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Abstract

A practical challenge in reinforcement learning is large action spaces that make plan-

ning computationally demanding. For example, in cooperative multi-agent reinforce-

ment learning, a potentially large number of agents jointly optimize a global reward

function, which leads to a blow-up in the action space as the number of agents in-

creases. Building on recent work in planning with local access to a simulator and

linear function approximation, we propose efficient algorithms for this setting that

lead to polynomial compute and query complexity in all relevant problem parame-

ters. As a minimal requirement, we assume access to an argmax oracle that allows

to efficiently compute the greedy policy for any q-function in the model class. For

the special case where the feature decomposition is additive, we further improve the

bounds if the dimension of the feature space is large relative to the number of additive

terms in the feature decomposition. To the best of our knowledge, this work provides

the first computationally efficient algorithms with theoretical guarantees for the re-

inforcement learning problem, when the action space is large and we have access to

a simulator.
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Chapter 1

Introduction

Reinforcement learning (RL) is concerned with training agents to make near-optimal

decisions in interactive environments. An agent interacts with an environment by

choosing actions and observing its state and a reward signal. The goal is to learn an

near-optimal policy that maximizes the total reward. Efficiently computing optimal

policies is therefore at the heart of any reinforcement learning algorithm.

Recent works have successfully applied reinforcement learning algorithms to com-

plex domains including video games (Mnih et al., 2013), tokamak plasmas control

(Degrave et al., 2022), robotic manipulation tasks (Akkaya et al., 2019), to name a

few. A common theme of these works is that the agent is trained on a simulated

environment. This provides additional flexibility on how the agent can interact with

the environment. A reasonable assumption is that the internal state of the simulator

can be saved (‘checkpointing’) and later revisited. When the agent has access to a

simulator of the environment and its objective is to compute a near-optimal policy it

is known as planning.

In this thesis, we formally study efficient planning with local access to a simulator.

The local access model was recently proposed by Yin et al. (2021) with the goal

of making the simulation access model more practical in applications. Local access

means that the only states at which the planner can query the simulator are the initial
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state or states returned in response to previously issued queries. Efficient planning

means that given an initial state, the learner outputs a near-optimal policy using

polynomial compute and queries in all relevant parameters.

Motivated by the increasing complexity of applications, we specifically study the

case where the state space is large. To avoid the query complexity scaling with

the size of the state space, it is standard to introduce linear function approximation

(e.g., Bertsekas and Ioffe, 1996; Lagoudakis and Parr, 2003; Munos, 2005; Lattimore

et al., 2020). In particular, we assume linear ϵ-realizability of joint state-action value

functions for all policies. This is motivated by the recent realization that realiz-

ability of the optimal state-action value function alone is not sufficient to develop

a query-efficient planner (Weisz et al., 2021). However, even under our realizability

assumptions, previous approaches are not computationally efficient in the case where

the action space is large, since their computational complexity scales with the number

of actions (Yin et al., 2021; Hao et al., 2022; Weisz et al., 2022). Therefore, we work

with a minimal oracle assumption that allows us to compute the greedy policy for

any q-function in the model class (which amounts to solving a linear optimization

over the action space).

One prominent special case of this setting is multi-agent reinforcement learning.

Multi-agent reinforcement learning has been a recent research focus with multiple

promising attempts at tackling complex multi-agent problems, e.g., team games

(Baker et al., 2019), large scale traffic signal control (Chu et al., 2019), cooperative

controls in powergrids (Chen et al., 2021a) among others. Naively applying single-

agent planning algorithms fails to achieve efficiency in the multi-agent setting because

the single-agent algorithms typically face an exponential blow-up of the action space

in the number agents. In many practical tasks, however, there is an inherent struc-

ture in the underlying dynamics that can be exploited to address both efficiency and

scalability issues.
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Contributions Our first contribution is a novel oracle-efficient variant of the Con-

fident Monte-Carlo least-squares policy iteration (Confident MC-LSPI) algorithm

by Yin et al. (2021), for large action spaces. The key insight is an efficient implemen-

tation of the uncertainty check, that determines the diversity of the state and action

set used for estimation. We also study a special case where the q-function has an

additive structure in the features (formally introduced in Assumption 4), which leads

to improved bounds in the regime where the dimension is large. In the multi-agent

setting, the decomposition corresponds to agent-specific features, and the proposed

algorithms achieve polynomial compute and query complexity in the number of agents

and other quantities of interest. The additive structure also leads to an efficient imple-

mentation of the Confident MC-Politex algorithm that admits improved bounds

in the misspecified setting.

A note on more recent work This thesis is based on extending the results from

Yin et al. (2021) to large action spaces. At the time when the results in this the-

sis were developed, the work by Yin et al. (2021) provided the best results for the

local access simulator setting. More recently, Weisz et al. (2022) have introduced a

new algorithm CAPI-QPI-PLAN with better sample complexity and suboptimality

guarantees than that of Yin et al. (2021). As such, it may be possible that our ap-

proach can be applied to the work of Weisz et al. (2022), extending it to large action

spaces as well. However, due to the recency of CAPI-QPI-PLAN, we have not had

the time to investigate this idea yet.
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Chapter 2

Related Works

Computing optimal policies, also known as planning, is a central challenge in re-

inforcement learning (Sutton and Barto, 2018; Szepesvári, 2010). The two most

classical planning algorithms are value iteration (Bellman, 1957) and policy iteration

(Howard, 1960). Approximate versions of value and policy iteration were analyzed

by Munos (2003, 2005) and Farahmand et al. (2010). A common setting is planning

with a generative model (also global simulator access), where the learner can query

the transition kernel at any state and action (Kakade, 2003). In the corresponding

tabular setting the query complexity of value and policy iteration are completely un-

derstood (e.g., Azar et al., 2012; Gheshlaghi Azar et al., 2013). When combined with

function approximation, the picture becomes more nuanced. A lower bound under

misspecification was provided by Du et al. (2019), Lattimore et al. (2020), and Weisz

et al. (2022). Sample complexity bounds for least-squares policy iteration (Bertsekas

and Ioffe, 1996; Lagoudakis and Parr, 2003) are by Lattimore et al. (2020). The lat-

ter work combines a G-experimental design over state-action pairs with Monte-Carlo

rollouts to obtain value estimates for the policies. In similar fashion, least-squares

value iteration (LSVI) was analyzed in the generative model setting (Agarwal et al.,

2020a). Yet another approach is Politex (Abbasi-Yadkori et al., 2019; Szepesvári,

2022a), which uses mirror descent to improve the policy.

4



A much larger body of work focuses on the online setting, where the learner inter-

acts with the environment in one or multiple episodes. Early work that uses function

approximation includes (Bradtke and Barto, 1996; Melo and Ribeiro, 2007). Recent

works provide query complexity guarantees under various models (Osband et al., 2016;

Yang et al., 2020; Ayoub et al., 2020; Zanette et al., 2020; Du et al., 2021; Zhou et al.,

2021). This includes approaches that are computationally efficient for small action

sets (Jin et al., 2020; Agarwal et al., 2020b). We are not aware of provably query

efficient algorithms with only linear qπ-realizability (Assumption 1) for the online set-

ting. Abbasi-Yadkori et al. (2019); Lazic et al. (2021); Wei et al. (2021) prove bounds

with a feature excitation condition, although these works do not consider large action

sets. Negative results under weaker assumptions are known, e.g. for q∗-realizability

(Weisz et al., 2021) and approximate qπ-realizability (Du et al., 2019).

Recently, Yin et al. (2021) introduced the local access model, in which the learner

can query the simulator at the initial state or any state encountered during planning.

They further introduce a Monte-Carlo policy iteration algorithm that provides the

basis of our work. Different to this previous work, we consider the large action set

setting, and provide new algorithms that avoid scaling of the computational com-

plexity with the size of the action set. Least-squares value iteration with local access

was analyzed by Hao et al. (2022). For a detailed discussion on different simulators

models we refer the reader to Yin et al. (2021).

Relatively few related works on computationally efficient planning in MDPs are

concerned with large action spaces. This topic has received attention in the context

of factored MDPs in planning (Dean et al., 1998; Geißer et al., 2020; Raghavan et al.,

2012), online RL (Osband and Van Roy, 2014; Xu and Tewari, 2020; Tian et al.,

2020; Chen et al., 2020) and in the empirical literature (Delarue et al., 2020; Hubert

et al., 2021) with applications to vehicle routing and control problems. We are not

aware of prior work with query complexity guarantees for MDPs with large action sets,
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however there is a long line of works on combinatorial bandits (e.g., Cesa-Bianchi and

Lugosi, 2012; Chen et al., 2013; Shleyfman et al., 2014; Combes et al., 2015; Jourdan

et al., 2021). Relevant in this context are also kernelized bandit algorithms (Bayesian

optimization) that exploit additive structure of the reward function (Kandasamy

et al., 2015; Wang et al., 2019; Kirschner and Krause, 2021; Mutny and Krause,

2018; Rolland et al., 2018). We consider a similar assumption in Section 5.4 as a

special case.

Multi-agent reinforcement learning (Busoniu et al., 2008; Zhang et al., 2021) can

be understood as an RL problem with a large action space, due to the combinatorial

joint action space of the agents, which has a large body of works on its own. Query

complexity bounds focus mostly on the competitive setting, where each agent aims

to maximize their own reward and the objective is to reach various forms of equilib-

rium (Nash, correlated, coarse-correlated). An example is in tabular Markov games

(Shapley, 1953; Song et al., 2021; Tian et al., 2021; Bai and Jin, 2020; Liu et al.,

2021; Leonardos et al., 2021)). One of the key challenges is the exponential blowup

in the action space with the number of agents, which is sometimes refered to as ‘curse

of multi-agents’. Jin et al. (2021) introduce a computationally efficient algorithm for

tabular Markov games. Multi-agent reinforcement learning with function approxima-

tion is studied by Huang et al. (2021); Chen et al. (2021b); Jin et al. (2020). These

works consider the competitive setting and focus on obtaining query efficient algo-

rithms, while the approaches are not computationally tractable. In the limit where

the number of agents becomes large, previous work uses mean-field approximations

(Yang et al., 2018; Pasztor et al., 2021).

Most closely related is cooperative multi-agent reinforcement learning. Early work

by Guestrin et al. (2001) proposes the use of factored MDPs to make planning

tractable via message passing algorithms. Rashid et al. (2018) propose a neural

network architecture that allows to decouple the agent rewards in a way such that
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the greedy policy can be computed efficiently. The goal of these works is to ensure the

greedy policy can be computed efficiently; however, they do not provide theoretical

guarantees. Zohar et al. (2021) consider a setting where a graph structure captures

the reward dependencies across the agents; however the guarantees they provide apply

only to the bandit setting.

7



Chapter 3

Problem Setting

We will assume the reader is familiar with the basics of Markov decision processes

(MDPs) and recommend the excellent book by Puterman (2014) for any missing

details. We consider reinforcement learning in an infinite-horizon Markov decision

process (MDP) specified by a tupleM = (S,A,P, r, γ, ρ). Here, S, A are the state

and the action spaces, respectively, P is a transition kernel and r is a reward function.

For convenience, we assume that the state and action spaces are finite. The transition

kernel Pmaps state-action pairs to distributions over the state space: P : S×A → ∆S ,

where ∆S denotes the set of probability measures over S. Given a state s ∈ S and

action a ∈ A, the system transits to a new state s′ ∼ P(s, a). The reward function is

r : S × A → [0, 1], γ ∈ [0, 1) is the discount factor, and ρ ∈ S is the (deterministic)

initial state.

A stationary memoryless policy π : S → ∆A maps states to a distribution over

A. Starting from a state s ∈ S the policy interacts with the MDP M sequentially

for time steps t ∈ N. The interaction begins in S0 = s, then an action is sampled

At ∼ π(St) and a next state St+1 ∼ P(St, At). This interaction generates a trajectory

(Si, Ai)i∈N with corresponding probability distribution over it, which we define as

Pπ,s. We also define Pπ,s,a to be the distribution over the trajectory when A0 = a

deterministically.
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The state-value function vπ : S → R of a policy π from a state s ∈ S is

vπ(s) = Eπ,s

[︄∑︂
t∈N

γtr(St, At)

]︄
,

where the expectation Eπ,s corresponds to the probability distribution Pπ,s. A policy

π∗ is optimal if vπ∗ = maxπ vπ.

The action-value function (or q-function) qπ : S × A → R of a policy π is defined

for s ∈ S and a ∈ A as

qπ(s, a) = Eπ,s,a

[︄∑︂
t∈N

γtr(St, At)

]︄
.

where the expectation Eπ,s,a corresponds to the probability distribution Pπ,s,a.

In the following we assume that we are given a state-action feature map ϕ : S×A →

Rd that allows to approximate the q-function of any policy as a linear function.

Assumption 1 (Linear qπ-realizability). We assume there exists b > 0, ϵ ≥ 0, known

to the algorithm designer, such that for each policy π there exists a weight vector

wπ ∈ Rd, ∥wπ∥2 ≤ b satisfying maxs,a |qπ(s, a)− w⊤
π ϕ(s, a)| ≤ ϵ.

The assumption is commonly used in combination with policy iteration algorithms

(Lattimore et al., 2020; Zanette et al., 2020). In particular, the assumption allows

to obtain query complexity results that are independent of the number of states and

actions. We remark that the linear MDP assumption (Jin et al., 2020) implies qπ-

realizability, but not vice versa. We also make the following standard boundedness

assumption:

Assumption 2 (Bounded features). We assume that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈

S ×A.

Our goal is to find a computational and query efficient algorithm that given a

starting state ρ ∈ S, and accuracy requirement κ > 0 returns a κ-optimal policy

π̂, i.e. vπ∗(ρ) − vπ̂(ρ) ≤ κ. To obtain queries, the learner is given local access to a
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simulator of the MDP (Yin et al., 2021). A simulator of the MDP takes as input a

state-action pair (s, a) ∈ S×A and returns a next state s′ ∼ P(s, a) and reward r(s, a).

With a local access simulator the planner begins by only having access to the initial

state ρ ∈ S, and encounters new states by querying the simulator. Crucially, the local

access simulator restricts the planner’s queries to only those states that have been

previously encountered. A local access simulator can be implemented in practice by

using checkpoints1 when a new state is encountered, allowing the simulator to reload

back to any of these checkpoints at a future time. Thus, the local access simulator

is a more practical simulator when compared to the random access simulator (where

the planner can query the simulator with any s ∈ S from the beginning) required by

some previous works in planning (Lattimore et al., 2020).

In this thesis we are interested in problems with large action sets. An important ex-

ample where the action set is typically large is cooperative multi-agent reinforcement

learning.

Example 1 (Cooperative multi-agent RL). In the multi-agent setting, m ∈ N agents

act jointly on the MDP M. Each agent i ∈ [m] has a set of actions A(i) available

where [m] := {1, . . . ,m}. We denote the joint action set by A = A(1:m) := A(1) ×

... × A(m). The state space S is joint for all agents. A centralized, stationary policy

π : S → ∆A(1:m) maps states to a distribution over A(1:m). In the cooperative setting,

the agents jointly maximize a global reward function r : S ×A(1:m) → [0, 1].

Note that the size of the joint action set is exponential in the number of agents (if

|A(i)| > 1 for all i ∈ [m]), which makes approaches designed for the single agent setting

computationally intractable when the number of agents is large. We will revisit this

example in Section 5.4 where we discuss how an additive feature decomposition leads

to algorithms that scale polynomially in the number of agents m. We remark that

1a checkpoint is all relevant simulator information that is needed by the simulator to be reloaded
to the state when the checkpoint was created.
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prior work on cooperative multi-agent RL has focused on problem settings where the

greedy policy can be computed efficiently (e.g., Guestrin et al., 2001; Rashid et al.,

2018; Delarue et al., 2020; Zohar et al., 2021); however, they do not provide theoretical

guarantees or do not consider the planning setting.
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Chapter 4

Confident Monte-Carlo
Least-Squares Policy Iteration

This chapter is devoted entirely to discussing the Confident MC-LSPI algorithm

presented by Yin et al. (2021). Thus, this chapter does not contain any of our novel

work. Since this thesis extends the work of Confident MC-LSPI to large action

spaces, we use this chapter to explain the algorithm and its analysis to make future

chapters more interpretable. We now describe how this chapter is structured. In

Section 4.1 we introduce the Confident MC-LSPI algorithm and describe how it

works. In Section 4.2 we present a result (Theorem 1) that provides guarantees on the

performance of Confident MC-LSPI and its query and computation complexity.

We highlight that the computational complexity scales linearly with |A|, which is

unacceptable for an efficient algorithm if the number of actions |A| is large. Lastly,

in Section 4.2 we go through the analysis of Confident MC-LSPI and show the

proof for Theorem 1. Importantly, many steps of the analysis will be reused in later

chapters to argue about the performance of the novel algorithms we present, which

will have computation that does not depend on |A| or depends only on poly(log |A|).
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4.1 Confident MC-LSPI

The Confident Monte-Carlo Least-Squares Policy Iteration

(Confident MC-LSPI) algorithm proposed by Yin et al. (2021) was the

first algorithm to provably output a near-optimal policy with polynomial query and

computation complexity in all relevant problem parameters, while only using a local

access simulator. Confident MC-LSPI is presented as Algorithm 1. We remark

that Confident MC-LSPI as we have presented it here is structured to be more

modular than the original version (LSPI case for algorithm 2 of Yin et al. (2021)) to

ease the exposition of our contributions in future chapters. It should be noted that

our Algorithm 1 is logically equivalent to Confident MC-LSPI of Yin et al. (2021).

