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Abstract

The distance-constrained vehicle routing problem (DVRP) is one of the less

studied variants of vehicle routing problems. Here, the objective is to deliver

packages from a depot to clients with as few delivery vehicles as possible within

a given time frame.

In this thesis, we tackle larger instances of DVRP with around 200 nodes

using column generation. We utilize a recent 3-approximation algorithm for

the rooted orienteering problem to provide a practical algorithm for generat-

ing columns to approximately solve an exponentially large LP-relaxation of the

DVRP. We also provide a proof-of-concept implementation, analyze its perfor-

mance, extract the practical bounds and compare them against the theoretical

ones. Finally, we measure how much improvement our algorithm provides on

top of more naive heuristics that can be used for generating columns.
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Chapter 1

Introduction

Vehicle routing problems (VRPs) are a broad class of combinatorial optimiza-

tion problems with a wide range of applications. The general objective in this

class of problems is to find the optimal set of routes for a fleet of vehicles to

traverse in order to deliver to a given set of clients under several constraints.

There are several variants of vehicle routing problems, each addressing differ-

ent measurements of a feasible vehicle routing solution, including:

� CVRP (Capacitated Vehicle Routing Problem)

� VRPP (Vehicle Routing Problem with Profits)

� VRPPD (Vehicle Routing Problem with Pickup and Delivery)

� VRPTW (Vehicle Routing Problem with Time Windows)

� VRPMT (Vehicle Routing Problem with Multiple Trips)

The problem we will be trying to tackle in this thesis is the less-studied

distance-constrained vehicle routing problem (DVRP). As an example of DVRP,

suppose we are to deliver packages from a depot to all clients today, but each

client must receive the package by 5pm. In this model, we are looking to

minimize the number of trucks we deploy to serve the clients.

1.1 Preliminaries and Notations

Definition 1 (Linear Program (LP)). A linear program (Am×n, bm×1, cn×1) is

an optimization problem with a linear objective function and linear constraints.
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Equation (1.1) shows the canonical form of an LP.

max cTx

s.t. Ax ≤ b

x ≥ 0

(1.1)

Equation (1.2) shows the same LP in scalar format. It is important to note

that the columns and rows of A correspond to the variables and constraints

of the LP, respectively.

max
∑︂
j

cjxj

s.t.
∑︂
j

aijxj ≤ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n

(1.2)

The simplex algorithm works with equality constraints which are obtained by

introducing slack variables.

si := bi −
n∑︂

j=1

aijxj ∀1 ≤ i ≤ m (1.3)

(1.4) is the slack form of the same LP.

max
n∑︂

j=1

cjxj

s.t.
n∑︂

j=1

aijxj + si = bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n

si ≥ 0 ∀1 ≤ i ≤ m

(1.4)

In order to rewrite (1.4) using vectors and matrices, we need to augment A,

c, and x as follows:
max

(︁
cT |0

)︁
x̂

s.t.
(︁
A|Im

)︁
x̂ = b

x̂ ≥ 0

(1.5)

where x̂ denotes the column vector of slack variables appended to xi variables.

We will briefly discuss the simplex algorithm in chapter 2.

2



Definition 2 (Covering LP). A minimization LP(A, b, c) is called a covering

LP if and only if all elements of A, b, and c are non-negative.1

Definition 3 (Metric). A distance function d : S × S → [0,+∞) on set S

is called metric if and only if for all x, y, z ∈ S the following three conditions

hold.

Identity of indiscernibles

d(x, y) = 0 ⇐⇒ x = y

Symmetry

d(x, y) = d(y, x)

Triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

Definition 4 (α-approximation). Let P be an optimization problem with

optimal value OPT . An algorithm is an α-approximation for P if for every

instance of P , it provides value V such that:

1 ≤ max

{︃
V

OPT
,
OPT

V

}︃
≤ α (1.6)

where α ≥ 1 is called an approximation factor. For a minimization problem,

(1.6) translates to
V

α
≤ OPT ≤ V

and for a maximization problem, it translates to

V ≤ OPT ≤ α · V

Definition 5 (Arborescence). An arborescence rooted at node r is a directed

graph in which there is exactly one walk from r to any other node. Equiva-

lently, if the edge directions are ignored, then an arborescence becomes a tree.

Figure 1.1 demonstrates an example of an arborescence.

1Examples include minimum set cover, minimum vertex cover, and minimum edge cover
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Figure 1.1: An example of an arborescence

The following conditions hold for an arborescence rooted at r:{︄
δin(r) = 0

δin(v) = 1 v ∈ V − {r}

where δin denotes the number of incoming edges or indegree of a node.

Definition 6 (Distance Cost). For graph G(V,E), we define the distance cost

of G as the sum of distances of its edges, i.e.

d(G) :=
∑︂
e∈E

de

Definition 7 (Reward). For graph G(V,E), we define the reward of G as the

sum of the rewards of its vertices2, i.e.

π(G) :=
∑︂
v∈V

πv

Also, we define the reward of vertex set S as the sum of the rewards of its

elements, i.e.

π(S) :=
∑︂
v∈S

πv

2This notation is mostly used for paths and arborescences in this thesis
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Definition 8 (Prize-Collecting Cost Function). We define the prize-collecting

cost or simply cost function of S, a subgraph of G(V,E), for a positive λ as

c(S, λ) := λ · π(V − V (S)) + d(S)

where V (S) denotes the vertex set of S. In other words, the prize-collecting

cost of S is the distance cost of all edges of S plus the rewards of vertices that

are not included in S.

Definition 9 (Rooted Hamiltonian path problem). Given a metric graph G

with distance matrix
[︂
duv

]︂
, a root node r, and a distance bound D, determine

whether there exists a path starting at r and with distance cost of at most

D, which visits every node of G exactly once. The rooted Hamiltonian path

problem is NP-hard (Garey & Johnson, 1990).

1.2 Motivation and Literature Review

Definition 10 (Distance-Constrained Vehicle Routing Problem (DVRP)).

Given a graph G(V ∪ {r}, E) and its associated distance matrix
[︂
duv

]︂
with

rational distances, a root node (r), and a distance limit D ≥ 0, the objective

is to cover all the other nodes using the least number of paths starting at r

whose length is at most D. The distance-constrained vehicle routing problem

can be mathematically formulated by the integer linear program demonstrated

in (1.7).

min
∑︂
P∈Pr

D

xP

s.t.
∑︂

P :v∈P

xP ≥ 1 ∀v ∈ V

xP ∈ {0, 1} ∀P ∈ Pr
D

(1.7)

where Pr
D is the set of all paths that start at the root node (r) and whose

distance cost is less than or equal to D, and xP is a decision variable indicating

whether path P is selected or not.

A common approach when dealing with integer programs is relaxing the

constraints3 to obtain a linear program (LP). In case of (1.7), this can be done

3Known as LP relaxation
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by assuming that xP variables can take any non-negative real value, which

gives us (1.8).

min
∑︂
P∈Pr

D

xP

s.t.
∑︂

P :v∈P

xP ≥ 1 ∀v ∈ V

xP ≥ 0 ∀P ∈ Pr
D

(1.8)

Several approximation algorithms have been suggested to solve VRPs (Arkin

et al., 2006; Bansal et al., 2004; Toth & Vigo, 2001) and more specifically

DVRP (Nagarajan & Ravi, 2012). Nagarajan and Ravi (2012) have proposed

a 2-approximation algorithm if the distance metric is the shortest path in a

tree. They also proposed an O(logD)-approximation algorithm for DVRP

with general metrics and integer distances. Their algorithm can also provide

a (log 1
ϵ
)-approximation if the distance bound is allowed to be violated by a

factor of (1 + ϵ). (Nagarajan & Ravi, 2012)

Friggstad and Swamy (2014) were able to achieve anO( logD
log logD

)-approximation

for DVRP with integer distances. Their algorithm uses the ellipsoid method

(Grötschel et al., 2012) to provide a constant factor approximation to (1.8),

which makes their algorithm impractical.

A plausible conjecture is that DVRP itself admits a constant-factor approx-

imation. If so, it seems possible that such an approximation could be obtained

by somehow rounding a near-optimal solution to (1.8). Also in practice, an LP

solution could be rounded to an integer solution using integer programming

methods (Barnhart et al., 1998).

The challenge of solving (1.8) with simplex is that the number of variables

(paths) grows exponentially with the number of nodes as |Pr
D| = Ω(2|V |).

To overcome this challenge, we use an approach called column generation4.

Column generation has been used in the literature to solve problems such

as maximum multi-commodity flow problem (Ford & Fulkerson, 2004), the

cutting stock problem (Desrosiers & Lübbecke, 2005; Gilmore & Gomory,

1961, 1963), and even VRPs (Desrosiers et al., 1984).

