

University of Alberta

Core and Field Scale Modeling of Miscible Injection Processes in Fractured

Porous Media Using Random Walk and Particle Tracking Methods

by

Ekaterina Stalgorova

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Petroleum Engineering

Department of Civil and Environmental Engineering

©Ekaterina Stalgorova

Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. Tayfun Babadagli, Civil and Environmental Engineering

Dr. Juliana Leung, Civil and Environmental Engineering

Dr. Ahmed Bouferguene, Campus Saint-Jean

My work is dedicated to

My grandfather, who always wanted me to become

a scientist, but still loves me though I became an

engineer.

ABSTRACT

In this thesis, we introduced and applied non-classical techniques to simulate

miscible flow in fractured porous media.

First, the Random Walk technique was modified to simulate miscible

displacement in 2D fractured porous media at the lab-scale. The method was

validated using a series of laboratory solvent injection experiments obtained from

literature.

Then, this model was modified to apply it for field-scale simulations and a

sensitivity analysis was performed to identify the most critical parameters of the

process. To validate the model, a tracer test done in the naturally fractured Midale

field was used. Subsequently, the same fracture network system, which was

calibrated against the tracer test results, was used to simulate the pilot CO2

injection applied in the same field. In this exercise, additional modifications to the

algorithm were made including diffusive transfer between matrix and fracture.

In the last part of the thesis, an approach was presented to scale up the

production profiles obtained for a fractured reservoir. The exponents in the

scaling equation were correlated to the fracture network properties such as

fracture density, box-counting fractal dimension, mass fractal dimension, and

fracture volume ratio.

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Tayfun Babadagli, whose belief in my

capability made this thesis possible. I appreciate his flexible, yet explicit guidance

and his support throughout the research study.

I also thank Vahapcan Er and Dimitry Bogatkov for providing detailed data

about their research. Maryia Kazakevich and Denise Thornton from the UofA

visualization group helped with 3D visualization of my data, which is appreciated

a lot.

This research was partly funded by an NSERC Grant (No: G121210595). The

funds for the equipment used were obtained from the Canadian Foundation for

Innovation (CFI) (Project # 7566) and the University of Alberta. We would like to

thank Schlumberger for supplying the ECLIPSE reservoir simulation suite. We

are also thankful to Apache Canada Ltd for providing field and well data, and

permission to use them in this research.

It is a pleasure to express my gratitude to all my family back home for their

love and encouragement. In particular, to my lovely little sister, who often cheers

me up in rainy days, to my mom, who is always ready to defend me even if I‟m

wrong and to my brother, who patiently helped me to get started with the coding

part of research.

I am heartily thankful to Varun, who was always there for me; for his

unconditional support and fruitful discussions.

The last word of acknowledgement is to Jesus Christ, my Lord and my

Saviour for giving me life, health and intelligence, without which this research

would not be possible.

Table of Contents

1. INTRODUCTION .. 1

1.1 OVERVIEW ... 1

1.2 LITERATURE REVIEW ... 3

1.2.1 Classical modeling for fractured reservoirs ... 3

1.2.2 Non-classical modeling for fractured reservoirs ... 5

1.2.3 Review of Random Walk (Particle Tracking) methods 6

1.2.4 Fracture network fractal properties .. 8

1.3 STATEMENT OF THE PROBLEM .. 9

1.4 SOLUTION METHODOLOGY .. 10

1.5 BIBLIOGRAPHY .. 11

2. RANDOM WALK ALGORITHM APPLIED FOR 2D LAB-SCALE SIMULATIONS 18

2.1 OVERVIEW ... 18

2.2 ALGORITHM DESCRIPTION ... 18

2.3 VALIDATION ... 22

2.4 RESULTS AND DISCUSSION ... 25

2.5 CONCLUSIONS ... 27

2.6 TABLES .. 28

2.7 FIGURES .. 29

2.8 BIBLIOGRAPHY .. 36

3. FIELD SCALE TRACER TEST MODELED WITH RANDOM WALK PARTICLE TRACKING . 38

3.1 OVERVIEW ... 38

3.2 PROBLEM STATEMENT AND OBJECTIVES .. 38

3.3 ALGORITHM DESCRIPTION ... 39

3.4 SENSITIVITY ANALYSIS ... 45

3.4.1 Effect of randomness .. 45

3.4.2 Experimental design for sensitivity analysis .. 46

3.4.3 Sensitivity analysis summary .. 47

3.5 APPLICATION FOR THE MIDALE FIELD TRACER TEST ... 48

3.5.1 Computer-aided history matching .. 49

3.5.2 History matching results ... 51

3.6 RESULTS AND DISCUSSION ... 52

3.7 CONCLUSIONS ... 53

3.8 TABLES .. 54

3.9 FIGURES .. 55

3.10 BIBLIOGRAPHY .. 65

4. RWPT SIMULATION OF THE MIDALE PILOT AREA CO2 FLOODING 67

4.1 OVERVIEW ... 67

4.2 STATEMENT OF THE PROBLEM AND SOLUTION METHODOLOGY .. 68

4.3 ALGORITHM DESCRIPTION ... 69

4.4 EFFECT OF PARAMETERS .. 76

4.4.1 Effect of spacing between on-trend fractures ... 77

4.4.2 Effect of Ch ... 77

4.4.3 Effect of fracture lengths .. 77

4.4.4 Effect of matrix permeability .. 78

4.4.5 Effect of fracture permeabilities ... 78

4.4.6 Effect of fracture widths .. 78

4.4.7 Effect of matrix effective crossection area (Ae) and Rad 79

4.4.8 Effect of fracture permeability multipliers .. 79

4.4.9 Effect of dispersion coefficient .. 79

4.4.10 Effect of CO2 and water injection rates and durations 79

4.4.11 Analysis of the results ... 81

4.5 HISTORY MATCHING OF THE MIDALE CO2 FLOOD PILOT ... 81

4.6 SUMMARY AND CONCLUDING REMARKS ... 84

4.7 TABLES .. 87

4.8 FIGURES .. 88

4.9 BIBLIOGRAPHY .. 100

5. SCALING FOR THE PRODUCTION CURVES SIMULATED BY RWPT 103

5.1 OVERVIEW ... 103

5.2 BACKGROUND AND PROBLEM DESCRIPTION... 103

5.3 SOLUTION METHODOLOGY .. 105

5.4 FRACTURE NETWORK PROPERTIES AND THEIR RELATION TO SCALING PARAMETERS 106

5.5 GENERATION OF FRACTAL FRACTURE NETWORKS AND ESTIMATION OF FRACTAL DIMENSIONS 107

5.6 VALIDATION EXERCISE ... 109

5.7 CONCLUSIONS ... 109

5.8 FIGURES .. 110

5.9 BIBLIOGRAPHY .. 115

6. CONTRIBUTIONS AND RECOMMENDATIONS ... 119

6.1 MAJOR CONTRIBUTIONS ... 119

6.2 RECOMMENDATIONS FOR FUTURE WORK.. 120

APPENDIX A (C++ CODE FOR THE RW ALGORITHM) ... 122

Header file (main.h) ... 122

Source file (main.cpp) .. 124

APPENDIX B (C++ CODE FOR THE RWPT ALGORITHM) ... 135

Header file (main.h) ... 135

Source file (main.cpp) .. 139

APPENDIX C (ECLIPSE FILE USED FOR THE RWPT MODELING) .. 161

LIST OF TABLES

Table 2-1. List of cases [experiments taken from Er (2008)] used in the matching

process... 28

Table 2-2. Properties of the fluids used in the experiments and modeling study. 28

Table 2-3. Diffusivity coefficients used for simulation (horizontal flow). 28

Table 2-4. Diffusivity coefficients used for simulation (vertical flow). 29

Table 3-1. Relative effect of change in parameters on the results for well pairs I1-

S1 and I2-S1. ... 54

Table 3-2. Computational times for different fracture networks. 54

Table 4-1. Stages of the CO2 flooding in the Midale pilot (Baxter 1990). 87

Table 4-2. Relative effects of each parameter on CO2 recovery factor and the

breakthrough time. .. 87

LIST OF FIGURES

Figure 2-1 Schematic of the Random Walk simulation model. 29

Figure 2-2. Sketches of the experimental (left) and simulation (right) models. ... 29

Figure 2-3. Comparison of experimental data given by Er (2009) with results of

simulation using 15*40*1 grid and 31*80*1 grid. ... 30

Figure 2-4. Comparison of experimental data given by Er (2009) with results of

simulation using 16 and 36 walkers per grid cell. .. 30

Figure 2-5. Comparison of experimental visual data with results of simulation

using 16 and 36 walkers per grid cell. .. 31

Figure 2-6. Comparison of experimental production data with results of

simulation using 16 and 36 walkers per grid cell. .. 31

Figure 2-7. Experimental and simulation results for horizontal kerosene

displacement at 15 ml/hr. .. 32

Figure 2-8. Experimental and simulation results for horizontal light oil

displacement at 25 ml/hr. .. 32

Figure 2-9. Experimental and simulation results for horizontal light oil

displacement at 45 ml/hr. .. 33

Figure 2-10. Experimental and simulation results for vertical light oil

displacement at 15 ml/hr. .. 33

Figure 2-11. Vertical light oil displacement at 45 ml/hr. 34

Figure 2-12. Vertical heavy oil displacement at 15 ml/hr. 35

Figure 2-13. Experimental and simulation results for vertical heavy oil

displacement at 15 ml/hr. .. 35

Figure 2-14. Correlation between oil and solvent diffusivity coefficients and

viscosity of displaced fluid for horizontal flow. ... 36

Figure 3-1. Fracture network represented by classical simulation grid. 55

Figure 3-2. Graph created based on fracture network. .. 55

Figure 3-3. Movement of the Walker through the graph. 56

Figure 3-4. Midale CO2 Flood Pilot configuration (After Bogatkov, 2008). 57

Figure 3-5. Simulation result vs. number of fractures. ... 57

Figure 3-6. Effect of on-trend fracture width. ... 58

Figure 3-7. Effect of parameters for injector I1 and producer S1. 58

Figure 3-8. Effect of parameters for injector I2 and producer S1. 58

Figure 3-9. Midale CO2 pilot area divided into blocks for modeling. 59

Figure 3-10. History match of tracer tests for injector I1. 59

Figure 3-11. History match of tracer tests for injector I2. 60

Figure 3-12. History match of tracer tests for injector I3. 60

Figure 3-13. History match of tracer tests for injector I4. 61

Figure 3-14. Well connectivity analysis based on breakthrough time. 61

Figure 3-15. Comparison of breakthrough times obtained through field test and

two different modeling approaches for injector I1. .. 62

Figure 3-16. Comparison of breakthrough times obtained through field test and

two different modeling approaches for injector I2. .. 62

Figure 3-17. Comparison of breakthrough times obtained through field test and

two different modeling approaches for injector I3. .. 63

Figure 3-18. Comparison of breakthrough times obtained through field test and

two different modeling approaches for injector I4. .. 63

Figure 3-19. Calculation time for different fracture networks. 64

Figure 4-1. Fracture network represented by a classical simulation grid. 88

Figure 4-2. Graph created based on fracture network. .. 88

Figure 4-3. Fracture and matrix edges in the graph. ... 89

Figure 4-4. Effect of on-trend fracture spacing. ... 90

Figure 4-5. Effect of Ch. .. 90

Figure 4-6. Effect of on-trend fracture length. .. 91

Figure 4-7. Effect of off-trend fracture length. ... 91

Figure 4-8. Effect of matrix permeability. .. 92

Figure 4-9. Effect of on-trend fracture permeability. ... 92

Figure 4-10. Effect of off-trend fracture permeability. ... 93

Figure 4-11. Effect of on-trend fracture width. ... 93

Figure 4-12. Effect of off-trend fracture width. .. 94

Figure 4-13. Effect of matrix effective crossection area 94

Figure 4-14. Effect of Rad. ... 95

Figure 4-15. Effect of pm for on-trend fracture ... 95

Figure 4-16. Effect of pm for off-trend fractures. .. 96

Figure 4-17. Effect of fracture dispersion coefficient. .. 96

Figure 4-18. Effect of CO2 injection rate. ... 97

Figure 4-19. Effect of CO2 injection duration. ... 97

Figure 4-20. Effect of water injection rate. ... 98

Figure 4-21. Effect of water injection duration. ... 98

Figure 4-22. Best history match for the model, where CO2 injection is represented

by one period of injection at constant rate. ... 99

Figure 4-23. CO2 injection rate (re-produced from Baxter, 1990). 99

Figure 4-24. Best history match for the model, where CO2 injection is represented

by eight periods of injection at constant rate. ... 100

Figure 5-1. Semi-log plot of traveling time distribution P(t) for R=15, 20, 30, 40

and 60. ... 110

Figure 5-2. Log-log plot of the most probable traveling time vs. R. 111

Figure 5-3. Using t/R
α
 on the horizontal axes makes all curves overlay in the

horizontal direction. .. 111

Figure 5-4. Log-log plot of the highest possible probability Pmp=P(tmp) vs. R. .. 112

Figure 5-5. Plotting P(t)R
β
 vs. t/R

α
 overlays all curves. 112

Figure 5-6. Fracture network consisting of two mutually perpendicular fracture

sets... 113

Figure 5-7. α and β vs. spacing between fractures. ... 113

Figure 5-8. Average values for α and β vs. spacing between fractures. 114

Figure 5-9. α and β vs. fracture network fractal mass dimension. 114

Figure 5-10. α and β vs. fracture network box-counting fractal dimension. 114

Figure 5-11. α and β vs. volume fraction of fractures in the network. 114

Figure 5-12. Plotting P(t)R
β
 vs. t/R

α
 ... 115

NOMENCLATURE

Chapter 2

A = area of the cross section

C = solvent concentration

D = diffusivity coefficient

Do = diffusivity coefficient used in the model for oil walkers

Ds = diffusivity coefficient used in the model for solvent walkers

k = permeability

N = number of walkers used in simulation

P = pressure

PV = pore volume of the model

q = number of walkers added to model at each time step

Q = injection rate

r = vector corresponding to walker location

t = time

Δt = length of one time step

v = velocity vector

vw = volume of one walkers

x,y = walkers coordinates

zx, zy = random numbers, driven from normal distribution with mean equal to zero

and standard deviation equal to 1

μ = viscosity

ρ = density

ω= mixing parameter for viscosity calculation

Chapter 3

A = crossection area for fracture

C = concentration

Ch = (spacing between off-trend fractures)/(spacing between on-trend fractures)

ci = tracer injection concentration

D = dispersion coefficient

d = depth of the vertex

h = fracture height

k = permeability

L = edge length

Lxy = length of the edge between vertexes x and y

m = total mass of injected tracer

mp = mass of one particle

N = number of particles used for simulation

P = pressure

PermFontrend = permeability for main fracture set

PermFofftrend = permeability for secondary fracture set

PermM = matrix permeability

qi = tracer injecting rate

t = time

tMN = time for M
th

 particle at N
th

 step

tti = tracer injecting time

v = velocity

vxy=velocity of flow vertexes x and y

W =fracture width

Wontrend = width for main fracture set

Wofftrend = width for main fracture set

x = particle location

z = random number, driven from normal distribution with mean equal to zero and

standard deviation equal to 1

μ = viscosity

ρ = density

Ψ = pressure potential

Ψx = pressure potential at vertex x

Chapter 4

A = cross section area for fracture

Ae = effective cross section area for flow through matrix

C = concentration

Ch = (spacing between off-trend fractures)/(spacing between on-trend fractures)

D = dispersion coefficient

d = depth of the vertex

h = fracture height

k = permeability

L = edge length

Lxy = length of the edge between vertexes x and y

N = number of particles used for simulation

P = pressure

pm = permeability multiplier

qco2 = CO2 injecting rate

qw = water injecting rate

Rad = maximum distance within matrix flow can happen

t = time

tMN = time for M
th

 particle at N
th

 step

tco2 = CO2 injection duration

tw = water injection duration

v = velocity

vxy=velocity of flow vertexes x and y

W =fracture width

Wontrend = width for main fracture set

Wofftrend = width for main fracture set

x = particle location

z = random number, driven from normal distribution with mean equal to zero and

standard deviation equal to 1

μ = viscosity

ρ = density

Ψ = pressure potential

Ψ = pressure potential at vertex x

Chapter 5

Dbc= box counting fractal dimension

Dm = mass fractal dimension

P(t) = probability of the particle to reach the production well with traveling time t

Pmp = P(tmp) the highest possible probability

R = distance between injecting and producing wells

sp = spacing between fractures

tmp = the most probable traveling time

Vf = (volume of fractures in the system)/(total volume of the system). Volume

fraction of fractures.

α = scaling parameter, exponent, relating R and tmp

β = scaling parameter, exponent, relating R and Pmp

1

1. Introduction

1.1 Overview

Hydrocarbons are one of Earth's most important energy sources and demand

for energy is increasing. Unfortunately, so-called „easy oil and gas‟ have been

produced for more than hundred years, and there is not much left for generations

to come. For that reason, the petroleum industry now has to focus on: a) exploring

unconventional resources, b) producing from complex reservoirs, and c) applying

various enhanced oil recovery (EOR) techniques that allow production of residual

oil from mature reservoirs.

Production from naturally fractured reservoirs (NFR) is one example of

unconventional (and complex) source of hydrocarbons. This type of reservoirs

contains a substantial amount of oil and gas reserves. It was estimated that more

than 60% of the world‟s proven oil reserves and about 40% of the world‟s proven

gas reserves are trapped in NFRs (Montaron 2008).

NFRs are believed to entail higher risks than conventional reservoirs because

fluid behaviour is defined by the fracture network, while information regarding its

geometry and properties is often incomplete. This creates a great uncertainty in

the number of parameters needed for accurate prediction of the hydrocarbon

production. In addition to that, even if the fracture network was properly

described, simulating the flow of the fluid in such a complicated model is not an

easy task. The presence of two contrasting media – matrix and fracture, as well as

the irregular geometry of the fracture system, require either unreasonable

computation time or significant simplifications in the media description.

Nevertheless, proper NFR characterization and oil recovery prediction are

important at any stage of development, especially for risky and investment

intensive EOR applications. High potential risks of such applications can and

should be assessed and minimized with the help of technology.

A number of techniques to model fluid flow in fractured porous media are

used in industry as well as for research purposes. However, there is still no

2

universal solution that can be applied to any NFR, as each technique has its own

advantages, and its own drawbacks and limitations.

This research focuses on non-classical ways to simulate fluid transport in

fractured porous media. This approach was adapted because non-classical

techniques have capability to capture the complexity of fracture domain as

opposed to classical continuum models.

Chapter 2 introduces the Random Walk algorithm and its modification to

simulate miscible flow in fractured porous media. This modification is applicable

for 2D lab-scale models, for the cases of horizontal or vertical flow. We validated

the suggested algorithm by comparing the results of simulation with visual and

production data from a series of miscible solvent injection experiments.

In Chapter 3, further modification of the algorithm, namely Random Walk

Particle Tracking (RWPT), was introduced for the field-scale simulation. To be

able to simulate the flow of fluid through complex fractured media, we first

converted the fracture network into a graph, and then used only this graph for

further simulation. This approach allows preserving information about the fracture

network connectivity while significantly decreasing computational time. For

validation, a series of tracer test results from the Midale field in Canada was used.

A fracture network model was generated based on geological data, and then

calibrated against tracer test results using RWPT. Additionally, Chapter 3

includes a sensitivity analysis to identify the importance of different parameters

for the simulation results.

In Chapter 4, we further improved the RWPT algorithm to simulate CO2

injection in the same reservoir as in Chapter 3. We used the fracture network

calibrated against tracer test results as described in Chapter 3. A history match

with the actual CO2 pilot flooding results is presented, as well as a sensitivity

study.

In Chapter 5, we studied how production profile curves obtained as a result of

the RWPT simulation are changed when the distance between the injection and

production wells is varied. Similarities of these curves obtained at different scales

suggested a way to up-scale them. This chapter describes the scaling methodology

3

and define a scaling relationship for fractured systems. It also illustrates how

scaling parameters depend on different fracture network properties such as fractal

dimensions of the network and fracture density.

As this is a paper-based thesis, each chapter contains its own conclusions. The

major contributions of this study are highlighted in Chapter 6. Also, the

limitations of the suggested algorithms and recommendations for future works are

presented in this chapter.

1.2 Literature review

The flow of fluid in naturally fractured reservoirs (NFR) is commonly studied

in enhanced oil recovery, groundwater contamination, and CO2 sequestration in

oil reservoirs. Because of two contrasting media – matrix and fracture, it is

difficult to predict fluid dynamics. This initially requires an accurate description

of matrix and fracture characteristics within the reservoir, and then mapping its

properties. After this stage, named static modeling, the next stage is to simulate

how fluid will move in the described media. This is referred to as dynamic

modeling. Both stages are challenging tasks and extensive work has been done in

this area by many researchers.

Literature relevant to this thesis is reviewed in the subsections below.

1.2.1 Classical modeling for fractured reservoirs

One of the traditional ways to simulate flow in NFR is a single continuum

approach. In this approach fracture networks are mapped based on geological and

geophysical data, such as well measurements, seismic maps and outcrop studies.

Then, a simulation grid is created, and fractures placed in each block are replaced

by equivalent parameters (porosity and permeability). Once this is done, standard

finite-difference calculations are used for further modeling.

Calculating equivalent permeability values for a given fracture network is a

complex task and can be time consuming, especially in highly fractured

reservoirs. Studies on this are available in the literature (Long et al. 1985; Lough

et al. 1997; Jafari and Babadagli 2011). Software packages which convert fracture

4

networks into equivalent properties are also available in the industry (FracaFlow,

Petrel, FracMan
®
).

Although this type of modeling is capable of representing the complexity of

the fracture network to greater extent, information about separate fractures is still

lost while averaging (Bogatkov and Babadagli 2010). Another limitation of this

approach is that matrix-fracture interaction is not captured properly.

Computational time is also an issue for single continuum modeling.

Another traditional method of simulating flow in NFRs is the dual continuum

model introduced by Barenblatt and Zheltov (1960) and modified by Warren and

Root (1963). In this kind of model, a second continuum is added to represent both

storage and permeability characteristics of the reservoir. In dual continuum

model, fluid flow occurs in the fracture network, and the matrix feeds the

fractures. Interaction between matrix and fracture is described using a transfer

function, and it is important that the transfer function captures all the physical

aspects of the process (gravity, viscous and capillary forces as well as diffusion).

Extensive research was performed on transfer function descriptions and further

improvements of the dual porosity model (Kazemi and Merrill 1979; Sarma and

Aziz 2004; Di Donato et al. 2007; Lu et al. 2008). Applications of the dual

continuum model for different purposes have been presented in the literature over

the last five decades (Ganzer 2002; Al-Khlaifat and Arastoopour 2003; Bogatkov

2008).

This type of modeling captures the physics of matrix-fracture transfer, but

often fails to represent the complexity of fracture networks. This is because the

model is based on an orthogonal representation of the fracture system. For

example, it is not possible to model a reservoir which has a small number of large

fractures dominating the flow.

A common issue for single continuum and dual continuum models is that

certain information is almost always lost during averaging, the most critical

information being the connectivity of the fracture network.

5

1.2.2 Non-classical modeling for fractured reservoirs

To incorporate all critical parameters accurately in the static models, one has

to define a detailed network model. The Discrete Fracture Network (DFN)

approach involves describing each fracture separately, with physical and

geometrical properties (such as storage, size and orientation) assigned. A DFN

model typically combines deterministic and stochastic approaches: bigger features

are modeled deterministically using well and seismic information, while smaller

fractures are generated stochastically, sometimes using concepts of geomechanics.

To use this fracture network in the dynamic simulation, one can either up-scale it

to equivalent reservoir properties (Cacas et al. 1990; Cacas et al. 2001; Bogatkov

and Babadagli 2009) and convert it into permeabilities for dual continuum model

(Gong et al. 2008; Dershowits et al. 2000) or use the model in all its complexity.

The latter often involves unstructured gridding, converting the fracture network

into a finite element mesh and applying semi-analytical or finite-element

calculations. Such models have limitations in terms of applicability and capturing

matrix-fracture interaction. Beyond that, this kind of modeling may require long

computational times. Examples of DFN modeling are available in the literature

(Doe et al. 1990).

Another class of simulation methods is called Discrete Fracture Modeling

(DFM). In comparison to the DFN method, the fractures and the matrix are

discretized, which eliminates the use of fracture-matrix transfer function. Instead,

state unknowns (pressure and composition) are assumed to be the same in the

fracture and in the adjacent matrix. The DFM allows simulating miscible and

immiscible flow as well as multiphase flow. However, because of the excessive

discretization, the modeling of each fracture requires a large number of finite

volumes. This results in unreasonable computational time, which is practically

impossible to handle, for field scale simulations (which have thousands of

fractures). Descriptions of the DFM algorithms and examples are available in

several recent publications (Hoteit and Firoozabadi 2004; Karimi-Fard et al.

2004).

6

Percolation theory is also used for simulating flow of the fluid in fractured and

heterogeneous systems, including flow through highly heterogeneous media.

Models based on the percolation theory proved to be successful in describing

reservoir connectivity, predicting breakthrough time, and reservoir up-scaling

(Stanley et al. 1999; Sahimi and Mehrabi 1999). The percolation theory describes

connectivity of the reservoir as a function of its geological heterogeneities.

Coefficients of the function are defined from small scale simulations and used for

the bigger scale afterwards (King et al. 1999; Dokholyan et al. 1999). However,

the use of the percolation theory is limited to certain cases as it is based on two

assumptions. The first one is that the rock is either permeable or non-permeable,

and that flow takes place only in permeable rock, which is not always the case for

fractured reservoirs. In general, a considerable amount of oil is produced from the

low permeable matrix and this requires the addition of a matrix-fracture transfer

function into the model. The second assumption is that the pressure field and the

mobility are not changed during injection. Because of this limitation, percolation-

based modeling is not applicable for cases where the viscosity of the displaced

fluid is much higher than the viscosity of the displacing fluid, or for the case

where the injection and production rates are changing.

There are more non-classical algorithms which are used for fluid flow

simulation. Invasion percolation, Diffusion Limited Aggregation, and the Lattice

Boltztmann Method are some of the examples. In this literature review we are not

covering all of them and will focus on one class of algorithms called Random

Walk (or Random Walk Particle Tracking) techniques.

1.2.3 Review of Random Walk (Particle Tracking) methods

There is a number of techniques used in fluid flow simulation referred to as

Random Walk (RW) or Random Walk Particle Tracking methods (RWPT).

Although they have similar names, these methods are significantly different from

each other. Various RW(PT) algorithms have one concept in common: they model

fluid flow as the movement of a large number of particles. Movement of each

particle involves some randomness, however, the probability of the particle‟s

7

movement to have certain lengths and direction is defined by the physics of the

process.

Pearson and Blakeman (1906) presented one of the earliest Random Walk

studies. They did not apply Random Walk techniques to the case of fluid flow, but

investigated the probability distribution for particle locations when particles are

moving randomly in space. Chandrasekhar (1943) extended the Random Walk

theory to the case of reflection and adsorption, and applied the RW to study the

Brownian motion. Schreidegger (1954) applied the RW concept to simulate fluid

flow in isotropic homogeneous porous media and showed how the effect of

dispersion can be modeled. Saffman (1959) continued development of the same

concept and derived longitudal dispersion as a function of molecular diffusivity

and pore-scale parameters of the media.

The Continuous Time Random Walk (CTRW) algorithm was introduced in

1973, and has been developed extensively over the last four decades. Classical

RW modeling uses timesteps of some fixed duration, and tracks how particle

locations change within each timestep. However, selecting the size of the timestep

is a challenge since the particle may have a very high or very low velocity while

moving through the media (variations in the permeability of the media is one of

the reasons). It is desirable to have a small timestep when the velocity is high, but

not for the low velocity situations. CTRW takes care of this problem by assigning

a distribution of retention times, i.e. the probability of a particle to make a step of

certain length within a certain time interval (where time is a continuous variable,

not just a sequence of timesteps of fixed duration). An excellent review paper on

the CTRW was provided by Berkowitz et al. (2006).

The RW algorithm can be combined with classical numerical or analytical

solutions. For example, in a recent work by Roubinet et al. (2010), flow through

the fracture network was modeled using the RW approach, while matrix-fracture

interaction follows a known analytical solution.

The forming of viscous fingering is a physical process that happens as a result

of microheterogenities and small scale perturbations. For that reason, a modeling

algorithm which involves randomness is especially suitable for modeling viscous

8

displacement. Araktingi and Orr (1990) successfully used the RW algorithm to

simulate viscous displacement.

1.2.4 Fracture network fractal properties

Naturally fractured reservoirs normally have thousands of fractures of various

lengths, apertures, and orientations. The complete description of such a fracture

network requires the description of each single fracture through its physical and

geometrical properties. For practical reasons, it is desirable to have a way to

describe the fracture network without giving all the details for each single

fracture. For example, a fracture network can be described by giving a distribution

functions for fracture lengths, apertures, spacing, and orientations.

It is important to ensure that the parameters used for fracture network

description are sufficient to capture the critical properties of the network, such as

its connectivity or equivalent permeability. Irregularity and heterogeneity should

be included at any scale at the characterization stage as well. In an attempt to

include all the complexities in fracture network characterization, many different

approaches have been tested and presented, fractal theory is being one of the most

useful one.

It was observed (Barton and Larsen 1985; La Pointe 1988) that natural

fracture patterns are fractal objects, i.e., they are reminiscent of each other

statistically at different scales. Due to these observations, fractal theory became

popular in fracture network characterization.

One example of using fracture network fractal characteristics to estimate

fracture network equivalent permeability is given by La Pointe (1988). He stated

that flux through a discrete fracture network is linearly proportional to its mass

fractal dimension. Jafari and Babadagli (2009) investigated the effect of various

fractal characteristics on the fracture network permeability. They showed that the

box-counting fractal dimension of fracture intersection points and fracture lines

are the most influential parameters on fracture network permeability.

Other examples of the successful use of fractal theory for modeling naturally

fractured reservoirs are available in the literature (Halvin and Ben-Avraham 1987;

9

Beler 1990; Chang and Yortsos 1990; Acuna and Yortsos 1991; Acuna et al.

1992; Berkowitz and Hadad 1997).

Different fractal dimensions were used to characterize different characteristic

so fracture networks. In this thesis, we used box-counting method (Mandelbrot

1982), mass dimension (Bunde and Havlin 1995) and fractal dimension by

construction (Sahimi 1993). Descriptions for these methods are presented in

Chapter 5.

1.3 Statement of the problem

Naturally fractured reservoirs (NFRs) contain more than half of the world‟s

proven oil reserves. Producing these reserves is a challenging but indispensable

task, as conventional sources of hydrocarbons are nearly exhausted.

This type of reservoirs presents unique and specialized challenges to

hydrocarbon extraction, mostly due to their high heterogeneity and complexity.

However, it is vital to predict reservoir behaviour (including production rates and

breakthrough times) to avoid risks due to remarkable investment for field scale

applications. This is particularly important for enhanced oil recovery operations

which involve high risk and cost.

Apart from petroleum engineering applications, proper modeling of fluid flow

in a fractured media is also important in other engineering disciplines such as

groundwater contamination, nuclear waste disposal, and CO2 sequestration in

underground reservoirs due to the risk caused by environmental and health issues.

As it is described in the „Literature Review section‟, there are a number of

modeling techniques for naturally fractured reservoirs. However, the classical

techniques (those, which are traditionally used in industry) have certain

limitations and often fail to represent the complex structure of fracture networks

and thereby, to capture the actual reservoir behaviour. Non-classical techniques

were proposed as an alternative, as described in the previous section, possessing

certain challenges as well.

The advantageous aspect of the non-classical models is their capability to

represent the complexity of fracture networks. Despite numerous studies on non-

10

classical methodologies for the simulation of NFRs, as of today, non-classical

simulation techniques are still in the scientific development stage and not yet

advanced enough to be used in industry. Additional efforts are needed to identify

which non-classical simulation technique can be used for routine modeling

purposes. This study is one more contribution to the research on non-classical

modeling.