More precisely, Confident MC-LSPI with UncertaintyCheck-Naive (Algo-

rithm 3) used for the UncertaintyCheck global subroutine is equivalent to the

Confident MC-LSPI algorithm of Yin et al. (2021). Now we proceed to describe

how Confident MC-LSPI combined with UncertaintyCheck-Naive works.

At a high level, Algorithm 1 alternates between policy evaluation and policy im-

provement. For evaluation, a core set is constructed that holds a small but sufficiently

diverse set of features corresponding to state-action pairs. For each element of the

core set, the Rollout routine (Algorithm 2) returns a Monte-Carlo estimate of

the action-value. During each rollout, the UncertaintyCheck subroutine (Algo-

rithm 3) determines if the core set should be expended because a feature direction is

still underrepresented in it. This procedure is repeated until no more elements are

added to the core set. The Monte-Carlo returns from the rollouts are then used to

construct a least-squares estimate of qπ(s, a), which in turn is used to improve the

policy.

Formally, the outer loop aims to complete K iterations of policy iteration. The

goal of each iteration k is to estimate qπk−1
using a weight vector wk ∈ Rd and derive

a new greedy policy πk, w.r.t. wk. For estimation, the algorithm maintains a core

13



Algorithm 1 Confident MC-LSPI

1: Input: initial state ρ, initial policy π0, number of iterations K, threshold τ ,
number of rollouts n, length of rollout H

2: Globals: default action ā, regularization coefficient λ, discount γ, subroutine
UncertaintyCheck

3: C ← {(ρ, ā, ϕ(ρ, ā),none)}
4: status, result ← UncertaintyCheck(ρ, C, τ)
5: while status = uncertain do
6: C ← C ∪ {result}
7: status, result ← UncertaintyCheck(ρ, C, τ)
8: end while
9: zq ← none, ∀z ∈ C ▷ Policy iteration starts (∗)
10: for k = 1, . . . , K do
11: for z ∈ C do
12: status, result ← Rollout(n,H, πk−1, z, C, τ)
13: if status = done, then zq = result
14: else C ← C ∪ {result} and goto line (∗)
15: end for
16: wk ← (Φ⊤

C ΦC + λI)−1Φ⊤
C qC

17: πk(a|s)← 1
(︁
a = argmax

ã∈A
w⊤

k ϕ(s, ã)
)︁

18: end for
19: return πK−1

set C with elements indexed by state-action pairs. The elements of the core set

z = (zs, za, zϕ, zq) ∈ C are tuples containing a state zs ∈ S, an action za ∈ A, the

corresponding feature zϕ ∈ Rd , and a value estimate zq ∈ R ∪ {none}. We denote

the vector of all value estimates in the core set by qC = (zq)z∈C ∈ R|C|. The weight

vector wk to estimate qπk−1
is computed using regularized least squares, with qC as

the targets (line 16). Here, ΦC ∈ R|C|×d is a matrix of all the features, as row vectors,

from the tuples in the core set C stacked vertically. An improved policy πk based on

wk is then obtained by being greedy with respect to w⊤ϕ(s, a) (line 17). Importantly,

πk is not explicitly computed in line 17 (which would depend on the number of states

and actions), it is only computed at the states that an action needs to be taken (i.e.

line 10 of Rollout). The core set is initialized in lines 3-8 by adding the initial

state ρ with a default action ā, so that there is at least one element in the core set to

14



Algorithm 2 Rollout

1: Input: number of rollouts n, length of rollouts H, rollout policy π, core set
element z, core set C, threshold τ .

2: for i = 1, ..., n do
3: si,0 ← zs, ai,0 ← za
4: Query the simulator, obtain ri,0 ← r(si,0, ai,0), and the next state si,1
5: for t = 1, ..., H do
6: status, result←UncertaintyCheck(si,t, C, τ)
7: if status = uncertain then
8: return status, result
9: end if
10: Sample ai,t ∼ π(·|si,t)
11: Query the simulator with si,t, ai,t, obtain ri,t ← r(si,t, ai,t), and next state

si,t+1 ∼ P(si,t, ai,t)
12: end for
13: end for
14: result ← 1

n

∑︁n
i=1

∑︁H
t=0 γ

tri,t
15: return done, result

Algorithm 3 UncertaintyCheck-Naive

1: Input: state s, core set C, threshold τ
2: for a ∈ A do
3: if ϕ(s, a)⊤(Φ⊤

C ΦC + λI)−1ϕ(s, a) > τ then
4: status ← uncertain, result ← (s, a, ϕ(s, a),none)
5: return status, result
6: end if
7: end for
8: return certain, none

rollout from (line 3)1.

Then, we continuously run the UncertaintyCheck algorithm until it stops

returning a status of uncertain. Each time UncertaintyCheck returns uncer-

tain we add the uncertain tuple (result variable) to the core set. This is to ensure

that the final policy2 πK−1 returned by the main algorithm is approximately optimal

from the initial state ρ, and this can be insured if all the uncertain actions (from ρ)

1Although the initial state ρ can be added with any action for this chapter (as in done in Yin
et al. (2021)), we specify a specific action ā, since this will be needed for our UncertaintyCheck-
DAV algorithm in Section 5.4.

2The algorithm returns πK−1 instead of πK because the proof requires that the uncertainty checks
for the final policy pass. This is only ensured for πK−1.
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are added to the core set (details in Section 4.3.3).

In each iteration k, a Monte-Carlo estimation procedure (Rollout, Algorithm 2)

is launched for every element z ∈ C in the core set to get an estimate of the action-

values at the state-action pair in z under policy πk−1. The action-value estimate

(result in line 14) is obtained via taking the average return of n Monte-Carlo rollouts

of length H while following policy πk−1. Rollout makes use of Uncertainty-

Check to determine if a rollout is successful or unsuccessful. If Uncertainty-

Check ever returns uncertain (line 6 of Rollout) then Rollout is unsuccessful,

and it returns a status of uncertain and a corresponding uncertain tuple (result

variable, line 8 in Rollout). The uncertain tuple is added to the core set and policy

iteration is restarted (line 14 in Confident MC-LSPI) and the value estimates for

all the core set elements are reset to none (line 9 in Confident MC-LSPI). Im-

portant is that adding tuples to the core set in this way ensures that the size of the

core set is bounded by O(d) (Lemma 4.1), and thus so are the number of restarts.

If UncertaintyCheck always returns certain (line 6 in Rollout) then Roll-

out is successful and it returns a status of done and an estimate of qπk−1
(zs, za),

which is assigned to zq (line 13 in Confident MC-LSPI). If at iteration k Roll-

out is successful for every core set element then zq has a value estimate for all z ∈ C,

and the iteration is completed with the policy improvement step. The way the core

set is constructed guarantees that the features of all the elements in the core set are

sufficiently different to provide good target values qC for least squares (Lemma 4.2).

Roughly speaking, the UncertaintyCheck should flag tuples z = (zs, za, zϕ, zq)

as uncertain if their corresponding feature zϕ is sufficiently different from all the

features in the core set {zϕ : z ∈ C}. As we will discuss in Section 5.3.3, a feature

ϕ(s, a) with s ∈ S, a ∈ A that satisfies

ϕ(s, a)⊤(Φ⊤
C ΦC + λI)−1ϕ(s, a) > τ (4.1)
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is considered an uncertain feature. Here, recall that ΦC ∈ R|C|×d is a matrix of all the

features from the tuples in the core set stacked vertically.

The crucial assumption that makes the algorithm work is that regardless the policy,

the same set of features can approximate well the action-value of the policy. This is

why a finite policy-independent core set is sufficient at the end to approximate the

action-value functions of all the policies that will be encountered in the algorithm.

That the core set can also be kept small is a property of linear function approximation,

in particular, a result due to Kiefer-Wolfowitz ensures this (Kiefer and Wolfowitz,

1960).

4.2 Theoretical Guarantees

The result that characterizes the performance of Confident MC-LSPI combined

with UncertaintyCheck-Naive is summarized in the next theorem. In the theo-

rem, we present slightly different results for the cases when there is no misspecification

(ϵ = 0) from the case when there is misspecification (ϵ > 0). This is because in the

case of misspecification, due to the misspecification, there is an unavoidable loss in

terms of the optimality of the policy that can be obtained at polynomial cost (re-

call that the cost cannot depend on the number of states, which can be arbitrarily

large). In fact, it is known that the unavoidable loss must scale with
√
dϵ/(1 − γ)

when the computation is kept polynomial Weisz et al. (2022). Due to this unavoid-

able cost, in the presence of misspecification, we seek to set the parameters of the

algorithm (i.e. τ, λ,H,K, n) such that the output policy’s error is only slightly larger

than the unavoidable loss. Specifically, in the Theorem below, since the misspeci-

fication is 32ϵ
√
d

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2 we have set the parameters τ, λ,H,K, n

such that all remaining terms in the bound of v∗(ρ) − vπK−1
(ρ) are also bounded by

32ϵ
√
d

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2. Thus giving the final bound of

v∗(ρ)− vπK−1
(ρ) ≤ 2 · 32ϵ

√
d

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.
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Theorem 1 (Confident MC-LSPI Suboptimality (Theorem 5.1 in (Yin et al.,

2021))). Suppose Assumptions 1 and 2 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.1) such that with probability at least 1−δ the policy πK−1 returned

by Confident MC-LSPI combined with UncertaintyCheck-Naive satis-

fies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

The query complexity is Õ
(︁

d3

κ2(1−γ)8

)︁
and computation complexity is

poly
(︂
|A|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.1) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 64ϵ

√
d

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.

The query complexity is Õ
(︁

d2

ϵ2(1−γ)4

)︁
and the computation complexity is

poly
(︂
|A|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.

Important to notice is that the computation complexity has a poly(|A|) depen-

dence. This dependence is unacceptable for an efficient algorithm when the number

of actions |A| is large. As such, in the remaining chapters we will be focused on how

to remove this dependence, while still providing reasonable suboptimality guarantees

of the output policy. We present the proof of Theorem 1 in the next section.

4.3 Analysis

In this section we prove Theorem 1. This involves arguing that Algorithm 1 is query

and computationally efficient, while also providing suitable guarantees on the opti-
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mality of its output policy. The proof is borrowed directly from Yin et al. (2021). We

state many of the intermediate results without proof (and direct the reader to proofs

in Yin et al. (2021)) as the intention of this chapter is to give a general idea for the

steps involved. Thus, we emphasize the conceptual understanding of the proof, which

will be useful for later chapters. The proof will proceed in these steps:

1. In Section 4.3.1 we show a bound on the number of queries needed by Confi-

dent MC-LSPI combined with UncertaintyCheck-Naive.

2. In Section 4.3.2 we show a bound on the computational complexity of Confi-

dent MC-LSPI combined with UncertaintyCheck-Naive.

3. In Section 4.3.3 we show the policy πK−1 output by Confident MC-

LSPI combined with UncertaintyCheck-Naive is nearly optimal.

4. In Section 4.3.4 we combine the above three parts to prove Theorem 1.

4.3.1 Query Complexity Bound

We first state a bound on the size of the core set, which will be helpful in bounding

the query complexity later.

Lemma 4.1 (Bound on Core Set Size (Lemma 5.1 in (Yin et al., 2021))). Suppose

Assumption 2 holds, and let τ, λ > 0. Assume that a set C is constructed iteratively

by processing tuples z of the form z = (zs, za, zϕ, zq) with feature zϕ = ϕ(zs, za) ∈ Rd

iteratively and adding a tuple z to C only if z⊤ϕ (Φ
⊤
C ΦC + λI)−1zϕ > τ where ΦC is

the matrix constructed from the feature components of the tuples in C at the time of

processing z. Then, the size of set C will never get larger than

Cmax :=
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃
. (4.2)

We now state a query complexity bound for Confident MC-LSPI combined

with any UncertaintyCheck that satisfies certain assumptions.
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Proposition 4.1. Assume the UncertaintyCheck subroutine does not make any

queries to the simulator. Assume when UncertaintyCheck returns a status of

uncertain it also returns a tuple z = (zs, za, zϕ, zq) containing a feature zϕ that

satisfies z⊤ϕ (Φ
⊤
C ΦC + λI)−1zϕ > τ , where C is the core set maintained by Confident

MC-LSPI when UncertaintyCheck returns uncertain. Then the total number

of queries to the simulator used by Confident MC-LSPI will be at most C2
maxKnH.

Proof. Notice that tuples are added to the core set only if UncertaintyCheck re-

turns a status of uncertain (line 6 and line 14 in Confident MC-LSPI). Also,

by assumption, when UncertaintyCheck returns uncertain then it only returns

tuples z = (zs, za, zϕ, zq) containing features zϕ that satisfy z⊤ϕ (Φ
⊤
C ΦC + λI)−1zϕ > τ .

Thus, we can use Lemma 4.1 to get that the core set size is bounded by Cmax. The

total number of times policy iteration is restarted (restart means line 14 in Confi-

dent MC-LSPI is reached) is thus at most Cmax. Each run of policy iteration can

take as much as K policy improvement steps. In each such step Rollout is run

at most Cmax times. Rollout does n rollouts of length H which queries the sim-

ulator once for each step (line in 10 in Rollout). UncertaintyCheck does not

query the simulator at all. In total, the number of queries performed by Confident

MC-LSPI is bounded by C2
maxKnH.

We are now ready to state a query complexity bound for Confident MC-

LSPI combined with UncertaintyCheck-Naive.

Proposition 4.2. The total number of queries to the simulator used by Confi-

dent MC-LSPI combined with UncertaintyCheck-Naive can be bounded by

C2
maxKnH.

When combined with the parameter settings for K,n,H in Appendix A.1 we get

that C2
maxKnH = Õ

(︁
d3

κ2(1−γ)8

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

d2

ϵ2(1−γ)4

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.
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Proof. Notice that when UncertaintyCheck-Naive returns uncertain it also

only return tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy

ϕ(s, a)⊤(Φ⊤Φ + λI)−1ϕ(s, a) > τ (lines 3-6 in UncertaintyCheck-Naive). Also,

UncertaintyCheck-Naive does not make any queries to the simulator. Thus,

we can apply Proposition 4.1 to get the C2
maxKnH bound. The second part of the

proposition can be shown by simple algebra after plugging in the parameter settings

for K,n,H from Appendix A.1 into C2
maxKnH.

4.3.2 Computational Complexity Bound

Proposition 4.3. With parameter settings as defined in Appendix A.1.

The computational complexity of Confident MC-LSPI combined with

UncertaintyCheck-Naive can be bounded by poly(d, 1
1−γ

, 1
κ
, log(1

δ
), |A|) if

ϵ = 0 and poly(d, 1
1−γ

, 1
ϵ
, log(1

δ
), log(1 + b), |A|) if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 4.2) is the loop over all actions in UncertaintyCheck-Naive (line 2). This

loop over all a ∈ A introduces the |A| dependence in the computation complexity.

Further, the mathematical operations (line 16 in Confident MC-LSPI and line

3 in UncertaintyCheck-Naive) only require matrix multiplication and matrix

inversion operations, which take at most poly(Cmax, d) elementary artihmetic steps.

Sampling from the policy (line 17 in Confident MC-LSPI) can be implemented

with at most |A| computation by using a loop over all the actions to compute the

argmax. Thus, we get the desired result by scaling the query complexity with an ad-

ditional |A| and poly(Cmax, d) factor and plugging in the parameter settings defined

in Appendix A.1.

4.3.3 Optimality of the Output Policy

Yin et al. (2021) used a virtual algorithm (VA) and main algorithm (MA) to prove

the suboptimality of the Confident MC-LSPI algorithm. We give a brief summary
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of the VA and MA; however, avoid full details since we use the exact same definition

as in Yin et al. (2021). Assume UncertaintyCheck-Naive is used for the Un-

certaintyCheck subroutine in Confident MC-LSPI and Rollout throughout

this subsection. The MA is exactly Confident MC-LSPI. The VA is based on

the Confident MC-LSPI algorithm, but has some differences, which we outline

next. The VA runs for exactly Cmax loops, K iterations, and completes all n of its

rollouts of length H. For each loop and iteration k the VA always obtains estimates

qC of its policy. The VA uses a different policy than the MA for rollouts. Fix an

iteration k ∈ [K] and a loop l with C the random core set during loop l. Notice that

C only depends on the randomness from the previous l − 1 loops. We condition on

all the randomness from the previous l − 1 loops, and thus C will be considered as a

deterministic quantity now. Define VC = Φ⊤
C ΦC + λI and a weighted matrix norm as

∥x∥2B = x⊤Bx, x ∈ Rd, B ∈ Rd×d. The VA’s q-function at iteration k and loop l is

q̃k−1(s, a) =

{︄
w̃⊤

k ϕ(s, a) ifϕ(s, a) ∈ D
qπ̃k−1

(s, a) ifϕ(s, a) /∈ D

where w̃k = V −1
C Φ⊤

C q̃C, and q̃C are the estimates obtained from running Rollout on

each element of the core set, and D = {ϕ(s, a) : ∥ϕ(s, a)∥2
V −1
C
≤ τ, (s, a) ∈ S × A} is

the good set. The VA’s policy is

π̃k(a|s) = 1

(︃
a = argmax

ã∈A
q̃k−1(s, ã)

)︃
.

The nice thing about defining the VA’s policy in this way is that we can make use

of the following lemma by Yin et al. (2021).

