
Classification and Vulnerability Detection of Ethereum Energy Smart
Contracts

by

Bahareh Lashkari

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical And Computer Engineering
University of Alberta

© Bahareh Lashkari, 2024

Abstract

Since the advent of distributed ledger technologies, they have provided diverse op-

portunities in a wide range of application domains. With the transition towards a

more decentralized and dynamic system, the significance of blockchain-enabled smart

contracts has grown in prominence. Despite their benefits, smart contracts, are not

immune to errors, vulnerabilities, and security issues. There have been several notable

incidents caused by smart contract security flaws, the most significant being the

DAO incident, which was triggered by a reentrancy vulnerability that resulted in the

unauthorized extraction of approximately $70 million in 2016. As a result, identifying

and detecting smart contract vulnerabilities has become a critical challenge that must

be addressed promptly to mitigate potential financial losses caused by bug exploita-

tion. In spite of the positive association between smart contract categories and their

vulnerabilities, vulnerability analysis tools do not consider violation structures and

behavior patterns across different application domains. As a result, it is imperative to

analyze the smart contracts feature space to gain more insights into the characteristics

of the contracts deployed.

Unlike traditional contracts, smart contracts are not written in a natural language,

making it difficult to determine their content. As a result, smart contract classification

based on the application domain and transaction context provides greater insight into

the syntactic and semantic properties of that domain. We intend to reach greater

degrees of abstraction and navigate the complexities of Decentralized Applications

(DApps) design specifications by determining the contract’s domain. The proposed

approach will help to establish the groundwork for innovative solutions for domain-

ii

specific classification and vulnerability detection of smart contracts in the works that

follow.

In a subsequent study, we perform a domain-specific evaluation of state-of-the-art

vulnerability detection tools on smart contracts. It appears that the detection accuracy

of the tools varies depending on the domain. This suggests that security flaws may be

domain-specific. As a result, in some domains, many vulnerabilities can be overlooked

by existing analytical tools. Additionally, the overall impact of a specific vulnerability

can differ significantly between domains, making its mitigation priority subject to

business logic. Therefore, more effort should be directed towards the reliable and

accurate detection of existing and emerging vulnerabilities from a domain-specific

perspective.

In our ensuing study, this finding is used to enhance the detection of vulnerabili-

ties within smart contracts, with a specific emphasis on an energy use case. When

integrated into energy systems, smart contracts can create complex temporal and

sequential dependencies, which can lead to a wide range of vulnerabilities as the

structure of smart contracts becomes increasingly intricate. Current efforts to identify

vulnerabilities in smart contracts rely heavily on expert-defined patterns, a method

considered inefficient due to its lack of adaptability. To enhance the effectiveness of

current methods, we introduce a graph attention neural network model called TL-GAT,

which leverages transfer learning to detect vulnerabilities in smart contracts. This

framework enables developers to independently assess vulnerabilities in each domain,

allowing them to accurately identify potential issues in diverse execution environments.

The evaluation results confirm that transfer learning can be used to leverage exist-

ing knowledge of vulnerabilities to improve the effectiveness of generalization when

addressing vulnerabilities in a specific domain, even with limited data availability.

This thesis presents profound insights and rigorously evaluated methods for identi-

fication of smart contracts developed to facilitate energy transactions in smart grids,

followed by accurate detection of reentrancy vulnerabilities in energy smart contracts.

iii

Preface

The research presented in this thesis was conducted under the supervision of Professor

Petr Musilek. This thesis is founded on three primary publications:

1. Lashkari, Bahareh, and Petr Musilek. "Detection and Analysis of Ethereum

Energy Smart Contracts." MDPI, Applied Sciences 13, no. 10 (2023).

2. Lashkari, Bahareh, and Petr Musilek. "Evaluation of Smart Contract Vulnera-

bility Analysis Tools: A Domain-Specific Perspective." MDPI, Information 14,

no. 10 (2023).

3. Lashkari, Bahareh, and Petr Musilek. "Transfer Learning with Graph Neural

Networks for Vulnerability Detection in Energy Smart Contracts." Elsevier,

Information Sciences (2023), under review.

Throughout my Ph.D. journey, I also seized the opportunity to delve into the

intricacies of consensus mechanisms, as yet another core element of distributed ledgers.

This work has been outlined in the following publications that are not incorporated in

this thesis:

4. Lashkari, Bahareh, and Petr Musilek. "A comprehensive review of blockchain

consensus mechanisms." IEEE Access 9 (2021): 43620-43652.

5. Lashkari, Bahareh, and Petr Musilek. "Consensus Mechanisms In Proof-of-

Stake for Blockchain Networks: Fundamentals, Challenges and Approaches."

Institution of Engineering and Technology (2023), in print.

iv

Acknowledgements

I wish to convey my profound appreciation to my academic supervisor, Professor

Petr Musilek, for his exceptional mentorship and unwavering support throughout my

Ph.D. program. His encouragement and insight have been instrumental in shaping

the quality and direction of this thesis.

My heartfelt gratitude also extends to my family for their steadfast encouragement

and unwavering faith in my capabilities. Your support has served as the cornerstone

of my academic journey.

v

Table of Contents

1 Introduction 1
1.1 Smart Contracts . 4
1.2 Domain Classification . 5
1.3 Vulnerability Detection . 6
1.4 Thesis Motivations and Objectives . 7
1.5 Thesis Outline . 12

2 Detection and Analysis of Ethereum Energy Smart Contracts 13
2.1 Abstract . 13
2.2 Introduction . 14
2.3 Background . 18

2.3.1 Energy Smart Contract . 19
2.3.2 Text Classification . 20

2.4 Related Work . 21
2.5 Methodology . 23

2.5.1 Data Collection and Pre-Processing 23
2.5.2 Building a Domain Corpus . 26
2.5.3 Embedding Layer . 28
2.5.4 Baseline Models . 29

2.6 Evaluation Results . 31
2.7 Conclusions . 36

3 Evaluation of Smart Contract Vulnerability Analysis Tools: A Domain-
Specific Perspective 39
3.1 Abstract . 39
3.2 Introduction . 40
3.3 Background and Motivation . 42
3.4 Vulnerability Analysis Tools . 44
3.5 Domain-Specific Perspective . 46

vi

3.6 Analysis . 49
3.6.1 Benchmark . 50
3.6.2 Energy . 52

3.7 Discussion . 56
3.8 Conclusions . 60

4 Transfer Learning with Graph Neural Networks for Vulnerability
Detection in Energy Smart Contracts 63
4.1 Abstract . 63
4.2 Introduction . 64
4.3 Background . 68
4.4 Methodology . 71

4.4.1 Pre-processing . 71
4.4.2 Graph Convolutional Network Model 72
4.4.3 Graph Attention Convolutional Network Model 74
4.4.4 GraphSAGE . 75
4.4.5 GGNN . 77
4.4.6 TL-GAT . 78

4.5 Results and Discussion . 80
4.6 Conclusion . 84

5 Conclusion and Future Work 86
5.1 Conclusion . 86
5.2 Future Work . 89

Bibliography 91

vii

List of Tables

2.1 Word2Vec Embeddings. 25
2.2 Class-specific metrics from the confusion matrix report. 33
2.3 Performance of the baseline algorithms on a full-feature model. 34

3.1 Analysis results on curated dataset. 51
3.1 Analysis results on curated dataset (Cont.) 52
3.2 Slither’s reentrancy detection rate. 58

4.1 Vulnerability detection performance of each method 83

viii

List of Figures

2.1 The smart contracting paradigm for energy applications 20
2.2 Architecture of the classification pipeline. 24
2.3 Graph of domain-specific terms. 24
2.4 Energy context assessment by logistic regression. 26
2.5 Dominant energy tokens. 34
2.6 Code segment analysis I . 36
2.7 Code segment analysis II . 37
2.8 Code segment analysis III . 37

3.1 Control flow graph. 49
3.2 Vulnerability analysis workflow. 50
3.3 Vulnerabilities across different domains. 53
3.4 Contract processing time. 53
3.5 Source code metrics. 54
3.6 Contract analysis timeouts. 54
3.7 Dominant vulnerabilities. 55
3.8 Undetected vulnerabilities. 55
3.9 Conkas analysis results . 59

4.1 Reentrancy exploitation instance . 70
4.2 Proposed Vulnerability Detection Workflow 70
4.3 Transfer Learning with GAT . 80
4.4 Evaluation results . 84

ix

Abbreviations

AST Abstract Syntax Tree.

Bi-LSTM Bidirectional Long Short-Term Memory.

CBO Coupling Between Object.

CBOW Continuous Bag of Words.

CE Code Elements.

CLOC Comment Lines of Code.

DAO Decentralized Autonomous Organization.

DApps Decentralized Applications.

DIT Deeper Inheritance Tree.

DLT Distributed Ledger Technology.

ER Element Retrictions.

EVM Ethereum Virtual Machine.

FN False Negative.

FNR False Negative Rate.

FP False Positive.

FPR False Positive Rate.

GAT Graph Attention Network.

GCN Graph Convolutional Network.

x

GGNN Gated Graph Neural Network.

GNN Graph Neural Network.

GraphSAGE Graph Sample and Aggregated Embeddings.

LDA Latent Dirichlet Allocation.

LLOC Logical Lines of Code.

LR Logistic Regression.

LSTM Long Short-Term Memory.

NB Naive Bayes.

NF Number of Functions.

NL Nesting Level.

NLP Natural Language Processing.

NOS Number of Statements.

ReLU Rectified Linear Unit.

RR Relationship Restrictions.

SLOC Source Lines of Code.

SSA Static Single Assessment.

SVM Support Vector Machine.

TF-IDF Term Frequency–Inverse Document Frequency.

TL-GAT Transfer Learning Graph Attention Network.

TMN Temporal Messaging Network.

TNR True Negative Rate.

TPR True Positive Rate.

xi

Chapter 1

Introduction

The emergence of ledgers can be tracked back more than thousands of years. It was

followed by a conventional banking system where data records have been authenticated

by a central authority. With the advent of computers, ledgers became digitized and

evolved from the preceding centralized ledger banking system, mirroring what was

initially carried out on paper. A few years later, the distributed ledger technology

has been proposed by Satoshi Nakamoto [93] with the intention of excluding the

former authoritative environments towards a verifiable structure. Distributed Ledger

Technology (DLT) enabled a novel form of recording transactions using cryptography,

advanced algorithms, and massive computing capacity [7].

As a digital database instance, DLT is shared between individuals with certain

characteristics that not only preserve particular communication protocols but also go

through an agreement procedure that leads to a shared decision exclusive to the group

of individuals that operate the DLT [48]. The widespread reputation of distributed

ledgers started with the advent of the bitcoin cryptocurrency that demonstrated their

potency. Their dynamic nature can accelerate transactions and reduce associated

expenses by eliminating the requirements for a central authority.

The increasing trend towards decentralization fuels the quest for technologies that

facilitate tamper-resistant data exchange. Similarly, blockchain is based on a peer-

to-peer architecture, which has empowered several core technologies including digital

1

signatures, smart contracts, cryptographic hashing, and consensus mechanisms. The

notion behind blockchain as a digital, distributed, and decentralized data structure is

the development of transaction blocks that store digital transactions without the need

for a central authority. Information concerning new transactions is appended to the

chain after it has been encrypted and confirmed by the majority of the participating

agents. Each block is then timestamped and cryptographically linked to the former

blocks as a demonstration for the sequence of recorded transactions. As a distributed

database, Blockchain comprises an expanding record of transactions accompanied by

the chronological order of their occurrence. It keeps the identity of the contributors

anonymous by employing digital signatures [5].

With the continued development of blockchain technology in a multitude of appli-

cations, the number of smart contracts deployed in distributed ledgers has increased

tremendously. In light of the increased adoption of blockchain platforms across a wide

range of decentralised apps, smart contract interoperability is constantly evolving.

Accordingly, looking into the identification of contracts is one of the public blockchain

network’s primary issues. Unless the contract developer invests in publicizing it

through designated fora, the vast majority of smart contracts remain anonymous

and hardly traceable without a description. With the increasing number of smart

contracts, identifying the application domain of smart contracts on public blockchains

is critical for detecting smart contract vulnerabilities. The vast majority of contracts

are currently anonymous and difficult to trace without public exposure. Improved

identification enables targeted vulnerability assessments, customised vulnerability

detection tools, improved security practises, nuanced defect mitigation, and increased

transparency.

As a result, it is imperative to outline a hierarchy for providing a comprehensive

mapping of smart contracts that exceed the primary query services of blockchain

platforms limited to contract address, block number, transaction hash, and timestamp.

An important step towards performing such searches requires accurate labeling of

2

the contracts, which was initially performed through an inefficient manual process.

As a result, a comprehensive classification model capable of automatically classifying

current or recently uploaded contracts is required [144].

Another growing concern in blockchain security is the detection of smart contract

vulnerabilities. Smart contract-enabled blockchain systems provide a diverse range

of advantages, encompassing the evaluation of reliability and data integrity, along

with the optimization of program execution efficiency. Nonetheless, smart contracts

are not exempt from security defects [15]. A multitude of security vulnerabilities can

resurface throughout the lifecycle of a smart contract and since the deployed code

cannot be altered the security risks stemming from these vulnerabilities become more

pronounced. As a result of massive financial losses caused by smart contract security

breaches in previous incursions, the ecological stability of the contract layer in widely

used blockchain platforms such as Ethereum has been jeopardized.

Scalability and new security vulnerabilities will emerge as the scale of the Ethereum

projects advances over time [56]. Novel vulnerability detection algorithms should

be created to accurately detect and assess security threats, as well as to identify

unknown vulnerabilities and determine how to mitigate them [72]. In addition, DTL

platforms such as Ethereum are developing significant momentum in industries such

as energy. As the prospects of blockchain-enabled smart contracts towards economical

and transparent energy sector is being widely recognized, only after identifying

the smart contracts deployed in transactive energy systems can a comprehensive

analysis of the energy smart contracts and subsequent domain specific vulnerability

detection be performed. The critical security concerns within smart grid systems

amplify the potential impact of reentrancy vulnerabilities, as these systems rely

on distributed ledgers to effectively manage electricity distribution across the grid.

Attackers could alter critical data such as consumption records or grid configurations

if there is a reentrancy vulnerability in data processing or storage functions. This

manipulation could lead to billing inaccuracies, grid instability, and potential safety

3

hazards. Manipulation of smart grid operational functions via reentrancy attacks can

cause grid instability, potentially resulting in power fluctuations or grid component

damage. These issues endanger both the grid infrastructure and its users. In addition,

exploiting vulnerabilities in one region of the smart grid system could cause a cascade

effect, impacting the interconnected systems. A breach in one area has the potential to

jeopardise the grid’s overall integrity. Therefore, the application-based identification

of smart contracts toward a domain-specific vulnerability detection for transactive

energy systems, holds significant importance.

1.1 Smart Contracts

In essence, smart contracts are self-executing collections of codified agreements deployed

on decentralized networks of blockchain. A smart contract is a source code entity

that operates within the blockchain and, once deployed, functions in adherence to

a predetermined code logic [68]. Smart contracts support decentralization through

automated execution, blockchain integration, and immutable protocols. They can also

contribute to trust through transparency, automated execution, immutable history,

and cryptography [9].

As event-driven programs, smart contracts facilitate trusted transactions, allowing

anonymous parties to exchange digital assets or data [160]. The smart contract is

the main pillar of Ethereum and is widely adopted in various business domains. As

a proclaimed framework for integrating the execution of smart contracts, Ethereum

offers great capacity in the development of Decentralized Applications (DApps).

Most Ethereum smart contracts are written in Solidity, a high-level object-oriented

programming language, and then compiled into bytecode for execution using the

Ethereum Virtual Machine (EVM). The bytecode compilation is followed by the

deployment of the code on the blockchain, resulting in an exclusive 160-bit hexadecimal

hash contract address. This address serves as the unique identifier for the smart

contract. Users initiate the contract code execution by sending a transaction request

4

to the contract address. The EVM then autonomously executes the contract, creating

a level of abstraction between the executing code and the machine on which it runs,

thus isolating the DApps and their corresponding hosts [120].

In recent years, much attention has been given to blockchain platforms supporting

smart contracts for the development of decentralized applications. Smart contracts have

been designed and deployed in a broad array of applications, from fund management

to the power grid. Given that smart contracts are deployed on a blockchain that was

primarily intended to store financial transactions, the most instinctive applications of

smart contracts involve trading assets between contracting parties [176].

1.2 Domain Classification

Coupled with increasing progression toward a more decentralized and dynamic energy

system, the viability of blockchain-enabled smart contracts in transactive energy

systems has become prominent. Energy smart contracts are employed for automatic

execution and monitoring of energy trading events [58, 69]. An energy smart contract is

implemented with instructions to retrieve the capacity and price offered by generators.

The offer is then consigned to the prospective buyers for the bidding process to

begin. A double auction is a commonly used mechanism to settle the price. Once the

price has been cleared, the grid power flow is examined to ensure the feasibility of

the allocations.

Considering the multitude of deployed contracts, the lack of methodologies (such as

classification models for the analysis of energy smart contracts) makes it challenging

to gain insights into this ecological environment and to identify vulnerable smart

contracts once deployed. Given that search for vulnerabilities can be optimized by

factoring intriguing elements such as the semantics of the defects, it is important

to design and employ smart contract analysis tools to gain a broader knowledge of

contracts concerning their underlying domains [64], [6].

According to our experience, there is no consistent set of smart contract specifications

5

in published research work, and smart contracts associated with comparable practices

are often classified differently. Since complete formal characterizations of a smart

contracts intended behavior are rarely available, it is imperative to describe smart

contracts from a domain-specific standpoint. Furthermore, addressing prevalent smart

contract vulnerabilities mandates a semantic and syntactic understanding of the

compromised contract.

With the increasing number of smart contracts approximately 670,000 smart con-

tracts deployed each month [31], identifying smart contracts designed primarily for

the energy domain and deployment on smart grids allows targeted vulnerability as-

sessment, reinforced security practices, refined defect mitigation, and a higher degree

of transparency [76].

1.3 Vulnerability Detection

The immutability and tamper resistance of blockchain frameworks are additionally

enforced on smart contracts, ensuring that any terms documented in a smart contract

cannot be altered once they have been published. However, smart contracts encounter

security challenges, including an error-prone programming language with exploitable

development bugs that are often overlooked or discovered only after deployment on

the blockchain, making it difficult to fix them. Smart contracts frequently govern

substantial financial assets, making them attractive and easily targeted by malicious

actors seeking financial gains. Bug exploitation in smart contracts can lead to severe

consequences that affect the entire blockchain ecosystem, rather than just individual

contracts.

There have been several notable incidents caused by smart contract flaws, the most

significant being the Decentralized Autonomous Organization incident, which was

triggered by a reentrancy vulnerability that resulted in the unauthorized extraction of

approximately $70 million in 2016 [175], [137]. Later, in 2018, the SpankChain [89]

contract was the target of a reentrancy attack, that ended in a $40,000 misappropriation

6

due to insufficient authority governance. In a similar vein the Uniswap [142] and

Lendf.Me [156] projects encountered this vulnerability this time in January 2020 [53].

In May 2021, the flash.sx smart contract was targeted by a reentrancy attack, resulting

in the theft of approximately 1.2 million EOS and 462,000 USDT despite a prior

security audit [168]. It is evident that security defects have the potential to result

in irreversible consequences. Reentrancy, among the most severe vulnerabilities in

smart contracts, is spotted and leveraged frequently, compromising trust in smart

contract-based applications. As a result, identifying and detecting smart contract

vulnerabilities has become a critical challenge that must be addressed promptly to

mitigate potential financial losses caused by bug exploitation [111].

1.4 Thesis Motivations and Objectives

The development of secure and reliable smart contracts can be extremely challenging

due to domain-specific vulnerabilities and constraints associated with various business

logics. Current methods rely heavily on expert-defined patterns and have difficulty

dealing with multifaceted intrusions, calling for more robust approaches. Therefore,

overdependence on environment-defined parameters in the contract execution logic

binds the contract to the manipulation of such parameters and is perceived as a security

vulnerability. In response to the widely recognized prospects of blockchain-enabled

smart contracts towards an economical and transparent energy sector, this thesis

proposes a methodology for the detection, analysis and vulnerability detection of

energy smart contracts.

The primary objectives of this thesis are as follows:

• Objective 1: Underscoring the significance of categorizing contracts based on

their application domain and transaction context, obtaining valuable insights into

their syntactic and semantic properties, thereby enhancing their comprehension.

– Recognition of the challenges inherent in developing secure and dependable

7

smart contracts due to vulnerabilities and constraints unique to various

business logics within different domains.

– Classification of smart contracts by employing a methodology that captures

the semantic and syntactic characteristics of energy smart contracts.

– Analysis and investigation of patterns related to the distribution of code

segments, the predominant use of certain elements and the recurrence of

specific contracts across the Ethereum network.

• Objective 2: Evaluation of the state-of-the-art vulnerability detection tools for

smart contracts from a domain-specific viewpoint.

– Investigating the smart contract structures and procedures by considering

logical and language-dependent features specific to diverse application

domains.

– Examination of the code embedding of energy smart contracts and the

assessment of their vulnerabilities within transactive energy systems.

– Highlighting the risk of overlooking vulnerabilities in particular domains.

– Drawing attention to the pronounced differences in the effects of specific

vulnerabilities in different domains.

• Objective 3: Enhancing the accuracy of vulnerability detection through transfer

learning and domain-specific analysis

– Highlighting the inefficiency and lack of adaptability in approaches that

rely on expert-defined patterns.

– Improving generalization for vulnerability detection within a specific domain,

with limited data availability.

– Facilitating precise detection of reentrancy attacks in transactive energy

systems.

