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ABSTRACT é ' ’

In this thesis, we study three centrality propcf.rties for certain classesﬁ of
finisely generated abelia.n-l;y—polyCyclic groups. These properties, namely, stunt-
‘edness, Eremiticity and finite gap number, were first infroduced by Lenhox gr;d
Roseblade‘ in their outstanding paper (3] in 1970. “They proved that ﬁnjtgl-y gen-
erated abelian-by-nilpotent groups are stu;lxtéd, eremitic and of finite gap number,
and they asked whether finitely gen;arateci abelian by polycycdic groups have such

properties. . 1

-~

We show here that finitely generated abelian by polycyclic groups in which

the polycyclic quotient is plinth-by-abelian or abelian-by-infinite cy;:lic with triv-
ial centre, are stunted, eqmitié and of finite gap number.
. . " o
We also show that just non-polycyclic groups are stunted, eremitic and of

finite gap number. These groups were first introduced by D.J. Robinson and_J.S.

Wilsor in [11] and they ‘showed that such groups are a special kind of finitely. .

- generated abelian-by-polycyclic grou;;s. L ‘

' ' : Y
For finitely generated abelian-by-polycyglic groups, Lennox and Roseblade

. @ { & .
proved in (3| that they are sn-stunted and sn-eremitic, a weaker type of stunt-

edneqs ahd eremiticity. They used in their pi'oof their results mentioned above

’ [N

for finitely g‘Enerated abelitﬂ-by-nilet groups. We give here a simpler and
. : - v '

unified proof for this resu‘t. > .

dv .

.



o . :

Acknowledgement. - '
. , _
I would like to express’ my sincere thanks and deep gratitude to my super-

visor, Professor A.H. ' Rhemtulla for suggesting the thesis:topic, his continuous

encouragement and help, ‘and for all the time he spent in discussions.



TABLE OF CONTENTS

Al;stract

Acknowledgement ,

CHAPTER 1
Introduction a.nd\ statement of the main theorems
Just non-polycyclic groups
The three cent;ality concepts

The isolator property
— ©

CHAPTER 2
Proofs of the ~r;1a.in theorems
, ‘

. Statéﬁlent of the Fan Out Lemma

A ‘Reduction

CHAPTER 3 ~
Proof of the F.O.L. .
. 4’\ )
F.O.L.I
F.O.LTI . .

¥ F.O.L.III . ) . ’ \ : :

References .

’ . >
. ' ’
.
.

4

vi

3

iv

11
11

12

20

41
41
41

48

5L 4

62



CHAPTER 1 ¢

INTRODUCTION AND STATEMENT OF THE MAIN THEOREMS

- 4
1.1 Introduction.
The paper “Centrality in Finitely Generated Soluble ‘Groups” by J.C. Lennox
and J.E. Roseblade [3] made important contributions to the theory of finitely gen-

erated s;oluble groups. It also raised a whole lot of interesting problems leading

to much further research, (see [2],(4],(5],(6},[14],[16]). We are now able to extend

- their major results proved for finitely generated abelian-by—nilpotent groups to
certain class of finitely generated triabelian groups which include the just non-
pglycyclic groups that were studied by D.J.S. Robinson and J.S. Wilson in [11].

This is made possible mainly by results in (9]

1.2. Definitions and Notation.
¢ In order to give ‘the stafement of the main theorems we need the definition

of what Roseblade calls in {12] a plinth.

1.2.1 Plinths:

Let G be any group. A plinth for G is a free abelian normal subgroup A
of finite positive rank such that no non-trivial subgroup of lower rank is normal
. S
in any subgroup of finite index in G. In other words, G and all its subgroups
. i .

of finite index must act rationally irreducibly on A. = .
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/
Here is an example of a plinth for a polycyclic group. Let A = (z) x (y)

-

be a free abelian group of rank 2 and let the infinite cyclic group T = (t) act on

-

A according to the rules
z* = %y and y'zy.

It is easily verified that t is an automorphism of A and that A is a plinth for
the pol;c'yclic group I' = T x A the semidirect product of A by T.

| It is shown in Lemma 12.1.14 (8] that every infinite polycyclic-l}y-ﬁnite
'group I' contains a normal subgroup Iy of finite index which haé a plinth A and
To/¢r,(A) is abelian, whgre cro(;‘i) is the centralizer of A4 in T,. We shall say
that the group I’ is plinth-by-abelian whenever I" has .a plinth A such that I“/A

is abelian.

1.2.2 Notation:

To simplify the statex;lent of the z'r}ain theorems we define the class of
groups A as follows:

A group G is iix"ﬂ if G is a finitely generated solubje group, #nd contains
a normal a.t;elia.n sub?roup M such that T = G/M is aftite group or an infinite
pc;fycyclic group which is meta.bel‘i'a.n. ’ | ‘
4

The set.of all groups G € A where T iﬁ plinth-by-a.belign‘ will be denoted
by A, and the set of those g;'oups'in‘ﬁ where T is a.bélia.n-by-inﬁnite cyclic with
trivial c‘enter.will be denqte'd'ﬁj' Ay | |

Now le¢ G € A and M,T as in the deﬁnit}ion»'a.bove, then G acts o M
by conjugation with M acting trivially on ‘itself. Thus we have, in fa.ct, M a

»r

J.' LY
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I-module, and since G is finitely generated and I = G/M is finitely presented
sinée it is polycyclic, M must be a finitely generated ZI'-module, where ZT is
the group ring of I" over Z.' Actually M is a Noetherian ZT'-module since ZT

\ .
is a Noetherian ring by the well known theorem of P. Hall in [1], (see Theorem

15.3.3 [10]). , , . -
1.2.3. Just non-polycyclic groups: ‘ ~_

U

-~

A soluble group G which is not polycyclic but all its proper quotients, are
polycyclic is called a just non-polycyclic group. -

_ It is shown in Theorem 2.1 [11] that every finitely generated soluble group which
) \
is not polycyclic has a just non-polycyclic quotient group.
, _
The structure Theorems 2.4, 5.1 and 5.5 of [11] show that a just non-

polycyclic group G is either metabelian-by-finite or it is a finite extension of a
'

group G, € A,. Here is an example of a just non-polycyclic group which is not

-

metabelian-by.-ﬁnite. -

In the example given in secti®h 1.2.1, we have A is a plinth for the poly-

cyclic group T' =T x _A, let M =1F,A the groixp algebra of A Pver the field IF,,

‘ . p
where p is a prime numhber. Let A act on M by multiplication and let T act
faithfully by conjugation. It is eésy to verify that M becomes an IF,I'-module;

and the theorem of Bergman, (see p. 194 [11]) shows tkat every non-zero IF,I-

.submodule of M has finite index. It follows from Theorem 2.7(ii) [11] that the

corresponding semidirect- produ‘c't of M and T is a just pon-polygyclic. group,

which is not metabelian-by-infinite since T #.1.

>4 - AN



1.3 Three centrality concepts.

Now we introduce the three centrality concepts deelt with in [3].7
[
|

+

Stuntedness: A group G is said to have uppeér central height « if and ox\ly if

$a (G) = ¢a41(G) while ¢ (G) < ¢4, (G) for all ordinals"ﬂ < a, where ¢, (G) is

the a-th term of the upper central series of G.

G is said to be centrally stunted, or simply, stunted, of h;ight h if there
exists an integer k such that every subgroup of G has central height at most k,

and if A is the least such k. -

Eremiticity: .
A group G is %a.lled g_enﬂgﬂx_u_qmim, or simply, eremitic of eccentficity e
if the{'e exists a positive integer f such that, for any z € G a:nd any : >0,
cg (z") S_ cc(z’); and if e is the least such f, where ¢g (z) is th;: centralizer of
z in G. ~

For example, finitely gener.a.ted abelian-by-nilpotent groups are stunted and

eremitic [3]. We shall prove the following results. .

”

THEOREM 1. If G € A, then G is sgunted and eremitic.

-

\
THEOREM 2. If G € A; then G is stunted and ‘eremitic.

.E . .I N ] : .
A group G is said to have finite gap number if there exists a positive integer

2
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g such that in any ascending chain

cg(H,) <eg(H;) <---<eg(Hy) € =

of centralizers of subgroups H, > H,; > > H, > ... of G there are at most i
g strict inclusions, or as is sometimes cdlea, at most g gaps.

Finitely geﬁerated abelian-by-nilpotent groups, for exaxﬁple, have finite gap
number'[3]. This result in [3] is given as a coroila.ry to Theorem B [3]. The
same proof with only few verbal @ges can be used to prove the ‘fdll.bwing as

a corollary to Theorems 1 and 2. . ‘ | ' . C T

- THEOREM 3. If GE€ A, or G € A, then G has finite gap number.

~

As corollaries to these three theorems we shall prove:
L

'COROLLARY 1 If G is a just non-ﬁolycychc group then G is stunted, eremitic

and’ of ﬁmte gap number

COROLLARY 2. If M is" a  normal abelian subgroup of the ﬁm’tely generated

Q‘

group G, and if G/M =T is poncychc of ‘Hirsch number h(I\) =3 tilen G is

stunted ‘mtlc and of ﬁmte gap number.

Modglg and Pairs. o . - N
Lé.t I“"be' any group. We'sh.a.ll usually write a I'-thodulé M multiplicatively

and write the image of\an element m of M under the action of z in T as m*.




6 :
Effectively, following Lennox and Roseblade in [3|, we shall be thinking of the
pair (M,I') as being ;mbedded in the natural split extension G = MI with
M G and M NT = 1. It then makes Sense to use the commutator notation
[m,z] =m~'m* for me M and z € ‘F We shall write for any ordinal a and
{

any subgroup H of T,

M, (H) = M ¢, (MH).

‘Thus for a positive integer n, the subgroup M, (H) of M consists of those m & M

for which [m,h,, ..., h,| =1 for all n-tuples h,, ..., h, of elements of H.

(~~

1.4.1 Pairs and Stuntedness:

For a '-module M, the pairO(M,I‘) is said to be sfunted if there is an
integer A > 0 such that for all}ubgroups H of r the equality M, (H) = M, (H)
holds for all @ > h. The least such integer h is called the height of (M,i’) We
also say that the pair (A:I,I') is sn-stunted of height k if the above equality holds

« ) for subnormal subgroups H of T.

e 1.4.2. Pairs and Eremiticity: . /
The pair (M,T) is said to be eremitic of eccentricity e if there is an integ/

¢ P
f > 0 such that for all n > 0 and all z € T the inclusion M, (z") < M, (z/)

& 'hqlda, and e is the least such f, where M, (z*) = {me€ M : [m,z"] = 1}.
The pair (M,T) is said to be gn-eremitic of eccentricity e if there is

integer f > 0 such that for all n > 0 and all HsnT,

L MU(E) < MU(EY),



7
and e is the least such f? Here HsnI' means H i‘s‘subnormal in I', and H'\‘ is
the subgroup (h", h € H) generated by all n-th powers of elements of H.

