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Abstract

Movement ecology thrives from a successful synergy of data and models. In a field

where experiments are difficult or impossible, linking field data with mathematical and

statistical models allows us to test hypotheses and increase our quantitative under-

standing of movement processes. Owing to technological progress, data availability

and quality are growing rapidly, inspiring new questions and challenging methodology.

In my thesis, I address two modelling challenges, one at the forefront of current research

on memory-based movement and the other long-standing, yet prevailing, in movement

data analysis.

Movement serves needs, such as foraging, but also requires time and energy. There-

fore, we expect animals to have evolved strategies for efficient movement, likely drawing

on cognitive abilities. Indeed, one of the current challenges in movement ecology is to

understand the role of cognition, including memory, for movement. To date, very few

models that include memory mechanisms have been confronted with data. In my the-

sis, I present a new cognitive-based model, in which an individual’s travel history feeds

back to future movement decisions. I focused on the pure spatio-temporal aspect of the

travel history, assuming that an individual keeps track of elapsed times since last visits

to locations and uses this information during the movement process. I showed that,

despite the dynamic interplay of information gain and use, statistical inference can

successfully identify this mechanism. I further applied the new modelling framework

to wolf (Canis lupus) movement data to test whether wolves adopt a prey management

strategy, based on memory, that is directed at reducing impacts of behavioural depres-
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sion of prey through optimal timing of returns to hunting sites. I found support for

the hypothesis but also point out the need to analyze a larger number of individuals

to reach stronger conclusions.

Data collection methods, as well as standard modelling approaches, discretize the

temporal dimension of movement processes. This discretization is a challenge for data

analysis, because results may be affected by data sampling rate. In my thesis, I de-

velop the formal concept of movement models’ robustness against varying temporal

resolution. I provide a series of definitions for movement model robustness. These

definitions vary in their strength of conditions but all rest on the same requirement

that a model can validly be applied to data with varying resolutions, while parameters

change in a systematic way that can be predicted. In an analysis of random walks

and spatially-explicit extensions thereof, I found that while true robustness is rare,

approximate robustness is more widely present in models. I further demonstrate how

robustness can be used to mitigate the influence of temporal resolution on statistical

inference.
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Chapter 1

Advances in movement ecology

spur new methodological challenges

Animals show fascinating movement capacities. Humpback whales travel more than

8,000 km between wintering and feeding areas (Rasmussen et al., 2007), and arctic

terns even reach one-way migration distances of more than 25,000 km (Egevang et al.,

2010). Many fish aggregate in schools and coordinate their movements in large groups of

thousands, even millions, of individuals spaced less than a body length apart (Misund,

1993). The well-known cheetah, the fastest mammal, can sprint at 100 km/h (Sharp,

1997), while diving falcons such as the peregrine can even reach speeds up to 360 km/h

(Tucker, 1998).

It is not only these spectacular and eye-catching phenomena that attract our atten-

tion to movement but also the importance of movement for many ecological processes.

Many animals must move to meet their daily and lifetime needs related to maintenance

(e.g. foraging), survival (e.g. escaping predation) and reproduction (e.g. finding mates,

travelling to breeding sites). Movement of individuals scales up to population patterns,

affecting populations’ abundances and distributions as well as community structures

(Mueller et al., 2008; Morales et al., 2010; Buchmann et al., 2011). Additionally, move-

ment processes have far-reaching consequences for disease dynamics in host-pathogen

systems, being able to both promote and impede transmissions (White et al., 2000;

Altizer et al., 2011). By facilitating seed dispersal, motile frugivorous animals provide

important ecosystem service to their mutualistic plant partners (Mueller et al., 2014).

During the last decades, studies of animal movement have benefitted from major

advances in tracking technology that opened new dimensions for data collection. GPS-

and Argos-based tracking devices have become widespread and allow automatic data

collection over large spatial and temporal scales (Rutz & Hays, 2009; Cagnacci et al.,
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2010). Owing to increasing miniaturization of these tagging devices, they can be fitted

to a wide range of species, which continues to grow (Bridge et al., 2011; Recio et al.,

2011). Not only the extent to which data can be collected has increased but also the

precision and frequency (Frair et al., 2007; Tomkiewicz et al., 2010; Bridge et al., 2011).

For example, by now GPS devices often reach an average precision of 10-28 m (Frair

et al., 2007). These technological advances have led to an unprecedented availability

of movement data across the globe, as for example demonstrated by the Movebank

project (Kranstauber et al., 2011).

At the same time, mathematics, statistics and computing have contributed new

methods and tools to study movement theoretically and to analyze the newly available

movement data. Within both the individual-based Lagrangian and the population-

based Eulerian framework, descriptions of movement have progressed from simple ran-

dom walks and diffusion models towards models that explicitly acknowledge spatial het-

erogeneity of environments and selective behaviour of animals. Contemporary models

include, for example, resource selection mechanisms (Rhodes et al., 2005; Hanks et al.,

2011; Mckenzie et al., 2012; Potts et al., 2014), interactions of predators with their prey

and conspecifics (Lewis & Murray, 1993; Moorcroft et al., 2006), and switches in be-

havioural modes (Morales et al., 2004; McClintock et al., 2012; Langrock et al., 2013).

Studies of movement have even started to consider the role of cognitive processes within

contexts such as optimal foraging (Barraquand & Benhamou, 2008; Boyer & Walsh,

2010; Grove, 2013) and home range formation (Börger et al., 2008; Van Moorter et al.,

2009).

It is in the nature of scientific progress that advances lead not only to increased

knowledge and understanding but also to new questions. Thus, advances in technology,

methodology and theory have resulted in a movement ecology paradigm and continue

to inspire new goals and ambitions (Nathan et al., 2008; Holyoak et al., 2008; Börger

et al., 2008; Tomkiewicz et al., 2010; Fagan et al., 2013). In my PhD thesis, I address

methodological challenges in movement ecology, contributing to two different aspects

of modelling movement.

1.1 Memory matters: modelling informed animal

movement

Animals demonstrate a variety of cognitive skills. For example, food-caching birds

find previously buried seeds up to nine months later (Balda & Kamil, 1992); bees can-
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not only navigate efficiently but also communicate spatial information through their

famous waggle dances (Menzel et al., 2006); birds parasitized by cuckoos can adjust

their probability of rejecting eggs depending on whether they have seen a cuckoo on

their nest (Davies et al., 1996). In general, animal cognition refers to all mechanisms by

which animals acquire, process and use information (Shettleworth, 2010). This includes

mechanisms such as conditioning and associative learning, in which animals learn to re-

spond to cues and stimuli, as well as mechanisms by which animals act on information

retrieved from memory. We have learned much about animal cognition through care-

fully designed experiments. Manipulative experiments allow researchers to construct

test situations that are tailored to induce specific, and often predicted, behaviours in

animals, while minimizing and controlling for potential confounding factors (for a vari-

ety of examples, see e.g. Shettleworth, 2010). At the same time, experiments are often

limited to small scales and may require habituation of animals (but see Thorup et al.,

2007; Tsoar et al., 2011).

One of the present challenges in movement ecology is to understand the role of cog-

nition, including memory, for movement processes (Börger et al., 2008; Smouse et al.,

2010; Fagan et al., 2013). Movement usually serves a goal (“why move?”), triggered

by an individual’s internal state. Motion capacities (“how to move?”) work together

with navigation capacities (“where to move?”), under the influence of external factors,

to achieve the goal (Nathan et al., 2008). Within this paradigm, cognition serves the

navigation process, which includes orientation in space and time and selection of tar-

get locations. Orientation and navigation skills allow animals to reach target locations

and thus assist processes such as homing and migration, but also foraging. Foraging

animals benefit from information about the location of resources, temporal availability

of resources and resource quality. At any time, information may be perceived or ob-

tained from memory. If animals remember profitable places, this involves both spatial

memory of the location and attribute memory about the locations’ features (Fagan

et al., 2013).

Much work has concerned the mechanisms by which animals orient themselves and

navigate in space. A relatively simple mechanism is path integration (also termed

dead reckoning), in which an individual internally keeps track of all distances and

directional changes of its path and at any point can orient back straight towards its

starting location (Wittlinger et al., 2006; Collett et al., 2006). Path integration is

an egocentric mechanism, that is spatial information is encoded with respect to the

individual itself. In contrast, exocentric mechanisms establish spatial orientation based

on external references, such as beacons and landmarks (Shettleworth, 2010). It is
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generally thought that landmarks can be integrated into cognitive maps for navigation,

but it is still debated how landmarks are used, e.g. whether interlandmark relations

or landscape contours are more important, and how flexible maps needs to be, e.g.

whether they allow a euclidian view that preserves distances and angles (O’Keefe &

Nadel, 1978; Bennett, 1996; Lew, 2011). To date, navigation strategies have mainly

been tested in insects such as ants and bees, small rodents and in particular rats, and to

some degree birds, because of these species’ suitability for experiments (Griffin, 1952;

Collett et al., 2006; Shettleworth, 2010).

The relevance of cognition for foraging and search for resources has started to be in-

vestigated theoretically, often using individual-based simulation models. These studies

evaluate the benefits that information-based and especially memory-based movement

strategies can provide, and under which conditions. Results suggest that memory-

based foraging strategies are particularly successful in environments with patchy, or

clumped, resources (Barraquand et al., 2009; Fronhofer et al., 2013) and in tempo-

rally predictable landscapes (Mueller et al., 2010). When temporal unavailability of

resources reduces predictability, a mixed strategy of both random and informed steps

can be optimal (Boyer & Walsh, 2010). Barraquand et al. (2009) point towards the

importance of considering costs, e.g. higher energy requirements, of cognitive abilities

that reduce their benefits, which still needs to be further investigated (Fagan et al.,

2013). Memory has also sparked interest with respect to the mechanisms underlying

home range formation. Simulations of memory-based movement have been able to lead

to restricted space-use patterns when memorized information increased the expected

value of familiar resources patches compared to unfamiliar patches despite temporary

resource depletion (Van Moorter et al., 2009; Spencer, 2012).

To test predictions from theoretical findings, we need to confront them with data.

However, studying the link between cognition and movement in free-ranging animals

in their natural habitats is challenging. First, due to less controllability, alternative

explanations than the hypothesized ones can be difficult to rule out. Nonetheless,

there have been attempts to infer spatial cognition and memory in foraging animals,

primarily primates (Asensio et al., 2011; Janmaat et al., 2006; Janmaat & Chancel-

lor, 2010). These studies benefited from the possibility to follow the animals and

record detailed behavioural and environmental data. Second, when relying on models,

movement is a complex process because of its both spatial and temporal dimension.

This process becomes even more intricate when detailed behavioural mechanism such

as memory-based resource selection are included. Applying memory-based models to

data demands suitable, including identifiable, models, appropriate statistical methods,
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and also computational tools for model fitting. Therefore, many approaches at the

memory-movement interface have remained theoretical, and very few inferential stud-

ies exist (Dalziel et al., 2008; Avgar et al., 2015). In my thesis, I propose a new model

that incorporates a memory-based movement strategy, yet is tractable enough to allow

likelihood-based statistical inference.

1.2 Fitting models to data: mitigating impacts of

temporal discretization

To test hypotheses about movement behaviour and to estimate parameters of move-

ment processes, we need both data and quantitative methods. Pure data, e.g. in form

of field observations, and descriptive analyses give important impulses to research, gen-

erating questions and hypothesis. On the other hand, mathematical models provide

abstraction and simplification for hypotheses and allow us to test “what if” situations.

Theoretical model analyses can help us to identify key mechanisms of a process, reveal

threshold phenomena and make quantitative predictions (e.g. Lewis & Kareiva, 1993;

Neubert et al., 1995; Lewis et al., 1997). Computer-based simulations of models (also

termed individual-based or agent-based models) are a useful tool to hypothetically

explore more complex processes that are hard to tract analytically (e.g. Barraquand

et al., 2009; Berbert & Fagan, 2012). However, only a synergy of movement data and

models, mediated by rigorous statistical methods, enables us to explain and quantify

animal movement processes and their implications for ecology (Hilborn & Mangel, 1997;

Turchin, 1998). Additionally, simulation models that are qualitatively and quantita-

tively informed by previous data analyses, are a valuable tool for wildlife management

and conservation (e.g. Colchero et al., 2010; DeCesare et al., 2012; Webb & Merrill,

2012).

Both movement data and models are approximations of reality. Animal movement

often spans large spatial and temporal scales and may occur in inaccessible habitat.

Thus, our ability to observe movement is limited, and we usually rely on techniques that

deliver series of snapshots of individuals’ locations and behaviours (Turchin, 1998). By

contrast, it is the very nature of models to approximate and simplify. Approximations

can ease analysis and application, as expressed in the famous statement “all models are

wrong, but some are useful” (Box & Draper, 1987). Additionally, through simplifying

reductions we can focus on a few important mechanisms of a process without being

distracted by too much detail. This is, in fact, one of the merits of modelling, allowing
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us to identify and understand key mechanisms that generate observed patterns and

phenomena (Levin, 1992). Whether approximations are necessary or desirable, we

should, if possible, conduct them with care and be mindful about their consequences.

Movement processes occur in space and time, and approximations can pertain to

both of these dimensions. Much progress has been made with respect to improving

the accuracy of spatial approximations of movement data. Often, data is collected

by automated tracking devices, which are attached to an individual (e.g. as collars

or backpacks). Common technologies include GPS, mainly for terrestrial species, and

Argos, mainly for marine species (Rutz & Hays, 2009; Frair et al., 2010). GPS data

has reached high spatial accuracy, many devices reaching an average precision of 10-28

m (Frair et al., 2007). Argos devices are less precise, with measurement errors ranging

from a few hundred meters to several kilometres (Rutz & Hays, 2009; Patterson et al.,

2010). However, Argos technology offers other advantages (e.g. tags require less battery

power and do not need to be retrieved for data recovery), and a body of research has

successfully attended to state-space models and associated methods as a means to

correct for measurement errors (Jonsen et al., 2005; Patterson et al., 2008; Patterson

& Hartmann, 2011).

Temporal resolution of movement data still poses challenges. In view of data collec-

tion, one of the major limiting factors of data sampling rate is battery life of tracking

devices. Signal reception, transmission and on-board processing require battery power,

constraining the number of possible measurements (Breed et al., 2011; Patterson &

Hartmann, 2011). Ideally, we would like to measure movement paths both over long

time spans and at high frequency, however, usually we must make compromises. For

example, to collect data over a year or longer, GPS collars are often programmed to

attempt location fixes every 2-4 hours or similar (Webb & Merrill, 2012; DeMars et al.,

2013; Avgar et al., 2015). An additional factor to consider is signal to noise ratio.

Spatial measurement error should be small compared to distances between successive

location fixes, which may require larger time intervals, especially when movement is

slow (Ryan et al., 2004; Jerde & Visscher, 2005; Bradshaw et al., 2007). Therefore,

most current data sets represent temporally discretized movement paths, where the

resolution is at least partly dictated by technological constraints.

From a modelling perspective, temporal discretization of movement processes arises

mainly in the Lagrangian view of movement. When analyzing movement data with a

place-based Eulerian approach, for example to estimate population space-use patterns,

models are often of diffusion type (Turchin, 1998; Smouse et al., 2010). In this case,

high temporal resolution of data is less important, on the contrary, some models rely on

6



CHAPTER 1. METHODOLOGICAL CHALLENGES IN MOVEMENT ECOLOGY

location measurements to be spaced enough in time to be void of directional correlations

(Moorcroft & Lewis, 2006). In the Lagrangian view, the focus lies on understanding the

movement behaviour of individuals in relation to internal and external cues (Turchin,

1998; Nathan et al., 2008; Smouse et al., 2010). Here, the movement process is often

modelled as some type of random walk or extension thereof. A few studies have linked

discrete-time movement data with continuous-time random walks, in particular the

Ornstein-Uhlenbeck process (Johnson et al., 2008; Hanks et al., 2011). However, most

approaches use discrete-time random walks (for a review, see McClintock et al., 2014).

Discrete-time descriptions are particularly intuitive at scales at which movement oc-

curs between natural stopping sites or resource patches, for example, when insects fly

between ovipositing sites (Kareiva & Shigesada, 1983). But even in more complex

situations, discrete-time random walks remain useful to disentangle scales (at which

movement processes are stationary) and searching modes (intensive versus extensive

searching behaviour) and to understand the movement behaviour of individuals with

respect to their environment (Morales et al., 2004; Langrock et al., 2013; Benhamou,

2013; McClintock et al., 2014; Avgar et al., 2015).

We are therefore often faced with a situation in which both data and model ap-

proximate the temporal dimension of a movement process. Several problems arise from

this. First, because the discretization of the data is constrained by collection meth-

ods, the available snapshots of an animal’s path may not necessarily correspond to

the biologically most relevant events, e.g. behavioural change points. The mismatch

between behavioural “moves” and modelled “steps” has already been pointed out by

Turchin (1998). However, this problem may be better understood in the context of

multiple-mode multiple-scale movement, and a random-walk model can still be useful

to describe movement between behavioural change points (Benhamou, 2013). Second,

the temporal resolutions of data and model are usually treated in unison. An exception

are models that need to handle temporally irregular data, for example as they arise

when tracking marine mammals. For this situation, state-space models have become

a tool to connect irregular data with a discrete-time movement model (Breed et al.,

2012; McClintock et al., 2012). In contrast, time series of regular observations are

usually matched directly with the model. However, before doing so, ideally one should

evaluate whether the temporal resolution of the data is a suitable approximation of the

movement process of interest.

Third, given the implied link between the data and model’s temporal resolution, a

major problem is that the data’s resolution can influence statistical inference. Move-

ment ecologists have recognized this issue and devoted a number of studies to demon-
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strating especially the negative effects of low resolution, which lead to inaccurate bi-

ological results as well as difficulties in generalizing and comparing results (Turchin,

1998; Breed et al., 2011; Rowcliffe et al., 2012; Postlethwaite & Dennis, 2013; Yackulic

et al., 2011). A few attempts have been made to design methods that can compensate

for varying temporal resolution of data, especially with respect to measuring travel

distance and path tortuosity (Pépin et al., 2004; Benhamou, 2004; Codling & Hill,

2005; Avgar et al., 2013). However, approaches to the problem have remained spo-

radic. Given this situation, we may expect that many current movement analyses are

in danger of being influenced by assumptions about an implicitly adopted temporal

discretization of data and model, without knowing how large the influence is. In my

thesis, I draw on the rigour of mathematics and statistics to address the problem with

a new perspective as well as generality.

1.3 Dissertation outline

The following chapters of my thesis address the previously introduced methodological

challenges in equal parts. Chapters 2 and 3 answer the call for new inferential models

at the memory-movement interface. Chapters 4 and 5 establish a new theoretical

framework for understanding and mitigating the impact of data and models’ temporal

discretization on statistical inference.

In Chapter 2, I propose a new model that includes a dynamic interplay of move-

ment decisions and information gain. This model builds on previous formulations of

movement as result of general movement capacities and available resources. In my

model, I account for movement not only being influenced by information, e.g. resource

information, but also affecting information itself. This takes up observations that ani-

mals use their travels not only to forage, for which they may use information, but also

to acquire information, e.g. about temporary resource statuses. Also, animals may

change information as they move, e.g. by depleting resources. As an example of such

dynamic interplay, I model how an individual’s movement decisions interact with in-

formation about its own travel history. I focus on the pure spatial and temporal aspect

of the travel history in form of time since last visit to locations. The model yields a

likelihood function and can thus be fitted to empirical movement data. Because the

variable time since last visit is a dynamic covariate, not only influencing movement

decisions but being affected by them, I test the functionality of the framework with

simulated data. With this, I show that a classic model selection approach can identify

the cognitive-based movement strategy and that parameter estimation can recover the
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quantities that are shaping the process.

In Chapter 3, I apply the new model developed in Chapter 2 to wolf (Canis lupus)

movement data. I use the model’s dynamic interplay between movement decisions and

travel history to formulate a movement strategy, in which wolves move so as to minimize

their impact on prey. This impact includes in particular behavioural depression of

prey caused by the wolves. Wolves, however, can reduce prey’s behavioural changes

by leaving and returning to hunting sites in a timely manner. By confronting the

model with data, I show that observed movement patterns of wolves support this

hypothesized prey-management strategy, although quantitative results do not fully

align with expectations. In addition to the ecological relevance of the analysis, it

also serves to demonstrate how to infer a sophisticated movement strategy that likely

involves spatial and temporal memory from empirical data.

With Chapter 4, I turn towards the problem that statistical inference is often af-

fected by the temporal discretization of movement data and models. I approach the

problem by dissociating a model’s resolution from the data’s resolution, thereby allow-

ing the view that data may in fact only represent a subprocess of the behavioural pro-

cess of interest (which is formulated in the model). In this view, the problem becomes

related to the formal concept of robustness in statistics. In Chapters 4 and 5, I there-

fore develop a series of definitions for movement models’ robustness against changes in

temporal resolution, and I examine if, and which, existing models have this property.

In Chapter 4, I start by defining robustness and a weaker version, semi-robustness,

for classic random walks with independently and identically distributed steps. In this

case, robustness implies that a model can be validly applied to both finer and coarser

data, while keeping information about parameters intact via an appropriate parame-

ter transformation. Semi-robustness only allows the model to be scaled up to coarser

resolutions, which, however is a useful property already. I investigate which step dis-

tributions lead to (semi-) robust random walks, and how we can make models robust

by extending step distributions within larger families. I also show how robustness and

semi-robustness relate to the probabilistic concept of infinite divisibility.

In Chapter 5, I extend the idea of robustness to more general first-order Markovian

models. Due to the more complex situation, robustness is defined slightly different

than in Chapter 4. In fact, the robustness definition in Chapter 5 is closer related to

the semi-robustness definition in Chapter 4 in the sense that it addresses the issue of

linking a model with suboptimal, i.e. coarser, data. Because exact robustness is a very

strong condition, I also propose two alternative definitions, asymptotic and approxi-

mate robustness. Especially the new definition of approximate robustness is designed
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to become a practical tool. Again, I investigate which models are robust. I focus

on spatially-explicit resource selection models, which constitute the class of models I

use in Chapters 2 and 3, without the dynamic information component. In addition

to presenting theoretical results based on analytical calculations, I also show how the

new definitions can be used more practically via numerical calculations. Finally, I

contrast robustness properties of two spatially-explicit resource selection models that

incorporate an exponential and logistic resource selection function, respectively.

In Chapter 6, I conclude my thesis with a discussion of the newly developed models

and methods in light of their application for movement ecology. I highlight specific

features of the new movement model and how these can be used to test hypotheses

about cognitive-based movement strategies. I also discuss the relevance of spatial and

temporal memory for the modelling approach. Furthermore, I discuss my theoretical

work on movement models’ robustness in the context of the well-established concept

of robustness in statistics. I highlight the key findings of my analysis, discuss how the

new concept can be applied to analyses of movement data, and suggest directions for

further research.
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Chapter 2

Detecting effects of spatial memory

and dynamic information on animal

movement decisions1

2.1 Introduction

Animal movement serves important needs such as food acquisition, escape from preda-

tors, and travel to reproduction sites. Consequently, many species have evolved capac-

ities to move efficiently and purposefully by considering varying sources of information

for their movement decisions (Janson & Byrne, 2007; Sulikowski & Burke, 2011). Ex-

plaining the mechanisms that underly such informed movement behaviour will allow us

to better understand animal space-use patterns and their responses to environmental

changes (Dalziel et al., 2008; Nathan et al., 2008; Sutherland et al., 2013).

Most animals live in heterogenous environments, and the link between movement

and environment has received much attention. Using classical resource-selection anal-

yses (Manly et al., 2002), a wide range of studies have demonstrated that animals

selectively use the biotic and abiotic features that are available to them (Fortin et al.,

2005; Gillies et al., 2011; Squires et al., 2013). Analyses of movement characteristics

have shown that animals express different movement behaviours, e.g. encampment or

travel, in different habitats (Morales et al., 2004; Forester et al., 2007).

