoided) - - 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) - - 0.1 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) - - 0.0 0.0 0.0

Process contingency (¤/tCO2, avoided) - - 0.8 0.5 0.3
Indirect cost (¤/tCO2, avoided) - - 0.9 0.6 0.4
Project contingency (¤/tCO2, avoided) - - 1.3 0.8 0.5
Owner cost (¤/tCO2, avoided) - - 0.4 0.3 0.2

OPEX (¤/tCO2, avoided) - - 27.4 15.1 8.8
Fixed OPEX (¤/tCO2, avoided) - - 4.3 2.8 1.7
Electricity cost (¤/tCO2, avoided) - - 22.8 12.1 7.0
Adsorbent cost (¤/tCO2, avoided) - - 0.0 0.0 0.0
Cooling water cost (¤/tCO2, avoided) - - 0.3 0.2 0.1

CO2 avoided cost (¤/tCO2, avoided) - - 36.2 20.9 12.4
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Table E.8: Techno-economic performances of the four-step PVSA cycle optimized for
cost limits with fixed pellet properties at a constant flue gas flow rate of 2004 t h−1 over
a range of CO2 compositions. A value of 0.0 indicates that the contribution was less
than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 103 155 86 103 123
Blowdown pump flow rate (m3 h−1) 5139 2552 2360 1731 1693
Evacuation pump flow rate (m3 h−1) 6190 8326 12957 11663 16125
High pressure (bar) 3.50 2.62 2.14 2.00 2.76
Intermediate pressure (bar) 0.06 0.17 0.22 0.40 0.84
Low pressure (bar) 0.016 0.023 0.055 0.074 0.17
Feed velocity (m s−1) 0.75 0.83 0.88 0.89 0.78
Column length (m) 8.9 8.5 9.0 9.0 8.6
Particle porosity (-) 0.35 0.35 0.35 0.35 0.35
Particle diameter (mm) 1.5 1.5 1.5 1.5 1.5

Train configuration
Number of columns per train (-) 6 5 4 4 3
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 4 3 2 2 1
Number of parallel trains (-) 60 76 72 74 72

Process performance
Purity (%) 95.1 94.9 95.1 94.9 94.9
Recovery (%) 90.1 90.9 89.9 90.6 90.2
Productivity (mol m−3 s−1) 0.56 1.33 2.44 3.56 7.91
Compressor power (MWe) 105.14 81.49 67.28 58.57 70.01
Blowdown power (MWe) 7.67 3.43 2.66 1.53 0.47
Evacuation power (MWe) 57.70 53.44 41.65 35.89 23.00
Overall power consumption (MWe) 170.51 138.36 111.59 95.99 93.47
Specific energy consumption (kWhe/tCO2) 1752.4 672.54 325.80 187.52 128.52

Cost performance
CAPEX (¤/tCO2, avoided) 46.5 20.9 10.6 6.9 3.8

Total direct cost (¤/tCO2, avoided) 28.7 12.9 6.5 4.3 2.4
Column cost (¤/tCO2, avoided) 11.6 5.1 2.4 1.7 0.8
Compressor cost (¤/tCO2, avoided) 9.4 4.0 2.3 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 6.5 3.2 1.5 1.0 0.4
Heat exchanger cost (¤/tCO2, avoided) 0.3 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.9 0.4 0.2 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0

Process contingency (¤/tCO2, avoided) 4.3 1.9 1.0 0.6 0.4
Indirect cost (¤/tCO2, avoided) 4.6 2.1 1.1 0.7 0.4
Project contingency (¤/tCO2, avoided) 6.6 3.0 1.5 1.0 0.5
Owner cost (¤/tCO2, avoided) 2.3 1.0 0.5 0.3 0.2

OPEX (¤/tCO2, avoided) 132.6 50.5 24.5 14.5 9.5
Fixed OPEX (¤/tCO2, avoided) 22.4 10.0 5.1 3.4 1.9
Electricity cost (¤/tCO2, avoided) 109.1 40.1 19.2 11.0 7.5
Adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0
Cooling water cost (¤/tCO2, avoided) 1.1 0.4 0.2 0.1 0.1