4Also known as delayed column generation
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When using column generation, the problem is split into a main problem

and a subproblem. The main problem is the original one with only a small

subset of variables. The subproblem is then used to identify a new variable at

each iteration.

As we will explain in more detail in chapter 2, in order to generate a column

that can potentially improve the objective function of (1.8), we have to find

a path which violates the constraints of its dual LP described by (1.9), i.e. a

path of bounded length where sum of the dual variables (πv) along that path

is more than 1.
max

∑︂
v∈V

πv

s.t.
∑︂
v∈P

πv ≤ 1 ∀P ∈ Pr
D

πv ≥ 0 ∀v ∈ V

(1.9)

To that end, we try to find a bounded path starting at the root node (r)

with maximum sum of the dual variables. This subproblem is known as the

rooted orienteering problem (Blum et al., 2003; Friggstad & Swamy, 2017;

Nagarajan & Ravi, 2011). We then check to see if the sum is more than 1 or

not.

Definition 11 (Rooted Orienteering Problem). Given a complete bidirected

metric graph G(V,E), integer distance matrix
[︂
duv

]︂
, a root node r, an integer

distance bound (D ≥ 0), and non-negative node rewards (πv ≥ 0), the objec-

tive is to find a rooted path, i.e. a path starting at node r, with distance cost

of at most D that maximizes the reward along that path.

Blum et al. (2003) and Bansal et al. (2004) have proposed 4- and 3-

approximation algorithms for solving orienteering, respectively. Their approxi-

mations, however, do not seem practical due to the fact that their dynamic pro-

gramming algorithm has multiple parameters, which results in a high-degree

polynomial time complexity.

A (2 + ϵ)-approximation for orienteering in undirected graphs has been

proposed by Chekuri et al. (2012). Their algorithm has a time complexity

of O(|V | cϵ ) for some constant c, which means that their algorithm runs in

7



polynomial time for a constant ϵ > 0. However, this algorithm is impractical

for small enough ϵ, as well.

Friggstad and Swamy (2017) introduced the first LP-based 3-approximation

algorithm for rooted orienteering, which was based on solving an LP relaxation

and then rounding its solution to an integral one.

Post and Swamy (2017) used insights from the aforementioned paper (Frig-

gstad & Swamy, 2017) and designed a combinatorial (3+ ϵ)-approximation al-

gorithm for orienteering, which is the first approximation that stands a chance

of running fast enough in practice. We will elaborate on their algorithm in

chapter 3.

Our main contributions in this work include:

� Designing and implementing a more practical algorithm for solving (1.8)5.

� Calculating the approximation factor and lower bound for every individ-

ual instance

The rest of this work is organized as follows:

In chapter 2, we will briefly go over the simplex algorithm and also explain

column generation and why it works. Furthermore, we solve an instance of the

maximum multi-commodity problem as an example in section 2.1 to explain

the process of generating columns. We will also discuss how using approxima-

tion algorithms for solving the column generation subproblem can lead to an

approximation for the main problem in section 2.2.

In chapters 3 and 4, we explain the orienteering algorithm proposed by Post

and Swamy (2017) and combine it with column generation to come up with

our own practical (3 + ϵ)-approximation algorithm for (1.8). We also analyze

the asymptotic time complexity of the algorithm.

In chapter 5, we desrcibe the datasets we used in our experiments and

present the results. We will show that the approximation factor is far better

than 3 + ϵ in practice, at least in our experiments. Finally, we conclude by

suggesting possible optimizations to the algorithm.
5Solving the integer program (1.7) was not one of the main goals of this work. However,

we used one of the integer program solvers commonly used in the industry, to solve the
integer program. You can see our results in appendix A.
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Chapter 2

Column Generation for Linear
Programs

We begin by briefly summarizing the basic workings of the simplex algorithm,

which are essential to understanding the column generation approach, without

reproducing all the details of the algorithm and then go on to describe column

generation itself. Next, in section 2.1, we use column generation to solve

an instance of the maximum multi-commodity flow problem as an example.

Finally in section 2.2, we explain how approximate column generation yields

an approximate solution to the LP.

Definition 12. Consider the LP in (2.1).

max cTx

s.t. Ax = b

x ≥ 0

(2.1)

A basis (B) is a subset of column indices where AB is a square and invert-

ible matrix. AB denotes the matrix formed by columns in B. Also, let N be

the set of column indices that are not in B. x is a basic solution if and only

if: {︄
ABxB = b =⇒ xB = A−1

B b

xN = 0
(2.2)

if x ≥ 0, then x is a basic feasible solution.

From a geometric point of view, the space of feasible solutions forms a

convex polyhedron, and the basic feasible solutions are its vertices (corners).

See example 2.1.
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Example 2.1. Consider the LP in (2.3).

max c1x1 + c2x2

x1 + x2 ≤ 4 (1)

x1 ≤ 3 (2)

x2 ≤ 3 (3)

x1, x2 ≥ 0

(2.3)

We add slack variables s1, s2, and s3 to convert inequalities (1),(2), and (3) to

equalities as demonstrated in (2.4).

max c1x1 + c2x2

x1 + x2 + s1 = 4 (1)

x1 + s2 = 3 (2)

x2 + s3 = 3 (3)

x1, x2, s1, s2, s3 ≥ 0

(2.4)

We can rewrite (2.4) using vectors and matrices as demonstrated in (2.5).

max

⎡⎢⎢⎢⎢⎣
c1
c2
0
0
0

⎤⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

x1

x2

s1
s2
s3

⎤⎥⎥⎥⎥⎦

s.t.

⎡⎣1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

⎤⎦
⎡⎢⎢⎢⎢⎣
x1

x2

s1
s2
s3

⎤⎥⎥⎥⎥⎦ =

⎡⎣43
3

⎤⎦
(2.5)

B = {1, 2, 4} is a possible basis for (2.4) asAB =

⎡⎣1 1 0
1 0 1
0 1 0

⎤⎦ is an invertible

matrix. If we set the non-basic variables, s1 and s3, to 0, then the basic

10
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Figure 2.1: Feasible region of (2.3)
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variables are determined by the system of equations in (2.2).⎡⎣1 1 0
1 0 1
0 1 0

⎤⎦⎡⎣x1

x2

s2

⎤⎦ =

⎡⎣43
3

⎤⎦ (2.6)

=⇒ xB =

⎡⎣x1

x2

s2

⎤⎦ =

⎡⎣13
2

⎤⎦

=⇒ x =

⎡⎢⎢⎢⎢⎣
x1

x2

s1
s2
s3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
3
0
2
0

⎤⎥⎥⎥⎥⎦
x is a basic solution to (2.4), and since all the elements in x are non-

negative, it is also a basic feasible solution corresponding to the corner (A) in

fig. 2.1.

In addition to including slack variables, we also add a constant term z̄

to the objective function as part of the simplex algorithm. (2.7) is the final

representation of the LP with which simplex works.

max cTx+ z̄

s.t. Ax = b

x ≥ 0

(2.7)

From a high level point of view, the simplex algorithm searches for an

optimal basis by performing a pivot operation at each iteration. During each

pivot operation, a new column enters, and an old column exits the basis. The

new column (k) should be carefully chosen, e.g . by using Bland’s rule(Guenin

et al., 2014), to prevent infinite loops.
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Algorithm 2.1 Simplex Algorithm

Input: Linear Program P (A, b, c) and feasible basis B
Output: An optimal solution of P or a certificate of unboundedness
1: z̄ ← cTBA

−1
B b

2: Rewrite(A, b, c, B)
3: while ∃k ∈ N : ck > 0 do ▷ While there exists a column that can

improve the objective function.
4: if Ak ≤ 0 then ▷ P is unbounded
5: return Certificate of unboundedness
6: end if
7: r ← argmin

i
{ bi
aik

: aik > 0}

8: ℓ← the rth basis element
9: B ← (B ∪ {k})− {ℓ} ▷ Add new column and remove old column from

the basis
10: t← br

ark
11: z̄ ← z̄ + ckt
12: Rewrite(A, b, c, B)
13: end while
14: return x, z̄

1: procedure Rewrite(A, b, c, B)
2: xB ← A−1

B b
3: xN ← 0
4: y ← A−T

B cB ▷ The dual variables
5: c← c−ATy ▷ Reduced cost
6: b← A−1

B b
7: A← A−1

B A
8: end procedure

13



After each iteration of the simplex algorithm, the new objective function

value would increase by ckt. Since ck is positive and t is non-negative, the

new value be would be no smaller than the old one. If ckt is 0, then the pivot

is a degenerate pivot in which only the basis changes but not the objective

function value.

From a geometric perspective, the simplex algorithm jumps from one vertex

to an adjacent one at each iteration until it finds an optimal vertex.

