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Abstract

This thesis is dedicated to the study of topological degree for different classes of

monotone maps and applications to nonlinear problems in mathematical analysis and

the applied mathematics. Employing topological methods for nonlinear problems

in mathematics goes back to the pioneering work of H. Poincaré on the three body

problem. The generalization of Brouwer degree for mappings in finite dimensional

spaces to compact perturbations of the identity in arbitrary Banach spaces, by J.

Schauder and J. Leray, opened up a way to apply such a powerful method to a

broad class of complicated nonlinear problems. Further generalizations, including

the degree for classes of monotone maps as well as the degree for multi-valued maps

have been carried out by several authors in recent decades.

This thesis is divided into two parts. The first part, consisting of Chapters 1 and

2, is about the theoretical aspects of topological degree. The second part, Chapters

3–5, is devoted to the applications of the topological degree in three fields: an integral

equation coming from the Doi-Onsager model for liquid crystals; dynamical sys-

tems governed by nonlinear ordinary differential equations and finally fully nonlinear

elliptic and parabolic partial differential equations.

After a detailed introduction on various topological methods for linear and quasi-

linear elliptic problems and presentation of some of its implications for monotone

maps and variational problems in Chapter 1, we systematically introduce the concept

of finite rank approximation of a map in Chapter 2. This concept enables us to prove

the stability of the homotopy class of finite rank approximations for different types

of monotone maps including (S)+, pseudo-monotone and maximal monotone maps

in separable, locally uniformly convex Banach spaces. Furthermore, we generalize

the degree for mappings that are only demi-continuous in a subspace, not necessarily

dense, of the focal space. We use this generalization for the Doi-Onsager problem

presented in Chapter 3.
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The Doi-Onsager problem is a mathematical formulation to model the behaviour

of the liquid crystals in terms of the interaction potential field and the temperature

of the liquid. In our work on this problem, we solve the problem in dimension D=2

and also prove the uniqueness of the isotropic solution for high temperature and the

bifurcation of nematic solutions for low temperature in general dimension D≥3. For

a classical application of degree theory, we return in Chapter 4 to the problem of

periodic solutions for dynamical systems described in ordinary differential equations.

The method that we employ in this chapter is based on the continuation method.

For this, we consider a one-parameter family of dynamical systems (dependent on ε)

and then prove (under certain conditions) that periodic orbits for ε=0 survive when

ε increases to 1. The last chapter of the thesis, Chapter 5 is dedicated to defining

a degree for fully nonlinear elliptic and parabolic equations. Even though it is not

novel to define a degree for fully nonlinear elliptic equations, our construction can

be employed to define a degree for fully nonlinear parabolic equations which, to our

knowledge is new.
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Chapter 1

Topological methods

1.1 Introduction

1.1.1 An overview

This thesis is dedicated to the study of a topological invariant called degree. For

Banach spaces X, Y and an open bounded set D ⊂X , assume that A: D̄→ Y is a

continuous map. The degree of A in D with respect to y ∈ Y is generally denoted

by deg (A,D, y) and is invariant under certain type of deformations, in other words,

if h: [0, 1] × D̄→ Y is a continuous homotopy satisfying certain conditions on the

boundary [0, 1]× ∂D then deg (h(t), D, y) is independent of t.

The use of topological methods for nonlinear problem goes back to the work of

Poincaré on the three body problem, where the existence of periodic orbits could

be established by proving the existence of fixed point for the “Poincaré map” for a

system of differential equations. The existence of periodic orbits for a dynamical

system is one of the places that the topological continuation method is extensively

employed. Later, various fixed point theorems in finite dimensional spaces, like

Poincaré-Miranda, Poincaré-Bohl and Roth fixed point theorems are unified by the

pioneering work of Brouwer in 1912, [12] where a theory of degree for continuous

maps is developed. The work of J. Schauder on quasi-linear second order elliptic

partial differential equations that leads naturally to the compact perturbation of

the identity maps (Schauder maps) opened up a way to generalize the Brouwer

degree in infinite dimensional Banach spaces in 1934 [47].

1



A topological property is one that is invariant under continuous deformations.

Such properties are common in mathematics. Here we mention two known results.

The first one is the Gauss-Bonnet formula. Let M be an orientable closed hyper-

surface in R
n+1, γ:M→Sn the Gauss map and ω, η the surface form on Sn and M

respectively. By the Gauss-Bonnet formula we have

∫

M

γ∗(ω)=
∫

M

Kη. (1.1)

On the other hand, by definition

1

vol(Sn)

∫

M

γ∗(ω)= deg (γ,M)∈Z. (1.2)

If Mt is a continuous deformation of M , since deg(γ,Mt) is invariant (with respect to

t), one concludes that the mean Gauss curvature of an orientable closed hypersurface

is constant under the continuous deformation.

A more delicate result in this direction is due to M. Atiyah and I. Singer [5] .

Assume that (M, g) is a closed Riemannian manifold and (E,π) a vector bundle over

M . Let S(M) denote the vector space of all compactly supported smooth sections

Γ:M→E. By definition, the map D:S(M)→S(M) is a differential operator if for

any Γ∈S(M) it satisfies the property: supp{D(Γ)}⊂ supp{Γ}. We can make S(M)

a Banach space by introducing the Riemannian metric g on it that is defined as

‖Γ‖= sup
x∈M

g(Γ(x),Γ(x)). (1.3)

An example of a differential operator is the Laplacian operator over C0
∞(M). Let

p= p(x, ξ1,	 , ξn) be an elliptic polynomial in ξ=(ξ1,	 , ξn). By the aid of the local

chart (x1,	 , xn) in M we can define the differential operator p(D) as

p(D)= p(x,∇x1,	 ,∇xn), (1.4)

where ∇xi
denotes the covariant derivative along the field xi. The important fact

about elliptic operators is that they have a pseudo-inverse, that is, if p is elliptic in

terms of (ξ1,	 , ξn) at every point x∈M then p(D) is Fredholm. M. Atiyah and I.

Singer proved that the index of p(D), defined as

ind(p(D))=dim (ker p(D))−dimcoker(p(D)), (1.5)
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is topologically invariant and is equal to the topological characteristic of M in terms

of K-theory. Since elliptic partial differential equations in suitable Banach spaces

can be reduced to Fredholm operator equations [3], this theorem plays an important

role in the existence theory of elliptic partial differential equations, see [74],[48].

The theory of topological degrees has found applications in various fields

including mathematical physics, partial differential equations, mathematical anal-

ysis and geometry, as problems in these fields can often be reformulated in terms

of abstract equations

A(u)= f , (1.6)

where usually A belongs to some class of “continuous” functions and u, f belong to

some Banach spaces. One most interesting class of mappings that has been exten-

sively studied, is continuous (demi-continuous) maps A: X → X∗ (or A: X→ 2X
∗

)

where X is a separable Banach space equipped with a locally uniformly convex norm

and A enjoys a monotonicity property that we describe later. The most classical

examples for such class of mappings are the quasi-linear uniformly elliptic partial

differential operators

A(u)(x)6
∑

|α|≤m

(−1)|α|DαAα(x,D
6mu), (1.7)

defined on on the domain Ω (with ∂Ω is smooth), Dβu=0 on ∂Ω for 0≤ β ≤m− 1

and Aα satisfies some smoothness and monotonicity conditions.

The general degree theoretic procedure to establish the solvability of equation

(1.6) is as follows. Assume we have a topological degree for the class of mappings to

which A belongs. If there exists a D ∈X such that f ∈A(∂D) and if

deg(A,D, f)� 0, (1.8)

then equation (1.6) is solvable. For most nonlinear problems, the direct calculation

of degree in (1.8) is delicate. To overcome this situation, one can use the fact that

the degree is topological. Therefore if At, t∈ [0, 1] is a continuous deformation of A

with respect to t and with the condition f ∈At(∂D) for all t∈ [0, 1], then

deg (A,D, f)=deg (At, D, f). (1.9)
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Now it is enough to choose a deformation such that A0=A and such that the degree

of A1 can be easily calculated:

deg (A1, D, f)� 0. (1.10)

This method enables us to reduce a complicated nonlinear equation to a simpler one,

where the degree of the simpler operator can be computed directly.

From one point of view, the degree theory can be seen as the natural gener-

alization of another topological method called the continuation method which is

extensively employed for nonlinear problems after Poincaré. The important draw-

back of the continuation method lies in its use of the uniqueness of the solution. As

a simple example, consider the second order uniformly elliptic operator

L(u)(x)6
∑

|α|≤2

aα(x)D
α u, (1.11)

that is, ther exist θ > 0 such that for all x∈Ω we have

−
∑

|α|=2

aα(x) ξ
α≥ θ |ξ |2. (1.12)

aα(x) for |α|=2 forms a uniformly elliptic polynomial in x∈Ω. It is easily verified

that the operator At6 t∆+(1− t)L for t∈ [0, 1] is uniformly elliptic. On the other

hand, since ∆ is an isomorphism from H2(Ω)∩H0
1(Ω) onto L2(Ω) we can conclude

(imposing a simple condition on a0) that L is an isomorphism.

1.1.2 Overview of degree theory

1.1.2.1 Classical degree

The question of the existence and also the uniqueness of a topological degree is

fundamental. To answer this crucial question, one needs to define the degree map in

a well formulated (axiomatic) manner. LetX,Y be Banach spaces (finite or infinite),

and let O(X) be the set of all open bounded subsets of X.
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Definition 1.1. (classical properties of degree) The degree of A: X → Y in

D ∈O(X) with respect to f ∈ Y such that f ∈A(∂D) is an integer valued map deg

that satisfies:

1. (reference map) There is a reference map i:X→Y such that

deg (i, D, f)=

{

1 f ∈i(D)
0 f ∈ i(D)

2. (existence of solution) If deg (A, D, f) � 0 then there exists u ∈D such

that f =A(u).

3. (domain decomposition) If D1, D2 ⊂ D are open disjoint subsets and

deg (A,D− (D1∪D2), f)= 0 then

deg (A,D, f)=deg (A,D1, f)+deg (A,D2, f). (1.13)

4. (homotopy invariance) If h(t),0≤ t≤1 is a continuous homotopy of A and

fs is a continuous path for 0≤ s≤ 1 such that fs∈ht(∂D) then

deg (h(t), D, fs)= deg (A,D, f0). (1.14)

The existence and uniqueness of such a mapping in finite dimensional spaces was

completely answered for A ∈C(Rn) by L. Brouwer [12] for the existence part and

H. Amann and S. Weiss [4] for the uniqueness part. Further results for Sobolev as

well as BMO mappings on Riemannian manifolds were presented later by H. Brezis

and L. Nirenberg [9][10],[11].

For the infinite dimensional spaces, it is straightforward to see that the existence

of such a mapping is impossible in general for continuous maps. First observe that

if A:X→X is a continuous map such that A: B̄X→ B̄X with no fixed point on ∂BX

then A has a fixed point on BX provided that degree can be defined. In fact the map

A(u)=u−A(u) has no zero on ∂BX and then using the homotopyAt(u)6 u− tA(u)

we conclude

deg (A, BX , 0)= deg (At, BX , 0)=deg (A0, BX , 0)=1.

1.1 Introduction 5



No consider the continuous map A on l2:

A(x)=
(

1−‖x‖2
√

, x1, x2,	
)

, (1.15)

that has no fixed point on Bl2. The reason behind the above example is the Kuiper

theorem [44] which states that GL(H) for H a separable Hilbert space is trivial.

As mentioned above, the earliest generalization of the Brouwer degree to infinite

dimensional spaces is due to J. Leray and J. Schauder. Schauder in his work on

nonlinear elliptic equations figured out that such equations could be transformed to

equations involving a completely continuous operator (Schauder map). Furthermore,

he could generalize two important results of Brouwer for finite dimensional maps

to maps defined on infinite dimensional Banach spaces. First, he proved that a

completely continuous operator defined on a bounded convex set of a Banach space

has a fixed point. This is now called the Schauder fixed point theorem. The second

generalization is the invariance of domain theorem, that the image of an open subset

of a Banach space under an injective completely continuous map is open, see [58].

The second result opened up a way to define a degree for Schauder maps. Since every

compact map on bounded closed subsets of Banach spaces can be approximated by

finite rank maps, Leray and Schauder could define a degree satisfying all classical

properties of topological degree listed above for Schauder maps. In particular, they

defined a degree for the mapping A= Id−K on the Banach spaceX whereK:X→X

is a completely continuous operator. Furthermore, for a continuous one parameter

family of maps K =K(λ), they proved that the defined degree is independednt of

λ, [47].

The application of topological method to establish the existence of solution

for quasi-linear elliptic equations (that is, the initial work of Schauder) is almost

straightforward. Let us illustrate this in the context of second order elliptic quasi-

linear equations. Consider the following equation

∑

i

aij(x, u,Du)
∂2u

∂xi ∂xj
+ b(x, u,Du)= 0, x∈Ω, (1.16)
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with homogeneous Dirichlet boundary condition u(x) = 0, x ∈ ∂Ω. For the Sobolev

space Hm, denote X = H2(Ω) ∩ H0
1(Ω) and assume that smooth functions aij are

uniformly elliptic for all x∈Ω and u∈X, that is, there exists θ > 0 such that for all

x∈Ω and u∈X we have

∑

ij

aij(a, u,Du)ξi ξj ≥ θ |ξ |2. (1.17)

Define the linear operator L(u):X→L2(Ω) as follows:

L(u)(v)=
∑

i

aij(x, u,Du)
∂2v

∂xi ∂xj
+ b(x, u,Du). (1.18)

If aij and b are smooth enough, we can solve the equation L(u)(v) = 0 uniquely.

Let v= g(x, u) be the solution of the equation L(u)(v)= 0. It turns out that g is a

completely continuous operator [63] and therefore the existence of a solution for the

original equation reduces to the existence of a fixed point of the map f = Id− g in D.

1.1.2.2 Generalization of Leray-Schauder degree

The first generalization of Leray-Schauder degree is due to M. Nagumo [61] who

defined the degree for completely continuous maps on locally convex topological

vector spaces instead of Banach spaces. Since for such spaces the notion of bound-

edness is equivalent to the existence of a norm, he had to redefine the notion of

compactness for compact maps. In fact K:X→ Y is compact in Nagumo’s termi-

nology if K(X) is compact in Y . This is a drawback of the Nagumo’s generalization

because it is seldom the case that the operator is compact on the whole space.

The existence theory for fully nonlinear elliptic equations has been studied by

several authors. Among the important works iun this direction, we could mention

the work of F. Browder and R. Nussbaum [18] in which the Leray-Schauder degree

was generalized for locally compact perturbations of homeomorphisms. In particular,

they considered the map T : Ḡ ⊂ X → Y , G a bounded and open set and T with

the representation T (u) = S(u, u), where for v ∈G the map Sv = S(., v): Ḡ→ Y is

continuous and bijective (then homeomorphism onto its image). Here the map v→Sv

is assumed to be locally compact. They proved that for some types of fully nonlinear

elliptic equations, this degree is suitable to establish the existence of a solution [18].

1.1 Introduction 7



One other direction of generalization of the Leray-Schauder degree is to define a

degree on Banach manifolds instead of Banach spaces. A. Tromba in his PhD thesis

in 1968 used a generalized version of Sard’s theorem due to S. Smale to define a

degree for completely continuous maps on Banach manifolds. Afterward, he noted

that K. D. Elworthy obtained independently the same results. In their joint book on

this subject [33], they defined a degree for compact perturbations of Fredholm maps

that is a straightforward generalization of the Schauder map. However the defined

degree is not invariant under continuous homotopy. However, the absolute value of

the degree is invariant under continuous homotopy.

The main motivation behind the above mentioned generalizations is the simple

fact that fully nonlinear elliptic equations with general boundary conditions can not

always be transformed to operator equations consisting only of Schauder maps, see

[3]. However, an a priori estimate for the solutions of uniformly elliptic equations sat-

isfying the complementing condition (Shapiro condition) on the boundary is proved

in [2]. This estimate enables one to prove that uniformly elliptic equations satisfying

the complementing condition can be transformed to abstract equations involving

Fredholm operators, [2], [3]. Because of this, the study of quasi-linear Fredholm maps

became of interest. A quasi-linear Fredholm map is of the form f(x)=Lx(x)+ g(x)

where g is compact, x→Lx is continuous and Lx is a linear Fredholm map with index

0. It is not difficult to see that every fully nonlinear uniformly elliptic equation can

be reformulated as a quasi-linear Fredholm equation. It is known that defining a

degree theory satisfying all classical properties of a topological degree is impossible

for such classes of maps, however one of the simplest “degrees” for such class of maps

is proposed by Fitzpatrick using the notion of parity number [38],[39].

Yet another direction of generalization is to define a degree for the class of

monotone maps. In fact, it is easily shown that nonlinear elliptic equations in diver-

gence form can be formulated (under fairly simple conditions) as abstract equations

involving pseudo-monotone or (S)+ maps, see the section on on monotone maps

below or for example [74].
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It is well known that the Frechet derivative of a C1 convex functional is monotone.

More generally, the map u� ∂F (u) for a convex functional F (u) is maximal mono-

tone where ∂F (u) denotes the set of sub-gradients of F at u. On the other hand,

one important class of equations involves monotone or maximal monotone maps

while there is no convex potential for them. From this point of view, having a degree

theory for different classes of monotone maps covers equation that cannot be dealt

with by classical varitional methods. Note that in the classical variational method,

the solvability of a PDE is equivalent to the attainability of the critical value of the

some differentiable convex energy functional. The simplest result in this direction is

obtained when the functional is convex and coercive. However, many equations in

physics and geometry are not the Euler-Lagrange equation of some convex energy

functional, see for example N. Goussoub [40]. Therefore these equations cannot be

dealt with the classical variational method. On the other hand, many equations

with no potential functional can be formulated as abstract equations with pseudo-

monotone or (S)+ maps. Thus having a degree theory for such maps will open the

way to establish the existence, multiplicity and possible bifurcation of the solutions.

A degree theory for the class of monotone maps has been proposed by F. Browder

[16], [17], W. Petryshyn [66], J. Berkovits [6], [8], I. Skrypnik [74] and others. The

interesting point here is that in addition to elliptic equations, parabolic and hyper-

bolic equations (not fully nonlinear) could be formulated in terms of monotone maps

and then would also enjoy a degree theory.

Here we have to mention a recent result in the direction of variational method

reported by N. Goussoub [40]. He can prove that for semi-linear non-self-adjoint

elliptic equations there is a potential functional (not necessarily in terms of Euler-

Lagrange equation) such that the infimum of the functional is the solution of the

focal equation. In fact, the traditional energy functional now is supplemented by the

Legendre transformation of the functional. The main task here is to show the new

variational energy attains an infimum and then, using Fenchel inequality, this implies

that the infimum is the solution of the original problem. It should be noted that,

although this method covers many more equations than what traditionally could be

dealt by variational methods, it does not provide further information such as bifur-

cation and multiplicity. As such information is readily included in the framework of

degree theory, it is important to develop degree theoretic methods for these equa-

tions. In fact, as we will see in this thesis, even fully nonlinear elliptic or parabolic

equations can be formulated in terms of (S)+ maps while the variational method

fails to apply for such equations.
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In the following, we will first briefly go though preliminaries, then give defini-

tions of Brouwer and Leray-Schauder degree, after which we will sketch variational

methods, and explain motivations for the study of monotone maps.

1.1.3 Preliminaries

In this section, we fix notation and mention briefly those definitions and theorems

that we need in this thesis. All facts mentioned in this section could be found in

most books on functional analysis, for example E. Zeidler [83] . Recall that X is

locally uniformly convex if for every x∈SX (SX denotes the unit sphere in X) and

ε> 0 there exist δ= δ(ε, x) such that, for any y ∈SX such that ‖x− y‖≥ ε, we have
∥

∥

∥

1

2
x +

1

2
y
∥

∥

∥ ≤ 1 − δ. Strong convergence is denoted by → and weak convergence

by ⇀. In the whole of this thesis, Banach spaces are assumed to be separable. It is

known that for separable Banach spaces, there is an equivalent norm to make them

locally uniformly convex (and in particular strictly convex). In fact we have Kadec-

Klee-Asplund theorem, for a proof see [32].

Theorem 1.2. Let X be a separable Banach spaces, then there exist an equivalent

norm on X such that X, X∗ are locally uniformly convex.

While it is generally false that every reflexive Banach space has an equivalent

norm that makes it uniformly convex, due to the work of Lindenstruss, Asplund and

Trojanski we have the following theorem, see S. Trojanski [75]

Theorem 1.3. Every reflexive Banach space admits an equivalent locally uniformly

convex norm.

According to the above results, we may assume without loss of generality that

the Banach spaces are separable, equipped with a locally uniformly convex norm.

Theorem 1.4. Assume that X is a locally uniformly convex Banach space, xn⇀x

and ‖xn‖→‖x‖. Then xn→x.
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For X a Banach space, X∗ denotes the topological dual of X and 〈, 〉 denotes
the continuous pairing between X, X∗. In most cases H denotes a Hausdorff Hilbert

space. If we identify H with H∗ then we use the notation (, ) both for the inner

product in H and the pairing. Recall that the Gelfand triple or evolution triple

is the triple (X, H, X∗) such that X → H → X∗, where embeddings are dense.

Compact embeddings are denoted by� and we call the triple (X,H,X∗) compact if

X� H� X∗. We use extensively a well known theorem in functional analysis that

states closed bounded sets are weakly compact in reflexive Banach spaces. The map

T :X→X where T (x)=x−K(x) forK completely continuous is called the Schauder

map or a compact vector field. We have the following theorem, see for example L.

Nirenberg [64]

Theorem 1.5. Let Ω⊂X be a closed bounded set. Then the map ϕ:Ω→Y is compact

if and only if f is a uniform limit of finite rank mappings {fn}, fn: Ω→ Y; that is,

for every ε>0 there exists N >0 such that for all n≥N we have ||ϕn(x)−ϕ(x)||<ε,
x∈Ω.

Note that the above theorem is not asserting the approximation property for

Banach spaces in general which is known to be false [35]. For ϕ ∈ L(X, Y ), the

conjugate map ϕ
∗

:Y ∗→X∗ is defined as 〈ϕ∗(y∗), x〉= 〈y∗, ϕ(x)〉. It is easily verified

that ϕ∗∈L(Y ∗,X∗). It is known (Schauder theorem) that if ϕ∈L(X,Y ) is compact

then ϕ∗ is compact. In addition to continuity and weak continuity notions, we can

define other types of continuity.

Let X, Y be Banach spaces. Then A:X→Y is called demi-continuous at x∈X
if for every sequence (xn)⊂X that xn→ x, A satisfies A(xn)⇀A(x). The map A:

X→X∗ is called monotone if for any pair x, y ∈X A satisfies

〈A(x)−A(y), x− y〉≥ 0.

If the inequality is strict (>0) whenever x� y, the map is called strictly monotone.

The map is called strongly monotone if there exists an increasing function c:R+→
R+ such that c(x)= 0 only for x=0 and

〈A(x)−A(y), x− y〉≥c(‖x− y‖).

A is called a map of class (S)+ if for any weakly convergent sequence (xn), xn⇀x

with

limsup
n→∞

〈A(xn), xn− x〉≤ 0, (1.19)
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then xn→ x. It is obvious that every strong monotone map is a map of class (S)+.

A is called pseudo-monotone if xn⇀x such that (1.19) holds, then

lim 〈A(xn), xn−x〉=0, (1.20)

and A(xn)⇀A(x). It is easily verified that if A is pseudo-monotone then for every

ε>0, the map Aε=A+ εJ is a map of class (S)+. Note that every demi-continuous

monotone map is pseudo-monotone and, also, every demi-continuous map of class

(S)+ is pseudo-monotone. The map A is called quasi-monotone if xn⇀x implies that

limsup 〈A(xn), xn− x〉≥ 0.

Obviously every pseudo-monotone map is a quasi-monotone map. We have the fol-

lowing proposition, see [20]

The duality map J :X→2X
∗

in Banach spaces plays an important role in defining

degree for monotone maps.

Definition 1.6. The map J :X→ 2X
∗

defined as

J(x)= {w ∈X∗, 〈w, x〉= ‖x‖2, ‖w‖= ‖x‖}, (1.21)

is called the duality map.

It is straightforward (using the Hahn-Banach theorem) to check that J(x) is

not empty. For locally uniformly convex Banach spaces, it turns out that J is a

homeomorphism. In particular we have:

Proposition 1.7. Assume that X is a locally uniformly convex Banach space, then

the duality map J is single valued, bijective and bi-continuous. Furthermore J is

strictly monotone and (S)+.

T :X→Y is called a Fredholm map if d=dimker (T ) and d′= dim coker(T ) are

finite (that the range Rg(T ) is closed follows from the above two assumptions). The

analytic index of T is defined as ind(T )= d− d′. As we will see in the last chapter,

the analytical index is topological; that is, if F , G are homotopic in the class of

Fredholm maps F ∼ G then ind(F ) = ind(G). This implies immediately that the

index of Schauder map is 0 since for t∈ [0, 1] we have

ind(Id−K)= ind(Id− tK)= ind(Id)= 0. (1.22)
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Fixed point theorems play an important role in the existence problem of integral,

partial and ordinary differential equations. After Brouwer’s celebrated theorem on

the fixed point of continuous maps in finite dimensional spaces, the most natural

generalization for infinite dimensional spaces was introduced by Tikhonov. If C⊂X
is a closed, convex and compact set and A: C → C is continuous, then A has a

fixed point. Schauder’s celebrated theorem on the fixed point of compact vector

fields (compact perturbation of the identity map) opened up the way for further

generalizations, see for example [61],[13]. Specifically, the work of F. Browder in

[13] is of great help in dealing with nonlinear uniformly elliptic PDE’s. Further

generalizations introduced to encompass the case of nonlinear elliptic problems in

divergence form will be considered in detail in next chapters. If α=(α1,	 , αn) is a

multi-index then Dα denotes the following operator:

Dα=
∂α1

∂x1
α1



∂αn

∂xn
αn
.

For an integer m ≥ 0 we define D6m = {Dα, |α| ≤m}. For Ω⊂Rn a domain with

smooth boundary,Wm,p(Ω) denotes the Sobolev space of orderm with Dαu∈Lp(Ω)

for |α|≤m. It turns out thatWm,p(Ω)=Hm,p(Ω) the space obtained by the closure

of Cm(Ω̄) in the norm of Wm,p(Ω). The space W0
m,p(Ω) denotes the closure of

C0
∞(Ω) in Wm,p norm and it is easy to prove through the trace theorem that

W0
m,p(Ω)= {u∈Wm,p(Ω), Dαu|∂Ω=0, |α| ≤m− 1}.

The topological dual of W0
m,p(Ω), p > 1 is the space W−m,q(Ω) where q is the

conjugate number of p, q= p

p− 1
. The map u→u|∂Ω is continuous from Wm,p(Ω) to

Wm−1/p,p(∂Ω) when ∂Ω is smooth. Cm,δ(Ω) for 0<δ<1 denotes the space of Holder

maps of order (m, δ). Cm(Ω̄) denotes the set of all ϕ ∈ Cm(Ω) such that Dαϕ is

bounded and uniformly continuous for 0≤|α|≤m. The norm in Cm(Ω̄) is defined as

‖ϕ‖∞=max0≤|α|≤mmaxx∈Ω̄ |Dαϕ(x)|. Recall the embedding Cm,λ(Ω̄)� Cm,µ(Ω̄)

for 0 < µ < λ ≤ 1. The following are two most important embeddings in Sobolev

spaces for bounded domain Ω⊂Rn with smooth boundary:

a) W j+m,p(Ω)�W j,q(Ω), q <
np

n−mp
, mp<n,

b) W j+m,p(Ω)� C j(Ω̄), mp>n.
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The most well known examples of monotone, (S)+ or pseudo-monotone maps arising

in PDE are divergence form operators A:Wm,p(Ω)→ (Wm,p(Ω))∗

A(u)=
∑

|α|≤m

(−1)mDαAα(x,D
mu), (1.23)

where Aα satisfies some appropriate conditions for ellipticity, monotonicity and

Carathéodory conditions. The fully nonlinear equation F (x,D2mu)= 0 is uniformly

elliptic on Ω and at u∈Wm,p(Ω) if for any ξ ∈Rn−{0} and for some θ > 0 we have

(−1)m
∑

|α|=2m

Fα(x,D
2mu(x)) ξα≥ θ |ξ |2m, (1.24)

where Fα=
∂F

∂ (Dα)
and ξα=(ξ1

α1,	 , ξn
αn) for α=(α1,	 , αn).

1.2 Continuation method

1.2.1 Method of Isomorphism

Let X,Y be Banach spaces and let A:X→Y be a continuous map. The general idea

of the continuation method is to transform the existence problem of the equation

A(x) = y to the existence problem of a “simpler” equation A0(x) = y. For this,

usually a continuous homotopy h: [0, 1] ×X→ Y is defined such that h(0) = A0 is

an isomorphism and h(1) = A. Under some conditions, it turns out that h(t) is

an isomorphism for t ∈ [0, 1]. J. Leray in his Ph.D. thesis used the continuation

method extensively for nonlinear integral equations [58]. The results of Schauder on

compact perturbations of the identity led Leray to develop, in joint with Schauder,

a topological degree for Schauder maps.

Recall that isomorphisms between Banach spaces are topological isomorphism

due to the Banach isomorphism theorem. On the other hand, the set of all isomor-

phisms forms an open subset of linear bounded operators with respect to the operator

norm topology; that is, if T ∈ iso(X,Y ) and ‖T −S‖ is small enough in the operator

norm, then S∈ iso(X,Y ). The following generalization is well known in the literature

and is called the continuation theorem.
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Theorem 1.8. Assume that F0:X→ Y is an isomorphism and F : [0, 1]×X→ Y is

a deformation with the following properties:

1. For each t, F (t, .):X→Y is bounded linear,

2. t→ F (t, .): X → Y is continuous; that is, for any sequence tn, tn→ t, the

sequence of mappings F (tn, .) converges to F (t, .) in the operator topology,

3. there exists a c> 0 independent of t such that

‖F (t, x)‖Y ≥ c ‖x‖X , x∈X. (1.25)

Then F (1, .)∈ iso(X, Y ).

The following is a straightforward generalization of the theorem (1.8).

Theorem 1.9. Let Ω be a path connected subset of a topological space and let F :

Ω×X→Y be a map satisfying the following properties:

1. there exists ω0∈Ω such that F (ω0, .):X→Y is an isomorphism,

2. for each ω ∈Ω, F (ω, .):X→Y is bounded linear,

3. ω→F (ω, .) is continuous; that is, for any sequence ωn, ωn→ω, the sequence

F (ωn, .) converges to F (ω, .) in the norm topology, and

4. there exists ω0∈Ω and c> 0 such that

‖F (ω, x)‖Y ≥ c ‖x‖X , x∈X. (1.26)

Then F (ω, .), ω ∈Ω is an isomorphism.

Proof. Let γ: [0, 1]→Ω be the path connecting ω0 to ω. The set γ[0, 1] is compact

in Ω. Define the deformation f : [0, 1] × X → Y as f(t, x) = F (γ(t), x). Since by

assumption f(0, .) is an isomorphism and satisfies conditions 1–3 of Theorem (1.8)

then f(1, .)=F (γ(1), .)=F (ω, .) is an isomorphism. �
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1.2.1.1 Linear elliptic operator

The immediate consequence of the continuation method is the existence of unique

solutions for linear uniformly elliptic equations. It is known that linear elliptic equa-

tions, under suitable boundary conditions (the Lopatinski-Shapiro condition), are

Fredholm, see [3]. In particular the linear uniformly elliptic operator L:H0
2m(Ω)→

L2(Ω) defined as

L(u)=
∑

|α|≤2m

aα(x)D
αu, (1.27)

where

H0
2m(Ω)= {u∈H2m(Ω);Dαu|∂Ω=0, 0≤ |α| ≤m− 1} (1.28)

is a Fredholm operator with index 0.

The proof that L in (1.27) is Fredholm is straightforward and is given in the

Appendix (A) for m= 1. We can use this property to prove the following theorem

with the aid of the continuation theorem.

Theorem 1.10. Let Ω⊂R
n be an open bounded subset, let aα be smooth functions on

Ω̄, X=H0
2(Ω),Y =L2(Ω) and let L:X→Y be a uniformly elliptic operator defined as:

L(u)(x)=
∑

|α|≤2

aα(x)D
αu, x∈Ω;

that is, for some θ > 0

−
∑

|α|=2

aα(x) ξ
α≥ θ |ξ |2. (1.29)

Furthermore, assume that minΩa0(x)≫1. Then the Dirichlet problem L(u)= f has

a unique solution.

Proof. Let L0=L−a0 and use the following estimate for uniformly elliptic operators

see [2]:

‖u‖X ≤ c ‖L0(u)‖Y +C ‖u‖Y . (1.30)

Hence for the operator L we obtain by a simple calculation that

‖L(u)‖L2≥C1 ‖L0(u)‖L2+ a0C2 ‖u‖L2. (1.31)
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Substituting inequality (1.31) into (1.30) gives

‖u‖X ≤C1
′ ‖L(u)‖L2− a0C2

′‖u‖L2+C ‖u‖L2. (1.32)

Choosing a0> 0 sufficiently large we obtain for c> 0 the following inequality:

‖L(u)‖L2≥ c ‖u‖X. (1.33)

Let L1(u)=∆u+ a0u and consider the following convex homotopy

Lt=(1− t)L1+ tL, 0≤ t≤ 1. (1.34)

It is straightforward to verify that the operator Lt is uniformly elliptic, in fact for

ξ=(ξ1,	 , ξn) we have for some C > 0 that

(1− t)
∑

i=1

n

ξi
2+ t

∑

|α|=2

aα(x) ξα≥C |ξ |2. (1.35)

Using a similar argument to that used to prove (1.33), one concludes that

‖Lt(u)‖Y ≥ c ‖u‖X. (1.36)

Since L1 is an isomorphism, then by the theorem (1.8) we conclude that L is an

isomorphism. �

1.2.2 Method of homeomorphism

1.2.2.1 Semi-linear elliptic equations

Recall that if the map f :X→Y is C1 at u∈X and Duf is an isomorphism from X

to Y , then f is locally homeomorphism. On the other hand, if Duf is an isomorphism

for all u ∈X, it does not imply that f is a homeomorphism, however, we have the

following theorem due to Hadamard. In the appendix we give a proof for the following

version of Hadamard’s Theorem.

Theorem 1.11. Assume that for certain x0 ∈ E the map Dx0f is an isomorphism

and furthermore assume that there exists an M >0 such that ‖Dxf(z)‖≥M ‖z‖ for

all x, z ∈E. Then f :E→Y is homeomorphism.
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We can use the above theorem to prove the following theorem. The proof is given

in Chapter 5.

Corollary 1.12. Assume that the function f : R × Rn→ R is C1 and Ω ⊂ Rn is

a bounded domain with smooth boundary. Furthermore, assume that
∣

∣

∣

∂

∂xi
f(x)

∣

∣

∣ is

sufficiently small for all x∈R×R
n. Then the operator G:C0

2,δ(Ω)→C0,δ(Ω) defined

as

G(u)=∆u+ f(u,Du),

is a homeomorphism.

Remark 1.13. It is possible to generalize the above theorem to one of the following

form

G(u)=P (u)+ f(u,Du),

where P is a linear C1 isomorphism.

Remark 1.14. It is of interest to study equations of the form

P (u)+ εf(u,Du)= g,

where P is an isomorphism and |ε| is sufficiently small. We conjecture that one can

use topological methods to show the solutions for ε small survive when ε→ 1.

1.2.2.2 Quasi-linear elliptic equations

As we saw above, under certain conditions, linear differential operators define iso-

morphisms between corresponding spaces. For nonlinear equations the theory of

Fredholm operators (linear and nonlinear) comes into play. As a matter of fact, quasi-

linear equations can be reformulated as abstract equations of the Schauder type.

To illustrate the process, let us consider the following quasi-linear elliptic equation

defined on X =C0
2,δ(Ω̄), Y =C0

δ(Ω̄) for an open bounded subset Ω⊂R
n:

∑

|α|≤2

aα(x,D
61u)Dα u= f , (1.37)
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where the aα are continuous functions and satisfy some growth rate condition to

guarantees continuity from X to Y . Define the operator

Fu(v)=
∑

|α|≤2

aα(x,D
61 u)Dα v

For fixed u, according to a previous result, the linear operator Lu(v)6 Fu(v)+Kuv,

is an isomorphism from X to Y provided that Ku > 0 is sufficiently large. Let us

assume that a0≫ 1 is sufficiently large for x ∈ Ω̄ and u ∈X. This implies that for

fixed u∈X we can solve in a unique way the following linear equation for v ∈X:

∑

|α|≤2

aα(x,D
61u)Dα v= f. (1.38)

Use the Schauder a priori estimate to conclude that the solutions v of (1.38) is

bounded for the bounded set of functions u ∈ X. Let us denote the solution as

v=Kf(u)=Fu
−1(f). First note that Fu is continuous with respect to u and since Fu

is a topological isomorphism then
∥

∥Fu
−1
∥

∥ is bounded. For topological isomorphisms

Fu, Fw use the relation

∥

∥Fu
−1−Fw

−1
∥

∥≤
∥

∥Fu
−1
∥

∥

∥

∥Fw
−1
∥

∥ ‖Fu−Fw‖, (1.39)

to conclude that Kf is continuous. We show Kf(D) is precompact for arbitrary

bounded set D ⊂ X. Choose arbitrary sequence (vn) ⊂ Kf(D) and choose the

sequence (un) such that vn=Kf(un) or equivalently Fun
(vn)= f . Since the embed-

ding X in C1,δ(Ω̄) is compact then there exists a convergent subsequence (unk
) of

(un). By the continuity of Kf we conclude

vnk
=Kf(unk

)→Kf(u). (1.40)

It is straightforward to verify that v is a solution of the equation Fu(v)= f . Therefore

the existence of a solution for the equation (1.38) reduces to the existence of a fixed

point for the equation u=Fu(u).
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1.3 Classical degree theory

In this section we review the formulation of Brouwer degree on compact manifolds

as well as Leray-Schauder degree of maps on Banach spaces. We follow here L.

Nirenberg [64]. The construction of Leray-Schauder degree for mappings defined on

Banach manifolds is a little delicate and can be found in [76].

1.3.1 Brouwer degree

There are different approaches to define the Brouwer degree. The original work of

Brouwer uses complicated algebraic topology tools, see [29]. E. Heinz [42] intro-

duced an elementary analytic formulation for the Brouwer degree and then P. Lax,

Nirenberg and H. Brezis formulated the definition for different classes of mappings,

including Sobolev and VMO mapping on Riemannian manifolds, see [64] [9] [11]

[10]. Consider A: M → N where A ∈ C1(M, N ), M and N are oriented smooth

manifolds of dimension n, M is compact and N is a connected manifold without

boundary. Let y ∈N be a regular value for A; that is, A−1(y) does not contain any

critical point. Since y is regular, the elements of A−1(y) are isolated by the inverse

function theorem. BecauseM is compact, it follows that A−1(y) is finite. The crucial

assumption that cannot be relaxed is the assumption that y � A(∂M). Now it is

possible to define an integer valued mapping deg(A,M , y) for the mapping A(M,N )

in M at y. First note that since ∂M is compact, A(∂M) is closed in N and then

dist(y,A(∂M))> 0. Choose a chart about y and a sufficiently small neighbourhood

Ny of y in that chart such that Ny∩A(∂M)= ∅. It is possible to choose Ny so small

that A−1(Ny) consists of disjoint open neighbourhoodsMxi
for xi such that A(xi)= y

and A is bijective from eachMxi
onto Ny. Recall that {xi} is finite (possibly empty).

Take an arbitrary n-form ω with the support in Ny such that
∫

N
ω = 1. Since the

manifolds are orientable, the integration is possible by the aid of partition of unity.

The pull-back form A∗ω is a n-form in M with support in each Mxi
. The Brouwer

degree is defined as follows:

deg (A,M , y)=

∫

M

A∗ω. (1.41)
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In local coordinates, let ( ∂

∂xj
) and (

∂

∂yj
) denote the coordinates and let dx=dx1∧	 ∧

dxn and dy = dy1 ∧ 	 ∧ dyn be the volume elements in M and N respectively.

If ω has the representation ω(y) = f(y)dy in N , then A∗ω(x) is represented as

f(A(x))JA(x)dx where JA denotes the Jacobian of the map A. The degree is then

deg (A,M , y)=
∑

i

∫

Mxi

f(A(x))JA(x) dx, (1.42)

with
∫

Ny

f(y)dy=1. (1.43)

Compare the change of variable formula for multiple integrals and the formula for

the degree and conclude:

∫

M(xi)
f(A(x))JA(x)dx= sign( JA(x))

∫

M(xi)
f(A(x))|JA(x)| dx=

=sign (JA(x))
∫

N(y)
f(y)dy= sign (JA(x)).

Formally we can take ω = δ(y − y0)dy where δ is the Dirac function. According to

this choice of the form, we obtain

deg(A,M , y)=
∑

ai∈A−1(y)

signJA(ai). (1.44)

In order to justify the definition, it should be shown that the degree formula is

independent of the form ω. The proof relies on the following well known algebraic

topological fact (for an elementary proof see Nirenberg [64]).

Proposition 1.15. If ω is an n form compactly supported on Ω and
∫

Ω
ω=0, then

there exists an (n− 1)-form η compactly supported in Ω such that ω= dη.

The above proposition justifies the definition of degree. In fact if ω1, ω2 are two

different n-forms with unit volume then ω1− ω2= dη for a n− 1 form and then by

Stokes theorem

∫

M

A∗ω1=

∫

M

A∗ω2+

∫

M

dA∗η=
∫

M

A∗ω2+

∫

∂M

A∗η=
∫

M

A∗ω2.
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Remark 1.16. By (1.44) we conclude that the degree is an integer valued map.

In addition if
∫

N
ω � 1 but is still nonzero, we can define ω ′=

( ∫

N
ω
)−1ω. Then

∫

N
ω ′=1 and

deg (A,M , y)=

∫

A∗ω ′=

(
∫

N

ω

)−1∫

M

A∗ω.

Remark 1.17. The regularity restriction can be overcome by Sard’s theorem. In

fact, due to Sard’s theorem, the critical values of continuous functions have Lebesgue

measure zero in N and therefore it is possible, for arbitrary z∈N , to choose a regular

value y arbitrary close to z. Then the degree of A at z is defined as the degree of A

at y. The definition is justified then by the homotopy invariance property.

