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ABSTRACT -

Under the Weak Instance Model (WIM), the rcprea‘entah‘ue instance can be used as
a duery-answering device via its_total projections. However, generating the represen- .
. A~ ' .

- tative instance can be very expensive. Under this approach, it is yery desirable to be
B - : \ .

able to answer queries by simulating the representative inst.ance via a relational alge-
, ‘
“bra expresslon which uses only the projectlon join, and union operators This is possi-

blé exact.ly when a database scheme is bounded wnt\p respect to dependencles How-
~ ever, testing boundedness of relauonal database schemes with respect to dependencnes
, is an extremely‘diﬂicult problem to solve~ it is beheved to be undecndable‘even for sim-

. ple cxases where only functlonal dependencnes are given.

.  Also therg are other very deslrable properucs of elational database schemes

whlch seem to be a consequence of boundedness ln partlcular the problem of incre-

o

mental enl‘orcement of sausfacuon of functional dependencnes has very efficient solu-

[~

uons for tbe classes of database schemes known to be bounded with respect, to l'unc-‘

tional dependeacies. . , \ " o R o/
. (X% / # . .

/

)y

e’ v o /

mcremental enforcement of satlsfactlon ol‘ l’uncuonal depenc}encles il‘hen we show

- <

. ®  how to desngn database schemes bounded wnb respect to function dependencles‘
' nsmg a new technlque called extensnblhty QF mally we present a auﬂiclent condmon fg,t
S unboundcdness when functnonal dependenc:es are ronsldered SN | o

“This- e-hesns is: t.hen an effort in |dent|fy|ng classes oT relatlonal database

- whlch are lnghly le v 0 gy ‘ OCessmg and updat,es AR
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.. Chapter 1
| Introdulctlon' I
The relational database model was |ntroduced by Codd [Codli Under thls data ‘
" model a database is vxewed as a set of tables, Due to its. structural sn_mphcrty and

mathematical eleg‘ance the relational model is a formal framework in which ‘we can for-

mulate study, and solve problems related to the management of databases Slnce the

mceptnon of thls model a vast body of l'ormal results has been obtamed by a multltude

of researchers Thls is known. as the theory of relational databases for a survey in this

toplc see for example the textbooks by Maler [Ma] and Ullman [Ul]

' .
"

A central problem in relatlonal database theory is the schema deslgn problem

, The problem ‘of schema desngn may be loosely- stated as follows: given a des’crlptlon of

- an apphcatlon, construct a database scheme that i3 good or "deslrable for the appll-

catlon The ”desnrabllnty or "goodness” of a database scheme depends on the cnterna

'
V

" we use to evaluate it, I } ‘\“

ln thls thesis, we study ‘under the relational model the deslgn of database schemes

—

whlch are very desirable wnth respect to (w r.t.) query processmg and enforcement, of

constraints 2 o
g ] * . \ ‘4
The first criterionf of ‘"goodness” ever proposed for relational database sehemes

was freedom from update anomahes Codd {Cod1] observed that wnth the presence of'

‘functnonal relatlonshlps certain anomahes may exist when a relatlon is updated He ¢

-
' , .

~ |ntro ed ﬁrst seco%d and thlrd normal forms [Cod2] via a process knowﬁ as nor-
~ A L )
\ malnzatum as a way tp avo:d those anomahes Smce then some other normal forms o

\ ’v

~lhave been proﬁosed Among these, Boyce—Codd Normal F orm (BCNF) is one of the‘_ |

most mportant normal fbrms A survey of normal l‘orms can be l'ound m standard S
texts hke [Da][Ma][Ul] SERFENEY . Coe ﬂ“_ L L

The main approach to normahzatlon of relatlonal schemes is hy decomposltlon,.?‘f‘




. ) *
that is, a relation scheme is represented by several new relatidn schemes, which are

A

supposed to be more desirable w.r.t, freedom {rom update anomalies than the original

~ one. These'new schemes are the ones used to store the information, Then the question

arises whether or not the decomposition preserves the information %orcd in the origi-

"

nal relation, The following example illustrates this,

Ezample 1.1: Let {AB, BC} be a dccdmposi}lon of ABC and assume abc =
' \
{a,b,c,, azb,c,} is a relation on ABC. Then ab = {88, a;b)} and be = {blcl, b,c,}
are the relations on AB and BC respectively used to stored the information on ABC,

However, {AB BC) does not preserve the lnformatlon on ABC -since abc # ab P bc
=,

= {a,b,c,, a3b,¢c,, a,b,cp, ayb)c,}. O ‘
~ .
If the decomposition of a relation scheme is lossless [ABU], then we are.

guaranteed that the decomposition preserves the information content of the original:
relation. Thus when decompogjtion of a scheme is involved, for any reason, in the

design of relational database schemes, losslessness is a very desirable property.

‘_The semantics of the data to be dtored in a relation imposes certain constraints

C . f

on the actual values that 'a relation can take. These constraints are modeled in rela-

' tional database desngn usmg t.he ldea of data dcpcndcncwa The most important and

\

fundamental class of data dependencnes |s the class of functional dependencies (fd's)

[A]ICodl] In this thesns, we deal. only wnth database schemes where the constraints

consldered are exclusnvely fd's.
&
. The decomposmon of a scﬁeme also mtroduces the problem ol' preservation of
dcpendenc:es‘ More prec:scly, t.he union of the dcpendenclcs defined on each scheme in

" the decol‘hposxtlon may not be logncally equivalent to the set of dependencles that the

Y

user want,s to conslder as meamngf\il on* §Be ongmal schcme
J

’ E:cmple l 2 Let (AC BC} be a decomposmon of ABC and assume e the fd’s {

-C C-B} must be obeyed by relations on ABC {AC, BC} daes not preserve the

\



\
\

given {d's, since AB~C is not logically implied by the fd's defined on the dchomposi«
tion, Q

If the decomposition does not ‘preserve the dependencies, then the semantics of ‘
the inf()pmaltion stored on the decomposition may change. Thus prcaer\;ing dependen-
cies in this sense isvanother‘desirable property of rclationz.xl database schemes, “Becri”
and Honeyman [BH] gave a polynomial-time algorithm to test {d-preservation. In

——

(BMSUJ, Beeri et al. defined preservation of dependencies in another sense.

The formalization of the above mentioned properties requires the concept of a

. .
univerasal relation scheme [FMU]; the scheme that represents our universe of discourse

and models the global knowledge we have about the enterprise we are rl;odcling.’
Along with a universal relation scheme concept, we require a precise definition of the
‘ : SN .

universal relation we have in mind when dealing with it, The first universal relation
assumption ever proposed was the pure universal relation assumption [FMUJ; this
assumption states that the relations stored in the dafabase are exactly the projections
of a satisfying universal relation. This assumption is very controversial and led to

‘several published attacks [AP](BG](K], since; for instance, testing if a set of relations

has a common universal instance is in general NP-complete [HLY].

- ..

‘___\"Siuhe a ut\x.ii"ersal'relation assumption is requ;;red to formalize, among other
' th;ngs conslstency of a database or 'ltS mformatlon content, several researchers
2 [GMV][H2][M][SI][Y1] worked on this issue and proposed a more appealing notion of a

/sqnsfymg universal relatlon. the Weak Instance Model (WIM). This is a weaker notion

n . . .
- ofy the pure umvemal relation assumfption. Tbe WIM states that the rclatlonp stored in

the database are included in t,he projections of a sausfymg universal relation.

The WIM was first proposed as a means to define satisfaction of fd s by a data-

L
base [H2)[V]. This universal relation model also provides an adequate and correct
representation of the information content of a database via its representative instance
Y .;'. i . . L4 . -
‘ Cooe -
1, 1 3 .
: g @-



[M][Sl][S?][Yl] Intuitively, the representative instance of a database contains all the
[ 4

information that can be logically inferred f.rom the database using certain rules derived

from the semantic constraints that the database must satisfy. In this thesis, we work

under the WIM frameWork.

Under the WIM, the representative instance can be used as a query~ahsw<‘ring
device. Thls idea was mmally proposed by Sagiv [S1][S2] and Yannakakis (Y1]. The
most popular approach to answer quenes via the representative instance is based on
the so-called total projections of the representative mstance.v In this approach, a query
on a set of attributes X is answered based on X-total tuples in the representative .
instance, that is, using tuples that doA not cpntain missing information on X. The set

of total tuples on X in the representative instance is called the X-total projection,

A strmghtforward method to obtain the X-total projection is to compute the

representative instance and then extract the tuples whosc X components are total,
o {

However computing the representative instance of a database can be very expensive,

In the presence of {d's, it takes polynomial time and space in the size of the database.

This is not practical, since in general the database is large.

Then under this approach, it is very desirable for query processing to have a data-
base scheme that would allow a "cost-eflective” way to compute the X-total projec-
tions. Under ‘the WIM, we consider an algorithm that computes the X-total projec-

.

tions as cost-effective lf it does not requlre the generatlon of the representative
lnstancc A highly desirable database scheme in this respect is one that would allow
_t.he simulation of the representative instance via a relational exp_ressnon WlllCll only
uses the projection, join, and union operators. This is the case exactly when the data-

base sc.heme is bounded w.r.t. the dependencies given {GM][MUV]. The main objective

: gf this thesis is to study the characterization of database schemes which are bounded

w.r.t. fd's.

g



Unfortunately, the problem of testing boundedness of database schemes is an

extremely difficult problem to solve; it is conjectured. to be undecidable even for simple

i
.l

cases where only fd's are given [MUV]. Thus it is nndcrstandabfe why most research

on thls problem so far has concentrated on finding sufficient conditions for bounded- -

ness; we descrlbe this work below

The work-on boundedness has mainly centered around independent database

schemecs, A database scheme is independent vr,r.t. a set of dependencies if verifying
that each relation in a database stabe ,satrsﬁes ‘its local de“pendencies, is su(ﬁ”cient to
ensure that the database state is globally consistent w.r.t. the given set of dependen-
cies [GY][lllK][31][S2]. Sagiv [S?] proved that independent BCNF 'database schemes
are bounded w.r.t. fd’s embodied in the database scheme. Later on, a more general
class of independent database schemes was proven to be bounded w.r.t. fd‘e embedded
in the database scheme, This was done independently by several researchers

[AtC][CH][IIK][MRW][S3]. As a consequence of this w‘ork, the largest class of database

schemes known to be bounded w.r.t. fd!s is the class of independent database schemes.

""' Recently, Brossda and Vossen [BVo] used a modified version of Sagiv’s uniqueness ‘

condition [$2] plus the foreign-key constraint [S1] to define a class of database schemes

\

that is bounded W.I.t. fd's.

. The importance of knowing whether a database scheme is bounded goee beyond "

“cost-eflective query processlng There are other very desirable properues of datébnse

schemes whlch seem to be its consequences. [n parucular, the problem of enforcement. ‘

of constramts has efficient solutions for the" classes of database schemes which are’

known to be bounded w. rt. [d's. ln fact. we are mtePested ln boundedness of database

§chemes because one of the objectlves of this tbesls is tn charactenzlng database ‘

A

schemes in whlch enforcement of fd s can be done eﬂicncntly Elﬁclent enforcement of

constramts is concerned thh determlmng very efﬁcnently if an npdat.e to a database .

-



which satisfies a set of dependencies produces a database which still satisfies the given
dependencies. In general, however, efficient enforcement.of constraints is a difficult

' | problem. Some work has been done vn this.problem, see for example [BBC](St].

Under the WIM, the problem of exlforceinent of fd’s can be solved in polynomial

g " time in the number of tuples in the database state. Honeyman [H2] and lndependently
‘VESSIlIOll [V]. presented algorlthms to test satisfaction of fd’s “By a database state.

Their time complexities are O(n log,n) and O(n* log,n) respectivelf, where n is the:

rlumber of tuples in the database state. Theése algoritbms can be used as start-over

.\\ ; ' algorithms l'or enforcing fd’s after an update on a consisteot database state, The fact
\_,//\ that their algorithms do not exploit the corlsistency of tbe -database state before an

" insertion, led Chan [C2] to investigate an incremental approach for enforcing fd‘.«l.A He
presented an algorithm whose tlme complexity is O(n? log,n). The main advantage of
ehese algorlthms is that they can be used for any database scheme where only fd’s are.
considered. llowever, these algorithms are-not good enough from the practical point of
view, since checking an insertion via_thbse algorit,bme may require accessing thelwhole

database state.

Even with only fd's, it is not clear if the)l' can be enforced very efficiently in real-
life applications. One way to resolve this problem ‘is to find a class of database .

3chemes that would allow a "cost-eflective” way to()determme if an updated state
L T

satmﬁes the constramts As in the case of query processmg, under the WIM we regard

*”“;v., ' an algont.hﬁ for lncrementally testing fd s as cost-eﬂ'ectlve nf it does not reqmre the
" generamon of the representatwe mstance, but . additionally we reqmre that the

' verification process be done on some specific relatlon}etﬁclently. The class of indepen-
- "; | | .derlt. database schemes mentioned above“i; a class that allows coet-eﬁeetiVe enforce-
ment of fd's. For an. imlepebdent sehexﬁe, ensuring that tbe constraints impo‘sed‘on‘

each relatlon are satlsﬁed is suiﬁclent to guarantee that the state globally satlslies t.he

‘cona.t,ramts Therefore t.he problem of ensurmg that. a database satlsﬁes a set of




‘ dependencnes is reduced to t’e problem of verifying that each relatlon satlsﬁes the con-

stralnts locally. Slnce checklng that each relation satlsﬁes the local constramts does
- ' ¢ -y !
not requlre the generatlon of the representatlve |nstance thls class of database

'
»

-

schemes allows enl'orcement of constralnts to be cargjed out cost—eﬂ:ectlvely. 3
3 « & g

1

:

Re‘cently, Graham -and Wang [GW] ‘pr'oirided a generalization of indepe‘nden@"“
database schemes via the concept of constan:-tlme-mamtalnablllty .They defined and
charactenzed the class ‘cl‘ database schemes !\Tllor whlch the mamtenancc problcm
[GW][GY] has solutnons'm tlme lndependent :)f the slzel of the database state ’I;he-

maintenance problem is the problem‘ of how to ensure that a conslstent database state .

.
(S Jra

- v
e

satisﬁes its constraints 'after an insertion. They deﬁned a, database scheme to wbe‘.

/
: conatant t:mh-mamtamablc (ctm) lf there is an algonthm tl’at solves the malntenagce.

- ¢ - !
> - N |

problem for any of |ts conslstent database statéd in constant time.. lndependent data— .
1 " . :

o A ‘ .

base schemes are ctm by deﬁnltlon. e Lo . BN

o

Prevtous to Graham and Wangs work Brossda and Vqssen [BVq] used a"

A

'modnﬁcatlon of Sagiv's umqueness condmon [S2] plus the forelgn-key constralnt [Sl] to’

define a class ol' ctm database schemes. Because they used the forelgn-key constralnt,‘

- they have to check that'a consistent database satisﬁes this constraint after a deletion,
. , ] . N ) oy

and to do this, their algorithm takes time proportional to the size-of the database.™’

Since- constant-time solutions to the maintenance problem are crucial and funda-
o ., ‘ ‘ PR Lo v ‘
mental in‘real-life applications, ctm database schemes are highly desirable.

As cﬂn be observed from the prevnous summary ol‘ work in the malntenance and

boundedness problems, there is a strong relationship between ctm database schemes :

and bounded database schemes Pnor to our work database schemes have been pro-'

- ¥en to be bounded after defining condatlons for them to be ctm database schemes ln- .‘

»

fact in [GW] itis eonjeotured that the elass of ctm database schemes characterlzed by"

theni ls ‘boynded. Although thelr conjecture seems to be supported by results in [GM], o




;o .

/Q w
- .

3 \ ' : .

“no proof has been given in this respect.

h C o o

Unlike Graham and Wang [GW], in this thesis we approach the characterization

of bounded and ctm database schemes from the opposite ‘direction: First we pr'ove'

Ty

.‘boun‘dedness for & class.ol' database schemesr'and then we show that constant-time~ .
'maintaina'bility \follovlrs l'or that class Thxs approach to boundedness and constant-
tlme-mamtamablllty of database schemes is_completely unexplored because provmg
boundedness seems to be extrem‘ely diﬁlcult ,if possible at aﬂ" Nevertheless we con)ec~
ture that if we can eﬁectwely characterlze boundedness w.r.t. fd’s for a class of dataay
base schemes then we can prove constant-tlme—manntamablllty for that specific class
Thls conjecture seems appropnate slmply because a bounded database scheme is ‘a
"well-behaved” database scheme. 'However, by results ‘in [GM] this is not a direct
‘consequence; certain condltions are required apart from boundedness in order to have

constant-time-maintai‘nability of a database scheme if we are considering only fd’s.
o8 .. L L "
This thesis is then an effort in identifying classes of relational database schemes

which, under the WlM, are highly desirable rn.r.t. query processing and updates. .

1.1. Overview of Thepis

4

In Chapter 2 we give the basic background and deﬁmtlons of relatnonal database

-

theory requlred in this thesis. Other definitions wnll be given where requlred

v \

(‘

= . In'this thesls, we study ﬁrst boundedness of database schemes w.r.t. {d’ s. Thls is

done in Chapters 3. and 4 Havmg done thls, we study unboundedness of database

"~

schemes w r.t. fd's in Chapter 5.

ln Chapter 3, we prove that 'y-acychclty and BCNF is a sulﬁclent condltlon l'or

boundedness of database schemes w.I. t fd’s embodled in thelr relatlon schemes Con- .

‘ "trary tp our mltlal hopes, but as: should be expected from ‘the undecldablhty conjecture p

| Iln [MUV] for the boundedness problem, even for this. restncted class of database

5,

‘schemes our prool’ ol‘ boundedness is long and complex. *A_lso in Chapter 3 we show for .

.o - K oo Co .




3
'

v

T ‘ . S S X N ‘
. the class of v-acyclic BCNF database schemes, that its boundedness implies that this

class of database schemes is highly desirable w.r.t. query processing nnd -ineremenlnl

‘enforcement‘,‘"'of satisfaction of ld’s. Thns last fact supports our conject.ure that if we

\

“can prove boundedness w.r.t, fd’s for a class of database schemes, then Qve can prove
n\ . j

»

n v
]

constant-tlme-malntalnablllty for t.hat. class.

'y ‘ . ‘ .
From our results in Chapter 3, it is apparent that determining whether or not a

class of database schemes is bounded is fundamental to .the‘bnalysls of the behavior of

the database schemes w.r.t. query processing and updates. On the other hand, proving

a.class of datébase schemes is bounded seems to be very dilﬁcult. evven in our restricted

‘case of - acychc BCNF database schemes ‘To resolve this problem we need to develop

‘tech,mques for charactenzmg bounded database schemeb ln Chapter 4, we mvestlgate

an alternative approach. We show how to design database schemes bounded w.r.t. fd's * °

v
1

using a new technique called eztenaibility. This technique can also be used to design

ctm databaseschemes.

ln ‘Chapter 5 we |nvesugate unboundedness w.r.t. fd’s, the other side of the coin

ln the problem of boundedness This problem heretofore remalned unexplored We

'
'

show that the 'unboundedness problem is not as dllﬁcult as its counterpart. the bound- .

1

edness problem, in the sense that we can prove unboundedness for a very general class

il AN
! »

of database schemes ina shorter and easier. proof than the one for boundedness for the ‘

r

restricted class of database schemes in Chapt,er 3 We present. a very general and

“sufficient condmon for unboundedness‘ when l’d 3. are consldered The condmon is very

[

| general in t,he sense t,hat nett.her the fd's nor the schemes are restrlcted to be in some
: SpeClﬁC form.‘ o S

f Fma“lly in Chapter 6, we. present our concluslons and suggesuons for fut.ure
“' . . : » , : T S "." ».
research o o S e

-




o l‘ T . I Chapter 2
Relational B.ackground
In this chapter we give most of the notation requlred for the rest of thls thesns

o Addltlonal deﬁnmons will be gnven when they are needed

‘2.1. Bahic'Deﬂnitlo.ne‘
We fix a ﬁmte set of attnbutes U = {Al, Ay, . .I,Am} which ‘we‘call the', -

_universe, Follow:ng tradltlonql relatnonal database theory notation [Ma][Ul] we omit

brackets and commas when representlng sets of attnbutes and we represent. the union -

of two sets of attributes X and Y as XY. . : S .
A relation ccheme R is' any nonernpty subset,of U. With each.attribute A,-,_.th'ere
isa set of assoclated values dom(A,), called the domain of A aA tuplc t over R isa

¢

mapplng l “Such that for all A € R A, ] € dom(A ). A tuple t over R is denoted as
t|R]. If ¢ ls a tuple over R and X CR, t[X] is the restnctaon of t to'the attrlbutes in
X. A relation- T over R is a set of tuples over R. A relatton deﬁned over U is called an

~

umveraal relahon.
Funchonal dcpendencnea {[d s) [A]{Cod1] ate statements ol' the form X-Y, where :
X ahd Y are sets of attrlbutes such that. XY |s lncluded in a relatlpn scheme R.
"Semantlcally, a relat:on r on R satlsﬁes X~Y ll' whenever there exnst two tuples t and
| uin r such that if t[X]-u[)q then t[l’]=u[l’] An fd X»Y is trwml |f X2 Y A set
‘ of fd's F lomcally qmplm an fd d wntten F|=d,if every relatlon that satlsﬁes F also
g satlsﬁes d. The set ol' fd's that is loglcally |mpl|ed hy a set of fd's F is called the ’Tool o
sure of F we denote lt by F*. There exnsts a complete and sound set of mference rules
: ,to derlve F’ [A] A set of fd’s Gis a covcrufor aset of fd's F 1f Gt = F"’ leen a: set .
""',.jol' attrlbutes X we can compute the cloaure of X W.r. . a set of fd's F whlch is {Al.‘_f;‘—‘ -‘
o | ‘X-A € F*} Thls ‘ls denoted hy ’Xp, or. by Y“ nf F is clea\rly understood X Y is .

b cmbedded m a relatlon scheme R lf XY C R We denote the set of fd’s X—-Y € F"f' '

i :.'."_',llo_'l_ L




Al
such that XYyis e‘m‘bedded in a relation scheme R by F*| R. Thisset is ‘called The pro-

i

jcch};n‘of F onto R, or lhc set o[projcctcd fd's. ' : i

leen a set of fd s F a nonempt.y subset K of a relation scheme R is called a cy ‘

~

of R if K-R € F“ and no proper subset ofK has thls(pmperty lf K |s a key of R| we
say that R cmbodcca the fd K -R - K. HKisa key of R and the nontnvnalf K -

Ae F'+ is embedded in R we say that Ki is a kcy (o[R} that dctermmca A

A databaac achcmc is a pair (R "{er R,, .. R } F) such that R,, lStSn is a

relauon scheme F is a set of fd’s deﬁned on U, and’ Ui is the umon ol' the R s. A data- ;

base scheme (R F) is cover embcddmg {w rt F)if there exlsts a cover Gof F such ‘

‘ ‘that each fd in G is embedded in some scheme in R. A database scheme (R F) is a
Boyce-Codd Normal Form {BCNF} dat,abase scheme if for all montrivial X ~ ¥ ¢ F*
embedded in some R, R; ¢ R, X contains a key of R,. If (R, F)is a BCNF database
scheme we assume the keys of every relatlon scheme n R are exphcnly gnven and F

is the set of fd s embodied in' the relatlon schemes in R. For the sake of brevn.y, only a

cover of F is given in t,he examples mvolvmg BCNF database schemes. A (databaae}‘

_state for a database scheme (R ={R,, R;,.. . ,R,}, F)isr = (ry, F2,..-7) such

that for 1sisn, r; is a relation over R,.

. -~

The only relauonal operations that are requlred in this thems are pro;ectlon join,

and unlon lf r;is a relatlon deﬁned over R,, the pro;cctton of r; onto' X, X.rc R,,

- nx(r,) - {t[X]I t € r} If r and » are relations over R and S respectlvely, the Jom of r

B and s, denoted by rNa is a relation over RS such t,hat. rNa - {tl t[R] € r and l[S] ¢

a} The union of r and s, denoted by r U s, where r and s are relatlons deﬁned ovcr‘;

e *

‘the same set of attnbutes is the set of tuples that. areinr, or 8, or both

r

We shall consnder relatlonal eXpressxons [Codl] m whlch the only operators are L

Lo

Let. E be a relauonal expresslon thh operands in R - {R,, = R } Then E(r) .

‘b‘\.

L pmjectlon, jom, and union. The operands are relatlon schemes |n a database scheme o
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| denotes the value returned by E |f a state r= (... ,,) of (R F) is substituted

into the correspondmg relatlon vanables and the' expresslon is evaluated accordlng to

' the above deﬁmtnons for the relatlonal operatlona o | o .

Let S -{Sl, .. S‘} and US c U An cmbcddcd )Olﬂ depcndcncy (c]d) isa
' ’ N ‘

seatement of the l'orm NS ‘A relatnon l %tnsﬁes NS if I[US] = PQ (ws( )) A set dl‘
sl [

fd's F logncally smpl:ea an ejd d wntten F l- d if every, relatlon that sat|sﬁes F also
satisfies d. A database scheme (R, F)i |s loaalcu w. rt F ifF |= MR. S is louleaa

wrtFll'F|-PQS

2.2, The Weak Inatance Model - . ‘
! ) L

The unlversal relatlon ‘model we are workmg w:th in " this thesis is the weak
-(natance model [GMV]&?][M][S\I][V—][YI]._ Given a  state r for the database scheme (R. "

={R,, Ry, ...,R,} F), wesay thatvl,e—a relationﬁover U, is a weak snstance for r w.r.t,

¢
"

Fif
@ mp(I)2r,forl Sisn;and o
s ' B ) L ' .

'@ [ satisfies F. o
“ . . p ! e ‘ o ' s
Under the weak instance model a database state r of (R F)is sa:d to be con-

" autenl (w r. b F) if a » weak mstance exnsts l'or that state w. r.t. F [H2][GMV]

V'

A tableau is a set of tuples deﬁned on U [ASU] We denote a tableau by elther a
slngle letter, usually T or by llstlng its components expllcltly, (ty, t2, R ,,,)/ t; the o
t's are the rouu ol' the tableau The domam oj A in the tablcau consnsts ol' the du-”
. l tanguuhed mmable (dv) a,, countably many nondutmguuhed varaablca (ndv a) {8 1, andl
constants drawn from dom(AX)/ An ndv wlnch appears only once in the tableau is ., -

. ca/led an umque ndv No vanable can appear m more than one column in the tableau

<




i3

A valuation function v:'S, = S, is a function from symbols on §, to symbols on S,,
' which is ther" identity on constants, maps. dv’s to'dv's or constants, and n'dv’s to ndv’s

i

dv’'s, or constants Assume Tl and T, are tableaux A containment mappmg h Tl
T2 is a valuation l'unctlon from the set of symbols in the rows of Trev the symbols in

the rows of T, such that if ¢;is a ;ow in Tl, then Il(t ) is a row in TQ L a ‘ w‘h

‘A tableau T, is sald o contam TQ, wrltten T, 2 TQ, 1f ‘there is a containment
)

mapplng from Tl to Ty, T, is cqmvalcnt to. TQ, wntten Tx = Tg, if and only ll' T, 2
A “ '
TQandTga Tl 3

Given a state r for the database scheme (R F) t.he tableau for r, wrltten T,, is

\

deﬁned as l'OHOWs For each relatlon r,er, and for each tuple ter Lhere isarow s in

+~+ T, such that o[R,-]'é ’t, and, for all A in U~ R, p;[A] is 6,,.where B, appears once in

s

t,he rows of T
E'zamplc?l Let (R, F) = ({R,(CT) (HRC) R,,(HTR) R4(CSG) RS(HSR)} :

(c-T. HR~T HT-R CS-G, HS-R}) and let a state of (R, F) ber=(r, = (<c,,‘

6>, <y 1,>, <c3, t2>} ro = {<hy, 1y 0>, <hy T cg>hory = {<h ty, 1, >)‘

= {<ec,, 8, 1>, <c2, 52, 92>} rg = {<h, 8, r,>, <ﬁ,, 02, fn>}) Flgure 2.1

' \
e

'shows t,he tableau forr.O

‘ Given the tablcau T, l'or a database state r of (R, F) we. assoclate with each fd ‘
X-Y in F the followmg fd-rule for X~V lf T has two rows t and u such that,

t[X]- u[X], but they are not equal on some columns of Y,\}hen l'or all’ columns A m Y

4 [

"\I‘suchthat t[A]*u[A]do ) _‘ o

. __v . nf t[A]-B, and u[A]-b,, t.hen replace all occurrences ol‘ 8,inT, by B,,
| e

o else |f t[A] =c,c not. an ndv, and u[A]-B,, then replace all occurrenccs of & ln’ '

_ T by c,
e otherwme if none of the above two cases hold we obt.aln the empty tableau -

..

” ) - .
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— —~§ € 3, hy ry 510 B“ -
€2 LIPS h, Ty 13 14 ’
8 ¢ he r 16 17
88 19 h LEWREI S 20 ,
21 22 h T2 4 . 923
€ 24 825 L s 91

Figure,?.l‘ T, forr in )Eiample 2.1 |

N
!