8

In pursuit of the aforementioned objectives, we embark on three research stud-

ies. The initial research, pertaining to the first objective, is primarily dedicated to

recognizing the context of smart contracts and subsequently categorizing contracts

within the energy domain. The second objective is fulfilled in a subsequent research

phase where the focus lies on assessing cutting-edge vulnerability detection tools for

smart contracts. This evaluation is conducted with a domain-specific perspective, by

considering logical and language-dependent features specific to diverse application

domains. The third research stage, corresponding to the third objective, showcases the

capacity of transfer learning to leverage existing knowledge of vulnerabilities for the

purpose of improving generalization when addressing vulnerabilities within a specific

domain, with limited data availability.

The main contributions of this thesis, corresponding to the aforementioned studies,

are as follows:

Research study 1: “Detection and Analysis of Ethereum Energy Smart

Contracts" [76] (Chapter 2)

Aim: Smart contract classification based on the application domain and trans-

action context provides deeper insight into the syntactic and semantic properties

of that domain. With the progression towards a more decentralized and dynamic

energy system, the impact of blockchain-enabled smart contracts in transactive en-

ergy systems has gained prominence. As a result, it is imperative to analyze the

energy smart contract feature space to gain more insights into the characteristics

of contracts deployed for energy transactions. This study proposes an approach to

discriminate energy smart contracts using the publicly accessible Ethereum source

codes. Natural Language Processing (NLP) and machine learning classification al-

gorithms are employed to detect and properly label energy smart contracts. To

begin, a domain-specific embedding layer is generated to identify and analyze energy

tokens and energy-related terms. Subsequently, both the energy corpus and cate-

gorical attributes are employed as baselines for training of the classification algorithms.

9

Outcome: Logistic regression, naive bayes, and support vector machine are imple-

mented as classifiers. The classification performance of each algorithm is then evaluated

using accuracy, precision, recall, and F1-score metrics. Energy smart contracts are

detected with up to 98.34% accuracy, with Logistic Regression (LR) outperforming

the other algorithms. Detected contracts are further examined to discern any discrep-

ancies or patterns in the distribution of code segments, the predominant use of specific

functions, and recurring contracts across the Ethereum network. When compared

to non-energy smart contracts, the results obtained on the distribution of energy

code segments imply that the development of energy contracts tends to prioritize the

adoption of contracts and libraries over interfaces. Finally, the same analysis among

functions in both classes entails the adoption of comparable functions across each

category, with more prevalent adoption among energy contracts.

Research Study 2: “Evaluation of Smart Contract Vulnerability Analysis

Tools: A Domain-Specific Perspective" [77] (Chapter 3)

Aim: Smart contracts in the energy domain provide the necessary versatility to

consolidate diverse processes according to the requirements of the application. Despite

the positive association between smart contract categories and their vulnerabilities,

vulnerability analysis tools do not consider violation structures and behavior patterns

across different application domains. Unfortunately, there is no perfect contract

analysis tool for any and all contracts and their underlying business logic. Further-

more, the results of vulnerability analysis tools cannot be replicated in the absence

of the appointed data set. To examine this gap, this study evaluates the benchmark

vulnerability analysis tools on classified and curated contracts. This classification

allows for an independent assessment of each domain’s vulnerability source so that

developers can differentiate between domain-specific vulnerabilities when paired with

different execution environments.

10

Outcome: The independent assessment of vulnerability analysis tools on different

domains revealed that the detection accuracy of the tools varies depending on the

domain, since the benchmark tools did not demonstrate the accuracy claimed in the

curated contracts. Furthermore, the overall impact of a comparable vulnerability in

one application domain may be more profound and detrimental than in another. This

makes the mitigation priority of these defects subject to business logic. In addition,

energy contracts demonstrate above-average security flaws and take longer to process,

increasing the likelihood of failure or a timeout. The evaluation results underscore the

competence of symbolic execution for the analysis of energy contracts. Accordingly,

analysis tools that incorporate symbolic execution outperform code transformation

coupled with constraint solving in detecting reentrancy in energy contracts. Although

the vulnerability analysis workflow used in this research is only applicable to smart

contract source code, it is transferable to any application domain in the presence of

contracts in the corresponding domain.

Research Study 3: “Transfer Learning with Graph Neural Networks for

Vulnerability Detection in Energy Smart Contracts" (Chapter 4)

Aim: When integrated into energy systems, smart contracts can create complex

temporal and sequential dependencies, which can lead to a wide range of vulnera-

bilities as the structure of smart contracts becomes increasingly intricate. Current

efforts to identify vulnerabilities in smart contracts rely heavily on expert-defined

patterns, a method considered inefficient due to its lack of generality and adaptability.

Additionally, manual expert inspection is a time-consuming and resource-intensive

process to collect sufficiently large and properly labeled datasets of smart contracts

within specific domains. To enhance the effectiveness of current methods, we introduce

a graph attention neural network model called Transfer Learning Graph Attention

Network (TL-GAT), which leverages transfer learning to detect vulnerabilities in smart

contracts. This framework enables developers to independently assess vulnerabilities in

11

each domain, allowing them to accurately identify potential issues in diverse execution

environments.

Outcome: The evaluation results confirm that transfer learning can be used to

leverage existing knowledge of vulnerabilities to improve the effectiveness of gener-

alization when detecting vulnerabilities in a specific domain, even with limited data

availability. We evaluated the effectiveness of the proposed model using four prominent

Graph Neural Network (GNN) architectures, Gated Graph Neural Network (GGNN),

Graph Attention Network (GAT), Graph Convolutional Network (GCN) and Graph

Sample and Aggregated Embeddings (GraphSAGE). GAT with Transfer Learning

outperformed all other models in the framework, achieving a 99.06% accuracy, 98.50%

precision, 100% recall, and an F1-score of 99.25%. The obtained performance can be

attributed to TL-GAT’s ability to extract insights from a pre-trained source domain,

which improves its overall predictive capacity. Even though the vulnerability analysis

workflow utilized in this research is specifically designed for energy smart contracts

and reentrancy vulnerabilities, it can be extended to other application domains or

security defects in presence of labeled contracts pertaining to the desired vulnerability

within target domain.

1.5 Thesis Outline

The subsequent sections of this thesis are organized as follows. Chapter 2, delves into

detection and classification of smart contract exploring smart contracts code elements

and providing valuable insights into their syntactic and semantic properties. This is

followed by Chapter 3 examining smart contract vulnerability analysis tools from a

domain specific perspective. Chapter 4 introduces our proposed vulnerability detection

framework based on transfer learning and graph neural network. Chapter 5, concludes

our contributions and offers insights into possible directions for future research.

12

Chapter 2

Detection and Analysis of Ethereum
Energy Smart Contracts

2.1 Abstract

As blockchain technology advances, so has the deployment of smart contracts on

blockchain platforms, making it exceedingly challenging for users to explicitly identify

application services. Unlike traditional contracts, smart contracts are not written in a

natural language, making it difficult to determine their provenance. Automatic classi-

fication of smart contracts offers blockchain users keyword-based contract queries and

a streamlined effective management of smart contracts. In addition, the advancement

in smart contracts is accompanied by security challenges, which are generally caused

by domain-specific security breaches in smart contract implementation.

The development of secure and reliable smart contracts can be extremely challenging

due to domain-specific vulnerabilities and constraints associated with various business

logics. Accordingly, contract classification based on the application domain and the

transaction context offers greater insight into the syntactic and semantic properties of

that class. However, despite initial attempts at classifying Ethereum smart contracts,

there has been no research on the identification of smart contracts deployed in

transactive energy systems for energy exchange purposes.

In this article, in response to the widely recognized prospects of blockchain-enabled

smart contracts towards an economical and transparent energy sector, we propose a

13

methodology for the detection and analysis of energy smart contracts. First, smart

contracts are parsed by transforming code elements into vectors that encapsulate

the semantic and syntactic characteristics of each term. This generates a corpus of

annotated text as a balanced, representative collection of terms in energy contracts.

The use of a domain corpus builder as an embedding layer to annotate energy smart

contracts in conjunction with machine learning models results in a classification

accuracy of 98.34%. Subsequently, a source code analysis scheme is applied to identified

energy contracts to uncover patterns in code segment distribution, predominant

adoption of certain functions, and recurring contracts across the Ethereum network.

2.2 Introduction

As blockchain technology advances, so has the deployment of smart contracts on

blockchain platforms, making it exceedingly challenging for users to explicitly identify

application services. Unlike traditional contracts, smart contracts are not written in a

natural language, making it difficult to determine their provenance. Automatic classi-

fication of smart contracts offers blockchain users keyword-based contract queries and

a streamlined effective management of smart contracts. In addition, the advancement

in smart contracts is accompanied by security challenges, which are generally caused

by domain-specific security breaches in smart contract implementation.

The development of secure and reliable smart contracts can be extremely challenging

due to domain-specific vulnerabilities and constraints associated with various business

logics. Accordingly, contract classification based on the application domain and the

transaction context offers greater insight into the syntactic and semantic properties of

that class. However, despite initial attempts at classifying Ethereum smart contracts,

there has been no research on the identification of smart contracts deployed in

transactive energy systems for energy exchange purposes.

In this article, in response to the widely recognized prospects of blockchain-enabled

smart contracts towards an economical and transparent energy sector, we propose a

14

methodology for the detection and analysis of energy smart contracts. First, smart

contracts are parsed by transforming code elements into vectors that encapsulate

the semantic and syntactic characteristics of each term. This generates a corpus of

annotated text as a balanced, representative collection of terms in energy contracts.

The use of a domain corpus builder as an embedding layer to annotate energy smart

contracts in conjunction with machine learning models results in a classification

accuracy of 98.34%. Subsequently, a source code analysis scheme is applied to identified

energy contracts to uncover patterns in code segment distribution, predominant

adoption of certain functions, and recurring contracts across the Ethereum network.

The emerging trend towards decentralization leads the pursuit for technologies that

facilitate tamper-proof data exchange. Similarly, blockchain is based on a peer-to-peer

architecture, which has empowered several core technologies including digital signa-

tures, smart contracts, cryptographic hashing, and consensus mechanisms [10, 63, 92].

With the continued development of blockchain technology in a multitude of applica-

tions, the number of smart contracts deployed in distributed ledgers has increased

tremendously. Smart contracts [130] are self-executing decentralized applications

running on blockchain used for governance of financial assets that once deployed are

autonomous and immutable. Smart contracts adhere to the underlying configuration

of distributed ledgers and inherit automation, immutability, and decentralization

qualities [139].

With the widespread adoption of blockchain platforms across various decentral-

ized applications, smart contract interoperability is continuously evolving. Hence,

Ethereum [25] has become a prominent smart-contract-based blockchain platform

due to the increasing adoption of its decentralized applications. Ethereum’s surging

popularity can be attributed to its high level of robustness and adaptability for a

wide range of applications [101]. Ethereum currently hosts over four million smart

contracts with approximately 670,000 smart contracts deployed each month and over

3000 DApps [31]. Therefore, a major concern for users is identifying the desired

15

application service among dozens of smart contracts in a timely and efficient manner.

The identification of contracts is one of Ethereum’s primary challenges. Some

smart contract developers make their source code available, along with a description

of its context and purpose. Unless the contract developer invests in publicizing it

through designated fora, the vast majority of smart contracts remain anonymous

and hardly traceable without a description. With the increasing number of smart

contracts, assisting users to identify their required service among a massive number of

contracts has become an ongoing challenge. As a result, it is imperative to outline a

hierarchy that provides a comprehensive mapping of smart contracts that exceed the

primary query services of blockchain platforms that are limited to contract address,

block number, transaction hash, and timestamp.

An important step towards performing such searches requires accurate labeling of

the contracts, which was initially performed through an inefficient manual process.

As a result, a comprehensive classification model capable of automatically classifying

current or recently uploaded contracts is required.

Research has been carried out to help comprehend what smart contracts do and to

enable contract searches based on their context and purpose. The proposed methods

are centered on learning the characteristics and the structural code embedding of smart

contracts. However, the existing classification and topic modeling schemes for smart

contracts are limited to application domains, such as entertainment, management, the

IoT, lottery, gambling, gaming, and so on [57, 127, 135]. This is why recent studies

have underlined the significance of blockchain-enabled peer-to-peer energy trading

systems [170] leveraging smart contracts [147].

The advent of blockchain technology offers the potential to securely automate P2P

energy trading [29, 115]. Smart contracts have proven to be effective for autonomous

and secure execution of end-to-end energy transactions based on local consumer

preferences. Ethereum’s smart contracts are regarded as strict protocols on the

blockchain that allow energy transactions to be carried out once all prerequisites

16

have been met. Energy exchanges are monitored as financial transactions, with the

corresponding resource consumption quantified in gas units and remitted in Ether at

the gas price [50, 88]. However, despite the prevalent adoption of smart contracts in

energy applications that streamline consumer and prosumer interactions towards a

robust settlement process, no research has been conducted on the identification and

analysis of energy smart contracts. Considering the multitude of deployed contracts,

the lack of methodologies (such as classification models for the analysis of energy

smart contracts) makes it challenging to gain insights into this ecological environment

and to identify vulnerable smart contracts once deployed.

To the best of our knowledge, there has been no contribution explicitly addressing the

detection and analysis of energy smart contracts. The key contributions of this article

can be summarized as follows. This chapter demonstrates the significance of domain-

specific classification and analysis tools for smart contracts. This is accomplished

using a method that leverages contextual terms for classification of smart contracts

using code and comments.

The proposed classification pipeline provides a method for the detection and labeling

of energy smart contracts using their source code. It uses feature engineering methods

to produce domain-specific corpora, which are subsequently embedded within machine

learning classification models. A domain-specific analysis is a method of deriving

technical and language-dependent features to enhance the structural and procedural

understanding of smart contracts. This is achieved by employing contextual terms at

a lexical level, searching for key terms and attribute tags to develop the energy corpus

that will aid in deciphering the code’s context and retrieving energy contracts.

By discerning the domains, we intend to reach higher levels of abstraction and

handle the intricacies of DApps design specifications. The developed model captures

the entire lexicon of transactions used for developing an energy smart contract. Finally,

energy smart contracts are analyzed to identify patterns in the distribution of code

segments, the predominance of specific functions, and recurring contracts across the

17

Ethereum network.

The proposed approach can be used by contract developers to track similar contracts

deployed on Ethereum. Contract level representation is used to include the highest

level of granularity in the classification; thus, the proposed method is applicable to any

application domain by using the key terms and attributes pertaining to that domain. It

develops the corresponding corpus using contextual terms, and the collected attributes

are then used to train the classifier.

This methodology can be further extended to include measures for anomaly de-

tection and malicious contract detection in the context of energy smart contract

analysis. Security practitioners can use it to investigate the potential vulnerabilities of

energy smart contracts. The search for vulnerabilities can be optimized by factoring

intriguing elements such as the semantics of the defects while vulnerable contract’s

syntactic representation is protected to the greatest extent possible. This an impor-

tant step towards the design and development of auditing systems to address the

identified vulnerabilities.

The article is organized as follows. Section 2.3 introduces energy smart contracts and

provides background information on smart contracts and natural language processing.

In Section 2.4, related works are discussed to further highlight the contributions

of this research. Section 2.5 describes the research methodology and the proposed

classification pipeline, followed by Section 2.6 which showcases the classification results

obtained by the baseline models. Finally, Section 2.7 summarizes the conclusions and

future research directions.

2.3 Background

To ensure effective identification of energy smart contracts, this study is based on

Natural Language Processing (NLP). It is important to explore the core concepts of

text classification in line with fundamental principles pertaining to the definition of

smart contracting for the energy domain, as well as what constitutes a generic energy

18

smart contract. Section 2.3.1 provides an introduction to energy smart contracts,

followed by an overview of textual data classification in Section 2.3.2.

2.3.1 Energy Smart Contract

In recent years, much attention has been given to blockchain platforms supporting

smart contracts for the development of decentralized applications. Smart contracts have

been designed and deployed in a broad array of applications, from fund management

to the power grid. Given that smart contracts are deployed on a blockchain that was

primarily intended to store financial transactions, the most instinctive applications

of smart contracts involve trading assets between contracting parties [176]. Coupled

with increasing progression toward a more decentralized and dynamic energy system,

the viability of blockchain-enabled smart contracts in transactive energy systems has

become prominent.

Energy smart contracts are employed for automatic execution and monitoring

of energy trading events [58, 69]. An energy smart contract is implemented with

instructions to retrieve the capacity and price offered by generators. The offer is then

consigned to the prospective buyers for the bidding process to begin. A double auction

is a commonly used mechanism to settle the price. Once the price has been cleared,

the grid power flow is examined to ensure the feasibility of the allocations.

According to Desen et al. [69], the information is transmitted through six different

layers in the energy smart contract workflow, as illustrated in Figure 2.1. The first

layer involves the transmission of input data in the form of bids, offers, voltage levels,

or availability signals from any agent involved in the peer-to-peer transaction for the

demand side to be automatically triggered.

The second layer implements innovative optimization and energy management

algorithms to address potential inconsistencies within contracted and delivered energy.

Any computationally intensive control algorithms should be placed off smart contracts

to minimize extra computational expenses imposed by implementing them in this

19

Communication
 Protocols, M2M, WiFi

 Computation
 Deployment on VM

 Blockchain Function
 Verification, Encryption

 Contracting Functions
 Transactions, Registrations

 Energy Management
 Consensus, Matching, Control

 Agents, Devices and Grid

Bids, Offers, Device status

Figure 2.1: The smart contracting paradigm for energy applications

layer. The smart contract is coded in the third layer using solidity. This allows the

preceding layers to incorporate different programming languages. This layer handles

all financial transactions, including gas expenditure and agent registration.

Layer 4 controls the verification and encryption requirements for the smart contract’s

placement into the block. Layer 5 is where implementation and execution occur, which

require interaction with virtual machines, namely the Etheruem Virtual Machine

(EVM). Subsequently, the data are transmitted across communication protocols using

wired or wireless communication means.

2.3.2 Text Classification

Text classification is a fundamental aspect of NLP used for topic labeling, sentiment

analysis, and spam detection [51, 90]. It can be performed either through automatic

labeling or manual explanation. However, dealing with an overwhelming volume of

text data embodies the significance of automatic labeling approaches.

Text classification can be performed automatically using rule-based or machine

learning methods. The rule-based method follows a pre-defined rule set for classifica-

tion, thus necessitating a coherent understanding of the domain. Machine learning

approaches, on the other hand, perform classification by analyzing the text [166].

They have proven to be effective for unstructured data. The machine-learning-based

20

text classification approach derives feature representations from text in conjunction

with domain knowledge. The extracted features are then applied as inputs to train

the classifier.

It should be noted that smart contracts are profoundly different from the standard

text. Smart contracts include source code and comments, both of which convey

semantic information. However, they may also carry non-descriptive or non-existent

comments, resulting in semantic sparsity. This prompts the adoption of domain

knowledge to reduce the semantic sparsity of smart contracts.

2.4 Related Work

Smart contracts, unlike conventional contracts, are not written in natural language,

making it difficult to determine their context. When compared to conventional

programming languages, such as C and Java, uniform understanding of Ethereum

smart contracts is relatively limited.

Nonetheless, there have been a few attempts at classifying Ethereum smart con-

tracts prior to this research. However, smart contract classification described in the

existing works is not necessarily consistent with Buterin’s initial classification of three

tiers of financial, semi-financial, and non-financial applications [12]. For instance,

Shi et al. [117] applied NLP on bytecode to classify contracts as governance, finance,

gaming, wallet, and social, although wallets are a subset of financial applications,

according to Buterin’s early classification. Using Long Short-Term Memory (LSTM),

Hu et al. [57] classified Ethereum smart contracts by identifying six behavior patterns

analysing transactions including game, gambling, exchange, finance, high-risk, and

social transactions. Later, Tian et al. [135] developed a smart contract classification

strategy based on Bidirectional Long Short-Term Memory (Bi-LSTM) and Gaussian

Latent Dirichlet Allocation (LDA) to classify contracts as entertainment, management,

lottery and tools, finance, IoT, and others.

According to our experience, there is no consistent set of smart contract specifications

21

in published research work, and smart contracts associated with comparable practices

are often classified differently.

The proposed study extracts domain models with the intended goal of deriving

business logic from current Ethereum-based Dapps aiming at transactive energy

systems. Complete formal characterizations of a program’s intended behavior are

rarely available; thus, it is imperative to describe smart contracts from a domain-

specific standpoint. Furthermore, addressing prevalent smart contract vulnerabilities

mandates a semantic and synthetic understanding of the compromised contract.

Although the transparent execution of smart contracts has enhanced the readability

of blockchain-enabled systems, the characteristics of distributed ledgers make it

extremely challenging to revoke vulnerable smart contracts once they are deployed.

As a result, massive financial losses caused by smart contract security breaches in

former intrusions have compromised the ecological stability of the contract layer in

widely adopted blockchain platforms such as Ethereum. Hence, a growing concern

in blockchain security is the detection of smart contract vulnerabilities [152, 154].

Scalability and new security vulnerabilities will emerge as the scale of the Ethereum

projects advances over time. Novel vulnerability detection algorithms should detect

and assess novel security threats and determine how to mitigate them. Accordingly,

the search for vulnerabilities can be optimized by factoring intriguing elements such

as the semantics of the defects.

In fact, contract classification based on the application domain and transaction

context offers greater insight into the syntactic and semantic properties of a given

class of contracts. This can be further used for the design and implementation

of customized vulnerability and fault detection mechanisms for a specific domain,

including transactive energy systems [47]. Consequently, it is important to design

and employ smart contract analysis tools to gain a broader knowledge of contracts

concerning their underlying domains [102].

This will help to establish the groundwork for the development of domain-specific

22

vulnerability detection algorithms for the detection and mitigation of unknown vul-

nerabilities and facilitates protecting vulnerable contracts’ syntactic representation to

the greatest extent possible.

2.5 Methodology

To evaluate the grammatical, symbolic, and arithmetic characteristics of smart con-

tracts, this study analyzes their source codes using machine learning algorithms. They

are deployed as predictive models for detecting Ethereum energy smart contracts.

As depicted in Figure 2.2, the proposed classification pipeline can be deconstructed

into three main stages of pre-training, training, and testing. Pre-training encompasses

data collection and feature engineering. This adheres to the embedding layer and

baseline models under training, after which the models are tested and evaluated.

Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM)

are employed as classifiers and a comparative performance analysis is carried out on

the obtained results.

As shown in Figure 2.2, pre-training embeddings and domain-specific embeddings

form the corpus. Its components are further illustrated in the form of the graph shown

in Figure 2.3 and the embeddings listed in Table 2.1, which can be interpreted in

terms of their relative frequency (see Section 2.6 for an example).

2.5.1 Data Collection and Pre-Processing

This study is performed on smart contracts solidity source codes retrieved from

etherscan.io [31]. Since the code is explicitly used as the input for the classifier, it

must be parsed to acquire an appropriate code representation form [91, 143]. Code

representation is performed using a customized solidity parser at the contract level,

function level, comment level, and token level to identify semantic information within

the focal points. As a result, contract level representation is employed to include

23

Domain-Specific Embeddings

Pre-Training

Etherscan
.Sol

Test

Corpus Builder

Data Collection

New Smart
Contract

 S
pa

rs
e

Em
be

dd
in

g
La

ye
r (

TF
-ID

F)

Energy Tokens

Energy Tags

Energy Terms

Energy Corpus

 Dense Embedding Layer W2V(CBOW)

Model(i)

Pre-processing

Fe
at

ur
e

Ex
tra

ct
io

n

Labeling

Energy

Training

Performance
Evaluation

Pre-trained Embeddings

Kn
ow

le
dg

e
D

is
co

ve
ry

C
la

ss
ifi

ca
tio

n

Non-Energy

Figure 2.2: Architecture of the classification pipeline.

Solar Tidal

Hydro

Wind

Geothermal

Biomass

Biodesiel

Generation

Energy

Sharing

Nordicenergy

energydata

energypackage

energyamount

maxenergy

mwhgwh

twh

kwh

Surcharge

mwatt

megawatt

Green

Sunchain gnrg

Greenenergy

ces

ces-token

ElectrifyAsia

elec wpp

power

wepower

PWR

powerledger

Renewable

SEG

CreativEenergy

CME

Loopenergy

rox

roxtoken

Figure 2.3: Graph of domain-specific terms.

24

Table 2.1: Word2Vec Embeddings.

Term Matches Similarity

Solar Tidal 0.8525

Hydro 0.8455

Wind 0.8441

Geothermal 0.8300

Biomass 0.8185

CME 0.8181

Biodiesel 0.7907

Biomass CME 0.9951

Geothermal 0.9932

Biodiesel 0.9901

Hydro 0.9817

Tidal 0.9701

Wind 0.9295

Energy 0.8791

Sunchain [128] GNRG [43] 0.9526

CES [14] 0.9034

ELEC [30] 0.8951

ElectrifyAsia [30] 0.8840

WPP [159] 0.8815

CreativeEnergy [22] 0.8789

SEG [20] 0.8620

25

100%

80%

60%

40%

20%

0%

-20%

-40%

-60%

-80%

-100%

2.7178 1.9689 1.5919 0.6484 0.6355

-8.0191 -2.361 -2.0526 -1.2354

Po
we
rL
ed
ge
r

Py
lon

En
erg
y

Lo
tte
ry

Be
ttin
g

Sp
ort
s

Ga
mb
le

Ga
me KW

h

Non-Energy-ness

Figure 2.4: Energy context assessment by logistic regression.

the highest level of granularity in the classification. Moreover, pre-processing of raw

unstructured text is required for content analysis.

The pre-processing of the source code includes cleaning, normalizing, and stemming

to remove stop words and semantic-irrelevant terms and to break down the words to

their roots for detection of semantic similarities in feature extraction [143].

2.5.2 Building a Domain Corpus

In NLP, the frequency of terms is important to analyze the context. As a result, most

feature extraction methods need a corpus of annotated terms paired with an ensemble

of algorithms to learn the significance of a term in a document [91]. The process of

corpus development and energy token extraction is discussed in this section.

Machine learning has been widely adopted for the semantic and syntactic analysis of

text. As a result, most machine learning approaches require a corpus of annotated text

for the underlying algorithm to learn the significance of each term in the document

[41]. The corpus must be a balanced, representative collection of terms about a specific

topic [4]. The vocabulary of size 376 and energy corpus was created using domain

knowledge and by extracting domain features and terms from both the comment and

code segments of the contracts. Text analysis and feature extraction methods include

different levels of granularity including document level, sentence level, and word level

26

analyses.

In the course of developing the energy corpus and processing the smart contracts,

we analyzed source codes at the lexical level. From a lexical standpoint, featuring a

domain-specific corpus facilitates capturing the terms and statements that correspond

to a specific application domain with prototypical measures at syntactic and semantic

levels. Moreover, a domain-specific term distinguishes itself by the relative degree of

closure of its lexicon, which signifies that, unlike a general corpus, a domain-specific

vocabulary is nearly finite. Since certain syntactic structures and classes are more

prevalent in a given application domain than in general corpus, we aim to create key

energy terms, tokens, and attribute tags that will facilitate interpreting the context of

the code and retrieving energy contracts. Moreover, semantics serve a limited role in

smart contract development and using keywords allows a surface-level interpretation

of source codes.

Using term frequency and relevance, the corpus is intended to connect a knowledge

base as a dictionary to the source code text. The corpus will be updated progressively

as new energy contracts are identified during the process.

Extracting Energy Tokens

Tokens are the most prominent parts of Ethereum smart contracts. On the blockchain,

cryptocurrencies serve a comparable function to cash, whereas cryptographic tokens

serve as universal tools for managing digital assets. ERC-20 is one of the most widely

used Ethereum tokens, adopted by a multitude of digital currencies [146].

The advent of the standardized ERC-20 contributed to the emergence of Ethereum-

based utility tokens and a tokenized economy [41]. Accordingly, energy tokens are

widely adopted across smart contracts representing tokenizable values for peer-to-peer

energy transactions and keeping the values fungible across energy application networks

[40, 138]. These tokens are minted and distributed amongst stakeholders with the

physical capacity to contribute services to the energy network. For instance, Power

27

Ledger (a blockchain-enabled energy trading platform) employs POWR tokens to

transact energy and trade environmental commodities [103]. As a result, incorporating

energy tokens in energy corpus will facilitate the identification of energy contracts.

Following the initial filtering using energy tokens, feature extraction is performed

to identify additional properties of energy contracts through text analysis methods

discussed in the following section.

2.5.3 Embedding Layer

The main challenge in active learning is selecting the most insightful data instances to

label and use to begin training. The choice of embeddings requires special consideration

since we are parsing source code.

As mentioned earlier, source code deviates from a genuine text in that it features

distinct granularity levels and lacks high-quality contextual information at the doc-

ument level. NLP and word embeddings have recently seen considerable advances.

However, source code processing requires semantics knowledge at the concept level

rather than unique occurrences in text. At the same time, instance-specific embed-

dings (as introduced in BERT and similar approaches) are best suited for language

translation and search engine queries [134]. Hence, feature selection techniques are

useful to identify and eliminate unnecessary and irrelevant subsets of features [73].

Word2Vec [61] and Term Frequency–Inverse Document Frequency (TF-IDF) [105]

were used in this work as feature extraction methods. They analyzed over 10,000

smart contracts to facilitate preliminary filtering. Word2vec is a pre-trained word

embedding neural network, effective in text classification with small corpus, as in our

case. The Word2Vec embedding layer keeps the semantic and syntactic information

of codes and comments and it predicts the context of the terms. Using Continuous

Bag of Words (CBOW) as the underlying architecture, the semantic correlation of the

existing terms in the corpus was evaluated to find the closest match [167]. CBOW

quantifies the frequency of the terms in the document by assigning each term a value

28

representing the occurrence of that feature.

The corpus is updated by terms with the highest semantic similarity scores, as illus-

trated in Table 2.1. Using a lexicon of energy-relevant terms, the occurrence of each

term and their corresponding semantic correlation score are factored as measures of

the energy-ness of the contract. Subsequently, the pre-processed contracts are passed

through an embedding layer stacked in front of the classification model. TF-IDF is

used as a sparse embedding layer to extract features from the labeled data. It works

by penalizing frequently occurring terms in the source code to identify prominent yet

infrequently used terms that prevail over the context. Using TF-IDF, each term in the

source code is assigned a weight that determines the significance of the term in the

source code based on its frequency and inverse document frequency used for training

the classifier.

2.5.4 Baseline Models

Determining the best classifier is an imperative yet challenging decision in any text

classification workflow. It needs to take into account many aspects, including the

data composition, scalability of training, and run-time efficiency. In this study, NB,

LR, and SVM are used as baseline models for classification of the Ethereum smart

contracts [55].

Logistic Regression

LR is a discriminative, probabilistic classifier that is commonly employed in NLP as a

supervised machine learning model. Based on its core assumption that dependent and

independent variables do not have a linear relationship, LR examines the relationship

between categorical variables using a logistic function. It requires a training corpus to

detect discriminating features between the desired classes.

The input corpus is used by LR to learn the domain’s verbal intuition and syntactic

literature, as well as to retrieve document features and biased terms. Each input feature

29

is assigned a weight that represents its importance in the classification decision. LR

assigns higher weights to the primitive terms, although it is not capable of generating

an instance of these terms on its own. The bias term, commonly referred to as the

intercept, is also added to the weighted inputs. This implies that energy terms are

negatively associated with the non-energy decision, as illustrated in Figure 2.4.

Instead of determining similarity, LR takes into account the distance between

the energy and the non-energy contracts. Following that, gradient descent is used

to iteratively update the weights in order to minimize the cross-entropy loss which

is a convex optimization problem. Hence, the algorithm’s resistance to correlated

characteristics contributes to a higher classification precision.

Naive Bayes

Another probabilistic, supervised classifier employed in this study is NB. It deter-

mines the likelihood of a label based on previously observed characteristics and

their conditional independence. Using the Bayes theorem, this model identifies the

correlation between conditional probabilities and statistical quantities. As an incre-

mental approach, NB is predicated on a theory that all attributes are independent

and any context disregarding this conditional independence principle deteriorates its

performance.

The source code is transformed into a feature vector as an input for naive Bayes

to be trained on the training set, estimating the likelihood of energy-ness given each

feature. Generally, features can be developed by analyzing the training set while

keeping linguistic intuitions and the domain-specific linguistic literature in mind.

Developing complex features that are variations of a number of primitive features is

especially useful, as illustrated in Figure 2.3.

A thorough assessment of errors on the training set often yields perspectives on these

features. NB generates the probability of each feature for each class, such that the

probability of each feature can be optimized to project energy-ness or non-energy-ness

30

of the smart contracts.

Support Vector Machine

The last supervised learning approach used in this research is SVM. It has proven to be

an effective method for pattern recognition and text classification. As a discriminant

classifier with a statistical learning paradigm, SVM attempts to capture the optimum

trade-off between complexity and learning to ensure maximum generalization and

minimum structural risk.

The source code is perceived as a bag of words and each term is associated with a

feature where the significance of the feature is determined by the frequency by which

it appears inside the contract using TF-IDF. Once feature vectors are obtained,

SVM transforms the training set into a multidimensional space to create a hyper-

plane. The optimal position of the hyper-plane is directly affected by the data points

closest to the decision boundary as they are the most challenging to identify. In

addition, a subset of the training set is used as support vectors in the decision function,

making it memory efficient. Using a higher dimension, SVM distinguishes the classes

with the highest marginal distance, establishing a decision boundary to optimize the

classification accuracy.

2.6 Evaluation Results

Tables 2.2 and 2.3 demonstrate how each model performs on energy and non-energy

contracts independently, as well as the overall accuracy of each algorithm using

precision, recall, and the F1-score [45]. The obtained results show that LR produced

the maximum accuracy of 98.34%, 97.53% precision, 98.78% recall, and 98.12%

F1-score. Figure 2.4 depicts the LRs effective energy assessment of the frequently

encountered terms in the source codes.

The model is fed the TF-IDF features and their corresponding coefficients, which

translate to a weighted combination of input features. This is to determine the

31

importance of the feature in the overall logloss calculation. Hence, the probability of

the contract being a non-energy contract increases as the logloss increases, while the

probability of the contract being an energy contract increases as the logloss decreases.

As a result, the term “Energy” has been appointed a −8.0191 correlation score with

non-energy terms and is regarded as the most energy-related term. Pylon [1], which

has been further identified as one of the dominant energy tokens adopted in several

energy transactions, has been classified as an energy-related term with a −2.361

correlation score with respect to non-energy terms. On the other hand, terms such as

game, gamble, sport, betting, and lottery that embody dominant application areas for

smart contracts are classified as non-energy terms [57].

LR achieved substantial results since the classification task is fundamentally a

binary problem. In addition, the probabilistic structure of LR allows the use of the

likelihood ratio for reducing the costs associated with misclassification. The primary

difference between LR and NB as the best performing algorithms is that LR is a

discriminative classifier and NB is a generative classifier [114]. As a result, the success

of LR over NB can be traced back to LRs robustness to correlated features and NBs

intense conditional independence theorem. Although NB is acknowledged for its fast

convergence, it demonstrated relatively high errors compared to LR. Nevertheless,

because of its comparable outcomes and effortless training, NB remains a viable

technique for use on small datasets [116].

SVM produced satisfactory results in the contract classification, with 87.23%

accuracy. SVM is able to generalize because, as a probabilistic method, it does not

penalize instances in which the correct decision is made with a reasonable degree of

certainty. However, SVM underperformed in comparison to the other algorithms since

it aims to maximize the perpendicular space between the two edges of the hyperplane

to reduce the risk of generalization errors. As a result of the high correlation between

smart contracts, the marginal distance of the data points decreased, resulting in a

32

Table 2.2: Class-specific metrics from the confusion matrix report.

(a) Energy Class

Model Precision Recall F1-Score

LR 0.95 1.0 0.97

Naive Bayes 0.86 0.92 0.89

SVM 0.97 0.77 0.86

(b) Non-energy Class

Model Precision Recall F1-Score

LR 1.0 0.98 0.99

Naive Bayes 0.91 0.86 0.88

SVM 0.81 0.98 0.88

higher generalization error and a lower accuracy.

Subsequently, a fraction of the identified energy contracts were analyzed to capture

any patterns in code segment distribution, prevalent adoption of specific functions,

and recurring contracts across the Ethereum network [102]. Figure 2.5 depicts the

most common energy tokens used to facilitate transactions in energy smart contracts.

POWR is a utility token that grants access to the Power Ledger platform and its

peer-to-peer features and serves as the ecosystem’s fuel [103]. Similarly, WPP Energy

is a publicly available blockchain-based renewable energy investment platform that

offers peer-to-peer smart-contract-enabled transactions using WPP tokens in an effort

to promote the use of cryptocurrency in the energy market [159]. WePower is another

blockchain-based green energy trading platform that enables energy suppliers to gain

capital for green energy efficiency through smart contracts and WPR tokens. These

tokens are indicative of the energy produced by producers in the days to come, giving

buyers the opportunity to invest in renewable energy [95].

33

Table 2.3: Performance of the baseline algorithms on a full-feature model.

Model Accuracy Precision Recall F1-Score

LR 0.9834 0.9753 0.9878 0.9812

Naive Bayes 0.8910 0.8923 0.8910 0.8909

SVM 0.8723 0.8900 0.8723 0.8709

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

1.30%

3.08%

5.83%

0.32%

4.05%

0.97%

4.21%

5.99% 5.99%

1.30% 1.46%

WPP MWAT WPR ROX Pylon ELEC TSL KWH KWATT EWT POWR

Dominant Energy Tokens

Figure 2.5: Dominant energy tokens.

34

Finally, potential discrepancies between the code segments of both categories were

examined, selecting 20 energy smart contracts and 20 non-energy smart contracts.

Figure 2.6 illustrates the comparative results obtained from the distribution of contract

code segments. When compared to non-energy smart contracts, the results obtained

on the distribution of energy code segments imply that the development of energy

contracts tends to prioritize the adoption of contracts and libraries over interfaces.

The number of Logical Lines of Code (LLOC) (excluding comments and empty

lines), the number of Source Lines of Code (SLOC), the Number of Functions (NF),

the deepest Nesting Level (NL), the number of parameters (PAR), and the number of

Comment Lines of Code (CLOC) results also validate the prevalent use of identical

contracts with minor adjustments and demonstrate how the lines of comments are

heterogeneous and not necessarily proportionate to the length of the code. The results

further confirm the prominent adoption of StandardToken and ERC20 in both classes

upon analyzing dominant contract names and function names across both energy and

non-energy smart contracts.

As illustrated in Figure 2.7 and 2.8, the primary differences between the two classes

in terms of function names can be attributed to the Ownable, Safemath, Pausable,

and Mintable contracts. This indicates that Mintable contracts are not commonly used

in energy contract development, since Mintable tokens feature a non-fixed total supply,

allowing the token issuer to mint additional tokens. On the other hand, Ownable,

Safemath, and Pausable are not identified as dominant non-energy contracts. Owanble

contracts may be utilized for lowering gas costs and binding configuration functions

to specific external addresses and are widely adopted in the energy sector.

The SafeMath library examines whether an arithmetic operation will result in an

integer overflow/underflow. Energy contracts use Safemath to send an exception

and rollback the transaction. Pausable contracts are another common practice among

energy contracts, allowing the owner of a Pausable contract to halt and restart

functions. The owner can pause the functionality at any time; thus, users may be

35

Energy
Non-Energy

LibraryContractInterface
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of Code Segments

Energy
Non-Energy

LLOC
0

1000

2000

3000

4000

5000

6000

7000

8000

Source Code Analysis Metrics

SLOC CLOC NF NL PAR

Library
0

100

200

300

400

500

Energy Contract LLOC

InterfaceContract Library
0

20

40

60

80

100

InterfaceContract

120

Non-Energy Contract LLOC

Figure 2.6: Code segment analysis I

hesitant to utilize the corresponding dApp, making this a drawback in design for energy

contracts. Although from a vulnerability analysis standpoint, the lack of a pause

mechanism requires vulnerable contracts to be aborted while an alternate instance

becomes available on the blockchain. Finally, the same analysis among functions

in both classes entails the adoption of comparable functions across each category,

with more prevalent adoption among energy contracts, as illustrated in Figure 2.7.

2.7 Conclusions

Blockchain technology has brought innovation to a wide array of industries. The num-

ber of transactions on the Ethereum blockchain is approaching half a billion, turning

Ethereum into the largest smart contract blockchain platform. Unlike traditional

contracts, smart contracts are not written in a natural language, making it difficult

to determine their content. As a result, smart contract classification based on the

application domain and transaction context provides greater insight into the syntactic

36

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

ER
C2
0

Sta
nd
ard
To
ke
n

Dominant Tokens

ER
C2
0B
asi
c

Ba
sic
To
ke
n

Pa
usa
ble

Bu
rna
ble
To
ke
n

Mi
nta
ble
To
ke
n

To
ke
n

To
ke
nC
on
fic
Int
erf
ace

Sa
feM

ath

3.44%

6.45%

2.54%

3.40%

1.65%

3.14%

1.50%

2.33% 2.23%

1.23%
1.05%

1.31%
1.05%
1.18%

1.05%

ER
C7
21

0.60%

4.83% 4.84%

1.18%

Non-Energy Energy

Figure 2.7: Code segment analysis II

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

Tra
nsf
er

Ap
pro
ve

Dominant Functions

Ba
lan
ceO

f

Al
low

an
ce

To
tal
Su
pp
ly

Su
b Di

v
Ad
d

Tra
nsf
erO

wn
ers
hip

Tra
nsf
erF
rom

3.40%

6.75%

3.34%

6.03%

3.21%

5.41%

2.63%

4.88%

3.25%

1.99%
1.81%

1.91%

1.35%

1.82%1.75%

Mu
l

1.26% 1.16%

6.65%

Non-Energy Energy

2.44%

Figure 2.8: Code segment analysis III

37

and semantic properties of that domain. With the progression towards a more decen-

tralized and dynamic energy system, the impact of blockchain-enabled smart contracts

in transactive energy systems has gained prominence. As a result, it is imperative

to analyze the energy smart contract feature space to gain more insights into the

characteristics of contracts deployed for energy transactions.

Analyzing over 10,000 smart contract solidity source codes, this study proposes

an approach to discriminate energy smart contracts using the publicly accessible

Ethereum source codes. NLP and machine learning classification algorithms are

employed to detect and properly label energy smart contracts. To begin, a domain-

specific embedding layer is generated to identify and analyze energy tokens and

energy-related terms. Subsequently, both the energy corpus and categorical attributes

are employed as baselines for the training of the classification algorithms. Logistic

regression, naive Bayes, and Support Vector Machine are implemented as classifiers.

The classification performance of each algorithm is then evaluated using accuracy,

precision, recall, and F1-score metrics. Energy smart contracts are detected with up to

98.34% accuracy, with LR outperforming the other algorithms. Detected contracts are

further examined to discern any discrepancies or patterns in the distribution of code

segments, the predominant use of specific functions, and recurring contracts across

the Ethereum network.

We anticipate that the proposed approach will help to establish the groundwork for

innovative solutions for domain-specific classification and vulnerability detection of

smart contracts. Looking exclusively into the grammatical, symbolic, and arithmetic

characteristics of energy smart contracts may facilitate the identification of vulnerability

features that may have gone undetected in previous studies. Subsequently, machine

learning models can be employed for vulnerability assessments of the energy contracts

at the function level. To improve the accuracy of the existing vulnerability detection

models, the implications of integrating the conventional pattern extraction methods

with machine learning models can also be investigated.

38

Chapter 3

Evaluation of Smart Contract
Vulnerability Analysis Tools:
A Domain-Specific Perspective

3.1 Abstract

With the widespread adoption of blockchain platforms across various decentralized

applications, the smart contract’s vulnerabilities are continuously growing and evolving.

Consequently, a failure to optimize conventional vulnerability analysis methods results

in unforeseen effects caused by overlooked classes of vulnerabilities. Current methods

have difficulty dealing with multifaceted intrusions, which calls for more robust

approaches. Therefore, overdependence on environment-defined parameters in the

contract execution logic binds the contract to the manipulation of such parameters

and is perceived as a security vulnerability. Several vulnerability analysis tools have

been identified as insufficient to effectively identify certain types of vulnerability. In

this chapter, we perform a domain-specific evaluation of state-of-the-art vulnerability

detection tools on smart contracts.