Most mechanistic models have concentrated on incorporating relationships between

environmental factors and movement behaviour within a static environment (but see

1A version of this chapter has been published as: Schlägel, U.E. & Lewis, M.A. (2014). Detecting
effects of spatial memory and dynamic information on animal movement decisions. Methods in Ecology
and Evolution, 5(11), 1236–1246.
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Avgar et al., 2013); however, observations show that animals also take into account

dynamically changing information and respond with their movements to temporal avail-

ability or unavailability of resources (Martin-Ordas et al., 2009). For instance, fruit-

eating primates express goal-oriented travel towards those trees in their home range

that carry ripe fruit (Asensio et al., 2011), and it has been suggested that monkeys

use their daily travels to monitor fruiting histories of trees (Janmaat et al., 2013; Jan-

son & Byrne, 2007). On the other hand, many resources, once depleted, need some

time before they become available again, providing reason for animals to avoid depleted

food patches (Davies & Houston, 1981; Owen-Smith et al., 2010; Bar-Shai et al., 2011).

Avoidance behaviour may be a response not only to depletion of resources, such as plant

biomass or prey, but also to behavioural depression. Behavioural depression refers to

a reduction in prey availability that is caused by behavioural changes of the prey in

response to predation (Charnov et al., 1976). For example, prey may show greater

alertness or seek shelter. This reduces capture rates, to which predators may respond

in turn by changing their hunting areas (Jedrzejewski et al., 2001; Amano & Katayama,

2009). Temporal considerations also become important for movement decisions if ter-

ritorial defence mechanisms require animals to visit certain locations regularly, e.g. to

scent-mark territory boundaries (Moorcroft & Barnett, 2008; Giuggioli et al., 2011).

As the above examples highlight, spatio-temporal information drives movement

decisions and at the same time movement allows animals to update this information.

Experimental findings additionally support that animals make decisions based on infor-

mation that they have obtained through previous experiences. Memory of information

about the “what, where and when” of events, obtained through subjective experi-

ence, is termed “www-memory” (Martin-Ordas et al., 2009) or “episodic-like memory”

(Griffiths et al., 1999). It is possible that animals acquire information about current

environmental conditions through perceptual cues, even over large distances (Tsoar

et al., 2011), and that information about the recent travel history is stored in exter-

nalized “memory”, such as pheromone trails or slime (Deneubourg et al., 1989; Reid

et al., 2012). However, it is likely that many animals draw upon internal memory, es-

pecially for behaviours that require information about temporal distances (“how long

ago?”) (Griffiths et al., 1999; Martin-Ordas et al., 2009; Janmaat et al., 2013). During

recent years, movement models have started to incorporate influences of memorized

information on movement decisions (for a review see Fagan et al., 2013). Most of these

are simulation models that are used for theoretical considerations only (but see Avgar

et al., 2013); however to test our understanding of the feedbacks between movement

and information acquisition, we must also interface memory-based models with data

12



CHAPTER 2. MODELLING MEMORY AND DYNAMIC INFORMATION

(Smouse et al., 2010).

Here, I present a new model for animal movement that is amenable to likelihood-

based inference, and in which I mechanistically incorporate the interplay of movement

decisions, environmental information and dynamically changing temporal information.

The model is similar in its form to recent spatially explicit resource-selection models

(e.g. Rhodes et al., 2005; Forester et al., 2009), in which movement steps are assigned

probabilities based on general movement tendencies and resource preferences. In pre-

vious models, resource information enters as a static covariate, providing knowledge

about features of the landscape, such as land cover type or topographical features.

In my model, I add dynamic information obtained through experiences made during

movement. To realize the interplay of movement and information acquisition, I draw

on the concept of a cognitive map (Tolman, 1948; Asensio et al., 2011). I use this

concept here as a helpful mathematical construct that provides a map-like representa-

tion of the animal’s environment containing all relevant information. For an example

of a dynamic information-gain process I introduce information about the time since

last visit to locations. Time since last visit is useful information that can play a role,

for example, in the process of patrolling in canids or food acquisition across species if

food availability varies (Davies & Houston, 1981). With the inclusion of this informa-

tion acquisition process, I present a practical model that incorporates both dynamic

information and spatial memory.

I place the model into a model selection framework that allows to identify which

types of information most likely shape the movement decision process. I first out-

line the general formulation of my model and how memory effects can be integrated.

Subsequently, I present the details of several candidate models that correspond to

different underlying mechanisms of animal movement behaviour. Next, I show how

the models can be fitted to empirical movement trajectories to perform statistical in-

ference. Finally, using simulated data, I test the functionality of my framework and

assess whether the method can correctly detect effects of static resource information

and dynamically changing temporal information and whether model parameters can

be estimated reliably.

2.2 Methods

For several decades, the basis of many animal movement models have been random

walks. In a classical random walk, movement is described as a series of discrete steps

that have independent and identical probability distributions. This has been extended
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to include correlations between steps, biases towards specific locations, and step prob-

abilities that depend on the behavioural state of the individual (Morales et al., 2004;

McClintock et al., 2012; Breed et al., 2012; Langrock et al., 2013). Random walks and

their extensions have been used both to analyze movement behaviour at an individual

level (Lagrangian approach; e.g. Smouse et al., 2010) and to derive partial-differential

equation models that describe spatio-temporal patterns at a population level or ex-

pected space-use of individuals (Eulerian approach; e.g. Codling et al., 2008).

I am interested in understanding decision processes that underly movement be-

haviour on the scale of individuals. I draw upon a modelling framework that bridges

the gap between statistical resource-selection analysis and spatially explicit movement

models (Rhodes et al., 2005; Moorcroft & Barnett, 2008; Forester et al., 2009). The

framework builds on a random walk and defines movement via step probabilities, which

have two components. A resource-independent movement kernel assigns probabilities

to steps based on the animal’s general movement tendencies. Given this, a weighting

function evaluates the attractiveness of steps according to resource availability and

resource preferences. I extend this framework by generalizing the weighting function.

In this generalization, the weighting function does not only describe the influence of

resources but allows for the inclusion of any information relevant to the animal. Infor-

mation can pertain to landscape features and resources, as in previous models, but also

to memories of past events and timing aspects, which cannot be obtained externally but

only through the movement process and the animal’s behaviour itself. I assume that

information at a given time is either obtained through direct perception or retrieved

from the animal’s cognitive map (i.e. memory) which itself is updated through expe-

rience. In my model, the cognitive map is a function that assigns values to locations

according to their information content at a given time. Thus, it serves as a mathemati-

cal tool without the claim that it truly represents the underlying cognitive mechanism.

With the framework of the cognitive map I provide a general method for including

an explicit information-acquisition process. The cognitive map itself can take many

forms, depending on the species and behaviour of interest. In my candidate models, I

demonstrate examples of types of information the cognitive map may contain.

2.2.1 The modelling framework

I consider movement paths of individual animals, and I assume that an individual’s

trajectory consists of a series of locations (x1, . . . ,xN) at regular times T = {1, . . . , N}.
Each location has an Easting and a Northing in two-dimensional space, which is dis-
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cretized into a regular grid of square cells. The resolution of the spatial discretization

depends on the available environmental data and should be fine enough compared to

the animal’s movement such that steps generally range over multiple cells. I model

movement as a stochastic process, where the probability of making a step to location

xt depends on the location at time t−1 and, if movement is persistent, on the previous

step from xt−2 to xt−1. I define this step probability as

p(xt|xt−1,xt−2,θ) =
k(xt;xt−1,xt−2,θ1)wt(xt;θ2)∑
y∈Ω k(y;xt−1,xt−2,θ1)wt(y;θ2)

, (2.1)

where k is an information-independent movement kernel, wt is an information-based

weighting function, and θ = (θ1,θ2) is a collection of model parameters. The sum

in the denominator ensures that p is an appropriately normalized probability mass

function over space. The spatial domain Ω is the area within which the animal can

choose to travel during the time relevant to the study.

Using the conceptual framework of Nathan et al. (2008), the kernel k can be inter-

preted as describing the animal’s motion capacity and wt as formulating the influence

of external factors, to which I add memorized information. Both k and wt can be

affected by the animal’s internal goal. For instance, if a herbivore is foraging it is

likely that it moves slowly, changes its movement direction frequently and generally

stays in an environment with suitable foraging material. It may additionally prefer

to forage in an area with low predation risk. Such behaviour could be implemented

by a kernel that assigns higher probabilities to locations in the animal’s close vicinity

with the same values in all directions and a weighting function that has highest values

in preferred foraging habitat. The weighting function could also include information

about previously experienced presence of predators (Latombe et al., 2014).

In general, the movement kernel k can be very simple, e.g. constant within the

animal’s maximum movement radius (Rhodes et al., 2005); however, we can also use

a more complex kernel that accounts for persistence in movement direction or biases

towards specific locations (Moorcroft & Lewis, 2006). Directions can be measured by

either turning angles (the angles between successive steps) or bearings (the angles of

steps with respect to a fixed direction, e.g. North).

I model the weighting function wt as a resource selection function (Manly et al.,

2002; Lele & Keim, 2006). There are several forms available for resource selection

functions, and here I present the logistic form,

wt(x;α,β,γ) =
[
1 + exp

(
−α− I t(x) · β − f(I t(x),γ)

)]−1
, (2.2)
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where · denotes the dot product of two vectors. The vector I t(x) ∈ Rn is the cognitive

map content at location x at time t containing the values of all information variables

of location x at time t, and β ∈ Rn is a parameter vector describing the animal’s

preference for a location of type I t(x). The intercept α ∈ R determines the baseline

weight of a location when all information variables are zero. The function f and

parameter vector γ account for possible interactions between different information

variables. Locations with preferred features have high weights, thereby increasing the

chance that an animal will visit those. The logistic form of the weighting function

restricts weights to be between zero and one, and therefore the weighting function can

in fact be viewed as a resource selection probability function (Lele & Keim, 2006).

Because of the dependence structure of the step probabilities in equation (3.1), they

are only valid for times t ≥ 3. Here, I chose to define an initial probability for the first

two locations, p(x1,x2|θ) = p(x2|x1,θ) p(x1|θ). A simple option is to assume that

every location in the spatial domain has the same probability to be the first location,

p(x1|θ) = 1
|Ω| , and to let

p(x1|x2,θ) =
k̃(x2;x1, κ, λ)wt(x2;α,β,γ)∑
y∈Ω k̃(y;x1, κ, λ)wt(y;α,β,γ)

, (2.3)

where k̃ is possibly a simplified form of k in case that k describes persistent movement.

2.2.2 Candidate models

I consider four different models that represent biological hypotheses about the types

of information that an individual may consider for making movement decisions. In

the simplest case, the null model, I assume that the animal considers no specific in-

formation. In the resource model, an individual considers static information about the

environment, where ‘static’ means that the information content remains constant over

the time span of the analysis. Information can be given about any resources pertain-

ing to the animal, e.g. any variables as they are typical in resource-selection analyses.

To include dynamically changing information, I allow information, and thereby the

weighting function, to change through time. If information were only given externally,

this would constitute a dynamic version of the resource model. However, my aim is

to model a dynamic interplay of movement decisions and information content. In the

memory model, I therefore introduce time since last visit as new type of information.

To account for the possibility that both resources and the dynamic variable time since

last visit influence movement decisions simultaneously, I consider a combination model
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as the most complex model.

I implement the different models by varying the information variable I t in the

weighting function (3.2) while using the same movement kernel for all models.

Null model

In the null model, I assume that the information content of all locations is zero. There-

fore, the weighting function is homogeneous across the landscape and constant over

time, wt(x) = 1 for all x ∈ Ω, t ∈ T . This means that the animal moves only according

to the kernel k.

Resource model

In the resource model, information is static and includes all resource variables of inter-

est, I t(x) = I(x) = (r1(x), . . . , rn(x)) for every location x ∈ Ω. It is straightforward

to extend this to dynamic resource information to include, e.g. seasonal changes in the

landscape or disturbance events.

Memory model

In the memory model, I assume that while the animal moves through the environment,

it monitors the time since last visit from locations and uses this information for move-

ment decisions. For instance, recently visited areas may be avoided for a period of

time, whereas locations with long absence may be attractive. In my model, I include

this feature by defining the cognitive map as mt : Ω → N, which at any time assigns

values to all locations in the spatial domain based on the map values at the previous

time and the most recent movement step. If the animal moves from location xt−1 to

xt between times t− 1 and t, I define for any location y in the spatial domain

mt(y) =

0, if d(y, z) ≤ δ for any z ∈ path(xt−1 → xt)

mt−1(y) + 1, otherwise.
(2.4)

Because of the spatial discretization, I use d(y, z) = |yE − zE| + |yN − zN | as the

distance between two locations y, z with Easting and Northing y = (yE, yN) and

z = (zE, zN), such that all locations within a distance δ of a fixed location z form a

diamond-shaped area around z. I assume that path(xt−1 → xt) is the straight line

between xt−1 and xt. Via equation (2.4), an individual counts the number of steps

it remains absent from locations, and therefore mt(x) is the time since last visit to
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location x at time t. A location is considered visited when the animal comes within

a distance δ > 0. Because mt is obtained recursively, I have to define appropriate

starting values. Here, I use movement data prior to the trajectory (x1, . . . ,xN) for

initialization. If a location x was visited during the initialization phase, I calculate the

time between the last visit to this location and the beginning of the actual trajectory

and thus reconstruct time since last visit at time t = 1, m1(x). For all locations not

visited during initialization, I set time since last visit as the length of the initialization

phase. The dynamic variable time since last visit is used in the memory model to

inform movement decisions via I t(x) = mt−1(x). Once xt is chosen according to the

probability mass function in (3.1), mt is updated via (2.4). Here, I track time since last

visit for the entire spatial domain Ω. If the selection coefficient with respect to mt(x)

is positive, this leads to any location eventually becoming highly attractive after long

enough absence. If this behaviour is not desired, one may adjust the definition of the

cognitive map or weighting function appropriately. For example, if prior information

about an animal’s behaviour is given, it is possible to track time since last visit only

for certain locations of specific interest.

Combination model

In the combination model, I allow information types from both the resource and the

memory model to influence movement simultaneously by letting the information vector

be I t(x) = (r1(x), . . . , rn(x),mt−1(x)). In particular, this models allows for interactive

effects of time since last visit and resource variables, e.g. by incorporating multiplicative

terms of the form γ r(x)mt−1(x) into the interaction term f(I t(x),γ) in the weighting

function (3.2). This is important in situations where return times to locations matter

depending on the resources at the location, e.g. average return times to preferred

foraging areas may differ from those to locations used as shelter.

Information-independent kernel

I define the movement kernel k based on a step length distribution with density S and

a distribution for movement directions with density Φ. For step length, I use a Weibull

distribution with scale and shape parameter κ > 0 and λ > 0, respectively, because it

has a flexible form and generally shows a good fit with empirical data (Morales et al.,

2004). Thus,

S(‖xt − xt−1‖;κ, λ) =
κ

λ

(
‖xt − xt−1‖

λ

)κ−1

exp

(
−
(
‖xt − xt−1‖

λ

)κ)
. (2.5)
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To measure movement directions, I use bearings, and I denote the bearing of the step

from xt−1 to xt by ϕ(xt−1,xt) ∈ [−π, π). I include directional persistence by choosing

a wrapped Cauchy distribution for bearings with scale parameter ρ > 0 and mode at

the previous step’s bearing ϕ(xt−2,xt−1),

Φ
(
ϕ(xt−1,xt);ϕ(xt−2,xt−1), ρ

)
=

1

2π

sinh ρ

cosh ρ− cos(ϕ(xt−1,xt)− ϕ(xt−2,xt−1))
.

(2.6)

The wrapped Cauchy distribution is convenient for implementation, and it has been

used commonly to model movement directions (Morales et al., 2004; Codling et al.,

2008, note that (2.6) is equivalent to their formula with parameter transformation r =

exp(−ρ)). One could use alternative distributions, such as the von Mises distribution

or wrapped normal distribution (Codling et al., 2008). Assuming that the choices for

step length and movement direction are independent, the kernel becomes the product

of S and Φ, describing a correlated random walk,

k(xt;xt−1,xt−2, κ, λ, ρ) = S(‖xt − xt−1‖;κ, λ) Φ
(
ϕ(xt−1,xt);ϕ(xt−2,xt−1), ρ

)
. (2.7)

Because the kernel formulates persistent movement and takes into account the

bearing of the previous step, I define a simplified kernel for t = 2 as

k̃(x2;x1, κ, λ) =
1

2π

κ

λ

(
‖xt − xt−1‖

λ

)κ−1

exp

(
−
(
‖xt − xt−1‖

λ

)κ)
. (2.8)

This means that I assume a uniform distribution for the first bearing.

Note that this definition of the movement kernel from step length and bearing

distributions does not mean that I obtain the kernel from empirical step lengths and

bearings in advance and then use this observed kernel to estimate the weighting function

parameters in a case-control study, as has been previously suggested for resource-

selection analysis (Fortin et al., 2005; Forester et al., 2009). Because movement and

resource selection are not independent processes, a decoupled treatment of the processes

can lead to biased estimates. I circumvent this problem, and I use the formulation in

terms of step length and bearing only to define the functional form of the information-

independent movement kernel. During model fitting (see next section) I estimate all

model parameters simultaneously from the data.
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2.2.3 Statistical inference

If information I t is known, the likelihood function for the collection of parameters

θ = (κ, λ, ρ, α,β,γ) for the general model is

L(θ) = p(x1,θ) p(x2|x1θ)×
N∏
t=3

p(xt|xt−1,xt−2,θ). (2.9)

In the memory and combination model, I includes the variable time since last visit

m = (mt, t ∈ T ), which represents internal information of the animal that in general

cannot be observed. However, because of the way I define and initialize m, I am able

to iteratively calculate the time series (m1, . . . ,mN) based on the movement trajectory.

Therefore, given the data (x1, . . . ,xN), time since last visit becomes a known covariate,

and the likelihood function in equation (5.11) is valid for all models.

To obtain parameter estimates and their confidence intervals for all models I use

data cloning (Lele et al., 2007). Data cloning uses Markov Chain Monte Carlo (MCMC)

methods, which are usually employed in Bayesian statistical inference. However, data

cloning provides approximations to maximum likelihood estimates (MLE), together

with Wald-type confidence intervals, thus facilitating frequentist inference; see Ap-

pendix A.1.

I use the approximate MLEs for the model parameters in (5.11) to calculate the cor-

responding approximate maximum likelihood values. From these, I obtain the Bayesian

Information Criterion (BIC) for each of the four models (Burnham & Anderson, 2002).

Alternatively, I could have used Akaike information criterion (AIC); however for large

datasets, AIC tends to favour overly complex models (Link & Barker, 2006). For each

trajectory, I select the model with smallest BIC as the one that explains the decision

mechanism of the trajectory best. I use the BIC of this best model as a reference to

calculate BIC differences for all alternative models (∆BIC = BICalternative − BICbest).

A common problem in statistical inference are missed observations. Missed lo-

cations in an otherwise regular movement trajectory occur, for instance when GPS

devices fail to acquire satellite signal due to closed canopy or otherwise limited avail-

able sky. In an autocorrelated trajectory, with each missed location we additionally

lose associated information. Calculations of step lengths and bearings require two suc-

cessive locations. In models with persistent movement, we require not only the current

but also the previous bearing for step probabilities. Therefore, in a correlated random

walk, one missed location can effectively lead to a gap of two full steps. In MCMC-

based data cloning, we can treat missed locations explicitly as unknown variables and
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account for this in the likelihood function,

L(θ) =

∫
p(xavail,xmiss) dxmiss. (2.10)

This allows to preserve the entire dependency structure of the trajectory and avoids

the need to discard any information. For more information on this, see Appendix A.2.

2.3 Simulation study

To verify the functionality of my method I applied the modelling framework and sta-

tistical inference method to simulated data. Because (3.1) defines probability mass

functions for movement steps, I can sample from them to iteratively generate individ-

ual movement trajectories according to the four candidate models. These data have the

advantage that I know both a trajectory’s underlying mechanism and the parameter

values that were used to generate the trajectory. By applying the inference procedure

to these data, I investigated whether it was possible to identify the true underlying

mechanism of a trajectory and to correctly estimate parameter values.

2.3.1 Simulation of landscapes

Because movement decisions in the resource and combination model are based on en-

vironmental information, I first simulated landscapes of covariate values. I consider

two resources (r1, r2), one having a continuous range of values, e.g. a biomass mea-

sure or elevation, and the other representing presence or absence of a feature, e.g. a

preferred food source, via a binary variable that takes either value 1 or 0. To include

biological realism, I accounted for spatial correlations in the covariate values. I sim-

ulated five pairs of landscapes with varying spatial structures. For more information

see Appendix A.3.

2.3.2 Simulation of movement trajectories

I generated movement trajectories using the four candidate models presented above.

When I used the null model, I called the resultant trajectory a null trajectory, and I

named trajectories analogously for the other models.

On each of the five landscape pairs, I simulated a null, resource, memory and

combination trajectory, using the same movement parameter values on all landscapes

and across all four models, as applicable (Figure 2.3). The kernel parameters κ, λ,
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ρ appear in all models. The resource model has additional parameters αres, β1, β2,

which are the intercept and the selection parameters with respect to the two resources

(r1, r2) of the weighting function (3.2). In this model, I assumed there is no interaction

between the two resources. The memory model instead has additional parameters αmen

and βmem, which describe the animal’s preferences with respect to time since last visit

m. In the combination model, the weighting function includes all effects, such that it

has parameters αcom = αres + αmem, β1, β2, and βmem. In this model, I further allowed

for interactions between resources and time since last visit by defining the interaction

term in the weighting function as f
(
(r1, r2,mt), γ1, γ2

)
= γ1 r1mt + γ2 r2mt, where γ1

and γ2 are the interaction parameters. I chose the main set of parameter values to

represent realistic movement behaviour. To account for scenarios for which parameter

values were potentially more difficult to estimate from data, e.g. small values of selection

parameters, I generated two supplemental data sets, comprising two additional sets of

20 trajectories each generated from alternative sets of parameters; see Appendix A.4.

For all trajectories, I simulated 2600 time steps, of which I discarded the first 1400

steps as initialization. This was particularly important for the memory model, in which

I started with a cognitive map having value 0 everywhere. I used the last 400 steps

from the initialization phase to calculate m1. Each final trajectory consisted of 1200

time steps, which I considered a length commonly available (e.g. 1200 time steps could

represent 50 days of 1-hr data or 100 days of 2-hr data).

For an example of how to handle missed observations, I simulated a combination

trajectory with 90% fix rate by removing locations from a trajectory, 5% as single

locations and 5% as two successive locations. I chose a trajectory from the main data

set, which allowed me to compare results for completely and incompletely observed

trajectory; see Appendix A.2 and B.1.2.

2.3.3 Analysis of simulated data

To every simulated trajectory, I fitted all four candidate models (Figure 2.3) using data

cloning. For details about the data cloning and MCMC procedures, such as number of

clones and iterations used, see Appendix A.1. There were two basic types of model fits

that I distinguished in my analyses. A model could be fitted to a matching trajectory,

i.e. a trajectory that had been simulated using the same model’s mechanism (e.g. a

resource model fitted to a resource trajectory). Or, a model could be fitted to a non-

matching trajectory (e.g. a resource model fitted to a null, memory or combination

trajectory). Each model fit generated estimates of the model parameters, together
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with Wald-type confidence intervals. Here, I used 95% confidence intervals. Using the

approximate maximum-likelihood parameter estimates from data cloning, I estimated

the maximum value of the model likelihood, and BIC, for each model fit.

For all parameter estimates, I examined whether their potential scale reduction

factors R̂ were close to 1 (Gelman & Rubin, 1992). For an MCMC fit, in which

parallel Markov chains are used to generate the posterior distribution of a parameter,

the potential scale reduction factor of a parameter indicates whether the chains have

mixed well and converged. If this is not the case, the estimate that results from such an

MCMC is not meaningful. I considered a potential scale reduction factor R̂ ≤ 1.1 to be

sufficiently close to 1 (Gelman & Rubin, 1992), and I excluded all parameter estimates

that did not meet this condition from my analysis. Whenever such a non-convergent

or non-mixing parameter occurred within a model fit, the resultant likelihood and BIC

values of the fit were possibly inaccurate. Therefore, if a model fit included one or more

parameters with R̂ > 1.1, I excluded the BIC value from the model-selection analysis.

For each trajectory, I compared whether the best model according to model selec-

tion via BIC coincided with the true underlying model of the trajectory. Under the

assumption that the framework is functional, I expected the model that matched a

trajectory’s underlying mechanism to have minimal BIC. Because both the resource

model and the memory model are nested within the combination model, I further ex-

pected the combination model, when applied to a resource or memory trajectory, to

perform better than the simple alternative (e.g. a memory model applied to a resource

trajectory).