Nov\; given any group G € A we have, by Theorem 15.3.1 [10] th—at G

has max-n, the maximal condition on normal subgroups, and by Lemma 13 (3],

€(G) < oo, where €(G) is the least upper bound of orders of all torsion elements
.

of G. Thus if (M,TI) is the pair associated with G, then since I' is stunted and

eremitic by Corollaries A and B (3], we get, by Lemma 17 (i) and (ii) (3], that

Theorems 1 and 2 are consequences of

THEOREM 1*. If M is a Noetherian I'-module where I' is a polycyclic group

which is plinth-by-abelian, themr (M,T) is stunted and eremitic.

THEOREM 2*. If M is a Noethérian T'-module where I' is a polycyclic group
which is abelian-by-infinite cyclic with trivial center, then (M,T) is studted and

eremitic.

1.4.3. Pairs and Finite Gap Number

—

The pair (M,T) is said to have a finite gap number if there is a non-negative .

integer g such that in any sequence

— A
>4

M,(H)<M(H)<---<M(H)<--

of M-centralizers of subgroup H, > H, > --- > H, > ... of T, there are at most

D

g gaps.
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In exactly the same way Theorem C [3] is deduced from Theorem C* of

[3], we shall deduce Theorem 3 from the more general theorem.
THEOREM 3*. If M is a Noetherian I'-module where ' is polycyclic and if

(M,T) is eremitic thep (M,T') has finite gap number.

1.44. rther applicati o} isolator property in polycyclic groups.
The proofs of the above theorems depend heavily on the isolator property
implied in Proposition 1 [9] for a suitable subgroup of a polycyclic group.
Using this result we can show that the proofs of Theorems E* and F in
[3] are considerably si?npliﬁed and we present at the end of Chapter 2 alternate
proofs for them. We state here for easy reference:

THEOREM E* (3]. If M is a Noetherian I'-module, where T is a polycyclic-by-

,

finite group then the pair (M,T) is both sn-stunted and sn-eremitic.

—

THEOREM F (3].-Suppose A is a subgroup of the polycyclic group I'. There is
a positive interger d = d(A,T) such that |H : HN A| divides d for all subgroups

H of T for which |H : HN A| is finite.

1.5. The isolator property

1.5.1 Discussion and Notation
A group G is said to have the strong isolator property if for every subgroup

]



H of G the set

H={z€G:z" € H for some n > 0}

. N\
is a subgréup and |H : H| < co whenever H/() ., H° is finitely generated. We

notice that the last requirement is automatically satisfied when G is polycyclic.

The set H is called the isolator of H in G and to emphasize the group G
we will sometimes write it as ¢ H, and H is called isolated in G 'if H=9H. We
note that H is always isolated in G. *

A crucial fact about polycylic groups is Proposition 1 [9]. It shows that a
polycyclic group always has a normal subgroup of finite index with the strong
isolator property. _

A very important property of a torsion-free polycyclic group G with the
strong isolator property is the fact in P;'oposition 5 and its corollary, together
with the rexixa.r,k at the end of Proposition 6 [9]. In such a group the Fitting

subgroup Fitt(G) and all centralizers are isolated in G, also the operators isolator

and normalizer commute, i.e. for any subgrogp H of G, ng(H) = ng (H), where

§l) is the normalizer of H in G. All these facts will be used very often in the

o

proof of the main theorems without further mention. i

1.6. Statement of frequently used facts ;
We lis_t“ in this sectidi~for easy reference the statement of major facts 'tha,tl

will be frequently used in the proofs of the gm.m theorems. The name and

number of each fact will be retained as it appeared in original paper. Terms and '~

.
1
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symbols that appeared in these statements ate explained wherever they are used

in this thesis.
v

: Theorems A® and B, [3]: If T is a finitely generated nilpotent group iand
M is a Noetherian I'-module then (M ,I‘) is stunted and eremitic.

Corollaries A and B, [3]: Every nilpotent—b}{-nilpotent-by—ﬁnitg group with
max-n is stunted and eremetic.

Lemma 4, [3]: Let B be a submodule of tl;e I'-module A. Suppose that
the periodic part of B has exponent e. If (B,T') and (A/B,I‘)' are both eremitic
then (A4,T) is eremitic. If (B,T) and (4/B,T) ar(; both stunted then (A4,T) is

2

stunted.

-

Lemma 17, (3]: If A is an abelian normal subgroup of the group G and
that ' = G/A. If T and (A,T) are both stunted and eremitic and if €(A4) < oo,

then G is stunted and eremitic.

QQIQU&M_&M, [3): Suppose K is a stunted and eremitic group with

- £K) <oo. If G is a finite extension of K then G is also stunted and eremitic.

Lemma 19, [3]: Suppose T' is polycyclic-by-finite and e > 0. There is an

* integer m = n(e,T) such that H/H* is finite of order dividing m for every

sub-group N of T.
Corollary 10.5, [7): Let A be a finitely generated toﬁion-fr« abelian group

and let G- be a group of qper;ton on A with D, (G) = 1. If Q is a faithful prime

+ ideal of KA, then ,., @* =0.

>t



CHAPTER 2 o ,

" PROOFS OF THE MAIN THEOREMS

»
2.1. Discussion and Layout.

The highly original tool used in [3] was the “Fan Out‘Lemma” dealingv with

' T'-modules where T is a finitely generated nilpotent géup.

Two important properties of ' were Txeavily used. These were the isolator

. : PN
property and the normalizer condition of nilpotent groups. The isolator property

holds for a suitable subgroup of finite index in any given polycyclic group I'. This:

'is Proposition 1 [9].

v

In any finitely generated group G, the normalizer condition B equiva.lent to

nilpotency of G. Thus, a slight mo_diﬁca.tion was needed to the Fan Out Lemma

- Al

14

- so that it can be used in the proof of some special cases of the main theorems,

~ (/—‘
cases. - We first give the statément of these three Fan Out Lemmas, which we

»

dénote by F.O.L., together with some related .res‘ults in se@ion 2.2. We deduce

and two more versions of this lemma were needed to serve in the proof of other

the proofs for the main theorems from F.O.L. in the rest of this Chapter,,axyd in .
. ~ N\

‘ | ;
Chapter 3’ we present™he proofs of the F.O.L.. . '

&
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2 Statement of the F.O.L. g

<~ t ‘ 2
2.21 F.O.L. L

Let M be any, JI‘-modole, where J is any commutative ring with 1, and T’

4

is a torsion-free polycyclic group witf; the strong isolator property, with a normal

\

abelian subgroup A such that cp (4) <T.
Suppose that M, ((z)) # 1 for some z & ¢ (A) and if N = n(z) then ' = AN,
- ;

where nr ((z)) is the normalizer of z in T.-

Let U = M,((z)) and Y = U". Choose a set T .of coset representatives of N in
Fsothat T< A If Mis ‘a torsion-free AJ A-module, then

“ (i) Y = Drier U*, where Dr denotés the dfir"éct pro<_iuct.'

(ii) U is a Noetherian JN-module whenever M is Noetherian ‘JI"-module

© (iii) Yo(H) = Dryer, Ut(H), for all H <T and all n >0, where

.

. o Y,(H) =Y n M,(H) and

In order to use the F. OLI we need the followmg result whlch is stated as

Exetcme 1 n‘{ [15] page 47

~ / ‘ . L

2.2.2. LEMMA. LetT be a torsion-free polycyclic group with the strong isolator

property which has.a non-central plmth A and I‘/A is abelxan Let z ¢ cr(4) .

'a.ndN—cr(z) then AnN—l and |T': AN| < oo.
/

1

3
EoS
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Proof: Let X = (z). Since I'/A is abelian, AX < T and [Ak,AX] < T because
[AX, AX] is characteristic in AX. Also [AX, AX] < A. . ‘
Now since [-A,X] < A and for any a in A4, o = ala, z] = a mod|A, X]|, A/[A, \|
is cen'tralized by X‘ and since X is cyclic, AX/(A4, X]| is abelian. Hence\
: ! \

[AX, AX] < [A,X] We show next that [4,X] < [A,z]. Let a in A and n any

_ integer, then
(a,2"] = [a, 2" *][a, 2] =1a, z',"-'*][a‘j“‘,x] = ..
.. = [a...a""’_l,.:l:] € |4, z].
Since it is obvious that [A,z] < [4,X] < [AX, A_X], we gef from above that
(A, z] = [A,X] = (AX, AX] and therefore [4,z] <T and [4,z] < A for any

z ¢ o (A). '

We have [A,z] # 1 since z ¢ cr(A) and it-is .a normal subgroup of T' -

(N

.

contained in the plinth A, hence |A: [A,z]| < co. Let +: A — A/[A,z| be the
. - S B '
canonical homomorphism, so that A* = A/[A,z] is a finite abelian ‘gFoup.

" Let C’=¢ cr (A°) and notice that A" is a finite group which is [-invariant;

n S ’ c et
hence |[I': C| <'co. Now let 8, C — A* be defined by - ' -

0(g) = [z.9]", g€C. "

NoBce that [z,9] € A since I‘/A is abelian. We show that 6 is a homdmorphism:

-

/
-~

¢

EX NN by [z,d2]"([2,01]°*)", 91, 92 € c
= [x,g,]‘[z,gl ]., since g2 € C

= [z,01]" [z, 03], since A" is abelian.
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'i‘hua ] -is a homom;arphism. We show next that ker 8 5. AN. Let g € ker 4 E
then 0(0) = [z,9]" = 1° and hence [:z:,g) € (A, z]. 'Therefor;a [z:,g]“:A la, z] for
spme ae A ’ | N | -

Now [z,ga] = [:z,a][::,g]“ = [z,d][z,9] = [z,a][a,z] = [£,a][z,a]* = 1, hence

ﬁga € cr(z) = N and this implies that ¢ € NA = AN and ker 8 < AN. Now
|C : ker 8] < oo and [T : C| < oo implies t.hat T . ker 8] < oo and therefore
IT: AN| < oo. o o
< ‘To show that AN N = 1, notice that AN N is.normal in AN which Ais of
finite index in T’ as shown abovc;, and since AN N is containe;i in the plinth A
we m‘ust have eithe{ ANN =] or ANN is of finite index in A.r However, if
"ANN # 1 then since N?vmolated in T we get AN 1\; .isolated in A, therefore
ANN = A and hence A centralizes z and z € ¢ (A) a contradiction. This shows

3
ANN =1 as required. N

We note here that cr ((z)) = nr((z)) since centralizers are isolated in I'. -

2.2.3 FOL. II ‘ T

< Let S be any ring with 1, and M a.ﬂy S-module. Wevdeﬁne a set IIs (M)
of ideals inJS as Hg’(M). = {P: Pvis. an ideal of S‘_r'na.xim"al. with respect to
*P # 0}, where ‘P'=‘{a € M :aP = 0}. It is well known that when S isv
Noetherian md M is torsion S-modﬁle then ITg (M )"cc;nt‘;i.ns:‘ non-zero ;elements,

and when 5 is commitative IIs (M) consists of prime ideals. All this will be

/ '
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shown in Chapter 3. Now let J be any Noetherian commutative ring with 1,

and I' any group containing a normal abelian subgroup A.