Lemma 4.2 (Lemma B.2 of Yin et al. (2021)). Suppose that Assumptions 1 and 2

holds and let θ > 0. Fix k ∈ [K]. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2n)

for any (s, a) ∈ (S ×A) pair such that ϕ(s, a) ∈ D, we have

|q̃k−1(s, a)− qπ̃k−1
(s, a)| ≤ b

√
λτ +

(︃
ϵ+

γH−1

1− γ
+ θ

)︃√︁
τCmax + ϵ := η .
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Notice that for any (s, a) ∈ (S×A) pair such that ϕ(s, a) /∈ D, the VA’s q-function

q̃k−1 has access to the true q-function qπ̃k−1
of policy π̃k−1. Thus, we have that

∥q̃k−1 − qπ̃k−1
∥∞ ≤ η (4.3)

Combined with the fact that π̃k is greedy w.r.t. q̃k−1 the above result turns out to be

especially useful.

To understand why the above result is useful, we state a classic policy improvement

result, which can be found as Lemma B.3 of Yin et al. (2021) and in other papers.

Lemma 4.3 (Approximate policy iteration). Consider a sequence of policies

π0, π1, π2, · · · , πK and a sequence of action-value functions q̃0, . . . , q̃K−1. Suppose that

for all k = 1, 2, · · · , K, ∥q̃k−1 − qπk−1
∥∞ ≤ η̃, and πk is greedy with respect to q̃k−1.

Then

∥q∗ − qπK
∥∞ ≤

2η̃

1− γ
+

γK

1− γ
,

In our case the VA’s policy π̃k is greedy w.r.t. q̃k−1, and and thus via a union

bound over all k ∈ [K] and using Eq. (4.3) we have that with probability at least

1− 2KCmax exp(−2θ2(1− γ)2n),

∥q∗ − qπ̃K
∥∞ ≤

2η

1− γ
+

γK

1− γ
,

Now we explain how the MA can be related to the VA, and make use of the above

result. The UncertaintyCheck-Naive algorithm can have two cases:

Case 1: ∥ϕ(s, a)∥2
V −1
C

> τ holds for at least one a ∈ A.

Case 2: ∥ϕ(s, a)∥2
V −1
C
≤ τ holds for all a ∈ A. This is equivalent to saying

ϕ(s, a) ∈ D, ∀a ∈ A.

The VA is exactly the same at the MA algorithm, until Case 1 occurs for the first

time. This is because the MA’s and VA’s simulators are coupled, in the sense that
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at iteration k, rollout i, and step t, when both simulators are queried with the same

state-action vector pairs, they sample the exact same next state and reward. The VA

also uses the same initial policy as the MA at the start of policy iteration for every

loop. Once Case 1 occurs the MA would restart policy iteration (else condition in line

14 of Confident MC-LSPI), while the VA does not. The VA records the state-

action vector pair when Case 1 occurs for the first time and adds it to the core set once

it completes running policy iteration for the current loop. In this way the core set

maintained by the MA and VA are always the same. Since the size of the core set is

bounded by Cmax when (s, a) ∈ (S×A) that satisfy ϕ(s, a)⊤(Φ⊤
C ΦC+λI)−1ϕ(s, a) > τ

are added to the core set (Lemma 4.1), there will be a loop of policy iteration at which

the MA and VA never encounter Case 1 for any of the K iterations of policy iteration.

Thus, in this loop policy iteration will never restart and line 19 in Confident MC-

LSPI will be reached, causing for policy πK−1 to be returned. The loop during which

line 19 in Confident MC-LSPI is reached we call the final loop. It turns out that

if the MA and VA behave identically in the final loop, then it allows us to bound the

suboptimality of the MA in the final loop, by using the result in Eq. (4.3) we have

for the VA. More precisely, the following result, which we extracted from the work

Yin et al. (2021) holds.

Proposition 4.4 (Equation (B.15) of Yin et al. (2021)). Fix iteration k ∈ [K], loop l

and condition on the randomness from the previous l−1 loops. If ∥q̃k−1−qπ̃k−1
∥∞ ≤ η̃

and maxa∈A |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)| ≤ η̃ and the VA and MA behave identically in

the final loop, then with probability at least 1− 4KC2
max exp(−2θ2(1− γ)2n) we have

v∗(ρ)− vπK−1
(ρ) ≤ 8η̃

(1− γ)2
+

2γK−1

(1− γ)2
(4.4)

Notice, that we require three assumptions to be satisfied to use the above re-

sult: Firstly, we need a bound on ∥q̃k−1 − qπ̃k−1
∥∞. Secondly, we need a bound on

maxa∈A |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)|. Finally, we need to ensure that the VA and MA

behave identically in the final loop. The next result shows that the suboptimality of
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the MA’s output policy πK−1 can be bounded, since (as we show in the proof) the

three assumptions mentioned above are indeed satisfied.

Proposition 4.5. Suppose Assumptions 1 and 2 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.1) such that with probability at least 1−δ the policy πK−1 returned

by Confident MC-LSPI combined with UncertaintyCheck-Naive satis-

fies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.1) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 64ϵ

√
d

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Our goal is to use Proposition 4.4, so we should make sure that the three

assumptions required by the proposition are satisfied. We have that ∥q̃k−1−qπ̃k−1
∥∞ ≤

η holds with probability at least 1 − 2Cmax exp(−2θ2(1 − γ)2n) by Eq. (4.3). We

have that |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)| ≤ η, ∀a ∈ A holds with probability at least 1 −

2Cmax exp(−2θ2(1−γ)2n) by Lemma 4.2. We can use Lemma 4.2 since we know that

ϕ(ρ, a) ∈ D, ∀a ∈ A by lines 3-8 in Confident MC-LSPI. UncertaintyCheck-

Naive ensures that MA and VA behave identically in the final loop. It does this

by making sure that the VA’s policy π̃k would only be able to use w̃⊤
k ϕ to derive its

actions, since UncertaintyCheck-Naive always returns a status of certain in

the final loop, which means that ϕ(s, a) ∈ D for all s, a ∈ S × A encountered in the

final loop. Thus, we have all the assumptions of Proposition 4.4 satisfied and can

apply Proposition 4.4 with η̃ = η and the parameters set according to Appendix A.1

to get our desired suboptimality result.
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We are finally ready for to prove Theorem 1.

4.3.4 Proof of Theorem 1

The suboptimality bound follows by applying Proposition 4.5. The query complex-

ity bound follows by applying Proposition 4.2. The computation complexity bound

follows by applying Proposition 4.3.
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Chapter 5

Confident Monte-Carlo
Least-Squares Policy Iteration for
Large Action Spaces

In this chapter we will extend the Confident MC-LSPI algorithm to the

large action space setting by introducing two new UncertaintyCheck subrou-

tines (UncertaintyCheck-EGSS and UncertaintyCheck-DAV). More pre-

cisely, we will show that when Confident MC-LSPI is combined with ei-

ther UncertaintyCheck-EGSS or UncertaintyCheck-DAV the computa-

tional complexity no longer depends on poly(|A|), while still providing reasonable

suboptimality guarantees of the output policy. This is in contrast to Confident

MC-LSPI combined with UncertaintyCheck-Naive which has a computation

complexity that depends on poly(|A|) (Section 4.3.2).

To achieve this we will need to make some assumptions. For

UncertaintyCheck-EGSS (more details on this algorithm in the next sec-

tion) we will assume that the offline problem of computing the greedy policy given

a fixed approximator w ∈ Rd can be solved efficiently. This is formally captured in

the next assumption.

Assumption 3 (Greedy oracle). We have access to an oracle G which takes as input
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a vector w ∈ Rd, a state s ∈ S and a feature function ϕ : S × A → Rd and returns

an action that maximizes w⊤ϕ(s, a). Formally

G(w, ϕ) = argmax
a∈A

w⊤ϕ(s, a) ,

with ties broken arbitrarily.

Combined with the linear qπ-realizability (Assumption 1), the greedy oracle

amounts to solving a linear optimization over the action set A. This is a reasonable

assumption, as optimized solvers are available for many settings. It is also a minimal

assumption in the sense that it is required to implement a policy iteration procedure.

For UncertaintyCheck-DAV (Section 5.4) we introduce an assumption on the

features (Assumption 4) under which Assumption 3 will be satisfied.

5.1 Uncertainty Check using Efficient Good Set

Search (EGSS)

In this section we will introduce the Uncertainty Check-Efficient Good Set

Search (Uncertainty Check-EGSS) algorithm, which will rely on Assumption 3

holding.

Fix a state s ∈ S. Recall that the good set (given C) was defined as D = {ϕ(s, a) :

∥ϕ(s, a)∥2
V −1
C
≤ τ, (s, a) ∈ S×A}. TheUncertaintyCheck-Naive algorithm either

finds an action a ∈ A who’s feature ϕ(s, a) is not in the good set ϕ(s, a) /∈ D i.e.

ϕ(s, a)⊤(Φ⊤
C ΦC + λI)−1ϕ(s, a) = ∥ϕ(s, a)∥2

V −1
C

> τ, (5.1)

or just returns certain when no such action can be found. However, this requires it-

erating over all the actions in general, which is why UncertaintyCheck-Naive

suffers poly(|A|) computation (Section 4.3.2). As such, UncertaintyCheck-

EGSS aims to efficiently (without computational dependence on |A|) approxi-

mate UncertaintyCheck-Naive. Next we show that with computation indepen-

dent of |A|, one can find an action vector a ∈ A that approximately maximizes
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ϕ(s, a)⊤V −1
C ϕ(s, a), with VC = Φ⊤

C ΦC as before. This will serve as the logic behind the

UncertaintyCheck-EGSS algorithm design.

Lemma 5.1 (Efficient good set search). Let Assumption 3 hold. Then, there exist a

computationally efficient procedure that makes 2d calls to the greedy oracle and which

ensures that either

ϕ(s, a)⊤V −1
C ϕ(s, a) ≤ dτ

for all a ∈ A, or there exists an a ∈ A such that

ϕ(s, a)⊤V −1
C ϕ(s, a) > τ.

Proof. Fix C and define the lower triangular matrix L via the Cholesky decomposition

V −1
C = LL⊤. Define {ei}di=1 as the standard basis vectors and

(v∗, amax) := argmax
v∈{±ei}di=1,a∈A

⟨Lv, ϕ(s, a)⟩ (5.2)

Recall that we are able to compute maxa∈A⟨u, ϕ(s, a)⟩ for any u ∈ Rd in constant

time if Assumption 3 is satisfied. Hence, (v∗, amax) can be computed in 2d calls to

the linear optimization oracle. Also, note that L can be computed with at most d2

computation in each loop by doing a rank one update to the Cholesky decomposition

of V −1
C = LL⊤.

The procedure will check whether ζ := ⟨Lv∗, ϕ(s, amax)⟩2 > τ . If this holds, we

claim that maxa ∥ϕ(s, a)∥2V −1
C

> τ , otherwise maxa ∥ϕ(s, a)∥2V −1
C
≤ dτ .

We start the proof of this by noticing that

max
a∈A
∥L⊤ϕ(s, a)∥2∞ = max

v∈{±ei}di=1

max
a∈A
⟨v, L⊤ϕ(s, a)⟩2 = max

v∈{±ei}di=1

max
a∈A
⟨Lv, ϕ(s, a)⟩2

= ⟨Lv∗, ϕ(s, amax)⟩2 = ζ . (5.3)

Now, recall the bidirectional 2-norm to ∞-norm inequality that states that for any
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Algorithm 4 UncertaintyCheck-EGSS

1: Input: state s, core set C, threshold τ
2: L← Cholesky((Φ⊤

C ΦC + λI)−1)
3: for v ∈ {±el}dl=1 do
4: â← argmaxa∈A ϕ(s, a)⊤Lv

5: if
(︁
ϕ(s, â)⊤Lv

)︁2
> τ then

6: result ← (s, â, ϕ(s, â),none)
7: return uncertain, result
8: end if
9: end for
10: return certain, none

vector x ∈ Rd, 1
d
∥x∥22 ≤ ∥x∥2∞ ≤ ∥x∥22. Then we have that

1

d
max
a∈A
∥ϕ(s, a)∥2

V −1
C

=
1

d
max
a∈A

ϕ(s, a)⊤V −1
C ϕ(s, a)

=
1

d
max
a∈A

ϕ(s, a)⊤LL⊤ϕ(s, a)

=
1

d
max
a∈A
∥L⊤ϕ(s, a)∥22

≤ max
a∈A
∥L⊤ϕ(s, a)∥2∞

= ζ (by Eq. (5.3))

= ∥L⊤ϕ(s, amax)∥2∞ (also by Eq. (5.3))

≤ ∥L⊤ϕ(s, amax)∥22

≤ ∥ϕ(s, amax)∥2V −1
C

(5.4)

Hence, by the above inequalities, if ζ > τ then ∥ϕ(s, amax)∥2V −1
C

> τ also holds, while

if ζ ≤ τ then maxa∈A ∥ϕ(s, a)∥2V −1
C
≤ dτ , completing the proof.

UncertaintyCheck-EGSS presented as Algorithm 4 is an implementation of

Eq. (5.2) together with the comparison of whether ζ = ⟨Lv∗, ϕ(s, amax)⟩2 is greater

than τ . Thus, the runtime of UncertaintyCheck-EGSS is independent of |A|, as

stated in Lemma 5.1.
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5.2 EGSS Theoretical Guarantees

Recall that by Lemma 5.1 if UncertaintyCheck-EGSS returns certain, then we

only have the guarantee that maxa ∥ϕ(s, a)∥2V −1
C
≤ dτ (which is weaker by a factor

of d than the maxa ∥ϕ(s, a)∥2V −1
C
≤ τ guarantee we had for UncertaintyCheck-

Naive). A bound on the term ∥ϕ(s, a)∥V −1
C

is crucial for bounding the extrapolation

error of our least square estimate wk (Lemma 4.2, which also holds verbatim with

τ replaced with dτ). For the case with no misspecification (ϵ = 0) this results in

the query complexity increasing by a factor of d, while for case with misspecification

(ϵ > 0) the suboptimality of the returned policy increases by a factor of
√
d, which

is similar to linear bandits, where multiple works have suffered an extra
√
d in the

regret for oracle-efficient methods (Dani et al., 2008; Agrawal and Goyal, 2013; Abeille

and Lazaric, 2017). Importantly, this allows for the computation to be independent of

|A|, making this approach viable for large action spaces. The result that characterizes

the performance of Confident MC-LSPI combined with UncertaintyCheck-

EGSS is summarized in the next theorem.

Theorem 2 (Confident MC-LSPI EGSS Suboptimality). Suppose Assump-

tions 1 to 3 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.2) such that with probability at least 1 − δ the policy πK−1 re-

turned by Confident MC-LSPI combined with UncertaintyCheck-EGSS

satisfies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

The query complexity is O
(︁

d4

κ2(1−γ)8

)︁
and computation complexity is

poly
(︂
d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-
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ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.2) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 64ϵd

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.

The query complexity is O
(︁

d2

ϵ2(1−γ)4

)︁
and computation complexity is

poly
(︂
d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.

5.3 EGSS Analysis

In this section we prove Theorem 2. The proof will proceed in these steps:

1. In Section 5.3.1 we show a bound on the number of queries needed by Confi-

dent MC-LSPI combined with UncertaintyCheck-EGSS.

2. In Section 5.3.2 we show a bound on the computational complexity of Confi-

dent MC-LSPI combined with UncertaintyCheck-EGSS.

3. In Section 5.3.3 we show the policy πK−1 output by Confident MC-

LSPI combined with UncertaintyCheck-EGSS is nearly optimal.

4. In Section 5.3.4 we combine the above three parts to prove Theorem 2.

5.3.1 Query Complexity Bound

Proposition 5.1. The total number of queries to the simulator used by Confi-

dent MC-LSPI combined with UncertaintyCheck-EGSS can be bounded by

C2
maxKnH.

When combined with the parameter settings for K,n,H in Appendix A.2 we get

that C2
maxKnH = Õ

(︁
d4

κ2(1−γ)8

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

d2

ϵ2(1−γ)4

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.

Proof. Notice that when UncertaintyCheck-EGSS returns uncertain it also

only returns tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy
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∥ϕ(s, a)∥2
V −1
C
≥ ∥ϕ(s, a)∥2∞ > τ (lines 5-8 in UncertaintyCheck-EGSS). Also,

UncertaintyCheck-EGSS does not make any queries to the simulator. Thus, we

can apply the first part of Proposition 4.1 to get the C2
maxKnH bound. The sec-

ond part of the proposition can be shown by simple algebra after plugging in the

parameter settings for K,n,H from Appendix A.2 into C2
maxKnH.

5.3.2 Computational Complexity Bound

Proposition 5.2. Suppose Assumption 3 is satisfied. With parameter settings as de-

fined in Appendix A.2, the computational complexity of Confident MC-LSPI com-

bined with UncertaintyCheck-EGSS can be bounded by poly(d, 1
1−γ

, 1
κ
, log(1

δ
)) if

ϵ = 0 and poly(d, 1
1−γ

, 1
ϵ
, log(1

δ
), log(1 + b)) if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 5.1) is the loop over all v ∈ {±el}dl=1 in UncertaintyCheck-EGSS (line

3). This loop over all v ∈ {±el}dl=1 only introduces a 2d dependence in the com-

putation complexity. Further, the mathematical operations (line 16 in Confident

MC-LSPI and line 4 in UncertaintyCheck-EGSS) only require matrix multipli-

cation and matrix inversion operations that will only require poly(Cmax, d) elementary

arithmetic operational steps. One can sample from policy πk (line 17 in Confident

MC-LSPI) by simply outputting the result of argmaxã∈Aw⊤ϕ(s, ã). Under Assump-

tion 3 argmaxã∈Aw⊤ϕ(s, ã) can be computed in constant time by applying the oracle

to w and ϕ (i.e. G(w, ϕ)). Thus sampling from the policy in line 17 of Confident

MC-LSPI can be implemented in constant time i.e. O(1). Scaling the query com-

plexity with poly(Cmax, d) (which are terms already in the query complexity bound)

and plugging in the parameter settings defined in Appendix A.2 gives the desired

result.