For matching model fits, I compared true parameter values that were used to gen-

erate a trajectory to the parameter estimates obtained from applying the matching

model, and I examined whether 95% confidence intervals of parameters included the

true values. This should be achieved 95% of the time if parameters are identifiable and

the statistical methodology is functional.

In resource-selection analysis, it is usual to use hypothesis testing to determine

whether a covariate has an effect or not. I performed an equivalent analysis and

examined confidence intervals of the selection parameters β1, β2, βmem, γ1, γ2 in those

model fits, in which the combination model was fitted to a trajectory. The combination

model includes all possible covariates, but not all covariates were simulated to have

an effect in all trajectories, e.g. a resource trajectory includes effects of the resource

variables but not time since last visit. Confidence intervals that corresponded to true

underlying effects should exclude zero and vice versa. However, by definition, an α-level

hypothesis test results in a Type I error of α, which I expected to observe approximately
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in this analysis. Additionally, I expected a Type II error to occur, where a confidence

interval included zero, although the corresponding covariate had an effect. I compared

the outcome of this method with the results from model selection via BIC.

I performed all simulations of movement trajectories and statistical analyses in R

(R Core team, 2013), using additionally package ‘dclone’ (Solymos, 2010). To generate

MCMC samples, I used JAGS via the R package ‘rjags’ (Plummer, 2013).

2.4 Simulation results

Here, I present results for data generated with the main set of parameters θ1 (Fig-

ure 2.3). Results for supplemental data generated by additional sets of parameters can

be found in Appendix B.1.1.

Of all 80 model fits (four models fitted to 20 trajectories each), 80% had potential

scale reduction factor R̂ ≤ 1.1 for all model parameters. In the remaining model fits, at

least one parameter had R̂ > 1.1 (Figure 2.4). Convergence or mixing problems never

occurred when the null model was fitted to a trajectory, even if the trajectory had a

more complex underlying mechanism. Large R̂ values only occurred if the fitted model

contained parameters that were inapplicable to the model that was used to generate the

trajectory. This was the case when any of the more complex models was fitted to a null

trajectory, when the combination model was fitted to a resource or memory trajectory,

or when the memory model was fitted to a resource trajectory and vice versa. In these

model fits, the non-convergent parameters were mainly those that did not correspond

to true underlying covariate effects. However, when in a model fit problems occurred

for multiple parameters, occasionally even applicable parameters failed to converge. In

matching model fits, Markov chains always mixed well and converged. For more details

on convergence, see Appendix B.2 and B.3.

Our model selection framework was able to correctly identify the true underlying

model for all trajectories (Figure 2.4). When a trajectory had underlying resource or

memory mechanism, the next best model was always the combination model with ∆BIC

being a magnitude smaller than for the alternatives. This pattern was only disturbed if

the combination model experienced convergence problems and was therefore excluded

from further analysis.

Parameter estimates in matching model fits agreed well with true underlying pa-

rameter values. Parameter estimates generally were both close to and balanced around

their true values (Figure 2.5). 95% confidence intervals (n=115) included the true pa-

rameter value 91% of the time. Considering also results from the supplemental data,
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94% of all confidence intervals (n=345) included the true value.

Our hypothesis test as to whether covariates had an effect agreed with my expec-

tations. The combination model fitted to the 20 trajectories lead to 73 estimates of

selection parameters, of which 39 corresponded to true underlying effects. Analyzing

their confidence intervals, I obtained a false positive rate (Type I error rate) of 0.09

and a false negative rate of zero, i.e. Type II errors did not occur. However, if I also

considered the supplemental data and thereby increased the amount of resultant pa-

rameter estimates with confidence intervals to a total of 217, I obtained a Type I error

rate of 0.04 and again a Type II error rate of 0.09.

2.5 Discussion

In recent years, the link between animal movement and spatial memory has received

increasing attention (Smouse et al., 2010; Fagan et al., 2013). Studies of animal be-

haviour and cognition have given useful insights into animals’ capacities to remember

past experiences and use spatial memory. Most results have been obtained through

experiments in confined and synthetic settings. However, to better understand how

important ecological processes such as movement and dispersal are shaped by cogni-

tive processes and memory, we also need to look at animals in their natural environ-

ments (Tsoar et al., 2011). Understanding the components of individual movement

decisions and their interactions ultimately will help us to predict how population dis-

tribution patterns respond to environmental changes, such as landscape fragmentation

and changing climate.

I have presented a modelling framework that can be used to detect the influence

of memorized information on movement decisions. I recognize that in many situations

it is difficult to confirm that animals draw upon memorized information instead of

momentarily perceived information; however, there is evidence that animals use infor-

mation that they have obtained during past experiences (Martin-Ordas et al., 2009;

Janmaat et al., 2013). As an example of such information, I use time since last visit

to locations. In my model, time since last visit is continuously updated during the

movement process and at the same time influences movement decisions. I formulate

my models in a way that makes them amenable to likelihood-based statistical infer-

ence. This allows to fit the models to data to test whether the timing of events plays

a role for movement decisions. Fitting the full model (3.1), encompassing both general

movement tendencies and selective behaviour, to data via the likelihood function (5.11)

enables simultaneous estimation of parameters of both the general movement kernel
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and weighting function. This distinguishes my method from step selection approaches

that use an empirical movement kernel to estimate resource selection parameters in a

case-control framework (Fortin et al., 2005; Forester et al., 2009).

In my definition of the weighting function (3.1), I followed the classical formulation

of resource-selection functions and evaluated a movement step based on the information

at the endpoint of the step. In the memory model this means that an animal may cross

recently visited locations on its path although these have low weights. Depending

on the behaviour of the study species, it may be appropriate to change this so that

cognitive map values along the entire path are considered, thus following the idea of

step selection functions (Fortin et al., 2005; Potts et al., 2014). In my framework, it is

straightforward to define the weighting function as a function not only of xt but also

xt−1 and to include any information related to the step from xt−1 to xt. Endpoints

are observed locations and therefore have certainly been used. To include information

about entire steps, we must make an assumption about which locations were visited

between observed locations. In the memory model, I assume this is a straight line,

however one may use more sophisticated methods similar to Brownian bridges (Horne

et al., 2007).

I used simulated landscapes and movement data to verify the functionality of my

modelling framework and statistical inference method. Adding the memory process to

the modelling framework considerably increased model complexity and the amount of

data that had to be processed. I was therefore interested in whether I could correctly

detect memory effects in empirical movement patterns and whether parameters that

describe the memory process and its interactions with other variables were possible

to estimate reliably. To perform inference, I used data cloning, which uses MCMC

techniques but facilitates frequentist inference. I used the software package JAGS,

which allowed me to define models in an easily understandable language and provides

a stable implementation of MCMC sampling. JAGS was able to adapt the sampling

process successfully so that parameters of very different magnitude could be reliably

estimated. However, this came at the cost of long computation times (ranging 0.5-5

days per single chain for different models) and high memory needs (ranging 1-5 GB

RAM). Alternatively, I could have used conventional numerical maximization of the

likelihood function, which in this case may have been faster but at the same time more

limited. Because data cloning is based on MCMC, it is amenable to extensions of my

model to include partially observed and hidden processes. I have demonstrated this

with an example on missed observations. Any Bayesian method would provide this

option and it may be a matter of belief whether frequentist of Bayesian approaches
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are used. However, data cloning additionally provides tools to detect parameter es-

timability problems (Lele et al., 2010), which was relevant in my analysis; compare

Appendix B.2. At this stage, data cloning via JAGS was computationally intense, and

it may be worth to explore alternative options, e.g. a ‘home made’ MCMC sampler in

a fast language such as C/C++. Still, with quickly increasing computational capacities

and advances in statistical software, I believe that my method has a promising future.

Verification of the method was successful. In matching model fits, almost all MCMC

runs mixed well and converged. Convergence and mixing problems occurred in non-

matching model fits and especially for parameters that were not meaningful to the

trajectory (e.g. a resource selection parameter for a memory trajectory). For further

application of the method, I have given recommendations how to proceed in cases

on non-convergent model fits (Appendix B.3). Model selection via BIC successfully

identified trajectories’ true underlying mechanisms, and if parameters in a model fit

were applicable to the underlying trajectory, I was able to recover true parameter

values. Simulated movement trajectories were samples of stochastic processes, and

therefore realized parameter values were subject to stochasticity. Thus, parameter

estimates could not be expected to exactly coincide with the true values. Verifying

the functionality of my method was particularly important with respect to the newly

introduced memory process. I conclude that if time since last visit is a driver of

observed movement trajectories, my framework is able to detect this.

When I compared results from model selection to outcomes of hypothesis tests, I

found that model selection was better able to distinguish true underlying mechanisms of

trajectories. By definition, hypothesis tests allow for a Type I error, the size of which is

influenced by the level of the test. However, decreasing the Type I error simultaneously

decreases the power to correctly detect effects of covariates and increases the Type II

error. The model selection framework is not based on this concept, and it proved to

be more accurate in my analysis.

I have built on the framework of spatially explicit resource-selection models and

added the influence of a dynamic memory process on movement decisions by introduc-

ing a dynamic cognitive map and linking it with the movement and resource-selection

process. The existence of cognitive maps in animals is debated, and there is especially

controversy about what form such maps may take, e.g. whether animals use topological

cognitive maps for landmark-based navigation or whether animals can create and use

geometric cognitive maps that preserve angles and distances between locations (Ben-

nett, 1996; Asensio et al., 2011; Collett et al., 2013). This debate also includes the

question whether spatial information in the brain is encoded with respect to the posi-
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tion of the viewer, i.e. egocentrically, or independently of the position of the viewer, i.e.

allocentrically (Yeap, 2014). In my models I do not focus on navigational mechanisms

but decision making processes, and I use the cognitive map as a useful mathematical

tool to model spatial information. Investigation of different navigational mechanisms

within a model-selection framework similar to that presented here could be the goal of

future research. With my model formulation in terms of a cognitive map, I have pro-

vided a general framework for linking movement with information use and acquisition.

I emphasize that within this general formulation, a variety of more specific formulations

of cognitive maps can be realized, tailored to the situations and behavioural processes

of interest.

In my candidate models, I have used time since last visit to locations as an example

of a form of dynamic information that is mediated by the cognitive map. I have demon-

strated how the time since last visit to a location can shape the movement process,

either on their own or in interaction with environmental variables. Such behaviours

can, for instance, occur when animals patrol their home ranges for defence purposes,

when predators counteract behavioural depression, or when animals rely on resources

that vary in their availability due to depletion. However, my modelling framework

and its elements are flexible and can be extended to include other forms of dynamic

information and experiences that animals collect during their movement. For instance,

while animals travel they may gather information about seasonally available resources.

Observations of Mangabeys show evidence that they remember fruiting statuses of fig

trees and use this information to predict the fruiting status of those trees at later times

(Janmaat et al., 2013). Prey species can use their movement to collect information

about the distribution of predators. Such information can enable prey to reduce costly

anti-predatory behaviours and therefore outweigh attack risks connected to the infor-

mation collection. This has been suggested to explain movement behaviour of caribou

towards wolf paths (Latombe et al., 2014).

In my models, I have reconstructed time since last visit from the movement path,

using an initialization period as basis. Because an observed movement path consists

of a discrete series of locations, we must make an assumption about the path between

two successive locations. Here, I simply defined a buffer zone around the straight line

between two locations and considered all locations within this buffer as visited. Another

option would be to formulate time since last visit as a random variable and incorporate

it via a hierarchical model structure, e.g. a state-space model, in which time since last

visit is a hidden process. Such a formulation may also become useful when integrating

a dynamic variable that cannot be reconstructed from the movement path. Including
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a high-dimensional hidden process, however, would increase the computational burden

mentioned above even further.

Although my models describe movement behaviour of individual animals, the ideas

I have presented can also apply to other systems. A specific feature of my models

is the interaction between a movement process and an information, or memory, pro-

cess. A similar dynamic interplay can arise on a larger scale when a species disperses

and expands its range. While moving into a new environment, the dispersing species

might alter the environment and its species composition, which in turn could affect the

dispersing species (Gilman et al., 2010). Such processes could be analyzed with the

same mathematical ideas and modelling tools as I have presented here. Thus, I have

presented a powerful modelling approach to identify spatial memory and dynamic infor-

mation as drivers of movement decisions, and my framework and its elements promise

a wide range of applications within movement ecology.
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Figure 2.1. Example trajectories from the four candidate models, 100 steps long,
with starting location marked by a green box and final location marked by a blue
triangle. All trajectories are plotted on top of an example resource selection function

w(x;α,β) =
[
1 + exp

(
−α− β1 r1(x)− β2 r2(x)

)]−1
generated from two resources r1

and r2. The null model does not consider resource information and therefore the
null trajectory visits locations irrespective of the resource selection function. The
memory model does not consider resource information either, however, the animal
avoids recently visited locations and is attracted to locations with long time since last
visit. Therefore, the memory trajectory efficiently explores the spatial domain in a
patrolling fashion. In contrast, the resource trajectory mainly remains in areas where
the resource selection function has high values. The combination trajectory shows a
mixture of behaviours from the resource and the memory model. The trajectories were
generated using the first landscape pair and main parameter set from the simulation
study; compare Figure 2.3.
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Figure 2.2. In the memory model, the weight wt(x) of a location x depends on time
since last visit mt−1(x) to that location. Locations that have been visited recently have
low weights and are thus avoided. A weight of 0.5 is attained when mt−1(x) = −α

β

(dotted vertical line).
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Figure 2.3. Overview of data simulation and model fitting. For a set of parameter
values, I generated trajectories using all four candidate models. Using each model, I
simulated trajectories on five different landscapes resulting in 20 trajectories. Each
trajectory was then fitted with all four models, leading to a total of 80 model fits.
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Figure 2.4. Each column shows model selection results for one simulated trajectory
when fitted with the null (N), resource (R), memory (M) and combination(C) model.
For each trajectory, I calculated BIC values for the four fitted models, and the figure
shows differences in BIC with respect to the minimal BIC value, i.e. the model with
minimal BIC has ∆BIC = 0. I excluded model fits with non-convergent MCMC.
Triangles indicate trajectories for which I calculated estimability diagnostics; compare
Appendix B.2.
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Figure 2.5. Parameter estimates and their 95% confidence intervals for matching
model fits (each trajectory fitted with the same model that was used to generate the
trajectory). Both parameter estimates and Wald-type confidence intervals are scaled
by the true parameter values (TV): κ = 5.5, λ = 1.6, ρ = 1, αres = −1, αmem = −4,
αcom = −5, β1 = 1, β2 = 2, βmem = 0.03, γ1 = 0.01, γ2=0.05.
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Chapter 3

Prudent prey-management: do

wolves keep track of space and

time?

3.1 Introduction

Wolves play on one side of intricate predator-prey interactions. Predators do not only

reduce prey numbers through consumption but also have non-lethal effects on prey that

can be far-reaching. By posing fatal risks, predators create a “landscape of fear”, to

which prey respond by altering their foraging behaviour (Brown et al., 1999; Laundré

et al., 2001). Although anti-predator behaviours increase survival, they also result in

lower consumption rates (Lima & Dill, 1990). For example, in the presence of wolves,

ungulates increase their vigilance and spend more time scanning the environment,

thus reducing the time available for feeding (Laundré et al., 2001; Liley & Creel, 2007).

Additionally, when exposed to predation risk, prey tend to select safer habitats by

moving into open areas where predators can be earlier detected or by seeking shelter in

forested areas (Fortin et al., 2005; Latombe et al., 2014). Because safe habitats often do

not coincide with optimal foraging habitat, this means to forego foraging opportunities.

Predator-induced shifts in behaviour have further implications for communities and

ecosystems because they release herbivory from plants (Fortin et al., 2005; Ripple &

Beschta, 2012) and can also stabilize predator-prey population dynamics (Brown et al.,

1999).

Predators’ non-lethal effects on prey feed back to predators, requiring them to adapt

their behaviour themselves. Anti-predatory behaviours make prey less vulnerable to
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predation, thereby reducing capture rates. Prey availability thus reduced is termed

behavioural depression of prey (Charnov et al., 1976). While prey should adjust their

behaviour to optimize food intake while minimizing predation risk, predators face an-

other optimization problem: they must pursue prey but also temporarily release hunt-

ing pressure to allow prey recovery. Charnov’s marginal value theorem (MVT) predicts

that predators should leave a foraging patch when the rate of food intake drops to the

overall expectation over the available space (Charnov et al., 1976; Charnov, 1976). For

wolves, food intake rate may not be the only measure to determine patch departure

time. Ungulates respond in their behaviour not only to hunting events by wolves but

also to mere wolf presence or passage within distances of one kilometre or more (Liley

& Creel, 2007; Latombe et al., 2014). With this in mind, we may interpret the MVT in

the sense that wolves should give up search in an area when the expectation of making

a successful kill drops below the average over their available space.

To optimize hunting success, wolves should not only optimize giving-up times but

also adjust return times, which is influenced by the time it takes prey to reduce anti-

predator behaviour (Latombe et al., 2014). In a call for a stronger consideration of

predators as strategically behaving actors in predator-prey interactions, Lima (2002)

proposed that predators may adopt a prey-management strategy that is “prudent”

in the sense that it avoids excessive hunting in a given area and instead spreads the

risk over all hunting sites. This idea that wolves actively act against behavioural

depression has been supported by Jedrzejewski et al. (2001), who studied movements

of wolves in Bia lowieża Primeval Forest, Poland. They found that wolves changed

their travel routes daily, with little overlap between daily hunting areas, both during

spring-summer and fall-winter seasons. Especially in fall and winter, wolves tended

to rotate through their territories, returning to the same areas roughly every sixth

day. As second explanation for wolves’ rotational movement patterns, Jedrzejewski

et al. (2001) mention territorial mechanisms. Packs strongly defend their territories

against intruders and use scent marks, among other cues, to signal their presence to

foreign wolves (Peters & Mech, 1975; Mech & Boitani, 2006). To maintain active scent-

marks, which are most numerous along territory boundaries, wolves need to revisit

locations and traverse their territories regularly (Peters & Mech, 1975; Zub et al.,

2003). However, the study by Jedrzejewski et al. (2001) remained largely descriptive,

not testing the proposed explanations for their observed movement patterns.

I apply the models developed in Chapter 2 to movement data of gray wolves (Canis

lupus) in Alberta, Canada, to investigate whether wolves move according to the pru-

dent prey-management strategy. The models describe movement as a decision process
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that can incorporate effects of the environment as well as cognitive effects. Therefore,

I can use them to test wolves’ movement strategies and their underlying mechanisms.

Unless wolves follow fixed routes very strictly, rotational movement behaviour requires

wolves to incorporate information about their own travel history into movement de-

cisions. This information has both a spatial (“where?”) and a temporal (“how long

ago?”) component. Basically, wolves need to follow two rules: 1) avoid recently visited

areas, and 2) travel to areas with long absence. I incorporate these behavioural rules

into the modelling framework and combine them with effects of prey density to test the

hypothesis that wolves counteract behavioural depression of prey. Under the assump-

tion that the hypothesis is true, timing of visits is particularly important for areas with

high prey densities and less relevant for areas without prey. Thus, I expect rules 1) and

2) to drive movement decisions in interaction with prey density. I additionally account

for possible territorial defense mechanisms. Wolves tend to avoid locations close to the

territory boundary, because they pose a greater risk of fatal interactions with foreign

wolves (Mech, 1994). However, to maintain scent-marks along the boundary, especially

rule 2) becomes important for outer regions of territories, and I expect this effect to

reduce an general avoidance of boundary locations, given long absence.

3.2 Methods

3.2.1 Wolf movement and prey data

The data used for this study were collected in an 25,000 km2 area west of Rocky

Mountain House, about 200 km southwest of Edmonton in Alberta, Canada (52◦27′N,

115◦45′W). The area is part of the east slopes of the Rocky Mountains, and terrain

includes gentle foothills in the eastern parts as well as mountains (< 3100m) towards

the west. Much of the landscape is covered by conifer forest (52.1%), which is in-

terspersed with smaller areas of natural lowlands (10.4%), forestry cut-blocks (5.7%)

and stands of deciduous forest (2.7%) (Webb et al., 2008). During the time of data

collection, wolf density was on average 22.3 wolves/1000km2 in the eastern part of the

study area, which declined to 9.7 wolves/1000km2 towards the more mountainous west

(Webb, 2009).

During the years 2004–2006, wolves were captured and fitted with GPS collars
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(Lotek 3300Sw store-on-board GPS collars); for details see Webb (2009). The collars

were programmed to collect location measurements every two hours. This led to time

series of observed movement steps, each step representing an interval of two hours.

Unsuccessful fix attempts, for example due to poor satellite signal, led to missed ob-

servations. Because I expected rotational movement patterns to be strongest during

the winter, which is the season where cubs are old enough to leave den and rendezvous

sites and travel with the pack, I focused on movement data during the time period

1 November – 15 April. I analyzed data from three wolves with IDs 220, 284, and

285. To avoid strong effects of elevation, for example movements being concentrated

in valleys, I selected individuals with territories in the eastern part of the study area

with lower elevations. Additionally, I only chose wolves with long enough time series

(more than 1200 steps).

In addition to the wolf movement data, information was collected about winter

prey densities in the study area. The four major prey species for wolves were deer

(Odocoileus spp.), elk (Cervus elaphus), moose (Alces alces) and feral horses (Equus

caballus). To obtain spatially-explicit maps of densities, fecal pellet groups deposited

over winter were counted across transects after snow melt. Pellet counts from transects

were interpolated across the study area using inverse-distance weighting. Counts of

pellet groups were converted to numbers of individuals with the help of estimated

numbers of individuals within wildlife management units obtained through winter areal

surveys. For moose and elk, ratios of number of pellet groups to number of individuals

were calculated directly based on the aerial surveys. For deer and feral horses, the

ratio obtained for moose was adjusted for deer and horses based on differences in

winter defecation rates of the species. For more details, see Webb (2009) and McPhee

et al. (2012).

From densities of individual prey species (deer, elk, moose and feral horse), I cal-

culated a weighted sum of all prey densities to obtain a combined measure of available

prey biomass. For this, I used ungulate weights from the literature, averaging estimates

of adult males and females (Knopff et al., 2010). Prey densities (numbers per area)

were available at a resolution of 30 m, that is as number per 900 m2. I aggregated these

data to a coarser spatial resolution with 300 m × 300 m cells. I discretized location

measurements of the movement trajectories accordingly. That is, I considered trajec-

tories as movement on a discrete spatial grid of land cells, using the coordinates of the

cell centres. A continuously measured location was converted to a cell by assigning it

to the cell that it fell in.
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3.2.2 Models

Step probabilities

I analyzed the trajectory of each wolf separately, using the individual-based statisti-

cal models introduced in Chapter 2 (Schlägel & Lewis, 2014). The models build on

random walks and incorporate effects of spatial information on movement decisions.

They are based on spatially-explicit resource selection models, which have arisen from

traditional resource selection functions (Manly et al., 2002; Boyce et al., 2002) from a

need to improve the definition of availability of resources (Arthur et al., 1996) and to

incorporate spatially-explicit effects of home ranges (Rhodes et al., 2005).

In these models, the probability of a movement step from location xt−1 to location

xt between times t − 1 and t is affected by general movement tendencies as well as

preferences for certain locations based on environmental features and past experiences.

The step probability is given by

p(xt|xt−1) =
k(xt;xt−1)wt(I(xt))∑
z∈Ω k(z;xt−1)wt(I(z))

. (3.1)

The function k is an information-independent movement kernel that reflects general

movement tendencies, that is how far and and in which direction an individual may

travel within a time interval without considering the environment. Thus, the function

k takes care of motion capacities, as defined in the framework by Nathan et al. (2008).

The information-based weighting function wt assigns weights to locations based on

spatial information. Both functions, k and wt, depend on model parameters that I

describe in more detail further below. Note that locations xt−1, xt, z represent discrete

cells in space, as described above. The sum in the denominator of equation (3.1) is a

normalization constant over space. To reduce computational burden, I only summed

over a large enough area Ω around the individual’s current location xt−1. I chose this

area large enough so that the probability of stepping outside this area was negligibly

small.

