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Abstract

The popularity of magnetic resonance imaging (MRI) owes much to its flexibility. Sensitive

to a host of different biophysical phenomena, parameters of the scan can be fine-tuned

to highlight specific pathologies. One such mechanism for generating image contrast is

magnetic susceptibility—the material property that defines how an object will distort an

applied magnetic field such as that of the MR scanner. In functional MRI (fMRI), for

instance, the unique magnetic signatures of oxygenated (diamagnetic) and deoxygenated

(paramagnetic) blood are what permit the indirect measure of neuronal activity. However,

rather than measuring the susceptibility itself, fMRI registers haemodynamic change as

subtle gains and losses in the signal magnitude due to haem-iron induced dephasing of the

proton spins. Susceptibility mapping, an emerging area in MRI, attempts to retrieve a direct

measure of bulk susceptibility itself. Generally this is done, not by means of the standard

magnitude image, but through the phase component of the signal which, in the idealized

case, relates the magnetic field perturbation by a simple multiplicative constant.

Several issues interfere with the construction of accurate susceptibility maps. Foremost

is the obfuscation of the small-scale “local” field (i.e., that pertaining to susceptibility vari-

ation within tissue) by the so-called “background” field, which owes predominantly to the

comparatively substantial susceptibility shift between tissue and air. Whether the goal is to

produce qualitatively useful images of the local field, or to map the susceptibility itself, the

local field must first be isolated from the background. To isolate overlapping signals which

are a priori unknown, the unique characteristics of the expected signals need to first be cod-

ified. One family of methods for isolating the local field begins by asserting that, away from

air-tissue interfaces, the background field should satisfy the partial differential equation of

Laplace, whereas the local field should satisfy that of Poisson (viz., the background field

should be harmonic, the local field non-harmonic). This classification informs a filtering

technique based on the spherical mean value (SMV) property of harmonic functions: the

mean of a harmonic function calculated over a spherical surface equates to the specific value

taken by the function at the centre of the sphere.
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This thesis introduces another property of harmonic functions to the task of local field

estimation: a harmonic function can be locally expressed by means of a convergent power

series (viz., it is an analytic function). This property is first employed to characterize

the SMV kernel as an estimator for the central field value when the field is discretized.

Analysis reveals that when the field data is of a finite spatial resolution, the aim of accurate

elimination of the background field via the SMV is fundamentally at odds with the aim of

preserving the local field. Fortunately, given the rapid decay of the background field and its

derivatives with distance from its field sources, the discrete SMV is nevertheless a robust

estimator for field geometries such as those observed in the brain.

In addition to the problem of finite image resolution, MR imaging of the head has finite

spatial support as signal is generally absent in the skull and ever-absent in the surrounding

air. The SMV cannot be used to estimate the background field wherever the spherical kernel

extends beyond the edges of this support. Hence, in conventional SMV-filtering, field points

within a distance from the edges equal to the radius of the employed kernel are discarded

outright. This is a considerable obstacle to a number of clinical applications as it precludes

analysis of features such as subdural haematomas and cortical lesions in pathologies such as

multiple sclerosis. To recover local field across the edges of the brain, this study presents

an extension to conventional SMV-filtering by appealing to the analytic nature of the back-

ground field: by obtaining an initial SMV-estimate of the harmonic background field over

a reduced inner portion of the brain, a three-dimensional Taylor expansion was performed

to extend field coverage to the edges of the brain. The method is quantitatively assessed

through a numerical experiment and qualitatively demonstrated on in vivo human brain

data acquired at 4.7 T. Using a kernel radius typical of conventional methods, the extension

recovered on average 26 % more in vivo brain volume.

III



Preface

The third chapter of this thesis has been adapted from a collaborative work: Topfer R,
Schweser F, Deistung A, Reichenbach JR, Wilman AH. SHARP Edges: Recovering Cortical
Phase Contrast Through Harmonic Extension. Magnetic Resonance in Medicine; article first
published online March 3, 2014 DOI: 10.1002/mrm.25148. Contributions from co-authors
were essentially limited to critical reviews of drafts of the manuscript. F. Schweser’s assis-
tance in this regard as well as his insightful discussions are of particular note. The original
experiment was conceived by the author; the lion’s share of the computer programming and
writing of the manuscript was also done by the author.

The work makes use of in vivo MRI data for which ethics approval was granted by the
University of Alberta Research Ethics Board as part of the project “Evaluation of MRI in
normal volunteers and patients with suspected neurological disease”, study ID Pro00000906,
re-approved as of July 23, 2013.

IV



Acknowledgements

Specific thanks are owed to my supervisor Alan Wilman, for the support and encouragement;
to my friend and colleague Hongfu Sun, for sharing several of the image reconstruction
programs used in this thesis; to Mr. and Mrs. Sandhu of Stir Krazy, for supplying the
innumerable curries consumed during the construction of this thesis; and, most of all, to my
mom, for always sharing her lunch.

V



Contents

1 Introduction: Physics, physiology, and the machine 1
1.1 The proton top’s spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Iron Age and aging with iron . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Ludwig Boltzmann vs. the RF amplifier . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 On the application of spherical averaging operators to a Dirichlet problem
in MR phase imaging 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Mapping the magnetic susceptibility . . . . . . . . . . . . . . . . . . . 11
2.1.2 Mapping the magnetic perturbation field . . . . . . . . . . . . . . . . . 13

2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 SHARP edges: Recovering cortical phase contrast through harmonic ex-
tension 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 E-SHARP Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 In Vivo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Epilogue: To be (analytically) continued... 35
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Limitations and future directions . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 38

VI



List of Figures

1.1 Complex GRE: magnitude and phase . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Magnetic dipole: Spatial and Fourier representations . . . . . . . . . . . . . . 12
2.2 Current phase processing techniques . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 When a sphere is not a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 DSMV estimation of the harmonic field: external sources . . . . . . . . . . . . 21
2.5 DSMV estimation of the harmonic field: enclosed sources . . . . . . . . . . . 22
2.6 DSMV estimation of the harmonic field: varying resolution . . . . . . . . . . 22
2.7 DSMV estimation of the local field: in vivo examples . . . . . . . . . . . . . . 24

3.1 E-SHARP workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 E-SHARP in silico: model and reconstruction . . . . . . . . . . . . . . . . . . 30
3.3 E-SHARP in silico: effect of order of expansion . . . . . . . . . . . . . . . . . 31
3.4 E-SHARP in vivo: field mapping . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 E-SHARP in vivo: susceptibility mapping . . . . . . . . . . . . . . . . . . . . 33

VII



Chapter 1

Introduction: Physics, physiology,
and the machine

Wherein we proceed in an orderly, coherent fashion: Beginning from the top with an
analogy—the moment arm of the spinning top—we then pause for a moment to consider
what sits atop our own shoulders before proceeding to get to the bottom of things, the
ground state—incoherent and disordered.

In the beginning... the earth was without form, and void; and darkness was
upon the face of the deep. And the Spirit of God moved upon the face of the
waters. And God said, Let there be light: and there was light.

-Genesis:1:1-2(KJV)

A flippant remark—the celestial switch was flipped, and delivered was the spectral bless-
ing of electromagnetism. A phenomenal induction, and the world was thereby amenable to
primordial experimentation in nuclear magnetic resonance (NMR).

1.1 The proton top’s spin

In 1922, Stern and Gerlach performed the now famous experiment whereby a beam of
electrically neutral silver atoms was directed through an orthogonally applied magnetic
gradient field ∇B. Rather than pass straight through, or spread continuously through a
range of angles as per the expected behaviour under classical mechanics, the particles were
observed to deflect in but 2 directions. The interpretation to emerge later was that the silver
atom possessed a net magnetic moment µ due to the inherent spin angular momentum of its
unpaired electron and, when placed in a spatially varying magnetic field, it would therefore
experience a force F equal to the negative gradient of the system’s potential energy U :

F = −∇U = −∇(µ ·B). (1.1)
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Like the spinning top which, rather than collapsing abruptly under the force of gravity,
will precess around the surface normal in order to conserve angular momentum, the nuclear
spin, with its intrinsic angular momentum, will precess about the direction of an applied
magnetic field. However, rather unlike the gyroscopic top, the orientation of a nuclear
magnetic moment in an applied field can assume one of a discrete set of values (i.e. quantum
states).

The proton as would later be demonstrated is, like the electron, a spin 1/2 particle,
for which a strict binary of quantum states are available: spin “up” or spin “down”. That
is, the spin angular momentum of the particle is ±~/2, where ~ is Planck’s constant (∼
6.626 × 10−34 m2 kg s−1) divided by 2π. In turn, this determines the magnetic moment
through multiplication with an experimentally determined proportionality term known as
the gyromagnetic ratio γ (∼ 42.576 MHzT−1 for protons):

µz =

{
µ(+) = γ~/2, spin up
µ(−) = −γ~/2, spin down.

(1.2)

In the classical picture, the product of γ with the applied field strength yields the precessional
frequency ω of the spins, also known as the Larmor frequency.