Note: The y variables on line 4 of the Rewrite procedure are called dual

variables as they correspond to the variables in the dual LP. The dual

of (1.2) is defined as:

min
m∑︂
i=1

biyi

s.t.
m∑︂
i=1

aijyi ≥ cj ∀1 ≤ j ≤ n

yi ≥ 0 ∀1 ≤ i ≤ m

(2.8)

If the number of constraints is far less than the number of variables, e.g . when

n = Ω(2m), the solution would be very sparse. Moreover, if we examine the

simplex algorithm and the Rewrite procedure more closely, we can see that,

for most of the computations in each iteration, we just need to know a ba-

sis (B), its corresponding columns of A (AB), and its corresponding objective

function coefficients (cB). It is, therefore, possible to start with a few columns

and generate new ones as needed.

The process of column generation consists of the following steps:

1. Start with m columns.

2. Solve the LP and calculate the dual variables.

3. Solve the subproblem to find a column that violates the dual constraints.

4. If a column is found, add it to the LP and go to Step 2.

When no new column is found, then, according to theorem 2.1, the solution is

optimal.
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Theorem 2.1. Let x be a basic feasible solution corresponding to basis B and

y = A−T
B cB. If y is a feasible dual solution, then x is an optimal solution.

Proof by contradiction. Let x′ be a feasible solution whose value is larger than

x, i.e.

cTx′ > cTx (2.9)

Since y is feasible, ATy ≥ c, therefore,

∀j, (yTA)j ≥ cj
x′≥0
===⇒ ∀j, (yTA)jx

′
j ≥ cjx

′
j =⇒

∑︂
j

(yTA)jx
′
j ≥

∑︂
j

cjx
′
j

=⇒ cTx′ ≤ yTAx′ (2.10)

yT (Ax′) = yTb by feasibility of x′

= cTBA
−1
B b

= cTBxB by (2.2)

= cTx

=⇒ yT (Ax′) = cTx (2.11)

(2.10), (2.11) =⇒ cTx′ ≤ cTx (2.12)

which contradicts (2.9).

In section 2.1, we provide an example for column generation by using it to

solve the maximum multi-commodity flow problem similar to (Ford & Fulker-

son, 2004).

2.1 An Example of Column Generation: Solv-

ing the Maximum Multi-Commodity Flow

Problem

Definition 13 (Maximum Multi-Commodity Flow Problem). Let G(V,E) be

a directed graph where every edge e ∈ E has an associated capacity ce. Also,

let K1, K2, . . . , Kk be k commodities such that each commodity Ki is defined

as the ordered pair (si, ti) where si and ti are the source and sink nodes of
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the commodity Ki, respectively. The objective of the problem is to maximize

the total flow going from the sources to the sinks provided that for every

commodity Ki, the amount of flow going out of si has to be equal to the

amount of flow going into ti .

One way to formulate this problem is to imagine an amount of flow fp for

each path p from si to ti. The LP (2.13) represents this formulation mathe-

matically:

max
k∑︂

i=1

∑︂
p∈Pi

fp ∀si − ti pair

s.t.
k∑︂

i=1

∑︂
p∈Pi:e∈p

fp ≤ ce ∀e ∈ E

fp ≥ 0 ∀1 ≤ i ≤ k∀p ∈ Pi

(2.13)

where Pi is the set of all paths from si to ti.

The constraint indicates that for every edge (e), the total amount of flow

going through that edge has to be less than or equal to its capacity (ce). The

dual of (2.13) is as follows:

min
∑︂
e∈E

ceye

s.t.
∑︂
e∈p

ye ≥ 1 ∀1 ≤ i ≤ k∀p ∈ Pi

ye ≥ 0 ∀e ∈ E

If there exists a path which violates the constraints of the dual LP, that

is, the sum of dual variables along that path is less than 1, then that path has

the potential to increase the objective function value in the primal LP.

In order to find such a path, we construct a new graph G′ with the same

nodes and edges and set the weight of every edge (e) equal to its corresponding

dual variable (ye). Since all the weights are non-negative, we can run Dijkstra’s

algorithm for each of the si−ti pairs to find a path of length less than 1 and add

it to the LP as our new column. When no such path is found, the algorithm

terminates.

Example 2.2. Consider the graph in fig. 2.2.
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1
s1

1
s2

t1

t2

1

1

1

Figure 2.2: The edge weights denote capacities

In order to solve this problem with column generation, we number all the

edges according to fig. 2.3 in order to map the rows of A and b to the edges.

(1)
s1

(2)
s2

t1

t2

(4)

(5)

(3)

Figure 2.3: The edges numbered

Since there are no paths initially, we only have the slack variables. (2.14)
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shows the initial LP for this example.

max

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5

⎤⎥⎥⎥⎥⎦

s.t.

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
s1
s2
s3
s4
s5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦
(2.14)

We start with B = {1, 2, 3, 4, 5} as the basis and calculate the dual variables

and map them to the edges as demonstrated in fig. 2.4.

y = A−T
B cB =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦

0
s1 t1

0

0

0
s2 t2

0

Figure 2.4: The initial dual variables

Using Dijkstra’s algorithm, we find the shortest path between s1 and t1

shown in fig. 2.5.
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0
s1 t1

0

0

Figure 2.5: The shortest path between s1 and t1

As the length of the path in fig. 2.5 is less than 1, we can add this path as

a column to the LP with the corresponding variable f1.

max

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣
s1
s2
s3
s4
s5
f1

⎤⎥⎥⎥⎥⎥⎥⎦

s.t.

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
s1
s2
s3
s4
s5
f1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦
Using the simplex algorithm, we choose to evict the first column and add the

new column. The new basis would then be B = {2, 3, 4, 5, 6}, and the new

basic variables s2 = 1, s3 = 0, s4 = 0, s5 = 1, and f1 = 1.

We recalculate the dual variables and map them to edges.

y =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦
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1
s1 t1

0

0

0
s2 t2

0

Figure 2.6: The dual variables after generating the sixth column

The shortest path between s1 and t1 now has a length of 1 so it satisfies the

dual constraint. Using Dijkstra’s algorithm again, we find the path in fig. 2.7

and add it to the LP with the corresponding variable f2.

0

0
s2 t2

0

Figure 2.7: The shortest path between s2 and t2
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max

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5
f1
f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

s.t.

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 1 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5
f1
f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦

Using the simplex algorithm, we choose to evict the third column and add the

new column. As a result, the new basis becomes B = {2, 4, 5, 6, 7}, and the

new basic variables will be s2 = 1, s4 = 0, s5 = 1, f1 = 1, and f2 = 0.

Once again, we recalculate the dual variables and map them to edges.

y =

⎡⎢⎢⎢⎢⎣
0
0
1
0
0

⎤⎥⎥⎥⎥⎦
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0
s1 t1

0

1

0
s2 t2

0

Figure 2.8: The final dual variables after generating the seventh column

Now that all the paths between s − t pairs have a length of at least 1, in

accordance with theorem 2.1, we have reached the optimal solution.

From this point forward, we only focus on minimization LPs and more

specifically covering LPs.

2.2 Column Generation Using Approximation

Algorithms

In some problems, e.g . set partitioning, cutting stock, bin packing, vehicle

routing1, and edge partitioning, even the column generation subproblem itself

can be NP-hard. Therefore, we try to solve the subproblem using approx-

imation algorithms. When our algorithms fail to generate a column, then

according to theorem 2.2, guarantees that the solution is near-optimal for the

primal LP. We provide a simple proof for theorem 2.2 as we are not aware of

it appearing in the literature.

Theorem 2.2. Let x be a vertex corresponding to basis B for a covering linear

program (A, b, c) with optimum solution value OPT , and let y = A−T
B cB. If

y/α is a feasible dual solution for some α ≥ 1, then cTx
α

is a lower bound for

1Discussed in this thesis
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the optimal value OPT , i.e.

cTx

α
≤ OPT (2.15)

Proof.

cTx = xTc = xT
BcB + xT

NcN = xT
BcB = bTA−T

B cB = bTy (2.16)

Since y/α is a feasible dual solution,

bT (
y

α
) ≤ OPT =⇒ bTy

α
≤ OPT

(2.16)
===⇒ cTx

α
≤ OPT
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Chapter 3

Approximately Solving The
Orienteering Subproblem

The rooted orienteering problem is an NP-hard problem as every instance of

rooted Hamiltonian path problem, defined in definition 9, can be reduced to

an instance of the orienteering problem by saying that a Hamiltonian path

exists if and only if the optimum orienteering solution spans all nodes. As a

result, we will need to use heuristic or approximation algorithms to solve the

orienteering subproblem.

We use a (3 + ϵ)-approximation algorithm suggested by Post and Swamy

(2017) to solve the rooted orienteering problem. Their approximation uses

an algorithm called IterPCA (Post & Swamy, 2017) internally combined

with bisection method to find two arborescences from which a path can be

extracted.