The purpose of the thesis is to suggest non-classical simulation techniques for

three particular cases associated with fractured systems (miscible flooding at

laboratory scale, tracer tests, and miscible CO2 injection).

1.4 Solution methodology

We used previously published laboratory experiments and field cases as a

starting point of our research. We scrutinized these data and identified which

aspects of the physics of the process are the most essential ones to be considered

in the modeling studies. Then, we proposed an algorithm to capture these aspects.

For example, in Chapter 2, the RW algorithm is applied to model a series of

miscible solvent injection experiments. Injection rates were relatively small;

therefore diffusion played a significant role in the displacement process. For some

of the experiments, heavy oil was used as a displaced fluid and a high viscosity

ratio affected the shape of the displacement patterns. Taking this into account, we

suggested an algorithm which can model solvent diffusion into matrix while

capturing the viscous displacement effective in the fracture.

Algorithms were implemented using the C++ programming language. Petrel

and ParaView were used for 2D, 3D and 4D visualization of the results.

MATLAB
®
 was used for plotting purposes. The Genetics and Simulated

Annealing Algorithms implemented in MATLAB
®

 were used for computer-aided

history matching.

Pressure field calculations on the classical simulation grid is part of the

algorithms used in Chapters 3 and 4, and this was achieved by ECLIPSE

simulator.

11

Methodology used in Chapter 5 required multiple curve fits and we used

functions in MS Excel for that purpose.

Additional details regarding the algorithms used and their implementations are

presented in the corresponding chapters.

1.5 Bibliography

Acuna, J.A., Ershaghi, I. and Yortsos, Y.C. 1992. Fractal Analysis of Pressure

Transients in the Geysers Geothermal Field. Proc. Seventeenth Workshop on

Geothermal Reservoir Engineering Stanford University, Stanford, CA, 87-93.

Acuna, J.A. and Yortsos, Y.C. 1991. Numerical Construction and Flow

Simulation in Networks of Fractures using Fractal Geometry. Paper SPE

22703 presented at the 66
th

 Annual Technical Conference and Exhibition of

the Society of Petroleum Engineers, Dallas, Texas, 6-9 October. DOI:

10.2118/22703-MS.

Al-Khlaifat, A.L. and Arastoopour. H. 2003. Simulation of water and gas flow in

fractured porous media. Fracture and In-Situ Stress Characterization of

Hydrocarbon Reservoirs 209:201-212.

Araktingi, U.G. and Orr, J. 1990. Viscous Fingering, Gravity Segregation, and

Reservoir Heterogeneity in Miscible Displacements in Vertical Cross

Sections. Paper SPE 20176 presented at the SPE/CIOE Seventh Symposium

on Enhanced Oil Recovery, Tulsa, Oklahoma, 22-25 April. DOI:

10.2118/20176-MS.

Barenblatt, G. I., and Zheltov, Y. P., 1960. Fundamental Equations of Filtration of

Homogenous Liquids in Fissured Rocks. Sov. Dokl. Akad. Nauk. Engl.

Transl., 13: 545-548.

12

Barton, C.C., Larson, E., 1985. Fractal Geometry of Two-dimensional Fracture

Networks at Yucca Mountain, South-Western Nevada. Proceedings of

International Symposium on Fundamentals of Rock Joints Bjorkliden,

Sweden, 77-84.

Beler, R.A. 1990. Pressure Transient Field Data Showing Fractal Reservoir

Structure. Paper SPE 21553 presented in the international technical meeting,

Calgary, Alberta, Canada, June 10-13. DOI: 10.2118/21553-MS

Berkowitz, B., Cortis, A., Dentz, M. and Scher, H. 2006. Modeling Non-Fickian

Transport in Geological Formations as a Continuous Time Random Walk.

Reviews of Geophysics 44 (RG2003).

Berkowitz, B. and Hadad, A., 1997. Fractal and Multifractal Measures of Natural

and Synthetic Fracture Networks. J. of Geophysical Research 102(B6): 205-

218.

Bogatkov, D. 2008. Integrated Modeling of Fracture Network System of the

Midale Field. MS Thesis, U. of Alberta, Edmonton, Alberta, Canada.

Bogatkov, D. and Babadagli, T. 2009. Characterization of Fracture Network

System of the Midale Field, J. Can. Petr. Tech. 48(7): 30-39.

Bogatkov, D. and Babadagli, T. 2010. Fracture Network Modeling Conditioned to

Pressure Transient and Tracer Test Dynamic Data, J. Petr. Sci. and Eng. 75:

154-167.

Bunde, A. and Havlin, S., 1995. Brief Introduction to Fractal Geometry. In:

Bunde, A., Havlin, S. (Eds), Fractals in Science. Chapter 1.

13

Cacas, M. C., Ledoux, E., De Marsily, G., 1990. Modeling Fracture Flow with a

Stochastic Discrete Fracture Network: Calibration and Validation. Water

Resources Research 26(3): 479-500.

Cacas, M.-C., Daniel, J.M. and Letouzey, J. 2001. Nested Geological Modelling

of Naturally Fractured Reservoirs. Petroleum Geoscience 7(S):43-52.

Chandrasekhar, S. 1943. Stochastic Problems in Physics and Astronomy. Rev. of

Modern Physics 15(1):1-90.

Chang, J. and Yortsos, Y.C. 1990. Pressure-Transient Analysis of Fractal

Reservoirs. SPE Formation Evaluation 289:31-38. SPE- 25296-PA. DOI:

10.2118/25296-PA.

Dershowitz, B., LaPointe,P., Eiben, T. and Wei, L. 2000. Integration of Discrete

Feature Network Methods with Conventional Simulator Approaches. SPE Res

Eval & Eng 3(2): 165-170. SPE-62498-PA. DOI: 10.2118/62498-PA.

Di Donato, G., Lu, H., Tavassoli, Z. and Blunt, M.J. 2007. Multi-Rate Transfer

Dual Porosity Modeling of Gravity Drainage Imbibition. SPE J 12(1):77-88.

SPE-93144-PA. DOI: 10.2118/93144-PA.

Doe, T. W., Uchida, M., Kindred, J. S. and Dershowitz, W. S. 1990. Simulation of

Dual-Porosity Flow in Discrete Fracture Networks. Paper PETSOS-90-120

presented at the Annual Technical Meeting, Calgary, Alberta, June 10 – 13.

Dokholyan, N.V., Buldyrev, S.V., Havlin, S., King, P.R., Lee, Y. and Stanley,

H.E. 1999. Distribution of Shortest Paths in Percolation. Physica A

266(1999): 55-61.

14

ECLIPSE Reservoir Engineering Software. 2009. Schlumberger,

http://www.slb.com/services/software/reseng/eclipse2009.aspx

FracaFlow Fracture modeling application. 2008. Beicip.

http://www.beicip.com/index.php/eng/software/reservoir/characterization/frac

aflow__1

FracMan Discrete Feature Data Analysis software. Golder Associates Inc.

http://fracman.golder.com/

Ganzer, L.J. 2002. Simulating Fractured Reservoirs Using Adaptive Dual

Continuum. Paper SPE 75233 presented at the SPE/DOE Improved Oil

Recovery Symposium, Tulsa, Oklahoma, 13-17 April. DOI: 10.2118/75233-

MS.

Gong, B., Karimi-Fard, M. and Durlofsky, L.J. 2008. Upscaling Discrete Fracture

Characterizations to Dual-Porosity, Dual-Permeability Models for Efficient

Simulation of Flow With Strong Gravitational Effects. SPE J 12(1):58-67.

SPE-102491-PA. DOI: 10.2118/102491-PA.

Halvin, S. and Ben-Avraham, D. 1987. Diffusuion in Disordered Media.

Advances in Physics 36(6):695-798.

Hoteit, H. and Firoozabadi, A. 2004. Compositional Modeling of Fractured

Reservoirs without Transfer Functions by the Discontinuous Galerkin and

Mixed Methods. Paper SPE 90277 presented at the SPE Annual Technical

Conference, Houston, Texas, September 26-29. DOI: 10.2118/90277-MS.

15

Jafari, A. and Babadagli, T. 2009. A Sensitivity Analysis for Effective Parameters

on 2D Fracture-Network Permeability. SPE Res Eval & Eng 12 (3): 455-469.

SPE 113618-PA. DOI: 10.2118/113618-PA.

Jafari, A. and Babadagli, T. 2011. Generating 3D Permeability Map of Fracture

Networks Using Well, Outcrop, and Pressure-Transient Data. SPR Reservoir

Evaluation & Engineering 14(2):215-224. SPE-124077-PA. DOI:

10.2118/124077-PA.

Kazemi, H. and Merrill, L.S. 1979. Numerical Simulation of Water Imbibition in

Fractured Cores, SPE J 19(3):175-182. SPE- 6895-PA. DOI: 10.2118/6895-

PA.

Karimi-Fard, M., Durlofsky, L.J. and Aziz, K. 2004. An Efficient Discrete-

Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE J.

9(2):227-236. SPE 88812-PA. DOI: 10.2118/88812-PA.

King, P.R., Andrade Jr, J.S., Buldyrev, S.V., Dokholyan, N., Lee, Y. , Halvin, S.

and Stanley, H.E. 1999. Predicting Oil Recovery Using Percolation. Physica

A 266(1999): 107-114.

La Pointe, P. R., 1988. A Method to Characterize Fracture Density and

Connectivity through Fractal Geometry. Int. J. Rock Mech. Min. Sci.

Geomech. Abstr., 25(6): 421-429.

Long, J.C.S., Gilmour, P. and Witherspoon, P.A. 1985. A Model for Steady Fluid

Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures.

Water Resour. Res. 21(8): 1105-1115.

16

Lough, M.F., Lee, S.H., and Kamath, J. 1997. A New Method to Calculate

Effective Permeability of Grid Blocks Used in the Simulation of Naturally

Fractured Reservoirs. SPE Res Eng 12(3):219-224. SPE-36730-PA. DOI:

10.2118/36730-PA.

Lu,H., Di Donato, G. and Blunt, M.J. 2008. General Transfer Functions for

Multiphase Flow in Fractured Reservoirs. SPE J. 13(3):289-297. SPE-

102542-PA, DOI: 10.2118/102542-PA.

Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W. H. Freeman and

Co., San Francisco, 460.

MATLAB The Language Of Technical Computing. MathWorks.

http://www.mathworks.com/products/matlab/index.html

Montaron, B. 2008. Carbonate Evaluation. Oil&Gas Middle East 2008 (8): 26-32.

ParaView Scientific Visualization Software. http://www.paraview.org/

Pearson, K. and Blakeman, J. 1906. A mathematical theory of random migration.

London, Dulau and co.

Petrel Seismic to Simulation Software. 2010. Schlumberger.

http://www.slb.com/services/software/geo/petrel.aspx

Roubinet, D., Liu, H.-H. and de Dreuzy, J.-R. 2010. A New Particle-Tracking

Approach to Simulating Transport in Heterogeneous Fractured Porous Media.

Water Resources Research 46 (W11507).

17

Saffman, P.G. 1959. A Theory of Dispersion in a Porous Medium. Fluid Mech.

6:321-349.

Sahimi, M. 1993. Flow Phenomena in Rocks: from Continuum Models to

Fractals, Percolation, Cellular Automata, and Simulated Annealing. Reviews

of Modern Physics 65(1993):1393-1537.

Sahimi, M. and Mehrabi, A.R. 1999. Percolation and Flow in Geological

Formations: Upscaling from Microscopic to Megascopic Scales. Physica A.

266 (1999): 136-152.

Sarma, P. and Aziz, K. 2004. New Transfer Functions for Simulation of Naturally

Fractured Reservoirs with Dual Porosity Models. Paper SPE 90231 presented

at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 26-

29 September. DOI: 10.2118/90231-MS.

Scheidegger, A.E. 1954. Statistical Hydrodynamics in Porous Media. Journal of

Applied Physics 25(8): 994-1001.

Stanley, E.H., Andrade Jr., J.S., Halvin, S., Makse, H. and Suki B. 1999.

Percolation Phenomena: a Broad-brush Introduction with Some Recent

Applications to Porous Media, Liquid Water, and City Growth. Physica A.

266(1999):5-16.

Warren, J.E., and Root, P.J. 1963, The Behavior of Naturally Fractured

Reservoirs. SPE J. 3(3): 245-255. SPE 426-PA. DOI: 10.2118/426-PA.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

18

2. Random Walk algorithm applied for 2D lab-scale simulations

2.1 Overview

The objective of this chapter is to introduce an adaptation of a non-classical

simulation method (random walk, RW) for simulation of fully miscible

displacement in fractured porous media, and to validate this method using

production and visual data obtained from an experimental work.

The RW technique deals with particles (walkers), each of which moves

randomly, but the probability of the movement is defined considering the physics

of the process. By tracing a large number of particles, one can model the process

and have an idea about the transport of injected and displaced fluid in complex

systems. The RW technique allows capturing micro heterogeneities, the random

nature of the diffusion process and viscous fingering. It also requires less

computational time compared to classical simulation methods.

The RW model introduced was validated using experimental – visual and

production - data for different oil types, displacement directions (horizontal and

vertical), and injection rates. Experiments used for validation were performed by

Er (2009). The history and image matching processes were presented and critical

parameters used in the matching processes were critically evaluated.

2.2 Algorithm description

The fluid flow process during fully miscible injection in fractured porous

media is governed by Darcy‟s Law and the Advection Dispersion Equation

(ADE):

)(gP
k

v 


 (2-1)

  


























x

txC
txD

x
txCtxv

xt

txC),(
),(),(),(

),(
 (2-2)

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

19

For the case of constant diffusivity coefficient D, the flow described by ADE

can be simulated by a large number of particles, moving according to the

following rule:

tDztvtrttr  2)()(
(2-3)

where),(yxr  is a particle location, v is a mean velocity vector, z is a vector

with random components, obtained from normal distribution with a mean of 0 and

a standard deviation of 1, and D is a diffusivity coefficient (the derivation is given

by Delay et al. 2005).

In other words, fluid flow is represented by the number of particles (walkers);

at each time step, each walker moves, and its movement consists of convective

component, defined by the velocity field (which is given by the solution of

Darcy‟s Law), and a random component as a dependant on the diffusivity

coefficient. Similar techniques were used before (Araktingi 1988; Araktingi and

Orr 1990).

A detailed description of this algorithm is described step by step below:

(1) The model is represented by a 2D grid system. A permeability value is

assigned to each grid cell, and the fracture is represented by a row of

highly permeable cells. Two selected cells represent injection („in‟)

and production („out‟) ports (Figure 2-1).

(2) Initially, a large number of oil walkers are distributed uniformly within

the grid. Each walker represents a certain constant volume in such a

way that the total volume of all walkers is equal to the pore volume of

the model.

(3) The injection is represented by adding q solvent walkers on each time

step, and the length of time step (Δt) is taken in a way that added

volume per unit time the is same as the desired injection rate.

(For example, let us assume the pore volume of the model is PV, and

initially grid is populated by N walkers; then each walker represents

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

20

volume vw=PV/N. To simulate the injection with a constant rate Q, we

require Q=(q·vw)/ Δt; therefore Δt can be calculated as: Δt=(q·vw)/Q).

(4) Then at each time step:

a. Injection: q walkers are added in „in‟ cell.

b. As flow is incompressible, equation (2-1) can be re-written in a

Laplace form:   .0







 gP

k



 The finite difference

approximation of this equation for a 2D grid system is composed

(total flow through each cell is zero, except for „in‟ and „out‟ cells) as

follows:

0)(
x

)(
x

],1[],[

j]1,j][i[i,],1][,[

j]1,j][i[i,],1][,[

],1[],[

j]1,-j][i[i,],1][,[

j]1,-j][i[i,],1][,[






 











jiji

jiji

jiji

jiji

jiji

jiji
PP

Ak
PP

Ak



QQin 
(2-4)

0outP

Δx and Δy – are distances between corresponding cell centers

(Figure 2-1), A – is the area of the crossection between cells. k[i,j][i’,j’] is

a permeability between adjacent cells [i,j] and [i’,j’]. It is equal to zero

on the boundaries, and otherwise can be calculated as a harmonic

mean:

(2-5)

]','][,[jiji is a viscosity of the mixture between the cells [i,j] and [i’,j’].

This value depends on solvent saturation and changes with time. To

calculate it for any particular time step, oil and solvent walkers are

counted between cells [i,j] and [i’,j’] (indicated by the yellow area in

Figure 2-1). Then solvent concentration is calculated as follows:

]','[],[

]','][,[
/1/1

2

jiji

jiji
kk

k





















)()(]1,][,[]1,[],[

1]jj][i,[i,]1,][,[

1]jj][i,[i,]1,][,[

]1,][,[]1,[],[

]1,][,[]1,][,[

1]-jj][i,[i,]1,][,[

jijijiji

jiji

jiji

jijijiji

jijijiji

jiji
ygPP

y

Ak
ygPP

y

Ak







A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

21

lkers)solvent wa ofnumber + walkersoil of(number

lkers)solvent wa of(number
SC (2-6)

and then viscosity is calculated as:

  /1

]','][,[))1((ssosjiji CC  (2-7)

where μo and μs are oil and solvent viscosities respectively, and ω – is

a mixing parameter. Traditionally a value ω =0.25 is used (Koval

1963; Araktingi 1988); alternatively w can be used as a matching

parameter.

Note: For the case of horizontal flow, the system (2-4) will not have

gravity terms.

c. A composed system of linear equations is solved for pressures in

each cell (P[i,j]). Note: The coefficients of the system include

viscosity, which depends on solvent concentration and therefore,

changes with time. It means that system (2-4) has to be re-calculated

at each time step.

d. Velocities are calculated from pressure values using the Darcy‟s

Law, and then interpolated. Initially the velocities are calculated in

cell centers, and then for each walker velocities are interpolated from

four nearest cell centers.

e. Each walker moves according to the following rule:

tDztvtxttx xx  2)()((2-8)

tDztvtytty yy  2)()((2-9)

where))(),((tytx is a current walker location, vx and vy are

components of walkers velocity vector (calculated at Step (4)-d), zx

and zy are random numbers obtained from a normal distribution with a

mean of 0 and a standard deviation of 1, Δt is length of the time step,

and D is a diffusivity coefficient. The diffusivity coefficients may be

different for oil and solvent walkers.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

22

If the walker is close to the boundary, then it gets reflected from the

boundary.

f. Production: all walkers from the „out‟ cell are removed from the

system. The number of produced oil and solvent walkers is recorded

at each time step. Knowing that each walker represents a certain

volume, it is possible to calculate production data (volume of oil and

solvent produced at each time step).

g. Go to next time step.

(5) Repeat this until the process reaches the state when no more oil

walkers are produced (recovery curve flattens out).

It is obvious that a higher number of walkers give a more accurate solution but

as it will be shown in the next section, a relatively small number (16 walkers per

grid block) is sufficient to capture the physics of the process.

C++ code used to implement the algorithm is provided in Appendix A.

2.3 Validation

To validate the model, experiments reported by Er (2009) were used.

Experiments were conducted on a transparent 2-D glass bead model of

10×15×0.17cm, with a 0.1 cm width fracture in the middle (Figure 2-2). Matrix

was represented by tightly packed small (0.3-0.6 mm) glass beads, and fracture

was represented by a channel, bounded with bigger (2.0-2.3 mm) glass beads.

Initially, the models were saturated with oil, and then coloured pentane was

continuously injected from the injection port located at one end of the fracture.

The oil-solvent mixture was collected from the production port on the other end

of the fracture. During the experiments, displacement patterns were captured

periodically and the production data was obtained continuously. The details of

experiments are described in detail in the relevant reference, as well as in Er and

Babadagli (2010).

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

23

Ten experiments were selected to match the model results. These experiments

considered different types of oil as a displaced fluid, different injection rates, and

different positions of the model (horizontal and vertical) as listed in Table 2-1.

The properties of displacing and displaced fluids are given in Table 2-2.

Er and Babadagli (2010) reported that a classical continuum simulation

approach, using commercial software, was successful to some extent. A critical

issue reported as a limitation of the continuum models was that as many as six

parameters (solvent and oil diffusivity coefficients, fracture and matrix,

longitudinal and transverse dispersivities) were used to obtain a match. This

significantly affects the uniqueness of the process. Due to limited experimental

work, it was also difficult to correlate the six matching parameters to system

characteristics such as oil viscosity, displacement direction, solvent properties,

and injection rate. It was also reported by Er and Babadagli (2010) that the

simulation runs were not able to capture the shape of displacement patterns for

some of the vertical cases, especially for heavy oil. Also note that the matching

exercise reported in Er and Babadagli (2010) focused only on matching the

displacement images, not paying attention to the production data. In the present

study the matching was done not only on the visual but also on the production

data.

By using the adapted RW algorithm described above, we simulated the same

experiments and obtained reasonable matches for both production data and

displacement images. The following parameters were used in the simulations:

(1) The model is represented by a grid of 15×40×1 cells; sizes of the whole

model are the same as the size of the glass bead model - 10×15×0.17cm

(Figure 2-2).

(2) A permeability value is assigned to each grid cell. Matrix cells have a

permeability of 150 D (as reported as a measured value in Er and Babadagli,

2010), and the fracture is represented by a 0.1 cm width row of high permeable

cells (15000 D).

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

24

(3) Porosity is 40% for the matrix cells (as reported by the author of the

experiment) and 1.0 for the fracture cells. The first and last cells of the high

permeable row represent as injection („in‟) and production („out‟) ports

(Figure 2-1).

A sensitivity analysis for grid cells sizes was performed to obtain an optimal

grid size and to reduce the computational time. We compared the results of

simulations using different sizes of grid cells. A comparison of the model with

15×40×1 cells and the results obtained using a 31×80×1 grid system is given in

Figure 2-3). The shapes of the displacement patterns look quite similar for both

cases, as well as the production curves. The reason of this similarity is can be

attributed to the fact that, when we calculate the velocity for each particle, we

interpolate the value from four surrounding grid cells instead of just taking the

value from the grid cell centre. A grid system of 15×40×1 cells was observed to

be optimal and was used in all runs.

In order to define the optimal number of walkers per cell for accurate

modeling, we compared results obtained with 16 walkers per cell and 36 walkers

per cell (Figure 2-4). Results for the displacement patterns looked less noisy for

the larger number of walkers; however, the shape of the pattern remained similar.

For the production data, the result did not show any significant difference when

the number of walkers increased from 16 to 36 walkers per cell. Hence, the value

of 16 walkers per grid cell was found to be optimal to obtain an accurate result

and minimize the computational time. (Although optimizing number of walkers

may not be critical for the size of model considered in this study, it is critical for

applications of the model on larger scale.)

As shown above (see example in the Algorithm Description, step 3), there is a

relation between the number of walkers in the grid (N), the number of walkers we

add every timestep (q) and the duration of the timestep (Δt): Δt=(q·PV)/(Q·N).

Therefore, if one wants to increase the accuracy of calculation by using smaller

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

25

timesteps, one can either decrease q or increase N. Figures 2-5 and 2-6 illustrate

that the optimal number of walkers to be used is N=16×(number of grid cells). In

the similar manner, we checked the optimal value of q, and estimated it to be q=4.

Further simulations were performed using 16 walkers per grid cell and q=4.

A comparison of displacement patterns with experimental ones was performed

for validation purpose. In the matching exercise, the mixing parameter ω was

altered, but a final value of 0.25 (as suggested by Koval (1963)) was selected as it

yielded the best result. The diffusivity coefficient was used as the main

controlling (matching) parameter. Initially, modeling was done with the same

diffusivity coefficient used for oil and solvent walkers, but we were not able

obtain a good match with experimental data (especially for vertical cases).

Therefore, we modified the algorithm to use different diffusivity coefficients for

oil and solvent walkers as also commonly used in this type of modeling studies

(Er and Babadagli 2010). The oil and solvent diffusivity coefficients (Do and Ds),

which gave a match with experimental results are summarized in Tables 2-3 and

2-4 for the horizontal and vertical cases, respectively.

2.4 Results and discussion

The results of simulations and their comparison with the experimental data are

given in Figures 2-3 through 2-13. As seen in all cases, reasonable matches were

obtained for both production curves and displacement patterns. Figures 2-11 and

2-12 compare the results of the RW simulation with those obtained from the

continuum modeling previously reported by Er (2009). One can observe that the

random walk simulation is more accurate in capturing the irregularity of the

displacement pattern. Because a random component of fluid flow is honoured in

the model, the displacement patterns look more irregular compared to the

simulation results obtained from a continuum model (continuum simulation

results can be seen in Er and Babadagli (2010)). The matches obtained for the

horizontal cases are better than those of the vertical displacement cases.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

26

In this study, the diffusivity coefficients were used as the matching parameter

and it was desired to find correlations for diffusivity coefficients, as they are not

practically measurable. One may expect that the diffusivity coefficient for the

solvent is higher than that of oil, and also that these coefficients will not change

with the injection rate, but will decrease with increasing viscosity of the displaced

fluid. Similar correlations for diffusivity coefficients were described in the

literature and a number of studies reported a linear dependency between the

diffusivity coefficient and viscosity (Sho-Wei Lo et al. 2000; Wen et al. 2005).

Diffusivity coefficients used for modeling of the horizontal cases in this study

support these hypotheses (Table 2-3 and Figure 2-14). Hence, based on existing

experimental data (six experiments for horizontal displacement), the diffusion

coefficients can be calculated as a linear function of displaced fluid viscosity:

Do= -0.00000064μoil + 0.00402155 (2-10)

Ds= -0.00000129μoil + 0.00254308 (2-11)

It was not possible to obtain any consistent trend for the vertical cases, and

thereby a correlation (Table 2-4). The diffusivity coefficients were changed both

with viscosity and rate, and the number of experiments were not enough to

observe any trends.

 In this study, we used uniform matrix permeability for the pressure and

velocity field calculations, i.e, it is a single value for all grids. The matrix

permeability field significantly affects the displacement process as it controls the

velocity field. However, if there are any heterogeneities in the matrix the

proposed model can be used just by altering the permeability for a given grid.

One of the advantages of the RW algorithm over classical modeling is a

shorter computational time. In this study, we also compared the computational

times for the RW technique and a commercial simulator (classical continuum

models). As Er (2009) does not report computational times for his simulations, we

performed classical modeling using a commercial simulator. Computational times

for the commercial simulator were 5-7 times longer, than those of the RW model.

The reason for that is that, in the RW model, only equation for pressure is solved

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

27

directly, while the equations for concentration/composition are not. Instead, the

solution of the Advection-Dispersion Equation is obtained by moving oil and

solvent walkers, which takes less time than the finite-difference modeling.

2.5 Conclusions

(1) An RW algorithm was adapted to simulate miscible flow in fractured

media and validated by comparison with a series of experiments.

Simulation results showed good agreement with experimental data,

especially for the cases of horizontal displacement. The matches were

obtained not only for different direction of flow but also for different oil

viscosities and injection rates.

(2) In the algorithm introduced here, there are only two unknown matching

parameters (diffusivity coefficients of oil and solvent), comparing with six

parameters used in classical modeling (Er 2009). That makes the algorithm

easier to use, and this also reduces the uncertainty in the performance

prediction and history matching exercises.

(3) A linear dependency of oil and solvent diffusivity coefficients on viscosity

was derived for the horizontal cases.

(4) Suggested algorithm allows using non-uniform matrix and fracture

permeabilities. Hence, it can be used for the uncertainty analysis in cases

when permeability data are insufficient or if the permeability distribution

is not uniform.

(5) The RW algorithm introduced was validated for a simple case (a lab scale

single matrix-fracture system). This algorithm, which requires less

computational time comparing to finite-difference modeling, can be

potentially extended to a larger scale, 3D cases with more complex

fracture geometry.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

28

2.6 Tables

Table 2-1. List of cases [experiments taken from Er (2008)] used in the matching process.

Exp. # Displaced fluid
Viscosity of the

displaced fluid(cp)

Injection

rate (ml/hr)

Model

orientation

1 Kerosene 2.9 15 horizontal

2 Mineral oil 33.5 15 horizontal

3 Mineral oil 33.5 25 horizontal

4 Mineral oil 33.5 45 horizontal

5 Mineral oil 33.5 15 vertical

6 Mineral oil 33.5 45 vertical

7 Mineral oil 500 15 horizontal

8 Mineral oil 500 45 horizontal

9 Mineral oil 500 15 vertical

10 Mineral oil 500 45 vertical

Table 2-2. Properties of the fluids used in the experiments and modeling study.

Fluid Density (g/cc) Viscosity (cp)

Pentane 0.63 0.38

Kerosene 0.79 2.9

Mineral oil 0.81 33.5

Mineral oil 0.89 500

Table 2-3. Diffusivity coefficients used for simulation (horizontal flow).

Displaced fluid Viscosity (cp) Rate (ml/hr) Do (cm
2
/s) Ds (cm

2
/s)

Kerosene 2.9 15 0.00254 0.00402

Mineral oil 33.5 15 0.0025 0.004

Mineral oil 33.5 25 0.0025 0.004

Mineral oil 33.5 45 0.0025 0.004

Mineral oil 500 15 0.0019 0.0037

Mineral oil 500 45 0.0019 0.0037

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

29

Table 2-4. Diffusivity coefficients used for simulation (vertical flow).

Displaced fluid Viscosity (cp) Rate (ml/hr) Do (cm
2
/s) Ds (cm

2
/s)

Mineral oil 33.5 15 0.001105 0.004

Mineral oil 33.5 45 0.001105 0.004

Mineral oil 500 15 0.0014 0.0037

Mineral oil 500 15 0.002 0.0037

2.7 Figures

Figure 2-1 Schematic of the Random Walk simulation model.

Oil and solvent walkers in shaded (yellow) area are counted to calculate viscosity between

cells [i,j] and [i+1,j].

Figure 2-2. Sketches of the experimental (left) and simulation (right) models.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

30

Figure 2-3. Comparison of experimental data given by Er (2009) with results of simulation

using 15*40*1 grid and 31*80*1 grid.

Horizontal light oil displacement at 15 ml/h.

(a): upper row – experimental results; middle row – results of simulation using 15*40*1

grid; lower row - results of simulation using 31*80*1 grid.

(b): dots – experimental data; solid line - results of simulation using 15*40*1 grid; dashed

line - results of simulation using 31*80*1 grid.

Figure 2-4. Comparison of experimental data given by Er (2009) with results of simulation

using 16 and 36 walkers per grid cell.

Horizontal heavy oil displacement at 15 ml/h.

(a): upper row – experimental results; middle row – results of simulation using 16 walkers

per grid cell; lower row - results of simulation using 36 walkers per grid cell.

(b): dots – experimental data; solid line - results of simulation using 16 walkers per grid cell;

dashed line - results of simulation using 36 walkers per grid cell.

(a) (b)

(a) (b)

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

31

Figure 2-5. Comparison of experimental visual data with results of simulation using 16 and

36 walkers per grid cell.

Experimental images (upper row) are given by Er(2009). Images in the middle row are

obtained using 16 walkers per grid cell; images in the lower row are obtained using 36

walkers per grid cell. Horizontal heavy oil displacement at 15 ml/h. Simulation results:

darker (purple) areas show a saturation of oil less than 40%.

Figure 2-6. Comparison of experimental production data with results of simulation using 16

and 36 walkers per grid cell.

Volume of oil produced vs. volume of solvent injected: dots - experimental data; solid line -

results of simulation using 16 walkers per grid cell; dashed line – results of simulation using

36 walkers per grid cell. Horizontal heavy oil displacement at 15 ml/hr.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

32

Figure 2-7. Experimental and simulation results for horizontal kerosene displacement

at 15 ml/hr.

Upper images: experimental displacement patterns (Er, 2009). Lower images: simulation

results, oil saturation less that 40% is shown in purple. Plot: experimental data shown by

dots, simulation results - by solid line.

Figure 2-8. Experimental and simulation results for horizontal light oil displacement at

25 ml/hr.