CO2 avoided cost (¤/tCO2, avoided) 179.1 71.4 35.1 21.4 13.3
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Table E.9: Techno-economic performances of the four-step PVSA cycle optimized for
cost limits with an adsorbent cost of 1500 ¤ per tonne at a constant flue gas flow rate
of 2004 t h−1 over a range of CO2 compositions. A value of 0.0 indicates that the con-
tribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 164 100 64 112 74
Blowdown pump flow rate (m3 h−1) 1727 1768 2881 2586 2520
Evacuation pump flow rate (m3 h−1) 17589 19296 19330 14063 14293
High pressure (bar) 3.07 2.57 2.08 2.96 2.35
Intermediate pressure (bar) 0.14 0.21 0.25 0.69 0.71
Low pressure (bar) 0.011 0.019 0.042 0.102 0.144
Feed velocity (m s−1) 1.11 1.24 1.47 1.11 1.34
Column length (m) 8.9 9.0 8.7 8.6 8.8
Particle porosity (-) 0.72 0.68 0.61 0.64 0.65
Particle diameter (mm) 4.9 4.5 4.5 4.1 5.0

Train configuration
Number of columns per train (-) 4 4 4 4 4
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 2 2 2 2 2
Number of parallel trains (-) 51 51 53 52 49

Process performance
Purity (%) 95.0 94.9 94.9 94.9 94.9
Recovery (%) 90.2 91.6 91.1 90.0 90.9
Productivity (mol m−3 s−1) 1.01 2.07 3.71 5.74 8.13
Compressor power (MWe) 85.22 71.12 55.99 74.63 54.80
Blowdown power (MWe) 1.68 1.47 2.24 0.92 0.76
Evacuation power (MWe) 67.11 54.78 45.67 33.96 27.87
Overall power consumption (MWe) 154.00 127.38 103.90 109.51 83.43
Specific energy consumption (kWhe/tCO2) 1581.20 614.41 299.47 215.31 113.84

Cost performance
CAPEX (¤/tCO2, avoided) 36.4 16.6 9.9 6.3 4.2

Total direct cost (¤/tCO2, avoided) 22.5 10.3 6.1 3.9 2.6
Column cost (¤/tCO2, avoided) 6.4 2.9 1.7 1.1 0.8
Compressor cost (¤/tCO2, avoided) 9.1 4.0 2.2 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 4.6 2.2 1.4 0.8 0.5
Heat exchanger cost (¤/tCO2, avoided) 0.2 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.5 0.2 0.1 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 1.6 0.9 0.6 0.3 0.2

Process contingency (¤/tCO2, avoided) 3.4 1.5 0.9 0.6 0.4
Indirect cost (¤/tCO2, avoided) 3.6 1.7 1.0 0.6 0.4
Project contingency (¤/tCO2, avoided) 5.2 2.4 1.4 0.9 0.6
Owner cost (¤/tCO2, avoided) 1.8 0.8 0.5 0.3 0.2

OPEX (¤/tCO2, avoided) 118.6 46.3 23.4 16.3 9.0
Fixed OPEX (¤/tCO2, avoided) 17.6 8.1 4.8 3.1 2.0
Electricity cost (¤/tCO2, avoided) 97.7 36.6 17.6 12.6 6.6
Adsorbent cost (¤/tCO2, avoided) 2.3 1.2 0.8 0.5 0.3
Cooling water cost (¤/tCO2, avoided) 0.9 0.4 0.2 0.1 0.1