" The chaac ol' T, w.r.t. F is the procesa of repeatedly applylng to T, the rules for

r

the fd's in F as Iong as a cha\nge can be made. The nonempty tableau obta:ned after Lo

no more l'd-rules can be applled is called CHASE'F(T) [ABU][BV][MMS] It has been :

‘shown in [H2] ‘that l‘or any nonempty state r, CHASEF( T,)is nonempty if and only if r 3

isa consmtent state. CHASEF( T, ) is called the rcprcacntat:vc instance for state r. For

a glven database tbe representatlve mstance is, in some sense, exactly the common -
> ,

lnformatmn of all its weak lnstances {G(MV][M][MUV]

-

Ezamplc 2.2: CHASEF l'or the: tableau of Example 2 1 is shown below in Figure

Assume r ls a state of (R F) and let T, be lts tableau Let t be a tuple in, T and o

.,,let X C U We say that t |s total on X lf for all" A € X t[A] is not an ndv Also, we . )
o deﬁne [X] a8 {l[X]l te CHASEF(T ) and t is total—on X} We also say that [X] is the“‘

‘:I: ,X -total pro;echpn of the representatlve mstance for r,
- , Lo

The set of all conslstent states for a database scheme (R F) |s WSA T(R F )

o {rl ris a state of (R F) and ris eonslstent w r b F} A relatlon r; is comutent W.T. ‘. ,'

%"
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- Figure 2.2 CHASEp of T, in Example 2,1 : R
A

'
'

| F*| R, if there is a universal relation [satlisfying F such that ’II'R‘([) 2 r;. The Iocallj

consistent states of (R, F) are elements of the set LSATF(R, F)-{ r| r, is consistent |

V, — .
v

w.rt. F’IR;-,fo‘re'ach rper). . Lo ‘ Co

A database scheme (R, F)is smd to be mdcpcndcnt (w r.t, F)‘ if and onlyvif |
k]

LSAT(R F)= WSAT(R F) [GY][IIK}[SI][S?] It has been’ shown that (R, F) is
lndependent if verifying that each relatlon in a state of (R, F) sat.lsﬁes its pro;ected -

fd's is suﬂicnent' to ensure that t.he state is consnstent [GY]

There are several eqmvalent deﬁnmons of boundednesrof a database scheme ‘

S rr—

w.r.t. dependgncles Unless othermse stated the followmg is the oné we assume.

e

Let, (X ]r denote the X-total projectnon of the representatlve lnstance for r and let '
- Irl denote the number of tuples in . Then wé'say Lhat a database scheme (R F) is

'boundcd (w.r.t. F) |f for all X' C U there is a constant k>0 such that for eVery con- e

) slstent state r of (R F) and for every te [Y],, ;here exxsts a substate r of r suchr .

Co 'that t e [X]# and Ir'lSE |GM] We say that a dzt,abase scheme (R F) is unboundcd..

\/ . . ) ; ‘ S N

\

‘-.(Wrt F)ufxt!snotbounded(wrt F) f‘ R




16

~ We now give the canonical examplc of unbounded database schemes,

. [

“

-

- Ezamplc 2.3: Let (R, F) = (tR\(4B),
i

22

RAAC), Ry CB)}, {A~B, C<BY). Let

3

(<al,b >} rp = { <ay, 6>, <ay, 0>, <ay’c,>

- 2).

Py
stateof (R F) be n = = (ry =

y <8poyy Cpamy > <am~c”,l>}, ry T, for that state is shown in Figure 2.3

"below; unique ndv's are represented by "-", r is consistent.
Vo o

:\ ‘ . A B ¢ - ‘\
‘|. b . +
. . 11 01 bl - a
\
o o g a, - 1 -
o ' a, n o8} - ' R
b !
l *’ ag " Cp )
/ \ ° ° ..
!4( , . le L J 4 [ 2
b A . 1e ® [
-
' ) a”__l - C""‘l a ~
a, Yo- C 0 Cany »
. X ~
/ C ‘ ) : o
(o o S

#" - Figure 2.3 T, for r in Example 2.3 -

. \ N r
. ’ ' N -~ *
e . ‘ e
AN L A
-

I
p—1>"is in the representatlve métance of .r, However,

+

LN ; .
Obserte t ®~<a,, b,

smce the represbntatlve -instance of any proper substate of r does not contain {t} (R

»

F) ‘s unbounded Qo

\
The largest. class of database schemes known to be bounded w.r.t. fd's is the class

N

a

\

" of independent dql.abase schemes [AtC][C1]{IIK}[MRW][S3].

& ‘ e

ﬂ .
ol a



2 3. Hypergraphs for Database Schemes
‘e

‘ A hyp\érgra“l )s a palr H < V E?, where V is a set of nodes and E is a collcc# :

tion of nonempty subset\s of 4 called edges (B.
. Y )

Gwen akiauﬂmse scheme (R F), its hyperg:aph denoted by Hg, has U as its set
N

'oI‘ nodes, anle as its set of edges If (_R F)ds a BCNF database scheme, we are also

vmterested in the hypergraph ofl% R, eR, dehoted by H v Hg. has R?* as its det of |

" podes, and-its set of'egigep is ‘forlned by the R, s included in RS, It is clear that M, is
)“ ,\ . ) - . ' ot ; ' ' 1 !
} . : Y [
- asubgraph of Hg. . L R
‘ t Co e ,
i l ' We now deﬁne thé ‘concep‘t' of‘cycle in a hypergraph. There are, however, several

\

degrees of cthclty foi hypergraphs [DM][F]. Among these, the most interesting are

Bergc- a~+, B-, and ‘y cycllcny [F] Followmg [ADM][F], we glve below the required

termlnology of hypergraphs ‘used i m t.hls thesls

4 ' ’

. AR Let H * <V, E>be hypergraph A pathfrom z, (E,) to z,, (E,) is a sequence
i\ 1

<E,|, EQ,. \,E >sucht,hat.

fV e é‘

ez ‘lE‘x and Tm € Em;
. o N v
o -E,E,* .,E,areedgesin £, m21];
- - ) .
o EhﬂE,;,¢@,fdrk3l,2,...,m~i;
L : o

’ v t ) a - - -
° ® no propgr‘ subsequence of it sausﬁes the above properties.

Two, nodes (edges) are connected if there exists a path from one to the other. H =

N

NaXaA E> is conncctcd if every pair of nodes (edges) in H are connected. . *
- \‘ Ezamplc 2.4: Let (R F)= ((RI(CT), R,(HRC), Ry(HTR), R (CSG) R (HSR)},
(C-oT HR~C HT~R CS-G HS-R}) be a database scheme. In Hpg, we bave that,
<R2, R5> and <R,> are p‘aths from C to S.O :

" A 'y-cyélc of length m is a sequencé < E,, zr,j,,_z?, ciirEpy 2y Egper> sclzcb ‘
, ) - ] -

i /
/

. ' [y ) i



® , z,,7, ...,%, are all distinct nodes of H; b . '
e FE.E, ..., E,arealldistinct edgesin E, and E,=E_,,; \

& mz23;
o z,isix;E:, and Eyyy, fork =1,2,...,m; '

o if lsii‘<m, t§en z; is in no E, except £; and E;*l.

A hypergraph H = <V, E> is y-acyclic if H.does not have a y-cycle; cherWise‘
it is y-cyclic. Similarly, a database scheme (R, F)'is"yLacyc:‘lic if Hg d'oe’s“ not have.a
y-cycle; othervyise it is“y“cyclic. : ..

Ezample 2.5:.The hypergraph of the B‘CNF database scheme ({R(ABC), Ry(AD),
' R;(DE), R (ABG), Ry(BCEF), RG(FG)}..,,{F-G, BCEfoF, AB-G, D-E, A-D})“t‘xas the
following y-cycle in Hy.: {R,, B, Ry, F, Re, G, R,>. See Figure 2.4 below. <R,
' 'A, R,, B, Ry> isnot a 'y-cyéle.since m = 2, Notice that{(R,, A, RQ, DI, R, E, Rs,
F, R, G, R,, B, R,> is not a y-cycle either‘since A' isin R, Ry, and >I;4. 9]

| We are not going .t,o define Berge-, B- or a-cyclicity; we refer t‘he‘interested reader’
to [F] ‘ | , - -

We shall prove in Chapter 3 that y-acyclic BCNF database schemes are bounded.
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Figure 2.4 Hpg for Example 2.5




Chaptcr 3

A Sumclent Condltion for Boundedneea w.r.t. Fd’

. B
3.1. Introduction n‘

In this chapter, we. present a sufficient condition for boundedness of database
schemes w.r.t.-fd's ind show that the class of database schemes characterized by’ this

.

condition is highly desirable w.r.t. qiiei-y processing and enforcement of fd’s.

First. we give the intuition behind the condition presented in thié chapter, In
order to do this, let us éonsider below the canoni‘cal example of unbounded ldatabase |
schemes that shows what seems to be a ci'ruciallfactm' involved in uﬁbqundedness w:r;;.
(d's. : - S

* Ezample 3.1: Let (R, F) = ({R,(4B), R(AC), Ry(CB)}, {A~B, C-B)). From
Example 2.3, (R, F). is unbounde:d..“ Figure 3.1 shows its‘hy}‘)ergraph. Observe that' (R,

F)is cyclic. O

Figure 3.1 ' Hpg for Examp_le 3.1 -

\e

We belneve that some sort of cychcnty is responslble for the unboundedness of a.

database scvheme when fd's are consldercd ‘In ot.her words, we beheve that by restnct.- o

e .
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‘ "‘i.ng the st,l"ucture of the database scheme,‘ in terms of hypergl'apbs, ‘we ma)"l have
boundedness w.r.t. fd's for aome class of acyclic database scahemes Therefol'e let us
restrict ourselves to t,he class of 'y-acychc database schemes a subclass of acyclic datn- §
base schemes with some cructal propertles t,hat. we feel make tractable t.he problem of
tesung boundedness of database schemes w.r.t. fd's. We cons:der a slmple Y- acycllc

E database scheme in the followmg example and see whethier or not n. is bounded
Ezample 3.2: Let (R, F) - ({R,(AC), R. (ABC)} {A-B, c-m) (R, F).is v~ -
acyclic. But it is unbounded; the state in the tableau in Flgure 3.2 below can be used

to prove it, O

— A B C
e N a, b, o
\ ’
a) - €y
a2 . - < .
a; - c2
e ® )
® ® °
R L ‘9 ' 3
T 8,1 - Ca-1
8, - Cp

._Figure 3.2 T, for Example 3.2,

cheo
R
- .

From Example 3.2, it is’ clear that 'y acyclxcnty by ltsell‘ is not a suﬂic:ent condi-

/

 tion- for boundedness wirt. fd's. We conject,ure tbat in thls example we have
' unboundedness because there still exms some lund of cyclmty on a hypergraph whose h
edges are t.he sets of attnbutes on WlllCll the l’d’s are deﬁned for lnstance, the hyper- -

graph for AB (the attnbutes m A-B), BC (the attnbutes in C-B) and AC i 1s cycllc -

. See Flgure 3 l above. We have to’ add some other restrlctlon to 'y-acychcnty t.o make o

the above sprt of cycle on the schemes of the fd's dlsappear
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One of the most |mportant and desirable normal forms for database schemes‘.

when fd s are glven |s BCNF. Although there are problems wnth the constructlon of "

BCNF database schemes in general [BB][BG][LO][O] under certain reasonabie assump-
tions, it has been shown that BCNF database schemes are free from anomaly prob-
" lems [LeP] In fact ‘LeDoux and_Parkcr [LeP} suggested that BCNF is a useful desngn
crltenon and showed that the problems with BCNF database schemes do not exnst in

most real life apphcatlons Wlth fd's as the. constramts imposed on the database
schemes,. we believe BCNF is a good design goal toward whlch a database desngner
shouldstrive since this class of database schemes seems, to captureth‘e principle of

separatlon stated in [BBG].

Returnlng\to the database scheme- 1n Example 3.2, observe that it is not BCNF

’

In the followmg example, we add to that database scheme the fd's that it 1s mlssmg in -

. order to be BqNF -and consider its boundedness.

Ezample 3.3: Let (R, F). = ({R(AC), R (ABC)} {A-B, C-B}) (R F’) is y-
lacychc but it ;s not BCNF We need to add A-C and C-A to F for (R F) to be a‘
BCNF database scheme Notlce F U (A c, C-A} -’ G = {A C C-AB} More l

lmportant also obsérve that the structure of a hypergraph whose edges are the sets of .

attrlbutes on whlch the fd's in G are deﬁned is the same as HR That is, ;n a y- acycllc
BCNF database scheme the‘structure of the schemes“for-.the fd’s and relatnons‘match

" in the above sense. Itis y not dlﬂicult to see that (R, G) is bounded Cl R

‘\

We clalm that ‘y-acychc BCNF database schemes are bounded w rt the fd s'.

0 . . - I

embodled in thelr relatlon schemes N

-

g m——

ln thls chapter, ‘we ﬁrst prove that the class of 'y-acychc BCNF schemes |sv.

_‘.vbounded v.r t the fd’s embodled ln thelr relatlon schemes We then show that thns' ‘

o u.

"nclass of database schemes is slmple in semantlcs by provmg that there isa slmple and o

R

: ~-.eﬂiclcnt way to compute the X-total projectlon of the representatlve mstance Slnce" fe

.‘\ !
»

. . 3 - . . , . e - v
. R . .
L e e - .
. - S . R o .
.
'
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the set of ‘total tuples re‘presents the lnl‘ormation content of | a database
[GbM‘V][Ml[MUV][N‘G][Sl][S?], the user .‘is able to understand 'the semantics of the \. ‘
appllcatlon easlly Answers to many querles for this class of dhtabase schemes can also
.be generated eﬁicnently We then show that if a v; acyclnc BCNF database scheme is -
lossless, then it is connect|on-trap-free [CA]. ‘This demonstratea that the class ol‘ 1«

acyclic BCNF, database schemes is hlghly deslrable W.r.t.query processing.

-

§
Furthermore supportlng our conjecture that boundedness isa suﬂicnent condmon
l'or solvmg the mamtenance problem efficiently, we also show that the class of 1- |
acycllc BCNF database schemes allows enforcement of constraints to be performed

cost-eﬂ‘ectlvely " This demonstrates the deslrablllty of this clasy of schemes w.r.t.

‘ upclates |

.
1S

4 The only other known class of database schemes with all these deslrable proper-
ties is the class of independent and connectlon-trap-free database schemes [CA] So
the result in thls. chapter is another effort in |dentxfy|ng classes of hlghly desirable

-database schemes w.r.t. ouery processing and updates.

3.2. Overview'ofChapter S

‘The plan for the rest of this chapter is as follows In Section 3.3, we give some

'deﬁnltlons needed for thls chapter In Sectlon 3. 4 we present an algonthm to chase a"

—

consxstent state ol' a 7-acycl|c BCNF database scheme. In Sectlon 3.5, we prove that
'y acychc BCNF database schemes are bounded w.r.t. l'd s embodled in thenr relatlon '
: sghemes In Sectlon 3.6, we show that there isa snmple and eﬂicnent method for com—\

) putmg the X-total pro;ectlor‘ of the representatlve mstance for a 7-acycl|c BCNF'

e

database scheme. ln Sectlon 37 we prove that Iossless 1- ycllc BCNF database B

»
o schemes are connectlon-trap-free In Sectndn 3. 8 we present an eﬂic:ent algorlthm to .

. .test lncrementally the satlsfactlon ol‘ fd‘s l'or a 'y-acychc *BCNF databaSe scheme After :

-l that we g:ve our concluslons in Sectxon 3 9.

- o . [ . - L
' . -, ) : . v . Dt
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3. 3 Some Deﬁmtiona and Propertxeo of 7-acycllc Hypergraphs

In thle chapter ‘we use the followmg deﬁnmon of boundedness A database scheme
(R, F) is bounded (wrt. F) i lf for every tuple t in the representatlve lnstance of any
Y

‘conmstent state r of (R, F), t's total part. can be obtalned in at most, k fd-rule applica- .
‘ 't,ions starting from T,, for‘eome c‘onstan't; k20 [GM][MUV].
- | ‘ ‘I\nw.ha.tl fo.l‘lows‘we give ”sdme useful nroperties df 1-acyclic hypergranh‘s that we .
n';e lapen on in this chndpter‘.‘
'AGiv‘en a famil.)" of sets E - {E,, ... ,E,}, Bachman(E) is deﬁned as follows:
K2 lf E;e E, then E; € Bachman(E), |

e if X and Y are in Bachman(E) then X N Y is in Bachman(E)
r
A famlly— of sets {Wl, el Wm} is connected lfv the hypergraph

o |
H=<\J W U {W.}> is connected ‘ oy
i1 =1 , » : .

A connected set V -'-" {V{, ..+, Va} C Bachman(R) is the unique minimal connec- "

tion (u.rj:.c.) (among) X Q U, if

° ‘UV QX and
i=1

‘@ ‘for all connected subsets {W;, .. Wt} of Bacbman(R) such ‘that U W, 2

. i=1

x there exis’te {'w,:l,\’.,’.' ,_w,.,‘_} cw{w,.;‘.- , .,m}'such 'm;‘n w;.} 2v, ‘r_or'

;'ISJSm. .' | “ B | | | '
| There are several eﬂiclent metheds of ﬁndlng the u. m C. [BBSK][C3] [Y2] The fol- :
Iowmg result concernlng n m.c.'s and ‘y-acyelxc hypergraphs is stated in [F](Y?] and
recently proven m [BBSK]

Theorem 3 l Let R be connected R is ‘y-ncychc |f and only nf R has the u. m c

. amons anyXCU .' DI SR \S“ S
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nother useful propert,y of y-acyclic hypergraphs is the follownng from [ADM]

\ Theorem 3.2: A hypergraph is 'y-acycllc if and only if for d:'ery pair of its nodes o

‘.

n and m, all paths l‘rom n to m have the same length

B

Ezamplc 3.4 HR in Example 2 4is y- cyclic (and Lherefore {R, F)) since there are

two paths from C to.S of dlﬂ'erent length 0
ln the rest bf this chapter when we refer to (a)cychcny we shall be refernng to

N A

v-(a)eyclicity.

3.4, ‘Algorithme for Proving Boundedness

In thls sectlon we present the algonthms used in thls chapter 10 prove that ncy«
clic BCN'F database schemes are bounded. We present ﬁrst Algorlthm 1, the algo-‘

nt.hm we use to eo.mpute H . for each R; e R and for any, BCNF database scheme (R

F) Then we prove in Lemma 3 1 the key observauon behmd our results about compu- .

tations of R} in the followmg section. Havmg done that we mtroduce an algorlthm

that chases. the tableaul T, for a ‘conslstent state r of‘an acyclic BCNF‘ database

\
scheme in a particular way.
Algorithm 1 is "shown: below. We associate with each computation of Hg. a
sequence S - <S, y Sip - oS >‘ which consists ol' the relatio’n"sche‘xn‘es in R* in
‘ ' S
the order in whxch they were added to H - by Algomhm 1; S =R,
g Ezamplc 3. 5 Let. t.he |nput to. Algomhm 1 be ‘the BCNF database scheme (R

: ={R,(ABC'F) R2(AD) Ry(DE), 34(/4300)) HB-CG A-D AB-CF‘)) F.guress'_f .

) » all,"eadyv‘in the h'ypergraph.' .

2%

. 'below shows the hypergraph for R" .

Now we prove in t.he followmg lemma tlnt when we add R to HR" the mtersec, '

g ‘tlon of R wlth t.he atmbutes in H * “is always mcluded |n some relatlon schemc

e

[




SO gt

26

'Algonthm 1

‘lnput A BCNF Database scheme (R, F)

w

Output: Hypergraph of R,- B for each R,-_e R..

(l) for each R in R do begm C

(8

(2) LetH, +-<V =R, E = {R;}>
(3) Reot- - (R} ‘ ~- " ‘ oW
(4)  while there is an R; in Rest such that V contams a key of R; do begm
5) . E=EUIRYYV= VUR; T
; o Rcat - Rcot - {R |
7) end '

8) end

,' Figufe 3.3 HR{ for Example 3.5 -

Lemma 3 Iy Let (R F) bevan acyclm BCNF database scheme, and Iet. R; € R (
Let H’: - < V E> be a partlal hypergraph of R" before an execuuon of t.he whlle- ‘y
loop m Algonthm l Let R ¢ R be the edge chosen m hne (4) m Algorlthm 1. Let o

CP - R n V Then there exlst.s an edge E, in H' snch that. E, 2 CP

[ IR
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Proof Let H’ '- <V U R E' =EU. {R, }>. Sinee H'’ is connected and

‘ acychc by Theorem 8.1 thé u.m.c. among CP ex:stg,ln Bac man(E ) Let this be
—

f '

{W} {W}is a smgleton since R “contains’ CP Now let us consnder any. connected

subset {li’;l, i ;R.‘q} of E such vthat‘(U ‘R,:‘) 2 CP;, By the u.m‘.cn among CP;, there
L =1 | : o

o exists Ry € {R,, ... ,R;} such that R, 2 CP,. a ¥

In the rest of this'chapter, we rel'er to'a computation of HR* by Alg‘orit.hm 1 sim- .

plj as a computati(‘m of R}. -

We now lntroduce Algonthm 2, shown below, an algorlthm to chase a consnstent

state ol' an acyclxc BCNF database scheme To |llustrate how tuples in T are

extended using Algonthm 2, let us conslder the follow:ng example

Ezamplc 3.6:‘Let, ({Rl(AB), RQ(B'C 3(BCD)} {B - C'D}) be an acychc BCNF

‘database scheme. The edges in HR‘; are R,, 2y and R,. Then in Algorlthm 2, t.uples
‘ - . ) “.%

orlgmatlng from rl can be' extended with tuples from 3 Of with. those from £s There-

‘ ‘fore if we want t.o compute the AC t.otal projection, we will show iIn Sect,lon 3.6 that
5

the expresslon to compute thls total pro;ectlon is ‘nAC(R M Rz) U ‘nAC(R N R,).0

o

ln the l‘ollowxng sect.lon we ‘are gomg to prove that thns algorlthm obtalns the
total part. of any tuple in CHASEF(T) in a ﬁxed number of appllcatlons of fd- rules
We shall do this by provnng that Step 2 of Algornhm 2 equal.es only odv's. Unllke pre-
'vxous approaches [AtC][Cl][IlK][MRW][S3] whlch assumé lndependence, provmg t.hat, o
\Step 2 equates only ndv 8 ls a dlﬂicult task in our case. snnce we' are not guaranteed

. that. each att.rlbute m a closure ls added" by a unlque fd embedded in’ a unlque rela- )

. 'Itxon scheme In fact. thls property makes our proof ol' boundedness much more dlﬁicult

t
B \r',“

than in the mdependent case

Our proof that. Step 2 of Algoﬁthm 2 equates only ndv s reqmres t,he ;proof of

o “‘lseveral facts about any computatlon ol’ CHASEF(T ) We lllustrate only some of the




o ~Algontbm2 o ‘,"‘ . L \

' lnput T, for a consistent state r of an acychc BCNF database scbeme (R F). . ‘
" For each R € R H .- < Vi, E;> as computed by Algorithm 1 o .

Oulput:‘ CHASEF( T,).

(1) Slc 1: . R ‘ L
(2) for eacb R; e R do begm .. ‘ N
(3) for each tin T originating from r; do begm - o C o

(4) - Rest = E;, — {R} _
(5) . while there exist R, in Rest, ¢ in T, from i and ‘ ,
8 DR . K;, akey of R;, such tbat t [K ] t[K ] then do begin
. (6) = t[R]-t [R] ‘ } .
(7) ‘ Rcat - Rcat —_ {R }
(8) end ) ‘ S
" (9) end ‘ ‘ o o
' (lO)end ‘ ‘
(11) Step 2:

(12) Let T, be the outcome from Step 1.
(13) Obtain CHASE(T;) from T,.

crucial facts ib tbe follOwing example.
Ezamplc37 Let (R F) - ({R (ED) 'R (DB), (DBC) R (DBCAF')} {D B D‘
~-8C, D - BCAF F - ABCD}) be an acychc BCNF database scheme Flgure 3 4

. below sbows HR

Let us consnder t,be followmg state of (R F) ro=(r, = {<c d>} Ty = {<d

o b>}, r;, @ r. - {<d b c, a, [>}) Flgure 35 below shows T,, umque ndvs are o

T

@

S 'denoted by S
Let T be a. tableau in a computatnon of CHAS'EF(T) Let t,, tz, and ls be tbe" -

- 'tuples ln T from r,, r,, and r4 respecuvely We want to show tbat, when t, and t2 are

5 'Ja,'the same ndv on sdme attnbute, then tbese tuples are also |dent|cal on a cert.amj"'."

' **'f.umque set. of attrlbutes that. can ad? (to be deﬁned in next sectnon) that atmbute to .

o R + or, R{ Also we want. to show that wben t, n/&\constant on some attnbute then' TR




» '() : 4 ¥
k R2 ‘
N ‘R
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It C e
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” Figure 3.4 Hg for Example 3.>\'

[

[N ‘ ‘ . B , ) )

t ‘also consists of ‘constants on that, same:uniqde‘set of attriBhtea' These and other
L

“crucial facta hold in’ general for the class of acycllc BCNF database schemes

"

Let, us apply (the fd- mle for) D B to' tl and tQ Thus t,[B] gets equated to the -
constant b in t,(B]. Observe th;r?t [P]'is. a constant, and in the followmg section we
shall find out, that (D} ‘i the umque set. of attnbutes that “cai add 'B to R’ Now IetQ

us apply D-ABCF to ‘x and 6. Flgure 3.5 showa T, aft,er the, apphcat.lon of t.hese two -

3 . . ) T
t '
! ; . L ’ . b ‘ B

E fd-rules

Observe that t [A] - tz[A] and is an.ndv. Not.lce that, tl and t2 are |dent|ca| on o

.

DBC in the follownng sectlon we shall see that DBC i ls the maxunal set of attnbutesf

o

that canadd AtoR** T

I , ! o

" : ' Let us apply agam D-ABCF but now we' apply n. to t, and R Flgure 3 5 shows

% T after thls Observe now that. t,[A] is a constant and t, also conslsts of constants on‘y e

e —

‘DBC Wthn as mentloned before is t.he maxlmal set that. can add A to R+ U

.‘v.
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la_ B ¢ D .E _F

- - - d e ‘a

A b - 4 - ]

a b ‘¢ d - Wi

b T’

A B C D E F
3, b \; 8, d e 8,
! o 8, b 8 d - 5,
< v a b ¢ d - {

A. B C D E F
a b ¢ ¢ d ¢ /
a b c d - !
a b < d - Ji

‘»

T, after D~ABCF

Figube 3.5 Tableaux for Example 3.7

EL.

’

' Most of the following section deals with proving that the observations and facts

illustrated in the previous examplé hold for the kind of schemes considered in this

Nlaptgr.' These and o\ber properties of acyclic BCNF scheme; are the key to our

lproo%in_ the following.section.

%1
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3.5. y-acyclic BCNF Database Schemes are ‘Bounded ;
[}

\ .
)ln this section, we prove that acyclic BCNF database scliemes are boundéd, We °

f.f"‘/‘ '

do this by proving that'if we chase the tableau T, for a consistent state of ‘an acyclic
BCNF database schemé using Algorithm 2, then Step 2 of Algorithm 2 equates only
.Nndv's, This implies that the total part of e\‘r‘ery ltuple in CHASE((T,) is obtained in
Step 1 of Algorithm 2 ix; a number of applications of fd-‘r e which depends only on the

pumber of relation schemes in the database scheme,

.3,.5.1. Some Definitions

—

We give now most of the definitions needed in this section. Let (R, FF) be a
BCNF database scheme and let R, ¢ R. Let us consider a computation of R*. Let

H_. = <V, E> be the partial hypergraph for R before aﬁ execution of the while-

R’

» loop in Algorithm 1. Let R; € R be such that it can be chosen at line (4) in Algorithm

1. We say that R, can be added to HR4I(R,*).CE580me R, is chosen at line (4) in Algo-

[ ‘
rithm 1. We say that R, is a relation scheme that is added to Hp . (R*). R, N Vis

@ called @ connection - point of R; (im RY) and it is denoted by CP,. Now, let.
‘ K,-l, .. ,qu be the ke;'s of R; in CP;, Then, for lsl‘S g, [ Ace R, - I{”-‘, we :ay that
K, (CP,, or R;) adds A to R*;if A € V, we say that K; (CP,, or R,) A-cstends RY;

we say that R,; uses K (CP,-) {E_R"' - >

. Let Ky - - - K 'bg tl‘lg keys of R;. We regard K, for 1< tsm, as adding .A\‘to‘
R}, for any A € R,. Also, we make the conventions that CP; = |J K|, and that R,
(K, or CP)) A,-extends R?, for any A € R;. We s‘ay that R; in R? can A-cztc‘nd‘R,-’ it
there is a c;mputation ;)f R} in which R,-‘ A-exiéﬁds R*. Notice that if A € R;, t‘hep
R; is the only relation sch;me that A-véxt:ends R?. Let A, Be RE. We say that AB is “

(or A and B are) not split in l?,-‘ if for all computations of R}, R; A-extends R} if

o
A3



’ ' ‘ . ) ' 32

‘and oumly if R; B-extends R;*. The following example. illustrates”some of these

definitions. ST : .