5.3.3 Optimality of the Output Policy

Proposition 5.3. Suppose Assumptions 1 to 3 hold.
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1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.2) such that with probability at least 1 − δ the policy πK−1 re-

turned by Confident MC-LSPI combined with UncertaintyCheck-EGSS

satisfies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.2) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 64ϵd

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Our goal will be to use Proposition 4.4, so we must show the three assumptions

in the proposition are satisfied. We first show that the VA and MA behave identically

in the final loop. Fix an iteration k ∈ [K] and a loop l with C the random core set dur-

ing loop l. Notice that C only depends on the randomness from the previous l−1 loops.

We condition on all the randomness from the previous l − 1 loops, and thus C will

be considered as a deterministic quantity now. Notice that UncertaintyCheck-

EGSS provides a weaker guarantee than UncertaintyCheck-Naive, when the

returned result is certain. Specifically, when UncertaintyCheck-EGSS returns

a result of certain, then Lemma 5.1 guarantees that ∥ϕ(s, a)∥2
V −1
C
≤ dτ for all

a ∈ A. While when the UncertaintyCheck-Naive returns a result of cer-

tain, then ∥ϕ(s, a)∥2
V −1
C
≤ τ for all a ∈ A. Thus, we define a larger good set

Dd = {ϕ(s, a) : ∥ϕ(s, a)∥2V −1
C
≤ dτ}.

Redefine the VA’s q-function at iteration k as

q̃k−1(s, a) =

{︄
w̃⊤

k ϕ(s, a) ifϕ(s, a) ∈ Dd

qπ̃k−1
(s, a) ifϕ(s, a) /∈ Dd
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and VA’s policy as

π̃k(a|s) = 1

(︃
a = argmax

ã∈A
q̃k−1(s, ã)

)︃
.

Notice that in the final loop UncertaintyCheck-EGSS always returns a result

of certain, and thus we are sure that all a ∈ A for all the states encountered in

the final loop are in the larger good set Dd. Thus, the VA’s policy π̃k would always

be greedy w.r.t. w̃⊤
k ϕ in the final loop. This ensures that the VA and MA behave

identically in the final loop.

Next we need show that we can bound ∥q̃k−1 − qπ̃k−1
∥∞ with this new definition

of q̃k−1. First we state a slight modification of Lemma 4.2 that holds for the larger

good set Dd

Lemma 5.2 (EGSS modified Lemma B.2 from Yin et al. (2021)). Suppose that As-

sumption 1 holds and θ > 0. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2n)

for any (s, a) ∈ (S ×A) pair such that ϕ(s, a) ∈ Dd, we have

|w̃⊤
k ϕ(s, a)− w⊤

π̃k−1
ϕ(s, a)| ≤ b

√
λdτ +

(︃
ϵ+

γH+1

1− γ
+ θ

)︃√︁
dτCmax + ϵ =

√
dη̄ := η2

Proof. The proof is identical to that of Lemme B.2 from Yin et al. (2021) except τ is

replaced with dτ everywhere, due to the weaker guarantee of UncertaintyCheck-

EGSS as discussed above.

Essentially we get an extra
√
d factor due to the larger good set Dd. Since the

VA’s policy π̃k has access to the true q-function qπ̃k−1
for all ϕ(s, a) /∈ Dd, we can

show that ∥q̃k−1(s, a)− qπ̃k−1
(s, a)∥∞ can be bounded.

Proposition 5.4 (approximate value function bound for EGSS). Suppose that As-

sumption 1 holds and θ > 0. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2n)
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we have

∥q̃k−1(s, a)− qπ̃k−1
(s, a)∥∞ ≤ η2.

Proof. For any (s, a) ∈ (S ×A) such that ϕ(s, a) ∈ Dd, we have

|q̃k−1(s, a)− qπ̃k−1
(s, a)| ≤ η2 (5.5)

by Proposition 5.4. While for any (s, a) ∈ (S ×A) such that ϕ(s, a) /∈ Dd, we have

|q̃k−1(s, a)− qπ̃k−1
(s, a)| = |qπ̃k−1

(s, a)− qπ̃k−1
(s, a)| = 0 (5.6)

Finally, it is left to show that |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)| can be bounded for all

a ∈ A. Notice that lines 4-8 in Confident MC-LSPI run UncertaintyCheck-

EGSS with state ρ as input until the returned status is certain. Recall that

once UncertaintyCheck-EGSS returns a status of certain we know that ρ ∈

Dd. Thus, we can immediately apply Lemma 5.2 to bound η2 ≥ |w̃⊤
k ϕ(ρ, a) −

qπ̃k−1
(ρ, a)|, ∀a ∈ A. Thus, we have all the assumptions of Proposition 4.4 satis-

fied and can apply Proposition 4.4 with η̃ = η2 and the parameters set according to

Appendix A.2 to get our desired suboptimality result.

We are finally ready for to prove Theorem 2.

5.3.4 Proof of Theorem 2

The suboptimality bound follows by applying Proposition 5.3. The query complex-

ity bound follows by applying Proposition 5.1. The computation complexity bound

follows by applying Proposition 5.2.
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5.4 Uncertainty Check using a Default Action

Vector (DAV)

The result in Section 5.2 makes no restriction on the choice of features as long as the

greedy policy can be computed efficiently (Assumptions 1 and 3) but it leaves open

whether and when this can be done. In this section we address this by introducing

an additive feature model for which the oracle can be implemented efficiently.

Assumption 4. Assume that the action space can be decomposed into a product

A = A(1:m) := A(1)× · · ·×A(m) for m ≥ 1 (borrowing the standard notation from the

multi-agent setting). We further assume access to feature maps ϕi : S × A(i) → Rd

for each i ∈ [m] and define ϕ(s, a(1:m)) =
∑︁m

i=1 ϕi(s, a
(i)).

We will use the notation a(1:m) := (a(1), ..., a(m)) ∈ A(1:m) with a(i) ∈ A(i) for all

i ∈ [m] and call a(1:m) ∈ A(1:m) an action vector and one of its indices a(i), i ∈ [m]

an action. The above assumption immediately gives rise to a corollary stating that

for any policy π, the qπ-function is (approximately) linear in the feature map ϕ and

decomposes additively across the components A(i).

Corollary 5.1. Suppose Assumptions 1 and 4 hold. Then, for each

policy π there exists a weight vector wπ ∈ Rd, ∥wπ∥2 ≤ b satisfying

max
(s,a(1:m))∈S×A(1:m)

|qπ(s, a(1:m))− w⊤
π

∑︁m
j=1 ϕj(s, a

(j))| ≤ ϵ.

With the greedy oracle (Assumption 3), one can use Confident MC-LSPI com-

bined with UncertaintyCheck-EGSS and directly invoke Theorem 2. However,

in this section we will introduce a new uncertainty check algorithm, Uncertainty

Check-Default Action Vector (UncertaintyCheck-DAV) as Algorithm 5,

that explicitly uses the additive structure. The additive feature structure leads to im-

proved results (compared to UncertaintyCheck-EGSS) in the regimes where the

square root of the dimension is larger than m (discussed in Section 5.5). The additive

model will also allow an efficient implementation of Confident MC-Politex from
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Algorithm 5 UncertaintyCheck-DAV

1: Input: state s, core set C, threshold τ .
2: Globals: number of action components m
3: for j ∈ [m] do
4: for a(j) ∈ A(j) do
5: ã← (a(j), ā(−j))
6: if ϕ(s, ã)⊤V −1

C ϕ(s, ã) > τ then
7: result ← (s, ã, ϕ(s, ã),none)
8: return uncertain, result
9: end if
10: end for
11: end for
12: return certain, none

Yin et al. (2021), which leads to an improved dependence on the suboptimality in the

misspecified setting (Chapter 7).

In the context of the multi-agent setting (Example 1), the interpretation is that

each ϕi(s, a
(i)) models the contribution to the q-function of each agent individually.

Moreover, when Assumption 4 is satisfied, then for any weight vector w ∈ Rd the

greedy policy can be implemented with O(d∑︁m
i=1 |A(i)|) computation:

argmaxa(1:m)∈Aw⊤ϕ(s, a(1:m))

=
(︁
argmax
a(1)∈A(1)

w⊤ϕ1(s, a
(1)), ..., argmax

a(m)∈A(m)

w⊤ϕm(s, a
(m))

)︁
(5.7)

A simple example when Assumptions 1 and 4 hold is when m agents “live” in

m separate MDPs such that in each MDP the q-functions are linearly realizable

(Assumption 4 is satisfied in each MDP) with their respective feature-maps and the

goal is to maximize the sum of the rewards across the MDPs. In cases like this, we

say that the “large” MDP is a product MDP. Note that in this setting agents only

observe a joint reward after taking their actions, so an optimal policy for the joint

MDP may not always be learned by simply applying single agent algorithms in each

individual MDP. In Chapter 8 we show that Assumption 4 also captures MDPs that

require cooperation between agents, and provide some empirical results.
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The UncertaintyCheck-DAV algorithm only iterates over
∑︁m

i=1 |A(i)| action

vectors instead of all the action vectors like UncertaintyCheck-Naive does. This

of course achieves the goal of compute independent of |A(1:m)| = ∏︁m
i=1 |A(i)|. Notice

that
∑︁m

i=1 |A(i)| is significantly smaller than
∏︁m

i=1 |A(i)| as long as |A(i)| > 1, ∀i ∈ [m]

and m is not very small. The fact that Confident MC-LSPI combined with

UncertaintyCheck-DAV still provides viable suboptimality guarantees (Theo-

rem 3) is proved in Section 5.6.

5.5 DAV Theoretical Guarantees

The result that characterizes the performance of Confident MC-LSPI combined

with UncertaintyCheck-DAV is summarized in the next theorem.

Theorem 3 (Confident MC-LSPI DAV Suboptimality). Suppose Assumptions 1,

2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.3) such that with probability at least 1 − δ the policy πK−1 re-

turned by Confident MC-LSPI combined with UncertaintyCheck-DAV

satisfies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

The query complexity is O
(︂

m2d3

κ2(1−γ)8

)︂
and computation complexity is

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.3) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 128ϵ

√
dm

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.
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The query complexity is O
(︂

d2

ϵ2(1−γ)4

)︂
and computation complexity is

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.

When compared to Theorem 1 whereUncertaintyCheck-Naive is used we have

an extra factor of m2 in the query complexity for ϵ = 0, while for ϵ > 0 we only have

an extra factor of m in the suboptimality of the output policy. On the other hand, the

computational complexity is improved from O(∏︁m
i=1 |A(i)|) to O(∑︁m

i=1 |A(i)|). When

compared to Theorem 2 where UncertaintyCheck-EGSS was used instead of

UncertaintyCheck-DAV the extra dependence on
√
d changed to m.

5.6 DAV Analysis

In this section we prove Theorem 3. The proof will proceed in these steps:

1. In Section 5.6.1 we show a bound on the number of queries needed by Confi-

dent MC-LSPI combined with UncertaintyCheck-DAV.

2. In Section 5.6.2 we show a bound on the computational complexity of Confi-

dent MC-LSPI combined with UncertaintyCheck-DAV.

3. In Section 5.6.3 we show the policy πK−1 output by Confident MC-

LSPI combined with UncertaintyCheck-DAV is nearly optimal.

4. In Section 5.6.4 we combine the above three parts to prove Theorem 3.

5.6.1 Query Complexity Bound

Proposition 5.5. The total number of queries to the simulator used by Confident

MC-LSPI combined with UncertaintyCheck-DAV can be bounded by C2
maxKnH.

When combined with the parameter settings for K,n,H in Appendix A.2 we get

that C2
maxKnH = Õ

(︁
m2d3

κ2(1−γ)8

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

d2

ϵ2(1−γ)4

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.
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Proof. Notice that when UncertaintyCheck-DAV returns uncertain it also

only returns tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy

∥ϕ(s, a)∥2
V −1
C
≥ ∥ϕ(s, a)∥2∞ > τ (lines 6-9 in UncertaintyCheck-DAV). Also,

UncertaintyCheck-DAV does not make any queries to the simulator. Thus, we

can apply the first part of Proposition 4.1 to get the C2
maxKnH bound. The sec-

ond part of the proposition can be shown by simple algebra after plugging in the

parameter settings for K,n,H from Appendix A.3 into C2
maxKnH.

5.6.2 Computational Complexity Bound

Proposition 5.6. Suppose Assumption 4 is satisfied. With parameter settings

as defined in Appendix A.3. The computational complexity of Confident MC-

LSPI combined with UncertaintyCheck-DAV can be bounded by

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
if ϵ = 0 and

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 5.5) is the loop over all j ∈ [m] (line 3 in UncertaintyCheck-DAV)

and the loop over all a(j) ∈ A(j) (line 4 in UncertaintyCheck-DAV). These

loops only introduce a
∑︁m

i=1 |A(i)| dependence in the computation complexity. Fur-

ther, the mathematical operations (line 16 in Confident MC-LSPI and line 6 in

UncertaintyCheck-DAV) only require matrix multiplication and matrix inver-

sion operations, which will only require poly(Cmax, d) computation. One can sample

from policy πk (line 17 in Confident MC-LSPI) by simply outputting the result of

argmaxã∈Aw⊤ϕ(s, ã). Under Assumption 4 argmaxã∈Aw⊤ϕ(s, ã) can be computed

in O(d∑︁m
i=1 |A(i)|) time as shown in Eq. (5.7). Thus, sampling from the policy in line
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17 of Confident MC-LSPI can be implemented with O(d∑︁m
i=1 |A(i)|) computation

time. Scaling the query complexity with poly(
∑︁m

i=1 |A(i)|, Cmax, d) and plugging in

the parameter settings defined in Appendix A.3 gives the desired result.

5.6.3 Optimality of the Output Policy

Proposition 5.7. Suppose Assumptions 1, 2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of the

parameters τ, λ,H,K, n of Confident MC-LSPI based on κ, δ, γ, d, b (shown

in Appendix A.3) such that with probability at least 1 − δ the policy πK−1 re-

turned by Confident MC-LSPI combined with UncertaintyCheck-DAV

satisfies

v∗(ρ)− vπK−1
(ρ) ≤ κ.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-LSPI based on ϵ, δ, γ, d, b (shown in Ap-

pendix A.3) such that with probability at least 1− δ the policy πK−1 satisfies

v∗(ρ)− vπK−1
(ρ) ≤ 128ϵ

√
dm

(1−γ)2
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Recall that Confident MC-LSPI sets a default action vector ā(1:m) ∈ A(1:m)

as a global. Define a subset of A(1:m) as Ā(1:m)
= {(a(i), ā(−i)) : a(i) ∈ A(i), i ∈ [m]},

where we define (a(i), ā(−i)) = (ā(1), ..., ā(i−1), a(i), ā(i+1), ..., ā(m)) as the action vector

resulting after changing the action at index i in ā(1:m) with a(i). Define the
∑︁m

i=1A
(i)

sized set of modified default action vectors as Ā(1:m)
= {(a(i), ā(−i)) : a(i) ∈ A(i), i ∈

[m]}. Notice UncertaintyCheck-DAV iterates over all the actions in the set

a(1:m) ∈ Ā(1:m)
and checks if any of them satisfy ∥ϕ(s, a(1:m))∥2

V −1
C

> τ .

Our goal will be to use Proposition 4.4, so we must show the three assumptions

in the proposition are satisfied. Fix an iteration k ∈ [K] and a loop l with C the

random core set during loop l. Notice that C only depends on the randomness from
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the previous l− 1 loops. We condition on all the randomness from the previous l− 1

loops, and thus C will be considered as a deterministic quantity now. We show that

the VA and MA behave identically in the final loop. Define the set of states for

which all the modified default action vectors are in the good set as S̄ = {s ∈ S :

∥ϕ(s, a(1:m))∥2
V −1
C
≤ τ, ∀a(1:m) ∈ Ā(1:m)}. Redefine the VA’s q-function as

q̃k−1(s, a
(1:m)) =

{︄
w̃⊤

k ϕ(s, a
(1:m)) s ∈ S̄

qπ̃k−1
(s, a(1:m)). s ∈ S\S̄

The VA’s policy is

π̃k(a
(1:m)|s) = 1

(︄
a(1:m) = argmax

ã(1:m)∈A(1:m)

q̃k−1(s, ã
(1:m))

)︄
.

Notice that in the final loop the check ϕ(s, (a(j), ā(−j)))⊤(Φ⊤
C ΦC +

λI)−1ϕ(s, (a(j), ā(−j))) > τ in UncertaintyCheck-DAV never returns True.

Thus we are sure that ϕ(s, a(1:m)) ∈ D for all a(1:m) ∈ Ā(1:m)
and for all the states

encountered in the final loop. Which means that the states encountered in the final

loop must be in S̄. Thus, the VA’s policy π̃k would always be greedy w.r.t. w̃⊤
k ϕ in

the final loop. This ensures that the VA and MA behave identically in the final loop.

Now we show that we can bound ∥q̃k−1− qπ̃k−1
∥∞. First we state a slight modifica-

tion of Lemma 4.2 for w⊤
π̃k−1

ϕ instead of qπ̃k−1
which excludes the ∥w⊤

π̃k−1
ϕ(s, a(1:m))−

qπ̃k−1
(s, a(1:m))∥∞ ≤ ϵ term in the proof of Lemma B.2 in (Yin et al., 2021).