2.2‘.4 Statement of F.Q.L.II

-

~—
»

Let M be any JI-module and P € I1,,(M). Let N = n.(P) and T a set
' e
of coset representatives of N in ' and let U = *P and Y = UT then .

4

(i) Y = Dr,ep U*
(ii) U is a Noetherian JN-module if M is a Noetherian JT -module

(iii) If N is isolated then for all H <T and all h > 0 we have

_—

Yn (H) = DrtET. U‘

(H), wher%:
Ya(H).= Y N M, (H), and
Ty ={teT:H< N}

We remark that parts (i) and (ii) are Lemma 3 and following comment in [12].

In order to use this lemma in the proofs of the main theorems we need a
P i

well known property of -subgroups of polycyﬁlic groups. We State this in -
. W ; A .

H

4

2.2.5. LEMMA. IfT is polyeyclic and H < K ‘are subgroups of T with
A N

|K : H| < oo, then there is a subgroup T, of finite index in T such that

-

Proof: We use induction on n = |K : H|. If n = ] then K* = H and we

take I';, = T. A'ssumq n > 1 and that the lemma is true (for all‘,isubgroups

»



- | - : 16
H, < K, of: [ with |K, : H| < n. By Theorem 5.4.16 [10] due to Mal’cev,
H=(W{L:H<L<T and Il : L| < cof. Since ]K:H|=n>1‘wghav‘e
H < K and hence there is a subgroup L of finite ind;ax i‘n' I such that H <.L
and K £ L. Therefore, H < LN K < K and it follows that [K : LN K| > 1
hence [LN K : H| < n. By the in'duction hypothesis there is a subgroup I, of
finite index in T so that Ty N (LN K) = H.. Let T, = I‘O-I’TL then I :T,| < 0o

and T, N K = H as required.

2.2.6 COROLLARY. If T is polycyclic with the strong isolator property and
H < T then there is a subgroup T, of finite index in T containing H as an

isolated subgroup. If H < T then I, ean be chosen to be normal.

Proof: Since I' has the strong isblafor property, H is a subgroup and since T is
polycyclic [H : H | < o0o. By the lemma there is a subgroup T, of finite index in
I'with H<T, and T, N H = H. Obviously H is isolated in T, .

) ) .
If # T, then H#< (I T; and () I'? is normal and it is of finite index in T

3€r €T

since T, is of finite index in T.

2.2.7 F.O.L. ITII
Notation: - N

ﬂLet J be any commutative ring with 1, and let T be a torsion;free Relycyclic

.(’

' group with the strong isolator property. Let M, be any JI-module and define a
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set X (M,T) of subgroups of T as follows:

X € X(M,T) if and only if X is maximal with respect to ha_\;'ing the properties:

(i) XsnT
(ii) M, (X) > 1
(iii) If X < H <T and H has properties (i) and (ii) then |H: X| < co. —

o]

(iv) X =X for some n > 0.

It will be shown in chapterzii that when I’ contains a non-trivial subnormal
subgroup H, wi‘th M, (H,) > 1 then X(M,T) contains-non-trivial elements, and

that each one has isolated normalizer in I’.l\',

2.2.8 Statement of the F.O.L. ITT

Let 1 # X € X(M,T) and N = np(X) and let T be a set of coset repre-

# e

sentatives of N in I'. [t U = M,(X) and Y = UT then ' -

(i) Y = Drer U

(ii) U is a Noetherian N-module if M is a Noetherian ['-module.

(iii) Yo (H) = Drier, U5 (H) for all H <T and n >0, where

Y,(H) =Y N M, (H) and,

Ty ={teT:H<N'}.
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2.3. Proofs of the Main Theorems.
] A v
We give in this section the proofs of the main theorems and we start with

a preliminary result and a reduction.
} : {

2.3.1 LEMMA. If (M,T) is stunted and eremitic whenever M is a Noetherian
KT'-module, where K is any field, then (M,T) is stunted and eremitic when M

»
is a Noetherian ZT-module.

Proof: Let B be the torsion subgroup of M, then M/B is a torsion free abelian

group. Since B is characteristic in M, it must be I-invariant. Thus Bisa

T-submodule of M ‘which is a torsion Z-module and M/B is a torsion free Z-

module. By Lemma 4 [3] we may consider each case separately.

Case I: M is a torsion Z-module.

Sirice ' M h;a.s finite exponent we can find a finite series of ZT-submodules
of M such that each of its factors is a Noetherian Z,I'-module for some prime
divisor p of the expoxient of M depending on the factor. Thus if W is any factor
of this serit.as then (W,T) is by assumption, stunted and eremitic. By -‘Le‘mma 4

[3] the pair (M,T) is stunted and eremitic as required.

Case[: Misa torsié:n-free Z A-module. L
Form the abelian group M= Q ®z M, where Q is the field of rational

. numbers. Then M can be made into a Q-vector space by defining (r®m).q=

o
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(rqg) ® m for r,¢ € Q and m € M. Also we can define a natural [-module
str{lcture on M by

(re@m).-g=r®(m-g),g9€r.

Since M is a Noetherian ZTI-module, M is a Noetherian QI-module, and by
assumption (M,T) is stunted and eremitic.

Therefore, there is an integer A > 0 such that for any H < T the ascending
series of abelian subgroups {M,(H)} of M has at most h strict inculsions, and
there is also an integer e > 0 such that for any z € T' the ascending ser-i\eg of
abelian subgroups {ﬁ, (z")} of M has at most e stric-t inclusions>

It follows that the series {M, (H) N(1® M)} and {M, (H)n{1® M)} have
at most h and e distinct terms respectively. Now, in the notation of Chapt;:r 1

{0
we have

{M.(H) N (1@ M)} = (1& M), (H) A

and

{M(=)n (1@ M)} = (1@ M), (=")

-

Thus in the abelian subgroup 1® M of M the series of centralizers of any
H<T, {(1 ® M), (H)} breaks off after at most h steps and for any z € ', the
series {(1® M),(z")} breaks oﬁ' after at most e steps.

But M is isomorphic, -as an abelia.n group to 1@ M. \ Hence for all H <T

and all n >.h, ‘M (H) M, (H), that is to say (M,T) is stunted, and for all

z€eTl and n> 0 we have M, (z") < M,( *) hence (M, P) is eremmc as requu'ed
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N Irbrder to prove Theorems 1° and 2° we notice that if (M,I') is the pair

ks

te | .
Yy W .
as&pelated with the group G as defined in 1.2.2, where G € 4, or G € A, then

Ry
in eiffjer case I' = G/M is polycyclic. Now if T is finite then both Theorems 1°

X

and 2‘;.\fpllow from Corollaries 16 and 17 [3|, thus we need to prove Theorems

@
1° and.2* only when T is infinite polycyclic.

By Theorem 5.4.15 (10|, T contains a normal subgroup I, of finite index
which is torsion-free, and by Proposition 1 [9], T, contains a subgroup I'y of finite

_~index which has the strong isolator property. Therefore I, is of finite index in

[ and it is torsion-free polycyclic with the strong isolator property.

Now, sincé |I' : Iy| < oo it is easy to see that if I' is plinth-by-abelian

r

then Iy is also plinth-by-abelian, and‘ if T is abelian-by-infinite cyclic with trivial

center then I, is abelian-by-infinite cyclic with trivial center.

Moreover, M is still a Noetherian I';-module, and if (M,T,) is stunted and

»

eremitic then, by Corollaries 16 and 17 [3], the pair (M,T) will be stunted and

eremitic. i ;
Let 3 be the class of torsion-free polycyclic groups with tgeéﬁ}rrong isolator
property and 3, the s@bclass of all groups of B which are plinth—i)y-abelian, and

let 8, be the subclass of ‘3 containing groups which are abelian-by-infinite cyclic

with trivial center. , ~

"‘i;‘{: -
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It follows from the above discussion that we need to prove Theorem 1° only

/
for pairs (M, T), where M is a Noetherian T'-module and T € g,, and Theorem
2° only for (M,I'), where T € b,.

We shall prove both theorems by contradiction. That is, we.assume in both
theorems, that the pair (M,I') is not both stunted and eremitic and we must
obtain a contradiction.

Let D be a submodule of M chosen maximal with respect to the property
that (M/D,T) is not both stunted and eremitic. We may assume that D\is
trivial and vs;e must produce a contradiction. In othér words, we assume that
for every non-trivial submodule B of M, the pair (M/B,T) is both stunted and
eremitic. Thus (M,TI) is assumed to bé a minimal counter-example.

We remark that for any subgroup A of finite index in I' the pair (M, A)
is also a minimal counter—exa.n{plé', for then M is a Noetherian A-module and
(M, A) cannot be both stunted and eremitic by Corolla.ri:s 16 and 17 [I'i]

By Lemma 4 [3] we need qnly show that there is some non-trivial A-
submodule B of M such that (B,A) is stunted and eremitic; where A is any

subgroup of finite index in I'. Furthermore, by Lemma 2.3.1 we may assume also

that M is a Noetherian KT-module where K is a field.

_1

5

233 stp.f_szf_lhsgt_cq_l_

M is a Noetherian KT-module, where K is a field and T € §,, and (M,T)

is-a minimal counter-example. As remarked in 2.3.2, to establish the theorem,
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we need only s.how that there is some non-trivial A-submodule B of M such that

(B,A) is stunted and eremitic, where A is any subgroup of finite index in I.
Let A be a plinth for T such that I'/A is abelian, then by assumption A

is not central,.otherwise I' will be nilpotent and by Theorems A* and B* (3],

(M,T) will be stunted and eremitic, a contradiction.

Let § = {X < T : X is maximal with respect to having the property

’

M, (X) # 1}. Then by assumption S # {1}. We consider two cases:

Case I: XNep(A)=1forall XeS§.

Considering M as a K A-module, we recognize two subcases:

(a). M is a torsion-free K A-module. By assumption there is 1 # X € §, hence
-\ '
there is = & cp(A) such that M, ((z)) # 1. Let N = cr({(z)), then by Lemma

2.22, ANN =1 and [T : AN| < co. We note that N = nr ((z)) since centralizers
- are isolated in . By the remark in 2.3.2 we may assume

I'= AN hence the F.O.L.I holds for the pair (M,T).

A

Therefore, if U = M, ((z)) then by F.O.L.I(ii), U is a Noetherian KN-
module. Since ANN =1and I['/A is abelian, so is N, and it follows that (U,N)

is stunted and eremitic by Theorems A* and B* [3].

Let Y = UT and T a set of coset representatives of N in I'. We shall show

é

that (Y,T) is stunted and eremitic.
Let h be the height of (U, N) and ¢ its eccentricity. Then for every t € T

the conjugate pairs (U*, N*) are all stunted of same height k and all are eremitic
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of same eccentricity e. Therefore for t € T,

if H< N' and n > h then U} (H) = U} (H) (1)

and
\

if z€ N* and n > 0 then U}(z") < U (z*) (2)

1

From F.O.L.I(iii) we have,

for every H <T and n >0, Y,(H) = Drer, Ut (H) (3)

Now (1) and (3) show that Y, (H) = Y, (H), hence (Y,T) is stunted.