Upper images: experimental displacement patterns (Er, 2009). Lower images: simulation

results, oil saturation less that 40% is shown in purple. Plot: experimental data shown by

dots, simulation results - by solid line.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

33

Figure 2-9. Experimental and simulation results for horizontal light oil displacement at

45 ml/hr.

Upper images: experimental displacement patterns (Er, 2009). Lower images: simulation

results, oil saturation less that 40% is shown in purple. Plot: experimental data shown by

dots, simulation results - by solid line.

Figure 2-10. Experimental and simulation results for vertical light oil displacement at

15 ml/hr.

Upper images: experimental displacement patterns (Er, 2009). Lower images: simulation

results, oil saturation less that 40% is shown in purple. Plot: experimental data shown by

dots, simulation results - by solid line.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

34

Figure 2-11. Vertical light oil displacement at 45 ml/hr.

Upper images: experimental displacement patterns (Er, 2009). Middle images: results of

single continuum modeling (Er, 2009). Lower images: RW simulation results, oil saturation

less that 40% is shown in purple. Plot: experimental data shown by dots, RW simulation

results - by solid line.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

35

Figure 2-12. Vertical heavy oil displacement at 15 ml/hr.

Upper images: experimental displacement patterns (Er 2009). Middle images: results of

single continuum modeling (Er 2009). Lower images: RW simulation results, oil saturation

less that 40% is shown in purple. Plot: experimental data shown by dots, RW simulation

results - by solid line.

Figure 2-13. Experimental and simulation results for vertical heavy oil displacement at

15 ml/hr.

Upper images: experimental displacement patterns (Er 2009). Lower images: simulation

results, oil saturation less that 40% is shown in purple. Plot: experimental data shown by

dots, simulation results - by solid line.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

36

Figure 2-14. Correlation between oil and solvent diffusivity coefficients and viscosity of

displaced fluid for horizontal flow.

2.8 Bibliography

Araktingi, U. 1988. Viscous Fingering in Heterogeneous Porous Media. PhD

dissertation, Stanford U., Stanford, California.

Araktingi, U.G. and Orr, J. 1990. Viscous Fingering, Gravity Segregation, and

Reservoir Heterogeneity in Miscible Displacements in Vertical Cross

Sections. Paper SPE 20176 presented at the SPE/CIOE Seventh Symposium

on Enhanced Oil Recovery, Tulsa, Oklahoma, 22-25 April. DOI:

10.2118/20176-MS.

Delay, F., Ackerer, P. and Danquigny, C. 2005. Simulating Solute Transport in

Porous or Fractured Formations Using Random Walk Particle Tracking: A

Review. Vadose Zone Journal 4(2): 360–379.

Er, V. 2009. 2-D Pore and Core Scale Visualization and Modeling of Immiscible

and Miscible CO2 Injection in Fractured Systems. MS Thesis, U. of Alberta,

Edmonton, Alberta, Canada.

A version of this chapter was presented and also submitted for publication. Stalgorova, E. and Babadagli, T. 2010.

“Modeling Miscible Injection in Fractured Porous Media using Non-classical Simulation Approaches”. SPE 135903. SPE
Russian Oil and Gas Conference and Exhibition, Moscow, Russia.

37

Er, V. and Babadagli, T., 2010. Miscible Interaction between Matrix and Fracture

– A Visualization and Simulation Study. SPE Res Eval & Eng 13(1): 109-117.

SPE-117579-PA. DOI:10.2118/117579-PA.

Koval, E.J. 1963. A Method for Predicting the Performance of Unstable Miscible

Displacement in Heterogeneous Media. SPE J. 3(2):145-154. SPE- 450-PA.

DOI: 10.2118/450-PA.

Sho-Wei Lo, S.-W., Hirasaki, G.J., House, V.W. and Kobayashi, R. 2000.

Correlations of NMR Relaxation Time with Viscosity, Diffusivity, and

Gas/Oil Ratio of Methane/Hydrocarbon Mixtures. Paper SPE 63217 presented

at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1-4

October. DOI: 10.2118/63217-MS.

Wen, Y., Bryan, J., Kantzas, A. 2005. Estimation of Diffusion Coefficients in

Bitumen Solvent Mixtures as Derived From Low Field NMR Spectra. Journal

of Canadian Petroleum Technology 44(4): 29-35.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

38

3. Field scale tracer test modeled with Random Walk Particle

Tracking

3.1 Overview

Modeling complex transport processes in naturally fractured reservoirs

(NFRs) using classical models has certain limitations. Single continuum and dual

continuum models require averaging of fracture network properties, therefore

information about reservoir connectivity and heterogeneity is not captured

properly. In addition, finite-difference calculations for highly heterogeneous

models often cause convergence problems.

In this chapter we present modifications to the Random Walk technique for

the field-scale applications. For validation, a series of tracer test results from the

Midale field in Canada was used. A fracture network model was constructed

based on geological data. Then, the Random Walk Particle Tracking (RWPT)

model was used to calibrate the fracture network against tracer test results. The

results were compared to the ones obtained using continuum (dual-porosity)

models and it was observed that the connectivity and breakthrough times can be

captured better with the RWPT model.

We performed a sensitivity analysis to identify the importance of different

parameters of the simulation results. The new model and observations can be used

to validate and calibrate stochastically generated fracture network models and to

estimate the EOR performances of NFRs.

3.2 Problem statement and objectives

Construction of fracture network models is usually done using some kind of

available data (usually image logs and cores) in practice. The validation of the

model through field performance data is, however, not a simple exercise. Often

times, the model is fine-tuned by changing different network properties globally

or locally until a good match to data like pressure transient tests, tracer tests, or

even injection-production data, is obtained. Bogatkov and Babadagli (2009a-b,

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

39

2010) published a series of papers on this subject and showed the use of well test

and tracer test data in this exercise. Two problems were critically identified from

their studies: (1) the representation of complex (and irregular) fracture network in

continuum (single or dual porosity models) models, and (2) the limitations of dual

porosity models in capturing the real physics of tracer transport (mainly matrix

fracture interaction) if the fracture networks do not show an orthogonal structure.

To overcome these problems, one should use a simulation approach, which allows

for a more realistic representation of the complex structure of fracture networks.

The purpose of that study is to develop an algorithm that reflects a realistic

representation of the fracture network and of the physics of the transport process.

To test the suggested model, we simulated the results of a tracer test

performed in the Midale field. The Midale field is a highly heterogeneous

naturally fractured reservoir. Tracer test simulation of the Midale field using a

single continuum model as well as a dual permeability model is described by

Bogatkov (2008) and Bogatkov and Babadagli (2010). They stated that tracer test

simulation results are very sensitive to fracture network geometry. Using single

continuum or dual continuum models involves averaging fracture network

properties. As a result of this simplification, the model does not capture all of the

complexity of the fracture network and this hinders a reasonable history match. In

this study, we introduced a modified Random Walk Particle Tracking algorithm,

in which each fracture is described separately; each fracture has its own

geometrical and physical properties (such as length, width, orientation, and

permeability), and those properties are used directly, without averaging.

3.3 Algorithm description

The algorithm described below models the flow of fluid through fractured

media in a simplified way. To justify these simplifications, we have to make the

following assumptions:

(1) We are dealing with one-phase flow (water only).

(2) Fluid flow is dominated by fractures.

(3) Each fracture can be represented by a sub vertical rectangle.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

40

(4) Production and injection rates are constant.

In the case of the Midale field tracer tests: (1) tracer tests were performed after

many years of waterflooding, so most of the oil had washed out of the reservoir,

and the remaining oil could be neglected, (2) early tracer breakthrough times

indicated fracture-dominated flow (Lavoie 1987), (3) if the fracture has more

complicated geometry, we can always represent it by several rectangles joined

together, and (4) tracer tests on the Midale field were conducted at nearly constant

production and injection rates.

Modeling tracer test with Random Walk Particle Tracking (RWPT) consists of

five stages:

(1) Generate the fracture network based on geological information,

(2) Calculate the pressure field in the model,

(3) Convert the fracture network to a graph,

(4) Use this graph to simulate the tracer test,

(5) Compare the simulated and observed results, and edit the fracture network

accordingly.

We describe each stage in detail below.

Generate the fracture network based on geological information

Characterization of naturally fractured reservoirs (NFR) starts from the

recognition of fractures at different scales and by defining their properties.

Available information (such as DST, cores, conventional and image logs,

outcrops, well tests and seismic data) should be analyzed to define fracture

network properties. In a typical case, it is possible to obtain deterministic

information describing several bigger fractures (or major faults), and stochastic

parameters, describing the whole fracture network (such as the existence and

orientation of a trend, fracture density distribution, fracture lengths distribution,

fracture permeability distribution, and fracture widths distribution). A discrete

fracture network can be generated based on those parameters, by using any

programming language or commercial software. Each fracture is defined as

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

41

rectangular and has certain widths and permeability. In order to simulate injection

and production of a tracer, one has to add fractures passing through wells.

For this study, we generated a fracture network model based on stochastic

parameters given in the papers on the Midale field (Bogatkov and Babadagli

2009a-b, 2010). A more detailed description is given in section 3.5.

Calculate pressure field in the model

Once the fracture network model was described, the pressure at each point

was calculated by solving the Darcy‟s equation numerically. The easiest way to

do this is to use a commercial simulator (ECLIPSE was used in this particular

study). To achieve this, we needed to create a grid, in which fractures were

represented by thin blocks of high permeable cells. The width and permeability of

each fracture should be taken from the fracture network generated before.

The next step was to introduce the wells and to run the simulation. Obviously,

if the DFN contains many fractures, the simulation model will have a large

number of cells which results in enormous computational time. However, because

the model had only one phase and we had to simulate only one time step, in

practice, the computational times were not remarkably high. The fracture network

incorporated in a simulation grid is shown in Figure 3-1.

Convert the fracture network to a graph

First, we created a set of vertexes (the end of each fracture and all fracture

intersections are represented by vertexes). To create the edges of a graph, we

added an edge between those and only those vertexes, which were connected by a

fracture. Figures 3-2 illustrates how the fracture network is represented by a

graph.

Next, we have to assign certain properties to the vertexes and edges:

1) For each vertex indicate if it belongs to any well,

2) Pressure value (P) for each vertex: result of the classical simulation at

previous stage,

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

42

3) Pressure potential for each vertex: gdP  where P is pressure, ρ

is density of water, and d is depth,

4) Length for each edge (L): distance between corresponding vertexes,

5) Width and height for each edge (W and h): inherited from the

corresponding fracture,

6) Crossection area for each edge: A=Wh,

7) Permeability for each edge (k): inherited from the corresponding

fracture,

8) Pressure gradient for each edge: if the edge connects vertex x with

potential x and vertex y with potential y and the distance between

vertexes is L, then the pressure gradient will be Lyxxy /)( ,

9) Velocity for each edge: Calculated from Darcy‟s Law


k
v xyxy 

where k is permeability of the edge, and µ is the viscosity of the water.

Note: if xy is negative, there is no flow from x to y, thus vxy is

undefined, but flow from y to x will occur, and vyx can be calculated

using the formula above.

Use this graph to simulate tracer test

The flow of the dissolved tracer is represented by the movement of a large

number of particles. Each particle represents a certain mass of tracer. Hence, if we

know the tracer injection rate and the concentration of the tracer in the injected

water, we can calculate how many particles are injected every second.

As the tracer is dissolved in water, its concentration is governed by the

Advection Dispersion Equation (ADE):

  


























x

txC
txD

x
txCtxv

xt

txC),(
),(),(),(

),(
 (3-1)

Flow described by the ADE can be simulated by a large number of particles,

moving according to the following rule:

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

43

tDztvtxttx  2)()((3-2)

where x is a particle location, v is a velocity of the flow, z is a random number

obtained from normal distribution with a mean of 0 and a standard deviation of 1,

and D is a dispersion coefficient (see Delay et al. 2005, Salamon et al. 2006 for

more details).

Note that we are tracking movement of the particle along the edges of the

graph, so at each step, we deal with one-dimensional flow. x in the above equation

is a 1-D coordinate.

If at time t the particle was at vertex x, and then moved to vertex y, the

equation (3-2) becomes:

tDztvL xyxy  2 (3-3)

Lxy and vxy are known properties of the edge connecting x and y, so we can solve

(3-3) to find how much time the particle takes to get from vertex x to vertex y:

2

2

2

22 














xy

xy

xyxy
v

L

v

Dz

v

Dz
t (3-4)

To simulate the tracer test we performed the following steps:

1) Assign a certain mass to each particle (mp). Based on the tracer

injection period (tti), injection rate (qi), and tracer concentration (ci),

calculate how many particles are needed to represent injection:

Total mass of injected tracer: m=(volume)(concentration)=(qi tti)(ci)

Number of particles: N=m/mp=(qi tti)(ci)/mp

To each particle j assign a starting time tj0 in a way that the starting

times of all the N particles are distributed uniformly within the tracer

injection period:

t00=0, t10=(tti/N), t20=2(tti/N), t30=3(tti/N),… tN0=N(tti/N).

2) For each particle, we released it at the injection well, and tracked its

way through the reservoir:

a. Initially particle j had a time tj0 and a vertex corresponding to

the injection well.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

44

b. In each step, the particle moves from the current vertex to the

next one, following one of the edges. The probability of the

particle moving along the edge is equal to zero if the pressure

potential of the edge is negative, and is proportional to this rate

if it‟s positive: Probxy~rate=(velocity)(crossection area)=vxyA,

where vxy and A are the properties of the edge which were

calculated at the previous stage. This is illustrated in

Figure 3-3.

c. The particle moved to the next vertex, as described in (b) so

now its time was tj1=tj0+Δt, where Δt is found from equation

(3-4).

d. Continue steps (b) and (c) until the particle reaches the

production well or „dead end‟ (vertexes, which do not have any

edges with a positive pressure gradient). If the particle reached

the production well, record which well and at what time.

3) When all particles are released and tracked, we can convert the

recorded data (# of produced particles vs. time) to a concentration

profile (concentration vs. time) to analyse the results and compare

them with observed data.

Compare simulation and observed results, edit the fracture network

accordingly

The results of simulation are very sensitive to fracture network geometry and

it is highly likely that initial simulation results will not match the observed data.

In the next section, we discuss how different parameters affect the results of

simulation and give an idea of how and which parameters need to be modified to

obtain the desired match.

C++ code used to implement the algorithm and corresponding Eclipse data

file are provided in Appendix B and Appendix C.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

45

3.4 Sensitivity analysis

To analyze the sensitivity of the algorithm to different parameters, we used

the model of the Midale CO2 pilot area (Figure 3-4) and tracer test data reported

by Bogatkov and Babadagli (2010). The fracture network of the Midale area is

characterized by the existence of two distinct trends: (1) On-trend (main) fractures

(SW-NE) and (2) off-trend (secondary) fractures (SE-NW). The on-trend fractures

dominate the system; their lengths and density are higher than those of the off-

trend fractures. The off-trend fractures are perpendicular to the trend direction.

The parameters tested and the responses of the simulations are presented below.

3.4.1 Effect of randomness

As mentioned earlier, the DFN is described by a number of stochastic

parameters such as length distribution for on-trend and off-trend fractures,

average spacing between fractures (for main and secondary set), as well as

distributions of fracture widths and permeabilities. Based on those stochastic

parameters, we created a fracture network. Because the process involves

randomness, we generated many different fracture network realizations described

by the same set of stochastic parameters. This makes classical sensitivity analysis

difficult, i.e., to check the sensitivity of one certain parameter by varying it, we

have to fix all of the other factors. In other words, if all parameters are fixed and

only one varied, one cannot ensure whether the change has occurred because of

the variation in that parameter or because of the changes in the nature of the

network caused by different random realizations.

To clarify the effect of randomness and check if it diminishes as the number

of fractures is increased, we presented the following sensitivity analysis exercise.

We ran a set of simulations, in which the set of parameters was fixed, and ten

different fracture networks described were generated using this set of parameters.

Then, simulations were performed for each network model. Afterwards, we took

the same set of parameters and changed (increased) only the number of fractures.

With this new set of parameters, we created ten fracture networks realizations and

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

46

ran the model for each of them. The results are presented in Figures 3-5a and

3-5b.

To generate the data seen in these figures, we compared each of ten fracture

network realizations with a „base case‟ (realization obtained with seed=0) for each

number of fractures. To compare the results of a certain realization with the base

case, we created cumulative tracer recovery curves for both of them and estimated

the difference between the two curves using the following formula:

 
i

ii xCurvexCurve)()(21 (3-5)

This summation gives values in the y-axis of Figures 3-5a and 3-5b and

indicates how far apart those two curves (cumulative tracer production for base

case realization and for any other realization) are from each other. In other words,

the value in the y-axis indicates the “difference between cumulative tracer

production curves for different stochastic realizations.”

Different points in the same column in Figures 3-5a and 3-5b represent

different stochastic realizations (i.e., different fracture networks represented by

the same set of stochastic parameters but different random realizations). As

expected, the fluctuations for the same number of fracture cases decreases as the

number of fractures increases. However, this change is still significant and cannot

be ignored even for the highest number of fractures. Therefore, while performing

sensitivity analysis, one always has to keep in mind that the effect of randomness

cannot be neglected and that the observed results are affected by the randomness

to a degree seen in Figures 3-5a and 3-5b.

3.4.2 Experimental design for sensitivity analysis

We tested the relative effect of the following parameters:

1) Average spacing between on-trend fractures,

2) Ch=(spacing between off-trend fractures)/(spacing between on-trend fractures),

3) Fracture permeability for on-trend fractures,

4) Fracture permeability for off-trend fractures,

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

47

5) Matrix permeability,

6) Average length for on-trend fractures,

7) Average length for off-trend fractures,

8) Width for on-trend fractures,

9) Width for off-trend fractures,

10) Dispersion coefficient,

11) Trend orientation.

To check the sensitivity to each of these parameters, we fixed all parameters

and changed the value for one parameter only. As mentioned above, we cannot

neglect randomness involved in the process. Therefore, each parametric analysis

(fixing all parameters and varying only one) was performed for five different

random realizations. As an example, the effect of on-trend fracture width is

illustrated in Figures 3-6a and 3-6b. As seen, the effect of on-trend fracture

widths changes from realization to realization. One can also observe that relative

changes are more significant for the pair of wells I1-S1, compared to the pair

I2-S1. This is expected as the pair I1-S1 is more aligned with the trend (see

Figure 3-4), and thereby, the flow between these two wells is more affected by

on-trend fracture properties.

To obtain a solid idea about the effect of each parameter on the behavior of

the whole network system and to quantify this relationship, we defined the

possible range of maximum and minimum values of parameters. In other words,

we characterized the effect of each parameter not by a single number but by a

range. The range values and the relative effects of each parameter on the behavior

of the whole network are summarized in Table 3-1.

3.4.3 Sensitivity analysis summary

Results summarized in Table 3-1 are represented graphically as a Pareto chart

in Figures 3-7 and 3-8. As seen, the relative effect of each parameter is strongly

affected by the randomness involved in the process and this effect differs from

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

48

case to case (that is the reason why the light coloured portions of each bar are so

wide). Also, these effects are different for different well pairs taken here as an

example (compare Figures 3-7 and 3-8). However, some general observations can

still be made. The most critical parameter that affects the result of the simulation

is the widths of the on-trend fractures, and the second most important parameter is

Ch, which was defined earlier as

Ch=(spacing between off-trend fractures)/(spacing between on-trend fractures).

This ratio characterizes the connectivity of the network.

One should emphasize as a final note that the parametric effect obviously

depends on how much the value of this parameter has been changed. Here, we

compare parameters of a different nature. For example, what is the proper way to

compare the effect of change in permeability by 1 Darcy and the effect of change

in trend orientation by 1 degree? In this study, we changed each parameter within

some physically meaningful range. Defining this range is based on common sense

judgement and cannot be formalized. Hence, obtained results are more of a

qualitative description rather than quantitative estimate to give an idea of the

importance of the parameters to be considered in generating fracture networks and

to validate them using dynamic data like tracer tests.

3.5 Application for the Midale field tracer test

To validate the described RWPT algorithm, we modeled a series of tracer tests

conducted in the Midale field CO2 flood pilot area (data obtained from Bogatkov

and Babadagli (2010)). This area was chosen because it as an example of a highly

fractured reservoir, and for the quality of data and the available information

(especially the field tracer data). A detailed description of this data on the Midale

field and the Midale CO2 flood pilot area is available in the literature (Lavoie

1987; Mundry 1989; Fischer 1994; Bunge 2000; Bogatkov 2008; Bogatkov and

Babadagli 2010).

The work of Beliveau et al. (1993) contains a detailed analysis of the Midale

CO2 flood pilot area fracture network, which was the focus area in the present

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

49

study. We used the following characteristics of fracture network properties taken

from this reference:

1) Most of the fractures (main fracture set) are parallel to each other and

are nearly vertical

2) Fractures maintain their orientation and occurrence over large areas

3) The main fracture set is oriented Northeast/Southwest

4) Average fracture spacing is 0.61-0.91m

5) There is a secondary fracture set, oriented perpendicular to the main

fracture set. Spacing of the fractures in the secondary set is much

greater than the spacing of the main set.

A series of tracer tests was performed in the Midale CO2 flood pilot area. In

this application, different salts were injected through four injecting wells and the

productions of those salts from different wells were recorded at four production

wells. Well locations and the direction of the main trend are shown in Figure 3-4.

3.5.1 Computer-aided history matching

To simulate the tracer test, we need to generate a fracture network using the

following data obtained from several earlier reports (Beliveau et al. 1993; Fischer

1994; Bogatkov 2008; Bogatkov and Babadagli 2010):

 The main (on-trend) fracture set consists of fractures, which lengths

vary from 100 to 300 m

 The orientation of the main fracture set is N48
o
E

 The secondary (off-trend) fracture set is orthogonal to the main set and

has 5-10 times less fracture spacing

 Lengths of secondary fractures vary from 30 to 50 m

 Heights of all fractures are distributed as N(7,1) (meters)

 Widths of all fractures are 6 cm

 The fracture permeability is 150 D

 The matrix permeability is 0.15 D

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

50

In order to match the results of simulation with the observed results of tracer

tests, parameters of the model had to be tuned. As observed above, the model is

particularly sensitive to the change in the properties of the main fracture set (on-

set fractures). However, describing the whole fracture set by the same parameters

(i.e., assuming that all on-trend fractures have the same width, same permeability,

and that spacing does not change all over the area) is not justified from geological

point of view and does not give enough flexibility to achieve the history match.

On the other hand, if we take properties of each individual fracture (location,

permeability, width) and use all of them as history matching parameters, the

number of simulation runs becomes enormously high. In this exercise, we

selected an area just in the middle of the Midale CO2 flood pilot area and created

eleven rectangular blocks as shown in Figure 3-9. Blocks were aligned along the

trend. While generating the fracture network, we populated each block with on-

trend fractures, using a separate set of parameters to describe the fractures in each

block. Off-trend fractures were added to increase connectivity. This way, we

gained some flexibility but the number of history matching parameters was still at

practically executable level. To decrease the number of parameters even more, we

used the results of the sensitivity analysis given above and chose only those

parameters, which proved to affect the results of simulation significantly. For

example, if we used only on-trend fracture widths for each block and Ch, we

would have just twelve parameters to vary.

One of the advantages of the RWPT algorithm is that computational time for

each run is relatively small (about 1 minute for the fracture network containing

400 fractures). This makes the algorithm a suitable candidate for computer-aided

history matching. Several optimization algorithms can be used to vary parameters

automatically. In this study, we used the Genetic and Simulated annealing

Algorithms inbuilt in the MATLAB environment. Widths, permeabilities, and

spacing for on-trend fractures within each block were used as history matching

parameters. Results are shown in Figures 3-10 through 3-13.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

51

3.5.2 History matching results

As seen in Figures 3-10 through 3-13, the simulation results matched

reasonably well with the observed data for many of the well pairs though some

exceptions exist. As we discussed earlier, the results of simulation are extremely

sensitive to the fracture network geometry and therefore, the exact match would

require a very fine tuning (playing with location and property for every single

fracture). Achieving the perfect history match is not the purpose of the study;

therefore we confined ourselves to the quick computer-aided history match, which

was able to describe connectivity of the reservoir on the qualitative level (i.e.

fractures which are connected according to the tracer test results are connected in

the model). One may observe that even the results obtained by the quick

computer-aided history matching technique described the connectivity of the

reservoir (or the fracture network) reasonably well. To illustrate this more clearly,

we compared the connectivity of the reservoir based on the real tracer test

breakthrough times (data given by Bogatkov and Babadagli 2010) with the

connectivity based on the results of RWPT (the present study) and dual porosity

(DP) simulations (as given in Bogatkov 2008 and Bogatkov and Babadagli 2010).

The results are shown in Figure 3-14. The connecting lines between the wells

indicate the degree of connectivity, i.e., thicker lines correspond to shorter

breakthrough times. The main observation out of this analysis is that the

breakthrough times are similar for all directions in the DP model (Figure 3-14c),

and it accounts for many other connections indicated by no breakthrough (S3-I3,

S1-I4, S2-I1). The RWPT results showed variable breakthrough times in different

directions (Figure 3-14b) represented by different thicknesses of the lines as

similar to the field observations (Figure 3-14a). This implies that the degree of

connectivity in all directions was captured even if the breakthrough times were

not estimated precisely.

To further analyze the breakthrough times between each injector-producer

pair, the breakthrough times obtained from the field test, DP and RWPT modeling

are illustrated in Figures 3-15 through 3-18. Only one case of on-trend well pair

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

52

field data showed good agreement with both the DP and RWPT models: I1-S3. In

other on-trend cases, the RWPT models showed much better agreement with the

field data. The RWPT approach was more successful in estimating the

breakthrough times for the off-trend fractures (I1-S1, I2-S1, I3-S1, I4-S1). Out of

sixteen well pair comparisons given in Figure 11, only two cases presented better

results with the DP model: I2-S2, I4-S3. Both are well pairs in the off-trend

direction (NW-SE). These observations verify that the RWPT model is more

successful in determining the breakthrough time compared to the DP model in

addition to the connectivity of the network.

3.6 Results and discussion

An RWPT algorithm to simulate tracer transport (single phase flow) in highly

fractured media was introduced, implemented and tested on a field case. A few

observations were critical and need to be highlighted:

1) The algorithm allows for the modeling of each fracture separately,

without averaging fracture properties. Hence, we do not lose the

details of the fracture network geometry and properties. However, in

most cases, information about the location and properties of each and

every fracture is not available. Then, we have to use stochastically

generated fractures, which bring additional uncertainty.

2) The suggested model has a large number of history matching

parameters (properties and location of each fracture). This gives an

opportunity to fine-tune the model even though manual history

matching may take unreasonable time. On the other hand, the

comparatively short computational time of each simulation run makes

the model suitable for computer-aided history matching.

3) One of the limitations of the described algorithm is that it requires

constant injection and production rates. However, the algorithm can be

modified for variable rates. The idea of modification is based on the

fact that resolution of production and injection data is normally much

lower than tracer concentration data resolution (months vs. hours). In

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

53

the modified model, pressures can be calculated for all existing

combinations of production and injection rates (assuming that the

number of combinations is not too high), and several versions of graph

properties can be created accordingly. Now, while tracking the particle

at each particular step, we can check the injection and production rates

and use a corresponding set of graph properties for calculations at this

step. Example of using RWPT algorithm for the case of non-constant

rates is given in Chapter 4.

4) One can observe that RWPT computational times are small for smaller

number of fractures, but increases exponentially when the number of

fractures is increased (Table 3-2, Figure 3-19). The Eclipse run takes

the major part of the total calculation (Table 3-2). One of the reasons is

that the Eclipse calculation does not only solve the equation for the

pressure field, but also calculates the fluid flux, which can cause

convergence problem. We expect that replacing pressure field

calculation in Eclipse by a piece of C++ code may significantly

decrease the total computational time. Additional reason to eliminate

using Eclipse is its grid size limitations.

3.7 Conclusions

1) The Random Walk Particle Tracking (RWPT) algorithm was applied

for the case of flow in naturally fractured reservoirs and tested on a

field case through a history match exercise. Then, using the same data,

a sensitivity analysis was performed.

2) It was observed that the model is very sensitive to the geometry of the

fracture network. Out of 11 different fracture networks and reservoir

properties, the widths of on-trend fractures and Ch (the factor that

represents fracture network connectivity) were found to be the most

influencing ones.

3) The algorithm has a number of limitations such as excessive history

matching parameters and the requirement of constant rates. However,

overcoming these limitations is a possibility and suggestions were

made for this.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

54

4) A computer-aided history matching technique was used to tune the

model. The resulting model represents the connectivity of the reservoir

better than that of the DP model, especially for the direction in the off-

trend fractures.

5) The approach and algorithm introduced in this paper showed that

fracture networks generated can be calibrated through RWPT

modeling more reliably than continuum models if tracer data are

available.

3.8 Tables

Table 3-1. Relative effect of change in parameters on the results for well pairs I1-S1 and

I2-S1.

Table 3-2. Computational times for different fracture networks.

Number of

fractures
Number of grid blocks Total computational

time, seconds

Computational time for

pressure calculations,

seconds

90 130*173*13=292370 19 15

120 196*209*13=532532 36 30

160 222*295*13=851370 58 48

260 436*398*13=2255864 189 159

300 506*452*13=2973256 263 218

340 558*499*13=3619746 507 451

396 668*592*13=5140928 1193 1118

parameter name units

minimum

value for

parameter

maximum

value for

parameter

minimum

change in result

(for wells I1-S1)

maximum

change in result

(for wells I1-S1)

minimum

change in result

(for wells I2-S1)

maximum

change in result

(for wells I2-S1)

Spacing between

on-trend fractures m 0.3 0.4 103027 283033 22737 116718

C h 5 30 173168 596976 74729 215402

Fracture permeability

for on-trend fractures mD 80000 230000 30030 137268 14161 81433

Fracture permeability

for off-trend fractures mD 80000 230000 139735 424273 43853 129002

Matrix permeability mD 40 150 116442 315276 41886 76479

Average length for

on-trend fractures m 180 230 74218 199933 22304 74306

Average length for

off-trend fractures m 40 90 117234 262717 38796 165157

Width for on-trend

fractures m 0.002 0.05 517737 739326 115573 265505

Width for off-trend

fractures m 0.002 0.05 96107 359702 33679 168681

Dispersion coefficient m
2
/sec 0 0.0001 177406 296512 40888 113750

Trend orientation rad -0.02 0.08 53864 196584 68593 177338

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

55

3.9 Figures

Figure 3-1. Fracture network represented by classical simulation grid.

Only high permeable (fracture) cells are shown. Color shows permeability of each fracture.

Figure 3-2. Graph created based on fracture network.

Vertexes are added at fracture ends and fracture intersections (green spheres). Edges are

added between connected vertexes (yellow lines). Only this graph is used for further

simulation.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

56

Figure 3-3. Movement of the Walker through the graph.

Walker (particle) started at vertex 1 (injection well), then went to vertex 3 and then to vertex

5. Now he ‘decides’ which way to go. He will not go to vertex 3 or 6, because the pressure

gradient is negative (indicated by arrow direction), and his probability to go to vertexes 4, 8

or 9 is proportional to the flow rate long those edges.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

57

Figure 3-4. Midale CO2 Flood Pilot configuration (After Bogatkov, 2008).

Figure 3-5. Simulation result vs. number of fractures.

The value in the y-axis indicates the difference between cumulative tracer production curves

for different stochastic realizations. Figure (a) shows result for injector I1 and producer S1;

Figure (b) shows result for injector I2 and producer S1.

(a) (b)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

58

Figure 3-6. Effect of on-trend fracture width.

Each color represents changing fracture width for one particular fracture network. All

fracture networks are described by same set of stochastic parameters. Figure (a) shows

result for injector I1 and producer S1; Figure (b) shows result for injector I2 and producer

S1.

Figure 3-7. Effect of parameters for injector I1 and producer S1.

Figure 3-8. Effect of parameters for injector I2 and producer S1.

(a) (b)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

59

Figure 3-9. Midale CO2 pilot area divided into blocks for modeling.