The weighting function wt is a central element of this model. Given the probability

that an individual may encounter a location based on its motion capacities, which is

given by the kernel k, the weighting function gives the probability that an individual

may select a location based on certain features of that location. In general, relevant

features could be topographical, for example elevation, the land cover type, food avail-

ability, or even past experiences about the location. The weighting function is thus a

resource-selection probability function (RSPF) (Lele & Keim, 2006; Lele et al., 2013).
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An RSPF can take various forms, and here I used one of the most common forms, in

which the RSPF is a logistic function. The value of the weighting function at location

x is then defined as

wt(I(x)) = [1 + exp(−α− β · I t(x)− f(I t(x),γ))]−1 , (3.2)

where the dot · defines the dot product between two vectors. The vector I t(x) contains

all spatial information about location x at time t. The spatial information I t(x) about

location x may change over time, which also leads to a change in the weighting function.

Therefore, I use the subscript t for both the spatial information and the weighting

function.

The parameters α, β, and γ shape the weighting function. The parameter α can

be thought of as an intercept that determines the values of the weighting function

when the information variables are zero. Generally, parameters β and γ influence

the direction of selection and selection strength. The weighting function includes an

additive term β · I t(x) and a multiplicative term f(I t(x),γ), which contains terms of

the form γ · It,1(x) · It,2(x). Note that because the weighting function is non-linear,

both additive and multiplicative terms can lead to interactive effects on the overall

probability of selection. This is in contrast to linear models (e.g. linear regression

models), in which additive (i.e. independent) and multiplicative (i.e. interactive) terms

can be distinguished.

The general movement kernel k is the density function of a random walk in dis-

cretized two-dimensional space. For this, I sampled a continuous-space density at

discrete points (representing the centre location of each cell in the landscape). The

normalization constant in equation (3.1) assures that step probabilities are properly

normalized over the discretized space. I used a Weibull distribution for step lengths

(Morales et al., 2004) and assumed a uniform distribution for bearings. A major rea-

son for using simply a uniform distribution for bearings was to retain as much steps as

possible. In a correlated random walk, bearings are autocorrelated, and therefore three

successive location measurements are needed to define the probability for one move-

ment step. With missing measurements in the time series, this would additionally

decrease the number of available steps. Thus the kernel is given by

k(y;x) =
1

2π‖x− y‖
κ

σ

(
‖x− y‖

σ

)κ−1

exp

(
−
(
‖x− y‖

σ

)κ)
, (3.3)

where κ and σ are the shape and scale parameter of the Weibull distribution, respec-
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tively. When the kernel k is included in the step probability (3.1), the factor 1
2π

can be

omitted, because it cancels with the denominator. The factor 1
‖x−y‖ is due to a change

from polar coordinates (using step lengths and bearing to define a step) to euclidean

spatial coordinates.

In this analysis, I concentrated on movement decisions within a wolf’s territory, and

I defined probabilities for steps outside the territory to be zero. This means that, given

a current location xt−1 close to the territory boundary, the step probability (3.1) is zero

for xt outside the territory. For locations inside the territory, the probabilities are ad-

justed accordingly via the normalization constant in equation (3.1) by only summing

over locations within the territory. The main reason for this was to avoid biased results.

Especially in areas of high wolf density, territory formation is not only influenced by

available resources but also other wolf packs. Therefore, if a wolf did not visit a location

outside the territory, this may have been due not only to the spatial information con-

sidered in I t, but also to the presence of other wolf packs or anthropogenic features. I

did not consider these effects in the weighting function but concentrated on movement

decisions of wolves on a daily basis within the territory. To define the territory, I used

an estimate of space use based on Brownian bridges (Horne et al., 2007). Brownian

bridges estimate the movement path between two successive locations of a sampled

trajectory by assuming Brownian motion, considering both the distance between the

locations and the length of the time interval. Brownian bridges can be used to estimate

density functions for space use not only from independent observations but based on

the full movement path of an animal. To calculate the Brownian bridge home range

estimate, I used the R package adehabitatHR, which implements the method proposed

by Horne et al. (2007) (Calenge, 2006). The calculation of the utilization distribution

required two parameters. Because movement trajectories were defined on discretized

space with 300× 300 m cells, I chose a small value (0.05) for the parameter represent-

ing location measurement error. The second parameter, the Brownian motion variance

parameter, is related to the speed of the animal, and was obtained through maximum

likelihood estimation based on the movement trajectory (Horne et al., 2007). From

the resulting utilization distribution, I defined the territory by all locations within the

99.9% quantile. This high quantile was chosen to ensure that all locations of the trajec-

tory were contained within one connected area (without single points or small islands),

and with this choice of the home range this was achieved with very few exceptions. I

also chose the high quantile from a conservative perspective to avoid restricting step

probabilities too much.
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Spatial information

To test the hypothesized explanations of rotational movement behaviour, I considered

three different types of spatial information in the weighting function (3.2). First, I

included the combined prey density measure, which was a weighted sum of densities

over all prey species according to their body mass. I used this combined prey density

to average out species-specific effects. Prey availabilities of individual species varied

across territories, and wolves’ habitat selection may vary with prey availability but

also landscape configurations (Milakovic et al., 2011). Such differences were not the

focus here, and the combined prey density allowed to consider prey availability more

generally. Second, for territorial defense mechanisms, locations closer to the territory

boundary play an important role. Therefore I defined a type of spatial information to

give the minimum distance from each location to the territory boundary. The territory

boundary is the outer edge of the territory estimate based on Brownian bridges. Note

that this is reverse from typically used measures, which calculate the distance from a

central location (Rhodes et al., 2005).

The third type of spatial information was based on an individual’s own travel his-

tory, which changed at every time step. I defined the variable time since last visit

(TSLV) to specify at each time step t, and for each location x, the time since the

animal had last been to the location, denoted by mt(x). For example, if between times

t − 1 and t the animal moved from location xt−1 to xt, I considered all locations on

the path from xt−1 to xt as most recently visited and and set their value of TSLV at

time t to be one. That is, I defined mt(z) = 1 for all locations z that lie on the path

between xt−1 and xt. For the calculation of TSLV, I defined the path to be the straight

line between x and y. Because it is unlikely that an individual moved in a straight

line, I also considered locations within a certain distance of the line as visited (for the

purpose of calculating TSLV). For these locations, TSLV was also set to one. Using a

buffer around the straight line between two locations is a simple way of accounting for

the fact that we do not observe all locations that an animal visits on its path. A more

sophisticated approach would be to implement, for example, a Brownian bridge (Horne

et al., 2007) for the estimated path between two successive locations. One could even go

further and expand a Brownian bridge model to include the more complex movement

mechanisms studied here.

For all other locations that were not considered visited, TSLV increased by one at

every time step. That is, I set mt(z) = mt−1(z) + 1 for locations z not visited during

times t − 1 and t. This led to a map with values of TSLV similar to a map with

environmental information, but which changes at every time step. TSLV increased in
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areas that the individual stayed away from and was reset to one whenever an individual

visited a location, that is when it came sufficiently close to the location. The dynamic

map was updated at the end of each movement step, and therefore the weighting

function wt at time t was based on TSLV at time t− 1, mt−1(x) for all x.

Given TSLV for some point in time, it is straightforward to update it for all following

time steps based on the animal’s movement path. To obtain an initial map of TSLV,

I separated movement trajectories into two segments. I used the first 300 or 400

movement steps, depending on data availability, to initialize TSLV and used the rest

of the trajectory for statistical inference. The time that corresponded to the beginning

of the second part of the trajectory was set to be t = 1. I calculated TSLV at t = 1

for all locations that were visited during the initialization phase. For locations that

were not visited, I set TSLV to the length of the initialization phase, that is to 300 or

400, as appropriate. Note that in Chapter 2, the variable TSLV was described in the

section “Memory model” and the spatial map with values of TSLV was referred to as

cognitive map. The variable remains the same.

To calculate TSLV, it was necessary to define which locations were considered as

visited, additionally to the straight line between the beginning and end of a movement

step. Because I aimed to understand the influence of the travel history in relation to

prey, I took into account at which distances wolf presence influences prey behaviour.

Studies on elk-wolf relationships found that wolf presence can affect elk behaviour,

such as group size, vigilance, and movement rates, at distances of 1–5 km (Liley &

Creel, 2007; Proffitt et al., 2009). Here, I used discretized space with landscape cells

of size 300 × 300 m. I defined a buffer around a cell by using the distance measure

d(x, y) = |xeast− yeast|+ |xnorth− ynorth|, where the subscripts relate to the eastern and

northern component of a two-dimensional location. The coordinates were taken from

the centre of each cell. With this distance measure, the buffer becomes a diamond-

shaped area around the centre cell. If we define a buffer of size δ around the location

x, the corners of the buffer area are those cells that are δ cells away from x in exact

northern, eastern, southern and western direction. For the calculation of TSLV, I used

a buffer of size of four cells. I calculated the buffer for each cell that is intersected by

the straight line of a step. A distance of four cells in the discretized space corresponds

to 1.2 km in continuous space.

All of the trajectories contained missed observations. If at a time step t the corre-

sponding location was missing, I updated TSLV by increasing TSLV for all locations

by one. I did not reset any value to one, because there was no current path available.

However, I accounted for this later at the next available time step. At that time, I reset
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TSLV to one for the entire path since the last available location. Because at least two

time intervals had passed since the last location, I increased the buffer size for these

longer steps by two.

The different types of spatial information varied greatly in their ranges, and there-

fore I transformed most of them before inclusion in the models. Because TSLF exhib-

ited a very wide range of values, I log-transformed it. In contrast, prey densities were

very low (all below one, often substantially), and I standardized them by subtracting

the mean and dividing by the standard deviation (Lele, 2009). To calculate the mean

and standard deviation for prey density, I only used values within the minimum con-

vex polygon of the relevant movement trajectory. Measurements of distance to the

territory boundary were left untransformed.

I tested the effect of the three different types of spatial information by including

them in different combinations in the weighting function. I tested all three variables

as additive terms, and additionally considered multiplicative terms between TSLV and

prey density and between TSLV and distance to territory boundary.

3.2.3 Parameter estimation and model selection

I fitted individual models to data within a maximum-likelihood framework. The like-

lihood function could be composed from the step probabilities (3.1). If trajectories

were available completely, that is if locations were observed for every time step, one

could simply multiply the probabilities for all steps because of the Markov structure

of the model. However, some observations were missing in all of the trajectories. For

steps with missing start or end location, no step length can be determined. Therefore,

I omitted these steps and conditioned the likelihood function on the first location of

each segment of successively available locations. By using this method, I assumed that

steps were missing randomly and not correlated to environmental variables.

I further omitted steps with length below a threshold. This was mainly due to the

inclusion of the variable TSLV. Wolves express different behavioural modes, such as

handling a kill, resting away from a kill site, or relocating (Franke et al., 2006). When

wolves are at a kill site or resting, movement steps tend to be short, and I assumed that

TSLV was less likely to be important for these steps. Timing may play a role when

wolves revisit a kill site, however, I was interested in understanding the effect of TSLV

with respect to territorial defense and behavioural depression of prey. Therefore, I

focused on movement steps that were more likely associated with relocating behaviour.

Franke et al. (2006) used a hidden Markov model to identify the three major modes
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“bedding”, “localized activity” and “relocating”. They found that the relocating mode

was characterized by steps with length above 200 m, with the majority of steps between

500–2500 m. These distances were obtained using movement data with hourly location

measurements and therefore were not immediately transferrable to my study with 2-

hourly movement data. Roughly, steps at a rate of 500 meter per hour may be converted

to 1000 meter per two hours, although it is known that measurements of travel distance

are influenced by sampling rate, and the longer the time interval between location

measurements the larger the risk of underestimating true travel distance (Pépin et al.,

2004; Rowcliffe et al., 2012). Still, with these considerations it seemed appropriate

to set the threshold for defining relocating steps at about 1000 m. If movement was

straight in east-west or north-south direction, 1000m corresponded to about three cells

in the discretized space. Another point to consider for the threshold was the use of the

buffer for TSLV. If a step was within the buffer size of the last visited location, the

step naturally ended at a location with TSLV=1. In contrast, if a step was larger than

the buffer size, which was four cells, it could end at a location with TSL=1, especially

when the animal backtracked. However, there was also a chance that the step ended in

a location outside the buffer of the previous step with TSLV > 1. To avoid an artificial

bias towards smaller values of TSLV for small steps, I defined the threshold to be five

cells, corresponding roughly to 1500 m in continuous space. The likelihood function

was then

L(κ, σ,β,γ) =
N∏
i

p(xti |xti−1, κ, σ,β,γ) (3.4)

for all available steps from xti−1 to xti with ‖xti−1 − xti‖ > 5. Note that I omitted

small steps after calculating TSLV for the entire time series. Therefore, steps used for

the final analysis have appropriate values of TSLV, representing correct times based

on the full path.

I obtained parameter estimates by optimizing the likelihood function using a Nelder-

Mead algorithm implemented in R (R Core team, 2013). To find the global maximum,

I optimized the likelihood function starting at various points in parameter space. From

these results, I chose the parameters with the highest likelihood value and used them

as starting point for the final optimization. I used an estimate of the Hessian matrix

of the log-likelihood at the optimal parameter values to obtain standard errors of the

maximum likelihood estimates. To find the best fitting model, I performed model

selection via AIC.

I analyzed parameter estimates for their effects on movement decisions. Parameter

estimates of the weighting function wt are best understood when considering their
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implications for the weighting function itself. In the step probabilities (3.1), the

weighting function wt(I t(x)) is a function of geographical space (sensu Aarts et al.

(2011)), but via the spatial information I t(x) at each location. The weighting function

can alternatively be viewed as a function wt(I) over the different ranges of the three

information variables TSLV, prey density, and distance to territory boundary. This

corresponds to viewing the weighting function in environmental space sensu Aarts

et al. (2011). This perspective revealed the effects of the information variables on the

probability of selecting a location.

To test whether wolves showed rotational movement patterns per se, I inspected

the resulting weighting function from a fit with the pure model that only included

TSLV as information variable. Because the weighting function is modelled after a

logistic function, I expected to see a switching behaviour with a generally positive

relationship between TSLV and probability of selection: low probability of selection

for small values of TSLV and high probability of selection for larger values of TSLV.

Under the hypothesis that wolves counteract behavioural depression of prey, I expected

models that included prey density to perform better than the null model. The effect

of TSLV on the probability of selection should vary between locations with low and

locations with high prey density. This could be either in form of shifting the switching

curve, by strengthening the switching behaviour (steeper sigmoidal curve), or both.

With respect to the distance variable, I generally expected to see a positive effect on

the probability of selection, which would reflect a tendency to prefer locations further

away from the boundary. If TSLV played a role for territorial defense mechanisms,

I expected to see such an overall avoidance of boundary locations become weaker as

TSLV increased.

3.3 Results

Wolf movement time series spanned approximately four months (December to April;

wolves 284, 285) or five months (November to April; wolf 220), with successful fix rates

ranging 82–91%. After selecting relocating steps, the number of available steps for

analysis were 302 (wolf 220), 243 (wolf 284) and 264 (wolf 285). Prey distributions

within territories varied, however, generally many of the high prey density areas were

located in the outer regions of territories (Figure 3.1).

When considering only pure models that tested the three information variables

independently, the pure time model (with TSLV) was always significantly better than

the null model, with large differences in AIC ranging 33.8-63.4 for the three wolves
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(Table 3.1). However, when inspecting the effect of TSLV on the weighting function

wt(I), that is the probability of selection in environmental space, I found it to be weak

(Figure 3.2a-c). Although locations with very small value of TSLV had low probability

of selection, the weighting function quickly reached one, indicating a nearly indifferent

behaviour with respect to TSLV. The pure prey model was only in one case better

than the null model, and the effective influence of prey density on the probability of

selection was negligible. The pure prey model always had considerably higher AIC

than the pure time model. The pure distance model was better than the null model

for wolves 284 and 285. For wolf 284, locations closer to the territory boundary had a

low probability of selection (Figure 3.2d). For wolf 285, this effect was only present for

very small distances from the boundary (Figure 3.2e). Note that territory estimates

were obtained in the same way for all wolves, but their geometry and the configuration

of visited locations within the territory varied (Figure 3.1). Again, the pure distance

model had higher AIC than the pure time model.

Model selection via AIC revealed two models that generally described the data

best. These were the model that included both additive and multiplicative effects of

TSLV and distance to territory boundary and the model that additionally had additive

and multiplicative terms of prey density (Table 3.1). As mentioned above, all models

with more than one variable must be considered as interactive models because of the

non-linearity of the weighting function. However, additive and multiplicative terms

in the weighting function act on different aspects of the resulting sigmoidal curve in

environmental space, wt(I). When considering the weighting function as a function of

one of the variables, e.g. TSLV, additive terms of the other variables cause the sigmoidal

curve to shift horizontally, whereas multiplicative terms influence the steepness of the

curve. Thus, additive terms shift an individual’s preferences, whereas multiplicative

terms may strengthen, weaken, or even reverse, preferential behaviour.

Within the best models, the overall positive relationship between TSLV and prob-

ability of selection observed in the pure time model remained (Table 3.2). Although

the additive selection coefficient βtime for TSLV was negative for wolf 284, the overall

coefficient βtime +γdist ·dist +γprey ·prey, considering all interactions, was only negative

for very small values of distance. When this was the case, the entire combination of

parameters resulted in a weighting function (as function of TSLV) close to zero, such

that the negative slope had only a very weak effect. For most parameter combinations,

the overall selection coefficient for TSLV was positive. The overall relationship between

distance to territory boundary and probability of selection was positive as well, that

is wolves generally preferred locations away from the boundary. When prey density
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was included in the best model, the relationship between prey density and probability

of selection was positive, that is locations with higher prey densities were preferred.

For wolf 285, the multiplicative prey parameter γprey was negative, however, because

the additive prey parameter βprey was larger, the overall selection coefficient for prey,

βprey + γprey · log(TSLV), was always positive.

All best models included an interactive effect of TSLV and distance to territory

boundary, and the effect on the weighting function wt(I), given the probability of

selection, was similar for all three wolves. Within central areas of the territory (corre-

sponding to larger values of distance to boundary), the weighting function was nearly

one for the entire range of TSLV except for very low values (Figure 3.3a, 3.4a, 3.5a).

This reflected an almost constant probability of selection over most of the range of

TSLV, and probability of selection was only smaller for very recently visited locations.

In areas closer to the territory boundary (corresponding to lower values of distance),

the effect of TSLV became more pronounced. The range of TSLV with low probability

of selection extended, followed by a switch towards high probability of selection for

locations with higher TSLV. When considering the weighting function as a function

of distance to boundary, I observed a similar general pattern as presented in the pure

distance model, boundary locations having a lower probability of selection than loca-

tions further away from the boundary (Figure 3.3b). However, in combination with

TSLV, the avoidance of boundary locations became weaker as TSLV increased. After

several days of absence, the probability of selection for locations close to the boundary

increased to values considerable above zero (Figure 3.3b).

For two of the wolves, the best model was the most complex model with interaction

terms for both distance to boundary and prey density. However, for wolf 284, the

difference between this model and the model that only included TSLV and distance

to boundary was small (∆AIC = 1). This was also reflected in an only weak effect of

prey density on the weighting function. Close to the territory boundary, the weighting

function (as function of TSLV) was slightly steeper for high prey densities compared to

lower prey densities (Figure 3.4b,c). Thus, selection with respect to TSLV is stronger

in areas with high prey density. This effect vanished as distance to boundary became

larger (Figure 3.4d).

In contrast, for wolf 285, the model with prey density was significantly better

than the model with distance only (∆AIC = 5.1). Again, the effect of prey density

on the weighting function occurred mainly in the outer regions of the territory (Fig-

ure 3.5b,c,d). Here, prey density acted mainly through the additive term by shifting

the sigmoidal curve of TSLV (Figure 3.5b,c) to the right. This resulted in a larger
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range of TSLV values being avoided (low probability of selection). Or reworded, longer

times of absence were required before the individual became likely to return. For ex-

ample, fixing distance at the 0.1 quantile of attained values and prey density at the

0.95 quantile of attained values, the probability of selecting such a location started to

exceed 0.5 when TSLV corresponded to approximately three days (Figure 3.5b). For

areas further away from the boundary, the effect of TSLV vanished almost entirely

(Figure 3.5d).

Parameter estimates of the movement kernel k showed a systematic trend when

comparing between estimates obtained from the null model and from the best model

according to AIC. Both κ̂ and σ̂, the shape and scale of the Weibull distribution for

step length, respectively, were smaller for the better fitting model with inclusion of

spatial information (Table 3.3). This resulted in a lower mean of the resulting Weibull

distribution in all cases (Table 3.3).

3.4 Discussion

I used a novel method to investigate how the spatio-temporal component of an individ-

ual’s own travel history influences wolf movement decisions in relation to prey densities

and territory effects. With this approach, I tested whether observed wolf movement

patterns support the hypothesis that wolves follow a prudent prey-management strat-

egy. This strategy aims at counteracting anti-predator behaviour in prey by avoiding

too frequent and prolonged exposure of prey to predation risk. Instead, the predator

spreads the risk temporally and spatially. Managing prey in this way should be most

successful when a predator has exclusive access to prey, which could be one of the ben-

efits of a territory (Charnov et al., 1976; Davies & Houston, 1981). Although wolves

inhabit territories in packs and not alone, pack member usually do not act as competi-

tors in hunting (Mech & Boitani, 2006). Therefore, a prey-management strategy could

be advantageous for wolves.

Additionally to conventional environmental variables, I included the variable time

since last visit into a movement-based resource selection model. The variable TSLV en-

codes both spatial and temporal information about previous visits to locations. There-

fore, keeping track of TSLV for movement decisions suggests spatial memory and a

sense of time. Wolves may also use external cues to guide them, for example their own

scent marks can convey information about their travel history (Peters & Mech, 1975).

However, scent marks can only be utilized when encountered. TSLV changes perma-

nently as result of movement, while I assumed that it influences movement decisions at
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the same time. Resource selection must be viewed in relation to what is available to an

individual, and a suitable definition of what constitutes available becomes crucial where

availability of the variable TSLV changes permanently and interacts with movement.

The movement-based model is suitable for this situations, as it assesses availability for

every step based on the current position of the individual via the movement kernel k.

An additional advantage of the movement-based approach is that it allows simul-

taneous estimation of movement kernel and RSPF parameters. This is in contrast to

the more traditional step selection approach that first estimates an empirical kernel

from the data, and in a second step uses this to sample available control points (Fortin

et al., 2005; Forester et al., 2009). The problem with this approach is that the empirical

kernel is already likely influenced by selective behaviour, which can bias the following

actual resource selection estimation (Forester et al., 2009). Within the movement-based

framework here, the step probability given in equation (3.1) is the joint probability of

a step being available by movement capacities and being selected based on spatial in-

formation. The joint probability is equivalently formulated as probability of selecting

a location based on its characteristics, conditional on the location being available by

movement capacities. During statistical inference, all parameters are estimated simul-

taneously. The difference between the two approaches becomes also apparent when

comparing parameter estimates of the kernel k between the null and the best model.

The estimates from the null model correspond to those that would be obtained for

the empirical kernel in the traditional step-selection approach. I observed that these

estimates were higher and resulted in a higher mean of the Weibull distribution for

step length, compared to the estimates from the integrated approach (estimates from

the best model). Thus, the null model overestimates general movement tendencies.

During model selection, models that included TSLV were always considerably bet-

ter than models that did not include this variable. Therefore, I did not consider an

interactive model of distance and prey only. The dominance of TSLV suggests that

this variable played a role for movement decisions. However, TSLV only effectively

influenced the weighting function, which is the RSPF, in areas close to the territory

boundary, whereas further away from the boundary, the RSPF remained nearly con-

stant. The fact that TSLV did not influence movement more generally was contrary to

my expectations. If wolves had a general tendency to avoid recently visited areas for

several days before returning, as suggested by the work of Jedrzejewski et al. (2001),

I would have expected a sigmoidal shape of the weighting function, as function of

log(TSLV), also within inner areas of the territory. It is possible that I did not observe

a stronger effect of TSLV within the territory due to methodological choices. First, the
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time interval between successive locations was two hours, and TSLV was measured at

the same scale. It is possible that this time scale is unsuitable (possibly too small) to

observe an effect of TSLV for rotational movement patterns. Second, an underlying as-

sumption of the movement model was that TSLV influenced each relocating step. This

reflects the premise that a wolf completely avoids an area recently visited. However,

it may be necessary to release this strict assumption. For example, steps may cross

recent paths to reach other important areas of the territory.