To show that (Y,T) is eremitic, we notice that in (3) if n > 0 and
Ui(z*) # 1, then t € T(,.,. Therefore (z"} < N; and since N' is isolated we
" have (z) < N*, hence t € T},,.

Therefore, (3) can be written as
if n >0 and z €T then Y,(z") = Drier,., Ui (z") (3')

Now (2) and (3') show that Y,(z") < Y;(z*), hence (Y,T) is eremitic as required.

Since Y is a non—trivial submodule of M, vi}e have the result established in this

case.

(b). M is 3 torsion K A-module. .
We shall use additive notation‘ for the module M. Since KA is a Noetherian

and commutative ring with 1 (see Theorem 15.3.3 [10]), and since M is a torsion

K A-module, we can find a non-zero prime ideal P € I, , (M). = np (P),

then by Corollary 2.2.6 we can find a subgroup T, of finite index in\I' containing

- [o]

N\
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N as an isolated subgroup. By the remark in 2.3.2 we may assume [ = T,

and N is isolated in ' If U = °P, then by F.O.L.II(ii), U is a Noetherian

K N-module. ~
Since XNA =1 for all X € §, the ideal P is faithful, that is (P+1)NA4 = 1.
. ~ (
For if a € (P+1)NA then a—1 € P and since * P # 0 we can find 0 # m € M such
that m(a—1) = 0. This, in the multiplicative notation, implies that 1 # me M
and m® = m. Thus M, (e¢) # 1 and (a) < A4, tilerefore a=1.
Now A 4 N, and it is a torsion-free ﬁnitély generated abelian group with N
acting on it by conjugation. And P is a non-zero ’prime and faithful ideal of KA
which is N—ixiva.rig.nt. It follows from Corollary 10.5 [7] p. 242, that D, (N) #1,

where’

Dy(N)={a€ A:|N :cn((a))] < o}

Since N € § we must have

Dy(N)={a€ A: N =cy((a))}"

= ¢, (N)

-

=¢r (N) N A.

Now ¢y (N) is nouﬁal inT be;:ause N «aT, and also ¢r (N) is isélatedfin I'. Hence
D, (N) is a non-trivial normal subgroup of I' which 18 isolated in the plinth A,
therefore A = D, (N) =c,(N), and A is central in N.

Now N is a finitely generated nilpotent group, and by Theorems A* and

B* [3), the pair (U, N) is stunted and eremitic. By F.O.L.II(iii) and an argument
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similar to that in part (a), we may conclude that (Y,T) is stunted and eremitic,
where Y is the non-trivial I'-submodule U - KT. This espablishes the result in

v
this case.

Case II. X Nep(A) # 1 for some X € §.'Since 1 # (X Necp(A))snT
and M, (X N cr(A)) %'1 we can 'ﬁnd,\.by Lemma 3.3.2, a non-tlrivial subgroup
Xo € X(M,T). By Corollary 2}2.6 we can find a subgroup I'y of finite index in
I' such that X, is an is;)lated subgroup of Iy, and \\by the remark in 2.3.2 we
may assume [ =TI’y and X, is isolated in T. |

’
v

We show first that either X, < cr(A) or 4 < X,. Since X, € X(M,T)

we can find by Lemma 3.3.3 part(2) a subnormal series from X, to I' which is

composed of isolated subgroups, say ’

Xo<dX, 19Xy« X,_,a9X,=T.

»

Now X,_, < T, therefore [A,AX,,-;] <ANX,_,. (

If [A,AX,_,] =1 then X,_, < ¢r(A) and hemce X, < cr(A).

If [A,AX,_,] # 1 then since it is normal in I' and it is contained in the plinth

A we have |A: [4,AX,_,]| < co. Hence ANX,_; = A because it is_t)lated in

A Thus A< Xi_,. - W
| Now if A < X,,_, then, since X,_, q X;_,, we have [4,AX,_;] < ANX, _,

and repeating\the above argument we conclude that either X,_, ‘5 cr(A) or

A £ X,-;. Continuing the same ;u'gument for Xis_s, Xi~4y .-+ we get, finally

to the conclusion. that either X, < ¢r(A) or A < X, as claimed.

&
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AL X; then X, <« T. Let U = M,(X,) and N = np(X,) =T. Since
¢ o
U is centralized by X,, it is a Noetherian I'/X,-module and (U,T) is stunted

and eremitic if and only if (U,T'/X,) is so. But I'/X, is abelian since A < Xo,

therefore, (U,T/X,) is stunted and eremitic by Theorems A* and B* (3]. Thus

’

(U,T) is stunted and eremitic.
)

I;Iow assume X, < c¢r(A), and let * : N — N/X, be the canonical ho-

&

momorphisx\n, so that N* = N/X,. Since X, is isolated in I', N* € 5. Since'

Xo <er(A)y A< N. Thus N <-1 I'and A* = AX,/X, = A/AD X,. Note that
N /

N*/A* is abelian. By_the choice of X,, U,(H") =1 for all ,1 # H*snN*. \

If (U, N‘Lh not both stunted and eremitic, then we shall show that U
contains an N*-submodule V such that (V,N*) is stunted and eremitic. We
consider two cases: A .

(a). ’U is a torsion-free KA*-module. If U,(z*) =1 for all 1 # z* € N* then
(I'J', N*) is stunted and ererr;ii:ic, thus w;a assume that 1 # z° € N* su;:h tl;atA
U,({(z*)) #1. Since U,(H*) =1 ft;r all 1# H*snN*, we have z* ¢ cy- (A4").

Let V = U, ((z*)) and W* ene((5).

We first show that A* MW" = 1. Assume not, and let Z* = A" NW* #1,
so that [Z2°,z°] = 1. Since 1 # Z2* < A* = A/A r; Xo, we can ﬁr;d a subgroup
Z of A s;lch that Z‘/E Z[AN X, and therefore [Z,z] £ AN X, where z is an
o élement of 1\; in the inverse ima.ge of z*. Now A* is torsion free and A* # 1,

—

therefore h(4A N X,) < h(2). ‘ .
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Let ¢, : Z - AN X, be deﬁned as ¢, (z) = |z,z| for every z€ 2. 'It is
easy to see that ¢, is a h:)ﬁnomorphism and since h(A N Xo) < h(Z) we must
have kerg, # 1. Therefore, there is 1 # a € A such that [a, z] = 1." Hence 1 #
a€¢({A,z)) AA. But (4,1:) arl ;ince T'/A is é}belian, therefore ¢, ((A4, z)) T
and also it is isolated. Thus ¢, ((4,z))N A is a/non—tri:/ial normal subgrou;; of T
which is isolated in the plinth A, her‘}}e A= ANng((4,z)) and 4 < gl((;4,x)). It
follows that z € cr (Alr.‘lN = c,'v (A), and z* € ¢y (A)* < ey~ (A°) a contradiction.
Thus we do have A* ﬂ‘W‘ =1 and therefore W* is abelian.

® Next we show that [N* : A°W*| < co. Let z€ N as above, then z ¢ cy (A)
and henceﬂ z & cr(A). Ijet C = Cp((I)), then by Lemma 2.2.2, ANC = 1
and |I' : AC| < oco. Therefore IN : NN AC| < oo and since A < N we have
.NﬂAC = A(NNC). \But NNC = cy ({z})), 80 we have |[N* : A*(cn ({)))*] < o0.
However, cy ({(z))* < ey-(z*) = W*, therefore\lN‘ : A'W*| < oo as required.

We may assume N‘t= A°W* and use ‘the F.O.L.T for the pair (U,N*).
By F.;O.L.I(ii), V is a Noetherian W*-module, and since W* is abelian, thg pair
(V,W*) is stunted and eremitic. By F.O.L.I(iii) and a similar argument as in case
I(a) we may conclude (V¥",N*) is stunted and eremitic. Here w; let V=V¥",
(b). U is a torsion K A“-module. We shall use additive notation for the module
U.

< \ .

Let 0 # P eIIxA.(Uj, then P is a prime ideal ot?KA‘, and since U, (H*) =

1 for all 1 # H*snN*, P is faithful. Let V =*P and W* = ny.(P). We may

assume that W* is isolated in N°*. By F.O.L.II(ii), V is a Noetherian W‘-n\ioduble.

. o
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7/

Now A* < W* and P is a non-zero prime' and faithful ideal of K A* which
~ .

is W*-invariant, and since A is a torsion-free finitely generated abelian group,

’

it follows by Corollary 10.% (7] p. 242, that D,-(W*) # 1. Since N* € 8,
Da-(W*) = c,-(W*). Let 2° = D,-(W*), then 1 # Z° < A° = A/AN X,, and
we can find a subgroup Z of A such that AN X, < Z with h{(4A N X,) < h(Z)

and [W,-Z] < AN X,, where W is the inverse image in N of W*.

/
Let w € W and define ¢, : Z - AN X,, by

éo(2) = |z,w] for all z€ Z. -

Then ¢, is clearly a homomorphjsm and since h(A N X,) < h(Z), kerg, # 1.
Therefore, there is 1 # z € A such that [é,w] = 1, hence 1 #2€ ¢((4,w)) N A

Since® (4,w) < T we have ¢ ((4,w)) N A is a non-trivial normal subgroup of T

-

which is isolated in the plinth A, hence A = AN ¢1({4,w)) and w € e (A) N N.

Since this is true for any w € W, we have W 5 cr (A)MN = cy (A) and therefore

W* < er(4)° < en-(4°). !

. V4 . <
Thus A* is central in W* and since W* /A" is abelian, W* is nilpotent. It

’

follows by Theorems A* and B* (3] that (V,W*) is stunted and eremitic. By

L}

F.O.L.H(iii) and an agrument similar to that in case I(a) we may conclude that
(V¥",N*) is stunted and -eremitic. Here too, we let ¥ = VN,
' ‘ \

Thus far, we have shown that in each case th;re is an N*-submodule V

., of U such thx;t (V,N*) is stifited and eremitic. Since N* = N/X, and X,

i '

centralizes U, V is an N-submodule of U and (V,N) is stunted and eremitic.

[ 4

(&)

¢
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Now V is an N-submodule of U hence V' = DrerV* by F.O.L.III(i) and it

foltows from F.O.L.IN(iii) that if ¥ = VT then

Y.(H) = Drycr, V! (H) for ali H <T and n > 0. (*)

Since (V, N) is stunted and eremitic, (*) shows as in case I(a), that (17,I‘) is
stunted and eremitic and this establishes the result in this case, and with it, the

proof of Theorem 1°. '

2.3.4 Proof of Theorem 2°.

M is a Noethe;ian KT-module, where I'. € §3;,and (M,T) is a minimal
counter-example. We need only show that there is some non-ftivial A-submodule
Bwof M such that (B, A) is stunted and eremitic, where A is any subgroup of
finite index in T. ‘ |

Jf A is a normal abelian subgroup such that I'/A is infinite cyclic thén by~
assumption A is not cent}al, ot'h;.rwise I' will be nilpotent and by Theorems A*
and B, the pair (M,T) will not be a counter-example.