Lemma 5.3 (Modification of Lemma B.2 in (Yin et al., 2021)). Suppose that As-

sumption 4 holds, and θ > 0. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2n)

for any (s, a(1:m)) ∈ (S ×A(1:m)) pair such that ϕ(s, a(1:m)) ∈ D, we have

|w̃k(s, a
(1:m))− w⊤

π̃k−1
(s, a(1:m))| ≤ b

√
λτ +

(︃
ϵ+

γH−1

1− γ
+ θ

)︃√︁
τCmax := η̄

The following Proposition gives us a bound on ∥q̃k−1(s, a
(1:m))− qπ̃k−1

(s, a(1:m))∥∞.

43



Proposition 5.8 (approximate value function bound for DAV). Suppose that As-

sumption 4 holds, and θ > 0. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2n)

we have

∥q̃k−1(s, a
(1:m))− qπ̃k−1

(s, a(1:m))∥∞ ≤ η̄(2m− 1) + ϵ := η1.

Proof. For any (s, a(1:m)) ∈ (S̄ × A(1:m)), with probability at least 1 −

2Cmax exp(−2θ2(1− γ)2n), we have

|q̃k−1(s, a
(1:m))− qπ̃k−1

(s, a(1:m))|

= |w̃⊤
k ϕ(s, a

(1:m))− qπ̃k−1
(s, a(1:m))|

= |w̃⊤
k ϕ(s, a

(1:m))± w⊤
π̃k−1

ϕ(s, a(1:m))− qπ̃k−1
(s, a(1:m))|

≤ |w̃⊤
k ϕ(s, a

(1:m))− w⊤
π̃k−1

ϕ(s, a(1:m))|+ |w⊤
π̃k−1

ϕ(s, a(1:m))− qπ̃k−1
(s, a(1:m))|

≤ |w̃⊤
k ϕ(s, a

(1:m))− w⊤
π̃k−1

ϕ(s, a(1:m))|+ ϵ

= |w̃⊤
k ϕ(s, a

(1:m))− w⊤
π̃k−1

ϕ(s, a(1:m)) + (m− 1)w̃⊤
k ϕ(s, ā

(1:m))− (m− 1)w̃⊤
k ϕ(s, ā

(1:m))

+ (m− 1)w⊤
π̃k−1

ϕ(s, ā(1:m))− (m− 1)w⊤
π̃k−1

ϕ(s, ā(1:m))|+ ϵ

=

⃓⃓⃓⃓
⃓

m∑︂
i=1

w̃⊤
k ϕ(s, (a

(i), ā(−i)))− w⊤
π̃k−1

ϕ(s, (a(i), ā(−i)))

⃓⃓⃓⃓
⃓ (5.8)

+
⃓⃓⃓
(m− 1)

[︂
w⊤

π̃k−1
ϕ(s, ā(1:m)))− w̃⊤

k ϕ(s, ā
(1:m)

]︂⃓⃓⃓
+ ϵ

≤ mη̄ + (m− 1)η̄ + ϵ

= η̄(2m− 1) + ϵ (5.9)

where the second last inequality holds by Lemma 5.3 (because the features of all the

state action pairs considered are in D, since s ∈ S̄).

Otherwise, for any (s, a(1:m)) ∈ ((S\S̄)×A(1:m)), we have

|q̃k−1(s, a
(1:m))− qπ̃k−1

(s, a(1:m))| = |qπ̃k−1
(s, a(1:m))− qπ̃k−1

(s, a(1:m))| = 0 . (5.10)
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Finally, it is left to show that |w̃⊤
k ϕ(ρ, a

(1:m)) − qπ̃k−1
(ρ, a(1:m))| can be bounded

for all a(1:m) ∈ A(1:m). Notice that lines 4-8 in Confident MC-LSPI run

UncertaintyCheck-DAV with state ρ as input until the returned status is cer-

tain. Recall that once UncertaintyCheck-DAV returns a status of certain we

know that ρ ∈ S̄. Thus, we can immediately apply the result in Eq. (5.9) to bound

η1 ≥ |w̃⊤
k ϕ(ρ, a

(1:m))− qπ̃k−1
(ρ, a(1:m))|, ∀a(1:m) ∈ A(1:m).

Thus, we have all the assumptions of Proposition 4.4 satisfied and can apply Propo-

sition 4.4 with η̃ = η1 and the parameters set according to Appendix A.3 to get our

desired suboptimality result.

We are finally ready for to prove Theorem 3.

5.6.4 Proof of Theorem 3

The suboptimality bound follows by applying Proposition 5.7. The query complex-

ity bound follows by applying Proposition 5.5. The computation complexity bound

follows by applying Proposition 5.6.
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Chapter 6

Confident Monte-Carlo Politex

Similar to how Chapter 4 was devoted to introducing the Confident MC-LSPI al-

gorithm presented by Yin et al. (2021), we will devote this chapter to introduce

the Confident MC-Politex algorithm also presented by Yin et al. (2021). The

Confident MC-Politex algorithm can be found as Algorithm 6 and when com-

bined with UncertaintyCheck-Naive we (almost1) have the Confident MC-

Politex algorithm that is presented by Yin et al. (2021).

The Politex algorithm has been shown to obtain better suboptimality gaurantees

than LSPI (when ϵ > 0) by Abbasi-Yadkori et al. (2019), and the same holds for

Confident MC-Politex when compared to Confident MC-LSPI (Yin et al.,

2021). In particular, the suboptimality of Confident MC-Politex combined with

UncertaintyCheck-Naive scales as O(
√
dϵ/(1 − γ)), which is also known to be

unavoidable when the computation is kept polynomial Weisz et al. (2022). The trade-

off however, is that Confident MC-Politex has a larger query complexity than

Confident MC-LSPI.

Although Confident MC-Politex is also based on policy iteration (like Con-

fident MC-LSPI) an important difference is that it uses stochastic policies based

1We do not clip our action value-functions to the [0, (1− γ)−1] interval in line 17 of Confident
MC-Politex, while Yin et al. (2021) does.
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Algorithm 6 Confident MC-Politex

1: Input: initial state ρ, initial policy π0, number of iterations K, threshold τ ,
number of rollouts n, length of rollout H

2: Globals: default action ā, regularization coefficient λ, discount γ, subroutine
UncertaintyCheck

3: C ← {(ρ, ā, ϕ(ρ, ā),none)}
4: status, result ← UncertaintyCheck(ρ, C, τ)
5: while status = uncertain do
6: C ← C ∪ {result}
7: status, result ← UncertaintyCheck(ρ, C, τ)
8: end while
9: zq ← none, ∀z ∈ C ▷ Policy iteration starts (∗)
10: for k ∈ 1, . . . , K do
11: for z ∈ C do
12: status, result ← Rollout(n,H, πk−1, z, C, τ)
13: if status = done, then zq = result
14: else C ← C ∪ {result} and goto line (∗)
15: end for
16: wk ← (Φ⊤

C ΦC + λI)−1Φ⊤
C qC

17: πk(a|s)← exp
(︂
α
∑︁k

j=1w
⊤
j ϕ(s, a)

)︂
/
∑︁

a′∈A exp
(︂
α
∑︁k

j=1w
⊤
j ϕ(s, a

′)
)︂
.

18: end for
19: return π̄K−1 ∼ Unif{πk}K−1

k=0

on an exponential weighting of each actions action-value (line 17 in Confident

MC-Politex). Besides this difference, the final policy π̄K−1 that is returned by

Confident MC-Politex is a uniform sample from all policies that are created

during the policy improvement phase, namely π0, · · · , πK−1.

An important difference to note between the Confident MC-Politex algorithm

presented here and the Confident MC-Politex algorithm presented in Yin et al.

(2021) is that we do no clip the q-function (in line 17). In particular, the policy used

in Confident MC-Politex by Yin et al. (2021) is the following

πk(a|s)← exp

(︄
α

k−1∑︂
j=0

qj(s, a)

)︄
/
∑︂
a∈A

exp

(︄
α

k−1∑︂
j=0

qk(s, a)

)︄
(6.1)

With qk−1(s, a) = min{max{w⊤
k ϕ(s, a), 0}, 1/(1 − γ)}. Notice that the q-function qj

here is clipped such that it is in the [0, (1 − γ)−1] interval. The policy we use for
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Confident MC-Politex (line 17) is the following

πk(a|s)← exp

(︄
α

k∑︂
j=1

w⊤
j ϕ(s, a)

)︄
/
∑︂
a′∈A

exp

(︄
α

k∑︂
j=1

w⊤
j ϕ(s, a

′)

)︄
.

Notice that we do not clip the q-function and use w⊤
j ϕ directly. This means that we no

longer have the guarantee that w⊤
j ϕ maps to [0, (1− γ)−1]. The purpose of removing

the clipping of the q-function in the version of Confident MC-Politex that we

present here is so that we can efficiently sample from the policy when Assumption 4

is satisfied. How this can be done will be explained in Section 7.1. Importantly,

removing the clipping does not suffer any increase in the dominating terms of the

final policies suboptimality (shown in Theorem 4).

6.1 Theoretical Guarantees

The result that characterizes the performance of Confident MC-Politex com-

bined with UncertaintyCheck-Naive is summarized in the next theorem.

Theorem 4 (Confident MC-Politex Suboptimality (Theorem 5.2 in Yin et al.

(2021))). Suppose Assumptions 1 and 2 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.4) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

Naive satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

The query complexity is O
(︂

d3

κ4(1−γ)9

)︂
and computation complexity is

poly
(︂
|A|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in
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Appendix A.4) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵ

√
d

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

The query complexity is O
(︂

d
ϵ4(1−γ)5

)︂
and computation complexity is

poly
(︂
|A|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.

As discussed earlier, when ϵ > 0, the suboptimality is better (scales with 1/(1−γ))

than that of Confident MC-LSPI (Theorem 3), which scales with 1/(1 − γ)2.

However, the query complexity is worse (as is typical for Politex).

6.2 Analysis

In this section we prove Theorem 4. Similar to the analysis section for Confident

MC-LSPI (Section 4.3), in this section the proof is borrowed directly from Yin et al.

(2021) with only a few minor adjustments, since as mentioned earlier we do not clip

our value functions. The proof will proceed in these steps:

1. In Section 6.2.1 we show a bound on the number of queries needed by Confi-

dent MC-Politex combined with UncertaintyCheck-Naive.

2. In Section 6.2.2 we show a bound on the computational complexity of Confi-

dent MC-Politex combined with UncertaintyCheck-Naive.

3. In Section 6.2.3 we show the policy π̄K−1 output by Confident MC-

Politex combined with UncertaintyCheck-Naive is nearly optimal.

4. In Section 6.2.4 we combine the above three parts to prove Theorem 4.

6.2.1 Query Complexity Bound

We first state a query complexity bound for Confident MC-Politex combined

with any UncertaintyCheck that satisfies certain assumptions.
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Proposition 6.1. Assume the UncertaintyCheck subroutine does not make any

queries to the simulator. Assume when UncertaintyCheck returns a status of un-

certain it also only returns tuples z = (zs, za, zϕ, zq) containing features zϕ that sat-

isfy z⊤ϕ (Φ
⊤
C ΦC+λI)−1zϕ > τ , where C is the core set maintained by Confident MC-

Politex when UncertaintyCheck returns uncertain.. Then the total number

of queries to the simulator used by Confident MC-Politex can then be bounded

by C2
maxKnH.

Proof. This proof is nearly identical to the proof of Proposition 4.1, except with

Confident MC-LSPI replaced with Confident MC-Politex here. Notice that

tuples are added to the core set only if UncertaintyCheck returns a status of

uncertain (line 6 and line 14 in Confident MC-Politex). Also, by assump-

tion, when UncertaintyCheck returns uncertain then it only returns tuples

z = (zs, za, zϕ, zq) containing features zϕ that satisfy z⊤ϕ (Φ
⊤
C ΦC + λI)−1zϕ > τ . Thus,

we can use Lemma 4.1 to get that the core set size is bounded by Cmax. The total

number of times Policy iteration is restarted (restart means line 14 in Confident

MC-Politex is reached) is thus at most Cmax. Each run of policy iteration can

take as much as K iterations. In each iteration Rollout is run at most Cmax times.

Rollout does n rollouts of length H which queries the simulator once for each step

(line in 10 in Rollout). UncertaintyCheck does not query the simulator at all.

In total, the number of queries performed by Confident MC-Politex is bounded

by C2
maxKnH.

We are now ready to state a query complexity bound for Confident MC-

Politex combined with UncertaintyCheck-Naive.

Proposition 6.2. The total number of queries to the simulator used by Confi-

dent MC-Politex combined with UncertaintyCheck-Naive can be bounded by

C2
maxKnH.
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When combined with the parameter settings for K,n,H in Appendix A.1 we get

that C2
maxKnH = Õ

(︁
d3

κ4(1−γ)9

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

d
ϵ4(1−γ)5

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.

Proof. Notice that when UncertaintyCheck-Naive returns uncertain it also

only returns tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy

ϕ(s, a)⊤(Φ⊤Φ + λI)−1ϕ(s, a) > τ (lines 3-6 in UncertaintyCheck-Naive). Also,

UncertaintyCheck-Naive does not make any queries to the simulator. Thus,

we can apply Proposition 6.1 to get the C2
maxKnH bound. The second part of the

proposition can be shown by simple algebra after plugging in the parameter settings

for K,n,H from Appendix A.4 into C2
maxKnH.

6.2.2 Computational Complexity Bound

Proposition 6.3. With parameter settings as defined in Appendix A.4.

The computational complexity of Confident MC-Politex combined with

UncertaintyCheck-Naive can be bounded by poly(d, 1
1−γ

, 1
κ
, log(1

δ
), |A|) if ϵ = 0

and poly(d, 1
1−γ

, 1
ϵ
, log(1

δ
), log(1 + b), |A|) if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 6.2) is the loop over all actions in UncertaintyCheck-Naive (line 2). This

loop over all a ∈ A introduces a |A| dependence in the computation complexity.

Further, the mathematical operations (line 16 in Confident MC-Politex and line

3 in UncertaintyCheck-Naive) only require matrix multiplication and matrix

inversion operations, which will only require poly(Cmax, d) computation. Sampling

from the policy (line 17 in Confident MC-Politex) can be implemented with at

most K|A| computation by using a loop over all the actions A and policy iterations

K. Thus, we get the desired result by scaling the query complexity with an addi-

tional K|A| and poly(Cmax, d) factor and plugging in the parameter settings defined

in Appendix A.4.
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6.2.3 Optimality of the Output Policy

It turns out the story for Confident MC-Politex is extremely similar to that

of Confident MC-LSPI and can be argued in nearly the same way. The main

difference is that the policy used in Confident MC-Politex is different than in

Confident MC-LSPI (line 17 inConfident MC-Politex is different from line 17

in Confident MC-LSPI). As such, we can no longer use Lemma 4.3 (since it relied

on a greedy policy), and thus cannot use Proposition 4.4 to bound the suboptimality

of the policy output by Confident MC-Politex. Next, we show there is a similar

lemma and proposition that can derived for Confident MC-Politex.

Fix an iteration k ∈ [K] and a loop l with C the random core set during loop l.

Notice that C only depends on the randomness from the previous l − 1 loops. We

condition on all the randomness from the previous l − 1 loops, and thus C will be

considered as a deterministic quantity now. Recall that we do not clip the q-function

estimates in our Confident MC-Politex algorithm. This means we must define

the VA’s q-function differently from the way it was defined for Confident MC-

Politex in Yin et al. (2021), by removing clipping for the case when ϕ(s, a(1:m)) ∈ D.

This leads to the exact same definition of the VA’s q-function as we have already seen

in Section 4.3.3, which we restate here

q̃k−1(s, a) =

{︄
w̃⊤

k ϕ(s, a) ifϕ(s, a) ∈ D
qπ̃k−1

(s, a) ifϕ(s, a) /∈ D

We define the VA’s policy as

π̃k(a|s) ∝ exp

(︄
α

k−1∑︂
j=0

q̃j(s, a)

)︄
. (6.2)

Recall that since the reward function r is assumed to be in [0, 1] we know that for

any policy π that qπ ∈ [0, (1 − γ)−1]. Since we do not use clipping q̃k, k ∈ [K] may

not be in the [0, (1− γ)−1] interval. However, if we have a bound η̃ on ∥q̃k − qπ̃k
∥∞,

then we can be sure that q̃k ∈ [−η̃, (1 − γ)−1 + η̃]. We now restate Lemma D.1
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from Yin et al. (2021) which bounds the mixture policy output by Politex for an

arbitrary sequence of q-functions. We replace the interval [0, (1 − γ)−1] (in Lemma

D.1 from Yin et al. (2021)) with the interval [−η̃, (1 − γ)−1 + η̃], since as discussed

above q̃k ∈ [−η̃, (1− γ)−1 + η̃].

Lemma 6.1 (modified Lemma D.1 in Yin et al. (2021) also in Szepesvári (2022b)).

Given an initial policy π0, a sequence of functions qk : S × A → [−η̃, (1 − γ)−1 +

η̃], k ∈ [K−1], construct a sequence of policies π1, ..., πK−1 according to Eq. (6.2) with

α = ((1−γ)−1+2η̃)
√︂

2 log(|A|)
K

. If qπk
∈ [0, 1/(1−γ)] and η̃ ≥ ∥q̃k−qπk

∥∞, ∀k ∈ [K−1].