Ezample 3.8: Let (R, F) = ({R,(ED), Ro(DB), R{(DBC), R(DBEAF), (D - B, D

~ BC, D ~ BCAF, F - ABCD}) be a BCNF database scheme, (R,\F) is an acyclic *

. BCNF database scheme. Figure 3\4,‘above, shows Hg. Let us comsider <R,, R,, R;,

R,>, a computation of R, In this computation of R, CP, = {D}. Since {D}is the
only key of R, in CP and since ABCF C ABCDF ~ {D} (l e, R,~ K,), R, adds A,
B, C, and F to R}. In fact, R, A , B-, C-, and F—extends R,+ since A, B, C, and‘F
are not in V when R, is added to R. R, adds B to R} , since B € DB - {D} (i.e, B
« R, - K,). Anoiher connection’ point of R, in R}, whick can C-extend R} is DB;
this occurs in the following computatlon of R}: <R,, R,,, R,, Ry>. Other computa~
tions of R} in which CP - DBC can A- extend R’ are: <R,, R;, R, Ry> and
<R,, Ry R, R4>. AF is not epht in R, but B and C are split in R} . It is worth
npt;ing t:ﬁat. the connection points 6f R, in different compﬁttations of R are totally

[N

ordered by set inclusion. O o : Ny
3 ‘ ” ) 1 f
» ‘ ‘ Fy

3.5.2. Overview of Section
A

This section ls organized as foliows Iu Section 3. 5 3, we prove first that for every

A in R* there is a unique maximal set of attrlbutes (CPi4) whlch A- extends RY.

( B

Then using thls fact we characterize when A and B are not apllt in R?*. With these

-results at hand, the rest of Section 3.5.3 is concerned with proving that if K , 3 key of

[

some R, in lR , determines A and K 3 CPM, then thege isa B m\K such that elther

&

AB is not spht in R“ or CPy 3 {A I Thls result is used in Section 3.5.8, in.Lemma

3 5, to prove that when computlng CHASE,.-( T, ) the A-component ofa tuple in T ori-"

- gmatlng from r, can be equated only by keys in CP.A In Section 3.5.4, we study the‘

[

atmcture of CP; iA in R"’ We prowe that |f CPy, C R} , then under some speciﬁe con-
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[

<

exists a unique n;akilﬁal connection point that can A-gxtend R?*.
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R \
. \

3 C e, o T \
diﬁ.iong\ CP;, is not split m_R,-’.« This result is used in Lemma 3.5 to prove that while

- -

is not an ndv,

computing CHASEAT,), if the A-component of a tuple t in T, frém r
v . . o

- L

then ¢ consists of constants on the unique maximal set of attributes (CP,,) which A-
v ' . . ‘ o . ' . ‘ . ° o .
ext‘ends A* Section 3.5.5 co-ntains some technical results about nonsplitness of attri-

- )
[

butew required in Section 3.5.6. 1n Sectlon 3. 5 6 as mcntmned above we prove some
. “ {

|mportant. facts about the computatnon of CHASEF(T ) reqmred in Secuons 3.5.7 3nd

L 3 5.8 for: prong that acychc BCNF database schemes are embedded complete nnd

.-
-

bounded respe tnvely, ' e , IR "
e . . . o \ . 0
3.5.3.. Sothe Properties of CPin R* wr e

Lo
NS

We stud§ first the connection points dat can Aextend R and prove that there

» - T

\ . Iy Qo N .

\ |
: T C e, 4 o
. ,Exatnple 3.8 abqve sbows Qhat the connection points c;f. R, in R,’ are drdercd by

.
‘

set mcluston The followmg proposmon proves that in general thns is the case pro-

-

vnded that Lhe BCNF da&abase scheme is acyclic. . °
a

- \

Proposition 3.1':L§t. ’(“R, F) b8 an acyglic BPNF database scheme and let R, ¢ R.

Let R,- in R} and l@ CR;,, CP,-Z,%. 0. fCP,v%e a seflue:lce of connection points of R,
corresponding to g differeny computatlons of RY. Then CP CP .,‘CP,'; are
: o ° Dy < ' '
totally orde%’ed by set inclusion.

& N

Assumeothat. CP;, CP,,...,CP;, l<nSq, ‘is‘a

contains the other pne.) ConSeqnent y-lthere“ exist z,. in ‘CP,-. - CP and z, in CP;,

LI

an
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CP; . “N‘otiee thath,- 2 {z,, 7;}.
Consider the oaths from & to z, in ‘Hk,. One of them is <R,;> itself. Now,-vre

are going to show that there is another path from 7 to z, of length greater than og '
equal to 2 contradlctmg Theorem 3.2. Let us consnder a computation of R’ in which."
the connection point of R is CP That is, Iet H = < V,, E;>, the hypergraph for R +

before an e)(ecutlon of the whlle—loop in Algorlthm 1, be such that R; can be added to--

H; and R; N V, CP ) o ¢ V,, else z, € CP;; therefore‘there is no edge in E, con-n
taining z; and z, Let us conslder a computation of R’ rn rvhlch tlre connection ponnt
’ .of R, is CP,-;. That is, let Hy, = <V, E >, the hypergraph for R"’ before an execu-
tion of the while-loop in r‘\lgqrithm 1, be such that R; can be added to H and R; n

V,; - C'Pi.;.ft, '3 yn;'éhe z; € CP; ; therefore, there is no edge in E, containjng z; and

z,. Let H = <V, {J V,, E U E, >. Since H' is a connected subset of R, 1z, and

-
-z, are connected in H. Consider the paths in H'. from z; to z,. Since thore is no edge
| conta’.ini'ng‘both of ‘them, any of tixese potlrs is of length greater than or equal to 2.
,Tb'isvcont,lradicts Theorem ‘3.2'. | | g “

Hence, our clalm that CP CP CP are totally ordered by set mclusnon

must hold. @
Corollary 3.1: Let. (R F) be an acycllc BCNF database scheme and let R eR.

Let R in R* be such that it can A extend R+ Let CP; , CP Hy CP~ be connec-

t.lon pomts of R; corre:,pondlng to q dlﬁerent computatlons of R"‘ in whlch R A-'

o extends R’ Then CP CP CP are. tot,ally ordered by set mcluslon \

Proof Slnce, by Proposxt.nqn 31 all the connectlon pomts of R, in R* are .

ordered by set mcluslon, the same holds for a subset of connectnon ponnts of R in R *

: X SR
whu:h can A-extend R"‘ a- N Y a

.
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; Let R; ln R" be such that it can A-extend R?. We shall denote‘t,heimazimal'

\. Bl

conncchon pomt of R; that can A-extend R+ as CPj,. - R

- . vPropoailti‘on3.2: Let ‘(R, F) be an acyclic BCNF uatahase schem'e, and‘lec A (. .
R — R,. Let R,— in 'R;* be such that it lean A-extend R}, Then,'thece exist,s R, in
"R, such that B, 2 CP,s, A € Ry, and 4 € CP;, . |

f’noof' Let us consider a computation of R’_ such that CPM A-extends R*. Let

H= <V E> be a partlal hypergraph for R’ before R A extends R,* using CP

L}
Notice R; # , since A ¢ R;. Then, by Lemma 3. 1, there exnsts R, i8 E such that R

2 CPjy By the definition of A-extend R*, A € CP, i, Clearly A E R

’”

het us now clo_nsider,th_e connectionppo,ints of two relation schemes i in R} that can
A-extend R?. In the following proposition, we prove that‘if‘ there is more than one R,
in R}* svhich can A-extend' R}, then their mazcimal' conneetion points ‘t.h‘at»l,can. A‘-.
extend R;* are identical, provided that (R F)is an 'acycli‘c BCNF database scheme.

Proposltlon 3.3: Let (R F) be an acycllc BCNF database scheme and let R, ¢ R.

Let R , R,-z, ...,R

o in R* be such t,hat, for all 1sisgq, R can A- extend R*. Then

:,.

CP; A -cpzA .= CP,

Proof By contradlcuon Assume thzlt CP, Ay CP(T“,,'. . GP M » 1<ks g, isa/
sequence of conneetlon points such that CP,, A, ls t,he first . connectlon pomt th

vnolates the equahty among them, notlce that this. lmphes t.ha!, A G R, Then there_

T are t,wo cases to-be consldered dependnng on whether CP; rA |s comparable vm.h any . ‘.

.uother connection point., say CP‘ e

Caae l CP M is ot comparable wnth C' Then there exlst z, € CP

o .'f CP; ,,4 and zg G"CP ,A CP A Conslder the paths from 5 "° A in H v One path-":;: ”

Y <R > |tself Now we prove there emst,s a path from z, to A in HR. of lengthy': '

(Y . . DR B ' . " s T e wr !
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t

gregter than or equal to 2 Let us consnder a compntatlon of R’ in Whlch the connec-

n

‘uon point of R- is, C'P ‘A That i is, let. H} - V,‘, E >, the hypergraph for R’ before
" an e;ecuuon of t.he whtle-loop in Algonthm 1 be such that A € Vj, R can be added
to Hy, and R; n V, CP- (A T € V,‘ Notice that since A € V‘, we have‘that for
- all ISIS q, R ¢ E, Let us con:uder.a covput;at|on of R}? in which the connecuon .
‘Romt of R is CP A That is, let Hl = < Vl, E >, the hypergraph for R+ beforé an -
, executlon of th{; whlle-loop in Algonthm 1, be such that A'¢ V,, R; , can be added to
- Hy, and R; n V, = CP Y V Notice t.hat.e|nce A€ Vp we have that fo‘r all
lSISq,R (E, LetH'-<V'-V.U V,,E,gLJEl | | o

. We clenm z, € R A'ssux‘ne otherwise. Then H' represents a partial hypergraph
, il‘l‘a cor_nputatioq of R and it is such that R,} can A-extend R,f. ‘Smce zl‘ € R,-‘r and
. z, is 'nH',R,.n v édnea;ns {31} and CPja, This vielates‘ the ma;(imality Ia’ssdmp-

‘ ‘t,lo_n,of Cpfk"-.i S : | ‘ ) o

‘ S‘i'nce‘ H is a cddnected subset of R, z; and z; are cbmiected in M. Cdnsider the .

paths in H from z, to 3 any of these paths nexther contain {A} nor any of its edges 1s‘ .

B .R~ for lslsq Attach to any of t.hese paths the edge R ¢ and _since z, ( le’

bt.a.m a path of lengtb greater than or equal to 2 from z, to A (gonhg through z,) in

; HR+ Thls contradncts Theorem 3.2, Thus thls caseis not pOSSIble

L v . ' . : N !

Cme 2 CP,A ls comparable wlt,h CP e Aswme that. CP‘}A o CP A (The1 |

| case CPJ: A D CP; JiA; is analogous ) Slnce A € R,, by Proposmon 3 2t there exlsts R in.

; R“ euch that R 2 GP M and A ! R Smce C’P, A, D CP (A t.here exlsts zk in

' CP kA A Now z. ! R smce ot.herwnse R n R,, whlch is a connectlon pomt{ 5 f""

o of R that can A-extend R, ' contams {z,‘} and CP A and tlus vnolates the ma.mmal-'_f - . :

. a :
v .
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‘ity assumption of OP- A Then the following sequ'ence is a cycle: <R;, A, R,
R,, z,p,, R g where zm € R ﬂ R, n R, , and does ‘XISt since R, 2 C A =2

B CP WA and none of them is empty Hence ‘this case is not posslble

| ‘TherefOre CPj 4, - CP(-zA"f ™ CP“A'.“CAI . S \ | ‘.,
wé shall refer-to th‘e .'(um'que} m‘an'mdl co;zrtcct’ioh ;;oint t’hat can A-exte,nd R} by
Py ¥ | o
The following exampie‘ illustrates that the above implication does'not hoid for

-

’ cychc BCNF database schemes

| E'zample39 Let (R, F) = ((R (ED), R R,(DB) Ry(DBC), R,(DBCA). Ry(DA)}, (D
+ A, D - B D - BC D - BCA}) be a BCNF database scheme Flgure 3. 6 below
shows Hg. The maximal connectlon point of R that.can A- extend R+ is DBC. And‘ ,
the maximal connection point of R5 that can A extend R’ is {D} They are dlﬂ'erent '
because Ris cyclic. The cychcxty of R can be demonstrated by the cycle < R5, A, R,, .

C,Ry, D, Rs>.0 ' .

. Before proceeding, we state the following facts; their proofs are omitted since

a

they are trlvml
' Fact 3.6 Let (R F) be an acyclxc BCNF database scheme. and Iet R, € R.
L Assume A e R“‘ - R, Let R m R be such that A € R and elther R, 2 CPA or K ‘

' (.' C’P,A, for some key K, of R Then R |s in R* and |t can A extend R"

- Fact 3.2: Let (R F) be an acycllc BCNF database scheme and let’ R € R Let R . .

. inR? be such that it can A-extend R" ThenR 2 CP,AA let

Fact 3. 3 Let (R F) be an acycllc BCNF database scheme and let R € R Let R ’

e

o in R" be such that lt can A-extend R" Assume B € R . C’P,A Then R (or CP,A)

: ‘caan-,extend“R and furthermore, for all computations of R, ) lf R A-extends R, ,

S

o k ‘o o "
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Figure 3.6 HR for Example 3.9

t,h‘en"‘R'; B-extende RY. |

| . Fact 3.4:‘ "L‘et ‘(R F) be anl acyclic. BCNF aatabase‘ e'che‘r'ne and’let Rv € R
' ;A‘ssu‘nbxe'Ave" R-* ‘ R;, and B e R Let R be such that it can A- extend Rf and B €
"R, Then qP,A {B} -

With ‘these results at hand, in the rest of thi‘s subsect}ion‘ we characterize a rela-

[y

* tionship hetween a partlcular palr of attnbutes A and B in R" We are interested i
the relzmonshnp between A and ‘B when Bis in K K is a key of R in R" that_‘ ‘
S determlnea A but B ( CP,A We are mterested in provmg in Lemma 3 2 that. for ‘

L these B and A |t ls the case that. AB is, not, spht m R" or CP,B 2 {A} The followmg '

o example |Ilustrates t.hls slt.uat.lon

" ""”i-::__R,(AGI), R,(FA.I)}, {D - B, D . BO, D - BCAF, F = - ABCD, 4%G,G- . Al I~;

38

Ezamplc 3. 10 Let. (R F) - ({Rl(ED) Rz(DB), R3(DBC), 4(DBC’AF‘), RS(AG)
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A. {D} is the only key that determines A in CP,,, which is DBC. {F}is in a relation

' scheme that can A;exfend R}, it is a.ke‘y that determines A, hh'd ‘satisfies AF is not,‘ . ‘\ :
split in R} . {G}, in R5 and R, determmes A, satlsﬁes CP,G 2 {A} and lt. is in a

relatlon scheme R, that cannot A extend R+ ‘For {l} note tha& itisa kex deter-

mmlng A that cannot even add A to Rl j it satlsﬁes CP,, 2 {A} o]

. Figure 3.7 Hy for Example 3.10
[} L . .

A

We are gcmg to tackle ﬁrst, the case when B isina relat;on scheme whlch can A-, .
‘ extend R +, After that Proposntlon 3 6 shall conslder the case when B is an element of t @
a relatxon scheme contammg A but. B is not in'a relatlon scheme that can A extend“ |

. . R*. After that Lenma 3. 2 sha@summaﬂze these resnlts provmg our maln clalm in “.- o ‘

_'t,lns suhsectlon

Proposmon 3 4 Let (R F) be an acychc BCNF database scheme and let R ¢ R ',

‘5

‘ "Let R nn R be any relatlon scheme that, can A-extend R" ‘ Let. B € R - CP :

. K [ . R - . ! l
N
i




R.’ Not:ce that A I Ru else R cannot A‘ xt.end R+ For_ '

40
Then, either CP;, = CP;s or CP s, 2 CPia, U {A}
‘ Prdof: IfR; = I:Z’,-, theh'by convention C iA, and C B, are equal We assume R;

. # R |n the rest. of the proof

Smce B o «eR; — CPA, by Fact 3 3, CPjy is atonnectlon point of R; that can B--

-l
Kl

| extend R-’." H'ov‘vever we do not ‘know ifitis theinaghmal connection point. of R- that

can B-extend R*. | Let us compare, CP iA, agamst CP; i8,} they are. ordered by set mclu- ‘
sion by Proposition 3.1; ‘and 'they are in ,R..T CP;, doea not- mclude CPB, else the

\\‘n‘mxlvmaht.y assumptnon of CPB is vnolated Then elther CP . - CP‘B or CP;, C‘
CPg. If they are equal then we finish vrlth the proof. Hence assume CPM C CP

‘ Bht t,hlsrlmp!,xes CP ,-B'.: {A}‘,‘else |f;.g'1 ¢J -R,,- ;‘-' CP,g phen CPB can A extend R}

- vielatihg hhe ma‘xiinail.ihy ‘assurn‘ption of C’Pi,,'l. D. ’ N |

o h '

B ln the following propo’smon ‘we prove that lf B e R,, where R, is a relatlon '
‘scheme in R’ that can A extend R, B € CP,A, and CPM = CP,B, then AB is not
‘ spht in R’ | |
. Propontion 3.5: Let (R F) he an acychc BCPfF database scheme and let R c‘R
0 Let R; i R’ be such t.hat. it d\an A- extend R 'B ¢R; - CPA , and CP -_Cpiﬂ.

B "'ThenABlsnotsphtmR" R L |

i

Proof Assum‘ ‘ R can A-extend R"‘ We have wve t.hat, for all comput,a-

xtends R* |f and only if R B-extends R*.b We prove t.he only-a]’

J pat s symmetrlc lf R R t,hen the proposmonl ""?"Y tri’xe \ 'Henee"__ ‘
. :Jassume R # R ln the rest of the proof Observe that. by Fact 3 3 R, can. B-e)\end | .

e same reason, B E R

-

. We ﬁrst. prove B must he ln R Assume other\ is Then ﬁ’, # R By assump-f“‘_' R
tlon, C’P,B‘ - C'P Slnce A ! R,, conslder 3 computation of R"' where H’ - < V-J

1 . . . '.' "
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"

E> the hypergraph for R} before an execuuon of the whlle-loop in Algonthm 1, |s‘ -

such that. A ¢V and we can use R to A- extend R;* and the connectlon pomt. is the

maxtmal one. B ¢ V; else we can add R; to H' obtalmng CcP A 2 (B} this fact and: ‘

‘ ‘CP- - CPA unply CP,B Q {B} whlch is a conLradlcmon to Proposmon 3. 2 Now

;add R to H'. After domg that we add R and we have that CPjg 2 {A}, since Rl"B-

' ‘extends R+ Thls fa?t‘along with CP = CP 8, lmply CP "‘. 2 (A};a contradiction to

3 ' ..". ‘ f
Proposmon 3 2 Hence B must be in R,. T S

o e

Next we want. to show that lf R A extends R’ then R, B extends R’ If we

show B eR, ~ CPM , then we finish wn,h the proof since by Fact. 3.3,if Rd A-extends
‘R,-*,‘ then‘ Ry B-expeuds R" Thls is tnvnal Since B « R CPA and, by Proposmon

3.3, CPjy = CP,A";; and hence B ( CP‘ Then since B € R,, B e R = CPy,

<

Ezample 3.11: Let (R, F) = ({R,(E‘D), 2(DB) 3(DBC), ,(DBCA-F),‘

5(DBCAFG)} {D B, D BC, D ~ BCAFG Fo- ABCD}) be a-BCNF database

scheme (R, F)isan acycllc BCNF database scheme Slnce CP“l - Cpm - DBC and

'F €R,- CP,A, by Proposmon 3.5, AF is not spht in R’ o

v

- So far, we have consldered only B in relation schemes which can A-extend R'v". In

the followmg p’roposltlon, we consnder attrlbut,e B in relatlon schemes whlch cout.aln

o

A, but. B is not an élement. of any relatlon scheme that can A ext.end R*

3

Proposltnon 3 6 Let, (R F) be an acycllc BCNF database scheme and let R; ¢'R L

-'«

- Let R, in R"‘ be such that. it contams AB Assume B is. not m any relatlou scheme "

IR
v . .

‘ that can A-extend R,".’. Then CP,B 2 {A} and B € R

Proof Fnrst. obserye that the assumpnons m tbe proposmon unply that A # B .

‘ .‘.lf R, can B-extend”R then the proposmon holds smce A must be m V when R, ls.ﬂ'

L ) added to th’é partlal hypergraph t,o B-extend R * ln Algorlthm 1 Hence assume m the:-‘

\':-

o rest of the proof that Af cannot B-extend R + \‘ '{ T ‘5‘7@




Slnce B ] R,’, let R in R‘ be such that R ‘can B-extend R’ By assumptlon,

“R’~ cannot‘A-extend Rf_. We prove by contradlctlon that‘ C B ,"_) {A} Assume oth- -

' A
, ]

'erwise.

We first prove A cannot be in R Aasume AeR, l‘f.'A eV w‘hen R is added :to'
) ‘the partlal hypergra'ph to B extend R+ tn Algonthm 1 then R, ‘A- extends R?: a cona
tradlctlon smce R is a relatlon acheme that cannot A extend R *, On the other hand ‘

7 »|f A c V then CP,, v, =2 {A}, which contradlcts our assumptlon Hence A E R
. P ‘ , . ,

Let us consider the. paths from B to A in H . One o[ them is"‘<R’,'>.‘,We want

~to prove there is. another path of length greater than or. equal to2. If A and B cannotv o

© be extended at the aame tlme then there are two cases to be consndered dependmg on,

N whether R is B- or A- extended ﬁrst Smce there is'no relatlon scheme thh:‘ can A-’

\ *,
'extend R»’ and contams {Bf ‘AB cannot be extended at the same tlme. Assume‘R-* is
B-extended before bemg A-extended (The other case is symmetnc wnth B and R,

the roles of A and R respectlvely ) Let R; in R* be such that |t can A- extend R}

) . and c-on‘slder a3 computatldn of R?.. Let H = < V E'> the hypergrapb for R* S

before an executlon of the whlle-loop in Algonthm 1, be such that Be V A ¢ V and
'R can be added to H’ Since B¢ R,, there is a path from A to B i |n H” =<VyU "

E U (R }> of Iength greater than or equal to 2. Thls contradlcts Theorem 3 2

Therefore A must be in CP,B~ - C’P,B Observe that thls lmplles A e R lf-R - 3

:’.‘,R,, then R can A extend R* and contams {B} Thls contradlcts tbe Tssumptlonv.;.""; :

| about. R Hence R # R Also B ! R else R eannot B-extend R’, contradlctmg‘ - :

‘ our assnmptlon about R D | o)

EERE F lnally, we are ready to prove the ‘main clalm in tlns subsectxon

- ‘ _,,.‘»

Lemms 3 2 Let (R F) be an aeyclxc BCM“ database scheme and let R e R Let -

R m R‘ be sueb tbat A € R \- K,, for some key K of R If K Z CP,A, then there
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- ‘lS BeK, - CP‘A such that either AB is not spht, in R+ or CP.B 2 {A}
Proof Assume K, € CPM Then there | isa B such um B e K, FXP;y. There
are two cases to be consndered dependmg on whether B € R.,, for somre R; i in } A ‘wyh‘i'c.h .

‘cah A-,e‘xtend RY*.
Case 1: B e‘l-?,”and R,‘can A-exten‘dﬁ’-+ ‘ Bjr Proposi‘tion\‘3.'4 CPM - CP,B. or

CP,B {A} If CP,A = CP,B, then by Proppsltlon 3. 5 AB is. not spht, in RY; else.

'QP,B {A} whlch by Proposmon 3 3 and deﬁnmon of CP,B, |mpl|es CP.B 2 {A}

' Caac 2: Bis not in any relatlon scheme that, can A- extend R+ ln t,hls case R

contams AB Then by Proposmon 3. 8, CPp 2 {A} o )

. 3.5.4. Some Propertles of CPM in R

ln thxs‘subsectlon we' study the maxlmal connection. ponot that. A-extends RY .
' ( A) when C iA C R’ F‘lrst. we take a Iook at the case when CP,A and CPM have'
a key in common. We prove that if thls is the case, then CPM‘ cp,, (A provnded A 13‘ ’
‘ rxel‘ther in, R nor in R After that, we prove t,hat. cpP ’A “is ‘not spht in R under some.v
“speuﬁc condltlons determmed,byt/he lnducuon part of the proof for Part B of Lemma ' ‘

“'3 5in Sectlon 3.5.6. As mcntloned earher in the Overvnew thls sectlon these results

' “are used to prove in Part B of Lemma 3 5 that in: any computatlon of CHASEF( T ), |f

- o the A-component of a tuple ongmatmg from r;is a constant t,hen bhe tuple must be"

P

o ";'.const.ant.s on CP—

We need to prove ﬁrst the !ollownng fact,
3 [

P"°P°‘““°n 3 7: Let. (R F) bo an acychc BCNF database scheme ch, R, € R be,.‘ e

: such that A € R" - R Assume B ¢ CP,A lf R is a relatlon scheme m R that con- ‘

;  tains AB then CP,A C R 3 R L "; Vl‘ "v‘f Ly

Proof Smce A E R,, let, R e R be such that n. ‘can A-extend R+ By Fact, 3 2 R




'R, =2 C’P,A andA ¢ R,
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R, 2 CPyA. Not.'ice'that this impligs AB is in R,.

Assumc R «R contains AB We claim R, 2 CP,A Assume otherwise. Hence R,
# R, We know Bisin CP.A aln‘d R,. Smce A € R;, Proposition 3.2 implies that there
exists R, in R} su,ch that R, 2 C'P,-A and A € R, Letz e 'CPM — R,. Then z; ¢ R,
since CPM C R,; by similar reason, z, € R,. Then, the followmg cycle exists;' <R,, z,, .

NI
R,, A, R,, B, R;>. A contradiction to the fact that R is acyclic. Hence CP,, C R,. O

The following proposition proves a more general claim than the first one we want
to yprove‘in this subsection.

Proposition 3.8 Let gR, F) be an acyclic BCNF database scheme. Let R, and

R, be elements of R. Assume AB is in both R’ and R}, but neither A nor B is in

RR,. Let R, be such that R, 2 CP,,CP;sgAB and ABC R, = CP,,CP5. Then, if
CP,AnC 8 ¢Q thenCPM-CP
Proof Assume: C'P.A N C‘ .8 # D. By assumption about R, and Fact 3.1, R, is

in R,-’ -and R} and it can A-extend R} and B-extend R,-’.

_ We claim’ CPM = CPig, if R, = R;. Assume R; = R Then we have to proveA

CPipy = CP,B Since R, can A extend R’ and B € R - CPM, by Proposition 3.4,

\

'enher CP, = CPgor CPy 2 CP,yA. But we know A € CPg. Thus CP,, = CPp.

Hence {or the rest of the'proof we assume R; # R;.

[
L]

it CP,A and CPB are not comparable then the u.m.c. among CP,,CP; 8 is a sin-

gleton, smce R contains both But {CPM, CP 8} violates the u.m.c. among them.,

Hence CP‘-A and CP;p are comparable : h o
A . , . 1

R

Now.we prove one cannot be a superset Aof the other. Assume CP,, D CP; 18- Let./ -

z¢€ CPM - C/PB Slnce A€ R,, by Proposltlon 3. 2 there exists R, in R} such that

)
-

Y

-
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N ‘
'We claim B € R,. Assume otherwise. Then let us consider a computation of R*

such that CP;4, A-extends RT.. Let H = <V, E> be a partial hypergraph for R*
) h ‘
- such that R, A-extends R;* using CP,, and such that R, is in E. By Proposition 3.2,

(it is always possible, Since B € R,, CP,, 2 {B}, Then by Proposition 3.3 and

definition of ‘CPM, CP,, 2 {B}, which is a contradiction to the assumption about B,

\ { \
Hence our claim that B € R, is proven,

Since CP,p contains at least a key and R, can B-extend R*, let this be K, a key‘
of R,. Since K, ~ z € F*isa nontrivial f{d embedded in R, K, is a key of R, and R,

must be in R;.

We prove this implies CP,, is a connection point in R,* that can B-extend R-’

Since B ( R;, consider a computauon of R* where ' = < V, E>, the hypergraph
v>

for R+ before an execution of thé whnle loop in Algorithm 1, is such that B € V, that

»'4

we can use R, to B-extend R and thetconnéction point is CPp. Observe A € V,
since A € CP 6 and A € R, Since K, is in CP,p aud is a key of R,, we can add R, to *
H . Suppose we add R, to H' giving H''; notice B is not in H'' since B ¢ R,. Now we

add R,, which B-extends R,-". Hence CP,, is a connection peint in R,* that can B-

extend R;*. This violates the maximality assumption of CPg.