Let ϕ∈C1(Sn) and dx be the surface element of the unit sphere with respect to

a geodesic coordinate system. According to the above formula we can define

deg (ϕ)=
1

vol(Sn)

∫

Sn

Jϕdx

Because ∂Sn = ∅, it is plausible to write deg (ϕ). Now according to the homotopy

invariance property, it is completely obvious to define deg (ϕ)= 0 if ϕ is homotopi-

cally trivial.

For the purpose of calculation, it is better to do everything in the embedding

space Rn+1. For the coordinate (x1,	 , xn, xn+1) define J =(ϕ,∂x1ϕ,	 , ∂xnϕ). Note

that |ϕ|=1 and that ϕ is perpendicular to each ∂xjϕ and therefore Jϕ= J .

Remark 1.18. Let A1:M1
m1→N1

n1 and A2:M2
m2→N2

n2 are C1 maps. Define A as

A=(A1, A2):M1×M2→N1×N2,

as A(p, q) = (A1(p), A2(q)). Then for (y1, y2) ∈ N1 × N2 when y1 ∈ A1(∂M1) and

y2∈A2(∂M2) we have

deg(A,M1×M2, (y1, y2))= deg (A1,M1, y1) deg (A2,M2, y2). (1.45)

The most useful property of degree is its invariance under continuous homotopy.

Admissible homotopies are defined as follows.
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Definition 1.19. (admissible homotopy) We say f , g:M → N are homotopic,

f ∼ g with respect to y ∈ N if there exists a continuous map h: [0, 1] × M → N

connecting f to g with f = h0 and g = h1 such that ht:M→N belong to C1(M,N )

and y � h(t, z) for any (t, z)∈ [0, 1]× ∂M.

Theorem 1.20. The Brouwer degree satisfies the classical properties of topological

degree defined in (1.1).

We can use the homotopy invariance property to define a degree for continuous

maps. If A is a continuous map on M , then for any ε > 0, there is a function

Aε∈C1(M) such that |A−Aε|<ε. Therefore, there exists ε0> 0 such that deg (Aε,

M , y) is constant for any 0<ε< ε0. This justifies the following definition:

Definition 1.21. (degree for continuous maps) If A is a continuous map on

M, its degree is

deg (A,M , y)= lim
ε→0

deg (Aε,M , y), (1.46)

where the Aε approximate A uniformly on M.

Similarly we can generalize degree for critical values of map A by a well known

result by Sard that states that the set of critical values of a continues function has

Lebesgue measure zero.

Definition 1.22. If y is a critical value for A we can choose a sequence yn of regular

values for A such that yn→ y and then define

deg (A,M , y)= lim
n→∞

deg (A,M , yn). (1.47)

Obviously the homotopy invariance property guarantees the existence of the limit.

Remark 1.23. The Brouwer fixed point theorem easily follows from the degree.

In fact if A: B̄→ B̄ is a continuous map such that ∀z ∈Sn−1, z � A(z) then Id and

Id−A are homotopic and therefore

deg (Id−A,B, 0)=deg (Id,B, 0)=1.
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Another important consequence of the degree that is extensively used is the acute

lemma. Let C be an open bounded neighborhood of 0 ∈R
n and let A: C̄→R

n be

a continuous map such that (A(z), z) > 0 for z ∈ ∂C. Then there exists a x ∈ C

such that A(x)= 0. In fact, the map B(t)= tId+(1− t)A has no zero on ∂C, since

t+(1− t)(A(x), x)> 0. Therefore

deg (B(0), C , 0)= deg (B(1), C , 0)=deg (Id, C , 0)=1.

1.3.1.1 Properties of the Brouwer degree

Here we review some important properties of the Brouwer degree. First, we have the

following fundamental fact.

Proposition 1.24. Let A: B̄→R
n+1 be a C1 map on the unit ball in R

n+1 and let

ϕ:Sn→Sn such that A|Sn=ϕ. Then deg (ϕ)= deg (A,B, 0).

Corollary 1.25. Assume that ϕ, ψ: B̄→R
n+1 are C1 mappings such that ϕ|Sn is

homotopic to ψ |Sn; that is, there exista a homotopy ht:S
n→Rn such that h0= ϕ and

h1= ψ and 0 � ht(S
n) for 0≤ t≤ 1. Then

deg (ϕ,Bn+1, 0)=deg (ψ,Bn+1, 0). (1.48)

The following proposition establishes the existence of continuous extensions of of

mappings defined on Sn. The standard proof is based on the Hopf theorem that

states that the homotopy class of continuous maps on Sn is Z and coincides with

their degree. We give an alternative proof in Appendix (A).

Corollary 1.26. Assume that ϕ:Sn→Sn. Then deg(ϕ)=0 if and only if there exists

a continuous extension A of ϕ on B̄, A: B̄→Sn such that A(x)= ϕ(x) for x∈Sn.

The following is the fundamental result about the uniqueness of the Brouwer

degree. It was presented and proved first in a paper by Amann and Weiss [4]. We

will give an elementary proof of the theorem in the Appendix (A).

Theorem 1.27. Any integer valued map d1(A, D, y), y � A(∂D) that satisfies the

classical properties in ( 1.20) is equivalent to the Brouwer degree deg (A,D, y).
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1.3.2 Leray-Schauder degree

J. Leray was the first person who constructed a continuous non-compact mapping

defined on the ball with no fixed point. For a simple construction of such map see

[56]. Clearly, this example contradicts the well known Brouwer fixed point theorem

for continuous maps in finite dimensional spaces.. As is stated above, to have a

degree theory that satisfies all the properties in definition (1.1) is impossible. This

can be shown using Kuiper’s theorem, which states that the space of bounded linear

invertible maps on a separable Hilbert space is contractible. Let H =D1⊕D2 be a

decomposition for the separable Hilbert spaceH whereD1⊂H is a finite dimensional

subspace with odd dimension. For the identity map on the unit ball BH, use (1.45)

to write

deg (−Id, BH , 0)= deg (−Id|D1, D1∩BH , 0) deg (−Id|D2, D2∩BH , 0). (1.49)

But due to Kuiper’s theorem −Id∼ Id on BH and D2∩BH and since

deg (Id, BH , 0)=deg (A|D2,D2∩B, 0)= 1, (1.50)

we conclude The same argument holds for the map −A. This implies that

deg (−Id|D1, D1∩B, 0)=1, (1.51)

a contradiction.

The construction of the Leray-Schauder degree for compact vector fields is based

on the finite rank approximation of compact maps on bounded sets. Since this

approach can be adapted to construct a degree for more general maps, we sketch the

main idea here.

Let A= Id−K, for K:X→X a completely continuous operator and X a Banach

space. Recall that K is completely continuous if it is continuous and for every

bounded set D⊂X, the setK(D) is precompact. Theorem (1.5) in the Preliminaries

section states that every completely continuous map can be approximated uniformly

on bounded sets by finite rank maps.

Proposition 1.28. Assume that K:X→X is a compact map. Then A= Id−K is

closed; that is, the image of closed sets is closed under A.
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Proof. Let D ⊂ X be closed and let (yn) ∈ (Id − K)(D) be an arbitrary Cauchy

sequence with xn=K(xn)+ yn. Since K is compact, there is a Cauchy sub-sequence

K(xnk
) and then (xnk

) is a convergent since ynk
is Cauchy. Since D is closed, (xn)

converges in D to some x, and since K is continuous, K(xnk
) converges to K(x) and

therefore ynk
converges to x−K(x) in A(D) since x∈D. Since (yn) is Cauchy and

one of its sub-sequences converges in A(D), then (yn) converges in A(D). Since (yn)

is arbitrary then A(D) is closed. �

Let Ω be an open bounded subset of X. The above proposition guarantees that

if 0 ∈A(∂Ω) then the distance of A(∂W ) to the origin is nonzero. Let dist(0,

A(∂Ω)) = r > 0. Then by theorem (1.5) there is a finite rank map Kn such that

0 ∈ An(∂Ω) for An = Id − Kn. Let Vn be the finite dimensional subspace of X

such that range(Kn(Ω)) ⊂ Vn and define Ωn = Ω ∩ Vn. The Leray-Schauder degree

of the map A= Id−K at y=0 is defined as

degLS(A,Ω, 0)= lim
n→∞

deg (An,Ωn, 0). (1.52)

Definition 1.29. Let Ω⊂X be a bounded open set, let X be a Banach space and

let K:X→X be a completely continuous map. The degree of A= Id−K in Ω for

y ∈X is defined as follows provided that y ∈A(∂Ω):

degLS (A,Ω, y)= degLS (A− y,Ω, 0). (1.53)

Definition 1.30. An admissible homotopy for the map A = Id − K is defined

as A(t) = Id − K(t) where K: [0, 1] × D̄ → X is a continuous compact map and

0 � A(t)(D), t∈ [0, 1].

In general, K(t) being compact and continuous does not guarantee that K is

compact from [0,1]×D to X. This failure prevents (Id−K)([0,1]×∂D) to be closed

in X.

Proposition 1.31. The degree (1.52) is well defined and satisfies all the classical

properties of a topological degree.
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The proof is straightforward and can be found in, for example [56] or [64].

1.4 Monotone maps

It turns out that many problems in mathematical physics and geometry can be

formulated in terms of equations

A(u)= f , (1.54)

where A: X → X∗ belongs to some class of continuous functions (demi-, hemi- or

weak continuous) and X is a Banach space. The most well-known examples are the

elliptic equations in divergence form

A(u)=
∑

|α|≤m

(−1)|α|DαAα(x,D
6mu), (1.55)

where u ∈W0
m,p(Ω) and D6mu= {Dαu, |α| ≤m}. It is known that the topological

dual of X =W0
m,p is X∗=W−m,q with q the Hölder conjugate of p. Under suitable

conditions on Aα, A will be a monotone, (S)+ or pseudo-monotone map. The more

interesting case is the fully nonlinear elliptic or parabolic equation

F (x,D62mu)= 0, (1.56)

u′(t)+F (t, x,D62mu)= 0, (1.57)

for which we defined a degree in the last chapter of this thesis.

It is well known in convex analysis that variational problems can be transformed

to functional equations involving monotone maps. In fact the Fréchet derivative of

a smooth convex functional is monotone. Therefore having a degree theory for the

classes of monotone maps will open the way to establish the existence for variational

problems. In addition, in the next chapter we will see how to transform variational

inequalities that frequently appear in control theory, optimization and mathematical

finance to functional equations involving monotone maps. Let us start with the

definition of different types of monotonicity.

For future reference, we mention here the definition of different classes of mono-

tone maps and state the relation between them.
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Definition 1.32. Map A:G⊂X→X∗ is called

i. monotone if for all u, v∈G, φ satisfies 〈A (u) − A(v), u − v〉 ≥ 0, strictly

monotone if it is strictly greater that zero for u� v and strongly monotone if

there exist a non-decreasing function g(x)> 0 for x> 0 and

〈A (u)−A(v), u− v〉≥ g(‖u− v‖). (1.58)

ii. quasi-monotone if for un∈G, un⇀u, A satisfies

limsup 〈A(un), un− u〉≥ 0. (1.59)

iii. (S)+ if for un∈G, un⇀u and limsup 〈A(un), un−u〉≤ 0, then un→ u.

iv. pseudo-monotone map if un∈G,un⇀u and limsup 〈A(un), un−u〉≤0, then

limsup 〈A(un), un− u〉=0. (1.60)

If furthermore, u∈G then A(un)⇀A(u).

The following relation between different classes of monotone maps is clear.

Proposition 1.33. A strong monotone map is a map of class (S)+. If A is pseudo-

monotone then Aε = A + εJ is a map of class (S)+ for every ε > 0. If A is demi-

continuous and monotone then A is pseudo-monotone. If A is a demi-continuous

map of class (S)+ then it is pseudo-monotone. If A is pseudo-monotone then it is a

quasi-monotone map.

Proposition 1.34. Assume that X is a Hilbert space and K:X→X is compact,

then A= Id−K is of class (S)+.

Proof. Obviously Id is a map of class (S)+, because, if un ⇀ u, then ‖u‖ ≤
liminf‖un‖. Therefore, if limsup〈un, un−u〉≤0, then ‖un‖→‖u‖, which in turn in a

Hilbert space implies un→u. On the other hand, mappings of class (S)+ are invariant

under compact perturbations, because if K is compact then 〈K(un), un−u〉→0. �

Remark 1.35. According to the above proposition, it follows that every degree

theory for the class of (S)+ maps will generalize the Leray-Schauder degree in Hilbert

spaces.
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Definition 1.36. Map A:X→X∗ is called hemi-continuous at u if for every v ∈X

it satisfies

A(u+ εv)⇀A(u), (ε→ 0) (1.61)

Proposition 1.37. Any monotone hemi-continuous map A is demi-continuous and

pseudo-monotone.

Proof. Assume un→ u. Then by monotonicity we can write for any z ∈X

〈A(u+ εz)−A (un), u−un+ εz〉≥ 0. (1.62)

Let us rewrite the above inequality as:

0≤ 〈A (u+ εz)−A(un), u−un+ εz〉= 〈A (u+ εz)−A(un), u−un〉+

+〈A (u+ εz)−A(un), εz〉.

A is locally bounded since it is monotone( see [68]) and then the first term in the

right hand side goes to zero when n→∞. Then we conclude:

liminf〈A (u+ εz)−A(un), εz〉≥ 0. (1.63)

For ε> 0 we have

liminf 〈A(u+ εz)−A (un), z〉≥ 0,

and for ε→ 0 we have

liminf 〈A(u)−A (un), z〉≥ 0.

For ε< 0 we have

limsup 〈A(u+ εz)−A (un), z〉≤ 0,

and for ε→ 0, we have

limsup 〈A(u)−A (un), z〉≤ 0.

We conclude that lim 〈A(u)−A(un), z〉=0. Since z is an arbitrary vector in X then

A(un)⇀A(u). Now assume that un⇀u and

limsup 〈A(un), un−u〉≤ 0. (1.64)
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Monotonicity implies that

〈A(un), un−u〉→ 0. (1.65)

Now consider the following inequality for arbitrary z∈X, which holds by the mono-

tonicity

〈A(u+ εz)−A(un), u+ εz −un〉≥ 0. (1.66)

According to (1.65) we can write

liminf 〈A(u+ εz)−A(un), εz〉≥ 0, (1.67)

which is the same as inequality (1.63). Then A(un)⇀A(u). This proves that A is

pseudo-monotone. �

Here we will show how (S)+ or pseudo-monotone maps come into play in studying

nonlinear elliptic equations in divergence form. In the last chapter we generalize

these results for fully nonlinear elliptic and parabolic equations. Consider the map

A:W0
m,p(Ω)→W−m,q(Ω) defined as:

A=
∑

|α|≤m

(−1)mDαAα(x,D6mu), (1.68)

Under the following conditions on Aα, the map A defined in (1.68) is a continuous

(S)+ map. Interpreting ξ as a vector (ζ , η), where η corresponds to |α|=m:

1. Aα(x, ξ) is measurable in x for any ξ and it is continuous in ξ for almost all x.

2. For functions a, b in L∞(Ω)

Aα(x, ξ)≤ a(x)+ b(x) |ξ |r, a, b> 0, r≤ p− 1. (1.69)

3.
∑

|α|=m
[Aα(x, ζ , η1)−Aα(x, ζ , η2)](η1

α− η2α)> 0 for η1� η2

4.
∑

|α|≤m
Aα(x, ξ)ξα≥ c|ξ |p−K(x), K ∈L1(Ω)

Proposition 1.38. Assume that A, defined in (1.68), satisfies conditions (1− 4).

Then A is a (S)+ map.

We first prove the following lemma.
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Lemma 1.39. Under the above setting, let |η− η0| ≥ δ for some δ > 0. Then there

exists a k= k(δ)> 0 such that

∑

|α|=m

[Aα(x, ζ , η)−Aα(x, ζ , η0)](η
α− η0α)≥ k(δ). (1.70)

Proof. Otherwise, there exists a sequnce ηn such that |ηn− η0| ≥ δ and

∑

|α|=m

[Aα(x, ζ , ηn)−Aα(x, ζ , η0)](ηn
α− η0α)→ 0. (1.71)

Conditions (2,4) guarantee that |ηn| is bounded, since otherwise

∑

|α|=m

[Aα(x, ζ , ηn)−Aα(x, ζ , η0)](ηn
α− η0α)→∞. (1.72)

If |ηn| is bounded then there exists a convergent subsequence ηnk
→ η1 with |η1−

η0| ≥ δ such that

∑

|α|=m

[Aα(x, ζ , η1)−Aα(x, ζ , η0)](η1
α− η0α)= 0, (1.73)

which is impossible according to condition (1). �

Proof. (of proposition 1.38) Let un⇀u in Wm,p and

limsup
∑

|α|=m

∫

Ω
Aα(x,D

6mun)D
α(un−u)≤ 0. (1.74)

By the compact embedding Wm,p
�Wm−1,p, we conclude that Dαun→Dαu in Lp

for |α| ≤m− 1. Define

Ωn(ε)=

{

x∈Ω,
∑

|α|=m

|Dαun(x)−Dαu(x)|p≥ ε
}

, (1.75)

and

λ(Ωn(ε))=
∑

|α|=m

∫

Ωn

[Aα(x,D
6mun)−Aα(x,D

6mu)]Dα(un−u).

According to condition (3) we have liminf λ(Ωn)≥ 0. On the other hand, according

to (1.74), we have

limsupλ(Ωn)= limsup
∑

|α|=m

∫

Ωn

Aα(x,D
6mun)D

α(un−u)=

=limsup 〈A(un), un−u〉≤ 0.
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Therefore

limλ(Ωn)= 0. (1.76)

According to the above lemma we conclude that λ(Ωn)≥k(ε) |Ωn|. Then lim |Ωn|=0.

We show

lim
∫

Ωn

|Dαun−Dαu|p=0. (1.77)

Since lim |Ωn|=0, the above limit is equivalent to

lim
∫

Ωn

|Dαun|p=0. (1.78)

According to the condition (4) and the fact thatDαun→Dαu for |α|≤m−1, we have

lim
∑

|α|=m

∫

Ωn

|Dαun|p= lim
∑

|α|≤m

∫

Ωn

|Dαun|p≤

≤lim
∑

|α|≤m

∫

Ωn

Aα(x,D
6mun)D

αun+

lim
∫

Ωn

K(x)= lim
∑

|α|≤m

∫

Ωn

Aα(x,D6mun)Dαun=

=lim
∑

|α|=m

∫

Ωn

Aα(x,D
6m−1u,Dmun)D

αun

On the other hand, we have

lim
∑

|α|=m

∫

Ωn

Aα(x,D
6m−1u,Dmun)D

αun= limλ(Ωn)+

+lim
∑

|α|=m

∫

Ωn

Aα(x,D
6m−1u,Dmun)D

α(u).

Note that the first term in the right-hand side is zero according to (1.76). The second

term is aslo zero according to condition (2). Therefore, for any ε>0, we conclude that

∫

Ωn

|Dαun−Dαu|→ 0. (1.79)

Since we have
∫

Ω
|Dαun−Dαu|<ε |Ω−Ωn|+

∫

Ωn

|Dαun−Dαu|,

let ε→ 0 and then we conclude that Dαun→Dαu in Lp. �
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It is also possible under weaker conditions thatA is a pseudo-monotone mapping.

For example, we can introduce the following condition.

Proposition 1.40. Assume that A is bounded, hemi-continuous, and satisfies con-

ditions (1-3). Then A is pseudo-monotone.

Proof. By the same argument, we obtaine that lim λ(Ωn) = 0. It remains only to

show that A(un)⇀A(u). The general technique here is to perturb u to u− t v for

an arbitrary v and small t and use the fact that A is hemi-continuous. Because A is

bounded then A(un)⇀h for some h, but according to the condition (3) we can write

0≤ limsup 〈A(un)−A(u− t v), un− u+ t v〉= t〈h−A(u− t v), v〉. (1.80)

Let t approache to 0+ (respectively 0−) and use the hemi-continuity property of A

to conclude the claim. �

1.5 The outline of this thesis

Chapter 2 of this thesis is dedicated to the generalized degree for different classes of

monotone maps. We start with the concept of finite rank approximations of maps A:

X→X∗ ( as well as A:X→ 2X
∗

for multi-valued maps) and present some results in

the field of functional analysis. In particular, using the method of approximation by

finite rank, we present some results for the solvability of abstract equations with weak

continuous maps, the fixed point of multi-valued maps and proofs of some theorems

in variational inequalities. We turn then to the defining degree for different classes of

monotone maps, including (S)+ maps, pseudo-monotone maps and maximal mono-

tone maps using the introduced approximation by finite rank. Even though the

degree is not novel for such maps, our approach is simpler than the one presented in

the classical papers by J. Berkovits and F. Browder. In addition, using the defined

degree, we will prove some classical theorems in convex analysis. The completely

novel work in this chapter is the further generalization of degree for mappings that

are not demi or even hemi continuous on the whole space. This generalized degree

theory will be applied in Chapter 3 to the study of uniqueness and bifurcation for

the Doi-Onsager problem.
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In Chapter 3, we study the Doi-Onsager model for multi-phase materials, mate-

rials that look like regular liquids in low temperature and then turn into plasma

phases when temperature increases. While some partial results, mainly in 1 and 2-

dimensional space, have been reported by several authors (for general dimension few

results exist), our approach to this problem is within the framework of degree theory

and enjoys several advantages. We can solve this problem in the general dimension

setting, which does not seem achievable by previous methods. Our method for the

case D=2 is reported in [62]. In particular, we obtained the following results:

• The isotropic solution is unique for small λ.

• Bifurcation occurs for critical values of λ.

• Two solutions bifurcate at the critical values of λ.

• For S1, the bifurcation solutions are super-critical and the first solution is

stable.

In Chapter 4, we briefly study the field of periodic solutions for nonlinear dynamical

systems using classical degree theory. In fact, this chapter is the continuation of the

author’s previous work in this direction. The study of existence of periodic orbits for

dynamical systems was initiated by the pioneering work of Poincaré on the three-

body problem. While there are many results in this field, we only present some

well known results in this direction along with some of our results for autonomous

third order systems. These results show how the periodic orbits of a one parameter

family of dynamical systems survive under further deformation of the system itself.

In particular we present two main results:

1. Third order system

x′′′= f(x, x′, x′′) (1.81)

where f enjoys the parity condition f(x,−x′, x′′)=−f(x, x′, x′′)

• ∃ω > 0 s.t. x(i)(t+ω)=x(i)(t),i=0, 1, 2,

•
∫

0

ω
x(t) dt=0
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2. Third order system with no parity condition:

x′′′+Λx′= εf(x, x′, x′′), (1.82)

• the existence of periodic solutions for ε≪ 1.

• the existence of periodic solutions for ε=1.

The last chapter of this thesis, Chapter 5, is dedicated to the study of fully nonlinear

elliptic and parabolic equations. The main work here is done for second order elliptic

and parabolic equations, however the method can easily be adapted to higher even

order equations. The framework that we work in is due to I. Skrypnik, however

our presentation is simpler and self-contained. The main result here is that fully

nonlinear elliptic equations can be written as abstract equations involving (S)+

mappings. Then the existence, multiplicity and possible bifurcation of the focal

equation are reduced to the obtained abstract equation . Furthermore, we prove

that parabolic equations with fully nonlinear elliptic parts can be written also as an

equations with (S)+ mapping and this opens up a way to study the existence of the

solutions for fully nonlinear evolution equations.
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Chapter 2

Generalized degree

2.1 Introduction

This chapter is dedicated to defining a topological degree for different classes of

monotone maps including (S)+, pseudo-monotone and maximal monotone maps.

The construction is based on a simple notion, the finite rank approximation of A:

X → X∗ for X a separable locally uniformly Banach space. Although degrees for

such mappings are not novel, see [13], [14], [18], [16], [66], [6],[8], our construction

for maps in separable Banach spaces is much simpler. In Section 2.1, we introduce

the concept of finite rank approximation and present some results about the multi-

valued maximal monotone maps. We use these results to define a degree for multi-

valued maximal monotone and monotone maps. In Section 2.2, we use the finite

rank approximation to prove some results in the fields of variations inequality. In

subsequent sections, we develop a degree theory for a class of operators that is

not continuous even on a dense subset of the focal space. We emphasize that such

development is new. The obtained results here are particularly useful for our study

in Chapter 3 of the Onsager problem.

First we note that the mappings in the class (S)+ generalize the Schauder map

in the following sense. Let X be a Hilbert space and K: X → X be compact, the

map A= Id−K is of class (S)+. F. Browder was first to gave a degree theory for

(S)+ mapping defined on reflexive Banach spaces, see [13], [14], [18], [16]. Using

an embedding theorem due to Browder and Ton ([19]), Berkovits gave a degree for

the bounded (S)+ mappings on separable reflexive Banach spaces based on Leray-

Schauder degree, see ([8], [6]). Browder and Ton embedding theorem states that for

every separable reflexive Banach space X, there exist a separable Hilbert space H

and a continuous compact injective map ϕ:H→X such that ϕ(H) is dense in X.

For an elementary proof see ([7]). Berkovits’ construction is as follows. For a (S)+

map A: X→ X∗, the map ϕϕ∗ A: X → X is compact. The degree of A in a open

bounded set Ω for f ∈X∗ is defined as:

deg (A,Ω, f)= lim
λ→∞

degLS (Id+ λϕϕ∗A,Ω, ϕϕ∗f). (2.1)
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Further generalization in this direction is the degree for the maximal monotone

perturbation of (S)+ mappings. The main application for maximal monotone degree

is to prove the existence of solutions for certain evolution equations ( see the last

chapter of this thesis and also [15], [8], [77], [72]).

In the following section, we introduce the finite rank approximation of maps of

the type A: X→ X∗ (and for the multi-valued maps A: X→ 2X
∗

) in a systematic

way. As before we assume that X is a separable reflexive locally uniformly Banach

space. If A is a single valued bounded demi-continuous (S)+ or pseudo-monotone

map, the homotopy class of approximated maps remain stable and this enable us to

define a degree for the original map A. When the multi-valued map A is maximal

monotone, we replace its finite rank approximations with a continuous single-valued

maps. In addition, we show that the homotopy class of such single-valued maps

are stable with respect to the dimension of the space in which the original map is

reduced. Through this, we can define the degree of maps for the map A.

In addition, we use also the notion of approximation by finite rank to give new

proofs for some important theorems in convex analysis. In particular, we prove

some theorems about the solvability of equations including weakly continuous maps,

the fixed point of monotone maps in Hilbert spaces and also a brief review of basic

theorems in variations inequalities.

2.2 Approximation by finite rank maps

2.2.1 The basic notion

For different classes of monotone map, we define a topological degree by the aid of

finite rank approximation. Since a well known topological degree is available for maps

in the finite dimensional spaces, we define the topological degree for the original map

by the aid of the Brouwer degree for its finite rank approximation. The philosophy

behind this approach is the same as J. Leray and J. Schauder’s definition of a degree

for the Schauder maps. To have a reference framework to define the approximations,

we use the following embedding theorem due to F. Browder and B. Ton, see [19].

An elementary proof of the theorem can be found in J. Berkovits [7].
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Theorem 2.1. Let X be a separable Banach space, then there exist a Hilbert spaces

H such that the embedding H→X is dense.

Remark 2.2. It can be show that the above embedding is compact, see [7].

Let X be a separable space, and H={h1, h2,
 } an orthonormal basis for H such

that ϕ:H� X is dense and compact. Denote X ={x1, x2,
 } the image of H under

ϕ and Xn= span{x1, x2,
 , xn} the finite dimensional subspace of X equipped with

the inner product (xi, xj)n = δij. For the demi-continuous map A:X→X∗, define

the finite rank map An:X→Xn called the finite rank approximation of A in Xn as:

An(u)=
∑

k=1

n

〈A(u), xk〉xk. (2.2)

Obviously the restriction of A to Xn coincides with An in the sense that for v ∈Xn

and u∈X we have 〈A(u), v〉=(An(u), v).

This approximation greatly simplifies the proofs in different applications. In

sequel, we prove some results of solvability of abstract equations, fixed point the-

orems and variations inequalities using the approximation by finite rank maps

method.

2.2.2 Solvability of equations

When there is a potential for the map A:X→X∗, the existence of the solution for

the equation

A(u)= f (2.3)

can be carried by classical variation method. The method of finite rank approxima-

tion enable us to investigate into the existence problem of the equation (2.3) even in

the absence of potential functional. Here, we assume that A satisfies two conditions:

1. A is weakly continuous, that is for every weakly convergent sequence (un),

un⇀u it implies A(un)⇀A(u),

2. A is coercive, that is

〈A(u), u〉
‖u‖ →∞, when ‖u‖→∞. (2.4)
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To be weakly continuous may seem restrictive, however it is easily verified that if L:

X→ X∗ is a bounded linear operator, then it is weakly continuous. For nonlinear

operators, consider A as

A(u)=
∑

|α|=m

aα(x)D
α u+ g(x,D6m−1u). (2.5)

where aα are smooth enough on the closure of a bounded domain Ω ⊂ Rn and g

satisfies some growth rate condition to guarantee the continuity from Wm,p(Ω) into

L2(Ω). The first part of A is linear and then is weakly continuous. By Sobolev

embedding if un⇀u in Wm,p then g(x,D6m−1un)→ g(x,D6m−1u) in L2 and then

it is continuous. Therefore A is weakly continuous from Wm,p(Ω) into Lp(Ω).

Theorem 2.3. Let X be a separable Banach space and A: X → X∗ be a weakly

continuous and coercive map. Then A(u)= f has a solution.

For the proof we use the following lemmas.

Lemma 2.4. For A a coercive map, there exist R> 0 such that

‖u‖≥R⇒〈A(u), u〉> 〈f , u〉. (2.6)

Proof. The proof is straightforward. In fact assuming the contrary, there exist (un),

‖un‖≥n such that 〈A(un), un〉≤ 〈f , un〉. Then we can write

〈A (un), un〉
‖un‖

≤ 〈f , un
‖un‖

〉≤‖f ‖. (2.7)

But A is coercive, that is

〈A(un), un〉
‖un‖

→∞

that gives a contradiction.

�

Define An:Xn→Xn as (2.2) and consider the finite dimensional equation

An(u)= fn. (2.8)
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Now we have the following lemma which is extensively used in dealing with the

solvability of finite dimensional equations. We give a simple degree theoretic proof

for it.

Lemma 2.5. For any finite dimensional spaces Xn there exist at least one solution

of equation (2.8).

Proof. Let BR denote the R-ball in X and BR
′ = BR ∩ Xn. First note that

fn∈ An(∂BR
′ ), since otherwise there exist u ∈ ∂BR

′ such that An(u) = fn. But

An(u) − fn = A(u) − f on the Xn which together with u ∈ Xn gives 〈A(u), u〉 =

〈f , u〉 that is impossible by lemma (2.4). Consider the following convex homotopy:

h(t)= t Id+(1− t)(An− fn). (2.9)

Note that 0∈h(t)(∂BR

′

) for t∈ (0, 1), otherwise for z ∈ ∂BR
′ we have

tz+(1− t) (An(z)− fn)= 0⇒An (z)=fn+
t

1− t z. (2.10)

The above relation implies in turn

〈A(z), z〉= 〈f , z〉− t

1− t(z, z)≤ 〈f , z〉. (2.11)

that is impossible by lemma (2.4). Therefore by degree theoretic argument

deg (An , BR

′

, fn)= deg (Id, BR
′ , 0)= 1, (2.12)

and this completes the proof. �

Proof. (of the theorem) By the above lemma, there exist a sequence (un)⊂X,

un ∈Xn such that An (un) = fn. Since X is reflexive and BR is convex then un⇀

u∈ B̄
R
in a sub-sequence. A is weakly continuous and then A(un)⇀A(u). We show

A(u)= f . Since (A(un)) is weakly convergent it is bounded, letM = limsup‖A(un)‖.

The proof when X is separable is straightforward by the following consideration. For

any v ∈X, choose w ∈Xn such that

‖v−w‖< ε

‖f ‖+M
. (2.13)
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For arbitrary v ∈X we can write

〈A(u)− f , v〉= 〈A(u)−A(un), v〉+ 〈A(un)− f , v−w〉. (2.14)

Note that A(un)− f is zero on Xn. For sufficiently large n, |〈A(u)−A(un), v〉|< ε

and also

|〈A(un)− f , v−w〉| ≤ (‖A(un)‖+ ‖f ‖) ‖v−w‖<ε (2.15)

Therefore |〈A(u)− f , v〉|<ε. Now let ε→ 0 and this completes the proof. �

Remark 2.6. The Lax-Milgram lemma in its general form is a direct consequence

of the above argument. Assume that π:H ×H→R is a coercive continuous bi-linear

form ( not necessarily symmetric). Define the map A:H→H , u� A(u) as:

(A(u), v)=π(u, v), v ∈H. (2.16)

A is clearly linear continuous and then weakly continuous and also coercive, then by

the above argument the equation A(u)= f has a unique solution uf and therefore

π(u, v)= (A(u), v)= (f , v), v ∈H. (2.17)

Coercivity in the whole space is too restrictive. In the following, we follow Y. Dubin-

skii to introduce the regularization method to overcome this situation, see [31].

Consider the operator A:X→X∗. If A is coercive only on a subspace V of X then

the map i∗Ai:V →V ∗ is coercive. In general assume that there exist subspace V ⊂X

and a bounded linear map B:V →X such that B∗Ai:V →V ∗ is coercive with respect

to the norm in X . We have the following theorem:

Theorem 2.7. Denote i: V → X the embedding of V into X and assume B∗Ai is

coercive, that is

〈Ai(u), B (u)〉
‖i(u)‖X

→∞, ‖i(u)‖X→∞, (2.18)

then the equation A(u)= f has a solution up to the kernel of B∗, that is there exist

ρ∈Ker(B∗) such that

Au= f + ρ. (2.19)
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Proof. Since B∗Ai is coercive, then for any g ∈ V ∗, there exist v ∈ V such that

B∗Ai(v)= g, so if g=B∗(f) then

〈Ai(v), B(u)〉= 〈f , B (u)〉⇒Ai(v)= f + ρ. (2.20)

�

In [31], some evolution equations are given for which the regularization method

can be applied. In the last chapter of this thesis, we will consider a parabolic equation

and apply this method to justify the applicability of this method for a class of

nonlinear problems.

2.2.3 Intermediate value theorem

A wide class of well-known results about the existence of solutions for abstract

equations come from the generalization of Bolzano’s intermediate value theorem.

Let I = (−1, 1) and f : Ī → R continuous then f(x) = 0 is solvable in I if zf(z)

does not change sign for z ∈ ∂I . The assumption that sign(z .f(z)) is constant for

z∈∂I is known as Bolzano condition. The following proposition is a straightforward

generalization of the Bolzano theorem.

Proposition 2.8. Let D⊂R
n be an open bounded neighborhood of 0 and f :D→R

n

a continuous map satisfying the Bolzano condition, that is sign(z.f(z)) is constant

for z ∈ ∂D. Then f(x)= 0 is solvable in D.

A general variant of the above fact is the following well known proposition that

is an immediate corollary of the Hopf’s theorem and the following fact we discussed

in Chapter (1):

deg (f ,D, 0)= deg (f , ∂D).

We give some other generalization below.
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Proposition 2.9. Let K ⊂ X be a convex compact set containing 0, that is for

z∈K there exist µ> 0 such that {tz, |t|≤ µ}⊂K. ∂K, the boundary of K is defined

as z ∈K such that for all ε > 0, (1 + ε)z∈K. If f :K ⊂X→X∗ is continuous and

satisfies the Bolzano condition on ∂K, then f(x)= 0 is solvable on K.

Proof. For simplicity assume 〈f(x), x〉>0 on ∂K. Since ∂K is compact, there exist

r > 0 such that 〈f(x), x〉 ≥ r. Choose ε-net {xk}k=1
n ⊂K and {yk}k=1

n ⊂ f(K) for

0<ε<r. Define the finite dimensional sub-spaces Xε= span{xk} and Yε= span{yk}

and the finite rank map fε: K → Yε as fε(x) =
∑

k
ηk(f(x)) yk, where {ηk} is the

partition of unity subordinate to Bε(yk). Since ‖fε(x) − f(x)‖ < ε, it follows that

〈fε(x), x〉>0, for x∈∂K. Therefore the restricted map fε:K ∩Xε→Yε is solvable in

K ∩Xε. Let xε ∈K such that fε(xε) = 0. Choose {εn}, 0< εn< r and εn→ 0. The

sequence of solutions xεn for fεn(xεn) = 0 converge in a sub-sequence to some point

x∈K. It is enough to show f(x)=0. Choose n so large that ‖fεn(x)− f(x)‖<εn/2

and ‖f(x)− f(xεn)‖<ε/2 . Now it follows

‖f(x)‖≤ ‖f(x)− f(xεn)‖+ ‖f(xεn)‖<εn,

and it completes the proof. �

It is possible to generalize the above and relax the assumption on the compactness

of K.

Proposition 2.10. Let X be a separable reflexive Banach space, B the unit ball of X

and f :B→X∗ a bounded demi-continuous map that satisfies the strong monotonicity

condition: 〈f(u) − f(v), u − v〉 ≥ c(‖u − v‖) where c is a non-negative strictly

increasing function and c(0) = 0. If 〈f(z), z〉 > 0 for z ∈ S, the unit sphere of X,

then there exist x∈B such that f(x)= 0.

Proof. Define the approximation fn:B ∩Xn→Xn as

fn(x)=
∑

k=1

n

〈f(x), xk〉xk, (2.21)
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with the inner product on Xn as (xi, xj) = δij. Obviously fn = f on Xn. Since

〈fn(z), z〉> 0 for z ∈ ∂(S ∩Xn) then there exist xn ∈B ∩Xn such that fn(xn) = 0.

Let x be a weak limit point of {xn} and then

limsup 〈f(xn)− f(x), xn−x〉= limsup 〈f(xn),−x〉.

Choose sequence {sn}, sn∈Xn and sn→ x then

limsup 〈f(xn),−x〉= limsup 〈f(xn), sn−x〉≤ limsup ‖f(xn)‖ ‖sn−x‖=0.

According to the monotonicity condition on f , we obtain xn→x and then f(xn)⇀

f(x). Let v∈X be arbitrary, then for the sequence {vn}, vn∈Xn and vn→v we have

〈f(x), v〉= lim 〈f(xn), v〉= lim 〈f(xn), v− vn〉≤ lim ‖f(xn)‖ ‖x− vn‖=0.

Since v is arbitrary then f(x)= 0. �

More straightforward proof is also possible when we define a degree theory for the

class of monotone maps. The condition on the strong monotonicity can be replaced

by pseudo-monotonicity or being of class (S)+.

Proposition 2.11. Let X be a separable reflexive Banach space and f : B→X∗ a

bounded demi-continuous monotone map. If 〈f(z), z〉> 0 for z ∈S then there exist

x∈B such that f(x)= 0.

Proof. The existence of {xn} such that f(xn)= 0 on Xn is established in a similar

manner of the previous proposition. For arbitrary y in Xn we can write

〈f(y), y− xm〉= 〈f(y)− f(xm), y−xm〉≥ 0, m≥n. (2.22)

Let x∈B be a weak limit point of {xn}, then for any y ∈Xn we have the following

inequality:

〈f(y), y−x〉≥ 0. (2.23)

Let v ∈X be arbitrary and {vn}, vn∈Xn and vn→ v, then

〈f(v), v−x〉= lim 〈f(vn), v− x〉= lim 〈f(vn), v− vn〉+ lim 〈f(vn), vn−x〉≥ 0.
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Now take v = x+ εy for ε > 0, then 〈f(x+ εy), y〉 ≥ 0 and by then 〈f(x), y〉 ≥ 0.

Change y to −y it gives f(x)= 0. �

An alternative proof is done by considering the maps A + εJ for ε > 0 that is

strongly monotone and therefore there exist xε such that A(xε) + εJ(xε) = 0. Now

the existence of a solution for A(x)= 0 is achieved by the following fact.

Proposition 2.12. Let X be a separable reflexive Banach space and A:X→X∗ be

a monotone map. In addition assume that for decreasing sequence {εn}, εn> 0 and

εn→ 0 there exist bounded set {xn} such that A(xn) + εnJ(xn) = 0 then there exist

x0 such that xn→ x0.

Proof. Let x0 be a weak limit point of {xn}. For any fix n and arbitrary m>n we

have

〈A(xn)−A(xm), xn− xm〉+ 〈εnJ(xn)− εm J(xm), xn− xm〉=

〈A(xn)−A(xm), xn− xm〉+ εm〈J(xn)−J(xm), xn− xm〉+

+(εn− εm)〈J(xn), xn−xm〉=0.

Since εn>εm, we conclude 〈J(xn), xn−xm〉≤0. Therefore ‖xm‖≥‖xn‖. Letm→∞

then 〈J(xn), xn−x0〉≤0 them implies ‖x0‖≥‖xn‖. Therefore ‖xn‖→‖x0‖ and since

E is uniformly convex then xn→ x0. �

2.2.4 Variational inequality

Variational inequalities are usually obtained by the minimization of convex func-

tionals on a closed convex subsets of Banach spaces. Variation inequalities are

fundamental in different fields of applied mathematics from mathematical physics,

and optimal control [55] to financial mathematics and bio-mathematics [45]. For

a simple example, consider the following problem. As a simple example of the equa-

tion that reduces to variational inequality, consider the following equation defined

on a open bounded convex subset Ω⊂R
n:

∑

|α|≤1

(−1)|α|DαAα(x,D
61u)= f , (2.24)
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with the boundary condition as

u|∂K≥0, ∂u

∂nA
|∂Ω≥0, u

∂u

∂nA
|∂Ω=0, (2.25)

where

∂u

∂nA
(x):=

∑

|α|=1

Aα(x,D
61u)nα(x), x∈ ∂Ω. (2.26)

In addition assume that there exist a smooth function A(x,D61u) such that

Aα: =
∂A

∂ (Dαu)
. (2.27)

It turns out that the above problem reduces to a variational inequality [55].

Let ϕ be a convex l.s.c. map and K ⊂X a closed convex subset. The following

theorem is the most well known result in the classical variational problem.