CO2 avoided cost (¤/tCO2, avoided) 155.0 62.9 33.3 22.6 13.2
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Table E.10: Techno-economic performances of the four-step PVSA cycle optimized for
cost limits with an adsorbent cost of 4500 ¤ per tonne at a constant flue gas flow rate
of 2004 t h−1 over a range of CO2 compositions. A value of 0.0 indicates that the con-
tribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 198 110 122 137 95
Blowdown pump flow rate (m3 h−1) 1610 1934 5165 2520 2387
Evacuation pump flow rate (m3 h−1) 12281 18082 19283 14063 14313
High pressure (bar) 3.37 2.42 2.43 2.98 2.70
Intermediate pressure (bar) 0.14 0.21 0.39 0.75 0.96
Low pressure (bar) 0.016 0.020 0.043 0.098 0.156
Feed velocity (m s−1) 0.87 1.30 1.28 1.07 1.18
Column length (m) 8.8 8.7 8.8 8.9 8.9
Particle porosity (-) 0.80 0.69 0.68 0.70 0.69
Particle diameter (mm) 4.7 4.9 4.8 4.6 5.0

Train configuration
Number of columns per train (-) 4 4 4 3 4
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 2 2 2 2 2
Number of parallel trains (-) 62 55 53 51 48

Process performance
Purity (%) 95.2 94.9 95.1 94.9 94.9
Recovery (%) 90.1 91.0 90.3 90.2 90.2
Productivity (mol m−3 s−1) 0.85 2.10 3.50 7.01 7.87
Compressor power (MWe) 90.59 66.19 63.91 73.99 63.37
Blowdown power (MWe) 1.96 1.69 3.44 0.69 0.15
Evacuation power (MWe) 57.61 53.17 48.97 33.49 26.97
Overall power consumption (MWe) 150.16 121.05 116.32 108.17 90.49
Specific energy consumption (kWhe/tCO2) 1543.30 587.48 338.03 212.32 124.49

Cost performance
CAPEX (¤/tCO2, avoided) 40.9 18.3 10.9 6.0 4.5

Total direct cost (¤/tCO2, avoided) 25.2 11.3 6.7 3.7 2.8
Column cost (¤/tCO2, avoided) 7.8 3.0 1.8 0.9 0.8
Compressor cost (¤/tCO2, avoided) 9.1 4.0 2.3 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 4.7 2.3 1.5 0.8 0.5
Heat exchanger cost (¤/tCO2, avoided) 0.3 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.6 0.3 0.1 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 2.8 1.6 1.0 0.5 0.4

Process contingency (¤/tCO2, avoided) 3.8 1.7 1.0 0.6 0.4
Indirect cost (¤/tCO2, avoided) 4.1 1.8 1.1 0.6 0.4
Project contingency (¤/tCO2, avoided) 5.8 2.6 1.5 0.9 0.6
Owner cost (¤/tCO2, avoided) 2.0 0.9 0.5 0.3 0.2

OPEX (¤/tCO2, avoided) 119.9 46.4 26.8 16.2 10.2
Fixed OPEX (¤/tCO2, avoided) 19.7 8.8 5.3 2.9 2.2
Electricity cost (¤/tCO2, avoided) 95.3 34.9 19.9 12.4 7.3
Adsorbent cost (¤/tCO2, avoided) 3.9 2.3 1.4 0.7 0.6
Cooling water cost (¤/tCO2, avoided) 1.0 0.3 0.2 0.1 0.1

CO2 avoided cost (¤/tCO2, avoided) 160.8 64.7 37.7 22.2 14.7
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Table E.11: Techno-economic performances of the four-step PVSA cycle optimized for
the minimum CO2 avoided cost with Zeolite 13X as an adsorbent at a constant flue gas
flow rate of 2004 t h−1 over a range of CO2 compositions. A value of 0.0 indicates that
the contribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 185 217 122 133 104
Blowdown pump flow rate (m3 h−1) 5738 12317 9659 7948 5540
Evacuation pump flow rate (m3 h−1) 2461 11418 13646 16748 19000
High pressure (bar) 3.65 1.78 2.89 2.01 2.61
Intermediate pressure (bar) 0.028 0.057 0.129 0.266 0.459
Low pressure (bar) 0.010 0.011 0.035 0.036 0.087
Feed velocity (m s−1) 0.92 1.30 1.05 1.49 1.23
Column length (m) 8.9 8.9 9.0 8.7 8.7
Particle porosity (-) 0.69 0.69 0.65 0.63 0.52
Particle diameter (mm) 3.8 4.0 3.6 4.8 3.5