(N

, By a similar argument, the other proper mcluslon does not hold.- Therefore CP;,
= CPj.o N S Q
.The following example ill.ustrates‘the next corollary which proves the first of ou'r '
claims in this subsection. |
" Ezample 3.12: Let (R, F) = ({R,('CD) Ro( 1B), RS(DEAFH) R.(BDE)}, {B - DE,
D - BEAFH}) be a BCNF database s‘cheme (R, F) is*an acyclic BCNF database
scheme. Its hypergraph is shown in Flgure 3. 8 belqw. Let us conslder R e and R} . A A

auun both closures, but A is neltber in Ry nor in R,. Also {D}i is a key of Ry and it is



] B
' Ty : ' . ! ) e

Figure 3.8 Hp for Example 3.12 -

: Corolla;'y 3.2: Let (R, F) be an acyclic BCNF. database scheme. Let R, and R,
be clements of ‘R and assume A is in both R-’ and R, but A is peither in R, nor in
R Let K, be a kéy of R, ¢ R such that. A € R aild K, is in both CP,, anli"
CPia- ThenCP,A-CP | o o
~ Proof: By Facts 3. 1 and 3.2, R Q CP,CP,;,. Since A is nelther in R, nor in R :

' by Proposmons 3 2 and 3 3 and. deﬁmtlou of CP‘A and CP,,, A ¢ CP,A CP,,.- Then :

since A ¢« R, A €R, - CP,, C.PA Observe ‘CPyy n CPjy # g, sm&e they share K

o - —_—

[

“Then, the- Corollary follows from Proposltlon 3.8 w:th A t' 'B. 0 . ;“,' e
LR s e X
‘We want to prove that under certam condmons C ja i3 not splxt ln R tha't is; ;L
. ‘ o . ‘~" g L
under certaln condmons it holds that for evel'y palr of attnbutes B and C' in GP S
/ . o .

El

BC is not spllt in R*. We first glve an exah{ple to |llustratc the ﬁnt ol' t.he proposx— R |
tlons provnng thls clalm e -' o ’. o o - t ‘j u“ "» s

L

Ezample3 13: w (R F)= ({R,(ED),,R,(DB) RS(DB MADBCAJP)}, {D B,, ;
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3 ) ' ’ ! '

DR

D ~ BC, D BCAF, F ABCD}) be a BCNF database scheme (R, F) is an acyclic

BCNF database scheme, its hypergraph is shown in Figure 3. 4 in Secuon 34, Notnce

.

- that Ce R3 - CPxB It is observed that when we C-extend R} usmg any R,«R, R,

‘ 3
can B-extend Ryh. But the converse of this observatlon does not hold. o]

Propoaltlon 3, 9: Let (R F) be an acychc BCNF database scheme and let R, «R.

Let R, in R} be such that it can A-extend R,‘, and B R - CP g Il R, isin R’

and it can B-extend R*, then R, can A-extend R.’.

\\\ ' . \ ) Co . B
Proof: First\observe that R; can A- and B-extend R*. Assume there is R in -

R} such that'it can B-extend R*; ¢ # j, else we finish with the proof. Notice that B

-

€ R;; else j = i and R, cannot B-extend R*. For the same reason, A ¢ R;. We want

to show Rq can A-extend' RY. | Lo

*We first prove A must. be in R,. Assume otherwise. By Proposition 3.4, either

CPjp = CP,, or CPjg, 2 CP,,, U {A}. But, by Proposmon 33, CPp = CPB, and

A € CPqB, (since A l R,), imply CP,B, - CP,A,- »Then by Proposition 3.5, AB is not

spllt. in R;*. Hence R, can A-extend R, , and therefore A € qu‘. A contradiction to

our assumption t,hat, A £ R, Hence A must be in R,.

‘ Next we want to show that R, can A—extend R". If we prove CP,, is in R,, then

we ﬁmsh slnceathls fact and A € R, |mply, by F‘act 3.1, that R, can. A-extend R’

But. ‘this i is obvnous By Proposmon 3.3, CPqB - CP 18, and by Proposmon 3.4, CP,a, ‘

=2 CP Thus CPja, QR o

Y

Lemma 3.3: Let. (R F) be an acyclic BCNF database scheme and let. R,, R € R

> .
Assume A .€ R"’ - R and A eRr = R Let. R, ¢ R be such that. it can A-extend.

A =bot.h R" and R} and assume CPy, N C'P ia ™ G Then CP ia 18 not spht in R“

Proof By Faa 3.2, R Q CR

prqposition is tnvnally true. In

{ of the proof we assume IC AI z 2 Hence let. B

)

Hence CP,A c R lf CP iA |s 3 slngleton the ‘



- ’and ﬂie prool‘ is complete D
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'-and C be t,wo attributes in CP We bave to’ pfoVe' thzit R, in R} B-excends R} il

and only if R, C-extends R?*. We prove the onlptfpart the other part is symmetnc

» Let R, be a relation scbeme in R" such that it can B-exteng R By Fact 3.2,

' 'CPM isin R,. Since CP;, FI = @ and CPis R, CP;, C R < CP,A Hence -

B ( R, =~ CP;4. Then by Fact 3,3,‘R’ can B-extend R*. “Since Rp can A-extend R*

and B ¢ R,-' ~ CP,, by fPropos;ition 3.9, R; can A-ex‘tend R?. Hence by Fact 3.2,

. CPL A is in' R;. Now since AB is in R, by, Propoeicion ,:_3.7., CP,, C Ry Thus C € R, '

‘Observe that"C and Bare in R; — CP,,, since CPA C R - CP,A By Proposmon

3.4, either CPjg = CPy, or CPjg 2 CPuA.
If we prove C € CPjg, then C € R, = CPig, and hence by Fact 3.3, if R, B-

extends R,-*‘_, then Ry C-extends R;*. If CPjg = CPy,, then CeR - CPg, and the
proof is comf)llete. Hence aseunle CPp b CPy A in the rest of the proof. # |

Assume C € CPyg. Observe B € R, else by Fact 3.4, CP,, N B}, whichson-
, . ) - Y } ) ]

" tradicts B“e R;:-:‘:CP,-;‘. By P;obosition 3.2, tnere'is R, in R} such that R,,; 2 CPy
, e .
and B ¢ R Since,AC C‘ CI.’,;,, AC C,R " Since R 2 AC, by Proposmon 3.7, R

2 CPA Hence B ¢« R,; a. contradlctlon ‘to the fact, that B ¢ R, Hence C € CPyg

s
L]

Ldmma 3 4 Let. (R, F) be an acychc BCNF database schet\ne and let R,, R eR.
%

“*-'vAssumeA £ R* and A eR’ - R Let R ¢ R be i in bot,h R? and R+ such that lt: .

: i;.ﬁcan A-extend R"‘ but cal{not, A-extengi R"‘ ’I,‘hen CP; iA is not split in R" o \‘ ’, ..

P

Proof By Faet 3 2, R 2 CP; AA Hence C A C R*. I CPyisa smgleton the -

proposltion ls trmally t,rues ln the rest of the proof we assume lC ial z 2 Hence let B

" and Q be two ‘ttrlbutes in. CP There are two cases to be consldered dependmg on

AN awhether A « R We exaq;me ﬁ;_st. the case A ( R

’."?‘/ .:A . ‘ . " ) . M‘ o o ..- ‘f ‘\



Casc 1: A ( R;. There are two subcases to be examined dependlng on whet.her B |

is in some relatlon scheme that can A-extend R+

Caac 1.a: B € R;yfor some R, that can A- extend R,’, Since R, can A- extend R?
by Fact 3. 2 CP,AA l R, Slnce A and B are elements of R;, by Proposmon 3.7, CP;,
C R, Then by Fact 3.2, R, can A-extend R} We clalm C'P N CP;, l- 2.

SR

Assume otherwnse Smce R 3 CPj, and CPj, N CP, is nonempty, R, contalns an

element of CPA and A. Hence by Propesition 3. 7 CPv C R Now, since R con-

talns both A and CPM and A ETR,, by Fact 3. 1, R, can A-extend R’. A contradlc-'.

. uon to oyr assnmptlon about R,. Therefore CP,A n CP - @ Since CPM ﬂ

A = @ and R, can 'A-extend. bot,h R and R,- , by’Le'mma 3.3 (wnh R, in the role

. of R ), CP;y is notspht in R+ '

Case 1. b' Bis not. in any relation scheme'that. can A-extend RY. Since R, 2 AB,.
Proposition 3.6 lmplles CP; 2 {A} and B € R;. LetR,in R’ be an arbltrary relat,lont‘

) ‘scheme that can B-extend R’ We want to: prove ‘that if R, B-extends R* then R,

C-extends RY. v‘

%
Slnce CPy 2 {A} and, by Fact 3.2, R, 2 CP,BB AB c R;. Slnce R, 2 AB and

I

B¢ CP A by Proposman 3 7 CP A CR,. Therefore, Ce R,

We clalm c e CP,B‘ Assume otherwrse Slnce B ! R,, by Proposmon 3 2, there L

40

‘is R in R’ such’ that R mcludes CP,B and B ¢ R AC C R,,,, since AC C CP,B

Smce AC’ is in R,,,, by Proposnnon 3.7, C A C R Thns B 3 R A contrad:c&non to

the fact. that B ! R,. Hence C. € R, CP,B

By Fact 3. 3 R, C-extends R" in any computatlon of Ii’+ in whlch B-extends R’ K

- B-extend: R,-“. :

iyl

tBy a elmrlar argument. we can prove that 1!‘ a relatlon scheme C-extends R,’, then i
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Caac 2: A e R Notlce that thls lmphes R, is the only relatlon that can Aextend ‘

R‘ If there is B in CPA such that. B e R, then, by Proposmon 3. 7 CcP A C R

Hence CPA is not spllt in R’
4
On the other hand if CPM n R - Z then for all B in CPpy it holds that B €
R Thart is, B is not id'a relatlon scheme that can A- extend R’ Thus the proof for
Case 1. b above applies here to prove CP; A is not spht inR*.0
| 355 More Facts'aboﬁt'Nohaplitneu .

In thls subsectlon we—prove more techmcal results about nonsphtness of attn-

s hutes reqmred in the prool' of Lemma 3.5in the next subsecuon
Propooitnon 3.10: Let (R F) be an acyclic B({NF database scheme and let R, €
—~R. Let ABin R} be such that AB is not ;;&1 R*. Then CP,A = CP,g.

S

Proof: Assume that A and B are in R,* and they are not s'pht in R*. Let R, in"

-

R be siich t.hat it can, A-extehd R-‘ ‘Since. AB is not split ivn'Rf 'Rfi:an B-extend

N R,“, by Fact 3.2, R Q AB. We want to prove. that _QE,A_,_- Pjg, Nonce that nf Ry
- R,, then the proposmon tnvnally holds. Hence in t,he rest of t/he proof we assume R ‘
| # R; | |
A ( R,, else R cannot A-extend R" The same holds for B Smce for all compu-
| tatlons of R, ., 'R; A-extends R" if and only if R B-ext.ends R* lt must be t,he case -
l..‘v.'that B« R CPA and A € R - CPB Hence by Proposmon 3. 4 exther CP,p, 2_. 3
v_‘\ACP,A Aor CP,B - CP ’and elther CPA 2 C 1B, B or Cr,g . CPA . lt is. easy to
see that CPMV - C'P,a By Proposmon 3 3 and the deﬁnmon of CP,A and CP,B, the:

T proposmon follows a

The unpheat:on m &he prevnous proposltlon does not hold |n the other dlrectlon a.s X i

I

: |s lllu;trated m the followmg example o
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' Ezample 3.14: Let“(R, F) - ({.Ri(ED), ‘RQ(DB) RS(DBC‘) ‘ R“(’)BC;AF)

5(DBCH)} {D - BCH D B D BC, D BCAF F - ABCD}) be a BCNF data-
. base scheme (R F) is an acycllc BCNF dat,abase scheme A and H are split'in Rl ,

4 ‘ .
although CP,H = CP,,, which ls_equal to DBQ. b <

The follownng proposmon establlshes the fact that if the maxnmal connecuon

pomts that A- extend two relatlon schemes are. ldentlcal and there is another nt.trlbute'

- .
~

. B such that AB is not spllt, in one of the closures, then the same is true for AB in the -

s .
. .' v ' ' . \ B
other closure N

Proposltlon 3.11: Let (R F) be an acycllc BCNF database scheme Let’ R and '
- R, be elements of R such :,hat A is in both R+ and R" but A'is nelther in R} nor in -

: R Let K ‘bea kcy of R € R such that WA € R, p» and K is in' both CP,A and o

\

CP,; .4 Then AB is not spht, in R+ if and only if AB is not splxt in R"

: Proof We. prove t.he only-a] part* t,he of part is symmetrnc Assume AB is in R"

‘ such,‘t,h‘atiit.;is not split, in 'R-". From Proposmon 3.10, CP-'A - CP,-B.'AIso, l'r,om Corol-

: .lary32‘CPM- CPA Hence CPj, ‘lCP.'B ‘. _ S ey

By Fact. 3. l R can Aiextend R} and by Fact 3.2,R, 2 CP,AA Since AB is. not |

spht in R, , R ‘can B-extend R’ and BeR, — CP,A Smce CP,A - CPM, Be R -

CPj,, and by Fact 3.3, R, can B-extend R+ By Proposmon 3.4, CPjg = CPA or o

' CP-B 2 CP AA If CP ‘- CP then we ﬁmsh wnth the proof since by Proposmoni FRS

- f,35 ABlsnotsplltlnR""':" B "1 "" o

We prove CP,B Q CP AA is |mposs|ble Assume CPB Q C

t

B E R else R cannot. B-extend R" Also B ¢ R,, else R\c

We have that'. \

not B-extend R* R

A‘»’Smce CP - P.B and C B 3 A, C'P,B 3 CP,B Also we. have that R :

E ‘CP.BC’ B» and CP,B and C B share a key, since K xs m CP,B Then Corollary?.’» 2 PR

: v:.mphes CP;B - C’P But slnce CP-B - CPA, cp,a* - CP.M Thls lmphes C' A :

o ' SRET e T e P IS . SE




o CP,B U {B} lf they are equal then, by Proposmon 3 5 BC is not spht, m R and E

' ”we ﬁnlsh vnt.h the proof | o “_ : / ., o

: ];_r"--'posltton 3.2, there exlsts R, m R"" such that R, 3 CP,C and C’ ! R, We now prove

CPM since R can A-extend R} using K

not. A-extend Ré’f Slmllarly for B and C ' | I 3 ’ ‘,A_‘" )

. - . (S
{-‘(,’%v ,

[
A

. CP; AA whlch is a contradlctlon to’ Proposmon 3:2.0

A

‘ Propooitlon 3. 12 Let (R, F) be an acychc BCNF databage scheme and assume

t.ha‘t,AC is not sp.lit, in RY. Then BC is not split in R} ..
: ' R T

Proof' Tbere are two cases to be considered depending on whether B is an ele-,

ment of some relatnon scheme in Rz’ that. can A extend R2 Observe that B is m‘

[

\

; Caoe 1: B« R,, for some R, that can A-extend R} . By Fact 3.2, R, = CP2,1 |
Slnce B ( CP“, B € R, - CP“ Hence by Fact 3 3, R can B-extend R2 o

We first | prove C € R, Since B and A € R,, by Proposmon 3. 7 CPM C R, Smce‘

. both CP,A and A are in R, and A € Ru by Fact 3O R is in Rl and it can A- extend

R’ Smce AC is nat splnt in R, o Ry can C-extend R* Hence Ce R,

Smce T e R, - CP.w, by Fact 3. 3 if R, B-extends R then R, C-extends R“

)

If R, " Re, then we ﬁmsh wnth the proof since R2 is the only relatlon scheme that. B-

and C-extends R2 ln the rest, of the proof we assume R, ¢ R2 .

]

We prove that nelther A nor 8 nor c are el&:ents of R2 lf A € RQ, then R, can-

!

Slnce C' L3 R, - CP23, by Proposltlon 3 4 elther CP,C CP,B or CP,C2 D

,;,
O v

1,

& “ Wc prove that Cch 2 Cng U {B} is l{ sslble Assume otherwnse By Pro-“-

- "Rl and R2 are in R Let. R, be in both R} aud 32 and such that it can A extend o

v RY uslng a key K A € R,. Assume B e« K - CP.M and C € R? — CPQE is such



I .

,
E

tion 3. 4 |mpl|es CPM 2 CP,C Smce B% R‘ - CPQA, Proposmon 3 4 unphes CP,B
'2 C'PM Hence CPM Q CP,C2 D CP,B 2 CPM ;8 contradtctlon Thus A« CP,C2 “ :

and hence A € R,

q

Notxce that Be CP,C, and hence B € R, Also A€ R, ‘Since B € CPM and A 3

R,, by Proposmon 3 7, CPM C R, Slnce R, also contams {A} and A ! R, by Facﬁ.‘

3. l R, is m R,- and n, can A-extend Rn , but cannot CVextend Rl , because c ! R,
N 3

' Thls contradicts our assumptlon that A and C are not, spllL in Rl X vHence CPc. 2 '

)
* '
1

‘pr‘z U {B} is impossible.‘ v
“C“lc 2: B is' not an‘elemeﬁt, °f any relation‘ echeme that ca'n ‘A-‘extend' R} . B)" ‘

'assumpuon about, R and Fact 3.2, CPMA C R Let us consnder R, in R} whnch can’

*

B-extend R.f Slnce R 2 AB and by: assumptlon of B, Propositien 3 6 1mpl|es thate

: 'CP,B {A} and B E Rz, therefore A € R Slnce A and B are in R‘, by Proposutnon

3. 7 CPM o R, Smce A€ I?{'Cb)y Fact 31 R/ lS in R and it can A-extend -R’..
“ 'Hence C )€ R,, since A and C are not spht in R"‘ Alsor O € RQ, ot,hervnse Fact 3.4

|mpl|es C € CPw, whlch contradlcts our assumptlon about C

! Co |

Smce C € R, - CPQB, by Proposmon 3. 4 either CP,C - CP,B or CP,C 2

; CP,B U {B} lf they are e&ual then by Proposmon 3. 5 BC is not spllt in R and

we ﬁmsh wn.h the proof . o R Lo
“ We clanm CPIC 2 CPt82 U {B} 18 ImPOSSlble By Proposmlon 3 2 t.here exmts“ AT
. 4 ,‘

) such )atrRri GI?,C and C ( R, Notlce that from. above A t CP,B and"'."',

0

\hence AB C CP,C Therefore AB C R; Slnce B e CPM and A ! R‘, by Proposlt.lon‘,.‘ :

;s 7 CPM C R’ Smce R‘ also contams {A} and A ‘ Rn by Fact 3 l R: is, ln R: and"'f LT
','.n can A-extend R but cannot. C-extend R : vbecause C ! R, Thls contradlct.s our ;

fv',."‘_“»assumptlon that A and C are not spht nn R’ Hence Cl’“g2 2 CP,B2 U {B} ns

e




\ _I‘im‘p‘ossible. o

3.5.6. Some Propertles of CHASEF(T) Ly

N

o~ ln thls subsectlon we prove the facts about any compntatlon of CHASEF(T)

-
v

whlch are requlred in Sectlons 3 5.7 and 3.5. 8 to prove that’ acychc BCNF database

- schemes are embedded-complete and bounded respectlvely

. .
Before denvmg the proofs ln thls subsectlon we need the followmg deﬁmtlons

Let t, be a tuple in T which ongmates from r;; R; € R and assume A € R*. We say

that K (C A or CPM) A cztenda t,, lf K; (C A , or CPM, respectnvely) A- extends .
RP. We shall denote the maxlmal connectlon pomt that A- extends t, by CP, e . .We

: also say that AB ] not apltt (or A and B are not apltt) in t,, xl' AB is not spllt (A and

B are not apllt) in R*

We remmd the reader that for BCNF database schemes the l‘d 'y consndered are

~

the ones embodled in the relatlon schemes in the database scheme Therefore the fd

used in any fd-rule is.of the l'orm K, - R, — Kp, where K, is a nontn.ﬂal key of R,.

‘ _-ln the following we denote a sequence of"l'd-rnles by T, . . . Ty, and Tie 'r,‘( T) denotes

( (1',( T)) ) where 1’,( T) is the tableau obtamed from applylng the fd-rule T |

“to the tableau T.

Lemma 3 5: Let (R F) be an acychc BCNF database scheme Let T be a state ‘ ’\

ol' (R F), and let T be the tableau of T, Suppose T - 'rl 'r,‘(T ) is nonempty, tl
and t2 are ln T,, and A € U c ‘ | |
ll l,[A] - tz[A] and is an ndv, then

: .*ij(l) CP(A" CPc.‘.m»» ,‘;. ‘

R



hoth CP,A and CP“
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B: If tl[A] is av“cOnstant, then -

(l) tl[CP, ‘A‘] are constants;
' (2) |f AB is not spht in ‘p then t [B] isa constant

Proof By lnductlon on I: the number of apphcatlons of fd-rule that produce T :

"~ from T,., . ' T " | 4 -
Baaw k= 0. Hence T, = T PartA Trwlally true since all ndv 3 are dlstmct m

: T For Part B Iet '1 € T be a tuple ongmatmg from r,, R € R lf t, [A] isa con- g

» stant then A € R Smce AR, CPM C R and t [CP,A] are constants since ¢ [R] : x

"are constants Assume B is such that ABis not spht int,. ’I‘hen Be R and therefore

[B] is a constant

oy

Inductton, k>0 Assume T, is nonempty and is obtamed from T, by k— 120 f(d-

rule applxcatlons and let us as:?ume that T is nonempty and is obtalned from T by,
applylng the fd-rule N K, -~ R K R ¢ R, to equate "1 and v2 in T, By the-v |

.

nductlve hypothesls the proposltlon is true for T, , and we have to prove it for T

Let‘ ry and ry be the relatlons from ahlch v, and v, orlgxnate respectlvely; for
B ‘some R, and 32 eR. Snnce vl is equated wnh v, using K R K R C R} and :
’RCR{[BDB] - | -
g "y Part A. We assume the transformatlon mvolved s equatmg ndes, otherwnse thel

lnd‘uetlon is tnvnally true We have to conslder only ll and ¢2 whnch are tuples |n T, .

K such that (a) t,[A] - v,[A] and |s an ndv an Tr , (h) tQ[A] - vZ[A]...,-J‘ :

' and is an ndv m T, f and (c) v,[A] % vz[A] in, T

ey

E There are three cases to be consldered dependmg on whether K ls lncluded m.'

. .o e ,"." c .v..\v:-’. N ‘,
i - 8 T

Caae l K |s mcluded in both CP, A and CPo 24~ Smce v,[A] ande[A] are ndv s';

T A ls neltherl

__-,,.

v, VCP‘ x"
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CPM By (b) and the mductlve hypothesls A CP,zA - CP“ But by Corollary 3. 2 '

B CPM CPU Hence CP, a= CP:,A, and therefore (1) holds for tl and t2

Now we prove (2) and (3)’Bolds for ‘1 and t2 For both parts observe that ”1[R ]

- v2[R ] in T First we prove (2). By Facts 3.1 and 3.2, R, 2 CPI,4 CP‘M.*‘ Since -

-

s

' tZ[CP, A] vQICP, A] in T,". Hence (2) holds for 6, and ty,

v

CP, A |s in Rp' lf we prove tl[CP, A] | v,lCP, A] in T, and tQ[CP, A] v,[CP, A] ing

‘T,';, theq_ we ﬁmsh w:th (2) By (a) and the |nductlve hypothesm A, t,[CP, A] =

l[CP, A] in T, Slmllarly tQ[CP,ZA]"- v2[CP,2A] in, T But since CP‘ = CP,M,

T

Now we prove (3) Let B be such that AB.is not spllt in r, Smce R can A-
5

extend tl, Be R If we prove vl[B] - [B] in T, and vg[B] = 12[3] in T,, then we -

“ ﬁnlsh ‘with (3) By (a) and the |nductwe hypothesns A, tl[B] = vl[B] in T for all B

such that AB is not spllt in t, Slmnlarly tQ[B] = vQ[B] in T” for all B such that AB i is

' not spllt in t2. But by Proposmon 3.11, AB is not spht m t |f and only if AB is not |

‘ o » vl[A] - vz[A] m‘T Thls contradlcts (c) : '{','

spht in. l, These facts together lmply tz(B] = 02[8] in T for all B such that AB is

. not spht in ¢, Hence (3) holds for t, and t2

Caoc 2 K 'S CPM We prove thns case is xmposstble By Lemma 3.2, there is a

T B in K such that elther AB is not spht in' R" (o,) or. CP,B =2 {A}

Caac 2 a.: AB is not spllt in vl and v,[B] is an ndv in T, . So 02[B] = vl[B] and is

‘ I‘an ndv in T,. . snnce we can apply K - R, "= K By the md’hctlve hypothesns A

! -:u L

Caac 2 2. iis AB us not spht ln v, and vl[B] is a constant in T, By the mductnve o

| j‘,';hypothesns B vl [A] is’ a constant in T Thls contradlcts (a)

Can 2b| CP,B 3 {A} and vl[B] |s a constant |n T By the mductwe‘"‘j -

L ?'lhypothesls B v,[CPm] are constants :n'-- ‘ y aﬁd v,[A] ls a: constant in’ Tr , smce A e{_l“v -




ST

CPm Thls contradlcts( ).

Caac 2, b.ii: CP,B :2 {A} and vI[B] is an ndv in T Sjnce we can apply K ~R, |

;, vz[B] - vl[B] and is an n‘dv in T, By’ the.mductlve hypothesua A,‘ CP,g =
CP,,B and VA[CPM?] = ‘vQ[CP,B] in T, Thus vl[A] - v2[A] in T ,sinee A « CP,p,

~
P "‘\ ) . . \

Thls contradlcts( ).

Since all subcas‘es lead to contradict,ion this‘ ca’se is impos,si,bl‘e,ﬂn‘ ‘ ( fo
* —— \ . \

(‘aac 3: K I CP,M Thls case’ ¢an be proven to be unpossnble by an argument -
) ) £

ot ’
g L

-

snmllar to t,he one in Case 2 above

"I‘hiﬂs conlcludes the proof of Part A. | ‘ "" 0N
Pnrt B, For thls part; we only have to consnder a transformauon that equates an
_‘ndvtoa constant . Let tuple ) in T, and A € R, — K, be such that: (a) v,y[A] isa -

censtant nn‘,T, | vl[A] is an ndv in Tr , and ) tI[A] - v,[A] in' T
By a S|m|lar argument. as in' the Case 2 of the mductlon in’ Part A, We can prove
that. it must be the case that K C CPM Hence by Fact 3. 1, R can A-extend R’

usmgKP. =

y BRI
We want to prove that tl[CP, A] are constants in T and for all € such that AC
) [ N v%

s not spllt in ty, ¢ JAC) s a}constant in T Since t,[A] - v,[A] and is an ndv in T, ,‘.

- the lnductwe hypothesns A |mplles CPM - CP‘ A ,[CPM] vl[CPM] in. 7, . d‘
for all Csuch that. AC is mot spht in t,, l[C] - v,[C] in T,". Slnce CPM CP,‘ A,‘ 2

by Proposmon 3 ll AC is not spht in: tl if and only if AC is not sthn v, Snnce R
¢‘can A extend vl, C is'in R », also by Fact 3. 2 R 2 CPM Observe that vl[R,] -
: v2[RP] m T Then lt suﬂices to prove that 02[CP, A] are constants in T, anq v,[C] ls -

e a constant. ln T for any C such that AO is not. spht. in v,

.'r"“ . e / R ' :
™~
There are two cases to be examlned dependmg on whet.ﬁer R cap A extend R,
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Case 1: R, can A-extend R . First notice that if A € Ry, then R, = R, and

. R, are constants in T, and what we want to prove follows trivially. Hence, let us

r

assume A € R, in the rest of the proof for this case.

Since R, ¢ end both RY* and R}, by Fact 3.2, CP, and CP,, arein Rpl.‘

Since A is neither in R, ndr in R,, by Propositions 3.2 and 3.3 and definition of CP,,

and CP,,, A € CP,,CPj,. Then, since A e R,, A€ R, ~ CP,,CP,,. Thusif CP,,

, CP,, # @, by Proposition 3.8 with A>= B, then CP CP,,. Hence either
| 2A o . : 1A 2A

CP,, = CPy or CP,, (1 il = @. If CP,, = CP,,, then by the inductivé

hvbothesls B and 02(/1) is a constant in T,", v,[CP, 4] are constants in T, . Also by

Proposltlon 3.11 AC is not spht in.v, if and only if AC i is not spllt in v,, which lmphes

<4

_that v,[C] is a-constant in T,’, by the inductive hypothesis B. Hence for this case the

inductive hypothesis is satisfied in T,. ‘ , , ‘ }
On the other hand, if CP,, () CP,, = &, then CP,, C R, — CP,,. Thus K, \\

¢ CP,, and by Lemma 3.2, tykre is Be K, — CPy, .such‘that either AB is not s'plit’/ .

in R‘Q’ or' CPQB 2 {A}). By similar arguments as in cases 2.a.i and 2.b.ii of the indut¢-

~.tive proof in Part K we can prove that v,|B] must be a constant in T, ; else v}[A] -

..