Rectangular blocks are to be populated by on-trend fractures. Off-trend fractures are shown

by grey vertical lines.

Figure 3-10. History match of tracer tests for injector I1.

Dots: observed tracer recovery; line: simulated tracer recovery.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

60

Figure 3-11. History match of tracer tests for injector I2.

Dots: observed tracer recovery; line: simulated tracer recovery.

Figure 3-12. History match of tracer tests for injector I3.

Dots: observed tracer recovery; line: simulated tracer recovery.

Immediate

breakthrough
No breakthrough

No breakthrough

No breakthrough

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

61

Figure 3-13. History match of tracer tests for injector I4.

Dots: observed tracer recovery; line: simulated tracer recovery.

Figure 3-14. Well connectivity analysis based on breakthrough time.

(a) Observed data (Bogatkov, 2008), (b) RWPT simulation (middle),

(c) DP model(Bogatkov, 2008). I: Injector, S: Producer, FS: Observation well.

No breakthrough

(a) (b) (c)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

62

Figure 3-15. Comparison of breakthrough times obtained through field test and two

different modeling approaches for injector I1.

Field data and results of DP modeling are is given by Bogatkov (2008).

Figure 3-16. Comparison of breakthrough times obtained through field test and two

different modeling approaches for injector I2.

Field data and results of DP modeling are is given by Bogatkov (2008).

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

63

Figure 3-17. Comparison of breakthrough times obtained through field test and two

different modeling approaches for injector I3.

Field data and results of DP modeling are is given by Bogatkov (2008).

Figure 3-18. Comparison of breakthrough times obtained through field test and two

different modeling approaches for injector I4.

Field data and results of DP modeling are is given by Bogatkov (2008).

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

64

Figure 3-19. Calculation time for different fracture networks.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

65

3.10 Bibliography

Beliveau, D., Payne, D.A. and Mundry, M. 1993. Waterflood and CO2 Flood of

the Fractured Midale Field, JPT 45 (9): 881–817.

Bogatkov, D. 2008. Integrated Modeling of Fracture Network System of the

Midale Field. MS Thesis, U. of Alberta, Edmonton, Alberta, Canada.

Bogatkov, D. and Babadagli, T. 2009a. Characterization of Fracture Network

System of the Midale Field, J. Can. Petr. Tech. 48(7): 30-39.

Bogatkov, D. and Babadagli, T. 2009b. Integrated Modeling of the Fractured

Carbonate Midale Field and Sensitivity Analysis through Experimental

Design, SPE Res. Eval. and Eng. 12(6): 951-962.

Bogatkov, D. and Babadagli, T. 2010. Fracture Network Modeling Conditioned to

Pressure Transient and Tracer Test Dynamic Data, J. Petr. Sci. and Eng.

75(1-2): 154-167.

Bunge, R.J. 2000. Midale Reservoir Structure Characterization Using Integrated

Well and Seismic Data, Weyburn Field, Saskatchewan. MS Thesis, Colorado

School of Mines, Golden, Colorado.

Delay, F., Ackerer, P. and Danquigny, C. 2005. Simulating Solute Transport in

Porous or Fractured Formations Using Random Walk Particle Tracking: a

Review. Vadose Zone Journal 4(2):360–379.

Fischer, B.F. 1994. Fracture Analysis: Midale Field, South-eastern Saskatchewan.

Calgary Research Centre, Shell Canada Limited.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Field scale modeling
of tracer injection in naturally fractured reservoirs using the Random Walk Particle Tracking.”

66

Lavoie, R.G.J. 1987. Evaluation of Inter-Well Tracer Tests Relating to CO2

Miscible Flooding in Midale. Calgary Research Centre, Shell Canada Limited.

Mundry, M. U. 1989. A Petrophysical and Geological Engineering Study, Midale

Unit, Saskatchewan. Implications for Unit Development. Vol. 1,

CAOR.89.055. Calgary Research Centre, Shell Canada Limited.

Salamon, P., Fernàndez-Garcia, D. and Jaime Gómez-Hernández, J.J. 2006. A

Review and Numerical Assessment of the Random Walk Particle Tracking

Method. Journal of Contaminant Hydrology 87: 277–305.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

67

4. RWPT simulation of the Midale pilot area CO2 flooding

4.1 Overview

In the last few decades, CO2 emissions to the atmosphere became a major

environmental concern. There are a number of approaches used to reduce their

negative environmental impact, and one of them is to sequester CO2 into

underground reservoirs.

The other case where CO2 is injected into underground reservoirs is enhanced

oil recovery (EOR). Pressure in many oil reservoirs is high enough for CO2 to

become miscible with the reservoir oil. This results in the reduction of oil

viscosity and water-oil interfacial tension; thereby, oil left after primary

production can be recovered (Klins 1984; Ravagnani et al. 2009).

Although CO2 injections for EOR purposes have been practiced for more than

40 years, they have shown their potential as a means of sequestration very

recently (Huo and Gong 2010; Plasynski and Damiani 2008). One of the technical

advantages of using oil and gas reservoirs for sequestration purposes is their

sealing properties. If hydrocarbons remained trapped in the reservoir for

thousands of years, we can expect not to have CO2 migration through the cap rock

to the surface, as long as rock integrity is not damaged while sequestering.

Naturally fractured reservoirs (NFR) are ideal candidates for sequestration due

to the high injectivity and storage capability of the matrix (Trivedi and Babadagli

2008; 2009). On the other hand, oil recovery in a great portion of this type of

reservoirs is very low compared to conventional oil reservoirs because a

significant amount of oil in the matrix is bypassed. Hence, the NFRs are good

candidates for CO2 flooding from an oil production point of view as well and

interestingly, it turned out to be one of the most commonly applied EOR method

in NFRs (Schechter 2005). However, a highly conductive fracture network

involves additional risks, such as early CO2 breakthrough or leakage through the

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

68

wellbore. Therefore, it is critical to accurately model miscible CO2 flow in

fractured media before any application of CO2 flooding or sequestration.

In this chapter, we present modification of the Random Walk Particle

Tracking (RWPT) technique to simulate fully miscible CO2 injection, including

matrix-fracture interaction, in naturally fractured oil reservoirs.

The fracture network obtained and calibrated against tracer test data (Chapter

3) was used for modeling. We introduced additional parameters required to adapt

the model for CO2 flooding case and investigated the effect of these parameters

on the performance.

In addition, we performed a history match study to reproduce the observed

CO2 production rate and discussed the possibility of using the same technique to

simulate CO2 sequestration in naturally fractured reservoirs while injecting it for

oil recovery.

The simplifications used in the modeling and the limitations of the suggested

technique are described in this chapter as well.

4.2 Statement of the problem and solution methodology

Field scale modeling of miscible CO2 flow in a naturally fractured reservoir is

a challenging task because of the fact that representing the real physics (including

matrix-fracture interaction, diffusion and dispersion, interaction between phases,

change in fluid properties, etc.) mathematically on complex fracture network

structures (a large number of fractures with varying geometrical and physical

properties and a highly heterogeneous matrix) is rather difficult.

Conventional ways for that kind of simulation involve significant

simplification in the media description, while the physics of the process is

captured rather elaborately. For example, using dual continuum compositional

modeling in commercial simulation allows describing various physical aspects of

the process such as change in fluid composition, fluid diffusion into the matrix,

etc. However, the fracture network in this case is represented by a uniform

orthogonal grid resulting in poor representation of reservoir heterogeneity and,

more importantly, connectivity.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

69

In this study, we approached the problem in a different way and used a

relatively simplified description of the fluid flow itself, while the description of

the media (naturally fractured reservoir) remained very detailed. Each fracture

was modeled separately, having its own geometrical and physical properties, so

that fracture network connectivity information is preserved. We considered a fully

miscible case in which oil in the matrix and fracture mixes with CO2 flowing in

fractures at first contact, as the given pressure and temperature in the reservoir is

suitable for this.

In Chapter 3 we introduced a non-classical technique for field scale modeling

of naturally fractured reservoirs. The technique known as Random Walk Particle

Tracking (RWPT) was applied to model one phase fluid flow in fractured porous

media. The main advantage of the suggested algorithm is that each fracture can be

modeled individually, which prevents the loss of information about the fracture

network connectivity. At the same time, because the physics of the flow is

described in a simplified way, simulation requires reasonable computational time.

In previous chapter we generated a discrete fracture network for the Midale

CO2 pilot area based on known geological data and calibrated it against the tracer

test data using RWPT. In this chapter we modify the technique to simulate the

miscible CO2 flooding on this network, adding the matrix effect. Results of

simulation were compared with results from actual CO2 flooding and history

matching exercise was performed.

Additionally, we investigated the effect of different parameters on the result of

simulation.

4.3 Algorithm description

The algorithm description summarized below is similar to the algorithm given

in Chapter 3, but includes some modifications to capture certain CO2 flooding

features as well as the matrix-fracture interaction.

To be able to simulate CO2 injection in a highly fractured reservoir within a

reasonable computational time, we modeled the fluid flow in a simplified way. To

justify these simplifications, we have to make the following assumptions:

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

70

1) Interaction between phases can be neglected.

2) Each fracture can be represented by a sub vertical rectangle.

3) Flooding consists of several periods, and production and injection rates

are constant within each period.

The example selected for simulation is the CO2 pilot test area in the Midale oil

field in Canada. The following characteristics of this project show that the above

assumptions are valid:

1) CO2 flooding was performed at fully miscible conditions as is in the

field application (Beliveau et al. 1993, Malik et al. 2006). Hence, it

can be treated as a one-phase flow. Note that at a later stage of the

project, CO2 flooding was followed by water injection. For this stage,

we used a constant permeability multiplier to model decreasing

effective permeability due to interaction between the phases.

2) If a fracture has a complicated geometry, we can always represent it by

several rectangles joined together.

3) CO2 flooding in the Midale field consisted of 6 periods, and injection

and production rates were nearly constant within each period

(Table 4-1).

Modeling CO2 flooding with Random Walk - Particle Tracking (RW-PT)

consists of five steps:

1) Fracture network generation,

2) Calculation of pressure field for each constant injection rate period,

3) Conversion of fracture network to a graph,

4) Simulation of CO2 flooding using created graph,

5) Comparison of the simulated and observed results, and change of

uncertain parameters and/or the fracture network accordingly for the

history match.

We describe each step in detail below.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

71

STEP 1: Fracture network generation

A discrete fracture network can be generated using the available geological

information, which includes deterministic information (the size and location of

major faults and fractures) as well as stochastic information (the existence and

direction of the trend, average spacing between fractures, average length and

width of fracture, etc.). For the case of RWPT modeling, each fracture is defined

as a rectangle and has certain width and permeability. In order to simulate the

injection and production, fractures passing through wells should be added.

In this study we used stochastically generated fracture networks for sensitivity

analysis, and for the history matching exercise, we used the fracture network from

a portion of the Midale field, which was obtained and calibrated against tracer test

results in Chapter 3.

STEP 2: Calculation of pressure field for each constant injection rate period

After we introduce the fracture network, the next step is to calculate the

pressure at each point by solving Darcy‟s equation numerically. First, we created

a grid in which each fracture from the earlier generated network was represented

by thin blocks of high permeable cells; the width and permeability of each

fracture inherited from the DFN (Figure 4-1).

The next step was to introduce the wells and to run the simulation (ECLIPSE

was used in this particular study). This simulation is only used to find the pressure

field. Therefore, we can use just one phase (water) and keep the total reservoir

volumes of the produced and injected fluid same, as was done in the field. For

example, in the case of the Midale CO2 flooding during the first period

(Table 5-1), they injected 22900 m
3
 of CO2 (reservoir conditions), and produced

1150 m
3
 of oil, 4150 m

3
 of water, 15220 m

3
 of CO2 and 1025 m

3
 of gas (all in

reservoir conditions). Thus, the total produced volume during this period was

21545 m
3
. To find the pressure field for that period, we simply modeled water

injection and production with constant rates so that at reservoir conditions, the

total injected volume is 22900 m
3
 and the total produced volume is 21545 m

3
.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

72

Obviously, if the DFN contains many fractures, the simulation model will

have a large number of cells which results in enormous computational time.

However, because the model had only one phase and we only had to simulate

several time steps (one for each constant rate period; in the case of Midale CO2

flooding there will be six time steps), in practice, the computational times were

not remarkably high.

STEP 3: Conversion of fracture network to a graph

The end of each fracture and all fracture intersections should be represented

by vertexes and we started with creating a set of vertexes. To create the edges of a

graph, we added an edge between those vertexes, which were connected by a

fracture (fracture edges). To introduce flow through the matrix, we also took a

circle of a certain radius around each vertex and added edges between the central

vertex and each other vertex within the circle (matrix edges). The radius of the

circle (Rad) is the uncertain parameter. Figure 4-2 shows the way the fracture

network is represented as a graph. Figure 4-3 illustrates the vertexes connected

by fracture and matrix edges.

The next step is to assign certain properties to the vertexes and edges. The

procedure is similar to the one described in Chapter 3, but certain modifications

for CO2 flooding was introduced:

1) Each vertex: Indicate if it belongs to any well,

2) Pressure value (P) for each vertex at each simulation period: use the

result of the classical simulation from STEP 2,

3) Obtain the pressure potential for each vertex at each simulation period

using gdP  where P is pressure, ρ is density of water, and d is

depth of the vertex,

4) Define the length for each edge (L) (it is the distance between two

corresponding vertexes),

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

73

5) Define the width and height for each fracture edge (W and h): we

defined width and height for each fracture in STEP 1; fracture edges

inherit these properties from the corresponding fractures.

6) Calculate the crossection area for each fracture edge using: A=Wh,

7) Effective crossection area for each matrix edge (Ae): there is no way to

define the effective crossection area; therefore, it is used as the

uncertain parameter. Initially, we assign it any feasible value and then

change it during the history matching process.

8) Assign the permeability for each edge (k): the permeability of each

fracture was defined in STEP 1; fracture edges inherit permeability

from the corresponding fractures.

9) Calculate the pressure gradient for each edge: if the edge connects

vertex x with potential x and vertex y with potential y and the

distance between vertexes is L, then the pressure gradient will be

Lyxxy /)( ,

10) Calculate the velocity for each edge: vxy is undefined if xy is

negative (there is no flow from x to y), and in the case of positive

xy velocity is calculated from Darcy‟s Law: mxyxy p
k

v 


where k is the permeability of the edge, µ is the viscosity of the water,

and pm is a multiplier for permeability, which takes into account that

flow velocity can decrease because of the interaction between phases

or friction against the fracture walls. To increase model flexibility, the

values of pm can be different for on-trend and off-trend fracture edges.

Additionally, we can change the pm depending on the period of

flooding. During CO2 flooding, the pm is close to one because the

flooding is conducted at miscible conditions. However, once water

post-flood is started it makes sense to decrease the pm to represent

phase interaction.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

74

STEP 4: Simulation of CO2 flooding using created graph

The flow of injected CO2 is represented by the movement of a large number of

particles along the graph edges. Each particle represents a certain volume of CO2

(in reservoir conditions). Hence, if we know the CO2 injection rate, we can

calculate how many particles (or how much CO2) are injected every second.

As CO2 is injected at fully miscible conditions, its concentration is governed

by the Advection Dispersion Equation (ADE):

  


























x

txC
txD

x
txCtxv

xt

txC),(
),(),(),(

),(
 (4-1)

The flow described by Eq. (4-1) can be simulated by a large number of

particles, moving according to the following rule:

tDztvtxttx  2)()((4-2)

Here, x is a particle location, v is a velocity of the flow, z is a random number

obtained from normal distribution with a mean of 0 and a standard deviation of 1,

and D is a dispersion coefficient. Delay et al. (2005) and Salamon et al. (2006)

provided details for this step of the calculations.

As we are tracking movement of the particle along the edges of the graph, we

deal with one-dimensional flow at each step (x in the above equation is a 1-D

coordinate).

If at time t the particle was at vertex x, and then moved to vertex y, Eq. (2)

becomes:

tDztvL xyxy  2 (4-3)

Lxy and vxy are the known properties of the edge connecting x and y. Hence, we

can solve Eq. (4-3) to find how much time the particle takes to go from vertex x to

vertex y:

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

75

2

2

2

22 














xy

xy

xyxy
v

L

v

Dz

v

Dz
t (4-4)

To simulate the CO2 injection, we performed the following steps adapted from

the tracer test simulation algorithm given in Chapter 3:

1) Assign a certain volume to each particle. Based on the injection period

(tti) and injection rate, calculate how many particles are needed to

represent injection.

Assign a starting time tj0 to each particle j, in such a way that the

starting times of all the N particles are distributed uniformly within the

injection period: t00=0, t10=(tti/N), t20=2(tti/N), t30=3(tti/N),…

tN0=N(tti/N).

2) Release each particle at the injection well, and track its way through

the reservoir:

a. Initially particle j had a time tj0 and a vertex corresponding to

the injection well.

b. In each step, the particle moves from the current vertex to the

next one, following one of the edges. The probability of the

particle moving along the edge is equal to zero if the pressure

potential of the edge is negative, and is proportional to the rate

if it is positive:

Probxy~rate=(velocity)×(crossection area)=vxyA

where vxy and A are the properties of the edge which were

calculated at the STEP 3.

c. The particle moves to the next vertex as described in (b). Then,

its time is defined as tj1=tj0+Δt. Δt is calculated using Eq. (4-4).

d. Continue steps (b) and (c) until the particle reaches the

production well or „dead end‟. The dead ends are the vertexes,

which do not have any edges with a positive pressure gradient.

If the particle reached the production well, record which well

and at what time.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

76

3) When all particles are released and tracked, we can convert the

recorded data (the number of produced particles against time) to the

production rate profile (CO2 production rate vs. time) to analyse the

results and compare them with the observed data.

STEP 5: Comparison of the simulated and observed results, and change

uncertain parameters and/or fracture network accordingly for history

match.

It is expected that the first simulation results will not match the observed data.

Therefore, the sensitivity of each parameter on the results needs to be analyzed

first. This will lead to a decision about how these parameters can be tuned for a

desirable history match as described in the next section.

4.4 Effect of parameters

To analyze the sensitivity of the algorithm to different parameters, we used

the fracture network model of the Midale CO2 pilot area defined earlier and the

CO2 flooding production and injection data reported by Baxter (1990). The

fracture network of the Midale area is characterized by the existence of two

distinct sets of fractures: (1) On-trend (main) fractures (SW-NE) and (2) off-trend

(secondary) fractures (SE-NW). The on-trend fractures dominate the system; their

lengths and density are higher than those of the off-trend fractures. The off-trend

fractures are perpendicular to the trend direction. The parameters tested and the

responses of the simulations are presented in this section.

As mentioned earlier, the DFN is described by a number of stochastic

parameters such as length distribution for on-trend and off-trend fractures,

average spacing between fractures (for the main and secondary set), as well as

distributions of fracture widths and permeabilities. Based on those stochastic

parameters, we created a fracture network. Because the process involves

randomness, the same set of parameters can result in many different fracture

network realizations.

To perform a classical sensitivity analysis of one certain parameter, we have

to fix all of the other parameters and vary the selected parameter. Then, the

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

77

relative effect of each parameter on the transport process is clarified. To ensure

that the observed effects do not only take place for one stochastic realization, we

ran sensitivity analyses for five different stochastic realizations. Figures 4-4

through 4-21 illustrate the effects of different parameters. For each parameter, top

and middle images illustrate its effect on CO2 recovery and CO2 breakthrough

time, respectively. The bottom image compares CO2 production rate curves for

two values of the selected parameter.

An analysis of the relative effect of each parameter on CO2 recovery and the

breakthrough time is given below.

4.4.1 Effect of spacing between on-trend fractures

Figure 4-4 illustrates the effect of average spacing between on-trend fractures.

When spacing between fractures increases, the number of fractures decreases,

which results in a decreasing recovery factor (top image); also decreasing the

number of fractures results in an earlier and sharper breakthrough (middle and

bottom images).

4.4.2 Effect of Ch

The parameter Ch represents fracture network connectivity and is given by the

following relationship:

 Ch = (spacing between off-trend fractures)/(spacing between on-trend fractures)

Increasing Ch means increasing the spacing between the off-trend fractures that

yield a decreasing number of off-trend fractures. This results in a slightly shorter

breakthrough time (Figure 4-5, middle image). However, the effect of Ch on the

CO2 recovery factor is not very significant and may vary from case to case as seen

in the top image of Figure 4-5.

4.4.3 Effect of fracture lengths

Figures 4-6 and 4-7 illustrate the effect of on-trend and off-trend fracture

lengths, respectively. The lengths of on-trend fractures do not affect recovery or

breakthrough time remarkably (Figure 4-6). The reason is that if the number of

on-trend fractures is high, even if each of them is small, the fracture network

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

78

connectivity remains good. However, the lengths of off-trend fractures affect the

CO2 recovery significantly (Figure 4-7). Longer off-trend fractures connect more

on-trend fractures with each other, yielding an increase in overall reservoir

connectivity. This in turn results in higher recovery.

4.4.4 Effect of matrix permeability

As shown in Figure 4-8, higher matrix permeability will cause the larger part

of the flow to go through the matrix, and as flow through the matrix is slower than

flow through the fractures, the recovery factor decreases (Figure 4-8, top image).

This is very crucial in terms of CO2 sequestration. Increasing matrix permeability

results in more CO2 storage (due to strengthened CO2 transfer by diffusion into

the matrix) in this medium. As the breakthrough is related to the fracture network

characteristics, the breakthrough time shows almost no change with changing

matrix permeability (middle and bottom image in Figure 4-8).

4.4.5 Effect of fracture permeabilities

Effect of fracture permeabilities is illustrated in Figures 4-9 and 4-10 for on-

and off-trend fractures, respectively. Increasing fracture permeability results in an

increase in recovery for both on-trend and off-trend fractures. However, off-trend

permeability plays a more significant role (compare bottom images of Figures 4-9

and 4-10) in this process. As can also be observed in Figure 3-4, the flow between

the injection and production wells is not aligned with trend direction. Thus, the

properties of the off-trend fractures become more critical on recovery. No

remarkable change in breakthrough times was observed with changing fracture

permeability for both on- and off-trend fractures (middle images of figures 4-9

and 4-10).

4.4.6 Effect of fracture widths

Effect of fracture widths is shown in Figures 4-11 and 4-12 for on- and off-

trend fractures, respectively. An increase of on-trend fracture widths causes a

decrease in flow velocity, which delays the breakthrough and decreases the

recovery at early stages. The off-trend fracture widths do not affect the simulation

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

79

results in the same fashion. A possible reason is that the total length of the off-

trend fractures (or density) is much smaller than that of the on-trend fractures.

4.4.7 Effect of matrix effective crossection area (Ae) and Rad

As mentioned in the algorithm description section, the parameter Rad controls

how far a particle can move through the matrix (Figure 4-3). Increasing Ae, as

well as increasing Rad, results in a larger portion of the flow going through the

matrix. This causes a decrease in CO2 recovery, which can be seen in Figures

4-13 and 4-14. More CO2 storage in the matrix also has a positive effect on CO2

sequestration.

4.4.8 Effect of fracture permeability multipliers

Permeability multipliers were used to represent the decrease in permeability

due to the interaction between phases or friction against the fracture wall (see

algorithm description). As one can expect, increasing the fracture permeability

multiplier (for on-trend fractures and for off-trend fractures as well) results in a

CO2 recovery increase (Figures 4-15 and 4-16).

4.4.9 Effect of dispersion coefficient

The matrix dispersion coefficient almost does not affect the results of

simulations (figures are not included). An increase in the fracture dispersion

coefficient results in a smaller CO2 recovery and a smoother rate profile

(Figure 4-17).

4.4.10 Effect of CO2 and water injection rates and durations

In field applications, certain parameters can be controlled by people while

others naturally exist and are unchangeable. Engineers make decisions on

development strategies based on these unchangeable field characteristics, and play

with controllable parameters such as the rate and type of fluid to be injected and

the duration of the process. To investigate the effect of these parameters on the

simulation process, we considered the following injection scheme. First, we

injected CO2 for tco2 days with injection rate qco2. The CO2 injection was followed

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

80

by a period of water injection with injection rate qw and duration of tw days. The

effect of qco2, tco2, qw and tw is shown in Figures 4-18 through 4-21.

Increasing the CO2 injection rate resulted in an earlier breakthrough; however,

the CO2 recovery factor did not change significantly (Figure 4-18). The almost

constant CO2 recovery in the top image of Figure 4-18 was caused by the

algorithm limitation. Note that fracture and matrix storage capacity was used

while calculating pressure distribution but this property was not taken into

account in further calculations. Each particle travels through the network until it

reaches either a production well or a „dead end‟. Particles which reach production

wells contribute to the simulated CO2 production, while particles which end up in

„dead ends‟ represent the sequestrated CO2. However, in the model, each „dead

end‟ can contain as many particles as needed, while in reality its capacity is

limited by the pore volume of the surrounding fractures and the matrix. For that

reason, the RWPT model is applicable only in the cases when injected volumes

are small, compared to the pore volume of the reservoir. In other words, the

RWPT model works well for predicting breakthrough times and CO2 rate at the

early stage of CO2 injection, but it needs further developments for the late stages

of CO2 injection. Based on these observations, one may conclude that the RWPT

method is useful for early stage development and reservoir characterization

purposes (using any injection data, i.e., tracers, water, CO2). Overcoming this

limitation is a subject of future work.

Increasing the CO2 injection duration slightly increases the CO2 recovery

factor (Figure 4-19). As discussed above, an increase in recovery is

underestimated. In reality, after a certain point of injection, the reservoir cannot

take any more CO2, and almost all injected CO2 is produced, and the CO2

recovery factor increases significantly.

A higher water injection rate results in faster CO2 recovery (Figure 4-20,

bottom image). However, it does not affect the recovery factor itself (top image of

Figure 4-20). Also, water injection parameters do not effect CO2 breakthrough

times because CO2 breaks through before the water flood was started. Increasing

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

81

water injection duration results in a higher CO2 recovery factor (Figure 4-21). A

longer water post flood is more efficient in terms of oil recovery, but less

effective in terms of CO2 sequestration.

4.4.11 Analysis of the results

Finally, the data from Figures 4-4 through 4-21 are summarized in Table 4-2

and a comparative analysis was performed. For each parameter, we reported the

range within which this parameter was changed for the sensitivity analysis. For

each particular fracture network realization (the total number is five), we

calculated the spectrum, i.e., the maximum and minimum values, of CO2 recovery

factor and breakthrough time. The spectrum was different for different fracture

network realizations as seen in Figures 4-4 through 4-21. To have a general idea,

we report the minimum change in the CO2 recovery factor and the breakthrough

time (among five fracture network realizations) in one column and the maximum

change in values in the other column. The „relative importance‟ column indicates

how each parameter affects the CO2 recovery factor and breakthrough time. The

most critical parameters affecting the CO2 recovery are the on-trend fracture

widths, the on-trend and off-trend permeability multipliers and the dispersion

coefficient for fractures. Parameters affecting breakthrough time the most are the

on-trend fracture widths, and the on-trend and off-trend permeability multipliers.

Considering the relative importance of the weight of these parameters on the

process, one should pay attention to them in a reservoir characterization study to

be used in building the fracture network model.

4.5 History matching of the Midale CO2 flood pilot

To validate the described RWPT algorithm, we modeled CO2 flooding in the

Midale CO2 flood pilot area (the data is given in Baxter, 1990). As it is described

in Chapter 3 we performed a tracer test simulation for the same area; as a result,

we obtained a fracture network calibrated against the tracer test results. The pilot

area has four injecting and four producing wells (Figure 3-4), which gives sixteen

„injector-producer‟ well pairs. The tracer test modeling study included simulating

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

82

results for all sixteen well pairs. Therefore, the obtained fracture network

describes reservoir connectivity reasonably well. This validated network was used

to model CO2 flooding. Due to the unavailability of well-by-well production and

injection data for CO2 flooding, the history matching study was achieved using

the combined CO2 production rates of all producing wells.

The locations of the fractures remained the same as in the fracture network

calibrated against tracer test results, but the other parameters were altered to

achieve a history match. The following parameters were used as history matching

parameters:

1) Matrix permeability

2) Fracture permeability: theoretically each fracture has its own

permeability, but to have realistic number of parameters, we used just

one permeability value for all on-trend fractures and one permeability

value for all off-trend fractures

3) Fracture width: defined separately for on-trend and off-trend fractures.

4) Ae – effective crossection area for flow through the matrix

5) Rad – (this parameter was defined in the algorithm description section)

6) Permeability multipliers (different for on-trend and off-trend fractures)

7) Dispersion coefficients for fracture and for matrix

From a practical point of view, we desired to reduce the number of uncertain

parameters to make the history matching faster. As we discussed in the previous

section, an increase in matrix permeability, Ae or Rad affects the results of

simulation in a similar way (essentially, the larger part of the flow goes through

the matrix, which decreases CO2 recovery). Hence, for history matching purposes,

we can fix two out of these three parameters, and change only the remaining one.

Additionally, we can eliminate the matrix dispersion coefficient as it almost does

not affect the simulation results based on the observation in the previous section.

One of the advantages of the RWPT algorithm is that computational time for

each run is relatively small (about 1 minute for the fracture network containing

400 fractures). This makes the algorithm a suitable candidate for computer-aided

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

83

history matching. The number of optimization algorithms can be used to vary the

parameters automatically. In this study, we used Genetic and Simulated annealing

Algorithms inbuilt in the MATLAB environment. Matrix and fracture

permeabilities, widths of the fractures, Ae, fracture permeability multipliers and

the dispersion coefficient were used as history matching parameters. The best

match is shown in Figure 4-22.

As seen, the simulated results do not reproduce the observed data well even

though the trend was captured. One may assume that it is because the

optimization algorithm did not give the best possible combination of the values

for uncertain parameters. However, from the sensitivity analysis exercise

(Figures 4-4 through 4-17), we see that any change of uncertain parameters gives

a plateau type of profile during the first 500 days, while the observed data has two

major peaks (Figure 4-22). Thus, just the suggested tuning parameters are not

enough to reproduce the observed data.

We realized that the reason for the peaks in the observed CO2 production was

due to variable injection rates during CO2 flooding. For our modeling, we

approximated CO2 injection by a constant rate injection (in a way that the total

injected volume remains the same as in the actual case) and because of this

simplification, the simulation was not able to capture the peaks in CO2

production. The actual CO2 injection rate profile is shown in Figure 4-23. As

seen, the injection was not performed at a constant rate and was even interrupted

three times. Hence, substituting this injection profile by a constant injection rate

was too much of a simplification.

On the basis of this observation, we divided the CO2 injection period into

eight smaller sub-periods (shown as vertical lines in Figure 4-23) to perform more

detailed modeling. The algorithm was adjusted accordingly and we had to

calculate the pressure field separately for each sub-period. After we ran the

optimization for the new model (varying the same set of uncertain parameters as

before: fracture permeabilities and widths, matrix permeability, Ae, fracture

permeability multipliers and the dispersion coefficient), we were able to

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

84

reproduce the peaks in the CO2 production profile. The best history match with

the modified model is shown in Figure 4-24.

It is highly likely that we would be able to obtain an even better match if we

could divide the CO2 injection periods into smaller sub-periods. However,

increasing the number of sub-periods significantly increases the computational

time resulting in missing the main advantage of the RWPT algorithm. While

performing RWPT modeling, it is important to find a balance between calculation

accuracy and computational time. This modeling approach is more applicable to

the cases where injection and production history consists of just a few periods,

each of which has almost constant production and injection rates.

4.6 Summary and concluding remarks

The Random Walk Particle Tracking (RWPT) algorithm was modified for the

case of miscible CO2 injection in highly fractured reservoirs and tested on a field

case through a history match exercise. A sensitivity analysis was performed and

the effects of fifteen different parameters on CO2 recovery factor, breakthrough

time and the production rate profile were described. As opposed to conventional

modeling, where fluid flow is described in detail and the fracture network is

simplified, the RWPT algorithm used a simplified description of the flow, while

detailed fracture network characteristics were preserved. The fracture network,

obtained and calibrated against tracer tests (see Chapter 3), was used to model the

pilot CO2 flooding test in the Midale field. A computer-aided history matching

technique was used to tune the model. The resulting model reproduced the

observed data reasonably well.