A domain can be defined as a particular area of knowledge, expertise, or industry.

We use a perspective specific to the area of energy contracts to draw logical and

language-dependent features to advance the structural and procedural comprehension

of these contracts. The goal is to reach a greater degree of abstraction and navigate

39

the complexities of decentralized applications by determining their domains.

In particular, we analyze code embedding of energy smart contracts and characterize

their vulnerabilities in transactive energy systems. We conclude that energy contracts

can be affected by a relatively large number of defects. It also appears that the detection

accuracy of the tools varies depending on the domain. This suggests that security

flaws may be domain-specific. As a result, in some domains, many vulnerabilities

can be overlooked by existing analytical tools. Additionally, the overall impact of a

specific vulnerability can differ significantly between domains, making its mitigation a

priority subject to business logic. As a result, more effort should be directed towards

the reliable and accurate detection of existing and new types of vulnerability from a

domain-specific point of view.

3.2 Introduction

In essence, smart contracts are self-executing collections of codified agreements deployed

on decentralized networks of blockchain. Smart contracts support decentralization

through automated execution, blockchain integration, and immutable protocols. They

can also contribute to trust through transparency, automated execution, immutable

history, and cryptography.

As event-driven programs, smart contracts facilitate trusted transactions, allowing

anonymous parties to exchange digital assets or data [160]. The smart contract is

the main pillar of Ethereum and is widely adopted in various business domains. As a

proclaimed framework for integrating the execution of smart contracts, Etheruem

offers great capacity in the development of decentralized applications (DApps). Most

Ethereum smart contracts are written in Solidity, a high-level object-oriented program-

ming language, and then compiled into bytecode for execution using the Ethereum

Virtual Machine (EVM). The EVM creates a level of abstraction between the executing

code and the machine on which it runs, isolating the DApps and their corresponding

hosts [120].

40

Solidity smart contracts, like any other program, are susceptible to bugs, vulnera-

bilities, and security flaws caused by a lack of security patches [72]. However, smart

contracts are associated with immutability features that preclude any modification

after deployment, thereby enforcing the “code is law” principle [78]. Consequently, it

is necessary to verify that a smart contract does not contain hidden programming

defects that could have severe security implications. These defects could be maliciously

exploited by an attacker to initiate unintended processes the smart contract was not

set up to perform.

As more blockchain-based services are created, there is greater emphasis on the

reliability of smart contracts. In an analysis of approximately one million Ethereum

smart contracts, 34,200 have been identified as vulnerable [98]. Therefore, the early

detection of vulnerabilities prior to the deployment of smart contracts is extremely

important. Therefore, automated methods and tools have been developed to analyze

smart contracts to detect vulnerabilities and bad coding practices [3, 111].

The performance of comparable vulnerability analysis tools varies substantially

among different smart contract analysis studies. This is explicable through different

experimental settings and performance metrics. Consequently, evaluating the detection

competencies of these tools is very difficult.

Our research has shown that existing research on the effectiveness of benchmark

vulnerability analysis tools has not considered the application domain or the purpose

of the contracts under assessment. Although correlations between smart contract

categories and underlying vulnerabilities were identified in a recent study [60], security

defects in energy contracts were not factored into the evaluation.

To fill this gap, the primary focus of this study is the analysis of smart contracts

deployed in transactive energy systems. The proposed vulnerability analysis work-

flow allows the investigating of the associations between various contract types and

corresponding defects. Consequently, a domain-specific evaluation of both static and

dynamic analysis tools is carried out using curated contracts as the benchmark. We

41

have used state-of-the-art vulnerability analysis tools on energy and non-energy smart

contracts to answer the following questions:

• Which tool performs best in analyzing the vulnerability of smart energy con-

tracts?

• Do energy contracts contain more vulnerabilities and poor coding practices

compared to other classes of contracts?

• Are there domain-specific security flaws that existing tools fail to detect?

• Are certain state-of-the-art vulnerability analysis tools more effective in specific

application domains?

• Is there any benefit to developing domain-specific vulnerability detection tools?

3.3 Background and Motivation

Given the global interest in blockchain, researchers are investigating the vulnerabilities

of smart contracts as they form the cornerstone of blockchain development. Zeus [65]

evaluated over 22,400 solidity smart contracts and found that approximately 94.6%

of them had security defects. Another database containing blockchain security de-

fects constructed by researchers denoting smart-contract-related instances accounts

for 22% of all incidents [18, 26]. Smart contracts have complex time and order

dependencies. Hence, inconsistencies in the logic of a contract code contribute to

vulnerabilities and the incorrect execution of the smart contract [72]. As a result,

blockchain-oriented software engineering is necessary to avoid defects and ensure

effective programming practices.

Smart contract defects encompass a combination of security-related problems as well

as design deficiencies that could impede the implementation or increase the possibility

of future vulnerabilities or failures. Defects often result in the smart contract producing

an erroneous or undesirable outcome or causing it to operate in directions that were

42

not intended. Hence, the identification and elimination of these defects improve the

software reliability and development process [15].

The severity of defects can be categorized into three distinct types based on their

implications and the likelihood of causing a financial loss. Direct monetary losses are

classified as higher-grade defects, whereas risks of monetary losses that arise from

unauthorized or unintended contract operation are rated as medium-severity defects.

Defects that cause only superficial problems (such as poor accessibility or resource

depletion), do not interfere with regular operations, and do not result in financial

losses, are classified as low-severity defects. However, the broad spectrum of defects

makes it challenging to define them precisely. Hence, defect patterns are incorporated

as a conceptual representation to depict defect characteristics and attributes [66].

A pattern is an abstraction from a concrete design that recurs in predetermined,

nonarbitrary instances. Patterns encompass an overarching outline of a persistent issue

and an applicable solution with explicit goals and limitations. Different assessment

expressions for smart contracts can be implemented by pattern design. Each defect

type could entail a distinct collection of code segments and impose a varying set

of complications. Consequently, the development of defect patterns is crucial for

accurately and effectively conveying these security defects. Code Elements (CE),

Relationship Restrictions (RR), and Element Retrictions (ER) make up the majority

of the defect pattern. The pattern promotes the evaluations required to improve the

reusability of the contract code. Consequently, the validation and updating process for

smart contracts can be simplified by reusing the corresponding verification rules [44].

However, as smart contract structures becomes increasingly complex, a multitude

of vulnerabilities are emerging and expert-defined rules cannot keep up with constant

vulnerability updates. The resulting overlay of expert-defined rules leads to substantial

false alarm rates. This makes the rule-based detection of general vulnerabilities

impractical.

Several predeployment smart contract security analysis frameworks have been

43

developed in response to the substantial economic implications of defects in smart

contracts [28]. However, the primary concern remains the efficient and timely detection

of smart contract vulnerabilities. As the functionality of smart contracts expands, their

new attributes contribute to new types of security flaws. These flaws, in turn, allow

for complex attacks such as the new ERC777 reentrancy and cross-chain attacks [2].

Integration and acceptance tests developed for defect detection require extensive

technical knowledge of the blockchain framework. Any reliance on environment-defined

parameters in the execution logic of the contract binds the contract to the manipulation

of these parameters and is considered a security flaw [8]. Addressing prevalent smart

contract vulnerabilities requires a syntactic and semantic understanding about the

compromised contract.

The literature suggests that smart contract classification with respect to the applica-

tion domain and transaction context provides additional information on the syntactic

and semantic properties of the domain [118].

To identify new vulnerabilities, researchers must continue to expand their detection

prospects for the methods encoded in smart contracts that contain their business

logic. This study examines the benefits of incorporating business logic and domain

knowledge in the design and development of vulnerability analysis tools. We anticipate

that its results will help to establish the groundwork for innovative solutions for the

domain-specific classification and vulnerability analysis of smart contracts.

3.4 Vulnerability Analysis Tools

The smart contract vulnerability analysis tools can be classified into two main cate-

gories, static and dynamic [71]. Static analysis is the process of analyzing a program

without executing it. This method can be applied to both source code and bytecode

representations of smart contracts.

Dynamic analysis, on the other hand, is a run-time environment method that

screens the contract’s behavior during execution for potential vulnerabilities or security

44

breaches. Fuzzing is a form of dynamic analysis that passes defective data to the

executed smart contract to examine its response to the malformed input. Using the

Smartbugs [121] interface, this study targets a series of static and dynamic analysis

tools including Mythril, Slither, Smartcheck, Honeybadger, Osiris, Solhint, Oyente

and Conkas, and Confuzzius.

• Honeybadger [121] is an Oyente-based honeypot detection system that relies

on symbolic execution and well-defined heuristics.

• Osiris [141] is another Oyente-based tool that claims to be capable of finding

previously unknown critical vulnerabilities in some cases. Using symbolic execu-

tion coupled with taint analysis, Orisis offers the detection of a diverse range of

defects with improved detection specificity.

• Solhint [123] was proposed as a linting tool for solidity smart contracts. Using

pre-configured patterns and rulesets, it offers a good coverage of known security

defects.

• Smartcheck [137] validates contracts against XPAth queries using their XML

representation. This intermediate representation facilitates the localization of

detections across the source code to provide complete code coverage.

• Oyente [86] leverages operational semantics to search for execution traces in

the code where the transaction sequence has affected the Ether flow or the result

of computations is dependent on timestamps.

• Conkas [121] is another static analysis method that incorporates control flow

graphs (CFGs) as intermediate representations for symbolic execution. If the

user does not specify the dependency files, Conkas is not capable of tracing the

vulnerabilities encapsulated in the library files.

45

• Mythril [21] is intended to uncover common security issues and cannot detect

the concerns ingrained in business logic. It incorporates concolic, taint, and con-

trol flow analysis to search for attributes that cause vulnerabilities in smart

contracts.

• Slither [36] employs its own internal representation language for an intermediate

representation and performs data flow and taint analysis for information retrieval

and refinement. Slither determines a set of predefined analyses and a Static Single

Assessment (SSA) in a multistage procedure. With the Abstract Syntax Tree

(AST) as input, it can provide enhanced information to the other components

and simplify the computation of a diverse array of code analysis.

• Confuzzius [140] is the first hybrid fuzzer that integrates evolutionary fuzzing

with constraint solving to explore both shallow and deep fragments of contracts.

Using dynamic data dependency analysis, Confuzzius can derive transaction

sequences that lead to states with implicit security flaws.

3.5 Domain-Specific Perspective

Several attempts have been made to investigate smart contact vulnerabilities; however,

no research has examined the correlation between different types of contract and their

corresponding security flaws. A recent study reported a positive association between

smart contract categories and their vulnerabilities.

Giacomo et al. [60] suggest that gambling contracts are consistently associated

with bad randomness. However, the smart contract classification in this study fails to

consider many other application domains, including transactive energy systems.

Smart contracts have a broad range of applications in the energy industry, including

monitoring the production, distribution, and consumption of energy. These codified

agreements can also be used for the monitoring of carbon credits and the administration

of peer-to-peer energy markets. These markets represent an architectural transition

46

from traditional centralized energy distribution models. They are well positioned to

transform the energy landscape, with smart contracts enabling secure and transparent

transactions between energy suppliers and end users.

The inherent trust and transparency of blockchain technology, combined with the

automated characteristics of smart contracts, fosters a decentralized energy exchange

ecosystem that allows individuals to participate in direct energy trading, consumption,

and reimbursement. In a comparable study, smart contracts used in transactive energy

systems are examined to derive the business logic and disclose the features of the

contracts and the verbal intuition of the energy contracts [76].

Energy smart contracts encapsulate the terms and conditions governing a contract

among counterparties to regulate the transactions of electricity such as processing

market bids, billing, and optimal pricing for double-auction.

The code snippet illustrated in Listing 1 is an energy contract instance called

EnergyTrading that authorizes energy transactions by establishing the price and

availability using setEnergyPrice and setEnergyAmount functions. This contract offers

another function called SellEnergy that allows for keeping track of the energy sold and

ensures that the balance does not exceed the available energy. EnergySold is another

event used in this contract to monitor sales.

Listing 3.1: Sample energy smart contract.
1 pragma solidity ^0.8.0;
2
3 contract EnergyTrading {
4
5 uint256 public energyPrice;
6 uint256 public energyAmount;
7
8 event EnergySold(address seller , uint256 amount , uint256 price);
9

10 constructor(uint256 initialPrice) public {
11 energyPrice = initialPrice;
12 }
13
14 function setEnergyPrice(uint256 newPrice) public {
15 energyPrice = newPrice;
16 }
17

47

18 function setEnergyAmount(uint256 newAmount) public {
19 energyAmount = newAmount;
20 }
21
22 function sellEnergy(uint256 amount) public {
23 require(amount <= energyAmount , "Not enough energy available

for sale");
24 energyAmount -= amount;
25 msg.sender.transfer(amount * energyPrice);
26 emit EnergySold(msg.sender , amount , energyPrice);
27 }
28}

The DOT-formatted control flow graph of the EnergyTrading contract is depicted

in Figure 3.1 using Surya [21]. This is a common method intended to perform manual

contract analysis, inspecting the contract’s complexity using control flow graphs and

inheritance graphs. This approach to contract development minimizes complexity

while avoiding security breaches.

As shown in Figure 3.1, the contract functions are not interconnected and cannot

be called by external contracts. However, research shows that this is not a recurring

pattern for energy contracts. This is because these contracts feature various levels

of inheritance that embed complex computations. Additionally, energy contracts

encompass a plethora of external and internal calls that are related to the complexity

of the contract [69]. Consequently, smart contract vulnerability detection research

would benefit from an analysis of the effectiveness of vulnerability detection methods

in connection with certain vulnerabilities and application domains.

48

Internal Call

Legend

External Call
Defined Contract
Undefined Contract

Energy Trading

<Constructor>

setEnergyPrice

setEnergyAMount

sellEnergy

Figure 3.1: Control flow graph.

As a result of different experimental setup and performance criteria, the performance

of benchmark tools varies between different vulnerability analysis studies. Tailoring

the experimental setup to a target domain enables the search for critical security

breaches in contracts with comparable violation structures and behavioural patterns.

3.6 Analysis

As shown in Figure 3.2, the analysis in this study is carried out using three distinct

data sets, each containing 20 smart contracts. The first data set, used to benchmark

smart contracts, is the curated data set of SB [121]. The primary objective of this

data set is to provide a collection of previously identified vulnerabilities that can be

used to evaluate the performance of analysis tools.

The appointed contracts encompass vulnerabilities such as reentrancy, access control,

time manipulation, bad randomness, and arithmetic issues. The other two data sets

encompass 20 manually labeled energy and 20 non-energy contracts from Etherscan.

As stated earlier, energy contracts are used to automate energy trading activities,

while non-energy contracts are formulated to regulate transactions in other application

49

domains, such as gaming, gambling, finance, and so on. The vulnerability analysis

is carried out on both energy and non-energy categories using all analysis tools.

The analysis can be broken down into two segments: benchmark and energy, each of

which is discussed in the sections that follow.

Etherscan

Security Defects

Vulnerability Injection Benchmark Contracts
Curated Contracts

Domain Classification
Energy ContractsManual Labeling

Non-energy Contracts

Static Analysis

Dynamic Analysis

Benchmark Vulnerability Analysis Tools

Source Code Analysis

Figure 3.2: Vulnerability analysis workflow.

3.6.1 Benchmark

The first part of the experiment serves as a benchmark to evaluate cutting-edge smart

contract analysis tools on most critical vulnerabilities using the curated data set.

Accordingly, the detection rate of each tool can be evaluated using true positive, false

negative, average run-time, and accuracy metrics.

As illustrated in Table 3.1, across all the tools, Slither identifies most defects and has

the highest accuracy and the shortest runtime. It is widely regarded as a highly effective

tool that incorporates code and constraint-solving mechanisms. Therefore, the obtained

results are consistent with previous research on the evaluation of smart contract analysis

tools [169]. Honeybadger, with symbolic execution and constraint solving, is the least

accurate method, followed by Solhint with code instrumentation. Mythrill is the

second slowest method with mediocre accuracy, showing the incompetence of symbolic

execution paired with constraint solving [71].

50

Table 3.1: Analysis results on curated dataset.

Analysis Tools

Vulnerabilities Metrics ConfuzziusConkasHoneybadgerMythrilOsirisOyenteSlitherSmartcheckSolhint

Bad randomness # 1 Duration 8.73 43.17 42.62 117.75 35.85 12.72 2.46 7.22 2.34

Detection ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓

Bad randomness #2 Duration 5.14 4.02 77.66 35.02 4.40 9.35 2.50 8.29 2.40

Detection ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✓

Bad randomness #3 Duration 5.88 5.73 4.73 23.37 5.19 4.57 4.68 12.09 4.31

Detection ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✕

Bad randomness #4 Duration 13.40 25.54 270.56 665.07 52.94 31.93 2.29 7.96 2.46

Detection ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓

Access Control #1 Duration 5.20 4.01 4.67 29.09 3.29 3.31 1.74 9.40 2.07

Detection ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Access Control #2 Duration 8.69 32.12 4.97 287.82 4.57 4.49 2.58 9.42 2.65

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Access Control #3 Duration 12.31 7.73 4.43 75.80 4.46 3.81 3.22 12.97 5.03

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Access Control #4 Duration 9.17 12.17 6.86 187.02 3.60 5.65 4.35 8.52 2.50

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reentrancy #1 Duration 26.17 556.36 22.80 64.55 106.86 56.45 3.13 103.80 7.27

Detection ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕

Reentrancy #2 Duration 8.12 3.57 2.98 66.90 3.46 4.16 2.38 8.54 2.34

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reentrancy #3 Duration 10.48 3.77 2.67 18.28 4.61 4.57 2.57 11.23 2.04

Detection ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕

Reentrancy #4 Duration 3.70 3.03 2.18 26.53 4.16 3.10 1.80 5.17 2.09

Detection ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕

Time Manipulation #1Duration 4.84 3.27 5.65 21.29 3.30 2.66 1.79 11.70 1.99

Detection ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✕ ✕

Time Manipulation #2Duration 20.45 3.69 4.36 271.60 3.69 5.64 2.26 14.23 4.23

Detection ✕ ✓ ✕ ✓ ✕ ✕ ✓ ✕ ✕

Time Manipulation #3Duration 5.51 4.20 3.61 10.61 4.29 3.04 2.79 30.98 3.02

Detection ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✕

Time Manipulation #4Duration 4.28 5.24 6.81 47.40 3.22 9.51 2.83 115.53 10.58

Detection ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕

51

Table 3.1: Analysis results on curated dataset (Cont.)

Analysis Tools

Vulnerabilities Metrics ConfuzziusConkasHoneybadgerMythrilOsirisOyenteSlitherSmartcheckSolhint

Arithmetic #1 Duration 45.14 168.23 134.60 1164.38 68.61 22.46 2.33 66.02 1.90

Detection ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✕

Arithmetic #2 Duration 5.89 4.19 3.17 44.70 3.40 4.47 2.40 6.77 2.30

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕

Arithmetic #3 Duration 5.99 10.97 4.43 10.24 3.96 2.23 2.95 6.18 3.42

Detection ✕ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✕

Arithmetic #4 Duration 4.67 3.45 2.29 15.65 2.95 3.12 1.94 5.63 1.91

Detection ✕ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✕

Overall Ave Run-time 11.09 41.26 30.50 144.12 16.69 9.18 2.73 20.65 3.38
TP 0.67 0.83 0.33 0.54 0.79 0.71 0.92 0.58 0.33

FN 0.33 0.17 0.67 0.46 0.25 0.29 0.08 0.42 0.67

Accuracy 0.67 0.83 0.33 0.54 0.79 0.70 0.92 0.58 0.33

3.6.2 Energy

To investigate the performance of the analysis tools in different domains, they are

applied to classified contracts. As shown in Figure 3.3, the results suggest that, among

a comparable number of contracts in both categories, the energy contracts contain

a relatively larger number of defects [34, 112]. Consequently, energy contracts take

longer to process, as presented in Figure 3.4.

The demographic profiles of the source code depicted in Figure 3.5 imply that

the number of LLOC, the depth of NL, and the Number of Attributes (NA) and

statements Number of Statements (NOS) are higher among non-energy contracts.

Similarly, Coupling Between Object (CBO) classes appears more frequently among

non-energy contracts.

Energy contracts, on the other hand, have a Deeper Inheritance Tree (DIT) and more

lines of code (SLOC). Correspondingly, energy contracts are more time-consuming

to process, with Mythril being the slowest tool across both categories, which is

consistent with the results obtained from the curated data set. Furthermore, Osiris,

Honeybadger, and Oyente endured evident instances of execution failures and timeouts

in both categories. As demonstrated in Figure 3.6, an analysis of energy contracts

52

resulted in far more timeouts, with Osiris having the most timeouts, followed by

Oyente and Honeybadger.

366
453

Energy Non-Energy

Figure 3.3: Vulnerabilities across different domains.

60,000

50,000

40,000

30,000

20,000

10,000

0
Conkas Honeybadger Mythril Osiris Oyente Slither SolhintConfuzzius Smartcheck

Non-Energy Energy

Figure 3.4: Contract processing time.

53

70%

60%

50%

40%

30%

20%

10%

0%

80%

90%

100%

LLOC NL NOS DIT CBO NASLOC
Energy Non-Energy

Figure 3.5: Source code metrics.

Energy Non-Energy

0

2

4

6

8

10

12

14

16

18

Honeybadger Osiris Oyente

Figure 3.6: Contract analysis timeouts.

The dominant vulnerabilities across both categories of contracts are comparable,

with a more ubiquitous presence in energy contracts, as illustrated in Figure 3.7. To

determine whether there are domain-specific vulnerabilities or security flaws that

emerge in particular application domains, Figure 3.8 summarizes the findings across

all dominant vulnerabilities discovered for each category.