Since centralizers in T z;.re isolated,i‘A = cr (A), because I'/A is inﬁ'nite cytlic.

Let S ={X <T:X is maximal with respect to having M, (X) # 1}, then

by assumption § # {1}. We consider two cases:

A

i

Case]: XNnA=1forall X€S8.
We have two subcases:
(a). M is a torsion-free K A-module. By assumption there Is

z & er(A) = A such that M,((z)) # 1. Let N = cr((z)), then T : AN| < o0
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since I'/A is inﬁnité cyclic. We may assume I' = AN. and use F.O.L.I for the
pair (M,T'). Let U = M, ((x)) then by/; F.O.L.I(ii) we have U is a Noetherian
N-module.

We show that AN N = 1. Assumg a€ AN 1;/', then a € g,((A,z)). But
a((4,z)) = a (I’; since |[I' : (A,z)| < oo and T € B;. However ¢ (I') = 1 by
assumption, hence AN = 1 and N js abelian.

By Theorems A* and B" (3], the pair (U,N) is stunted and eremitic and
iy F.0.L.I(iii) and a similar argument as in case I(a) of Theorem 1°, we may
" conclude that (UT,T) is stuntéd and eremitic. This esta.blishes.the result in this
case.

(b). M is torsion K A-podule. We use here the additive notation for the
module M.

Since KA is' a Noetherian commutative ring we can find an ideal 0 9&4P €
IIx o (M). Then P is prime and by the assumption that ANX =1 for all X € S,

we have P faithful. Let N = nr(P), since I has a tirival center and T € 8 we

7
must have D, (T) = 1 where,

El

Da(T) ={a € A:IT : cr ((a))] < o0}
=fa€ A:T =cr((a)} N

=a(f)nA

Now A is a torsion-free finitely generated abelian group with T §ting on

it'by conjugation and P is a non-zero prime and faithful ideal of K A, then since

L)

N
e

] - .

P
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D4 (T) = 1, it follows by Corollary 10.5 [7] o 242, that P can not be orbital,

that is [ : N| = co. Since A < N and F/A is mﬁmte cychc N = AJan isolated

abelian subgroup.
LetAU = *P, by F.O.L.II(ii) U is a Noetherian N-module and since N i$

abelian the pair (U, N) is stunted and eremitic by Theorems A* and B* (3]. By

/

F.O.L.II(iii) and an argument similar to that in case I(a) of Theorem 1* we may
conclude that (UT,T) is stunted and eremitic, thus establishing the result in this
case. g ' )

"Case II XN A # 1 for some XeS.

< Y / N

" We shall use additive notation for the module }I Since ' has the maximal
' con@ition, there is a maximal element in the set {XnA: X € §}. Let Xo =XNA
be such a maximal element, then by assumption X, # ul, and M, (X,) #0. We

may assume ,X'l is isolated in T. | ";

Let I =¥, ., (z~1)KA, then I is an ideal of KA and *I > M, (Xo) #0.
Now K A is a Noetherian and commutative ring hence we can’ ﬁnd an ideal P of
KA such that P> T and P is maximal with respect to yha.ving *P #0. Thus
P € lx 4 (M) and P is a non-zero prime ideal of KA. Moreover, X, = (P+1)N4

for it is clear that X, < (F'+1)n A.

A

Assume X, < (P+1)NA and let P* = (P+1)NA. Since M, (P*+) # 1 we

3

can find X €S such that P+ < X But then XN A4 D P* > Xo contradxctmg

the choice of Xo. Let N = np(P) then ((P +1) N A) < N, hence Xo 94 N, and
- :

N v

)
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we also have A < N. If we let U = *P, thén by F.O.L.II(ii) U is a Noetherian
N—module. b

If N= A then N is abelian and isolated in T', and by Theorems A and
B* [3], the pair (U,N) is stunted‘ and eremitic. By F.O.L.II(iii) and a similar
argument as in case I(a) of Theorem 1°, we may conclude that (UF ,T') is stunted
and eremitic and the result is established in this case.

Now assume A < N. Thus |l : N| < co, and we may issume ' =N. Since
Xo centralizes U, it is a Noetherian N/X,-module. Let * : N — N/X, be the

. .

canonical homomorphism, then N* = N/X, and N* € g since X, i3 assumed to
be isolated ,in I. Moreover, since X, < A, A* = A/X, and N* /A* is infinite
cyclic. We show that N* ha.s’trivia.l center. Assume Z° = ¢ (N*) # 1, then
Z°N A" #1 and if Z is the inverse image in N of Z* N A*, then X, < Z and
Z < A and [Z,N] < X,. F\xrthe;'more, h(X,) < h(Z) since N* i torsion-free
and Z* N X* #1.

Let y € N and define the mapping ¢, : Z — X,, by

. ¢ (2) = [z,y], for all z € Z.
; ;3

Then ¢, is clearly a homomorphism and since h(X,) < h(Z), we have kerg, # 1.
Hence there is 1 #2€ A such that [,y =1 S.nd this implies 1 # 2 € ¢; ((4, y)).
Since A < N we may take y such that y € N\ A, thus |I': (4,y)]| < oo since I'/A
is infinite cyt;lic and sim':e '€ 8 we have ¢ (T) = ¢ ((A,y)). However, ;:(I‘) =1

~ by assumption and we have got a contradiction. This implies that N* € 8,.
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Next we show that if H* < N* and U,(H*) # 1 then A° n H* = 1.
Suppose A* ﬂH‘ayé 1 for some H* < N* with U,(H*) #1. Let H} = A*NnH*
then U,(H;) #1 and H; = H,/X, for some H, < N such that X, < H, < A.
Since U, (Ho/é{o) ;é‘ 1, we have U,(H,) # I/because X, centralizes U. Thus
M, (Hy) # 1 and X, < Hy, < A. Now we can ﬁnd some X € S such that
H, < X, hence XNA> H\_O > X, contradicting the choice of X,.
Thus thé claim is established and we are in the case where we have U is a
Noetherian N*-module yvith N* €, and H°NA* =1 for all H* < N* such that
\U, (H*) # 1. This is case I with the pair (M,T) is repla'.c'ed by (U,N*). Hence

the result is established in this case and this completes the proof of Theorem 2.

2.3.5 Proof of Theorem 3°: .

v

The following proof of Theorem 3* is the same one given in (3] for the
proof of Theorem C* except for few verbal changes. We include it here for the =
sake of completeness.

By assumption the pair (M,T) is eremitic of eccentricity e, say. Let
H>H>-->2H > | (1)

. be any sequence of subgroups of I' and
l: .

M (H,) S M,(H,) <+ < M(H,) < (2

be the sequence of M-centra.lizers of the subgroups H,, H, ,l‘.,.., H,,... above.
. . . . - » v

Since the Hirsch nur;i)er h of T is finite there can be at most h indices n for
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. ¢
which h(H,) > h(H,,,). Hence the chain (1) breaks up.into at most h + 1

stro‘c\hes, where in each stretch H, > H,,, > ---> Hg > --- all the terms have
same Hirsch number.

Let m = m(e,I') be the integer of Lemma 19 [3]. We prove T;leorem
3f‘%y shov;ring that in any such stretch there are at most log,’n gaps in the
corresponding stretch of chain (2). We may therefore assume that (1) is one of
the stretches with all the terms having equal Hirsch number. In other words, we
assume for each n > 1 that |H, : H,| < co. We show that (2) has at most log, m
gaps. There exists integers r, such that A~ < H,. Hence M, (H.) < M, (H]").
But e is the eccentricity of the pair (M,I') so that M,(H[~) < M,(H;) and

3!
M,(H,) < M,(H;). Write K = H;, we have

M,(H,) < M,(K) for all n > 1 (3)

»

' ;iow if H,K = H,,, K, then M, (H,)N M, (K) equals M, (H,,,)NM,(K). From
(3) it follows that M, (H,) = M,(H.,,). Therefore gaps in (2) can occur only
at places corresponding to gaps in the chain H, K > H; K > --- > H K Zé-ﬁ-ﬂ.-&b _
By Lemma 19 (3], thg order of H, /K is at most m, so there are at most log; m
gaps in this chain as r;q;xired.

Now we deduce Theorem 3 from Theorem 3° in exactly the same way

Theorem C is deduced from Theorem C* in [3].

i
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2.3.6 Proof of Theorem 3:

Suppose G € A, or G € A,, let M be a normal abelian subgroup of G such

that ' = G/M is polycyclic.. Suppose H,, H,,... are subgrogps of G such that

s

N C,<C;<---<C, <--- (1)

with C, = ¢g(H,), n > 1. From Theorems 1 and 2 we know G is eremitic.
Let its eccentricity be e and m = m(e,I') be the integer of Lemma 19 [3]. We
suppose -ﬁrst that

C,NM=C,NnM;n>1 ' (2)

and that

IMC, : MC,|<o0;n>1 (3)

Since MC,/M*=C, /C, "M, (2) and (3) together show that |C, : C,| < oo for
all n > 1. Writing C for |J C; we deduce as in the proof of Theorem 3° that
=1

H, centralizes C:.__ Hence

¢t <c, . (4)

It follows (MC)* < MC,. Writing L = MC/M and K = MC,/M we may say
that L* < K. From Lemma 19 (3] the order of L/K is at most m. There are,

therefore at most log, m gaps in the chain
MC, SMC, <---<MC, <---

However if MC, = MC,,, then (3) together with C, < C,,, show that

Ca = Cry,. It follows that there are at most log, m gaps in the chain (1). We
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now deal with the general case, that is, not assuming (2) and (3). Since C, "M
i8 cp (H,), it is precisely M,(MH,/M). From Theorem 3°, we know that the

pair (M,T) has a gap number, say g. Therefore in

CmC:hMS--SC..nMg---

there are at most ¢ gaps. Further since I' is polycyclic it has a finite Hirsch
number h, say. There are therefore at most h indices n for which A(MC, /M) <
h(M?,,“/M). For other indices r we have IMC,,, : MC,| < co. This shows
that the chain (1).preaks up into fewer than (h+ 1) - (g + 1) stretches

C, <C,41 £..., where in each stretch the members have the same intersection
with M and neighbouring members C, < C,,, satisfy |MC,,, : MC,| < co.
According to the case with which we have already dealt, none of these stretches

can have more than log, m gaps. Hence (1) as a whole has no more

(h +1){g + 1)(log, m + 1) gaps. This proves Theorem 3.

2.3.7. Proof of Corollary 1.

If G is just ;mn-polycyclic and M is the Fitting subgroup of G, then by the
structure Theorems 2.4 and 2.5 [11], with ' = G/M, we have M is a Noetherian
I'-module and eith? ' is abelian-by-finite in which caseﬂ (M,T) is stunted and
eremitic and is of finite gap number by Theorems A*, B* and C* (3], or else T
has a normal subgroup T, of finite index such that I', = AB is a split extension

of a plinth A by an abelian group B, and 4 = Fitt(T';). Also M is a torsion-free

Z A-module. By Theorem 1* case I(a) this implies thal (M,T,) is stunted and
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eremitic. It follows from Corollaries 16 and 17 (3] that (M,}‘) is stunted. and
eremitic. By Theorem 3°, (M,T) is of finite gap number and by Lerdma 17 (i)

and (ii) [3] we have G stunted and eremitic. Hence, by Theorem 3 we have G

of finite gap number as required.