At thermal equilibrium, the probability of finding a particle in a given state is given
by a Boltzmann distribution. The most probable configuration corresponds to that which
possesses the lowest energy. In the absence of an applied field, the two states are effectively
degenerate and therefore equally probable, with transitions between states governed by
fluctuations in their local magnetic environment (fluctuations which, in aqueous environs, are
essentially random due to Brownian motion). Upon the application of an external magnetic
field, however, an energy differential known as the Zeeman effect arises. If the field B is
applied along the z direction with magnitude B0, labeling the absolute temperature as T ,
the Boltzmann constant as kB, and denoting the number densities of B-aligned (spin up)
and the B-antialigned (spin down) proton spins by ρ(+) and ρ(−) respectively, the ratio of
state-occupancies is then

ρ(+)

ρ(−)
=
exp(−U(+)/kBT )

exp(−U(−)/kBT )
= exp(γ~B0/kBT ) ≈ 1 +

γ~B0

kBT
+ ... (1.3)

where the rightmost expression has involved a Taylor expansion. Since the magnetic energies
of the nuclear systems studied in MRI are much less than the typical thermal energies kBT
(e.g. T ∼ room temperature, B0 ∼ 1 Tesla), the linear approximation should suffice [1].
Thus, the spin ensemble has a slight preference for net alignment with the applied field,
such that if ρ(−) ≈ ρ(+) ≈ ρ/2, where ρ is the total proton spin density, then ρ(+) − ρ(−) ≈
γ~B0/2kBT which elicits a net magnetization M (dipole moment per unit volume). Since
B = B0ẑ, where ẑ is the unit vector in the z direction, the transverse components of µ
continue to be governed by random thermal motion; averaged over a volume, they produce
no net magnetization. Hence, the magnetization is simply given by the product of the
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overabundance of “up” spins with their associated dipole moment:

M = M ẑ = (ρ(+) − ρ(−))µ(+)ẑ =
γ2~2B0ρ0

4kBT
ẑ. (1.4)

The material property that relates the resulting macroscopic magnetization to the ap-
plied induction field is known as the magnetic susceptibility χ. In general, the magnetic
susceptibility of a given material, and ultimately its magnetization, will be dominated by
effects owing to the interactions among its electron spins, with the protons playing a much
smaller role. Denoting the permeability of free space as µ0,

M =
χB

µ0(1 + χ)
+ M0, (1.5)

where the last term captures any remanent (a.k.a. permanent) magnetization that might
be present in the absence of an applied field. So, apply a magnetic field to a medium of
non-zero magnetic susceptibility and the result is a net magnetization. Apply a magnetic
field to a collection of unpaired proton spins and the result is a net magnetization along the
direction of the field, with the spins precessing at the Larmor frequency:

ω0 = γB0, (1.6)

an important relation, to which we will return momentarily.

1.2 The Iron Age and aging with iron

In an alternative scenario, in the beginning, there was Alan Hills 84001.
Alan Hills 84001, affectionately known as AH84001, is a Martian meteorite collected in

1984 in Allan Hills Antarctica by a crew of American geologists. The rock largely owes its
fame to a paper published twelve years later in the acclaimed journal Science: “Search for
Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001" [2]. As
the title suggests, a number of chemical and structural similarities were found between the
features of the meteorite and established fossils. Publications followed in other journals of
high-repute, wherein new analyses were performed, again leading the authors to favour the
pro-Martian-life hypothesis. One of the main arguments advanced by these pro-life parties
was the morphologic similarity between the linear chains of the mineral magnetite (Fe3O4)
observed in the meteorite and those produced by earthly bacteria [3].

Though the scientific debate regarding the genesis of these structures may be (however
surprisingly) ongoing [4] it is certainly true that multitudinous molecular forms and functions
of iron exist in living creatures. At the unicellular level, magnetotactic bacteria contain linear
chains of magnetite which serve as a “biological bar magnet” [5], passively directing them
toward the geomagnetic poles (a phenomenon known as magnetoreception) [6]. Magnetite-
based magnetoreception is believed to play a role in the navigational abilities of birds and
fish during migration [7, 8]. To access nutritious endolithic algae (embedded in choral or
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rock), the dental enamel of the chiton mollusc is also made of magnetite (harder than our
own hydroxyapatite enamel by about 1 Mohs point). Indeed, based on the mineralogical
properties (e.g. crystal perfection and chemical purity) generally observed in the biogenic
form of the mineral, Kirschvink and Hagadorn [9] posit that the ability of the varied phyla to
synthesize this biomineral suggests a common ancestor dating back several hundred million
years.

Our understanding of geologic history owes much to the stability of the ordered magnetic
domains of magnetite under normal atmospheric conditions. Magnetite was the first mate-
rial discovered to manifest a bulk magnetism—a phenomenon which owes to the unpaired
electron spins of its ferric iron. Like the nuclear paramagnetism of the aforementioned en-
semble of proton spins, the magnetic moments of magnetite arrange with a net alignment in
the direction of an applied field, however, below the Curie temperature (858 K for magnetite)
the moments are essentially frozen in place and will remain as such should the external mag-
netizing field be removed (i.e. positive M0 in (1.5)). Under normal atmospheric conditions,
magnetite is therefore classified as a ferrimagnet. Beyond the Curie temperature, however,
this magnetic ordering breaks down as the randomizing influence of thermal interactions
win out. Beyond the Curie temperature, which applies to all materials possessing remanent
magnetism, magnetite becomes paramagnetic (0 < χ < 1), such that a net alignment of the
magnetic moments becomes possible only in the presence an external magnetic field.

Whether the mineral exists in human tissue in any significant quantity (or at all) remains
an open question. One study reported finding it (or a mineral analogue) “unequivocally”
within the cores of Alzheimer’s plaques [10]. An electron microscopy study reported finding
small magnetite particles, 50 nm in diameter, in post mortem brain tissue [5]. However,
an NMR relaxometry-based study [11] examined samples of brain ferritin from Alzheimer’s
patients and healthy controls for the existence of magnetite within the protein core and found
nothing to support the hypothesis that magnetite might be stored there—concentrations
above 1% were effectively ruled out. Quoting Schenck [12], in reference to the aforementioned
the electron microscopy study, “As with other such studies, additional confirmation and
studies to rule out an exogenous source for these particles is desirable. Such small particles
cannot produce MR imaging artifacts, at least using conventional pulse sequences, and if
ferromagnetic particles much larger than this were present it is likely they could be detected
in this way. Such artifacts are not observed.”

Though iron is an essential nutrient, necessary for the synthesis of DNA, for the transport
of oxygen in blood, and for basic cell metabolism, free iron is highly reactive and therefore
toxic. Complex mechanisms have evolved to regulate iron reserves. Within the cell, this is
achieved via the iron storage protein ferritin. Unlike magnetite, ferritin does not possess
remanent magnetism and is merely paramagnetic. A territory of the midbrain known as the
substantia nigra (“black substance”, for its high concentration of the pigment neuromelanin)
is responsible for producing much of the brain’s dopamine—a neurotransmitter understood
to be involved in so-called reward pathways, and in initiating and modulating voluntary
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movement via the nigrostriatal pathway. Ferrous iron is a crucial cofactor for the synthesis
of L-DOPA (the precursor to dopamine), hence, the substantia nigra tends naturally to
be rich in ferritin iron reserves. In Parkinson’s disease, however, the dopaminergic cells of
the substantia nigra die off, with the reduced striatal innervation ultimately leading to the
motor dysfunction that characterizes the disease. Colocated with the cell death tend to be
increased levels of non-haem iron and substantially decreased levels of neuromelanin, which
is known to have a high affinity for binding free iron. A popular theory of the degenerative
mechanism behind Parkinson’s disease has it that the nigral cell death is caused by iron-
induced oxidative stress [13,14].

The other principal contributor to regional susceptibility variation in the nervous system
is myelin, which is diamagnetic (χ < 0), thus tending to repel an applied magnetic field.
Maintained by oligodendrocytes in the central nervous system and by Shwann cells in the
peripheral, myelin is the dielectric sheath wrapped around nerve axons which lowers the ef-
fective capacitance, thereby increasing the propagation speed of neural (electrical) impulses,
known as action potentials. When myelin is damaged in disorders such as multiple sclerosis
(MS) it impinges upon the ability of neurons to propagate action potentials. Depending on
the degree of damage and the parts of the nervous system affected, the results can be debili-
tating or fatal. As in Parkinson’s, colocated with the lesions tends to be an accumulation of
a form of non-haem iron. Though MS is commonly thought of as a white matter disease, iron
accumulation in grey matter structures such as the thalamus may also be involved [15,16].

There is evidence to suggest other neurodegenerative disorders such as Huntington’s
disease [17], amyotrophic lateral sclerosis [18], and vascular dementia [19,20] also have asso-
ciated changes in the magnetic susceptibilities of neural structures. Yet, there is currently
no available technique for in situ quantification of biologic magnetic susceptibility.

1.3 Ludwig Boltzmann vs. the RF amplifier

And God said, Let there be a firmament in the midst of the waters, and let
it divide the waters from the waters.

-Genesis:1:6(KJV)

The human body is over 50% water by mass. For the purpose of MRI, this is a par-
ticularly good thing: the biologic ubiquity of hydrogen (its nucleus consisting of a single
proton), with its relatively large gyromagnetic ratio, offer systems which can be probed by
NMR.

The bulk of the typical clinical MR scanner consists of a massive superconducting
solenoid. The sole purpose of this powerful static field is to rend apart the energy lev-
els of the proton, and thereby increase the bulk magnetization (1.4). Simply stated, the
goal in conventional MRI is to map the sample (i.e., subject/object to be imaged) mag-
netization, itself largely dependent on the density of protons. The magnetization evokes a
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secondary “response” field (to which a mathematical form will be given in Chapter 2). Any
attempt to measure the response field outright, however, is doomed to fail: the longitudinal
field applied to magnetize the sample being on the order of a billion times greater than the
response field in the same direction (the proverbial “needle in a haystack”). Acquisition of
the signal must therefore occur, away from B0ẑ, in the transverse plane.