54

EnergyNon-Energy

Integer_Overflow
SOLIDITY_PRAGMAS_VERSION

pragma
naming_convention

SOLIDITY_VISIBILITY
max_line_length
external_function

indent
Integer_Underflow

solc_version
SOLIDITY_REVERT_REQUIRE
SOLIDITY_UPGRADE_TO_050

SOLIDITY_DEPRECATED_CONSTRUCTIONS

0 10 20 30 40 50 60

Figure 3.7: Dominant vulnerabilities.

Non-Energy Energy

Transaction_Ordering_Dependence

SOLIDITY_SHOULD_RETURN_STRUCT

arbitrary_send

Unhandled_Exception

unused_return

SOLIDITY_UINT_CANT_BE_NEGATIVE

Integer_Arithmetic_bugs

Write_to_an_arbitrary_storage_location

SOLIDITY_VAR

0 1 2 3 4 5 6 7 8

Undetected Vulnerabilities in Energy SC

Non-Energy Energy

Undetected Vulnerabilities in Non-Energy SC

pragma

Truncation_bugs

assembly

constant_function

SOLIDITY_SHOULD_NOT_BR_PURE

MissingInputValidation

No_Ether_leak_no_send

0 5 10 15 20 25 30

Figure 3.8: Undetected vulnerabilities.

There are comparable vulnerabilities among both categories of smart contracts.

However, coding practices tend to be more detrimental among energy contracts due

to the more prominent presence of each vulnerability in this domain.

In general, any vulnerability pertaining to an energy smart contract’s logical

statements could be exploited by malicious users to obtain unauthorized access,

55

manipulate energy prices, execute unauthorized transactions, or disrupt energy trading

operations. Except for solidity-revert-requires and solidity-deprecated-construction,

which are uncommon in non-energy contracts, the dominant vulnerabilities in both

subgroups of contracts are mostly the same. However, pragma vulnerability, which

involves the use of various pragma directives, was frequently observed in energy

contracts as opposed to non-energy contracts.

Some vulnerabilities are prevalent in specific application domains, while others are

extremely rare. Throughout the analysis, none of the designated tools detected a single

instance of transaction ordering dependency in energy contracts. This observation is

further reinforced by Figure 3.8, which shows the unidentified vulnerabilities in each

category. However, energy smart contracts are built on complex economic models

such as time-based conditions and real-time pricing and vulnerabilities affecting these

models could have far-reaching implications. For instance, mishandling time-based

conditions could result in incorrect pricing during peak or off-peak periods, potentially

leading to financial losses for traders. This suggests that security flaws may be

domain specific and can, thus, be overlooked by existing analytical tools that are not

optimized for specific domains. Several studies reported that specific bugs, such as

bad randomness, were completely overlooked by the benchmarked tools [37].

3.7 Discussion

According to empirical analytical studies of smart contracts, only a few of the security

flaws revealed by benchmark tools are verifiable [161, 164]. Similar studies claim the

evaluation results demonstrated numerous instances of vulnerabilities that fell within

the tools’ detection span but were not flagged by them. Additionally, there is no single

tool that can detect all known vulnerabilities [28, 42, 109].

With a substantial number of false positives and false negatives, most of the existing

vulnerability analysis tools do not meet the requirements of practical scenarios that

rely on extensive manual verification.

56

As shown in Section 3.6, Slither demonstrated the highest accuracy for curated

contracts. As a result, it could serve as a benchmark to assess the efficacy of other

analysis tools on classified contracts, as suggested by previous vulnerability anal-

ysis research [169]. The following segment of this study is directed at validating

this proposition.

Since the implications of reentrancy threat are primarily determined by the smart

contract’s business logic, the detection accuracy of the tools varies depending on the

domain. In this section, we examine Slither’s performance on classified contracts,

pertaining to its effectiveness on reentrancy detection for curated smart contracts.

There are a total of five and seven reentrant contracts detected in the energy and

non-energy group, respectively.

According to the detection results in Table 3.2, Conkas detected reentrancy in all

examined contracts, whereas Slither detected only one reentrancy in energy and three

reentrancies in non-energy contracts. This can be interpreted as either False Positive

(FP) for Conkas or False Negative (FN) for Slither. Therefore, we examined each

contract independently to confirm the credibility of the results. The findings revealed

Slither’s inability to detect reentrancy, notably in energy contracts.

57

Table 3.2: Slither’s reentrancy detection rate.

Domain Contract Conkas Slither Osiris

Energy Xad417b.sol ✓ × ×
X3d9900.sol ✓ × ×
X9001cb.sol ✓ × ×
Xe69ba3.sol ✓ ✓ ×
X5f10fd.sol ✓ × ×

Non-Energy Xb99bf.sol ✓ ✓ ×
XE3bcd.sol ✓ × ×
X92658.sol ✓ × ×
X6b0481.sol ✓ ✓ ×
X326c72.sol ✓ × ×
X75d9e6.sol ✓ × ×
X091d3f.sol ✓ ✓ ✓

The reentrancy vulnerability almost always results in the loss of smart contract

money. However, in some cases, it may be the ability to create multiple instances of

paid objects or to repeatedly orchestrate code that is only intended to be executed once

per call [119, 174]. Generally, when exploiting a reentrancy vulnerability, the attacker

aims to invoke the same contract function every time it is called. In programming, this

is widely recognized as the recursion principle. Hence, most reentrancy attacks involve

the transfer, send or call function. The send and transfer functions are considered

slightly safer because they are restricted to 2300 gas and the gas constraint precludes

the corresponding contract from making costly external function calls. Evidently,

the call function is far more vulnerable [52, 67]. Whenever an external function call is

expected to carry out complex operations, the call function is commonly employed to

forward the remaining gas. This allows the attacker to resume the original function or

a specific function from the original contract using a cross-function reentrancy.

For instance, looking at one of the energy contracts from Table 3.2, unlike Slither,

58

Conkas reports potential reentrancy on line 117, as shown in Figure 3.9. However,

a closer look at line 3 in Listing 2, which equates to line 117 of the solidity file, points

to a possible reentrancy. It may occur when the function receiveApproval directly or

indirectly calls approveAndCall.

Listing 3.2: Smart contract with reentrancy.
1 function approveAndCall(address _spender , uint256 _value , bytes

_extraData) returns (bool success) {
2 allowed[msg.sender][_spender] = _value;
3 Approval(msg.sender , _spender , _value);
4
5 if(! _spender.call(bytes4(bytes32(sha3("receiveApproval(

address ,uint256 ,address ,bytes)"))), msg.sender , _value ,
this , _extraData)) { throw; }

6 return true;

errors

fails

findings

infos

parser

(7)

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

contract:
filename:
function:

address:

line:
name:

id:"Conkas"
mode:
version:

"Integer Overflow"

"solidity"
"2022/11/11"

"StandardToken"
"Energy.sol"
"transfer(address,uint256)"

"Integer Overflow"

"StandardToken"
"Energy.sol"
"transferFrom(address,address,uint256)"

"Reentrancy"

"EUEBToken"
"Energy.sol"
"approveAndCall(address,uint256,bytes)"

"EUEBToken"
"Energy.sol"
"approveAndCall(address,uint256,bytes)"

"Integer Overflow"

"EUEBToken"
"Energy.sol"
"transfer(address,uint256)"

"Integer Overflow"

"Integer Overflow"

"Energy.sol"
"transferFrom(address,address,uint256)"

"EUEBToken"

"EUEBToken"
"Energy.sol"
"approveAndCall(address,uint256,bytes)"

"Integer Overflow"

3531

117

2125

60

3105

52

1221

113

3876

117

1247

60

1892

52

Figure 3.9: Conkas analysis results

59

This can be avoided by updating the state before making external calls, ensuring

that the contract retains the most recent balance in the event that the attacker

calls withdraw again. Although call is a low-level function for interacting with other

contracts, it is not the preferred method for calling existing functions. It is strongly

recommended to use send or transfer over call to reduce the attack surface [124, 125].

Another preventative measure to further improve the safety of contracts is to

refactor the code. The objective of refactoring is to minimize the attack surface

by adding pre- and post-conditions, such as require and assert, to encompass the

vulnerable call invocations and ensure secure code structures. It ensures that all state

variables are updated before any external calls to prevent the attacker from recursively

calling the functions that are intended to be called once. The malicious node attempts

to leverage the call and take over the control flow of the system by transmitting it

to an external contract. By employing pre- and post-conditions, refactoring makes it

possible to completely terminate a transaction if any errors emerge, protecting genuine

users from potential risks.

Another form of refactoring is to safeguard the state of a contract with the inclusion

of a state variable to manage mutual exclusion in functions. This approach is partic-

ularly beneficial when addressing cross-function reentrancy breaches. The primary

objective is to protect code segments where common resources are accessed. Since

mutual exclusion allows only one public function to be operating at a time, just

one function will be able to modify the resource at once, completely eliminating

cross-function reentrancy.

3.8 Conclusions

Smart contracts in the energy domain provide the necessary versatility to consolidate

diverse processes according to the requirements of the application. Despite the positive

association between smart contract categories and their vulnerabilities, vulnerability

analysis tools do not consider violation structures and behavior patterns across

60

different application domains. Unfortunately, there is no perfect contract analysis

tool for any and all contracts and their underlying business logic. Furthermore,

the results of vulnerability analysis tools cannot be replicated in the absence of the

appointed dataset. To examine this gap, the presented study evaluates the benchmark

vulnerability analysis tools in classified and curated contracts.

This classification allows for an independent assessment of each domain’s vulnerabil-

ity source so that developers can differentiate between domain-specific vulnerabilities

when paired with different execution environments. Although the vulnerability analysis

workflow used in this research is only applicable to smart contract source code, it is

transferable to any application domain in the presence of contracts in the correspond-

ing domain. Therefore, it is reasonable to infer that the detection accuracy of the

tools varies depending on the domain, since the benchmark tools did not demonstrate

the accuracy claimed in the curated contracts. Furthermore, the overall impact of

a comparable vulnerability in one application domain may be more profound and

detrimental than in another. This makes the mitigation priority of these defects

subject to business logic.

In addition, energy contracts demonstrate above-average security flaws and take

longer to process, increasing the likelihood of failure or a timeout. The evaluation

results revealed the competence of symbolic execution for the analysis of energy

contracts. Accordingly, analysis tools that incorporate symbolic execution outper-

form code transformation coupled with constraint solving in detecting reentrancy in

energy contracts.

Finally, the absence of granularity in governance regulation could lead to faulty smart

contracts, sensitive endpoints, and ambiguous arbitration rules. One significant source

of concern is the possibility of tampering, in which fraudulent parties exploit defects in

smart contracts to gain unauthorized access or manipulate their intended functionality.

One such attack vector is replay, where an attacker intercepts an authentic transaction

and then replays it to illegitimately execute the same transaction. Therefore, a poor

61

governance approach may develop a secondary risk surface that can be exploited to

launch a targeted attack on smart contracts. As a result, novel forms of vulnerabilities

are emerging, such as cross-chain attacks, flashload attacks, and other types of attacks.

Because smart contracts operate automatically based on predetermined conditions,

this form of attack can have severe repercussions.

To reduce the risks associated with tampering, smart contract developers must

proactively adhere to best practices. Additionally, given the growing interest in the

adoption of smart contracts in areas such as metaverse, further investigation is required

to ensure secure decentralized governance. Therefore, more efforts should be directed

towards improving the reliability and accuracy of detection and disclosing new forms

of vulnerability from a domain-specific point of view.

62

Chapter 4

Transfer Learning with Graph Neural
Networks for Vulnerability Detection
in Energy Smart Contracts

4.1 Abstract

The integration of smart contracts marks a significant advancement in peer-to-peer

energy trading, offering a range of innovative and flexible features in this field. The

inherent reliability and transparency of blockchain technology, combined with the

automated execution of smart contracts, underpin a decentralized energy exchange

system that allows consumers to participate in direct energy trading.

Despite their benefits, smart contracts, like any other software, are not immune to

errors, vulnerabilities, and security issues, particularly when security patches are absent.

When integrated into energy systems, smart contracts can create complex temporal

and sequential dependencies, which can lead to a wide range of vulnerabilities as the

structure of smart contracts becomes increasingly intricate. Current efforts to identify

vulnerabilities in smart contracts rely heavily on expert-defined patterns, a method

considered inefficient due to its lack of adaptability. Additionally, manual expert

inspection is a time-consuming and resource-intensive process to collect sufficiently

large and properly labeled datasets of smart contracts within specific domains.

To enhance the effectiveness of current methods, we introduce a graph attention

63

neural network model called TL-GAT, which leverages transfer learning to detect

vulnerabilities in smart contracts. This framework enables developers to independently

assess vulnerabilities in each domain, allowing them to accurately identify potential

issues in diverse execution environments. The evaluation results confirm that transfer

learning can be used to leverage existing knowledge of vulnerabilities to improve the

effectiveness of generalization when addressing emerging vulnerabilities in a specific

domain, even with limited data availability.

4.2 Introduction

The advent of blockchain as a distributed ledger offers a reliable decentralized execution

scheme, which has fueled the rise of blockchain-powered platforms such as Ethereum

[151], [131], [158]. The smart contract is an exceedingly important component of

these platforms. It is executable code written in a high-level programming language

that encapsulates the specifics of buyer-seller agreements and transaction regulations.

Smart contracts offer several advantages, such as precision, efficacy, reliability, and

transparency [101]. As a result, blockchain-based smart contracts have attracted

considerable interest from various industries [35], [70]. The immutability and tamper

resistance of these blockchain frameworks are additionally enforced on smart contracts,

thereby ensuring that any terms documented in a smart contract cannot be altered

once they have been published. However, smart contracts encounter security challenges,

including an error-prone programming language with exploitable development bugs

that are often overlooked or discovered only after deployment on the blockchain,

making it difficult to fix them.

Smart contracts frequently govern substantial financial assets, making them attrac-

tive and easily targeted by malicious actors seeking financial gains. Bug exploitatioThe

advent of blockchain as a distributed ledger offers a reliable decentralized execution

scheme, which has fueled the rise of blockchain-powered platforms such as Ethereum

[151], [131], [158].

64

The smart contract is an exceedingly important component of these platforms. It

is executable code written in a high-level programming language that encapsulates

the specifics of buyer-seller agreements and transaction regulations. Smart contracts

offer several advantages, such as precision, efficacy, reliability, and transparency [101].

As a result, blockchain-based smart contracts have attracted considerable interest

from various industries [35], [70]. The immutability and tamper resistance of these

blockchain frameworks are additionally enforced on smart contracts, thereby ensuring

that any terms documented in a smart contract cannot be altered once they have

been published. However, smart contracts encounter security challenges, including an

error-prone programming language with exploitable development bugs that are often

overlooked or discovered only after deployment on the blockchain, making it difficult

to fix them. Smart contracts frequently govern substantial financial assets, making

them attractive and easily targeted by malicious actors seeking financial gains.

Bug exploitation in smart contracts can lead to severe consequences that affect the

entire blockchain ecosystem, rather than just individual contracts. There have been

several notable incidents caused by smart contract flaws, the most significant being the

DAO incident, which was triggered by a reentrancy vulnerability that resulted in the

unauthorized extraction of approximately $70 million in 2016 [175], [137]. As a result,

identifying and detecting smart contract vulnerabilities has become a critical challenge

that must be addressed promptly to mitigate potential financial losses caused by bug

exploitation [111].

Several smart contracts vulnerability detection methods have been proposed to

adapt classic software security strategies such as symbolic execution, data flow analysis,

runtime monitoring, and fuzzing [86], [62].

The vast majority of existing smart contract vulnerability detection methods rely

on static analysis to look for predefined vulnerability structures established by experts

in target smart contracts [98]. Since these manually specified vulnerability structures

are relatively simple, they are incapable of detecting intricate vulnerability patterns,

65

rely heavily on human expertise, and take an extended period to process smart

contracts. For instance, while Conkas [121] previously demonstrated effectiveness

in detecting a significant number of reentrancy vulnerabilities [77], it is unable to

effectively identifying vulnerabilities within smart contract dependencies and library

files and has reportedly logged over 300 false positive reentrancy detections across 31

samples [37], [99].

In addition, these detection techniques only search for specific vulnerabilities and

are difficult to extend to new vulnerability types, as experts must examine emerging

security defects to identify novel issues. With the rapid growth of smart contracts, it

is becoming increasingly challenging to develope precise vulnerability structures with

only a selected group of experts. Consequently, multiple detection tools need to be

utilized to analyze diverse security flaws, thereby complicating testbed development

for smart contract developeres and increasing processing overhead as well as runtime

analysis.

Machine learning has recently garnered significant attention from security researchers

owing to its ability to independently uncover hidden patterns in vast amounts of data

[133], [106]. To avoid reliance on expert-defined structures, researchers have suggested

various machine learning-based methods for detecting smart contract vulnerabilities.

Several studies treat the smart contract as natural language, viewing it as a linear

sequence, and then utilize a sequential neural network to perform feature extraction

and vulnerability detection. Qian et al. [107] proposed the Bi-LSTM [136] with the

attention mechanism to detect reentrancy by obtaining control flow and semantic

information. DeeSCVHunter [165] proposed the concept of vulnerability candidate

slices, which highlight fundamental vulnerability attributes, with an emphasis on

reentrancy and time dependency. However, a smart contract consists of more intricate

logic and structures than natural languages. As a result, the aforementioned methods

overlook implicit semantic features involving data or control dependencies within the

code’s structure, leading to low precision in vulnerability detection.

66

Consequently, a number of graph-based methods have been proposed to safeguard

the non-sequential semantic features of smart contract source code [13]. Zhuang et al.

[179] investigated the detection of smart contract vulnerabilities using a graph neural

network (GNN) and contract graph. Each graph portrays the syntactic and semantic

patterns for a smart contract function and is used in combination with a degree-free

graph convolutional neural network (DB-GCN) [162] and a novel Temporal Messaging

Network (TMN) [178] for vulnerability detection. However, similar to DB-GCN,

the majority of graph-based techniques employ a unidirectional graph convolutional

network to obtain the distinct characteristics of a graph. This generates the node

feature as well as each node’s outgoing edges, which prevents the model from discovering

the contextual properties of each node over inbound edges. The effectiveness of these

methods depends on the availability of well-structured training data, which can only

be acquired through manual audits performed by experts. In addition, preceding

studies have shown that the performance of comparable vulnerability analysis tools is

significantly different across various smart contract application domains.

Despite reports indicating a positive association between smart contract categories

and their underlying defects, vulnerability analysis tools have yet to consider the

application domain or purpose of the contracts under evaluation [60], [77]. Collec-

tively, existing methods impose limitations on the ability to explore newly emerging

vulnerabilities and advance domain-specific vulnerability analysis.

To address the problem of limited domain adaptation in existing approaches, the

primary objective of this research is to introduce transfer learning in the detection

of vulnerabilities in smart contracts. By harnessing knowledge from one domain, we

aim to enhance the model’s effectiveness in a new domain [17]. This approach has

the capacity to adapt to emerging vulnerabilities and patterns through fine-tuning,

thereby minimizing the requirement for substantial labeling within the target domain.

To examine this concept, in this study the vulnerability analysis is carried out on

smart contracts deployed in transactive energy systems.

67

In a previous study examining smart contracts [77], we noted that while the source

code demographic profiles suggested higher values for metrics such as the number of

logical lines of code (LLOC), depth of nesting levels (NL), and the number of attributes

(NA) and statements (NOS) in non-energy contracts, the energy contracts exhibited

a relatively greater number of defects when compared across an equal number of

contracts in both categories. However, the process of obtaining sufficient and properly

labeled smart contracts within specific domains involves the resource-intensive and

time-consuming process of manual expert inspection. Nevertheless, training of the

Graph Neural Network (GNN) within a specific domain evidently improves the model’s

learning performance, resulting in more refined vulnerability detection results.

In this study, we propose a GNN-based model that leverages the structural infor-

mation of smart contracts encoded as graphs for the detection of reentrancy attacks

[177], [163]. Accordingly, in this study we propose Transfer Learning with Graph

Attention Networks (TL-GAT) to train the GNN on a wide range of smart contracts

from various domains, serving as the source domain. Following that, we fine-tune the

model to detect reentrancy within the domain of energy smart contracts, which is

our target domain. The proposed method leverages the knowledge of the pre-trained

model, tailoring it to detect vulnerabilities associated with reentrant data points as

they manifest in the energy sector, with the goal of achieving the highest detection

accuracy compared to all previous efforts.

4.3 Background

Along with the continuing trend toward a decentralized and dynamic energy landscape,

the viability of blockchain-powered smart contracts in transactive energy systems has

garnered significant interest. The integration of smart contracts has emerged as a

significant advancement in the context of peer-to-peer (P2P) energy trading [110],

[69]. Smart contracts enable a wide range of innovative and dynamic functions in

energy trading, such as auction mechanisms and the enforcement of pricing policies

68

and exchanges [100].

The inherent reliability and transparency of blockchain technology, combined with

the automated properties of smart contracts, contribute to a decentralized energy

exchange system that enables consumers to participate in direct energy trading.

Through the use of peer-to-peer transmission smart contracts, participants can safely

place offers and purchase energy in the decentralized market. This way, consumers

can receive a proper offer from the various suppliers [23]. Considering the array

of features they encompass, smart contracts implemented within transactive energy

systems introduce highly intricate time and sequencing dependencies. As a result of

the increasing complexity of smart contract structures, a broad range of vulnerabilities

are developed [26], [15], [66].

Hence, it is critical to ensure that a smart contract is thoroughly examined to look

for potential encoded programming defects that might result in serious vulnerabilities.

An attacker with malicious intent could exploit these defects to trigger unintended

processes that the smart contract was not originally designed to perform. As a result, it

is necessary to identify vulnerabilities in smart contracts prior to their deployment [71].

Furthermore, the implications of a comparable vulnerability within one application

domain may be more severe and destructive than in another. Consequently, the order

in which these vulnerabilities are addressed, as well as their detection process, is

determined by business logic.