A few observations in this study were thought to be critical and need to be

highlighted as follows:

1) The algorithm allows for the modeling of each fracture separately,

without averaging fracture properties. Hence, we do not lose the

details of the fracture network geometry and properties.

2) Physics of the miscible flooding is not captured in all of its

complexity. A number of phenomena, such as matrix-fracture

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

85

interaction, diffusion of CO2 into oil stored in the matrix, density

difference between CO2 and oil and interaction between different

phases are not modeled directly. Instead, scaling parameters are used

to mimic those effects.

3) The suggested model has a large number of history matching

parameters. This gives an opportunity to fine-tune the model even

though manual history matching may take unreasonable time. On the

other hand, a comparatively short computational time of each

simulation run makes the model suitable for computer-aided history

matching.

4) A sensitivity analysis for the RWPT model was performed. It was

shown that on-trend fracture widths, on-trend and off-trend

permeability multipliers and the dispersion coefficient for fractures

affected the CO2 recovery factor the most. The most influential

parameters affecting the breakthrough time were on-trend fracture

widths, and on-trend and off-trend permeability multipliers.

5) The RWPT algorithm is applicable for cases where injection and

production history can be represented by several periods of a sub-

constant injection and production rate. A larger number of periods

results in greater computational times.

6) The suggested simulation approach is applicable when injected

volumes are small compared to the pore volume of the reservoir. In

other words, the RWPT model works well for predicting breakthrough

times and CO2 rate at the early stage of CO2 injection, but is not

capable of describing the flow behavior at the late times. Therefore,

one has to be careful in using it for the analysis of very late stages of

CO2 sequestration applications. Based on these observations, one may

conclude that the RWPT method proposed in this paper is useful for

early stage development and reservoir characterization purposes (using

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

86

any injection data, i.e., tracers, water, CO2). Overcoming this

limitation is a subject of future work.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

87

4.7 Tables

Table 4-1. Stages of the CO2 flooding in the Midale pilot (Baxter 1990).

Table 4-2. Relative effects of each parameter on CO2 recovery factor and the breakthrough

time.

name start finish duration description

oil

produced

water

produced

CO2

produced

gas

produced

date date days rm3 rm3 rm3 rm3

CO2 flood 06/07/1986 05/08/1987 395 total CO2 injected - 22900 rm3 1150 4150 15220 1025

blowdown-1 05/08/1987 18/11/1987 105 production; no injection 570 1930 1980 260

shut-in period 18/11/1987 13/01/1988 56 all wells are shut

blowdown-2 13/01/1988 23/03/1988 70 production; no injection 320 1720 190 90

brine post-flood-1 23/03/1988 23/04/1988 31

water injection; rates are similar to

CO2 injection rates; no production

brine post-flood-2 23/04/1988 30/06/1988 68 water injection and production 280 7520 190 40

2320 15320 17580 1415Total:

parameter name units
minimum

value

maximum

value

minimum

change in RF

maximum

change in RF

relative

importance

minimum change

in BT time, days

maximum change

in BT time, days

relative

importance

Spacing between on-

trend fractures m 0.9 2.1 0.049226 0.103947 medium 24 45 medium

C h 3.8 5.4 0.017874 0.044465 low 14 20 medium

Average length for

on-trend fractures m 180 260 0.018094 0.030913 low 6 16 low

Average length for

off-trend fractures m 40 80 0.055013 0.102042 medium 8 22 low

Matrix permeability mD 35 75 0.05157 0.071202 medium 9 23 low

On-trend fracture

permeability mD 150000 350000 0.009669 0.031865 low 9 16 low

Off-trend fracture

permeability mD 150000 350000 0.072155 0.082191 medium 4 24 low

On-trend fracture

width m 0.01 0.05 0.20555 0.23866 high 44 76 high

Off-trend fracture

width m 0.01 0.05 0.066881 0.107683 medium 13 28 medium

A e m2
0.3 8.3 0.021464 0.05267 low 8 19 low

Rad m 5 9 0.013991 0.02498 low 5 22 low

On-trend p m 0.2 1 0.39784 0.433954 high 74 122 high

Off-trend p m 0.2 1 0.369272 0.426629 high 65 95 high

Dispersion

coefficient (fracture) m2/sec 0.00001 0.0001 0.172805 0.216025 high 16 40 medium

Dispersion

coefficient (matrix) m2/sec 0.00001 0.0001 0.004175 0.207601 low 5 22 low

q co2
rm3/day 70 190 0.007374 0.026321 low 17 23 medium

t co2 days 10 310 0.011797 0.046559 low 4 12 low

q w rm3/day 70 190 0.002613 0.008307 low 3 9 low

t w days 10 310 0.05423 0.075418 medium 2 5 low

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

88

4.8 Figures

Figure 4-1. Fracture network represented by a classical simulation grid.

Only high permeable (fracture) cells are shown. Color shows permeability of each fracture.

Figure 4-2. Graph created based on fracture network.

Vertexes are added at fracture ends and fracture intersections (green spheres). Edges are

added between connected vertexes (yellow lines). Only this graph is used for further

simulation.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

89

Figure 4-3. Fracture and matrix edges in the graph.

Yellow lines represent fractures; green spheres - vertexes of the graph. Vertexes may be

connected by fracture edges (red solid arrows) or by matrix edges (blue dashed arrows).

Rad

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

90

Figure 4-4. Effect of on-trend fracture

spacing.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – spacing between on-

trend fractures is 1.6 m; blue dotted line -

spacing between on-trend fractures is 1.2 m.

Other parameters do not change.

Figure 4-5. Effect of Ch.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – Ch = 5.4; blue dotted line -

Ch =3.8. Other parameters do not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

91

Figure 4-6. Effect of on-trend fracture

length.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – average length is

180 m; blue dotted line – average length is

260 m. Other parameters do not change.

Figure 4-7. Effect of off-trend fracture length.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – average length is 40 m;

blue dotted line – average length is 80 m.

Other parameters do not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

92

Figure 4-8. Effect of matrix permeability.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – matrix permeability

is 35 mD; blue dotted line – matrix

permeability is 75 mD. Other parameters do

not change.

Figure 4-9. Effect of on-trend fracture

permeability.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line –permeability is 150000 mD;

blue dotted line – permeability is 350000 mD.

Other parameters do not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

93

Figure 4-10. Effect of off-trend fracture

permeability.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line –permeability is

150000 mD; blue dotted line – permeability

is 350000 mD. Other parameters do not

change.

Figure 4-11. Effect of on-trend fracture

width.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – width is 1 cm; blue dotted

line – widths is 5 cm. Other parameters do

not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

94

Figure 4-12. Effect of off-trend fracture

width.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – width is 1 cm; blue

dotted line – widths is 5 cm. Other

parameters do not change.

Figure 4-13. Effect of matrix effective

crossection area

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – Ae=0.3 m
2
; blue dotted line

– Ae=8.3 m
2
. Other parameters do not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

95

Figure 4-14. Effect of Rad.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – Rad=5 m; blue

dotted line – Rad=9 m. Other parameters

do not change.

Figure 4-15. Effect of pm for on-trend fracture

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – pm=0.6; blue dotted line –

pm=1. Other parameters do not change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

96

Figure 4-16. Effect of pm for off-trend

fractures.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – pm=0.6; blue dotted

line – pm=1. Other parameters do not

change.

Figure 4-17. Effect of fracture dispersion

coefficient.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line - D=10
-5

m
2
/sec; blue dotted

line – D=10
-4

m
2
/sec. Other parameters do not

change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

97

Figure 4-18. Effect of CO2 injection rate.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – qco2=70 m
3
/day; blue

dotted line – qco2=190 m
3
/day. Other

parameters do not change.

Figure 4-19. Effect of CO2 injection duration.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – tco2= 60 days; blue dotted

line – tco2= 310 days. Other parameters do not

change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

98

Figure 4-20. Effect of water injection rate.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network

realization.)

Bottom image: effect on CO2 production

rate. Green solid line – qw=70 m
3
/day; blue

dotted line – qw=190 m
3
/day. Other

parameters do not change.

Figure 4-21. Effect of water injection

duration.

Top image: effect on CO2 recovery factor.

Middle image: effect on breakthrough time.

(Each color represents changing fracture

spacing for one fracture network realization.)

Bottom image: effect on CO2 production rate.

Green solid line – tw= 60 days; blue dotted

line – tw= 310 days. Other parameters do not

change.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

99

Figure 4-22. Best history match for the model, where CO2 injection is represented by one

period of injection at constant rate.

Green dots – observed data; blue solid line – simulated data.

Figure 4-23. CO2 injection rate (re-produced from Baxter, 1990).

CO2 injection period is divided into 8 smaller sub-periods.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

100

Figure 4-24. Best history match for the model, where CO2 injection is represented by eight

periods of injection at constant rate.

Dots: observed data; solid line: simulated data.

4.9 Bibliography

Baxter, W.A. 1990. Midale CO2 Flood Pilot History and Results. Oil

Development Division Enhanced Oil recovery, Shell Canada Limited.

Beliveau, D., Payne, D.A., Mundry, M. 1993. Waterflood and CO2 Flood of the

Fractured Midale Field. JPT 45 (9): 881–817.

Delay, F., Ackerer, P. and Danquigny, C. 2005. Simulating Solute Transport in

Porous or Fractured Formations Using Random Walk Particle Tracking: a

Review. Vadose Zone Journal 4:360–379.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

101

Huo, D. and Gong, B. 2010. Discrete Modeling and Simulation on Potential

Leakage through Fractures in CO2 Sequestration. Paper SPE 135507

presented at the Annual Technical Conference and Exhibition, Florence, Italy,

September 19-22. DOI: 10.2118/135507-MS.

Klins, M.A., 1984. Carbon Dioxide Flooding. Basic Mechanisms and Project

Design. International Human Resources Development Corporation, Boston,

M.A.

Malik, S., Chugh, S. and McKishnie, R.A. 2006. Field-Scale Compositional

Simulation of a CO2 Flood in the Fractured Midale Field. Journal of

Canadian Petroleum Technology 45(2):41-50.

Plasynski, S.I. and Damiani, D., 2008. Carbon Sequestration through Enhanced

Oil Recovery. Program Facts, U. S. Department of Energy, Office of Fossil

Energy, National Energy Technology Laboratory.

http://www.netl.doe.gov/publications/factsheets/program/Prog053.pdf.

Ravagnani, G., Ligero, E.L. and Suslick, S.B. 2009. CO2 Sequestration through

Enhanced Oil Recovery in a Mature Oil Field. Journal of Petroleum Science

and Engineering 65: 129-138.

Salamon, P., Fernàndez-Garcia, D. and Jaime Gómez-Hernández, J.J. 2006. A

Review and Numerical Assessment of the Random Walk Particle Tracking

Method. Journal of Contaminant Hydrology 87: 277–305.

Schechter, D.S. 2005. Investigation of Efficiency Improvements during CO2

Injection in Hydraulically and Naturally Fractured Reservoirs. Semi-Annual

Technical Progress Report. Contract No. DE-FC26-01BC15361, US DOE,

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

102

http://www.netl.doe.gov/KMD/cds/disk22/G-

CO2%20&%20Gas%20Injection/BC15361_11.pdf

Trivedi, J. and Babadagli, T. 2008. Efficiency Analysis of Greenhouse Gas

Sequestration during Miscible CO2 Injection in Fractured Oil Reservoirs. Env.

Sci. and Tech. 42(15): 5473-5479.

Trivedi, J. and Babadagli, T. 2009. Oil Recovery and Sequestration Potential of

Naturally Fractured Reservoirs during CO2 Injection. Energy and Fuels

23(8):4025-4036.

http://pubs.acs.org/doi/abs/10.1021/ef900361n?prevSearch=%2528babadagli%2529%2BAND%2B%255Bauthor%253A%2BBabadagli%252C%2BT.%255D&searchHistoryKey=
http://pubs.acs.org/doi/abs/10.1021/ef900361n?prevSearch=%2528babadagli%2529%2BAND%2B%255Bauthor%253A%2BBabadagli%252C%2BT.%255D&searchHistoryKey=

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

103

5. Scaling for the production curves simulated by RWPT

5.1 Overview

We modeled flow tracer injection through highly fractured media by Random

Walk Particle Tracking (RWPT) simulations, where the distance between

injection and production wells is equal to R. After analyzing the production data

obtained, we observed that production curves for different R values are similar to

each other and can be scaled. Hence, if we define P(t) as a probability of a particle

to reach the production well within traveling time t, the unscaled production

profiles P(t) vs. t will be significantly different for the different values of R.

However, if we plot P(t)R
β
 vs. t/R

α
, production curves for different values of R

will overlay. The exponents (α and β) are different for different fracture networks.

In this chapter, we investigated and quantified the dependencies of α and β

parameters on fracture network parameters, such as the spacing between fractures

(fracture density) and the fractal characteristics of fracture networks.

5.2 Background and problem description

Numerical simulation of fluid flow in porous media is commonly practiced in

many different engineering disciplines including oil and gas recovery,

groundwater contamination, and waste disposal. These applications involve a

detailed description of the underground reservoir and running the simulation on

the created detailed model. This can be challenging and requires high

computational time.

For practical purposes, it is sometimes important to obtain quick (though not

completely accurate) results. In these cases, instead of numerical simulation other

techniques are used. Analog fields (Meehan 2011) or analytical modeling

(Gontijo and Aziz 1984) - are some of the examples.

Another practical solution for quick (but not necessarily precise) results is to

apply scaling rules. The idea behind this approach is that the behaviour of flow

parameters (such as recovery, breakthrough time, productivity index, etc.)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

104

depends on the characteristic length of the media (for example, size of the

reservoir or the distance between wells). Once this is dependency described, it can

be used for predictions.

In Chapter 3 we suggested a non-classical modeling technique to simulate

miscible flow in fractured porous media – Random Walk Particle Tracking.

Detailed description of the algorithm is provided in Chapter 3 and here we briefly

remind the main steps of the algorithm:

(1) Convert discrete fracture network to a classical simulation grid, where

fractures are represented by a set of thin highly permeable cells.

(2) Calculate the pressure field using standard simulation tools.

(3) Convert the fracture network to a directed graph; assign the graph edges a

set of properties, such as permeability, pressure gradient, flow velocity, etc.

(4) Model the flow of the fluid as movement of a large number of particles

(walkers). Particles are released at the production well and move along the

graph according to the pressure potential between the nodes. The

probability of moving along a particular edge of the graph is proportional

to the flow rate along that edge.

In this chapter we simulate the flow of a tracer for one pair of wells, where the

distance between the injection and production well is defined as R. The injection

flow rate is the same as the production flow rate, and we use the same rate for all

simulation cases. We release 10,000 particles at the injection point at t=0, track

each particle until it reaches the production well and record the traveling time.

P(t) is the probability of the particle to reach the production well in time t.

Figure 5-1 illustrates the result of five different simulations. All simulations

were performed on the same fracture network but distance between the injection

and production wells is different for different cases. As seen, the shape (or trend)

of all cases are similar even though the size and location are different. One can

expect to find a way to scale the traveling time distribution curves. In other words,

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

105

we would like to define a simple transformation for each curve so that

transformed (scaled) curves for different values of R will overlay.

Once a scaling is described, it can be used to reduce simulation efforts and

one can perform simulation on the smaller area and then transform the results to

the bigger scale in practice.

The purpose of this chapter is to describe the scaling process, define a scaling

relationship for complex fractured systems, and finally to correlate the scaling

parameters to the fracture network properties to universalize the scaling

relationships proposed.

5.3 Solution methodology

We adapted a methodology that used percolation theory to generate scaling

relationships for non-fractured systems (King et al., 1999; Lee et al., 1999).

Let us define tmp as the most probable traveling time, i.e., the time, where the

time distribution curve has peaked. Let us also define Pmp=P(tmp) as the

probability of the particle to have traveling time tmp, i.e., the value of the time

distribution curve peak.

To find a transformation that overlays all of the time distribution curves, we

should first find a transformation that overlays the tmp values for all curves. To do

so, we plot tmp vs. R for all curves (Figure 5-2). One can see that a logarithmic

relationship exists: tmp~R
α
, where α=1.8138. This means that if we use t/R

α

instead of t on the horizontal axes for each curve, the peak locations for the

resulting curves will overlay (Figure 5-3).

Similarly, plotting Pmp vs. R yields another logarithmic relationship: Pmp~R
-β

where β=1.658 (Figure 5-4). Hence, plotting P(t)R
β
 instead of P(t) in the y-axis

will overlay the peak values for all curves (Figure 5-5).

The exercise described above shows that plotting P(t)R
β
 vs. t/R

α
 overlays the

traveling time distribution curves for different distances between the injecting and

production wells. For the fracture network used in this example, α=1.8138 and

β=1.658. However, α and β are not unique values and would vary for different

fracture networks. In the following section, we investigate how these two scaling

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

106

exponents are related to fracture network properties. In this exercise, we will refer

to the exponent relating R and tmp as α and to the exponent relating R and Pmp as β.

This will eventually lead us to define a more universalized scaling relationship for

flow in fractured media.

5.4 Fracture network properties and their relation to scaling parameters

The RWPT algorithm summarized above allows simulations for the 3D

fracture networks. However, all fracture networks used in the simulations for this

chapter, had fractures with the same height. Hence, they can be treated as a 2D

object. In other words, a cross section of the fracture network model in the x-y

plane can be used as a characteristic 2D network representing the 3D system. This

facilitates the quantification of fracture network properties such as density and

fractal dimensions.

For the initial part of the study we used a set of fracture networks in which all

fractures had equal lengths. Also, the fracture network consisted of two sets of

fractures; fractures in one set were oriented NS and fractures in the other set were

oriented in the EW direction. Average spacing between the fractures (sp) was

constant in each particular network, and we changed sp to observe how it is

correlated the scaling parameters α and β. The angle between the EW direction

and the line between the wells is referred to as θ. A representative fracture

network and well configuration are shown in Figure 5-6.

For each value of sp, we created ten different fracture network realizations

and for each realization, we ran simulations with ten different values of R to find

α and β values (the same way as it is described in the previous section). We

repeated the same procedure for two different values of θ. The results are

presented in Figures 5-7a and 5-7b. As seen, the values of the scaling parameters

are different for different stochastic realizations; the value of α is scattered around

the same value for all values of sp, while the value of β tends to increase with

increasing sp. For practical purposes, we can average α and β over all ten

stochastic realizations and use the obtained trends (Figures 5-8a and 5-8b). As

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

107

seen, the exponent α shows no correlation with sp but β has a very distinct

relationship with similar slope values for different θ values.

Spacing between the fractures is just one of the fracture network properties

affecting scaling parameters. Fractal dimensions are the other properties of the

fracture network which showed to be a powerful tool for not only fracture

network characterization but also for the formulation of hydraulic characteristics

of the networks. There are different types of fractal dimensions described in the

literature for different characteristics of the fracture networks (La Pointe, 1988;

Babadagli, 2001; Jafari and Babadagli, 2009). In the next section, we define three

different fractal dimensions to be correlated to the α and β exponents.

In addition, we investigate how scaling parameters depend on the volume

fraction of fractures in the system. Volume fraction is referred to as Vf :

Vf = (volume of fractures in the system)/(total volume of the system). (5-1)

5.5 Generation of fractal fracture networks and estimation of fractal

dimensions

Using fracture networks, which consists of the fractures of the same lengths is

acceptable when there is lack of information, however such kind of networks do

not always represent actual fracture network correctly. In reality, naturally

fractured reservoir contains fractures on a different length scales - this is a result

of fracturing process and the interaction of the stress in the rock with its fluid

content (Sahimi and Mehrabi, 1999). There is strong evidence based on field

investigation that the actual fracture networks are very irregular and in many

cases the fracture network is a fractal object. Here, by calling fracture network a

fractal object we mean that the number of fractures of the length l is given by:

fD

l lkN



 (5-2)

Here k is a constant of proportionality (any constant can be used, as long as

we keep it the same for all calculations; we fixed k=4000000) and Df is a fractal

dimension of the network and 2.3 ≤ Df ≤ 2.7 (Sahimi, 1993).

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

108

We can now express l from equation (5-2):

fD

lN

k
l  (5-3)

Because we wanted to get a wide distribution of fracture lengths, but didn‟t

want too many fractures, we took Nl=1, 5, 9, ... 41 and for each Nl calculated

corresponding l using equation (5-3) and added Nl fractures of the length l to the

network. The centers of added fractures were distributed randomly within the

model area. We varied Df in the range 2.3 ≤ Df ≤ 2.7, and for each value of Df we

created ten fracture network realizations. Next, we measured two different fractal

dimensions of the networks generated:

(1) Fractal mass dimension (sandbox method)

Fractal mass dimension, Dm was measured by plotting the cumulative length

of the fractures contained inside a square box with a side length of x and a fixed

center. The log-log plot of the cumulative length vs. x yields a straight line and

the fracture network is a fractal object and its mass dimension Dm is given by the

slope of the line (Acuna et al., 1992).

(2) Box-counting fractal dimension

In this method, we cover the fracture network by a regular 2D square grid

with a given cell size and count how many cells are filled with a fracture network

(i.e. which have at least some part of a fracture inside) (Barton and Larson, 1985;

Sammis et al., 1987; Acuna and Yortsos, 1991; Barton, 1995; Babadagli, 2001). If

plotting the number of filled cells vs. cell size on a log-log scale gives a straight

line, the slope of this line is a box-counting fractal dimension (Dbc).

Once calculated, α and β were plotted against Dm, Dbc and Vf in Figures 5-9

through 5-11, respectively. As seen, there is a strong correlation between α and

Dm (Figure 5-9a), whereas exponent β does not vary with Dm (Figure 5-9b). On the

other hand, Dbc (Figure 5-10b) and Vf (Figure 5-11b) showed a correlation with

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

109

the exponent β. This procedure can be used to obtain the scaling exponents if one

is able to obtain the representative fractal characteristics or density (sp or Vf) of

the fracture network.

5.6 Validation exercise

As shown in Figures 5-9 through 5-11, although a clear trend exists between

the exponent and the fracture network property (such as Figures 5-9a, 5-10b, and

5-11b), the data is scattered due to the random nature of fracture networks. An

approximation of this relationship can help for practical analyses. This can be

illustrated by an example: we generated a fracture network, which consists of

fractures of the same length, θ = 0.79 and with a spacing value, sp, (between

fractures) of 2. The values of the scaling parameters (α and β) for this particular

fracture network can be calculated using the relationship given in Figures 5-8a

and 5-8b.

α=-0.01sp+1.81=1.79

β=0.19sp+1.17=1.55

The results of plotting traveling time distribution curves with the above values

for α and β are presented in Figure 5-12. The four curves overlay reasonably

well. This indicates that the approach proposed here for fractured systems is

useful and simulating just one case at a small scale (with a small distance between

the wells) can be scaled up to the reservoir scale for the traveling time

distribution.

5.7 Conclusions

We proposed an approach for scaling production profiles (traveling time

distribution curves) using the RWPT technique for miscible transport in naturally

fractured reservoirs. It was shown that the following scaling rules exist: P(t)R
β

vs. t/R
α
. To universalize this scaling rule the exponents (α and β) were correlated

to four characteristic fracture network properties such as the spacing between

fractures (sp), mass (Dm) and box-counting (Dbc) fractal dimensions and void

fraction (Vf). The relationships between these parameters and the exponents were

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

110

tested. The results showed that α was strongly correlated to Dm, and β has strongly

dependent on Dbc, sp and Vf. In a validation example, we tested the approximated

relationship between the sp and the scaling exponents (α and β). The outcome was

promising for the practical use of the scaling equation proposed in this chapter.

5.8 Figures

Figure 5-1. Semi-log plot of traveling time distribution P(t) for R=15, 20, 30, 40 and 60.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

111

Figure 5-2. Log-log plot of the most probable traveling time vs. R.

Slope of the straight line fit is: α=1.8138.

Figure 5-3. Using t/R

α
 on the horizontal axes makes all curves overlay in the horizontal

direction.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

112

Figure 5-4. Log-log plot of the highest possible probability Pmp=P(tmp) vs. R.

Figure 5-5. Plotting P(t)R

β
 vs. t/R

α
 overlays all curves.

α=1.8138; β=1.658 for the fracture network used in this particular example.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

113

Figure 5-6. Fracture network consisting of two mutually perpendicular fracture sets.

Lengths of all fractures are nearly equal.

Figure 5-7. α and β vs. spacing between fractures.

Different points at the same value of sp represent different stochastic fracture network

realizations. Different colours represent different directions between injection and

production wells.

(a) (b)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

114

Figure 5-8. Average values for α and β vs. spacing between fractures.

α and β are averaged over ten stochastic realizations for each value of sp. Different colours

represent different directions between injection and production wells.

Figure 5-9. α and β vs. fracture network fractal mass dimension.

Figure 5-10. α and β vs. fracture network box-counting fractal dimension.

Figure 5-11. α and β vs. volume fraction of fractures in the network.

(a) (b)

(a) (b)

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

115

Figure 5-12. Plotting P(t)R

β
 vs. t/R

α

overlays all curves reasonably well even when we use approximate values for scaling

parameters. Values of scaling parameters obtained using trends from Figures 8a

and 8b are: α=1.79; β=1.55.

5.9 Bibliography

Acuna, J.A., Ershaghi, I. and Yortsos, Y.C. 1992. Fractal Analysis of Pressure

Transients in the Geysers Geothermal Field. Proc., Seventeenth Workshop on

Geothermal Reservoir Engineering Stanford University, Stanford, CA, 87-93.

Acuna, J.A. and Yortsos, Y.C. 1991. Numerical Construction and Flow

Simulation in Networks of Fractures using Fractal Geometry. Paper SPE

22703 presented at the 66
th

 Annual Technical Conference and Exhibition of

the Society of Petroleum Engineers, Dallas, Texas, 6-9 October. DOI:

10.2118/22703-MS.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

116

Babadagli, T. 2001. Fractal Analysis of 2-D Fracture Networks of Geothermal

Reservoirs in South-Western Turkey. J. of Volcanology and Geothermal

Research 112(1-4): 83-103.

Barton, C. C. 1995. Fractal Analysis of Scaling and Spatial Clustering of

Fractures. In: Barton, C. C, La Pointe, P. R. (Eds.), Fractals in the earth

sciences. Plenum Press, New York, pp. 168.

Barton, C.C. and Larson, E. 1985. Fractal Geometry of Two-dimensional Fracture

Networks at Yucca Mountain, South-Western Nevada. Proceedings of

International Symposium on Fundamentals of Rock Joints, Bjorkliden,

Sweden. 77-84.

Beler, R.A. 1990. Pressure Transient Field Data Showing Fractal Reservoir

Structure. Paper SPE 21553 presented at the Int. Tech. Meet. Jointly hosted by

Petroleum Society of CIM and SPE, Calgary, Alberta, Canada, June 10-13.

DOI: 10.2118/21553-MS.

Berkowitz, B., 1995. Analysis of Fracture Network Connectivity Using

Percolation Theory. Mathematical Geology 27(4): 467-483.

Berkowitz, B. and Ewing, R.P. 1998. Percolation Theory and Network Modeling

Applications in Soil Physics. Surveys in Geophysics 19: 23-72.

Bogdanov, I.I., Mourzenkov, V.V., Thovert, J.-F. and Adler, P.M. 2003. Effective

Permeability of Fractured Porous Media in Steady State Flow. Water Res.

Res. 39(1), 1023.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

117

Chang, J. and Yortsos, Y.C. 1990. Pressure-Transient Analysis of Fractal

Reservoirs. SPE Formation Evaluation, 5(1):31-38. SPE-18170-PA. DOI:

10.2118/18170-PA.

Gontijo, J.E. and Aziz, K. 1984. A Simple Analytical Model for Simulating

Heavy Oil Recovery by Cyclic Steam in Pressure-Depleted Reservoirs. Paper

SPE 13037 presented at the 59
th

 Annual Conference and Exhibition, Houston,

Texas, September 16-19. DOI: 10.2118/13037-MS.

Halvin, S. and Ben-Avraham, D. 1987. Diffusion in Disordered Media. Advances

in Physics 36(6):695-798.

Jafari, A. and Babadagli, T. 2009. A Sensitivity Analysis for Effective Parameters

on 2D Fracture-Network Permeability. SPE Res Eval & Eng 12 (3): 455-469.

SPE-113618-PA. DOI: 10.2118/113618-PA.

King, P.R., Andrade, J.S., Buldyrev, V., Dokholyan, Lee. Y., Havlin, S. and

Stanley, H.E. 1999. Predicting Oil Recovery Using Percolation. Physica A

266(1999):107-114.

La Pointe, P. R. 1988. A Method to Characterize Fracture Density and

Connectivity through Fractal Geometry. Int. J. Rock Mech. Min. Sci.

Geomech. Abstr. 25(6): 421-429.

Lee, Y., Andrade, J.S., Buldyrev, V., Dokholyan, N.V., Havlin, S., King, P.R.,

Paul, G. and Stanley, H.E. 1999. Traveling Time and Traveling Length in

Critical Percolation Clusters. Physical Review E 60(3):3425-3428.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Scaling of
production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media.”

118

Masihi, M, King, P.R. and Nurafza, P. 2007. Fast Estimation of Connectivity in

Fractured Reservoirs using Percolation Theory. SPE J 12(2):167-178. SPE

94186-PA. DOI: 10.2118/94186-PA.

Meehan, D.N. 2011. Using Analog Reservoir Performance to Understand Type I

Fractured Reservoir Behaviour with Strong Water Drives. Paper SPE 144177

presented at the SPE Enhanced Oil Recovery Conference, Kuala Lumpur,

Malaysia, 19-21 July. DOI: 10.2118/144177-MS.

Mourzenkov, V.V., Thovert, J.F. and Adler, P.M. 2005. Percolation and

Permeability of Three Dimensional Fracture Networks with a Power Law Size

Distribution. Fractals in Engineering, Springer London.

Sahimi, M. 1993. Flow Phenomena in Rocks: from Continuum Models to

Fractals, Percolation, Cellular Automata, and Simulated Annealing. Reviews

of Modern Physics 65(1993):1393-1537.

Sahimi, M. and Mehrabi, A.R. 1999. Percolation and Flow in Geological

Formations: Upscaling From Microscopic to Megascopic Scales. Physica A

266(1999):136-152.

Sammis, C., King, G. and Biegel., R. 1987. The Kinematics of Gouge

Deformation. PAGEOPH 125(5):777-812.

http://www.springerlink.com/content/tv147t/?p=fd70b96da2924932983bcd8dab097db0&pi=0

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

119

6. Contributions and recommendations

As this is a paper-based thesis, conclusions were provided at the end of each

chapter. Here, we present the major contributions and recommendations for future

work.

6.1 Major contributions

(1) We adapted a non-classical algorithm to simulate miscible solvent

injection in fractured media. The suggested algorithm (Random Walk,

RW) is capable of simulating miscible flow for 2D lab scale models,

including horizontal and vertical flow direction. The RW algorithm

requires less computational time than classical finite-difference

modeling. Additionally, it can capture randomness involved in the

process, which is critical in miscible displacement modeling in

fractured systems.

(2) The results of simulation reproduced experimental results obtained

from the literature reasonably well, especially for the cases of

horizontal flow. A relationship between the viscosity of the displaced

fluid and the diffusivity coefficient was proposed for the horizontal

case. The accuracy of the model was improved compared to the earlier

attempts on classical modeling and computational time was

significantly reduced compared to fine grid continuum modeling.

(3) The algorithm introduced has only two unknown matching parameters

(diffusivity coefficients of oil and solvent), which results in easier

history matching process and reduces the uncertainty in the

performance prediction. This number was six for single porosity

models.