In order to understand the approximation algorithm for orienteering, we

first need to discuss PCAP and IterPCA.

Definition 14 (Prize-Collecting Arborescence Problem (PCAP)). Given a

graph G(V,E), edge weights de, and node rewards πv, the objective is to find

an arborescence (T ) with the minimum prize-collecting cost, i.e.

argmin
T

c(T, 1) = argmin
T

[︃
π(V − V (T )) + d(T )

]︃
(3.1)

PCAP can be regarded as a generalization of the Steiner tree problem (Charikar

et al., 1999). PCAP is also NP-hard and difficult to approximate (Halperin

& Krauthgamer, 2003).
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The IterPCA algorithm (Post & Swamy, 2017) does not address PCAP

directly. Instead, it finds an arborescence Tλ whose cost is at most the prize-

collecting cost of any rooted walk in the graph. It also finds a value θλ as an

upper bound for the arborescence cost and a lower bound for the cost of all

rooted walks, i.e.

c(Tλ, λ) ≤ θλ ≤ c(P, λ) (3.2)

for any rooted path P and λ > 0. We will later on use θλ to measure the quality

of the solution for DVRP. The IterPCA algorithm has a time complexity of

O(|V |3).

3.1 From Prize-Collecting Arborescence to Ori-

enteering Path

Orienteering can be formulated as the problem of finding the path minimizing

the reward of nodes, which are not included in the path, i.e.

argmin
P

π(V − V (P )) ∀P ∈ Pr
D (3.3)

We use Lagrange multipliers to relax the distance bound and incorporate

it into the cost function.

argmin
P

π(V − V (P )) +
1

λ
(d(P )−D) ∀P ∈ Pr

or equivalently

argmin
P

λ · π(V − V (P )) + d(P )−D ∀P ∈ Pr

for any arbitrary λ > 0. Pr is the set of all paths starting at the root.

Since D is a constant value, it can be dropped, further simplifying the

objective function to (3.4).

argmin
P

λ · π(V − V (P )) + d(P ) = argmin
P

c(P, λ) ∀P ∈ Pr (3.4)

In other words, this Lagrangian relaxation turns the rooted orienteering prob-

lem into the problem of finding a rooted path with cheapest prize-collecting

value, which we can address with IterPCA according to (3.2).
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Note: For small enough values of λ, the output arborescence will only include

the root node, and for large enough values, it will include all the nodes.

Also, for small enough λ, the distance cost of the arborescence is at

most D. See lemma 3.1.

Lemma 3.1. Let πmax := maxv∈V πv and n be the number of nodes (including

the root node). If λ ≤ 1
nπmax

, then d(Tλ) ≤ D.

Proof by contradiction. Suppose d(Tλ) > D. Also, let P be an arbitrary rooted

path with distance cost at most D. Since all distances including the distance

bound are integers, then d(Tλ) ≥ D + 1.

D + 1 ≤ d(Tλ) ≤ d(Tλ) + λ · π(V − V (Tλ))

≤ d(P ) + λ · π(V − V (P )) according to (3.2)

≤ D + λ · π(V − V (P ))

≤ D +
π(V − V (P ))

nπmax

< D + 1 =⇒ D + 1 < D + 1

The remaining problem is determining λ. Previous works show that a

desirable λ results in d(Tλ) to be equal to D. We elaborate on this case in

section 3.1.1. We also discuss the lower bounds of our solution for the other

cases in sections 3.1.2 and 3.1.3.

3.1.1 Case #1

The first case is when, for some λ, the distance cost of the corresponding

arborescence (Tλ) is exactly equal to the distance limit (D), i.e.

∃λ > 0, d(Tλ) = D

Lemma 3.2. If d(Tλ) is greater than or equal to D for some positive λ, then

the reward of Tλ is at least the optimal orienteering reward, i.e.

d(Tλ) ≥ D =⇒ π(Tλ) ≥ π∗ (3.5)

where π∗ := π(P ∗).
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Proof. From (3.2),

c(Tλ, λ) ≤ c(P ∗, λ)

=⇒ d(Tλ) + λ · π(V − V (Tλ)) ≤ d(P ∗) + λ · π(V − V (P ∗))

=⇒ D + λ · π(V − V (Tλ)) ≤ d(P ∗) + λ · π(V − V (P ∗)) ≤ D + λ · π(V − V (P ∗))

=⇒ λ · π(V − V (Tλ)) ≤ λ · π(V − V (P ∗))

=⇒ π(V − V (Tλ)) ≤ π(V − V (P ∗))

=⇒ π(Tλ) ≥ π∗

Let t ∈ V (T ) be the node on the arborescence furthest from the root, i.e.

t := argmax
v∈V (T )

drv (3.6)
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h

ab

c

Figure 3.1: A sample arborescence. Note that in this graph, t is the furthest
node from the root (r)
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We can extract a path from the arborescence using the following steps:

1. Let A be the set of reverse of the arcs in T except those on the r-t path.

We construct a new graph G′ using the same vertices as T and edges of T and

A.

r

d

ef

g

t

h

ab

c

Figure 3.2: The solid arcs of the arborescence (T ) in blue and the dashed arcs
of A in red

The following conditions hold in G′:⎧⎪⎪⎨⎪⎪⎩
δout(r) = δin(r) + 1

δout(t) = δin(t)− 1

δout(v) = δin(v) ∀v ∈ V (T )− {r, t}

(3.7)
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2. Since all the nodes are connected to the root through T , and conditions

in (3.7) hold, then Hierholzer’s algorithm guarantees lemma 3.3 to be true.

Lemma 3.3. There exists an Eulerian walk which uses every edge in G′ exactly

once.

We extract one such Eulerian walk and call it W .

r → a→ b→ a→ c→ a→ r → d→ e→ f → e→ g → e→ d→ t→ h→ t

Figure 3.3: One of the possible walks of the graph in fig. 3.2

3. We then create a path P ′ by shortcutting past repeated nodes in W

except for the last occurrence of the furthest node (t).

r → a→ b ˂˂˂˂hhhh→ a→ c ˂˂˂˂˂˂˂hhhhhhh→ a→ r → d→ e→ f ˂˂˂˂hhhh→ e→ g ˂˂˂˂˂˂˂˂˂hhhhhhhhh→ e→ d→ t→ h→ t

r → a→ b→ c→ d→ e→ f → g → h→ t

Figure 3.4: Path extracted by shortcutting past repeated nodes

Lemma 3.4.

d(P ′) ≤ 2d(T )− drt (3.8)

Proof. Since the only edges not included in A are those on the r-t path, and

by the triangle inequality the distance cost of the r-t path is at least drt:

d(A) ≤ d(T )− drt

=⇒ d(T ) + d(A) ≤ 2d(T )− drt

=⇒ d(P ′) ≤ d(W ) = d(T ) + d(A) ≤ 2d(T )− drt

Algorithm 3.1 summarizes the steps covered in this section so far.
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Algorithm 3.1 Extract path from arborescence

function Arb2Path(T, r, t)
A← Reverse of the edges of T except those on r-t path
G′ ← (V (T ), T ∪ A)
W ← Extract Eulerian walk from G′ ▷ Step 2
P ′ ← Shortcut past repeated nodes on W ▷ Step 3
return P ′

end function

4. Let a and b be consecutive nodes on the path such that the section of

P ′ starting at r and ending at a, denoted by P ′
r⇝a, has distance cost at most

D, and P ′
r⇝b has a distance greater than D, i.e.

d(P ′
r⇝a) ≤ D (3.9)

d(P ′
r⇝b) > D (3.10)

Also, let P1 be P
′
r⇝a and P2 be the path created by concatenating the edge rb

and P ′
b⇝t as shown in fig. 3.5.

P1

P2
r a b t

Figure 3.5: The dashed and solid lines indicate paths and edges, respectively.

Note that P1 and P2 together span all nodes of T .

Theorem 3.5. P2 is a feasible path, i.e.

d(P2) ≤ D
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Proof.

d(P2) = drb + d(P ′
b⇝t)

= drb + d(P ′)− d(P ′
r⇝b)

≤ drb − drt + 2D −D by (3.8) and (3.10)

= drb − drt +D

≤ D by (3.6)

Finally, we return the path with the highest reward between P1 and P2 as

our orienteering solution.

Theorem 3.6. The maximum reward of P1 and P2 is at least half the reward

of the optimum orienteering path.

Proof.

max{π(P1), π(P2)} ≥
π(P1) + π(P2)

2
=

π(T )

2
(3.11)

Lemma 3.2 and (3.11) =⇒ max{π(P1), π(P2)} ≥
π∗

2
(3.12)

Theorem 3.6 proves that, for this case, the solution is a 2-approximation for

the rooted orienteering problem.