My observation that the effect of TSLV on the weighting function changed towards

the territory boundary supports the hypothesis that TSLV played a role for territorial

defense mechanisms. The results suggest that generally wolves preferred locations

within some safety distance from the boundary. This is in line with observations that

the risk for a wolf to be killed in an encounter with neighbouring wolves increases

towards the boundary (Mech, 1994). The probability of selecting a location closer to

the boundary became larger when TSLV increased. This suggests that when durations

of absence from boundary locations were long enough, these locations switched from

being unattractive to being attractive. This agrees with the need to renew scent marks

or similar signs of presence (Peters & Mech, 1975).

Because of the territories’ geometry, the amount of locations with certain distance

values varies within a territory, and generally there are more boundary than central

locations. One may suspect that this could lead to a false positive interaction effect

of TSLV and distance. However, under the Null model movement is a simple random

walk according to the kernel k, which is radially-symmetric and assumes a Weibull

distribution for step lengths. For diffusive movement, we would expect a spatially

uniform distribution at the steady state (Turchin, 1998). For my Null model, I expect

a similar behaviour, which means that under the Null model, an animal should have

the same probability of being in any location, whether close to the boundary or not.

Therefore, and because my model is spatially-explicit, I consider the observed effect

of distance to be a true effect. Additionally, my results from Chapter 2 demonstrate

that misclassification of models is rare in this modelling framework. The models in

Chapter 2 did not include the geometrical distance measure, however, future work

could rule out the possibility of false positive results for effects of distance, using a

simulation approach as that presented in Chapter 2.

For one of the wolves, the full model with prey density was significantly better than

the less complex model without prey density. For this wolf with ID 285, prey density

influenced the weighting function in a way that agreed with the hypothesis that wolves

counteract behavioural depression of prey. For locations with low prey density, TSLV

50



CHAPTER 3. PRUDENT PREY-MANAGEMENT BY WOLVES

had only a weak effect on the RSPF, suggesting an indifferent behaviour with respect

to TSLV in areas of low prey density. With increasing prey density, the effect of

TSLV became more pronounced and differentiated, with higher probability of selection

for locations with high TSLV. This may be interpreted as a tendency of the wolf to

avoid areas with high prey density for some time before returning. Effects of prey

occurred primarily towards the territory boundary and less in more central areas of

the territory. This could be due to the territories’ geometry and prey distribution.

Especially in the territory of wolf 285, higher prey densities occurred rather in regions

with smaller distance to boundary. In general, in all three territories high prey densities

occurred often towards the territory boundaries. This may reflect a strategy of prey to

inhabit buffer zones between different wolf pack’s territories (Lewis & Murray, 1993).

To discern the effects of prey and territory boundary, one would have to investigate

possible interactions between prey density and distance to territory boundary. Based

on my results, this would be an important step for future analysis.

However, overall effects of prey density were less pronounced than expected. When

considering only pure models, the model with prey density received the weakest sup-

port from the data. A reason for finding only few effects of prey density may lie in the

data. First, is is possible that the measure for prey density used was not the best to

reflect prey availability for wolves. Prey availability may not only be driven by prey

abundance and prey habitat selection but also by landscape features that enhance en-

counter rates and prey vulnerability (Bergman et al., 2006; Milakovic et al., 2011).

Second, several approximating steps, including interpolation via habitat models and

conversion from fecal pellet counts to numbers of individuals, were required to obtain

estimates of prey densities across the study area. All these steps likely introduced inac-

curacies. Also, fecal pellet counts were based on pellets deposited over an entire winter.

This may have identified areas with high prey accumulation at some point during the

winter, but accumulation may have been temporary only. Prey densities thus obtained

rather gave estimates of expected prey densities based on habitat features, and actual

presence of prey may have deviated considerably. All these reasons likely decreased the

ability to detect effects of prey densities on wolf movement decisions. Further analyses,

considering more individual wolves, will help to reach stronger conclusions.
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Table 3.1. Model selection results. Values of ∆AIC = AIC − AICmin refer to the
difference between each model and the best model with ∆AIC = 0. Highlighted in
grey are best models and in addition more parsimonious models with ∆AIC < 2.

wolf 220 wolf 284 wolf 285
Model AIC ∆AIC AIC ∆AIC AIC ∆AIC

null 4189.2 44.0 3621.4 105.2 3643.6 74.9

TSLV 4155.4 10.2 3558.0 41.8 3602.5 33.8
dist 4189.4 44.1 3577.3 61.1 3623.8 55.1
prey 4184.7 39.5 3625.4 109.2 3645.6 76.9

TSLV+dist 4153.6 8.4 3559.0 42.7 3599.9 31.3
TSLV+prey 4156.5 11.3 3554.9 38.7 3600.8 32.2
dist+prey 4190.2 44.9 3574.8 58.5 3618.4 49.7
TSLV+dist+prey 4155.6 10.4 3555.3 39.0 3599.5 30.9

TSLV+dist+TSLV*dist 4145.2 0 3517.2 1.0 3573.8 5.1
TSLV+prey+TSLV*prey 4156.5 11.3 3556.5 40.2 3600.1 31.4

TSLV+dist+prey
+TSLV*dist+TSLV*prey 4148.4 3.2 3516.2 0 3568.7 0
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Table 3.2. Parameter estimates with their standard errors for the weighting function
wt. Given are estimates from the best model fit; compare Table 3.1. For wolf 284,
estimate are given for the two best models with ∆AIC = 0 (full model) and ∆AIC = 1
(distance interaction model).

α βtime βdist βprey γdist γprey

wolf 220
Est. −2.33 0.441 0.072 − 0.206 −
SE 0.59 0.151 0.050 − 0.083 −

wolf 284 Est. −3.16 −0.548 0.018 0.284 0.335 0.237
∆AIC = 0 SE 0.85 0.292 0.055 0.328 0.108 0.174

wolf 284 Est. −3.27 −0.270 0.028 − 0.255 −
∆AIC = 1 SE 0.75 0.345 0.057 − 0.029 −

wolf 285
Est. −4.25 0.251 0.204 1.465 0.863 −0.363
SE 1.05 0.228 0.097 0.657 0.308 0.157

Table 3.3. Parameter estimates with their standard errors for the movement kernel k.
The last column gives the mean of the resulting Weibull distribution for step length.
The best model is the one with ∆AIC = 0. For wolf 284, this is the model with both
interactions; compare Table 3.1.

Mean
κ̂ SE σ̂ SE σ̂ Γ(1 + 1

κ̂
)

wolf 220
null 2.36 0.10 13.37 0.37 11.84
best 2.01 0.12 12.22 0.12 10.83

wolf 284
null 1.94 0.08 15.95 0.60 14.15
best 1.55 0.10 13.96 0.10 12.55

wolf 285
null 2.26 0.10 12.83 0.39 11.37
best 1.87 0.12 11.45 0.12 10.17
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Figure 3.1. Wolf observations on prey density maps. Panels correspond to wolves
with IDs a) 220, b) 284, and c) 285. Depicted are only relocating steps (lines),
with end points of steps marked by small circles. Colours reflect the combined prey
density measure, which was standardized for each wolf separately. The maps show the
territories obtained from a Brownian bridge home range estimate, which was based on
the full trajectory (consisting of relocating and all other steps).
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Figure 3.2. Panels a), b), c): Weighting function wt(I) as a function of TSLV (on
a logarithmic scale as used in the model) using parameter estimates from a fit with
the pure model that only included TSLV for a) wolf 220, b) wolf 284, and c) wolf 285.
The probability of selection reaches values close to one quickly, for values of log(TSLV)
that correspond to only very few time steps. Panels d), e): Weighting function wt(I)
as a function of distance using parameter estimates from a fit with the pure distance
model for the two wolves for which this fit was significantly better than the null model,
which were d) wolf 284, e) wolf 285.
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Figure 3.3. Wolf 220. Panel a): Weighting function wt(I) as a function of TSLV
(on a logarithmic scale as used in the model) and distance to territory boundary, using
parameter estimates from the best fitting model; compare Table 3.2. Note that here
the weighting function is displayed over the ranges of the information variables instead
of geographical space. Panel b): Slice through the weighting function for four fixed
values of TSLV: 1 (visited during last step, solid line), 3 (last visit few hours ago, dashed
line), 12 (last visit one day ago, dotted line), 60 (last visit five days ago, dot-dashed
line).
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Figure 3.4. Wolf 284. Weighting function wt(I) using parameter estimates from the
best fitting model (ΔAIC = 0) with both interaction terms; compare Table 3.2). Note
that here the weighting function is displayed over the ranges of the information variables
instead of geographical space. Panel a): Prey density is fixed at zero, corresponding
to the mean value over the territory. Panel b): Slice through the previous plot at
low distance 5.1 (0.05 quantile of attained values among relocating steps; black solid
line). The same slice is depicted when prey density is fixed at -1.3 (0.05 quantile of
attained values; red dashed line) and at 1.6 (0.95 quantile of attained values; blue
dotted line). Panel c): Distance to boundary fixed at 5.1 (0.05 quantile of attained
values). Panel d): Distance to boundary fixed at 9.1 (mean distance value over the
territory).
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Figure 3.5. Wolf 285. Weighting function wt(I), using parameter estimates from
the best fitting model with both interaction terms; compare Table 3.2). Note that
here the weighting function is displayed over the ranges of the information variables
instead of geographical space. Panel a): Prey density is fixed at zero, corresponding
to the mean value over the territory. Panel b): Slice through the previous plot at
low distance 2.2 (0.1 quantile of attained values among relocating steps; black solid
line). The same slice is depicted when prey density is fixed at -2.1 (0.05 quantile of
attained values; red dashed line) and at 1.27 (0.95 quantile of attained values; blue
dotted line). Panel c): Distance to boundary fixed at 2.2 (0.1 quantile of attained
values). Panel d): Distance to boundary fixed at 7.14 (mean distance value over the
territory).
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Chapter 4

A framework for analyzing

movement models’ robustness

against varying temporal

discretization1

4.1 Introduction

To learn about animal movement behaviour, researchers across the world collect in-

creasing amounts of data for many different species. Often, these data consist of time

series of individual animals’ locations, together with information about environmental

aspects such as habitat and resource availability (Rhodes et al., 2005; Mueller et al.,

2008), topography (Moorcroft & Lewis, 2006; Squires et al., 2013), presence of preda-

tors (Latombe et al., 2014), and anthropogenic features (Tracey et al., 2010; Colchero

et al., 2010; Latham et al., 2011). Additional biotelemetry data even can give us

cues about activity patterns, for example via acceleration sensors (Brown et al., 2012;

Fröhlich et al., 2012), or about the animal’s internal state, for example via internal

sensors that measure stomach temperature and indicate food ingestion (Austin et al.,

2006; Bestley et al., 2008). Our ability to collect more extensive and detailed data

provides an unprecedented opportunity to understand the mechanisms of movement

behaviour in greater detail (Hebblewhite & Haydon, 2010; Bridge et al., 2011).

A lot of work has been dedicated towards increasing the efficacy and accuracy of

1A version of the chapter has been submitted to Journal of Mathematical Biology as: Schlägel, U.E.
& Lewis, M.A. A framework for analyzing movement models’ robustness against varying temporal
discretization.
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tagging devices, and much improvement has been achieved. For example, modern GPS

devices can measure locations with an accuracy of 10-20 m and less than 24 per cent

data loss (Frair et al., 2010; Rowcliffe et al., 2012). At the same time, new methods for

analyzing movement data are emerging, allowing us to ask more complex and in-depth

questions about movement behaviour. Hierarchical modelling approaches including

state-space models help us to split movement paths into behaviourally meaningful

segments and to estimate activity budgets for behaviours such as resting, foraging and

travelling (Morales et al., 2004; Breed et al., 2012; McClintock et al., 2013). New models

combine resource selection with cognitive processes in creative ways to study animals’

navigational mechanisms and the role of spatial memory (Dalziel et al., 2008; Mueller

et al., 2010; Avgar et al., 2013). While much progress has been made, challenges remain

(Börger et al., 2008; Smouse et al., 2010; Fagan et al., 2013).

When tracking an animal’s movement path, e.g. via GPS-based telemetry, locations

are measured at discrete times, and the rate and regularity of measurements are critical

features. From raw location data we can estimate classic movement characteristics

such as mean square displacement, measures of directional persistence or tortuosity,

and travel distance (Turchin, 1998; Codling et al., 2008; Rowcliffe et al., 2012). These

quantities can vary largely when derived from movement data with different temporal

resolutions (Ryan et al., 2004; Codling & Hill, 2005; Nouvellet et al., 2009; Rowcliffe

et al., 2012). A few studies used fine-scale movement data to empirically estimate

correction factors to adjust measured travel distances according to the sampling interval

(Pépin et al., 2004; Ryan et al., 2004). While this is a first approach to understand

the influence of sampling interval on measured travel distance, it is unclear whether

results can be generalized from these studies to other species and systems. Using

simulations of unbiased and biased velocity jump processes, Codling & Hill (2005)

estimated linear equations that relate the sampling rate of a discretized path to the

angular deviation (or sinuosity) and apparent speed of the movement. They found that

these relationships break down when the observed sinuosity becomes large, either due

to large sinuosity in the underlying movement or a relatively large sampling time step.

Generally, sampling a continuous path of an animal at discrete intervals can lead to

various degrees of information loss (Turchin, 1998). When we fit a movement model to

data to perform statistical inference, the temporal resolution of our sampling can affect

parameter estimates and result in erroneous inference such as misclassified behavioural

states (Breed et al., 2011; Postlethwaite & Dennis, 2013).

One may think that the best solution to avoid undersampling and information loss

is to take measurements at high rates to approximate a continuous path as best as
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possible. However, this is often not feasible, because limited battery life of tagging

devices gives rise to a tradeoff between sampling frequency and total sampling time

span (Mills et al., 2006; Breed et al., 2011). In addition, oversampled movement paths

can be problematic in data analysis, because they lead to strong and long-lasting au-

tocorrelations and require the processing of very long time series. Also, very frequent

fix attempts can reduce GPS transmitter efficiency (measured as total number of suc-

cessful locations obtained during the deployment time) (Mills et al., 2006), and noise

can become very large compared to the actual signal, especially if animals are resting

or moving slowly (Ryan et al., 2004). It is therefore important to choose measurement

rates appropriately to the behavioural scale of interest. Even if we decide about sam-

pling rates with care, it remains a problem that results are often tied to the scale of

particular studies. Generalizing or transferring results as well as comparison between

different studies is limited (Tanferna et al., 2012; Postlethwaite & Dennis, 2013).

Here, I introduce a new theoretical framework for analyzing movement models’

robustness against varying resolutions of temporal discretization. I formally define ro-

bustness as a specific property of a model. Generally speaking, I consider a model to be

robust if it can be applied validly to movement data with different temporal resolutions,

thus allowing consistent statistical inference. While I do not require important move-

ment characteristics expressed in model parameters to be the same across sampling

rates, I ask for them to vary systematically in a way that allows translation of results

between scales. Here, I present the new framework in terms of random walk models

with independently and identically distributed steps. Although many contemporary

movement models have surpassed these classical random walk models in complexity, I

believe that my analyses here are important to understand the new concept of robust-

ness and to put it in context with other established ideas in probability theory and

movement ecology.

This chapter is organized as follows. In section 4.2, I describe the set-up of my

study, after which I follow with two introductory example models that illustrate my

framework. I then give formal definitions of two types of robustness that vary in their

strength of requirements but also benefits. In section 4.3, I analyze robustness prop-

erties of one-dimensional models. I present models that are robust, suggest a way to

construct robust models from non-robust models and relate robustness to the proba-

bilistic concept of infinite divisibility. In section 4.4, I extend results about robustness

to two-dimensional models, in particular models with radially symmetric step densi-

ties. My framework provides a new systematic, mathematically founded approach to

analyze if, and how, sampling rate of movement paths influences inference.
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4.2 The robustness framework

4.2.1 Temporal resolution of random walks

Random walks have a long history as animal movement models. As a basis for deriving

partial-differential equation models for population distributions (Patlak, 1953; Skellam,

1951), for building simulation models for moving individuals (Kaiser, 1976; Jones,

1977), and for developing metrics that summarize movement characteristics (Kareiva

& Shigesada, 1983), random walks have proved useful early on in movement ecology and

have remained so. Although models have become more complex to include behavioural

mechanisms such as territorial defense (Moorcroft & Lewis, 2006; Potts et al., 2013)

or resource selection (Mckenzie et al., 2012; Potts et al., 2014), to describe temporally

switching behaviour (Morales et al., 2004; McClintock et al., 2013), and to account for

stochasticity of the measurement process (Patterson et al., 2008; Breed et al., 2012),

random walks remain at the root of many movement models (Börger et al., 2008;

Smouse et al., 2010).

The classic random walk model for movement is a stochastic process {Xt, t ∈ N},
where the location Xt ∈ R2 of an organism for each time index t ∈ N is given as a sum

of independently identically distributed (i.i.d.) steps (Klenke, 2008). That is,

Xt = x0 +
t∑
i=1

Si, (4.1)

where x0 is the (fixed) start location of the movement path, and Si is the vector, that

is the step, between location Xi−1 and Xi. Note that here I use S to denote steps and

X to denote locations, which are sums of steps. In the statistical literature, often S

is used for sums of random variables. However, I have chosen notation according to

the movement context. For a graphical clarification of notations, compare Figure 4.1.

The random walk models an observed movement path, that is a series of locations

x = {x0,x1, . . . ,xN}, where xt ∈ R2, measured at regular time intervals.

As a convenient way for systematically studying varying temporal discretization

of movement data, we can mimic different sampling rates of movement paths via

subsampling. The nth subsample of x consists of every nth location, that is xn =

{x0,xn,x2n, . . . }. As n increases, the temporal resolution of the data becomes coarser.

Note that x1 = x is the original time series. If x is modelled by the process {Xt, t ∈ N},
then the subsample x2, which consists of every second location of the original time se-

ries, is correctly described by the subprocess {X2t, t ∈ N}. A priori, the subprocess
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has different probability distributions than the original process, however, there is a

simple relationship between the two processes. For the subprocess we have X2t =

x0 +
∑2t

i=1 Si = x0 +
∑t

i=1 S̃i,2, for steps S̃i,2 = S2i−1 + S2i. Compare also Figure 4.1.

More generally, for an arbitrary subprocess, we have

Xnt = x0 +
nt∑
i=1

Si = x0 +
t∑
i=1

S̃i,n, (4.2)

for the larger steps S̃i,n =
∑n−1

j=0 Sni−j. Therefore, the distribution of Xnt is based

on steps that are themselves sums of steps of the original process. Recall that for a

random walk with i.i.d. steps, all Si have the same distribution, however, their sum

may generally have a different distribution.

If a movement model were robust against changes in temporal resolution, the same

model should be able to describe validly both a path x and its subsample xn. As I

have described above, in a random walk model the distributions of the steps define the

process. If the steps {Si, i ∈ N} and {S̃i,n, i ∈ N} for a range of subsampling indices

n ∈ N can be described by the same probability model, with appropriate adjustment

of model parameters, then I consider the model to be robust against varying temporal

discretization within that range.

4.2.2 Two illustrative examples

I illustrate the concept of robustness with two simple examples. For simplicity, I

consider one-dimensional models. First, for an example of a robust model, I assume

that all steps Si have identical normal distribution, with zero mean and some positive

variance σ2, which I denote by Si ∼ Normal(0, σ2). A step density centred at zero

means that steps to the right and left have the same probability. Because of the linearity

of the normal distribution, it follows that the location Xt is normally distributed as

well, Xt ∼ Normal(x0, tσ
2). The steps S̃i,2 of the subsampled process {X2t, t ∈ N}

are sums of two normally distributed random variables, and therefore we have S̃i,2 ∼
Normal(0, 2σ2) and X2t ∼ Normal(x0, 2tσ

2). Thus, the probability distributions that

describe the original and the subsampled process are both normal with the same mean

but different variances. However, the variances are related through a simple linear

function. Therefore, we can make inference using the subsampled data and process

and simply divide the estimated variance by 2 to obtain an estimate of the variance

of the original process. Conversely, we can multiply the variance obtained using the

original process by 2 to obtain the valid variance for the coarser process. This also
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works analogously for n > 2. Because of this property, the random walk model with

normally distributed steps is robust.

For a counterexample of robustness, I consider steps that have Laplace distribution,

which is also termed double-exponential distribution. The Laplace distribution, similar

as the normal distribution, is symmetric, however it is more peaked and has slightly

heavier tails than the normal distribution. It commonly serves as a one-dimensional

(or marginal, in two-dimensional models) redistribution kernel in models for dispersing

organisms (Neubert et al., 1995). I assume that steps Si are i.i.d. Laplace distributed

with location parameter zero, i.e. the density is centred at zero, and scale parameter

σ, that is Si ∼ Laplace(0, σ). Consequently, the location Xt is distributed as a sum of

Laplace distributions. Sums of Laplace distributed random variables are not as simple

or well-known as the previous Normal example. Still, we can employ characteristic

functions to look into this case further. The characteristic function (ch.f.) of a random

variable X is defined by the expectation φX(u) = E(eiuX). Characteristic functions

uniquely define distributions, and they have the convenient property that summing

independent random variables corresponds to multiplying their characteristic functions

(Klenke, 2008). The ch.f. for the above step distribution is given by

φSi(u) =
1

1 + σ2u2
. (4.3)

The steps of the subsampled process, S̃i,2 = S2i−1 + S2i, consequently have ch.f.

φS̃i,2(u) = φSi(u)2 =
1

1 + (
√

2σ)2u2 + σ4u4
. (4.4)

This function cannot be expressed as the characteristic function of any Laplace distri-

bution, which would have to be of the form eiµt(1+σ2u2)−1 for some location parameter

µ ∈ R and scale σ > 0. With a bit more work, one can also compare probability density

functions. While the step Si has the Laplace density

fSi(s) =
1

2σ
e−
|s|
σ , (4.5)

the density of the sum of two such random variables is given by

fS̃i,2(s) =
1

4σ2
e−
|s|
σ (σ + |s|), (4.6)

which we cannot write in form of fSi(s) by transforming the parameters. It follows that

the step distribution for the subsampled process does not belong to the same family of
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distributions as the original process, namely the Laplace family. This means that if we

fit the original model with Laplace distributed steps to both x and x2, the resulting

parameter estimates are not truly comparable. If, however, instead we fit a different

model to x2 that uses densities (4.6), the parameter σ describes the same quantity as

in the original model. Therefore, the model that has Laplace distributed steps is not

robust against varying temporal resolution; but see section 4.3.2.

4.2.3 Formal definition of robustness

I now define robustness formally. As demonstrated above, the step distribution plays

an essential role for the robustness of random walk models. In the Laplace example,

the characteristic function has been a convenient tool to analyze step distributions of

random walk models. Therefore, I use them in my definitions of robustness. For a

two-dimensional model, the ch.f. of a step Si ∈ R2 is φ(u) = E(eiu·Si) for u ∈ R2,

where · denotes the scalar product of vectors.

Definition 4.1 (Semi-robustness). Let φ(u;θ) be the characteristic function of the

i.i.d. steps in a random walk movement model, where θ ∈ Θ is the vector of model

parameters. The movement model is semi-robust (with respect to distribution class) if

for every n ∈ N there exists a function gn : Θ→ Θ such that

φ(u;θ)n = φ(u; gn(θ)). (4.7)

As mentioned before, summing independent random variables (here, steps in a

random walk) corresponds to multiplying their respective characteristic functions. In

the random walk models, steps are identically distributed. Therefore, the LHS of

equation (4.7) is the ch.f. of the sum of n steps and therefore defines the distribution

for the steps S̃i,n of the model for the nth subsample. The RHS of the equation is the

ch.f. of the steps Si, however with transformed parameters. Therefore, semi-robustness

requires that subsamples of the random walk are defined by the same step distribution

up to a known parameter transformation. The parameter transformation gn is an

important part of the definition, because it allows to scale up model parameters to a

coarser discretization. Say, a model represents a temporal discretization τ , that is τ is

the time interval between two locations. If the model is semi-robust, it is also valid for

any discretization nτ , n ∈ N, with parameter gn(θ).