(4) In continuation of the lab scale modeling, another non-classical

simulation algorithm (Random Walk Particle Tracking) was suggested

for the field scale simulations of the flow in fractured media. This

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

120

algorithm uses discrete description of the fracture network, without

averaging its property. This allows for capturing reservoir irregularity

and connectivity.

(5) The Random Walk Particle Tracking (RWPT) algorithm was tested by

modeling a series of tracer tests. Although an exact history match was

not achieved, it was observed that the created model represents the

reservoir connectivity reasonably well. We also performed a

sensitivity analysis of the RWPT model to various fracture network

characteristics.

(6) We attempted to modify RWPT algorithm to model CO2 flooding and

sequestration. Modeling of the flow through matrix and the decrease in

mobility due to phase interaction were incorporated in the model.

History matching and sensitivity analysis exercises were performed to

test the suggested model.

(7) We suggested a new scaling rule for the production curves obtained by

the RWPT simulations and described how scaling parameters depend

on the fracture network characteristics. The two exponents in the

scaling relationship were correlated to the fracture network properties

such as fracture density, volume fraction of fracture, mass and box-

counting fractal dimensions.

6.2 Recommendations for future work

(1) The RW algorithm can be extended for a 3D case as there are no

principal limitations to do so. However, dealing with a large number of

grid cells and large number of walkers may require optimization in

data handling and calculations.

(2) The RW algorithm showed better results for the cases of horizontal

flow than for the vertical flow, which may be due to the incomplete

description of the gravity in the model. This is an interesting research

subject to look into.

A version of this chapter was submitted for publication. Stalgorova, E. and Babadagli, T. 2011. “Modified Random
Walk - Particle Tracking model for CO2 flooding/sequestration in naturally fractured oil reservoirs.”

121

(3) In this research, we used uniform matrix and fracture permeability.

However, the RW algorithm allows using non-uniform permeability.

Testing the effect of non-uniform permeability cases (i.e. modeling

microheterogeneities which are presented in any glass bead sample)

may be an interesting study.

(4) The RWPT modeling is currently limited to modeling only about 500

fractures. We believe that this limitation can be overcome by using

proper ways of data treatment (i.e. using pointers instead of arrays etc)

and solving the finite-difference equation for pressure in the C++ code

instead of using the Eclipse software.

(5) The RWPT model for CO2 flooding does not capture several important

physical aspects of the CO2 flooding process, such as the proper

description of the diffusion into matrix, the difference between oil and

CO2 densities, and the change in oil composition and limited storage

capacity of the media. A description of CO2 flooding in the RWPT

model requires further improvements to capture the physics of the

process in all its complexity.

(6) The scaling rule, suggested in Chapter 5 uses scaling parameters,

which strongly depend on the fracture network characteristics. We

investigated the effect of a few of them. However, there are more

characteristics, which can be used to describe a fracture network (such

as fracture lengths and widths distributions, apertures, permeabilities).

An investigation of the effects of other fracture network characteristics

and, possibly, deriving a more universal equation for scaling

parameters would be an elaborate work.

122

Appendix A (C++ code for the RW algorithm)

Header file (main.h)

#define M 15 // size of the grid in i direction

#define N 40 // size of the grid in j direction

#define Mid 8// Mid = [M/2]+1 - fracture location

#define m 4 // number of walkers along each grid cell in i direction

#define n 4 // number of walkers along each grid cell in j direction

#define g 0 // cm/s2 - gravity (0 - for horizontal flow; 981.2 - for vertical)

int NumTimeSteps; // number of Time Steps

int q; // number of walkers we add at each timestep

int freq; //we add walkers once in freq steps (time_s=1, freq+1, 2freq+1, ...)

double Q; //injection rate, cm3/s - GIVEN

double PV; //pore volume, cm3 - GIVEN

double Perm_f; // Perm fracture, m^2

double Perm_m; //Perm matrix, m^2 - GIVEN

double mu1; // viscosity of oleic phase (kerosene), Pa*s - GIVEN

double mu2; //viscosity of solvent (pentane), Pa*s - GIVEN

double rho1; // density of oleic phase (kerosene), kg/cm3 - GIVEN

double rho2; //viscosity of solvent (pentane), kg/cm3 - GIVEN

double dt; // length of timestep, seconds

double dx; // x-size of the model, cm

double dy; // y-size of the model, cm

double dz; // z-size of the model, cm

double Pin; // pressure at injection point, Pa - approximated through Darcys Law with effective

permeability 1000 D

double w; // parameter for blending rule

double D, Do, Ds; //diffusivity coefficient

class Walker{

public:

 int i,j,I,J,fluid; // I=[x*M/dx]+1; J=[y*N/dy]+1; I=[i/m]+1; J=[j/n]+1;

 double x,y, Vx, Vy;

 double temp, Vy12f, Vy34f; //for test

 double t1,t2,t3,t4;

 void ConvectiveStep();

 void RandomStep();

 void CalculateV();

 void VforCell(int, int, int, int, int, int, int, int);

 Walker(){

 x=0;y=0;I=1;J=1;i=1;j=1;

 temp=0; Vy12f=0;Vy34f=0; //for test

 t1=0;t2=0;t3=0;t4=0; //for test

 fluid=1;

 }

 };

// coarse arrays - all these arrays have boundary cells, which are 'dummy', when i=0 or i=M+1 or

j=0 or j=N+1

123

double mU[M+1+1][N+1+1],mD[M+1+1][N+1+1],mL[M+1+1][N+1+1],mR[M+1+1][N+1+1];

//mobilities

double DX[M+2], DY[M+2]; //size of coarse cell, cm

double TLCx[M+1+1][N+1+1],TLCy[M+1+1][N+1+1]; // coordinates of Top Left corner of (I,J)

coarse cell

double rhoL[M+1+1][N+1+1],rhoR[M+1+1][N+1+1]; //densities

double perm[M+1+1][N+1+1],p[M+1+1][N+1+1];

// matrixes for equations system solution

double A[M*N][M*N], A_I[M*N][M*N], T[M*N][M*N+1];

double b[M*N], x[M*N]; // summ[M*N];

// fine arrays

int NumWalkersO[M*m][N*n],NumWalkersS[M*m][N*n], NumOilC[M+1+1][N+1+1],

NumSolvC[M+1+1][N+1+1];

double NumWalkersSd[M*m][N*n]; // for test

double ConcC[M+1+1][N+1+1],ViscMixC[M+1+1][N+1+1],DensMixC[M+1+1][N+1+1];

int ToProduce[100]; // 3*q should be enough

int OilProducedTotal;

double TS[7];

double ProdZone;

// walkers Array

Walker walkers[10*M*m*N*n];

int RealSize;

int time_s;

// for system solution

void SetT();

void Solve();

void T_div(int, double); // line number, divider

void T_min(int, int, double); // (line int2):=(line int2) - (line int1)*double

// for walking

void SetTimeSteps();

void SetParameters();

void SetGrid();

void SetPerms(); //set permeabilities for the grid

void PopulateWalkers();

void Inject();

void Produce();

void ProduceAll();

void UpdateP();

void UpdateMs();

void Setb();

void MakeStep();

void UpdateA();

void UpdateNumWalkers();

void CalcPropCoarse();

void Run();

double Norm(double, double); //gives normally distributed random variable

//for output

void WalkersToFile();

void WalkersToFileM();

void ToFile(double *, int, int, char);

124

void ParametersToFile();

Source file (main.cpp)

#include "main.h"

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <fstream>

#include <iostream>

#include <string>

#include <cmath>

#include <cstdio>

#include <time.h>

#include<conio.h>

#include <sstream>

using namespace std;

int main()

{SetParameters();

SetGrid();

Run();

ParametersToFile();

}

void SetParameters()

{q=8; // number of walkers we add at each timestep

freq=1; // we add walkers once in freq steps (time_s=1, freq+1, 2freq+1, ...)

Q=(double)15/3600; // injection rate, cm3/s - GIVEN

Perm_f=15000; //Perm fracture, D

Perm_m=150; //Perm matrix, D - GIVEN

mu1=33.5; // viscosity of oleic phase (kerosene), cP - GIVEN (2.9|33.5|500)

mu2=0.38; //viscosity of solvent (pentane), cP - GIVEN

rho1=0.00081;// density of oleic phase (kerosene), kg/cm3 - GIVEN (0.00079|0.00081|0.00089)

rho2=0.00063; //density of solvent (pentane), kg/cm3 - GIVEN

dx=10; // x-size of the model, cm

dy=15;// y-size of the model, cm

dz=0.17; // z-size of the model, cm

w=0.25; // parameter for blending rule

PV = 12; //Pore volume in cm3 - more or less GIVEN

dt=(double)(q*PV)/(M*N*m*n*Q*freq); //in seconds! if Q cm3/h is represented by q/dt walkers

ProdZone=(double)q/(m*n)*(dy/N); // defines area in the 'out' cell from where walkers are taken

out for production

time_s=0; //current time

RealSize=0; //current number of walkers in the system

D=-999;// diffusivity coefficient, cm2/s

Do=0.0025;

Ds=0.004;

NumTimeSteps=18000;//how many timesteps to calculate

}

void SetGrid() //fills DX, DY, TLCx and TLCy arrays

{

 for (int I=0;I<M+2; I++)

 DX[I]=(double)dx/M;

 for (int J=0;J<N+2; J++)

 {DY[J]=(double)dy/N;}

125

 for (int I=1;I<=M;I++)

 { for (int J=1;J<=N;J++)

 { TLCx[I][J]=0;

 TLCy[I][J]=0;

 for (int Is=1;Is<I;Is++)

 TLCx[I][J]=TLCx[I][J]+DX[Is];

 for (int Js=1;Js<J;Js++)

 TLCy[I][J]=TLCy[I][J]+DY[Js];

 }} //now (TLCx[I][J], TLCy[I][J]) - coordinates of Top Left corner of (I,J) cell.

}

void Run(){

 fopen ("production.txt", "w");

 OilProducedTotal=0;

 time_s=0;

 SetTimeSteps();

 Setb();

 SetPerms();

 //ToFile(&perm[0][0], M+2, N+2, 'K'); //any array can be exported

 PopulateWalkers();

 for (int counter=0; counter<=NumTimeSteps;counter++)

 {

 MakeStep();

 if (time_s==TS[1] || time_s==TS[2] || time_s==TS[3] || time_s==TS[4] ||

time_s==TS[5] || time_s==TS[6])

 {

 WalkersToFileM(); //output walkers positions only for the times for

which we have images

 }

 }

}

void SetTimeSteps() //sets at how many timesteps we need to output walkers for comparing with

experimental images

{

 if(g==0)

 {

 if(mu1==2.9 && Q==(double)15/3600) // Kerosene 15

 {TS[1]=0.05; TS[2]=0.1; TS[3]=0.2; TS[4]=0.5; TS[5]=0.8; TS[6]=1.0; }

 if(mu1==33.5 && Q==(double)15/3600) // LMO 15

 {TS[1]=0.1; TS[2]=0.2; TS[3]=0.5; TS[4]=0.8; TS[5]=1.0; TS[6]=1.5; }

 if(mu1==33.5 && Q==(double)25/3600) // LMO 25

 {TS[1]=0.05; TS[2]=0.2; TS[3]=0.5; TS[4]=0.8; TS[5]=1.0; TS[6]=1.5; }

 if(mu1==33.5 && Q==(double)45/3600) // LMO 45

 {TS[1]=0.1; TS[2]=0.5; TS[3]=0.8; TS[4]=1.0; TS[5]=1.5; TS[6]=2.0; }

 if(mu1==500 && Q==(double)15/3600) // HMO 15

 {TS[1]=0.1; TS[2]=0.2; TS[3]=0.5; TS[4]=1.0; TS[5]=2.0; TS[6]=3.0; }

 if(mu1==500 && Q==(double)45/3600) // HMO 45

 {TS[1]=0.5; TS[2]=1.0; TS[3]=2.0; TS[4]=3.0; TS[5]=4.0; TS[6]=5.0; }

 }

 if(g>0)

 {

 if(mu1==33.5 && Q==(double)15/3600) // LMO 15

 {TS[1]=0.1; TS[2]=0.2; TS[3]=0.5; TS[4]=0.8; TS[5]=1.0; TS[6]=1.5; }

 if(mu1==33.5 && Q==(double)45/3600) // LMO 45

126

 {TS[1]=0.31; TS[2]=0.63; TS[3]=1.25; TS[4]=2.50; TS[5]=2.7; TS[6]=2.9;

 if(mu1==500 && Q==(double)15/3600) // HMO 15

 {TS[1]=0.1; TS[2]=0.52; TS[3]=1.25; TS[4]=2.5; TS[5]=2.7; TS[6]=2.9; }

 if(mu1==500 && Q==(double)45/3600) // HMO 45

 {TS[1]=0.31; TS[2]=1.88; TS[3]=3.75; TS[4]=4.69; TS[5]=4.9; TS[6]=5.1;

}

 }

 for (int i=1; i<=6;i++)

 {TS[i]=(int)(TS[i]*M*N*m*n*freq/(q));}

 string strT="timesteps.txt";

 ofstream output(strT.c_str());

 output.flush();

 output<<TS[1]<<' '<<TS[2]<<' '<<TS[3]<<' '<<TS[4]<<' '<<TS[5]<<' '<<TS[6];

 output.close();

}

void Setb(){ //set right part for the system Ax=b

 // right part for cell [ij] - b[(i-1)+(j-1)*M]

 for (int i=1;i<=M;i++){

 for(int j=1;j<=N;j++)

 {

 b[(i-1)+(j-1)*M]=(double)100*(rhoR[i][j]*mR[i][j]-

rhoL[i][j]*mL[i][j])*g*DX[i];

 }

 }

 b[Mid-1+(1-1)*M]=b[Mid-1+(1-1)*M]+(double)100000*Q/(dz*0.4);

 b[Mid-1+(N-1)*M]=0; // p[Mid][N]=Pout=0

}

void SetPerms(){

 for (int I=0;I<=M+1;I++)

 for(int J=0;J<=N+1; J++)

 perm[I][J]=Perm_m;

 for (int J=1;J<=N; J++)

 perm[Mid][J]=Perm_f;

}

void PopulateWalkers() //uniformly distribute m*n walkers in each grid cell

{int s=1;

for (int I=1;I<=M;I++)

{

 for (int J=1;J<=N;J++)

 { for (int is=0;is<m;is++)

 {for (int js=0;js<n;js++)

 {

 walkers[s].i=m*(I-1)+is;

 walkers[s].j=n*(J-1)+js;

 walkers[s].I=I;

 walkers[s].J=J;

 walkers[s].x=TLCx[I][J]+DX[I]/(m*2)+is*DX[I]/m;

 walkers[s].y=TLCy[I][J]+DY[J]/(n*2)+js*DY[J]/n;

 walkers[s].fluid=1;

 s++;

 }

 }

 }

}

127

RealSize=s-1;

}

void MakeStep()

{ time_s++;

Inject();

UpdateNumWalkers();

UpdateMs();

Setb();

UpdateA(); //updates matrix for Darcy's eq-n system

SetT(); //T=A|b

Solve();

UpdateP();

CalcPropCoarse();

for (int s=1; s<=RealSize;s++)

{if (walkers[s].fluid>0) // Convective Step for all non-removed walkers

{walkers[s].CalculateV();

walkers[s].ConvectiveStep();}}

CalcPropCoarse();

for (int s=1; s<=RealSize;s++)

{if (walkers[s].fluid>0) // Random step for all non-removed walkers

walkers[s].RandomStep();

}

ProduceAll(); // this also includes printing production to file

printf(" %5.5d", time_s);

}

void Inject(){ //locate q walkkers in the 'in' cell

 for (int s=1;s<=q;s++)

 { double r=(double)rand()/RAND_MAX; // r in [0...1)

 RealSize++;

 walkers[RealSize].x=TLCx[Mid][1]+DX[Mid]*r;

 walkers[RealSize].y=DY[1]/(2*n);

 walkers[RealSize].I=Mid;

 walkers[RealSize].J=1;

 walkers[RealSize].i=(Mid-1)*m+(int)(m*r);

 walkers[RealSize].j=0;

 walkers[RealSize].fluid=2;

 }}

void UpdateNumWalkers(){

 for (int i=0;i<M*m;i++)

 {for(int j=0;j<N*n;j++)

 {NumWalkersO[i][j]=0;

 NumWalkersS[i][j]=0;

 }}

 for (int s=1;s<=RealSize;s++)

 {if (walkers[s].fluid==1) {NumWalkersO[walkers[s].i][walkers[s].j]++;}

 if (walkers[s].fluid==2) {NumWalkersS[walkers[s].i][walkers[s].j]++;}

 }

}

void UpdateMs(){ //calculates mobilities in grid cells

 double xo, xs; //concentrations

 for (int I=1;I<=M;I++){

 for (int J=1;J<=N;J++)

 { //mU

 if(I==1) mU[I][J]=0;

128

 else{

 int LocNumO=0;

 int LocNumS=0;

 for (int i= (I-1)*m-int(m/2);i<I*m-int(m/2);i++){

 for (int j= (J-1)*n;j<J*n;j++) //area 'up' from center of I,J cell

 {LocNumO=LocNumO+NumWalkersO[i][j];

 LocNumS=LocNumS+NumWalkersS[i][j];}

 } // now LocNum - are total number of walkers in the 'up' area

 if ((LocNumO+LocNumS)==0 || (LocNumS<5 && LocNumO==0)) xo=0.8;

 else xo=(double)LocNumO/(LocNumO+LocNumS); // to avoid dividing by zero

 xs=1-xo;

 mU[I][J]=pow(xo*pow(mu1,w)+xs*pow(mu2,w),(1/w)); // viscosity_av

 mU[I][J]=(2/(1/perm[I][J]+1/perm[I-1][J]))/mU[I][J];

 }

 //mD

 if(I==M) mD[I][J]=0;

 else{

 int LocNumO=0;

 int LocNumS=0;

 for (int i= (I-1)*m+int(m/2);i<I*m+int(m/2);i++){

 for (int j= (J-1)*n;j<J*n;j++) //area 'down' from I,J cell center

 {LocNumO=LocNumO+NumWalkersO[i][j];

 LocNumS=LocNumS+NumWalkersS[i][j];}

 }// LocNum - are total number of walkers in the 'down' area

 if ((LocNumO+LocNumS)==0 || (LocNumS<5 && LocNumO==0)) xo=0.8;

 else xo=(double)LocNumO/(LocNumO+LocNumS); // to avoid dividing by zero

 xs=1-xo;

 mD[I][J]=pow(xo*pow(mu1,w)+xs*pow(mu2,w),(1/w)); // viscosity_av

 mD[I][J]=(2/(1/perm[I][J]+1/perm[I+1][J]))/mD[I][J]; // perm_av/viscosity_av

 }

 //mL

 if(J==1)

 {mL[I][J]=0;

 rhoL[I][J]=0;}

 else{

 int LocNumO=0;

 int LocNumS=0;

 for (int i= (I-1)*m;i<I*m;i++){

 for (int j= (J-1)*n-int(n/2);j<J*n-int(n/2);j++) //area 'left' from I,J cell

 {LocNumO=LocNumO+NumWalkersO[i][j];

 LocNumS=LocNumS+NumWalkersS[i][j];}

 } // now LocNum - are total number of walkers in the 'left' area

 if ((LocNumO+LocNumS)==0 || (LocNumS<5 && LocNumO==0)) xo=0.8;

 else xo=(double)LocNumO/(LocNumO+LocNumS); // to avoid dividing by zero

 xs=1-xo;

 mL[I][J]=pow(xo*pow(mu1,w)+xs*pow(mu2,w),(1/w)); // viscosity_av

 mL[I][J]=(2/(1/perm[I][J]+1/perm[I][J-1]))/mL[I][J]; //perm_av/viscosity_av

 rhoL[I][J]=xo*rho1+xs*rho2;

 }

 //mR

 if(J==N)

 {mR[I][J]=0;

 rhoR[I][J]=0;}

 else{

129

 int LocNumO=0;

 int LocNumS=0;

 for (int i= (I-1)*m;i<I*m;i++){

 for (int j= (J-1)*n+int(n/2);j<J*n+int(n/2);j++) //area 'right'

 {LocNumO=LocNumO+NumWalkersO[i][j];

 LocNumS=LocNumS+NumWalkersS[i][j];}

 } // now LocNum - are total number of walkers in the 'right' area

 if ((LocNumO+LocNumS)==0 || (LocNumS<5 && LocNumO==0)) xo=0.8;

 else xo=(double)LocNumO/(LocNumO+LocNumS); // to avoid dividing by zero

 xs=1-xo;

 mR[I][J]=pow(xo*pow(mu1,w)+xs*pow(mu2,w),(1/w)); // viscosity_av

 mR[I][J]=(2/(1/perm[I][J]+1/perm[I][J+1]))/mR[I][J]; //perm_av/viscosity_av

 rhoR[I][J]=xo*rho1+xs*rho2;

 }

 } } //ind of ij loops

}

void UpdateA(){

 // eqn for cell [ij] - A[(i-1)+(j-1)*M][*]

 // coeficient at p_ij - A[*][(i-1)+(j-1)*M]

 for (int i=1;i<=M;i++){

 for(int j=1;j<=N;j++)

 {

 A[(i-1)+(j-1)*M][(i-1)+(j-1)*M]=mU[i][j]*2*DY[j]/(DX[i]+DX[i-

1])+mD[i][j]*2*DY[j]/(DX[i]+DX[i+1])+mR[i][j]*2*DX[i]/(DY[j]+DY[j-

1])+mL[i][j]*2*DX[i]/(DY[j]+DY[j-1]);

 if (j<N) A[(i-1)+(j-1)*M][(i-1)+((j+1)-1)*M]=(-

1)*mR[i][j]*2*DX[i]/(DY[j]+DY[j+1]);

 if (j>1) A[(i-1)+(j-1)*M][(i-1)+((j-1)-1)*M]=(-

1)*mL[i][j]*2*DX[i]/(DY[j]+DY[j-1]);

 if (i<M) A[(i-1)+(j-1)*M][(i+1-1)+(j-1)*M]=(-

1)*mD[i][j]*2*DY[j]/(DX[i]+DX[i+1]);

 if (i>1) A[(i-1)+(j-1)*M][(i-1-1)+(j-1)*M]=(-

1)*mU[i][j]*2*DY[j]/(DX[i]+DX[i-1]); //if - because we wont to avoid calling A[-1][*] - even if

we are going to multiply by 0.

 }} //end of ij loop

 for (int k=0; k<M*N;k++)

 {A[Mid-1+(N-1)*M][k]=0;}

 A[Mid-1+(N-1)*M][Mid-1+(N-1)*M]=1; // p[Mid][N]=Pout=0

}

void UpdateP(){ //take pressure values from system solution and locate them in p[][]

 for (int I = 0; I<=M+1;I++)

 for (int J = 0; J<=N+1;J++) p[I][J]=-999;

 for (int I = 1; I<=M;I++)

 for (int J = 1; J<=N;J++)

 {

 p[I][J]=0;

 for (int k=0; k<M*N; k++)

 p[I][J]=x[(I-1)+(J-1)*M];

 }

}

void CalcPropCoarse(){

 for (int I=0;I<=M+1;I++)

 {for(int J=0;J<=N+1;J++)

130

 {NumSolvC[I][J]=0;

 NumOilC[I][J]=0;

 }}

 for (int s=1;s<=RealSize;s++)

 {if (walkers[s].fluid==1) {NumOilC[walkers[s].I][walkers[s].J]++;}

 if (walkers[s].fluid==2) {NumSolvC[walkers[s].I][walkers[s].J]++;}

 }

 for (int I=0;I<=M+1;I++)

 {for(int J=0;J<=N+1;J++)

 {

 if (NumOilC[I][J]==0 && NumSolvC[I][J]==0)

 ConcC[I][J]=0;

 else

 ConcC[I][J]=(double)NumSolvC[I][J]/(NumSolvC[I][J]+NumOilC[I][J]);

 ViscMixC[I][J]=pow((1-

ConcC[I][J])*pow(mu1,w)+ConcC[I][J]*pow(mu2,w),(1/w));

 DensMixC[I][J]=(1-ConcC[I][J])*rho1+ConcC[I][J]*rho2;

 }

 }}

void Walker::ConvectiveStep(){

 x=x+Vx*dt;

 y=y+Vy*dt;

 if (x<0) x=(-1)*x;

 if (y<0) y=(-1)*y;

 if(dx-x<0) x=2*dx-x; // particle reflects from boundary;

 if(dy-y<0)

 {if (I=Mid)

 {y=dy;}

 else

 {y=2*dy-y;}

 } // near to outlet particle 'sticks' to the exit, not reflected

 //

 for (int IS=1;IS<M;IS++)

 {if (x>=TLCx[IS][1] && x < TLCx[IS+1][1])

 I=IS;}

 if (x>=TLCx[M][1] && x<=dx)

 I=M; //defined I from x

 for (int JS=1;JS<N;JS++)

 {if (y>=TLCy[1][JS] && y < TLCy[1][JS+1])

 J=JS;}

 if (y>=TLCy[1][N] && y<=dy)

 J=N; //defined J from y

 i=(I-1)*m+int(m*(x-TLCx[I][J])/DX[I]); //defined i from I,x

 j=(J-1)*n+int(n*(y-TLCy[I][J])/DY[J]); //defined j from J,y

}

void Walker::CalculateV(){

 int I1,I2,I3,I4,J1,J2,J3,J4; //(I1;J1), (I2;J2), (I3;J3) and (I4;J4) - surrounding cells;

velocity will be interpolated using values in their centers

 // left half of the cell

 if (j%n<n/2)

 {if(j<(n/2)) // at the left edge

 {J1=1;

131

 J2=2;

 } // J3=J1;J4=J2

 else

 {J2=J;

 J1=J2-1;

 }

 }

 // right half of the cell

 if (j%n>=(n/2))

 {if(j>=(N*n-n/2)) // at the right edge

 {J1=N-1;

 J2=N;

 }

 else

 {J1=J;

 J2=J1+1;

 }

 }

 // top half of the cell

 if (i%m<m/2)

 {if(i<m/2) // at the top edge

 {I1=1;

 I3=2;

 }

 else

 {I3=I;

 I1=I3-1;

 }

 }

 // bottom half of the cell

 if (i%m>=m/2)

 {if(i>=(M*m-m/2)) // at the bottom edge

 {

 I1=M-1;

 I3=M;

 }

 else

 {I1=I;

 I3=I1+1;

 }

 }

 I2=I1;

 I4=I3;

 J3=J1;

 J4=J2;

 VforCell(I1,J1,I2,J2,I3,J3,I4,J4);

}

void Walker::VforCell(int I1, int J1, int I2, int J2, int I3, int J3, int I4, int J4)

{ // interpolates velosities Vx and Vy for the walker from cells [I1,J1],[I2,J2],[I3,J3],[I4,J4]

 double Vx13=(p[I1][J1]-p[I3][J3])*mD[I1][J1]*2/((DX[I1]+DX[I3])*100000);

 double Vx24=(p[I2][J2]-p[I4][J4])*mD[I2][J2]*2/((DX[I2]+DX[I4])*100000);

 double Vy12=(p[I1][J1]-p[I2][J2])*mR[I1][J1]*2/((DY[J1]+DY[J2])*100000);

 double Vy34=(p[I3][J3]-p[I4][J4])*mR[I3][J3]*2/((DY[I3]+DY[J4])*100000);

 double x1=TLCx[I1][J1]+DX[I1]/2;

132

 double y1=TLCy[I1][J1]+DY[J1]/2;

 double x2=TLCx[I2][J2]+DX[I2]/2;

 double y2=TLCy[I2][J2]+DY[J2]/2;

 double x3=TLCx[I3][J3]+DX[I3]/2;

 double y3=TLCy[I3][J3]+DY[J3]/2;

 double x4=TLCx[I4][J4]+DX[I4]/2;

 double y4=TLCy[I4][J4]+DY[J4]/2;

 Vx=((y-y1)/(y2-y1))*Vx24+((y2-y)/(y2-y1))*Vx13;

 Vy=((x-x1)/(x3-x1))*Vy34+((x3-x)/(x3-x1))*Vy12;

 t1=Vx13;

 t2=Vx24;

 t3=Vy12;

 t4=Vy34;

 if (fluid==1)

 Vy=Vy+(double)perm[I][J]*rho1*g/(10000000*ViscMixC[I][J]); //Vy - cm/s

10^7 - conversion

 if (fluid==2)

 Vy=Vy+(double)perm[I][J]*rho2*g/(10000000*ViscMixC[I][J]); //Vy - cm/s

10^7 - conversion

}

void Walker::RandomStep(){

 if (fluid==1)

 D=Do;

 else if (fluid==2)

 D=Ds;

 double rx=Norm(0,1);

 double ry=Norm(0,1);

 if (rx<-4)

 {rx=-4;}

 if (rx>4)

 {rx=4;}

 if (ry<-4)

 {ry=-4;}

 if (ry>4)

 {ry=4;}

 x=x+sqrt(2*D*dt)*rx;

 y=y+sqrt(2*D*dt)*ry;

 if (x<0) x=(-1)*x;

 if (y<0) y=(-1)*y;

 if(dx-x<0) x=2*dx-x; // particle reflects from boundary;

 if(dy-y<0)

 {if (I==Mid)

 {y=dy;}

 else

 {y=2*dy-y;}

 } // near to outlet particle 'sticks' to the exit, not reflected

 for (int IS=1;IS<M;IS++)

 {if (x>=TLCx[IS][1] && x < TLCx[IS+1][1])

 I=IS;}

 if (x>=TLCx[M][1] && x<=dx)

 I=M; //defined I from x

 for (int JS=1;JS<N;JS++)

 {if (y>=TLCy[1][JS] && y < TLCy[1][JS+1])

133

 J=JS;}

 if (y>=TLCy[1][N] && y<=dy)

 J=N; //defined J from y

 i=(I-1)*m+int(m*(x-TLCx[I][J])/DX[I]); //defined i from I,x

 j=(J-1)*n+int(n*(y-TLCy[I][J])/DY[J]); //defined j from J,y

}

void ProduceAll()

{int PrCounter=0;

int OProduced=0;

int SProduced=0;

string str = "production.txt";

ofstream output(str.c_str(), std::ios::app);

output.flush();

for (int s=1; s<=RealSize; s++)

{if (walkers[s].I==Mid && walkers[s].y>(dy-ProdZone)&&walkers[s].fluid>0)

{PrCounter++;

ToProduce[PrCounter]=s;

}

} // there are PrCounter walkers in ProdZone; numbers of those walkers are stored in ToProduce

array.