Theorem 2.13. Assume that ϕ is a l.s.c. convex and coercive functional, that is

ϕ(x)→∞ when ‖x‖→∞, then the minimization problem

min
x∈K⊂X

ϕ(x) (2.28)

has at least one solution. In addition if ϕ is strictly convex then the solution is unique.

The proof is straightforward by consideration that ϕ is weakly lower semi-contin-

uous and the fact that the minimizing sequence is bounded according to the coercive

condition. The uniqueness is an immediate consequence of the strict convexity. Vari-

ational inequalities come from the minimizing potential function on closed convex

subsets as can bee seen by the following proposition.

Proposition 2.14. Under the above settings, if ϕ∈C1(X,R) then x̄ is a minimizer

of the problem ( 2.28) if and only if

〈Dx̄ϕ, x− x̄〉≥ 0, x∈K. (2.29)

Proof. One direction is obtained directly as

ϕ(x)− ϕ(x̄)≥〈Dx̄ϕ, x− x̄〉≥ 0
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The other direction is obtained by

0≤ ϕ(x̄+ ε(x− x̄))− ϕ(x̄)= 〈Dϕ(x̄+ δ(x− x̄)), x− x̄〉,

for 0<δ <ε. Since ϕ is C1 we have Dϕ(x̄+ δ(x− x̄))→Dx̄ϕ when ε→ 0. �

Corollary 2.15. Assume X is a uniformly convex Banach space and K is a closed

convex subset of X, then for every x∈X there exist a unique PK(x) in K such that

dist(x,K)= ‖x−PK(x)‖. (2.30)

The proof is straightforward by the minimization of ϕx(y)=‖y−x‖ for y∈K. Recall

that the duality map J :X→X∗ is the Frechet derivative of 1

2
‖x‖2 and therefore it

implies the following important inequality:

〈J(PK(x)− x), y−PK(x)〉≥0, y ∈K. (2.31)

Particularly, if X is a Hilbert space then we have

〈PK(x)− x, y−PK(x)〉≥0, y ∈K. (2.32)

Definition 2.16. Let X be a reflexive Banach space, K ⊂ X a closed convex set,

f ∈X∗ and A:X→X∗. For x̄ ∈K, the inequalities of the following type is called a

variational inequality:

〈A(x̄), x− x̄〉≥ 〈f , x− x̄〉, x∈K. (2.33)

Below, we give simple proofs for some important variational inequalities using the

approximation by finite rank maps. First we prove the following lemma.

Lemma 2.17. Assume that X is a separable reflexive Banach space with a uniformly

convex norm and K ⊂ X is a closed convex set. If the map A: X → X∗ is demi-

continuous satisfying the following conditions (i),(ii), then there exist x̄∈K such that

〈A(x̄), y− x̄〉≥ 0. (2.34)

i. 〈A(x)−A(y), x− y〉≥ c||x− y ||1+δ for δ > 0,
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ii. ||A(x)|| ≤C ||x||, C > 0.

Proof. Since X is separable, choose subset Y = {y1, y2,	 }⊂K that is dense in K.

Choose an independent subset of Y that we still denote by Y and define the linear

sub-spaces {Yn} as Yn= span{y1,	 , yn}. Define the approximation An:Yn→Yn as

An(u)=
∑

k=1

n

〈A(u), yk〉 yk,

with the inner product (yi, yj)= δij. Obviously An=A on Yn. The a priori estimate

for x̄, the solution of (2.34) is obtained as follows. According to condition (i) we have

||A(x̄)|| ||y || ≥ 〈A(x̄), y〉≥ 〈A(x̄), x̄〉≥ c||x̄ ||1+δ− ||A(0)|| ||x̄ ||,

and using condition (ii) we obtain

C ||y ||+ ||A(0)|| ≥ c||x̄ ||δ.

Let y=PK(0) then

||x̄ || ≤ c−1/δ(C ‖PK(0)‖+ ‖A(0)‖)1/δ= r.

Therefore the solution lies inside a bounded closed convex set Ω=K ∩ B̄(r). First we

show that An satisfies inequality (2.34). Let Ωn=Ω∩ Yn, and use the result (2.32)

for K =Ωn, that is

〈PΩn
(x)− x, y−PΩn

(x)〉≥ 0, y ∈Ωn. (2.35)

Let us assume that x̄n, the solution of (2.35) be the projection of some x ∈ Yn

on Ωn, that is x̄n = PΩn
(x). Assuming that, we should have An(x̄n) = PΩn

(x) − x

or equivalently x = x̄n − An(x̄n) that gives the equation x̄n = PΩn
(x̄n − An(x̄n)).

Therefore the solution x̄n is the fixed point of the map ϕ(u)=PΩn
(u−An(u)) defined

on the bounded closed convex subset Ωn. Since PΩn
and An are continuous functions

then ϕ: Ω→Ω is a continuous function and by Brouwer fixed point theorem ϕ has

a fixed point x̄n∈Ωn. Since An=A on Yn, it implies that

〈A(x̄n), x− x̄n〉≥ 0, x∈Ωn.
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Since {x̄n} is bounded in a reflexive Banach space X, then it has a weak limit point,

say x̄ ∈Ω. Now for {sn}, sn∈Ωn, and sn→ x̄ we have

limsup 〈A(x̄n), x̄n− x̄〉= limsup 〈A(x̄n), x̄n− sn〉≤ 0.

Since A is strongly monotone x̄n→ x̄ and then since A is demi-continuous we have

A(x̄n)⇀A(x̄). Therefore we have for any x∈Ωn

〈A(x̄), x− x̄〉= lim 〈A(x̄n), x− x̄n〉≥ 0.

Now for arbitrary y ∈Ω, choose the sequence {sn}, sn∈Ωn and sn→ y and conclude

〈A(x̄), y− x̄〉= lim 〈A(x̄), sn− x̄〉≥ 0.

and this completes the proof. �

Now, by the aid of the above lemma, we give simple proofs for some variational

inequalities, see for example [73].

Theorem 2.18. Let X be a separable reflexive Banach space with a uniformly convex

norm, K is a bounded closed convex subset of X, A:X→X∗ a demi-continuous map

and f ∈X∗. Then there exist x̄ ∈K such that:

〈A(x̄), x− x̄〉≥ 〈f , x− x̄〉, x∈K, (2.36)

if anyone of the following conditions satisfied:

1. A is a map of class (S)+.

2. A is a monotone map. In addition, if A is strictly monotone, that is

〈A(x)−A(y), x− y〉> 0, x� y,

then the solution is unique.

3. A is a pseudo-monotone map.

Proof.

1. Let Kn=K ∩Yn and define An the finite dimensional approximation of A− f
on Kn as

An(u)=
∑

k=1

n

〈A(u)− f , yk〉 yk.
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Theorem implies the existence of {x̄n}⊂K such that

〈A(x̄n), x− x̄n〉≥ 〈f , x− x̄n〉, x∈Kn

Since K is bounded, then {x̄n} has a weak limit point, say x̄ ∈K. Now for

{sn}, sn⊂Kn and sn→ x̄ we have

〈A(x̄n) − f , x̄n − x̄ 〉 ≤ 〈A(x̄n) − f , x̄n − sn〉 + ‖A(x̄n) − f ‖ ‖sn − x̄ ‖ ≤

‖A(x̄n)− f ‖ ‖sn− x̄ ‖.

Therefore

〈A(x̄n), x̄n− x̄〉≤ 〈f , x̄n− x̄〉+ ‖A(x̄n)− f ‖ ‖sn− x̄‖.

Therefore

limsup 〈A(x̄n), x̄n− x̄〉≤ 0⇒ x̄n→ x̄.

Since A is demi-continuous then A(x̄n) ⇀ A(x̄). This implies that for any

x∈Kn we have

〈A(x̄), x− x̄〉≥ 〈f , x− x̄〉.

Now let y ∈K, then for {sn}, sn∈Kn and sn→ y we have

〈A(x̄)− f , y− x̄〉= lim 〈A(x̄)− f , sn− x̄〉≥ 0,

and this completes the proof.

2. Define the map Aε(u)=A(u)− f + εJ(u) for ε> 0. Note that Aε is strongly

monotone. According to the above theorem, there exist x̄ε∈K such that

〈Aε(xε̄), x−xε̄〉≥ 0, x∈K. (2.37)

Now let ε→0 and we show that x̄ε→ x̄ for some x̄∈K. Let {εk} is a decreasing

sequence εk→ 0 then by (2.37) there exist the sequence {xk} such that

〈A(xk)− f , x−xk〉≥−εk〈J(xk), x−xk〉, x∈K.

Fix n and for m>n we have

〈A(xn)− f , xm−xn〉≥−εn〈J(xn), xm−xn〉

〈A(xm)− f , xn−xm〉≥−εm〈J(xm), xn−xm〉.

2.2 Approximation by finite rank maps 51



Adding the both sides of the above inequalities gives

0≥〈A(xn)−A(xm), xm−xn〉≥ εm〈J(xn)− J(xm), xn−xm〉+

+(εn− εm)〈J(xn), xn−xm〉.

Let εm→ 0 then and let x̄ is a weak limit point for {xk}, then we have

〈J(xn), xn− x̄〉≤ 0,

that conclude ‖x̄‖≥‖xn‖. This shows that xn→ x̄. For the last part, assume

that x1, x2 are among the solution set of (2.36). Then we have

〈A(x1), x2− x1〉≥ 〈f , x2− x1〉, 〈A(x2), x1− x2〉≥ 〈f , x1− x2〉,

then we obtain 〈A(x1)−A(x2), x1− x2〉≤ 0 that implies x1= x2.

3. If A is pseudo-monotone, the map Aε define in the corollary (2.20) is a map

of class (S)+. In fact if xn⇀x̄ and

limsup {〈A(xn), xn− x̄〉+ ε〈J(xn), xn− x̄〉}≤ 0,

then since liminf 〈J(xn), xn − x̄〉 ≥ 0 then we conclude limsup 〈A(xn),

xn− x̄〉≤0. A is pseudo-monotone and then lim〈A(xn),xn− x̄〉=0. Therefore

limsup 〈J(xn), xn − x̄〉 ≤ 0 and since J is a map of class (S)+ then xn→ x̄.

According to corollary (2.18) there exist x̄ ∈K such that Aε satisfies (2.36).

Therefore for any ε> 0 there exist x̄ε such that

〈A(x̄ε)− f , x̄ε− y〉≤ ε 〈J(x̄ε), x̄ε− y〉, y ∈K.

Now let {εn}, εn↓0, then {x̄n} has a weak limit point say x̄∈K. We can write

〈A(x̄n)− f , x̄n− x̄〉≤ εn 〈J(x̄n), x̄n− x̄〉.

Let εn→ then we have

limsup 〈A(x̄n), x̄n− x̄〉=0

that implies A(x̄n)⇀A(x̄). Now we can write

〈A(x̄)− f , y− x̄〉= lim 〈A(x̄n)− f , y− x̄〉≥−lim εn 〈J(x̄n), y− x̄n〉=0.

and this completes the proof. �
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Remark 2.19. If K is a closed cone at the origin, the solution of the variational

inequality 〈A(x), y−x〉≥ 0 is characterized as:

〈A(x̄), x̄〉=0, 〈A(x̄), y〉≥ 0, y ∈K.

If K is a closed subspace, then the variational inequality is the same of the existence

of a unique solution for the equation A(x)= 0. When A(u)(v)=π(u, v)− (f , v) for

u, v∈H , a bi-linear elliptic form in the Hilbert spaces H, then the result is know as

Lax-Milgram lemma.

Remark 2.20. Lions and Stampacchia [49] proved (2.34) where A: H → H, H is

a Hilbert space and A(u)(v) = π(u, v) − L(v) where π is an elliptic continuous bi-

linear form and L is a continuous linear functional. The extensions to nonlinear case

can be found in [55]. It is easily seen that that the operator A defined as above is a

monotone operator and the existence of the solution is obtained immediately form

Theorem 2.18.

Up to our knowledge, no author used degree theoretic argument in the field of

variational inequality. The requirement here is to convert the variational inequality

to an abstract equation in a suitable Banach space. In sequel, we show that varia-

tional inequalities can be transformed to abstract equations and the associated maps

are of monotone class maps. This enables us to apply the topological method in

deal with variational inequalities. Let K ⊂X be a closed convex set, X a separable

uniformly convex space and A:X→X∗ and f ∈X∗, we want to solve for u∈K the

following inequality

〈A (u)− f , v− u〉≥ 0, v ∈K (2.38)

For any f ∈X∗ consider the following functional:

ϕf(y)=
1
2
‖y‖2− 〈f , y〉, y ∈K

The minimization of ϕf has a solution T (f) ∈K. The solution is characterized by

the following inequality

〈J(T (f)), y− T (f)〉≥ 〈f , y− T (f)〉, ∀y ∈K
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Proposition 2.21. The operator T :X∗→X has the following monotonicity prop-

erty:

〈f − g, T (f)−T (g)〉≥ 0, ∀f , g ∈X∗

Proof. For f , g ∈X∗ we have

〈J(T (f)), T (g)−T (f)〉≥ 〈f , T (g)− T (f)〉

〈J(T (g)), T (f)−T (g)〉≥ 〈g, T (f)− T (g)〉

Then the monotonicity follows by the inequality 〈J(x) − J(y), x − y〉 ≥ 0 and the

summing up the above two inequalities. �

Assume u∈K is the solution of inequality (2.38) then for any y ∈K we have

〈J(u), y− u〉≥ 〈J(u)+ f −A(u), y−u〉

and then by uniqueness we have

u−T (J(u)+ f −A(u))= 0

If K is compact, then T :X∗→K is compact and then the Schauder fixed point is

applicable. In the general case, we can use the monotonicity property of T to deduce

the fixed point of T .

2.3 Multi-valued mappings

In this section, we generalize the notion of approximation by finite rank maps for

single valued map to multi-valued maps of the form T : X → 2X
∗

. Two notions of

continuity of multi-valued maps are used: lower semi-continuity and upper semi-

continuity.

Definition 2.22. Let X, Y be Banach spaces. The map T :X→ 2Y is called lower

semi-continuous at x∈X if for any y∈T (x) and any open neighborhood V of y, there

exist an open neighborhood U of x such that for every u∈U it holds T (u)∩V � ∅. T
is called upper semi-continuous at x if for any neighborhood V of T (x), there exist

an open neighborhood U of x such that T (U)⊂ V.
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It is easily seen that the function H:R→ 2R defined as

H(x)=







{1} x> 0
[0, 1] x=0
{0} x< 0

,

is upper semi-continuous every where while it is not lower semi-continuous at x=0.

If B⊂X is the unit ball in X , it is easily seen that the map T :X→2X defined below

is lower semi-continuous:

T (x)=

{

{x} x∈ B̄
X x∈ B̄

Remark 2.23. We should emphasize that the lower and upper semi continuity for

single valued function is not the same as the above defined notions for multi-valued

functions. The notion of semi-continuity can be defined equivalently as follows. The

map T :X→ 2Y is lower semi-continuous if for every open set V ⊂Y the set T−1(V )

defined below is open:

T−1(V )= {x∈X;T (x)∩ V � ∅}.

T is called upper semi-continuous if for every open set V the set T−1(V ) defined

below is open:

T−1(V )= {x∈X;T (x)⊂V }.

If T :X→ 2Y is a multi-valued function, the graph of T is defined

graph(T )= {(x, y), y ∈ f(x)}. (2.39)

We use the notation [x, y]∈graph(T ) to denote that y∈T (x). The following theorem

is attributed to E. Michael [60].

Theorem 2.24. (continuous selection) Assume that X is a paracompact topo-

logical space and Y is a Banach space, T :X→ 2Y a lower semi-continuous map such

that for every x, T (x) is non-empty closed and convex, then there exist a continuous

single valued function f such that [x, f(x)]∈ graph(T ).

2.3 Multi-valued mappings 55



It turns out that being l.s.c. is too restrictive for multi-valued maps while being

u.s.c. is the minimum continuity that we need in dealing with non-linear multi valued

mappings including maximal monotone maps. For u.s.c. multi valued maps, we have

the following theorem [25]. For an alternative proof see [56].

Theorem 2.25. (ε-continuous sub-graph) Assume X,Y are Banach spaces and

T :X→2Y an upper semi-continuous map and T (x) is closed and convex for all x∈X.

Then for any ε>0, there exist a continuous single valued function Tε:X→Y such that

for any x, there exist z ∈X and y∈T (z) such that ‖x− z‖<ε and ‖y−Tε(x)‖<ε.

Since the construction of Tε is used in the definition of generalized degree, we

briefly explain the proof of the above theorem here. Fix ε > 0, for arbitrary x ∈X,

let Vε(T (x)) be the ε-neighborhood of T (x). Since T (x) is convex Vε(T (x)) is convex.

Since T is upper semi-continuous, there exist δ = δ(x) > 0 such that T (Bδ(x)) ⊂
Vε(T (x)). The family of open sets B = {Bδ(x), x ∈X} covers X. Choose a locally

finite star refinement B1 = {Uα} of B. By definition, for x ∈X, the star of x in B1
is defined as

st(x,B1)=∪α{Uα∋x,Uα∈B1}.

B1 is a star refinement of B if for every x∈X, st(x,B1) is contained in someBδ(y)∈B.
In fact for paracompact spaces (consisting of metrizable spaces), every open cover

has an open locally finite refinement and then star refinement, see for example S.

Willard [80]. Let fα be a continuous partition of unity subordinate in Uα, then define

Tε as follows:

Tε(x)=
∑

α

fα(x) zα,

where zα∈T (Uα) is arbitrary.

By the aid of above theorem, we can prove some results by the finite rank approx-

imation of Tε. First we prove the lemma that is the generalization of classical acute

angle property for single valued maps.

Lemma 2.26. Let X=R
n and T :X→2X be an upper semi-continuous multi-valued

mapping, T (x) is closed and convex for x∈X and for every z ∈SX and w ∈ T (z) it
satisfies the acute angle property, that is (w, z)> 0, then 0∈T (BX).
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Proof. Let Tε(n) be the continuous single valued ε(n)-approximation of T where

ε(n)→0 for n→∞. Choose ε(n) so small that (Tε(n)(z), z)> 0 and then there exist

xn∈BX such that Tε(n)(xn)=0. Let xn→x∈ B̄X in a sub-sequence, then there exist

wn∈T (yn) such that ‖wn‖<ε(n) and ‖yn‖∈ (1+ ε(n))BX. It implies that 0∈T (x),

x∈ B̄X. But according to the acute condition x∈SX and then 0∈T (BX). �

Proposition 2.27. Let X be a separable reflexive Banach space, T : X → 2X
∗

an upper semi-continuous strong monotone map, that is for every [x, h], [y, w] ∈

graph(T ) it satisfies

〈h−w, x− y〉≥ c(‖x− y‖).

In addition T (x) is closed and convex for every x ∈ X and on SX it satisfies the

acuteness condition, that is z ∈ SX and w ∈ T (z) it satisfies 〈w, z〉 > 0. Then

0∈ T (BX).

Proof. Let Tε be a single valued continuous ε-approximation of T . By simple cal-

culation we obtain for any x, y ∈X the following relation

〈Tε(x)−Tε(y), x− y〉≥ c(‖x1− y1‖)− 2ε(‖x− y‖+ ‖w1−w2‖),

where the following estimates holds

‖Tε(x)−w1‖, ‖Tε(y)−w2‖<ε, ‖y− y1‖, ‖x− x1‖<ε.

Let εn→ 0 and Tεn
n is the finite rank approximation of Tεn. Choose ε sufficiently

small such that for any finite dimensional spaces Xn the condition (Tεn
n (z), z) > 0

holds for z ∈SXn
. Therefore we have a sequence of xn∈BXn

such that Tεn
n (xn)= 0.

Since Tεn
n = Tεn on Xn, then Tεn(xn)= 0 on Xn. xn⇀x∈BX in a sub-sequence and

then for (vn), vn∈Xn and vn→ x we obtain

c(‖xn− x‖)+O(εn)≤ 〈Tεn(xn)−Tεn(x), xn−x〉=

=−〈Tεn(xn), x− vn〉− 〈Tεn(x), xn−x〉=

=−〈Tεn(xn), x− vn〉− 〈w1, xn− x〉

−〈Tεn(x)−w1, xn− x〉
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For εn→0 we obtain limsupc(‖xn−x‖)≤0 and then xn→x. Since Tεn(xn)=0 onXn,

then there exist yn and wn∈T (yn) such that ‖xn− yn‖<εn and ‖Tεn(xn)−wn‖<εn.

Let v ∈X, ‖v‖=1 be arbitrary, vn∈Xn and vn→ v, then we have

εn> 〈wn− Tεn(xn), v〉= 〈wn−Tεn(xn), v− vn〉+ 〈wn, vn〉.

For n → ∞ we obtain 〈wn, v〉 → 0 that is wn ⇀ 0. On the other hand yn → x

therefore there exist δ > 0 such that wn ∈ Vδ(T (x)) and since Vδ(T (x)) is convex

then 0 ∈ cl Vδ(T (x)). Since it is possible to choose δ arbitrary small then 0 ∈ T (x).

According to the acuteness condition x∈S(X) and then 0∈ T (BX). �

The proof of the following proposition is similar to the previous one.

Proposition 2.28. Let X be a separable uniformly convex Banach space, T :X→2X
∗

an upper semi-continuous monotone map, that is for every [x, h], [y, w]∈ graph(T )

it satisfies

〈h−w, x− y〉≥ 0.

In addition T (x) is closed and convex for every x ∈ X and on SX it satisfies the

acuteness condition, that is z ∈ SX and w ∈ T (z) it satisfies 〈w, z〉 > 0. Then

0∈ T (BX).

2.3.0.1 Maximal monotone maps

Definition 2.29. T :X→2X
∗

is maximal monotone if for any pair (x, ϕ)∈X ×X∗

such that

〈f − ϕ, u− x〉≥ 0, for all (u, f)∈ graph(T )⇒ (x, ϕ)∈ graph(T ).

It is equivalent to say that the graph is maximal in the set theory sense. The maximal

monotone map T is bounded if for any bounded sequence (un) ⊂ X, there exist a

bounded sequence (wn), wn∈T (xn).

Proposition 2.30. LetX be a separable reflexive Banach space, T :X→2X
∗

maximal

monotone, then T is norm to weak∗ upper semi-continuous and for every x∈X, T (x)

is closed and convex.
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Proof. Assume xn→x, since T is locally bounded in the interior of D(T )=X, then

{T (xn)} is bounded. Choose wn∈T (xn) arbitrary, then wn weakly converge in a sub-

sequence (that we still show as wn) to some w∈X∗. For arbitrary [u, h]∈ graph(T )

we have 〈h−wn, u− xn〉 ≥ 0, and then 〈h−w, u− x〉 ≥ 0 that is [x, w]∈ graph(T ).

For arbitrary x and w1, w2∈T (x), let zt= tw1+(1− t)w2 for t∈ [0, 1]. For any pair

[y, h]∈ graph(T ) we have

〈h− zt, y− x〉= t 〈h,w1, y−x〉+(1− t)〈h−w2, y− x〉≥ 0,

and then [x, zt]∈graph(T ). This shows that T (x) is convex. If wn→w , (wn)⊂T (x),

then for arbitrary [y, h]∈ graph(T ) we can write

0≤ 〈h−wn, y−x〉→ 〈h−w, y−x〉,

that implies [x, w]∈ graph(T ) and then T (x) is closed. �

Now we define a finite rank approximation of a maximal monotone map T . For

any finite dimensional subspace Xn⊂X with basis X = {x1,	 , xn}, the finite rank

map Tn of the maximal monotone map T is defined as

Tn(u)=
⋃

w∈T (u)

∑

k=1

n

〈w, xk〉xk. (2.40)

Proposition 2.31. Let X be a separable reflexive Banach spaces, T : X → 2X
∗

maximal monotone. Then Tn is a monotone upper semi-continuous map, and for

every x∈X, Tn(x) is closed and convex.

Proof. For every w ∈T (u), let wn∈Tn(u) defined as

wn=
∑

k=1

n

〈w, xk〉xk.

Note that for every y ∈Xn, we have the equality (wn, y)= 〈w, y〉. This fact justifies

that the multi-valued map Tn:Xn→2Xn is monotone since for every pair wn∈Tn(u),

hn∈ Tn(v) we have

(hn−wn, v−u)= 〈h−w, v−u〉≥ 0.
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Since T is norm to weak∗ upper semi-continuous, for arbitrary convergent sequence

(uα) in Xn, uα→ u, the arbitrary sequence (wα), wα∈T (uα), converges weakly in a

sub-sequence (wβ) to some w ∈ T (u). Now for every y ∈Xn, 〈wβ , y〉→ 〈w, y〉. But

we have the equalities

〈wβ, y〉= (wβ
n, y), 〈w, y〉=(wn, y).

This implies that wβ
n→wn and therefore Tn:Xn→ 2Xn is an upper semi-continuous

multi-valued monotone map. In addition, assume that (wi
n) is a Cauchy sequence,

wi
n∈Tn(x). In fact we have

wi
n=

∑

k=1

n

〈wi, x
k〉xk.

Since T (x) is bounded (every maximal monotone map is locally bounded), then (wi)

is bounded and then wi⇀w in a sub-sequence for some w ∈X∗. This implies that

〈wi, x
k〉→ 〈w, xk〉. But for arbitrary [y, h]∈ graph(T ) we have

0≤〈h−wi, y−x〉→ 〈h−w, y− x〉,

and then [x,w]∈ graph(T ) and therefore wn∈T (x). �

Using the above results and the construction of finite rank approximation, we

give a simple proof for the following important theorem in convex analysis. When

the map A in the following theorem is the duality map J , part (ii) of the theorem is

proved by R. Rockafellar and parts (i),(iii),(iv) are proved by F. Browder by the aid

of convex analysis method. Our proof is based on the idea of choosing a continuous

single valued function Tn
ε for each Tn that exist according to the Theorem (2.25).

Theorem 2.32. Assume T :X→ 2X
∗

is a bounded, maximal monotone map and A:

X → X∗ is a continuous, coercive and strongly monotone map, then the following

statements hold:

i. Tε= T + εA for ε > 0 is a map of class (S)+ in the sense that if un⇀u and

for some wn∈T (un) it satisfies the condition

limsup〈wn+ εA(un), un−u〉≤ 0, (2.41)
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then un→ u.

ii. The map Tε is onto X∗,

iii. For u1, u2∈X and u1� u2 we have

Tε(u1)∩ Tε(u2)= ∅, (2.42)

iv. Tε
−1:X∗× (0,∞)→X is well defined and is continuous.

Proof.

i. Assume un⇀u and for a sequence (wn),wn∈T (un) the condition (2.41) holds.

for w ∈T (u) we can write

limsup 〈wn+ εA(un), un−u〉= limsup {〈wn−w,un−u〉+ ε〈A(un), un−u〉}.

But for the right hand side we have

limsup {〈wn−w, un− u〉+ ε〈A(un), un−u〉}≥ εlimsup 〈A(un), un−u〉.

Since A is a (S)+ map, we conclude un→ u.

ii. Since T is bounded, then for any u ∈X and un→ u, there exists a bounded

sequence (wn) such that wn∈T (un). X∗ is reflexive, then there exists a sub-

sequence, that we still show by wn that weakly converges to some w, that is

wn⇀w∈X∗ . We show [u,w]∈ graph(T ). For arbitrary [x, h]∈ graph(T ) we

have:

〈h−w, x−u〉= lim 〈h−wn, x−un〉≥ 0,

therefore [u,w]∈graph(T ). Next we show Tε is coercive in the following sense:

∀ [u, w]∈G(T ),
〈w+ εA(u), u〉

‖u‖ →∞, ‖u‖→∞. (2.43)

In order to prove it, we can write for [0, h]∈ graph(T )

〈w+ εA(u), u〉
‖u‖ =

1

‖u‖〈w− h, u〉+
1

‖u‖〈h, u〉+ ε

〈

A(u),
u

‖u‖

〉

≥

≥ε
〈

A(u),
u

‖u‖

〉

−‖h‖→∞.
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The last part comes from the fact that A is coercive. This implies that for

f ∈X∗ the solution set of the inclusion equation

f ∈Tε (u) (2.44)

is located inside BR for some R> 0. Define the following finite rank approx-

imation on Xn

Tε
n=Tn+εAn, (2.45)

where Tn is defined in (2.40). Therefore the solution set of the following

inclusion equation

fn∈Tεn(un) (2.46)

is located inside BR
n = BR ∩ Xn, where as before fn is defined in the basis

X = {x1, x2,	 } as follows:

fn=
∑

k=1

n

〈f , xk〉xk.

The solution set of the inclusion equation (2.46) is non-empty according to

the proposition (2.26). In fact the map

An=Tn+ εAn− fn,

is acute on ∂BR
n and 0∈An(un) for some un∈BR

n. Now, since un∈BR and X

is reflexive then un⇀u in a sub-sequence for some u∈ B̄R. In order to show

the existence of a solution for the inclusion f ∈ Tε(u), we show that un→ u.

Choose wn∈T (un) such that wn+ εA(un)= fn, then

〈wn+εA (un), un− u〉= 〈 fn, un〉− 〈wn+ εA(un), u〉.

Since fn→ f and un⇀u, 〈fn, un〉→〈f , u〉 and then

limsup {〈 fn, un〉− 〈wn+ εA(un), u〉}= limsup 〈f −wn− εA(un), u〉.

Choose zn∈Xn such that zn→ u then according to the relation

〈f −wn− εA(un), zn〉=0,

we can write

〈f −wn− εA(un), u〉= 〈f −wn− εA(un), u− zn〉→ 0. (2.47)
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Therefore un→ u because Tε is a map of class (S)+. We have established so

far the following relationships

un→ u, wn⇀w, [u,w]∈ graph(T ) (2.48)

For arbitrary z ∈X, we can write

〈f −w− εA(un), z〉= 〈f −wn− εA(un), z〉+ 〈wn−w, z〉,

and then

limsup 〈f −w− εA(un), z〉= limsup 〈f −wn− εA(un), z〉 (2.49)

Now, for (zn), zn∈Xn and zn→ z we have

〈f −wn− εA(un), z〉= 〈f −wn− εA(un), z − zn〉→ 0. (2.50)

Since z is arbitrary we deduce

f ∈ (T + εA)(u).

and this completes the proof.

iii. If h∈ (T +εA)(u1) and h∈ (T +εA)(u2), then both pairs [u1, h−εA(u1)] and

[u2, h− εA(u2)] belong to graph(T ) and then

−ε〈A(u1)−A(u2), u1−u2〉≥ 0 (2.51)

that is possible only if u1= u2.

iv. According to parts (i)-(ii), T + εA is onto and the map (T + εA)−1 is well

defined. Assume hn→h, and εn→ ε where hn∈ (T + εnA)(X). Since T + εA

is onto, there exist xn∈X such that hn∈ (T + εnA)(xn). We show that (xn)

is bounded. In fact if wn∈T (xn) and w0∈T (0), then

〈hn, xn〉= 〈wn, xn〉+ εn〈A(xn), xn〉= 〈wn−w0, xn〉+ 〈w0, xn〉+ εn〈A(xn), xn)≥

≥〈w0, xn〉+ 〈A(0), xn〉+ εn c‖xn‖α

that is impossible if ‖xn‖→∞. Therefore xn are bounded and then xn⇀x

in a sub-sequence that we still denote by subscript n. Now consider

〈hn, xn− x〉= 〈wn, xn− x〉+ εn〈A(xn), xn− x〉≥ 〈w, xn−x〉+ εn〈A(xn), xn− x〉 (2.52)
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where w ∈T (x). This implies

limsup 〈A(xn), xn− x〉≤ 0

and then xn→ x. We show h ∈ (T + εA)(x). Since A is continuous, for any

[y, w]∈G(T ) we have

〈h− εA(x)−w, x− y〉= lim 〈hn− εnA(xn)−w, xn− y〉≥ 0 (2.53)

that implies h∈ (T + εA)(x).

�

2.4 Degree for mappings of class (S)+

Recall that A:X→X∗ is a single valued (S)+ map if for every xn⇀x and

limsup 〈A(xn), xn− x〉≤ 0,

then xn→x. A is demi-continuous at x if for every sequence (xn), xn→x it implies

that A(xn) ⇀ A(x). A is bounded if it maps bounded sets to bounded sets. It

is easily seen that a fairly large class of elliptic operators, including operators in

divergence form are of type (S)+, see [6] and [14]. Also, fully nonlinear uniformly

elliptic operators defined on a Hilbert space can be reduced to a map of class (S)+,

see [74]. In this section we assume that A: X → X∗ is a bounded demi-continuous

map of class (S)+ where X is separable locally uniformly convex Banach space. In

the definition of degree here and in the next section, we extensively use the notion

of finite rank approximation introduced in this chapter. This simplifies the degree

construction and the proofs of its classical properties considerably.

Let us repeat the definition of finite rank approximation here. Assume thatH is a

separable Hilbert space such that ϕ:H→X is injective compact and dense in X. Let

H={h1, h2,	 } be an orthonormal basis forH and X ={x1, x2,	 } be the image of H

under ϕ, that is xi=ϕ(hi). Define the finite rank map An:X→Xn= span{x1,	 , xn}
as

An(x)=
∑

k=1

n

〈A(x), xk〉xk.
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The inner product defined in Xn is defined as (xi, xj) = δi,j where δi,j denotes the

Kronecker delta. First note that for A|Xn
=An|Xn

that is for any y ∈Xn we have

〈A(x), y〉=(An(x), y). (2.54)

In fact for y=
∑

ykx
k we obtain

〈

A(x),
∑

ykx
k
〉

=
∑

〈A(x), xk〉 yk=
∑

〈A(x), xk〉(xk, y)= (An(x), y).

Now we can define the degree of A by the aid of its finite rank approximation.

Note that this the same method that Leray and Schauder defined their degree for

compact perturbations of the identity. For the Leray and Schauder case, the finite

rank approximation is obtained through the partition of unity and the uniform

approximation of a compact map by a sequence of finite rank maps. Let A:X→X∗

be a bounded demi-continuous map and D ⊂ X an open bounded set. Denote

Dn=D∩Xn. We have the following simple fact.

Lemma 2.33. Under the above setting, assume 0∈A(∂D) when A is a map of class

(S)+, there exist N0> 0 such that 0∈An(∂Dn) for n≥N0.

Proof. Assuming the contrary, there exist a sequence zn∈∂Dn such that 0=An(zn).

Since X is reflexive and D is bounded, then the sequence (zn) converges weakly in

a sub-sequence to some z. Since A(zn)= 0 on Xn, then we have

〈A(zn), zn− z〉=−〈A(zn), z〉.

Since X is separable, choose the sequence {sn}, sn ∈ Xn and sn→ z. Since A is

bounded, we can write

〈A(zn), z〉= 〈A(zn), z − sn〉≤ ‖A(zn)‖ ‖z − sn‖→ 0.

Since A is a map of class (S)+ then zn → z ∈ ∂D and then by demi-continuity

A(zn)⇀A(z). Let v ∈X arbitrary and (vn), vn∈Xn and vn→ v, then

〈A(z), v〉= lim 〈A(zn), v〉= lim 〈A(zn), v− vn〉=0,

a contradiction! �

Using the above lemma we can define a degree for the (S)+ map A:X→X∗.
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Definition 2.34. Assume that X is a separable reflexive Banach space with a

uniformly convex norm, D⊂X an open bounded set and A: D̄→X∗ a bounded demi-

continuous map of class (S)+. If 0∈A(∂D) then we can define the following degree

for the map A in D for 0∈X∗:

deg(A,D, 0)= lim
n→∞

degB (An, Dn, 0). (2.55)

where degB denotes the usual Brouwer degree.

Theorem 2.35. Degree defined in (2.55) is well defined, that is the Brouwer degree

in the right hand side of (2.55) is stable for sufficiently n.

Proof. Note that An is a continuous map since A is demi-continuous and demi-

continuity coincide with the continuity in finite dimensional spaces. According to

the above lemma, 0∈An(∂D) and in particular 0∈An(∂Dn), therefore the Brouwer

degree in the right hand side of (2.55) is well defined. It remains to show that the

defined degree is stable for sufficiently large n. Define Bn+1:Xn+1→Xn+1 as follows

for y ∈Dn+1

Bn+1(y)=An(y)+ (xn+1, y)xn+1

Note that Bn+1(y)=0 only if 〈xn+1, y〉=0 or equivalently y∈Xn. This implies that

degB(Bn+1,Dn+1, 0)=degB (An, Dn, 0). (2.56)

Now consider the following convex homotopy

hn+1(t)= (1− t)An+1+ tBn+1, t∈ [0, 1].

We first show that h is an admissible homotopy. Obviously 0∈ hn+1(t)(∂Dn+1) for

t= 0. For t= 1, h(1) =Bn+1 and Bn+1(z) = 0 for z ∈ ∂Dn+1 implies that z ∈ ∂Dn

and An(z) = 0 that is impossible for sufficiently large n. For t ∈ (0, 1) assume that

there exist a sequence (tn), tn ∈ (0, 1) and a sequence (zn), zn ∈ ∂Dn such that

hn(tn)(zn)=0. According to the definition of Bn, the above equality impliesA(zn)=0

on Xn−1 and also

〈A(zn), xn〉= tn
1− tn

(xn, zn). (2.57)
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Since (zn) is bounded and X is reflexive, then {zn} converges weakly in a sub-

sequence to some vector z. Now

〈A(zn), zn− z〉=− tn
1− tn

(xn, zn)2− 〈A(zn), z〉. (2.58)

Since A(zn)=0 onXn−1, by the density property we obtain 〈A(zn), z〉→0. Therefore

limsup 〈A(zn), zn− z〉≤ 0.

and then zn → z ∈ ∂D since A is a (S)+ map. A is demi-continuous and then

A(zn)⇀A(z). For arbitrary v ∈ Y we have

〈A(z), v〉= lim 〈A(zn), v〉= lim 〈A(zn), v− vn〉=0, (2.59)

for a sequence (vn), vn ∈Xn and vn→ v, that is a contradiction! By the homotopy

invariance property of Brouwer degree and the relations h(0) =An+1, h(1) =Bn+1

we can write

degB (An+1, Dn+1, 0)= degB (Bn+1, Dn+1, 0).

According to (2.56) we conclude that for sufficiently large n the following relation

holds:

deg (An+1, Dn+1, 0)= deg (An,Dn, 0). (2.60)

Therefore the degree in the right hand side of (2.55) is stable. �

Proposition 2.36. Degree defined in (2.55) is independent of the basis X, that is if
H′={h1′ , h2′ ,	 } is another orthonormal basis for H and X ={x1′ , x2′ ,	 } is the image

of H ′ under ϕ then the degrees are the same.

Proof. First note that if {x1′ ,	 , xn′ } is any basis for Xn and

An
′ (x)=

∑

k=1

n

〈A(x), xk′ 〉xk′ ,

then An(x) =An
′ (x) on Xn if (xi

′, xj
′ ) = δi,j. Now assume Xn= span{x1,	 , xn} and

Xm
′ = span{x1′ , 	 , xm′ } for n, m sufficiently large such that the Brouwer degree is

stable in (2.55). Denote Y = span{x1,	xn, x1′ ,	 , xm′ ). Define Anm in Y in a similar

way and also DY =D ∩Y , then since the degree is stable, we have

degB (An,Dn, 0)=degB (Anm, Dnm, 0)= degB (Am, Dm, 0),
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and this comp lets the proof. �

Now we show that degree defined in (2.55) satisfies all classical properties of a

topological degree. For the reference map, we choose the duality map J . As proved

in the first chapter, if X is a uniformly convex Banach space, then J :X→X∗ is bi-

continuous and a map of class (S)+. Let D ⊂ X is an open bounded domain and

0∈∂D, then 0∈∂Dn for any n. Since J is a (S)+ map, we can define

deg (J ,D, f)= lim
n→∞

deg (Jn , Dn, 0). (2.61)

If 0∈D then 0∈Jn(Dn) since

Jn(x)=
∑

k=1

n

〈J(x), xk〉xk,

and just take a basis with x1=x/‖x‖ and then 〈J(x), x1〉= ‖x‖� 0. Therefore the

equation Jn(x)= 0 does not have any solution in D and we conclude

deg (J ,D, 0)= 0.

If 0 ∈D then the only solution on the equation Jn(x) = 0 for x ∈Dn is x= 0. The

homotopy hn(t) = tJn + (1 − t)Id on Xn has the property that 0 ∈ hn(t)(∂D) and

therefore

degB (Jn, Dn, 0)= deg (Id,Dn, 0)=1.

The above argument proved the following proposition:

Proposition 2.37. Let D⊂X is an open bounded domain and 0∈∂D then

deg (J ,D, 0)=

{

1 if 0∈D
0 if 0 � D

The invariance property of degree under admissible homotopy is one property that

should be satisfied by all defined degree. The following definition defines an admis-

sible homotopy for the maps of class (S)+ followed by a proposition that establishes

the invariance under admissible homotopy.
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Definition 2.38. The map A: D̄ × [0, 1]→ X∗ where D ⊂ X is an open bounded

set is called an admissible homotopy of class (S)+ if 0 ∈A(∂D, [0, 1), A(x, t) is

continuous with respect to t and demi-continuous with respect to x and furthermore

for the convergent sequence (tn), tn∈ [0, 1], un⇀u and

limsup 〈A(un, tn), un− u〉≤ 0 (2.62)

then un→ u.

Proposition 2.39. Degree defined in (2.55) is invariant under the admissible homo-

topy.

Proof. LetA: D̄× [0,1]→X∗ be an admissible homotopy and consider the following

map

Ã: D̄ × [0, 1]→X∗⊕R, Ã(u, t)= (A(u, t), t). (2.63)

It is easily seen that if A is demi-continuous of class (S)+ then Ã is demi-continuous

of class (S)+. We define

deg (Ã ,D× [0, 1], (0, t))= lim
n→∞

degB (Ãn,Dn× [0, 1], (0, t)). (2.64)

We show if (0, t)∈ Ã (∂D, t) for all 0≤ t≤ 1 then

deg (Ã ,D× [0, 1], (0, t))=deg (At, D, 0). (2.65)

for any t∈ [0, 1] where At=A(., t):D→X∗. According to the homotopy invariance

property of Brouwer degree we can write for t∈ [0, 1]

degB (Ãn, Dn× [0, 1], (0, t))= deg (An,t,Dn, 0). (2.66)

Since according to the definition we have

lim
n→∞

degB (An,t,Dn, fn)= deg (At,D, f), (2.67)

then the claim is proved. �

Proposition 2.40. If deg (A, D, 0) is non-zero, then the equation A(x) = 0 has a

solution.
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Proof. According to the definition (2.55), the equation An(u) = 0 has a solution

for u ∈ Dn, that is equivalent that A(u) = 0 on Xn. Since D is bounded and X is

reflexive for any u∈X there exist sequence (un), un∈Dn such that un⇀u∈X. We

show u∈D and A(u)= 0. First note that

〈A (un), un− u〉=−〈A (un), u〉.