Then, for any s ∈ S, the mixture policy π̄K−1 ∼ Unif{πk}K−1
k=0 satisfies

v∗(s)− vπ̄K−1
(s) ≤

(︃
1

(1− γ)2
+

2η̃

1− γ

)︃√︃
2 log(|A|)

K
+

2η̃

1− γ
(6.3)

Notice that the above result suggests we just need to control the term ∥qk− qπk
∥∞

for all k ∈ [K − 1]. Using Lemma 6.1 (instead of Lemma D.1 in Yin et al. (2021)),

one can extract another slightly modified result from Yin et al. (2021).

Proposition 6.4 (equation (D.8) in Yin et al. (2021)). Fix iteration k ∈ [K], loop l

and condition on the randomness from the previous l−1 loops. If ∥q̃k−1−qπ̃k−1
∥∞ ≤ η̃

and maxa∈A |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)| ≤ η̃ and the VA and MA behave identically in

the final loop, then with probability at least 1− 4KC2
max exp(−2θ2(1− γ)2n) we have

v∗(s)− vπ̄K−1
(ρ) ≤

(︃
1

(1− γ)2
+

2η̃

1− γ

)︃√︃
2 log(|A|)

K
+

4η̃

1− γ
(6.4)

Notice, that we require the same three things as in the Confident MC-LSPI case

(Proposition 4.4). We need a bound on ∥q̃k−1 − qπ̃k−1
∥∞. We need a bound on

maxa∈A |w̃⊤
k ϕ(ρ, a) − qπ̃k−1

(ρ, a)|∞. We need to ensure that the VA and MA behave

identically in the final loop. Then, we can get a bound on the suboptimality of the

MA’s output policy π̄K−1.
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The next result shows that the suboptimality of the MA’s output policy π̄K−1 can

be bounded, since (as we show in the proof) the three assumptions mentioned above

are indeed satisfied.

Proposition 6.5. Suppose Assumptions 1 and 2 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.4) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

Naive satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in

Appendix A.4) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵ

√
d

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Our goal is use Proposition 6.4, so we should make sure that the three assump-

tions required by the proposition are satisfied. Recall from Section 4.3, we have that

∥q̃k−1− qπ̃k−1
∥∞ ≤ η holds with probability at least 1− 2Cmax exp(−2θ2(1− γ)2n) by

Eq. (4.3). We also have that |w̃⊤
k ϕ(ρ, a)− qπ̃k−1

(ρ, a)| ≤ η, ∀a ∈ A holds with proba-

bility at least 1− 2Cmax exp(−2θ2(1− γ)2n) by Lemma 4.2. We can use Lemma 4.2

since we know that ϕ(ρ, a) ∈ D, ∀a ∈ A by lines 3-8 in Confident MC-Politex.

UncertaintyCheck-Naive ensures that MA and VA behave identically in the final

loop. It does this by making sure that the VA’s policy π̃k would only be able to use

w̃⊤
k ϕ to derive its actions, since UncertaintyCheck-Naive always returns a status

of certain in the final loop, which means that ϕ(s, a) ∈ D for all s, a ∈ S × A en-

countered in the final loop. Thus, we have all the assumptions of Proposition 6.4 are
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satisfied and can apply Proposition 6.4 with η̃ = η and the parameters set according

to Appendix A.4 to get our desired suboptimality result.

6.2.4 Proof of Theorem 4

The suboptimality bound follows by applying Proposition 6.5. The query complex-

ity bound follows by applying Proposition 6.2. The computation complexity bound

follows by applying Proposition 6.3.
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Chapter 7

Confident Monte-Carlo Politex for
Large Action Spaces

In this chapter we will extend the Confident MC-Politex algorithm to the

large action space setting by using our previously introduced UncertaintyCheck

algorithms (UncertaintyCheck-EGSS and UncertaintyCheck-DAV). More

precisely, we will show that when Confident MC-Politex is combined with

either UncertaintyCheck-EGSS or UncertaintyCheck-DAV the computa-

tional complexity no longer depends on poly(|A|), while still providing reasonable

suboptimality guarantees of the output policy. This is in contrast to Confident

MC-Politex combined with UncertaintyCheck-Naive which has computation

complexity that depends on poly(|A|) (Section 6.2.2). In Chapter 6 we discussed

how Confident MC-Politex combined with UncertaintyCheck-Naive ob-

tains a better suboptimality but worse query complexity when compared to Con-

fident MC-LSPI. In this chapter we will see that a similar story occurs when

Confident MC-Politex combined with either UncertaintyCheck-EGSS or

UncertaintyCheck-DAV is compared to Confident MC-LSPI. Namely the

suboptimality of Confident MC-Politex is better than that of Confident MC-

LSPI (by a factor of (1− γ)−1), while for the query complexity it is worse.
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7.1 Confident MC-Politex Without Value Func-

tion Clipping

In this section we describe why it was necessary to remove clipping of the q-functions

in order to sample from the Confident MC-Politex policy with computation that

does not depend on poly(|A|). Recall that the Confident MC-LSPI policy is

πk(a|s)← 1

(︃
a = argmax

ã∈A
w⊤

k ϕ(s, ã)

)︃
. (7.1)

Thus, we could use Assumption 3 directly to compute the argmax in constant time

and sample from the policy. Further, when Assumption 4 holds we showed that this

leads to Assumption 3 being satisfied and the argmax oracle being implementable

with
∑︁m

i=1 |A(i)|d computation (Eq. (5.7)).

The policy used in Confident MC-Politex by Yin et al. (2021) is the following

πk(a|s)← exp

(︄
α

k−1∑︂
j=0

qj(s, a)

)︄
/
∑︂
a∈A

exp

(︄
α

k−1∑︂
j=0

qk(s, a)

)︄
(7.2)

With qk−1(s, a) = min{max{w⊤
k ϕ(s, a), 0}, 1/(1 − γ)}. Notice that the q-function qj

here is clipped such that it is in the [0, (1−γ)−1] interval. It is not immediate how to

make use of Assumption 3 to sample from the Confident MC-Politex policy, with

clipping, since there is no argmax that needs to be computed. Further, we are not

aware of an efficient way to compute the clipped q-function for all action-vectors in A

(i.e. exp(α
∑︁k−1

j=0 qj(s, a)) for all a ∈ A) if only Assumption 3 or even Assumption 4 is

satisfied. However, if we remove the clipping, then if Assumption 4 is satisfied we will

show that, indeed, it is possible to compute the Confident MC-Politex policy

efficiently. Importantly, removing the clipping does not suffer any increase in the

dominating terms of the output policies suboptimality (shown in Theorem 4). Recall

the Confident MC-Politex policy without clipping is defined as follows (line 17

in Confident MC-Politex)

πk(a|s)← exp

(︄
α

k∑︂
j=1

w⊤
j ϕ(s, a)

)︄
/
∑︂
a′∈A

exp

(︄
α

k∑︂
j=1

w⊤
j ϕ(s, a

′)

)︄
(7.3)
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We now show the above policy can be sampled from efficiently.

Proposition 7.1 (Efficient Politex Policy Sampling). Given state s ∈ S, parameter

vectors w0, ..., wk−1 ∈ Rd, feature map ϕ : S×A(1:m) → Rd and Assumption 4 satisfied.

Then policy

πk(a
(1:m)|s) = exp

(︄
α

k−1∑︂
j=0

w⊤
j ϕ(s, a

(1:m))

)︄
/

∑︂
ã(1:m)∈A(1:m)

exp

(︄
α

k−1∑︂
j=0

w⊤
j ϕ(s, ã

(1:m))

)︄

with a(1:m) ∈ A(1:m) can be sampled from in time poly(
∑︁m

i=1 |A(i)|, K, d).

Proof. Fix arbitrary a(1:m) ∈ A(1:m). To sample from πk it is sufficient to sample ac-

tion vectors a(1:m) ∈ A(1:m) proportional to exp(α
∑︁k−1

j=0 w
⊤
j ϕ(s, a

(1:m))). Rearranging

exp(α
∑︁k−1

j=0 w
⊤
j ϕ(s, a

(1:m))) and plugging in that ϕ(s, a(1:m)) =
∑︁m

i=1 ϕi(s, a
(i)) under

Assumption 4 we have

exp
(︂
α
∑︂k−1

j=0
w⊤

j ϕ(s, a
(1:m))

)︂
=

k−1∏︂
j=0

exp
(︁
αw⊤

j ϕ(s, a
(1:m))

)︁
=

k−1∏︂
j=0

exp

(︄
αw⊤

j

m∑︂
i=1

ϕi(s, a
(i))

)︄

=
m∏︂
i=1

k−1∏︂
j=0

exp
(︁
αw⊤

j ϕi(s, a
(i))
)︁

Which means that the probability of sampling an action vector a(1:m) ∈ A(1:m) is

equal to the product of the probabilities of sampling a(i) ∈ A(i) for i ∈ [m] indepen-

dently. Notice that if we can compute
∏︁k−1

j=0 exp(αw
⊤
j ϕi(s, a

(i))) for all a(i) ∈ A(i),

then can sample a(i) ∈ A(i) proportional to
∏︁k−1

j=0 exp(αw
⊤
j ϕi(s, a

(i))) by ordering

the actions a(i) ∈ A(i), then sampling a random number x uniformly in the range

[0,
∑︁

a(i)∈A(i)

∏︁k−1
j=0 exp(αw

⊤
j ϕi(s, a

(i)))] and selecting the first action for which the par-

tial sum over
∏︁k−1

j=0 exp(αw
⊤
j ϕi(s, a

(i))) for the ordered actions is greater than x. For

i ∈ [m], sampling an action a(i) ∈ A(i) means computing
∏︁k−1

j=0 exp(αw
⊤
j ϕi(s, a

(i)))

for all a(i) ∈ A(i). This requires at most poly(|A(i)|, K, d) computation. Thus, we

can sample an action vector a(1:m) ∈ A(1:m) with computation poly(
∑︁m

i=1 |A(i)|, K, d)
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by sampling one action a(i) ∈ A(i) from each index i ∈ [m] and then combining the

actions into an action vector a(1:m) = (a(1), . . . , a(m)) ∈ A(1:m).

Since by Proposition 7.1 to sample from the policy in Confident MC-

Politex efficiently we need Assumption 4 to hold, we will assume that it does hold

for the remainder of this chapter. Recall that when Assumption 4 holds this leads to

Assumption 3 being satisfied and the argmax oracle implementable with
∑︁m

i=1 |A(i)|d

computation (Eq. (5.7)). Thus, we can still use the UncertaintyCheck-EGSS al-

gorithm if Assumption 4 holds. In the next sections we provide guarantees on the

performance of Confident MC-Politex combined with UncertaintyCheck-

EGSS or UncertaintyCheck-DAV.

7.2 EGSS Theoretical Guarantees

The result that characterizes the performance of Confident MC-Politex com-

bined with UncertaintyCheck-EGSS is summarized in the next theorem.

Theorem 5 (Confident MC-Politex EGSS Suboptimality). Suppose Assump-

tions 1, 2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.5) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

EGSS satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

The query complexity is O
(︂

md4

κ4(1−γ)9

)︂
and computation complexity is

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-
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ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in

Appendix A.5) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵd

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

The query complexity is O
(︂

md
ϵ4(1−γ)5

)︂
and computation complexity is

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.

When compared to Confident MC-Politex combined with

UncertaintyCheck-Naive (Theorem 1) we have an extra factor of d in the

query complexity for ϵ = 0, while for ϵ > 0 we only have an extra factor of
√
d in

the suboptimality of the output policy. This is expected, and the reason for this has

been in discussed at the start of Section 5.2. Importantly, we have no dependence

on |A| = ∏︁m
i=1 |A(i)|, making this approach viable for large action spaces. Unlike

in the Confident MC-LSPI case, when ϵ > 0 the suboptimality only scales with

(1− γ)−1, while it scaled with (1− γ)−2 for Confident MC-LSPI (which is better

for Confident MC-Politex). However, the query complexity for Confident

MC-Politex scales with an extra factor of mϵ−2(1 − γ)−1. Unsurprisingly, this is

nearly the same pattern (without the m factor in the query complexity) as we saw

when comparing Confident MC-Politex to Confident MC-LSPI combined

with UncertaintyCheck-Naive in Section 6.1.

7.3 EGSS Analysis

In this section we prove Theorem 5. We mirror the same proof structure and borrow

many of the proof techniques as in Section 5.3, since as we have discussed earlier,

Confident MC-Politex only differs from Confident MC-LSPI by the policy it

uses (line 17). However, we still explicitly write all of the proof steps for completeness.

The proof will proceed in these steps:
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1. In Section 7.3.1 we show a bound on the number of queries needed by Confi-

dent MC-Politex combined with UncertaintyCheck-EGSS.

2. In Section 7.3.2 we show a bound on the computational complexity of Confi-

dent MC-Politex combined with UncertaintyCheck-EGSS.

3. In Section 7.3.3 we show the policy π̄K−1 output by Confident MC-

Politex combined with UncertaintyCheck-EGSS is nearly optimal.

4. In Section 7.3.4 we combine the above three parts to prove Theorem 5.

7.3.1 Query Complexity Bound

Proposition 7.2. The total number of queries to the simulator used by Confi-

dent MC-Politex combined with UncertaintyCheck-EGSS can be bounded by

C2
maxKnH.

When combined with the parameter settings for K,n,H in Appendix A.5 we get

that C2
maxKnH = Õ

(︁
md4

κ4(1−γ)9

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

md
ϵ4(1−γ)5

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.

Proof. Notice that when UncertaintyCheck-EGSS returns uncertain it also

only returns tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy

∥ϕ(s, a)∥2
V −1
C
≥ ∥ϕ(s, a)∥2∞ > τ (lines 5-8 in UncertaintyCheck-EGSS). Also,

UncertaintyCheck-EGSS does not make any queries to the simulator. Thus, we

can apply the first part of Proposition 6.1 to get the C2
maxKnH bound. The sec-

ond part of the proposition can be shown by simple algebra after plugging in the

parameter settings for K,n,H from Appendix A.5 into C2
maxKnH.

7.3.2 Computational Complexity Bound

Proposition 7.3. Suppose Assumption 4 is satisfied. With parameter settings

as defined in Appendix A.5. The computational complexity of Confident MC-
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Politex combined with UncertaintyCheck-EGSS can be bounded by

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
if ϵ = 0 and

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 5.1) is the loop over all v ∈ {±el}dl=1 in UncertaintyCheck-EGSS (line 3).

This loop over all v ∈ {±el}dl=1 only introduces a 2d dependence in the computa-

tion complexity. Further, the mathematical operations (line 16 in Confident MC-

Politex and line 4 in UncertaintyCheck-EGSS) only require matrix multiplica-

tion and matrix inversion operations, which will only require poly(Cmax, d) computa-

tion. Since Assumption 4 is satisfied, we can sample from policy πk (line 17 in Con-

fident MC-Politex) with poly(
∑︁m

i=1 |A(i)|, K, d) computation (Proposition 7.1).

Scaling the query complexity with poly(
∑︁m

i=1 |A(i)|, K, Cmax, d) and plugging in the

parameter settings defined in Appendix A.5 gives the desired result.

7.3.3 Optimality of the Output Policy

Proposition 7.4. Suppose Assumptions 1, 2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.5) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

EGSS satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in
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Appendix A.5) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵd

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Our goal will be to use Proposition 6.4, so we must show the three assumptions

in the proposition are satisfied. We first show that the VA and MA behave identically

in the final loop. We follow the same proof technique as Proposition 5.3.

Define the VA’s q-function at iteration k in the same way as in Section 5.3.3

q̃k−1(s, a) =

{︄
w̃⊤

k ϕ(s, a) ifϕ(s, a) ∈ Dd

qπ̃k−1
(s, a) ifϕ(s, a) /∈ Dd

and the VA’s policy as

π̃k(a|s) ∝ exp

(︄
α

k−1∑︂
j=0

q̃j(s, a)

)︄
.

Notice that in the final loop UncertaintyCheck-EGSS always returns a result

of certain, and thus we are sure that all a ∈ A for all the states encountered in the

final loop are in the larger good set Dd. Thus, the VA’s policy π̃k would always be

based on q̃k−1 = w̃⊤
k ϕ in the final loop. This ensures that the VA and MA behave

identically in the final loop.

We also know ∥q̃k−1 − qπ̃k−1
∥∞ ≤ η2 by Proposition 5.4.

Finally, it is left to show that |w̃⊤
k ϕ(ρ, a

(1:m)) − qπ̃k−1
(ρ, a(1:m))| can be bounded

for all a(1:m) ∈ A(1:m). Notice that lines 4-8 in Confident MC-Politex run

UncertaintyCheck-EGSS with state ρ as input until the returned status is

certain. Recall that once UncertaintyCheck-EGSS returns a status of cer-

tain we know that ρ ∈ Dd. Thus, we can immediately apply Lemma 5.2 to bound

η2 ≥ |w̃⊤
k ϕ(ρ, a

(1:m)) − qπ̃k−1
(ρ, a(1:m))|, ∀a(1:m) ∈ A(1:m). Thus, we have all the as-

sumptions of Proposition 6.4 satisfied and can apply Proposition 6.4 with η̃ = η2

and the parameters set according to Appendix A.5 to get our desired suboptimality

result.
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We are finally ready for to prove Theorem 5.

7.3.4 Proof of Theorem 5

The suboptimality bound follows by applying Proposition 7.4. The query complex-

ity bound follows by applying Proposition 7.2. The computation complexity bound

follows by applying Proposition 7.3.

7.4 DAV Theoretical Guarantees

The result that characterizes the performance of Confident MC-Politex com-

bined with UncertaintyCheck-DAV is summarized in the next theorem.

Theorem 6 (Confident MC-Politex DAV Suboptimality). Suppose Assump-

tions 1, 2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.6) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

DAV satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

The query complexity is O
(︂

m3d3

κ4(1−γ)9

)︂
and computation complexity is

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
.