OQ[A] in T,". By Lemma 3.3, CPy, is  not spllt in R} . Slnce B € CP,, and vQ[B] is a

constant ln T, , by the mductwe hypothesxs B, v,[CP, ] are constants in T

[ 4
.

Now let us conslder C such that AC is not spht in v,. Thls nnplles Cisin R,

~ and therefore in R¥. It Ce CP,B, then—vr_,[C] is a constant in T, , smce by the induc-

dspending on whether A « (R,.

-

tlve hypothesls B and v,[B] isa constant in T, vz[CPw] are constants in 7,". Else, if
C ( CP”, then by Proposltlon 3.12, B(C,d is not spllt in R2 , and by lnductnve TR

hypothems B and 02[B] is a constant in T, , vz[C] isa constant in T,

(83
'C'nc‘e 2; R, cannot A-extend R{. There are two subcases to be considered

-

:

o




—~—.

/p\ove v,|B] must be a constant in T,”, CP, 4 is not split in R, , and v,{CP, 4] are con-

i . - )
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Casec 2.a: A € R,. Notice that this implies R, is the only relation scheme that can |

A-extend R2 . If there is B in CPM such that B ¢ R,, then, By Pr(;position 3.7; CP,4
C R,. Since R, 2 {A}and A ¢ Rl, by Fact 3.1, R, can A-extend R} . Hence if AC is
not splitin R}, then C € R,. Therefore v,{CP,,):and v,[C] are constants in T, .

On the other hand, ifkfor all B € CP,,, B € R,, then for all B e CP,,, B is.notin
any relation scheme that can A-extend R;. Hence there exists B such that B« K, -

CP,4 and B € CP,,. Since R, contains AB and B is not in any relation that can A-

extend R}, by Proposmon 3.0, CPzB 2 {A}). Then by sithilar arguments as in cases

2.a.i and 2. b.ii of the inductive proof of Part A, vQ[B] must be a constant in T, else

v,[A] = v2[A] in T, . Since R, can A-extend R,’ using K, and by ‘assumption in this

case, Lemma 3.4 implies CP;, is not split in R.; Since B € CP,, and v,[B] is a con-

stant in T, , by the inductive hypothesis B, v,[CP,,] are constants in T, .
Let C be such that AC is not split in R. By a similar argument as in Case 1

above, we can prove vQ[C] is a constant in T, .

Caac 2.b: A ¢/R,. Since R, cannot A- extend R, R, cannot A-extend R using

k Hence K g CP“ By Lemma 3.2, there is B in K, - CP“ such that. ABis not

K
sbht in R} or CPz% 2 {A}. Then by similar arguments as in Case 2.a above, we can

\

stants in T, .

/\\~,/\

- ' . . re
* - above, we can}éove v,[C] is a constant in'T, .

Assumw C is such that AC is not split in v,. By a similar a’rgt’lmeﬁt as in Case 1

This congludes zhe proof of Paft B and the proof of the proposition. O

Coro’(ary 3.3: Let (R, F) be an acyclic BCNF database scheme. Let r be a stat.e |

*

of (R, F) and let T, be the tableau of r. Let 7,...T; bea seqnence of fd-rules applled' .

“to T,. Suppose T, =1, .. 1',-,(T) is nopempty and tl, t, are in T Assume ve ’

—

-
o
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can apply 7: K, - R, — K, tq' equate !l\'a‘nd‘ t, such that the ndv t2[l){}‘is equated to' -

d R DN \ \ o Lo \

. . \ . . . , ‘yl: . ':. I‘. i . . ‘\'.
the constant,l,[A], for some A eR, — K, Suppose T, = 7,(T, } is nonempty. Then.

‘ C
- N '
. \ A ' s

A Ky CCP‘*‘ \\.' o Ny

v

\' N ‘
B: 'For any ¢ in T, such that t[A] = ,[A]in T, l{CPM] are constants in T,

and. tl[CPM] - t[CP‘A] in Tr o o

-~ N .
. \ 1y
' \

Proof Part ‘A follows from the argument at the beglnnmg of the mductnve proof .
s ‘ o .
of Part B in Lemma 3 5. - S \‘ . L \

\ -
N LY

N o o o RN ,
For part (B), we have proven that in the inductive part 6f Lemma 3.5 Part B,

" with v,, v,, and ¢, in place of ¢, t,, and ¢ respectively. O

Lemma 3.6; Let (R, F) be an acyclic BCNF datab'a‘se\scheme. Let_r be a st\ate‘ of

a
A

. 20 oy . \
(R, F) and let T, be the tableau of r. Let T, ...T bea seqnence of fd-rules applied to
\ \,
T,. Suppose’ T e Tgy(T,) i nonempty and t,, t, are ‘in T,". Assume we cad

apply 7,: K, -~ R, = K, to equate ¢, and t2 such that the ndv tz[A] is equated to the _

constant ¢,[A], for some A_e R, - K,. Suppose T, = 'ri(T )IS nonempty. Then for

.

all B €R, K if ¢,(B] is an ndv in Tr , then t,[B] is an ndv in T

-

A

Proof: By contradlctlon Assume there mB eR, - K such that tx[B] is an ndv
in T,” and tQ[B] is.a constant in T,; it is clear that A * B. “Assurmie l, and t, ori-

ginate from rl and r, respectlvely, for some R, and. R2 m R

By assumption, 4 equates the ndv tQ[ﬁ | to the constant t,[A]. But observe that
T alsa equates the ndv tl[B] to the conStant ‘n[B]. Smce,K,_ls‘the key used by 7, to,
equate t; and ¢, from Corollary 3.3.A; K isin CPyp and K, ls in. CP“ Smce Bt Rl )

. and A € R,, by Fact 3. l R can both B—extend R‘b and A-extend R*. By Fact 3. 2 q

i °

'R, contams both CP, p and CP.M as well as A and’B e

B T ' *
\

By Cordllary 3.3.8, ,|CP, A]~are'eb'nstants inT,’. Hence since ¢,(B] is an ndvxin

T, B € CPy,y. Similarly,_ by Corollary 3.3.B, t,{CP,p] are constnnts in T,". Hence N

4



T Y
since 1,[A] is an ndv in T,",‘ A € CP,p.Since A € R, and B € R, by Propositions 3.2

and 3.3 and deﬁmtlons of CP,B and CP“, A € CP,, and B ¢ CP,B Therefore nei-

ther A nor B are in CP”,CI”,“l o ' . -

-«
0

Since R, can B-extend 'Rl" and B € R, A ( Aﬁ.’.‘; else by Fact 34, CP,gp 2 {/l)‘.

Similarly, B € R,. Observe CP,5 () CP,s # 8, since they share K,. Since R, 2

CP,B‘CP“AB, and AB isin R, = CP,gCP,,, and neither A nor B is in R,R,, by

Proposition 3.8, CPp -*\CP,M. We prove this leads to a contradiction,
' °

Since A € R, — CP,p, by Fact 3. 3, CPlB is a connection point that can A-extend -

R} Econtams K,. Hence CP,, contains K, and smce CP“ doés too, by Corollary

3.2, CPj, = CPy,. Since CPy, = CP,B, CPi, = CPIB Since R 2 CPMA by Fact

ntinT,. A contradiction. O

I

!

3.6.7. v- acychc BCNF Database Schemes are Embedded- complete

e
£

A class ol schemes called embedded-complete database schemes was recently pro-

* posed to capture the,lntultlon that every plece of ml‘ormatlon on sonre relation scheme

is explicitly represented ina database We define that ‘class ol' schemes now. Let W Cl

‘U. We define W+ = U {ﬂ wirj)lrjisa relatlon on R, e R and R 2 W} A database

scheme (R F)is embedded-éomplele (w r.t. F) |l' for any cons:stent state r ol' (R. F) :

[X] = Xy, for any Xc R,, for some R «R [CM] Before' we can show that an acy’clle

BCNF database scheme (R, F ) is bounded we need to show that it is embedded com-' ’

- .
Fid

plete

" Lemma 3.7: Let r be a state 'of an acycllc BCNF database scheme (R F) Let T

‘tbe the tableau l'or r. Let T . 1', be-a sequence of l’d-rules apphed to T, It T - 1',

B
PR

' ) . a P
s B ‘ ' . Y
/___\_ . . v §

J, R, can A- extend R . Thls fact BeR, — CPy,, and Proposmon 3 S, lmply AB-~
(OR

lit in R’ Since t,{A] is a constant in T, by Lemma 3.5 part B l‘[B] must. -

'r,(T ) is nonempty, then X4 = [X], for any X c R,, for some R ¢«R, where [X] is



-
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! tlvo hypothesns rX] I.XQ Also l[A]“ - tz[A] in: T ~°Az',sume t,, l,, and t&come from

e ) . oo . 82
N N 4 \\ R \‘u.. N ) L .
. . : o . .Y ’ N
S . Ll . . , -~ N BN [P . ~
o dooger ‘ ‘ e N N :
tpe X-total pro‘|ect|‘on‘|n ,T,.' oy N T TN
oy PR T T VO
: » ? - ) . C . “ '\- ] . W
s PmdBmemmwk ‘ufW’r”%”‘T\ﬁ'\gfxww\@\“

Ba:u lfk 0, then clearly lXO - [X] for any X¢g R,, f rsome R € R
) or some, R,
. A L N N "

-,

'
Mduchon Assm?e the lnductlve hypothesls is true for T -l \ 'r‘_,(T ) Let

t, K, ﬁ, K,, whete K, is b nontrn'lal key of R,, be the fd-rule ipphed to T, and

o ‘ 1

. 'assume lt equates ll and t,. We have to cohsndor ‘bnly A € R, - Kr and. ll and ty in
& .

-’

R o .suoh that l,[A] is a constant and tQ[A]‘ls an ndv since |f t and to are- dnstmct

~ ndx'sopg A thefnductlon holds trmally So after the apphc&tlon of T, all the entnes '

¢
wnth tzlA] arb ehanged to.the constant 4,[A]. Assume T - 1",( T, ) is nonemptv Sup-

pose there exlsts X ln some R, R € R such that lXJ # [X] we prove 1.{ne ca§e is
\

|mposs|bfe e : e e . S -*T) R
e ) L e e - - ’ RS -t

‘ .Let t be tbe tuple such t'hat t[X] ¢ 1X1in T ClearlyA 3 X or else by the fndu?u

- N

b @
. R,, Ro,t and R.; respectlvely Let /f,, - ﬂ be an ordermg of the elements in X such .
’ ’ . » . o ’\ o
thatA Am 5ﬁ e oo »f~‘ : .? e e :
oy ‘_,.,‘ : .., S S o

. B

.‘:rr ' ‘

We 'élalm there exnsts A,, fo; some lsrsm-—l snch that t,[A,.] -'# t{A,] in' ] -

. p—-A

: 5
2! and I[A,i |s a COnuant \n T There are two Cases to be consndere& dependlng on’

’ifg_ w’hether t‘[X] ar&constantsin]‘ - , Sl I

Ca:e l t,[XLare constants in T, Hence «t,[X] are constants in T,. Smce t[Y

.

are constants m T,, t,[X ] # t[X ] in T,,'else our assnmptlon about tis. vnolated Hence

0 TTTE UM AR

there estts A{;such that tI[A,] # t[A,.] and t[A,] isa const‘pnt in T,. Thus t[A,] is not
. ¢

equated.by 1',‘. Thereforo t[A } #* t,[A,] and t[A,] is a copstant rn T,

.

Ca:e‘2 t,[A,] is an ndv in T,, » for some 1= rsm-l If A ¢ R,, then t[A,{ is not

; .Jequated by 1‘, Snd hence lt is a constant !n P and t,[A,] # t[A,] in T, . On the other

band lf A (“R(r we clelm that A ! K,. Asenme otherwnse. By Corollary 3 3 A K; C

]

.
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CP“ and by Corollary 3. 3,B t [CP“] are constants in T, . Then t,[K,] are conStants )

in T A contradlctnon to t,[A,] is an ndv in Tr Hence A e R, K;; therefore from

-

- assumptlon that t[A] is an ndv in. T

“

Lemma 3.6, tz[A,] is an ) ndv i in T, and we have ¢ two ndv's helng equated on column A,

when applymg . Hence tl[A,] is an ndv in T,. ,Slnce t[A,] is a constant in T,, l[A,] is g

also a%nstant in T, Thus t[A,] # 1,(4,]in T,

Frpm the above two gases; ouf claun holds And notlce that from the arguments :

in the above clalm A, ] + t[A, ] and t[A Jisa. constant in T,.

Tt.is obvnous then that AA is spht in Ra , els/(.rom Lemma 3.5 part B and t[A,]

\
. >

is a constant in T, , t[A] ‘nust be a constant in T, ' We claim /\l ¢ CP“ Assume

‘ otherwxse That is, assume A€ ‘CP34. From Corollary 3.3.B, lJCPM] t[CPM] and

~are constants in.T,. Then t{A,] = ,[A, ] in T,., but we have already proven thls is not
true. HenceA ¢ CPM o L
It is cledr that A A C R3 . Assume A A is not co'ntain'ed in any relation scheme

in R}. Then ‘there is a path of length greater than or equal to 2 from A, to A in Hﬁ”

hence in R anda path of length one ln R from A to A formed by R,, the relatlon
~scheme i in R contammg X Thls contradlcts Theorem 3. 2 Hence there exists R, nanla
such that |t contalns A A There are two cases to ‘be examlned dependlng on whether
R, can A-extend R" B '. R . o .,
‘Ca‘sc .1 Assume R; can A- extend R}. By Fact 3 2, R, 2 CP“ SlnceA ‘I¢} ‘

CPM, A € R, - CPM. By Proposltlon 34 elther CPM Q CPMA or CP“' -

CP, A lf they are equal then by Proposltlon 3. 5 A, A ls not spht in R sa contradlc- e

tlon to the fact that A Ais spllt in R;;" Hence CPM 2 (A} Then, Lemma 3 5 part B

and t[A,] is a constant in T, |mply t[A] ;s a constant in T, . A contradnctlon to the

Il
S e
‘
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Caae ii: Assume R, cannot«A—extend R$. If A is in some Ri such that it can A-

extend R; , thcn A € R, CPM and the proof in Case g above apphes here. On the

' other‘ hand ‘it A, is not m any relat:on scheme that can-A-extend RS, then by Propo“ :

K

sition 3 6 CPM' 2. {A} ‘and the proof in Case i above for the case when CPM 2 {A}' ‘

y ) . . N

apphes here BT . <

Hence |t is |mposs;,ble that t[X] ( lXt and the induction is complete a

Ve

s ]

Corollary 3.4: Let (R F) be an acychc BCNF database: scheme Then (R, F) is
V- 'embedded-complete o

Proof:‘ It _follows from _Lemma 31, o

b : ' . . L

“3.5 8. 'y acychc BCNF Database Schemes are Bounded

for BCNF database schemes to be bounded is to prove that Step 2 of Algorithm 2 does

S
. : ’

|ndeed equate only ndv 8

teﬁ.in. 3.8: .Let (R, ‘

,slstent state of (R F) Let T be the tableau for r. Then Step 2. of Algorithm 2

L equates only ndv symbols

Proof Assume otherwnse Then,-‘

The only thlng left to do in order to show that acyclmty is a suﬂiclent condltlon )

F) be an acychc BCNF database scheme Let r be a con-‘

here is a sequence of fd-rule transformatlons T

‘r, used in Step 2 of Algonthm 2 suc that -r, K, R, K,, R, € R is the ﬁrst fd-

d\ ‘:’rule to equate an ndv wnth a constant Assume J equates the ndv |n tQ[A] wnth a con-f ;

stant from t,[A] A € R,‘ - K, Also assume t2 ongmates from o and ‘1 ongmates, .

; f"‘from r,, for some R, and 32 € R R, must be in both R2 and R" [BDB]

L st ;A,.L

There a‘re two cases to be consldered dependlng on whether IQ[K,] consnsts of con- Co

stants ) ,' " / R

e

I Casc l 12[1{,] are constants.v Hence tJ[K,A] are constants Slnce K,A C R,, by R

L'emma 3 7 t‘[K,A] c SK,A& Thus there exxsts t’ from r, ln T such that t [K,A] - 7,‘



| “e's" e

l[K,A] for some R, € R such that R, 2 K,A Observe K, ls a key of R By Corol- |
Iary 33A K, C CPs4- Slnce A ¢« R} - R2 and R 2 K,A by Facts 3.1-and 32 R,

’ '&R" Also tz[K,] - t,[K,], hence r [K,] - tz[K,] Therefore t2[A] should have |
been equated toa constant in Step 1 of Algorithm 2, since ' and R, satlsfy the condl- :

tions in whlle-loop in Algonthm 2,

- Case 2 tz[K,] has some ndv 8. Then l,’[K,] has some ‘ndv's. Since, by Corollary' h

3.3.A, K, C CPQA, 6 [CPLA} has some ndv 3 before applylng T, But thls is |mposs|ble ‘

"

. since, by Corollary 3.3, B, t,[CP,M] are constants before applymg ‘r, ‘

Smce both cases lead to contradlctmn the Iemma is proven a-

Theorem 33 Let (R F) be an acychc BCNF database scheme (R F) is

bou nded o ‘ : ' . . -
. . o o s
: : ‘ ,

’ Proof. Let r be a conslstent state of (R F) Let 'T,. be the tableau for r. We-

‘chase T, using Algonthm 2. : .

~

By Lemma 3 8 the total part of any tuple in CHASEF(T ) is obtamed in Step 1

v

‘of Algonthm 2 Thls is obtamed by at most [RI - l appllcatxons of fd- rules Then (R S

Q;F)ns bounded a

3 8. Efﬁcnent Computatxon of X-total Proy:ctnon -

-The problem of how to generate correct answers for querles is lmportant |n most,_‘ﬁ‘ B
systems Followmg other authors [GMV][M)[MUV][NG][Sl][S2] we deﬁne the mfor-“v" .
o matlon content of a database as 'the set of total tuples in the representatwe lnstance o

A

: T he set of total tuples is the set of sentences that are: loglcally lmplled by‘ the state '

o and constrannts [GMVllMle

In_tlns sectlon we show that there is a snmple and eﬂiclent way of computmg {X],' .




.‘ -~

, Cleérly if for all- R c R R" does ‘ot contaln X, then [X] is an emp ; set. We wnll“

- show that if thcre exlsts R; ¢ R such t.hat. R"QX then [X] can be con\puted by a sim- - | ( ‘

,ple and cﬂicleﬁt method Thls also demonstrates that the semantlcs q relationships .

among attrlbutes is slmple.w o ) o "' ‘ \\

We first gwe some. deﬁnmons reqmred for the rest of this chapter Let E’ =

N <So, . S > be a sequence of dlstmct relatlon schcmes from R. Then 'n'x(SON

NS ) is an cztension }om of So covcrmg X [Cl][llK][Hl] if [S ﬂ (U S,)] - [S (

.

i h ('Js ))] « F*, where 5 = (5 n (JU S,—))# ‘z; for all 0<isn,'end U'S-‘ 2 X. |

Lemma 3.9: Let (R E) be an acychc BCNF databa,se scheme, XCU and V =

7'. | . .v'(V,,_. . V,} the w'm.c. among X.. If t,here exnsts R; € R such that R*2X, then V is |

lossless w.r.t. F.

¢

L .P.‘ieo'f:f. Let us considef H,. = <R,*, 8;>. Let H = UV since (L)) <
. . " . ) i=-1 o
‘R H isa database scheme deﬁned on R*. It is 'eas'y to show that H is acyclic since
“H is a connected subset of Bachman(R) Also Hi is.a lossless decompcsmon of R“

- w.rt. the embodled fd’s ln S slnce S is lossless [Ul] Smce-H is acychc and Iossless ”

o

L by a result. ln [Yl] V is a connected subset, of H 1mphes V is Iossless w.t.t. the embo- ‘

g dled fd’s ln S and hence is Iossless w. rt. F D‘ ; “
E Lemms 3 10‘ Let R be acychc Suppose {V,, cily V,,} is t,he u n1 c. among X a.nd. ’ ;
{S, s.}cn such that. s:V,, for all ls'sk Tﬁen 1rx(WS )"*'x("“"'v(s )) e
| Proof See [CA] U o ’ ¥ | kR

In Sectxon 3 5 we proved that Algorxthm 2 correctly computes the tot.al t.uples m“ T

jhe 'repreaentatwe mstance "»,lt

tidlﬁicnlt to sec that cvery X-tot,al tnple ls COm-

‘utc' by T'n extenstonjonn of an 'R covcnng X for some R"QX [AtC][Cl][llK][Hl]




1]

- U (xl,,t N S

P ;‘s_'g 17 ;)‘ c (x] f&né@ [C/l\][MUV].

R suchthatR"QX [X]CEX )) =t

L .mlmmal number of joms to compute the X -total pro;ectlon

..’{)/i: Lo er

Let u\sdenote [X ]+ a3 thé union of all the extension joins of R, covering X. Let Ex

,‘v‘. -

CBfax .t

Theorem 3 4 Let (R F) be an acychc BCNF scheme Suppose X C U and V = .

{Vi: .. V,,} is the u.m. c ‘among X, -If there exlsts R; ER such that R’Q X, then [\’]

o Eemw ‘“X(N‘V_‘)

)‘l

- Proof: 1!,'(( Nlile) (:,[X] By Lemma 3.9, V is lossless w.r.t. F. .Hence
. : E j=r 7 ‘ . ‘ ‘ ‘ ‘. : ' a

L

[X] c E'x Slnce every X—total tuple is generated by some extenslon jom of some

I .

Ex c n)‘(( N tl".t); Since every extension join in'[X], . is a connected subset of R’
. R P o N |
that contalns X by the deﬁ'nitioni' of 'u'.m'.‘é‘. " among X and Lemma 3.10,

| .[X]RtC‘n'x(N W &) Hence EXC nx(pq W, l) 0

a

By Theorem 3 4 for any X C U ﬂ)e relatlonshlp among X in an acychc BCNF

relatlonshlp ls represented by the u m. c. among X Furthcrmore, th:s relatlonshlp

:swn g x( PQ tV t) that computes the X-total projectlon is ln some sensc optlmal slnce

td

\
D

-

database scheme |s slmple That ls, elther there is no relatlonshlp among X or the A

o (:@ the X—total prolectlon) can be computed easlly and eﬂiclently In fact the exprcs~ y i

_{ V,, V,} is the u m c.. among X i other words, 1t requlres, m some sense, the




37 \L.oulen 'f-acyclic'BCNF Da"tabaseSc‘hemes‘are Connection-trap-free

'
[

Query answermg is an lmportant functlon in a database system Before a user is

able »to retrleve mformatton from a database he has to understand the semant:cs of

v ' f . ,
the applicatlon as well as the operatnons (l e. data language) reqmr&‘tv\retneve data L
As ponnted out in [CA][CM] the understandmg process mlght be dlﬂicnlt A class of

database schemes known as ‘the connectlon-trap-free schemes has recently been pro~,'

posed to nllow users to. easlly retneve correct xnlormatlon from a database [CA].

‘ & .
These schemes have the propertnes that they are slmple m semantlcs and hence users

are able to understand the apphcatlon easlly Moreover, the mformatlon retneval pro-

- cess is slmple and answers to many queries can be generated easlly and eﬂicnently We.

now. deﬁne the class ol' connectnon-trap—l‘ree schemes. 2 . . ‘
VL ' e

Let X < U and let (R F) be a database scheme A state.r of (R F)is sald to -

have a: complete umquc mmsmal connechon ‘among X nf [X] - 'nx(lV [ N . MWV,

where {V,, .. V,} is the umque mmlmal connectlon among X. Then we say that (R,

F) |s connectwn-trap [rce (ctf) (w r. t F) if for any consnstent state r of (R F), r has a

- complete umque mlmmal connect:on among X, for any X C U.

i

In thls sectlon we prove that lossless acychc BCNF database schemes are'“

connectlon-trap-free W.r. . the fd s embodled in the relatlons in the database scheme

Theorem 3“ 5:"‘Let"(R F ) he a lossless acycllc BCNF database scheme Then (R

F) is ctf

By Theorem34 the theorem follows o SN ' ‘.

68

Proof Slnce (R F) is lossless w I t F there is R € R such that R" - U [ABU] " ",,l*
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Proof: Since (S;, Fs) is a lossless acyclic BCNF scheme, the corollary follows

\ . . N . . ’ " .
[N .o N R K [ . " . - !
N . ., B . . ' .

from Theorem 3.5, O . , s

'3.8. ‘Incremen‘tal Testing of Satisfaction
. , |

Constralnts are loglcal restrictions |mposed on data so that the mformatlon in &

"dat.abase correctly represents the part ol‘ real world tbat an appllcatlon is lnt.erested

m Hence ensunng that t,he data satlsﬁes the constramts is lmportant ln data manage- '

e e i e

~ ment. However enforcmg the cbnstramts cost-eﬁectlvely is a dlﬁicult. problem in gen-
. eral Some work has been done on this problem see for example [BBC][SL] ln the

" context of the weak mstance model test.mg satlsfacuon of fd’s mlght be a3 expenswe

as generatmg ‘the represent.atwe lnstance lrom tbe t.ableau ol' the state [H2], it reqmres .
: polynomlal tlme and space in the snze ol’ the database state. Slnce dat,abase size is large o l
in general and exnstmg systems do not proylde faullt-les l'or chaslng, testlng satlsfac- '

tion of fd's by generaung the ‘representative nnst,ance mlght not be pracucal We! '

s

‘ regard an algorlthm for mcrement.ally testmg fd s as cost-eﬂectlve If it does not requlre

. the generatlon ol‘ t,he representauve lnstance 'and t,be venﬁcatlon process is done on

’some speclﬁc relatlons and can be carrled out in polynomlal time. -

. . . 1

Under the Weak mstance model several autbors proposed the class of mdependent.

ensnnng eacb relatron sat:sﬁes the constramts locally guarantees the st.ate is con- o
slstent Hence t.lns restncts the scope ol' verlﬁcat.lon to a slngle relauon and the'

L representatlve mstance is not. generated in the verlﬁcauon process Therefore, lndepen- ‘

: dence allows a cost-eﬂ‘ectxve way to. test satlsfactlon ol‘ constralnts mcrementally

ln tlns sectlon, we show tbat. |l’ (R F) ls an acychc BCNF database scheme, then, :

o there ls also a cost-elfect,lve way to test satlsfact.lon of F mcrementally Smce deletlon‘ R

: chemes to solve thls problem [GY][IIK][SI][S2] For the class ol' mdependent scbemes, “

\"'

o ) ol‘ tuples do nol. aﬂ‘ect l"f " gonsnstency ol‘ a state, we. conalder only the lnsertlon opera— o
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Let r bc a conslscent. state of an acycllc BCNF database scheme (R F) 'Let r be

a relat.lon belng updated where r, €r. Let. t be the tuple bemg mserted inr, . Let

B (KP I K } be the set of nontnvnal keys of R "Consider Algonthm -3, shown

below We clalm t.hat }{no contradlctlon is found that is, lf Algonthm 3 pnnts yes,

‘the updated state is conflstent w,r.t. F. Theorem 3.6, below, ‘proves this claim,

A
1

)
'Algonthm3 * . ‘

' Input: A consnstent state r of an. acychc BCNF database scheme (R ) L o
Atuplettobemsertedmr er,R eR R e

Output ‘no, |f r U {t} is not conslstent w.r.t. F yc&othermse

l.Nolatwn' { .- K } is the set of nontnvnal keys of R,.

. (l) for each K do begin
(2) for each A €R, - K do begm R
(3) = forallR e R such that R, 2 K A do begm R

(4) . if 'n'K A(rq) U ‘rK A({t}) does not satisfy K, ~A then do begm
(5) - - pnnt no, halt end , L ‘ S

. (8)  ‘end.. . o TR
(7) end -~ . | o 4

. (8) end S SR o o

(9) print yes

= i
We need the followmg deﬁmtlons for provmg Theorem 36 Let. K = {K -oAI ‘

»

o K ~A is a nontnvnal fd embodled in some R in- R} Let us nndex t,he elements of K as -

e

V{[, K,-A,, . ._,‘f -A } We deﬁne l], ¥ tK A,&, whlch by the deﬁnmon m Sec- ‘."
tlon357 is U w,”(r,) - |
o e ‘,’?p‘ -

-

Theorem 3 0 Let r be state of an acychc BCNF database scheme (R F ) Let

s T(be the tableau for r lf for sll lScS q, 8],& satlsﬁes the fd f,, t.hen r is 3 consnstent: R .