Since X is separable we can choose a sequence zn∈Xn such that zn→u and then

〈A (un), u〉= 〈A (un) , u− zn〉+ 〈A (un), zn〉= (2.68)

=〈A (un), u− zn〉≤ ‖A(un)‖ ‖u− zn‖→ 0

The last statement (approaching to zero) follows from the fact that A is bounded.

Since A is of class (S)+ it implies un→ u ∈ D̄. On the other hand A is a demi-

continuous then A(un)⇀A (u). Now for arbitrary w∈X choose wn→w for wn∈Xn

and then

〈A(u), w〉← 〈A (un), w〉= 〈A(un), w−wn〉→ 0 (2.69)

Since w is arbitrary it implies that A(u)= 0. But 0 � A(∂D) therefore u∈D. �

The last property of degree is domain decomposition and the proof is straight

forward by the argument in finite dimensional case. Thus we have proved the fol-

lowing theorem.

Theorem 2.41. The degree defined by (2.55) satisfies all properties of a classical

degree theory.

Now it is straightforward to define the degree of the map A with respect to

arbitrary f ∈X∗ as stated in the following definition.

Definition 2.42. Let D⊂X be an open bounded set, A: D̄→X∗ is a bounded demi-

continuous map of class (S)+ such that f ∈A(∂D), the degree of A in D with respect

to f is defined as

deg(A, D, f)= deg (A− f ,D, 0), (2.70)

where the finite rank approximation for f is defined by in terms of basis X as follows:

fn=
∑

k=1

n

〈f , xk〉xk.
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2.4.1 Some results about the solvability

Here we use the above defined degree to prove the solvability of some abstract

equations.

Theorem 2.43. Assume A:X→X∗ is a bounded, demi-continuous operator of class

(S)+ and coercive, that is

lim
〈A (u), u〉
‖u‖ →∞ (‖u‖→∞) (2.71)

then A is onto.

Proof. Since A is coercive we have an a priori estimate for the solutions of the

equation A(u)= f for any f ∈X∗. Choose a sufficiently large ball BR and the affine

homotopy At= tJ + (1− t)A and use the homotopy invariance property to reach:

deg (A,BR, f)= deg (J ,BR, f)= 1, (2.72)

and this completes the proof. �

The following proof is an easy degree theoretic proof for the Lax-Milgram lemma

in general case.

Corollary 2.44. Assume π:H ×H→R is a continuous bi-linear form that is not

necessarily symmetric and π(u,u)≥r ‖u‖2, then for every f ∈H, there exist a unique

u0 such that

π(u0, v)= (f , v), ∀v ∈H.

Proof. Define the map A:H→H , u� A(u) as

(A(u), v)=π(u, v), ∀v ∈H. (2.73)

A is a linear continuous map. Assume un⇀u and

limsup 〈A(un), un−u〉≤ 0.

We have then

limsup 〈A(un), un−u〉= limsup 〈A (un−u), un− u〉≥ r‖un−u‖2. (2.74)
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that shows un→u and then A is a map of class (S)+. By the above degree theoretic

method we conclude A is onto. �

The following proposition is a possible generalization of Brouwer fixed point

theorem for infinite dimensional spaces.

Proposition 2.45. Assume A: B̄⊂X→ B̄ is a bounded continuous map defined on

the unit ball of a separable uniformly convex Banach spaces X and −JA is of class

(S)+ then there exist u∈ B̄ such that A(u)=u.

Proof. Define Tt = J − tJA for t ∈ [0, 1]. It is seen that Tt is a (S)+ map since if

un⇀u and

limsup 〈Tt(un), un−u〉≤ 0,

then according to the monotonicity of J we obtain

t limsup 〈−JA(un), un− u〉≤ limsup {〈J(un), un−u〉+ t〈−JA(un), un−u〉}≤ 0.

Since −JA is of class (S)+ then un→ u. It is also clear that J � tJA on ∂B for

t∈ [0, 1) since otherwise for t∈ [0, 1) and for some z ∈ ∂B it will be

J(z)= tJA(z)⇒ 1= t〈JA(z), z〉. (2.75)

But A(z)∈ B̄ and therefore ‖JA(z)‖≤ 1. Therefore

〈JA(z), z〉≤ 1<
1
t
, t∈ [0, 1).

If for t=1 J(z)= JA(z) then

〈JA(z), z〉=1⇒A(z)= z,

since 〈J(x), y〉< ‖x‖‖y‖ if x� y. In this case there exist z∈∂B such that A(z)= z.

Otherwise A(z)� z for z ∈∂B, then J � tJA on ∂B for t∈ [0, 1]. Moreover the map

Tt is an admissible homotopy and therefore the degree is well defined. Hence

deg (Tt,B, 0)=deg (J ,B, 0)=1, (2.76)

that implies the existence of u ∈ B such that J(u) = JA(u) that gives in turn

A(u)= u. �
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The following corollary is an immediate consequence of the above proposition.

Corollary 2.46. Assume A:B⊂H→H is a bounded continuous map defined on

the unit ball B of the Hilbert space H and −A is of class (S)+ then there exist u∈ B̄

such that A(u)=u.

2.5 Degree for monotone maps

In this section, we define a degree for monotone and maximal monotone opera-

tors that enable us to prove some classical theorems by degree theoretic argument.

Maximal monotone operators play an important role for the existence of nonlinear

evolution equation u′(t) + F (t, D62mu) = 0 where the term u′(t) turns out to be

a maximal monotone operator in a suitable Banach space [83]. For simplicity we

assume that D(T ), the effective domain of the maximal monotone map T :X→ 2X
∗

is the whole of X. First we define the degree for single valued monotone maps.

2.5.1 Degree for single valued monotone maps

Let X be a separable locally uniformly convex Banach space, D ⊂ X an open

bounded set, A:X→X∗ a demi-continuous monotone map such that 0∈ clA(∂D).

Let r = dist(0, cl A(∂D)). Obviously r > 0 since the minimizer sequence (yn),

yn∈ clA(∂D) is Cauchy and then converge to some point in clA(∂D). Choose

δ0=
r

max ‖z‖ , z ∈ ∂D, (2.77)

then for 0 < δ < δ0 the map Aδ = A + δJ has the property 0 ∈ Aδ(∂D), in fact for

every z ∈ ∂D we have

‖A(z)+ δJ(z)‖≥‖A(z)‖− δ ‖z‖≥ r− δ ‖z‖> 0.

In addition Aδ is a map of class (S)+, since

limsup {〈A(xn), xn−x〉+ δ〈J(xn), xn− x〉}≥ δ limsup 〈J(xn), xn−x〉,

and J is a (S)+ map.
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Definition 2.47. Let X be a separable locally uniformly convex Banach space, D⊂

X an open bounded set, A: X → X∗ a demi-continuous monotone map such that

0∈ clA(∂D). The degree for the map A in D for 0 is defined for 0<δ <δ0 as

deg(A,D, 0)= lim
δ→0

deg (Aδ, D, 0)= lim
δ→0

lim
n→∞

degB
(

An
δ , Dn, 0

)

. (2.78)

Since Aδ is a (S)+ map, the degree in the right hand side of (2.78) is well defined.

However, the stability of the degree under the limit of δ needs justification. For δ1,

δ2<δ0 the homotopy

h(t)=An+(tδ1+ (1− t)δ2)Jn,

is admissible and h(t)(z)� 0 for z ∈ ∂D and therefore

degB
(

An
δ1, Dn, 0

)

= degB
(

An
δ2, Dn, 0

)

.

Since the degree of finite rank is stable with respect to n, it is stable with respect to

δ according to the above homotopy. We need to justify that the definition of degree

for the monotone map A satisfies all classical properties of a topological degree.

Proposition 2.48. If deg (A,D, 0)� 0 then there exist a solution for the equation

A(x)= 0.

Proof. The equation Aδ(x)= 0 has a solution x(δ)∈D according to the properties

of degree for (S)+ mappings. Let δn be a decreasing sequence and δn → 0, then

according to the proposition (2.12) x(δn) converges to some point x0 ∈ D̄. Since A

is demi-continuous then A(xn)⇀A(x0), Let y ∈X arbitrary then

〈A(x0), y〉← 〈A(xn), y〉=−δn 〈J(xn), y〉→ 0,

and then A(x0)= 0. But x0∈∂D then x0∈D. �

Definition 2.49. Let Ã: [0, 1] × D̄ → X∗ be a map such that for every t ∈ [0, 1],

the map Ã(t):X→X∗ is a monotone map, Ã(t, x) is continuous with respect to t

and demi-continuous with respect to x and 0∈ Ã([0, 1])(∂D). Ã is called admissible

homotopy for monotone maps.
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Proposition 2.50. The degree defined in (2.78) is invariant under admissible homo-

topy for monotone maps.

Proof. We only need to show that Ã(t)+δJ is a admissible homotopy of class (S)+.

If fact for xn⇀x and tn→ t, we can write

〈

Ã(tn, xn), xn− x
〉

+ δ〈J(xn), xn−x〉=
〈

Ã(tn, xn)− Ã(tn, x), xn− x
〉

+

〈

Ã(tn, x), xn−x
〉

+ δ〈J(xn), xn− x〉≥

≥
〈

Ã(tn, x), xn−x
〉

+ δ〈J(xn), xn− x〉.

Now since Ã(t,x) is continuous with respect to t, then for tn→ t we obtain
〈

Ã(tn, x),

xn−x
〉

→ 0 and therefore

limsup
〈

Ã(tn, xn), xn−x
〉

+ δ〈J(xn), xn− x〉= δ limsp 〈J(xn), xn−x〉.

This implies that Ã(t)+ δJ is an admissible homotopy of class (S)+. Therefore

deg
(

Ã(t),D, 0
)

= lim
δ→0

deg
(

Ãδ(t),D, 0
)

,

and the degree in the right hand side is independent of t. �

The decomposition of domain property is straightforward to verify and it comes

from the same property of (S)+ mappings.

Proposition 2.51. If D =D1 ∪D2 and D1 ∩D2 = ∅, and if A: D̄→X∗ is demi-

continuous monotone map such that 0∈ clA(∂D) then

deg(A,D, 0)=deg (A,D1, 0)+ deg (A,D2, 0). (2.79)

Proof. Since open sets D1,D2 are disjoint then ∂D1⊂ ∂D and ∂D2⊂∂D, therefore

∂D⊃∂D1∪∂D2. Since D is the union of D1,D2 this implies that ∂D=∂D1∪∂D2. In

a similar manner we conclude that cl (A(∂D))= cl (A(∂D
1
))∪ cl (A(∂D2)). Therefore

if 0 ∈ cl A(∂D) then 0 ∈ cl A(∂D1) and 0 ∈ cl A(∂D2) and then 0 ∈ Aδ(∂D1) and

0∈Aδ(∂D2). We can write then

deg (Aδ, D, 0)=deg (Aδ, D1, 0)+deg (Aδ, D2, 0), (2.80)
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and all degree in the above relationship are stable under the limit for δ, and this

gives the relationship (2.79). �

Remark 2.52. To simplify the related calculations, we can replace Jn with Id map

according to the following considerations. Since the set X = {x1, x2	 , } is arbitrary

for the finite rank approximation, we can choose X such that 〈J(xi), xj〉 = δi,j.

Choose x1 arbitrary with ‖x1‖ = 1. Let X1 be the topological complement of x1,

that is X = {x1}⊕X1. Now choose f1∈X∗ such that 〈f1, x1〉=1 with ‖f1‖=1 and

〈f1, y〉= 0 for y ∈X1. Since X is uniformly convex, it is clear that f1= J(x1). Let

x2 ∈X1, ‖x2‖ = 1 and X = {x1} ⊕ {x2} ⊕X2
′. Define X2 = {x1} ⊕X2

′ and f2 ∈X∗

such that 〈f2, x2〉=1, ‖f2‖=1 and 〈f2, y〉=0 for y ∈X2. Clearly f2= J(x2). If we

continue this process, we obtain a set such that 〈J(xi), xj〉= δi,j.

Definition 2.53. Assume that X is a separable uniformly convex Banach space,

D ⊂X an open bounded set and for f ∈X∗, f ∈ cl A(∂D). Degree of A in D with

respect to f is defined

deg (A,D, f)= deg (A− f ,D, 0). (2.81)

Remark 2.54. Since for every f ∈ X∗, the map Af = A − f is a demi-contin-

uous monotone map if A is demi-continuous monotone and if f ∈ cl A(∂D) then

0∈clAf(∂D), the definition is justified. It is straightforward to check that the degree

defined for arbitrary f ∈X∗ satisfies all classical properties of a topological degree.

By the aid of this definition, the another type of homotopy invariance property can

be established. If f(t),0≤ t≤1 is a path in X∗ and Ã(t, x) is a admissible homotopy

such that f(t) ∈ cl Ã([0, 1], ∂D) for any t ∈ [0, 1], then the following degree is

independent of t. The justification follows from the fact that Ã
f
(t,x)= Ã(t,x)− f(t)

is an admissible homotopy.

2.5.2 Degree for maximal monotone maps

Now we can define a degree for maximal monotone maps. First a simple proposition.
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Proposition 2.55. Assume that X is a separable locally uniformly convex Banach

space, D⊂X an open bounded set and A:X→ 2X
∗

a maximal monotone map. The

map Aδ =A+ δJ for δ > 0 is a map of class (S)+ in the following sense: if xn⇀x

and if there exist wn∈Aδ(xn) such that

limsup 〈wn, xn− x〉≤ 0,

then xn → x. If 0 ∈ cl A(∂D) then there exist δ0 > 0 such that 0 ∈ Aδ(∂D) for

0<δ < δ0.

Clearly for the given sequence (wn) and the monotonicity property we have the

inequality

limsup 〈wn, xn−x〉≥ δ limsup 〈J(xn), xn−x〉,

that in turn implies Aδ is a (S)+ map. Since clA(∂D)=cl{w;w∈A(z), z∈∂D}, then

there exist r>0 such that dist(0,clA(∂D))=r. For any z∈∂D and w∈A(z) we have

‖w+ δJ(z)‖≥ ‖w‖− δ ‖z‖≥ r− δ ‖z‖,

and it is enough to choose δ0 as defined in (2.77).

Proposition 2.56. Let An
δ denotes the finite rank approximation of the map Aδ.

There exist N > 0 such that for n≥N, 0∈ An
δ (∂Dn).

Proof. Otherwise, assume zn ∈ ∂Dn and wn ∈ An(zn) such that wn + δJn(zn) = 0.

Here wn is the finite rank approximation of some wn∈A(zn), that is

wn=
∑

k=1

n

〈wn, x
k〉xk.

Since ∂D is bounded, zn⇀z in a sub-sequence. Let (vn), vn∈Xn and vn→ z then

0= (wn, zn− vn)+ δ
(

Jn(zn), zn− vn
)

= 〈wn, zn− vn〉+ δ〈J(zn), zn− vn〉,

This implies that

0= limsup 〈wn, zn− z〉+ δ〈J(zn), zn− z〉≥ δ limsup 〈J(zn), zn− z〉,
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and then zn→ z ∈ ∂D. This implies that A(z) + δJ(z) = 0 that is impossible if

0<δ < δ0. �

Let rn = dist
(

0, An
δ (∂Dn)

)

> 0 and then define 0 < εn < rn such that εn→ 0.

According to proposition (2.31), it is possible to define a εn-continuous single valued

map An,εn
δ of An

δ , that is An,εn
δ = An,εn + δJn, where An,εn is the εn-continuous

single valued map of the finite rank approximation An. Since An has n-components

An = (A1
n, 	 , An

n), then the ε-continuous selection An,ε has components An,ε =

(An,ε
1 ,	 , An,ε

n ).

Definition 2.57. Assume that X is a separable locally uniformly convex Banach

space, D ⊂X an open bounded set and A:X→ 2X
∗

a maximal monotone map such

that 0∈ clA(∂D). The degree of A in D with respect to 0∈X∗ is defined as

deg(A,D, 0)= lim
δ→0

lim
n→∞

degB
(

An,εn
δ ,Dn, 0

)

. (2.82)

Since An,εn may be not monotone, the stability of the degree in the right hand side

should be justified for both n, δ.

Proposition 2.58. The degree define in the relation (2.82) is stable with respect to

n and δ.

Proof. The stability of the degree with respect to n is established through the

homotopy invariance with respect to n. Consider An,εn
δ and Am,εm

δ for sufficiently

large n,m andm=n+1. Define the map Bm
δ (x)=An,εm

δ (x)+(xm, x)xm for x∈Xm.

Obviously

degB
(

An,εn
δ ,Dn, 0

)

=degB
(

Bm
δ ,Dm, 0

)

.

Now for sufficiently large n we show that

degB
(

Am,εm
δ ,Dm, 0

)

= degB
(

Bm
δ ,Dm, 0

)

.

We show that the following convex homotopy is admissible

hm(t)= (1− t)Am,εm
δ + tBm.
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Clearly 0∈h(t)(∂Dm) for t=0,1. For t∈ (0,1) assume that there exist tm∈ (0,1) and

a sequence (zm), zm∈∂Dm such that hm(tm)(zm)=0. According to the construction

of hm(t) we obtain

0=hm(tm)(zm)=An,εm
δ (zm)+ (1− tm)Am,εm

δ,m (zm)+ tm (xm, zm)x
m.

The above relation implies An,εm
δ (zm)= 0 and

Am,εm
δ,m (zm)=− tm

1− tm
(xm, zm)x

m.

Since ∂D is bounded then zm ⇀ z in a sub-sequence. Choose the sequence (vm),

vm∈Xm and vm→ z and obtain

(

Am,εm
δ (zm), zm− vm

)

=− tm
1− tm

|(xm, zm)|2− tm
1− tm

(xm, zm)(x
m, vm).

On the other hand when m → ∞ (xm, vm) → 0 since vm → v. Also there exist

wm
m ∈ Am(zm) such that ‖wm

m − Am,εm(zm)‖ < εm and then we can write for some

wm∈A(zm)

limsup 〈wm+ δJ(zm), zm− v〉= limsup
(

Am,εm
δ (zm), zm− vm

)

.

Therefore we obtain

limsup 〈wm+ δJ(zm), zm− v〉≤ 0,

and then zm→z that is impossible since 0∈Aδ(∂D). This justifies the stability with

respect to n. The stability of the degree definition with respect to δ is easily follows

from the fact that for any 0<δ < δ0 we have 0∈An,εn
δ (∂Dn). �

Definition 2.59. Let Ã: [0, 1]×X→ 2X
∗

be a map such that for any t∈ [0, 1], the

map Ã(t):X→2X
∗

is a maximal monotone map. In addition assume that Ã(t, x) is

continuous with respect to t and 0∈ cl Ã([0,1])(∂D). Ã is called admissible homotopy

for maximal monotone maps.

Proposition 2.60. The degree defined in (2.82) satisfies all classical properties of

topological degree.
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Proof. Assume that deg (A,D,0)� 0, then there exist zn∈D such that An,εn
δn (zn)=

0 for δn → 0 and εn → 0. This implies that there exist wn
n ∈ Tn(zn) such that

‖wn
n + δn Jn(zn)‖ < εn. An argument completely similar to the proposition (2.12)

implies that zn→ z ∈ D̄. Since A is norm to weak∗ upper semi-continuous, then for

every wn ∈ A(zn), wn weakly converges in a sub-sequence to some w ∈ A(z). Let

y ∈X arbitrary, (vn), vn∈Xn and vn→ y, then

〈w, y〉← 〈wn, vn〉=−δn〈J(zn), vn〉− εn(An,εn(zn)−wn
n, vn〉→ 0,

that is w=0. However, it is impossible that z∈∂D and therefore z∈D. This implies

that 0∈ T (z). According to the definition of the admissible homotopy for maximal

monotone map, it implies that degB
(

Ãn,εn
δ (t), Dn, 0

)

is independent of t since for

sufficiently large n and t ∈ [0, 1], 0∈Ãn,εn
δ (t)(∂D). The stability of the degree with

respect to n, δ implies that the degree deg
(

Ã(t), D, 0
)

is independent of t. The

decomposition of the domain is also justified similar to one we have done for the

degree of monotone maps. �

Remark 2.61. Similar to the degree for monotone maps, we can define the degree

for maximal monotone map as

deg(A,D, 0)= lim
n→∞

degB
(

An,εn
δ ,Dn, 0

)

, 0<δ <δ0 (2.83)

Also for the calculation the map An
δ can be replaced with An + δ Id instead of

An+ δJn. For f ∈X∗ arbitrary such that f ∈clAϕ(∂D), we can define the degree of

A in D with respect to f as

deg (A,D, f)= deg (A− f ,D, 0). (2.84)

Remark 2.62. If ϕ is a single valued demi-continuous map of class (S)+, we can

define the degree Aϕ=A+ ϕ as

deg (Aϕ, D, 0)= lim
n→∞

degB
(

An,εn
ϕ

, Dn, 0
)

, (2.85)
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where An,εn
ϕ =An,εn+ ϕn, An,εn is the continuous single valued ε-approximation of

An and ϕn is the finite rank approximation of ϕ provided 0 ∈ cl A(∂D). A simple

calculation similar to what have done for the maximal monotone maps, shows that

the above degree is well defined and satisfies all classical properties of topological

degree.

Remark 2.63. If ϕ is a single valued pseudo-monotone maps, the degree of Aϕ=

A+ ϕ can be defined as follows

deg (Aϕ, D, 0)= lim
n→∞

(

An,εn
ϕ,δ

,Dn, 0
)

, 0<δ <δ0,

where here Aϕ,δ=A+ ϕ+ δJ . The proof is similar to one carried out in the above.

2.5.3 Degree theoretic proofs for some theorems

In this subsection, we present new proofs of three theorems in convex analysis based

by the aid of constructed degree in this chapter. The goal is to show the power of

degree method in dealing with non-linear problems in mathematical analysis. The

theorems presented below are chosen randomly from convex analysis.

The first theorem is due to F. Browder [20] for the surjectivity of locally bounded

monotone maps.

Theorem 2.64. Assume A:X→X∗ is a demi-continuous monotone map such that

A−1 is locally bounded, that is for every f ∈X∗ there exist a bounded Vf ∋ f such that

A−1(Vf) is bounded. Then A is onto.

Proof. For any f ∈X∗, we show that there exist sufficiently large r=r(f) such that:

deg (A,Br, f)� 0.

Choose r > 0 such that for a neighborhood Vf ∋ f we have

Sr∩A−1(Vf)= ∅,

that is f∈ clA(Sr). Since

deg (A,Br, f)= lim
δ

deg (A+ δJ ,Br, f),

2.5 Degree for monotone maps 81



it is enough to show that for sufficiently large r and sufficiently small δ > 0 we have

deg(A+ δJ ,Br, f)� 0. (2.86)

We show deg (A+ δJ , Br, 0)� 0. In fact if (A+ δJ)(z)= 0 for z ∈ ∂Br then

〈A(z)−A(0), z〉+ δ‖z‖2+ 〈A(0), z〉=0.

Since A is monotone, then δ‖z‖2 + 〈A(0), z〉 ≤ 0 that implies δ‖z‖ ≤ ‖A(0)‖, that
is impossible for sufficiently large r. Since A+ δJ is a map of class (S)+, define the

homotopy h(t)= tA+ δJ . It is easy to see that 0∈h(t)(∂Br) and then

deg (A+ δJ , Br, 0)=deg (h(t), Br, 0)= δ deg (J ,Br, 0)� 0,

since J is the reference map. The proof of (2.86) is completely similar to one pre-

sented above. We conclude then

deg (A,Br, f)� 0,

and this completes the proof. �

Now we give a degree theoretic proof for a classic proposition given by D.

DeFigueirdo [30]:

Proposition 2.65. X a separable uniformly Banach space, T :X→2X
∗

is a maximal

monotone map such that 0� (T +λJ)(Sr) for ever λ>0 and some r>0. Then there

exist u∈ B̄
r
such that 0∈T (u).

Proof. Assume that 0 � T (B̄r). We show first that 0 � cl T (Sr). Otherwise there

exist un∈Sr and wn∈T (un) such that wn→ 0. The sequence (un) converges weakly

in a sub-sequence (that we show still by un) to some u∈ B̄r. Claim: [u,0]∈graph(T ).
For any [x, h]∈ graph(T ) we have the inequality

〈h, x−u〉= lim 〈h−wn, x−un〉≥ 0.

Since T is maximal monotone, then the above inequality justifies [x, 0]∈ graph(T )

or equivalently 0∈ T (u). This contradicts the assumption that 0 � T (B̄r). Next we

show 0� cl ((1− t)T + tJ)(Sr)) for t∈ (0, 1]. Otherwise there exist tn∈ (0, 1), un∈Sr

and wn∈T (un) such that

(1− tn)wn+ tnJ(un)→ 0.
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Again for un ⇀ u and tn → t we obtain by the monotonicity property of T the

following

limsup 〈J (un), un− u〉≤ 0,

that implies un→u∈Sr. Claim: [u, −t

1− t
J(u)]∈ graph(T ). For any [x, h]∈ graph(T )

we obtain by the fact −t

1− t
J (un)∈ T (un) the following

〈h+ t

1− tJ(u), x−u〉= lim 〈h+ t

1− tJ(un), x−un〉≥ 0,

that proves the claim. Now we can use degree theoretic argument to obtain

deg (T ,Br, 0)= deg ((1− t)T + t J ,Br, 0)= deg (J ,Br, 0)= 1.

The above calculation guarantees that there exist u∈Br such that 0∈T (u) and this

contradicts the assumption 0 � T (B̄r). This shows that the assumption 0 � T (B̄r) is

wrong and then 0∈T (B̄r). �

The last theorem is a proposition due to DeFigueirdo [30].

Proposition 2.66. Let X be a separable uniformly convex Banach space and f :

X→X∗ a pseudo-monotone map, then Rang(∂Nr + f) = X∗ where r > 0 and the

map Nr is defined on B̄r as follows

Nr(x)=

{

0 if x∈Br

1 if x∈Sr

Proof. First it is straightforward to verify that

∂Nr(x)=

{

0 x∈Br

{λJ(x), λ≥ 0} x∈SR (2.87)

Claim: for every f0∈X∗

, we have the following inequality:

deg (∂Nr+ f − f0, Br, 0)� 0. (2.88)

First we show if 0 � (∂Nr+ f − f0)(B̄r) then

0 � cl(∂Nr+ f − f0)(Sr). (2.89)
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Otherwise, there exist un ∈ Sr and wn ∈ ∂Nr(un) such that wn + f(un) − f0→ 0.

But un ⇀ u ∈ B̄r in a sub-sequence. We prove that [u, f0 − f(u)] ∈ graph(∂Nr).

Let f0 = wn + f(un) + ε(n) where ε(n) ∈ X∗ and ε(n)→ 0. For any arbitrary [x,

h]∈ graph(∂Nr) we have the inequality

〈h − f0 + f(u), x − u〉= lim 〈h+ f (u)− wn − f(un), x − un〉 ≥ lim 〈f(u)− f(un),

x−u〉.

But

0= lim 〈wn+ f(un)− f0, un−u〉≥ limsup 〈f(un), un−u〉 (2.90)

Since f is pseudo-monotone we obtain f(un)⇀f(u) and therefore

〈h− f0+ f (u), x− u〉≥ 0.

This implies that [u, f0− f(u)] ∈ graph(∂Nr)and then that implies 0 ∈ (∂Nr + f −

f0)(B̄r) which is impossible by the assumption. Now consider the affine homotopy

h(t)= (1− t)(∂Nr+ f − f0)+ tJ. (2.91)

for t∈ (0, 1] and we show that

0 � cl((1− t)(∂Nr+ f − f0)+ tJ)(Sr).

Otherwise, there exist un∈Sr, wn∈ ∂Nr(un) and tn→ t such that

(1− tn)(wn+ f(un)−w)+ tnJun→ 0.

But un⇀u∈ B̄r in a sub-sequence and we show

[u, f0− f(u)− t

1− tJ(u)]∈ graph(∂Nr).

For any [x, h]∈ graph(∂Nr) we have

〈h− f0+ f(u)+
t

1− tJ (u), x−u〉=

lim 〈h+ f(u)+
t

1− tJ(u)−wn− f(un)− tn
1− tn

J(un), x−u〉≥

≥limsup 〈f(u)− f(un), x−u〉+ liminf 〈 t

1− tJ(u)−
tn

1− tn
J(un), x− u〉
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In a similar way it is shown that un→u∈Sr and f (un)⇀f(u). Therefore we obtain

again

0∈ (∂Nr+ f +
t

1− tJ − f0)(B̄r).

But (∂Nr + f +
t

1− t
J − f0)(B̄r) = (∂Nr + f − f0)(B̄r) and then 0 ∈ (∂NR + f −

f0)(B̄R) that is impossible. Use degree argument to obtain

deg (∂NR+ f − f0, Br, 0)=deg (h(t), BR, 0)=deg (J ,Br, 0)=1.

Therefore there exist u∈ B̄r such that w ∈ ∂Nr(u)+ f (u). �

2.6 A generalized degree for (S)+maps

In this section, we present a generalized degree for a class of mappings that are not

demi-continuous on the whole space or even on a dense subspace. This new degree

theory will be applied to the Onsager problem in Chapter 3. All the mapping have

been considered so far were continuous or demi-continuous in the whole space. In

the case that the mappings are demi-continuous on a dense sub-space of the focal

space can be death with simply through the homotopy invariance. However, in some

circumstances, the map A:X→X∗ is not demi-continuous on any open subset of X.

The following Onsager operator [65] defined on L2(S1) is one of those operators

G(u)(θ)=

(
∫

S1
e−u(θ)dθ

)−1∫

S1
K(θ, θ ′) e−u(θ ′)dθ ′, (2.92)

Here the kernel K is continuous, symmetric, and satisfies

∫

S1

K(θ, θ ′) dθ ′=0.

In fact, we can take the sequence {un} as

un(θ)=

{

log (1/n) 0<θ<
1

n

0
. (2.93)

It is clear that un� 0 in L2(S1) but G(un)� K(θ, 0) and therefore does not

converge weakly to G (0)= 0.
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In all of this section, D is considered as open and bounded set. We start with the

finite dimensional case. Let D⊂Rn be an open bounded set and A:D→Rn a map

not necessarily continuous. Assume that there exist a subspace Y ⊂R
n such that A

is C1 on DY =D ∩ Y and 0 ∈A(∂DY ). Let U ⊂R
n be an open neighborhood of 0,

UY =U ∩ Y and ω be a compactly supported form in UY such that
∫

Y
ω = 1. We

define the reduced degree of A as follows:

d(A,DY , 0)=

∫

DY

A∗(ω). (2.94)

To complete the definition, we need to define the admissible homotopy for the

reduced degree. The class of admissible homotopy is the mappings h: [0, 1] × D̄→
Rn such that for any t∈ [0, 1] we have

{z;h(t)(z)= 0}⊂DY −h(t)(∂DY )

Degree (2.94) is different with the classical degree of AY :DY → Y with respect to

the fact that the definition (2.94) is an estimate for the solution of A(x) = 0 ∈R
n

rather than of A(x)= 0∈Y .

2.6.1 Generalized degree in Hilbert space

Now we turn to the infinite dimensional case. We start with the Hilbert space

case where the calculations are simpler compare to the Banach space. In fact, our

discussion in this section is restricted to defining a reduced degree for the Schauder

map Γ= I −G in a Hilbert space which is exactly what we need in the next chapter

for the Onsager problem.

Let H be a separable Hilbert space with an orthonormal basis U = {u1, u2, 
 }
and D be an open bounded subset of H . Hn⊂H is the finite dimensional subspace

spanned by {u1,	 , un}. Assume that there exist the closed convex set Ω⊂H such

that:

• {z; Γ(z)= 0}⊂αΩ, α< 1,

• G is continuous and compact on H ∩Ω,

• Hn∩Ω has non-empty interior in Hn.
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Denote Dn=D ∩Hn and define the map Gn:Hn∩Ω→Hn as:

Gn(x)=
∑

k=1

n

(G(x), uk)uk.

Proposition 2.67. Assume D is an open bounded subset of H such that z � G(z)

for z ∈ ∂D, then there exist N0> 0 such that z � Gn(z) for z ∈ ∂Dn, n≥N0.

Proof. Otherwise, there exist zn∈ ∂Dn such that zn=Gn(zn). Since Ω is bounded

and {zn}⊂Ω, then there is a sub-sequence which we do not relabel zn⇀z. Since G

is compact on Ω, yn=G(zn) converges in a sub-sequence to some point say y ∈H.

Also the sequence {ynn} defined as yn
n = Gn(zn) = PrHn

G(zn) converges to y, that

is zn converges to y in a sub-sequence and therefore y= z. Since ∂D is closed then

z ∈ ∂D and since {zn}⊂Ω then G(zn)→G(z)= z, contradiction! �

Proposition 2.68. Assume D is an open bounded subset of H such that z � G(z)

for z ∈ ∂D, then there exist N0> 0 such that for n≥N0 we have

deg (Γn, Dn, 0)= deg (Γn+1, Dn+1, 0).

Proof. SinceG is continuous onHn and z�Gn(z) for z∈∂Dn and n≥N0, the degree

can be defined in the usual sense. Define the homotopy h: [0, 1]×Dn+1→Hn+1 as

h(t)(x)= (1− t) Γn+1(x)+ tA(x),

where A:Dn+1→Hn+1 is defined as

An+1(x)=Γn(x)+ (x, un+1)un+1. (2.95)

Obviously 0∈h(t)(z) for z ∈ ∂Dn+1, t=1, 0 and also we have

deg (An+1,Dn+1, 0)=deg (Γn,Dn, 0).

If deg (Γn, Dn, 0) is not stable, then there exist a sub-sequence (tnk) that we still

denote as (tn), such that tn+1 ∈ (0, 1) and zn+1 ∈ ∂Dn+1 and h(tn+1)(zn+1) = 0.

Therefore

Γn+1(zn+1)+ tn+1 (G(zn+1), u
n+1)un+1=0.
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Since {zn} ⊂ Ω is bounded and G is compact on Ω then (G(zn+1), u
n+1)→ 0 and

then Γn+1(zn+1)→ 0 that implies zn→ z ∈ ∂D and Γ(z)= 0, a contradiction! �

Definition 2.69. Under the above settings, for any open subset D ⊂ H such that

z � G(z) for z ∈ ∂D, define

deg(Γ,D, 0)= lim
n→∞

deg (Γn,Dn, 0). (2.96)

Definition 2.70. Let G: [0, 1]×Ω→H be a continuous map. The map G is called

a compact transformation if G([0, 1]) is compact from Ω to H, and in addition for

every bounded Ω′⊂Ω and ε> 0 there exist δ= δ(ε,Ω′) such that

|t− s|<δ⇒‖G(t)(x)−G(s)(x)‖<ε, x∈Ω′.

Proposition 2.71. The definition ( 2.96) satisfies the homotopy invariance property

for the class of compact transformations.

Proof. Let Γ denotes the time dependent operator: Γ: [0, 1]×D→H . There exist

N0 such that 0 ∈ Γn(t)(∂Dn) for all n ≥N0. Assume the contrary, then there exist

a sequence tn and zn ∈ ∂Dn such that Γn(tn)(zn) = 0. Let {tn} converges to t̄ in a

sub-sequence, since G(t̄) is compact then G(t̄){zn} converges in a sub-sequence to

some point say z. Thus we can write

‖zn− z‖= ‖G(tn)(zn)−G(t̄)(zn)+G(t̄)(zn)− z‖≤

≤‖G(tn)(zn)−G(t̄)(zn)‖+ ‖G(t̄)(zn)− z‖=

=‖G(tn)(zn)−G(t̄)(zn)‖+ o(1).

On the other hand, since G is a compact transformation then

‖G(tn)(zn)−G(t̄)(zn)‖= o(1),

that gives zn→ z in a sub-sequence. Since ∂D is closed then z ∈∂D∩Ω a contradic-

tion. This implies that deg (Γn(t),Dn, 0) is independent of t. On the other hand

deg (Γn(t),Dn, 0)=deg (An+1(t), Dn+1, 0),
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where An+1(t)(u) =Γn(t)(u) + 〈z, un+1〉un+1. Choose n sufficiently large such that

deg (Γn(t),Dn,0) is constant with respect to t. If deg (Γn(t),Dn,0) is not stable then

there exist sn and zn∈ ∂Dn such that (1− sn) Γn(t)(zn)+ snAn(t)(zn)= 0 that give

the convergence of {zn} in a sub-sequence to some z ∈ ∂D such that Γ(t)(z) = 0 a

contradiction! �

Theorem 2.72. Degree in ( 2.96) satisfies all classical properties of a topological

degree.

Proof. The homotopy class and the invariance under the homotopy has been estab-

lished in the above. For the reference map, it is obvious that identity map Id has

the property

deg (I ,D, 0)=

{

1 0∈D
0 0∈D .

The existence of a solution in the case that the degree is nonzero is shown as follows.

According to (2.96) if deg (G,D, 0)� 0, then deg (Γn, Dn, 0)� 0 for n≥N0. Due to

the properties of classical topological degree, the equation Γn(u) = 0 has a solution

say un∈Dn. Since {un}⊂Ω and Ω is bounded then un⇀u. By the compactness of

G on Ω we conclude un→ u∈ D̄ and Γ(u)= 0 and since 0∈Γ(∂D) then u∈D. The

domain decomposition property follows immediately from the property of degree for

finite dimensional maps. �

2.6.2 Generalized degree in separable Banach space

LetX be a reflexive separable Banach space equipped with a uniformly convex norm,

Ω⊂X be a closed set and A:X→X∗ not necessary a demi-continuous map. Let H

be a separable Hilbert space such that the embedding j:H→X is dense (see [19])

with the orthonormal basis H= {h1, h2,	 }. Let us call the set X = {xk, xk= j(hk)}
a system for X and Xn= span{x1,	 , xn} a finite dimensional space equipped with

the inner product (xi, xj)= δij.

We make the following assumption: there exists a closed subspace Y ⊂X, gener-

ated by a subset of X and a closed subset Ω⊂ Y with the following properties:

i. for any finite dimensional subspace Z⊂Y , the set ΩZ=Ω∩Z has non-empty

interior in Z
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ii. A|Ω is a bounded, demi-continuous map of class (S)+,

iii. for any finite dimensional subspace Xn⊂X we have {z;A(z)=0 onXn}⊂Ω.

Here we assume that Y is generated by Y = {y1, y2,	 }⊂X . The map An:Xn→Xn

is defined as follows:

An(u)=
∑

k=1

n

〈A(u), xk〉xk. (2.97)

Obviously An=A onXn, that is for all u,v∈Xn, (An(u), v)= 〈A(u), v〉. In particular

An(u)= 0 if and only if A(u)= 0 on Xn. For each n≥ 1, define Yn′=Xn∩ Y where

n′≤ n is the dimension of the space Xn ∩ Y . Denote Ωn′ =Ω ∩ Yn′ and since Ωn′
◦ ,

the interior of Ωn′ in Yn′ is non-empty according to the property (i), then for any

open bounded subset D⊂X, the set Dn′=D∩Ωn′
◦ is bounded and open in Yn′. Now

define the map An,n′:Dn′→Xn the restriction of An to Dn′. If 0 � An,n′(∂Dn′) then

it is possible to define the reduced degree d(An,n′,Dn′, 0) as (2.94), that is for an n′-

form ω compactly supported in Un′⊂U where U is an open bounded neighborhood

of 0 such that U ∩An,n′(∂Dn′)= ∅:

d(An,n′, Dn′, 0)=

∫

Dn′

An,n′
∗ ω. (2.98)

Proposition 2.73. Let D be an open bounded subset of X and 0∈A(∂D), then there

exist N0 such that 0∈An,n′(∂Dn′) for n≥N0.

Proof. Otherwise there exist a sequence {zn′}, zn′∈ ∂Dn′ such that An,n′(zn′) = 0.

Since D is bounded, zn′⇀z in a sub-sequence and since {zn′}⊂Ω then z ∈wcl(Ω)⊂

Y . Since A(zn′)= 0 on Xn, we have

〈A(zn′), zn′− z〉=−〈A(zn′), z〉.

On the other hand, z ∈ Y and then there exist {sn′}, sn′ ∈ Yn′ such that sn′→ z,

therefore

〈A(zn′), z〉= 〈A(zn′), z − sn′〉≤ ‖A(zn′)‖ ‖z− sn′‖.
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Since A is bounded on Ω then ‖A(zn′)‖ is bounded and then 〈A(zn′), z〉→ 0. Since

A is a map of class (S)+ on Ω, then zn′→ z ∈∂D and since A is demi-continuous on

Ω then A(zn′)⇀A(z). Let v ∈X be arbitrary, then for {vn}, vn∈Xn and vn→ v we

have:

〈A(z), v〉= lim 〈A(zn′), v〉= lim 〈A(zn′), v− vn〉=0,

that is A(z)= 0, a contradiction! �

Definition 2.74. Let D be an open bounded subset of X and 0∈A(∂D). For every

finite dimensional subspace Xn define the reduced degree for the map An,n′:Dn′→Xn
∗

as

dn= d(An,n′,Dn′, 0), (2.99)

where integer d is defined in ( 2.98).

Proposition 2.75. There exist N0 such that dn in ( 2.98) is constant for n≥N0.

Proof. Choose N0 sufficiently large such that dn is well defined. Consider the map

Bn+1:Dn+1→Xn+1 as

Bn+1(u)=An(u)+ prn+1(u)x
n+1, (2.100)

where prk(u) is the k-th component of u in the representation u=u1x
1+
 +ukx

k.