2.3.8 Proof of Corollary 2

We have M a Noetherian I'-module where I is polycyclic-by-finite and
h(T) = 3. ”

We can find a subgroup I', of finite index in I' so that I', is torsion-free
polycyclic with the strong isolator property. Therefore A(I';) = 3 and M is a
Noetherian I';-module. | |

Let F = Fitt(I';). If A(F) = 3 then T is finitely generated ;i;‘potent by-
finite and therefore (M,I) is stunted and eremitic by Theorems A* and B* [3),\
and it is of finite gap number by Theorem C*. |

M" We can not have h(F) =1, for if it is so, then since F is isolated in T, by
Prop. 5 (9], F is infinite cyclic. Moreover ¢(F) < ¢r,(F) < F, hen‘%e_ ér,(F)=F.
However,‘this implies that |T, : F| is finite and A(l',) =1 a contradiction.

" Thus we are left with the possibility that h(F) = 2. Sinée F is torsion-free -
nilpotent of rank 2, it is abelian and thus F is a plinth for I';. So that I, is
plinth-by-infinite cyclicu and it follows by Theorem 1° that (M,I,) is stunted, *

and eremitic. Hence (M,I') has these properties because |I' : T',| < oo and by

Theorem 3° it is of finite gap number.



2.3.9 An alternate proof of Theorem E* [3]*

M is a Noetherian I'-module where T is any polycyclic-by-finite group. We
prove the theorem by induction on the Hirsch number of T, A(T). If A(T) =0
then T is finite and (M,T) is stunted and eremitic by Corollaries i6 and 17 (3].

We suppose hA(I') > 0 and that all pairs iB,A) are sn-stunted and sn-
eremitic whenerver B is a Néetherian A-module and A is polycyclic-by-finite
with h(A) < k(T).

Now T' has a subgroup Iy of finite index which is térs\xé)/n-free polycyclic and
with the strong isolator property by Prop. 1 [9]. Since M is still a Noetherian
To-module, it will be sufficient from the analogues of Corollaries 16 and 17 (3]
to prove that (M,I,) is sn-stunted and sn-eremitic. Thus v@assume r=r OT
Let D be a submodule of M chosen maximal with respect to the property sthat
(M/D,T) is not both sn-stunted and sn-eremitic. We may assume D is trivial
and we must produce a coptradiction. In other words, we assume that for any
non-trivial submodule Y g M the pair (M/Y,T) is sn;stunted and sn-eremitic.
By the analogue of Lemma 4 (3], we need only show that there is some non-
trivial submodule ¥ of M such that (Y,T) is sn-stunted and sn-eremitic. Thus
(M,T) is a minimal counter-example and as such there must exist a non-trivial
subnormal subgroup H of T such that M, (H) > 1.

It follows that X (M,T) contitins non-trivial elements and the F.O.L.II

holds for the pair (M,I'). Let 1 # X € X(M,T) and let N = nr(X) and

»
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T a set of coset representatives of N in I'. Let U = M, (X) and Y = UT. iBy
F.O.L.1II(ii) we have U a Noetherian N-modulg since ‘M is Noetherian I'-module.

If N <T then A(N) < h(T') because N is isolated. It follows ‘By ‘the
inductiv; hypothesis that (UN )\is an—stunte:'l and sn-eremitic. By an argument
similar to that in the proof of ’I:Beorem 1° case I, it follows that (Y,I') is sn-
stunted and sn-eremitic. Hence the result is obtained in this case.

If N=T then 1 # X < I and since T is supposed to be torsion-free
h(X) > 0, hence h(I}/X) < h(T). Now U is a Noetherian '-module and X
centralizes U, therefore U is a Noetherian I'/X-module and (U,T) is sn-stunted
and sn-eremitic if and only if (U,T/X) is so. But (U,T'/X) is sn-stunted and

sn-eremitic by tlie inductive hypothesis. This completes the proof of TheoreﬂX
S

E-.

2.3.10 An alternate proof of Theorem F [3].

If I‘Qis finite the result follows trivially, so assume that T is infinite poly-
cyclic. By .'Prop. 1 (9], we can find a normal subgroup I'w of finite index in T
so t‘ha.t Iy has the strong isolator property.

" Let [T : To| = r. If d(ANT,,I) exists and equals dy, it is clear that
d(A,T) can be taken as dyr. In other words we may assume [, =T and that I‘ .
has the strong isolator pfoperty.

If Ais a.ny’ given subgroup of ' then A is a subgroup and |A: Al < .

Now if H is any subgroup of I' with |H : HN A| < co then we must have
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HNA = H, because H > HHKZ H,ﬂA and therefore |H : HOK' < 00. But A
is isolated in T hence H N A is isolated in H, therefore H = HﬂfA_ and H < A.
Since |A : A| < oo, we can find a’;‘)ositive integer n = n(A,T) such that

Vil < A. Notice that A" is normal in A and it is of finite index sixnce A=A~

Since |[H : HN A| divides |H : H N A"| we need only show that |H:HnA"|

divides an integer d = d(A,T).

s

From the diagram

|A:A"|. But [A:4| is an-integer that depends only on A and I\. Hence the

result.



CHAPTER 3

PROOFs OF THE FAN OUT LEMMAS

31 F.O.L. 1

’ Let M be any JT-module, where J is any commutative ring with 4, and T
isa tors‘ion-free polycyclic group with the strong i:ola.tor pfoperty, which\ contains
a qon—centrai normal abelian subéroup A.‘

Suppose that thére is some element z ¢ ¢ (A) such that M, ((z)) # 1 and
that ' = AN, where N = nr((z)). Let U = M, ((z)) and Y = UT. Choose a set
T of coset representz‘atives of N igl I such that T < A.

If Mis 'torsion-free J A-module, then
(i) Y = Dryep Ut
(ii)/U is 3 Noetherian J N-module whenever M is a Noetherian ‘J I'-module.

i@i) Y.(H) = Dryer, Ut (H), for all for all H <T and n > 0, where

3

Y.(H)=YNM,(H), , e
U (H) = U* N M, (H), and

Ty = {t€T:H < N*} ’

.
Proof: We shew first that_(ii) and (iii) follow from (i). '
(a). (i) follows from (i).
The ptqof here is exactly the same 042 used in proving Ijemma. 3 an:i the
- following comment [12], and we include it here for the sake of completeness.

41
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Assume (i) and let V be any JN-submodule of U. Then by (i) VT = DrerV*

and this is a direct product, hence

“l

V =(U'nVF)

" Therefore the correspondence V — VT is one-to-one from the set of JN _submodules

of U to the set of JI-submodules of M. Since it clearly preserves inclusion we

~

get (ii).
(b).  (iii) follows from (i).

-
The proof here is exactly the same as the one presented in Lemma 10(a) (3]

and we include it here for the sake of completeness. The proof is by induction
on n. The case n = 0 being trivial, we assume n > 0 and let 1 ;ébf € Y,(H).
By (i), /

Y = DrerU* . (1)

It follows that £ = u}' ... u'* for some non-unit elements u,, ..., u, of U and

distinct elements t,, ..., ¢, of T. Let z € H, then [£,z] € Y,_,(H) and by the

~

inductive hypothesis,

N

Ve u .. ut** € Dryer, Ut_, (H) / (2) .

AY

u

Suppose if possible that u** # U*/ for any 1 < 5 < r. Then u{'* has to be a
component element of the direct product in (2). Hence n > 1 and u'** €U* for
som* Ty. From (1) we deduce that U** = U* and hence t;zt~! € nr(U).

Observe that we get from (1) also that np(U) = N. Therefore ¢,zt™! = n for

~

<
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. - ’
~ some n € N, and since t € Ty we have L. < N* = N™ = N**. Hence H < N"
because z € H, and we have U** = U* forall z€ H a contradiction.

Therefore H permutes U': ... U'  and it follows that there is a subgroup

H, of finite index in H that normalizes each of U ~,.,U. Thus H, < N'.',
i=1,...,7. But N is isolated in T since N = nr ((z)) = ér({7)), and hence all.
N* are iscjlited in T', therefore H < N*/,
1=1,...,r, becau)se |H : Hy| < co. It fqllows that all ¢,,...,¢t arein T, and
fror;l (2) we have for each 1-< i <r, u “u** € U!*  (H). Hence u' € Ut (H)
and u; € U,(H), so that €€ Dr,E>.r U,';(H) and Y, (H) < Dreer, U (H). Since

-
the other inclusion is obvious we get equality as required.

~

It remains to prove (i). For this we need the following technical lemmas.

3.1.1. LEMMA. Let T';A,J,N and T as above and fix n > 1 and t,, ..., ¢,
distinct elements of T. Let X be a cyclic subgroup of T' such ‘that
Xﬂcp(A) ='1and §$ = {z=(z,,...,%n); Z1,..., z, are all distinct elemtents

/
o in X }. Let I, be the n X n-matrix over the commutative ring JA defined as

T L e
t’x t" . t;u N

L= . . Then det I, #0 for some z € S.
g2 t2 L. t3e

Proof: Note tha.t‘n"o two columns or rows of I, are identical since T S'\A and
XNer(4) =1. Agsume d&t I, =0 for all z€ .

Since det I, = 3. (sgno)elt t21,) - .- 157, is an element of JA with all
. O€S,

terms in A and coefficients +1, we get det I, = 0 only if none of these terms’
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is unique, i.e. for each o in S, there is ¢ # ¢ in S, such that e f:(‘n) =
t:;l),, ..t:'(‘n). In particular, we must have for every z € S, some 1 # ¢ € S,

N

depending on z only, such that if £ = (z,, ..., z,) then

, ‘ TURT AR L AR A (*)
oy ) |

For each £ € § choose one of t‘hose 1#o0 e) S. that satigaw (*) and denote it

by o,. Define the map § — S, \ {1} by £ —= 0,. Now let s be an arbitrary

number strictly larger than n(n! —’1). Since X is infinite we “*an ﬁlnd in X\S

subset Y of n-s dist_inct elements. D.ividie Y into n subsets Y; of equal size, so

I\ e
%

that Y| =6, s = 1,2, ”aﬁd the Y's are mutually disjoint. Let S = {z €
-~ " ) " . .

S:z=(zi, ..., T,); = EY.,: =1, ..., n}, then |S| = s".

For each 1 < i < n define on S the relation ~ by, z ~ y if and only if
z =y or z and y differ only in the i-th component. This is clearly an equivalence
relation. Denote the i-equi;'alence class -containing the element z of S by S; .

Then |S;| = s and for each 1 < i < n, we have s"~! distinct i-equivalence

classes.
For fixed 1 <1 < n and fixed £ € S consider the class 'S; and note that

each y € S; is associated with a non-identity permutation o, €8S,.

.