3.1.2 Case #2

The second case is when, for any λ, the distance cost of the tree is less than

the distance bound, i.e.

∀λ > 0, d(Tλ) < D

In that case, we can set λ high enough so that the corresponding arborescence

spans all the nodes and maximizes the collected reward. We can then use

steps 1-3 in section 3.1.1 to extract P ′. If the distance cost of P ′ is less than or

32



equal to the distance limit, i.e. d(P ′) ≤ D, then we return P ′ as the solution.

Otherwise, we use step 4 to split P ′ and return the path with the highest

reward as our orienteering solution.

Theorem 3.7. If, for every positive λ, the distance cost is at most D, then

the orienteering solution is a 2-approximation.

3.1.3 Case #3

It may not be immediately clear how to find a λ that leads to a distance

cost of exactly D. Furthermore, there may not always exist such a value for

λ. If neither of the conditions in cases 1 and 2 hold, then we can use the

bisection method to find a small enough range [λ1, λ2] and end up with two

arborescences, T1 and T2 such that d(T1) < D and d(T2) > D.

In this section, we calculate a lower bound for the reward of the paths

extracted from T1 and T2. Our analysis here is similar to the ones in previous

works such as (Friggstad & Swamy, 2017; Post & Swamy, 2017). We also use

the θ values to calculate a dynamic lower bound for every instance.

Similar to the analysis done by Friggstad and Swamy (2017), our analysis

requires that the furthest node from the root (t) be the same on both arbores-

cences. For this assumption to hold, we add an extra step to our algorithm

in which we iterate over all nodes and in each iteration, set that node as a

guess for furthest node and discard all nodes further than this furthest node.

We also have to set this node’s reward to +∞ to ensure that it lies on both

arborescences.

Let πmin be minv:πv>0 πv. Also, let λ1 = 0 and λ2 =
drt
πmin

+ 1, initially. For

λ1 = 0, we return the edge rt as T1. Lemma 3.1 guarantees that the distance

cost of T1 is less than or equal to D.

At each iteration of the binary search, we calculate λmid =
1
2
(λ1 + λ2) and

use IterPCA to get its corresponding arborescence. If the sum of edges of

this arborescence is greater than D, then we repeat the same procedure for

the lower half of the interval, i.e. [λ1, λmid]. Otherwise, we binary search the

other half of the interval, i.e. [λmid, λ2]. When the length of the interval is
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less than or equal to ϵλ, the search terminates, and the following assumptions

hold:

d(T1) < D (3.13)

d(T2) > D (3.14)

λ2 − λ1 ≤ ϵλ (3.15)

We use a similar procedure as section 3.1.1 to extract Eulerian walks W1

andW2, and then we get P ′
1 and P ′

2 by shortcutting past repeated nodes. Next,

we use algorithm 3.2 to split and extract rooted subpaths from each of these

paths.

Algorithm 3.2 Greedy Splitting

Input: Path P ′

Output: Feasible rooted paths S1, S2, . . . , Sk satisfying
⋃︁

i V (Si) = V (P ′)
1: u1 ← r
2: k ← 1
3: vk ← last node along P ′ after uk such that druk

+d(P ′
uk⇝vk

)−drvk ≤ D−drt
▷ This could be t

4: Sk ← edge ruk appended by P ′
uk⇝vk

5: while vk ̸= t do
6: uk+1 ← node after vk
7: k ← k + 1
8: vk ← last node along P ′ after uk such that druk

+ d(P ′
uk⇝vk

) − drvk ≤
D − drt

9: Sk ← edge ruk appended by P ′
uk⇝vk

10: end while

Note: Algorithm 3.2 is presented here for the sole purpose of proving the lower

bound. In practice, however, we use the GetBestPath function in

section 4.3 to brute-force search all acceptable subpaths and extract

the path with highest reward.
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Figure 3.6: Segmentation of a path

Corollary 3.7.1. All subpaths (S1, S2, . . . , Sk) are feasible, i.e.

∀1 ≤ i ≤ k, d(Si) ≤ D

Proof.

drui
+ d(P ′

ui⇝vi
)− drvi ≤ D − drt (3.16)

=⇒ d(Si) = drui
+ d(P ′

ui⇝vi
) ≤ D + drvi − drt ≤ D

Lemma 3.8. Let k be the number of extracted segments, then

k <
2d(T )− 2drt

D − drt
+ 1 (3.17)

Proof.

k−1∑︂
j=1

[druj
+ d(P ′

uj⇝vj
) + dvjuj+1

− druj+1
] > (k − 1)(D − drt)

=⇒ d(P ′
r⇝uk

)− druk
> (k − 1)(D − drt)

=⇒ d(Sk) + druk
− drt + d(P ′

r⇝uk
)− druk

> (k − 1)(D − drt) + d(Sk) + druk
− drt

=⇒ d(P ′)− drt > (k − 1)(D − drt) + d(Sk) + druk
− drt

≥ (k − 1)(D − drt) by the triangle inequality

=⇒ (k − 1)(D − drt) < 2d(T )− 2drt

=⇒ k − 1 <
2d(T )− 2drt

D − drt

=⇒ k <
2d(T )− 2drt

D − drt
+ 1
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For the rest of this section, we will argue that the best path among all

those produced by splitting both P ′
1 and P ′

2 will be a (3+ ϵ)-approximation for

the orienteering problem. Let α1 and α2 be two non-negative numbers such

that:

α1, α2 ≥ 0

α1 + α2 = 1

α1 · d(T1) + α2 · d(T2) = D

Note that α1 and α2 exist because, according to (3.13) and (3.14),

d(T1) < D

d(T2) > D

Also, let k1 and k2 be the number of segments extracted from P ′
1 and P ′

2,

respectively.

We define the weighted average reward of T1 and T2 (π) and the weighted

average number of extracted segments (k) as follows.

π := α1 · π(T1) + α2 · π(T2)

k := α1k1 + α2k2

We will show that π is nearly the optimum path reward (π∗), and k is

always less than 3.

Lemma 3.9.

π + δ ≥ U ≥ π∗ (3.18)

where δ := α1ϵλ
λ2
· π(V − V (T1)) and U := π(V )− α1θ1+α2θ2−D

λ2
.

Proof. Since T1 and T2 were generated using IterPCA algorithm, (3.2) holds

for both of them, i.e.

c(T1, λ1) ≤ θ1 ≤ c(P ∗, λ1)

c(T2, λ2) ≤ θ2 ≤ c(P ∗, λ2)
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If we expand the above equations for both i = 1 and i = 2,

c(Ti, λi) ≤ θi ≤ c(P ∗, λi)

=⇒ d(Ti) + λi · π(V − V (Ti)) ≤ θi ≤ d(P ∗) + λi · π(V − V (P ∗))

=⇒ αi · d(Ti) + αiλi · π(V − V (Ti)) ≤ αiθi ≤ αi · d(P ∗) + αiλi · π(V − V (P ∗))
(3.19)

By summing (3.19) over i = 1, 2, we get:

2∑︂
i=1

[αi · d(Ti) + αiλi · π(V − V (Ti))] ≤
2∑︂

i=1

αiθi ≤
2∑︂

i=1

[αi · d(P ∗) + αiλi · π(V − V (P ∗))]

=⇒ D + α1λ1 · π(V − V (T1)) + α2λ2 · π(V − V (T2)) ≤ α1θ1 + α2θ2

≤ d(P ∗) + [α1λ1 + α2λ2] · π(V − V (P ∗)) ≤ D + [α1λ1 + α2λ2] · π(V − V (P ∗))

=⇒ α1λ1 · π(V − V (T1)) + α2λ2 · π(V − V (T2)) ≤ α1θ1 + α2θ2 −D

≤ [α1λ1 + α2λ2] · π(V − V (P ∗)) (3.20)

After the binary search terminates, we would have λ2 − ϵλ ≤ λ1 < λ2.