If we want to be able to compare results of studies that use different temporal

resolutions for their models more generally, we also need be able to translate parameters
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downwards, that is to a finer discretization. The following definition characterizes

models that can be scaled both upwards and downwards.

Definition 4.2 (Robustness). A semi-robust movement model is robust (with respect

to distribution class) if the function gn in Definition 4.1 is bijective, that is both one-

to-one and onto.

This definition allows scaling upwards just as before. Additionally, we can translate

the parameter θ to a finer scale 1
n
τ . The surjectivity of gn guarantees that there exits

an inverse image ψ = g−1
n (θ) ∈ Θ, which is unique by injectivity. Therefore, φ(u;ψ)

defines a valid characteristic function, and by property (4.7) we have

φ(u;ψ)n = φ(u; gn(ψ)) = φ(u;θ). (4.8)

This means that there is a valid sub-model for the discretization 1
n
τ with parameter

vector ψ.

The introductory example model with Normally distributed steps is robust. The

transformation for the only model parameter, the standard deviation σ, is gn(σ) =
√
nσ. The second example with Laplace distributed steps is neither robust nor semi-

robust since property (4.7) is not met. In section 4.3.2, I will show that it is possible

to embed the Laplace model within an extension so as to make it robust.

4.3 One-dimensional models

In the following, I look further into the question which random walk models are robust.

First, I focus on one-dimensional models, that is random walks on the real line. These

models can play a role in situations where movement is naturally limited, e.g. movement

within a stream or along a river bank. Also, univariate step distributions arise as

marginals of two-dimensional movement or dispersal kernels; see section 4.4.2. After

presenting classes of robust models, I describe the relationship of robustness with the

probabilistic concept of infinite divisibility. With this, I hope to deepen the reader’s

understanding of robustness and to set robustness apart from other concepts.

4.3.1 Robust random walk models

To find robust models, I look for steps with probability distributions that are closed

under summation. Such a property ensures semi-robustness, which is a necessary con-

dition for robustness. Whether a semi-robust model is also robust depends largely on
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the parameter space for which the step distribution is well-defined. A straightforward

example is given by distributions, whose ch.f. is a power of some function and the

power is a model parameter.

Theorem 4.1. Consider a one-dimensional random walk movement model with i.i.d.

steps that have characteristic function of the form φ(u;θ) = h(u;θ1)θ2 for some func-

tion

h : R×Θ1 → C and model parameters θ = (θ1, θ2) ∈ Θ1 × Θ2. If the parameter

space is such that nΘ2 = {nθ2; θ2 ∈ Θ2} ⊂ Θ2 for all n ∈ N, the model is semi-robust.

If additionally 1
n
Θ2 ⊂ Θ2 for all n ∈ N, then the model is robust.

Proof. Define the parameter transformation as gn(θ) = gn(θ1, θ2) = (θ1, nθ2) ∈ Θ2 ×
Θ2. Then, trivially, we have φ(u;θ)n = h(u;θ1)nθ2 = φ(u; gn(θ)), and semi-robustness

follows. Let θ2
n
∈ Θ2 for all n ∈ N and all θ2 ∈ Θ2. Then for each θ there is a

unique inverse image g−1
n (θ) = (θ1,

θ2
n

), which lies within the valid parameter range.

Therefore, the model is robust.

For such models, the parameter transformation only affects the parameter that

constitutes the power in the ch.f. For example, consider i.i.d. steps Si that have Gamma

distribution with shape κ > 0 and scale σ > 0. Note that the support of the Gamma

density is only the positive real line, so movement steps are always into the same

direction (to the right). The Gamma distribution has the well-known property that a

sum of independent Gamma random variables, all having the same scale parameter,

again has a Gamma distribution (Casella & Berger, 2002). The ch.f. of the Gamma

distribution is φ(u;κ, σ) = (1 − σiu)−κ. Therefore, we directly obtain φ(u;κ, σ)n =

(1 − σiu)−nκ = φ(u;nκ, σ). Hence, the summation affects the shape parameter, and

we have gn(κ, σ) = (nκ, σ). Because the Gamma distribution is defined for all positive

shapes κ ∈ R+, the transformation gn is invertible, and it follows that steps with

Gamma distribution lead to robust models.

The chi-squared distribution is a special case of the Gamma distribution for a scale

σ = 2 and shape κ = k
2

for degrees of freedom k ∈ N. The ch.f. is

φ(u; k) = (1− 2iu)
k
2 . (4.9)

The nth power of φ is still a ch.f. of a chi-squared distribution with degrees of freedom

nk ∈ N, and therefore a model with chi-squared steps is semi-robust. However, for

an arbitrary k ∈ N, the fraction k
n

is a rational but not necessarily a natural number.

Thus, the second condition of Theorem 4.1 is not satisfied. For more examples of
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distributions that meet the conditions of Theorem 4.1, see Table 4.1. Note that there

are also discrete distributions that belong to the group of distributions described in

the theorem (e.g. the binomial, Poisson and negative-bionomial).

Another class of distributions that are suitable as step distributions for robust mod-

els is given by the family of stable distributions (Samorodnitsky, 1994; Nolan, 1997;

Klenke, 2008). The stable distributions comprise a four-parameter family of distribu-

tions, which I denote by S(α, β, σ, µ), with index of stability 0 < α ≤ 2, skewness

−1 ≤ β ≤ 1, scale σ > 0 and location µ ∈ R. Note that the scale parameter does

not necessarily correspond to the variance of the distribution, which is in fact infinite

for most stable distributions. Only for certain values of α and β, stable distributions

have closed-form density functions. However, for any parameter values, we can define

a stable distribution uniquely by its characteristic function. There are multiple ways

to parameterize stable distributions, which differ slightly in the interpretation of the

parameters σ and µ. Here I use the form of the ch.f. provided in Nolan (1997),

φ(u;α, β, σ, µ) =

exp
[
iµu− σα|u|α

(
1− iβ tan(πα

2
) sign(u)

)]
, α 6= 1

exp
[
iµu− σ|u|

(
1 + iβ sign(u) ln |u|

)]
, α = 1.

(4.10)

The most famous example of a stable distribution is the normal distribution for α = 2.

Using the above parameterization of the stable distribution, the mean and variance of

the normal distribution are µ and 2σ2, respectively. For α = 2, the term including the

parameter β vanishes. For α = 1 and β = 0, the Cauchy distribution is another well-

known case, for which a closed-form density is known. While the normal and Cauchy

distribution are symmetric, the Lévy distribution for α = 1
2

and β = 1 is an example

of a stable distribution with skewed density function (Samorodnitsky, 1994).

Theorem 4.2. A one-dimensional random walk movement model with i.i.d. steps is

robust if steps are distributed according to the stable law S(α, β, σ, µ), i.e. have char-

acteristic function (4.10).

Proof. We can easily verify that the ch.f. of the stable distribution satisfies prop-

erty (4.7). We have

φ(u;α, β, σ, µ)n =

exp
[
i(nµ)u− (n

1
ασ)α|u|α

(
1− iβ tan(πα

2
) sign(u)

)]
, α 6= 1

exp
[
i(nµ)u− (nσ)|u|

(
1 + iβ sign(u) ln |u|

)]
, α = 1.

(4.11)

Therefore, choose gn(α, β, σ, µ) = (α, β, n
1
ασ, nµ). It is easy to see that gn is a bijection

of the parameter space, leaving α and β unchanged and being monotone on R+×R in
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the last two arguments. Therefore, stable steps distributions lead to robust models.

I have just demonstrated that if we sum n steps, each having stable distribution

Si ∼ S(α, β, σ, µ), the sum is again stable according to

S̃i,n ∼ S(α, β, n
1
ασ, nµ). (4.12)

In fact, stable distributions are a family of distributions that have been constructed to

have this special summation property. Equivalently to defining a stable distribution by

its characteristic function, we can also say a random variable S has stable distribution

if the sum of independent copies of S is a scaled and shifted version of S, that is we

have
n∑
i=1

S
d
= anS + bn (4.13)

for some an > 0, bn ∈ R, where
d
= stands for equality in distribution (Samorodnitsky,

1994; Kotz et al., 2001). In fact, the only choice for an is an = n
1
α (Samorodnitsky,

1994). Because the location Xt is a sum of steps, Xt = x0 +
∑t

i=1 Si, the distribution

of the location Xt is also stable,

Xt ∼ S(α, β, t
1
ασ, x0 + tµ), (4.14)

for any t ∈ N. The analogue holds for the locations of the subsampled process {Xnt, t ∈
N},

Xnt ∼ S(α, β, n
1
α t

1
ασ, x0 + ntµ). (4.15)

The parameters α and β remain unchanged under summation. The parameter β de-

termines skewness, with β = 0 corresponding to a symmetric density, and therefore a

stable distribution S(α, 0, ·, ·) is also termed α-symmetric stable distribution.

A special case is given by models that have starting location x0 = 0 and step

distribution S ∼ S(α, 0, σ, 0). These specific stable distributions are symmetric with

centre at zero, and they lead to

Xt ∼ S(α, 0, t
1
ασ, 0). (4.16)

Such a random walk is self-similar because

Xnt
d
= n

1
αXt. (4.17)
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Also, the probability density function of the step distribution, pS(s), is related to the

density of the summed steps S̃i,n via a scaling property (Klafter et al., 1995),

pS̃i,n(s) =
1

n
1
α

pSi

(
s

n
1
α

)
. (4.18)

This specific random walk is called a Lévy flight (Klafter et al., 1995). Note that this

(original) definition of a Lévy flight is different from a Lévy walk. A Lévy walk is

based on a continuous-time random walk, describing the movement of an organism at

constant speed between reorientation events (Klafter et al., 1995). In the movement

literature, the two terms are often used interchangeably (Reynolds & Rhodes, 2009;

James et al., 2011). Note that because of the different assumptions data are processed

slightly different in a Lévy walk analysis, where usually steps (as I have defined them

here) are combined as long as directional changes between them remain under a certain

threshold (Plank et al., 2013).

Although stable step distributions are predestined to lead to robust models, ro-

bustness is a more general concept. In terms of the characteristic function φ of S, the

summation property (4.13) is φ(u)n = eiubnφ(anu), or simply φ(u)n ∝ φ(anu). In com-

parison, the robustness property (4.7) is a weaker condition. It means that the sum of

n i.i.d. steps has the same distribution as a single step up to adjusted parameter values

according to a known function gn. In the case where steps have stable distribution,

the function gn affects the scale and location parameter of a distribution. However,

distributions may have other types of parameters that can be affected. For example,

in the above case of Gamma distributed steps, summation of steps results in a mod-

ified shape parameter. In contrast, scaling a Gamma distributed random variable by

a constant c leads to a Gamma distribution with same shape κ but adjusted scale cσ.

Therefore, the Gamma distribution is not stable, and the resulting random walk does

not exhibit self-similarity. However, the random walk model with Gamma distributed

steps in robust.

4.3.2 Robust model extensions

As I have shown in Theorem 4.1, a step distribution having ch.f. that is the power

of some function leads to a semi-robust or robust model, depending on the definition

of the parameter space. This leads to the idea that we can obtain robustness by

embedding a distribution into a larger family of distributions by adding an additional

power parameter to the ch.f. Starting with a ch.f. φ(u;θ), θ ∈ Θ, we can augment the
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model parameters by k ∈ N, that is we define a new parameter vector θ̄ = (θ, k) ∈
Θ × N. We can then define a new distribution via the ch.f. ψ(u; θ̄) = φ(u;θ)k. For

k ∈ N we know that ψ is again a ch.f., because by construction it is the ch.f. of a

distribution of a sum of k independent random variables. Because nk ∈ N for all

n, k ∈ N, and according to Theorem 4.1, a step distribution with ch.f. ψ(u; θ̄), where k

is simply one of the model parameters, leads to a semi-robust random walk model with

gn(θ, k) = (θ, nk). To go a step further and construct a robust model, the range of the

parameter k would need to include positive rational numbers. However, for k 6= N, we

have in general no guarantee that ψ is again the ch.f. of a distribution

As an illustration of these ideas, consider the Laplace distribution. The Laplace

distribution with mean zero and scale parameter σ > 0 has ch.f.

φ(u;σ) =
1

1 + σ2u2
. (4.19)

I have shown above that a model with Laplace distributed steps is not robust. However,

we can define a new family of distributions via the ch.f.

ψ(u;σ, k) =
1

(1 + σ2u2)k
, (4.20)

where k ∈ N. This is the ch.f. of the sum of k independent Laplace random variables and

therefore a valid ch.f. Using this distribution for steps and treating k as a regular model

parameter leads to a semi-robust model. In this particular case of the extended Laplace

distribution, the function ψ in equation (4.20) is also a valid ch.f. for any non-negative,

real k ∈ R≥0 (Kotz et al., 2001). It corresponds to a generalized asymmetric Laplace

distribution with location parameter zero and symmetry parameter being zero (and

hence being symmetric); compare also Table 4.1. This generalized Laplace distribution

is not widely known, however, it has found several applications. In particular, it has

been used in financial modelling, where it is also known as variance gamma model

(Madan & Seneta, 1990; Seneta, 2004). A movement model with step distribution

determined by the ch.f. (4.20) for k ∈ R≥0 is robust.

For applications in which likelihood functions play an important role, e.g. for sta-

tistical inference, a remaining question is whether we can find the corresponding prob-

ability density function for the ch.f. ψ. In principle, the probability density function

of a distribution can be calculated as inverse Fourier transform of the characteristic

function (Klenke, 2008). Alternatively, for k ∈ N, the density of ψ can be obtained as

the convolution of the k single step densities. Both methods can be difficult or may
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not result in a closed-form density. However, for the above example of the generalized

asymmetric Laplace distribution, a density function is available in terms of a Bessel

function (Kotz et al., 2001). In the symmetric case with location parameter zero, the

density that corresponds to the ch.f. φ in equation (4.20) is

f(x) =
1√

π(k − 1)!
2−k+ 1

2σ−k−
1
2 |x|k−

1
2Kk− 1

2

( |x|
σ

)
, (4.21)

where Kk− 1
2
(x) is a modified Bessel function of the third kind. This formula is valid

for any k ≥ 0. For the case where k is restricted to the non-negative integers, k ∈ N0,

the Bessel function Kk− 1
2
(x) has a closed form (Kotz et al., 2001, Appendix C), and

we can alternatively write

f(x) =
e−
|x|
σ

σ (k − 1)! 2k

k−1∑
j=0

(k − 1 + j)!

(k − 1− j)! j!
·
( |x|
σ

)k−1−j

2j
. (4.22)

This density function can be used for likelihood-based inference, and both σ and k

can be estimated simultaneously. While the new parameter k may take the role of a

nuisance parameter, it allows the distribution to be more flexible. Most importantly,

estimates of σ become comparable across different temporal resolutions; see Figure 4.2.

Robust model extensions highlight that (semi-) robustness is defined with respect

to a distribution class. If we want to use a random walk model validly across a range

of resolutions, we need to preserve the statistical distribution that defines movement

steps. If a model is not robust a priori, we can embed its step distribution in a larger

class of distributions, within which the model become robust with respect to this larger

class.

4.3.3 Robustness and infinite divisibility

Robustness is related to the probabilistic concept of infinite divisibility. Roughly speak-

ing, a distribution is infinitely divisible if it can be expressed as the distribution of a

sum of independent random variables. More precisely, in terms of the characteristic

function φ of a distribution, φ is infinitely divisible if for every n ∈ N, there exists

another ch.f. φn such that φ(u) = φn(u)n (Steutel & Van Harn, 2004; Klenke, 2008).

It is important that φn is not just any function but the ch.f. of a random variable.

An example of an infinitely divisible distribution is the normal distribution with mean
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µ ∈ R and standard deviation σ ∈ R+. Its ch.f. is

φ(u;µ, σ) = eiµu−
1
2
σ2u2 . (4.23)

We can choose φn(u) = φ(u; µ
n
, σ√

n
), which is the ch.f. of another normal distribution

with mean µ
n
∈ R and standard deviation σ√

n
∈ R+. In general, many of the commonly

known distributions are infinitely invisible.

Both concepts, robustness and infinite divisibility, are linked to sums of random

variables. However, the two concepts are not the same. The Laplace distribution is

infinitely divisible, however, the factors of the ch.f. do not again correspond to Laplace

distributions. Instead, the ch.f. of a zero-mean Laplace distribution can be factored as

follows (Kotz et al., 2001),

φ(u) =
1

1 + σ2u2
=

[(
1

1− iσu

) 1
n
(

1

1 + iσu

) 1
n

]n
= φn(u)n. (4.24)

Each factor φn is the ch.f. of a random variable that is a difference between two i.i.d.

Gamma random variables (Kotz et al., 2001). This second example highlights that a

distribution can be infinitely divisible but, as a step distribution, does not lead to a

robust model. This is due to the fact that infinite divisibility only requires the existence

of random variables that sum up to the variable in question. Robustness additionally

requires that the summands belong to the same distribution as the original, only with

modified parameter values. On the other hand, the converse is true and every robust

random walk model of the form considered here must have infinitely divisible step

distribution.

Theorem 4.3. Let Si, i ∈ N, denote the i.i.d. steps of a random walk movement

model. If the step distribution leads to a robust model, then Si is infinitely divisible.

The converse is not true, that is not every infinitely divisible step distribution leads to

a robust model.

Proof. Let φ(u;θ), with θ ∈ Θ, be the ch.f. of a single step Si. Let n ∈ N, and let gn

be the parameter transformation given by robustness. Because gn is bijective, we can

define a unique ψ := g−1
n (θ) ∈ Θ and choose φn(u) := φ(u;ψ). It follows that

φn(u)n = φ(u;ψ)n = φ(u; gn(ψ)) = φ(u; gn(g−1
n (θ))) = φ(u;θ), (4.25)

which shows infinite divisibility. As a counterexample for the converse, I have demon-

strated above that the Laplace distribution is infinitely divisible, but a model with
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Laplace distributed steps is not robust.

In the preceding proof, the bijectivity, and in particular the surjectivity, of the

transform gn is crucial for the existence of φn. Therefore, semi-robustness is not a

sufficient criterion for infinite divisibility. Consider the Binomial distribution, which is

discrete and not typically used as distribution for movement steps. Still, it serves as a

counterexample for a distribution that is not infinitely divisible, yet as step distribution

leads to a semi-robust model. For its ch.f. is φ(u; p, n) = (1 − p + peiu)n for p ∈ [0, 1]

and n ∈ N, and therefore meets the first, but not the second, condition of Theorem 4.1.

On the other hand, as a distribution with bounded support, namely {k ∈ N, k ≤ n},
it is not infinitely divisible (Steutel & Van Harn, 2004).

Even if a model both is semi-robust and has infinitely divisible step distribution, it

does not follow that it is robust. Consider the model with chi-squared distributed steps.

As I have illustrated in section 4.3.1, this model is semi-robust but not robust. Still, the

chi-squared distribution is a special case of the Gamma distribution and thus infinitely

divisible; compare Table 4.1. The reason for the model not being robust is that the

summands, which a chi-squared random variable can be decomposed into, are generally

Gamma and not again chi-squared random variables. This examples highlights that the

definition of the model parameter space is an important consideration for robustness. If

instead of the chi-squared distribution, which is embedded in the Gamma distribution,

we directly use the Gamma distribution as probability model for steps, we immediately

obtain a robust model.

I have used the same idea in section 4.3.2 to embed the Laplace distribution within

the more comprehensive generalized Laplace distribution. Although the Laplace dis-

tribution is infinitely divisible, Laplace distributed steps lead to neither a robust nor a

semi-robust model. If we define the extension described by the ch.f. (4.20) for k ∈ N,

we obtain a random walk model that is semi-robust. If we go even further and define

the extension for k ∈ R≥0, the resulting model is robust.

From these considerations I conclude that robust random walk models lie within the

intersection of semi-robust models and models with infinitely divisible steps, however,

they do not constitute the entire intersection; see Figure 4.3.
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4.4 Two-dimensional models

4.4.1 Radially-symmetric step densities

Many applications of movement modelling, especially those that consider movement

of terrestrial animals, require the use of two-dimensional models. We then often de-

scribe steps by their length and bearing, which corresponds to describing a vector in

polar coordinates. Accordingly, instead of assigning a distribution to steps directly, we

compose step distributions from a step length distribution and a distribution for the

bearing. From these, we can obtain a step distribution (i.e. a distribution for the two-

dimensional vector) by taking into account the transformation from polar coordinate

formulation to euclidean space. Let S =
(
S1
S2

)
∈ R2 be the two-dimensional step. Then

let

R =
√
S2

1 + S2
2 (4.26)

denote the step length, which is the radius of the vector in polar coordinates, and let

pR(r) be the step length distribution. Let pB(β) denote the distribution of the bearing.

Note that, in accordance with common usage, I use capital letters for random variables

and small letters for their realizations. The transformation between the two coordinate

systems is given by S1 = R cosB and S2 = R sinB. Assuming that step length and

bearing distributions are independent, we obtain as step density

pS1,S2(s1, s2) =
1√

s2
1 + s2

2

· pR
(√

s2
1 + s2

2

)
· pB(Arg(s1 + is2)), (4.27)

where Arg(·) denotes the principle argument of a complex number. The factor

(
√
s2

1 + s2
2)−1 is due to the coordinate system transformation.

A classic assumption for simple random walk models is that bearings have uniform

distribution on the interval (−π, π], which leads to a bearing density pB(β) = 1
2π

(Bartumeus et al., 2005; Smouse et al., 2010; James et al., 2011). If movement is

assumed to be persistent in its direction, we may release this assumption and use a von

Mises or wrapped Cauchy distribution instead (Morales et al., 2004; Codling et al.,

2008; McClintock et al., 2013). Here, I only consider models with uniform bearing

distribution and therefore step densities of the form

pS1,S2(s1, s2) =
1

2π
√
s2

1 + s2
2

· pR
(√

s2
1 + s2

2

)
. (4.28)
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This density function is radially symmetric, and we can simply write

pS1,S2(r) =
1

2πr
pR(r) (4.29)

for r =
√
s2

1 + s2
2. Note that I distinguish the radius density pR and radially-symmetric

step density pS1,S2 via the subscript.

The radial symmetry of the density (4.28) enables us to compute its ch.f. via a

Hankel transform. The Hankel transform of order ν of a function f(r) for r ≥ 0 is

given by the integral

Hν{f}(u) =

∫ ∞
0

rf(r)Jν(ru) dr, (4.30)

where Jν denotes the Bessel function of the first kind of order ν (Piessens, 2000). The

ch.f. of a two-dimensional random vector with joint density (4.29) can be calculated as

φ(u) = 2πH0{pS1,S2}(‖u‖). (4.31)

For details about the calculation, see Appendix C. Because φ only depends on the

norm of u and hence is radially symmetric as well, I also use the notation φ(‖u‖).
Hankel transforms have been computed for a variety of functions, which in the following

simplifies my analysis of characteristic functions for two-dimensional step distributions.

4.4.2 Robust two-dimensional models

In the following, I look for robustness among two-dimensional models. A direct way

of verifying robustness is via the two-dimensional ch.f. according to Definition 4.1 or

4.2. In the case where the step distribution has a radially symmetric density function,

it depends on the step distribution pS1,S2(r) whether or not the Hankel transform in

formula (4.31) can be readily obtained. Alternatively, we can draw on previous results

for one-dimensional models.

Theorem 4.4. Consider a random walk model with two-dimensional steps that have

radially symmetric density of the form (4.28). If the marginal step distribution, given

by the density pS1(s1) =
∫∞
−∞ pS1,S2(s1, s2) ds2, leads to a (semi-) robust model in one

dimension, then the two-dimensional model is (semi-) robust as well.

Proof. Let φ(‖u‖;θ) denote the radially symmetric ch.f. of the two-dimensional steps,
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where θ ∈ Θ are the model parameters. The ch.f. of the marginal density is∫ ∞
−∞

eiu1s1pS1(s1) ds1 =

∫ ∞
−∞

∫ ∞
−∞

eiu1s1pS1,S2(s1, s2) ds1 ds2

= φ(‖u‖;θ)
∣∣
u2=0

= φ(|u1|;θ) =: φSi(u1;θ) (4.32)

Let n ∈ N. By assumption, there exists a function gn such that

φSi(u1;θ)n = φSi(u1; gn(θ)). (4.33)

Because of the previous calculations, we also have φ(|u1|;θ)n = φ(|u1|; gn(θ)). Replac-

ing u1 by ‖u‖ yields semi-robustness for the two-dimensional model. The parameter

transformation is the same for the two-dimensional and the marginal one-dimensional

model, therefore if the one-dimensional model is robust, the same holds for the two-

dimensional one.