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in

Appendix A.6) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵm

√
d

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

The query complexity is O
(︂

md
ϵ4(1−γ)5

)︂
and computation complexity

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
.
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As we have already seen even when UncertaintyCheck-Naive is used (The-

orem 4) the suboptimality is better for Confident MC-Politex (scales with

1/(1 − γ)) than that of Confident MC-LSPI (Theorem 1), which scales with

1/(1 − γ)2. However, the query complexity is worse. Importantly, we have avoided

a dependence on |A(1:m)| =
∏︁m

i=1 |A(i)| in the computation complexity by using

UncertaintyCheck-DAV instead of UncertaintyCheck-Naive. However, the

trade-off is that we have introduced an extra factor of m3 in the query complexity

when ϵ = 0, and a extra factor of m in the suboptimality when ϵ > 0.

7.5 DAV Analysis

In this section we prove Theorem 6. Similar to Section 7.3 we borrow many of

the proof techniques from the corresponding Confident MC-LSPI section (Sec-

tion 5.6). The proof will proceed in these steps:

1. In Section 7.5.1 we show a bound on the number of queries needed by Confi-

dent MC-Politex combined with UncertaintyCheck-DAV.

2. In Section 7.5.2 we show a bound on the computational complexity of Confi-

dent MC-Politex combined with UncertaintyCheck-DAV.

3. In Section 7.5.3 we show the policy π̄K−1 output by Confident MC-

Politex combined with UncertaintyCheck-DAV is nearly optimal.

4. In Section 7.5.4 we combine the above three parts to prove Theorem 6.

7.5.1 Query Complexity Bound

Proposition 7.5. The total number of queries to the simulator used by Confi-

dent MC-Politex combined with UncertaintyCheck-DAV can be bounded by

C2
maxKnH.

When combined with the parameter settings for K,n,H in Appendix A.5 we get
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that C2
maxKnH = Õ

(︁
m3d3

κ4(1−γ)9

)︁
if ϵ = 0 and C2

maxKnH = Õ
(︁

md
ϵ4(1−γ)5

)︁
if ϵ > 0, with the

Õ notation hiding poly(log(1/δ), log(1 + b)) factors.

Proof. Notice that when UncertaintyCheck-DAV returns uncertain it also

only returns tuples containing features ϕ(s, a), (s, a) ∈ S × A that satisfy

∥ϕ(s, a)∥2
V −1
C
≥ ∥ϕ(s, a)∥2∞ > τ (lines 6-9 in UncertaintyCheck-DAV). Also,

UncertaintyCheck-DAV does not make any queries to the simulator. Thus, we

can apply the first part of Proposition 6.1 to get the C2
maxKnH bound. The sec-

ond part of the proposition can be shown by simple algebra after plugging in the

parameter settings for K,n,H from Appendix A.6 into C2
maxKnH.

7.5.2 Computational Complexity Bound

Proposition 7.6. Suppose Assumption 4 is satisfied. With parameter settings

as defined in Appendix A.6. The computational complexity of Confident MC-

Politex combined with UncertaintyCheck-DAV can be bounded by

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
κ
, log

(︁
1
δ

)︁)︂
if ϵ = 0 and

poly
(︂∑︂m

i=1
|A(i)|, d, 1

1−γ
, 1
ϵ
, log

(︁
1
δ

)︁
, log(1 + b)

)︂
if ϵ > 0.

Proof. Notice the only loops not accounted for by the query complexity bound (Propo-

sition 7.5) is the loop over all j ∈ [m] (line 3 in UncertaintyCheck-DAV) and

the loop over all a(j) ∈ A(j) (line 4 in UncertaintyCheck-DAV). These loops

only introduce a
∑︁m

i=1 |A(i)| dependence in the computation complexity. Further,

the mathematical operations (line 16 in Confident MC-Politex and line 6 in

UncertaintyCheck-DAV) only require matrix multiplication and matrix inversion

operations, which will only require poly(Cmax, d) computation. Since Assumption 4 is

satisfied, we can sample from policy πk (line 17 in Confident MC-Politex) with
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poly(
∑︁m

i=1 |A(i)|, K, d) computation (Proposition 7.1). Scaling the query complexity

with poly(
∑︁m

i=1 |A(i)|, Cmax, Kd) and plugging in the parameter settings defined in

Appendix A.6 gives the desired result.

7.5.3 Optimality of the Output Policy

Proposition 7.7. Suppose Assumptions 1, 2 and 4 hold.

1. Assume that ϵ = 0. Then, for any κ > 0, δ ∈ (0, 1], there exist a setting of

the parameters τ, λ,H,K, n of Confident MC-Politex based on κ, δ, γ, d, b

(shown in Appendix A.6) such that with probability at least 1−δ the policy π̄K−1

returned by Confident MC-Politex combined with UncertaintyCheck-

DAV satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ κ

2. Assume ϵ > 0. Then, for any δ ∈ (0, 1], there exist a setting of the parame-

ters τ, λ,H,K, n of Confident MC-Politex based on ϵ, δ, γ, d, b (shown in

Appendix A.6) such that with probability at least 1− δ the policy π̄K−1 satisfies

v∗(ρ)− vπ̄K−1
(ρ) ≤ 64ϵm

√
d

1−γ
(1 + log(1 + b2ϵ−2d−1))1/2.

Proof. Our goal will be to use Proposition 6.4, so we must show the three assumptions

in the proposition are satisfied. We first show that the VA and MA behave identically

in the final loop. Define the VA’s q-function at iteration k in the same way as in

Section 5.6.3

q̃k−1(s, a
(1:m)) =

{︄
w̃⊤

k ϕ(s, a
(1:m)) s ∈ S̄

qπ̃k−1
(s, a(1:m)) s ∈ S\S̄

and the VA’s policy as

π̃k(a|s) ∝ exp

(︄
α

k−1∑︂
j=0

q̃j(s, a)

)︄
.

Notice that in the final loop the check ϕ(s, (a(j), ā(−j)))⊤(Φ⊤
C ΦC +

λI)−1ϕ(s, (a(j), ā(−j))) > τ in UncertaintyCheck-DAV never returns True.
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Thus we are sure that ϕ(s, a(1:m)) ∈ D for all a(1:m) ∈ Ā(1:m)
and for all the states

encountered in the final loop. Which means that the states encountered in the final

loop must be in S̄. Thus, the VA’s policy π̃k would always be based on q̃k−1 = w̃⊤
k ϕ

in the final loop. This ensures that the VA and MA behave identically in the final

loop.

We also know ∥q̃k−1 − qπ̃k−1
∥∞ ≤ η1 by Proposition 5.8.

Finally, it is left to show that |w̃⊤
k ϕ(ρ, a

(1:m)) − qπ̃k−1
(ρ, a(1:m))| can be bounded

for all a(1:m) ∈ A(1:m). Notice that lines 4-8 in Confident MC-Politex run

UncertaintyCheck-DAV with state ρ as input until the returned status is cer-

tain. Recall that once UncertaintyCheck-DAV returns a status of certain we

know that ρ ∈ S̄. Thus, we can immediately apply the result in Eq. (5.9) to bound

η1 ≥ |w̃⊤
k ϕ(ρ, a

(1:m))− qπ̃k−1
(ρ, a(1:m))|, ∀a(1:m) ∈ A(1:m).

Thus, we have all the assumptions of Proposition 6.4 satisfied and can apply Propo-

sition 6.4 with η̃ = η1 and the parameters set according to Appendix A.6 to get our

desired suboptimality result.

We are finally ready for to prove Theorem 6.

7.5.4 Proof of Theorem 6

The suboptimality bound follows by applying Proposition 7.7. The query complex-

ity bound follows by applying Proposition 7.5. The computation complexity bound

follows by applying Proposition 7.6.
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Chapter 8

Examples and Experiments

This chapter is structured as follows. In Section 8.1 we provide some experiments

to show the effectiveness of our approaches. Specifically, we run our algorithms on

a product MDP with 4 agents. In Section 8.2 we show that Assumptions 1 and 4

(which are needed byUncertaintyCheck-DAV (Sections 5.5 and 7.4)) are satisfied

by more than just product MDPs. In particular, we show that there exists an MDP,

that is not a product MDP, under which Assumptions 1 and 4 are satisfied. The

MDP we use requires each agent to consider the policy of other agents in order to

pick the action that maximizes the action-value function of the joint policy.

8.1 Experimental Results

S0 -1 +1

Agent 1

S0

-1

+1

Agent 2

S0-1+1

Agent 3 

S0

-1

+1

Agent 4

Figure 8.1: Four agent
grid world.

We evaluate the performance of the proposed algorithms

on a product MDP (composed of grid worlds) shown in

Fig. 8.1. Each of the four agents is placed in a 3x3 grid

world. The agents obtain a +1 reward for reaching the

goal state and a -1 reward in a ‘trap’ state. Reaching

either the trap state or the reward state terminates the

episode. Each agent has four actions to move to a neigh-

boring cell. The selected action is applied with probability
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Figure 8.2: Numerical results on a grid world with four agents.

0.95 while with 0.05 probability an action is chosen uniformly at random. The global

reward is the sum of the agents rewards. Note that the individual rewards are not

observed, therefore the example is different from four separate grid worlds.

We run each variant of the algorithm for 50 iterations (K = 50) without resets (in

line 14 of Confident MC-LSPI we no longer goto line (∗)). The reason for running

the experiments without resets is because they run faster. When we compared to the

case with resets (for 10 random seeds) the performance of the algorithms was very

similar, thus we did not use resets for the experiments presented here. The discount

factor is set to γ = 0.8, the regularization parameter is set to λ = 10−5, for Politex

we set α = 1 and the rollout length is H = 15. The agents’ individual features are

one-hot encodings of agent, agent positions and actions which results in a feature

of dimension d = 4 · 9 · 4 = 144. One can easily verify that these features satisfy

Assumption 1 with ϵ = 0. Note, however, that the joint MDP is not tabular, as the

joint features, i.e. the sum over the agent features, are not one-hot vectors. In fact,

the features are crucial for generalization as there are a total 94 = 9561 joint states

for all four agents combined.

Figure 8.2 shows two experiments with n = 10 and n = 50 rollouts. The plots show

the performance of the policy estimate after each iteration averaged over 25 random

seeds. We run both Confident MC-LSPI and Confident MC-Politex com-
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bined with UncertaintyCheck-EGSS and UncertaintyCheck-DAV. In addi-

tion we compare to UncertaintyCheck-Naive which iterates over all |A| = 44 =

256 actions. The intention of the experiments is to show that when Confident MC-

LSPI or Confident MC-Politex is combined with either UncertaintyCheck-

EGSS or UncertaintyCheck-DAV the resulting value of the output policy is

not much worse than when UncertaintyCheck-Naive is used. Important is that

UncertaintyCheck-EGSS or UncertaintyCheck-DAV have computation in-

dependent of |A|, which means they run faster than UncertaintyCheck-Naive,

and would run much faster if |A| was larger than in this toy example.

With only 10 rollouts (left plot in Fig. 8.2), the policy of Confident MC-

LSPI (for all 3 UncertaintyCheck subroutines) after iteration 5 does not show

any signs of improving, is noisy, and is a suboptimal value on average. This can be un-

derstood as the data between iterations is not shared, and the noise from the Monte-

Carlo estimates can sometimes leads to a deterioration in the policy improvement

step. Further, the policy of UncertaintyCheck-Naive gets higher reward than

UncertaintyCheck-DAV which gets higher reward than UncertaintyCheck-

EGSS. One way this behaviour can be explained is by looking at our theoretical

results1 for UncertaintyCheck-DAV and UncertaintyCheck-EGSS in Sec-

tion 5.5 and Section 5.2 respectively. When compared to the theoretical result

for UncertaintyCheck-Naive in Section 4.2 we can see for the ϵ = 0 case

the query complexity of UncertaintyCheck-DAV has an extra m2 factor, while

UncertaintyCheck-EGSS has an extra d factor. Also, notice that the query com-

plexity bound for all 3 UncertaintyCheck subroutines has a 1/κ2 term, where

κ > 0 was the level of suboptimality you would like to guarantee. Since Cmax, K,H, n

are held constant in our experiments, the number of queries used by all 3 Uncer-

1Keeping in mind that the theoretical results are for the worst case MDP, which likely is not
the case here. However, one would hope the results give some insight for other (not worst case)
instances.
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taintyCheck subroutines should be approximately the same. As such, we can see

that 1/κ2
naive = m2/κ2

dav = d/κ2
egss should hold since the number of queries used by

all 3 UncertaintyCheck subroutines should be approximately the same. This

gives us that κdav = mκnaive, and κegss =
√
dκnaive, which implies that we should

suspect UncertaintyCheck-DAV and UncertaintyCheck-EGSS to perform

worse than UncertaintyCheck-Naive. Further, since
√
d = 12 > 4 = m,

we should also suspect that UncertaintyCheck-EGSS will perform worse than

UncertaintyCheck-DAV. This is exactly what we observe in the left plot of

Fig. 8.2.

Now focusing on the Confident MC-Politex case, still for 10 rollouts per it-

eration. Using the same arguments as above for comparing query complexity of the

3 UncertaintyCheck subroutines we end up with 1/κ4
naive = m3/κ4

dav = md/κ4
egss

needing to hold. Where we used 1/κ4 instead of 1/κ2 now, since the query complexity

bound for all 3UncertaintyCheck subroutines has a 1/κ4 term for theConfident

MC-Politex algorithm (Sections 6.1, 7.2 and 7.4). This implies κdav = m3/4κnaive,

and κegss = (md)1/4κnaive, which have smaller multiples in front of 1/κnaive than for

Confident MC-LSPI and may explain why the difference between the 3 Uncer-

taintyCheck subroutines is not as large for Confident MC-Politex as it was for

Confident MC-LSPI. Also, Confident MC-Politex is much more stable, but

also requires more iterations to converge. This is expected because in Confident

MC-Politex the policy estimates from all iterations are averaged.

With 50 rollouts per iteration (right plot in Fig. 8.2), the same observations as

for the 10 rollouts per iteration case still hold. However, all the curves have become

smoother and the error bars have reduced, which is expected since the number rollouts

controls how well our parameter estimate wk concentrates (Lemma 4.2).
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8.2 Cooperation Example

In this section we show that there exists an MDP, that is not a product MDP, and

requires some notion of cooperation between agents (i.e. the best action for one agent

depends on the policy of another agent). Consider the MDP in Fig. 8.3, which can

be verified to satisfy Assumption 1 with γ = 1/2 (shown in the next subsection). The

feature map is defined in Section 8.2.1. We will assume that Assumption 4 holds with

m = 2. This means we have 2 agents in the MDP and their action sets are A(1) =

A(2) = {0, 1}. The joint action set is A(1:2) = A(1)×A(2) = {(0, 0), (1, 0), (0, 1), (1, 1)}.

The starting state is ρ = s1 and any action vector a(1:2) ∈ A(1:2) taken in s1 causes

the agents to move to s2 or s3, which are absorbing states (i.e. the agents will remain

in s2 or s3 once they get there). In s1 the action taken by agent 1 alone determines

the transition of both the agents (i.e. if a(1) ∈ A(1) is 0 then the agents transition to

state s3, while if a(1) = 1 then the agents transition to state s2). If the agents are in

s2 or s3, then the action of agent 2 alone determines the reward (i.e. if the agents are

in s2 and a(2) ∈ A(2) is 1 then the agents get a reward of 1, while if the agents are in

s3 and a(2) = 0 then the agents get a reward of 1, and the agents get a reward of 0

otherwise). If we fix the policy for one of the agents, then the other agent will face a

reduced MDP where the transitions and rewards only depend on its actions. We will

show that the best action for the first agent in s1 will be different depending on how

the second agent acts (through the second agents policy), which suggests that the

first agent should cooperate with the second agent to achieve a higher value. It also

shows that this MDP cannot be reduced to a product MDP, since in product MDPs

the best action for each agent does not depend on the policy of the other agents.

Assume two different policies π
(2)
0 , π

(2)
1 : S → ∆A(2) for the second agent, where

∆A(2) is the set of all distributions over A(2). We define the first policy as π
(2)
0 (si) = δ0

and the second as π
(2)
1 (si) = δ1 for all i ∈ [3] where δj for j ∈ {0, 1} is the Dirac delta

distribution (i.e. δj(a
(2)) = 1 if a(2) = j and δj(a

(2)) = 0 if a(2) ̸= j). When agent 2
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s1 s2s3
a(1:2) = (1, ·)

r = 0

a(1:2) = (0, ·)
r = 0

r = 0

a(1:2) = (·, 0)

a(1:2) = (·, 1)

r = 1

r = 1

a(1:2) = (·, 0)

a(1:2) = (·, 1)

r = 0

Figure 8.3: Illustration of an MDP for which Assumptions 1 and 4 hold.

follows π
(2)
0 the agents get a reward of 1 in s3 and get a reward of 0 in s2, regardless

of the policy followed by the first agent. The effect of agent 2 following π
(2)
1 is exactly

the opposite, the agents get a reward of 1 in s2 and a reward of 0 in s3. Consequently,

the optimal action in state s1 for agent 1 (since this determines the next state for

both agents) depends on if π
(2)
0 or π

(2)
1 is used by the second agent. Importantly, this

cannot be modeled by a product MDP, since in a product MDP the optimal action

for each agent only depends on each agent’s MDP, and does not depend on the policy

of other agents. This example shows that there is an MDP, that is not a product

MDP, for which Assumptions 1 and 4 still hold, strengthening the generality of our

assumption.