{for (int t=1; t<=PrCounter; t++)

{int s=ToProduce[t];

if (walkers[s].fluid==1) OProduced=OProduced+1;

if (walkers[s].fluid==2) SProduced=SProduced+1;

walkers[s].fluid=-999;

walkers[s].x=-999;

walkers[s].y=-999;

walkers[s].i=-999;

walkers[s].j=-999;

walkers[s].I=-999;

walkers[s].J=-999; // this walker is not any more in the system

}

OilProducedTotal=OilProducedTotal+OProduced;

output<<time_s<<' '<<OProduced<<' '<<SProduced<<' '<<OilProducedTotal<<endl;

}

output.close();

}

void WalkersToFile(){ //output in petrel welltops format

 char text[256]="";

 // for oil

 itoa(time_s,text,10);

 string str = "Walkers";

 string strH = "Horizon";

 str+=text;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 output<<'*'<<'W';

 output<<endl;

 for (int s=1;s<=RealSize;s++){

 if(walkers[s].fluid>0) //don't want to output 'produced' walkers

 {

output<<walkers[s].x<<' '<<walkers[s].y<<' '<<'0'<<' '<<s<<' '<<walkers[s].fluid<<' '<<strH<<'

'<<time_s;

134

 output<<endl;

 }

 }

 output.close();

}

void WalkersToFileM(){ //output in matlab format

 char text[256]="";

 string str = "MW";

 for (int i=1;i<=6;i++)

 {if (time_s==TS[i])

 itoa(i,text,10);

 }

 str+=text;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 for (int s=1;s<=RealSize;s++){

 if(walkers[s].fluid>0) //don't want to output 'produced' walkers

 {

 output<<walkers[s].x<<' '<<walkers[s].y<<' '<<walkers[s].fluid;

 output<<endl;

 }

 }

 output.close();

}

void ParametersToFile(){ //export parameters used for this run

 string str = "parameters.txt";

 ofstream output(str.c_str());

 output.flush();

 output<<mu1<<' '<<(Q*3600)<<' '<<Do<<' '<<Ds<<' '<<Perm_f<<' '<<w;

 output.close();

}

double Norm(double mean, double d) //returns randon value distributed as N(mean,d)

{double r1=(double)rand()/RAND_MAX; // r1, r2 in [0...1)

double r2=(double)rand()/RAND_MAX;

double Z=sqrt(-2*log(r1)/log(2.718281828))*cos(2*3.14159265358979*r2); //Z - N(0,1)

return(mean+d*Z);

}

void ToFile(double *Matrix, int NumLin, int NumCol, char FileName){ //exports *Matrix array to

file FileName

 char text[256]="";

 itoa(time_s,text,10);

 string str;

 stringstream ss;

 ss << FileName;

 ss >> str;

 str+=text;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 output<<'*'<<FileName;

 output<<endl;

 for (int k=0;k<NumLin;k++){

 for (int r=0;r<NumCol;r++)

135

 {output<<*(Matrix+(NumCol*k+r))<<' ';}

 output<<endl;

 }

 output.close();

}

// for system solving

void SetT() //T=A|b

{

 for (int i=0;i<M*N; i++)

 {for (int j=0; j<M*N; j++)

 {T[i][j]=A[i][j];}}

 for (int i=0; i<M*N; i++)

 {T[i][M*N]=b[i];}

}

void T_div(int k, double d)

{

 for (int j=0; j<=M*N; j++)

 T[k][j]=T[k][j]/d;

}

void T_min(int i1, int i2, double mult)

{

 for (int j=0; j<=M*N;j++)

 T[i2][j]=T[i2][j]-T[i1][j]*mult;

}

void Solve() // solving AX=B, T is {A|B}, solution will be stored in X.

{

 for (int s=0;s<=M*N-1;s++)

 {

 T_div(s,T[s][s]);

 for (int k=s+1;k<=M*N-1;k++)

 if (T[k][s]!=0) {T_min(s,k,T[k][s]);}

 }

 x[M*N-1]=T[M*N-1][M*N];

 for (int s=M*N-2;s>=0;s--)

 {double sum=0;

 for(int k=(s+1);k<=M*N-1;k++)

 {sum=sum+(T[s][k]*x[k]);}

 x[s]=T[s][M*N]-sum;

 }

}

Appendix B (C++ code for the RWPT algorithm)

Header file (main.h)

int nXFr; // (current) number of fractions in X direction

int nYFr; // (current) number of fractions in Y direction - should be much bigger than nXFr

#define nXFrM 1500 //max number of X-fractures

#define nYFrM 1500 //max number of Y-fractures

#define nM 30 // maximum number of matrix edges going from each vertex

#define ProdTime 250 //max production time, days

double fwx, fwy; // width of a fracture

136

double MaxX; // maximum x-size of a cell

double XFr[nXFrM][14]; // array with x-fractures

double YFr[nYFrM][14]; // array with y-fractures

double Xj[nXFrM*2+nYFrM*2+200]; // all x-ticks, 2 ends for esch x-fracture and for each y-

fracture

double Yj[nXFrM*2+nYFrM*2]; // all y-ticks, 2 ends for esch x-fracture and for each y-fracture

double Zj[nXFrM*2+nYFrM*2]; // all z-ticks, 2 ends for esch x-fracture and for each y-fracture

double WellCoord[16]; //well coords data: I1x, I1y, I2x, I2y,

int CompDat[16]; // data for wcompdat keyword: I1i, I1j, I2i, I2j, ...

int InjProdInd[8]; //vertexes corresponding to wells I1, I2,I3,I4,FS1,S1,S2,S3,S4

int Production[4][ProdTime*10]; //how many walkers of each type (=from each prod well) were

produced at each 0.1 day

double PermF, PoroF, PoroM, PermM,PermXfr,PermYfr;

double g; //m/s2

double rho; //kg/m3

double C; //correction coefficient

double q;// rate, m3/day

double q_i1, q_i2, q_i3, q_i4, q_fs1, q_s1, q_s2, q_s3; // rate, m3/day

int Nx, Ny, Nz; //number of cells in x, y, z directions

double MarH, MarV; //margins: model has margins of these sizes, margins do not have fractures

double XShift, YShift; //to shift wells in a way that S1 will go to the center of the grid

int NumVert;

double mu; //viscosity, cp.

double dt;//how often we send particles, sec.

double Dt1, Dt2, Dt3, Dt4;//tracer injection duration for each well, sec.

double D; //dispersion coeff-t

double Seed;//

int N; //number of particles

int ParticlesProduced;

//-----DFN parameters-----

double theta; //angle between main fracture set geol and simulated; -0.22643 rad - will put S3 and

I3 on the same line

double Xspm, XspM,Yspm,YspM; // spasing for x-fractures and y fractures

double Lxm,Lxd,Lym,Lyd,Lzm,Lzd;//lengths of fractures are distributed ~N(Lxm,Lxd)

double Xmin,XMax,Ymin,YMax,Zmin,ZMax,Zcmin,ZcMax; //limits for x,y,z

double WellFL; //half of the well fracture lengths;

//-----Matrix flow parameters-----

double Rad;

double MF1, MF2; //coefficient responsible for Kr, m-f interaction etc - MF1 - for calc velosity;

MF2 - for calc probability

class Pairs{

public:

 int vid,xory;

 double dob;

};

class Cell{

public:

 double P;

};

class grid {

public:

 Cell* cells;

137

 void ToFile(int,int,int,char);

 void FillPress();

 grid(){

 cells=new Cell[(Nx+1)*(Ny+1)*(Nz+1)];

 }

 ~grid(){

 delete [] cells;

 }

 Cell * G(int,int, int);

};

class vertice {

public:

 int edges[4]; //edges going from that vertexes

 double dP[4]; //(Potential at this vertex) - (Potential at the other end)

 int OtherEnd[4]; //number of vertex on the other end of the fracture edge

 int FrNum[4];//to which fracture this Edge belongs. If FrNum is [0 .. nXFr-1] - its x-

fracture (XFr[FrNum]). If it is [nXFr .. nXFr+nYFr-1] - then its y-fracture (YFr[FrNum-nXFr]).

 double L[4]; //length of the edge - horizintal component only

 double V[4];// velocity for fracture edge, m/s

 double Prob[4];//probability~q~V*A=V*H*fw

 int OtherEndM[nM]; //number of vertex on the other end of the matrix edge

 double dPM[nM]; //pressure potential for matrix edge

 double LM[nM]; //length for matrix edge

 double VM[nM]; //velosity for matrix edge

 double ProbM[nM]; //probability for matrix edge

 int NEdg,i,j,k,NM;

 double P;

 double pot;

};

class GraphV{

public:

 vertice* verts;

 void ToFile(char);

 void ToFileWT(char);

 void ToFilePoly(char);

 GraphV(){

 verts=new vertice[Nx*Ny*Nz];

 }

 ~GraphV(){

 delete [] verts;

 }

};

class particle{

public:

 int vid;//current vertex

 int tr;//particle index

 int WN; //well number

 double t;

 void Run(GraphV&);

};

class particles{

public:

 particle* SetOfP;

 void OneRun(GraphV&, int, int, double, int);

138

 particles(){

 SetOfP=new particle[100];

 }

 ~particles(){

 delete [] SetOfP;

 }

};

bool MyCompare(Pairs, Pairs);

double MyRand(double , double); // generates random value between min and max

double Norm(double, double); //generates normally distributed random number, with mean m and

deviation d

double MyRound(double , int); //rounding to certain decimal

void GenerateXFr();

void GenerateYFr(); //to generate based on DFN parameters

void CheckXFr();

void CheckYFr();

void Initiate();

void EditFromFile();

void CreateInput();

void MergeX();

void MergeY();

void MergeZ();

void Dimens();

void DX();

void DY();

void DZ();

void TOPS();

void MAPAXES();

void WELSPECS();

void COMPDAT();

void WCONINJ();

void WCONPROD();

void WELPI();

void CompleteXFr();

void CompleteYFr();

void EQUALS();

void FillCompDat();

void FillWellCoord(); //well S1 will be at (0,0), and they all will be rotated by theta

void FillGraphGeom(grid&, GraphV&);

void FillGraphProps(grid&, GraphV&);

void GraphAddMatr(grid&, GraphV&);

void FillInjProdInd(GraphV&);

void CreateGraph(GraphV& , grid&);

void SendChunk(GraphV& , particles& ,int);

void EmptyProduction();

//output

void ParametersToFile();

void ToFile(int, int, char);

void XFracturesAsPolygons(int , char); //exports x-fractures as polygons - in petrel format

void YFracturesAsPolygons(int , char); //exports y-fractures as polygons - in petrel format

139

Source file (main.cpp)

#include "main.h"

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <fstream>

#include <iostream>

#include <string>

#include <cmath>

#include <cstdio>

#include <time.h>

#include<conio.h>

#include <sstream>

#include<algorithm>

#include<windows.h>

using namespace std;

int main()

{Initiate();

//EditFromFile(); //usefull to run set of simulations from external application, e.g. Matlab

 CreateInput(); // generates fracture network based on DFN parameters and creates include files for

Eclipse run based on the fracture network

 grid MyGrid;

 GraphV MyGraph;

 particles MyParticles;

 system("run.bat"); //runs Eclipse file; if eclipse file in other folder - it should be

indicated in the bat file

 system("run2.bat"); // copies eclipse output file (*.F000*) back to the main folder

 CreateGraph(MyGraph, MyGrid);

 SendChunk(MyGraph, MyParticles,InjProdInd[0]);

}

void Initiate()

{ParticlesProduced=0;

nXFr=0;

nYFr=0;

fwx=0.005; // width of x-fractures

fwy=0.005; // width of y-fractures

 MarH=18;

 MarV=1;

 PermXfr=160000;

 PermYfr=140000;

 PoroF=1;

 PermM=50;

 PoroM=0.05;

 MaxX=10;

 rho=1020.3;

 g=9.80665;

 C=0.984294491895537; // C=1;

 q=20;

 q_s1=20;

 q_s2=20;

 q_s3=20;

 q_fs1=3.5;

 q_i1=20;

140

 q_i2=20;

 q_i3=20;

 q_i4=20;

 mu=1;

 D=0.000001;

 dt=10;

 Dt1=11400; //for I1 - tracer injection duration, sec.

 Dt2=5400; // for I2 -"-

 Dt3=11040; //for I3 -"-

 Dt4=9240; // for I4 -"-

 //---------DFN parameters-----------

 theta=0.04;//-angle between main fracture set geol and simulated; -0.22643 rad - will put S3 and

I3 on the same line

 Yspm=3.5; //

 YspM=4.5;//spasing between y-fractures is betweem Yspm and YspM

 Xspm=Yspm*4; //

 XspM=YspM*4; // spasing between x-fractures is betweem Xspm and XspM

 Lym=200; Lyd=10; //lengths of y-fractures are distributed ~N(Lym,Lyd)

 Lxm=50; Lxd=5; //lengths of x-fractures are distributed ~N(Lxm,Lxd)

 Lzm=7; Lzd=1; //heights of fractures are distributed ~N(Lzm,Lzd)

 Xmin=-140; XMax=140;

 Ymin=-80;YMax=80;

 Zmin=-1412;ZMax=-1392;Zcmin=-1400; ZcMax=-1395;

 WellFL=22;

 //-----Matrix flow parameters-----

Rad=2; //

MF1=20; // MF1 - for calc velosity;

MF2=0; // MF2 - for calc probability

 }

void EditFromFile()

{string str;

 {ifstream indata; // indata is like cin

 indata.open("Edit.txt"); // opens the file

 if(!indata) { // file couldn't be opened

 cerr << "Error: file could not be opened" << endl;

 }

 indata >> str; char *a=new char[str.size()+1]; memcpy(a,str.c_str(),str.size());

 Yspm=atof(a);

 YspM=Yspm;

 indata >> str; a=new char[str.size()+1]; memcpy(a,str.c_str(),str.size());

 Xspm=atof(a)*Yspm;

 XspM=Xspm;

 delete [] a;

 indata.close();

 srand(Seed);

 }

}

void CreateInput()

{FillWellCoord();

 GenerateXFr();

 if(nXFr>nXFrM)printf("nXFr>nXFrM");

 GenerateYFr();

 if(nYFr>nYFrM)printf("nYFr>nYFrM");

 CheckXFr();

141

 CheckYFr();

 MergeX();

 MergeY();

 MergeZ();

 FillCompDat();

 Dimens();

 DX();

 DY();

 DZ();

 TOPS();

 MAPAXES();

 CompleteXFr();

 CompleteYFr();

 EQUALS();

 WELSPECS();

 COMPDAT();

 WCONINJ();

 WCONPROD();

system("xcopy DIMENS \EclFiles /d /y");

system("xcopy DX \EclFiles /d /y");

system("xcopy DY \EclFiles /d /y");

system("xcopy DZ \EclFiles /d /y");

system("xcopy TOPS \EclFiles /d /y");

system("xcopy MAPAXES \EclFiles /d /y");

system("xcopy EQUALS \EclFiles /d /y");

system("xcopy WELSPECS \EclFiles /d /y");

system("xcopy COMPDAT \EclFiles /d /y");

system("xcopy WCONINJ \EclFiles /d /y");

system("xcopy WCONPROD \EclFiles /d /y");

system("xcopy WELPI \EclFiles /d /y");

}

void CreateGraph(GraphV& MyGraph, grid& MyGrid)

{ MyGrid.FillPress();

 FillGraphGeom(MyGrid, MyGraph);

 FillGraphProps(MyGrid, MyGraph);

 GraphAddMatr(MyGrid, MyGraph);

 FillInjProdInd(MyGraph);

}

void SendChunk(GraphV& MyGraph, particles& MyParticles, int InjWellNo)

{ int N1, N2, N3, N4, Nt;

 //------I1------//

 EmptyProduction();

 N1=(int)Dt1/dt;

for (int i=0;i<N1;i++)

 { MyParticles.SetOfP[0].tr=i;//particle index;

 MyParticles.SetOfP[0].WN=1;//InjWellNumber;

 MyParticles.SetOfP[0].vid=InjProdInd[0];

 MyParticles.SetOfP[0].t=i*dt;

 MyParticles.SetOfP[0].Run(MyGraph);

 }

ToFile(ProdTime*10, 4, '1');

//------I2------//

EmptyProduction();

 N2=(int)Dt2/dt;

142

 EmptyProduction();

 for (int i=0;i<N2;i++)

 { MyParticles.SetOfP[0].tr=i+N1;//particle index;

 MyParticles.SetOfP[0].WN=2;//InjWellNumber;

 MyParticles.SetOfP[0].vid=InjProdInd[1];

 MyParticles.SetOfP[0].t=i*dt;

 MyParticles.SetOfP[0].Run(MyGraph);

 }

ToFile(ProdTime*10, 4, '2');

//------I3------//

EmptyProduction();

 N3=(int)Dt3/dt;

 for (int i=0;i<N3;i++)

 { MyParticles.SetOfP[0].tr=i+N1+N2;//particle index;

 MyParticles.SetOfP[0].WN=3;//InjWellNumber;

 MyParticles.SetOfP[0].vid=InjProdInd[2];

 MyParticles.SetOfP[0].t=i*dt;

 MyParticles.SetOfP[0].Run(MyGraph);

 }

ToFile(ProdTime*10, 4, '3');

//------I4------//

EmptyProduction();

 N4=(int)Dt4/dt; //(!ch)

 for (int i=0;i<N4;i++)

 { MyParticles.SetOfP[0].tr=i+N1+N2+N3;//particle index;

 MyParticles.SetOfP[0].WN=4;//InjWellNumber;

 MyParticles.SetOfP[0].vid=InjProdInd[3];

 MyParticles.SetOfP[0].t=i*dt;

 MyParticles.SetOfP[0].Run(MyGraph); //(!ch)

 }

ToFile(ProdTime*10, 4, '4');

}

void FillWellCoord()

{ifstream myfile("WellCoord0.txt");

//I1x,I1y,I2x,I2y,I3x,I3y,I4x,I4y,FS1x,FS1y,S1x,S1y,S2x,S2y,S3x,S3y - rotated, shifted in a way

that S1 is at (0,0)

 if(!myfile)

 {

 cout<<"Could not open file"<<std::endl;

 }

 int lin=0;

 for (lin=0;lin< 16;lin++)

 {

 myfile>> WellCoord[lin];

 }

 // now we'll have to rotate by theta

 for (int i=0;i<8;i++)

 {double newx=WellCoord[i*2]*cos(theta)+WellCoord[i*2+1]*sin(theta);

 double newy=-WellCoord[i*2]*sin(theta)+WellCoord[i*2+1]*cos(theta);

 WellCoord[i*2]=MyRound(newx,1);

 WellCoord[i*2+1]=MyRound(newy,1);

 }

}

void GenerateXFr()

143

{double L,c;

 //nXFr=0 initially; keep increasing while adding fractures

// add x-fractures because of wells

 for (int i=0;i<8;i++)

 {XFr[nXFr][0]=WellCoord[i*2];

 XFr[nXFr][3]=WellCoord[i*2];

 XFr[nXFr][1]=max(WellCoord[i*2+1]-WellFL,Ymin+MarH);

 XFr[nXFr][4]=min(WellCoord[i*2+1]+WellFL, YMax-MarH);

 XFr[nXFr][5]=ZMax-MarV;

 XFr[nXFr][2]=XFr[nXFr][5]-7;

 XFr[nXFr][12]=PermXfr;

 XFr[nXFr][13]=fwx;

 nXFr++;

 }

 int InB=1;

 //first x-fracture (with smallest x-value)

 XFr[nXFr][0]=Xmin+MarH+MyRand(Xspm,XspM);

 XFr[nXFr][3]=XFr[nXFr][0];

 L=Norm(Lxm,Lxd); //length of fraction

 c=MyRand(Ymin,YMax);//y-coord of center

 XFr[nXFr][1]=max(c-(double)L/2,Ymin+MarH);

 XFr[nXFr][4]=min(c+(double)L/2, YMax-MarH);

 L=Norm(Lzm,Lzd); //height of fraction

 c=MyRand(Zcmin,ZcMax);//z-coord of center

 XFr[nXFr][2]=max(c-(double)L/2,Zmin+MarV);

 XFr[nXFr][5]=min(c+(double)L/2, ZMax-MarV);

 XFr[nXFr][12]=PermXfr;

 XFr[nXFr][13]=fwx;

 //---

 while(InB==1) //now all remaining x-fractures

 {nXFr++;

 XFr[nXFr][0]=XFr[nXFr-1][0]+MyRand(Xspm,XspM);

 XFr[nXFr][3]=XFr[nXFr][0];

 L=Norm(Lxm,Lxd); //length of fraction

 c=MyRand(Ymin,YMax);//y-coord of center

 XFr[nXFr][1]=max(c-(double)L/2,Ymin+MarH);

 XFr[nXFr][4]=min(c+(double)L/2, YMax-MarH);

 L=Norm(Lzm,Lzd); //height of fraction

 c=MyRand(Zcmin,ZcMax);//z-coord of center

 XFr[nXFr][2]=max(c-(double)L/2,Zmin+MarV);

 XFr[nXFr][5]=min(c+(double)L/2, ZMax-MarV);

 XFr[nXFr][12]=PermXfr;

 XFr[nXFr][13]=fwx;

 if (XFr[nXFr][0]>XMax-MarH) //this fracture should not be considered, and process should be

stopped

 {nXFr--;

 InB=0;

 }

 }

 //now lets round everything

 for (int lin=0;lin<nXFr;lin++)

 {

 for (int col=0;col<5;col++)

 {XFr[lin][col]=MyRound(XFr[lin][col],1);}

144

 XFr[lin][2]=MyRound(XFr[lin][2],0);

 XFr[lin][5]=MyRound(XFr[lin][5],0);

 }

}

void GenerateYFr()

{double L,c;

 //nYFr=0 initially; keep increasing while adding fractures

 // add y-fractures because of wells

 for (int i=0;i<8;i++)

 {YFr[nYFr][1]=WellCoord[i*2+1];

 YFr[nYFr][4]=WellCoord[i*2+1];

 YFr[nYFr][0]=WellCoord[i*2]-WellFL;

 YFr[nYFr][3]=WellCoord[i*2]+WellFL;

 YFr[nYFr][5]=ZMax-MarV;

 YFr[nYFr][2]=YFr[nYFr][5]-7;

 YFr[nYFr][12]=PermYfr;

 YFr[nYFr][13]=fwy;

 nYFr++;

 }

 int InB=1;

 //---first y-fracture (with smallest y-value)

 YFr[nYFr][1]=Ymin+MarH+MyRand(Yspm,YspM);

 YFr[nYFr][4]=YFr[nYFr][1];

 L=Norm(Lym,Lyd); //length of fraction

 c=MyRand(Xmin,XMax);//y-coord of center

 YFr[nYFr][0]=max(c-(double)L/2,Xmin+MarH);

 YFr[nYFr][3]=min(c+(double)L/2, XMax-MarH);

 L=Norm(Lzm,Lzd); //height of fraction

 c=MyRand(Zcmin,ZcMax);//z-coord of center

 YFr[nYFr][2]= max(c-(double)L/2,Zmin+MarV);

 YFr[nYFr][5]=min(c+(double)L/2, ZMax-MarV);

 YFr[nYFr][12]=PermYfr;

 YFr[nYFr][13]=fwy;

 //---

 while(InB==1) //now all remaining y-fractures

 {nYFr++;

 YFr[nYFr][1]=YFr[nYFr-1][1]+MyRand(Yspm,YspM);

 YFr[nYFr][4]=YFr[nYFr][1];

 L=Norm(Lym,Lyd); //length of fraction

 c=MyRand(Xmin,XMax);//y-coord of center

 YFr[nYFr][0]=max(c-(double)L/2,Xmin+MarH);

 YFr[nYFr][3]=min(c+(double)L/2, XMax-MarH);

 L=Norm(Lzm,Lzd); //height of fraction

 c=MyRand(Zcmin,ZcMax);//z-coord of center

 YFr[nYFr][2]=max(c-(double)L/2,Zmin+MarV);

 YFr[nYFr][5]=min(c+(double)L/2, ZMax-MarV);

 YFr[nYFr][12]=PermYfr;

 YFr[nYFr][13]=fwy;

 if (YFr[nYFr][1]>YMax-MarH) //this fracture should not be considered, and process should be

stopped

 {nYFr--;

 InB=0;

 }

 }

145

 //now lets round everything

 for (int lin=0;lin<nYFr;lin++)

 {

 for (int col=0;col<5;col++)

 {

 YFr[lin][col]=MyRound(YFr[lin][col],1);

 }

 YFr[lin][2]=MyRound(YFr[lin][2],0);

 YFr[lin][5]=MyRound(YFr[lin][5],0);

 }

}

void CheckXFr()

{int s=0;

 while (s<nXFr)

 {int f=s+1;

 while (f<nXFr) //checking for fracture s if it overlaps with any of the following fractures; remove

any which will overlap

 {if(XFr[s][0]==XFr[f][0]&&(XFr[s][4]-XFr[f][1])*(XFr[f][4]-XFr[s][1])>0 && (XFr[s][5]-

XFr[f][2])*(XFr[f][5]-XFr[s][2])>0) //if they overlap

 {for(int j=0;j<12;j++)XFr[f][j]=XFr[nXFr-1][j]; //replaced f-th element my last element of the

array

 nXFr=nXFr-1;

 }

 f++;

 }

 s++;

 }

}

void CheckYFr()

{int s=0;

 while (s<nYFr)

 {int f=s+1;

 while (f<nYFr) //checking for fracture s if it overlaps with any of the following fractures; remove

any which will overlap

 {if(YFr[s][1]==YFr[f][1]&&(YFr[s][3]-YFr[f][0])*(YFr[f][3]-YFr[s][0])>0 && (YFr[s][5]-

YFr[f][2])*(YFr[f][5]-YFr[s][2])>0) //if they overlap

 {for(int j=0;j<12;j++)YFr[f][j]=YFr[nYFr-1][j]; //replaced f-th element my last element of the

array

 nYFr=nYFr-1;

 }

 f++;

 }

 s++;

 }

}

void MergeX() //put all 'ticks' because of x and y fractures to the array Xj

{ int i,j,k;

 for(i=0;i<nXFr;i++){

 Xj[2*i]=XFr[i][0];

 Xj[2*i+1]=XFr[i][0]+XFr[i][13]; //ticks because of x-fractures ; XFr[i][13] is fw

 }

 for(i=0;i<nYFr;i++){

 Xj[2*nXFr+2*i]=YFr[i][0];

 Xj[2*nXFr+2*i+1]=YFr[i][3]; //ticks because of y-fractures

146

 }

 sort(Xj, Xj+(nXFr+nYFr)*2);

// now we'll remove repeating values

 j=1;

for (i=1;i<(nXFr+nYFr)*2;i++)

{if (Xj[i]==Xj[i-1])

{} //just move to next i

else{

 Xj[j]=Xj[i];

 j++;

}

}

Nx=j+1; // there are only j different values => j+1 cells.

// now we'll add additional nodes in a way that each cell has DX not more that MaxX;

 i=0;

while(i<Nx-2)

{if((Xj[i+1]-Xj[i])>MaxX)

{int N=(int)((Xj[i+1]-Xj[i])/MaxX); //add N nodes to the interval (Xj(i);Xj(i+1)).

 double Size=(Xj[i+1]-Xj[i])/(N+1); //size of each cell;

 for(k=Nx-2;k>=i+1;k--)

 {Xj[k+N]=Xj[k];} //shift all elements starting from i+1 N positons right (to create empty space

for N nodes)

 for(k=1;k<=N;k++)

 {Xj[i+k]=Xj[i]+k*Size;} //adding nodes

 Nx=Nx+N;//because we added N nodes

 i=i+N;

}

else i++;

}

}

void MergeY()

{ int i,j,k;

 for(i=0;i<nYFr;i++){

 Yj[2*i]=YFr[i][1];

 Yj[2*i+1]=YFr[i][1]+YFr[i][13]; //ticks because of y-fractures ; YFr[i][13] if fw

 }

 for(i=0;i<nXFr;i++){

 Yj[2*nYFr+2*i]=XFr[i][1];

 Yj[2*nYFr+2*i+1]=XFr[i][4]; //ticks because of x-fractures

 }

sort(Yj, Yj+(nXFr+nYFr)*2);

// now we'll remove repeating values

 j=1;

for (i=1;i<(nXFr+nYFr)*2;i++)

{if (Yj[i]==Yj[i-1])

{} //just move to next i

else{

 Yj[j]=Yj[i];

 j++;

}

}

Ny=j+1; // there are only j different values => j+1 cells.

}

void MergeZ()

147

{ for(int i=0;i<nXFr;i++){

 Zj[2*i]=XFr[i][2];

 Zj[2*i+1]=XFr[i][5]; //ticks because of x-fractures

 }

 for(int i=0;i<nYFr;i++){

 Zj[2*nXFr+2*i]=YFr[i][2];

 Zj[2*nXFr+2*i+1]=YFr[i][5]; //ticks because of y-fractures

 }

sort(Zj, Zj+(nXFr+nYFr)*2);

// now we'll remove repeating values

int j=1;

for (int i=1;i<(nXFr+nYFr)*2;i++)

{if (Zj[i]==Zj[i-1])

{} //just move to next i

else{

 Zj[j]=Zj[i];

 j++;

}

}

Nz=j+1; // there are only j different values => j+1 cells.