With this result, I have established a link between one- and two-dimensional models.

The correspondence of the characteristic functions given in equation (4.32) allows to

compute the ch.f. of the radially symmetric two-dimensional model directly from the

ch.f. of the one-dimensional model, and vice versa. Whether it is easier to obtain

the two-dimensional ch.f. via the Hankel transform of the two-dimensional density or

via the ch.f. of the one-dimensional marginal depends on which of the two densities

is available. Conversely, from the two-dimensional ch.f. we can calculate the two-

dimensional, radially symmetric step density via an inverse Hankel transform, which

is self-reciprocal.

To demonstrate these relationships, I now present three example models and their

robustness properties.

Example 4.1 (Exponential step length). A common step length distribution used for

movement analyses is the exponential distribution (Smouse et al., 2010; DeMars et al.,

2013), which has density pR(r) = 1
λ
e−

r
λ . Using this in the step density (4.29), we obtain

pS1,S2(r) =
1

2πλr
e−

r
λ . (4.34)

The Hankel transform of order zero is given by H0{pS1,S2}(u) = 1
2π

(1 + λ2u2)−
1
2

(Piessens, 2000), and thus the ch.f. is

φ(‖u‖;λ) =
1√

1 + λ2‖u‖2
(4.35)
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From this, we can already see that the exponential step length model, where λ > 0

is the only parameter, is neither robust nor semi-robust. The marginal of the density

pS1,S2 is

pS1(s1) =
1

λπ
K0

(
|s1|
λ

)
, (4.36)

where K0 denotes the Bessel function of the second kind of order zero. The ch.f. of the

marginal is φ(u;λ) = (1+λ2u2)−
1
2 . This is in fact the ch.f. of a generalized (asymmetric)

Laplace distribution with location and asymmetry parameters being zero, and with

scale λ and power k = 1
2
, which was shown before to be robust; compare section 4.3.2

and Table 4.1. Therefore, if we embed the exponential step length model in an extended

model with step characteristic function

φ(‖u‖;λ, k) =
1

(1 + λ2‖u‖2)k
, (4.37)

for k ∈ R≥0, we obtain a robust model with the two parameters λ > 0 and k ∈ R≥0.

In the one-dimensional case, we could obtain the density from the ch.f. (4.20) via

an inverse Fourier transform. However, the two-dimensional step density needs to

be computed from (4.37) as an inverse Hankel transform. Unfortunately, the inverse

Hankel transform of order zero of the function (4.37) is not readily available.

Example 4.2 (Heavy-tailed step length distribution). In one dimension, I have shown

that stable step distributions lead to robust models. An example of a stable distri-

bution with closed-form density function is the Cauchy distribution. According to

Theorem 4.4, we can therefore construct a robust two-dimensional model by finding

the two-dimensional density (4.29) that has the Cauchy density as marginal. We can

achieve this via the identity of characteristic functions established in (4.32). From

the ch.f. of the Cauchy distribution, we obtain a corresponding two-dimensional ch.f.

φ(‖u‖;σ) = e−σ‖u‖. Applying an inverse Hankel transform according to the iden-

tity (4.31), we obtain (Piessens, 2000)

pS1,S2(r) =
σ

2π(σ2 + r2)
3
2

. (4.38)

According to (4.29), this results in a step length density for the two-dimensional models

as follows

pR(r) =
σ r

(σ2 + r2)
3
2

. (4.39)

The variance does not exist for this density, and the density is heavy-tailed. More
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precisely, the tail is of order 1
r2

, that is we have

σ r

(σ2 + r2)
3
2

= O
( 1

r2

)
, (4.40)

as r →∞. I will later show that the step distribution in this example is a special case

of a bivariate stable distribution. Because of its relation with the univariate Cauchy,

it is also known as bivariate (isotropic) Cauchy (Achim & Kuruoglu, 2005; Nadarajah

& Kotz, 2007).

Example 4.3 (Normally distributed steps, or Rayleigh step length distribution). The

normal distribution is another special case of a stable distribution. Its radially sym-

metric two-dimensional version with mean zero is the bivariate normal distribution

with covariance matrix
(
σ2 0
0 σ2

)
, having density

pS1,S2(r) =
1

2πσ2
e−

r2

2σ2 , (4.41)

and ch.f. φ(‖u‖;σ) = e−
1
2
σ‖u‖2 . The corresponding step length distribution with density

pR(r) =
r

σ2
e−

r2

2σ2 (4.42)

is a Rayleigh distribution with scale parameter σ > 0. As can be easily seen from the

ch.f. and also via Theorem 4.4, this model with normally distributed steps is robust.

In the latter two examples, the step distributions are special cases of bivariate

stable distributions. Analogously to one-dimension, an α-stable random vector S ∈ R2,

0 < α ≤ 0, by construction has the property

n∑
i=1

S
d
= n

1
αS + bn (4.43)

for some bn ∈ R2 (Samorodnitsky, 1994). If S is elliptically contoured, its ch.f. is

E
(
eiu·S

)
= exp

(
iu · µ− (uTΣu)

α
2

)
(4.44)

for location vector µ ∈ R2 and positive definite shape matrix Σ (Nolan, 2013). From

this form of the ch.f., it can easily be seen that the nth power is again the ch.f. of an

α-stable random vector, with location vector nµ and shape matrix n
2
αΣ. Therefore,

we immediately obtain the following theorem.
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Theorem 4.5. A two-dimensional random walk model with elliptically contoured steps

S that have bivariate stable distribution, i.e. have ch.f. (4.44), is robust.

The bivariate normal distribution with mean µ and a general covariance matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (4.45)

where ρ is the correlation, is an example of such a bivariate stable distribution for

α = 2. If S is not only elliptically contoured but even radially symmetric with location

µ = 0, the ch.f. (4.44) simplifies to

φ(‖u‖;α, σ) = e−σ
α‖u‖α , (4.46)

for σ > 0. Example 4.2 and 4.3 were special cases for α = 1 and α = 2, respectively.

As in the univariate case, closed-form expressions for the density of bivariate sta-

ble distributions are available only for some special cases, e.g. the cases presented in

Examples 4.2 and 4.3. However, there are results that allow simulation of random

variables with stable distributions. For an α-stable, radially symmetric stable random

vector S, we have

S
d
=
√
AT U , (4.47)

where U is a random vector with uniform distribution on the unit circle, T is a chi-

squared random variable with degrees of freedom 2, and A is a univariate stable random

variable, A ∼ S(α
2
, 1, 2σ2(cos πα

4
)

2
α , 0) (Nolan, 2013). Thus, to obtain a bivariate stable

random vector, it is enough to generate a univariate stable random variable. For this,

an algorithm is available (Weron, 1996), which has been implemented in the R package

stabledist (Wuertz et al., 2013). This package also provides numerical calculations of

density and cumulative distribution functions.

4.5 Discussion

I presented a new way of classifying movement models according to their robustness

against changes in temporal discretization. After providing a formal definition for

movement model’s robustness, I explored which models have this property. My defi-

nition emphasizes a systematic transformation of model parameters between temporal

resolutions. This ensures that, if a model is robust, we can fit it to movement data

with varying time intervals between locations, and we know how to translate model
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parameters between resolutions. Conversely, if a model is not robust, any results we

derive from it are tied to its particular temporal scale, and therefore comparison of

studies is difficult if they use data obtained at different sampling rates.

The question of robustness may already arise at a fundamental level when interfac-

ing models with data. If a model is not robust, then it cannot use data measured at a

particular temporal scale of sampling to make inferences about movement behaviours

at shorter and longer time scales. This is of particular concern in movement ecology,

because time scales for sampling animal movement data are often subject to logisti-

cal constraints. For example, limited battery life of GPS devices often leads to lower

sampling rates in favour of longer total time spans. The time scales thus imposed

on data may be very different than those for behavioural or ecological questions about

movement. If a model is not robust, then it may still be semi-robust, which means that

inference can be made at longer but not at shorter time scales. Because the conditions

for robustness and semi-robustness are rather stringent, it appears that many existing

movement models may fail in this regard.

Previous approaches to the problem have been empirical or based on simulations.

Several studies used fine-scale movement data with sampling intervals of a few minutes

(Pépin et al., 2004; Postlethwaite & Dennis, 2013) or even a few seconds (Ryan et al.,

2004). These data were subsampled at various scales to obtain empirical relationships

between the sampling interval and measured or inferred movement parameters. Such

investigations have demonstrated that the sampling interval can have a strong effect

on results from movement analyses. However, each of these studies is based on a

specific species within a particular environment, and it is unclear whether the obtained

relationships and possible correction factors can be transferred to other species and

systems. Also, fine-scale movement data is rarely available, and therefore we need

a more general method that relates sampling rates to movement parameters. As an

alternative to using very fine movement data, Codling & Hill (2005) and Rowcliffe

et al. (2012) simulated synthetic data from movement models and subsampled these.

All of these approaches remain empirical and constitute case studies for particular

data sets, parameters, and models. In contrast, my newly introduced framework is

mathematically rigorous and provides analytical methods and results to determine

whether a model is robust against changes in sampling intervals.

In my investigations, I found that robustness is a rather strong condition for a

model. This is in line with previous empirical results that highlight the sensitivity of

movement characteristics to the sampling interval. For one-dimensional models, I en-

countered two groups of step distributions that lead to robustness. First, Theorem 4.1
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established robustness for distributions whose characteristic function is a simple power

function. Among the common distributions, those that meet this condition have sup-

port R≥0 and therefore only allow steps into positive direction. Such models can be

applicable in situations where movement experiences external forces, such as move-

ment within strong water currents (Luschi et al., 2003) or wind-driven dispersal (de la

Giroday et al., 2011). The second class of step distributions that lead to robust models

are the stable distributions. If steps have α-symmetric stable distribution S(α, 0, σ, 0),

the resulting random walk is a Lévy flight (Klafter et al., 1995). In my analysis of

two-dimensional models, I found few robust models. It is, again, mainly the stable dis-

tributions that constitute examples of robust models. Stable distributions are fat-tailed

and do not have second (and higher) moments, the normal distribution for α = 2 being

the only exception. To circumvent this problem, the related Lévy walk was introduced

(Klafter et al., 1995).

On the one hand, Lévy walks may be attractive models because of their scale-

invariance and optimality in certain foraging situations (Viswanathan et al., 1999).

On the other hand, it is highly debated whether Lévy walks are suitable models for

movement and fit empirical data (Benhamou, 2007; James et al., 2011; Edwards, 2011;

Pyke, 2015). A major point of controversy arises from the difficulty of inferring pro-

cesses from patterns. Although movement patterns may fit Lévy walks, the underlying

process does not necessarily need to be a Lévy walk but may be due to more complex

behaviour (Benhamou, 2007; Plank et al., 2013). The debate further concerns statisti-

cal methods that are used to detect Lévy walk behaviour in data (White et al., 2008;

Edwards, 2011). Even the application of Lévy walks within optimal foraging theory as

Lévy foraging hypothesis has been met with scepticism (Pyke, 2015).

In this chapter, I was merely interested in the question if there are models that

are robust against changes in sampling rates, and which models these are. Because

of the complexity of the issue, I concentrated on investigating this question for basic

random walks. Even among these rather simple models, I found few that are robust.

This foreshadows that robustness may be rare, if existent at all, among more complex

models. But many contemporary models include forms of behavioural mechanisms

beyond the mere random walk and will likely continue to become more sophisticated

(Holyoak et al., 2008; Smouse et al., 2010; Fagan et al., 2013). This means that most

analyses of movement data to date are restricted to the measurement time scale of

each study, limiting extrapolation of results and comparison between studies. With

the analysis here, I have proposed a new fundament for analyzing movement models’

robustness against varying sampling rates. An important next step will be to extend the
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framework to more complex models that include temporal or spatial heterogeneities.

I suggest that a path for further investigation lies in continuing to look for robust

extensions of models. The results I have presented about robust random walk models

need not be exhaustive. In Example 4.1, I have shown that the two-dimensional model

with exponential step length is not robust but can be extended to a robust model

with an additional parameter (the power of the ch.f.). This would be similar to the

one-dimensional example in section 4.3.2, where I demonstrated a robust extension

to the Laplace model. If we would use this extended model and during statistical

inference estimate the power parameter together with all other parameters, we would

be using a robust model. Such an extension is, in theory, also possible for other

models. Unfortunately, although we may be able to straightforwardly construct the

characteristic function of such a robust extension, it can be more difficult to derive

the bivariate step density. To overcome this problem, one could fall back on numerical

solutions. For example, one could solve the inverse Hankel transform of equation (4.37)

numerically and embed this process into an inferential optimization routine such as

likelihood maximization or an MCMC algorithm.

Another possibility is to somewhat release the strict conditions of robustness. In my

definition presented here, the parameter transformation gn is a key element. It assures

that we can systematically translate results about model parameters between analyses

using different sampling rates. The works by Pépin et al. (2004) and Codling & Hill

(2005) tried to establish such a transformation empirically for some specific movement

quantities. The relationships they found were able to correct for different sampling

rates to some extent. This suggests that although my robustness is a strong condition

on a model, there may be models that are approximately robust within certain ranges

of sampling intervals. Often, we do not wish to compare data analyses with widely

varying sampling intervals. When we analyze movement, we always have to be aware

of the behavioural scale of interest, as the behavioural processes may vary across scales

(Yackulic et al., 2011; Fleming et al., 2014). However, it may be a reasonable goal to

compare movement analyses with sampling intervals within a range of a couple hours

or so. Within this range, an approximate type of robustness may be sufficient.
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Table 4.1. List of univariate distributions, which as random walk step distributions
lead to semi-robust or robust models. The table indicates which of these distributions
are also robust or infinitely divisible.

Distribution Ch.f. φ(u)
Parameter Semi-

Rob.
Inf.

space rob. div.

Continuous distributions
with support R

Normal eiuµ−
1
2
σ2u2 µ ∈ R, σ ∈ R+ 3 3 3

Cauchy eiuµ−σ|u| µ ∈ R, σ ∈ R+ 3 3 3

Lévy eiuµ−|σu|
1
2 (1−i·sign(t)) µ ∈ R, σ ∈ R+ 3 3 3

Laplace extension
(

1
1+σ2u2

)k µ ∈ R, σ ∈ R+, 3 7 3

k ∈ N

Generalized eiuµ

(1+σ2u2+iνu)k
µ, ν ∈ R, 3 3 3

asymmetric Laplace σ, k ∈ R≥0

Continuous distributions
with support R≥0

Gamma 1
(1−σu)κ

σ ∈ R+, κ ∈ R+ 3 3 3

Chi-squared 1

(1−2u)
k
2

k ∈ N 3 7 3

Discrete distributions

Poisson eλ(eiu−1) λ ∈ R≥0 3 3 3

Bionomial (peiu + (1− p))n p ∈ [0, 1], n ∈ N0 3 7 7

84



CHAPTER 4. ROBUSTNESS OF RANDOM WALKS
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Figure 4.1. Schematic of locations Xi and steps Si between locations. Solid lines
indicate the original process, grey dashed lines represent the subprocess for n=2. The
subprocess consists of steps S̃i,2.
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Figure 4.2. Inference results when using the Laplace model versus the generalized
Laplace model. Panel a: Simulated 1D-random walk with Laplace distributed steps
with mean zero and scale σ = 1. Panel b: Excerpt of panel a for time steps 1 to
25. Panel c: Histogram of realized steps of the random walk, fitted with a Laplace
distribution with mean zero. The estimate of the scale σ is denoted by σ̂. Panels
d, f, h: I subsampled the random walk, taking every 4th location. The panels show
the original random walk (in grey) and the subsample (in black). Different subsamples
arose depending on the starting location of the subsampling procedure. The three
panels start the subsampling at x1, x2, and x3, respectively. Each subsampled path is
1000 time steps long.
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Figure 4.2. Panels e, g, i: Histograms of realized steps of the subsampled paths.
Each histogram corresponds to the subsample to its left. Steps were fitted with a
Laplace distribution (dashed purple line) and with a generalized Laplace distribution as
given in equation (4.22) (solid red line). The generalized Laplace model accounts for the
subsampling with its additional parameter k (here k = 4) and is thus the correct model.
When fitted to the subsampled random walks, k was estimated simultaneously with σ.
The estimate of k varies for the different subsamples, reflecting the stochasticity of the
data, but it is always close to 4. When using the generalized Laplace model, estimates
of the scale σ are valid estimates for the scale of the original random walk as well.
In contrast, the scale estimate from the simple Laplace model (given in parenthesis)
cannot validly represent the original scale and naturally overestimates σ.

Semi-
robust
models

Models w/
infinitely
divisible
steps

Robust
models

• Generalized Laplace
• Stable Distributions
   - Normal
   - Cauchy

• Binomial• Laplace
• Laplace extension

   • Chi-squared

Figure 4.3. Graphic depiction of the relationships between semi-robust and robust
models and models with infinitely divisible step distributions. Each section contains
examples from the text for step distributions that lead to the type of model.
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Chapter 5

Robustness of movement models:

can models bridge the gap between

temporal scales of data sets and

behavioural processes?1

5.1 Introduction

Major advances in tracking technology during the last decades have made large datasets

of animal movement available to ecologists, and analyses of data have become widespread

in ecology. These analyses have shed light on mechanisms that underly fundamental

processes such as migration (Robinson et al., 2009; Costa et al., 2012), navigation

(Tsoar et al., 2011; Benhamou et al., 2011), or home range behaviour and territoriality

(Börger et al., 2008; Potts & Lewis, 2014; Giuggioli & Kenkre, 2014). They have helped

to identify conservation goals by revealing habitat preferences and critical environmen-

tal features for populations (Sawyer et al., 2009; Colchero et al., 2010; Ito et al., 2013;

Masden et al., 2012), as well as the role of important mutualistic interactions between

mobile animals and immobile plants (Côrtes & Uriarte, 2013; Mueller et al., 2014).

These are only few of the many facets of movement ecology.

Mathematical and statistical models provide a framework for studying movement

(Schick et al., 2008; Smouse et al., 2010; Langrock et al., 2013). When linking models

to data, we can estimate model parameters and identify best-fitting models, thus infer-

1A version of the chapter has been submitted to Journal of Mathematical Biology as: Schlägel,
U.E. & Lewis, M.A. Robustness of movement models: can models bridge the gap between temporal
scales of data sets and behavioural processes?
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ring unknown quantities or mechanisms in movement behaviour. Although movement

itself is a continuous process, many individual-based movement models treat time as

a discrete variable, viewing movement as a series of locations in space, or equivalently

as a series of steps (Turchin, 1998; McClintock et al., 2014). This may largely be as-

cribed to data being available in this format. Discrete-time models may thus be an

intuitive first choice to describe a sampled movement path. However, there may be

more reasons to use discrete-time models. The continuous movement path of an animal

may consist of various behaviours at different scales (Johnson et al., 2002; Benhamou,

2013). Using a discrete-time model at the scale of interest allows us to focus on the

behavioural mechanisms at that scale, while, for example, combining other unknown

processes as stochastic effects. Also, the choice of time formulation in a movement

model can have side effects that impact inference results. For example, McClintock

et al. (2014) demonstrated that using a continuous-time Ornstein-Uhlenbeck process in

a hierarchical model for identifying behavioural states led to difficulties discriminating

between states, due to an inherent correlation between the variables step length and

bearing in the Ornstein-Uhlenbeck process.

Many movement models are based on random walks (Turchin, 1998; Codling et al.,

2008; McClintock et al., 2014). From simple random walks that assume independently

and identically distributed steps, we have moved to correlated random walks, which

include directional persistence (Kareiva & Shigesada, 1983), and biased random walks,

which can, for example, be used to model centralizing tendencies or long-term direc-

tional goals (Benhamou, 2006; Börger et al., 2008; McClintock et al., 2012). Many

animals live in heterogeneous environments, and the composition of the environment

and availability of resources influence movement decisions (Fortin et al., 2005; McPhee

et al., 2012). Therefore, another trend of random-walk extensions has left behind as-

sumptions about environmental homogeneity in favour of spatially-explicit models that

incorporate habitat effects on movement decisions (Rhodes et al., 2005; Avgar et al.,

2013; Potts et al., 2014). These models have an advantage over statistical resource-

selection and step-selection functions (Manly et al., 2002; Fortin et al., 2005; Forester

et al., 2009) by allowing simultaneous estimation of movement parameters and envi-

ronmental effects.

When linking discrete-time models to data, the temporal resolution of the dis-

cretization is a critical feature that must be chosen with care. Different time scales

may come into play and need to be consolidated. On the one hand, a time scale is given

by the biological process of interest. For example, we may be interested in inferring

behavioural mechanisms of a movement process and thus need to consider the time
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scale at which these mechanisms are relevant. The discretization of a model should

represent this scale appropriately. On the other hand, a different time scale may be

given by the data collection rate. In practice, the sampling rate of data is subject to

technological constraints. One of the major limitations of electronic tagging devices

such as Argos or GPS tags is battery life, imposing a tradeoff between measurement

rate and total deployment time (Ryan et al., 2004; Breed et al., 2011). Also, to avoid a

large noise to signal ratio, the time interval should be chosen so that measurement error

relative to distance travelled during a time interval is small (Ryan et al., 2004). For

slow moving animals and depending on the accuracy of the tagging device, a minimum

time interval of an hour may be necessary (Jerde & Visscher, 2005). Therefore, the

resolution of the data may not always match the time scale of the behavioural process

of interest. In this case, it becomes a challenge for a model to overcome the conflict.

A related problem is that sampling rate can affect data analysis results (Codling &

Hill, 2005; Rowcliffe et al., 2012; Postlethwaite & Dennis, 2013). A common measure

calculated from raw movement data is the total distance travelled, which can provide

useful information about an animal’s energetic expenditures. It is well documented

that this quantity is highly influenced by the sampling rate of the data (Ryan et al.,

2004; Mills et al., 2006; Tanferna et al., 2012; Rowcliffe et al., 2012). A range of studies

demonstrated that other fundamental movement characteristics vary with data sam-

pling frequency as well, for example path sinuosity and apparent speed (Codling &

Hill, 2005), movement rate and turning angle (Postlethwaite & Dennis, 2013), and

estimates of territory size (Mills et al., 2006). One of the main problems underlying

these effects is information loss when subsampling a movement path. This also impairs

our capacity to correctly estimate behavioural states through hierarchical modelling

approaches that have become widespread in movement analyses (Breed et al., 2011;

Rowcliffe et al., 2012). These findings demonstrate that great care is needed when

extrapolating movement analysis results beyond the temporal scale of a study. Com-

parisons of results may not be appropriate if the temporal resolution of the data varies

too much, but it is unclear what constitutes “too much”.

Despite the evidence of the extent of the problem, little is known about how to

solve it. Previous approaches have been mainly empirical, using very fine scale data or

synthetic data from simulations, which are subsampled at various resolutions. Move-

ment characteristics calculated at these varying sampling rates are then compared to

the values based on the full data, which represent the true values. Some studies have

fitted functions to the relationships of movement characteristics and sampling rate

(Pépin et al., 2004; Codling & Hill, 2005; Mills et al., 2006). These empirically ob-
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tained functions may be used to correct movement characteristics for sampling rate.

While correction factors derived from movement data remain situation-specific and

cannot easily be applied across species (Ryan et al., 2004; Rowcliffe et al., 2012), we

can obtain more general results by analyzing the effects of sampling rate at the level of

the model (Codling & Hill, 2005; Rosser et al., 2013). Often, important characteristics

of movement can be well captured by models, and therefore analyzing the properties

of models can provide more general insights. However, only few such studies exist.

An approach to circumvent the problem of scale-dependent statistical inference has

been taken by Fleming et al. (2014), who use the semivariance function of a stochastic

movement process to identify multiple movement modes acting at different temporal

scales. The method takes into account all possible time lags between observations.

However, there are limitations as to the movement processes that can be included in

this analysis (Fleming et al., 2014).