The reduced degree for Bn+1 is denoted as d(B(n+1),(n+1)′, D(n+1)′, 0). Obviously

we have:

d(An,n′, Dn′, 0)= d(B(n+1),(n+1)′, D(n+1)′, 0). (2.101)

Now consider the following convex homotopy h(t):

h(t)= (1− t)An+1+ tBn+1. (2.102)

We first show that h is an admissible homotopy. Just for the simplicity, let us denote

(n+1)′=m′. Obviously 0∈h(t)(∂Dm′) for t=0,1. If the proposition does not hold,

then there exist a sequence zm′∈ ∂Dm ′ and tm′∈ (0, 1) such that

(1− tm′)A(n+1),m′(zm′)+ tm′B(n+1),m′(zm′)= 0. (2.103)
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According to the definition of Bn+1, the above equality implies A(zm′) = 0 on Xn

and also

〈A(zm′), xn+1〉= tm ′

1− tm′

prn+1(zm′).

Since {zm′} is bounded and X is reflexive, then {zm ′} weakly converge in a sub-

sequence to some vector z. Now

〈A(zm′), zm′− z〉=− tm ′

1− tm′

(prn+1(zm′))2− 〈A(zm′), z〉.

Since A(zm′)=0 on Xn, by the density property we have: 〈A(zm ′), z〉→0. Therefore

limsup 〈A(zm′), zm′− z〉≤ 0.

and then zn→ z ∈∂D∩Ω. A is demi-continuous on Ω and then A(zm′)⇀A(z). For

arbitrary v ∈Y we have

〈A(z), v〉= lim 〈A(zm′), v〉=0,

a contradiction! �

Definition 2.76. Under the above setting the degree of A at 0 is defined as the

following integer:

d=deg (A,D, 0)= lim
n→∞

dn. (2.104)

In order to prove the classical property of topological degree for the above definition,

we define the following class of homotopy:

Definition 2.77. Let A: [0, 1] ×X→X∗ be a one parameter family of maps such

that A(t)(.) is continuous with respect to t and for each t, A(t)|Ω is a bounded demi-

continuous map of class (S)+. A is called an admissible homotopy if for any finite

dimensional spaces and any t∈ [0, 1] we have {z, A(t)(z) = 0 onXn }⊂Ω and also

that A(t) is continuous on bounded sets, that is for every bounded set Ω′ ⊂ Ω and

ε> 0, there is δ > 0 such that

|t− s|<δ⇒‖A(t)(x)−A(s)(x)‖<ε, ∀x∈Ω′. (2.105)

Proposition 2.78. Assume 0∈A(t)(∂D) for all t∈ [0,1], then the definition ( 2.76)

satisfies the homotopy invariance property of the classical topological degree.
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Proof. First we show that there exist N0 such that 0∈An,n′(t)(∂Dn′) for all n≥N0

and t ∈ [0, 1]. Assume the contrary, then there exist a sequence tn′ and zn′ ∈ ∂Dn′

such that An,n′(tn′)(zn′)= 0. Since {tn′} converges to some t̄ in a sub-sequence and

{zn′} converges weakly to some z in a sub-sequence and since A(t̄) is a map of class

(S)+ then

〈A(t̄)(zn′), zn′− z〉= 〈A(t̄)(zn′)−A(tn′)(zn′), zn′− z〉+ 〈A(tn′)(zn′), zn′− z〉.

According to the boundedness property of A(t) in (2.105), it is seen that:

〈A(t̄)(zn′)−A(tn′)(zn′), zn′− z〉→ 0. (2.106)

Since A(tn′)(zn′) is zero on Xn then by the density argument we have 〈A(tn′)(zn′),

zn′− z〉→ 0. This implies that zn′→ z ∈ ∂D and then A(t̄)(z) is zero on X, a con-

tradiction! This implies that for large n the degree d(An,n′(t),Dn′, 0) is independent

of t. On the other hand for the mapping Bn+1(t) defined as

Bn+1(t)(u)=An(t)(u)+prn+1(u)x
n+1, (2.107)

we have

d(An,n′(t), Dn,n′, 0)= d(B(n+1),m′(t), Dm ′, 0). (2.108)

Choose n sufficiently large such that d(An,n′(t), Dn′, 0) is constant with respect to

t. If d(An,n′(t), Dn′, 0) is not stable then there exist sn′ and zn′ ∈ ∂Dn′ such that

(1− sn′)An(t)(zn′) + sn′Bn(t)(zn′) = 0 that give the convergence of {zn′} in a sub-

sequence to some z ∈ ∂D and A(t)(z)= 0 on X, a contradiction! �

The other classical properties of topological degree are straightforward to verify.

Corollary 2.79. Assume the map A:X→X∗ has the following two properties:

i. for every finite dimensional subspace Xn, the map A is continuous from Xn

to X∗,

ii. for every sequence {xn}⊂X and An(xn)=0, then xn→x and A(xn)⇀A(x),

then deg (An,Dn, 0) is stable for n≥N0.
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Proof. Choose n sufficiently large that 0 ∈ An(∂Dn), that is possible, since other

wise the sequence zn∈ ∂Dn with the property An(zn)= 0 result to zn→ z ∈ ∂D and

A(zn)⇀ A(z). By the density argument, it is obtained A(z) = 0, a contradiction.

Now define the homotopy h: [0, 1]×Dn+1→Xn+1 as follows:

h(t, x)= (1− t)An+1(x)+ tB(x).

If deg (An, Dn, 0) is not stable, then there exist zn ∈ ∂Dn and tn ∈ [0, 1] such that

h(tn, zn)=0. This implies again An(zn)= 0 and then zn→ z ∈∂D in a sub-sequence

and A(z)= 0 a contradiction. �

2.6.3 Schauder maps in Banach spaces and Bifurcation

Consider the Schauder map A= Id−G defined on the separable uniformly convex

Banach space X and G|Ω is a continuous compact map for closed subset Ω⊂X. All

assumptions made in the previous section extend to hold in this section. By the aid

of duality mapping J , define the map Ã:X→X∗ as Ã(u)=J(u)−J(G(u)) and then

the reduced map Ãn is defined as

Ãn(u)=
∑

k=1

n

〈J(u)−J(G(u)), xk〉xk. (2.109)

Obviously, according to the property of J , A(u)= 0 if and only if Ã(u)= 0.

Proposition 2.80. Assume that G|Ω is a continuous and compact map, then Ã |Ω
is bounded map of class (S)+.

Proof. Assume {zn}⊂Ω and zn⇀z and also

limsup
〈

Ã(zn), zn− z
〉

≤ 0,

then since 〈J(G(zn)), zn− z〉→ 0 we have

0≥ limsup
〈

Ã(zn), zn−z
〉

= limsup{‖zn‖2−〈J(zn), z〉}≥ limsup{‖zn‖(‖zn‖−||z |)},

that is limsup ‖zn‖≤‖z‖ and then ‖zn‖→‖z‖. Since the space is locally uniformly

convex, zn→ z. The boundedness of Ã is easily verified by the compactness of J ◦G
on Ω. �
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Definition 2.81. Under the above setting, for any open bounded subset D⊂X, the

degree of A: Id−G at 0 is defined as

deg (A,D, 0)= lim
n→∞

d
(

Ãn,n′, Dn′, 0
)

. (2.110)

Remark 2.82. If X = H, a Hilbert space, then the duality mapping is simply

the identity map and the reduced map An with respect to an orthonormal basis

X = {x1, x2,	 } is simply defined as:

An(u)=
∑

k=1

n

〈u−G(u), xk〉xk. (2.111)

For an illustrative example, the operator A=I−λG whereG is the Onsager operator

on L(S1) defined in (2.92) satisfies the conditions of this section if X ={cos (nθ)}n=1
∞

and Ω= {u∈C(S1), |u(θ)|∞≤ λ |K |∞}.

Now consider the one parameter class of operators A(λ, u)= Id−G(λ, u) where

G(λ, .)|Ω is a compact continuous map for every λ such that A(λ, 0) = 0. Further

assume that there exist a compact linear continuous map T :X→X such that for all

u∈Ω it satisfies the following:

‖λT (u)−G(λ, u)‖= o(‖u‖) (2.112)

Proposition 2.83. If λ∈σ(T ), where σ(T ) denotes the spectrum of T, then (λ, 0)

is isolated, that is there exist ε>0 such that the trivial solution is the unique solution

in (λ− ε, λ+ ε)×Bε.

Proof. Otherwise, there exist a sequence {λn}, λn → λ and un → 0 such that

0 = A(λn, un). Since λ ∈ σ(T ), then there exist r > 0 and ‖u − λT (u)‖ ≥ r ‖u‖.

Therefore

0≥‖un−λT (un)‖− |λn−λ| ‖un‖−‖λnT (un)−G(λn, un)‖>

>r ‖un‖− |λn− λ| ‖un‖+ o(‖u‖),

that is contradiction for sufficiently small |λ− λ| and un.

�
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Proposition 2.84. Assume λ̄ ∈σ(T ) and for λ< λ̄ < µ we have

ind(Id− λT , 0)ind(Id− µT , 0)< 0, (2.113)

then λ̄ is a bifurcation point.

Proof. Otherwise (λ̄, 0) is an isolated point and therefore there exist ε > 0 such

that the trivial solution is the unique solution of A(t)(u) = 0 for t ∈ (λ̄ − ε, λ̄ + ε)

and u∈Bε. This implies that no solution lies on ∂Bε/2 for t∈ (λ̄− ε, λ̄+ ε) and then

by homotopy invariance property the index ind(Id− tT , 0) is constant even when t

passes through λ̄, a contradiction. �
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Chapter 3

Doi-Onsager equation

This chapter is dedicated to the Doi-Onsager model in arbitrary dimensional spaces.

Up to our knowledge, the complete solution of the problem for dimensions greater

than 2 is still open. Our approach is to use the Leray-Schauder degree for the model

defined on the unit sphere S1 and to use the generalized degree we presented in

Chapter 2 for SD,D≥2. In particular, we prove the uniqueness of the trivial solution

for low temperatures and the existence of non-trivial solution (nematic phases) for

high temperatures. In addition we study the structure of the bifurcation solution

and their stability as well. In our study of this problem, we do not restrict ourselves

to the interaction potential kernel suggested by Onsager in his pioneering work [65],

but we consider fairly general class of kernels that covers the Onsager kernel too.

In section 1 of this chapter, we give a brief introduction of Doi-Onsager problem

and its derivation. In section 2, we reformulate the problem as an operator equation

involving a Schauder map. Chapter 3 is dedicated to the main results obtained for

the problem on S1. For D≥ 3, we use our generalization of degree that is presented

in the previous chapter to calculate the degree of the corresponding operator. The

results are given in Section 4 of this chapter.

Our method, that is based on degree argument is simpler and easy to generalize

to higher dimensions compared to the method employed by other authors. In fact,

the method for SD,D> 1 is completely similar to the one that we used for S1. Our

method also simplifies the study of bifurcation structure of the nematic solutions

through the aid of Sattinger’s works see [71],[70].
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3.1 Introduction

Liquid crystals (LC) are multi-phases materials. In the isotropic phase, molecules

have no order in position or in direction and behave like a regular liquid. During

cooling down, the isotropic phase changes to the nematic state where molecules

arrange into groups with a preferred orientation still without any position order.

In 1949, Lars Onsager proposed a mathematical model for the phase transition of

equilibria of dilute colloidal solutions of rod-like molecules between the isotropic and

nematic phases. As the fluid in both phases is homogeneous, that is the locations

of the molecules do not matter, Onsager’s theory focuses on a probability density

function f(r) over the unit sphere which models distribution of the directions of

the rods. Although the original modeling is carried out in R
3, the mathematical

formulation can be generalized to R
d for any dimension d ≥ 2 in a straightforward

manner. In the following we present this generalized version.

Denote by SD−1 the unit sphere in R
D. Let f(r):SD−1→ [0,∞) be the proba-

bility density characterizing the directions of the rods, that is

P (the rod is along r ∈A⊂SD−1)=

∫

A

f(r) dσD(r) (3.1)

where we denote by σD(r) the volume element on SD−1. As we are modeling “rod-

like” molecules with no distinction between the two ends, we can further assume

f(r)= f(−r). Consequently the constraints on f(r) are

f(r)≥ 0, f(r)= f(−r),
∫

SD−1
f(r) dσD(r)= 1. (3.2)

Onsager [65] defined the mean interaction between molecules as follows

U(f)(r)=λ

∫

S
D−1

K(r, r ′) f(r ′) dσD(r), (3.3)

whereK(r, r ′)= |r×r ′|, and the parameter λ can be interpreted as either the concen-

tration of the particles in the carrier fluid or the inverse of the absolute temperature.

By the aid of the above interaction field, he obtained the possible phases of the liquid

crystal in RD as the critical points of the following energy functional

E(f)=
∫

SD−1
f(r)

(

logf(r)+
1
2
U(f)(r)

)

dσD(r). (3.4)
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The Euler-Lagrange equation is obtained by considering smooth functions η on SD−1

with the condition

∫

SD−1
η(r) dσD(r)= 0.

It is easily obtained that f minimizes (3.4) if it satisfies

∫

SD−1
(log f(r)+U(f)(r))η(r) dσD(r)= 0.

This implies that V (f):=logf +U(f)= constant or equivalently

f(r)= β−1 e−U(f)(r), β=

∫

SD−1
e−U(f)(r) dσD(r). (3.5)

It is interesting to note that the critical points of (3.4) are steady states of the time

dependent Doi equation:

∂f

∂t
=∆rf +div (f∇rU(f)), (3.6)

where here f = f(r, t). In fact the diffusion-advection term in (3.6) is expressed in

terms of V as

∆rf + div (f∇rU(f))=div (f∇rV ).

Obviously, f̄ =
1

vol(Sn)
is the trivial solution of (3.5) that corresponds to the uniform

distribution of molecules in the liquid without any preferred directional order. This

is called an isotropic phase. By approximating the kernel K with simpler analytic

mappings, Onsager was able to show a transition in phase when λ increase to a

certain level where molecules positioned along a director. This is called a nematic

phase.

In general, the kernel K(r, r ′) in the interaction field (3.3) inherit the following

properties:

K(r, r ′)=K(−r, r ′)=K(r ′, r)=K(O(r), O(r ′)), (3.7)
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for any rotation matrix O. When D=2, we can use the natural parametrization of

S1 by the angle θ ∈ [0, 2π) and re-write any kernel satisfying (3.7) as a convolution

kernel K(θ− θ ′) for some even function K satisfying K(θ+π)=K(θ). This reduces

the right hand side of (3.3) to a convolution

U (f)(θ)= λ

∫

0

2π

K(θ− θ ′) f(θ ′) dθ ′. (3.8)

The trivial solution in this case is f̄ =(2π)−1. In this case the system (3.5) has the

following form

f(θ)=

(
∫

0

2π

e−U(f)(θ) dθ

)−1

e−U(f)(θ). (3.9)

The interaction kernel that is considered by Onsager in this case reads K(θ) =

|sin (θ)|. It is it straightforward to check that K(θ− θ ′) satisfies (3.7).

The original kernel considered by Onsager in R
3 is

K(r, r ′)= |r× r ′|= |sin γ |, (3.10)

where γ is the angle between r, r ′. More quantitative analysis of the system (3.9)

with Onsager kernel (3.10) turned out to be difficult. On the other hand there are

kernels capturing the qualitative behavior of the solution that are more friendly to

mathematical analysis. One such kernel, due to Maier and Saupe, reads

K(r, r ′)= |r.r ′|2− constant, (3.11)

that is usually written as K(r, r ′) = cos2γ if the constant is discarded. The advan-

tage in considering (3.11) instead of (3.10) is that the kernel is the eigenvector of

Laplace-Beltrami operator on SD−1 and then lies in a finite dimensional space [26].

This reduces the infinite dimensional problem (3.5) to a finite dimensional nonlinear

system of equations. This reduced system, still highly nontrivial, is nevertheless

more tractable than the original system. As a consequence, (3.5) with Maier-Saupe

potential has been well understood through brilliant work of many researchers (see

[27], [37], [41], [82], [50], [83] for the case D = 3; Also see [28], [37], [21] for the

case D = 2, and [79] for the general D-dimensional case.) Inspired by these works,

(3.5) with other kernels enjoying similar “dimension- reduction” property has also be

analyzed, see e.g. [26].
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Fatkullin and Slastikov [37], [36] completely classified the solution of Onsager

equation with Maier-Saupe kernel (3.11) and for the antisymmetric kernel K(r,

r ′) = −r.r ′ on S1 and S2. Instead of λ, they presented their results in term of the

temperature τ , however since λ and τ are inversely proportional their results hold for

the original case. For the system (3.9) with Maier-Saupe kernel (3.11), they obtained

the exact nematic solutions as

f(ϕ, θ)= β−1 e−r1,2(τ)(3 cos
2θ−1), (3.12)

and for the anti-symmetric kernel they obtained

f(ϕ, θ)= β−1 e−r(τ) cosθ. (3.13)

In addition they presented some results of the stability of the above solutions. Luo

et al [53] considered the Maier-Saupe interaction kernel on S1 and proved that for

the potential strength λ≤4 the unique solution is the isotropic solution f̄ = 1

2π
. The

nematic solution will bifurcates when the the crystal liquid cool down or equivalently

the potential strength increase to λ> 4. They also proved that all nematic solutions

are obtained by an arbitrary rotation from a π periodic nematic solution. At the

same time, Liu et al [51] obtained an explicit solution for (3.5) on S2 with Maier-

Saupe kernel and determined the bifurcation regime for the solution. The solution

is of the following form for a director y and constant k and

f(x)= ke−η(x.y)2. (3.14)

With the Maier-Saupe model (3.11) understood, interest in the original Onsager

model (3.10) was resurrected. Much progress has been made in the past few years

in the case D= 2. In [26], the axisymmetry of all possible solutions is proved, that

is, for any solution f(θ) to (3.5), there is θ0 such that f(θ0) = f(θ0 + π). It is also

proved in [26] that for appropriate λ, there are solutions of arbitrary periodicity.

In [79] the authors re-write (3.5) into an infinite system of nonlinear equations for

the Fourier coefficients of f(θ) and calculated numerically the first few bifurcations.

Chen et al [26] observed that for even integers l=2n, the the interaction potential

U(f)(θ)=

∫

S1
sinl (θ− θ ′) f(θ ′) dθ ′, (3.15)
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behave completely similar to the Maier-Saupe original potential and can be reduced

to a model in finite dimensional space, while for odd l=2n−1 the obtained equation

will be a nonlinear partial differential equation. By reducing the Onsager equation to

a system of ordinary differential equations, they could prove the existence of auxiliary

symmetric nematic solution for the Onsager equation on S1 and for all odd power

potential kernel.

More recently, in [52] the authors study the case D=2 through cutting-off (3.10)

and reducing (3.5) to a finite dimensional system of nonlinear equations, and obtain

local bifurcation structure for this finite dimensional approximation. In particular,

they used a result of bifurcation by Crandall and Rabinowitz [?] for the general

truncated trigonometric kernel

K(θ, θ ′)=−
∑

n=0

N

kn cos 2n(θ− θ ′). (3.16)

The original Onsager kernel |sin (θ − θ ′)| is approximated by the above kernel for

special

kn=
1
π

(

n2− 1
4

)−1

. (3.17)

In this case the problem is reduced to finding the zeros of a finite dimensional

nonlinear problem.

In this section we consider the Onsager equation (3.5) on S1 with fairly general

kernel K(r, r ′) for r, r ′∈S1 of the following form

K(r, r ′)=K(|r× r ′|). (3.18)

3.2 Reformulation of the problem

We reformulate the system (3.5) into the equation involving a completely continuous

operator which we will call Onsager operator. Recall that we need to solve

f(r)=
e−U(f)(r)

∫

SD−1
e−U(f)(r) dσD(r)

, f(r)= f(−r), (3.19)
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with

U (f)(r)= λ

∫

SD−1
K(r, r ′) f(r ′) dσD(r ′), (3.20)

whereK(r,r ′) satisfies conditions (3.7). Multiplying both sides of (3.19) by λK(r,r ′)

and integrating over SD−1, we cancel f and reach an equation for the potential U(r).

U (r)=

∫

SD−1
λK(r, r ′) e−U(r ′) dσD(r

′)
∫

SD−1
e−U(r) dσD(r)

, U (r)=U(−r). (3.21)

Note that once (3.21) is solved, f(r) can be recovered from

f(r)=
e−U(r)

∫

SD−1
e−U(r) dσD(r)

. (3.22)

Thus (3.21) is equivalent to the original problem (3.19-3.20).

Further reduction of the problem needs the following lemma which shows that

simplification similar to (3.8) can be carried out in the general case.

Lemma 3.1. Under the symmetry assumptions (3.7) on K, we have K(r, r ′) =

F (|r− r ′|) for some function F. In particular, this gives

K̄ =
1

|SD−1|

∫

SD−1
K(r, r ′) dσD(r ′)=

1

|SD−1|

∫

SD−1
K(r, r ′) dσD(r) (3.23)

is a constant.

Proof. All we need to show is that K(r, r ′) depends only on |r− r ′| or equivalently

the angle θ between r, r ′. It suffices to notice that for any r, r ′∈SD−1 there is always

T ∈O(D) such that T (r)= e1 and T (r ′)= cos (θ) e1+ sin (θ) e2. Consequently

K(r, r ′)=K(e1, cos (θ) e1+ sin (θ) e2)=F (|r− r ′|).

Now we have
∫

SD−1
K(r, r ′) dσD(r ′)=

∫

SD−1
K(e1, r ′) dσD(r ′),

which is constant. The second equality in (3.23) follows from the property K(r,

r ′)=K(r ′, r). �
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Now we define

K̃ (r, r ′)=K (r, r ′)− K̄ (3.24)

with K̄ as defined in (3.23). Define also

V (r)=U(r)−λK̄. (3.25)

Then we can easily check that (3.21) is equivalent to the following

V (r)=
λ
∫

SD−1
K̃ (r, r ′) e−V (r′) dσD(r ′)

∫

SD−1
e−V (r) dσD(r)

, V (−r)=V (r),

∫

SD−1

V (r) dσD(r)= 0. (3.26)

Summarizing the above we reach

Lemma 3.2. The original problem (3.5) is equivalent to the following problem.

V (r) =
λ
∫

SD−1
K̃ (r, r ′) e−V (r′) dσD(r ′)

∫

SD−1
e−V (r) dσD(r)

, V (−r) =V (r),

∫

SD−1

V (r) dσD(r) = 0. (3.27)

From now on, we will work with (3.27) which can be naturally written as fixed point

problem

V (r)= λΓ (V )(r), (3.28)

with the operator Γ defined as

Γ(V )(r)=

∫

SD−1
K̃ (r, r ′) e−V (r ′) dσD(r ′)

∫

SD−1
e−V (r) dσD(r)

. (3.29)

3.3 Doi-Onsager equation on S
1

Now we turn to the case D = 2, where the natural parametrization of S1 can be

applied to re-write (3.27) as

V (θ)=λΓ(V )(θ)=
λ
∫

0

2p
K̃ (θ, θ ′) e−V (θ ′) dθ ′
∫

0

2π
e−V (θ) dθ

,

∫

0

2π

V (θ)dθ=0, V (θ)=V (θ+π) (3.30)
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where K̃ =K − K̄ .

Thanks to the rotational invariance of the kernel and the axisymmetry of the

solution proved in [26], we can future require V (θ) = V (2π − θ). We will make the

assumption that the kernel K(θ) ∈ W 1,∞([0, 2π]). Note that this assumption is

satisfied by all the kernels proposed in the physics literature. The natural function

space we will working in is

H=

{

V (θ)∈H1([0,2π]);V (θ)=V (θ+π)a.e.;

∫

0

2π

V (θ)=0;V (θ)=V (2π−θ)a.e.
}

. (3.31)

Lemma 3.3. H is a Hilbert space, the operator Γ in (3.29) is into H whenever

K ∈W 1,∞([0, 2π]).

Proof. H1([0, 2π]) is a Hilbert space and H with the same inner product of H1 is

a closed subspace of H1, then H is a Hilbert space. Furthermore we have

Γ(V )(θ+ π) =

∫

0

2p
K̃ (θ+ π, θ ′) e−V (θ′) dθ ′
∫

0

2π
e−V (θ) dθ

=

∫

0

2p
K̃ (θ, θ ′) e−V (θ ′) dθ ′
∫

0

2π
e−V (θ) dθ

=Γ(V )(θ). (3.32)

Similarly we have

∫

0

2π

Γ(V )(θ)=

∫

0

2p ∫

0

π
K̃ (θ+ π, θ ′) e−V (θ ′) dθdθ ′
∫

0
2π
e−V (θ) dθ

=0,

since

∫

0

2π

K̃ (θ, θ ′) dθ=0.

Also we have

Γ(V )(2π− θ)=
∫

0

2p
K̃ (2π− θ, θ ′) e−V (θ ′) dθ ′
∫

0
2π
e−V (θ) dθ

.

Take θ ′=2π− θ ′′ and then

Γ(V )(2π− θ)=
∫

0

2π
K̃ (2π− θ, 2π− θ ′′) e−V (θ ′′) dθ ′′

∫

0
2π
e−V (θ) dθ

=Γ(V )(θ)
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since V (θ ′′)=V (2π− θ ′′) and K̃ (2π− θ, 2π− θ ′′)= K̃ (θ, θ ′′). For the first condition,

we calculate

‖Γ(V )‖L2
2 =

∫

0

2π

|Γ(V )(θ)|2 dθ=
∫

0

2π
(

∫

0

2π
K̃ (θ, θ ′) e−V (θ ′)dθ

)

2

( ∫

0
2π
e−V (θ ′)dθ

)

2
≤

≤2π
∥

∥K̃
∥

∥

L∞

2 =2π‖K − K̄ ‖L∞
2 <∞.

Similarly since K ∈W 1,∞(Ω) we obtain

∥

∥

∥

∥

d

dθ
Γ(V )

∥

∥

∥

∥

L2

2

≤ 2π‖K ′‖L∞

2 <∞.

and this completes the proof. �

We have re-formulated the problem to finding fixed points for the operator λΓ in

the space H . In the following we need the following lemma. This is a simple version

of a well known inequality called Grüss inequality. The proof given here is elementary

and simple.

Lemma 3.4. Let µ be a probability density measure over a domain Ω. Let f , g ∈

L∞(Ω), then

∣

∣

∣

∣

∫

Ω
f(x)g(x) dµ−

(
∫

Ω
f(x) dµ

)(
∫

Ω
g(x) dµ

)∣

∣

∣

∣

≤‖f ‖∞ ‖g‖∞. (3.33)

Proof. Without loss of generality assume ‖f ‖∞, ‖g‖∞=1. Denote

a=

∫

Ω
f(x) dµ, b=

∫

Ω
g(x) dµ.

Claim:
∫

Ω
f(x)g(x) dµ− ab≤ 1.

If ab≥ 0 then the claim is trivial. Without loss of generality assume b< 0. For a> 0

and −b > 0, use the inequality

a(−b)≤ a− b
2

,
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to obtain
∫

Ω
f(x)g(x) dµ− ab≤

∫

Ω
f(x)g(x)+ 0.5f(x)− 0.5g(x) dµ.

Since −1≤ f(x)≤ 1 and −1≤ g(x)≤ 1 for almost x∈Ω, then

f(x)g(x)+ 0.5f(x)− 0.5g(x)≤ 1, a.e.

and therefore the claim is proved. Claim:

∫

Ω
f(x)g(x) dµ− ab≥−1.

If ab≤ 0 the claim is trivial. Assume a, b > 0. Then

∫

Ω
f(x)g(x) dµ− ab≥

∫

Ω
f(x)g(x)− 0.5f(x)− 0.5g(x) dµ.

In a similar way, it is easy to verify that

f(x)g(x)− 0.5f(x)− 0.5g(x)≥−1, a.e.

and then the claim follows. If a, b< 0 the proof is similar. �

Remark 3.5. In what follows we often take

dµV =
e−V (θ) dθ

∫

0
2π
e−V (θ) dθ

. (3.34)

3.3.1 Uniqueness of the trivial solution

The solutions of (3.30) on H are the fixed points of the map Gλ= Id−λΓ. We show

first that Gλ is a Schauder map on H that is Γ is a compact continuous operator

on H . In addition we establish an a priori estimate for the solution that is easily

obtained by the equation itself. This enables us to use the homotopy invariance

property of the degree of Gλ and show it is 1. Then we calculate the index of the

possible solutions for small λ and also study the structure of the bifurcation of

nematic phases.

3.3 Doi-Onsager equation on S1 107



According to the conditions on K, we can write the Fourier expansion of K̃ as

K̃ (θ)=−
∑

k=1

∞
km cos (2mθ). (3.35)

Note that K̃ =K − K̄ . In this section we prove that the trivial solution V =0 is the

unique solution for the problem (3.30) for 0<λ<λ0, where

λ0=

(

∑

m=1

∞
|km|

)−1

. (3.36)

Remark 3.6. This is the direct generalization of proposition 3.1 b) of [52] to the

infinite dimensional case.

Lemma 3.7. The operator Γ:H→H is compact continuous.

Proof. According to the compact embedding H1([0, 2π])� C([0, 2π]), if Vn�
H1

V

then there existM>0 such that ‖Vn‖∞≤M and Vn(θ)→V (θ) point-wise. Therefore

e−Vn(θ)≤ eM. Denote

dµVn
(θ)=

e−Vn(θ) dθ
∫

0
2π
e
−Vn(θ)dθ

,

and obtain

‖Γ(Vn)−Γ(V )‖L2=

∥

∥

∥

∥

∫

0

2π

K̃ (θ, θ ′)(dµVn
(θ ′)− dµV (θ

′))

∥

∥

∥

∥

L2

≤ 2π
√ ∥

∥K̃
∥

∥

∞

∫

0

2π

|dµVn
− dµV |.

But by dominant convergence we have

∫

0

2π

e−Vn(θ)dθ→
∫

0

2π

eV (θ) dθ, (3.37)

and then we obtain
∫

0

2π

|dµVn
− dµV |→ 0. (3.38)

This shows that Γ(Vn)�
L2

Γ(V ). Similarly

∥

∥

∥

∥

d

dθ
Γ(Vn)− d

dθ
Γ(V )

∥

∥

∥

∥

L2

≤ 2π
√ ∥

∥

∥

∥

d

dθ
K̃

∥

∥

∥

∥

∞

∫

0

2π

|dµVn
− dµV |→ 0.
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This complete the proof that Γ is continuous from H to H . Now we prove that Γ

is compact. For this we use the finite rank approximation Γn of Γ as follows. Recall

that Γ:X→X is compact if and only if Γ is the limit (on the bounded domains) of

compact maps Γn:X→X. Define

Kn(θ)=−
∑

m=1

n

km cos (2mθ),

and also

Γn(V )(θ)=

∫

0

2p
Kn(θ− θ ′) e−V (θ ′) dθ ′
∫

0
2π
e−V (θ) dθ

.

It is easily seen that Γn(H) lies in the space spanned by {cos (2mθ)}m=1
n . For any

bounded set Ω⊂H , we obtain

‖Γn(V )−Γ(V )‖H1,Ω≤ sup
Ω

∥

∥

∥

∥

∥

∫

0

2π [
K̃ (θ− θ ′)−Kn(θ− θ ′)

]

e−V (θ ′)

∫

0
2π
e−V (θ)

∥

∥

∥

∥

∥

H1

≤

≤sup
Ω

∥

∥

∥

∥

∥

∫

0

2π [
K̃ (θ− θ ′)−Kn(θ− θ ′)

]

e−V (θ ′)

∫

0
2π
e−V (θ)

∥

∥

∥

∥

∥

L2

+

+sup
Ω

∥

∥

∥

∥

∥

∫

0

2π [
K̃ (θ− θ ′)−Kn(θ− θ ′)

]

e−V (θ ′)V ′(θ ′)
∫

0
2π
e−V (θ)

∥

∥

∥

∥

∥

L2

≤

∥

∥K̃ −Kn

∥

∥

∞+ |Ω| e2M
∥

∥K̃ −Kn

∥

∥

L2.

According to the Bessel identity we have
∥

∥K̃ −Kn

∥

∥

L2→0 and also by the assumption
∑ |km|<∞, we obtain

∥

∥K̃ −Kn

∥

∥

∞→0. This implies that ‖Γn(V )−Γ(V )‖H1,Ω→0

uniformly and then Γ:H→H is compact. �

So far we have established that Gλ is a Schauder map. In order to define the

Leray-Schauder degree, we establish an a priori bound for the solutions.

Theorem 3.8. Assume K ∈W 1,∞([0, 2π]) and let

λ0=

(

∑

m=1

∞
|km|

)−1

.

Let 0<λ<λ0, then V =0, that is f = constant is the only solution.
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Proof. The proof will now be carried out as follows. First we show the existence of

a bounded open set Ω⊂H such that there is no solution outside Ω. Next we show

that deg (Gλ, Ω, 0) = 1. Finally we prove that any possible solution to Gλ = 0 for

0<λ<λ0 is isolated with index 1. As in this case the degree is the sum of indices,

we know that V ≡ 0 is the only solution.

• The existence of a bounded open set Ω ⊂ H such that Gλ(V ) = 0 has no

solution outside Ω.

Let R= ‖K‖W 1,∞/λ0. Then it is easy to see that ‖λΓ(V )‖H ≤CR for all

λ ∈ (0, λ0). Thus we can take Ω=BCR, the ball centered at the origin with

radius CR.

• deg (Gλ,Ω, 0)= 1.

Introduce the homotopy h(t) = Id− tλΓ with t ∈ [0, 1]. We easily verify

that h(t)(V )= 0 has no solution on ∂Ω for all t∈ [0, 1]. Consequently

deg (Gλ,Ω, 0)= deg (h(1),Ω, 0)= deg (h(0),Ω, 0)= deg (Id,Ω, 0)=1.

• The solutions are isolated.

For this we show that if V is a solution of Gλ(V ) = 0, then DGλ(V ) is

homeomorphism, where DGλ(V ) is the Frechet differential of Gλ at V . By

standard calculation we obtain

DΓ(V )(u)=

∫

0

2π

K̃ (θ, θ ′) dµV (θ ′)

∫

0

2π

u(θ ′) dµV (θ ′)−

∫

0

2π

K̃ (θ, θ ′)u(θ′) dµV (θ ′) (3.39)

where dµV is defined in (3.34). Since DGλ(V )= Id−λDΓ(V ), and DΓ(V ) is

compact, DGλ(V ) is a Fredholm operator with index 0. It is enough then to

show that kerDGλ(V ) is trivial. Assume that u∈ kerDGλ(V ), then

u(θ)=λDΓ(V )(u), (3.40)

where DΓ(V )(u) is given in (3.39). According to the lemma (3.4), for every

θ∈ [0, 2π] we obtain

|u(θ)| ≤ λ
∥

∥K̃
∥

∥

∞‖u‖∞.

Since 0<λ<λ0, then λ
∥

∥K̃
∥

∥

∞< 1 and if u� 0 then we obtain |u(θ)|< ‖u‖∞
that is impossible for u∈H.
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• The index of any solution is 1.

We calculate the index of DGλ(V ) for the possible solutionGλ(V )=0. Let

{φn(θ)}=
{

1

(4n2+1)π
√ cos(2nθ)

}

n=1

∞

(3.41)

be a basis for H . We calculate anm=(DΓ(V )(φn), φm)H. We have

anm=

∫

0

2π

DΓ(V )(φn)(θ) φm(θ) dθ+

∫

0

2π

(DΓ(V )(φn)(θ))′ φm
′ (θ)dθ=

=
km bnm(1+4mn)

1+4n2
√

1+4n2
√ ,

where

bnm=

∫

0

2π

cos (2nθ)dµV (θ)

∫

0

2π

cos (2mθ)dµV (θ)−
∫

0

2π

cos (2nθ) cos (2mθ)dµV (θ).

Apply lemma (3.4) and obtain |bnm| ≤ 1 and then we reach

|anm| ≤ |km| 1+4mn

1+ 4n2
√

1+ 4n2
√ ≤ |km|. (3.42)

This implies that the eigenvalues of the DGλ(V ) are all bounded below by a

positive constant. In fact if u is an eigenvector forDGλ(V ) with the eigenvalue

α, that is (1−α)u= λDΓ(V )(u), then

|1−α||(u, φn)| ≤λ |kn| ‖u‖∞,

and then summing up on n gives

|1−α| ‖u‖∞≤ λ
∥

∥K̃
∥

∥

∞ ‖u‖∞< ‖u‖∞.

Consequently the index of the solution V of the equation Gλ(V ) = 0 is 1 for

0<λ<λ0.

�

Remark 3.9. For the Onsager kernel K(θ) = |sin (θ)| we see that km =
4

π(4m2− 1)

and then the above theorem gives λ0=
π

2
.
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3.3.2 Bifurcation of nematic phases

3.3.2.1 Bifurcation analysis

Changes in the index of the trivial solution ū = 0 gives the bifurcation of nematic

solutions for the equation. Let Γ: X→X be a continuous compact map, Γ(0) = 0

and the trivial solution ū≡ 0 of Aλ(u)6 u− λΓ(u) is isolated for 0< |λ− λ0|< δ,

for some δ > 0 such that

ind(ū , λ) ind(ū , µ)< 0,

for λ<λ0< µ. It is clear by Leray-Schauder degree that λ0 is a bifurcation point of

non-trivial solutions. If Γ is linear bounded compact and ker (Id − λ0 L) = 1, then

exactly two solutions bifurcate at λ0. The following theorem generalizes this fact and

is standard in bifurcation theory, see e.g. [56], [70].

Theorem 3.10. Assume G(λ, u):R×X→X is compact mapping of the form

G(λ, u)=λL+N (λ, u),

where L is a continuous compact self-adjoint linear map and N (λ,u)=O(‖u‖2) uni-

formly in a compact interval of λ. In addition assume that L has a simple eigenvalue

at λ0, that is dim ker (Id− λ0 L) = 1. If trivial solution ū of Tλ(u) = u− λL(u) = 0

is isolated for 0< |λ−λ0|<δ for some δ > 0 and

ind(ū , λ) ind(ū , µ)< 0, λ <λ0< µ,

then there exist two non-trivial solutions bifurcating from ū at λ0.

The proof of the theorem is based on the fact that Lλ = Id − λL is Fredholm

with index zero. Note that L is a completely continuous operator. Since λ0 is simple

eigenvalue of L then codim (Lλ0)= 1. The standard implicit function theorem then

gives two solutions of the equation u= G(λ, u) of the form u(α, λ(α)) for positive

and negative α where α= (φ0
∗, u) and φ0

∗ is the annihilator of the rang(Lλ0).

For further bifurcation analysis, we assume that kn, n≥1, the Fourier coefficients

of K̃ in (3.35) are positive and uniformly decreasing, that is

k1>k2>k3>
 (3.43)
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In fact, according to the remark (3.9), the Onsager kernel K(θ) = |sin (θ)| satisfies
the above condition. Simple calculations gives

(DΓ(0)(φn), φm)H =

{

0 n� m
kn

2
n=m

.

By assumption (3.43), we conclude that

ind(ū , λ)=

{

1 0<λ< 2k1
−1

−1 2k1
−1<λ< 2k2

−1

Similar argument holds for all kn and we obtain that for λn=2kn
−1 the index is

ind(ū , λ)= (−1)n, λn<λ<λn+1. (3.44)

We have the following theorem.

Theorem 3.11. Under the above assumptions, there is a sequence of nematic solu-

tions bifurcating from the trivial solution ū for the system (3.30).

Proof. Finite rank approximation of DΓ(0) gives critical points λn=2kn
−1 for n=1,

2, 	 . At each λn, the sign of Id− λDΓ(0) changes from (−1)n−1 to (−1)n when λ

passes through λn. Since ū, the trivial solution, is isolated for non-critical values of

λ that is shown before, we can assign an index to ū for those non-critical values of

λ. In fact for µ>λn and λ<λn we have

ind(ū , λ) ind(ū , µ)=−1.

According to the theorem (3.10), it implies that λn are bifurcation points for the

isotropic solution. On the other hand, the linearization of Id−G at ū=0 gives:

L(V )(θ)= Id+
λ

2π

∫

0

2π

K̃ (θ, θ ′)V (θ ′) dθ ′. (3.45)

K̃ is symmetric and L − Id is a compact self-adjoint operator and therefore the

algebraic multiplicity of its eigenvalues equals its geometrical multiplicity. Obviously

λn =
2

kn
is a simple eigenvalue for L − Id in (3.45) with the eigenfunction Vn(θ) =

cos (2nθ). This implies the existence of exactly two nematic solutions that bifurcate

from the trivial solution ū=0 at λn=
2

kn
for n≥ 1. �
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Now we prove that the system (3.30) under the condition (3.43) has periodic

solution with arbitrary period for λ sufficiently large.

Theorem 3.12. Assume that K enjoys the property (3.43), then for any n, system

(3.30) has π

n
-periodic solution if λ>λn.

Proof. Instead of the space H in (3.31) consider the space Hn as

Hn=

{

V (θ)∈H1([0, 2π]);V (θ)= V
(

θ+
π

n

)

a.e.;

∫

0

2π

V (θ)= 0

}

. (3.46)

This is the space of π

n
-periodic functions with a basis

{ψm
n (θ)}=

{

1

(4n2m2+1)π
√ cos(2nmθ)

}

m=1

∞

.

It is easy to see that Γ:Hn→Hn. In fact we have

Γ(V )(θ)=−β−1
∑

m=1

∞
km cos (2mθ)

∫

0

2π

cos (2mθ ′) e−V (θ ′) dθ ′.

Since V (θ)∈Hn then for appropriate vk
n we can write

V (θ ′)=
∑

k=1

∞
vk
n

(4n2k2+1)π
√ cos (2nkθ ′).

This implies that Γ(V )(θ) is expandable in terms of ψm
n . Repeating calculation inHn

shows that the first bifurcation of the nematic solution v1(θ) happens for λ=λn. On

the other hand, the nth bifurcation solution un(θ) in H occurs at λ= λn and since

there are only two nematic solutions bifurcating at λn we conclude that v1(θ)=un(θ).

This establishes that the bifurcation solutions in H at λn belong to Hn and therefore

π

n
-periodic. �

3.3.2.2 Stability analysis

In addition to the above bifurcation argument, the following result is easily proved

by the Leray-Schauder degree, see [70] and [71].
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Theorem 3.13. Under the setting of the Theorem 3.10, assume that N is a twice

Frechet differentiable operator with respect to λ,u and in addition for the first eigen-

value λ1 it satisfies the property ind(ū , λ) = 1 for λ < λ1 and ind(ū , λ) = −1 for

λ>λ1, then the bifurcating solution for λ>λ1 is stable and for λ<λ1 is unstable.