To generate a coherent transverse signal the sample is irradiated for a brief interval by a
radio frequency (RF) pulse with a central frequency held at the Larmor rate of the precessing
spins (1.6). The effect of this resonant pulse is to synchronize the spins and, in the classical
picture, to pull the magnetization vector into the transverse plane. Through Faraday’s law,
the rotating transverse magnetization varies the transverse magnetic flux density which can
then be detected by means of a conducting coil tuned to the Larmor frequency. Left at
that, the measured signal (an oscillating voltage induced in the receiver coil) is referred
to as the “free induction decay” (FID). Ignoring the electronics of the receiver system, the
FID envelope is governed by the initial magnitude of the tipped magnetization and by two
relaxation times (T2 and T ′2) associated with the loss of phase coherence as the diffusing
spins sample various magnetic environments. The phase accumulation of a given spin over
the time course t = TE, during which it moves through the variable Bz field with trajectory
r(t), is given by the Larmor equation (1.6):

φ(TE) = −
TE∫
0

ω(r(t))dt = −γ
TE∫
0

Bz(r(t))dt. (1.7)

The “spin-spin” relaxation time T2, as the name suggests, results from the magnetic
interactions among the nuclear spins as they move about. It depends on the diffusion length
of the protons—more mobile protons will experience a greater variety of field strengths as
they diffuse, leading to random phase accumulation that cannot be refocused. T ′2 pertains
to the larger scale static field inhomogeneity which is essentially constant over the proton’s
diffusion length. A third relaxation time, the “spin-lattice” relaxation T1 time describes the
recovery of the longitudinal magnetization after the RF pulse as it returns to its equilibrium
state. In practice, however, in the simple FID experiment a combination of the first two
terms governs the observed decay: The effective decay time is T ∗2 = (1/T2 + 1/T ′2)

−1.
In general, all four relaxation times depend on field strength (though T2 less so) and

on the local chemical environment of the proton spins. Hence, all four relaxation times are
reduced by the local presence of magnetic materials [21], though the degree to which they are
affected will depend on the material. That the signal does not depend purely on the density
of spins, but also on the impurities of the local environments in which they are confined does
much to explain the success of in vivo MR in general. For example, by way of intracellular vs.
extracellular compartments, distinguished through numerous chemical properties, the waters
are divided. Since variations between the spin densities of neighbouring tissue compartments
may be minimal, it is fortuitous that there should be other salient parameters involved in
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colouring the observed signal.
The guiding principle behind MR imaging, as distinct from other applications of NMR,

is that by superposing linear magnetic field gradients in three dimensions onto the main
polarizing magnetic field, a unique correspondence can be achieved between proton-spin
locale and precessional frequency: ω(r) = ω0 + γr · ∇Bz.

Naturally, the effect of these phase-encoding gradients is to dephase the signal. To
undo the deleterious effect of the original gradients and obtain an undistorted image, the
phase accumulation must somehow be “rewound”. One way of achieving this is simply to
apply an equal and opposite gradient following the original. This protocol is referred to as
gradient recalled echo (GRE) imaging. During the play-out of the refocusing gradient in the
frequency-encode direction the oscillating time-domain signal is recorded and, after a time
TE since the original RF excitation, the signal refocuses and an “echo” is produced. The
time between successive RF excitations is referred to as the repetition time TR. To ensure
consistency among successive excitations and avoid the formation of unintended echoes,
the transverse magnetization, once sampled, is often deliberately annihilated by “spoiling”
(dephasing) the spins with an additional RF pulse. As described by Haacke [22], assuming a
perfectly homogeneous RF pulse which tips the longitudinal magnetization an angle θ into
the transverse plane, the effective RF-spoiled GRE signal response at the echo is

Ψ(r, TE) ≈ ρ∗0(r)
sinθ[1− e−TR/T1(r)]e−TE/T

∗
2 (r)

1− cosθe−TR/T1(r)
eiφ(r,TE), (1.8)

where ρ∗0 denotes an effective spin density which absorbs the constants of (1.4) relating to
the magnetization along with any terms relating to the RF coil electronics. In general, we
will assume that the phase at the echo time represents the average field experienced by the
spins within a given voxel. This turns the integral of (1.7) into a simple linear relationship,
and the phase difference at the echo time between two tissues can be written as

∆φ(r) = −γ∆Bz(r)TE. (1.9)

So the excitement wanes. Even the so-called permanent magnet isn’t permanent, and
entropy ultimately wins out: Our stimulated system decays back toward its dull equilibrium,
leaving the receiver array with nothing to detect but frenzied thermal noise. Into the cold,
dark abyss we plumet... Here in brief is the crux of the matter and the subject of this thesis:

GRE imaging does not refocus static field inhomogeneity. Field perturbations
owing to spatial variation in magnetic susceptibility are recorded in the GRE
signal via the decay envelope and via the phase.

Figure 1.3 demonstrates a number of the susceptibility effects commonly observed in GRE
imaging.
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Figure 1.1: Complex reconstructed GRE magnitude (left) and phase (right). The small
arrow points to the substantia nigra (SN), where the exceptional concentration of ferritin
causes dephasing, manifested as reduced intensity in the magnitude. In the phase, the SN
are here obscured by background contributions from macroscopic field inhomogeneity (e.g.
air-tissue interfaces). However the red nuclei—also rich in paramagnetic iron—are visible in
both phase and magnitude as the dark elliptic regions just medial to the SN. The proximity
of the depicted slice to air-tissue interfaces (auditory canals and nasal passages) implies a
large background field gradient, which gives rise to aliasing artifacts known as “phase wraps”
(dark arrow). The long arrow points to the signal-starved region of the skull which, due to
its short T2 decay time, is all but absent at the echo time (TE = 20 ms). The signal-to-noise
ratio (SNR) of the phase is proportional to the magnitude, hence, wherever there is a paucity
for signal (air, bone) the phase is governed by random noise. The blood-oxygenation-level
dependent (BOLD) effect, owing to the paramagnetism of de-oxyhaemoglobin, is visible
around the veins and the sagittal sinus (notched hollow arrow).

1.4 Thesis overview

Though the aim of conventional MR imaging is to map a surrogate for the magnetization
in the form of the signal magnitude, by mapping the field inhomogeneity via the phase, the
hope is that one could solve the corresponding inverse problem to extract a measure of the
underlying material susceptibility. As magnetic susceptibility is largely heterogeneous in
tissue, it provides an endogenous source of image contrast. Beyond this qualitative benefit,
there is significant clinical interest in developing a quantitative technique to map tissue
susceptibility non-invasively for a number of reasons. Chiefly among them, as previously
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mentioned, is that non-haem iron in the brain is understood to play a role in a host of
neurodegenerative disorders for which the disease etiologies remain largely unknown.

A considerable obstacle to developing such a technique is that the sampled phase that
relates to the tissue susceptibility structures of interest is, in effect, buried beneath a much
larger “background” signal pertaining to susceptibility variation outside of tissue (e.g. Fig.
1.3). A number of techniques have been suggested to isolate this “local” phase of interest.
Chapter 2 goes into greater detail introducing the problems at hand and reviews the basics
of field and susceptibility mapping. Special attention is given to a popular filtering technique
which employs a normalized spherical filter to isolate the local field. The technique, which
takes several forms, is termed “spherical mean value” (SMV) filtering, as it adopts the SMV
theorem of harmonic functions as its starting point. An additional property of harmonic
functions is then introduced: namely, that a harmonic function is an analytic function,
and can therefore be locally represented by its Taylor series expansion. By appealing to
this analytic property, it is determined that the accuracy of the discrete SMV with regard
to harmonic functions depends on image resolution and on the size of the adopted filter.
In effect, not all digitized spheres are equal, and the properties of harmonic functions in
continuous space need to be treated in light of the fact that MR phase (i.e. field) is sampled
discretely. Nevertheless, the SMV-based technique is determined to be fairly robust under
certain geometric conditions. In turn, this result does much to explain the success of the
field extrapolation technique introduced in Chapter 3.

In addition to the problem of finite image resolution, MR imaging of the head has finite
spatial support as signal is generally absent in the skull and ever-absent in the surrounding
air. The SMV cannot be used to estimate the local field wherever the spherical kernel
extends beyond the edges of this support. Hence, in conventional SMV-filtering, field points
within a distance from the edges equal to the radius of the employed kernel are discarded
outright. In brain imaging this is a considerable obstacle to a number of clinical applications
as it precludes analysis of features such as subdural haematomas and cortical lesions in
pathologies such as multiple sclerosis. To recover the local field across the edges of the brain,
Chapter 3 presents an extension to conventional SMV-filtering by appealing to the analytic
nature of the background field: By first obtaining an SMV-based estimate of the harmonic
background field over a reduced inner portion of the brain, a three-dimensional Taylor
expansion can then be performed to extend field coverage to the brain edges. The method
is quantitatively assessed through a numerical experiment and qualitatively demonstrated
on in vivo human brain data acquired at 4.7 T. Using a kernel radius typical of conventional
methods, the extension recovered on average 26 % more in vivo brain volume.

Finally, Chapter 4 summarizes the research findings, discusses methodological limita-
tions, and suggests a means of reformulating the technique introduced in Chapter 3.
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Chapter 2

On the application of spherical
averaging operators to a Dirichlet
problem in MR phase imaging

Wherein the magnetic dipole field is dissected and the sphere sectioned into cuboids. An
approach to an inverse problem, along with its inverse—problems with the approach—are
reviewed.

2.1 Introduction

The essential feature to all forms of MRI is a strong, static, spatially invariant magnetic
field. Immersing a sample of non-zero magnetic susceptibility χ(r) into such a field will
cause the sample to magnetize which, in turn, induces a response field. Quoting Li [23],
wherein the bulk magnetization is denoted M(r):

By convention in MRI, the main field is applied in the z direction with a
nominal field value B0. We take a first-order approximation for [isotropic] non-
ferromagnetic material (|χ| � 1), and obtain M(r) ≈ χ(r)/µ0 · B0ẑ, where ẑ is
a unit vector in the z direction.

Denoting the angle between the position vector and the positive z-axis as θ, Li goes on to
suggest a general form for the field perturbation along z owing to the magnetized suscepti-
bility:

∆B(r) =
B0

4π

∫
r′ 6=r

χ(r′)
3 cos2 θ − 1

|r′ − r|3
d3r′. (2.1)

That is, the normalized perturbation along z, hereafter referred to as the relative field
perturbation (f∆ := ∆B(r)/B0), is given by the volume convolution (denoted ⊗) of the
susceptibility with the z component of the unit dipole field d, scaled by the inverse of the
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applied field strength [24]:1

f∆ = χ⊗ d, where d =


3 cos2 θ − 1

4π|r|3
, for r 6= 0

0, for r = 0.

