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Abstract—A real-time transient simulation of nonlinear ele-
ments in transmission networks requires significant computational
power. This paper proposes an iterative nonlinear transient solver
on a field-programmable gate array. The parallel solver, based
on the compensation method and the Newton–Raphson algo-
rithm (continuous and piecewise), is entirely implemented in Very
high speed integrated circuit Hardware Description Language.
It also involves sparsity techniques, deeply pipelined arithmetic
floating-point processing, and parallel Gauss–Jordan elimination.
To validate the new solver, two case studies are simulated in real
time: surge arrester transients in a series-compensated line and
ferroresonance transients in a transformer, with time steps of 5
and 3 μs, respectively. The captured real-time oscilloscope results
demonstrate high accuracy of the simulator in comparison to the
offline simulation of the original system in the ATP version of
electromagnetic transient program.

Index Terms—Electromagnetic transient simulation, field-
programmable gate arrays (FPGAs), nonlinear networks, parallel
algorithms, real-time systems.

I. INTRODUCTION

NONLINEAR elements play a significant role in the incep-
tion and propagation of transient overvoltages and over-

currents in electrical power systems. The commonly occurring
nonlinear phenomena in power systems include magnetic sat-
uration in transformers, ferroresonance, switching surges, and
lightning strikes. An accurate simulation of nonlinear phenom-
ena is vital from the perspective of such studies as insulation
coordination, protection system design, power quality, and,
in general, for maintaining the transmission and distribution
infrastructure in a reliable working condition. In the offline
electromagnetic transient program (EMTP), the nonlinear so-
lution has been well analyzed and implemented. However, in
real-time simulators, accurate simulation of nonlinear elements
is very challenging due to its computational burden.

In offline EMT-type software programs such as ATP, EMTP-
RV, and PSCAD/EMTDC, the representation of nonlinear el-
ements is either through a piecewise linear approximation
method (also known as pseudo nonlinear method) or an iterative
method [1], [2]. In the former, the nonlinearity is represented
by several linear segments. At each simulation time step, it is
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actually a specific linear element, such as a constant inductance,
several of which can be used to represent, for example, the
saturation characteristic of a transformer. However, the compu-
tational bottleneck occurs as the operating point switches from
one linear segment to the next, necessitating a recalculation of
the system admittance matrix, which results in a substantially
longer run time for a large network. The frequent switching
between linear segments is also known to cause numerical
oscillations. For a more accurate simulation of nonlinear ele-
ments, an iterative method based on Newton–Raphson (N–R)
can be used. Within each simulation time step, several N–R
iterations are required for convergence, and each iteration en-
tails a recalculation of the Jacobian matrix and solution of a
set of linear equations. This process is very time consuming.
In an offline simulator, the computational burden can perhaps
be overlooked; however, it becomes quite cumbersome in a
real-time simulator. In a deterministic hard real-time system
built using general-purpose CPU or DSP-based sequential hard-
ware, an iterative nonlinear transient solution may not even be
implementable using a requisite time step mainly due to the
uncertainty of convergence of the iterations within the time step
and the limited computational power of such hardware.

The increasing need for higher computational bandwidth
for real-time electromagnetic transient simulation has been
met by the field-programmable gate array (FPGA) [3]. The
FPGA is a reconfigurable digital logic device which contains
a variety of programmable logic blocks called logic elements
(LEs), which can be configured using a Hardware Descrip-
tion Language (HDL). The main advantages of FPGA over
sequential hardware are wide parallelism, deep pipelining, and
flexible memory architecture. With the dramatic increase in LE
density, clock frequency, and advanced Intellectual Property
(IP) cores such as floating-point arithmetics, FPGAs show great
potential for real-time hardware emulation [4], [5] and control
applications [6]–[8].