Therefore,

α1(λ2 − ϵλ) · π(V − V (T1)) + α2λ2 · π(V − V (T2))

≤ α1λ1 · π(V − V (T1)) + α2λ2 · π(V − V (T2)) ≤ α1θ1 + α2θ2 −D

≤ [α1λ1 + α2λ2] · π(V − V (P ∗)) ≤ [α1λ2 + α2λ2] · π(V − V (P ∗))

=⇒ α1(λ2 − ϵλ) · π(V − V (T1)) + α2λ2 · π(V − V (T2)) ≤ α1θ1 + α2θ2 −D

≤ [α1λ2 + α2λ2] · π(V − V (P ∗))

=⇒ α1(λ2 − ϵλ) · π(V − V (T1)) + α2λ2 · π(V − V (T2)) ≤ α1θ1 + α2θ2 −D

≤ λ2 · π(V − V (P ∗))

=⇒ α1 · π(V − V (T1))−
α1ϵλ
λ2

· π(V − V (T1)) + α2 · π(V − V (T2)) ≤
α1θ1 + α2θ2 −D

λ2

≤ π(V − V (P ∗))

=⇒ π(V )− α1 · π(T1)− α2 · π(T2)− δ ≤ α1θ1 + α2θ2 −D

λ2

≤ π(V )− π∗

=⇒ α1 · π(T1) + α2 · π(T2) + δ ≥ π(V )− α1θ1 + α2θ2 −D

λ2

≥ π∗

=⇒ α1 · π(T1) + α2 · π(T2) + δ ≥ U ≥ π∗

=⇒ π + δ ≥ U ≥ π∗
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Lemma 3.9 is a very important inequality as not only does it provide a

theoretical guarantee for the solution, but as we will show in section 4.4, it

also gives us a way to calculate a lower bound for every DVRP instance solution

dynamically.

Corollary 3.9.1. The δ value from (3.18) can be made arbitrarily small with

a small choice of ϵλ because:

δ ≤ ϵλ · [nπmax]
2 (3.21)

where n is the number of nodes, and πmax := maxv πv.

Proof.

δ =
ϵλπ(V − V (T1))

λ2

≤ ϵλ
λ2

π(V − V (T1)) ≤
ϵλ
λ2

π(V ) ≤ ϵλ
λ2

nπmax (3.22)

d(T2) > D
(3.1)

========⇒
Modus Tollens

λ2 >
1

nπmax

=⇒ 1

λ2

< nπmax (3.23)

(3.22), (3.23) =⇒ δ ≤ ϵλ
λ2

nπmax ≤ ϵλ[nπmax]
2

Lemma 3.10. The weighted average number of extracted segments (k) is less

than 3.

k < 3 (3.24)

Proof. According to (3.17),

ki <
2d(Ti)− 2drt

D − drt
+ 1 =⇒ αiki < 2αi ·

d(Ti)− drt
D − drt

+ αi (3.25)

By summing (3.25) for i = 1 and i = 2, we get

2∑︂
i=1

αiki < 2α1 ·
d(T1)− drt
D − drt

+ α1 + 2α2 ·
d(T2)− drt
D − drt

+ α2 (3.26)

Since the furthest node (t) is the same on both T1 and T2, we can further
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simplify (3.26) as follows:

2∑︂
i=1

αiki <
2

D − drt

2∑︂
i=1

αid(Ti) + (1− 2drt
D − drt

)
2∑︂

i=1

αi

=⇒ k <
2α1 · d(T1) + 2α2 · d(T2)

D − drt
− 2(α1 + α2) · drt

D − drt
+ α1 + α2

=⇒ k <
2D

D − drt
− 2drt

D − drt
+ 1 =⇒ k < 3

Intuitively, since the average reward of the trees is at least π∗ − δ, and

the average number of paths produced when applying pruning to these trees

is less than 3, then the best path obtained through pruning has value of at

least 1
3
[π∗ − δ]. We prove this statement and present a lower bound for the

orienteering solution in theorem 3.11.

Theorem 3.11. The highest reward among the acceptable paths extracted from

P ′
1 and P ′

2 is a (3+ ϵ)-approximation for the rooted orienteering problem where

ϵ = 4n2ϵλπmax.

Proof. If we assign a weight of αi/3 to segment Si
j from path P ′

i and calculate

the weighted sum, then according to (3.24)

2∑︂
i=1

ki∑︂
j=1

αi

3
=

1

3

2∑︂
i=1

αiki =
k

3
< 1 (3.27)

Also, let υ := max1≤i≤2max1≤j≤ki π(S
i
j), then

∀1 ≤ i ≤ 2∀1 ≤ j ≤ ki π(Si
j) ≤ υ =⇒ αi

3
π(Si

j) ≤
αiυ

3
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If we sum over all values of i and j, by (3.27), we would get:

2∑︂
i=1

ki∑︂
j=1

αi

3
π(Si

j) ≤
2∑︂

i=1

ki∑︂
j=1

αiυ

3
≤ υ

2∑︂
i=1

ki∑︂
j=1

αi

3
< υ (3.28)

=⇒ υ >
2∑︂

i=1

ki∑︂
j=1

αi

3
π(Si

j) =
2∑︂

i=1

αi

3
π(P ′

i )

=
2∑︂

i=1

αi

3
π(Ti) as P ′

i and Ti visit the same nodes

=
π

3

≥ 1

3
(π∗ − δ) by (3.18)

=
π∗

3
(1− δ

π∗ )

The optimal path is at least as good as the trivial path that connects the root

node to the node with maximum reward, i.e. π∗ ≥ πmax, therefore,

υ >
π∗

3
(1− δ

π∗ ) ≥
π∗

3
(1− δ

πmax

)

≥ π∗

3
(1− n2ϵλπ

2
max

πmax

) by (3.21)

= π∗(
1− n2ϵλπmax

3
)

≥ π∗(
1

3 + 4n2ϵλπmax

) = π∗(
1

3 + ϵ
)

3.2 Pseudocode

In this section, we present the summary of what we have presented in chapter 3

so far as pseudocode.
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Algorithm 3.3 Binary Search Orienteering

1: function BisectionORienteerING(V, r, d,Π, D, ϵλ)
2: πmin ← minv:Π[v]>0Π[v]
3: dmax ← maxv∈V drv
4: λmax ← dmax/πmin + 1
5: Umax ← 0
6: for all v ∈ V do
7: Πmax[v]← λmax · Π[v]
8: end for
9: Tmax, θmax ← IterPCA(V, r, d,Πmax)
10: if d(Tmax) ≤ D then ▷ . See section 3.1.2
11: t← argmaxv∈V drv
12: P ′ ← Arb2Path(Tmax, r, t)
13: P ← GetBestPath(P ′, d,D,Π)
14: Umax ← π(V )
15: return P , Umax

16: end if
17: Pbest ← empty path
18: for all t ∈ V do ▷ t is our guess for the furthest node
19: V ′ ← {v ∈ V : drv ≤ drt}
20: λ1 ← 0
21: λ2 ← drt/πmin + 1
22: Π1 ←ScaleRewards(V ′,Π, λ1, t)
23: Π2 ←ScaleRewards(V ′,Π, λ2, t)
24: T1, θ1 ← IterPCA(V ′, r, d,Π1)
25: T2, θ2 ← IterPCA(V ′, r, d,Π2)
26: BinarySearch(V ′, r, d, Π, D, ϵλ) ▷ This line is the bottleneck
27: P ′

1 ← Arb2Path(T1, r, t)
28: P ′

2 ← Arb2Path(T2, r, t)
29: P1 ← GetBestPath(P ′

1, d,D,Π)
30: P2 ← GetBestPath(P ′

2, d,D,Π)
31: if T1 = T2 then ▷ . See section 3.1.1
32: α← 1
33: else
34: α← d(T2)−D

d(T2)−d(T1)

35: end if
36: U ← π(V ′)− (αθ1+(1−α)θ2−D)

λ2

37: if U < +∞ then
38: Umax ← max{Umax, U}
39: end if
40: Pbest ← argmax{π(Pbest), π(P1), π(P2)}
41: end for
42: return Pbest, Umax

43: end function
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Algorithm 3.4 Binary Search

1: procedure BinarySearch(V ′, r, d,Π, D, ϵλ)
2: if λ2 − λ1 ≤ ϵλ then
3: return
4: end if
5: λmid ← 1

2
(λ1 + λ2)

6: Πmid ←ScaleRewards(V ′,Π, λmid, t)
7: Tmid, θmid ← IterPCA(V ′, r, d,Πmid)
8: if d(Tmid) = D then ▷
9: λ1 ← λmid

10: λ2 ← λmid

11: T1 ← Tmid

12: T2 ← Tmid

13: θ1 ← θmid

14: θ2 ← θmid

15: return
16: else if d(Tmid) < D then
17: λ1 ← λmid

18: T1 ← Tmid

19: θ1 ← θmid

20: else
21: λ2 ← λmid

22: T2 ← Tmid

23: θ2 ← θmid

24: end if
25: BinarySearch(V ′, r, d,Π, D, ϵλ)
26: end procedure

function ScaleRewards(V ′,Π, λ, t)
for all v ∈ V ′ do

Πλ[v]← λ · Π[v]
end for
Πλ[t]← +∞ ▷ So that the arborescence always includes t
return Πλ

end function
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Algorithm 3.5 Pruning Algorithm

function GetBestPath(P ′, d,D,Π)
Pbest ← empty path
for node u on P ′ do

v ← furthest node along P ′ and after u such that dru+ d(P ′
u⇝v) ≤ D

S ← edge ru appended by P ′
u⇝v

Pbest ← argmax{π(Pbest), π(S)}
end for
return Pbest

end function

3.3 Post-Processing

We added a post-processing step to further improve an existing path by at-

tempting to add nodes not already on the path. It uses a greedy approach

in which it sorts these nodes by their reward. It then finds the first node on

the path, after which it can insert them as long as the distance limit is not

exceeded.