(2.2)

2.1.1 Mapping the magnetic susceptibility

The spatial relationships of (2.1) and (2.2) are nonlocal: variation in susceptibility distorts
the magnetic induction at a distance. This gives rise to a complicated geometry dependence
of field to susceptibility which dashes any hope of arriving at a simple closed form solution
for arbitrary χ. To make matters worse, the field is sampled discretely over a spatially
constrained volume (i.e., limited information about the continuous field distribution is avail-
able) and meaningful samples can be obtained strictly in regions where spin densities and
T∗2 relaxation times are generous enough to yield signal above the level of noise at the echo
time (i.e., signal from air is nonexistent, and that coming from bone is negligible in the most
common imaging protocols). This is to say that the system relating the impoverished field
data to underlying susceptibility is highly underdetermined.

The process of inverting the observed field data in attempt to recover the susceptibility
has been termed quantitative susceptibility mapping (QSM). The unfortunate ‘Q’, however,
belies the inherently relative nature of the process. Though tremendous effort goes into
ensuring that the main field of the scanner is as uniform as possible, having a perfectly
static and homogeneous effective field during image acquisition is a practical impossibility.
However uniform the field of the empty scanner, introduction of magnetically interactive
media (e.g. biologic tissue) into the bore will give rise to distortions. To minimize the
deleterious effects of the resultant dephasing upon the MR signal, auxiliary applied fields
are required. Active shimming is the iterative process of examining the free induction decay
and compensating with additional applied fields in order to lengthen the decay envelope and
boost the signal. The shimmed field nevertheless remains imperfect. Furthermore, ramping
of the imaging gradients on and off during acquisition induces eddy currents in nearby con-
ductors (e.g. cryostat) which then cause time-varying secondary fields via Lenz’s law. Thus,
although for the purpose of susceptibility mapping the field of interest is strictly the de-
magnetizing field of the object being imaged, external field inhomogeneities are nevertheless
present. Since the effective B0 distribution is generally unknown, the GRE phase merely
permits an estimation of the field perturbation rather than the magnetic induction itself.

Despite these limitations, interest in MR susceptibility mapping continues to grow, and
has been doing so at an accelerated pace since a Fourier domain representation of the
susceptibility-to-field operation was introduced [25, 26]. In Fourier domain, the nonlocal
integration of susceptibility to field becomes a local multiplication: Denoting the Fourier

1Unless otherwise stated, the ubiquitous references to “fields” will be with respect to the field projections
along B0 (i.e. the z component specifically).
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transform operator as F and the inverse operator as FH

χ⊗ d ≈ FHCFχ, where C(k) =


1

3
− k2z
k2x + k2y + k2z

, for k 6= 0

0, for k = 0.

(2.3)

Figure 2.1: Magnetic dipole: Spatial and Fourier representations. Top: Unit dipole kernel
d(r) of (2.2) cross-sections in x–y and z–y. Bottom: Susceptibility-to-field transfer function
C(k) of (2.3) cross-sections in kx-ky and kz–ky. The two quantities are unitless and scaled
to the same relative brightness.

The transfer function C(k) tends toward zero on two conical surfaces in spatial frequency
domain (k-space) wherever k2z = (k2x + k2y)/2. Since one is free to opt for an image reso-
lution that avoids the zero-surfaces, it might appear that simple point-by-point division of
the discrete Fourier transform (DFT) of f∆ by the transfer function ought to recover the
susceptibility, provided one ignores (sets to zero) its DC component. Unfortunately, the
zero-surfaces nevertheless interfere with reliable estimation of χ insofar as noise present in
f∆ stands to be amplified in the division wherever |C(k)| sinks below unity. In other words,
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the problem is ill-posed, solutions are non-unique, and the inversion is unstable. Enter the
panoply of regularization strategies [27–37]. However, more fundamental issues with the
original problem formulation exist and should, sensibly, be of greater concern than the best
choice of cost function.

The main issues with both the spatial (2.2) and k-space (2.3) representations of the re-
lationship between field and susceptibility is that they assume in vivo susceptibility to be a
scalar and, furthermore, that they incorporate a Lorentzian sphere correction to the magne-
tization.2 As evinced by He and Yablonskiy, the field resulting from magnetic susceptibility
inclusions depends on context rather than mere concentration [38]: “due to the anisotropic
and inhomogeneous nature of the brain’s cellular structure (especially considering elongated
cells, such as axons and dendrites) [the Lorentzian sphere correction] should be modified
since the susceptibility inclusions cannot be modeled as point magnetic dipoles anymore.”
In brief, by keeping the same volume susceptibility and varying only the arrangement of
the sub-voxel susceptibility inclusions, the resulting field perturbation can be vastly differ-
ent [39]. He and Yablonskiy thus proposed a generalized Lorentzian cylinder approach in
order to account for the anisotropies of neural microstructure.

This introduces an angular dependence to the field perturbation based on the orien-
tations of susceptility inclusions relative to the applied field. In myelinated white matter
in particular the tensor nature of the susceptibility has been confirmed [40–42]. Since the
relationship of field to susceptibility is nonlocal, the presence of magnetically anisotropic
myelinated fibers in the brain likely means that even the predominantly isotropic magnetic
structures will be inaccurately represented by the relationship given in (2.2) and (2.3).

2.1.2 Mapping the magnetic perturbation field

Beyond the aforementioned obstacles to transforming field to susceptibility, a number of is-
sues complicate the process of arriving at a reliable field map based on the GRE phase. First,
at the longer echo times adopted to optimise tissue contrast, the measured phase contains
ambiguities—“wraps”, whereby the phase exceeds ±π (e.g. Fig. 1.3). Prior to any other
processing, these ambiguities need to be resolved by means of an unwrapping algorithm.
In addition, the data are generally acquired by means of a receiver array, and due to the
dielectric effects of the sample, and the wavelength effects owing to receiver geometry, each
channel possesses its own phase offset. The offsets are generally spatially varying and diffi-
cult to determine, rendering channel combination for the phase somewhat complicated [43].
Furthermore, at a distance from the receiver elements, SNR tends to be low, defying proper
unwrapping, and thus causing (along with other non-susceptibility effects, such as blood-
flow [44] and partial-volume effects) spatially restricted outliers which confound unwrapping
and channel combination. Even with the perfectly unwrapped, noiseless, and seamlessly
channel-combined phase image, the assumptions behind (1.9)—that phase evolves linearly

2The Lorentz sphere correction makes the dipole kernel d zero at the origin in (2.2) and Fig. 2.1.
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with time and that it represents the average field experienced by the spins within a given
voxel—are only truly valid in the limit of high SNR and high resolution [34]. Given the
host of preliminary issues, it is no wonder that the phase, until fairly recently, was often
discarded before ever reaching the viewing console [22].

Despite the above complications, and despite the fact that the complete set of mecha-
nisms at work in the generation of in vivo phase contrast may not yet be fully understood,
the MR phase does depend on variation in apparent susceptibility. However, whereas inter-
tissue variations in apparent susceptibility (inducing local field) deviate only slightly from
the bulk susceptibility of water at body temperature, the difference between tissue and
air is comparatively dramatic [45], inducing a background field which tends to obscure the
small-scale field variation of interest. Beginning with the unwrapped phase and dividing
by γB0TE (where γ is the proton gyromagnetic ratio, B0 the strength of the applied field,
and TE the echo time) yields an estimate of the relative field perturbation f∆(r) along the
direction of the applied field:

f∆(r) = flocal(r) + fbkgr(r) + ε(r). (2.4)

For our purpose, ε includes anything present in the measurement which is unrelated to
susceptibility (e.g., flow effects, noise [46], receiver offsets, chemical shift [47], contributions
from macromolecule proton exchange [48–50] etc.). flocal and fbkgr are, respectively, the
fields due to magnetic susceptibility variation occurring inside and outside of the volume of
interest (VOI, i.e., brain). Starting from Maxwell’s equations, it can be shown [51] that, in
the absence of noise and susceptibility variation, the longitudinal component of the magnetic
induction expressed in the MR phase will be harmonic. In other words, fbkgr is harmonic
within the VOI, satisfying Laplace’s equation:

0 =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. (2.5)

If the goal is to examine flocal, it must first be isolated from fbkgr. This is particularly
crucial for susceptibility mapping, as the problem of underdetermination must be addressed
by constraining the local susceptibility solution set to reside within the VOI. Local field
extraction techniques essentially fall into two camps: those that perform some form of high-
pass filtering, and those that begin with an estimate of the background source geometry
and proceed by fitting a susceptibility distribution via (2.3) to model the background field.
An example of the latter is the Projection onto Dipole Fields technique (PDF) [52]. The
simplest approach is to apply a generic low-pass filter (e.g. Gaussian or Hanning window)
to the total phase, and then subtract the result of the low-pass from the total. However,
the concern with this approach is that the frequency bands of local and background fields
overlap, and thus, the removal of background generally comes at the expense of local field
attenuation.
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An essential property of harmonic fields in three-dimensional space is that they satisfy
the spherical mean value (SMV) theorem [53]:

f(r0) =
1

4πR2

∫
S(R)

f(r)dS. (2.6)

That is, the mean of a harmonic function calculated over the spherical surface S(R) is equal
to the specific value taken by the function at the centre of the sphere (positioned at r0, and
where |∆r| = |r− r0| = R, the radius of the sphere).