Train configuration
Number of columns per train (-) 26 8 7 6 5
Blowdown pumps per train (-) 2 1 1 1 1
Evacuation pumps per train (-) 23 6 4 4 3
Number of parallel trains (-) 53 68 53 52 46

Process performance
Purity (%) 94.3 95.2 94.9 94.9 95.2
Recovery (%) 89.6 89.9 91.0 90.9 90.6
Productivity (mol m−3 s−1) 0.15 0.79 1.91 3.73 7.09
Compressor power (MWe) 100.85 47.67 78.20 51.78 66.06
Blowdown power (MWe) 17.49 15.50 9.91 6.00 2.88
Evacuation power (MWe) 141.86 113.53 82.51 77.1 60.76
Overall power consumption (MWe) 260.21 176.70 170.62 134.90 129.69
Specific energy consumption (kWhe/tCO2) 2687.2 867.9 492.3 262.7 177.6

Cost performance
CAPEX (¤/tCO2, avoided) 150.2 34.8 14.9 9.0 5.2

Total direct cost (¤/tCO2, avoided) 92.6 21.4 9.2 5.5 3.2
Column cost (¤/tCO2, avoided) 46.4 7.8 3.2 1.7 0.9
Compressor cost (¤/tCO2, avoided) 9.7 4.0 2.3 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 20.1 6.8 2.3 1.7 0.8
Heat exchanger cost (¤/tCO2, avoided) 0.3 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 3.6 0.6 0.3 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 12.5 2.2 1.0 0.6 0.4

Process contingency (¤/tCO2, avoided) 13.9 3.2 1.4 0.8 0.5
Indirect cost (¤/tCO2, avoided) 14.9 3.5 1.5 0.9 0.5
Project contingency (¤/tCO2, avoided) 21.3 4.9 2.1 1.3 0.7
Owner cost (¤/tCO2, avoided) 7.5 1.7 0.7 0.4 0.3

OPEX (¤/tCO2, avoided) 263.9 72.1 37.9 20.6 13.5
Fixed OPEX (¤/tCO2, avoided) 71.1 16.6 7.1 4.3 2.5
Electricity cost (¤/tCO2, avoided) 173.9 52.1 29.1 15.4 10.4
Adsorbent cost (¤/tCO2, avoided) 17.8 3.1 1.4 0.8 0.5
Cooling water cost (¤/tCO2, avoided) 1.1 0.3 0.2 0.1 0.1

CO2 avoided cost (¤/tCO2, avoided) 414.1 106.9 52.8 29.6 18.7

261



Table E.12: Techno-economic performances of the four-step PVSA cycle optimized for
the minimum CO2 avoided cost with IISERP MOF2 as an adsorbent at a constant flue
gas flow rate of 2004 t h−1 over a range of CO2 compositions. A value of 0.0 indicates
that the contribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 106 135 80 91 52
Blowdown pump flow rate (m3 h−1) 5365 3440 3000 1883 4284
Evacuation pump flow rate (m3 h−1) 19752 17503 15983 17057 14607
High pressure (bar) 2.76 2.68 2.48 2.70 2.50
Intermediate pressure (bar) 0.08 0.24 0.28 0.58 0.69
Low pressure (bar) 0.011 0.024 0.050 0.076 0.132
Feed velocity (m s−1) 1.21 1.15 1.21 1.23 1.47
Column length (m) 8.8 8.9 8.9 8.9 7.8
Particle porosity (-) 0.67 0.73 0.64 0.67 0.54
Particle diameter (mm) 4.5 4.9 4.0 4.8 4.8

Train configuration
Number of columns per train (-) 4 4 4 4 4
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 2 2 2 2 2
Number of parallel trains (-) 52 55 54 48 52