Based on theorem (3.13), we can determine the stability of the obtained nematic

solutions in the previous section according to their topological index. If λ1 is the

first bifurcation point, we need an estimate for the value τ = λ − λ1. In order to

obtain and estimate for τ , we follow the standard Lyapunov-Schmidt process, see for

example [70]. For the mapping

F (u)= u− λL(u)+N (λ, u)

assume that λ1 is a simple eigenvalue of L and then the kernel of Lλ1 is a one

dimensional subspace of X. Let u1∈ker (Tλ1) and X1 be the topological complement

of {u1} in X, that is X = {u1} ⊕ X1. Since Lλ1 is Fredholm with index zero then

codim(Lλ1)= 1. Let Y1 denote the range of Lλ1 and X =M ⊕Y1 where M is a one

dimensional subspace of X. It is easy to see that u1∈ Y1, otherwise there exists

v∈X such that u1=Lλ1(v) and then Lλ1

2 (v)=0 contradicts the fact that λ1 is simple

eigenvalue for Lλ. This implies that X1 and Y1 are isomorphic. Let φ1∈X∗ be the

annihilator of Y1 such that 〈φ1, u1〉=1. φ1 exists since u1∈Y1. Define the projection

P into {u1} as P (u)= 〈φ1, u〉u1. Write the nonlinear map F (u) in terms of τ =λ−λ1
as

Fτ(u)=Lλ1(u)− τL(u)+N (λ, u). (3.47)

The equivalent system for the equation Fτ(u)=0 is P (Fτ(u))=0 and Q(Fτ(u))=0,

for Q= Id−P . Since 〈φ1, Lλ1(u)〉=0, (note that Lλ1(u)∈Y1) we can write

P (Fτ(u))=−τ 〈φ1, L(u)〉u1+ 〈φ1, N (λ, u)〉=0. (3.48)

But the relation 〈φ1, Lλ1(u)〉=0 gives 〈φ1, L(u)〉=
〈

φ1,
1

λ1
u
〉

. Let α= 〈φ1, u〉, then

we can write

−ατ
λ1

+ 〈φ1, N (λ, u)〉=0. (3.49)
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If N(λ, αv)=α2N1(λ, v, α) then the above equation for u=αv can be written as

τ =αλ1〈φ1, N1(λ, v, α)〉. (3.50)

Now we apply the above results to the problem defined in this chapter. The operator

F = Id−λΓ where Γ is defined in (3.30) can be rewritten as

Fτ = Id−λ1L− τL+ λN ,

where λ1=2k1
−1, τ = λ− λ1,

L(u)=− 1
2π

∫

0

2π

K̃ (θ, θ ′)u(θ ′),

and

N (u)=L(u)−Γ(u).

Since L is self-adjoint and λ1 is a simple eigenvalue of T ,

φ1(θ)= rang(Id− λ1L)⊥=
1

5π
√ cos(2θ),

where the constant 1

5π
√ is to normalize the norm (φ1, φ1) = 1. It is easily verified

that N (αu)=α2N1(u;α), in fact

N (u)∼− 1
4π

∫

0

2π

K̃ (θ, θ ′)u2(θ ′)+
1

12π

∫

0

2π

K̃ (θ, θ ′)u3(θ ′).

According to the relation (3.50) we can write

−ατk1
2
− λ

4π

(
∫

0

2π

K̃ (θ, θ ′)u2(θ ′), φ0

)

+
λ

12π

(
∫

0

2π

K̃ (θ, θ ′)u3(θ ′), φ0

)

=0.

Assuming u∼αφ1 and λ= τ +λ1, the sign of τ determines the stability or non-sta-

bility of the first bifurcation solution. The exact analysis with this approach is done

by the author in a submitted paper. Here we follow another approach to determine

the stability of the first bifurcation solution. The result completely confirms the

previous one, however we are still working to give a satisfactory justification for this

method. Ignoring the contribution of φ1.φ2 we obtain τ as:

τ =−2α2

k1

1

8+α2
∼− α2

4k1
.
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On the other hand we have

DΓ(V )(cos (2nθ))=−β−1

∫

0

2π

K̃e−V (θ ′)cos(2nθ ′)+ β−2

∫

0

2π

K̃e−V (θ ′)

∫

0

2π

e−V (θ) cos (2nθ).

We assume that V � 0 but sufficiently small. We can assume e−V (θ)∼ 1−V (θ) and

since V (θ) = αφ0(θ) + αφ(θ, α) where φ(θ, α)→ 0 for α→ 0 then we can assume

V ∼αφ0. Simple calculation then gives

DG(V )=





















1− λk1(8−α2)

16

λk2α

4
0 0 


λk1α

4
1− λk2(8−α2)

16

λk3α

4
0 


0
λk2α

4
1− λk3(8−α2)

16

λk4α

4
	

0 0
λk3α

4
1− λk4(8−α2)

16



� � � � �





















The sign of DG(V ) for V sufficiently small is the index of the solution V . Substitute

λ = τ + λ1 in DG(V ) and then the diagonal is dominant. The first diagonal entry

is 1− λk1

2
=

α2

8
and all other diagonal entries are positive. The determinant of the

finite approximation of DG(V ) has dominant terms in α2 as

γ=
α2

4

∏

n=2

N (

1− λkn(8−α
2)

16

)

− λ
2k1k2α

2

16

∏

n=3

N (

1− λkn(8−α
2)

16

)

.

Assuming λ= λ1 gives

γ=

(

1− 2k2
k1

)

α2

4

∏

n=3

N (

1− λkn(8−α
2)

16

)

.

Therefore if we have
(

1− 2k2
k1

)

> 0,

then γ > 0 and then sign DG(V ) = +1. This also shows that the sub or super

criticallity depends on the sign of γ that is the same as the sign of 1− 2k2/k1. For

example for the original Onsager kernel K(θ)= |sin (θ)| we have

(

1− 2k2
k1

)

=
1
3
> 0,
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and then in this case sign(DG(V )) = +1 for the first bifurcation solution. This

proves that the first nematic solution are stable super-critical. It is possible to repeat

this process to obtain the sign of other bifurcating solutions. For example for the

bifurcation solutions at λ2 we can define the operator Γ in the space H2 and repeat

the above process. Similar calculation shows that the bifurcation solutions are super-

critical if 1− 2k4
k2
> 0, that is true for the Onsager kernel. In general the bifurcation

solutions at λn are super-critical if kn > 2k2n and sub-critical of kn < 2k2n. For

Onsager kernel all bifurcation solutions at λn, n=1, 2,	 are super-critical.

The above argument proves the following theorem.

Theorem 3.14. For problem (3.30) with Onsager kernel K̃ (θ) = |sin (θ)|, the

bifurcating solution at λn = 2kn
−1 are super-critical. Moreover the bifurcation at

λ1 is stable.

3.4 Higher dimensional Doi-Onsager equation

Here we prove a sufficient condition for the existence of nematic solution for the

Onsager equation. We also give an upper bound for λ the guarantees the uniqueness

of the trivial solution. Our method is based on a generalized version of the Leray-

Schauder degree. In this section we apply our method for the case D = 2 to an

arbitrary dimension D ≥ 3 for the following problem

u−λG(u)= 0, (3.51)

where

G(u)= β(u)−1

∫

SD−1
K̂ (r, r ′) e−u(r ′) dσD(r

′), (3.52)

where K̂ =K − K̄ and β is

β(u)=

∫

SD−1
e−u(r) dσD(r). (3.53)

Here K enjoys the properties

K(−r, r ′)=K(r,−r ′)=K(O(r), O(r ′)), (3.54)
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where O is any rotation map in R
D.

3.4.1 Spherical harmonic

Recall that the spherical harmonics on SD are the natural generalization of the

harmonics on S2. For the unit mass located at the distance r= 1

ρ
> 1, expansion of

the potential V

V =
1

(1+ ρ2− 2ρ cosγ)
D−2

2

, (3.55)

in terms of ρ gives

V =
∑

n=0

∞
Pn(D, cosγ)ρn, (3.56)

where Pn(D,cosγ) are the Gegenbauer polynomial or Legendre polynomial on SD−1.

In general, Qn, a harmonic polynomial of order n in R
D is defined as the homoge-

neous polynomial of order n that satisfies the Laplace equation ∆Qn = 0. It turns

out that there exist exactly N(D,n) such polynomials for each n, see [22]

N(D,n)=
(2n+D− 2) (n+D− 3)!

(D− 2)!n!
. (3.57)

The restricting Qn to SD−1 are called spherical harmonics of order n and are denoted

by Snj(D, r) for r ∈SD−1 and 1≤ j ≤N(D,n). Pn(D, t) for the variable t∈ [−1, 1]

are spherical harmonics that are invariant under the rotation of SD−2⊂SD−1.

According to the assumption (3.54), we consider the following expansion for K:

K(γ)=−
∑

n=1

∞
knP2n(D, cosγ)+ k0, (3.58)

where γ is the angle between r, r ′ and furthermore kn, n≥ 1 are positive and form

a decreasing sequence, that is for n≥ 1

kn> 0, kn>kn+1 (3.59)

Proposition 3.15. The Onsager kernel

K(r, r ′)= |r× r ′|= sinγ, 0≤ γ ≤π (3.60)
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has the expansion (3.58) with kn satisfying (3.59).

Proof. The set Pn(D, cosγ), n≥0 forms a complete system for smooth functions on

SD−1 that are defined only in terms of γ. Since the Onsager kernel (3.60) is even

with respect to γ, the coefficients of the odd terms in the expansion are zero, that is

the Onsager kernel has the expansion of the form (3.58). Clearly k0> 0 and in order

to show that kn enjoy (3.59) we start with D = 3. The coefficients kn for n ≥ 1 are

obtained as

kn=− (2n+1)
2

∫

−1

1

P2n(t) (1− t2)
1

2 dt. (3.61)

Use the identity:

∫

−1

1

1−x2
√

P2n+2=
4n2− 1

4(n+1)(n+2)

∫

−1

1

1−x2
√

P2n, (3.62)

to obtain the following recursive formula for kn, n> 1:

kn+1=
(4n2− 1)(4n+5)

4(n+1)(n+2)(4n+1)
kn. (3.63)

The direct computation shows that k1 > 0 and then all kn > 0 for n ≥ 1 and they

form a decreasing sequence. In general the coefficients kn are obtained as

kn=−σD−1N(D,n)
σD

∫

−1

1

P2n(D, t) (1− t2)
D−2

2 dt. (3.64)

Now by the formula

Pn(D, t)=C(n,D)
d

dt
Pn+1(D− 2, t), (3.65)

one can convert the integral to the case D=3. �

3.4.2 Main Result

In sequel, we always assume D ≥ 3. Recall that we want to find solutions of the

equation

u−λG(u)= 0, (3.66)
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where G is defined in (3.52). Let H0(S
D−1) denotes the space:

H0(S
D−1)=

{

u∈L2(SD−1), u(−r)=u(r),

∫

SD−1
u(r)dσD(r)= 0

}

.

We look for the solutions of (3.66) in H0. The existence and bifurcation of the

solution can be established by the aid of Leray-Schauder degree if G is a com-

pletely continuous operator on H0. However, it is seen that G is not continuous on

H0(S
D−1). Consider, for example the sequence of functions un(θ) for the case D=3

(θ is the angle with the z-axis):

un(θ)=







log (2π(1− cos (1/n))) θ ∈
(

0,
1

n

)

0 otherwise
. (3.67)

Obviously un�
L2(S2)

0, and G(λ, 0)= 0, however we have

G(λ, un)=
λ

2π(1− cos (1/n))

∫

0

1/n ∫

0

2π

K̂ (γ) dσ2(r
′)9 0.

We have the following theorem.

Theorem 3.16. Assume that K belong to the Holder class of maps, then for

Ω = {|u(r)| ≤ λ ||K ||∞}, the map G is a continuous compact operator on HΩ =

H0(S
D−1)∩Ω.

Proof. First note that the fixed point set of G has the a priori bound

|u(r)| ≤ λ‖K‖∞ β(u)−1

∫

SD−1
e−u(r) dσD(r

′)=λ‖K‖∞. (3.68)

The continuity of G on HΩ is easily proved by the dominant convergence theorem.

In order to show that G is compact on HΩ, define the truncated sequence of kernels

K̂N as

K̂N(γ)=−
∑

n=1

N

knP2n(D, cosγ), (3.69)
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and the finite range operators GN on HΩ as

GN(u)(r)=λβ(u)−1

∫

SD−1
K̂N(γ) e

−u(r ′) dσD(r ′). (3.70)

It is seen that for u∈HΩ we have

‖G(u)−GN(u)‖2=λ2 β(u)−2

∫

SD−1

(
∫

SD−1

(

K̂ (γ)− K̂N(γ)
)

e−u(r ′) dσD(r
′)

)

2

d σD(r)≤

≤max
γ

∣

∣

∣

∣

K̂ (γ)− K̂N(γ)

∣

∣

∣

∣

2πλ2→ 0, (N→∞).

Therefore G is the uniform limit of a sequence of finite range operators on HΩ and

then is compact on HΩ. �

3.4.2.1 Generalized degree

Since G is not continuous on H0(S
D−1), we generalize the Leray-Schauder degree

such that it fit the situation presented in Theorem (3.16). Let H be a separable

Hilbert space with an orthonormal basis H= {u1, u2,
 }, Hn
6 span{u1,	 , un} for

n≥ 1 and G:H→H a map. The inner products in H and Hn are denoted by (, ),

((, )) respectively. The finite rank approximation of G on Hn is defined as

Gn(u)=
∑

k=1

n

(G(x), uk)uk. (3.71)

It is clearly seen that Gn coincides with G on Hn, that is for all v ∈ Hn, we have

(G(u), v)= ((Gn(u), v)). Assume that there exist a closed bounded set Ω such that:

• {z; z−G(z)= 0}⊂αΩ, α< 1,

• G is continuous and compact on HΩ6 H ∩Ω,

• HΩ
n: =Hn∩Ω has non-empty interior in Hn.

For an open bounded subset D ⊂H , we denote Dn
6 D ∩Hn, DΩ6 D ∩HΩ and

DΩ
n
6 DΩ∩Hn.

Proposition 3.17. Assume D is an open bounded subset of H such that G has no

fixed point on ∂D, then there exist N0>0 such that for n≥N0, GΩ
n has no fixed point

on ∂DΩ
n.
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Proof. Otherwise, there exist zn∈∂DΩ
n such that zn=Gn(zn). Since (zn)⊂Ω and G

is completely continuous onHΩ, the sequenceG(zn) converges (in a subsequence that

we do not relabel) to some point z∈H . Since Gn(zn)=PrHnG(zn), we conclude that

Gn(zn) converges to z, that implies in turn the convergence of zn to z ∈ ∂D. Since

Ω is closed, z ∈Ω and therefore G(zn) converges to G(z). Therefore we conclude the

contradiction z=G(z) for some z ∈ ∂D. �

Let use denote the operator Γ: H → H as the G perturbation of the identity,

that is Γ(u) = u−G(u). The finite rank approximation Γn of Γ into Hn is defined

accordingly.

Proposition 3.18. Assume D is an open bounded subset of H such that z � G(z)

for z ∈ ∂D, then there exist N0> 0 such that for n≥N0 we have

deg (Γn, DΩ
n, 0)= deg

(

Γn+1,DΩ
n+1, 0

)

. (3.72)

Proof. Note that the interior of DΩ
n is non-empty in Hn. Since G is continuous on

HΩ and Gn has no fixed point on ∂DΩ
n for n ≥N0, the degree of Γn on DΩ

n can be

defined in the usual sense. Define the map An+1 as

An+1(x)= (Γn(x), (x, un+1)un+1). (3.73)

Obviously we have

deg
(

An+1,DΩ
n+1, 0

)

=deg
(

Γn,DΩ
n+1, 0

)

. (3.74)

Consider the homotopy h: [0, 1]×DΩ
n+1→Hn+1 as

h(t)(x)= (1− t) Γn+1(x)+ tAn+1(x). (3.75)

It is easily seen that 0 ∈ h(t)(z) for z ∈ ∂DΩ
n+1 for t= 0, 1. If deg (Γn, DΩ

n, 0) is not

stable, then there exist a sub-sequence (tnk) that we still denote as (tn), such that

tn∈ (0, 1) and zn∈ ∂DΩ
n and h(tn)(zn)= 0. Therefore

Γn(zn)+ tn (G(zn), u
n)un=0.

Since {zn}⊂Ω is bounded and G is compact on HΩ then (G(zn), u
n)→ 0 and then

Γn(zn)→ 0 that implies zn→ z ∈ ∂D and Γ(z)= 0, a contradiction! �
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By the aid of Proposition (3.18), we can define the degree of the map Γ on an

open bounded subset D with respect to 0 as follows.

Definition 3.19. Under the above settings, for any open subset D ⊂ H such that

z � G(z) for z ∈ ∂D, define

deg(Γ,D, 0)= lim
n→∞

deg (Γn, DΩ
n, 0). (3.76)

Proposition 3.20. If deg (Γ, D, 0)� 0 then there exist at least one fixed point for

the map G in D.

Proof. By (3.76) it implies the existence of a sequence (un) ⊂DΩ
n such that un =

Gn(un). Since G is compact on HΩ then the sequence (G(un)) converges (in a subse-

quence) to some point u∈H . This implies that Gn(un)=PrHnG(un) converges to u

and then un→u. Since Ω is closed and G is continuous onHΩ then G(un)→G(u). �

The homotopy invariance property is established by the following proposition.

Definition 3.21. Let G: [0, 1]×HΩ→H be a continuous map. The map G is called

a compact transformation if G([0, 1]) is compact from HΩ to H, and in addition for

every bounded Ω′⊂Ω and ε> 0 there exist δ= δ(ε,Ω′) such that

|t− s|<δ⇒‖G(t)(x)−G(s)(x)‖<ε, x∈Ω′.

Proposition 3.22. The definition (3.76) satisfies the homotopy invariance property

for the class of compact transformations.

Proof. Let Γ denotes the time dependent operator: Γ: [0, 1]×D→H . There exist

N0 such that 0 ∈ Γn(t)(∂DΩ
n) for all n ≥N0. Assume the contrary, then there exist

a sequence tn and zn ∈ ∂DΩ
n such that Γn(tn)(zn) = 0. Let {tn} converges to t̄ in a

sub-sequence, since G(t̄): HΩ → H is compact then G(t̄){zn} converges in a sub-

sequence to some point say z. Thus we can write

‖zn− z‖= ‖G(tn)(zn)−G(t̄)(zn)+G(t̄)(zn)− z‖≤

≤‖G(tn)(zn)−G(t̄)(zn)‖+ ‖G(t̄)(zn)− z‖=

=‖G(tn)(zn)−G(t̄)(zn)‖+ o(1).
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On the other hand, since G is a compact transformation then

‖G(tn)(zn)−G(t̄)(zn)‖= o(1),

that gives zn→ z in a sub-sequence. Since ∂D is closed then z ∈∂D a contradiction.

This implies that deg (Γn(t),Dn, 0) is independent of t. On the other hand

deg (Γn(t),DΩ
n, 0)=deg

(

An+1(t), DΩ
n+1, 0

)

, (3.77)

where An+1(t)(u)= (Γn(t)(u), (z, un+1)un+1). Choose n sufficiently large such that

deg (Γn(t),DΩ
n,0) is constant with respect to t. If deg (Γn(t),DΩ

n,0) is not stable then

there exist sn and zn∈∂DΩ
n such that (1− sn) Γn(t)(zn)+ snA

n(t)(zn)= 0 that give

the convergence of {zn} in a sub-sequence to some z ∈ ∂D such that Γ(t)(z) = 0 a

contradiction! �

Now consider the one parameter class of operators Γ(λ, u)= Id−G(λ, u) where

G(λ, .): HΩ→ H is a compact continuous map for every λ such that Γ(λ, 0) = 0.

Further assume that there exist a completely continuous linear map T :H→H such

that

‖λT (u)−G(λ, u)‖= o(‖u‖), u∈Ω. (3.78)

Proposition 3.23. If λ∈σ(T ), where σ(T ) denotes the spectrum of T, then (λ,0) is

isolated, that is there exist ε> 0 such that the trivial solution of (3.66) is the unique

solution in (λ− ε, λ+ ε)×Bε.

Proof. Otherwise, there exist a sequence {λn},λn→λ and un→0 such that 0=Γ(λn,

un). Since λ∈σ(T ), then there exist r > 0 and ‖u−λT (u)‖≥ r ‖u‖. Therefore

0 ≥ ‖un − λT (un)‖ − |λn − λ| ‖un‖ − ‖λn T (un) − G(λn, un)‖ > r ‖un‖ −

|λn− λ| ‖un‖+ o(‖u‖),

that is contradiction for sufficiently small |λ− λ| and un. �

Proposition 3.24. Assume λ̄ ∈σ(T ) and for λ< λ̄ < µ we have

ind(Id− λT , 0) ind(Id− µT , 0)< 0,

then λ̄ is a bifurcation point for (3.66).
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Proof. Otherwise (λ̄, 0) is an isolated point and therefore there exist ε > 0 such

that the trivial solution is the unique solution of Γ(t)(u)=0 for t∈ (λ̄− ε, λ̄+ ε) and

u ∈ Bε. This implies that no solution lies on ∂Bε/2 for t ∈ (λ̄ − ε, λ̄ + ε) and then

by homotopy invariance property the index ind(Id− tT , 0) is constant even when t

passes through λ̄, a contradiction. �

3.4.2.2 Uniqueness of the isotropic phase

We prove that the isotropic phase is the unique phase for system (?),(?) for suffi-

ciently small values of λ. First the following lemma.

Lemma 3.25. Let L:H0(S
D−1)→H0(S

D−1) be the map

L(u)(r)=
−1
σD

∫

SD−1
K̂ (γ)u (r ′)dσD(r ′). (3.79)

If λ is not a characteristic value for L then ū=0 is an isolated solution for (3.66) .

Proof. For fixed λ, it is seen by dominant convergence theorem that for u ∈H2Ω,

we have

‖G(u)−L(u)‖L2(SD−1)= o
(

‖u‖L2(SD−1)

)

. (3.80)

If ū = 0 is not isolated, then choose sequences (λn, un) such that un = G(un) and

λn→λ and un→ 0. But

0=‖un−G(un)‖≥‖un−λL(un)‖− |λ−λn| ‖L‖‖u‖−‖G(un)−λnL(un)‖. (3.81)

Since λ is not a characteristic value for L then there exist k>0 and ‖un−λL(un)‖>
k ‖un‖. Take λn very close to λ and then

k ‖un‖+o(‖un‖)< 0, (3.82)

a contradiction. �

Theorem 3.26. Under the above settings, there exist λ0> 0, such that (3.66) has

the unique solution ū≡ 0 for 0<λ<λ0.

Proof. For R=λ σD
√ ‖K‖∞ the equation

ut− tG (ut)= 0, (3.83)
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has no solution on the R-sphere S(R) for t ∈ [0, 1]. In fact ||ut||∞ ≤ R/ σD
√

and

‖ut‖L2≤R. By homotopy invariance property of degree we conclude:

deg(Id−G,B(r), 0)= deg (Id− tG,B(r), 0)=deg (Id,B(r), 0)=+1 (3.84)

We show that the index of the trivial solution is +1. The function in H0(S
D−1)

can be expanded in terms of the orthonormal spherical harmonics {S2nj(D, r)} for
j=1,	 ,N (D,n), in fact for u∈H0(SD−1) we can write

u(r)=
∑

n=1

∞
∑

j=1

N(D,2n)

unjS2nj(D, r), (3.85)

for the appropriate coefficients unj. With this representation, it is convenient some-

times to write u=u(unj). Calculation of the entries of the Jacobian matrix of G at

u= ū gives entries

∂

∂unj
G(ū)=− λ

σD

∫

SD−1
K̂ (γ)S2nj(D, r

′) dσD(r ′)=

λkn
σD

∫

SD−1
P2n(D, cosγ)S2nj(D, r ′) dσD(r ′)=

=
λkn

N(D, 2n)
S2nj(D, r).

This implies that the infinite Jacobian matrix of G(ū) in the bases {Snj} with n

even numbers is of the form

JG= diag

(

λkn
N(D, 2n)

)

. (3.86)

Now if λ0≤Dk1−1, one conclude that for 0<λ<λo we have

ind(ū , λ)= 1. (3.87)

In a similar way, we can calculate the index of any possible solution (not necessary

the trivial) of the fixed points of G. In fact for the arbitrary solution u we have

〈

∂

∂unj

G(u), S2ml(D, r)

〉

=−λ

∫

SD−1

∫

SD−1

K̂ (γ)f(r′)S2nj(D, r′)S2ml(D,r)dσD(r
′)+

+λ

∫

SD−1

f(r)S2nj(D, r)

∫

SD−1

∫

SD−1

K̂ (γ) f(r′)S2ml(D, r)d σD(r
′)=

=
σDλkm

N(D, 2m)

∫

SD−1

f(r)S2nj(D, r)S2ml(D, r)−

−
σDλkm

N(D, 2m)

∫

SD−1

f(r)S2nj(D, r)

∫

SD−1

f(r)S2ml(D, r) .
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Let bnj
ml denotes the following expression:

bnj
ml=

∫

SD−1

f(r)S2nj(D, r)S2ml (D, r)−
∫

SD−1

f(r)S2nj(D, r)

∫

SD−1

f(r)S2ml(D, r) .

An estimate, not necessary optimal, for bnj
ml using the a priori estimate (3.68) is

obtained as:

∣

∣bnj
ml
∣

∣≤ 2e4λ||K ||∞

σD
. (3.88)

This implies that

∂

∂unj
G(u)(r)=

∑

m=1

∞
∑

l=1

N(D,2m)

amlS2ml(D, r),

where aml has the following bound:

|aml| ≤ 2λkm e
4λ||K ||∞

N (D, 2m)
. (3.89)

The following inequality gives a condition for that we have ind(u, λ) = 1 for any

solution of (3.66):

λe4λ||K ||∞
∑

m=0

∞
∑

l=1

N(D,2m)
km

N(D, 2m)
= λe4λ||K ||∞

∑

m=1

∞
km<

1
2
. (3.90)

Using (3.90) we conclude that the index of every possible solution of (3.66) is +1 for

0<λ<λ0 where

λ0=
1

5

∥

∥K̂
∥

∥

∞
−1. (3.91)

Since the degree of G is +1 according to (3.84), we conclude that ū≡ 0 is the unique

solution for 0<λ<λ0. �

Remark 3.27. In the class of axially symmetric solutions, where the functions in

H0(S
D−1) are symmetric with respect to the rotation of SD−2 around any point of

SD−1, the computations are simpler. For the fixed r∈SD−1, let θ denotes the angel

between arbitrary point r ′∈SD−1 to r, then u can be expanded as

u(θ)=
∑

n=1

∞
unP2n(D, cos θ). (3.92)
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In this case G has the simpler form:

G(u)(θ)=λ

∫

0

π

K̂ (γ)g(θ ′) dθ ′, (3.93)

where g is defined as

g(θ)=
e−u(θ) sinD−2 (θ)

∫

0
π
e−u(θ) sinD−2 (θ) dθ

. (3.94)

The Jacobian matrix entries for the trivial solution is obtained as:

∂

∂un

G(ū)=−λ
σD−1

σD

∫

0

π

K̂ (γ)P2n(D, cosθ ′) sinD−2(θ ′ )dθ ′=
λkn

N(D, 2n)
P2n(D, cosθ). (3.95)

The calculation for a non-trivial solutions also is carried out as
〈

∂

∂un
G(u), P2m(D, cosθ)

〉

=λkm

{
∫

0

π

g(θ)P2n(D, cosθ)P2m(D, cosθ) dθ−

−
∫

0

π

g(θ)P2n(D, cosθ)dθ
∫

0

π

g(θ)P2m(D, cosθ)dθ

}

.

Simple calculation shows that

∣

∣

∣

∣

〈

∂

∂un
G(u), P2m(D, cosθ)

〉∣

∣

∣

∣

≤λkm, (3.96)

that gives the following estimation for λ0

λ0=

(

∑

m=1

∞
km

)−1

. (3.97)

Therefore ind(u, λ)=+1 for 0<λ<λ0, for λ0 given in (3.97).

3.4.2.3 Bifurcation of nematic phases

According to the Proposition (3.24), we can establish the possible bifurcation of

nematic phases from the trivial solution ū for the Onsager model. Here we consider

the subspace of axially symmetric functions of H0(S
D−1), the functions that can be

expanded as (3.92).

Theorem 3.28. There exist a sequence of axially symmetric solution of (3.66)

in H0(S
D−1) bifurcating from the trivial solution ū at λn = N(D, 2n) kn

−1. The

multiplicity of the bifurcating solutions at each bifurcating pint λn is exactly 2.
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Proof. λn are the eigenvalues of the operator L defined in (3.79). Since H(λ,

u) =G(u) − λL(u) satisfies the condition (3.78) then according to the Proposition

(3.23) the trivial solution is isolated for λ=λn. On the other hand, by the calculation

(3.95) we conclude that for 0<λ<λn< µ

ind(ū , λ) ind(ū , µ)=−1, (3.98)

and the according to the Proposition (3.24) each λn is a bifurcation point. Since L

is a self-adjoint operator, the algebraic and geometric multiplicity of eigenvalues of

L coincide. It is easily seen that the unique eigenfunction (up to normalization) of

L at λn is P2n (D, cosθ) and then λn is a simple eigenvalue for L. According to the

Theorem 4.2 in [71] we conclude that there exist exactly two solutions bifurcating

at each λn and furthermore the first bifurcation solution at λ1 is stable. �
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Chapter 4

Periodic solutions

This chapter is dedicated to the study of the existence problem of periodic orbits

for nonlinear autonomous and non-autonomous ordinary differential systems. The

main tool here is classical degree theory (Brouwer and Leray-Schauder). Although

using degree theoretic method in proving the existence of periodic orbits for dynam-

ical system is not novel at all, our approach for third order autonomous nonlinear

systems, (where Poincare-Bendixon theorem fails to apply) gives some new insights.

The multiplicity and stability of periodic orbits are not discussed in this chapter,

however when the periodic orbits are not “critical” the degree gives a lower bound

for the multiplicity of the solutions.

The study of periodic solutions for dynamical systems came mainly into con-

sideration after the pioneering works of H. Poincarè on the three body problem.

Poincarè’s approach to this problem relies on the application of continuation method

for the Poincarè map (translation operator). Let us introduce the method briefly in

terms of the fixed point theory. For the system x′= f(t, x), let xf(t, c) denotes the

solution with the initial condition c, that is xf(0,c)=c. If f is ω-periodic with respect

to t, then the existence of a periodic solution for the above system is equivalent to

the existence of c ∈R
n such that xf(ω, c) = c. In other word, c is a fixed point for

the mapping c→ xf(ω, c). The existence of such fixed point can be established by

Poincarè-Bohl or Brouwer fixed point theorem. This is a classical approach that is

extensively employed in this direction.
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4.1 Some general results

In this section we review some general results about the existence of periodic solution

for the system of first order equations. The explanation here is based on the works

of Cronin [29], Halanay [43], Mawhin [57], Zanolin [81], Capietto et al [24] and Lloyd

[56]. Consider the system of first order nonlinear system:

x′= f(t, x), x∈Rn, (4.1)

where f is smooth and ω-periodic with respect to t. Let xf(t; c) denote the solution

(if any) of the system (4.1) at time t with the initial condition x(0) = c ∈R
n. The

necessary and sufficient condition for the existence of a ω-periodic solution for the

system (4.1) is xf(ω; c)= c. Define the translation map Vt as

Vt(c)=xf(t; c)− c, (4.2)

for values of t that the solution of (4.1) exists. For small t > 0 we can write

Vt(c)= f(0, c)t+ o(t). (4.3)

Assume that D⊂Rn is a bounded open set such that f(0, c)� 0 for c∈∂D and that

deg (f(0, .),D, 0)� 0. (4.4)

Apply now the homotopy invariance property of Brouwer degree to conclude that

for small values of t > 0 we have:

deg (Vt, D, 0)� 0.

In fact we have for t > 0

deg (Vt, D, 0)=deg

(

f(0, .)+
o(t)
t
,D, 0

)

,

and for the value of t such that
∣

∣

∣

o(t)

t

∣

∣

∣<dist(0, f(0, ∂D)), then

deg (f(0, .),D, 0)=deg (Vt, D, 0).
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In order to establish the existence of ω-periodic orbits, we need to pose some extra

conditions. For this, we assume that the solution of the equation (4.1) is extendable

on [0, ω] and also that no point of ∂D is a ω-returning point, that is Vt(c) � c for

c∈∂D and for t∈ [0,ω]. Now we can use the invariance property of degree to conclude

that

deg (Vω, D, 0)� 0.

The first property of Brouwer degree now guarantees the existence of solution for

the equation Vω(c)= 0 and therefore there exist c∈D such that

Vω(c)=xf(ω; c)− c=0.

We have just proved the following general theorem.

Theorem 4.1. Assume the solution of system (4.1) is extendable on [0, ω] and in

addition there exist D⊂R
n open and bounded such that

i. f(0, c)� 0 for c∈ ∂D,

ii. deg (f(0, c), D, 0)� 0,

iii. xf(t, c)� c for t∈ [0, ω] and c∈ ∂D,

then there exist at least one ω-periodic solution for the system (4.1).

The difficult part in the Theorem 4.1 is to find the open set D on which f(0, c)

satisfies the imposed conditions. The extendability of the solutions on [0, ω] can be

overcome with the following trick. Let h be the cut off function equal to 1 in Br for

some r > 0. The solution of the following auxiliary system

x′= f(t, x)h(x), (4.5)

is extendable without any escape time. In fact use a trick by Lasalle [54] to define

V (x)=
1
2

∑

i

xi
2,

and then

dV

dt
=
∑

i

xi fi(t, x)h(x)≤V +M,
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for some M > 0 and use a Gronwall type inequality to conclude the claim. Now if

there existD⊂Br such that f satisfies conditions (i), (ii), (iii) in the above theorem(

since h≡ 1 in Br) then we conclude the existence of a periodic solution for (4.1).

Here, let us review briefly the work of J. Mawhin and his colleagues [23] [24] [81]

in this direction.

Theorem 4.2. Assume there exists c∈R and a C1 function W :Rn→R such that

i. c is a regular value for W,

ii. W−1(c) is bounded and Ω= {x;W (x)<c} is star shaped domain,

iii. (grad(W (z)), f(t, z))< 0, z ∈V −1(c), t∈ [0, ω],

then (4.1) has a periodic solution.

Proof. Note that ∂Ω=W−1(c), since c is a regular value for W . If Vt(c)= xf(t; c)

denote the solution of (4.1) then we show a fixed point for the map Vω in Ω. Let

z ∈ ∂Ω, since
dW

dt
(z(t))= (grad(W (z)), f(t, z))≤ 0,

then W is decreasing along the solution of the system (4.1) on ∂Ω = W−1(c).

Therefore, the trajectories of xf(t; c) for c ∈ Ω̄ remain in Ω̄. Hence for any t, the

map Vt: Ω̄→ Ω̄ has a fixed point according to the Brouwer fixed point theorem for

star shaped domains. In particular for t= ω, we have Vω(c) = c and it is a periodic

solution for the system (4.1). �

By simple condition on grad W (z), it is possible to make sure that Ω is star-

shaped, see Zanolin [81].

4.1.1 Green function and Leray-Schauder degree

Let us illustrate a simple result for the second order equations using Leray-Schauder

degree. Consider the following system

x′′+ f(t, x, x′)= 0, (4.6)
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that f is ω-periodic and is smooth. We will prove that if the norm of f − µx for

some µ > 0 in some sense is small, then equation (4.6) has a non-trivial periodic

solution. The method is based on the calculation of Green’s function with some

periodic boundary condition.

Theorem 4.3. Assume that there exist c,λ>0 such that λω<π and M ≤λ2c where

M = max
t∈[0,ω]

max
‖x‖∞<c

|λ2x− f(t, x, x′)|, (4.7)

then equation ( 4.6) has a ω-periodic solution.

Proof. The idea of proof is based on the transformation of the equation (4.6) into

an operator equation. Define

G(t, s)=
1

2λ(1− cos (λω))

{

sinλ(ω+ s− t)+ sinλ(t− s) 0≤ s< t≤ω
sinλ(ω+ t− s)+ sinλ(s− t) 0≤ t < s≤ω ,

then we can write the solution of the equation (4.6) as the following integral equation:

x(t)=

∫

0

ω

G(t, s)[λ2x(s)− f(s, x(s), x′(s))] ds. (4.8)

Note that the right hand side in (4.8) is ω-periodic due to the periodicity property

of G(t, s). Consider the following convex subset of the the Banach space B=C1[0,ω]:

B= {x∈C1[0, ω], ‖x‖≤ c}, ‖x‖=max {|x(t)|∞, |x′(t)|∞}. (4.9)

Define the operator Γ as:

Γx(t)=

∫

0

ω

G(t, s)[λ2x(s)− f(s, x(s), x′(s))] ds. (4.10)

It is easy to check (by (4.7)) that Γ maps B into itself. In addition Γ is uniformly

bounded and equi-continuous and then due to Ascoli-Arzela theorem it is compact.

Since B is convex set, Γ has a fixed point in B due to the Leray-Schauder fixed point

theorem, that is there exist x∈B such that Γx= x and this is the desired periodic

solution. �
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Corollary 4.4. Assume that f(t, x, x′) is a bounded function, ω-periodic and λω�

2kπ, then the equation

x′′+λ2x= f(t, x, x′),

has a ω-periodic solution.

Using fixed point theorems to establish the existence of non-trivial periodic orbits

has a drawback. In fact, in order to establish the existence of a non-trivial orbit,

one has to prove that the fixed point is non-trivial. One important example of such

systems is the following equation, see [60]

x′′+ ϕ(t) f(x, x′)= 0, (4.11)

where f(0,0)=0. As a matter of fact, for any convex domain Ω including the origin,

the associated operator of the equation has a fixed point (x,x′)=(0,0) in Ω that is a

trivial solution. One method to overcome this situation is to calculate the multiplicity

of the fixed points.

4.2 A solution of Reissig problem

In this section, we give some sufficient conditions for an extension of Reissig equation

(for a review of Reissig equation see [68] and [67])

x(n)+
∑

i=1

n−1

ϕi

(

t, x,	 , x(n−1)
)

x(n−i)+ f(x)= p(t). (4.12)

Note that the above equation is an extension of the following Ezeilo’s equation too:

x′′′+ ax′′+ bx′+ f(x)= p(t).

Lemma 4.5. Assume there exist c > 0 such that ϕi, f , p satisfies the following

conditions:

i. |ϕi(t, u0,	 , un−1)| ≤αi

∏

k
|ui|βk(i) where βk(i)≥ 0 and

∑

k
βk(i)= 1 for any

t∈ [0, ω] where |ui| ≤ c,
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ii. |f(u)|< γ |u| for |u| ≤ c and γ <
1

3ωmax{1, ωn−1} ,

iii. |p(t)| ≤ k, t∈ [0, ω].

Then equation (4.12) has a solution that satisfies the boundary condition

x(i)(0)+x(i)(ω)= 0, i=0	 , n− 1. (4.13)

Proof. We use the Green function of the problem x(n) = δ(t − s) with boundary

conditions (4.13) as follows, see [1] as

G(t, s)=

{

∑

ai t
n−i 0≤ t≤ s≤ω

∑

bi t
n−i 0≤ s≤ t≤ω . (4.14)

It turns out that

|a1|= |b1|= 1

2(n− 1)!
, |ai|, |bi| ≤ max {1, ωi−1}

(n− i)! , i=2,	 , n.

Define the following bounded subset of Cn[0, ω]:

X =
{

x∈Cn[0, ω];
∣

∣x(i)(t)
∣

∣

ω
≤ c, i=0,	 , n− 1

}

, (4.15)

where |u(t)|ω=maxt∈[0,ω] |u(t)| and ‖x‖=maxi
{∣

∣x(i)(t)
∣

∣

ω

}

. Now define the opera-

tors Γ=
(

Γ(i)
)

on X for i=0 to n− 1 as follows:

Γ(i)(x)(t)=

∫

0

ω

G(i)(t, s)g[s, x(s)] ds,

where g[t, x] = p(t)− f(x)−∑
i=1
n−1

ϕi

(

t, x,	 , x(n−1)
)

x(n−i) and

G(i)(t, s)=
∂iG

∂ti
(t, s).

Now we obtain the norm of Γ(i). Simple calculation shows

∫

0

ω
∣

∣G(i)(t, s)
∣

∣≤ 3ωmax {1, ωn−i−1},

and hence we have:

∣

∣Γ(i)(x)
∣

∣

ω
≤
∫

0

ω
∣

∣G(i)(t, s)
∣

∣ |g[s, x(s)]|ω ds≤ 3Mωmax {1, ωn−i−1},
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where M = |g |ω. Let us find a bound for M .

|g |ω≤ k+ γc+
∑

i

∑

k

αi βk(i)
∣

∣x(i)
∣

∣

ω

∣

∣x(k)
∣

∣

ω
≤ k+ γc+

nα

2
c2,

where α=max {αi}. The above calculation implies that

‖Γ(x)‖≤ 3
(

k+ γc+
nα

2
c2
)

ωmax {1, ωn−1}.

In order that Γ maps X into itself, it should satisfy the following inequality:

nα

2
c2+(γ − µ) c+ k ≤ 0, µ=

1

3ωmax {1, ωn−1} . (4.16)

If we assume γ < µ and k < (γ − µ)2

2nα
, then the above inequality has a positive root c.

Therefore Γmaps B into itself. On the other hand, Γ(i) are equi-continuous, since

G is uniformly continuous with respect to t and it is equi-bounded in subsets of B.

Ascoli-Arzela theorem then guarantees that Γ(i) are completely continuous. Now

Schauder fixed point implies the existence of a solution in B and then Γ(x)=x that

is the solution of (4.12) with boundary conditions (4.13). �

Theorem 4.6. In addition to assumption in the above lemma, assume the following

parity conditions

i. p, ϕi are 2ω-periodic functions such that p(t−ω)=−p(t),

ii. ϕi

(

t−ω,−x,	 ,−x(n−1)
)

= ϕi

(

t, x,	 , x(n−1)
)

,

iii. f(−x)=−f(x),

then equation (4.12) has a 2ω-periodic solution.