The focus of this study is on the detection of reentrancy vulnerability to mitigate the

implications of reentrancy attacks in transactive energy systems [34]. The reentrancy

attack is a common exploit arrangement that uses external calls to deplete a smart

contract [174]. This attack strategy, shown in Fig.4.1, employs an optimized fallback()

function to iteratively invoke withdraw() leading up to updating the user’s balance.

The critical part of this instance occurs when MaliciousContract is called to initiate

a reentrancy attack. The attack() function in this contract is called, which contains

the withdrawEnergy() function in the EnergyContract. This function is originally

69

contract EnergyContract {
 mapping(address => uint256) public energyBalances;

 function depositEnergy(uint256 _amount) public {
 energyBalances[msg.sender] += _amount;
 }

 function withdrawEnergy(uint256 _amount) public {
 require(energyBalances[msg.sender] >= _amount, "Insufficient
 energy balance");

 // Simulate energy transfer
 energyBalances[msg.sender] -= _amount;
 // In a real contract, there would be logic to transfer energy
 to the recipient.

 // Simulate a callback to an external contract
 MaliciousContract malicious = MaliciousContract(msg.sender);
 (bool success,) = address(malicious).call{value: 0 ether}("");
 require(success, "Reentrancy attack failed");
 }
}

Vulnerable Contract
contract MaliciousContract {
 EnergyContract public energyContract;

 constructor(address _energyContractAddress) {
 energyContract = EnergyContract(_energyContractAddress);
 }

 function attack() public {
 // Perform a reentrancy attack
 energyContract.withdrawEnergy(1);
 }

 // Fallback function to receive Ether
 receive() external payable {

 if (msg.sender != address(energyContract)) {
 // Prevent reentrancy attack from other sources
 attack();
 }
 }
}

Malicious Contract

Figure 4.1: Reentrancy exploitation instance

x1

 ...

x2

xn

x1

 ...

x2

xn

x1

 ...

x2

xn

x1

 ...

x2

xn

GraphSAGE

Hidden Layer

Graph Convolution

Message Layer

GGNN

xb

xa

Eba

Ebd

xd

Ebe

xe

xcxbc

Ebb

GCNPre-processing

function div(uint256
a, uint256 b) internal
pure returns
(uint256) {
require(b > 0); //
Solidity only
automatically asserts
when dividing by 0
uint256 c = a / b;

return c;
}

Target domain SC

xb

xa

Eba

Ebd

xd

Ebe

xe

xc

GAT

Ebc

Ebb

Figure 4.2: Proposed Vulnerability Detection Workflow

meant to update the energy balance. Since the MaliciouseContract leverages this

function to call back into the EnergyContract, the recieve() function is triggered. As

a result, the attack() function is invoked once again, creating a loop. Therefore, the

attacker can repeatedly call the attack() function, draining the energy balance of the

EnergyContract reentrantly, resulting in a successful reentrancy attack. In summary,

reentrant energy contracts can lead to inaccurate energy allocations and financial

losses for parties and ultimately impact the stability and dependability of the grid,

potentially resulting in power outages [112]. In the following section, we propose a

framework for the effective detection of this defect using graph neural networks and

transfer learning.

70

4.4 Methodology

When analyzing software processes such as smart contracts for potential vulnerabilities,

it is helpful to identify the relationships between their various components. As solidity

is the most widely used programming language for implementing smart contracts,

much research on detecting vulnerabilities focuses on examining the source code of

these contracts. Following a similar approach, we have chosen to use the source code

in our research to enhance the practicality of performing comprehensive analysis and

assessment.

In the proposed approach, graph representations for each smart contract are gen-

erated to derive adequate syntax and semantic information. As a result, solidity

code files undergo a prepossessing phase to enable graph-based representation. As

illustrated in Fig. 4.2, after preprocessing, the smart contracts’ graph representations

are fed into an array of graph neural network techniques for training and predicting

potential reentrant data points. The subsequent sections thoroughly describe the

workflow for vulnerability detection.

4.4.1 Pre-processing

The prepossessing pipeline contains solidity code parsing, which tokenizes and analyzes

the source code to identify different components. To identify distinct elements in the

source code, the parser implements a set of regular expression patterns. These patterns

enable the parser to identify components such as function declarations, function calls,

event declarations, etc. The parser then employs a dictionary known as node-type

features to characterize these different elements inside the graph. This dictionary plays

an integral role in mapping various types of nodes to distinct numerical feature vectors.

The vectors that follow become identifiers, allowing the parser to distinguish all of

the different types of components that exist in the code. Edges develop between the

parent contract node and the functions and events associated with it. Each node in the

71

graph has been assigned a type based on its purpose in the source code, and the edges

linking these nodes demonstrate their interdependence. These edges demonstrate the

connection between the contract and its internal elements.

Finally, the pipeline’s output is a systematically structured graph representation of

the solidity smart contracts. This intricate representation facilitates an understanding

of how the contract’s components interact, providing greater insight into the complex-

ities of smart contract programming [129]. Data processing is carried out on a dataset

of 4,756 Solidity smart contracts, labeled for reentrancy vulnerbility [84].

4.4.2 Graph Convolutional Network Model

Graph Convolutional Network (GCN) is essentially comparable to a Convolutional

Neural Network (CNN), in that it acquires domain-specific information for processing.

However, the primary distinction is the applicability of the GCN to data with non-

Euclidean structure [172], [81].

The GCN model seamlessly incorporates the connection sequences and features

that are inherent in graph-structured data, outperforming numerous state-of-the-art

techniques in particular domains. GCN’s architecture consists of a graph convolution

layer, a graph readout layer, a graph regularization layer, and a graph pooling layer

to boost generalization while minimizing the number of computational parameters.

The foundational equation of the GCN can be written as follows

Hl+1 = σ(D− 1
2 ÃD− 1

2Hlwl), (1)

where Hl+1 is the output at layer l + 1, σ is the activation function, D− 1
2 and D− 1

2

stand for the diagonal degree matrices, Ã symbolizes the normalized adjacency matrix,

H l corresponds to the input at layer l, and wl is weight matrix at layer l. Messages

are aggregated from neighbouring nodes and current node embeddings H(l − 1). The

aggregated messages then undergo a linear transformation using learnable weights.

The ReLU activation function is used in the hidden layers to introduce nonlinear

72

properties, whereas the Sigmoid activation function is used in the output layer (l = L)

for binary classification. This prevents overfitting by introducing a certain degree of

regularization and constrains the model’s ability to fit noise in the data, assisting

generalization to previously unseen examples.

As shown in Algorithm 1, the GCN model adapted for vulnerability detection

iteratively updates the node embeddings in a graph by aggregating and refining the

information from neighboring nodes using learnable weights. This allows effective

vulnerability detection in graphs corresponding to smart contracts.

The network architecture is composed of an input layer, an output layer, and

a number of hidden layers, each of which passes its output through the activation

function. The output layer then releases a prediction label after multiple layers of

computation. The objective of the model is to correctly predict the label ŷ, where a

value of 1 implies the presence of a reentrancy and any other value suggests that the

smart contract is safe.

Algorithm 1 Graph Convolutional Network (GCN) for Vulnerability Detection

1: Input: Graph G = (V,E), node features X(vi) ∈ Rd, adjacency matrix A
2: Initialization: Learnable parameters Θ
3: Output: Predicted vulnerability labels ŷ(vi) for all nodes vi ∈ V

4: Compute normalized adjacency matrix: Â = D− 1
2AD− 1

2 ▷ Where D is the degree
matrix of A

5: Initialize node embeddings: H(0) = X
6: for k = 1 to K do ▷ Number of layers
7: Message Aggregation:
8: Compute message vectors: M (k) = ÂH(k−1)

9: Message Transformation:
10: Apply linear transformation: Z(k) = M (k)W (k) ▷ Where W (k) is a learnable

weight matrix
11: Aggregation:
12: Aggregate messages: H(k) = ReLU(Z(k))
13: ▷ ReLU activation function
14: end for
15: Output: ŷ(vi) = σ(H(K)(vi)) for all nodes vi ∈ V ▷ Apply sigmoid activation

function

73

4.4.3 Graph Attention Convolutional Network Model

The model is made up of two layers of GATConv (Graph Attention Network), which

are mainly intended for processing graph-structured data [87].

The model is trained using labeled data, each instance of smart contract assigned a

ground truth label of re-entrant or non-re-entrant. Each GATConv layer is in charge

of processing information from the graph’s nodes and edges while introducing the

attention mechanism as shown in equation 2. Xi represents the feature vector of

node i in the graph, W is a learnable weight matrix, and a represents the attention

weights. Afterwards, the attention coefficients are calculated using softmax in equation

3 where eij is used to demonstrate the unnormalized attention score between nodes i

and j. Accordingly, αij corresponds to the attention coefficient for the edge between

nodes i and j while Ni represents the neighbors of node i and h′
i returns the updated

representation of node i.

eij = ReLU(aT · [W ·Xi||W ·Xj]) (2)

αij =
exp(eij)∑︁

k∈Ni
exp(eik)

(3)

h′
i =

∑︂
j∈Ni

αij ·W ·Xj (4)

This attention procedure enables the model to allocate different levels of importance

to neighboring nodes through message passing, making GATConv an effective method

for analyzing graph-structured data. The first GATConv layer handles the input

node features and edge indices generated during data preprocessing. Four attention

heads are used in this layer, each of which aggregates information independently,

ensuring that the model captures varying connections within the graph. The use of

attention heads allows for concurrent processing and aggregation of various node-level

information, which contributes to more reliable vulnerability projections. The resulting

node embeddings preserve graph-level information while taking node interactions into

74

account.

Following the attention mechanisms, a Rectified Linear Unit (ReLU) activation

function is implemented to inject nonlinearity into the model, allowing it to identify

intricate patterns in the data. Additionally, GATConv reinforces message passing, in

which each node aggregates knowledge obtained from its neighbors based on attention

scores. The outputs from the first layer are directly aggregated by the second GATConv

layer. The final output of the second GATConv layer pertains to node embeddings

that capture key attributes and connections in the smart contract graph. These

embeddings are used to make projections about the smart contract’s reentrancy status.

The sigmoid activation function sigma is then applied to the dot product of learnable

weights Wv and node embeddings to predict vulnerability state for each node.

4.4.4 GraphSAGE

GraphSAGE [49] develops embeddings for previously unseen data points by sampling

and capturing features from adjacent neighborhoods in each layer. Unlike traditional

methods that train separate embeddings for each node using matrix factorization,

GraphSAGE employs a function that generates embeddings by aggregating features

from a node’s local neighborhood. By integrating node attributes, GraphSAGE

generates both the topological structure of a node’s surroundings and the patterns of

attribute distribution within that area.

As shown in Algorithm 3, instead of training individual embedding vectors for each

node, a set of aggregator functions is created to efficiently combine attributes from

a node’s immediate vicinity. The basic premise of this algorithm is that the nodes

obtain information from their neighboring nodes at each interval. As this procedure

is amplified over the course of iterations, the nodes gradually accumulate additional

details from deeper fragments of the graph.

The final output consists the node embeddings h(L)(vi), which encapsulate the

acquired node representations, and the projection of vulnerability ŷ(vi), which indicate

75

Algorithm 2 Graph Attention Network (GAT) for Vulnerability Detection

1: Input: Node features X ∈ RN×D, edge indices E ∈ N2×M .
2: Output: Vulnerability predictions ŷ ∈ RN .
3: Initialize parameters: Input dimension D, hidden dimension H, output dimension F .
4: Initialize learnable weight matrices: WQ ∈ RH×H , WK ∈ RH×H , WV ∈ RH×H .
5: Initialize self-attention mechanism parameters: Number of attention heads K, dropout

rate p.
6: Initialize aggregation function: Concatenation.
7: Define the graph attention mechanism:
8: function GraphAttention(X,WQ,WK ,WV ,K, p)
9: Compute query, key, and value matrices: Q = XWQ, K = XWK , V = XWV .

10: Split matrices into K heads: Qk,Kk,Vk for k = 1 to K.
11: Calculate attention scores: Attention(Qk,Kk) =

exp(QkK
⊤
k)∑︁N

j=1 exp(QkK
⊤
k)

.

12: Apply dropout to attention: Attention(Qk,Kk)← Dropout(Attention(Qk,Kk), p).
13: Compute output for each head: Zk = Attention(Qk,Kk)Vk.
14: Concatenate head outputs: Z = Concatenate(Z1,Z2, . . . ,ZK).
15: Return the output feature matrix Z.
16: end function
17: Define the GAT model:
18: function GAT(X,E)
19: Initialize node embeddings: H = X.
20: Apply graph attention mechanism H: H = GraphAttention(H,WQ,WK ,WV ,K, p).
21: Apply activation function: H = ReLU(H).
22: Apply dropout: H = Dropout(H, p).
23: Return node embeddings H.
24: end function
25: Initialize the GAT model: G← GAT(X,E).
26: Inference:
27: Use the trained GAT model to predict vulnerability scores ŷ, where ŷi = σ(Wv ·Hi) for

each node i. ▷ Where σ is the sigmoid activation function and Wv are learnable weights.

76

the predicted label of each node exhibiting reentrancy.

Algorithm 3 GraphSAGE Algorithm for Vulnerability Detection

1: Input: Graph G = (V,E), node features X(vi) ∈ Rd, number of layers L
2: Initialization: Learnable parameters Θ
3: Output: Node embeddings h(L)(vi) ∈ Rd and predicted vulnerability labels ŷ(vi)

for all vi ∈ V
4: Initialization:
5: h(0)(vi)← X(vi) for all vi ∈ V
6: for l = 1 to L do
7: Aggregation at Layer l:
8: Z(l)(vi)← Aggregator(l)

(︁
h(l−1)(vi), neighborhood samples

)︁
9: Activation Function at Layer l:

10: h(l)(vi)← Activation
(︁
Z(l)(vi)

)︁
11: Update Node Representations:
12: h(l+1)(vi)← h(l)(vi) for all vi ∈ V
13: end for
14: Vulnerability Detection:
15: ŷ(vi) = σ(f(h(L)(vi))) for all vi ∈ V ▷ Apply sigmoid activation function
16: Output:
17: Node embeddings h(L)(vi) and predicted vulnerability labels ŷ(vi) for all vi ∈ V

4.4.5 GGNN

Gated Graph Neural Networks (GG-NNs) are an instance of GNNs that can learn

representations at both the node level and the graph level [80]. GGNN uses Gated

Recurrent Units and extends the recurrence over a fixed number of iterations T . It

also employs backpropagation to derive gradients.

In GGNN, the GRU-based message transmission process involves receiving features

from neighbors, aggregating these properties, and revising node representations. As

shown in Algorithm 4, GNN is provided with input in the form of a graph G = (V,E),

accompanied by node features X(vi) and edge features E(vi, vj). It then begins with

the initialization of the learnable parameters denoted as Θ.

In each iteration (t = 1 . . . T), the algorithm processes each node vi in the graph

sequentially. It begins by establishing the initial hidden state ht(vi) with the node’s

respective feature X(vi). For each neighboring node vj of vi, a message mt(vi, vj) is

77

computed, implementing a ReLU activation function. Subsequently, these individual

messages are aggregated to generate mt(vi). A sigmoid activation function, gating

procedure along with a combination of the current hidden state ht(vi) and the ag-

gregated message mt(vi) are used to determine the gate values gt(vi) for each node

vi. The algorithm then proceeds to vulnerability detection after (T) iterations. It

determines reentrancy labels haty(vi) for all nodes vi using sigmoid activation of the

ultimate hidden state hT (vi).

Algorithm 4 Gated Graph Neural Network (GGNN) Algorithm for Vulnerability
Detection
1: Input: Graph G = (V,E), node features X(vi) ∈ Rd, edge features E(vi, vj) ∈ Rd

2: Initialization: Learnable parameters Θ
3: Output: Updated node features X ′(vi) ∈ Rd and predicted vulnerability labels

ŷ(vi) for all nodes vi ∈ V
4: for t = 1 to T do ▷ Number of iterations
5: for each node vi ∈ V do
6: Message Aggregation:
7: Initialize hidden state ht(vi) = X(vi)
8: for each neighbor vj of vi do
9: Compute message mt(vi, vj) = ReLU(E(vi, vj) · ht(vj))

10: Aggregate messages: mt(vi) =
∑︁

vj
mt(vi, vj)

11: end for
12: Gating Mechanism:
13: Compute gate gt(vi) = σ(Wg · [ht(vi),mt(vi)])
14: Update Node State:
15: Compute updated state: st(vi) = ReLU(Ws · [ht(vi), gt(vi) ·mt(vi)])
16: Update Hidden State:
17: Update hidden state: ht+1(vi) = st(vi)
18: end for
19: end for
20: Vulnerability Detection:
21: ŷ(vi) = σ(f(hT (vi))) for all vi ∈ V ▷ Apply sigmoid activation
22: Output: X ′(vi) and ŷ(vi) for all nodes vi ∈ V

4.4.6 TL-GAT

To develop the transfer learning framework, we use a Graph Neural Network (GNN)

model to detect vulnerabilities in the source domain [163]. The idea behind the

78

TL-GAT is to use transfer learning to migrate the previously trained GAT model to

new datasets. Transfer learning allows the use of existing vulnerability knowledge to

improve the generalization of emerging vulnerabilities with limited data [17], [113].

TL-GAT’s transfer learning capacity allows our detection framework to be improved

at a low cost to safeguard against emerging smart contract defects. The proposed

transfer learning mechanism allows for the preservation of knowledge on preceding

expressions of vulnerabilities during the initial training phase. Additionally, TL-GAT

is intended to effectively adapt the pre-trained model to obtain maximum precision

on the new task data with limited size. This is especially important as training a

GNN model from scratch for unexplored expressions of vulnerabilities across various

domains with limited data is prohibitively expensive and challenging to maintain.

As depicted in Fig.4.3, the initial phase involves training on the source domain.

During this phase, we train the GAT model using source codes spanning across different

application domains because it is more feasible to gather a substantial amount of

vulnerabilities, particularly reentrancy expressions, using cross-domain smart contracts.

While these vulnerabilities are not domain-specific, in line with the principles of transfer

learning, TL-GAT has the ability to obtain valuable knowledge during this stage that

can be leveraged for improved vulnerability detection. Following the initial source

domain training, the second phase involves the target domain training.

Therefore, the pre-trained model can be fine-tuned on the target domain dataset,

and its effectiveness can be evaluated. During the second phase, we leveraged a

high-quality dataset comprising energy smart contracts labeled with reentrancy vul-

nerabilities. Although the dataset exclusively focuses on reentrancy vulnerabilities, its

main constraint is its limited size. This limitation arises from the scarcity of audited

energy smart contracts screened for security defects. Labeling these energy smart

contracts is particularly challenging due to the significant time and expense involved

in manual auditing. A new optimizer is developed to fine-tune the model on a target

domain dataset and transfer knowledge acquired from cross-domain defects. As we

79

xb

xa

Eba

Ebd

xd

Ebe

xe

xc

GAT

Ebc

Ebb

function div(uint256
a, uint256 b) internal
pure returns
(uint256) {
require(b > 0); //
Solidity only
automatically asserts
when dividing by 0
uint256 c = a / b;

return c;
}

Source domain SC

Pre-processing

function
calculateEnergy(uint256
totalEnergy, uint256
timePeriod) internal pure
returns (uint256) {
 require(timePeriod >
0, "Time period must be
greater than zero");
 uint256
energyPerTime =
totalEnergy / timePeriod;
}

Target domain SC

xb

xa

Eba

Ebd

xd

Ebe

xe

xc

GAT

Ebc

Ebb

Pre-processing

Transfer Learning

Figure 4.3: Transfer Learning with GAT

will see later in Section 4, TL-GAT outperforms other proposed GNNs when trained

exclusively on energy smart contracts.

4.5 Results and Discussion

In this section, we evaluate the performance of the proposed framework for each model

separately. The effectiveness of each model for reentrancy is assessed using Accuracy,

Recall, Precision, and F1-score, which are reported in Table 4.1.

In turn, an assessment is conducted on True Positive Rate (TPR), False Positive

Rate (FPR), True Negative Rate (TNR), and False Negative Rate (FNR), as shown

in Fig. 4.4. Among all the models proposed in the framework, GAT with Transfer

Learning achieved the highest performance, with 99.06% accuracy, 98.50 % precision,

100% recall, and 99.25% F1-score. Accuracy examines the proportion of accurately

predicted instances to the total number of samples. The competency of the model

to identify the vulnerable instances is measured by recall, using the ratio of true

80

Algorithm 5 Transfer Learning with GAT Algorithm for Vulnerability Detection

1: Input for Source Domain: Graph GS = (VS, ES), node features XS(vi) ∈ Rd,
labels YS(vi) for source domain

2: Input for Target Domain: Graph GT = (VT , ET), node features XT (vi) ∈ Rd

for the target domain
3: Pretrained GAT Model: GAT model with parameters Θ trained on GS for

node classification
4: Output: Node embeddings HT (vi) ∈ Rd for the target domain, Predicted vulner-

ability labels yT (vi) for nodes in the target domain
5: Initialization:
6: Load pretrained GAT model with parameters Θ
7: Fine-tuning on Target Domain:
8: Freeze all layers of the pretrained GAT model except the last layer
9: Loss Function: Cross-Entropy Loss

10: Vulnerability Detection Loss Function: Binary Cross-Entropy Loss for
Vulnerability Detection

11: for epoch = 1 to N do
12: Sample a mini-batch of nodes {vi} from GT

13: Calculate node embeddings HT (vi) using the pretrained GAT model
14: Compute node classification loss on {vi} using HT (vi) and YS(vi)
15: Compute vulnerability detection loss on {vi} using HT (vi) and yT (vi)
16: Update model parameters Θ using backpropagation
17: end for
18: Output: HT contains node embeddings for the target domain with updated

model parameters for vulnerability detection, yT contains predicted vulnerability
labels for nodes in the target domain

81

reentrancy projections in relation to all reentrant instances. Precision calculates the

ratio of correctly identified vulnerable samples to the total number of vulnerable

predictions including false positives. Consequently, the harmonic average of precision

and recall is used to calculate the F1 score. In addition, false positives and false

negatives pose major implications in vulnerability detection of smart contracts, since

they disrupt the dependability, security, and effectiveness of the detection procedures.