This paper proposes an iterative real-time nonlinear transient
solver on the FPGA. The solution method is based on the
compensation method [9] together with N–R iterations [10].
Sparse matrix methods and a parallel Gauss–Gordon elimina-
tion method [11] are employed for the linear solution. To take
advantage of the inherent parallel architecture of FPGA, the
nonlinear solution algorithm is fully paralleled and pipelined
using a floating-point number representation. Although FPGA-
based transient solvers currently exist for power networks
including frequency-dependent elements [3], they address ex-
clusively linear networks; an iterative nonlinear transient solver
in real time has not yet been reported in the literature. The
background on the nonlinear solution technique and on the
N–R algorithm is described in Section II. Section III explains
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Fig. 1. (a) Network with m nonlinear elements. (b) Illustration of compensa-
tion method.

the hardware framework of the FPGA-based iterative nonlinear
transient solver and gives the implementation details. Two
real-time transient simulation case studies are presented in
Section IV and validated using an offline ATP simulation.
Conclusions are given in Section V.

II. NONLINEAR NETWORK TRANSIENT SOLUTION

With the inclusion of nonlinear elements, the power system
network becomes a nonlinear system. In the EMTP, instead of
solving the entire nonlinear network, the compensation method
is commonly used to reduce computational burden.

A. Compensation Method

This method first separates the nonlinear elements from
the network, as shown in Fig. 1(a), where the m nonlinear
elements have been extracted and connected to the linear
m-port network. Then, the equations pertaining to the linear
network (1) and those of the nonlinear elements (2) are solved
simultaneously as illustrated graphically in Fig. 1(b)

v =vo − Rthevi (1)

v =f(i) (2)

where v and i are the vectors of m-port voltages and currents,
respectively. vo is a vector of open-circuit voltages (without
the nonlinear branches) at those ports, and Rthev is an m × m
Thévénin equivalent resistance matrix of the linear network.
After the current i has been obtained, it is superimposed on
the linear part of network as a current source injection to solve
the entire network.

B. N–R Method

The N–R method is widely used to solve the nonlinear equa-
tions [substituting (2) into (1)] due to its quadratic convergence.
The objective is to find solution i such that

F (i) ≡ f(i) − vo + Rthevi = 0. (3)

By applying the first-order Taylor series expansion for the
nonlinear function F (i), the updated solution is obtained by
solving the following system of linear equations:

J(ik+1 − ik) = −F (ik) (4)

Fig. 2. (a) Piecewise linear function. (b) Its implementation in PNR.

where J is the Jacobian matrix; ik+1 and ik are the current
vectors at the (k + 1)th and kth iterations, respectively. This
method is referred to as the continuous N–R (CNR) method in
this paper since the nonlinear function is a continuous analytical
equation. The Jacobian matrix and nonlinear functions are
computed at each iteration using{

J = ∂F (i)
∂i = Rthev + ∂f(i)

∂i

− F (ik) = vo − Rthevi
k − f(ik).

(5)

The convergence criteria for the CNR iterations are defined as

‖ik+1 − ik‖ < ε1

∥∥f(ik+1)
∥∥ < ε2 (6)

with ε1 and ε2 set to sufficiently small values.
If the nonlinear function is given by a piecewise linear curve,

the method becomes piecewise N–R (PNR) [12]. As shown in
Fig. 2(a), each linear segment of the piecewise curve can be
defined by

v = ej + Rji, i ∈ [Ij−, Ij+] (7)

where ej and Rj are the intercept voltage and resistance of the
jth segment of the curve, which falls within the interval Ij−
and Ij+. Applying the N–R method to nonlinear (8)

F (i) ≡ (vo − Rthevi) − (ej + Rji) = 0 (8)

and using (4), we obtain

(−Rthev − Rj)(ik+1 − ik) = (ej + Rji
k) − (vo − Rthevi

k)

(Rthev + Rj)ik+1 =vo − ej . (9)

It is important to observe that the term ik is canceled out in
(9), which means that the calculation of Jacobian matrix J is
not required in the PNR method. This is because Rj’s, which
are the derivatives of the piecewise linear curve, have been
precalculated. The solution is then checked to see if it satisfies
[Ij−, Ij+]; if it does, a valid solution has been found.

III. FPGA-BASED NONLINEAR TRANSIENT SOLVER

A. Hardware Architecture and Parallelism

As shown in Fig. 3, the hardware architecture of the nonlinear
solver consists of three main modules: a linear solver module,
an N–R nonlinear solver module, and a global control module.
The linear solver module calculates the open-circuit voltages
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Fig. 3. Overall architecture of the nonlinear transient solver in the FPGA.