The SMV property was introduced to MRI phase-imaging initially as a means to boost
the SNR in regions of homogeneous susceptibility by averaging field measurements over a
spherical shell [51]. More recently, the SMV property has been used to define a projection-
style filtering scheme known as “Sophisticated Harmonic Artifact Reduction for Phase data”
(SHARP) [54]. Notionally, it works as follows: Extraction of the SMV across the image is
achieved via a convolution of the total field f∆ with a normalized sphere S. Away from the
air-tissue interfaces fbkgr is harmonic, hence, the SMV should capture flocal at the central
point, and subtraction of the SMV from f∆ should cancel fbkgr entirely:

f∆ − S⊗ f∆ = fbkgr − S⊗ fbkgr + flocal − S⊗ flocal + ε− S⊗ ε

= flocal − S⊗ flocal + ε− S⊗ ε

= (δ − S)⊗ (flocal + ε), (2.7)

where δ is a spike of unit height at the centre of S. What remains is a quantity which
pertains strictly to the local field and to the noise, the sum of which can be estimated
through a deconvolution. A variant of SHARP known as Regularization Enabled SHARP
(RESHARP) was recently proposed [55]. Chapter 4 will discuss the distinction. Example
local field images from the aforementioned techniques are shown in Fig. 2.2.

A concern with conventional SHARP3, which adopts a radius for S on the order of a few
millimetres, is that it implicitly conflates the field which is local relative to the boundary
set by the sphere (i.e. owing to sources internal to the spherical surface) with that which is
local relative to the air-tissue boundaries (i.e. owing to inter-tissue susceptibility variation).
In fact, all fields owing to susceptibility sources outside the spherical surface are harmonic
within it (be they due to air-tissue interfaces or tissue structures of interest) and thus, in
the context of SHARP, whereby “harmonic field” is essentially equated with “background
field”, these fields are filtered out indiscriminantly. In a similar way, there is an apparent
contradiction in SHARP in the decision to use a dense sphere over regions of spatially
inhomogenous susceptibility: the outer shell includes susceptibility sources nearer the edge
of the sphere which are external as far as the more central spherical shells are concerned.

3That is, apart from the bad acronym, which belies the fact all that is being done is simple averaging.
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Figure 2.2: Current phase processing techniques in use. The advanced methods (second row,
from left to right: PDF, SHARP, and RESHARP local field estimates) all require a binary
mask derived from the magnitude (top left) to delineate the brain boundary and separate
the local territory from the background and the noise. In addition, a necessary preliminary
stage for the advanced techniques involves unwrapping the phase (top middle). Traditional
homodyne high-pass filtering [44] (top right) requires neither mask, nor unwrapping, but
generally attenuates the local field and often fails to completely overcome the issue of phase
wrapping (e.g. toward the frontal sinuses).

Furthermore, it is unclear how the local susceptibility sources that overlap the outer edge
of the sphere are dealt with in the SHARP scheme.

This notion of inclusion vs. exclusion based on the scale of the SMV operator forces
one to consider the effect of spatial resolution, which ultimately determines what forms of
discretized spheres are possible for the gridded data. In the discretized domain of the image,
denoting the number of samples in the set defining the discretized spherical shell as NS , and
the positions of these samples by rn, the integral of (2.6) becomes a summation,
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g(r0) =
1

Ns

Ns∑
n=1

f(rn), (2.8)

and the discrete spherical mean value (DSMV) conjecture underlying SHARP can be written
as

g(r0)− f(r0) ≈ 0. (2.9)

To date, the size of the SMV operator (which, along with image resolution, determines
NS) has only been examined heuristically in the contexts of reducing measurement noise [51]
and of extracting a measure of the local field [56]. These works take it for granted that given
properties of continuous potential fields (i.e. (2.6)) translate without complication to the
discretized space of the data.

Figure 2.3: Mock-sphere in the finite grid.

The aim of this chapter, beyond giving a general introduction to the topic at hand, is
to establish a framework for understanding how field estimation via the DSMV depends on
the discretization and scale parameters: namely, spatial resolution and radius of the sphere.

2.2 Theory

A harmonic field is an analytic field, which means that at every point r in its domain, it can
be locally represented by a convergent power series [57]. Appealing to the analytic nature of
a harmonic field f , we represent the field at position rn = (xn, yn, zn) in terms of its Taylor
expansion about r0 = (x0, y0, z0):

f(xn, yn, zn) =

∞∑
αx=0

∞∑
αy=0

∞∑
αz=0

(xn − x0)αx(yn − y0)αy(zn − z0)αz
αx!αy!αz!

[
(∂αx+αy+αzf)

∂xαx∂yαy∂zαz

]
x0,y0,z0.

(2.10)
For notational ease, 1st order partial derivatives of f in x, y, and z are denoted in

the following as fx, fy, and fz, with higher order partials denoted accordingly. Letting
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(∆xn,∆yn,∆zn) = (xn − x0, yn − y0, zn − z0) and expanding out the second order terms
explicitly,

f(rn) = f(r0) + ∆xnfx(r0) + ∆ynfy(r0) + ∆znfz(r0)
. . . + ∆xn∆ynfxy(r0) + ∆xn∆znfxz(r0) + ∆yn∆xnfyx(r0)
. . . + ∆yn∆znfyz(r0) + ∆zn∆xnfzx(r0) + ∆zn∆xnfzy(r0)

. . . +
∆x2nfxx(r0)

2!
+

∆y2nfyy(r0)

2!
+

∆z2nfzz(r0)

2!
+ . . .

(2.11)
Letting rn be a point belonging to the set which defines the spherical shell of radius R =√

∆x2n + ∆y2n + ∆z2n. Inserting (2.11) into (2.8), and noting that all terms involving a
distance with an odd power will ultimately cancel (i.e., by spherical symmetry, for every
∆xn there exists a −∆xn to negate it), yields the expression

g(r0) =
1

Ns

Ns∑
n=1

(
f(r0) +

∆x2nfxx(r0)

2!
+

∆y2nfyy(r0)

2!
+

∆z2nfzz(r0)

2!
+ . . .

)
(2.12)

Equivalently, by distributing the summation we arrive at

g(r0) =
f(r0)

Ns

Ns∑
n=1

1 +
fxx(r0)

2!Ns

Ns∑
n=1

∆x2n +
fyy(r0)

2!Ns

Ns∑
n=1

∆y2n +
fzz(r0)

2!Ns

Ns∑
n=1

∆z2n +
1

Ns

Ns∑
n=1

. . .

(2.13)
Assuming an isotropic spacing h between grid points and noting, again by symmetry, that
the squared displacements sum to the same positive constant, labelled c2,0,0 below. The
preceding expression, inserted into (2.9), leads to

g(r0)− f(r0) =
c2,0,0
2!Ns

(fxx(r0) + fyy(r0) + fzz(r0)) +
1

Ns

Ns∑
n=1

. . . (2.14)

Invoking Laplace’s equation (2.5), the term above in parentheses is zero. Though the 3rd

and all other higher odd order terms of the expansion necessarily cancel through spherical
symmetry, all higher even order displacement terms—featuring even exponents exclusively—
do not. Thus, expanding out the terms contained in the ellipsis up to 4th order and absorbing
redundant partial derivatives (fxxyy = fyyxx, etc.)

g(r0)− f(r0) =
1

4

Ns∑
n=1

(fxxyy(r0)∆x
2
n∆y2n + fxxzz(r0)∆x

2
n∆z2n + fyyzz(r0)∆y

2
n∆z2n)

. . . +
1

4!

Ns∑
n=1

(fxxxx(r0)∆x
4
n + fyyyy(r0)∆y

4
n + fzzzz(r0)∆z

4
n) +

Ns∑
n=1

. . .(2.15)

18



g(r0)− f(r0) =
c2,2,0

4
(fxxyy(r0) + fxxzz(r0) + fyyzz(r0))

. . . +
c4,0,0

4!
(fxxxx(r0) + fyyyy(r0) + fzzzz(r0)) +

Ns∑
n=1

. . . (2.16)

where constants c2,2,0 and c4,0,0 are positive constants for a given radius and resolution:

c2,2,0 =
Ns∑
n=1

∆x2n∆y2n =
Ns∑
n=1

∆x2n∆z2n =
Ns∑
n=1

∆y2n∆z2n,

c4,0,0 =
Ns∑
n=1

∆x4n =
Ns∑
n=1

∆y4n =
Ns∑
n=1

∆z4n.

(2.17)

Considering the limit ofNS →∞, the summations become integrations over the spherical
surface. Without loss of generality, centring the sphere at the coordinate origin,

c2,2,0|NS→∞ =

∫
S(R)

x2y2dS,

c4,0,0|NS→∞ =

∫
S(R)

x4dS. (2.18)

Transforming to spherical coordinates, where θ remains the polar angle, and the azimuth ϕ
describes the angle between the projection of r onto the xy plane and the postive x axis,

x = r sinθ cosϕ, y = r sinθ sinϕ, z = r cosθ,

c2,2,0|NS→∞ =

∫ π

−π

∫ π

0
(r sinθ cosϕ)2(r sinθ sinϕ)2dS,

c4,0,0|NS→∞ =

∫ π

−π

∫ π

0
(r sinθ cosϕ)4dS.

Since we are examining a spherical shell of constant radius R, the surface element becomes
dS = R2 sinϕ dϕdθ. Thus,

c2,2,0|NS→∞ =R6

∫ π

−π
sin3ϕ cos2ϕdϕ

∫ π

0
sin4θ dθ,

c4,0,0|NS→∞ =R6

∫ π

−π
sinϕ cos4ϕdϕ

∫ π

0
sin4θ dθ. (2.19)

In both cases, the integrand of the dϕ term consists of an odd function involving a sine
multiplying an even function involving a cosine—the product of which being an odd function.
Given the symmetric limits of integration, c2,2,0|NS→∞ and c4,0,0|NS→∞ necessarily vanish—
the expected result for the continuous spherical mean value. In fact, all of the higher order
even terms contained in the ellipsis of (2.16) can be organized in a like manner, with constant
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coefficients cβ1,β2,β3 pertaining to the displacements multiplying partial derivatives of f . It
should be clear that all of these higher even-order cβ1,β2,β3 coefficients will consist of even
sine and/or cosine functions in the azimuth-specific integrand multiplying the odd sine from
of the surface element dS. Therefore, in the continuous case, all higher order terms of
the expansion vanish, and the mean value of f calculated over the surface of the sphere of
constant radius R is indeed equal to value of f at the centre of the sphere. QED.