False positives occur if the detection method incorrectly flags a code segment as

vulnerable. This causes unnecessary alerts, taking up time and resources exploring

non-existent vulnerabilities. Recurring false positives may undermine the credibility of

the detection system over time, resulting in a disregard or skepticism about the actual

vulnerabilities reported by the system. On the other hand, false negatives appear

when the detection framework overlooks an actual vulnerability, exposing the system

to exploitation of defects. The frequent occurrence of false negatives decreases the

reliability of the detection framework, possibly leading to exploitations and security

breaches. This superiority can be attributed to its ability to leverage knowledge

from a pre-trained source domain, which improves its overall predictive capacity.

With recall, TL-GAT has a remarkable ability to capture a significant number of

vulnerabilities. This observation is further reinforced by examining the TPR and FNR

values specifically related to TL-GAT. This is especially important when dealing with

reentrancy where a single reentrant point can have serious security implications.

Additionally, fine-tuning GAT on the target domain allows TL-GAT to better

distinguish between true positives and effectively minimize false positives. The

evaluation results show that even the most effective GNN variants, such as GCN,

GAT, GGNN, and GraphSAGE, struggle with domain adaptation. Particularly due

to the challenges associated with obtaining a substantial amount of labeled vulnerable

contracts, these models become less viable, underscoring their limited practicality in

situations with limited data availability, such as transactive energy systems. This

issue is especially significant in the context of energy smart contracts, as they may

82

Method Accuracy(%) Precision(%) Recall(%) F1(%)

GAT 85.98 81.84 100 89.79

GCN 71.21 70.31 100 82.56

GGNN 92.95 89.75 100 94.62

GraphSAGE 77.46 91.17 70.45 79.48

TL-GAT 99.06 98.50 100 99.25

Table 4.1: Vulnerability detection performance of each method

involve undiscovered structures or vulnerability patterns.

Models that lack the ability to generalize may struggle to detect vulnerabilities that

fall outside their training scope. Unlike TL-GAT, which leverages prior knowledge

from a related source domain, the other examined models typically lack this capability.

This implies that they might overlook valuable patterns and trends that could be

transferred from one domain to another. Without the capacity for effective adaptation

and generalization, these models could be prone to overfitting when trained on limited

data. Overfitting can lead to poor generalization and inaccurate predictions on unseen

smart contract codes. As illustrated in Table 4.1, GAT, GCN, and GGNN achieve

significantly higher recall rates at the cost of more false positives.

In conclusion, the comparative advantage of GAT with Transfer Learning in domain-

specific analysis for smart contract vulnerability detection can be attributed to its data

efficiency, generalization, and domain-adaptive characteristics. TL-GAT effectively

addresses the issue of limited labeled data while maximizing accuracy and precision. In

the dynamic landscape of smart contract vulnerabilities, the ability of transfer learning

to continuously adapt and learn makes it a valuable tool for enhancing security and

dependability in this domain.

83

TNR FNR FPR TPR
0.0

0.2

1.0

0.8

0.4

0.6

TNR FNR FPR TPR TNR FNR FPR TPR TNR FNR FPR TPR TNR FNR FPR TPR

Classification Metrics

GAT GCN GGNN GraphSAGE TL-GAT

Va
lu

e

Figure 4.4: Evaluation results

4.6 Conclusion

The reliability of smart contracts is critical for the sustained growth of blockchain

technology. In an effort to enhance existing methods, we introduce a graph attention

neural network model based on transfer learning to detect vulnerabilities in smart

contracts. This framework enables independent assessment of vulnerability sources

in each domain, allowing developers to distinguish domain-specific vulnerabilities,

especially when these contracts are used in diverse execution environments.

The premise of TL-GAT is to employ transfer learning to adapt a pre-trained GAT

model for application to a new domain. Transfer learning enables the utilization of

previously acquired knowledge about vulnerabilities to enhance the generalization of

emerging vulnerabilities, even when dealing with limited data. This is of particular

importance because training a GNN model from scratch to address previously unex-

plored vulnerability patterns across multiple domains, especially when data is scarce,

can be prohibitively expensive and challenging to maintain.

Accordingly, we evaluated the effectiveness of the proposed model using four

prominent GNN architectures: GGNN, GAT, GCN, and GraphSAGE. GAT with

Transfer Learning outperformed all other models in the framework, achieving 99.06%

accuracy, 98.50% precision, 100% recall, and an F1-score of 99.25%. This exceptional

performance can be attributed to TL-GAT’s ability to extract insights from a pre-

84

trained source domain, enhancing its overall predictive capacity.

While the vulnerability analysis workflow employed in this research is specifically

designed for energy smart contracts and reentrancy vulnerabilities, it has the potential

to be extended to other application domains or security defects when labeled contracts

related to the desired vulnerability are available within the target domain.

85

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Blockchain technology has brought innovation to a wide array of industries. In

recent years, much attention has been given to blockchain platforms supporting smart

contracts for the development of decentralized applications. Smart contracts provide

the necessary versatility to consolidate diverse processes according to the requirements

of the application. As a result, reliability of smart contracts is critical to the sustained

growth of blockchain technology.

In this thesis, we undertook a venture aimed at enhancing vulnerability detection in

smart contracts to increase the likelihood of their dependable and secure functioning.

In light of recent advancements in the exploration of smart contract vulnerabilities,

we introduced a domain-specific approach to enhance the accuracy of reentrancy

detection.

In Chapter 2, we delve into the classification of smart contracts, setting the

groundwork for a more profound understanding of violation structures and behavioral

patterns of smart contracts across different application domains. as anticipated, upon

the successful classification of smart contracts according to their underlying business

logic, our findings confirm that there is no universally ideal contract analysis tool for all

types of contracts and their respective business logic. Additionally, despite the evident

association between smart contract categories and their vulnerabilities, it can be noted

86

that vulnerability analysis tools do not cover the wide range of violation structures and

behavioral patterns present across different application domains. In order to address

this gap, Chapter 3 of this thesis undertakes an assessment of benchmark vulnerability

analysis tools using categorized and carefully curated contracts. Our examination led

to the determination that energy contracts display security vulnerabilities that surpass

the average, and their longer processing times contribute to a heightened risk of failures

or timeouts. Moreover, it became evident that the accuracy of the detection tools

fluctuates across domains, as the benchmark tools did not live up to the claimed level

of precision in the curated contracts. This progression led us to the final phase of our

research, Chapter 4, where we present a vulnerability detection framework grounded

in the transfer learning within graph neural networks. This framework provides the

capability to independently assess the vulnerability source in each domain, empowering

developers to differentiate between domain-specific vulnerabilities, particularly when

these contracts are utilized in diverse execution environments.

Below, we present a brief overview of the methodologies employed, primary outcomes,

and significant contributions stemming from the presented research studies.

• In Chapter 2, we introduce a framework that utilizes NLP in con-

junction with machine learning classification algorithms to identify

and accurately categorize energy smart contracts. Detected contracts

are further examined to discern any discrepancies or patterns in the distribu-

tion of code segments, the predominant use of specific functions, and recurring

contracts across the Ethereum network. The proposed approach will help to

establish the groundwork for innovative solutions for domain-specific classifica-

tion and vulnerability detection of smart contracts. This approach enables the

exclusive examination of the grammatical, symbolic, and arithmetic features of

smart contracts, enhancing the detection of vulnerabilities that may have gone

undetected.

87

• In Chapter 3, we perform an analysis demonstrating the variability in

the accuracy of vulnerability detection tools across different domains.

Vulnerability assessment is conducted on both energy-related and non-energy

categories using benchmark analysis tools. The analysis underscores the substan-

tial differences in the effects of specific vulnerabilities across various domains.

This discrepancy highlights the need to prioritize vulnerability mitigation in

alignment with the unique business logic of each domain. Examination of the

code embedding of energy smart contracts and the assessment of their vulnerabil-

ities within transactive energy systems further brings to light the revelation that

energy contracts exhibit a notable number of defects. The findings confirm the

need for more targeted and accurate vulnerability detection, encompassing both

existing and emerging vulnerabilities from a domain-specific perspective. This

analysis is a significant advancement in reinforcing the importance of dedicating

more resources to tailor vulnerability detection tools to cater to the distinctive

attributes of diverse application domains.

• In Chapter 4, we suggest a framework that harnesses transfer learning

with graph neural networks to enhance reentrancy detection in smart

contracts. We highlight the inefficiency and lack of adaptability in approaches

that rely on expert-defined patterns. The proposed framework provides the

capability to independently assess the vulnerability source in each domain,

empowering developers to differentiate between domain-specific vulnerabilities,

particularly when these contracts are utilized in diverse execution environments.

The premise behind TL-GAT is to use transfer learning in order to repurpose

a pre-trained GAT model for application to a new domain. Transfer learning

allows for the use of already established knowledge about vulnerabilities to

improve the generalisation of emerging vulnerabilities, with limited data.

88

5.2 Future Work

Although our thesis delves deeply into numerous strategies for enhancing the effec-

tiveness of smart contract classification and vulnerability detection methods, offering

practical solutions and enhancements, there are numerous opportunities for future

research extensions. We enumerate a few of these potential research directions below:

• Expansion to Other Domains

Extend the research to other domains, such as finance, healthcare, or supply

chain management. Each domain has its own vocabulary, specifications, and

regulatory concerns, making classification and vulnerability detection interesting

areas. Exploring these diverse areas enables researchers to develop more targeted

and specialised models for classification and vulnerability detection, to ensure

the solutions are not just accurate but also highly relevant to the challenges

inherent in these industries. This expansion broadens the potential applications

and impact of the research, as it can address serious challenges and improve

security and reliability within each domain.

• Expansion to Other Vulnerabilities

Training models on a variety of data sources facilitates the recognition of patterns

and vulnerabilities unique to each domain. By emphasising on these research

directions, the field of smart contract vulnerability detection evolves to be more

versatile, and aligned with the varied requirements of various industries, hence

improving the security of decentralised applications. Training models across

various domains provides to insights that are transferable between industries.

Knowledge extracted from one domain allows to broaden our understanding of

smart contract vulnerabilities while further developing detection abilities. Smart

contract vulnerability detection’s ultimate goal is to improve the security of

decentralised applications. Domain-specific training allows for the development

of targeted models that are advanced at flagging vulnerabilities and reducing

89

the risk of security breaches, ultimately protecting users and assets residing on

the ledgers.

• Scaling to Large Smart Contract Ecosystems

Blockchain networks are growing in scale and complexity, with a plethora of

decentralised applications and smart contracts. This complexity brings with it a

higher risk of vulnerabilities. Hence, scalable vulnerability detection methods

are critical for keeping up with these ecosystems rapid development. This can

be supported by investigating scalable methods for applying transfer learning to

large ecosystems of smart contracts. As blockchain networks expand, scalable

vulnerability detection becomes increasingly important for ensuring security.

Many industries are governed by specific regulations, and scalable methods can

aid in ensuring that smart contracts conform to these requirements efficiently.

90

Bibliography

[1] A. Adeyemi et al., “Blockchain technology applications in power distribution
systems,” Electric Power Systems Research, vol. 183, p. 106 817, 2020.

[2] R. Agarwal, T. Thapliyal, and S. Shukla, “Analyzing malicious activities and de-
tecting adversarial behavior in cryptocurrency based permissionless blockchains:
An ethereum use case,” Distrib. Ledger Technol. Res. Pract., vol. 1, pp. 1–21,
2022.

[3] N. Aidee, M. Johar, M. Alkawaz, A. Hajamydeen, and M. Al-Tamimi, “Vul-
nerability assessment on ethereum-based smart contract applications,” in Pro-
ceedings of the 2021 IEEE International Conference on Automatic Control and
Intelligent Systems, 2021, pp. 13–18.

[4] B. Altınel, M. Ganiz, and B. Diri, “A corpus-based semantic kernel for text
classification by using meaning values of terms,” Eng. Appl. Artif. Intell., vol. 43,
pp. 54–66, 2015.

[5] M. Andoni et al., “Blockchain technology in the energy sector: A systematic
review of challenges and opportunities,” Renewable and sustainable energy
reviews, vol. 100, pp. 143–174, 2019.

[6] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2vec: Learning
contract-wide code representations for vulnerability detection on ethereum
smart contracts,” in Proceedings of the 3rd ACM international symposium on
blockchain and secure critical infrastructure, 2021, pp. 47–59.

[7] S. Barj, A. Ouaddah, and A. Mezrioui, “Cryptography in distributed ledger
technologies from a layered perspective: A state of the art,” in International
Conference on Digital Technologies and Applications, Springer, 2023, pp. 210–
220.

[8] C. Barreto, T. Eghtesad, S. Eisele, A. Laszka, A. Dubey, and X. Koutsoukos,
“Cyber-attacks and mitigation in blockchain-based transactive energy systems,”
in Proceedings of the 2020 IEEE Conference on Industrial Cyberphysical Sys-
tems, vol. 1, 2020, pp. 129–136.

[9] M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts:
Platforms, applications, and design patterns,” in Financial Cryptography and
Data Security: FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21,
Springer, 2017, pp. 494–509.

91

[10] N. Benisi, M. Aminian, and B. Javadi, “Blockchain-based decentralized storage
networks: A survey,” Journal of Network and Computer Applications, vol. 162,
p. 102 656, 2020.

[11] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” J. Stat. Mech.-Theory Exp., vol. 2008,
P10008, 2008.

[12] V. Buterin et al., “A next-generation smart contract and decentralized applica-
tion platform,” White Pap., Tech. Rep. 3, 2014, pp. 2–1.

[13] J. Cai, B. Li, J. Zhang, X. Sun, and B. Chen, “Combine sliced joint graph with
graph neural networks for smart contract vulnerability detection,” Journal of
Systems and Software, vol. 195, p. 111 550, 2023.

[14] CES Energy Solutions, https://www.cesenergysolutions.com/, Accessed on 17
April 2023.

[15] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum,” IEEE Trans. Softw. Eng., vol. 48, pp. 327–345,
2020.

[16] Q. Chen, T. T. Wu, and M. Fang, “Detecting local community structure in
complex networks based on local degree central nodes,” Physica A., vol. 392,
pp. 529–537, 2013.

[17] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learning for
repairing security vulnerabilities in c code,” IEEE Transactions on Software
Engineering, vol. 49, no. 1, pp. 147–165, 2022.

[18] V. Chia et al., “Rethinking blockchain security: Position paper,” in Proceed-
ings of the 2018 IEEE International Conference on Internet of Things, 2018,
pp. 1273–1280.

[19] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in
very large networks,” Phys. Rev. E., vol. 70, p. 066 111, 2004.

[20] Coinbase, https://www.coinbase.com/price/solar-energy, Accessed on 17 April
2023.

[21] ConsenSys, Consensys/surya: A set of utilities for exploring solidity contracts,
Accessed on September 27, 2023. [Online]. Available: https://github.com/
ConsenSys/surya.

[22] Creative energy, https://creative.energy/, Accessed on 17 April 2023.

[23] U. Damisa, N. I. Nwulu, and P. Siano, “Towards blockchain-based energy trading:
A smart contract implementation of energy double auction and spinning reserve
trading,” Energies, vol. 15, no. 11, p. 4084, 2022.

[24] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing community
structure identification,” J. Stat. Mech.-Theory Exp., P09008, 2005.

[25] Dapps - ethereum. [Online]. Available: https://ethereum.org/en/dapps/.

92

https://www.cesenergysolutions.com/
https://www.coinbase.com/price/solar-energy
https://github.com/ConsenSys/surya
https://github.com/ConsenSys/surya
https://creative.energy/
https://ethereum.org/en/dapps/

[26] M. Demir, M. Alalfi, O. Turetken, and A. Ferworn, “Security smells in smart
contracts,” in Proceedings of the 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion, 2019, pp. 442–449.

[27] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv, 2018. eprint:
1810.04805.

[28] T. Durieux, J. Ferreira, R. Abreu, and P. Cruz, “Empirical review of automated
analysis tools on 47,587 ethereum smart contracts,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020,
pp. 530–541.

[29] S. Eisele et al., “Blockchains for transactive energy systems: Opportunities,
challenges, and approaches,” Computer, vol. 53, pp. 66–76, 2020.

[30] Electrify asia, accessed on 17 April 2023. [Online]. Available: https://electrify.
asia/.

[31] Etherscan - ethereum block explorer. [Online]. Available: https://etherscan.io/.

[32] D. R. Fabio, D. Fabio, and P. Carlo, “Profiling core-periphery network structure
by random walkers,” Sci. Rep., vol. 3, p. 1467, 2013.

[33] B. Fabricio and Z. Liang, “Fuzzy community structure detection by particle
competition and cooperation,” Soft Comput., vol. 17, pp. 659–673, 2013.

[34] N. Fadhel, F. Lombardi, L. Aniello, A. Margheri, and V. Sassone, “Towards
a semantic modeling for threat analysis of iot applications: A case study on
transactive energy,” in Proceedings of the Living in the Internet of Things (IoT
2019), London, UK, 2019.

[35] K. Fan, Z. Bao, M. Liu, A. V. Vasilakos, and W. Shi, “Dredas: Decentralized, reli-
able and efficient remote outsourced data auditing scheme with blockchain smart
contract for industrial iot,” Future Generation Computer Systems, vol. 110,
pp. 665–674, 2020.

[36] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart
contracts,” in Proceedings of the 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering for Blockchain (WETSEB),
Montreal, QC, Canada, 2019, pp. 8–15.

[37] T. Ford, “Benchmarking ethereum smart contract static analysis tools,” Ph.D.
dissertation, Texas A&M University, College Station, TX, USA, 2022.

[38] S. Fortunato, “Community detection in graphs,” Phys. Rep.-Rev. Sec. Phys.
Lett., vol. 486, pp. 75–174, 2010.

[39] S. Fortunato and M. Barthelemy, “Resolution limit in community detection,”
Proc. Natl. Acad. Sci. U. S. A., vol. 104, pp. 36–41, 2007.

[40] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, “Privacy-preserving energy
trading using consortium blockchain in smart grid,” IEEE Trans. Ind. Inform.,
vol. 15, pp. 3548–3558, 2019.

93

1810.04805
https://electrify.asia/
https://electrify.asia/
https://etherscan.io/

[41] S. García-Méndez, M. Fernandez-Gavilanes, J. Juncal-Martínez, F. González-
Castaño, and Ó. Seara, “Identifying banking transaction descriptions via support
vector machine short-text classification based on a specialized labeled corpus,”
IEEE Access, vol. 8, pp. 61 642–61 655, 2020.

[42] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis
tools? evaluating smart contract static analysis tools using bug injection,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual, 2020, pp. 415–427.

[43] Gnrg, accessed on 17 April 2023. [Online]. Available: https://gnrg.co/.

[44] T. Górski, “Reconfigurable smart contracts for renewable energy exchange with
re-use of verification rules,” Appl. Sci., vol. 12, p. 5339, 2022.

[45] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation,” pp. 345–359, 2005.

[46] S. Gregory, “Fuzzy overlapping communities in networks,” J. Stat. Mech.-Theory
Exp., P02017, 2011.

[47] R. Gupta, M. Patel, A. Shukla, and S. Tanwar, “Deep learning-based malicious
smart contract detection scheme for internet of things environment,” Comput.
Electr. Eng., vol. 97, p. 107 583, 2022.

[48] M. Hamilton, “Blockchain distributed ledger technology: An introduction and
focus on smart contracts,” Journal of Corporate Accounting & Finance, vol. 31,
no. 2, pp. 7–12, 2020.

[49] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” Advances in neural information processing systems, vol. 30, 2017.

[50] D. Han, C. Zhang, J. Ping, and Z. Yan, “Smart contract architecture for
decentralized energy trading and management based on blockchains,” Energy,
vol. 199, p. 117 417, 2020.

[51] J. Hartmann, J. Huppertz, C. Schamp, and M. Heitmann, “Comparing au-
tomated text classification methods,” Int. J. Res. Mark., vol. 36, pp. 20–38,
2019.

[52] D. He, R. Wu, X. Li, S. Chan, and M. Guizani, “Detection of vulnerabilities
of blockchain smart contracts,” IEEE Internet Things J., vol. 10, pp. 12 178–
12 185, 2023.

[53] Y. He, H. Dong, H. Wu, and Q. Duan, “Formal analysis of reentrancy vulnera-
bilities in smart contract based on cpn,” Electronics, vol. 12, no. 10, p. 2152,
2023.

[54] P. Hegedűs, “Towards analyzing the complexity landscape of solidity based
ethereum smart contracts,” Technologies, vol. 7, no. 1, p. 6, 2019.

[55] M. Hossain, S. Sarkar, and M. Rahman, “Different machine learning based
approaches of baseline and deep learning models for bengali news categorization,”
International Journal of Computer Applications, vol. 975, p. 8887, 2020.

94

https://gnrg.co/

[56] A. Hrga, T. Capuder, and I. P. Žarko, “Demystifying distributed ledger tech-
nologies: Limits, challenges, and potentials in the energy sector,” IEEE Access,
vol. 8, pp. 126 149–126 163, 2020.

[57] T. Hu et al., “Transaction-based classification and detection approach for
ethereum smart contract,” Inf. Process. Manag., vol. 58, p. 102 462, 2021.

[58] Q. Huang et al., “A review of transactive energy systems: Concept and imple-
mentation,” Energy Rep., vol. 7, pp. 7804–7824, 2021.

[59] E. Hullermeier and M. Rifqi, “A fuzzy variant of the rand index for comparing
clustering structures,” in in Proc. IFSA/EUSFLAT Conf., 2009, pp. 1294–1298.

[60] G. Ibba and M. Ortu, “Analysis of the relationship between smart contracts’
categories and vulnerabilities,” in Proceedings of the 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering, 2022, pp. 1212–
1218.

[61] D. Jatnika, M. Bijaksana, and A. Suryani, “Word2vec model analysis for
semantic similarities in english words,” Procedia Computer Science, vol. 157,
pp. 160–167, 2019.