Fig. 4. Finite-state machine of global control module.

vo before the N–R iteration starts and also solves the entire
network after the nonlinear solution is found. The detailed
architecture of this module is presented in Section III-C. The
N–R nonlinear solver module is the core of the design, which
contains the following three hardware submodules: 1) NLFunc
(evaluating nonlinear function f(i) and ∂f(i)/∂i; 2) CompJF
(computing J and −F (i)); and 3) parallel Gauss–Jordan elim-
ination (GJE).

The global control module controls all the sequential and
parallel operations in the overall design. Fig. 4 shows the finite-
state machine diagram for the global control module. The se-
quential operations are clearly shown by state transitions S1 →
S2 → S3 → S4 → S5 → S6 → S1. The possible parallel op-
erations, which take advantage of the hardware parallelism of
the FPGA, are also shown in Fig. 4. For example, in state
S2, the nonlinear function evaluations f(i) and ∂f(i)/∂i are
performed simultaneously. The computation of J and −F (i) in
(5) is also processed concurrently in state S3. Meanwhile, the
GJE procedure is paralleled in state S4, as discussed in more
details in Section III-E.

B. Dedicated Floating-Point Arithmetic Units

Choosing either fixed- or floating-point number representa-
tion is the first step for any hardware design. Although the fixed-
point number operation has the advantages of fast computation
and easy implementation, the floating-point number is widely
used in real number arithmetic due to its large dynamic data
range and higher accuracy. Due to the availability of FPGAs
with a large capacity of logic resources, floating-point imple-
mentation is particularly useful for transient simulation. Con-
sidering the FPGA resource utilization and required precision,
a 32-b single precision floating-point format (IEEE Standard
754) is used for the real-time N–R-based nonlinear solution.
The basic floating-point operations include addition/subtraction

Fig. 5. Dedicated floating-point arithmetic unit for r = (a + b) ∗ c.

Fig. 6. (a) Example sparse matrix. and (b) Its storage format.

and multiplication. They can be chained to realize many other
computations such as (a + b) ∗ c. This combination may re-
sult in a long computation latency. For example, the floating-
point adder unit and multiplier unit in the Altera Quartus II
software have a latency of seven and five cycles, respectively;
therefore, the overall latency for the aforementioned compu-
tation is 12 cycles. To reduce the latency of such combined
computations, dedicated floating-point arithmetic units were
designed in this work. Fig. 5 shows the data flow for r =
(a + b) ∗ c. The overall latency in this arithmetic unit is only
five cycles. The saving in latency comes from deleting redun-
dant processes, such as normalization of intermediate result,
and from parallelizing possible operations. The collection of
dedicated floating-point arithmetic units developed involves
both scalar and vector quantities and includes operations such
as simple addition/subtraction, multiplication, conversion be-
tween floating- and fixed-point numbers, etc.: (a + b) ∗ c, a ∗
b + c ∗ d, An×n ∗ Bn×1, Cn×n ∗ (An×1 − Bn×1).

C. FSMxV Multiplication Unit

Obtained using nodal analysis, the linear network equation is
given as

Y V = I (10)

where Y , I , and V are network admittance matrix, injected
nodal current sources, and unknown node voltages, respec-
tively. In the real-time electromagnetic transient simulation, the
V can be obtained directly by multiplying I by the inverse
admittance matrix Y −1, which is precalculated and stored in
the memory to save computation time. Since Y matrix is
usually quite sparse in power systems, sparsity techniques are
exploited to improve simulation efficiency [13]. A fast sparse
matrix–vector (FSMxV) multiplication (FSMxV) submodule
which is part of the linear solver module was developed. First, a
very compact sparse matrix storage format which uses only one
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Fig. 7. FSMxV multiplication unit. (a) Hardware design. (b) Timing diagram.

vector is defined. Each entry in this format has the following:
1) a 32-b val to store the subsequent nonzero value of matrix
in row order; 2) an 8-b cid to identify column index of this
nonzero value; and 3) a 1-b rlb to label all nonzero values in
the same row with “0” or “1.” Fig. 6 shows an example sparse
matrix and its storage format.