Proof. Define the extension

z(t)=

{

x(t) 0≤ t≤ω
−x(t−ω) ω ≤ t≤ 2ω

,

and then observe that z ∈Cn[0, 2ω] and z(i)(0)= z(i)(2ω) for i=0,	 , n− 1. �
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4.3 Periodic solutions for third order systems(I)

For planar systems, the Poincare-Bendixon theorem is extensively in use since in

this case the ω-limit set of trajectories consists only equilibrium points and cycles

(homoclinic and hetroclinic orbits). In this section, we present a method to establish

the existence of periodic solutions for nonlinear third order equations. It is a possible

generalization of the works of M. Berger [5] and A. Lazer [46] for non-dissipative

second order systems and of B. Mehri and H. Emamirad [34] for dissipative systems

for odd dimensional spaces. We use certain parity condition in this section that we

will relax in the subsequent section.

Consider the following equation:

x′′′=h(x, x′, x′′). (4.17)

Lemma 4.7. Assume that there exist a, b, λ> 0 such that

M ≤ bλ3

3π
, (4.18)

where M =Max|λ2x′−h(x, x′, x′′)| on the following subset of C2[0, 3π/2λ]:

B=

{

x∈C2

[

0,
3π
2λ

]

, |x|∞≤ a+2b, |x′|∞≤ 2λb, |x′′|∞≤ 2λ2 b

}

. (4.19)

Then there exist π/2λ<T < 3π/2λ such that x′(0)=x′(T )= 0.

Proof. Define the operator Γ on B as follows:

Γ(x)(t)= a+ b cos (λt)+ λ−2

∫

0

t

(1− cosλ(t− s))[λ2x′−h] ds.

Under the condition (4.18) it implies that Γ maps B into itself and also that Γ is

compact, then there exist a solution x(t) that can be extended on [0,3π/2λ]. On the

other hand

x′(π/2λ)=−λb+λ−1

∫

0

π/2λ

cos (λs)[λ2x′−h] ds< 0,

x′(3π/2λ)= λb−λ−1

∫

0

3π/2λ

cos (λs)[λ2x′− h] ds> 0.
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This complete the proof. �

Theorem 4.8. Under the above setting, assume h satisfies the following parity

condition

h(x,−x′, x′′)=−h(x, x′, x′′),

then equation (4.17) has a 2T-periodic solution ϕ(t) such that

∫

0

2T

ϕ(t) dt=0. (4.20)

Proof. Using the above lemma, there exist T such that x′(0) = x′(T ) = 0. Extend

the solution on [0, 2T ] as

ϕ(t)=

{

x(t) 0≤ t≤T
−x(2T − t) T ≤ t≤ 2T

,

It is easily verified that ϕ(t) is a periodic solution of (4.17) satisfying (4.20). �

As we have seen in the above, for the existence of T such that x satisfies the

condition x′(0)=x′(T )=0, we have used only the simple version of the intermediate

value theorem. In the general case when x ∈R
n, we have to use a degree theoretic

argument. Let x in (4.17) belongs to R
n for n an odd integer. We need the following

fact.

Proposition 4.9. Assume D ⊂ R
n is an open bounded set and f , g: D̄→ R

n are

continuous maps such that 0∈f(∂D) and ‖f(z)‖> ‖g(z)‖ for z ∈ ∂D, then

deg (f ,D, 0)=deg (f + g,D, 0).

The proof is straightforward by defining the homotopy h(t)= f + tg.

Theorem 4.10. Consider the system

x′′′+h(x, x′, x′′)= 0, x∈Rn.

If there exist a positive diagonal matrix Λ=diag(λi) and a, b>0 such that λm/λM ≥
2/3 and

M ≤ λm
3 b

3π
min { sin (πλm/2λM), |sin (3πλm/2λM)|},
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where λm, λM are minimum and maximum of λi in Λ and M = ‖Λ2x′ − h‖ in B.

Then there exist T such that x′(T )= 0.

For the scalar case, x∈R, some examples are simulated numerically in previous

references to verify the obtained results.

Proof. Define the operator Γ on B as

Γ(x)(t)=C1+ cos (λt)C2+Λ−2

∫

0

t

(1− cosΛ(t− s))[Λ2x′−h] ds,

where |C1|∞=a, |C2|∞= b and conclude that x(t) can be extended [0,3π/2λM]. Now

x′(t)=−Λ sin (Λt)C2+Λ−1

∫

0

t

sinΛ(t− s)[Λ2x′− h] ds.

Define maps

f(t, C2)=−Λ sin (Λt)C2,

g(t, C2)=Λ−1

∫

0

t

sinΛ(t− s)[Λ2x′−h] ds.

Since

|f(π/2λM , C2)|∞≥ |g(π/2λM , C2)|∞,

then since the space is of odd dimension, using the above proposition to conclude:

deg (f(π/2λM)+ g(π/2λM),Ω, 0)=deg (f(π/2λM),Ω, 0)=−1

where Ω= {C, |C |∞<b}. Similarly we have

|f(3π/2λM , C2)|∞≥ |g(3π/2λM , C2)|∞,

and then

deg (f(3π/2λM)+ g(3π/2λM),Ω, 0)= deg (f(3π/2λM),Ω, 0)=1.

By the invariance of degree under continuous homotopy we conclude that there exist

C, |C |∞=b and T ∈(π/2λM ,3π/2λM) such that (f+ g)(T ,C)=0 and this completes

the proof. �
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Now the existence of a periodic solution can be established by the aid of parity

argument as the same we presented for the scalar equation.

4.4 Periodic solutions for third order systems(II)

This section generalizes the previous works of the author for third order systems, see

[59]. Consider the following system as a one parameter family of systems of ε:

x′′′+Λ2 x′= εf(x, x′, x′′), x∈Rn (4.21)

where Λ= diag(λi) with λi> 0, rational. The solution of (4.21) can be written as

x(t, p, ε)=A+ cos (Λt)B+ sin (Λt)C + εΛ−2

∫

0

t

(Id− cosΛ(t− s))f [s, p, ε] ds,

p denotes the initial vector of the system and

f [s, p, ε] = f(x(s, p, ε), x′(s, p, ε), x′′(s, p, ε)).

The necessary and sufficient condition for the existence of a ω-periodic solution for

(4.21) is the existence of p such that for i=0, 1, 2 we have

x(i)(ω, p, ε)−x(i)(0, p, ε)= 0. (4.22)

We can use the implicit function theorem here for sufficiently small ε as follows. Let

us define ui as follows

ui(ω, p, ε)=x(i)(ω, p, ε)− x(i)(0, p, ε), i=0, 1, 2,

and denote U(ω, p, ε) = (ui(ω, p, ε)), i = 0, 1, 2. Choose λ such that λ.λi ∈N for

i= 1,	 , n that is possible according to the fact that λi are rational. Now consider

ω=2πλ+ ετ where in general τ = τ(ε). Therefore we obtain

u0= ε τ ΛC + εΛ−2

∫

0

2πλ

(Id− cos (Λ s)) f [s, p] ds+ o(ε),

u1=−ετ Λ2B − εΛ−1

∫

0

2πλ

sin (Λ s) f [s, p]ds+ o(ε),

u2=−ε τ Λ3C + ε

∫

0

2πλ

cos (Λ s)f [s, p] ds+ o(ε),
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where f [s, p]=f(x0(s, p),x0
′ (s, p), x0

′′(s, p)) and x0(t, p)=A+cos (Λt)B+ sin(Λt)C.

Define V0=(v0, v1, v2) as follows:

v0(A,B,C, τ)= τ Λ3C +

∫

0

2πλ

(Id− cos (Λ s)) f [s, p]ds,

v1(A,B,C, τ)=−τ Λ3B −
∫

0

2πλ

sin (Λs) f [s, p]ds, (4.23)

v2(A,B,C, τ )=−τ Λ3C +

∫

0

2πλ

cos (Λ s)f [s, p] ds,

Hence we have

Λ2U(ω, p, ε)= εV0+ o(ε).

Now, the existence of a ω-periodic solution for (4.21) reduces to the the existence

of p such that V (ε, p, ε)=0 for V = ε−1Λ2U . Note that V (ω, p, ε)=V0(τ , p)+ o(1).

By implicit function theorem, if there exist (τ0, A0, B0, C0) such that V0(τ0, p0) = 0

and furthermore JV0(τ0, p0), the Jacobian of V0 at (τ0, p0) is nonzero, then there exist

ε0> 0 such that for |ε|<ε0 there exist continuous functions τ = τ (ε) and A=A(ε),

B=B(ε), C=C(ε) such that V (ω(ε), p(ε))=0. This argument proves the following

simple theorem.

Theorem 4.11. Assume following conditions hold:

i. there exist (A0, B0, C0)� 0 and τ0 such that V0(A0, B0, C0, τ0)= 0,

ii. the Jacobian of V0 with respect to A0, B0, C0, τ0 is nonzero.

Then there exist σ0 > 0 such that for all |σ | < σ0 the system (4.21) has a periodic

solution.

Remark 4.12. For the following equation

L(x)= gσ(x, x
′,
 , x(2n)), (4.24)

where

L(x)=x(2n+1)+
∑

i=1

n

αi x
(2(n−i)+1),
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let us assume that the eigenvalues of L are 2n distinct pure imaginary ±i λ1,
 ,±i λn
and furthermore λi/λj is rational for every 1≤ i, j ≤ n. Then equation (4.24) can

be rewritten as the following third order system:

xk
′′′=−λ12 xk′ + δ xk+1

′ , k=1,
 , n− 1,

xn
′′′=−λn2 xn′ +

1

δn
gσ

where σ= δn+1 and then we can apply the above theorem.

The above theorem gives a sufficient condition for the existence of periodic solu-

tion for the small parameter perturbations of a linear system. Obviously, the main

job here, is to extend the solution to ε=1. We try to do that via geometric consid-

erations and topological degree.

Remark 4.13. For simplicity, let us consider only the scalar case when λ= 1 and

C = 0. Note that C = 0 is justifiable because x′(t) should change the sign in order

that a periodic orbit exists. The set of equations in this case reduces to the equation

for p=(a, b, τ):

V0(p)= 0, (4.25)

where V0=(v0, v1, v2) defined below:

v0(p)= τb+

∫

0

2π

sin (s) f [s, a, b]ds,

v1(p)=

∫

0

2π

cos (s) f [s, a, b] ds, (4.26)

v2(p)=

∫

0

2π

f [s, a, b]ds.

Through simple calculations, the condition of non-zero Jacobian is equivalent to b� 0

and
∫

0

2π

fx
′ds
∫

0

2π

cos (s)ηds−
∫

0

2π

cos (s)fx
′ ds
∫

0

2π

ηds� 0, (4.27)

where

η= fx
′ cos (s)− fx′

′ sin (s)− fx′′

′ cos (s).
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Now theorem (4.11) is equivalent to the following.

Theorem 4.14. For V0 = (v0, v1, v2) defined in (4.25), assume there are a0, b0, τ0

such that V0(p0)=0 and the condition (4.27) holds, then there exist σ0> 0 such that

for all |σ | < σ0 there are γ(σ) = (a(σ), b(σ), τ(σ)) that satisfy U(γ(σ), σ) = 0 and

γ(σ) converges to γ0=(a0, b0, 0) when σ→ 0.

4.4.1 Topological considerations

Note that every solution of equations (4.25) corresponds to a point inR
3 that in turn

corresponds to a periodic orbit. When ε varies in (4.21), each point makes a curve

γ(ε) inR
3 such that each point on γ corresponds to a periodic solution. The solution

of V0(p)=0 with zero Jacobian also corresponds to a periodic orbit and we call them

the zero periodic orbits. Following is a simple fact regarding the solution set γ(ε).

Proposition 4.15. For every solution of (4.21), there is ε0>0 such that for |ε|<ε0
the path γ(ε) is connected without any bifurcation.

Proof. For a small neighborhood Bδ(γ0) of γ0 and p∈Bδ(γ0), consider the map

ϕ(p, ε)= p− JV0

−1(γ0)V (p, ε).

Since V (p, ε) is C1 with respect to ε, || V (p, ε)−V0(p, ε)|| is sufficiently small in C1

topology for ε small. Therefore || ϕ′||≤λ< 1. Then ϕ is a contraction mapping and

then has a unique fixed point in Bδ that is denoted by γ(ε). Now consider ϕ as a

parameter family functions of ε as ϕ= ϕ(p, ε) where p∈Bδ. We have

|| γ(ε)− γ(0)|| ≤ 1
1− λ || ϕ(γ(ε), ε)− ϕ(γ(0), 0)|| (4.28)

but ϕ(p, ε) is continuous with respect to ε, then γ(ε) is continuous and continuously

converges to γ(0). �

Proposition 4.16. The solutions of (4.25), (4.27) occur in pair, that is, if (a, b)

is a solution then (a,−b) is another one. Furthermore, the pair solutions rest on the

same orbit and their degree are opposite.
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Proof. The integrals in the condition V0(p) = 0 holds equally in the range (kπ,

(k+2)π) and in particular in the range (π, 3π). Change s to π+ s in V0 gives the

result. It is also obvious that for ε = 0 we have x(0) = a + b, x(π) = a − b so they

correspond to the same periodic orbit. Their Jacobian signs are in opposite because:

JV0(a, b, τ )= b (
∂ v1(0)
∂ a

∂ v2(0)
∂ b

− ∂ v1(0)
∂b

∂ v2(0)
∂ a

)

It is easy to verify that the term in the parenthesis is even with respect to b, so the

Jacobian sign is the same as the sign of b and this completes the proof. �

Let P denote the set of all solutions of (4.25), (4.27). It is called the set of

non-critical orbits. Note that the set is finite in any closed bounded domain. In

fact, P consists of all periodic solutions for ε= 0 such that they survive under the

deformation with respect to ε≪ 1. We can classify non-critical orbits according to

the following definition.

Definition 4.17. The connected path γp(ε) started at p ∈ P is called a positive

branch and denoted by γp
+ if JV0(p)>0. The negative branch denoted by γp

− is defined

similarly when JV0(p)< 0. Q denotes the set of all isolated solutions of V0= 0 with

zero Jacobian. We call the path started at a q∈Q the zero branch and denote it by γq.

We can prove now the following proposition using Brouwer degree.

Proposition 4.18. P contains only isolated points, that is for each p ∈ P there is

an open bounded neighborhood Ωp of p such that the Brouwer degree of V (ε) remains

constant on Ωp for small values of ε.

Proof. By the finiteness of the solutions (4.25)-(4.27) in a bounded domain, they

are isolated (using the inverse function theorem). Thus, for an open bounded neigh-

borhood Ωp of p, we can define the degree for V0 as:

deg [V0(p),Ωp, 0]= sign(JV0(p)). (4.29)

By the homotopy invariance property of topological degree we have

deg[V (p, ε),Ωp, 0]=deg [V0(p),Ωp, 0]. (4.30)

�
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Definition 4.19. For each p∈P define the following index:

i(V (p, ε))= deg [V (p, ε),Ωp, 0].

The fact that the above index is preserved under small deformations is now clear

by equation (4.30). In order to extend γp
+, γp

− with respect to ε ∈ [0, 1], we need to

assume that for any ε ∈ [0, 1], the periodic solutions remain bounded that is, there

exist M > 0 such that

‖x‖ω=max |x(t)|ω≤M.

From a geometrical point of view, the unperturbed periodic orbits for ε = 0 in

(4.21) are deformed into the periodic orbits for ε � 0. For ε sufficiently small, this

deformation defines a homeomorphism due to the proposition (4.15). For any p, the

degree of V (p, ε) is changed only if some 0-point appear in ∂Ωp, the boundary of Ωp.

If γp is isolated in Ωp, then they can be extended further with respect to ε provided

that no other curve γp ′ originated at some p′ touches ∂Ωp. But if γp ′ touches Ωp

for any small neighborhood tube Ωp of γp, then γp and γp′ have to meet at some

point for some ε. We call this point a resolving point since the branches resolve in

each other and form a zero or a critical branch γq. This point is already a solution

of the equation V (q, ε)=0 but with zero index. Note that γq branches could not be

extended in general. As a simple result of the homotopy invariance property, for a

resolving point, the sum of indexes coming in the point must be equal to the indices

going out the point. In fact if q is a resolving point at ε1, since the periodic orbits

are bounded by the assumption, we can define a degree for the q and this degree is

constant for small changes in (ε1− δ, ε1 + δ) for sufficiently small δ > 0. Therefore

the indices in (ε1− δ, ε1) is equal with indices in (ε1, ε1+ δ). Thus, a path that end

in any such points may not be extended anymore and this cancels the possibility

of increasing ε in (4.21). If the algebraic sum of the outgoing indices is nonzero

then there would be one outgoing branch with the nonzero index. It is possible also

that some zero branches goes out from the resolving point. Since each point in the

curve corresponds to a periodic orbit, the argument shows that how periodic orbits

resolve into each other. If resolving occurs for two branches in a same orbit, then

the corresponding orbit shrinks into a point with zero index.
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Now, we discuss about the transversality of the resolving branches. According to

the condition V (γp(ε), ε)= 0 for the curve γp(ε) we can write

dγp(ε)

dε
=−JV−1(γp(ε), ε)

∂V

∂ε
(γp(ε), ε).

If two curves γp
+, γp′

− resolve into each other at ε = ε1 then for the point γp
+(ε1) =

γp′

−(ε1)= q, we have

JV (q, ε1)= JV (q, ε1)= 0.

If ∂V

∂ε
(q, ε) � 0, that geometrically means γp

+, γp′

− are not horizontal at q for ε = ε1

then the branches γp
+, γp′

− meet each other vertically, since

∣

∣

∣

∣

∣

dγp
+(ε)

dε

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

dγp′

−(ε)

dε

∣

∣

∣

∣

∣

=∞.

Their signs are opposite according to the different Jacobian signs for ε1−δ for δ≪1.

A branching or bifurcation point is a point from which two or more branches

come out. This is the reverse of the resolving point. Geometrically, it is equivalent

to the appearance of a new periodic orbit. A similar transversality condition to one

stated above holds for a branching point. The fundamental fact about the periodic

orbits is that they disappear if and only if:

1. they degenerate into a point with zero degree

2. they go to infinity for finite values of ε and

3. they resolve into each other and making critical orbits.

In sequel, we will state a theorem that guarantees the possibility of extension of

γp(ε) to ε=1. We present the theorem for a scalar equation. Consider the following

scalar equation:

x′′′+ f(x, x′, x′′)= 0 (4.31)

The existence of a periodic orbit for (4.31) is equivalent to the existence of a solution

for the following system when ε=1:

x′′′+ x′= ε(x′− f(x, x′, x′′)) (4.32)
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We consider (4.32) as a parametric equation depending on ε for ε ∈ [0, 1]. Denote

x′− f = g and rewrite the solution of the equation (4.32) as follows:

x(ε; a, b, t)= a+ b cos (t)+ ε

∫

0

t

(1− cos (t− s)) g(s, ε) ds

where g(s, ε)= g(xε(s), xε
′(s), xε

′′(s)). Let us denote the mapping F : [0, 1]×R
3→R

3

as

F (ε; a, b, ω)=
(

x(i)(ε; a, b, ω)− x(i)(ε; a, b, 0)
)

, i=0, 1, 2

where as before we consider ω=2π+ ετ . Simple calculation gives the following set

of equations:
∫

0

2π

f(x0(s), x0
′ (s), x0

′′(s)) ds=0 (4.33)

∫

0

2π

cos (s) f(x0(s), x0
′ (s), x0

′′(s)) ds=0 (4.34)

and the following inequality that corresponds to JF(0; a, b, τ)� 0

∫

0

2π ∫

0

2π

cos (s){h(s) fx(u)− fx(s)h(u)}dsd u� 0 (4.35)

where

h(s)= cos (s) fx(s)− sin (s) fx′(s)− cos (s)fx′′(s)

and

fx(s)=
∂

∂x
f(x0(s), x0

′ (s), x0
′′(s)),

where

x0(s)= a+ b cos (s), x0
′ (s)=−b sin (s), x0′′(s)=−b cos (s).

Similarly fx′, fx′′ are defined. The solution for τ is obtained as follows:

∫

0

2π

sin (s) f(x0(s), x0
′ (s), x0

′′(s)) ds=π+ bτ .

Theorem 4.20. Assume that equation (4.31) has no critical point other than the

origin and that there exist a smooth closed surface Γ such that for any (x1, x2, x3)∈Γ
and ε∈ (0, 1] it satisfy the following inequality:

∇Γ(x1, x2, x3).(x2, x3,−(1− ε)x2− εf(x1, x2, x3))< 0 (4.36)
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In addition, assume that equations (4.33),(4.34) has 4k + 2 number of solutions

inside Γ such that for them the relation (4.35) holds. Then the equation (4.31) has

at least one periodic solution.

The proof rests on the extendability of the solution set (a(ε), b(ε), τ(ε)) for ε=1,

that corresponds to the survive of periodic orbits. In fact, we can consider the smooth

curve

γ(ε)= (a(ε), b(ε), τ(ε)), ε∈ [0, ε0)

for each solution of the above conditions. To each curve is assigned an index that

is the sign of the Jacobian or equivalently the Brouwer index of each solution. The

extendability of curves results from the boundedness of the solution that is guaran-

teed by the inequality (4.36) and the fact that the solution set contains odd number

of pairs and also from the fact that the origin is the only stationary point of the

equation. The inequality (4.36) guarantees that orbits remain inside Γ and also that

no periodic orbit enters inside Γ from infinity.

Proof. The condition (4.36) guarantees that the solutions originating inside Γ

remain always inside and that no closed orbit originating outside could enter Γ.

Since Γ does not include any periodic orbit, then since the number of periodic

orbits inside Γ is odd, then the degree of F is odd and constant for ε ∈ (0, 1],

that is some branches γp(ε) could be extended to ε=1. �

It is possible also to impose other conditions for the extendability of the periodic

orbits. One alternative condition is obtained by rewriting the equation (4.32) as

follows:










x1
′ = x2,

x2
′ = x3= x1,

x3
′ =−(1− 2ε)x2− εf(x1, x2, x3− x1)

Now define Γ as

Γ(x1, x2, x3)=
1
2
‖x‖2−R=0.

For the extendability one can impose the following condition on f :

x3(2x2− f(x1, x2, x3−x1))< 0.
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Chapter 5

Fully non-linear equations

In this chapter we study non-linear elliptic and evolution equations and define a

degree for fully non-linear parabolic equations. The degree for fully nonlinear elliptic

equation is not novel, in fact Y. Y. Li defined a degree for fully nonlinear second order

uniformly elliptic equations [48] using the degree that is developed for Fredholm

operators by Fitzpatrick [38]. I. V. Skrypnik [74] constructed a degree for fully

nonlinear uniformly elliptic PDE’s by the aid of degree for (S)+ maps. In fact,

for every uniformly elliptic equation, it is possible to define an operator equation

consisting of (S)+ maps. We generalize these results for the parameter dependent

family of elliptic operator. In particular we use these result to define a degree for

fully non-linear parabolic equations.

It is very well known that the non-linear elliptic equations satisfying the com-

plementing conditions (Shapiro condition) can be written as an operator equation

of the type quasi-linear Fredholm map, see [38]. On the other hand, Fredholm maps

with index 0 can be written as the compact perturbation of homeomorphisms and

then having Schauder maps as a subclass. It is possible to define a degree theory

for index 0 Fredholm maps possessing all classical properties of a topological degree

except the homotopy invariance property, see [38],[39].

Since evolution equations can be formulated as (S)+ perturbation of maximal

monotone maps, a degree theory can be defined for non-linear evolution equations

if we could formulate a given nonlinear elliptic equations in terms of (S)+ mappings.
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5.1 From variational method to monotone maps

The reformulation of a functional equation to a minimization problem became the

main subject of the variational method after D. Hilbert’s work on Dirichlet problem.

When A: X → X∗ is a potential map, that is, if there exist a potential ϕ that

A(u)= ϕ′(u) for the Frechet derivative ϕ′, then the solvability of the equation

A(u)= f (5.1)

will reduces to the following minimization problem:

min
u
{ϕ(u)− 〈f , u〉}. (5.2)

The most well-known example is when A is a self-adjoint uniformly elliptic operator

in divergence form:

A(u)=
∑

|α|≤m

(−1)|α|Dαfα(x,D
6mu), (5.3)

where x∈Ω⊂R
n, D6mu= {Dαu, |α| ≤m} and fα are

fα=
∂F

∂ (Dαu)
,

for some smooth function F (x,D6mu). Here we consider the map A defined on the

space X 6 W0
m,p(Ω), that is A:W0

m,p(Ω)→ (W0
m,p(Ω))∗ = W−m,q(Ω) with q the

Holder conjugate of p. Recall that the norm of W−m,q(Ω) is defined as

‖u‖W−m,q= sup
v∈W0

m,p(Ω)

1
‖v‖W0

m,p

∫

Ω
u v. (5.4)

In this case the potential ϕ is defined as

ϕ(u)=

∫

Ω
F (x,D6mu(x)) dx. (5.5)

In fact when u∈W0
m,p(Ω) the Euler-Lagrange equation of the minimization problem

min
u∈W0

m,p(Ω)

∫

Ω
F (x,D6mu(x))dx− 〈f , u〉 (5.6)

has the form A(u) = f . In the above case, the solvability of the equation (5.1) is

established by the following standard theorem:
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Theorem 5.1. Assume X is a reflexive Banach space, ϕ: X → R is a weakly

lower semi-continuous function and bounded below by ϕ0. If ϕ is coercive, that is

limϕ(x)→∞ for ‖x‖→∞, then ϕ attains its infimum at a point u∈X. Furthermore

u is the solution of equation (5.1).

In the above theorem, thatX is a reflexive Banach space plays an important role,

since according to the coercivity condition the minimizing sequence is bounded and

then weakly compact. A sufficient condition for the weak lower semi-continuity of

ϕ is given in the following Proposition.

Proposition 5.2. If ϕ: X → R is a continuous convex function then ϕ is weakly

lower semi-continuous.

The convexity of ϕ is guaranteed by the Theorem below, see for example [69].

Theorem 5.3. Let ϕ: X → R be a C1 function, where X is a Banach space. ϕ′:

X→X∗, the Frechet derivative of ϕ is monotone if and only if ϕ is convex.

Therefore if the map A in (5.3) is monotone, that is if

∑

|α|≤m

∫

Ω
[fα(x,D

6mu(x))− fα(x,D6mv(x))] [Dαu(x)−Dαv(x)]≥ 0, (5.7)

then ϕ in (5.5) is convex. In order to have (5.7), we restrict that fα satisfy the

following inequality for any pair of vectors (ξ), (η):

[fα(x, ξ)− fα(x, η)](ξα− ηα)≥ 0, |α| ≤m. (5.8)

Under the above condition, ϕ is convex. The assumption on the coercivity of ϕ can

not be removed in general. We have the following proposition.

Proposition 5.4. If A: X → X∗ is a continuous potential map that satisfies the

coercivity condition in the following sense

〈Au, u〉
‖u‖ →∞, ‖u‖→∞, (5.9)

and the potential ϕ of A is convex, then

|ϕ(u)|
‖u‖ →∞, ‖u‖→∞. (5.10)
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Proof. For some τ ∈ (1/2, 1) we can write

ϕ(u)− ϕ(0)=
∫

0

1

〈A(tu) , u〉dt=
∫

0

1/2

〈A(tu) , u〉 dt+ 1
2
〈A(τu), u〉,

Since ϕ is convex, then A is monotone and

〈A(u), u〉≥ 〈A(0), u〉, ∀u∈X.

Therefore

ϕ(u)≥ ϕ(0)+ 1
2
〈A(0), u〉+ 1

2τ
〈A(τu), τu〉, τ ∈ (1

2
, 1)

and this completes the proof. �

In order to justify that ϕ in (5.5) is coercive, we assume the following ellipticity

condition for A in (5.3)

∑

|α|=m

fα(x, ξ)ξα≥ c |ξm|p, c > 0, p > 1, (5.11)

where ξm = (ξα) and |α| =m. Since u ∈W0
m,p(Ω) and Ω is bounded, the norm in

W0
m,p(Ω) is equivalent to

‖u‖m,p
p =C

∫

Ω
|Dmu(x)|p dx.

Use the relation (5.8) to write

〈A(u), u〉≥
∑

|α|≤m−1

∫

Ω
fα(x, 0)D

α u(x) dx+
∑

|α|=m

∫

Ω
fα(x,D

6mu)Dαu(x) dx.

Using (5.11) we have

∑

|α|=m

∫

Ω
fα(x,D

6mu)Dαu(x) dx≥ c‖u‖m,p
p

.

On the other hand, using Hölder inequality we obtain for some C > 0 the following:

∑

|α|≤m−1

∫

Ω
fα(x, 0)D

α u(x) dx≥−C ‖u‖m,p. (5.12)

Since p> 1, the above inequalities prove that A is coercive and then ϕ is coercive.

The continuity of the map A in (5.3) is not trivial and does not follow from simply

the continuity of fα with respect to its arguments. The following proposition set the

conditions under which A is continuous from W0
m,p to W−m,q.
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Proposition 5.5. For A defined in (5.3) the following conditions are sufficient that

A maps W0
m,p continuously into W−m,q:

i. fα(x, ξ) is measurable in x for any ξ and it is continuous in ξ for almost all x.

ii. fα satisfies the following condition for L∞(Ω) functions a, b

fα(x, ξ)≤ a(x)+ b(x) |ξ |r, a, b> 0, r≤ p− 1. (5.13)

Proof. The above two conditions implies that fα are measurable and also fα belong

to Lq(Ω). In fact since u∈W0
m,p then for some C1, C2> 0 we have

∫

Ω
|fα(x,D6mu(x))|q≤C1+C2

∑

|α|≤m

∫

Ω
|Dα(u)|p<∞.

Assume that un→ u in W0
m,p, then

‖A(un)−A(u)‖−m,q= sup
‖v‖m,p=1

〈A(un)−A(u), v〉≤

≤
(

∑

|α|≤m

∫

Ω
|fα(x,D6mun)− fα(x,D6mu)|q

)

1/q

.

To complete the proof we need the following standard result in measure theory. If

un→ u in Lp(Ω), then there exist a sub-sequence unk
such that

1. unk
→ u point-wise a.e. in Ω

2. |unk
|<h, h∈Lp(Ω)

Now we complete the proof of the continuity of A. Since un→u in W0
m,p then there

exist a sub-sequence we denote again by un converging point-wise to u and then by

the continuity of fα with respect to ξ we have

lim
n→∞

|fα(x,D6mun(x))− fα(x,D6mu(x))|→0.

But according to the second condition on fα and the property (2) above we can write

for h∈Wm,p

|fα(x, ξ)(un−u)| ≤|fα(x, ξ)un|+ |fα(x, ξ)u|6 2a(x)+ b(x) |ξ(u)|r+

+b(x)|ξ(un)|r≤ 2a(x)+ b(x)|ξ(u)|r+ b |ξ (h)|r.
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Here for simplicity we used the jet-map ξ to represent D6m as ξ and

fα(x, ξ)(u)= fα(x,D6mu).

Then by dominant convergence theorem

lim
n→∞

∫

Ω
|fα(x, ξ)(un−u)|q dx=

∫

Ω
lim
n→∞

|fα(x, ξ)(un−u)|q dx=0. (5.14)

Therefore A(un)→A(u) in W−m,q(Ω). �

The possibility of variational formulation of equation (5.1) depends on whether

A is a potential operator, that is whether there exist a convex function ϕ such that

A=ϕ′. This question has been answered for a long time. In fact we have the following

theorem, see for example [78].

Theorem 5.6. Assume A:X→X∗ is continuous, then A is a potential operator if

and only if its line integral is independent of integration path.

The line integral for the map A:X→X∗ is defined as follows. If γ: (α, β)→X

is a smooth path, the line integral is defined as:

∫

γ

A(u) du= lim
n→∞

∑

k=1

n

〈A(uk), uk− uk−1〉=
∫

α

β

〈A(γ(t), dγ(t)〉. (5.15)

In particular if γ(t)=u+ t(v− u) for t∈ [0, 1] then

∫

γ

A(u) du=

∫

0

1

〈A(u+ t(v−u)), v−u〉 dt. (5.16)

In the case that A:X→X∗ is Frechet differentiable, the alternative condition is given

in the following theorem.

Theorem 5.7. Assume A:X→X∗ is Frechet differentiable, then A is a potential

operator if and only if for every u, v ,w∈X the following symmetric condition hold:

〈A′(u)(v), w〉= 〈A′(u)(w), v〉, (5.17)

where A′(u) is the Frechet differential of A at u.
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In general, the reduction of functional equations to a minimization problem is

impossible. For example the equation (5.1) when A is not a self-adjoint map cannot

be reduced to a variational problem according to the above theorem. It is also well

known that the equation of the form

div (T (∇u))= f , on Ω,

where T is a vector field not coming from a potential function, can not be reduced to

a variational problem in the classical sense, see [40]. However, recently N. Ghoussoub

[40] defined a type of calculus of variation to reduce equations involving self-dual

operators to a minimization problem. In fact, for the equation −A(u)=∂ϕ(u) when
ϕ is a smooth convex function but A:X→X∗ is not necessary a self-adjoint operator

we can define

I(u)= 〈A(u), u〉+ ϕ(u)+ ϕ∗(−A(u)), (5.18)

where ϕ∗:X∗→R is the Legendre transformation of ϕ that is defined as

ϕ∗(p)= sup
u

{〈p, u〉− ϕ(u)}. (5.19)

By Fenchel duality it turns out that for all u∈X we have

ϕ(u)+ ϕ∗(−A(u))≥ 〈−A(u), u〉,

and I(u)=0 only if−A(u)=∂ϕ(u). Therefore I(u)≥0 and I(u)=0 gives the solution

of the equation −A(u)= ∂ϕ(u).

5.2 Fredholm maps

In this section we briefly review some known results about Fredholm maps that we

will need for our construction of degree for elliptic and parabolic problems.

Definition 5.8. The map F ∈L(X, Y ) for X, Y Banach spaces is called Fredholm

map and we write F ∈Fred(X, Y ) if the following two properties hold:

i. dimker (F )= d<∞,

ii. codimF =dimF/F (X)= d′<∞

The index of F is defined as ind(F )= d− d′.
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5.2.1 Properties of Fredholm maps

5.2.1.1 Analytic index is topological

Recall that if Y ⊂X are two topological spaces, X/Y denote the topological spaces

of equivalent classes x1∼ x2 if x1− x2 ∈ Y and the topology is one that makes the

projection P :X→X/Y continuous. Using the duality relationships between ker (F )

and coker(F ∗), it turns out that F ∗ is Fredholm and ind(F )=−ind(F ∗). The most

important property of the index of a Fredholm map that we need in this chapter is

the following that we give an elementary proof in the appendix.

Theorem 5.9. Assume that Ft for t∈ [0,1] is a continuous family of Fredholm maps

then ind(Ft) is independent of t.

One important class of Fredholm maps is the class of Schauder maps, the compact

perturbations of the identity map. In his works on quasi-linear elliptic equations,

Schauder introduced the theory of such maps. Recall that, according to Schauder

theorem, if K:X→Y is compact then K∗:Y ∗→X∗ is compact that is proved easily

by Ascoli-Arzela theorem. On the other hand, the eigenspace of K associated to any

eigenvalue is a finite dimensional space that is easily follows from Riesz lemma. Using

these facts and the duality between ker (F ) and coker(F ∗) one can show that the

compact vector field Id+K is Fredholm. Define the family Ft= Id+ tK for t∈ [0, 1]

and use the invariance property of Fredholm index to conclude that ind(Id+K)=0.

Later, Leray and Schauder developed a topological degree for such maps in a joint

paper [47]. The most important generalizations in this direction are the degree for the

class of (S)+ developed by F. Browder, [17] and the degree for index zero Fredholm

maps developed by P. M. Fitzpatrick and J, Pejsachowiz [38].

5.2.1.2 Fredholm alternative

Theorem 5.10. Assume F ∈L(X,Y ) then F ∈Fred(X,Y ) if and only if there exist

A∈L(Y ,X) such that AF − Id and FA− Id are compact operators. The index of F

is zero if and only if there exist A ∈ iso(Y , X) such that AF − Id and FA − Id are

compact operators.
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Remark 5.11. In order to define a degree for the map F ∈Fred(X,Y ), one can use

the above theorem to define the map AF = Id+K where A is an isomorphism. Now

we can define the degree of F in the open bounded subset Ω at 0 as

deg (F ,Ω, 0)= degL.S. (Id+K,Ω, 0). (5.20)

This degree is of course dependent on A and since the homotopy class of isomor-

phisms can be trivial (due to Kuiper theorem) then the degree is not invariant under

an arbitrary continuous homotopy.

One corollary of the above theorem is the fact that F +K are Fredholm if F is

Fredholm.

Corollary 5.12. Assume F ∈ Fred(X, Y ) and K: X→ Y is a compact map, then

F +K is a Fredholm map and ind(F )= ind(F +K).

Proof. Since F is Fredholm, there exist A∈L(Y ,X) such that K1=AF − Id and

K2=FA− Id are compact maps. Now for this A we can write

A(F +K)− Id=K1+AK, (5.21)

that is compact. Similarly is (F +K)A− Id is compact that proves F +K ∈Fred(X,
X). Use the homotopy F + tK and conclude ind(F + tK)= ind(F )= ind(F +K). �

5.2.1.3 Existence of parametrix

Using Fredholm alternative, the linear Fredholm maps of index 0 can be transformed

to an isomorphism by adding a finite rank linear continuous map. Now if F (t) is a

continuous family of Fredholm maps on [0, 1], we show that there exist a continuous

family of continuous finite rank maps C(t) that makes F (t) an isomorphism. This is

called parametrix of Fredholm maps F (t). Here we give an elementary proof for the

following parametrix theorem without appealing to any algebraic topological tool.

Theorem 5.13. Assume L: I × X → Y is a continuous map and for any t ∈ I,
Lt ∈ Fred(X, Y ) with ind(Lt) = 0 where Lt(x) = L(t, x). Then there exist a

continuous map C: I ×X→ Y such that for any t ∈ I, Ct is a finite rank map and

Lt+Ct∈ iso(X, Y ).
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In order to prove the theorem (5.13), we need to control the kernel of the family

maps Lt. It is done in the following proposition:

Proposition 5.14. Assume Lt, t ∈ [0, 1] is a continuous family of Fredholm maps

with kerL0=N, then there is a continuous family of maps Ct with finite rank such

that ker (Lt+Ct)=N.

Proof. Let us denote It,ε= (t− ε, t+ ε)∩ I , Nt= ker (Lt), Rt=Lt(X) and Dt the

complement subspace of Nt. By proposition (2.24), for any t ∈ I there exist ε > 0

such that for all s∈ It,ε, Ls∈ iso(Dt,Rt). Since I is compact, it is covered by finitely

many such Itj ,ε and then we define D=∩Dtj. We show D has finite co-dimension.

It is obvious that

codimD= dimX/D=dimspan{X/Dj}<∞. (5.22)

We note that Lt is injective on D. Let N be the complement subspace of D, X =

D ⊕ N and π1, π2 denote the continuous projection on D, N respectively. Define

Ct(x)=−Lt ◦π2(x) and we observe that

(Lt+Ct)(x)=Lt◦π1(x). (5.23)

Since Lt is injective on D we conclude that ker (Lt+Ct) = π2(X) =N . Finally, we

notice that

ind(Lt+Ct)= ind(Lt), (5.24)

because Ct is a compact map. �

Proof. (of theorem 5.13) By the aid of the proposition (5.14), we can assume

that ker Lt =N is fixed and ind(Lt) = 0. For any t ∈ I , there exist ε > 0 such that

for any s∈ It,ε, Ls∈ iso(D,Rt). If we decompose X =D⊕N and Y =Rt⊕Nt
′ then

Ls has the representation Ls = (L11(s) ⊕ 0, L21(s) ⊕ 0). Define the isomorphism

jt,−s = (L11(t) ◦ L11
−1(s) ⊕ 0, −L21(s) ◦ L11

−1(s) ⊕ Id) then jt,−s ◦ Ls = Lt. Let Ct be

a finite rank map such that (Lt + Ct) ∈ iso(X, Y ). Note that Ct ∈ iso(N, Nt
′). It

implies that Ls+ js,−t ◦Ct is an isomorphism where js,−t: =jt,−s
−1 . We observe that

Cs = js,−t ◦ Ct:N →Ns
′ is an isomorphism. Since I is compact, we can proceed in

finitely many steps to construct a continuous finite rank maps of the following form

Ct= jt,−tn◦jtn,−tn−1 ◦	 ◦ jt1 ◦C0. (5.25)
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Define finally Cs= js,−t ◦Ct ◦π2:X→Y . �

Proposition 5.15. Assume Lt is a continuous family of Fredholm maps with index

zero, then there exist a continuous family of isomorphisms At such that At ◦ Lt =

Id−K(t) and Lt◦At= Id−K ′(t) where K,K ′ are compact maps.

Proof. Let Ct be a continuous family of finite rank maps such that Lt+Ct=At is an

isomorphism. It is easily seen that A−t◦Lt and Lt◦A−t are compact perturbations

of the identity map where A−t=At
−1. �

The above proposition holds also when ind(Lt)=n� 0.

Proposition 5.16. Assume Lt ∈L(X, Y ) is a continuous family of maps, then Lt

is a family of Fredholm maps if and only if there exist a continuous family of map

At ∈ L(Y , X) such that At ◦ Lt = Id −Kt and Lt ◦ At = Id −Kt
′ where Kt, Kt

′ are

compact maps.

Proof. Assume Lt is a family of Fredholm map, then their indices are constant. Let

us modify Lt such that N ⊂X is the kernel for any Lt. As we have seen, the index

of the modified map is the same as the index of the original map. As we have seen

before, there exist s > 0 small such that for any 0≤ t < s we have j−t ◦Lt=L0. By

proposition (5.10), there exist A0 such that A0 ◦L0= Id−K0 and L0 ◦A0= Id−K ′.

Define At=A0 ◦ j−t. It is easily seen that Lt◦At= Id−K0. Proceeding this way we

cover I in a finite steps. �

5.2.1.4 Quasi-linear Fredholm maps

Let X, Y be Banach spaces and X � X1 a compact embedding. The map f :

X → Y is quasi-linear Fredholm if f has the representation f(x) = Lx(x) + C(x)

where x→ Lx is continuous and compact from X1 to L(X, Y ) and C is compact.