Algorithm 3.6 Post processing step

function PostProcess(P, V, d,D,Π, r)
for all v ∈ V − V (P ) in descending order of Π[v] do

for all node n on P do
Insert v right after n
if d(P ) > D then

Remove v from P
else

break
end if

end for
end for
return P

end function

3.4 Time Complexity

The BinarySearch function on line 26 has the highest asymptotic time

complexity in our orienteering algorithm. The number of binary search re-

cursions is O
(︂
log( dmax

πminϵλ
)
)︂
. At each recursion, IterPCA is run once, there-
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fore, the time complexity of BinarySearch is O
(︂
|V |3 log( dmax

πminϵλ
)
)︂
. As we

have to guess the furthest node, we would need to call BinarySearch |V |

times. Therefore, the total time complexity of the orienteering algorithm is

O
(︂
|V |4 log( dmax

πminϵλ
)
)︂
.
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Chapter 4

Putting It All Together:
Approximately Solving The LP
Relaxation of DVRP

Now that we have explained the binary search orienteering algorithm and

column generation, we can combine them to get an approximation algorithm

for the LP relaxation of DVRP. We begin by establishing the hardness of

the LP relaxation itself and then propose several simple but fast heuristics to

solve the orienteering subproblem. Next, we present the pseudocode of our

algorithm, and finally, we prove that the quantity U introduced in chapter 3

is the approximation factor of the solution to the DVRP relaxation and that

U cannot exceed 3 + ϵ.

4.1 Hardness of The LP Relaxation

Given a solution to (1.8), we can verify whether its corresponding objective

function value (
∑︁

P xP ) equals 1 in polynomial time, as there are at most

|B| = |V | positive xP variables in the basic solution. Therefore, this decision

problem is NP. It is also NP-hard as we can solve any instance of the rooted

Hamiltonian path problem by solving (1.8) on the same graph with distance

bound D and checking to see if the objective function is 1.

Theorem 4.1. If the optimal value of (1.8) equals 1, then a rooted Hamilto-

nian path of distance at most D exists.
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Proof by contradiction. Let P1, P2, . . . , PN be N non-Hamiltonian paths such

that ∑︂
P

xP =
N∑︂
i=1

xPi
= 1

xPi
> 0 ∀1 ≤ i ≤ N

Since P1, P2, . . . , PN are non-Hamiltonian, then for each path Pi, there exists

a node v which is not on Pi. By writing the corresponding constraint in (1.8)

for v, we would have:∑︂
P :v∈P

xP ≤
∑︂
P

xP − xPi
= 1− xPi

< 1 ∀1 ≤ i ≤ N

which violates the constraint.

On the other hand, assume that a Hamiltonian path exists. Let us call

it P ∗. If we set its corresponding x variable (xP ∗) to 1 while keeping other

variables at 0, we get a feasible solution for (1.8) with objective function value

of 1. The objective function value of (1.8) cannot go below 1, otherwise, it

would violate the constraints of the LP.

Therefore, every instance of the rooted Hamiltonian path problem is re-

ducible to the decision problem in theorem 4.1, which makes this decision

problem NP-complete. This means that unless P = NP, one should not ex-

pect an efficient algorithm to find an optimal solution.

4.2 Heuristics

Using column generation to solve (1.8) gives us the flexibility to use any algo-

rithm to solve the orienteering subproblem as long as that algorithm can pro-

vide us with a column with negative reduced cost. As a result, we can start col-

umn generation with simpler but faster heuristics to improve performance and

use more sophisticated but slower algorithms, likeBisectionORienteerING,

to improve the objective function value whenever the heuristics can not. Keep

in mind, however, that the heuristics we used do not provide any guarantees

for the LP value.

We implemented the following algorithms:
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1. The first heuristic is a greedy algorithm. We start with the root node

(r) as the only node on our path and feed it into PostProcess. The

output of the function would be our path.

Algorithm 4.1 First heuristic

Input: Set of vertices V , rewards Π[v], distance matrix [duv], distance limit
D, root Node r

Output: Path P
P ← empty path
Add r to P
P ← PostProcess(P, V, d,D,Π, r)

2. In the second heuristic, we choose two nodes from V − {r} and add

them as the second and third nodes of the path. We then feed these

paths into PostProcess and return the path with highest reward. In

practice, this heuristic rarely, if not never, generated a path with reward

higher than 1 when the first heuristic failed to do so.

Algorithm 4.2 Second heuristic

Input: Set of vertices V , rewards Π[v], distance matrix [duv], distance limit
D

Output: Path Pbest

Pbest ← empty path
for all node i ∈ V − {r} do

for all node j ∈ V − {r, i} do
P ← empty path
Add r to P
Add i to P
Add j to P
P ← PostProcess(P, V, d,D,Π, r)
Pbest ← argmax{π(P ), π(Pbest)}

end for
end for

3. The third heuristic, apart from minor details, is similar to the one used

by Friggstad et al. (2018). In this heuristic, we, once again, start with r

as the only node on the path. At each iteration, we pick the node with

the highest reward to distance ratio from the last node on the path as
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long as it does not violate the distance limit and append this new node

to the path. We repeat this procedure until there are no more nodes to

be added.

Algorithm 4.3 Third heuristic

Input: Set of vertices V , rewards Π[v], distance matrix [duv], distance limit
D

Output: Path P
P ← empty path
Add r to P
c← r
repeat

done← true
V ′ ← {v ∈ V − V (P ) : d(P ) + dcv ≤ D}
if V ′ ̸= ∅ then

n← argmaxv∈V ′ Π[v]/dcv
done← false
Add n to P
c← n

end if
until done is true

Note: We made the observation that for very large values of D, the heuris-

tics would keep generating paths for thousands of iterations without

improving the objective function value, similar to degenerate pivots in

the simplex algorithm. BisectionORienteerING was seldom called

in these cases.

4.3 Algorithm
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Algorithm 4.4 Column Generation for Distance-Constrained Vehicle Routing
Problem

Input: Set of vertices V , root node r, distance matrix
[︂
duv

]︂
, distance

limit D, ϵ
Output: Set of acceptable rooted paths that together cover all nodes in V ,

Lower bound LB
1: n← |V | − 1
2: for all v ∈ V − {r} do ▷ This for loop is equivalent to A← In
3: Add the edge rv as a path to A
4: end for
5: b← [1]n×1

6: c← [1]n×1

7: L← LP (A, b, c) ▷ minimize cTx such that Ax ≥ b
8: LB ← 1 ▷ The lower bound for the solution of (1.8). See section 5.2.2
9: done← false
10: repeat
11: done← true
12: Solve L
13: for all v ∈ V do
14: Π[v]← Dual variable corresponding to vertex v
15: end for
16: PH ← Rooted path generated by heuristics ▷ See section 4.2
17: if π(PH) > 1 then
18: Add PH as a column to A
19: cPH

← 1
20: L← LP (A, b, c)
21: done← false
22: else ▷ if heuristics are not sufficient
23: πmax ← maxv∈V Π[v]
24: ϵλ ← ϵ

4(n+1)2πmax

25: PO, U ← BisectionORienteerING(V, r, d,Π, D, ϵλ)
26: PO ← PostProcess(PO, V, d,D,Π, r) ▷ See section 3.3
27: if π(PO) > 1 then

28: LB ← max{LB, π(V )
U
}

29: Add PO as a column to A
30: cPO

← 1
31: L← LP (A, b, c)
32: done← false
33: end if
34: end if
35: until done is true
36: B ← Basis corresponding to the solution of L
37: return Paths corresponding to B, LB
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4.4 Bounds for DVRP

As we saw in (3.18), U is an upper bound for the reward of the optimal

orienteering path. As a result, if we divide the rewards of all nodes by U ,

then the reward of any path would be at most 1, which means the scaled dual

solution (Π
U
) is feasible. Therefore, according to theorem 2.2, the corresponding

primal solution would be a U -approximation to (1.8). Equivalently, if we divide

the value of (1.8) by U , the resulting quantity would be a lower bound for

OPT , indicated by LB in algorithm 4.4.

Theorem 4.2. When algorithm 3.3 can not find a path with reward greater

than 1, then U would be at most 3 + ϵ.