L :,state w. r.t F i

._‘,.“

Proof ‘{‘We:prove t.he t.heorem hy mduetlon DU

umber of fd-rules applying to. T;.. <.\ 70




Baau Zero apphcauons of fd-rules to T,. Tnvnal since all [, ? are satlsﬁed in' T

. lnduchon Assume T - ‘rl Cor o The l(T ) is' nonempty, kz 1. Let. ™ K, R,

K, where K; is a nontrivial key of R,,—be the fd-rule apphed to' T, and assume ™

At

equates tuples ¢, and t2 1n T We only have to conslder AeR/ —L‘:'!(, such that ‘1“]

is'a constant tQ[A] is a constant and ‘1[’” # tz[A] in T, . We clalm thls case is lmpos-~

" sible, Assume otherwnse Notlce that t,[K,] - tQIK,] in’ T There are two cases to be )

examlned dependlng on whether t [K,] contains an ndv N B n

~ ' ' W

' Caae 1: lf tl[K,] are constants, then by Lemma 3 ﬂt,[K,A] aqd tQ[K‘A] are ele-

ments in ‘/,t in Tr , for some lSJSq Slnce by the lnducuve hypothesls t/ : satlsﬂcs ‘

-

the fd f;, this case is rmposslble , o : ot

-~
]

Caac 2 We clalm the case t UK contmns an ndv is lmposslble Assume othenwnse '
Then there is B € K, such that. tl[B] is an ndv in T, . Let rl “be t.he relauon from"

‘ uwhnc‘h t, orlgynates for some R, € R. A and B are spht in Rl ; else t,[Q] is a const,nnt. .

" in T by Lemma 3.5 part B There are two cases Lo be/conslde :

4 whether Bi ls in a relation scheme that can A—extend Rl .

Caac 2.a: Assume B i3 ln a relation. scheme R, whlch can. A -¢f teud R . Obse.rve

"

B E CPM, else ﬁce t [A] isa const,ant in T, , [B] is a‘constant,nn T " by Lemma 3.5

part. B. Hence B € R, - CPM Then hy Proposmoﬁ 3.4, elther CP,B =2 CP,AA or

dependnng on

| C‘P,g = CPM‘ lf they are. equal then by Proposmon 3 5 AB ls not spllt in R’ A_‘ .

' l[B] - t2[B] Lemma 3 5 part A t,[B] ti- tz[B] and is'a ndv i T, ,: lmply t [CP,B} -,“‘ )

’ 4

e

.

3 'o‘ S

Caoc 2 b lf B is; not in any relat:on scheme that can A-e{tend R ’ and slnce AB"':

o g R,, then by Proposmon 3 6 CPl B2 {A }, and t.hc above proof apphes, *hlch agaln

| “contradtctrmrtb‘the fact that AB is spht in R Thus CP,B 2 {A} Slnce B ¢ K,,

C : tz[CP,B] m T . Smce CPIB 2 {A}, ,[A] = t2[A] ln . (Thls is a contradlcelon to the“,"_“. ‘l

E ‘_-.fact t.hat. t.hey are, dlstmct in T T ‘;:-, L ‘, ; 'r SR :f«"




)

leads to a contradiction, " S ( :
" From Cases 2.a and 2.b, the case ¢,|K|] contains an ndv is impossible, w

This completes the inductive proof, O ; 4
2 / N
~We have proven our claim that Algorjthm 3 is an algorithm to test incrementally

the satlsfactlon of fd's f r an 7¢ycl|c BCNF database scheme. ‘

Therefore for acyclic BCNF schemes, the sptisfactlon of {d’s is baslcally enforced

by creatlng mdlces Smﬁ’relatlonal eystems allow lndlces to be created for keys in a

relatlom scheme the enl'orcement of {d's cab be dene in polynomial t{ime and w:thout
A

' generating t/he representatnve instance; that is, cost-eﬂ'ectlvely L,

[

3.9. Qoneluelone." coo . . T~ e

<

We prpve'd that 1-a&yclicity and BCNF is a sufficient condition for boundedness

-

| of database schemes ev r. t fd’s. More importantly, we nllowed that the boundedness .
w.r.t. l'd's of the class of 'y-acychc BCNF daopbase schemes determmes that this class
of echemes is hlghly deslrable W.r. t. query answenng and updates We broved this by

first showmg that itis bounded that the set of total tuples can be computed elﬁcnently'
; -\ . T . .

and tbat it allows. enforcement of constralnts to be performed lncrementally and cost-

e%ectwely > ' | o 3 ) ~' . N

’
-

i Wath fd’ s,. tbe only. cjass of databa schemesfthat is proven'to be bounded is the

class of lndependent schemes [AtC][Cl][IIK][MRW][.S3] S:nce ¥- acycllc BCNF data-

-

. base schemes are not. lndependent in general our result enlarges the class ol’ known

-t

b‘?“nde‘ld&taba&e schemes, ‘ .‘ - SRR

3 . ' \

The Set of total tuples can be conaldered as the mformatlon content of a database

. .ﬂ A

[GMV][M]IMUV][NG][SI] We d ed a simple and an eﬂicnent algorlthm to generate ‘
tl:e X-total projectton‘for tlus cll

. \ .
tlonslnps among attnbutei‘;ere stmple an"d ansWérs to many quenes can be computed. -

. DR - Py

" ETEN ".t' ._ E . e Ly ) o, L X l o L N
o TR . e L L C oL e .\\\ . /
. ' 1‘

of database schelnes Tlns demonstrates that rela-



“the desirability of this class of database schemes w.r.t;;xylidates.

' 73

very efficiently. Morcover, if a y-acyclic BCNF database scheme is lossless, then it is
also ctf. Hence the class of y-acyclic BCNF database schemes is highly desirable w.r.t.

query answering.

The problem of how to enforce constraints efficiently is a major probiem in data
N L] » *

management. In the context of the weak instance model, if we can find 3 cost-eflective

way to determine whether an updated state is consistent with'the co.nst,raints,‘t.bfn

" this problem can be solved adequately. So far, the only class of database schemes that

’

’ - - . - .‘mn
allows such enforcement of constraints is the class of independent database schemes

.[GY][llK][Sl][S2] In ths chapter we sbowed that for - -acyclic BCNF database

schemes there is a simple and cost-effective way of determ\nmg if an updated state

satisfies the set of fd's embodied in the relation schemes. Unlike the incremental .

r

approach in [C2], our 'approach only needs to create indices on keys and no other data

S . ~ F . . . ge : :
structure is required. Since relational systems allow indices to be created on keys,

< . .
enforcement of fd’s can be carried out cost-effectively. @acyclic BCNF database

schemes are hot independént database schemes in general, hence our result extends the
» . ) . '
class of database schemes that allows efficient enforcgment of constraints. This shows

-

-
-

Apparently to det,ermine if a class of .database schemes is bomided or not is fun-

-

‘dament'al to the analysns of the bebawor of tbe database schemea w.r.t. query process-

/

mg and updates On the ot.her hand, proving a cJass of database achemes 1s bounded‘

seems to be very dlﬂicult even in our restricted case of y-acyclic: BCNF database'

»lj»scbemes To resolve t.h|s prob’lem we mlght need to. develop other techmques for

charactermng the database schemes bounded wir.t. fd's An altematwgﬁapproach is

mvestlgated in the next. chapter. '

- %, . » N




v o ‘./"“‘Chapteri

rden
Of Designing Bounded or Ctm Database Schemes

4.1. Introductjon | -

As shown in the previous ch‘apter, under -tha? weak instance model, d’etermining
whether a class of database schemes is bounded w.r.t. dependencies is fundamental for
the analysis of the behavior of the class of database schemes w.r.t. query processing
_and npdates However, proving that a class of database schemes is bounded w.r.t.

dependencles seems to be very dlﬁicult even for our restrlcted case in Chapter 3.

It is desirable then to develop techniques or to explore other ideas that could help
us in characterizing boundednéss of database schemes w.r.t. dependencies. In particu-

* lar the idea of designing bounded database schemes has not been explored at all..

In this chapter,l we give a formal methodology for designing database schemes
| bounded w.r.t. fd’'s uslng a new techmque called extensibility. This technique can also
~ be used to deslgn ctm database schemes. We do this, oharactenzatlon usmg the follow- .

ing concept. of extenslhnllty from Mendelzon [M] S extends’ R w.r.t. aset of {d's F if

_ for each relatlon scheme R |n_R,.S-con$ama lossless decomposmon of R w.r.t. F

4.2. Overvlew ofChapter CL G

'
LN

ln Sectxon 4. 3 we nge some deﬁmtlons requlred for this chapter Then assummg o
N .

that F and G are sets of equxvalent l’d’s, we prove in Section 4 4 that lf S extends R
Y wr. t F and (S, F) is bounded then (R G) is bounded ‘We also prove that |f (S F)is

,.,ctm, then (R G)i ls also ctm ln Sectlon 4.5, we give some sound rules for deslgnmg '

i

‘ bounded database schemes based on our above mentloned result about boundedness-

_ and ex/teh‘s;bll'lty In Sectlonme‘nse the sound rules from Sectlon 4:5 ito gwe a-_\‘

methodology’for deslgmng new(classes of bounded or ctm database schemes in partlc- 3

ular we show, ow to deslgn a large class of bounded and ctm database schemes whlch L
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are extensible mto mdependcnt database schemes. The database schemes designed

using our methodology are nelther restricted to be in some normal l‘orm nor to be cover?

‘embedding. After that, we give our concluslons in Section 4.7. : . o

'4.3. Some Definitions | ‘ v‘ | o | SR
We now give some definitions required for this chapter.
L A

In this seétion, we are interestetd in tableauk' and chase rules for ejd's. An ejd can °
be represented as a tableay T ol‘ the form (t,, t,,, R ,t,)/t. ln ‘th‘is context, the ejd T" |
is satnsﬁed by ab umversal relation 1 if whenever hisa contamment mapping from T

.to'[, there is a tuple s in [ such that a[N] - h(t[N]) where Nis the set of nonumque

symbols in t. \

N . f :
. -

Let T, be the tableau for a state of. (R F) We assbciate' with each ejd (‘u

ts, . t,,)/t a rule that transforms T, into another tableau as follows Assume there - = &
isa contalnmer:t ulappmg h l'rom (t,, ty, .- tk) to T An czlemwn g of ko t is an
assngnment to unique symbols in ¢ sich that g(t) is well-defined. . A djstinct czlen:swn I
of hto tis an extensiou Jofhtot such that for all umque symbols d in ¢, f(d) ;a
new distinct :'al_ue that appears no where else in T . Now, suppose there is a contam-
ment mapp‘lng b trom (tl; t, . t,,) to T,, but for no extenslonhg‘ ef A to t we_have :'

(t) is in T,. Then, we.say that the ejd (tt, tz, .. t,,)/t rs appllcable to T,, and tlhe'.

result of.applymg the fule to T ls anew tableau TT =Ty U {{(t)}, where [ isa dls- "
/ . : ] P . I‘.. .
tinct extenston of htot. _ U c : B

Now °l’ollow1ng [GW] ‘we define. constant-trme-mamtamable database schemes.

The mamtemmce problcm (for database states) of (R F) is the followmg declslon prob-
lem. Let r be a consxstent state of a database Seheme (R F) and _assume we xnsert a

L 't‘l.lple t in r, or. ls P T U {t} a eonsnstent state of (R F)? s

a

S . e

F)




- Chapter 3, 'y-acyclic \BCNF databaSe schemes are ctm as well.
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-t

" We assume that r.is stored on a device that responds to requests of the form <R,

0> where R, « R and D is a boolean combination of formulas of the form A -‘ a,.

-

where A « R; and ¢ € dom(A). The s{orage device responds to a request by returning,

if it exlsts a tuple fromr; «r that satlsﬁes ‘D ln this case the request auccccda other—

‘wise it is smd to fml
S\lppose there is an algorithm A to solve the maintenance problem of (R F).‘For
\.

any mstance <r, t> of the mamtenance problem of (R F) we define #A(<r, t>) to .

' be the number of requests, of the above form, made by A on the instance. <r t>. We
say that A solves the mointénance problem of (R F) in conatant time if there is a con-

stant k, k20 such that k > #A(<r, t>), for all mstances <r, t> of the mainte-

-~ . i o .
S R . .
. =

nance problem of (R F) 4 o

A database scheme (R F) is said to be constant-time- mamtamablc (ctm} lf there

is an,algm‘xthm thot' solves the maintenance problem of (R, F) in constant time.

e

‘olndeperlden‘t database schemes are ctm. by definition, and from our results in

-

. B »

) ln thts chapter we tfse the followmg deﬁmtlon of boundednes" A database‘

‘ scheme (R, F)vts bou.ndcd ‘y r. t F) lf l'or any X C U there exists a predetcrmmed rela- '

*

- .
. .

- ,operators, I'or any conslstent state r of (R F) [GM][MUV]

‘._ - . " . ; .q‘,. .

P
L

-

schemes on whlch our deslgn methodology rehes

\
~

N
~

N

-
-

"tlohal‘expresston Ex that computes [X], usmg only the Jom, umon, and pro;ectlon "»

CIn thls sectlon, ve prove the results related to extensxbthty among database



T

{Sy,...,S} C S such that R - uS and’ F |- NS [M] In t.hns case we also say

=1
g

A that S is an cztcnanon of R (wrl F) or that R is eztenanblc into S /wrt F). We -

denote S extends R as R < S : R |
Suppose F = G and let (R, G) and (S F) be such that R s S We want to :
. prove that if (S, F) is, bounded then (R G) is bounded and that. if (S, F)is ctm then _":“
(R, G) is ctm. ln the next t.wo subsectlons, we conslder ﬁrst the case when hoth data-
base‘schemes are defined on the same umverse ie, JR = UJS. Then we conslder
S

the general case when UR c U S We conclude thns sectlon by sho:nng how to use

these results to compuee‘ X—total projectlonsf and how to enforce constralnts ln'con-

stant timé,.

' o K v ‘ . \,‘i;

4

4.4.1. Extensibility to Bounded D'a.tabue S\cheme‘av ( .

a4 4

"In this subsectlon We assume that (R, G) and (S F) are two database schemes

‘;_such that F = G R = S and UR L)S We want-to prove that if (S F) is |

‘ bounded then (R, G) is bounded -

1

Given. a state r- of (R G), s, is the state of (S F) obtalned from r as follows [M]:

.

° For eachS eS 5= U {ns(t,)IS c R,‘, e, R,eR} 9 is empty for

every S not contalned in any relatlon scheme of R L e 'n
Lo Sty . e

Let. X C U. We shall denote in t,hls subsectlon the X-total prOJectlon of rthe,
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We shall prove in the following subsection that actually s, is consistent exactly

w-hen‘riseonsistent | . SN - e
Theorem4l lf(S F) is bounded then (R G) is bounded

Pro:ml\Kbe a conststent state of (R G ) and let. us CODSIdel‘ s, t,he state of (S,

"t

F) deﬁned above By Proposmon 4.1,s,isa conmstent, state of (S F) Let X cu

Smce (S F ) is bounded there exlsts a relatlonal expresslon Ex Whlch computes [X]a,-

L)

-

B Obsen’re that.A Ex 'ls an jexpresslon w:th operands inS.

We now obtain'from ‘Ex’:‘ relational expression Ey with operands in R which

\

. cOmputes (X1, - By construct,lon of.a,, elther o= U ﬂ's(r ) where R € R oras =
: "R
. . : S . =9 ‘

‘ ‘@ Then for each operand S;in Ex do the follownng If there is some R, in R such that - “

R, ‘.'2 S,, then substxtute S |n Ex by t,he expresmon U L S(R ), else subsmuce S; by
' ‘ — R2 s, N
T ' Q ol 5 . ' .o .
t.he expressnon @ whlch we deﬁne to evaluate to\ the empty relauon ‘Let _tbe new

'.:expressnonbe Ex N S o S S
ﬂut snnce by Proposmon 4.1, [X], - [X],, Ex computes [)(]r Therefore.{R G)

. is. bounded o.

- “‘.‘_" .

: ;4‘.4 4.2. Extenmb:lity tb ’Ctm Databaae Scheines




of ndv s. Then we prove this lmplles that |l‘ (S F) is ctm thy‘tﬁ G) is ctm

Proposltlon 4. 2 Let T, and T, be the tableaux for r and s, respectwely Then. - k

there is a containment mapping v: T, - T,.

Vo

A‘Proof' Let t be a tuple in' T, ori'ginating from 5 €8, By- construction of s,,

.

. there is a tuple ¢ in some. rk er, where S; C. R‘, such that t[S] -y [S] By construc-

N

tion of T,, for ¢ there is some tuple ¢ in T from ry such that t" [R | = 'l' v maps

. e ' ' . cor
- into ¢ .o, .. ‘ : Co . e

l By definition of R and S, for each R e R there‘ exists'S - {Sl‘,b. . ,S,‘} C S such

.‘»I

that R = U S; and F j= NS Wlth S, or equlvalently wnth R we assodlate l.he

. l-'l

,ejdftablean (2, - .‘ o‘)/r formed as follows For lSJSk a,[A ] is a; for all A; in S

and s, consists of unique ndv sinU - S,- r[A ] is a; for all A;in R and r consnsts of.

3 nniq'ue ndv'sin U —'R.

: chasmg T w.r

o b

Let. F"- {PQSIF = MS, 5= {s,,.‘. Sk}CSsuchthatR -Us andne‘_. |

-
[ o ) . i=l

i

R} Observe that by deﬁnmon of F', F F UF. We want to apply to T a ﬁnlte

number.,of e;d~rules, correspondmg to some. ejd's in F t.o obtaln T such that T =m

T Notlce t,hat by the prevmus observatlon CHASEF(T ) - CHASEF( T ) ln order to ]

prove the eqmvalence between T and T . We have‘ to show two contamm’ ‘t map- '

plngs, one from T to T 4nd one from T to T, We produce t,hese two map ngs by

P ln' a pamcular way Whlle domg that chase, we bmld lncremen-

S tally a contalnment mapplng "~.from T to T and ext.end v' the contalnment mappmg
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; tlon of s, for each te T from r; there exlst & in T,, ISlSk such that t [S ] t[ﬂS,-l]‘ :

and t[U S] are ndvs Then we deﬁne the contamment mapplng h from
r

v
’

("1’ ) to T, as followe For ISISI: h,(o,‘) t,-‘. Now we are‘ready‘to show
how to bulld \b and how to extend v via the followmg chase of T, w.r. . F' - P

Let T’ - T ‘ For each R‘~ € R for each -t.c T, fro’m ri check Wbether the ejd-rule -

»

assoclated with R is appllcable to T usmg h,, where h, is the contaurment mappmg
deﬁned above If tbe ejd-rule is not apphcable ie., |f there exlsts a tuple t' in T such
‘that ¢’ [R,’] - t[R-] ‘then \l:(t) - t On the other hand lf the ejd-rule is apphcable o

(c) - t' where ¢ s the tuple added to T by the apphcatlon of the ejd-rule (t [R]

)

- I[R] and ¢ [U'—R] consnsts of umque ndv s), in thls case v is extended to ¢ by

deﬁmng v(t )= ¢and T - T U {t}

Propoamon 4. 3 Let T, be ‘the outcome from above chase of T, w.rt. F’ The'n |

Tet . .
i e b . o .
T-T,. AN o i

Proof It followa tnvnally that at the end of the chase of T,.w.r. t F.' above, we .

x"-

have contalnment mapplngs \Il from T to T,, and (an extenslon of) v, the mappmg -
gnren by Proposltaon 4. 2 from T, to TT. Therefore the proposmon Bfollovvs from a
result in [ASU] D S L f‘ol : R

.f' \.' “,' .'.. ot .“ .' "’\»' PR "'. C

Propoaition 4 4 Let T and T be the mxmmal tableaux equlvalent to T and T“ :

’ , respectwely Then T and T .are ldentlcal up to renammg of ndv s. o




Proof By Proposmon 1. 4, there exlst T, and T tableaux of r and s, respec-

twely such that they are ldentlcal up t.o renammg of ndv s Then it l'ollows that ris

'

cqnslstent w.r.t. G |f and only if s, is conslstent w rt. F, D SN

The followmg corollary suggests bow to solve the mamtenance problem for. (R G)

,.

Co ‘m constant time if we know how to solve it l'or (S F) in constant:time. _ -

{ .
-

A . . \ - ) ,

- Cor'ollary*ml: As,wme‘ we insert. a tuple tin 'r er. Let S, - . Sg'be the ele-‘ ' ,‘
‘ments ofS sucb that S, 4 R,, lSsSk Let ¢; = t[S] lStSk Then r'=r U {l} is

a consnstent. state of (R, G) if- and only |l' s’ = s, U (t,, ,t‘} is a consistent state

" of (S, P SR I "”
Proof: It follows from Lemma 4.1 with ¢’ and 8’ in the roles of r ad s, respec-
tively. o s ‘

'Now we arev ready to prove the main claim in this subsection.

Theorem 4. 2 If (S F) is ctm, then (R G) isctm. . N

N v [

Proof Assume (S F) is ctm Let. T be a consistent state ol' ('R G) and let us

-~

conslder sf Assume we lnsert, a tuple tin "p €r. .

Let Syy e ,S; be t.he elements of s such that; S C R lSaSk Let l; - t[S]

.‘15 :Sk Let s, - s, and let us conanler solvmg the follownng k malntenance problems

pr n

.f “:‘l'or (S F), For IS':SI: is s,..., 8; U {t } conslstent w.T. t. F’

3 o .
Iy ~ L

Ve :
e e i
B i

t.o solve any of the above k malntenance

I

ber of req,ests of t,he l'orm <R 0’>‘-' W _”re




; ,ﬂs(r,), where R € R ors = 2. Then l'or each request <S 0> |ssued by A do the .

. \
- "

l‘ollowmg o e ey | \

-

lf there ls some R m R such that R 2 S then we translate <S ¢> mto l

‘requests, l$l$ IRI <RL’ .?> ,<R,, ¢> where for IS;SI S C R ll' one of .
| '~ these. requests succeeds sz}v ‘the ) th RES JSl and assume the request returns L, \‘
: ‘1tuple on R,, then 'the request <8, 0> succeeds and we return t [.S'] to A But lf all

these I requests l'anl ‘we cann<|>t yet tell A that its request l'alled We have to venfy |f

” 'there is some tuple u over S among. the tuples t,, R t,-_,. I such an u exlsts and S

‘satlsﬁes 0 the request <S > succeeds and we return u to A. Else we return fail to.

[ e

. On the other hand, if § is not contained in'any scheme in R, we return fail
. ' * - - ' ' . . . -Av ' =
immediately to A.‘ o — .

Let A' be the algorlthm obtmned from ? by translatmg A’s requests as outlmed

"-above. Notlce A’ solves the mamtenance problem of (S F) via a. constant number of

>
~ A

’re’quests of the l'orm <R ®> where R € R But by Corollary 4 l A' 'solves the

".,malntenance problem of’ (R G) as well Therefore we can solve the mamtenance prob- .

X3

l“".lem l‘or (R G) usmg algornthm A’‘in'no more than a constant number of requests ol‘

"“the l‘orm <R ‘D> where R €R. 0 ‘_ = i :",.‘: SE




n . .
T . . .
v e . . .

POTRI 5 lf(S F) is ctm, then (R G) |s ctm. ‘ T
e Proof Assume UR U' Slnce F G and G is deﬁned on U' F is deﬁned on

. . \ g . [ ' . ' ) o \
, ' [T ' . . ) C \ R R
. 1&7; . " . o . Cu ) ) :
3 . I - . » ' ) ¢

rye foC : ' ‘ : a o o . 4 T

s Now conslder (s’, F), where S' - {S €S| S is contalned in some relatnon scheme

Observe that US’ F U' spnce R'< S Also\notrce that if (S F) is bounded
/ i N 4

then (S' F) is bounded and if (S, F) is ctm, then (S F) isctm.

#

Then the corollary follows frbm Theorems 4. l and 4 2, slnce R < S' o, L |

~ . ) . » . S . . -
. . . . . . ", " i . g v .

a0

4;4.4. .Com‘pn'ting‘TotaI Projectio’ns fand"Enfor‘cin‘g Fd’s
B 'I‘he maln purpose of studynng boundedness or constant-trme-mamtamablhty of

database schemes is to ﬁnd relatlonal expresslons to compute total pro,ectlons or to’

show how to en{orce constrarnts in constant time, Sl‘he |dea behlnd our results in thls

\, ——

chapter is. to do thls for a glven database scheme by provmg that it |s extenslble mto a

bounded or ctm database scheme. For if we khow how to compute total projectnons or.

.,
s

how to enforce fd S m constant tlmc in the latter database scheme we. can use our

above results to. obtam relatronal. expressnons for computlng total prOJectlons or a

‘ method to enforce fd's in constant tlme fbr the former database scheme We |llustrate R '

our results vxa the followmg example - el Jl“ LA “‘ ol

0

" L
\-2\ 41'

Ezamplc 4 l Let (R F) - ({R,(ABC) R, (ABE'), Rs(AF) R4(CF'G') RS(BCH),
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- . ~ . - o ' , . . N ' N o . o
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M

o . o ‘ e i R c e
’“BE(Rz))-- o (\// e o . -
. To en[orce l'd s in coqstant tlme in dakabases gf (R F), we use t.he metbod m l,he y o
roof of Theorem 4.2, We lllustrate it no‘w' Assume y,e. lmve a; conSlstent etat r ol$ -'
(R',,F) and- ‘we. want to msert a tuple t mto rﬁ(ABCF) Accordlntg t.o Theorey 4?;5 ;
d” h Jhave to ﬁnd ﬁrst. whlch are the relatlon schemes lp S whlcb are subset? ol' Re Tlxese A ‘
- are AF AB and BC Then we ‘obtain tl - ¢[AF], t, = t[AB], end ty = t[BC]. ) | .’
| y Let a‘ - s and let us consxder solvmg the l'ollow‘mg mamtenance lproblems for (S R "ﬂ" " '
Gk For 15153 ls 8,41 - U (t}conslstentwrt. G? ‘ ,. E “ @.‘ ‘
" “ Smce (S G) is lndependeut there exxsts an algorlthm A that |ssues the followmg X , ‘
S requests : ‘ ,l “ R . - - | I""“‘ “‘_ﬂ ﬁ PR
(a ) < AF, A - tl[A]> to solve the first mamtenance problem a\bove ) It w&sued to . “
| ‘cheek A~F in a(AF) % ‘3’. e R r,‘:lf_‘ | {
P e .Mn‘,,‘:\‘-,‘
(b) <AB A= tz[A]> and <AB B ? t2[B]> t.o solve the second mamtenanCe ) K b’*{./‘,
problem above They are |ssued to check A=B and B-A in a(AB) €s, . | |
—. (e) <BC B - t;,[B]> to solve t,he thlrd mamtenance problem above lt is xsafued to B '.
| check B-C ins(BC)es,.” © o e .
| Accordlng to Theorem 4 2 t,hese reqnlests get, tranaleted respectlve \
| (a) <R3, = t‘l[A]> and <R,,, - | ,(‘A]Q to check f;p in s(AF)g {c,) U‘.rs l
| U ‘“’AF('o)r L “\ d ‘ O "_”*4 ‘ ‘°
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N '

LA Obscrve thnt no more than'a conatnht number of rcqucsts of the f>rm <R >,

where R € R, are required to solve the maintenance probled of (R F).

\ i . \

\ o It should Be clear that proving these two properties for a database scheme like

[CEEE W \ . '

"“\ (R, ') by some other known techniques is not an easy task, Q

o ‘ '
Ve v . | . .

\ It'is obvious that for a given R there may be more that olie extension of it, For

".\ v *

v |mmnco Figures 4.3 and 4.5 in Scction 4, chelow show two dlatmct extensions of

}

{AB(‘, ABE, AF, ABCF} wrt {A-BC, B*AC, A-=F},
A . '\ .
)n the followmg sections we are going to g:ve a methodology for dcsngmng

{

boﬂg:icd or ctm, database schemes, We develop the metbodology in tcrms of bounded

scheres, but from the results in this section the mcthodolog@ies to the design of
4 ‘ N e

ctm database schemes as well. In Example 4,10 in Section 4.6, we show how to design

(R, F) in Example 4.1 above starting from D, = ({R,(ABC)}, {A~BC, B-AC)).

‘

.

4.6. Sound Rules for Designing Bounded Database Schemes

In this section we define our framework for designing bounded database schemes,
N » ) B )
The idea is to start with a bounded database\acheme ang then incrementally enrich it

by adding or deleting relation schemes or fd's from it, We can add gr delete a relation

- schcmt;\)r an {d if the resultant database scheme is bounded, that is, if boundedness is
‘ preserved.
We no'w define what we mean by designing. Let‘D, = (R,, F,.),and D= (R,,,
F,4,) be f,wo database schemes. . )
We say that <D,, D,,,> is an incremental (design) step if clither
® R,,;= R, U (R}, for some relation scheme R, €R,,and F,,, = F,; or
s e R, = R" and Fiyy = F; U {/,},‘Y‘Hjere /; is an {d defined on JR,, anli

.

J, € F,



.

q

We say that <[D.-, D;,Il> is a dccrcmcnta\l (deaign) step if either .