For example, consider the following quasi-linear equation homogeneous Dirichlet

problem on Ω⊂R
n:

∑

|α|≤2

Aα(x, u,Du)D
αu− g(x, u,Du)= 0.
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where Aα, g are smooth enough. Let X =H2(Ω)∩H0
1(Ω) and Y =L2(Ω). The map

u→Aα(.,u,Du)Dα is continuous and compact, since un⇀Yu then un�
H1

u and then

Aα

(

., un, Dun
)

�

Y
Aα(., u, Du). This implies that Lun

=Aα

(

., un, Dun
)

Dα→Aα(.,

u, Du)Dα = Lu in L(X, Y ). In a similar way, it is clear that g is continuous and

compact fromX to Y . Impose additional conditions on Aα we conclude that the map

Lu(u) is isomorphism and then we can write the equation as u−Lu
−1g[u] = 0 where

g[u]= g(., u,Du). Since g is compact then the equation is written as (Id−K)[u]=0

with K =Lu
−1g compact. Now it is possible to apply the Leray-Schauder degree for

the Schauder map F = Id−K.

Similarly it is possible to rewrite the fully nonlinear elliptic equations (under

suitable boundary conditions) as the Schauder map. First let us define the non-linear

Fredholm maps.

Definition 5.17. Assume f : G ⊂ X → Y is a nonlinear C1 map, we say f is

a nonlinear Fredholm map if ∀x ∈ G, fx
′ ∈ Fred(X, Y ) where fx

′ is the Frechet

derivative. We define ind(f)= ind(fx
′) for some arbitrary x∈G.

Proposition 5.18. The definition ( 5.17) is well-defined.

Proof. Choose an arbitrary x ∈ G, for any y ∈ G let γ: [0, 1]→ G is a path that

γ(0)=x and γ(1)= y. As we have seen in proposition (B.2), ind(fx
′) is constant then

ind(fx
′)= ind(fy

′). �

The deep result in this direction is the existence of a parametrix for the nonlinear

Fredholm map f as follows. The proof of the following theorem can be found in [38].

Theorem 5.19. Assume that X, Y are Banach spaces and f ∈ C1(X, Y ) is a

nonlinear Fredholm map of index 0. There exist a continuous finite rank map C:

X→L(X, Y ) such that fx
′ +Cx

′ ∈ iso(X,Y ) for x∈X.
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5.2.1.5 Fredholm maps and (S)+ maps

Let F : Id−K is a Schauder map defined on the Hilbert spaceH . It is straightforward

to show that the map A:H→H defined as A(u)(ϕ) = (u−K(u), ϕ)H is a map of

class (S)+. According to this observation, the Leray-Schauder degree for F is the

same as the degree for the map A since F [u]= 0 if and only if A(u)= 0 and both F

and A have the same finite rank reductions on the finite dimensional spaces.

If h:H→H is a homeomorphism, then the map G:h+K for K:H→H compact

is a Fredholm map of index 0 and then a degree can be defined for G, see Fitzpatrick

and Pejsachowiz [38],[39]. However, the degree defined is not invariant under the

continuous homotopy (in fact its absolute value is invariant) and it turns out that

it is impossible to have a degree theory for general Fredholm maps satisfying all

classical properties of degree theory.

It is easily seen and it is proved in the following proposition that for “uniformly

elliptic homeomorphisms” that is defined below, the degree defined by Fitzpatrick

and Pejsachowicz is invariant. We have shown in the next section that this case fully

covers the fully nonlinear elliptic equation. This consideration fully covers the work

of Y. Y. Li [48].

Proposition 5.20. Let H be a Hilbert space and h:H→H a linear homeomorphism

with the property

(h(v), v)H ≥ θ ‖v‖2, θ > 0, v ∈H

then the map A=h+K for K:H→H compact, is a map of class (S)+.

Proof. Let vn⇀v and

limsup(A(vn), vn− v)H ≤ 0. (5.26)

Since K is compact then

(K(vn), vn− v)→ 0,

and

limsup (A(vn), vn− v)= limsup (h(vn), vn− v)H = limsup (h(vn− v), vn− v)≥

≥θ limsup ‖vn− v‖2.
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Now the inequality (5.26) implies that vn→ v. �

5.3 Second order elliptic equations

The very well known Fredholm maps with index 0 are isomorphisms. In Chapter(1)

we introduced the continuation method for isomorphisms, however the application

of continuation theorem for partial differential equations are very limited. Let us

present one straightforward result in this direction. First recall the version of global

homeomorphism (Theorem (1.11)) that we have proved in the Appendix. We can use

that result to prove the following theorem. L. Nirenberg [64] proved the existence

of solution through degree theoretic argument for a more general form of equation

(5.27) below. Here we will prove that the associated operator is a homeomorphism.

Theorem 5.21. Let Ω ⊂ R
n is a bounded domain with the smooth boundary and

f(D62u) is C1 with respect to its arguments such that for all u

∣

∣

∣

∣

∂f

∂(Dαu)
(D62u)

∣

∣

∣

∣

≪ 1, |α| ≤ 2. (5.27)

Then the operator G:C0
2,δ(Ω)→C0,δ(Ω) defined as

G(u)=∆u+ f(D62u),

is homeomorphism.

Proof. First we note that ∆: C0
2,δ(Ω)→ C0,δ(Ω) is an isomorphism and therefore

there existM>0 such that ‖∆u‖0,δ≥M ‖u‖2,δ. Define the operator F (u)= f(D2u).

It follows that F is C1 from C0
2,δ(Ω) to C0,δ(Ω) and

F ′(u)(v)=
∑

|α|≤
fα(D

62u)Dαv, fα=
∂f

∂ (Dα u)

According to the condition (5.27), it follows that ‖F ′(u)‖ is sufficiently small for all

u∈C0
2,δ(Ω) and therefore the C1 operator A=∆+F is such that there exist M ′> 0

such that ‖(∆+F ′(u))(v)‖0,δ≥M ′ ‖v‖2,δ. Now the above theorem guarantees that

D+F is homeomorphism. �
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In the above proposition, the condition on the norm of ∂f

∂ (Dαu)
is too restrictive,

however, the condition that the map f(D62u) is compact is more common. In this

case the solution for the equation can be treated by Leray-Schauder degree.

5.3.1 Degree theory for the second order problem

Let Ω⊂R
n be a domain with ∂Ω smooth, n≥2 and f(x,D62u)=0 be an uniformly

elliptic second order equation on Ω where f is sufficiently smooth with respect to its

arguments. Recall that f is uniformly elliptic at u if there exist θ > 0 such that for

ξ � 0 we have
∑

|α|=2

−fα(x,D62u) ξα≥ θ |ξ |2,

where fα=
∂f

∂(Dαu)
. Consider the space X =H2+n0(Ω) ∩H0

1(Ω) where n0≥
[ n

2

]

+ 1

an integer and Y =Hn0(Ω).

Proposition 5.22. The map F :X→Y is bounded.

Proof. Use the compact embedding X�C2,δ(Ω̄) for δ ∈ (0, 1) to conclude that

‖u‖C2(Ω̄)≤M for some M > 0 and then there exist M1> 0 such that ‖F [u]‖C2(Ω̄)≤

M1. This implies in turn that F [u]∈L2(Ω). For the multi-index β with |β |= 1 we

have

DβF [u] = ∂β f(x,D62u)+
∑

|α|≤2

fα(x,D
62u)DβDαu,

where ∂βf(x, D62u) is simply the partial derivative of f with respect to xj with

βj=1. Note that there existMα>0 such that ‖fα(.,D62u)‖C2(Ω̄)≤Mα and therefore

‖F [u]‖H1(Ω)<∞. In the general case, we can use the relationship

ds

dxs
f(u(x))=

∑

aI(u)
(

u(k1)
)

l1
(

u(k2)
)

l2



(

u(km)
)

lm,

where k1 l1+
 +km lm=s and aI(u) are some functions of u. Using Holder inequality

for u∈X, a simple calculation gives the following estimation for 1≤ s≤n0:

‖DsF [u]‖L2≤C1+C2

∑

j=3

2+s

‖Dju‖Lrj
, (5.28)
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where rj=
2s

j − 2
. Using the Nirenberg-Gagliardo inequality

‖Dju‖Lrj
≤C

{

‖D2+n0u‖L2

j−2

n0 ‖u‖
C2(Ω̄)

1− j−2

n0 + ‖u‖C2(Ω̄)

}

, (5.29)

we conclude that ‖DsF [u]‖L2 < ∞. This establishes that F [u] ∈ Y for u ∈ X. In

addition if Ω⊂X is a bounded domain then inequalities (5.28),(5.29) establish that

F [Ω] is bounded in Y . �

For u∈X define the following linear operator Lu:X→Y :

Lu(v)=
∑

|α|≤2

fα(x,D
62u)Dαv, (5.30)

Proposition 5.23. For every u ∈X the linear map Lu:X→ Y is a Fredholm map

of index 0.

Proof. It is easy to verify that Lu for any fixed u ∈X is a linear continuous map

from X to Y . We show that for arbitrary u ∈ X, the map Lu can be written as a

compact perturbation of a homeomorphism. Since f is elliptic, then Lu is elliptic

and we have the following estimate, see [2]:

‖v‖X ≤ c ‖Lu(v)‖Y +C ‖v‖2. (5.31)

For k > 0 sufficiently large define the compact map Ku:X→Y as

(Ku(v), ϕ)Y = k(v, ϕ)2, (5.32)

where k= k(u) and then define

L̃u(v)=Lu(v)+Ku(v). (5.33)

The computation for L̃u(v) gives

(

L̃u(v), L̃u(v)
)

Y
=(Lu(v), Lu(v))Y + k2(v, v)2+2k(Lu(v), v)2. (5.34)

Simple computations shows that for C ′> 0 we have

(Lu(v), v)2+C ′ (v, v)2≥ 0,
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where C ′=C ′(u). We conclude that for C1, C2> 0 we have

∥

∥L̃u(v)
∥

∥

Y
≥C1 ‖Lu(v)‖Y +C2 k‖v‖2.

Substitution this estimate into (5.31) gives

∥

∥L̃u(v)
∥

∥

Y
≥C2 ‖v‖X , (5.35)

that implies L̃u is one to one. Define the homotopy for t∈ [0, 1]

hu(t)= t(−∆+K)∆+(1− t) L̃u (5.36)

In a similar argument, it is seen that ‖hu(t)(v)‖Y ≥ C3‖v‖X. Since hu(1) = −
∆ + Ku is isomorphism from X to Y then hu(0) is isomorphism from X to Y .

L̃u is topological isomorphism by Banach isomorphism theorem. Using Fredholm

alternative theorem Lu= L̃u−Ku is Fredholm of index 0. �

The above proposition guarantees that the map F [u]: X → Y is a nonlinear

Fredholm map with index 0 since for arbitrary u ∈X, Lu the linearization of f at

u is Fredholm with index 0. On the other hand, since L̃u is homeomorphism, then

hu6 F [u] +Ku is a local homeomorphism.

Proposition 5.24. Define A:X→X∗ as

〈A(u), ϕ〉=(F [u], Lu(ϕ)+Ku(ϕ))Y (5.37)

If un⇀u in X and

limsup 〈A(un), un− u〉≤ 0,

then un→ u in X.

Proof. for ξn∈ [0, 1] and vn= un+ ξn(u0−un) we can write

F [un] = f(x,D62u0)+
∑

|α|≤2

fα(x,D
62vn)D

α(un−u)= f(x,D62u0)+Lvn(un−u).

Since Ku is compact and un→u in L2(Ω) then

(f(x,D62uo), Lun
(un−u0)+Kun

(un−u0))Y =(f(x,D62u0), Lun
(un− u0))Y +

+k(f(x,D62u0), un− u0)2→ (f(x,D62u0), Lun
(un− u0))Y .
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Using compact embedding X� Y we obtain

(f(x,D62u0), Lun
(un−u0))Y → (f(x,D62u0), Lu0(un−u0))Y → 0.

Therefore we obtain

〈A(un), un−u〉→ (Lun
(un−u0)+K(un−u0), Lun

(un− u0)+Kun
(un− u0))Y +

+

(

∑

|α|≤2

[fα(x,D
62vn)− fα(x,D62un)]D

α(un− u0), Lun
(un−u0)

)

Y

.

Simple calculations show that

(

∑

|α|≤2

[fα(x,D
62vn)− fα(x,D62un)]D

α(un− u0), Lun
(un−u0)

)

Y

→ 0,

and therefore we obtain

〈A(un), un− u〉→‖Lun
(un− u0)+Kun

(un−u0)‖Y2 .

Since Lun
+ Kun

is homeomorphism from X to Y , then according to the uniform

ellipticity of f we conclude that for some C > 0 we have

‖Lun
(un− u0)+Kun

(un− u0)‖Y ≥C ‖un−u‖X

Therefore 〈A(un), un − u0〉 → 0 if and only if un→ u0 in X and this completes the

proof. �

Proposition 5.25. The map A: X → X∗ defined in (5.37) is bounded and demi-

continuous.

Proof. Clearly for every u ∈ X, the map A(u) is linear and continuous and then

A(u) ∈ X∗. Let D ⊂ X is bounded, in a similar to the proposition (5.22) we can

prove that there exist M > 0 such that ‖Lu(ϕ) + Ku(ϕ)‖Y ≤ M for ϕ ∈ X with

‖ϕ‖≤1 and u∈D. This establishes that there exist C > 0 such that |〈A(u), ϕ〉|≤C
since |〈A(u), ϕ〉| ≤ ‖F [u]‖Y ‖Lu(ϕ) +Ku(ϕ)‖Y . Now using uniformly boundedness

theorem, A(D) is bounded and then A is a bounded map. Now let un→u in X, then

for arbitrary ϕ∈X we can use estimates in the proposition (5.22) to conclude

〈A(un), ϕ〉= (f(x, D62un), Lun
(ϕ) +Kun

(ϕ))Y → (f(x,D62u), Lu(ϕ) +Ku(ϕ))Y =

〈A(u), ϕ〉.

168 Fully non-linear equations



This proves that A is a demi-continuous map. �

Proposition 5.26. Let F (t)[u] = f(t, ., D62 u) be smooth in (t, u) for x ∈X and

t∈ [0, 1] and furthermore there exist θ > 0 such that

∑

|α|=2

−fα(t, x,D62u) ξα≥ θ |ξ |2, ξ ∈Rn−{0}.

Then the operator A: [0, 1]×X→X∗ defined as

〈A(t)(u), v〉= (f(t, x,D62u), Lu(t)(v)+Ku(v))Y ,

where

Lu(t)(v)=
∑

|α|≤2

fα(t, x,D
62u)Dαv,

is a admissible homotopy of class (S)+.

Proof. The proof is straightforward and can be carried completely similar to the

proof of the proposition (5.24). In fact if tn→ t and un⇀u in X then

〈A(tn)(un), un− u〉→‖Lun
(tn)(un− u0)+Kun

(un− u0)‖Y2 . (5.38)

According to the uniformly elliptic condition on f(t, x,D62u), we conclude that for

some C > 0

‖Lun
(tn)(un−u0)+Kun

(un−u0)‖Y ≥C ‖un− u‖X ,

and then the condition

limsup 〈A(tn)(un), un−u〉≤ 0,

implies that un→u. �

5.3.2 Fully nonlinear second order parabolic equations

In Chapter (2) we saw that if A:X→X∗ a continuous map, ϕ:V →X the embedding

of V into X and B: V →X a linear bounded map such thatB∗Aϕ is coercive then

the equation A(u) = f has a solution up to the kernel of B∗, that is there exist

ρ∈Ker(B∗) such that

Au= f + ρ. (5.39)
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Let us consider an example of the above theorem for evolution equations. Let Ω

be an open bounded subset of Rn, Q= [0,∞)×Ω and the space W0,γ
1,m,p(Q) is the

Sobolev space weighted with e−γt and zero on the boundary ∂Q up to order m− 1,

that is Dαu(∂Q)= 0 for |α| ≤m− 1. The norm on W0,γ
1,m,p is

‖u‖1,m,p,γ
p =

∫

Ω

∫

0

∞ ∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

p

e−γt+
∑

|α|=m

∫

Ω

∫

0

∞
|Dα u|p e−γt. (5.40)

It is easy to justify that (5.40) is a norm. In fact we can show there exist C >0 such

that

∫

0

∞
|u|p e−γt≤C

∫

0

∞ ∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

p

e−γt. (5.41)

Since u(0, x)= 0 then
∫

0

∞
d(|u|p e−γt)= 0.

This implies that

∫

0

∞
|u|p−1 sign(u)

∂u

∂t
e−γt=

γ

p

∫

0

∞
|u|p e−γt. (5.42)

But using Holder inequality we can write

∫

0

∞
|u|p−1 sign(u)

∂u

∂t
e−γt≤

(
∫

0

∞
|u|pe−γt

)

1/q
(
∫

0

∞ ∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

p

e−γt

)

1/p
. (5.43)

Therefore we obtain

∫

0

∞
|u|p e−γt≤ pp

γp

∫

0

∞ ∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

p

e−γt.

Now consider the operator At:W0,γ
1,m,p(Q)→Wγ

−1,−m,q(Q) as follow:

At=

∣

∣

∣

∣

∂

∂t

∣

∣

∣

∣

p−2 ∂

∂t
+A,

where A is defined as

A(u)=
∑

|α|,|β |≤m

(−1)αDα(aαβ(x)D
βu).
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Define the linear operator B as

B(u)=
∂u

∂t
e−γt,

and then through a simple calculation we obtain

〈Atϕ(u), B(u)〉=
∫

Ω

∫

0

∞ ∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

p

e−γt +
γ

2
〈A(u), ue−γt〉≥ c‖u‖1,m,p,γ

p

5.3.2.1 Fully nonlinear parabolic equations

In this section we define a degree for the following equation

u′(t)+ f(t, x,D62u)= 0, t∈ (0, T ], (5.44)

for u: [0, t]→X with the condition u(0) = 0. f is smooth in (t, x, u) and for every

t∈ [0, T ] the map f(t, x,D62u) is elliptic with respect to u. By the aid of the degree

that we define in sequel, we are able to establish the existence of the solution as well

as the structure of the possible bifurcation solutions of equation (5.44). The proper

space to work in for the equation (5.44) is

V =H0
1(0, T ,X)= {u: [0, T ]→X, u(0)= 0, u(t), u′(t)∈X},

with the norm

‖u‖V2 =

∫

0

T

‖u(t)‖X2 + ‖u′(t)‖X2 dt<∞.

The continuous pairing of V ∗=H−1(0, T ,X∗) and V is denoted by L , M . Define the

linear operator ∂t:V →V ∗ as

L ∂tu, vM =

∫

0

T

(u′(t), v(t))L2(Ω) dt. (5.45)

Clearly if vn→ v in V then

|L ∂tu,vn−vM |≤
∫

0

T

|(u′(t),vn(t)−v(t))L2(Ω)|dt≤
∫

0

T

‖u′(t)‖L2‖vn(t)−v(t)‖L2≤

(

∫

0

T

‖u′(t)‖L2
2 dt

)

1/2
(

∫

0

T

‖vn(t)− v(t)‖L2
2

)

→ 0.
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We conclude that ∂tu∈V ∗ whenever u∈V . Furthermore, ∂t:V →V ∗ is continuous,

since for un→ u in V we can write

‖∂tun−∂tu‖V ∗= sup
‖ϕn‖=1,ϕn∈V

L ∂tun−∂tu, ϕnM = sup
‖ϕn‖=1,ϕn∈V

∫

0

T

(un
′ (t)−u′(t),

ϕn(t))L2 dt≤

≤ sup
‖ϕn‖=1,ϕn∈V

∫

0

T

‖un′ (t)− u′(t)‖L2 ‖ϕn(t)‖L2≤
(

∫

0

T

‖un′ (t)−u′(t)‖L2
2

)

1/2

→ 0

In addition ∂t is monotone, since

L ∂tu−∂tv,u−vM =
∫

0

T

(u′(t)−v ′(t), u(t)−v(t))L2=‖u(T )−v(T )‖L2
2 − L ∂tu−∂tv,

u− vM ,

and therefore

L ∂tu− ∂t v, u− vM =
1
2
‖u(T )− v(T )‖L2≥ 0. (5.46)

Now since ∂t: V → V ∗ is continuous and monotone we conclude that ∂t is maximal

monotone.

Now, similar to the previous section, we can define a family of (S)+ operators

A(t):X→X∗ for the term f(t, x,D62u), that is

〈A(t)(u), ϕ〉= (f(t, x,D62u(t)), Lu(t)(ϕ)+Ku(t)(ϕ))Y . (5.47)

Proposition 5.27. The operator A:V →V ∗ defined as

LA(u), vM =

∫

0

T

〈A(t)u(t), v(t)〉 dt (5.48)

is a bounded, demi-continuous (S)+ operator.

Proof. Let un→ u in V . Since A(t) is bounded from X to X∗ then using (5.28)

there exist C1, C2> 0 such that for fixed v(t)∈X with ‖v(t)‖X ≤ 1 we have

|〈A(t)un(t), v(t)〉|≤ ‖A(t)un(t)‖X∗≤C1+C2‖un(t)‖X. (5.49)

Since
∫

0

T

C1+C2‖un(t)‖X <∞, (5.50)
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we conclude that

lim LA(un), vM = lim
∫

0

T

〈A(t)un(t), v(t)〉 dt=
∫

0

T

lim 〈A(t)un(t), v(t)〉=

=

∫

0

T

〈A(t)u(t), v(t)〉= LA (u), v(t)M .

This establishes that A: V → V ∗ is demi-continuous. In addition if U is a bounded

subset of V that is
∫

0

T

‖u(t)‖X2 <∞ u∈U , (5.51)

then for v ∈V we can write
∫

0

T

|〈A(t) u(t), v(t)〉| ≤
∫

0

T

‖v(t)‖X ‖A(t) u(t)‖X∗ ≤
(

∫

0

T

‖v(t)‖X2
)

1/2
(

∫

0

T

‖A(t)u(t)‖X∗

2

)

1/2

≤

(

∫

0

T

‖v(t)‖X2
)

1/2
(

∫

0

T

(C1+C2‖u(t)‖X)2
)

1/2

<∞.

This establishes the boundedness of the map A: V → V ∗. In order to prove that A:

V →V ∗ is a map of class (S)+, assume that un⇀u in V and

limsup LAun, un− uM ≤0,
or equivalently

limsup
∫

0

T

〈A(t)un(t), un(t)−u(t)〉≤0.

According to the relation (5.38), we can write

∫

0

T

‖Lun
(t)(un(t)− u0(t))+Kun

(un(t)− u0(t))‖Y2 ≤ 0. (5.52)

According to the uniform ellipticity of f(t, x, D62u), for every t∈ [0, t], there exist

C > 0 such that

‖Lun
(t)(un(t)− u0(t))+Kun

(un(t)− u0(t))‖Y ≥C ‖un(t)− u(t)‖X.

In turn this implies that

limsup
∫

0

T

‖un(t)−u(t)‖2≤ 0, (5.53)

or equivalently un→ u in V . �

Now the map A:∂t+A:V →V ∗ is a map of class (S)+ and therefore a topological

degree can be defined for A.
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Chapter 6

Conclusion

The homotopy class of different types of monotone maps is stable. This is the main

result that the whole of this thesis is based on. Since the homotopy class is stable,

the degree construction for such mappings reduces to Brouwer degree on finite dimen-

sional space. Since a broad class of nonlinear problems (and linear) in functional

analysis, mathematical physics and convex analysis could be formulated in terms of

monotone maps, the existence, multiplicity and bifurcation problems for the equa-

tions in those fields could be studied by the aid of such degree theory.

In this thesis, we studied the different constructions of degree for the class of

monotone maps and generalized it for mappings missing desired continuity properties

that is classically assumed for such mappings. Our construction is based on the direct

use of the finite rank approximation that is originally used in the works of F. Browder

for uniformly convex Banach spaces. The formulation of finite rank approximation

in separable Banach spaces has a simple form that we used it in our study in this

thesis. In addition to giving new proofs for some old theorems using the degree

arguments, we studied variational inequalities (that is crucial in the field of optimal

control theory and mathematical finance) by the aid of topological method and finite

rank approximation method. We have shown that the variational inequality could

be reduced to equations involving monotone maps.

Returning to the applications of degree theory, we could first study an open

problem in the field of mathematical physics, the Doi-Onsager model for liquid

crystals. In spite of the previous works in this field, our approach is mainly based

on the generalization of Leray-Schauder degree. We have shown that the problem,

regardless of the dimension of the embedding space, could be formulated in terms

of degree of a map in a fairly simple way that gives the conditions for bifurcation of

nematic solutions, the structure of the bifurcation and the uniqueness of the isotropic

solution for low temperature of the liquid.
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Traditionally, topological degree was employed to establish the existence of peri-

odic solutions for nonlinear dynamical systems. The formulation of this problem

as an abstract equation results in a fixed point problem that has been extensively

studied by several authors. In our approach to this problem, we considered a one

parameter family of nonlinear dynamical systems (with respect to ε) such that the

existence of periodic solutions for ε=0 is obtained by elementary methods in ODE

and that for sufficiently small ε≪1, is established by the implicit function theorem.

Using results in continuation theorem and degree theory, we have shown that the

periodic solution (under specific conditions) would survive when ε increases to 1.

Since every dynamical system could be reformulated as a one-parameter family of

dynamical systems (in an appropriate way), this method enable us to establish the

sufficient conditions for which the existence of periodic solution for such a systems

can be established.

Fully non-linear uniformly elliptic equations as well as parabolic equations are

studied in the last chapter. We followed here the works of I. Skrypnik to define an

equivalent formulation operator of class (S)+ for uniformly elliptic equations. Using

the construction, we introduced a degree for fully non-linear parabolic equations.

Results obtained in this chapter have immediate consequences for optimal control

of distributed parameter systems governed by evolution equations and also the exis-

tence of periodic solution for partial differential equations.

6.1 Future research

6.1.1 Nonlinear hyperbolic equations

J. Berkovits in [6] proposed a degree for one-dimensional wave equation of the type

utt−uxx+ g(x,D62u)=h, (6.1)

for u=u(t,x) where g is a map of class (S)+. Imposing some condition on the growth

rate of g, he could transform the equation to an equation of class (S)+. In a general

setting, he considered the equation of the type

L(u)+ g(u)=h, (6.2)
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where u belong to some Hilbert space H and L: D(L) → H is a linear map with

the property ker (L) = ker (L∗) and Im(L) is closed. Now for the closed subspace

M =D(L)∩ Im(L), he proved that the solution of the equation (6.2) is equivalent to

Q(u−KQg(u))+Pg(u)= (KQ−P )h, (6.3)

where Q:H→M and P : Id−Q and K=L0
−1 where L0 is the restriction of L to M ,

that is L0:M→M . The degree using Galerkin approximation is defined in [10].

Similar to our method for fully nonlinear parabolic equations, we can consider

the equation of the type

utt+ g(t, x,D62u)=h (6.4)

where g is uniformly elliptic, that is, there exist θ > 0 regardless of t such that

−
∑

|α|=2

∂g

∂Dα
g(t, x, ξ) ξα≥ θ |ξ |2.

However, in this case the map u � utt is not anymore a maximal monotone map.

According to [6], we can consider the spaceM ⊂H and formulate the above problem

as an equation of the type (6.3). By this method we think we can define a degree

for the equation (6.4).

6.1.2 Higher order elliptic and parabolic equations

In the last chapter of this dissertation, we introduced a degree for fully non-linear

second order parabolic equations. The construction is completely possible to be done

for higher order equations. For the equation

ut+f(t, x,D
62mu)= 0, (6.5)

one can consider the space X =H2m+n0(Ω)∩H0
m(Ω) first to define a map

A(t):X→X∗,
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that is of class (S)+ if f is uniformly elliptic (regardless of t). That A is a demi-

continuous and bounded is a subtle fact established through involved computations.

I. Skrypnik [74] did the calculations when f is independent of t. Now, one can

consider the space

V =

{

u, u: [0, T ]→X,u(0)= 0,

∫

0

T

‖u(t)‖X2 +

∫

0

T

‖u ′(t)‖X2 <∞
}

and define the operator A:V →V ∗ as defined in the last chapter to show that A is a

demi-continuous, bounded map of class (S)+. Y.Y. Li [48], using a different method,

proposed a degree for the fully nonlinear second-order elliptic equations and also

an argument for the bifurcation of solutions. I believe that, similar argument can

be employed (through our construction of degree) for fully non-linear higher order

parabolic equation.
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Appendix A

Proposition A.1. Let Ω⊂R
n be an open bounded subset, aαβ smooth functions on

Ω̄ and F :H0
1(Ω)→H−1(Ω)= (H0

1(Ω))∗ as defined below is uniformly elliptic:

F (u)(x)=
∑

|α|,|β |≤1

(−1)|α|Dα(aαβ(x)D
βu), x∈Ω,

that is for any ξ ∈Rn−{0} we have

∑

|α|=2

aαβ(x)ξ
αξβ ≥ c |ξ |2.

Then F is Fredholm of index 0.

Proof. Denote H =H0
1(Ω) and let A:H→H be the map defined as

(A(u), v)H = 〈F (u), v〉.

Define the bounded bilinear form π:H ×H→R defined as π(u, v)= (A(u), v)H. By

Garding inequality we have

π(u, u)+ λ‖u‖0,22 ≥ c‖u‖1,22 .

Define the compact map C:H→H as (C(u), v)H = k(u, v)L2 for k > λ. Therefore

the bounded bilinear form

π̃(u, v)=π(u, v)+ k (u, v)L2,

has the property

π̃(u, u)≥ c‖u‖1,22 +(k− λ) ‖u‖0,22 ≥ c‖u‖1,22 .

Therefore π̃ is coercive that implies Ã=A+C is an isomorphism according to Lax-

Milgram theorem. Hence A= Ã −C is Fredholm with index 0. �

Theorem A.2. Assume that for certain x0 ∈ E the map Dx0f is an isomorphism

and furthermore assume that there exist M > 0 such that ‖Dxf(z)‖≥M ‖z‖ for all

x, z ∈E then f :E→Y is homeomorphism.
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For the proof, we need the following lemma. Let us denote (Dx f)
−1=Dx

−1f :

Lemma A.3. Assume that f : E → Y is a C1 map and for some c > 0 we have

‖Dz
−1f ‖≤ c, z ∈ Y. Furthermore assume that f−1 restricted to B(f(z), ε) is a local

C1 homeomorphism, then for some r > 0 we have:

diam f−1(B(f(z), ε))≤ r.

Proof. For u,v∈B(f(z), ε) we have for w in the segment [u,v] the following relation:

‖f−1(u)− f−1(v)‖≤ 2ε‖Dw f
−1‖≤ 2ε‖Df−1(w)

−1 f ‖≤ 2εc.

�

Proof. (of the theorem) For any x ∈ E, let γ is the path that connect x0 to x.

SinceDx0f is an isomorphism, inequality (1.15) implies thatDxf is an isomorphism.

Choose y arbitrary, then for z=Dx
−1f(y) we have

‖D xf (z)‖≥M ‖z‖⇒‖y‖≥M ‖Dx
−1f (y)‖.

Since y is arbitrary then ‖Dx
−1f ‖ ≤ 1

M
. Therefore for any x the norm of Dx

−1f is

uniformly bounded. First we show that f is surjective. For any y∈Y and y� f(x0),

let ω denote the path that connect f(x0) to y. Let B(f(x0), ε) is a ball such that f−1

is a local homeomorphism. For y1 ∈B(f(x0), ε) ∩ ω, choose the ball B(y1, ε1) such

that f−1 is a local homeomorphism. By the above lemma, the diameter of f−1(B(y1,

ε1)) is less than 2ε1/M and this guarantees that the curve f−1(B(f(x0), ε1) ∩ ω)
remain bounded in E. Since ω is compact then there exist x∈E such that f(x)= y.

Next we show that f is injective. Assume x1, x2 ∈ E such that f(x1) = f(x2). Let

γ0(t),0≤ t≤1 denotes the path that connect x1 and x2, then ω0(t)= f(γ0(t)) is a loop

with the base point y=ω0(0). Define the continuous homotopy ωs(t), 0≤ s≤ 1 such

that ωs(0)=ωs(1)= y and ω0(t)= f(γ0(t)) and ω1(t)= y. We show that γs= f−1(ωs)

is a path that connect x1 to x2. For any t∈ (0, 1), there exist s0= s0(t)> 0 such that

ωs(t) is a smooth path for s ∈ [0, s0) lying in a ball B(ω0(t), ε) homeomorphic to

f−1(B(ω0(t), ε)). By uniform continuity of ‖Dx
−1f ‖ we conclude that γs0 is also a

path that connect x1 to x2. Continuing this to s=1 we conclude that γ1= f−1(ω1)

is a path that connect x1 to x2. But it is impossible since there exist a ball B(y, ε)

that is homeomorphic to f−1(B(y, ε))∋x1. Finally, the continuity of f−1 is obtained

by inverse function theorem and this completes the proof. �
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Theorem A.4. Assume ϕ: Sn→ Sn, then deg (ϕ) = 0 if and only if there exist a

continuous extension A of ϕ on B̄, A: B̄→Sn that A(x)= ϕ(x) for x∈Sn.

Proof. Assume there exist an extension A for ϕ, then define the homotopy ht:

Sn→Sn as follows

ht(x)=A(tx), 0≤ t≤ 1,

then

deg (ϕ)= deg (ht)=deg (h0)= 0.

Now assume deg (ϕ) = 0, we first show that ϕ is trivial homotopy. If there is not

any continuous extension A: B̄→ Sn, then every extension Ã: B̄→Rn+1, Ã |Sn=ϕ,

has a zero point, that is, there is point a∈B such that Ã(a) = 0. Since deg (ϕ)= 0

then there should be even number of zero points in B with alternative index such

that deg (Ã ,Bn+1,0)=0. In below we show how to construct a homotopy to remove

zero points. Choose points α, β ∈ B such that Ã(α) = Ã(β) = 0 and without loss

of generality assume α = (a, 0, 	 0) and β = (b, 0, 	 , 0), b > a and for sufficiently

small ε, deg (Ã ,Bε(α), 0) =−1 and deg (Ã ,Bε(β), 0) = 1. Now Ã ∼ Id− in Bε(α)

and Ã ∼ Id in Bε(β) where Id− = diag(−1, 1, 	 , 1). Let η, ηα, ηβ are partition of

unity subordinate in B−{B̄ε/2(α)∪ B̄ε/2(β)}, Bε(α) and Bε(β) respectively. Define

Ã̃(x) = Ã(x) η(x) + Id−(x − α) ηα(x) + (x − β) ηβ(x) because GL(Rn) has two

contractible components. Obviously Ã̃ ∼ Ã. Define the map f(x1) = Ã̃ (x1, 0,	 , 0)

on the interval (a− ε, b+ ε). Define a homotopy ht(x1)= f(x1) + kt for sufficiently

large k>0 and 0≤ t≤1. This shows that there exist a homotopy for Ã that removes

zero points α, β. Therefor we can remove all zero points for Ã because there are

even numbers of zero points. This shows that every extension of ϕ is homotopic to

a map having no zero point in B and then it is homotopic to a map of B to Sn. �

Theorem A.5. Any integer valued map d1(A, D, y), y � A(∂D) that satisfies

classical properties in ( 1.20) is equivalent to Brouwer degree deg (A,D, y).

In order to prove the theorem we need the following lemma.
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Lemma A.6. Assume that A is a linear map on the ball B̄
ε
(a) for ε> 0 sufficiently

small and d1 is an arbitrary degree satisfies properties ( 1.20). If JA(a)<0 then d1(A,

Bε(a), A(a))=−1.

Proof. First note that

d1(A,Bε(a), A(a))= d1(A,Bε(0), 0),

through considering the homotopy

d1(A,Bε(t), tA(a)),

Therefore without loss of generality we can assume that a=0. Since JA(0)<0, there

is a homotopy from A to Id− on Bε(0) where Id−1 is the identity matrix with −1 on

the first entry. We have then

d1(A,Bε(0), 0)= d1(Id−,Bε(0), 0).

Consider the following map

f : D̄→R
n, f(x1,	 , xn)= (x1(x1− 1), x2,	 , xn)

where D=∪0≤t≤1Bε(t). Obviously f(x)=0 has two solutions x=0, x=(1, 0,	 , 0).

Therefore by the second property we have

d1(f ,D, 0)= d1(f ,Bε(0), 0)+ d1(f ,Bε(1), 0).

But f is homotopic to Id− in Bε(0) and is homotopic to Id in Bε(1) for sufficiently

small ε because

f(x)= fx
′(0)x= Id−x, x∈Bε,

f(x)= fx
′(1)x=x, x∈Bε(1).

Then by the first property we have

d1(f ,D, 0)= d1(Id−,Bε(0), 0)+1

Now consider the homotopy

h: [0, 1]×D→R
n, ht(x)=h(t, x)= (x1(x1− 1)+ t(

1
4
+ ε), x2,	 , xn).
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Obviously

d1(f ,D, 0)= d1(ht, D, 0)= d1(h1, D, 0)=0,

that proves the lemma. �

Proof. (of the theorem) AssumeA∈C1(D)∩C(D̄) andA−1(0)={ai}i=1
n , then by

the third property of the topological degree we can write for sufficiently small ε> 0:

d1(A,D, y)=
∑

i=1

n

d1(A,Bε(ai), y).

But for small ε, we have A(x) =A′(ai)( x− ai) + o(ε) that show A is homotopic to

A′(ai) in Bε(ai). Because ai are regular points, then A′(ai) are homotopic to Id or

Id− and by the above lemma

d1(A,D, y)=deg (A,D, y).

If A is continuous only, by approximating it with a C1 map Ã on D and using the

homotopy invariance property we can write

d1(A,D, y)= d1(Ã ,D, y)=deg (Ã ,D, y)= deg (A,D, y).

�
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Appendix B

For the proofs, the matrix representation of a linear map is of great help. Let X =

D1 ⊕ D2 and Y = R1 ⊕ R2 are complemented spaces and F : X→ Y a linear map.

Define

F11=π1F |D1, F12= π1F |D2, F21= π2F |D1, F22= π2F |D2, (B.1)

then we can represent write the representation F = (F11 ⊕ F12, F21 ⊕ F22) or

equivalently the following matrix form:

F =

(

F11 F12

F21 F22

)

. (B.2)

For X,Y Banach spaces, iso(X,Y ) denotes the subspaces of isomorphisms in L(X,

Y ).

Proposition B.1. Let X, Y be Banach spaces, T , G:X→ Y Fredholm maps such

that ‖T −G‖ is sufficiently small. Then ind(F )= ind(G).

Proof. Let F ∈ Fred(X, Y ), then we can decompose X, Y as X = D ⊕ N and

Y =R⊕N ′ where N =ker (F ) and R= rang(F ) and ind(F )=dimN −dimN ′. Based

on this decomposition, F has a decomposition of the form (F11 ⊕ 0, 0 ⊕ 0) where

F11∈ iso(D, R). Let F (t) be a continuous small perturbation, then it has a matrix

representation

F (t)= (F11(t)⊕F12(t), F21(t)⊕F22(t)).

Since the set of isomorphisms is open, F11(t) is an isomorphism and then (F11(t))
−1:

=F11
−1(t) is defined. We define two other isomorphisms i(t), j(t) as i(t) = (id ⊕ −

F11
−1(t)F12(t), 0⊕ id) and j(t)= (id⊕ 0,−F21(t)F11

−1(t)⊕ id). We observe that

j(t) ◦F (t) ◦ i(t)= (F11(t)⊕ 0, 0⊕−F21(t)F11
−1(t)F12(t)+F22(t)). (B.3)
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It is easy to see that

ker (F (t))= ker j(t) ◦F (t) ◦i(t)= ker (−F21(t)F11
−1(t)F12(t)+F22(t)), (B.4)

coker(F (t))= coker j(t) ◦F (t) ◦i(t)= coker(−F21(t)F11
−1(t)F12(t)+F22(t)). (B.5)

according to the argument in the finite dimensional spaces we conclude

dim ker (−F21(t)F11
−1(t)F12(t) + F22(t)) − dim coker(−F21(t)F11

−1(t)F12(t) +

F22(t))=

=dimN − dimN ′= ind(F ).

�

Now we extend the above proposition to the case when t∈ [0, 1].

Theorem B.2. X, Y Banach spaces, F ∈ Fred(X, Y ) and F (t) for t ∈ [0, 1]

is a continuous homotopy F0 = F such that for any t, F (t) ∈ Fred(X, Y ). Then

ind(F (t))= ind(F ).

Proof. According to proposition (B.1), there exist sufficiently small t0 > 0 such

that ind(F (t)) is constant for t∈ [0, t0). Since F (t0) is a Fredholm then there exist

ε > 0 such that ind(F (t0 − ε)) = ind(F (t0)). But ind(F (t0 − ε)) = ind(F0) then

ind(F0)= ind(F (t0)). We conclude that the set of t for which the index is constant

is both open and closed and then it is [0, 1]. �

There is a nice proof of the following index theorem using invariance property of

the index.

Corollary B.3. X, Y , Z Banach spaces, F ∈Fred(X, Y ) and G∈Fred(Y , Z) then

G◦F ∈Fred(X,Z) and furthermore

ind(G ◦F )= ind(F )+ ind(G). (B.6)

Proof. It is straightforward to verify that

dimker (G ◦F )≤dimker (F )+dimker (G)<∞,

dimcoker(G ◦F )6dim coker(F )+dimcoker(G)<∞.
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Therefore G ◦F is a Fredholm operator. Now define A(t):X ⊕Y →Y ⊕Z as

A(t)= (cos (πt)F ⊕ sin (πt)Id,−sin (πt)G◦F ⊕ cos (πt)G). (B.7)

In fact A(t) is the multiplication of following three Fredholm maps:

(Id⊕ 0, 0⊕G):X ⊕Y →Y ⊕ Y , (B.8)

(cos (πt)⊕ sin (πt),−sin (πt)⊕ cos (πt)):Y ⊕ Y →Y ⊕Y ,

(F ⊕ 0, 0⊕ Id):Y ⊕Y →Y ⊕Z.

Therefore A(t) is a homotopy of Fredholm maps on [0, 1] and then

ind(A(0))= ind(F ⊕ 0, 0⊕G)= ind(A(1))= ind(0⊕ Id,−G ◦F ⊕ 0). (B.9)

But ind(A(0))= ind(F )+ ind(G) and ind(A(1))= ind(G ◦F ). �
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