Proof. If algorithm 3.3 can not find a path with reward greater than 1, then

1 ≥ max
1≤i≤2

max
1≤j≤ki

π(Si
j) >

2∑︂
i=1

ki∑︂
j=1

αi

3
π(Si

j) =
π

3
≥ U − δ

3
≥ U

3
(1− δ

U
)

Since U ≥ π∗ ≥ πmax,

1 ≥ U

3
(1− δ

U
) ≥ U

3
(1− δ

πmax

)

≥ U

3
(1− n2ϵλπ

2
max

πmax

) by (3.21)

= U(
1− n2ϵλπmax

3
)

≥ U(
1

3 + ϵ
) similar to theorem 3.11

Therefore,

U(
1

3 + ϵ
) ≤ 1 =⇒ U ≤ 3 + ϵ

Keep in mind that theorem 4.2 provides a theoretical guarantee on the

value of U . In chapter 5, we see that in practice, U is much closer to 1, at

least in our experiments.
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Chapter 5

Experiments

In this chapter, we explain the details of the experiments that we run on our

implementation1 of algorithm 4.4. In section 5.1, we describe the datasets

which we used in our experiments. Next, we discuss the results including

approximation factor, improvement, and running time in section 5.2. Finally,

we suggest some possible optimizations in section 5.3, which can be applied to

improve the implementation even further.

5.1 Datasets

We are not aware of any benchmark datasets specific to DVRP, so we generated

some. We also slightly modified the datasets for related problems. We used

the following datasets:

Euclidean For these datasets, we generated a number of pseudorandom points

uniformly distributed over the unit interval [0, 1]2 and set the euclidean

distance between points as the metric. The expected length of TSP2

tour in this case is estimated to be 0.7
√
n where n is the number of

points (Beardwood et al., 1959; Moscato & Norman, 1994). We use this

knowledge and set n = 25, 50, 100, 200 and the distance bound (D) to

max{0.7
√
n

5
,
√
2}.

TSP We chose 3 datasets with known optimum TSP tour lengths from TSPLIB,

Gerhard Reinelt’s library of 110 instances of the traveling salesman prob-

1You can find the code at https://github.com/ssinad/dcvr-thesis
2Travelling Salesman Problem
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lem.3 We, then, set the distance bound (D) to one-fifth of the optimum

TSP tour length of each dataset.

CVRP We also chose two sets of capacitated vehicle routing problem datasets:

Fisher 1994 - Set F 4 and Christofides and Eilon 1969 - Set E 5. We swept

the distance bounds for these datasets as follows:

D = 50, 100, 200, 500, 1000

5.2 Results

In this section, we share some of the insights we extracted from the experi-

ments’ results. You can find the raw data at https://github.com/ssinad/

dcvr-thesis/blob/main/result.csv.

5.2.1 Improvement

Let V1 be the value of (1.8) right before the first timeBisectionORienteerING

is called. Also, let Vf be the final value of (1.8). We define improvement as

the relative difference of V1 and Vf , as demonstrated in (5.1).

Improvement(%) =
V1 − Vf

V1

× 100% (5.1)

3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp
4http://www.vrp-rep.org/datasets/item/2014-0011.html
5http://www.vrp-rep.org/datasets/item/2014-0010.html
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Figure 5.1: The Distribution of Improvement

Table 5.1: Statistics for Improvement

Minimum Median Average Maximum Standard Deviation
2.46 17.81 17.92 48.77 9.24

On average, BisectionORienteerING improved the objective function

value by 18%.

5.2.2 Approximation Factor

The theoretical guarantee that we got for U in section 4.4 was 3+ϵ, but as you

can see in table 5.2, the empirical results are smaller than half our theoretical

guarantee.

U =
Vf

LB
(5.2)
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Figure 5.2: The Distribution of the approximation factor

Table 5.2: Statistics for the approximation factor (U)

Minimum Median Average Maximum Standard Deviation
1.000 1.261 1.263 1.483 0.108
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Figure 5.3: Distribution of the final lower bound (LB) versus the final objective
function value (Vf ). Each dot represents a dataset
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In figs. 5.4a to 5.4j, you can see how the objective function value and the

lower bound change over the iterations of column generation. You can find

more comprehensive versions of these plots in appendix A.2.
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(a) Euclidean dataset with n = 200 points
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Figure 5.4: How the objective function value and the lower bound change over
the iterations of column generation

5.2.3 Running Time

We measured the running time of each call to BisectionORienteerING

for every dataset and averaged them to calculate the average orienteering run-

ning time. We then used nonlinear regression to fit a function of the form

y = f(x) = bxa to the data.
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Figure 5.5: Average orienteering runtime versus the number of clients. Each
dot represent a data set
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As you can see in figs. 5.5a and 5.5b, the estimated running time complexity

is proportional to O(|V |3.994) which is very close to theoretical complexity of

O(|V |4) we encountered in section 3.4.

The general DVRP time complexity depends on the effectiveness of the

heuristics and the number of times BisectionORienteerING is called. On

average in our experiments, BisectionORienteerING was called in around

20% of column generation iterations and comprised 90% of the running time.

5.3 Possible Optimizations

Our main focus in this work was providing a proof-of-concept implementation.

However, we did come up with minor optimizations along the way, some of

which are explained in sections 3.3 and 4.2. We also used a hash table to

store edges in the IterPCA algorithm, and used Cantor’s pairing function as

the hash function. Since edges are ordered pairs of non-negative integers and

Cantor’s pairing function is a bijection over N × N → N , this hash function

is collision-free, which enables us to check the existence of an edge in constant

time.

One possible optimization to BisectionORienteerING could be paral-

lelizing the for loop starting at line 18. By taking a closer look at this loop, we

can see that all its iterations are independent of each other. Therefore, one can

broadcast the required data such as the set of nodes, the distance matrix, the

distance limit, and the rewards to multiple machines and reduce the resulting

paths by taking the path with maximum reward.

Another improvement to BisectionORienteerING is using a smart way

to guess the furthest node on the arborescences (t). Currently the algorithm

has to loop over all the nodes and run BinarySearch for each guess, which

causes the time complexity to be O(|V |4). However, if we can come up with

smarter guesses for t, we could potentially decrease the time complexity to

o(|V |4) (maybe even O(|V |3)) while keeping our (3 + ϵ) approximation factor

guarantee.
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Chapter 6

Conclusion

DVRP is one of the more difficult variants of VRP to approximate. In this

thesis, we tackled LP-relaxation of DVRP using column generation. We also

discussed an approximation algorithm for solving the rooted orienteering sub-

problem. Furthermore, we combined these two to come up with our own prac-

tical (3+ϵ)-approximation algorithm to approximately solve the LP-relaxation

of DVRP. Finally, we implemented our proposed algorithm and presented the

results of our experiments.

We were able to achieve an average improvement of 18%. Furthermore, we

also observed that the U values were far smaller than the theoretical bound

3 + ϵ. We hypothesize that it may be possible to improve both practical and

theoretical approximation factors, which is left as a possible line of future

work. We also hypothesize the possibility of constant approximation factors

for the integer program (1.7), which is left as a possible line of future work as

well.
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Appendix A

Solving DVRP Integer Program

In order to solve the integer program (1.7), we extracted the paths which cor-

responded to the basic solution of (1.8). We then fed those paths into CPLEX1

mixed integer optimizer to get an integer solution. Providing guarantees for

the integer program (1.7) could be a possible line of future work.

A.1 Integrality Gap

Integrality Gap =
Integral LP Value

Fractional LP Value
(A.1)

1“url –https://www.ibm.com/analytics/cplex-optimizer˝.
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Figure A.1: The Distribution of Integrality Gap

Table A.1: Statistics for Integrality Gap

Minimum Median Average Maximum Standard Deviation
1.00 1.33 1.37 2.17 0.27

A.2 Objective Function Values and Lower Bounds

Figures A.2a to A.2j demonstrate how the objective function value of (1.8)

and the lower bound change over the course of column generation iterations.

The green dots denote the integer solution to (1.7). The lower bound gets a

non-trivial value only after the first call to BisectionORienteerING.
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Figure A.2: How the objective function value of (1.8) and the lower bound
change over the course of column generation iterations. The green dots denote
the integer solution to (1.7)
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A.3 Path Visualizations

In figs. A.3a to A.3j, different paths are marked by different colors. Also, the

depot is marked by a red x.
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Figure A.3: Visualizations of paths generated by Integer Program Solver. The
depot is marked by a red x
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Appendix B

Google Maps Visualizations

The Google Maps distance matrix was not symmetric so our guarantees do

not hold, but it was worth including in here. In order to make the matrix

symmetric and also make the fewest number of API calls, we only queried the

elements below the diagonal ones and mirrored them onto the other side. We

also set the diagonal elements to 0. We then ran the Floyd-Warshall algorithm

on the new distance matrix to make sure the instance has metric properties

described in definition 3.
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(b)

Figure B.1: Visualization of paths generated by the algorithm on real Google
Maps data.
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