The discrete case is different: as NS ∝ (R/h)3, clearly the only way to increase NS

without increasing the radius is to increase the resolution. Looking specifically to the dipole
field of 2.2, the sum of the 4th order partial derivatives corresponding to the coefficient c2,2,0
is

fxxyy + fxxzz + fyyzz =
315

4π

x6 + y6 − 2z6 + 15z2(x2z2 + y2z2 − x4 − y4)
(x2 + y2 + z2)

13
2

, (2.20)

whereas the 4th order non-mixed partials (fxxxx + fyyyy + fzzzz) sum to −2 times the mixed
term above. That is, the expression of (2.9) does not, in general, equate to zero. Retaining
the spherical coordinates, in the discrete domain,

c2,2,0 =
Ns∑
n=1

∆x2n∆y2n = R4
Ns∑
n=1

(sin4θncos
2ϕnsin

2ϕn),

c4,0,0 =
Ns∑
n=1

∆x4n = R4
Ns∑
n=1

(sin4θncos
4ϕn).

(2.21)

Taking the absolute value of (2.16) to yield the approximation error of the discrete SMV
g(r0), the R4 of the two expressions above can be factored out to yield:

|g(r0)− f(r0)|
R4

≤ τ, (2.22)

where τ is some positive constant which absorbs all of the non-vanishing terms of the Taylor
expansion. Correspondingly, the DSMV operator has an associated truncation error which,
using “big O” notation, is O(R4).
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2.3 Methods

To test the effects of discretization upon the DSMV, a simple numerical experiment was
performed in C++. The field perturbation fΔ(r) of the unit-susceptibility spike χ(r) = δ(0)

(harmonic for all r �= 0, Fig. 2.1) was generated according to (2.2) in cubic array of 683

cells and normalized to a maximum value of unity. Isotropic grid spacings h = 2m mm were
tested for m = {−1, . . . , 3}. At each resolution, the field was generated and DSMV estimates
were formed over the region of support for operators ranging in size from R = h → hmax.

2.4 Results
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Figure 2.4: Top row: Profile of the field perturbation [line] and corresponding DSMV es-
timates [dots] of the harmonic dipole field along x and z beginning near the source at the
origin. Bottom row: Percent discrepancy profile of the DSMV estimates from the expected
relative field perturbation fΔ(r) (the discrepancies for these particular x/z profiles are iden-
tical).
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Figure 2.5: Profile of the expected solution for the continuous SMV [line] (uniformly zero
for the enclosed source) and corresponding DSMV estimates [dots] in parts per thousand
(ppt) along z for the case where the source is fully encapsulated by the DSMV operator.
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Figure 2.6: Profile of field perturbation along Z [line] and DSMV estimates [dots] varying
grid spacing h for constant DSMV operator radius R = 8 mm.
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2.5 Discussion

The degree to which the DSMV estimate of the field is accurate depends on the radius of
the adopted DSMV. Figure 2.4 evinces this to be the case: For a fixed resolution, incorpo-
rating a greater number of points into the DSMV calculation does not improve the result
as more sample points NS necessarily connote a larger radius, and therefore a greater trun-
cation error to the series expansion (2.11). Even in the simplest case—no noise, no local
field—the presumption underlying SHARP (2.8) shows discrepancies over 60% when the
DSMV calculation begins to incorporate samples in areas of rapid field change. Rather than
stabilizing the process, additional samples—because they come at the expense of a larger
R—necessarily amplify the error. The saving grace of the larger operators is that, in being
further away from the source, the field and its derivates have largely decayed away, leaving
the averaging to take place over regions that may be roughly constant over the spherical
surface.

This is likely why this phenomenon has apparently not been noted in previous studies:
In particular, since the brain does not interface with air but rather is separated from it by
at least a few mm of connective tissue and skull, the background field within the brain is
fairly flat. Hence, the DSMV may generally be fairly accurate insofar as r0 is distant from
the magnetic background sources and that the rn incorporated into the mean calculation
are also outside of the regions of rapid field change. For example, beyond about 3 mm from
the origin, discrepancies exhbited by the smaller operators in estimating d(r) amounted to
mere fractions of a percent (e.g. Fig. 2.4).

Figure 2.5 exhibits the case where the field source lies within the DSMV operator. Theory
informs us that the SMV in the case of enclosed sources is zero. This is no longer quite
true in the context of the discrete grid, though the observed deviations from 0 are indeed
very small, on the order of parts per thousand. It is interesting to note, however, that the
error in this case decreases with R, likely by virtue of the larger operators incorporating
more samples in the slow-varying region of the field away from the origin, thereby curbing
the influence of the perturbation at 0. DSMV estimation error increases with distance r0 as
symmetry of the field is reduced (i.e. when the source is roughly at the centre of the sphere
(r0 → 0), every sample essentially has a complementary sample as a counterweight, thereby
keeping the DSMV around zero.)

Figure 2.6 demonstrates the effect of grid spacing on the DSMV: as per expectations, for
the fixed radius R = 8 mm, higher resolution (greater NS) is better, but all DSMV operators
generally perform well away from the source. Granted, the notion of spatial sampling in this
trivial field model is abstracted from the practical case in MRI whereby the data are sampled
in Fourier domain. Since acquisition time and SNR depend inversely on this sample rate,
there are limits to the possible resolutions (e.g., for common clinical scanners, ∆hmin ∼ 0.5

mm). The necessary truncation of Fourier sampling in turn implies a sinc(r) convolution in
image space, thereby resulting in blurring and ringing artifacts. We can assume a fortiori
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that the DSMV estimation in the more realistic sampling scenario will be somewhat worse.

Figure 2.7: RESHARP local field estimates using DSMV kernels with R = 1 mm [left] and
R = 12 mm [right]. These images (same data-set as Fig. 2.2, from a single-echo 2D SWI
scan) have 0.5 mm2 in-plane resolution with 1 mm slices. The employed kernels are dense,
as opposed to spherical shells, with the coefficients of any given kernel invariant across its
volume, with the exception of the central point, to which a value of 1 is added (corresponding
to δ of (2.7)).

2.6 Conclusion

MRI measures a form of the magnetic induction via the GRE phase, to which there at
least two principal contributing sources: background susceptibility sources (e.g. air-tissue
interfaces) and local susceptibility structures within tissue. The harmonic property of the
magnetic background field has been proposed as a means to separate the two fields via SMV-
filtering. Past works on the subject, however, have simply taken it for granted that the SMV
property holds true, irrespective of filter size, when the field data and the spherical filter are
discrete vector quantities rather than continuous functions. The fact that a harmonic field
is also analytic offers a simple way of understanding the discrepancy between the continuous
SMV and the discrete SMV of the mock-sphere. Contrary to what one might expect based on
the idea that a greater number of samples should imply a better representation of quantity to
be estimated, for a fixed resolution, this is not true of the DSMV estimate, which depreciates
with filter size. Nevertheless, for the trivial model examined, provided R is relatively small
and r0 is distant from magnetic background sources, the DSMV may be considered a good
approximation.
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Chapter 3

SHARP edges: Recovering cortical
phase contrast through harmonic
extension1

3.1 Introduction

Two approaches to eliminating the background field have recently been published: sophisti-
cated harmonic artifact reduction for phase data (SHARP) [54] and projection onto dipole
fields (PDF) [24, 52]. Unlike traditional high-pass filtering [44], which was based on the
empirical observation that the measured phase is to some extent differentially composed
of low and high spatial frequencies (contributed by the background and the local fields,
respectively), SHARP and PDF look to the underlying physics for an approach which is
less heuristic and less dependent on the particular form of the data. Both techniques begin
with the recognition that the measured perturbation field consists of a superposition of local
and background components. SHARP uses the spherical mean value theorem to extract the
harmonic background field. On the other hand, PDF makes use of the approximate orthog-
onality between local and background fields, which, through the Hilbert projection theorem,
designates a particular susceptibility distribution, in turn used to model the background
field through a field-forward calculation [25,26].

Each method has its own advantages and disadvantages. Of particular importance is
that both methods necessitate a definition (i.e., binary input image) of the brain boundary,
and both tend to produce invalid results in its vicinity, thereby limiting their application
to an internal subsection of tissue. This shared pitfall is a considerable obstacle to several
clinical applications as it precludes analysis of features such as pial vessels, cortical dyspla-
sia, subdural haematoma, and cortical lesions in pathologies such as multiple sclerosis. To
recover local field across the edges of the brain, this study presents an extension to con-
ventional SHARP whereby another fundamental property of the background field is used:

1The contents of this chapter are adapted from Topfer R, Schweser F, Deistung A, Reichenbach JR,
Wilman AH. SHARP Edges: Recovering Cortical Phase Contrast Through Harmonic Extension. Magnetic
Resonance in Medicine 2014; Article first published online 3 March 2014 DOI: 10.1002/mrm.25148.
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namely, its analyticity [57]. The method, Extended-SHARP (E-SHARP), is quantitatively
assessed through a numerical field-forward experiment and qualitatively demonstrated on in
vivo human brain data acquired at 4.7 T.

3.2 Theory

To eliminate the background field fbkgr, SHARP invokes the spherical mean value property.
However, the SMV2 cannot be used to estimate the background field wherever the sphere
overlaps the edge of the data support. Hence, in conventional SHARP, voxels in this region
of overlap are wholly discarded (i.e., set to zero before the deconvolution stage). We refer
to these discarded voxels as edge points (EP). The collection of voxels retained subsequent
to the application of SHARP will be referred to as the reduced VOI.