® R, = R, - (R}, for some R, « R, builgi,l is such that Fy, = £, is

o

WA

® Ri*l - R" and F'io-l F, ~ {f} for some [’ €F, .

defined on J R,N‘; or

Also we say that '<,Dlr-- D > is a dgugn sequence (w.rt. D)) it <D,,

- D4 >, 1=iSm~1, is an incremental or decremental step,

Although in a design step we?are not allowed to add or delete a relation scheme
and an fd at the same time, this'is not a restriction since ttals can be accomphshed
wnth two steps. Also notice that we are not allowed to delete a relauon achemellf its

deletion removes some ‘attributes from the universe and some nontrivial {d's are

defined on those attributes. The following example illustrates thia design restriction,

Ezamplc 4.2: Let (R, F) = ({R, (AB), R{AC), Rs(BC) R,(ACD)} {A~-B, C-B,
A-D D- C}) We are not allowed to delete R,(ACD) from R, since then D is no longer

an element of the new universe of attributes and A~D and D~C are nontrivial fd's

defined on D, O

Following [DM], we define the following concepts. A design rule is a predicate

thatl defines a set of valid steps ina design] sequence w.r.t. an initial dasabase scheme.

. Let P be a set of design rul‘es. We denote by Adm(P) thc; set of admissible database
schemes that can be designed via design sequences whose steps are valid w.r.t, at least q’"‘?«.v,

a rule in P. Let C be a class of database schemes. P is sound w.r.t. C'if Adm(P) C

- C.

' Let B be the class of Aatabase schemes bounded w.r.t. f{d’s. We are interested in

finding design rules that are sound w.r.t. B. We shall start’ wnh D,, a database
TN .-
scheme bounded w.r.t. {d's. Typlcally D, contains only one relation scheme, but not

\necessarily 30 as long as D, can be proven to be bounded. Then we can add (or delete)

it
ey
. ———
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._r-}& ‘

a relation schgme or an fd to (or from) D,, I1Sism~1, obtaining D, if <D,,
. ! |

D;,,> satisfies a design rule that guaranteea’DT| to be bounded.’

" - * . N . "
The plan for th¥rest of this section is as follows. In Section 4.5.1, we give some

T

examples to show the design steps that do nq’t preserve boundedness in general, In -

' N
Section 4.5.2, we give some general design rulls that are sound w.r.t, B which tollow "~
) ‘

from Corollary 4.2, our result about extensibility and boundedness, We are going to

use those rules in Section 4.8 to give a methodology for designing bounded or ctm

~

database schemes As mentioned in tH Introduction of this chapter, it is_ worth to

pomt out that the class of database schemes deslgned in this chapter is nel(her res- .

tricted to be in some normal form por to be cgver embedding.
I \ FY ‘

;.5.1. Design Steps and Soundness w.r'.t,‘. B ‘ l ' o
. J

We now show via some examples that ILVIth the excqptfo: of the stcp that dclctes

a relation scheme from a bounded databasé scheme, the deslgn steps do not preserve

.boundedness in general, This shall glveZus some intuition about the difficulty of

*finding general design rules that are sound w.r.t. B.

-

Let us consider first a step that adds a relation scheme to a bounded database
scheme, | : . ' _

Ezample 4.3: Let (R, F) = ({R (AB), Ry(BC)}, {A=B, C-B}) be a-database
scheme Clearly, (R F)is bounded Let us add R3(AC) to R. But from Example 2.3,
we have that ({R,(AB), Ry(BC), R{(AC)}, F) is unbounded. O |

Now we consider a Qtep,that‘ adds an fd to a bounded database scheme.

Ezample 4.4: Let (R, F) = ({R,(AB), R{BC), R{(AC)}, {A~B}) be a database
scheme. It is eas}' to see that (R, F)is bbunded. Let us add C-Bto F. However from

Example 2.3, ({R,(AB), R(BC), R.,(A ¢)}, {CFB, A-B}) is unbounded. O

Now let us consider a step thap deletes an fd from a bounded database scheme.

™
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Ezample 4.5: Let (R, F) =\({R,(AB), Ry(BC), Ry(AC)}, (A=B, C=B, A~C}). It is

not difficult to prove (R, F) is bounded. Now let us delete A~C from F. However
from Example 2.3, ({R,(AB), R(BC), Ry(AC)}, {C~B, A~B}) is unbounded. O
We proveﬁ';n t:he following subsection that a design step that deletes a relation

'scheme from a bounded database scheme is sound w.r.t. B,

.

4.56.2. Sound Design Rules based on Extensibility ' “

- From the examples in the previous subsection, it should be clear that it is not a

bounded database scheme is too sensitive to any change to either its schemes or {d’s. *

. . . .
However Corollary ,4.2 suggests some general rules for designing bounded database

schemes. Corollary 4.2 says that in a step of a design sequence we are allowed to add

3

N

trivial task to find. general design rules which are sound w,r.t. B; simply because a -

or delete a relajion sclieme or an fd from a bounded database scheme as long'as we can

, prove that there exists a bounded database scheme which extends the resultant data-
base scheme and such that their fd’s are equivalent. In this subsection, we list some

Tules suggested by "t,his result,

We consider first a rule that allows uso add a relation scheme to a bounded

database scheme.

Paduel(Da'(Rip F;), Digy=(R;sy, Fi)): .

® <D;D;y,>isan incremental step such thatR,,, = R; UJ {R;}, for some Ri‘ €

R;', and F.' = et

A Y .
‘ . . 0 : . ‘ .
®  There exists S ='{S, ..., S} CR;suchthat R, = |J ;.
‘ . t=1
o FlmmSs. -
Lemma 4.2: Assume that D, ?(R,,. F\)€B. Then P = {P 4y .} is sound'w,l-cj

B for design sequences v"v.r.t'.,D',.
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Proof: Let <D,,...,D_ > be a design sequence whose steps are valid w.r.t;

. Padd_rel‘ By deﬁnition of PchHll for ls;sm—‘l ' R S R . nnd F - F.*‘ Hen'cé'

for lSsSm—l if D, is bounded then the fact that <D D,H>, sati_sﬁes"}l’“u;, and

. . * ’ll“ T
Ezample 46 Let (R F) = ({R, (AB), Ry(AC)}, {A~B, A%C}) be a database

h
‘scheme; It |s not difficult to see that (R F) is bounded P,“_", nllows us to add

H

R, ABC)to R, and hénce ({R,(AB) AAC), R (ABC)} F) is bounded =] \

N )
‘l\

The following rule is coneerned with subsets of bounded database ‘sc‘he\n‘es. It

- |

1
1

says that we ‘are allowed to remove a relation scheme from a bounded schelne as long

A

' . ' C ty P .
as the set of attributes on which the {d’s are defined is not.l al?ec‘t.pdr l‘ '
Ptcte el Di=(R;, F}), Dy =(Ris ), -Fia)):
| ° <D,-,'D,-H> is a decremental step such thl\t R, = - {R,}, for some R, e ‘

R,, but R,“ is such that F,,, = F,is deﬁned on UR,,,. :

Lemma 4.3: Assume that Dl = (R,, F,) € B. Then P = {P,,.,. .} is sound

.
w.r.t. B for design sequerices w.r.t. D,.

-

_Proof: By a similar argument as the one in Lemma 4.2. 0 T .

Ezamplc47 Let (R, F) = ({R,(AB), Ry(BC), R(CD)}, {A~B, B~C, C~D}) Ieis

clear that (R, F) is bounded. For this database scheme, P,,,,,u,, allows us to delete

" R, from R. Hence, ({R,, R;}; F)is bounded; observe it is not cover embeddlng l'J

We want to allow, unde:r c'ertain conditions, to delete an l'd from a bounded data-

base scheme. To be able t6 give a sound rule w.r.t.'B in this case, we have to think in

‘terms of designing database schemes which are extensible into a known class of

A bounded database schemes. The idea. is to be nble to prove boundedncss’ of the resul-'

' mdependent schemes and, under some condmon, the class of 'y-acycllc BCNF sehemes

9

~ tant dat.aba.se scheme in an easy wax by maklng use of 'tbe property that the class of
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[preserve boundednéss vnder fd-deletion. That is, if we delete an fd from an lndepen- ‘

dent scheme the resultant scheme is mdependent And deletlng fd’s from a y- acychc

BCNF‘ scheme preserves boundedness if BCNF is preserved The follow(\h‘g example -
d

lllustrates this, S

E‘zample 4.8: Let (R, F)qand ('S Gi be the database schemes in Example 4.1. We
koow from Example 4.1 that (R, F)is bounded since R < S8, G) istan independent

Al L

database scheme and F = G' | : \

We clalm that we can remove B-C from F and still have (R, /' = F - {B C})‘
B

is bounded This is true because R = S holds w.r.t. F ‘But more importantly, since

uh

removing an fd from an lndependent scheme preserves lndependence and therefore'

~

_ sets of fd‘s 0

boundedness (s, ¢ -% = {B-C})is bounded and G = F'

) .
The following rule formali'zes the main idea flustrated in the ‘above discussion
and example. I‘ . ' . ) ‘ ’
Pdelcte_Jl(D'-(R' F), Disy=(R,,,, .+1)) : \‘

~

(‘i A .
® <D, D,ﬂ> is a decremental step such that R; = R,ﬂ and F = F, - {Q},

forsomef,cF v

A
®  There exists a database scheme (S,, G;) € B such that R; < S, and F = (G,

A (Skyl = 8, Gisy -'\P'Fiﬂ)‘B andR,,, < Si+l'
S SRR A
We now prove this' rule is soundm.r. t. B.

Lemma 4.4: Assume that Dl - (R,, F’) is a database scheme Then P =

(Pd,,m_ﬂ} is sotnd w.r.t. B for design sequences w .T.t. D, L \

-~

- Proof: lt suﬂices to observe that in a step the rule preserves, “after removmg tbe
&

'-.‘fd extenslblhty between R, and S,, boundedness of S,, and equlvalence between the -

) . . '
LY
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i
Now Iet us consider the general case of addlng a relatlon scheme or an {d to a
database scheme whlch is extensible into a\ bounded database scheme. The l‘ollowrng

example illustrates when we want to allow‘an ‘incremental step in thls case,

Y

Ezamplc 4.9: Let (R F) and (s, G) be the database schemes in Example 4.1, We
know from .Example 4.1 that‘(R, F})is b‘oundcd since R = S, (S, G) is. an indcpendent

database scheme, and F= G,

Assume we want to add R‘(BCI) to R, | We ’want to allow such an incremental
step if, as for mstance, (S"=8 U {R;}, G)is bounded Observe that (S G) is not -
lndependent and therefore we do not know whether is bounded However (S = 8
U {Bll} G)is lndependent and 8’’ is an extension of S’. Hence we can add R7 to R

and st.lll have a bounded database scheme since R §) {R7} < S"

The following rule, P“um(m,), states in general the conditions under which we

can add a relation scheme or an fd. It is a generalization of the above example.
. t ! C

Paduen(Di-(Ri"Fi)’ Disi=(Ri4y, Fis))): | o S
f <D, D,-”; ls an increment,al step.
. ,‘ There exists a database scheme (S,, G) eB s'ueh that RS S, and F,v = 'G,-.‘»,‘
o lf some R, is added to R‘, then.let S; = S U {R} and G - G’,; otherwise;if

some [; is added to F,,then let S, = 8, and G/ = G U {f,

o There ex1_sts a database scheme (S.‘n» Gis+,) €B such that S, = 8,,, and G,,
. d;'. ‘
" As shown'in the above example, this. rule allows us t.o reduce the problem of

i

‘4 ’ Q '
provnng boundedness l'or D,,, to the’ hopefully easier problem of tellmg whether (S ;

i

G, ) plus the mcrement has an extenslon belonglng to a class of known bounded data— .

: base schemes (Thls rule subsumes Pogd_sets but we keep bot,h rules since thelr motrva-f": o

10!

' tions’ are dlﬁ'erent )V\Fe now prove |ts sourfdness L .
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Lemma 4.5: Assume that D - (’il, F|)is a database scheme hen P, =
i . ‘ ' A
{P,“_“,,} is sound w.r.t. B for deslgn sequences w.r.t. Dl T ‘

\ ’

'Proof: Let <Dy,. A ,D, > ‘be a design sequence whose steps are valid w n\t~
. ' :

4 . .‘*-‘\w“ v

P,M_‘m Since extenslblllty is a tranositive relatlonshlp, it is not dllﬁCult to see that for

I1sfsm-—-1, R,HSS,H andF‘ﬂ- G,H,lfR SS andF = G.0 o

o
v~ o
”~ N

In the follownng sectlon we glve a ‘methodology for deslgmng bounded or ctm
. ” '

-

database schemes uslng the r_ules presented in this section. -

L“ ! - R @ , . .‘,‘ AN

'
. o '

14.8. Dbhignlng Bounded or Ctin Database Schemes

v

Methodology 1, shown below descnbes a methodology for des1gn|ng bounded
database schemes that uses the rules descnbed above Methodology 1is also a metho-
dology for desngmng ctm database schemes snmply take B as the class of ctm database )

\

schemes and -then by.Corollary.4.2 the methodologys outp.ut is a ctm database

P
|

scheme. Its correctness follows from thtj' proofs of soundness for the design rules.

When sve,- use Methodology 1 for designing bounded schemes | the methodology
requires that at each step we find o bounded database scheme (S,,,, ( G,4,) which
satisfies one of the desxgn rules in the methodology For the ﬁrst three cases in Metho- ,
dology P thls is trivial. However, for Case 4 ﬁndlng such a database scheme is as
diﬂi‘cult as proving boundedness in general Thus to make our methodology feasible,

"f?we have tobchoose from the classes of known bounded database schemes ‘the class to
;vhlch (S; G) in Methodology 1 belongs Also this should hopefully make easier the
task f provmg boundedness, as mentloned above in the ‘motivation for the deslgn rule
ol' Case 4. To illustrate: thls pomt and the use of our methodology, we have chosen to
gwe an example of deslgnlng a. bounded database scheme wh:ch is extensnble into "

: lndependent database schemes However it should be ponnted out that th:s methodol-

ogy produces database schemes whlch may be non-nndependent

9 ‘» - "l‘ "h”

.
g —



Methodology 1 . | : ‘ : - :
‘ ‘ /

‘\

Input: D; =\(R,, F|) a.datahase. scheme such that there exists . ‘
(Sy, 1)€B R, < S, and F = Gl T ‘ .

Output: D, g )and (S,,,,G’ )chuch that
R SS y Fp l'G,,,;m?'=l )

A

" Comments: At Each step, we compute (S;+1, G4,) € Bsuch that

Rs+1 = S.n and F 7= G.ﬂ

'Mclhod Use design rules descnbed in, text, ‘ BN

(1) Letim1 ’ :
(2) wblle desired and poauble do ' \ - n

begin , BT
0 ) A B
Obtain Dyy, = (Rivi, Fivy) 30 (S0, Gisy) from L
D; = (R, F)) and (§;, G)) by one of the following: | ~-
(3) Case 1: A}ply Radd_ser tO add some R; to A o L -

sl‘*l Sn Gl+l - G :
(4) Case 2: L\pply P4etete_set to delete some R; from R
| / Sl+l = Sn GM-I = G )

(5) Case 3: Apply Pd,(mud to delete some f; from F A

‘ Sis1= 8, G-ﬂ = Fiay

(6) Case 4: Apply P,gq gen to add R to R; or add’ I to F; 3
' ,Compute S,4, and G,H accordlng to rule

(7) = i+ 1 \

(8) end B /

(9) Output D, and (S, G) - .

; f/' !
As in that example, if the’ target of the: extenslon of the database scheme belng“

f,desngned is also a ctm database scheme, then by Corollary 4 2 the deslgned databgse |
: scheme is ctm as well. Smce the |dea is to deslgn database sqhemes which are ext;h/sl-' -
‘ R .

‘ ble into one of the knownflasses of datahase schemes, and these are ctm then in thls'

EURN

.
-
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case the output from Methodology l ls a3 ctm~database scheme too. In this sense,

Methodolog lisa methodology for deslgmng bounded andj,tm database schemes

Ezamplc 4. 10l We sho¥ how. to use Methodology 1 for deslgmng bounded data-

~base schemes when for 1= cs m, (S,, G) in Methodology 1 lS an} lndependent database '

 scheme, C . 3 l ‘l
- ey,

N
o

' Assume we start with D, = ({R (ABC)} {A-BC, B-‘AC}), then (Sl, Gll requrred

by Methodology 1 ls D, 1tself Now uslng P,“_,m, we can add RZ(AF) to D, to obtaln .

D, = ({R,(ABC), 2(AF)} {4-Bc, B~AC}) (2, Gz) = 1)2, since 02 ltse‘lf is lndepen-
dent Agaln usnng P‘“_‘m, we can add A-~F to, F2 to obtain Dy = (Rs, Fa) =
({R,(ABC), Ry(AF)},. {A~BC, B-AC, A-F}); (S,, G;) = D,. Now using P,,“_,,,, we
can add R S(ABCF) to D, to obtain D, = (R,, F,) = ({R,(ABC) RZ(AF) ABCF)}

{A -F AvEC B-—AC}) and (S,, 4) (Ss, G;). Figure 4. 2 below shows R, and S,

Assume now, -we want’to add to D, the scheme R(ABE). However (S U {R,}
G4) is not lndependent because A-B and B-A are embedded in both ABE‘ and ABC
" To use P,,um, we have to look l'or an mdependent l'd-preservmg extenslon of S, U’

V{R,} We have to use A~B or B-A to look for such a lossless decomposmon -

Assume we plck A-B to try to ﬁnd snch a decomposltlon Then S; = {AF, AE,
A
’ AB AC} is a lossless decomposltnon of S, U {R,} and' this decomposmon embeds a

cover G'S - {A~F A-B A~C B-oA} of G,, whlch we know is eqmvalent to F Also

-}

| (Ss, G;) is |ndependent Then D= (Rs,, 5) - ({R,, .. 4} F )ns a vahd database N o

. scheme W.r.t. P “_,,,, Flgure 4 3 below deplcts the databa.se schemes at th:s pomt

Now usmg P,“_,,. twnce in-aTow, we add R (CFG) and CF-G to Ds to prodnce

|

- (R,, F-,) - (R5 U {cm} Fs U {CF-G}), observe s7 - ss U {cm} and G, |

- Gs U {CF-G} satlsfy R-, < S-,, F7 = G',, and (S,, G-,) is lndependent Flgure 4.4

~

e‘below shows thls T : ,." SRR

~
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A
A B ~ —
A -BC
B~ AC
A-~-F -
\ /// v ‘ ‘ . ’ s ‘ .
.\\‘ . /" .o \; o | ) | 1
VA / Figure 4.2 R, and S, in Example 4.10
, S wo -
\ / .

/ - Now assume we want, to add RS(BCH) to D, This is not possible since there is

- .

/ no. lossless decomposmon of S7 U {BCH} whnch is mdependent C can be derlved mv.

’ ,3“. .
more than one way in A»B’s closure e A

b

’Let usﬁ'ée what happens lf we choose B-A rather than A-B to ﬁnd a lossless, fd-

| g preservmg, mdependent decomposmon, that sausﬁes P,“_,.m When addmg R4 to. D, L

- -

S In thns case, the follownng |s such a decomposnlou (85, Gs) - ({AF AB BC BE},

L {A~F A-B B-A B-C}), see Flgure 4 5 below

Fond : . ' X
. o Lt . Co-
: P o fo - -

f e . ol
\ : o
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| A-BC
| B ~AC"
A~F
<
B
. ‘
F A E
A C
‘Figure 4.3 Y,Rs and S; in Example 4.10
! Now uslng P,,L,,, twnce m a. row, we can add Rs( CFG) and the jd CF-G to |

- .obta.\w . (R,, F-,) = (R u {Rs), ps u {cp-a}) s7 - s6 u (cm} and G, =
B Gs U { C‘F -G} Obaerve that (S-,, G-,) is mdependent Flgure 4 6 below shows D7 and

——
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-

. N "
3
| A-~BC
= | L " B-AC
< SN . -
" S A-F
N T L CR-G
.B
" o , ,"
N , ;
F A E .
L C
. R G | .
b v~ ~
1 _’@ o . '
) - - Figure 4;4‘.',R7‘ zmd "S7 in Eﬂx‘an_:ple 4.10 °
‘ Now let us consnder addlng Rs(BCH) to R, A decomposmon of S-, U {BCH} o
that satlsﬁes P,“_,,, is (ss, G,,) - ({AF AB BC BE BH cm} {A ~F, A-B B-A o
B-(‘ CF -G}), |t is mdependent and lt cxtends Ds (Ra, F’a) o= (R, U {Rc}, F.,) and ,
5 F = Gg, Flgure 4 7 below shows thls ‘ L " S .
B : | N <
I :
I e ' |
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A~ BC

B~AC

A-~F

')
?

+ Figure-4.5 R;and S; in Exacfjffe 4.10

Now usmg P.“_",, we can add B-EH o Fa to obtam Dy = (Rg, Fg U {(B-EH}),

wblch is (equivalent to) the dat.abasé stheme in Example 4. 1.o .

i

Observe t,hat. t.he class of bounded database schemes we are designing are neither

“ BCNF y-acyclic nor lndependent nor cover cmbeddlng It should be clear that provmg
‘.boundedness or. :constant-tlme-malntmnablhty for such, a class by the techmques

L oo ) . C O
. . N i ’ . . ’
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A -~ BC
B ~AC
A-~F
CF -G

-

Figure 46 R, and S, in Example 4.10

r
1 -

R ”,
.

known so far is a difficult problem.

It must be clear that for database schemes designed using Methodology 1, we can
compute its X-total projections using the method in the proof of Theorem 4.1. Also, if
the database‘scheme'(s,,,,‘ G.) output by Methodology 1.is ctm, we can use the

.

method outlined in the proof of Theorem 4.2 to solve the maintenance problem of (Ry, -
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~ Figure 4.7 Ry and S; in Example 4.10

F.)in ‘co'natant time. In Example 4.1, we have shown how to do that for the database

scheme in Example 4.10.

"’I‘here are of course some deficiencies in our methodology. Some of them come

-
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A

L

from the decompositiex; approach we have taken.Tle others come from the deﬁnition
. » e

of the design precess. For instance, among the former Qeﬁeiencies, using this met.ho-

"dology we could not desigg the class of y-acyclic BCNF databn‘ae' schemes starting
from the class of independent database schemes. Among the latter deﬁeienciee, we can

see that the restriction of adding or deleting only an fd from a database scheme makes

\

difficult to preserve a property like BCNF bctween/schemes,in a design step.,

)

4.7. Conclusions '

We showed that a database scheme is bounded w.r.t, fd’s if it is extensible into a
bounded one. Also we showed that if a database scheme is extensible into a ctm data-
base scheme, then it is ctm. We showed how to apply these results to compute total

projections or to enforce fd's in constant time for database schemes proven to be

bounded or ctm using our results,

:

Then using these results we presented a formal methodelogy forl designing data-
base scheexes bounded or ctm w.r.t. fd’s using a new technique called extensibility,
The major advantage of this technique is its iterative nature. We can apply this Lech;
o a knowﬂ class of bounded or ctm database schemes and generate other class of
bounded or ctn database schemes, For instaixc?, we showed how to design a new class
of bounded and ctm database schemes which are neither acyclic schemes nor indepen-

dent.

Our'proposed_ methodoiogy for designing bounded or ctm database schemes brings
new insight in how to deeign database schemes under the weak insta‘nc'e model. | This is
clearly very helpful since cost-effective queﬁ processing or coét-eﬂective constraint -
enforcement are hlghly-demrakle propertnes of any database and tbese are possible only

|f a dat.abase scheme is bounded or ctm.

. B A
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Chapter §

' Testing Unboundedness of Database Schemes anld Fd’s .

5.1. Introduction : ~

There are tv;o variants of the notion of boundedness.- One of these is bounded-
ness Qf.database schemes w.r.t. dependencies, which is the one we héve been referrilllg
to iln this‘thesis so far. And the other one is the concept of boun('i:adncss ;ffa éep 'of
dependenciés w.r.t, database schemes [GV]. Cést-eﬁecti've query proces;ing in a data-
base is p:)ssible exactly when the database scheme is bouanded w.r.t, its depe‘ndencies,
On't,he other hand, boundedness of dependep:ies w.r.t, database schemes is a neces-
sary‘conditioﬁ for the maintenance problem to be solved in time independent of the
database size [GW].

Both problems are very difficult to solve ;n general, if possible at all. As men-
tioned previously in this thesis, boundedness of database schemes ’w,r‘.t. dependencies
is conjectured to be undecidable even in the case of fd's [MUV]. Testing boundt;dness
of depe‘ndencies w.r.t. da'tabase schemes is also conjectu.red ﬂo be undecidable even in

the case of total debendehcies; it is believed t6 be decidable when only fd's are given

[GV].

Since query answering and constraint enforcement are two important functions in
, : : o

any database system, characterizing both notions of boundedness is essential for real-"
. R . . Y ‘. . ' .A . . 4 o
‘_llfe apphcatlons However, research in this area‘so far indicates that finding such a

‘ characterlzanon is extremely d:ﬂicult if it is possible at all [AtC][GW][[lK][MUV][SS]

Most of thls restareh concentrates on finding suﬂiczent conditions for boundedness

Our condmons in Chapters 3 and 4 extend the results in thls line of research Hence

ﬁndlng weak condltlons for boundedness or unboundedness might be the best that we

can do. ' T : ‘o



Unboundedness, the other sid§ of ‘the coin in the boundedness problem, is com-
pletely unexplored. We investigate this problem in this chapten and show that there
N R Y , ‘- ’ N

exists a general, effective, and sufficient ‘co'ndition for Both notions of unbbundedneaa

when fd’s are considered. The condmon is very general lgghe sense, tha& no pssump-

- tion i8 made w r t. the database scheme or the set of fd’s,

5.2. Overview of Chapter . : o _‘ - . -
‘ e . S .

- In Section §.3, we glve some deﬁnmons required in thls cﬁapter ln Sectlon 5 1,

we give a suﬁicnent condition for both types of unboundedness when fd s are con-

l

sidered. ln Sectlon 5.5, we give our conclusions.

5.3. Some Deﬁnitic;ns o l $ ,
- -’ , ] ‘ * ‘
In this chapter, we use the definition of boundedness of a database scheme w.r,t.

fd’s given in Chapter 2. 'We repeat it here for convenience.
4 P p _
' . ’
Let [X], denote the X-total projection of the representative instance for r and let

Ir| denote the number of tuples in r. Then we say that a database scheme (R‘, F) is.

bounded!(w.r.t. F) i_f for'all X Q U there is a constant k>0 such that, for every con-

sistent staté r of (R, F), and for eve‘ry t € [X],, there exists a substate r’ of r'such

that ¢ e [X], and |r* ISk [GM]. We say that a database scheme (R. F)js unboundcd E

(wrt .F) lflt.ls not bounded (w.r.t. F)

|

To define the concePt of boun'dedness of a set of fd's w.‘»f.t. a database 5cheme, we
"need the‘following\deﬁnitieas; Let r be a relation on R. The set.of a.ll attribute values'
in r is denoted by Val(r‘-_*). Letr = (r,,...,r,) vbe a state of (R, F). Then -Val(r) -
LJ’i Val(r,). Let r’ be a state of (R, F). We sa\y- r’ C' r if‘r,-' Q r;, for all l#js n.

p} s « :

o8

. stant I:>0 such that for every state r of (R F) we have that r is conmtent w.r. . F If‘

<

A. E . . . " l 04

A set of fd’s F is bounded w.rt.a database scheme (R, F), |f cbere is some con-_

Ty

""’
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and only if for all states r’ of (R, F) such that r’ Q r and | Val (r) ISIc we have ris

)
scheme (R F)itit is not bounded w.r.t. (R, ;F)

Graham and: Mendelzon [GM] have showr that boundedness of F wrt, (R, F&

lmphes boundedness of (R F) and that under certain condmons the reverse implica-

. N
tion also holds. o ' ,

Let R, C R, The tableau for R, written T;R, is defined as‘follows, For each R, in

- R,.,‘ Tr has a row ¢ such that for all'A; in Ry, t[A;] is a dv a;, and for all A in U- Ry
| 4 - ' ‘ f ,

t|A] is a distinct ndv appearing .nowhere else in Tg,. We can chase TR w.r.t, F.