[62] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart contracts for
vulnerability detection,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 259–269.

[63] P. Jiang, F. Guo, K. Liang, J. Lai, and Q. Wen, “Searchain: Blockchain-based
private keyword search in decentralized storage,” Future Generation Computer
Systems, vol. 107, pp. 781–792, 2020.

[64] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic understand-
ing of smart contracts: Executable operational semantics of solidity,” in 2020
IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1695–1712.

[65] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of smart
contracts,” in Proceedings of the 25th Annual Network and Distributed System
Security Symposium, 2018.

[66] N. Kannengiesser, S. Lins, C. Sander, K. Winter, H. Frey, and A. Sunyaev,
“Challenges and common solutions in smart contract development,” IEEE Trans.
Softw. Eng., vol. 48, pp. 4291–4318, 2021.

[67] G. Kaur, A. Habibi Lashkari, I. Sharafaldin, and Z. Habibi Lashkari, “Smart con-
tracts and defi security and threats,” in Understanding Cybersecurity Manage-
ment in Decentralized Finance: Challenges, Strategies, and Trends. Berlin/Hei-
delberg, Germany: Springer, 2023, pp. 91–111.

[68] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent advances in
smart contracts: A technical overview and state of the art,” IEEE Access, vol. 8,
pp. 117 782–117 801, 2020.

[69] D. Kirli et al., “Smart contracts in energy systems: A systematic review of
fundamental approaches and implementations,” Renew. Sustain. Energy Rev.,
vol. 158, p. 112 013, 2022.

95

[70] N. Kshetri, “Can blockchain strengthen the internet of things?” IT professional,
vol. 19, no. 4, pp. 68–72, 2017.

[71] S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. Lee, “Ethereum smart
contract analysis tools: A systematic review,” IEEE Access, vol. 10, pp. 57 037–
57 062, 2022.

[72] S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. Lee, “Systematic review of
security vulnerabilities in ethereum blockchain smart contracts,” IEEE Access,
vol. 10, pp. 6605–6621, 2022.

[73] M. Labani, P. Moradi, F. Ahmadizar, and M. Jalili, “A novel multivariate
filter method for feature selection in text classification problems,” Engineering
Applications of Artificial Intelligence, vol. 70, pp. 25–37, 2018.

[74] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities,”
Phys. Rev. E., vol. 80, p. 016 118, 2009.

[75] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing
community detection algorithms,” Phys. Rev. E., vol. 78, p. 046 110, 2008.

[76] B. Lashkari and P. Musilek, “Detection and analysis of ethereum energy smart
contracts,” Appl. Sci., vol. 13, no. 13, p. 6027, 2023.

[77] B. Lashkari and P. Musilek, “Evaluation of smart contract vulnerability analysis
tools: A domain-specific perspective,” Information, vol. 14, no. 10, p. 533, 2023.

[78] C. I. Law. “Code is law.” Accessed on 11 November 2022. (2022), [Online].
Available: https://ethereumclassic.org/why-classic/code-is-law.

[79] J. Li, X. Wang, and J. Eustace, “Detecting overlapping communities by seed
community in weighted complex networks,” Physica A., vol. 392, pp. 6125–6134,
2013.

[80] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[81] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural
networks: Analysis, applications, and prospects,” IEEE transactions on neural
networks and learning systems, 2021.

[82] J. Liu, “Fuzzy modularity and fuzzy community structure in networks,” Eur.
Phys. J. B., vol. 77, pp. 547–557, 2010.

[83] W. Liu, M. Pellegrini, and X. Wang, “Detecting communities based on network
topology,” Sci. Rep., vol. 4, p. 5739, 2014.

[84] Z. Liu et al., “Rethinking smart contract fuzzing: Fuzzing with invocation
ordering and important branch revisiting,” arXiv preprint arXiv:2301.03943,
2023.

[85] H. Lou, S. Li, and Y. Zhao, “Detecting community structure using label
propagation with weighted coherent neighborhood propinquity,” Physica A.,
vol. 392, pp. 3095–3105, 2013.

96

https://ethereumclassic.org/why-classic/code-is-law

[86] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, 2016, pp. 254–269.

[87] C. Ma, S. Liu, and G. Xu, “Hgat: Smart contract vulnerability detection method
based on hierarchical graph attention network,” Journal of Cloud Computing,
vol. 12, no. 1, pp. 1–13, 2023.

[88] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano, “De-
sign patterns for gas optimization in ethereum,” in Proceedings of the 2020
IEEE International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), London, ON, Canada: IEEE, 2020, pp. 9–15.

[89] M. I. Mehar et al., “Understanding a revolutionary and flawed grand experiment
in blockchain: The dao attack,” Journal of Cases on Information Technology
(JCIT), vol. 21, no. 1, pp. 19–32, 2019.

[90] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J.
Gao, “Deep learning–based text classification: A comprehensive review,” ACM
Comput. Surv., vol. 54, pp. 1–40, 2021.

[91] M. Mironczuk and J. Protasiewicz, “A recent overview of the state-of-the-art
elements of text classification,” Expert Syst. Appl., vol. 106, pp. 36–54, 2018.

[92] A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain from the
perspectives of applications, challenges, and opportunities,” IEEE Access, vol. 7,
pp. 117 134–117 151, 2019.

[93] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
business review, 2008.

[94] T. Nepusz, A. Petróczi, L. Négyessy, and F. Bazsó, “Fuzzy communities and the
concept of bridgeness in complex networks,” Phys. Rev. E., vol. 77, p. 016 107,
2008.

[95] W. Network, Wepower network, Accessed on 12 May 2023. [Online]. Available:
https://www.blockdata.tech/profiles/wepower.

[96] M. E. J. Newman, Network data, http://www-personal.umich.edu/~mejn/
netdata/, 2013.

[97] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Phys. Rev. E., vol. 69, p. 026 113, 2004.

[98] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy,
prodigal, and suicidal contracts at scale,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 653–663.

[99] A. Norta and T. Lepikult, “An evaluation framework for smart contract vulner-
ability detection tools on the ethereum blockchain,”

[100] M. Nour, J. P. Chaves-Ávila, and Á. Sánchez-Miralles, “Review of blockchain
potential applications in the electricity sector and challenges for large scale
adoption,” IEEE Access, vol. 10, pp. 47 384–47 418, 2022.

97

https://www.blockdata.tech/profiles/wepower
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/

[101] G. Oliva, A. Hassan, and Z. Jiang, “An exploratory study of smart contracts in
the ethereum blockchain platform,” Empirical Software Engineering, vol. 25,
pp. 1864–1904, 2020.

[102] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi, “A massive analysis
of ethereum smart contracts: Empirical study and code metrics,” IEEE Access,
vol. 7, pp. 78 194–78 213, 2019.

[103] Powerledger, accessed on 12 May 2023. [Online]. Available: https ://www.
powerledger.io/.

[104] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, “Overlapping community
detection using bayesian non-negative matrix factorization,” Phys. Rev. E.,
vol. 83, p. 066 114, 2011.

[105] S. Qaiser and R. Ali, “Text mining: Use of tf-idf to examine the relevance of
words to documents,” International Journal of Computer Applications, vol. 181,
pp. 25–29, 2018.

[106] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards automated
reentrancy detection for smart contracts based on sequential models,” IEEE
Access, vol. 8, pp. 19 685–19 695, 2020.

[107] S. Qian, H. Ning, Y. He, and M. Chen, “Multi-label vulnerability detection
of smart contracts based on bi-lstm and attention mechanism,” Electronics,
vol. 11, no. 19, p. 3260, 2022.

[108] U. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect
community structures in large-scale networks,” Phys. Rev E., vol. 76, p. 036 106,
2007.

[109] H. Rameder, M. Di Angelo, and G. Salzer, “Review of automated vulnerability
analysis of smart contracts on ethereum,” Front. Blockchain, vol. 5, p. 814 977,
2022.

[110] T. Roth, M. Utz, F. Baumgarte, A. Rieger, J. Sedlmeir, and J. Strüker, “Elec-
tricity powered by blockchain: A review with a european perspective,” Applied
Energy, vol. 325, p. 119 799, 2022.

[111] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and
protections,” IEEE Access, vol. 8, pp. 24 416–24 427, 2020.

[112] D. Sebastian-Cardenas et al., “Cybersecurity and privacy aspects of smart con-
tracts in the energy domain,” in Proceedings of the 2022 IEEE 1st Global Emerg-
ing Technology Blockchain Forum: Blockchain & Beyond (iGETblockchain),
Irvine, CA, USA, 2022, pp. 1–6.

[113] C. Sendner et al., “Smarter contracts: Detecting vulnerabilities in smart con-
tracts with deep transfer learning.,” in NDSS, 2023.

[114] M. Setyawan, R. Awangga, and S. Efendi, “Comparison of multinomial naive
bayes algorithm and logistic regression for intent classification in chatbot,” in
2018 International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.

98

https://www.powerledger.io/
https://www.powerledger.io/

[115] S. Seven, G. Yao, A. Soran, A. Onen, and S. Muyeen, “Peer-to-peer energy
trading in virtual power plant based on blockchain smart contracts,” IEEE
Access, vol. 8, pp. 175 713–175 726, 2020.

[116] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A comparative analysis of logistic
regression, random forest and knn models for text classification,” Augmented
Human Research, vol. 5, pp. 1–16, 2020.

[117] C. Shi, Y. Xiang, R. Doss, J. Yu, K. Sood, and L. Gao, “A bytecode-based
approach for smart contract classification,” arXiv, 2021, arXiv:2106.15497.

[118] C. Shi, Y. Xiang, J. Yu, L. Gao, K. Sood, and R. Doss, “A bytecode-based
approach for smart contract classification,” in Proceedings of the 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering,
2022, pp. 1046–1054.

[119] E. Sifra, “Security vulnerabilities and countermeasures of smart contracts: A sur-
vey,” in Proceedings of the 2022 IEEE International Conference on Blockchain
(Blockchain), Espoo, Finland, 2022, pp. 512–515.

[120] A. Singh, R. Parizi, Q. Zhang, K. Choo, and A. Dehghantanha, “Blockchain
smart contracts formalization: Approaches and challenges to address vulnera-
bilities,” Comput. Secur., vol. 88, p. 101 654, 2020.

[121] Smartbugs. “Smartbugs/smartbugs: Smartbugs: A framework to analyze ethereum
smart contracts.” Accessed on 27 September 2023. (2023), [Online]. Available:
https://github.com/smartbugs/smartbugs.

[122] S. Sobolevsky and R. Campari, “General optimization technique for high-quality
community detection in complex networks,” Phys. Rev. E., vol. 90, p. 012 811,
2014.

[123] Solhint. “Solhint.” Accessed on 27 September 2023. (2023), [Online]. Available:
https://protofire.github.io/solhint/.

[124] Solidity. “Solidity by example - call.” Accessed on September 27, 2023. (),
[Online]. Available: https://solidity-by-example.org/call/.

[125] Solidity. “Solidity by example - sending ether.” Accessed on September 27, 2023.
(), [Online]. Available: https://solidity-by-example.org/sending-ether/.

[126] P. Sun, L. Gao, and S. Han, “Identification of overlapping and non-overlapping
community structure by fuzzy clustering in complex networks,” Inf. Sci., vol. 181,
pp. 1060–1071, 2011.

[127] X. Sun, X. Lin, and Z. Liao, “An abi-based classification approach for ethereum
smart contracts,” in 2021 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), 2021, pp. 99–104.

[128] Sunchain, accessed on 17 April 2023. [Online]. Available: https://www.sunchain.
fr/.

99

https://github.com/smartbugs/smartbugs
https://protofire.github.io/solhint/
https://solidity-by-example.org/call/
https://solidity-by-example.org/sending-ether/
https://www.sunchain.fr/
https://www.sunchain.fr/

[129] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to map
source code to software vulnerability using code-as-a-graph,” arXiv preprint
arXiv:2006.08614, 2020.

[130] N. Szabo, “Smart contracts: Building blocks for digital markets,” Extropy
Journal of Transhuman Thought, vol. 18, pp. 50–53, 1996.

[131] N. Szabo, “Formalizing and securing relationships on public networks,” First
monday, 1997.

[132] H. T., B. J., L. C. R. K., and P. M., “A soft modularity function for detecting
fuzzy communities in social networks,” IEEE Trans. Fuzzy Syst., vol. 21,
pp. 1170–1175, 2013.

[133] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer smart
contracts: A sequence learning approach to detecting security threats,” arXiv
preprint arXiv:1811.06632, 2018.

[134] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp pipeline,”
arXiv, 2019. eprint: 1905.05950.

[135] G. Tian, Q. Wang, Y. Zhao, L. Guo, Z. Sun, and L. Lv, “Smart contract
classification with a bi-lstm based approach,” IEEE Access, vol. 8, pp. 43 806–
43 816, 2020.

[136] G. Tian, Q. Wang, Y. Zhao, L. Guo, Z. Sun, and L. Lv, “Smart contract
classification with a bi-lstm based approach,” IEEE Access, vol. 8, pp. 43 806–
43 816, 2020. doi: 10.1109/ACCESS.2020.2977362.

[137] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,”
pp. 9–16, 2018.

[138] L. Toderean et al., “A lockable erc20 token for peer to peer energy trading,”
arXiv, 2021, arXiv:2111.04467.

[139] P. Tolmach, Y. Li, S. Lin, Y. Liu, and Z. Li, “A survey of smart contract formal
specification and verification,” ACM Computing Surveys, vol. 54, pp. 1–38,
2021.

[140] C. Torres, A. Iannillo, A. Gervais, and R. State, “Confuzzius: A data dependency-
aware hybrid fuzzer for smart contracts,” pp. 103–119, 2021.

[141] C. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum
smart contracts,” in Proceedings of the 34th Annual Computer Security Appli-
cations Conference, 2018, pp. 664–676.

[142] T. A. Usman, A. A. Selçuk, and S. Özarslan, “An analysis of ethereum smart
contract vulnerabilities,” in 2021 International Conference on Information
Security and Cryptology (ISCTURKEY), IEEE, 2021, pp. 99–104.

[143] A. Uysal and S. Gunal, “The impact of preprocessing on text classification,”
Inf. Process. Manag., vol. 50, pp. 104–112, 2014.

100

1905.05950
https://doi.org/10.1109/ACCESS.2020.2977362

[144] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, “A systematic literature
review of blockchain and smart contract development: Techniques, tools, and
open challenges,” Journal of Systems and Software, vol. 174, p. 110 891, 2021.

[145] C. Vehlow, T. Reinhardt, and D. Weiskopf, “Visualizing fuzzy overlapping
communities in networks,” IEEE Trans. Vis. Comput. Graph., vol. 19, pp. 2486–
2495, 2013.

[146] F. Victor and B. Lüders, “Measuring ethereum-based erc20 token networks,”
in Proceedings of the International Conference on Financial Cryptography and
Data Security, Springer, 2019, pp. 113–129.

[147] G. Vieira and J. Zhang, “Peer-to-peer energy trading in a microgrid leveraged
by smart contracts,” Renew. Sustain. Energy Rev., vol. 143, p. 110 900, 2021.

[148] L. Šubelj and M. Bajec, “Robust network community detection using balanced
propagation,” Eur. Phys. J. B., vol. 81, pp. 353–362, 2011.

[149] L. Šubelj and M. Bajec, “Ubiquitousness of link-density and link-pattern com-
munities in real-world networks,” Eur. Phys. J. B., vol. 85, pp. 1–11, 2012.

[150] L. Šubelj and M. Bajec, “Unfolding communities in large complex networks:
Combining defensive and offensive label propagation for core extraction,” Phys.
Rev. E., vol. 83, p. 036 103, 2011.

[151] D. Vujičić, D. Jagodić, and S. Ranđić, “Blockchain technology, bitcoin, and
ethereum: A brief overview,” in 2018 17th international symposium infoteh-
jahorina (infoteh), IEEE, 2018, pp. 1–6.

[152] L. Wang, H. Cheng, Z. Zheng, A. Yang, and X. Zhu, “Ponzi scheme detection
via oversampling-based long short-term memory for smart contracts,” Knowl.-
Based Syst., vol. 228, p. 107 312, 2021.

[153] W. Wang, D. Liu, X. Liu, and L. Pan, “Fuzzy overlapping community detection
based on local random walk and multidimensional scaling,” Physica A., vol. 392,
pp. 6578–6586, 2013.

[154] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Au-
tomated vulnerability detection models for ethereum smart contracts,” IEEE
Trans. Netw. Sci. Eng., vol. 8, pp. 1133–1144, 2020.

[155] X. Wang and J. Li, “Detecting communities by the core-vertex and intimate
degree in complex networks,” Physica A., vol. 392, pp. 2555–2563, 2013.

[156] Y. Wang, G. Gou, C. Liu, M. Cui, Z. Li, and G. Xiong, “Survey of security
supervision on blockchain from the perspective of technology,” Journal of
Information Security and Applications, vol. 60, p. 102 859, 2021.

[157] Z. Wang, W. Wu, C. Zeng, J. Yao, Y. Yang, and H. Xu, “Smart contract vulner-
ability detection for educational blockchain based on graph neural networks,” in
2022 International Conference on Intelligent Education and Intelligent Research
(IEIR), IEEE, 2022, pp. 8–14.

101

[158] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[159] Wpp energy, accessed on 17 April 2023. [Online]. Available: https://wppenergy.
com/.

[160] C. Wu, J. Xiong, H. Xiong, Y. Zhao, and W. Yi, “A review on recent progress
of smart contract in blockchain,” IEEE Access, vol. 10, pp. 50 839–50 863, 2022.

[161] H. Wu et al., “Peculiar: Smart contract vulnerability detection based on crucial
data flow graph and pre-training techniques,” in Proceedings of the 2021 IEEE
32nd International Symposium on Software Reliability Engineering (ISSRE),
Wuhan, China, 2021, pp. 378–389.

[162] H. Wu, H. Dong, Y. He, and Q. Duan, “Smart contract vulnerability detection
based on hybrid attention mechanism model,” Applied Sciences, vol. 13, no. 2,
p. 770, 2023.

[163] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[164] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract static
analysis for detecting practical reentrancy vulnerabilities in smart contracts,”
in Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, Melbourne, Australia, 2020, pp. 1029–1040.

[165] X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “Deescvhunter: A deep learning-
based framework for smart contract vulnerability detection,” in 2021 Inter-
national Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–
8.

[166] F. Zablith and I. Osman, “Reviewmodus: Text classification and sentiment
prediction of unstructured reviews using a hybrid combination of machine
learning and evaluation models,” Appl. Math. Model., vol. 71, pp. 569–583,
2019.

[167] H. Zhang and G. Zhong, “Improving short text classification by learning vector
representations of both words and hidden topics,” Knowledge-Based Systems,
vol. 102, pp. 76–86, 2016.

[168] L. Zhang et al., “A novel smart contract reentrancy vulnerability detection
model based on bigas,” Journal of Signal Processing Systems, pp. 1–23, 2023.

[169] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum
smart contracts,” in Proceedings of the 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 2020,
pp. 139–150.

[170] S. Zhang, D. May, M. Gül, and P. Musilek, “Reinforcement learning-driven
local transactive energy market for distributed energy resources,” Energy AI,
vol. 8, p. 100 150, 2022.

102

https://wppenergy.com/
https://wppenergy.com/

[171] S. Zhang, R. Wang, and X. Zhang, “Identification of overlapping community
structure in complex networks using fuzzy c-means clustering,” Physica A.,
vol. 374, pp. 483–490, 2007.

[172] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks:
A comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 1–
23, 2019.

[173] Y. Zhang and D. Yeung, “Overlapping community detection via bounded
nonnegative matrix tri-factorization,” in In Proc. ACM SIGKDD Conf., 2012,
pp. 606–614.

[174] Z. Zhang et al., “Reentrancy vulnerability detection and localization: A deep
learning based two-phase approach,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, Rochester, MI,
USA, 2022, pp. 1–13.

[175] X. Zhao, Z. Chen, X. Chen, Y. Wang, and C. Tang, “The dao attack paradoxes
in propositional logic,” in 2017 4th international conference on systems and
informatics (ICSAI), IEEE, 2017, pp. 1743–1746.

[176] Z. Zheng et al., “An overview of smart contracts: Challenges, advances, and
platforms,” Future Gener. Comput. Syst., vol. 105, pp. 475–491, 2020.

[177] J. Zhou et al., “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[178] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
20, C. Bessiere, Ed., Main track, International Joint Conferences on Artificial
Intelligence Organization, Jul. 2020, pp. 3283–3290. doi: 10.24963/ijcai.2020/
454. [Online]. Available: https://doi.org/10.24963/ijcai.2020/454.

[179] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural networks,” in Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence, 2021, pp. 3283–3290.

103

https://doi.org/10.24963/ijcai.2020/454
https://doi.org/10.24963/ijcai.2020/454
https://doi.org/10.24963/ijcai.2020/454

	Introduction
	Smart Contracts
	Domain Classification
	Vulnerability Detection
	Thesis Motivations and Objectives
	Thesis Outline

	Detection and Analysis of Ethereum Energy Smart Contracts
	Abstract
	Introduction
	Background
	Energy Smart Contract
	Text Classification

	Related Work
	Methodology
	Data Collection and Pre-Processing
	Building a Domain Corpus
	Embedding Layer
	Baseline Models

	Evaluation Results
	Conclusions

	Evaluation of Smart Contract Vulnerability Analysis Tools: A Domain-Specific Perspective
	Abstract
	Introduction
	Background and Motivation
	Vulnerability Analysis Tools
	Domain-Specific Perspective
	Analysis
	Benchmark
	Energy

	Discussion
	Conclusions

	Transfer Learning with Graph Neural Networks for Vulnerability Detection in Energy Smart Contracts
	Abstract
	Introduction
	Background
	Methodology
	Pre-processing
	Graph Convolutional Network Model
	Graph Attention Convolutional Network Model
	GraphSAGE
	GGNN
	TL-GAT

	Results and Discussion
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