In the FSMxV submodule, the accumulation is done in fixed-
point format. The reason is that floating-point accumulator has a
much longer latency and requires much more logic resources to
implement. The fixed-point accumulator needs only one adder
with one clock cycle latency. The used fixed-point number
format is 40.100, which has 40 integer bits and 100 fraction
bits to guarantee both the range and precision.

As shown in Fig. 7(a), the FSMxV submodule contains one
floating-point multiplier, one floating-to-fixed-point converter,
two fixed-point adders, and one fixed-to-floating-point con-
verter. The elements of sparse matrix Y −1 are retrieved from
RAMY −1 , while the cid is used to access the I stored in
RAMI . The registers are inserted for synchronization in the
computation. The realized matrix–vector multiplication is fully
pipelined and fast because there is no stall between two consec-
utive matrix row–vector multiplications. This is achieved by the
two parallel fixed-point adders (accumulators) acc0 and acc1

with opposite reset inputs rst0 and rst1 controlled by the row
label information rlb. Fig. 7(b) shows the logic timing diagram
for the FSMxV multiplication unit based on the example in
Fig. 7(a). As can be seen, the accumulation of the first matrix
row–vector multiplication is processed in the acc0, while the
acc1 is reset to zero, which makes it ready for the accumulation
of the next matrix row–vector multiplication.

D. Floating-Point Nonlinear Function Evaluation

At each N–R iteration, a nonlinear function evaluation is re-
quired. The computational burden of this evaluation depends on
the number of nonlinear elements in the original system and the
nature of these nonlinearities. The commonly used methods for

nonlinear function evaluation on the FPGA include the lookup
table (LUT) method and other approximation methods such as
COordinate Rotation DIgital Computer, series expansion, and
the regular N–R iteration (an inner iterative loop inside the outer
iteration) [14], [15]. Many of them have been implemented
in hardware, but based mostly on a fixed-point format. The
floating-point implementation is still cumbersome due to its
large latency and logic resource utilization. Among the afore-
mentioned methods, the LUT is still widely used due to its
speed and convenience of implementation. The nonlinear func-
tion values for a given input range of interest are precalculated
and stored in the memory. The input is used as the index for the
LUT to access its corresponding value. The size of available
memory limits the step (interval) of LUT and, therefore, the
accuracy of the nonlinear function evaluation. To reduce the
size of LUT while retaining the accuracy, linear interpolation
has been used in this design to compute intermediate values
between two locations of the LUT.

The challenge of implementing a floating-point LUT is that
the LUT is addressed by integer number whereas the input is
in the floating-point format. The traditional solution is to con-
vert the floating-point input into integer format at the expense
of extra latency for the conversion. In the proposed design, this
conversion is not needed. The exponent and mantissa of the
input floating-point number are used directly to access the LUT
when the step length is always a power of two.

As shown in Fig. 8(a), the floating-point LUT for nonlinear
function evaluation contains an address generation module, a
dual-port RAM serving as the LUT, and a linear interpola-
tion module. The address generation takes the floating-point
input x and outputs the addresses of two points xi and xi+1

on either side of x [state P1 in finite-state machine diagram
Fig. 8(b)]. This is done by left shifting the leading “1” and
mantissa of x by dexp bits, where dexp is the difference of
the exponent of input x and step. An example is shown in
Fig. 8, where step = 0.0625 and x = 3.10. The dual-port RAM
has two independent ports which can output f(xi) and f(xi+1)
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Fig. 8. Floating-point nonlinear function computation. (a) Function block
diagram. (b) Finite-state machine.

simultaneously (state P2). The final result f(x) is computed by
the linear interpolation module (states P3 and P4).

E. Parallel GJE

The set of linear algebraic equations in (4) and (9) are
solved by GJE. Compared to other elimination methods such
as Gaussian elimination with backward substitution and LU
decomposition, the GJE is the simpler and easier for hardware
implementation.

It is well known that the number of operations in sequential
GJE is N3, where N is the order of the matrix. For a large
matrix, the sequential GJE can be very time consuming. Hence,
a parallel scheme has been designed to speed up the processing,
as shown in Fig. 9. It consists of several processing elements
(PEs) and a factorization module. Before the processing begins,
the matrix J is augmented with vector F and evenly distributed
by rows into RAM1 in each PE. Then, the GJE computation
proceeds according to the following two steps.