CHASER(TR ) is denoted by T;{ ' Let XQU. We say that 'n'X(PQR ) is looalcaa (w r.t.
F) if there is some row in T;;. that has a dv on any A in X [MUV]. We say wX(NR,-)

is lodsy if it is not lossless.
: . %

A
)

5.4. A Sufficient Condition for Unboundedness

In tl‘lis' section, we give!la condition for database schemes and fd’s to be

unbounded. First we motivaté the condition by giving the canonical example of

A\

unboundedness. This is the same as Example 2.3, but now we ‘also' show the unbound-

edness of‘the set of fd's.
[

- Ezam-plc 51 Let (R, F) - ({R,(AB), Ry{(AC), Ra(CB)} {A-B C-B}). Let a

¥

' state of(R F) ber- (ry= {<al,b >}, rg { <a, 1>, <y, c,> <a2, c2>

conslstent wrt F [GV] We say that a set of fd s F is unbounded w r t: a database

’ <a,,_,, c,-,> <a,, c,, ,>}, ry = Z ). T for that state is shown in. anure 5.1

_ below; dlstmct ndv's are repreSented by " oris ,consnstent wrt F. R

Observe t = <a b,, c,,_‘l> is ln' the representat‘ive instance of r. However, !

snnce the representatlve nnstance of any proper substate of r does not contam {t}, (R . S
R . . ‘~‘Q N

‘V‘F)nsunbounded : BRI o

Y

s



o 108

. 8 by - ' |
a, - ¢, A
a, . - € . — '
a, - ', S ~'
° Y 3 ° S
° ° (3 ‘ 3
o ° ° -
e, - €any 4
a,’ - Cpy

| s Figure-5.1 T, for rin Example 5.1

subs

Y
Now let. r=r U {< a,, b,>}. r.is not consistent w.r.t. F. However any proper

' —_

v

tate of r is consnstent w.r.t. F since its representative instance does not contain

LA
Py

both ¢ and <a,, b,>. Thus F is unbounded w.r.t._(R,‘F). o

.o
é" \

o

'

/' ®

captures in general the observatlons made above

. Also thé fact that néither A-C nor‘ C-A iisin F* is cruéiél.

s

From'the canonical example, we can make the following observations:

Y

rules must contain a "ladder”, for instance, <aj, -, ¢,>, <6y, -, ,>,..., <a,,

=y €p—y> in E)&ample 5.1, where the only way to get one of the tuples, <a,, b,

¢p-1 > in this case, is by a-number of fd-rule applications prdpqutidnal, to .t,he‘>."

e

’

‘Qumber of tuples in tbe database staté. )

The behavnor of the fd s A~B and C-B determlnmg the same attnbute B in thls .

»case, is cruclal for havmg unboundedness S o

1 v
'

' . N

v
t

ln the followmg snbsectlon we gwe a sufficient condman for unboundedness tbat

B

' . . .. -

) ) ‘ . ' - e
For unboundedness to happen, T, after some number of applications of the fd>



\5.4.1. ‘The Condiaon and ita Correct.neu o

: Let (R, F) be a database scheme that satnsﬁes the following condmon C:
- CI: There exist nontnvnal fd's X—oB and Y~B in F*.

C2: NeltherX~Ynor Y~X|s|nF+ . Coo

C3 There exists R Q R such that elther ﬂxB(NR ) or @ m(NR ) is lossless,

[

-

C4: There exists R, C R'such that W‘XY(NR,-) is lossless.

| C5: Let W = X*M F*NAUR). Let"u; and u, be tuples defined on U as fol-

»

” . '

lows: For each A e U, ui[A;]=q; whe're a,-' is a 'constan?. appearing nowhere
exm u,, for each A € U W u2[A ]=a,, where aq; is a constant appearing
‘ nowhere else |n 4, or u,, and u,[ W] = u,[W] Let T,, and T be the

tableaux for the states “R UR, ({"1}) and '“R ({u2}) respect.lvely, assume any

\ ‘ndv in T,, s’ dlstlnct from any ndv in ‘T‘.' Then\ ‘|f t is a tuple in
‘C.'HASEF( T,-,-U T;) that originates fr.ogl_:_l_',- and t[XY] Iare consiants, then
t[.B] .is, anndv. | | ’

lntuitiveiy, conditions 63 to C5 state the follbwihg' properties of some consistent
state r of (R, F) C3 states that in C'HASEF(T) we have a tuple like the ﬁrst ome
-shown in Flgure 5 1; C4 states that in CHASE,.-(T ) we have a "ladder” deﬁned on XY
hke the one on, AC showu in FlgureS 1 CS states that we need the whole "Iadder on

6

XY to obtaln a constant. on. B m t.he "last,, Cuple in T Notlce 05 lmplles R 14 R

Ezample 5.2: Let (R F) -( {R (AGC’), , (CEB) R (ED), (ADB)} {GC-B
C-E, E-D AD-—B}) (R, F) satlsﬁes C above w:th R - {Rl, Rz, R3} R/ {R4}, X
- AD Y" G'C' andB-B 0
We claun (R F) is unbounded and Fi ls unbounded w.r.t. (R F) Let. 'S = UR
‘and S - UR Let F-' - {V-A € F"I VA C S} The plan for the proof of these

-‘clalms is the follomng We deﬁne a. tableau T whose tuples are constants on S, and



\ . . >\
- o co : : ' - ‘.1

‘whose projec‘tion‘on S, satisfies F' After tbat we prove that CHASEF( T) |s

A‘.

‘monempty, Then from T we construct a consnstent state r of (R, F). Tbe construc-‘ .

108

tion of r and c shall lmply that in CHASEF( T ) there ns a "ladder like the one in tbe -

canonical example and a tuple tin CHASERT, ) wbose B—total part cannot be inferred’

\

from any state obtalned from a proper subset of T Because the state r can be arbi- .

trarily large ‘this shall lmply (R F) is unbounded,’ Tben we use a. result in [GMLto

show tbat the condmon is suﬂicnent for unboundedness of F wr.t. (R F)

“We now start the construction of T B,v definition of R,, we have S, 2 XY Let

.'us write S; as X'Y'Z wbereX' = X* n S,, Y' = Yt n S;, and Z = S - XV,

.Let W= X () Y. Then we can write X' Y’ as X WY where X' = X' - W and‘

Y' =Yy ~ W X'# D ad ¥’ -'#Q elseeltherWQ Y.'orWDX' ands:nce‘

X-W and Y-w are in F*, then either X-‘Y or Y—-X € F* and C2 is vnolated Hence

we can write S = X* WY Z, where \’ W, Y , and Z -are pairwise dmolnt, and X

.

" and Y are both nonempty.

Some crucial facts about T depend on whetber 7 x5(MR;) is lossless; We assume
without 'loss of _generality . that 'n'XB(NR ) s lossless - (If. ﬂm(NR,) is lossless but

B ‘wm(NR ) is lossy tben the arguments below about the constr

of T are sym-

4 , <
' ‘ ‘ \\/) -
Let us con3|der the follomng tableau where dxstlnct ndv s ar \ denoted by -": T

ﬂ{ l0=<z|, wO, yo, 20, voy ’> t1=<zl, wo, yl’ zl, ‘>

metricon ¥.) . .

"<22, wo: y2v 231 > ‘4 <331 wOv y"v .v'> | .' vn <zn’ wO’ yn-l’ z?n -2
. ->} wbere z,, y,, 2 denote constant values on \’ Y at?d Z respectlvely, wo and vo L

denote constant values on W and on S,- S respectlvely Two values z, and z are |

-

‘ ‘ldentlcal if p'q However, |f p# q, then they do not have any common component

N

Similarly’ for y, 's and z,'s. By deﬁmtlon of R,, B €S;. Hence to[B] isa constant ln .

the rest of the proof we assume the constant on IO[B] is b,

; .

t<z2; wo: ylr 321 '> .

[N
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]

'Le‘t.'c',- - 1:_9"( T), where, by previous definition, S,f:- UR,. In the following

" lemma we prove s; satisfies F”. .
. i L ‘ . ‘ . ’L’l)" "

Lemma 5.1: 8, satisfies F". -

Proof Let, us conslder a nontnvnal fd VA € F' and two dlstmct tupb:s u and ¢
l‘ |n 'y whnch are equal on V. We prove a Vlblatlon of V—-A is |mpossxble in »;,, By con-

)" . ! » .
. ¥ s |

struction of T 4 hes in X' or Y.

"

‘Case’l: VC X = X W. First observe A cannot be.in Z by deﬁmtlon of X'
~Also observe A €Y otherwnse AeY and since A is m X, thus in W, whnch 1 z;
.contradlctlon to the factl.that. W and Y are dmomt | | o _ /\
Now |f V jeg} W tb&nA € Y and A € X". Hence A € W In this case a vnolauon
of V-A is lmposslble since all the tuples inT have equal values on A On the other
-hand,, lf vg w, then, by constructlon of T u and ¢ are, the same on ady attribute i m
X ‘ Hence no violation of V~A can occur ln thls case eltber -
‘Case2: VG V' = WY By a snmlar argument as in Case 1 above, we can prove
a vnolat.lon of the fd V-A is lmposslble | | |
' if‘reth the argumeﬁps‘above our claim is proven. o
The fdllewi’ng facts, crucial to our proof, hqid for T.
Fectl5‘;l:";rhere exi;t at most two disti.n'et‘ tu;;)les“in T yhieh are equal on X’
‘ Fact52 "I‘h‘e.re‘exis‘t, at mbst‘two elistinet tﬁblee ‘i’n T vﬁhiclﬁ vare 'equai en Y’
S 'F;ct 5. 3 Let t and u be two dlstmct tuples in T Then e;(actly one of t,he fol-
lowmg l;olds - . / | |
7 ' . .
o (u [x1-:(x1 T
o dr-dary H
u[X]#t[X]andu[Y]#t[Y] <_,

oy . . . s
Ve : / i .




, deﬁnmon of Y, Y-Ae€ F+

‘,Observe 02[V] - v,[V] in T” |

RRT'S

e | . 1o

-
¢

Now we want to prove CHASEF( T)is nonempty. We. first require to prove the'
,followmg facts about any chase of T w.r.t. F. For thls let us conslder a aequence of

fd-rules 7, . ‘r‘ to be’ applied to T T s T6T) is ‘r,( (T (T

- - ' . o
. Lem“ma 5.2¢ Assume T =1, . T(T) s gonempty and ¢, atd £, are in T"; .+

Sty AeU. If t,[A] = t,[A], then -

)

(3) 1F [X"] = 6,{X°], then XA € £+

(b) IF£[Y'} = t,[Y’), thén YA € F*.
(c) If 8[X"]# t,[X°) and 6[Y°] 2. 4,[Y7), then XA « F¥ and Y-A ¢ F*.

t

~ Proof: By induction on‘k,‘x ‘ ‘ S .

Basis: k = 0. ‘Let(‘t‘l and t, be two distinct tuples in T such that they are equal on -

A €U. By consti‘uction of'T A must'be in S;.
Caac (a): I t,[X‘] = lQ[X ], then by Fact'5. 3 and const,ructnon of T, Ae X' By
deﬁnmon of X X-A eF*. S . |

Caac(b) If ¢ [Y° ] - 12[}’ ], then, by Fact 5. 3 and construction of T, A £ ¥ By
Case (c) If ¢ [X ] # t,[X"} and ¢ [Y ] # 12[}’ ], then, by constructlon of T A €

w. By deﬁmtlon of W X~A and Y-oA € F+ e

3

\

lnduchon k>0 Assume T" is nonempty and is obtamed from T by Ic- 120 fd- ‘

rule appllc?uons Let us. also assume that, T is nonempty and is obtalned from T” by -

3

‘ applymg the fd—rule T V-A V~A in F, to equate v and v, in T", v,[A] # vQ[A] By

t,he mductlve hjpotheSIs the proposmon IS true for T" and we have to prove it for T' |

-

)

We have to consnder t, and t, i T," such that t,[A] - v,[A] and t,[A] - vz[ﬂl

By Fact 5.3, there are three cases to be consxdered dgpendmg on the equahty among vy

4

and 2 on X and Y Fnrst. we conslder the easxest. case . SRR



c ; cases to be consldered

A | R

Caul ”1[X ] # 02[X ] and vl[Y ] # v,[Y’]. Since vl[V] = vle], by the mduc- ‘ '

tive hypothesns X-V and Y-V e F*. Hence X~A and Y~A € F*, Thenwhat we |

have'to prove for t,[A] and IQ[A] follows tnvnally S : o,

- Caac 2: vl[X ] - vg[X ] Slnce v,[V] = vz[V], by the mductxve hypothesns X-

€ F‘+ Hence X~A € F’ There are several cases to be consndered depending on

A L]
’ 4

- -

whether t,='v and t; = v,
Case 2 a: t - vl and t2 = v2 Hence t,[X ] = tQ[X ). Since we already know

X-~A € F*, this case is proven

Case 2, b:"tl # v,. (The arguni‘ent for t, # vg#is‘ symmetric ) Then Fact 5. 1‘ vl[X'] :

- 02[X ], and v £ v, imply t,[X ]“5& v, [X°]. By Fact 5.3, t,[Y ] = 01[)’ ] or tl[Y ]

) # v,[Y ]..In elther case since l,[A] = y,[4], by the lnductlve hypothesns we have Y~A

€ 15'+ Hence both X-A and Y~A are in F’ and what we have to prove for [A] and

'tZ[A] now follows trivially.

Case 3: 0,[V’] = v,[Y’]. By an argument similar to that in Case 2 above we can.

~
/

prove this case.

»

This com'pletes the inductive pi‘oof and the proof of the lemma. O

'Now we prove that CHASEF( T ) is nonempty

‘Lemma53 CHASEF(T)#:@ N P /

o

‘Proof We prove it is lmpossnble to have CHASE'F( T) = @ Let 1', T l:zl

‘ 'equate two dlstlnct constants ‘
“ tlv Assume 1'; V-oA V-A in F equates t, and t2 whlch are tuples in 'rl T l(T)
' 'such that tl[A] * l2[A] and both are constants Notlce tl[V] - t2[V] By constructlon

l. of T and snnce the constramta are fd s, A must bun S By Fact 5 3 there are three

» be a sequence of fd-rules applled to T such that 'r,, is the ﬁrst fd-rule that tnes to' SR

e



12
Case 1: ‘1[X ] = t2[X ] By Lemma 5.2 and ¢[V] = tQ[V], X~V e F* Hence )
X=A € F*. Smce X*l C S,, t and l2 vlolate X—-A € F Thls contradlcts Lemma S, l
Hen:‘&hls case is unpossnble ! : R .
Gaac 2: ¢ Y ] - t2[ Y’]. By an argument similar to that. in Case 1 above we can k

prove that thns case is 1mposslble
| Cade 3: 4[X7) ¢ IQ[X ] and tl[Y ] # tQ[Y ]. By Lemma 5,2 and 6[V] = e,[V],
X»)( and Y*V € F’ ‘ Hence X-A and Y-A € F* Then A € W since A S But,
then t,{A] = t2[A] by constructlon of T. This i is a contradlcuon to’ Lhe assumptlon
“that t,[/{] 2 ¢2[A] Thus t.hls case is lmpos:uble |
| We have p.roven onr claim, O B
Now Qe construct a consnstent state r of (R F) from T as followa

’ L7
e For all R, € R,, r = R( T—-{lo});

® for"an‘R, € R ’ T, = ﬂR({‘O})? ‘
‘& foi all R,cR-—(R UR ), ry = Z o U
‘ ! B v. B L
Bémma 5.4:ris consistent w.r.t. F.o o BN

L Proof Frdin the construcuon of r and by Lemma 5.3, CHASE'F( T) is a weak

‘nnstanceofrwrtFD SN o
. . ,‘l " N X N . ’V , . '
We now show tbere isa "ladder in ‘n'xy( T) Fu-st observe that ’(' - X r] X "

‘ Q else X C W and hence Y-X € F*, whlch vlolates C2 by a slmllar reason Y' ‘-‘ ‘

' Y n Y ¢ g Then ‘",\’Y(T) a{ <zl’ yo> 62’1, y1> <32, y|> <Z2, y2> <23,“

o ‘~y2> > <z,,, y,,_,>} where <zl, 0> - tO[XY] <zl, y,> - t,[XY] <22, y,> .‘
- ‘2[XY] <z2r y2> - ‘3[XY]» »<33z y2> - ‘4[)“’] <zm Vn 1> "zn 2[XY} " :
s and by constructlon of T z, and z, (respecuvely, Uy and y,) are |denucal lf p- q, but;'

if p# q, tben they do not have any common component on X' (respectwely, on Y_')
" b}

1
co

‘.s[ln other words, z, = 'z |f and only lf p - q, sxmllarly for y, and y, Let T ‘be the

[T

[CER
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‘a 5.5: <z,,, y,, L b > is in the XYB total pl‘Oj(‘(‘thll of CHA S'I*,F(T ).

P&bof From constructlon of r, ‘n\,B(PQR ) is lossless and m{MR)) is Io'nlcsq
thcre cx(&:ﬁn C'HASEF(T ) tuples ‘o; £, by, ,t,“ . ‘corresponding respectively to
to, by, by, tg,,ao in T auch that o [XB] = <z,,6,>, ¢/[XY] = <z,, y,>, t,[XY]

- <z >, .., rz,,,g[X)] = <z, YaoiD. Since X-B and Y~B are in F'*, -

tn,,Ao[XYB] must be <z, y,.,l, b, > in CHASEF( r,).o

t

vl,,et T, and T, be as defined 1;1“‘(35'. Let us assume R, = {R‘n’ . ,R;P}, p=1, and

o '»,‘.; be ‘the rows o’f'iéHAS‘EF( T,U T,) from T,; By el originate from

let L

\

R, ..., R,"‘res'pe‘qliively,‘ Let ti'e T be such that ¢, # ¢, and ¢ # ¢, ). .l,et T, =
N4

s . 1 . ' ' s
{ty e-T[1<q} and' T, = {t; € T|1>q}. Letr, andr, be statea‘vc‘onstructed from T, and
. T, respectiyely such'that r, c_ontains;t-'uples in r originating from T, while r; contains

tuples in r originating from T,. Let T’x and T"z be the tableaux for r, and r, respec-

r

tively. Observe r, is a state defined on R, U R, and rz‘lis a state defined on R, only,

Intuitively, C§ state\\that in CHASEg( T,IU‘ T,.) there is no tuple from r, such that

N bl
- , FAR

t[XYB] are’c@t‘lgténu, That is,.we need the whole "ladder” to ‘obtain'wﬁl, b, >

in the representatiVe instance of r. Now we prove this in the followmg t,w'b Yemmas,

‘

Lemma 5. 6 Let T, = T, JUT,,. Let 7 bea sequence of fd-rules of fd's in F

that can be applied to T, and assume T° = 7 (T,,) # @. Let u, be a tuple in T"

from R; and from r,, and A ¢ U. Then if u,[A] is a constant, then 3,[A] is a constant,

. wixére aii\is arowin ‘CHASE,&( T,-,-U T,) from T, as defined above. ‘

Proof: Similar to the proof for Lemma 4 in [G] a : \ '

fav

Lemma 5.7 Let '3 be any tuple in CHASEF( T,UT, ) such that ¢[XY] are con-

\ : -
stants and equal to <::,., Yn- ,> Then l(B] is an ndv -’
. : ‘.w;:":’gm N‘Ll | .
S & .
. L
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Proof: Assume ¢ is a tuple in CHASEF( T, U T, ) such that ¢[X}Y] are constants
and ;‘qual to <z,, Y-, >. Assume I[B] is a constant.

By construction of T, and 'nx){PQR,-) is lossless, there exists some ‘tuple t ﬁom
R; and from r; such that ' [XY] are constants and equal to <a,, Yn-y>; such a tuple

t’ can be té",z in Lemma 5.5, Hence since X~B and Y~B are in F*\rt'[B] must be
the constant ([B], Then,by Lemma 5.6, 5, in CHASEg(T,;\J T,) has constants on

XYB. This is a contradiction to condition C5. 0
"\
We are now reﬁy to prove (R, F') is unbounded,

Lemrﬁa 5.8: (R, F) is unbounded, ’ ’ ) .

Proof: Assume (R, F) is bounded and assume k>0 is (R, F')’s boundedness con-

stant,

We can make the number of tuples in T arbitrarily larger than & such that any

substate r’ of r with |r’|<k misses at least one of the tuples in T. However, by

: A
Lemma §.7 we cannot infer <z, y,_,, b,> if we miss a tuple frem T, This is a con-

tradiction to our assumption that (R, F) is bounded., O

We just finish proving our first claim in this chapter.

. . N )_
Theorem 5.1: The condition C is sufficient for unboundedness of (R, F).

L4 f
[\}qv‘v we prove C is a sufficient condition for unboundeduess of F w.r.t. (R, F).

Corollary 5.1: Let (R, F) be such that satisfies C. Then F is unbounded w.r.t.

(R, F).

Proof: It follows from Theorem 5.1 and Proposition 6 in [GM]. D

Ezarﬁplc 5.3: Let (R, F) =( {R,(AGC,), R)(CEB), R4(ED), R(ADB)}, {GC-B
¢ ,
C-E, E-D, AD-B}). We saw in Example 5.2 that (R, F) sa_t.isﬁeS C. Then both (R,
,‘ F) and F are unbounded. O |

A

-

;
|
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6.6. Conc ons ‘ /
% ' \

We have shown that there is a'general and sufficient condition for unboundedness

of database schemes and fd’s, ’The problem of testing unboundedness using our condi;

tion is in NP [GJ], since by guessing X, Y, B, R,, 'and R, we can test if‘they satisfy

cach of the components of our condition in polynomial time, That is, the condition

can be tested effectively; but probably not in polynomial time,

We believe our condition is important in practice, given its generality and the
difficulty of testing boundedness for database schemes and fd's, Whether a weaker

condition can be found is an open problem which, if possible to solve, seems to be a

"

. ’
very difficult and complex one,

-

As mentioned in the Introduction-of this chapter, characterizing the bounded

schemes or bounded constraints is fundamental to finding classes of database schemes

\

that are desirable w.r.t. query processing and updates. However these are extremely

difficult problems to solve, if they are solvable at all. So establishing weak sufficient or

weak necessary conditions for these problems might be the best that we can do: In this

N . \ s N\
chapter we have given a very general and sufficient condition for the unboundedness

\
.

problems when fd's are considered.



Chapter 6

Conclnsions and Future Research

68.1. Conclusions ‘ ‘ ' .

We have studied the problem of boundedness of relational database schemes when
fd’s are the constraints imposed on the database. We showed that determining '

whether a class of database schemes is bounded w.r.t. fd's is fundamental for the:

LY
v

analysis of the class of database schemes not only w.r.t. query processing, but also
w.r.t, efficient enforcement of fd's. In what follows, we summarize the contributions of

this thesis,

\

=

One of the main contributions of this thesis is the identification of‘ y-acyclic
BCNF database schemes as a class of database schemes ivhich is highly desirable w.r.t.
. query processing and enforcement of fd's. In ‘Chapter 3, we ﬁrst proved that this class‘ ‘
of schemes is bounded w.r.t. the set of fd's embodied in the database scheme. This
result ‘enlarges the class of known bounded database schemes. We then showed that
+ this class of schemes is simple in semantics by proving that- there is a simplye.and
efficient way to compute the X-total projection of the .represent‘ative instance. As a
consequenc'e, answers to many theries for ‘this class of schemes can be computed’veasily
and efficiently, We a‘lso showed'that if a y-acyclic BQNF database scheme is IOssless,
then it is connection-trap-free. Finally, we derived a simple and efficient algorithm
!

that determines if an updated state is consistent. This allows the system to incremen- .

tally enforce the satlsfactlon of fd's embodied in the database scheme in constant. time.

"

As mentioned 'in Chapter 3, contrary to our initial expectatlons our prool' of

boundedness ol' thls class of schemes turned out to be long and’ complex ‘This gives
strong evndence supportmg Maier et al. s conjecture about tbe undecidability of the

problem of testing boundedness of database schemes w.rt. dependencles <’\\L-ven wben

only fd's are consndered [MUV] R S .



The only other known class 5f database schemes wnth all the deslrable propertles
of v-acyclic BCNF database schemes is the class of mdependent and connection-trap-

free database schemes charactenzed in [CA] o
‘ . 3‘"
In Chapter 4 we mvestlgated an alternative approach l'or characterizing database

v

schemes bounded w.r.t. fd s. We showed that a database scheme is bounded w.r.t.

fd’ s nf it |s extensnble mto a bounded one. Also we showed that if a database scheme is

‘; AL

extensible into a ctm' database scheme, then’it is also ctm'. We showed how to com-

pute total projections or enforce fd’s in constant time for database schemes proven to

be bounded or ctm using these results. '

”

Then we presented a formal methodology for designing database schemes

bounded w.r.t. fd's using a new technique called’ extfens his methodology tan

also be used to design ctm database schemes. TJe \ajor advantage of this technique

\Is its iterative nature. We can aypply‘ this techgique to a known class of bounded or

ctm database schemes and generate other classes of bounded or ctm database schemes.

For instance, we showed how to design a class of bounded and ctm database schemes

which are neither acyclic scheémes nor independent.

L

Our proposed methodology for deslgnmg bounded orctm database schemes bnngs
A

~ new insight into how to deslgn database schemes under the weak lnstance model. Thls'

‘
1

is clearly very helpful since cost-eﬂ'ectlve query processing or constant-tlme fd enforce-

ment are highly deslrahle propertles for any database and these are possible only nl‘ a

database scheme is bounded or ctm.

[

As discussed ‘previously in Chapter S, cha‘&cterizing the bounded s‘chenxes or.

bounded constraints is fundamental to ﬁndmg classes of database schemes that are

-

deslrable w.r t. query. processlng and updates However these are extremely dlﬂicult .‘ )
problems to solve, If they are solvable at aII ‘So. establlshmg weak suﬂiclent or weak'

necessary condltlons for these problems mlght be the best that we can do Pnor to thls R

_3.-w
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\

thesns the charactenzation of unbounded database schemes or fd's was completely '

Al

unex plored

ln Chapter 5 we studied the unboundedness problem when £d's are considered

We showed therein that there exists a very general suﬂicient condltion for unbounded-

ness of database schemes and fd s. We believe our condition is lmportant in practice
given its generahty and the diﬂiculty of testing boundedness for database. schemes and

l'd s, Whether a weaker conditlon can be found is an open problem which, if possible

\\
N

to solve, seems to be difficult and complex.

6.2. Future Research

We can observe from the unboundedness conditlon in Chapter 5, that th‘ere exist

two fd's X-oB and Y~B that can add B to the closure of some relation scheme; and ’

.

. which is more important, X and Y are Iogically independent of each other, in the sense

~ that neither X-Y pot Y=Xis in F*. For independent database. schemes and y-acyclic

BCNF database schemes, we can observe in that respect the followmg In the former

class, there is exactly one fd that adds an attribute to a closure. In the latter class of
- N . ‘
.database schemes, if more than one fd can add an attribute to a given relation

scheme’s closure, ‘then they determine "each other, since they are key dependencies

embedded in the same relation scheme ~Also the' class of ctm dat'abase schemes -

characterized in [GW] seems to have the property that if an attribute can be added to

a relatlon scheme s closure by more thap one fd, then the fd's determine each other

We believe that when fd’s are considered boundedness constant-time-maintamability,‘

and unboundedness of a database schcme are basncally consequences of the freedom in

the above sense, among the fd's that can add an attribute to the closure of a relation

‘ scheme.

K

Within the two extremes represented by the unbounded database schemes at one L

end and the ctm and bounded database schemes at the other end lies a class of g

I3 \ :
y ) g B L . -
b
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bounded database schemes to which a database like (R F) = ({AB Be, AC} {A-B,

B-C A‘C}) belongs This database scheme is nelther ctm nor mdependent thever

! \

‘|t is bounded In such i class of schemes, an attrlbute can be added to a relatlon :

_scheme's élosure by more than one fd in (R, F) above, C can be added to AB’s closure" '

by elther A-C or B-C but observe A-B holds An lnterestlng open problem is to

-

prove boundedness for such a. class A good start is to try to find an algonthm to test

[}

~ exactly one l(ey; the.database schemeshown above,belongs to this class v

W

As notlced above, (R, F) - ({AB BC AC} {A-B, B-oC A ~C})is not ctm.- Thls

is because the enforcement of A~C cannot be done in time mdependent of the data-

base slze However we cab enforce A-C cost-eﬂ'ectlvely, that is, without generatnng‘

the representatlve instance, via thé relatlonal expression ﬂAC(ABNBC) U Ac: An
e t

~ open problem is lto characterize a general class of database schemes where cost-

"effective fd enfor‘cement is‘possible' via relational expressions.

In the course of our mvestlgatlon of a suﬂiclent condltlon for unboundedness we

came to the followmg questlon whlch we leave as an open problem Are (complez}‘

chace-jom-ezpreauom (cie’s) [Cl][AtC] complete for the class of database schemes

bounded w. rit. l’d’s? That is uslng cJe 's, can we compute the X-total pro;ectlons of -

any conslstent state of any database scheime whnch is bounded w.T. t. fd s? Or perhaps ',
e _———/—'—_—" .

less ambltlous, l’or whlch class of database schemes bounded w.r.t. fd s are Cje 's com--'v

_plete’ Lo .' P T
: a v L -

Yo
4

-another open: problem, but probably too d;ﬂicult a problem to be solved

‘In Chapter 4, we extended Mendelzon s extenslblhty results in [M] in two very,'

R

,lllmportant respects. boundedness and constant-tlme-malntamabnhty An nmportant'

a

boundedness w. rt ‘fd’s of BCNF database schemes where each ‘relation scheme has

We belleve that B-acycllc BCNF database schemes are bounded w.r.t. fd s. Thns is -

" ‘questlon arises there° In whlch other database deslgn problems can the extensxblhty - -
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idea be apphed to reduce the difficulty |nvolved in solvnng them?

In Chapter 4, we dld not address the problem of identifying a cl"ass of bounded

database schemes usmg some of the sound desngn rules found in that chapter We

¢ "

belneve |nvestlgatmg t,hls issue may give us more msnght into how to. desngn dntabase

schemes which are bounded or ctm.

—

Fmally, the quesuoh of whetber the problem of testmg boundedness of database

‘schemes w.r.t. I'd s is undemdable remains open : :
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