}

void FillCompDat()

{for (int i=0;i<8;i++)

 {int j=0;

 while (j<=Nx-2)

 {if(WellCoord[i*2]==Xj[j])

 {CompDat[i*2]=j+2; //i coordinate of i-th well

 j=Nx; }// to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Ny-2)

 {if(WellCoord[i*2+1]==Yj[j])

 {CompDat[i*2+1]=j+2; //j coordinate of i-th well

 j=Ny; }// to finish cycle

 else {j++;}// to finish cycle

 }

}}

void Dimens()

{string str = "DIMENS";

ofstream output(str.c_str());

output.flush();

output<<str<<endl<<Nx<<' '<<Ny<<' '<<Nz<<' '<<'/';

output.close();

}

void DX()

{string str = "DX";

ofstream output(str.c_str());

output.flush();

string str2 = "BOX";

string str3 = "ENDBOX";

output<<str2<<endl<<'1'<<' '<<Nx<<' '<<'1'<<' '<<Ny<<' '<<'1'<<' '<<'1'<<'/'<<endl;

output<<str<<endl;

for(int j=1;j<=Ny;j++)

148

{

 output<<Xj[0]-Xmin<<' ';

 for(int i=0;i<=Nx-3;i++)

 //{output<<Xj[i+1]-Xj[i]<<' ';}

 {output<<Xj[i+1]-Xj[i]<<endl;}

 output<<XMax-Xj[Nx-2]<<endl;

}

output<<'/'<<endl<<str3;

output.close();

}

void DY()

{string str = "DY";

ofstream output(str.c_str());

output.flush();

string str2 = "BOX";

string str3 = "ENDBOX";

output<<str2<<endl<<'1'<<' '<<Nx<<' '<<'1'<<' '<<Ny<<' '<<'1'<<' '<<'1'<<'/'<<endl;

output<<str<<endl;

 output<<Nx<<'*'<<Yj[0]-Ymin<<endl;

 for(int i=0;i<=Ny-3;i++)

 {output<<Nx<<'*'<<Yj[i+1]-Yj[i]<<endl;}

 output<<Nx<<'*'<<YMax-Yj[Ny-2]<<endl;

output<<'/'<<endl<<str3;

output.close();

}

void DZ()

{string str = "DZ";

ofstream output(str.c_str());

output.flush();

output<<str<<endl;

 output<<Nx*Ny<<'*'<<MarV<<endl;

 for(int i=Nz-2;i>=1;i--)

 {output<<Nx*Ny<<'*'<<Zj[i]-Zj[i-1]<<endl;}

 output<<Nx*Ny<<'*'<<MarV<<endl;

output<<'/';

output.close();

}

void MAPAXES()

 {string str = "MAPAXES";

ofstream output(str.c_str());

output.flush();

output<<str<<endl;

output<<Xmin<<' '<<YMax<<' '<<Xmin<<' '<<Ymin<<' '<<XMax<<' '<<Ymin<<'/'<<endl;

output.close();

}

void TOPS()

{string str = "TOPS";

ofstream output(str.c_str());

output.flush();

string str2 = "BOX";

string str3 = "ENDBOX";

output<<str2<<endl<<'1'<<' '<<Nx<<' '<<'1'<<' '<<Ny<<' '<<'1'<<' '<<'1'<<'/'<<endl;

output<<str<<endl;

 output<<Nx*Ny<<'*'<<(-1)*ZMax<<endl;

149

output<<'/'<<endl<<str3;

output.close();

}

void CompleteXFr() //add i,j,k limits for each fracture

{

 for (int i=0;i<nXFr;i++)

 {int j=0;

 while (j<=Nx-2)

 {if(XFr[i][0]==Xj[j])

 {XFr[i][6]=j+2;

 XFr[i][7]=j+2; //i cells fracture occupies

 j=Nx; }// to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Ny-2)

 {if(XFr[i][1]==Yj[j])

 {XFr[i][8]=j+2; //first j-cell fracture occupies

 j=Ny;} // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Ny-2)

 {if(XFr[i][4]==Yj[j])

 {XFr[i][9]=j+1; //last j-cell fracture occupies

 j=Ny;} // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Nz-2)

 {if(XFr[i][2]==Zj[j])

 {XFr[i][11]=Nz-j-1; //first k-cell fracture occupies

 j=Nz;} // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Nz-2)

 {if(XFr[i][5]==Zj[j])

 {XFr[i][10]=Nz-j; //last k-cell fracture occupies

 j=Nz;} // to finish cycle

 else {j++;}

 }

 }

}

void CompleteYFr()

{int j;

 for (int i=0;i<nYFr;i++)

 {

 j=0;

 while (j<=Ny-2)

 {if(YFr[i][1]==Yj[j])

 {YFr[i][8]=j+2;

 YFr[i][9]=j+2; //j cells fracture occupies

 j=Ny; }// to finish cycle

150

 else {j++;}

 }

 j=0;

 while (j<=Nx-2)

 {if(YFr[i][0]==Xj[j])

 {YFr[i][6]=j+2; //first i-cell fracture occupies

 j=Nx;} // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Nx-2)

 {if(YFr[i][3]==Xj[j])

 {YFr[i][7]=j+1; //last i-cell fracture occupies

 j=Nx;} // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Nz-2)

 {if(YFr[i][2]==Zj[j])

 {YFr[i][11]=Nz-j-1;//{YFr[i][10]=j+2; //first k-cell fracture occupies

 j=Nz; } // to finish cycle

 else {j++;}

 }

 j=0;

 while (j<=Nz-2)

 {if(YFr[i][5]==Zj[j])

 {YFr[i][10]=Nz-j;//{YFr[i][11]=j+1; //last k-cell fracture occupies

 // printf ("k for y fr %d", j);

 j=Nz; } // to finish cycle

 else {j++;}

 }

 }

}

void EQUALS()

{string str = "EQUALS";

ofstream output(str.c_str());

output.flush();

string str1 = "PERMX";

string str2 = "PORO";

output<<str<<endl;

output<<str1<<' '<<PermM<<'/'<<endl;

output<<str2<<' '<<PoroM<<'/'<<endl;

for(int i=0;i<nXFr;i++)

{output<<str1<<' '<<XFr[i][12]<<' '<<XFr[i][6]<<' '<<XFr[i][7]<<' '<<XFr[i][8]<<'

'<<XFr[i][9]<<' '<<XFr[i][10]<<' '<<XFr[i][11]<<'/'<<endl; //box for PermXFr

output<<str2<<' '<<PoroF<<' '<<XFr[i][6]<<' '<<XFr[i][7]<<' '<<XFr[i][8]<<' '<<XFr[i][9]<<'

'<<XFr[i][10]<<' '<<XFr[i][11]<<'/'<<endl;} //box for PoroF

for(int i=0;i<nYFr;i++)

{output<<str1<<' '<<YFr[i][12]<<' '<<YFr[i][6]<<' '<<YFr[i][7]<<' '<<YFr[i][8]<<'

'<<YFr[i][9]<<' '<<YFr[i][10]<<' '<<YFr[i][11]<<'/'<<endl; //box for PermYFr

output<<str2<<' '<<PoroF<<' '<<YFr[i][6]<<' '<<YFr[i][7]<<' '<<YFr[i][8]<<' '<<YFr[i][9]<<'

'<<YFr[i][10]<<' '<<YFr[i][11]<<'/'<<endl;} //box for PoroF

output<<'/';

output.close();

151

}

void WELSPECS()

{string str = "WELSPECS";

ofstream output(str.c_str());

output.flush();

string str0 = "I1";

string str1 = "I2";

string str2 = "I3";

string str3 = "I4";

string str4 = "FS1";

string str5 = "S1";

string str6 = "S2";

string str7 = "S3";

string str8 = "1*";

string str9 = "WATER";

output<<str<<endl;

output<<str0<<' '<<str8<<' '<<CompDat[0*2]<<' '<<CompDat[0*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str1<<' '<<str8<<' '<<CompDat[1*2]<<' '<<CompDat[1*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str2<<' '<<str8<<' '<<CompDat[2*2]<<' '<<CompDat[2*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str3<<' '<<str8<<' '<<CompDat[3*2]<<' '<<CompDat[3*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str4<<' '<<str8<<' '<<CompDat[4*2]<<' '<<CompDat[4*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str5<<' '<<str8<<' '<<CompDat[5*2]<<' '<<CompDat[5*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str6<<' '<<str8<<' '<<CompDat[6*2]<<' '<<CompDat[6*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<str7<<' '<<str8<<' '<<CompDat[7*2]<<' '<<CompDat[7*2+1]<<' '<<str8<<'

'<<str9<<'/'<<endl;

output<<'/'<<endl;

output.close();

}

void COMPDAT()

{string str = "COMPDAT";

ofstream output(str.c_str());

output.flush();

string str0 = "I1";

string str1 = "I2";

string str2 = "I3";

string str3 = "I4";

string str4 = "FS1";

string str5 = "S1";

string str6 = "S2";

string str7 = "S3";

string str8 = "1*";

string str9 = "OPEN";

int k1=2; // change if needed

int k2=Nz-1;// change if needed

output<<str<<endl;

output<<str0<<' '<<CompDat[0*2]<<' '<<CompDat[0*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

152

output<<str1<<' '<<CompDat[1*2]<<' '<<CompDat[1*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str2<<' '<<CompDat[2*2]<<' '<<CompDat[2*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str3<<' '<<CompDat[3*2]<<' '<<CompDat[3*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str4<<' '<<CompDat[4*2]<<' '<<CompDat[4*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str5<<' '<<CompDat[5*2]<<' '<<CompDat[5*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str6<<' '<<CompDat[6*2]<<' '<<CompDat[6*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<str7<<' '<<CompDat[7*2]<<' '<<CompDat[7*2+1]<<' '<<k1<<' '<<k2<<' '<<str9<<'

'<<str8<<' '<<'1'<<'/'<<endl;

output<<'/'<<endl;

output.close();

}

void WCONINJ()

{string str = "WCONINJ";

ofstream output(str.c_str());

output.flush();

string str0 = "I1";

string str1 = "I2";

string str2 = "I3";

string str3 = "I4";

string str4 = "WATER OPEN RATE ";

string str5 = " 3* 300 /";

output<<str<<endl;

output<<str0<<' '<<str4<<q_i1<<str5<<endl;

output<<str1<<' '<<str4<<q_i2<<str5<<endl;

output<<str2<<' '<<str4<<q_i3<<str5<<endl;

output<<str3<<' '<<str4<<q_i4<<str5<<endl;

output<<'/'<<endl;

output.close();

}

void WCONPROD()

{string str = "WCONPROD";

ofstream output(str.c_str());

output.flush();

string str0 = "S1";

string str1 = "S2";

string str2 = "S3";

string str3 = "FS1";

string str4 = "OPEN LRAT 3* ";

string str5 = " 1* 50 /";

output<<str<<endl;

output<<str0<<' '<<str4<<q_s1<<str5<<endl;

output<<str1<<' '<<str4<<q_s2<<str5<<endl;

output<<str2<<' '<<str4<<q_s3<<str5<<endl;

output<<str3<<' '<<str4<<q_fs1<<str5<<endl;

output<<'/'<<endl;

output.close();

}

void grid::FillPress() //reads pressure values from V4.F0005 file and locates them in G(I,J,K)->P

153

{ifstream indata; // indata is like cin

 int num; // variable for input value

 string str1="'PRESSURE'";

 string str;

 indata.open("V4.F0005"); // opens the file

 if(!indata) { // file couldn't be opened

 cerr << "Error: file could not be opened" << endl;

 }

 indata >> str;

 while (!indata.eof()) { // keep reading until end-of-file

 if (str==str1)

 {indata >> str;

 indata >> str;

 indata >> str;

 for (int K=1;K<=Nz;K++)

 {for (int J=1;J<=Ny;J++)

 {for (int I=1;I<=Nx;I++)

 {char *a=new char[str.size()+1];

 a[str.size()]=0;

 memcpy(a,str.c_str(),str.size());

 G(I,J,K)->P=atof(a);

 indata>>str;

 }

 }

 }}

 indata>>str;

 }

 indata.close();

}

void FillGraphGeom(grid& MyGrid, GraphV& MyGraph) //fills i, j, k, NEdg, other End; This one

creates vertexes on fracture ends, not only on intersections

{ int Ntemp; int NEdg;

 int v=0; //element of Graph which we are going to fill

 int s; //counter

 int i;

 int n;

for (s=0;s<nXFr;s++) //for each X-fracture

{

 int xi=XFr[s][6];

 int xj1=XFr[s][8];

 int xj2=XFr[s][9];

 int xk1=XFr[s][10];

 int xk2=XFr[s][11];

 Pairs temp[nYFrM*2]; //temporary array; we will put all y-intersections of that fracture

and fracture ends in this array

 Ntemp=0; //number of vertexes on this x-fracture

 MyGraph.verts[v].i=xi;

 MyGraph.verts[v].j=xj1;

 MyGraph.verts[v].k=(int)(xk1+xk2)/2;

 MyGraph.verts[v].NEdg=0;

 temp[Ntemp].vid=v;

 temp[Ntemp].xory=xj1; //added one end of the x-fracture

 Ntemp++;

 v++;

154

 MyGraph.verts[v].i=xi;

 MyGraph.verts[v].j=xj2;

 MyGraph.verts[v].k=(int)(xk1+xk2)/2;

 MyGraph.verts[v].NEdg=0;

 temp[Ntemp].vid=v;

 temp[Ntemp].xory=xj2;

 Ntemp++;

 v++;//added other end of the x-fracture

 for (n=0;n<nYFr;n++) //for each Y-fracture

 {int yi1=YFr[n][6];

 int yi2=YFr[n][7];

 int yj=YFr[n][8];

 int yk1=YFr[n][10];

 int yk2=YFr[n][11];

 if((yi1<xi)&&(xi<yi2)&&(xj1<yj)&&(yj<xj2)&&((xk2-yk1)*(yk2-xk1)>=0)) //those 2

fractures are intersecting (but not at the end fracture, because we are adding ends separately)

 { MyGraph.verts[v].i=xi;

 MyGraph.verts[v].j=yj;

 MyGraph.verts[v].k=int((max(xk1,yk1)+min(xk2,yk2))/2);

 MyGraph.verts[v].NEdg=0;

 temp[Ntemp].vid=v;

 temp[Ntemp].xory=yj; //put all y-intersections of that fracture in the temporary

array)

 Ntemp=Ntemp+1;

 v++;

 } //end of if

 } //end of cycle -> go to next y-fracture

 //sort temp array and create edges

 if(Ntemp>1)

 {

 sort(temp,temp+Ntemp,MyCompare);

 //first vertex for this x-fracture

 NEdg=MyGraph.verts[temp[0].vid].NEdg;

 MyGraph.verts[temp[0].vid].OtherEnd[NEdg]=temp[1].vid;

 MyGraph.verts[temp[0].vid].FrNum[NEdg]=s; //this edge is on x-fracture #s

 MyGraph.verts[temp[0].vid].NEdg=MyGraph.verts[temp[0].vid].NEdg+1;

 for(i=1;i<Ntemp-1;i++) //this will run only if Ntemp>=3

 {NEdg=MyGraph.verts[temp[i].vid].NEdg;

 MyGraph.verts[temp[i].vid].OtherEnd[NEdg]=temp[i-1].vid;

 MyGraph.verts[temp[i].vid].FrNum[NEdg]=s; //this edge is on x-fracture #s

 MyGraph.verts[temp[i].vid].NEdg=MyGraph.verts[temp[i].vid].NEdg+1; //added edge

which goes towards 'left' vertex

 NEdg=MyGraph.verts[temp[i].vid].NEdg;

 MyGraph.verts[temp[i].vid].OtherEnd[NEdg]=temp[i+1].vid;

 MyGraph.verts[temp[i].vid].FrNum[NEdg]=s; //this edge is on x-fracture #s

 MyGraph.verts[temp[i].vid].NEdg=MyGraph.verts[temp[i].vid].NEdg+1; //added edge

which goes towards 'right' vertex

 } //for all 'middle/ points on that x-fracture

 //last -Ntemp-1- vertex for this x-fracture

 NEdg=MyGraph.verts[temp[Ntemp-1].vid].NEdg;

 MyGraph.verts[temp[Ntemp-1].vid].OtherEnd[NEdg]=temp[Ntemp-2].vid;

 MyGraph.verts[temp[Ntemp-1].vid].FrNum[NEdg]=s; //this edge is on x-fracture #s

 MyGraph.verts[temp[Ntemp-1].vid].NEdg=NEdg+1;

 } //end of if Ntemp>1 cycle

155

} //end of cycle -> go to next x-fracture

//now add ends of y-fractures

for (s=0;s<nYFr;s++) //for each Y-fracture

{ int yi1=YFr[s][6];

 int yi2=YFr[s][7];

 int yj=YFr[s][8];

 int yk1=YFr[s][10];

 int yk2=YFr[s][11];

 MyGraph.verts[v].i=yi1;

 MyGraph.verts[v].j=yj;

 MyGraph.verts[v].k=(int)(yk1+yk2)/2;

 MyGraph.verts[v].NEdg=0;

 v++; //added one end of the y-fracture

 MyGraph.verts[v].i=yi2;

 MyGraph.verts[v].j=yj;

 MyGraph.verts[v].k=(int)(yk1+yk2)/2;

 MyGraph.verts[v].NEdg=0;

 v++; //added other end of the y-fracture

} //done for all y-fractures

NumVert=v;

//--vertexes are created; edges along x-fractures - also; now add edges along all y-fractures ---------

for (s=0;s<nYFr;s++) //for each Y-fracture

{ int yj=YFr[s][8];

 Pairs temp[nXFrM*2]; //temporary array; we will put all vertexes laying on this y-

fracture to this array

 Ntemp=0; //number vertexes on this y-fracture

 for (v=0;v<NumVert;v++) //for each vertex

 {

 if((MyGraph.verts[v].j==yj)&&(MyGraph.verts[v].i>=YFr[s][6])&&(MyGraph.verts[v].i

<=YFr[s][7])&&(MyGraph.verts[v].k>=YFr[s][10])&&(MyGraph.verts[v].k<=YFr[s][11]))

 //vertex belongs to that y-fracture

 { temp[Ntemp].vid=v;

 temp[Ntemp].xory=MyGraph.verts[v].i; //put all vertexes on that y-fracture in

the temporary array

 Ntemp=Ntemp+1;

 } //end of if

 } //end of v-cycle

 //sort temp array and create edges

 if(Ntemp>1)

 {

 sort(temp,temp+Ntemp,MyCompare);

 //first vertex for this y-fracture

 NEdg=MyGraph.verts[temp[0].vid].NEdg;

 MyGraph.verts[temp[0].vid].OtherEnd[NEdg]=temp[1].vid;

 MyGraph.verts[temp[0].vid].FrNum[NEdg]=nXFr+s; // this edge belongs to y-fracture #s

 MyGraph.verts[temp[0].vid].NEdg=MyGraph.verts[temp[0].vid].NEdg+1;

 for(i=1;i<Ntemp-1;i++) //this will run only if Ntemp>=3

 {NEdg=MyGraph.verts[temp[i].vid].NEdg;

 MyGraph.verts[temp[i].vid].OtherEnd[NEdg]=temp[i-1].vid;

 MyGraph.verts[temp[i].vid].FrNum[NEdg]=nXFr+s; // this edge belongs to y-fracture #s

 MyGraph.verts[temp[i].vid].NEdg=MyGraph.verts[temp[i].vid].NEdg+1; //added edge

which goes towards 'left' vertex

 NEdg=MyGraph.verts[temp[i].vid].NEdg;

 MyGraph.verts[temp[i].vid].OtherEnd[NEdg]=temp[i+1].vid;

156

 MyGraph.verts[temp[i].vid].FrNum[NEdg]=nXFr+s; // this edge belongs to y-fracture #s

 MyGraph.verts[temp[i].vid].NEdg=MyGraph.verts[temp[i].vid].NEdg+1; //added edge

which goes towards 'right' vertex

 } //for all 'middle/ points on that x-fracture

 //last -Ntemp-1- vertex for this y-fracture

 NEdg=MyGraph.verts[temp[Ntemp-1].vid].NEdg;

 MyGraph.verts[temp[Ntemp-1].vid].OtherEnd[NEdg]=temp[Ntemp-2].vid;

 MyGraph.verts[temp[Ntemp-1].vid].FrNum[NEdg]=nXFr+s;// this edge belongs to y-

fracture #s

 MyGraph.verts[temp[Ntemp-1].vid].NEdg=MyGraph.verts[temp[Ntemp-

1].vid].NEdg+1;

 } //end of if Ntemp>1 cycle

} //end of cycle -> go to next y-fracture

}

void FillGraphProps(grid& MyGrid, GraphV& MyGraph) //fills P, pot, dP, L

{int i,j,k;

 double x1,y1,z1,x2,y2,z2,fw,h;

 for (int v=0;v<NumVert;v++)

 {k=MyGraph.verts[v].k;

 z1= (Zj[Nz-k]+Zj[Nz-k-1])/2; //z coord of v

MyGraph.verts[v].P=MyGrid.G(MyGraph.verts[v].i,MyGraph.verts[v].j,MyGraph.verts[v].k)->P;

//set pressure

 MyGraph.verts[v].pot=MyGraph.verts[v].P+0.00001*rho*g*z1*C; //set potential

 }

 printf("NumVert %d/n", NumVert);

 for (int v=0; v<NumVert;v++)

 {i=MyGraph.verts[v].i;

 j=MyGraph.verts[v].j;

 k=MyGraph.verts[v].k;

 x1=(Xj[i-1]+Xj[i-2])/2;

 y1=(Yj[j-1]+Yj[j-2])/2;

 z1=(Zj[Nz-k]+Zj[Nz-k-1])/2; //coords of v

 for (int s=0;s<MyGraph.verts[v].NEdg;s++)

 {MyGraph.verts[v].dP[s]=MyGraph.verts[v].pot-

MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].pot;

 i=MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].i;

 j=MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].j;

 k=MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].k;

 x2=(Xj[i-1]+Xj[i-2])/2;

 y2=(Yj[j-1]+Yj[j-2])/2;

 z2=(Zj[Nz-k]+Zj[Nz-k-1])/2; //coords of MyGraph.verts[v].OtherEnd[s]

 MyGraph.verts[v].L[s]=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));//sqrt((x1-x2)*(x1-

x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));

 //MyGraph.verts[v].H[s]=sqrt((z1-z2)*(z1-z2));

 //MyGraph.verts[v].V[s]=0.0000001*PermF*MyGraph.verts[v].dP[s]/(mu*MyGraph.ver

ts[v].L[s]);

 if (MyGraph.verts[v].FrNum[s]<nXFr) //it's an x-fracture #FrNum[s]

 {PermF=XFr[MyGraph.verts[v].FrNum[s]][12];

 fw=XFr[MyGraph.verts[v].FrNum[s]][13];

 h=XFr[MyGraph.verts[v].FrNum[s]][5]-XFr[MyGraph.verts[v].FrNum[s]][2]; //// height

of the fracture

 }

157

 if (nXFr<=MyGraph.verts[v].FrNum[s] && MyGraph.verts[v].FrNum[s]<nXFr+nYFr)

//it's an y-fracture #FrNum[s]-nXFr

 {PermF=YFr[MyGraph.verts[v].FrNum[s]-nXFr][12];

 fw=YFr[MyGraph.verts[v].FrNum[s]-nXFr][13];

 h=YFr[MyGraph.verts[v].FrNum[s]-nXFr][5]-YFr[MyGraph.verts[v].FrNum[s]-

nXFr][2]; //// h

 }

 MyGraph.verts[v].V[s]=0.0000001*PermF*MyGraph.verts[v].dP[s]/(mu*MyGraph.verts

[v].L[s]);

 MyGraph.verts[v].Prob[s]=MyGraph.verts[v].V[s]*fw*h;

 if (MyGraph.verts[v].j!=MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].j &&

MyGraph.verts[v].i!=MyGraph.verts[MyGraph.verts[v].OtherEnd[s]].i)

 {printf("no i no j equal, v,s %d %d ",v,s);}

 }

 }

}

void GraphAddMatr(grid& MyGrid, GraphV& MyGraph) //NM, OtherEndM,

LM,dpM,VM,ProbM

{int i,j,k;

 double x1,y1,z1,x2,y2,z2,fw;

 for (int v=0;v<NumVert;v++)

 {MyGraph.verts[v].NM=0; //number of matrix connections

 i=MyGraph.verts[v].i;

 j=MyGraph.verts[v].j;

 x1=(Xj[i-1]+Xj[i-2])/2;

 y1=(Yj[j-1]+Yj[j-2])/2;

 for (int s=0;s<NumVert;s++)

 {if (MyGraph.verts[v].NM>=nM){s=NumVert; printf ("too many.. decrease

Rad");}

 else{

 i=MyGraph.verts[s].i;

 j=MyGraph.verts[s].j;

 x2=(Xj[i-1]+Xj[i-2])/2;

 y2=(Yj[j-1]+Yj[j-2])/2;

 if(((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))<Rad*Rad) //s is within Rad distance from v

 {//check if s and v don't belong to the same fracture

 int belong=0;

 for (int se=0;se<MyGraph.verts[v].NEdg; se++) //for all edges of v

 {for (int ve=0;ve<MyGraph.verts[s].NEdg; ve++) //for all edges of s

 {if (MyGraph.verts[v].FrNum[ve]==MyGraph.verts[s].FrNum[se])

belong=1;

 }

 }

 if(belong==0) //s does no belong to the same fracture as v

 {MyGraph.verts[v].OtherEndM[MyGraph.verts[v].NM]=s;

 MyGraph.verts[v].LM[MyGraph.verts[v].NM]=sqrt((x1-x2)*(x1-x2)+(y1-

y2)*(y1-y2));

 MyGraph.verts[v].dPM[MyGraph.verts[v].NM]=MyGraph.verts[v].pot-

MyGraph.verts[s].pot;

 MyGraph.verts[v].VM[MyGraph.verts[v].NM]=MF1*0.0000001*PermM*MyGraph.vert

s[v].dPM[MyGraph.verts[v].NM]/(mu*MyGraph.verts[v].LM[MyGraph.verts[v].NM]); //velosity

of flow through fracture

158

 MyGraph.verts[v].ProbM[MyGraph.verts[v].NM]=MF2*MyGraph.verts[v].VM[MyGrap

h.verts[v].NM]; //MF2 should reflect area in a way

 MyGraph.verts[v].NM++;

 }}

 }}

 }

}

void FillInjProdInd(GraphV& MyGraph) //InjProdInd will have number of vertexes

correspondung to wells I1, I2, ...

{for (int v=0;v<NumVert;v++)

{for (int j=0;j<8;j++)

{

if(MyGraph.verts[v].i==CompDat[j*2] && MyGraph.verts[v].j==CompDat[j*2+1])

InjProdInd[j]=v;

}

 }

}

void EmptyProduction()

{

 for (int i=0;i<4;i++)

 for(int j=0;j<(ProdTime*10);j++)

 Production[i][j]=0;

}

Cell* grid::G(int I, int J, int K)

{return (&cells[(Nx)*(Ny)*K+(Nx)*J+I]);

}

void particle::Run(GraphV& MyGraph) //this one includes flow through matrix

{//string str = "production.txt";

 string str;

 double t_d; //time in days, rounded to 0.1 days

 int flow =-1; //0 - fracture, 1 - matrix

 int NPosEdg;

ofstream output(str.c_str(), std::ios::app);

output.flush();

Pairs temp[105];

int Ntemp;

double r,r1;

int ExitCode=-1;

while(ExitCode<0)

{Ntemp=0;

NPosEdg=0;

 temp[Ntemp].dob=0;

 for (int s=0;s<MyGraph.verts[vid].NEdg;s++)

 { if (MyGraph.verts[vid].Prob[s]>0)

 { Ntemp++;

 temp[Ntemp].vid=s; //vertex, where we will move if random value selects this choise will be -

MyGraph.verts[vid].OtherEnd[temp[s+1].vid]

 temp[Ntemp].dob=temp[Ntemp-1].dob+MyGraph.verts[vid].Prob[s];

 }}//end if , end for

 NPosEdg=Ntemp; //number of fracture edges which were added to temp

 for (int s=0;s<MyGraph.verts[vid].NM;s++)

 { if (MyGraph.verts[vid].ProbM[s]>0)

 { Ntemp++;

159

 temp[Ntemp].vid=s; //vertex, where we will move if random value selects this choise will be -

MyGraph.verts[vid].OtherEndM[temp[s+1].vid]

 temp[Ntemp].dob=temp[Ntemp-1].dob+MyGraph.verts[vid].ProbM[s];

 }

 } //filled temp array

 if (Ntemp==0){ExitCode=vid; } //particle is at the 'dead end' - wont go anywhere from there

 else{

 r1=(double)rand()/RAND_MAX;

 r=r1*temp[Ntemp].dob; //random value to define in which direction to go now;

 //printf("r1= %f",r1);

 for(int s=0;s<Ntemp;s++)

 {if (r>=temp[s].dob && r<=temp[s+1].dob) //means probability 'shows' edge#s, so new vertex is

OtherEnd[temp[s+1].vid]

 { // printf("s= %d", s);

 if (s<NPosEdg) flow=0;

 else flow=1;

 double Z=Norm(0,1);

 if (flow==0) //fracture flow

 { double L=MyGraph.verts[vid].L[temp[s+1].vid];

 double V=MyGraph.verts[vid].V[temp[s+1].vid];

 t=t+(-(double)Z*sqrt(D/2)/V+sqrt((double)Z*Z*D/(2*V*V)+(double)L/V))*(-

(double)Z*sqrt(D/2)/V+sqrt((double)Z*Z*D/(2*V*V)+(double)L/V));

 vid=MyGraph.verts[vid].OtherEnd[temp[s+1].vid];}

 if (flow==1)//matrix flow

 {

t=t+(double)MyGraph.verts[vid].LM[temp[s+1].vid]/MyGraph.verts[vid].VM[temp[s+1].vid];

//no diffusion here

 vid=MyGraph.verts[vid].OtherEndM[temp[s+1].vid];}

 //----now lets check if it reached any well

 for (int j=0;j<8;j++)

 {if (InjProdInd[j]==vid)

 {ExitCode=vid;

 t_d=(double)t/(3600*24);

 t_d=floor(t_d*10+0.5)/10; //same as rounding to 1 decimal: round(t_d,1)

 if(t_d<ProdTime)

 {Production[j-4][int(t_d*10)]++;

 ParticlesProduced++;} //column #j-4 is for (j-4)th production well; add one more particle

produced in this time interval by this well;

 }

 } //end of checking if it reached any well

 } //end of if cycle

 } //end of for cycle

 }

} //end of while cycle

output.close();

}

//math functions

double MyRand(double min, double max)

{double r=(double)rand()/RAND_MAX; //random between 0 and 1

if(max<min) printf("max<min");

else

 return(min+r*(max-min));

}

double Norm(double m, double d)

160

{double r1=(double)rand()/RAND_MAX; // r1, r2 in [0...1)

 double r2=(double)rand()/RAND_MAX;

 double Z=sqrt(-2*log(r1)/log(2.718281828))*cos(2*3.14159265358979*r2); //Z - N(0,1)

 Z=min(Z,4);

 Z=max(Z,-4);

 return(m+d*Z);

}

double MyRound(double value, int dec)

{//int poften=1;

double poften=1;

 for(int i=0;i<dec;i++)poften=poften*10;

 return(floor(value*poften+0.5)/poften);

// int tm=(int)floor(value*poften+0.5);

 //return((double)tm/poften);

 // return (double)tm/poften;

}

bool MyCompare(Pairs i, Pairs j)

{return(i.xory<j.xory);}

//output

void ToFile(int NumLin, int NumCol, char FileName){

 string str;

 stringstream ss;

 ss << FileName;

 ss >> str;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 for (int lin=0;lin<NumLin;lin++){ // export

 for (int col=0;col<NumCol;col++) // without edges

 {output<<Production[col][lin]<<' ';}

 //output<<Xj[lin]<<' ';

 output<<endl;

 }

 output.close();

}

void XFracturesAsPolygons(int NumFract, char FileName){

 string str;

 stringstream ss;

 ss << FileName;

 ss >> str;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 for (int lin=0;lin<NumFract;lin++){

 output<<XFr[lin][0]<<' '<<XFr[lin][1]<<' '<<lin<<' '<<XFr[lin][2]<<endl;

 output<<XFr[lin][0]<<' '<<XFr[lin][1]<<' '<<lin<<' '<<XFr[lin][5]<<endl;

 output<<XFr[lin][0]<<' '<<XFr[lin][4]<<' '<<lin<<' '<<XFr[lin][5]<<endl;

 output<<XFr[lin][0]<<' '<<XFr[lin][4]<<' '<<lin<<' '<<XFr[lin][2]<<endl;

 output<<XFr[lin][0]<<' '<<XFr[lin][1]<<' '<<lin<<' '<<XFr[lin][2]<<endl;

 }

 output.close();

}

void YFracturesAsPolygons(int NumFract, char FileName){

 string str;

161

 stringstream ss;

 ss << FileName;

 ss >> str;

 str+=".txt";

 ofstream output(str.c_str());

 output.flush();

 for (int lin=0;lin<NumFract;lin++){

 output<<YFr[lin][0]<<' '<<YFr[lin][1]<<' '<<lin<<' '<<YFr[lin][2]<<endl;

 output<<YFr[lin][0]<<' '<<YFr[lin][1]<<' '<<lin<<' '<<YFr[lin][5]<<endl;

 output<<YFr[lin][3]<<' '<<YFr[lin][1]<<' '<<lin<<' '<<YFr[lin][5]<<endl;

 output<<YFr[lin][3]<<' '<<YFr[lin][1]<<' '<<lin<<' '<<YFr[lin][2]<<endl;

 output<<YFr[lin][0]<<' '<<YFr[lin][1]<<' '<<lin<<' '<<YFr[lin][2]<<endl;

 }

 output.close();

}

void ParametersToFile()

{string str = "Parameters.txt";

ofstream output(str.c_str());

output.flush();

output<<(int)Dt1/dt<<' '<<(int)Dt2/dt<<' '<<(int)Dt3/dt<<' '<<(int)Dt4/dt<<' '<<nXFr+nYFr<<' ';

output<<theta<<' '<<(double)(Yspm+YspM)/2<<' '<<(double)(Xspm+XspM)/2<<' '<<D<<'

'<<PermF<<' '<<PermM<<' '<<PoroM<<' '<<ParticlesProduced<<' ';

output<<fwx<<' '<<fwy<<' '<<PermXfr<<' '<<PermYfr<<' '<<nXFr<<' '<<nYFr;

output.close();

}

Appendix C (ECLIPSE file used for the RWPT modeling)

RUNSPEC ======================

INCLUDE

'DIMENS' /

WATER

WELLDIMS

8 15 1 8/

START

1 'JAN' 1986 /

FMTOUT

METRIC

GRID =========================

INCLUDE

'DX' /

INCLUDE

'DY' /

INCLUDE

'DZ' /

INCLUDE

'TOPS' /

INCLUDE

'MAPAXES' /

INCLUDE

'EQUALS' /

COPY

PERMX PERMY/

162

PERMX PERMZ/

/

MINPV

0.000000001/

GRIDFILE

0 1 /

RPTGRID

'DX' 'DY' 'DZ' 'PERMX' 'PORO' 'TOPS' 'PORV'/

INIT

EDIT ==================

PROPS ==================

ROCKOPTS

1* 1* ROCKNUM /

ROCK

400 5.787E-005 /

PVTW

215 1.0132 3.9795E-005 0.39851 0 /

DENSITY

1020.3 1020.3 0.81172 /

RPTPROPS

/

REGIONS ==================

SOLUTION ==================

EQUIL

1300 128.54 1* 0 1* 0 0 0 0 /

RPTRST

BASIC=3 FLOWS /

RPTSOL

RESTART=2 FIP /

SUMMARY ==================

SCHEDULE ===================

TSTEP

1/

RPTSCHED

'PRES' /

INCLUDE

'WELSPECS' /

INCLUDE

'COMPDAT' /

INCLUDE

'WCONINJ' /

INCLUDE

'WCONPROD' /

TSTEP

1/

END