In general we can construct an MDP for which Assumptions 1 and 4 are satisfied

but is not a product MDP if at each state the transition probabilities and the reward

only depend on the action of a single agent. The agent who’s action is important at

each state can change between states. One can think of this as having an agent that

is in charge of what happens (transition and reward) at each state.
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8.2.1 Verifying Assumption 1 Holds

We now show that the MDP in Fig. 8.3 satisfies Assumption 1. First we define the

feature map ϕ : S ×A(1:2) → R4.

ϕ(s1, (0, 0)) = ϕ(s1, (0, 1)) = [0, 1, 0, 0]⊤

ϕ(s1, (1, 0)) = ϕ(s1, (1, 1)) = [1, 0, 0, 0]⊤

ϕ(s2, (0, 0)) = ϕ(s2, (1, 0)) = [1, 0, 0, 0]⊤

ϕ(s2, (0, 1)) = ϕ(s2, (1, 1)) = [1, 0, 1, 0]⊤

ϕ(s3, (0, 0)) = ϕ(s3, (1, 0)) = [0, 1, 0, 1]⊤

ϕ(s3, (0, 1)) = ϕ(s3, (1, 1)) = [0, 1, 0, 0]⊤

We set γ = 1/2; however, the features can be changed to work for any γ ∈ [0, 1].

Now we show that all the deterministic policies satisfy Assumption 1 with the

feature vectors above. Each policy can only have one of four action-value functions,

which we show now. Notice that the action-vector taken by a policy in state s1 can

not change the action-value function, since the next state is deterministically s2 or

s3 and there is no way to transition back to s1. Also, the action selected by agent

1 does not affect the reward recieved in state s2 or s3. Thus, we are left to consider

the policies that vary in the four combination of actions that are taken by agent 2 in

state s2 and s3. We define these four polices as π0,0, π0,1, π1,0, π1,1, where πx,y defines

any policy that takes action x ∈ {0, 1} in state s2 and action y ∈ {0, 1} in s3.

We claim that the following weight vectors satisfy Assumption 1, with b = 3.

wπ0,0
= [0, 1, 0, 1]⊤ wπ0,1

= [0, 0, 0, 0]⊤

wπ1,0
= [1, 1, 1, 1]⊤ wπ1,1

= [1, 0, 1, 0]⊤
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We use · to indicate that the result holds for any action. For policy π0,0 we have

w⊤
π0,0

ϕ(s1, (0, ·)) = [0, 1, 1, 1][0, 1, 0, 0]⊤ = 1 = qπ0,0
(s1, (0, ·))

w⊤
π0,0

ϕ(s1, (1, ·)) = [0, 1, 1, 1][1, 0, 0, 0]⊤ = 0 = qπ0,0
(s1, (1, ·))

w⊤
π0,0

ϕ(s2, (·, 0)) = [0, 1, 1, 1][1, 0, 0, 0]⊤ = 0 = qπ0,0
(s2, (·, 0))

w⊤
π0,0

ϕ(s2, (·, 1)) = [0, 1, 1, 1][1, 0, 1, 0]⊤ = 1 = qπ0,0
(s2, (·, 1))

w⊤
π0,0

ϕ(s3, (·, 0)) = [0, 1, 1, 1][0, 1, 0, 1]⊤ = 2 = qπ0,0
(s3, (·, 0))

w⊤
π0,0

ϕ(s3, (·, 1)) = [0, 1, 1, 1][0, 1, 0, 0]⊤ = 1 = qπ0,0
(s3, (·, 1))

For policy π0,1 we have

w⊤
π0,1

ϕ(s1, (0, ·)) = [0, 0, 1, 1][0, 1, 0, 0]⊤ = 0 = qπ0,1
(s1, (0, ·))

w⊤
π0,1

ϕ(s1, (1, ·)) = [0, 0, 1, 1][1, 0, 0, 0]⊤ = 0 = qπ0,1
(s1, (1, ·))

w⊤
π0,1

ϕ(s2, (·, 0)) = [0, 0, 1, 1][1, 0, 0, 0]⊤ = 0 = qπ0,1
(s2, (·, 0))

w⊤
π0,1

ϕ(s2, (·, 1)) = [0, 0, 1, 1][1, 0, 1, 0]⊤ = 1 = qπ0,1
(s2, (·, 1))

w⊤
π0,1

ϕ(s3, (·, 0)) = [0, 0, 1, 1][0, 1, 0, 1]⊤ = 1 = qπ0,1
(s3, (·, 0))

w⊤
π0,1

ϕ(s3, (·, 1)) = [0, 0, 1, 1][0, 1, 0, 0]⊤ = 0 = qπ0,1
(s3, (·, 1))

For policy π1,0 we have

w⊤
π1,0

ϕ(s1, (0, ·)) = [1, 1, 1, 1][0, 1, 0, 0]⊤ = 1 = qπ1,0
(s1, (0, ·))

w⊤
π1,0

ϕ(s1, (1, ·)) = [1, 1, 1, 1][1, 0, 0, 0]⊤ = 1 = qπ1,0
(s1, (1, ·))

w⊤
π1,0

ϕ(s2, (·, 0)) = [1, 1, 1, 1][1, 0, 0, 0]⊤ = 1 = qπ1,0
(s2, (·, 0))

w⊤
π1,0

ϕ(s2, (·, 1)) = [1, 1, 1, 1][1, 0, 1, 0]⊤ = 2 = qπ1,0
(s2, (·, 1))

w⊤
π1,0

ϕ(s3, (·, 0)) = [1, 1, 1, 1][0, 1, 0, 1]⊤ = 2 = qπ1,0
(s3, (·, 0))

w⊤
π1,0

ϕ(s3, (·, 1)) = [1, 1, 1, 1][0, 1, 0, 0]⊤ = 1 = qπ1,0
(s3, (·, 1))
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For policy π1,1 we have

w⊤
π1,1

ϕ(s1, (0, ·)) = [1, 0, 1, 1][0, 1, 0, 0]⊤ = 0 = qπ1,1
(s1, (0, ·))

w⊤
π1,1

ϕ(s1, (1, ·)) = [1, 0, 1, 1][1, 0, 0, 0]⊤ = 1 = qπ1,1
(s1, (1, ·))

w⊤
π1,1

ϕ(s2, (·, 0)) = [1, 0, 1, 1][1, 0, 0, 0]⊤ = 1 = qπ1,1
(s2, (·, 0))

w⊤
π1,1

ϕ(s2, (·, 1)) = [1, 0, 1, 1][1, 0, 1, 0]⊤ = 2 = qπ1,1
(s2, (·, 1))

w⊤
π1,1

ϕ(s3, (·, 0)) = [1, 0, 1, 1][0, 1, 0, 1]⊤ = 1 = qπ1,1
(s3, (·, 0))

w⊤
π1,1

ϕ(s3, (·, 1)) = [1, 0, 1, 1][0, 1, 0, 0]⊤ = 0 = qπ1,1
(s3, (·, 1))

It remains to show that the non-deterministic policies also satisfy Assumption 1.

For a policy π(p2,p3) that takes action (·, 1) at s2 with probability p2 ∈ [0, 1], and action

(·, 0) at s3 with probability p3 ∈ [0, 1], the weight vector that satisfies Assumption 1

with b = 3 is

wπ = [p2, p3, 1, 1]
⊤

Verifying we see this is indeed true

w⊤
π(p2,p3)ϕ(s1, (0, ·)) = [p2, p3, 1, 1][0, 1, 0, 0]

⊤ = p3 = qπ(p2,p3)(s1, (0, ·))

w⊤
π(p2,p3)ϕ(s1, (1, ·)) = [p2, p3, 1, 1][1, 0, 0, 0]

⊤ = p2 = qπ(p2,p3)(s1, (1, ·))

w⊤
π(p2,p3)ϕ(s2, (·, 0)) = [p2, p3, 1, 1][1, 0, 0, 0]

⊤ = p2 = qπ(p2,p3)(s2, (·, 0))

w⊤
π(p2,p3)ϕ(s2, (·, 1)) = [p2, p3, 1, 1][1, 0, 1, 0]

⊤ = p2 + 1 = qπ(p2,p3)(s2, (·, 1))

w⊤
π(p2,p3)ϕ(s3, (·, 0)) = [p2, p3, 1, 1][0, 1, 0, 1]

⊤ = p3 + 1 = qπ(p2,p3)(s3, (·, 0))

w⊤
π(p2,p3)ϕ(s3, (·, 1)) = [p2, p3, 1, 1][0, 1, 0, 0]

⊤ = p3 = qπ(p2,p3)(s3, (·, 1))
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Chapter 9

Conclusions and Future Work

In this thesis we considered the problem of planning with a local access simulator when

the action space is large. We introduced several algorithms that achieve polynomial

computation and query complexity guarantees, while still maintaining a reasonable

suboptimality of the output policy under various assumptions. The main novelty

is an efficient implementation of the UncertaintyCheck subroutine (required by

Confident MC-LSPI and Confident MC-Politex) under the mild assumption

of having access to a greedy oracle. If the q-functions for all policies satisfy an additive

structure we provide nuanced results that show how the sample complexity can be

improved in the regime where the dimension is large.

We provide Table 9.1, which summarizes the main results of this thesis. In bold it

highlights the trade-offs between our algorithms (UncertaintyCheck-EGSS and

UncertaintyCheck-DAV) andUncertaintyCheck-Naive by Yin et al. (2021).

Recall that the objective of this thesis was to avoid computation complexity that

depended on poly(|A|). Looking at the final column of the table, one can see that we

have succeeded at this goal, since our algorithms require computation that does not

depend on the action space or only depends on poly(
∑︁m

i=1 |A(i)|) (which is typically

much smaller than |A| = ∏︁m
i=1 |A(i)|). To achieve this computational improvement

only a poly(d,m) increase in the number of queries or suboptimality needs to be paid.
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Algorithms Query ϵ = 0 Query ϵ > 0 Subopt ϵ > 0 Computation

L
S
P
I

Naive Õ
(︂

d3

κ2(1−γ)8

)︂
Õ
(︂

d2

ϵ2(1−γ)4

)︂
Õ
(︂

ϵ
√
d

(1−γ)2

)︂
poly(|A|, d)

EGSS Õ
(︂

d3+1

κ2(1−γ)8

)︂
Õ
(︂

d2

ϵ2(1−γ)4

)︂
Õ
(︂

ϵ
√
d
√

d
(1−γ)2

)︂
poly(d)

DAV Õ
(︂

m2d3

κ2(1−γ)8

)︂
Õ
(︂

d2

ϵ2(1−γ)4

)︂
Õ
(︂

ϵ
√
dm

(1−γ)2

)︂
poly(

∑︁∑︁∑︁m
i=1 |A

(i)|, d)

P
O
L
IT

E
X Naive Õ

(︂
d3

κ4(1−γ)9

)︂
Õ
(︂

d
ϵ4(1−γ)5

)︂
Õ
(︂

ϵ
√
d

(1−γ)

)︂
poly(|A|, d)

EGSS Õ
(︂

md3+1

κ4(1−γ)9

)︂
Õ
(︂

md
ϵ4(1−γ)5

)︂
Õ
(︂

ϵ
√
d
√

d
(1−γ)

)︂
poly(

∑︁∑︁∑︁m
i=1 |A

(i)|, d)

DAV Õ
(︂

m3d3

κ4(1−γ)9

)︂
Õ
(︂

md
ϵ4(1−γ)5

)︂
Õ
(︂

ϵ
√
dm

(1−γ)

)︂
poly(

∑︁∑︁∑︁m
i=1 |A

(i)|, d)

Table 9.1: Query complexity, computation complexity, and suboptimality bounds of
algorithms discussed in this thesis, under Assumptions 1 and 2. The algorithms LSPI
and Politex refer to Confident MC-LSPI and Confident MC-Politex re-
spectively. Naive, EGSS, and DAV refer to UncertaintyCheck-Naive,
UncertaintyCheck-EGSS, UncertaintyCheck-DAV respectively. The bold
terms indicate the trade-offs between our algorithms (UncertaintyCheck-
EGSS and UncertaintyCheck-DAV) and UncertaintyCheck-Naive from
Yin et al. (2021). For ϵ = 0, the suboptimality gap is κ > 0, while for ϵ > 0,
the suboptimality gap is given in the ”Subopt ϵ > 0” column. All algorithms also
require poly( 1

1−γ
, 1
κ
, log(1

δ
)) computation for ϵ = 0 and poly( 1

1−γ
, 1
ϵ
, log(1

δ
), log(1 + b))

computation for ϵ > 0. UncertaintyCheck-EGSS requires access to a greedy
oracle (Assumption 3). UncertaintyCheck-DAV assumes the action set and
feature map is additive (Assumption 4).

An interesting direction for future work is to extend our results to the Confi-

dent LSVI algorithm (Hao et al., 2022), which is an algorithm based on least-

squares value iteration (LSVI) that only assumes a local access simulator and also

uses UncertaintyCheck-Naive to construct a core set of features. Further, as

discussed at the end of Chapter 1, the recent CAPI-QPI-PlAN algorithm by Weisz

et al. (2022) achieves better results thanConfident MC-LSPI orConfident MC-

Politex with local access to a simulator; however, its computation also depends on

|A| and could potentially be extended to large action sets using a variation of our

UncertaintyCheck algorithms. In this thesis we assumed a deterministic initial

state, as the focus was on addressing large action spaces; however, this can likely be

extended to a random initial state, as was done by Yin et al. (2021).
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Appendix A: Parameter Settings

A.1 Parameter Settings for Confident MC-LSPI +

UncertaintyCheck-Naive

If ϵ = 0

τ = 1

λ =
κ2(1− γ)4

1024b2

θ =
κ(1− γ)2

32
√
Cmax

H =
log
(︁
32
√
Cmax

)︁
− log (κ(1− γ)3)

1− γ
− 1

K =
log
(︂

1
κ(1−γ)2

)︂
+ log(8)

1− γ
+ 1

n =
log(4KC2

max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃

If ϵ > 0, then set κ = 32ϵ
√
d

(1−γ)2
(1 + log(b2ϵ−2d−1))1/2 in the above displays.

86



A.2 Parameter Settings for Confident MC-LSPI +

UncertaintyCheck-EGSS

If ϵ = 0

τ = 1

λ =
κ2(1− γ)4

1024b2d

θ =
κ(1− γ)2

32
√
d
√
Cmax

H =
log
(︂
32
√
Cmax

√
d
)︂
− log (κ(1− γ)3)

1− γ
− 1

K =
log
(︂

1
κ(1−γ)2

)︂
+ log(8)

1− γ
+ 1

n =
log(4KC2

max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃

If ϵ > 0, then set κ = 32ϵd
(1−γ)2

(1 + log(b2ϵ−2d−1))1/2 in the above displays.
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A.3 Parameter Settings for Confident MC-LSPI +

UncertaintyCheck-DAV

If ϵ = 0

τ = 1

λ =
κ2(1− γ)4

1024b2(2m− 1)2

θ =
κ(1− γ)2

32(2m− 1)
√
Cmax

H =
log
(︁
32
√
Cmax(2m− 1)

)︁
− log (κ(1− γ)3)

1− γ
− 1

K =
log
(︂

1
κ(1−γ)2

)︂
+ log(8)

1− γ
+ 1

n =
log(4KC2

max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃
If ϵ > 0, then set κ = 32ϵ

√
dm

(1−γ)2
(1 + log(b2ϵ−2d−1))1/2 in the above displays.
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A.4 Parameter Settings for Confident MC-

Politex + UncertaintyCheck-Naive

If ϵ = 0

τ = 1

λ =
κ2(1− γ)2

576b2

θ =
κ(1− γ)

24
√
Cmax

H =
log
(︁
24
√
Cmax

)︁
− log (κ(1− γ)2)

1− γ
− 1

K = 2 log(A)

(︃
4

κ2(1− γ)4
+

3

κ(1− γ)2
+

9

16

)︃
n =

log(4KC2
max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃
If ϵ > 0, then set κ = 16ϵ

√
dζ

(1−γ)
(1 + log(b2ϵ−2d−1))1/2 in the above displays.
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A.5 Parameter Settings for Confident MC-

Politex + UncertaintyCheck-EGSS Parame-

ters

If ϵ = 0

τ = 1

λ =
κ2(1− γ)2

576b2d

θ =
κ(1− γ)

24
√
d
√
Cmax

H =
log
(︂
24
√
Cmax

√
d
)︂
− log (κ(1− γ)2)

1− γ
− 1

K = 2m log(A)

(︃
4

κ2(1− γ)4
+

3

κ(1− γ)2
+

9

16

)︃
n =

log(4KC2
max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃
If ϵ > 0, then set κ = 16ϵd

(1−γ)
(1 + log(b2ϵ−2d−1))1/2 in the above displays.
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A.6 Parameter Settings for Confident MC-

Politex + UncertaintyCheck-DAV Parame-

ters

If ϵ = 0

τ = 1

λ =
κ2(1− γ)2

576b2(2m− 1)2

θ =
κ(1− γ)

24(2m− 1)
√
Cmax

H =
log
(︁
24
√
Cmax(2m− 1)

)︁
− log (κ(1− γ)2)

1− γ
− 1

K = 2m log(A)

(︃
4

κ2(1− γ)4
+

3

κ(1− γ)2
+

9

16

)︃
n =

log(4KC2
max)− log(δ)

2θ2(1− γ)2

Cmax =
e

e− 1

1 + τ

τ
d

(︃
log(1 +

1

τ
) + log(1 +

1

λ
)

)︃
If ϵ > 0, then set κ = 16ϵ

√
dm

(1−γ)
(1 + log(b2ϵ−2d−1))1/2 in the above displays.
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