Fortunately, the background field is analytic [57]. Therefore, within a neighborhood of
location r0, for which fbkgr(r0 + ξ) is everywhere harmonic, the background field can be
expressed as a convergent power series. Practically speaking, given an estimate of fbkgr(r0)
(i.e., that provided by conventional SHARP), because fbkgr(r0 + ξ) is entirely harmonic
within the region circumscribed by the SHARP kernel with radius R = |r0 + ξ| a three-
dimensional (3D) Taylor expansion can be performed to extend the field coverage to the
hitherto lost EP voxels:

fEP = f IP +
[
ξx ξy ξz

] f IPxf IPy
f IPz

+
1

2!

[
ξx ξy ξz

] f IPxx f IPxy f IPxz
f IPyx f IPyy f IPyz
f IPzx f IPzy f IPzz

ξxξy
ξz

+ . . . (3.1)

Here, f IP denotes the background field at an internal point (IP) within the reduced VOI;
f IP denotes the background field of an EP voxel; f IPi denotes the first-order derivative in
direction i (i = x, y, z) of the background field evaluated at an IP voxel and f IPij denotes the
second-order derivatives accordingly; ξi represents the EP-to-IP Euclidean distance in the
i direction. Once the background field has been determined over the entire VOI, it can be
subtracted from the measured field perturbation, ideally leaving only the local field due to
tissue susceptibility. We refer to this process as Extended -SHARP.

3.3 Methods

3.3.1 E-SHARP Processing

Essential points of the processing scheme are illustrated in Fig. 3.1. For both in vivo and
numerical data, the total field (masked, unwrapped, and scaled phase) was SMV-filtered
(radius = 6 mm), eroded by the radius of the spherical kernel, and finally deconvolved,
without regularization, to yield a local post-SMV field estimate. The local field estimate

2Technically this refers the discrete spherical mean but, having examined the distinction in detail in
Chapter 2, for the sake of brevity, the ‘D’ is now simply implied.
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was then subtracted from the total field to provide an estimate of the background field over
the reduced brain volume. The hitherto lost EP voxels were paired with their nearest (in
the Euclidean sense) IP neighbors for which first and second order spatial derivatives of the
background field could be estimated by means of traditional 3-point central differences. For
example, for the first derivative in the x-direction:

f IPx (x0, y0, z0) =
f IP(x0 + hx, y0, z0)− f IP (x0 − hx, y0, z0)

2hx
(3.2)

where f IP(x0 + hx, y0, z0) and f IP(x0 − hx, y0, z0) are the background field measurements,
respectively, one voxel ahead of, and one voxel behind (x0, y0, z0) in the x direction; hx is the
voxel spacing in the x direction. Partial derivatives in y and z were calculated similarly, as
were all second order derivatives—determined simply by applying the same 3-point difference
scheme to each of the first order partials.

Using these derivatives and the IP-to-EP distances, the background field estimate was
extended by means of a second order 3D Taylor expansion (3.1). The postexpansion back-
ground (extended background in Fig. 3.1) was then subtracted from the total field and the
truncated singular value decomposition (TSVD)-like regularization of the original SHARP
technique was applied to the result (threshold parameter λTSVD = 0.05) [54, 56].3 Specifi-
cally, regularization consisted of taking Fourier transforms of the spherical kernel and of the
local field estimate; setting to zero the local field Fourier coefficients wherever the magnitude
of the corresponding kernel coefficient was less than λTSVD; and finally taking the inverse
Fourier transform of this thresholded form to yield the local field over the extended VOI.
In the context of SHARP and E-SHARP, TSVD can be regarded as somewhat analogous to
regularizing the deconvolution procedure (Eq. (9) in [54]) with a penalty on the L2 norm of
the local field [55]. In this way, TSVD offers a convenient means of suppressing undesirable
low-frequency components remaining in the local field estimate [59].

3.3.2 In Vivo Experiments4

Whole-head 3D multiple gradient echo data were acquired from five volunteers at 4.7 T
(Varian, Palo Alto, CA) with the approval of the University of Alberta Research Ethics
Board. Acquisition parameters were: field of view = 256×160×160 mm3; spatial resolution
= 1.0 × 1.0 × 2.0 mm3; bandwidth = 90.1 kHz; repetition time (TR) = 40 ms; TE =
3/7/11/15/19 ms with unipolar readout; flip angle = 10. All datasets were processed in
MATLAB (version 2012a, The MathWorks, Natick, MA) on a 16-processor computer (Quad-
Core Xeon E5620, Intel, Santa Clara, CA) with 46 GB RAM. Images from individual receiver
elements (four-channel array) were combined [43] and unwrapped [60], followed by a voxel-
wise, magnitude-weighted, least-squares regression of phase to echo time to arrive at the final

3In fact, this is not true SVD. More on this next chapter.
4Credit is given to Hongfu Sun for reconstructing the original images of the total field and for sharing

his susceptibility mapping program
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Figure 3.1: Simplified workflow. Magnitude data is passed to FSL’s brain extraction tool
[58], the output of which (mask) is used to constrain the unwrapping to the tissue of interest.
The SMV kernel is applied to the unwrapped phase and deconvolved without regularization
to produce the initial local phase estimate (local phase post-SMV). The outline indicates the
edge of the mask (VOI) and the edge region lost in conventional SHARP. This local estimate
is subtracted from the unwrapped total phase to produce an estimate of the background
phase over the reduced VOI (not shown). The Taylor expansion (3.1) is used to recover the
edge voxels (extended background). The result is subtracted out from the unwrapped total
and SHARP-regularized to produce the final local phase post-TSVD.

field maps [61–63]. To obtain a binary brain mask for each dataset, magnitude data from
the first echo were passed to FSL’s brain extraction tool (BET) [58]. Phase discontinuities
(jumps to high intensities) were often observed around the outer edges of the mask even
after unwrapping. Whether due to shortcomings of Prelude, peculiarities inherent to the
data, or the inclusion of nonbrain voxels by an overly generous BET mask, these values
were, in any case, deemed unreliable. To define effective brain VOIs that excluded the edge
outliers, FSL masks were eroded by between two to four voxels.

28



Finally, after phase processing, susceptibility maps were formed using the total variation
inversion described in [35,64], with the regularization parameter 5×10−3 determined in [55].

3.3.3 Numerical Simulation

A numerical brain model was created by assigning a waterlike susceptibility of −9.4 ppm to
an in vivo brain mask, while assigning an air-like value of 0 to the region outside the mask.
This arrangement was to represent the susceptibility interfaces responsible for the harmonic
background field. Although lacking susceptibility structures (e.g., veins and skull) typically
associated with a more realistic field map, the simplistic model should suffice insofar as
all fields owing to susceptibility sources outside of the brain are in fact harmonic within
it, irrespective of the exact distribution of sources. Two internal susceptibility inclusions
(susceptibility = −9.0 ppm; radii = 2 mm), simulating small spherical hemorrhages, were
placed within the brain substrate: one at the center of the brain (IP-region), with the other
at the edge (EP-region), such that it would be discarded post-SHARP. The susceptibility
model was convolved with the unit dipole field to simulate the magnetic field [25, 26], and
scaled to phase by the multiplicative factor γB0TE (TE = 19 ms) to which zero-mean
Gaussian noise was added (standard deviation = π/4 rad). Model phase quantities are
shown in Figure 3.2a–c. To resemble the common in vivo case, the noisy total phase was
masked by the brain VOI before beginning phase processing.

Accuracy of the processing scheme was assessed by means of the relative error between
the noiseless model background phase φmodel and the background phase estimates φest given
by SHARP and E-SHARP using zeroth, first, and second order expansions:

||M(φest − φmodel)||2/||Mφmodel||2. (3.3)

Error terms were ultimately calculated over specific VOIs: for SHARP, the masking
operator M was strictly the reduced VOI (IP). For the E-SHARP error calculation, unless
otherwise stated, M encompassed the brain VOI (IP ∪ EP), however, as the brain itself
does not generally abut air in bulk, M was eroded by a single voxel so as not to contain the
outermost voxels that defined the air-tissue interface (where the Laplacian of the background
field would be nonzero).

3.4 Results

Simulation results are shown for a central slice in Figure 3.2d–i. The model background
field (Fig. 3.2b) can be seen to be smooth and slowly varying away from transitions in
susceptibility and is, therefore, well represented by the second order expansion. Error in
the field estimation (Fig. 3.2i) is greatest in the immediate vicinity of the background
source, where the field gradient is steepest. The effect of expansion order on the resulting
background phase is illustrated in Figure 3.3. While relative error was 24 % for the zeroth
order expansion background phase estimate across the brain VOI (IP∪EP), it was reduced
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to 18 %, and further to 16 %, for first and second order expansions respectively. Across
the reduced VOI alone (not including the EP voxels in M of (3.3)), the relative error of
E-SHARP (second order expansion) was slightly higher than that of SHARP (15 % versus
13 %). The corresponding E-SHARP error over the EP voxels alone was 18 %.

Figure 3.2: Numerical simulation. A central transverse slice is shown. The top row corre-
sponds to model phase quantities: local (a), masked background (b), and noisy total (c).
d,e: The background estimate over the reduced VOI and the full postexpansion form, from
SHARP and E-SHARP, respectively. g,h: The local phase estimates courtesy of SHARP
and E-SHARP, respectively. i: The error (absolute difference of (h) and (a)). All images are
scaled to the same relative intensities, with the exception of (f), which depicts the internal
(IP; black) and edge (EP; white) geometries involved.

Example results from a representative in vivo dataset are exhibited in 3.4. Compared
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with conventional SHARP, E-SHARP recovered on average 26 % more brain volume (values
for all five subjects: 27.6 %, 27.3 %, 27.1 %, 25.1 %, 25.4 %). This additional territory
arises from the extension of the reduced VOI of SHARP by the radius of the kernel in all
directions, thus revealing cortex and cortical veins [65,66] which were otherwise inaccessible.
E-SHARP processing time was on average 3.4 min (range: 1.8–4.3 min).