1) Factorization: The ith row is retrieved from the corre-
sponding PE [state Q1 in finite-state machine diagram
Fig. 9(b)], and the diagonal element is identified and
registered. Then, the remaining elements within the row
are divided by the registered diagonal element (state Q2),
and the factorized row is sent back to RAM2 in all PEs
(state Q3).

2) Elimination: Elimination is done simultaneously in all
PEs. The element in the rth (r �= i) column is first recog-
nized and registered, and then multiplied by the elements
of factorized ith row read from RAM2 (state Q4). The
resulting product is then added to the corresponding
element of the rows in RAM1 (state Q5).

IV. FPGA-BASED REAL-TIME NONLINEAR

TRANSIENT SIMULATION

A. FPGA Hardware Resources

The iterative real-time nonlinear electromagnetic transient
solver was implemented on an Altera Stratix III Development
Board DE3. The FPGA EP3SL150 used on this board has the
following main features: 142 500 LEs, 6390 total RAM kilobits,
384 18 × 18-b multipliers, eight phase-locked loop, and 744
maximum user I/O pins.

Table I lists the FPGA resource utilization, generated by
Altera Quartus II software, in percentage for each module of the
iterative real-time nonlinear electromagnetic transient solver.
As can be seen from this table, the nonlinear solver utilizes the
most logic resources of the FPGA. The other logic resource
utilization is for the modeling of transmission lines, RLC
elements, power sources, etc. [3].

B. Case Studies

Two case studies are used to show the effectiveness of the
proposed iterative real-time nonlinear transient solver on the
FPGA. The first case study is a three-phase series-compensated
transmission system whose single-line diagram is shown in
Fig. 10. The compensation capacitor C connected in series
between two lines (line1 and line2) is protected by a surge
arrester. The lines are modeled using distributed parameter
line models (Bergeron’s model) to capture the traveling wave
transients. The surge arresters are highly nonlinear resistors
characterized by

i = p

(
v

Vref

)q

(11)

where q is the exponent and Vref and p are the arbitrary
reference values. The elements RL1, LL1, and RL2 represent
a composite load, and Rf is the fault resistance. The CNR
method is used to solve the nonlinear equations. The conver-
gence tolerances ε1 and ε2 are set to 10−6 pu. The complete
system data are listed in Appendix.

A three-phase fault is applied at the load terminals at t =
0.2 s by closing the circuit breaker CB. The current increases
in the series capacitor and produces an overvoltage that is
limited by the surge arresters. Fig. 11 shows the three-phase
voltage transients across the surge arresters captured from a
real-time oscilloscope connected to 125MSPS DACs on the
Stratix III FPGA board. The peak overvoltage is limited to
8 kV compared to 15 kV without the arrester. Fig. 12 shows
the three-phase transient currents in the surge arresters in the
real-time simulation. Large currents drawn by the arresters can
be observed. Similar behavior can be observed from Figs. 13
and 14, which show the offline ATP simulation results.

The second case study illustrates ferroresonance in a three-
phase voltage transformer. Fig. 15(a) and (b) shows the single-
line and equivalent network diagrams of this case study,
respectively. The voltage transformer is connected to the power
system represented by a voltage source Vs through a circuit
breaker CB. Cw is the circuit breaker’s grading capacitance,
Cs is the total phase-to-Earth capacitance including transformer
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Fig. 9. Parallel GJE. (a) Functional block diagram. (b) Finite-state machine.

TABLE I
FPGA RESOURCES UTILIZED BY MODULES

winding capacitance. The resistor Rfe represents transformer
core losses. The transformer current is represented by its piece-
wise nonlinear magnetization characteristic shown in Fig. 16;
thus, the PNR method is used in this case study with five linear
segments to represent the nonlinearity. The complete system
data are also listed in Appendix. The ferroresonance response
was verified by the opening of the circuit breaker caused by
a three-phase fault on the transformer secondary at t = 0.2 s.
Again, similar behavior of real-time and offline simulations can
be observed from Figs. 17 and 18.