Process performance
Purity (%) 95.1 95.1 95.0 95.1 95.0
Recovery (%) 90.0 90.0 90.7 91.2 91.0
Productivity (mol m−3 s−1) 1.02 1.97 3.43 5.68 10.91
Compressor power (MWe) 78.55 72.70 66.56 68.41 60.28
Blowdown power (MWe) 5.63 2.99 2.37 0.79 1.47
Evacuation power (MWe) 71.38 54.56 41.59 38.46 31.69
Overall power consumption (MWe) 155.57 130.25 110.53 107.65 93.44
Specific energy consumption (kWhe/tCO2) 1601.00 639.26 319.95 208.86 127.35

Cost performance
CAPEX (¤/tCO2, avoided) 40.1 18.2 10.6 6.5 4.4

Total direct cost (¤/tCO2, avoided) 24.7 11.2 6.5 4.0 2.7
Column cost (¤/tCO2, avoided) 6.5 3.2 1.8 1.1 0.7
Compressor cost (¤/tCO2, avoided) 9.0 4.0 2.3 1.5 1.0
Vacuum pump cost (¤/tCO2, avoided) 5.4 2.4 1.3 0.8 0.6
Heat exchanger cost (¤/tCO2, avoided) 0.2 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.5 0.3 0.1 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 3.1 1.3 0.9 0.5 0.4

Process contingency (¤/tCO2, avoided) 3.7 1.7 1.0 0.6 0.4
Indirect cost (¤/tCO2, avoided) 4.0 1.8 1.0 0.6 0.4
Project contingency (¤/tCO2, avoided) 5.7 2.6 1.5 0.9 0.6
Owner cost (¤/tCO2, avoided) 2.0 0.9 0.5 0.3 0.2

OPEX (¤/tCO2, avoided) 123.6 49.0 25.4 16.2 10.2
Fixed OPEX (¤/tCO2, avoided) 19.4 8.8 5.1 3.1 2.2
Electricity cost (¤/tCO2, avoided) 99.0 38.1 18.8 12.2 7.4
Adsorbent cost (¤/tCO2, avoided) 4.4 1.8 1.3 0.8 0.5
Cooling water cost (¤/tCO2, avoided) 0.9 0.3 0.2 0.1 0.1

CO2 avoided cost (¤/tCO2, avoided) 163.7 67.2 36.0 22.7 14.6
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Table E.13: Techno-economic performances of the six-step DR PVSA cycle optimized
for cost limits at a constant flue gas flow rate of 2004 t h−1 over a range of CO2 compo-
sitions. A value of 0.0 indicates that the contribution was less than 0.1 ¤/tCO2, avoided.

3.5% 7.5% 13% 20% 30%
Operating conditions

Adsorption time (s) 260 268 174 112 71
Blowdown pump flow rate (m3 h−1) 1701 1812 1663 5115 1694
Evacuation pump flow rate (m3 h−1) 7071 11380 14155 19852 13287
LR pump flow rate (m3 h−1) 19752 19761 18954 17841 15109
High pressure (bar) 1.45 1.49 1.16 1.13 1.23
Intermediate pressure (bar) 0.36 0.62 0.69 0.74 0.90
Low pressure (bar) 0.12 0.11 0.14 0.16 0.22
Feed velocity (m s−1) 2.01 1.98 2.23 2.25 2.36
Reflux time (s) 234 239 154 99 64
Reflux fraction (-) 0.06 0.05 0.08 0.07 0.07
Column length (m) 9.0 8.8 8.4 8.7 8.9
Particle porosity (-) 0.57 0.56 0.53 0.53 0.41
Particle diameter (mm) 5.0 5.0 4.8 4.9 4.9

Train configuration
Number of columns per train (-) 4 4 4 4 5
Blowdown pumps per train (-) 1 1 1 1 1
Evacuation pumps per train (-) 1 1 1 1 2
LR pumps per train (-) 1 1 1 1 1
HR blowers per train (-) 1 1 1 1 1
Number of parallel trains (-) 44 47 51 49 39