Figure 3.3: Effect of order of expansion on the estimated background phase (quantity shown)
of the simulated data. Relative error over the reduced VOI was 0.13 for the SHARP back-
ground estimate. The corresponding errors were 0.24, 0.18, and 0.16 for zeroth, first, and
second order expansions, respectively. As expected, by including higher order terms the
discontinuities around the edge (arrow) are smoothed and at second order they are scarcely
discernible.

Susceptibility maps derived from the two methods were similar across the reduced VOI.
Representative examples are displayed in Figure 3.5, with differences shown in the rightmost
column. While the SHARP susceptibility map (Fig. 3.5, left column) exhibited only a
reduced portion of the sagittal sinus (middle row) and frontal white matter (top row), the
region of susceptibility coverage in these regions was greatly enhanced by E-SHARP (middle
column).

3.5 Discussion

This study demonstrated that by exploiting the analyticity of the harmonic background
field, susceptibility and field maps of comparable quality to those made by conventional
SHARP can be achieved with markedly greater spatial support (recovering, on average, 26
% more brain volume). Practical considerations concerning the technique are discussed in the
following. First, for the Taylor series to actually equate to the dipole field, it would require,
in theory, an infinite number of terms (i.e., derivatives). However, as the background field
across the brain is characterized predominantly by the low-order terms, even the truncated
form, as observed, can provide satisfactory results in most regions. Furthermore, because
the SMV calculation is by definition indifferent to zero-mean Gaussian noise (phase noise in
tissue may typically be of this form [46], the extracted background field is necessarily more
or less noise free. This fact, combined with the slow-varying nature of the background field,
generally make it a fairly safe quantity to subject to otherwise problematic finite-difference
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Figure 3.4: In vivo results: field processing. From left to right, the columns correspond
to the conventional SHARP local field, E-SHARP local field (second order expansion), and
total field, respectively. Arrows in the top row point to cortical veins, visible in the total
field but lost in conventional SHARP (the black ribbon in the left column demarcates the
EP region recovered by E-SHARP).

calculations.
In terms of series convergence, the second matter of note is the internal point (IP)

about which the expansion is performed: in general, the greater the distance |ξ| between
IP and EP, the more the field will vary between them and, accordingly, the more additional
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Figure 3.5: In vivo results: QSM. Columns correspond to the susceptibility maps formed
using SHARP (left) for the phase processing and E-SHARP (centre). Again, the black
ribbon in the left column demarcates the EP region recovered by E-SHARP. The difference
is shown in the rightmost column, with the arrow in the middle row pointing to the artificial
truncation of the sagittal sinus due to the naïve initial correction applied to the brain mask.

terms in the expansion will be required to compensate. In short, it is beneficial to assign
IPs that are as near as possible to the EPs (truncation error being nil only in the limit
of |ξ| → 0). However, the nature of finite-differences is such that a difference between
points is required to estimate the derivative: using the 3-point central difference scheme,
the first order derivative at x0 requires field values at x1 and x−1. Given that the input
to the expansion (the SMV-estimated background phase) has finite spatial support (the
reduced VOI), we cannot calculate a first derivative directly at the edge of support, but
rather one voxel removed from it; likewise, the nearest point to the edge of support at
which we can calculate a second derivative is two voxels removed from it. In this way, by
increasing the order of the expansion, so too must |ξ| be increased, which in some sense
confounds convergence. Nevertheless, for the numerical simulation, the lowest relative error
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was observed for the second order expansion (16 %). Thus, for the particular model field
studied, the inclusion of higher order terms proved to be of greater benefit than the adoption
of IPs that were slightly more proximal to the EPs.

Third, the quoted results depend intimately on the adopted parameters. For instance,
as the error calculations incorporated the entire EP region, calculated errors were governed,
not only by the order of expansion, but also by its particular geometry. A key factor in the
determination of this geometry was the size of spherical kernel—a parameter that merits
further study in its own right. So too does the regularization parameter [56]. Indeed,
before regularization, the post-SMV local field estimate over the reduced VOI is identical
between SHARP and E-SHARP and it is only subsequent to SHARP-style TSVD that
there is a subtle but, nevertheless, calculable difference (2 % more error with E-SHARP) in
this internal region. Ultimately, this may simply suggest that optimal SHARP parameters
may not translate into optimal E-SHARP parameters. A more complete treatment of the
interplay between these parameters, however, is beyond the scope of this work, for which the
aim has been simply to demonstrate that by means of a slight modification to conventional
SHARP one can arrive at a local field map with substantially expanded spatial support (e.g.,
Fig. 3.4).

Finally, although E-SHARP revealed extensive new territory, a portion of the edge re-
mained missing due to the naïve correction applied to the initial brain mask. The sagittal
view of the susceptibility maps (Fig. 3.5, middle row) evinces this issue. Because the re-
moval of erroneous phase outliers was achieved at the expense of retaining the full brain
VOI, parts of the edge region were erroneously truncated (e.g., the sagittal sinus; arrow in
Fig. 3.5, right column). To solve this issue and retain the brain VOI to its fullest, a means
of automatic detection and exclusion of problematic phase data will ultimately be required.

3.6 Conclusion

Extended-SHARP, an easily implemented adaptation to the postprocessing technique SHARP,
can be used to determine the subset of missing field map values around the edges of the
brain. Results suggest a new way of processing MR phase that may bring us one step closer
to a reliable technique for whole-brain in vivo susceptibility assessment.
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Chapter 4

Epilogue: To be (analytically)
continued...

For roughly a decade, magnetic susceptibility-related MRI phase contrast has found clini-
cal application in the form the susceptibility-weighted imaging (SWI) technique [44,67–70].
Recently, efforts in this field have been increasingly directed toward quantitative suscepti-
bility mapping (QSM), which seeks to collapse the blooming field distortions (a nonlocal
and indirect effect) into the underlying material susceptibility itself [24, 27, 33, 36, 71, 72].
QSM may benefit our understanding of an array of neurodegenerative disorders for which
paramagnetic iron is thought to play a role [13]. Consequently, considerable interest exists
in improving the techniques for processing the requisite phase data.

A major obstacle to creating interpretable field and susceptibility maps that accurately
depict tissue structures is the contaminating effect from the background field, such as that
owing to air-tissue interfaces. This work has focused on spherical mean value (SMV) filtering
as a means to isolate the local field of interest. The essential tool throughout, for both
critically examining basic SMV-filtering in Chapter 2 as well as enhancing it in Chapter 3,
has been the Taylor series and the analytic nature of the harmonic background field.

4.1 Conclusions

In Chapter 2, it was determined that the ability of the digitized mock-sphere to estimate
the central value of a harmonic field depreciates with filter size. This is somewhat contrary
to what one might expect based on the idea that a incorporating a larger number of samples
into the estimation ought to improve the result. Rather, that assumption is strictly valid
when the extra samples come courtesy of finer image resolution, but not when they derive
from a larger filter.

In Chapter 3, an extension to the SMV-filtering technique SHARP was introduced and
evaluated. Extended-SHARP was found to be of comparable accuracy to SHARP when
applied to a simple numerical model, and qualitatively similar to SHARP when comparing
in vivo field and susceptibility maps. It was also observed that although 2nd order E-
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SHARP worked best, the improvement from 1st order was subtle (2 %), and even the 0th

order expansion worked reasonably well. The fact that the extension works as well as it
does even at low-order—and moreover, the fact that SMV-filtering works at all—all owes
to the rapid decay of the dipolar background field and its derivatives away from sources.
That the brain is somewhat isolated from air in bulk means that the higher order terms to
the background field have largely decayed away and are no longer significant contributing
factors to the total field within the brain.

4.2 Limitations and future directions

In addition to the limitations of E-SHARP detailed in the Discussion of Chapter 3, there
are at least 2 critical problems with the method.

Because the SMV cannot be calculated wherever the spherical kernel S overlaps with the
edge of the data support, the support for the SHARP filtering operation is smaller yet and
depends on the chosen size of S. Denoting this de facto support by masking operator M and
the SHARP convolution operator by L = [(δ − S)⊗], with the cost functional formalism,
the process of solving for the noisy local field flocal,ε of (2.7) can be written succinctly as

argmin
flocal,ε

‖MLflocal,ε −MLf∆‖
2
2. (4.1)

The first problem is with SHARP itself, which, in order to perform some sort of de-
convolution, simply ignores the masking term M being applied to flocal,ε, and only inverts
L. Technically, M possesses an inverse only in the limit where the data support becomes
the entire FOV and M = I, the identity matrix. Because in general M 6= I, the SHARP
operator ML is no longer circulant and therefore, the deconvolution of SHARP is not true
singular value decomposition. This effect of relaxing of the relevant boundary condition has
been shown in [55] to be error-prone. Hence, the initial SHARP-style SMV estimation of the
background field used by E-SHARP is marred with artifact. Regularization Enabled SHARP
(RESHARP) corrects this issue by approaching the problem of local field determination by
minimizing (4.1) iteratively via the conjugate gradient method.

The second issue is with the expansion itself. The edge extrapolation of E-SHARP may
be considered a forward problem by which initial conditions of the “internal” background
field are used to project the solution at a distance. Although the projected solution depends
on the spatial variation of the internal field in all directions, lateral variation in the projected
edge field is essentially incidental, depending mainly on the edge geometry and the adopted
IP-to-EP pairing. An additional problem with E-SHARP is that the adopted one-to-one
mapping of IP-to-EP is extrinsic and was adopted largely out of convenience. In general,
the Taylor series expansion of f(r0) will converge about a neighbourhood of r0 provided
that f(r0 + ξ) remains harmonic.

Work is now underway to reformulate the analytic edge extension into a linear matrix
operation such that it incorporates multiple field points into the extrapolation for a single
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edge-point and also works to promote lateral smoothness of the edge field. This approach
needs to be united with that of RESHARP to avoid the deconvolution artifact of SHARP, to
which much of the quoted errors of Chapter 3 should be attributed. Ideally, the optimization
associated with (4.1) can be reformulated to accomodate the extension such that the local
field can be mapped across whole brain accurately and simply, in one fell swoop.
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