Fig. 10. Single-line diagram for Case Study I (surge arrester transients in a
series-compensated transmission line).

Fig. 19(a) and (b) shows the execution time for each state
in the finite-state machine in Fig. 4 for the two case studies.
The execution time for “others” includes the time used for
calculating the models for transmission lines, RLC elements,
power sources, etc. Based on the 60-MHz FPGA input clock,
the total execution time for Case Study I is 4.91 μs for the
average of three iterations, while the actual time step is 5 μs,
with approximately 40% utilization of the FPGA multipliers.
Thus, it is safe to say that a system of twice the size, i.e., a
system with at least six nonlinear elements, can be simulated
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Fig. 11. Real-time oscilloscope trace showing three-phase voltages across
the surge arresters during a three-phase fault (x-axis: 1 div = 10 ms; y-axis:
1 div = 2 kV).

Fig. 12. Real-time oscilloscope trace showing three-phase currents in the
surge arresters during a three-phase fault (x-axis: 1 div = 10 ms; y-axis:
1 div = 128 A).

Fig. 13. Three-phase voltages across the surge arresters during a three-phase
fault at t = 0.2 s (ATP simulation).

within a time step of 5 μs, which is ten times smaller than
the acceptable time step of 50 μs for transient simulation. It is
therefore possible to simulate a system with at least 60 nonlin-
ear elements within a 50-μs time step. For Case Study II, since
there are no calculations for the Jacobian matrix, the execution
time is only 2.89 μs, while the actual time step is 3 μs.

Fig. 14. Three-phase currents in the surge arresters during a three-phase fault
at t = 0.2 s (ATP simulation).

Fig. 15. (a) Single-line diagram. (b) Equivalent network diagram for Case
Study II (transformer ferroresonance transients).

Fig. 16. Piecewise nonlinear magnetization characteristic of transformer in
Case Study II.

V. CONCLUSION

An accurate real-time transient simulation of power systems
with nonlinear elements using an iterative algorithm is chal-
lenging with traditional sequential hardware such as CPUs or
DSPs due to their limited computational power which precludes
the iterations to be completed within the required time step
to meet real-time constraints. The FPGA, on the other hand,
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Fig. 17. Real-time oscilloscope trace of the three-phase voltages at the trans-
former terminals during a three-phase-to-ground fault (x-axis: 1 div = 10 ms;
y-axis: 1 div = 68 kV).

Fig. 18. Three-phase voltages at the transformer terminals during a three-
phase-to-ground fault at t = 0.2 s (ATP simulation).

Fig. 19. Execution time for the case studies in microseconds. Si, (i =
1, . . . , 6), denotes the states of the finite-state machine of the nonlinear solver.

is a programmable hardware device which allows parallelism
and pipelining to be exploited to overcome the limitations of
conventional sequential processors. This paper has proposed
a real-time fully iterative nonlinear electromagnetic transient
solver for power system network on the FPGA. The proposed
nonlinear solver provides the following main features to achieve
high accuracy and efficiency:

1) compensation method with the full N–R algorithm for
nonlinear solution;

TABLE II
DATA FOR THE CASE STUDIES

2) dedicated floating-point arithmetics for low latency
computation;

3) sparsity techniques for fast matrix computation;
4) parallel GJE for the linear solution;
5) deeply pipelined and paralleled design to achieve the

highest throughput and lowest latency.

The nonlinear solver has been developed in the Very high
speed integrated circuit HDL, making it portable to any FPGA
platform and independent of any vendor-specific IP. Two case
studies illustrate the use of both the CNR and PNR methods
for the nonlinear solver to address the most commonly found
nonlinear elements in power systems. The possible application
of the proposed design could be twofold.

1) As a dedicated accelerator in existing CPU or DSP-based
real-time simulator. The FPGA nonlinear solver can be
interfaced as a PCI/e card to the host simulator which
models the rest of the linear system.

2) As a stand-alone solver in an all-FPGA real-time simula-
tor employing multiple FPGAs.

Aside from power system transient modeling, the proposed
solver can be also very useful for real-time simulation of power
electronic drives to model insulated-gate bipolar transistor
switching transients in great detail.

APPENDIX

Table II provides the system parameters for the two case
studies.
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