R .
We consider the ‘subset T? of S, defined as T} = {!LG S, :0y(s) # 1}. Since

|Sa \ {1}] = n! — 1 we see- that |T;| < nl—1, for if |T7] > n! — 1 then there are

distinct elements y, z i ‘T, so that o, = 0;. Let 0 = oy, = 0Oy, then since y

and 2 are in T; Cc S_,"_ we have y and z differ only in the i-th component, so if

‘
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v=(%1,--- %,---, Ys) then z = (yl;...,zi,'...,y") ‘d v # 2. Also by the

definition of the map z — o, we know that

v Ve Va — ¥ Vi Va
t Bt =
and o
1
va g Va — g1 ° LXy Va
N O A AT T A P

Since all tf € A for all z € X and all s, the above two equations show that
(t“‘t:(\)) = (t;7't,(;))"*. Therefore (y;2;') centralizers t;'t,,. But (y.z/')
is of finite index in X because X is cyclic, and since centralizers are isolated in
[, we must have X centralizing t]'¢,;,. Thus ¢ ,( ) € N and Nt = Nt -
But the tis are distinct coset representatives of N, hence t; = t,(;) and this
implies o(1) = ¢ which contradicts the choice of y and z as elements of T;

This establishes IT;| < n! - 1 and since we have s"~!, i-equivalence classes
we see that for a fixed ¢, 1 < ¢ < n, the number of z € S such that o,{i) # i is
|UT;| < s"~*(n!—1). Now, we have n, i—equivalence relations hence the number

of elements ‘g:_ in S such that o,(s) # ¢ for some 1 <i<nis

IUUT_;_I < ns*~!(n!-1).

4

But these are all the elements of S because each z € ﬁ is associated with g, €
S. \ {1} hence for each z€ § there must be some 1 < ¢ < n with a,_(z) #i. It
follows S = U UT] a.nd that s < ns"~ l(n! —1). Therefore s < n(n! — 1) a

1<s<n 3

contradiction. This shows that det I, # O for some z € $ as required.

: ' ° B 'Y
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o |
For the next two results -wé"""fh_g\a.l_l use the additive notation in the module

Ny b

M.

3.1.2 LEMMA. Let T, A, X, N, J, a.nd}; as in Lemma 3.1.1, and let M be a

JT-module with M, (X) # 0.
Assume that there is a nontrivial relation in M, ) mt; = 0 for n > 1 and
=1

0 #m; € M,(X) andjl, ..., t, distinct elements in T. Then there is r € JA

with r #0 and m;r =0 for all 1 <1< n.

n . n  ‘. :\ N
Proof: The relation, Y mt; = 0 implies that ) m;t7 = 0 for all z € X since

i=1 =12
m; € M,(X). Let = (Z;,..., Zn), T1, ..., Zn € X, be the n-tuple provided by.
Lemma 3.1.1, so that det I, # 0. Form the direct sum of n copies of the abelian

group M and define a (JA),,-module structure on b M \tp a natl(n"‘@.l way:

i=1 " X
\\ Y
: N @ n n \\"‘%
)
(ml,'..., fft..) . (a.',') = (Zm"aﬂu ceny Zmiain) ‘
i=1 t=1 "

where m; € M and (a;,) is an n X n-matrix over JA.

Now the equations:

Lmiti! =0,5=1,...,n; can be written as -
tm] ) T

\

T (may ...y ma) -1, =(0,0,...,0) (1)

O ' )

where I, = : ‘ . Since JA-is -a- commutative ring with 1, the
ta L. ths ~ |

‘classical adjoint formula holds in (JA),.,. Maultiply both sides of (1) by adj I,
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to get %
det I, :

O
(m,,...,m,,)- =(0,...,0)

det I,
Hence if r = det I, then r € JA and r # 0 by Lemma 3.1.1 and m;r = 0,

+=1, ..., n as required.

3.1.3 Proof of part (i) of F.Q.L.I:

We have M a torsion-free JA-module and U = M,(X) and Y = U - JT."

‘ | | A
Written additively, Y = U -JI' = }_ U -t. If this sum is not direct then there
tET
is a non-trivial relation in M, > m;-t, =0; n>1,0# m; € U and't,,....t,
i=1 )

distinct elements in T. By Lemma 3.1.2 there is 0 # r € JA such that m;r =0

.. a contradiction. Hence the sum is direct as required.

3,
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3.2 F.O.L. II:

We ‘shall adopt the additive notation for the module M throughout this
. ")

-

lemma.

DEFINITION. Let S be any ring with 1, and let M be any S-module. For any
subset X of S, define the victim of X in S as "X = {m€ M :mX =0} and let

lls (M) = {P: P is an ideal of S maximal with respect to " P # 0}

Here are some known properties of Iy (M):

3.2.1*LEMMA.

(1) If M #0 and S is Noetherian then Ilg (M) # 0

(2) s (M) consists of prime ideals whenever S is commutative.

(3) If S is commutative and P,, P,‘, -.., P, are all different elements of 11 (M)

then *P, +---+°*P, is a direct sum of submodules.

Pro9f: (1) Clear ]
(2) If 1, I are any idealg of S containing P such that I,I, C P then ‘
("*P)(I ,) =0. If (*P)I, =0 then *I, =0 and hence I, = P since P € II, (M).
If (*P)I, # 0 then gince (*PI,)I, =0 we have *I, # 0 and hence I, = P since
P ellg (M).

(3) First we show that *P is a submodule of M when S is commutative:
~ Let m,,m; € *P then (m, + m;)P = m, P+ m,P = 0 hence m, +m, € P. If

,T€ S and m € *P then (mr)P = m(rP) = (mP)r = 0 since S is commutative,

hence mr € * P.
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Let P,,..., P, be r distinct elements of M5 (M). Notice that P, < P, +
PP, ... P, for if notfthen, since by (2) P, -is prime we have P, > P,P, ... P.
\
hence P, > P, for sdNje 2 <1 < r, and P, = P, because P, € II; (M), and this
contradicts the choice of P, and P,.
Now let me€ “PN("P,+---+°P.)then m=m, +---+m_, m, € °P,,

2<1<r. Alsome€ *(P,+ PPy,...P). Since P, < P, + P,P,...P. and

P, € I3 (M) we must have m = 0 and therefore the sum is direct as required.

The Fan Out'Lemma. II shows that the prime ideals # I1; (M) enjoy some

more desirable properties:

3.2.2 F.O.L. II:
Let T’ be any group and A an abelian normal subgroup of I'. Let JR = JT
T a
where J is any commutative ring with 1, and S = JA. Let M be any -module

and P € IIs(M). Let N = n.(P) and T a set of coset representatives of N in

T, then
(i) CP)R= Y *P-t and this sum is direct
. teT

(ii) * P is Noetherian JN-module whenever M is Noetherian JT-module )
(iii) If N is isolated in [ and U =*P, Y = *P-R then for any H <T and n > 0,

we have Y,(H) = )  U:(H) and this sum is direct, where Y, (H) = {y € Y :

tET y

[¥shyy ...y ko] =1 for all n-tuples h,, ..., h, in H} and Ty = {t € T: H < N*}.

Remark: Parts (§) and (ii) are Lemma 3 and following comment of Roseblade’s

N

paper [12], we include the proof here for the sake of compl:ateness.
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Proof: Parts (ii) and (iii) follow from (i) in the same way as in F.O.L.I, the
proof is analogous. The proof of (i) as presented in [12] follows:
Noticg that for z €T, "P -z = *(P*) for if m&€ “P then mz-P* =mP-z =0

hence * P-z C *(P*). On the other hand, if m € *(P*) then 0 = mP* = mz~! Pz,

~

hence mz~'P = 0 and mz~' € * P, therefore m € * Pz as required. From the
sl

above we conclude that * P is a JN-module, and since I' = NT we have
»

*P-R=Y *P-t= Y *(P). Ift,,...,t, are distinct elements of T, with

teT teT .

r arbitrary, then P**, ..., P* are all different members of IIs (M). Since S is

commutative ring with 1, we have by Lemma 1 part 3 that the sum ) - (P“)

- 1=1

is direct, hence )_ *(P*) is direct as required.
teT -

TN
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3.3 FO.L. 1L K

We first define the set XU (M,T) of/ subgroups of I', where 'M is a JI-
module, where J is any commutative n\i\ng/with 1, and T is torsion-free polycyclic
group with the strong isolator property. We say that the subgroup X of T is in
X(M,T) if and only if X is maximal with respect to having the following four
properties:
(i) Xsnl /
(if) M (X) > 1
(iii) If X < H <T and H has (i) and (ii) then |H : X| < 00

»

We show that if ' contains a non-trivial subnormal subgroup H, with

(iv) X =X for some n > 0.

M, (Ho) > 1, then X(M,T) contains non-trivial elements. This will follow from

3.3.1 LEMMA. IfT is a torsion-free polycyclic group with the strong isolator
property and H < T, then H eontains a subgroup K which is normal and of

finite index in H, also K = K for some n > 0, and n(K) is isolated in T.

Proof: Since I' has the strong isolator property, H is a subgroup of ' and
|F:H | < co. Hence -H_" < H for some positive integer n. Simce I is torsion
free we have H #'l unless H=1, f " = H we take K = H, and if H" < H

we take K to be H . It is clear that H = K. Hence?":F":wK and

this is normal and of finite index in H. But since K= H < H < H we get K

b

normal and of finite index in H. To show that n; (K) is isolated in ' we use the
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property that in [, nyr (K) = nr (K). Since K = ?{1 we have K is fully invariant
in K and since K < nr(K) we get K < n (K) = nr(K). Hence nr (K) < np(K)

and we must have equalty. i

3.3.2 LEMMA. IfT contains non-trividl subnormal subgroup H, with

>
M, (H,) # 1 then X(M,T) contains non-trivial elements. -

Proof: Let d be the largest Hirsch number of any subnormal subgroup with non-
trivial centralizer in M, ;nd suppose H is one of such subgroups with hA(H) = d.
So that H has (i), (ii) and (iii) follows immediately. By Lemma 1, H contains a
non-trivial subgroup K which is norma.,l of a finite index in H and has pfoperty
(iv). Thus K has properties (i)-(iv) and the set of subgroup of I' with the prop-

erties (i)-(iv) contain non-trivial elements. Since I' has the maximal condition

there must exist maximal elements in this set that are norf“trivial as required.
»

Now we give some elementary properties of members of X (M,T) that will

be used very often in the proof of F.O.L. III.

3.3.3 LEMMA. Let X € X(M,T) then
'(1) X' € X(M,T) for all y€T. \.;}

(3) There is a (shortest) subnormal series from X to T' which is composed of .

U

‘q isolated subgroupe. 4
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(3) If X < A and A is an isolated and subnormal subgroup of T, then

X € X(M, A).

Proof: (1) We show that X is maximal with respect to having properties (i)-(iv)
(i) Since XsnI' we have X7 snT
(ii) If 1 # a € M,(X) then 1= [a,z] for all z € X and there‘;gre for all y €T,
1=[a,z]" =[a’,z"], hence 1 # «” € M, (X").
(iii) If X” < H <T and.H has (i) and (ii) then H"™" has (i) and (ii) by the
a.bc’)ve argument and X < H* ' hence |[H* ' : X| X oo because
" . . 7

X € X(M,T). Therefore |[H: X"| < oo

(iv) Since X = X for some n > 0, we have X" = (X")" = (X)) = (X7)".