Process performance
Purity (%) 95.0 95.3 96.0 95.1 94.9
Recovery (%) 92.1 94.0 91.9 94.1 92.7
Productivity (mol m−3 s−1) 1.16 2.48 4.30 6.05 7.97
Compressor power (MWe) 48.18 45.58 34.71 27.80 31.47
Blowdown power (MWe) 0.89 0.62 0.51 1.32 0.15
Evacuation power (MWe) 5.76 9.62 12.14 16.03 15.85
LR power (MWe) 16.64 17.78 17.11 15.45 10.70
HR power (MWe) 2.40 2.72 1.47 1.30 2.25
Overall power consumption (MWe) 73.86 76.32 65.95 61.90 60.43

Cost performance
CAPEX (¤/tCO2, avoided) 28.3 13.5 8.3 5.5 3.8

Total direct cost (¤/tCO2, avoided) 17.5 8.3 5.1 3.4 2.3
Column cost (¤/tCO2, avoided) 5.1 2.5 1.5 1.0 0.7
Compressor cost (¤/tCO2, avoided) 8.2 3.7 2.2 1.4 0.9
Vacuum pump cost (¤/tCO2, avoided) 3.2 1.7 1.2 0.9 0.5
Heat exchanger cost (¤/tCO2, avoided) 0.2 0.1 0.1 0.0 0.0
Valves cost (¤/tCO2, avoided) 0.6 0.3 0.2 0.1 0.1
Initial adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0

Process contingency (¤/tCO2, avoided) 2.6 1.2 0.8 0.5 0.3
Indirect cost (¤/tCO2, avoided) 2.8 1.3 0.8 0.5 0.4
Project contingency (¤/tCO2, avoided) 4.0 1.9 1.2 0.8 0.5
Owner cost (¤/tCO2, avoided) 1.4 0.7 0.4 0.3 0.2

OPEX (¤/tCO2, avoided) 58.8 27.9 15.2 9.5 6.6
Fixed OPEX (¤/tCO2, avoided) 13.8 6.6 4.0 2.7 1.8
Electricity cost (¤/tCO2, avoided) 44.4 21.1 11.0 6.8 4.7
Adsorbent cost (¤/tCO2, avoided) 0.0 0.0 0.0 0.0 0.0
Cooling water cost (¤/tCO2, avoided) 0.5 0.2 0.1 0.1 0.0

CO2 avoided cost (¤/tCO2, avoided) 87.1 41.4 23.5 15.0 10.4
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Figure E.5: Optimal adsorbent properties corresponding to the cost limits of six-step
DR cycle.(a)-(e) show the optimal CO2 adsorption isotherms at different CO2 composi-
tions. Box and whisker plots in (a)-(e) represent the range of CO2 adsorption isotherms
in the 5% vicinity of the lowest possible CO2 avoided cost. (f) show the optimal N2

adsorption isotherms at different CO2 compositions. For comparison CO2 and N2 ad-
sorption isotherms of Zeolite 13X (black lines) and IISERP MOF2 (green lines) are also
shown in (a)-(e) and (f), respectively. (g) and (h) illustrate the optimal pellet porosity
and diameter, respectively, corresponding to the cost limits of six-step DR cycle.
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Figure E.6: Sample optimal cycle schedules corresponding to the cost limits of (a) four-
step cycle and (b) six-step DR cycle at 20% CO2 composition and 2004 t h−1 flue gas
flow rate.
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PVSA cycle for a fixed CO2 composition of 20%.
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Table E.14: Summary of train configuration and techno-economic performances of the
four-step PVSA cycle optimized for cost limits at 20% CO2 composition over a range
of flue gas flow rates.

Flue gas flow rate (tonne h−1) 313 1159 2004 2850 3696
Column length (m) 8.7 8.9 9.0 8.9 9.0
Number of columns per train (-) 4 5 4 4 4
Number of parallel trains (-) 8 23 45 64 79
Purity (%) 94.9 95.0 95.2 95.0 94.9
Recovery (%) 91.2 90.7 90.6 90.9 90.6
Productivity (mol m−3 s−1) 5.74 5.35 5.84 5.92 6.10
Overall power consumption (MWe) 15.59 56.42 95.75 144.97 180.16
CO2 avoided cost (¤/tCO2, avoided) 21.6 20.0 19.7 19.7 19.6
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