Finally to show maximality of X7, assume X” < H < T and H has properties (i)-
(iv). Then Xi< H'"' <T and from what has been shown H* ' has properties
(i)-(iv) and this contradicts X € X (M4P) unless H'~ =T and hence H =T as

required.

i (2) - Since X.ml‘,‘let X=X,49X,:-- 9 X, =T be a shortest series from

X to T. Xo‘<1 X, implies X; < n(X,), hence X, < n(Xo) = n(X,) since

n(X,) is isolated by Lemma 1. Thus X = X, 9 X,. Fori = 1,..., k

we have X 9 X xmplxes Xi+1 € (X)), hence X, < n(X;) = n(X;).
Y

Therefore X « XH., and X =X, 9 X, 9 -+ < X,, =T and all X;,

t=1,..., k are isolated and obviously this is also a shortest series.

(3) We show th}() X as a subgroup of Ashas properties (i)-(iv)

7
““
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(i) Since XsnI' we have XsnA
(ii) M,(X) > 1 since X € X(M,T)
(i) 1f X <H<,A and H has (i) and (ii) then since Asnl we bve Hsnl and
has (i) and (ii) hence [H : X| < oo.

(iv) Since A is isolated in T' we have *X =T X and it follows that X =X

=4X" for some n > 0.

. Eed
Now to show ma.xima.lity of X m#h respect to having properties (i)-(iv)
when considered as a subéroup of A, assume X < H < A and H has properties
(i)-(iv). Then since AsnI' we have H, as a subgroup of T, satisfying properties
(i)-(ili). Property (iv) follows since A is isolated in I' as above. However this

contradicts the maximality of X with respect to having propeties (i)-(iv).

' 3.34 The Fan Qut Lemma III 3

-

The Fan Out Lemma III stated in Chapter two contains three parts, where
parts (ii) and (iii) follow from (i) exactly as in the proof of F.O.L.I-#6o- we
need only prove part (i). However for the proof of this we jwill need for the
inductive step part (iii) and more consequences that will be included as parts -
of the F.O.L.IIl in this section. Thus the following statement of the F.O.L.III
contains more items not mentioned in chapter two because th;ey are not used
directly in the proof of the main theorems. We shall follow in our proof the

same scheme used by Roseblade and Lennox in [3].

“



&
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3.3.5 Statement of F.O.L.ITI: \

(1) If X € X(M,T) and T is a set of coset representatives of n.(X) in I then

Ml (X)r = D",er Ml (X)t

(2) f X € X(M,T) and B is a submodule of M then BN M, (X)" >1 only if
By(X) > 1, where

B, (X) = BN M, (X).

3.3.6 Notation

To simplify matters we shall use the letters X, X,, X;, ... to denote mem-

-

bers of X(M,T). Corresponding to these we shall use U, U,, U,, ... for the

subgroups M, (X), M, (X,), M;(X,),... and Y, Y,, Y;, ... to denote the

. submodules UT, UT, UF, ... We shall always write N for the normalizer. of X

in T' and T for a set of coset representatives of N in I'. For any H < [ we .
shall write Ty = {teT:H< N'} and for n'> 0 we write M, (H) = {me M :
[m,hy, ..., h,] =1 for all n-tuples h,, +-+s ha in H} and Y, (H) =Y N M, (H)
and U} (H) = U* n M, (H).

To prove the F.O.L. III as stated above we need the following consequences:

3.3.7 LEMMA. If F.O.L.III (1) and (2) hold then so also do ,
(3) If X € X (M, I‘) then Y, (H) = Dr,ﬂ-,U‘(H’) for all H ‘1‘ and n > 0.
(4) If X,, /\ € A are elements of I(M I') mutually inconjugate in T then,

(Y,\, A€ A) =D"AEAYa-
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(5) If X,, ..., X, are elements of X (M,T) mutua]lﬂinconjugaté inT, and B is
a sﬁbmodule of M such that BN (Y, -Y;...Y,) > 1, then there is 1 < i < r‘

such that B, (X;) > 1.

w

~

Proof: We divide the proof into three parts
(a).  (3) follows frém (1) and the proof is analogous to that given in F.O.L.IL
(b).  (4) follows from (1) and (2)

We prove this by induction on r to show that if X, .. ., X, are any ele-

ments of X(M,I') mutually inconjugate in ' then J

(Yn ceey Yr) = D"15.‘5rYa-

AN
é

If r =1 then there is nothing to prove, so assume r > 1 and B =1, Y, ...Y,
;ér,s.-s,}’.-, but BNY, # 1. By (2) we must have B,(X,) > 1 and since
B = Y;Y,...Y, is direct, Y, ,(X;) > 1 for some 2 <1 < r. To simplify the
notation we write X for X, and ¥ for Y. Since i > 2, X and X, are inconjugate
inT am; Y, (X:) > 1. Since (1) holds by assumption then by pé.rt (a), so does
(3). Thus Yl (X1) = Drer, Ui(X,) and.it follows that for some ¢ € Tx, we ha.ve
U an(Xl) = U}(X,;) > 1. In other words 'Ml(X‘) an (X)) > 1, and hence
M, ((X*,X,)) > 1. Since X, and X* are in X(M,T) none of them contains the
other by thT definition of I(M,I‘), so if we write H = (X*, X,), thenaXl < H
‘and X* < H. Since T has the maximal condition and X,, X* are both subnormal
| in T it follows by Theorem 13.1.9 [10], that H = (Xl,X‘)snI‘. Thus H\has

properties (¥) and (ii) in the definition of X (M, T'), and properly contains X,
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it follows therefore that |[H : X,| and |H : X*| are both finite and hence
-~ .

= X*. Since X, and X* are in X (M, I') we can find positive integers
. S -

m, and m so that X; = X, ' and X* = X*" . Let'd = g.c.d.(m,,m) then
'

X, =X;"' <X, = H" and similarly X* <H*. Hence H = (X,, X*) < B*.

On the other hand, we can find integers s and t so that d = sm+tm,, and

it follows that:

. H = (¢*, g € H) by definition

=(g'™-¢'™, g€ H)
<(H",H"') ‘

= (F,_)Fl"') since H = X* = X,
= (X', X,)=H

AN

" We conclude that H =H"' ,d>0 and thus H has properties (i)-(iv) and
" properly contains X, and this contradicts the ma.xin&a.lity of X, with respect to
having these properties.' This contradiction shows that (4),is true for any ﬁnite.
subset of A, hence (4) is proved.
(c).  (5) follows from (1) and (2).
We prove this by induction on r. The case r = %/, is just (2). Suppose
4 \ ‘
r>1and that BN (1,Y;...Y,) > 1. Let C = V,¥;...Y,. We suppose that
BNY, = BNC =1 and produce a contradiction. Since B N(Y,C) > 1 it
follows Y; N (BC) > 1, apd by (2) we get (BC),(X,) > 1. In.ot.her words

BG N M,(X,) > 1. Since BC is a direct product by assumption, we must have
-
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either B, (X,) > 1 or C,(X,) > 1. But the former possibility contradicts
BNY, =1 and the latter contradicts C N Y, =1 which is known from (4). This

is the required contradiction.

y
3.3.8 Proof of (1) and (2) of F.O.L.III:

We use induction on the Hirsch number of T'. If h(T) = l.then h(X) = h(I)
for any 1 # X € X(M,T), and hence |T : X| < o0. So IT : M < oo and because
N is isolated we have N =T and X <« T and (1) and (2) are trivially true in
this case. Thus assume A(I') > 1 and that (1) and (2) hold true for all pairs\
(M, A) where A <T and h(A) < A(T). )
Let X € X(M,I'). By Lemma 3.3.3 part (2) there is a subnormal series
X =X,<9X, 9Q---<aX, =T where X;, ¢t = 1,...,k are isolated in I. If
k =1 then X 4T and again (1) and (2) hold trivially. Assume k& > 1 and let
A= X,_,, then X < A and A is normal and isolate;i in T hence h(A) < A(T)
and by Lemma 3.3.3 parts (1) and (3) we have X" € X(M, A) for all y€T.
By the induction hypothesis we have both (1) and (2) hold true for the pair

(M,A). Let R be a set of coset representatives of ns (X) = NN A in A. Using

F.0.LII (1) for the pair (M,A) we get

M, (X)® = Dr,en M, (X) ‘ )
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Let S be a set of coset representatives of NA in I'. It is easy to see that

the elements {X®,s € S} of X'(M,A)
| (**)

are all mutually inconjugate in A

For let s,,s; any distinct eleents of S and assume for some 6 € A that
X*1% = X** then, s,8s;' = s,5;%(s,83;) € N. But 8;68;' € A since A «T,
therefore s,35;' € NA and NAs, = NAs, a contradiction. Now, since (1) and

(2) hold for the pair (M, A), so does (4). Therefore,

(M, (X*)%,s€ S) = Dr,es M, (x°)2 (***)

°*

Now let T = RS. We have T is a set coset representa.txves of N m-I‘ For R
itself is a set of coset r }#r&entatwes of IN in' NA, and to see that notice that
‘NR N. NR o) N(NnAlR NA hence NR = NA, and if ‘r, # r, are any
elemeﬁfg}“’"m R then ke r;! '¢ N, otherwise r,r;! € NnaA contrn.dlcting Ehe

that R is a set of coset representatives of VN A in A, thus we have Nr, # Nr,
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as required. Thus T is a coset representatives of N in I, and I' = NT. Now we

»

have the fbllowing: _ _ . N

M (X)T = My(X)¥T = M, (X)¥ RS = M, (X)**
= (M, (X)A’,:s € S) by definition
~ : =(M1(X')A,_.'_3€S), since A < T he
= Dr.esMi(X")* by (***)
= Drucs(M,(X)*)", since'A < T
= Dr,es(Dr.er M, (X)")*, by (*)

= Dr:é? M,(X™) = Drier M, (X)*

Therefore ¥ = Dryer U as req.uired, and since this holds for this p:«r.rticular

set of coset representatives é' N in T it must hold for any other set of coset
_representativee. This estaBlish;A(l). |

We now prove (2) ,

, From tl{?nductrve hypothesis and Lemma 3.3.3 part (3), it follows that

N

(5) holds' for the pair (M,A). Therefore, using (**) above we have:
' I Bsany A -submodule of M )

. 2 .

— - such that ' BN (M, (X*)%,s < §)) > 1 ¢ ()

\

then B;(X') >1 for some 8 E S.

-/ : Y

1‘\1\! let B be a.ny I‘-submodule of M a.nd suppose BnY =1 Since Bis also a

A-submodule of M we have by (*""‘) and (***“‘) that for some

L)

SES, B,‘(X‘): >1. But B '=B sin_ce Bisa I‘--module, so transforming with
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s~! yields the desired B, (X) > 1. This establishes (2) and the proof of F.O.L.III

is complete.
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