Here, I present a rigorous framework for studying how movement models react to

changes in sampling rate, and I use this framework to analyze a class of models based

on random walks. With my analysis, I seek to understand whether, and how, mod-

els can help to compensate mismatching temporal scales between different data sets

or between data and behavioural process of interest. Focusing on spatially-explicit

random walks, I investigate whether there are models that can validly be applied to

data with different temporal resolutions and how we can account for the differences

in resolutions in our interpretation of statistical inference results. In particular, I

am interested in how model parameters, and their estimates, change with decreasing

temporal resolution. While estimates may change due to a shift in behavioural scale,

which we always need to be aware of, I am interested in the changes that arise from the

method, that is the model. My framework is related to the statistical concept of ro-

bustness, which aims at safeguarding statistical procedures against violations of model

assumptions (Hampel, 1986; Huber & Ronchetti, 2009). Often, such violations refer

to deviations from assumed probability distributions (e.g. Normal errors), which may

result in outliers, misspecified relationships between response and explanatory vari-

ables in regression analyses, or violations of the common independence assumption.

Here, I define robustness of movement models against changes in temporal discretiza-

tion. In my framework, I treat robustness as a formal property of a model, namely the

movement model. If a model has this property, it can be applied to data with varying

resolutions. Additionally, while model parameters do not stay the same, they change

systematically and can be translated between resolutions.

Our paper is outlined as follows. In section 5.2, I define what I mean by a movement
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model to be robust against changes in temporal resolution. I provide three different

definitions, varying in their strength of conditions. In section 5.3, I present different

approaches how the definitions can be used to analyze robustness of movement mod-

els. Depending on models’ complexity and preexisting information, we can use formal

analytical methods, numerical calculations, as well as Monte Carlo and simulation ap-

proaches. I use these approaches to examine robustness of spatially-explicit random

walks and resource-selection models, and I summarize my findings in section 5.4. In

section 6, I discuss the relevance of my robustness framework for statistical inference

and also draw specific conclusions for spatially-explicit resource-selection models.

5.2 Robustness of Markovian movement models

I consider movement models that are discrete-time Markov processes of the form

(Xt, t ∈ T ), where Xt ∈ R2 is an individual’s location and T = {0, τ, 2τ, . . . } is a

set of regularly spaced times. This means that I assume that the time interval τ > 0

between two successive location measurements is fixed. Such data often arise from ter-

restrial animals fitted with GPS devices (Frair et al., 2010). The time interval τ of the

model is usually specified by the resolution of the data. I denote the 1-step transition

density for the probability of moving from location y to x between times t−τ and t by

pt−τ,t(x|y,θ), where θ ∈ Θ is a vector of model parameters. This notation highlights

that the transition density can be time-heterogeneous.

I consider sub-models that consist of every nth location of the original model for

n ∈ N. The transition density of the nth sub-model for the probability of moving

from location y to x between times t − nτ and t is denoted by pt−nτ,t(x|y,θ); com-

pare Figure 5.1. A priori, the function pt−nτ,t can have an entirely different form

than pt−τ,t and may correspond to a different probability distribution. However, via

the Chapman-Kolmogorov equation, the n-step transition density can be written as a

marginal density,

pt−nτ,t(xt|xt−nτ ,θ)

=

∫
R2×···×R2

pjoint(xt,xt−τ , . . . ,xt−(n−1)τ |xt−nτ ,θ) dxt−τ . . . dxt−(n−1)τ , (5.1)

where the marginalization is over all intermediate locations visited between times t−nτ
and t. For simplicity, I use the general subscript “joint” to denote any joint density

of multiple locations. From the notation of the locations it is clear which joint density
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is meant. The Markov property of the model allows us to stepwise split up the joint

density as follows

pjoint(xt,xt−τ , . . . ,xt−(n−1)τ |xt−nτ ,θ)

= pt−τ,t(xt|xt−τ ,θ) pjoint(xt−τ , . . . ,xt−(n−1)τ |xt−nτ ,θ). (5.2)

We can continue this until we obtain

pt−nτ,t(xt|xt−nτ ,θ)

=

∫
R2×···×R2

n−1∏
k=1

pt−kτ,t−(k−1)τ (xt−(k−1)τ |xt−kτ ,θ) dxt−τ . . . dxt−(n−1)τ . (5.3)

Therefore, we can use the 1-step densities to calculate the n-step density; compare

Figure 5.1. For statistical inference, and thus for my robustness concept, the model

parameter vector θ plays a crucial role. Although the n-step density may belong to a

different distribution than the 1-step density, equation (5.3) justifies to use the same

parameter θ in the notation of the n-step density as in the 1-step density.

I define robustness in terms of the 1-step and n-step densities of a model.

Definition 5.1 (Robustness of degree n). Let n ∈ N be finite. A movement model of

the above type is robust of degree n if there exists an injective function gn : Θ → Θ

such that

pt−nτ,t(x|y,θ) = pt−τ,t(x|y, gn(θ)) for all t ∈ T and x,y ∈ R2. (5.4)

This definition requires that the n-step densities are of the same functional form as

the 1-step transitions, where parameters of the model are appropriately transformed

via the function gn. This means that if a model is robust, the nth sub-model is in

fact the same as the original model but with systematically adjusted parameters. The

parameter transformation gn allows us to extrapolate the original parameter θ to the

coarser temporal discretization of the nth sub-model. Additionally, we can use the nth

sub-model to infer the parameter θ of the original model, because we can invert gn(θ).

Note, however, that this rests on the assumption that the original model defines the

process of interest. If, instead we start at the coarser resolution, we would also need

surjectivity of the function gn to conclude the existence of the finer model.

Robustness of degree n has important implications. Given a behavioural process

of interest, described by a robust model with parameter θ, we can apply the model
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not only to data with matching temporal resolution τ but also to coarser data with

resolution nτ (e.g. double time interval for n = 2). The parameter estimate ψ that

we obtain from the coarser data is in fact an estimate of gn(θ). From this, we can

infer the value of θ via θ = g−1
n (ψ). Additionally, robustness allows us to compare

studies pertaining to the same behavioural process but using data sets with different

resolutions. If θ is the estimate based on the finer data, it can be extrapolated to the

coarser scale via the parameter transformation gn(θ), for all degrees n for which the

model is robust.

Robustness as in Definition 5.1 is a strong condition that I do not expect to hold

but in few special cases of the density pt−τ,t(x|y,θ). However, equation (5.4) may hold

up to a function v(x,y), where v is a bounded function that could also depend on n

or τ . For practical applications, such approximate or asymptotic robustness may be

sufficient. Therefore, I provide two additional definitions.

Definition 5.2 (Asymptotic robustness of degree n). Let n ∈ N be finite. A movement

model of the above type is said to be asymptotically robust of degree n if there exists

an injective function gn : Θ → Θ and a function v : R2 × R2 × R+ → R+ with the

property v(x,y; τ)− 1 = O(τ) on R2 × R2 × R+, such that

pt−nτ,t(x|y,θ) = pt−τ,t(x|y, gn(θ)) v(x,y; τ) for all t ∈ T and x,y ∈ R2. (5.5)

Here, O denotes the Landau symbol for the order of a function. If a model is

asymptotically robust, the n-step densities are not exactly the same as the 1-step

densities, as was required in Definition 5.1. However, the discrepancy between the

densities is bounded by a function that is proportional to τ . More precisely, for an

asymptotically robust model we have

1− Cτ ≤ pt−nτ,t(x|y,θ)

pt−τ,t(x|y, gn(θ))
≤ 1 + Cτ (5.6)

for all x, y and θ, for some constant C > 0. Therefore, if the time interval τ of the

model is sufficiently small, the n-step density will closely resemble the 1-step density

with appropriately adjusted parameters. Asymptotic robustness of degree n implies

that robustness of degree n is achieved as τ → 0, that is when the time interval τ

approaches zero.

In applications, the time interval τ may not be chosen sufficiently small for Def-

inition 5.2 to be useful. Therefore, I give a variation of Definition 5.2, in which the

function v does not depend on τ .
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Definition 5.3 (Approximate robustness of magnitude δ and degree n). Let n ∈ N
be finite. A movement model of the above type is said to be approximately robust

of magnitude δ and degree n if there exists an injective function gn : Θ → Θ and a

function v : R2 × R2 → R+ with the property 0 < 1 − δ ≤ v(x,y) ≤ 1 + δ for all x,

y ∈ R2, for a δ > 0, such that

pt−nτ,t(x|y,θ) = pt−τ,t(x|y, gn(θ)) v(x,y) for all t ∈ T and x,y ∈ R2. (5.7)

Analogously to equation (5.6), condition (5.7) can be written as

1− δ ≤ pt−nτ,t(x|y,θ)

pt−τ,t(x|y, gn(θ))
≤ 1 + δ. (5.8)

In fact, we may consider two different types of magnitudes. Setting

v(x,y) :=
pt−nτ,t(x|y,θ)

pt−τ,t(x|y, gn(θ))
, (5.9)

this function depends a priori on the parameters, that is we have v(x,y;θ), and the

magnitude is δθ. If maxθ δθ exists, then this is the overall magnitude for the model with

all possible parameter values. The magnitude determines how close n-step densities are

to the parameter-adjusted 1-step densities. If δ is small, then the correction function v

is close to one everywhere, and thus the n-step density has similar values as the 1-step

density over its entire domain.

Asymptotic and approximate robustness have similar implications for inference as

robustness, but only approximately. The quality of the approximation depends on τ

or the magnitude δ. Suppose we wish to estimate parameters of a behavioural process

that we formulate in a model. Suppose we consider the time interval τ as suitable

for the process. If the model is robust of degree n, we can use data not only at the

matching scale but also at a coarser scale. For example, if the model is robust of degree

2, we can use data obtained at time interval 2τ . Because the model is also valid for the

coarser scale, we can translate parameter estimates between the scales via the function

gn. If a model is asymptotically or approximately robust, the model is not exactly

but still approximately valid for the coarser scale. To see this, consider the likelihood

function

L1(θ|{x0,xτ ,x2τ , . . . , }) =
∏

t∈{τ,2τ,... }

pt−τ,t(xt|xt−τ ,θ). (5.10)
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If a model is robust of degree n, the likelihood for data at time interval nτ is

Ln(θ|{x0,xnτ ,x(n+1)τ , . . . , }) =
∏

t∈{nτ,(n+1)τ,... }

pt−nτ,t(xt|xt−nτ ,θ)

= L1(gn(θ)|{x0,xnτ ,x(n+1)τ , . . . , }).
(5.11)

If a model is asymptotically robust, we have instead

L1(gn(θ)) · (1− Cτ +O(τ 2)) ≤ Ln(θ) ≤ L1(gn(θ)) · (1 + Cτ +O(τ 2)), (5.12)

omitting the notation of the data, which is the same as in equation (5.11). Analogously,

for approximate robustness we have

L1(gn(θ)) · (1− δ +O(δ2)) ≤ Ln(θ) ≤ L1(gn(θ)) · (1 + Cδ +O(δ2)). (5.13)

Therefore, if a model is asymptotically or approximately robust of degree n, we

may loosely write Ln(θ) ≈ L1(gn(θ)), that is the likelihood functions based on data at

time interval τ and on data at interval nτ are approximately the same. Thus, if data

at time interval τ is not available, we can analyze data at time interval nτ instead,

using the likelihood L1 of the original model. Parameter estimates obtained in this

way can be translated to the scale τ by using the inverse parameter transformation

g−1
n . Such results from statistical inference based on L1 may be close to results based

on the correct Ln, which may be difficult to compute. How close results are depends

on the quality of the approximations in Definitions 5.2 and 5.3 via τ or δ. For example,

if a model is approximately robust with a very small magnitude δ, the likelihood L1

will describe data at time interval nτ almost as well as Ln.

5.3 Analyzing spatially-explicit random walks

I used the robustness definitions to analyze spatially-explicit random walk models.

These models merge general movement tendencies of an individual with decisions based

on specific characteristics of locations, such as environmental features and available

resources. I investigated how the models react when applied to data with increasingly

coarser temporal resolution.

My robustness definitions have two key features. First, the 1-step transition den-

sities of the model and the n-step densities of the sub-models need to have the same

form. Second, model parameters, which are parameters of the densities, need to be
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transformed by a known function gn. We can assume different approaches to investi-

gate robustness properties of a model, depending on whether we have a candidate for

the parameter transformation gn or not. If prior knowledge allows us to investigate

robustness for a given or hypothesized parameter transformation, we can calculate and

compare the n-step density pt−nτ,t(x|y,θ) and the parameter-adjusted 1-step density

pt−τ,t(x|y, gn(θ)). By showing equality of the two densities, we can verify robustness.

For complex models, analytical calculations may be difficult, or even impossible. In

these cases, we may resort to numerical calculations, especially when approximate

robustness is sufficient.

In many situations, we may not know gn a priori, nor have any anticipation. Or, we

may have tested robustness for a hypothesized parameter transformation but got poor

results. In these cases, we need to establish some information on possible forms of the

parameter transformation. Additionally, for complex models, numerical calculation of

the high-dimensional integral required for the n-step density (compare equation (5.3))

may become inaccurate. A solution is then to draw on the ideas of Monte Carlo

sampling. Monte Carlo methods and simulations are useful when probability densities

are difficult to compute in closed-form but can conveniently be sampled from (e.g.

Robert & Casella, 2000). In the following, I demonstrate both approaches for analyzing

movement models’ robustness.

5.3.1 Analytical and numerical approach

Spatially-explicit random walks can be created by merging two elements in the tran-

sition density of the model. One component is the general movement kernel kθ1(x; y),

which can be the transition density of any standard random walk, describing the prob-

ability that an individual takes a step from y to x if there were no environmental

information available. A second part of the model, given by the weighting function

wθ2(x), rates each possible step based on the location x. The transition densities of

the full model takes the form

pt−τ,t(x|y,θ1,θ2) =
kθ1(x; y)wθ2(x)∫

R kθ1(z; y)wθ2(z) dz
. (5.14)

The integral in the denominator serves as a normalization constant.

For simplicity, I restricted my analysis to the 1-dimensional case, that is I assumed

that Xt ∈ R. I further focused on Gaussian kernels kθ1(x; y) = kσ(x; y), where kσ(x; y)

is a Gaussian density with mean y and standard deviation σ. The weighting function

wθ2(x) was assumed to be positive everywhere to ensure that equation (5.14) defines
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a density. In the following I simply use θ for the parameter vector of the weighting

function, or, when it is clear which parameters refer to the weighting function, I drop

the subscript for the parameter in the notation of the weighting function entirely.

Note that the transition density (5.14) does not depend on time explicitly. Still,

as the individual moves through space over time, the centre location y of the kernel

shifts. Although the kernel is a function of the distance ‖x − y‖ only, the weighting

function adds a spatially explicit component. Therefore, unless the individual remains

at the same location, the transition kernel effectively changes at every time step. In the

following, I omit the time-related subscript in the notation of the density and simply

write p1 for the transition density (5.14) and pn for the n-step density. The time interval

of the original process is always assumed to be τ . The distinction between 1-step and

n-step density is still important, because the n-step density is in fact an integral over

multiple 1-step densities; compare equation (5.3).

I investigated whether I could find weighting functions wθ(x) such that the model

with transition density (5.14) is robust, asymptotically robust or approximately ro-

bust. I started by verifying Definition 5.1 for simple cases of the weighting function for

a fixed parameter transformation gn. As highlighted above, the parameter transforma-

tion is a key element, translating parameters between different temporal resolutions.

For the parameter of the Gaussian movement kernel kσ, I obtained a candidate for

the transformation based on the linearity of the Gaussian distribution. If we only

consider the kernel kσ, we have a simple random walk with normally distributed steps

between locations. The n-step density (5.3) is then the density of a sum of n normally

distributed random variables, which is again normal with standard deviation
√
nσ.

Therefore, I assumed that the transformation of the kernel’s standard deviation was

given by gn(σ) =
√
nσ. For the parameters of the weighting function I assumed that

they remain unaffected, that is gn(θ) = θ. This is an ideal property for a weighting

function, as it guarantees validity of inference results across different sampling rates

without further translation.

In a next step, I used the same parameter transformation gn(σ,θ) = (
√
nσ,θ) to

establish conditions on the weighting function such that the model is asymptotically

robust. For this, I assumed that the parameter of the kernel, the standard deviation,

was influenced by the time interval τ , that is σ = σ(τ). This reflects that an individual

may travel larger distances during longer time intervals. Because of the linearity of the

Gaussian distribution, I assumed the relationship σ(τ) =
√
τω, for some ω > 0. For

certain conditions on the weighting function, I verified Definition 5.2 analytically for

the robustness degree n = 2 by calculating the function v(x, y; τ) and placing bounds
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on it.

As alternative to an analytical approach, we can calculate the ratio of 2-step and

1-step density numerically to see whether we can find a function v(x, y; τ) according

to Definition 5.2 for the degree n = 2. Define δ(τ) := maxx,y |v(x, y; τ) − 1|. Note

that since step densities depend on τ through σ(τ), we may equivalently consider

δ(σ). If this is independent of the other parameters θ, we can obtain the bound

on v as δ := maxσ δ(σ), if this maximum exists. More generally, we can consider

v(x, y, σ,θ) and calculate δθ(σ) := maxx,y |v(x, y;σ,θ)−1|. This δθ(σ) is the magnitude

of approximate robustness (degree 2) for a model with a fixed weighting function,

including parameter values. An overall magnitude for the family of models consisting of

the model for all parameter values can be obtained as δ := maxσ,θ δθ(σ). I demonstrate

these two numerical approaches with an example weighting function.

5.3.2 Simulation approach

Resource selection models

Resource selection analyses link animal location data and environmental variables to

understand animals’ space-use patterns in relation to their habitat. These studies pro-

vide insight into species’ preferences or avoidance of habitat characteristics, which is

important information for wildlife management and conservation purposes (Hebble-

white & Merrill, 2008; Latham et al., 2011; Squires et al., 2013). Central methodolog-

ical elements are resource selection functions (RSF) and resource selection probability

functions (RSPF), describing the probability of selection of certain units (e.g. pixels of

land) by an individual based on environmental covariates (Manly et al., 2002; Boyce

et al., 2002; Lele & Keim, 2006). RSF and RSPF have been used on their own in a

mere statistical framework (Boyce et al., 2002; Courbin et al., 2013), incorporated into

spatially-explicit models (Rhodes et al., 2005; Aarts et al., 2011), and become part of

mechanistic movement models (Moorcroft & Barnett, 2008; Potts et al., 2014)).

I included resource selection in the spatially-explicit random walk with transition

density (5.14) by letting the weighting function take the form wθ(x) = wθ(r(x)),

where r(x) = (r1(x), . . . , rn(x)) is a vector of resource covariates at location x. Each

rj is a function over space, representing resource covariates such as elevation, biomass

measures, land cover type, and much more. The transition density becomes

p1(x|y, σ,θ) =
kσ(x; y)wθ(r(x))∫

R kσ(z; y)wθ(r(z)) dz
. (5.15)
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In practice, geographical information is spatially discrete, and therefore the normalizing

integral in equation (5.15) becomes a sum over pixels, or cells, of land. Note that I

still restrict attention to one-dimensional models.

The weighting function can take various forms, and here I consider two forms mod-

elled after commonly used resource selection functions (Manly et al., 2002; Lele &

Keim, 2006), an exponential function,

wexp(r(x)) = exp (β · r(x)) (5.16)

and a logistic function,

wlog(r(x)) =
exp (α + β · r(x))

1 + exp (α + β · r(x))
. (5.17)

The vector β comprises all selection parameters with respect to resource covariates r. A

higher selection parameter means stronger selection with respect to the corresponding

resource. In the logistic form, α is an intercept parameter, which can shift the inflection

point of the logistic function away from zero. The inflection point is the point where

the logistic function attains a value of 0.5, that is where the probability of selecting

a resource is 50%. If the exponential form (5.16) is used, an intercept similar to the

one used in equation (5.17) is not identifiable, because it cancels in the definition of

the transition density (5.15). Therefore I have omitted it in equation (5.16). The

function wlog has range (0, 1) and can therefore be used to describe probabilities. This

means that this form can be interpreted as an RSPF, which for a given location y

specifies the probability that an animal selects this location, given the covariate values

of the location. In contrast, the exponential weighting function can only specify values

proportional to this probability, with unknown proportionality constant (Lele et al.,

2013).

Sampling models and sub-models

I examined the two models with weighting functions wexp and wlog for their robustness.

Because the weighting functions depend on space through environmental information r

they are highly non-linear, and therefore the transition densities are difficult to exam-

ine analytically. Sampling probability distributions is a convenient work around and

has the additional advantage that we can control parameters and isolate processes of

interest. I thus simulated sample trajectories from the model with transition densi-

ties (5.15). The joint density of a movement trajectory (x1, . . . , xN) ∈ RN of length
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N ∈ N is given by

pjoint(x1, . . . , xN ,θ) = p1(x1,θ)
N∏
t=2

p1(xt|xt−1,θ). (5.18)

Thus, I sampled successively from the transition densities to obtain a full movement

trajectory. I obtained samples from the subprocess xn = (x1, xn+1, . . . ) consisting of

every nth location by subsampling the full trajectories. These subsamples represent

samples from the model with transition densities being the n-step densities pn(·|·,θ).

Because the models rely on environmental data, I simulated resource landscapes

as realizations of Gaussian random fields with exponential covariance model (Haran,

2011; Schlather et al., 2013). This resulted in spatially correlated resource landscapes,

thus ensuring realism; compare Figure D.1. The sampled movement trajectories were

based on these simulated landscapes. To avoid confounding effects and to keep results

as clear as possible, I assumed that the weighting function was based on only one

resource r, thus we have wθ(r(x)). With the exponential covariance model, I assumed

that the covariance of resource values at two different locations is given by

Cov(r(x), r(y)) = exp
( |x− y|

s

)
, (5.19)

where s affects the decrease of the spatial autocorrelation with increasing distance.

I sampled trajectories for varying parameter values. I used σ ∈ {5, 6, 7} and β ∈
{0.5, 1, 1.5, 2} in all combinations. In the model with logistic weighting function wlog,

I further combined the values α ∈ {−1,−0.5, 0, 0.5, 1} with all other parameters. For

each parameter combination, I sampled 16 trajectories for 15,000 time steps each;

compare Figures D.2 and D.3. For each of the 16 trajectories, I used a different resource

landscape, repeating the same set of resource landscapes across different parameter

combinations. The 16 landscapes were generated with varying spatial autocorrelation,

s ranging between 200–500. This led to a total of 192 sampled trajectories for the model

with exponential weighting function and 960 trajectories for the model with logistic

weighting function. I subsampled every trajectory at levels n = 1, . . . , 15, leaving 1000

steps for the coarsest time series. The subsample for n = 1 is the original trajectory.

Analyzing parameters

While the simulated trajectories represent samples from the original model with transi-

tion densities p1(·|·,θ), the subsamples of the full trajectories provide us with samples
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from the sub-models with n-step densities pn(·|·,θ). To learn about the models’ robust-

ness properties, we need to test whether the subsamples reconcile with the parameter-

adjusted 1-step densities p1(·|·, gn(θ)) for some parameter transformation gn. For a

given parameter transformation, we can achieve this by analyzing the fit of the model

with transitions p1(·|·, gn(θ)) with the subsamples. When gn is unknown, or when the

fit for a hypothesized gn is poor, we first need to investigate the behaviour of the pa-

rameters under subsampling to see whether we can find a function gn as required by

the robustness definitions.

Here, I both tested a priori expectations on the parameter transformation and

searched for better alternatives. I estimated parameters for all trajectories and their

subsamples using maximum likelihood optimization. The likelihood function for the

full trajectories is given in equation (5.18). For subsamples, I applied the same

model, although I did not know whether subsamples of trajectories followed the same

(parameter-adjusted) process as full trajectories. I expected parameter estimates for

the full trajectories to be close to the values that I used during the simulations. I

call these the “true values”, although deviations in the simulations are possible, be-

cause simulated trajectories are realizations of stochastic processes. My main interest

are parameter estimates for the subsamples. To distinguish estimates from underlying

true parameters, I denote the estimate with a hat, e.g. σ̂. Ideally, the parameters of

the subsamples should follow some function gn(σ, α, β), and so should the estimates.

To see whether such a function exists, I fitted non-linear regression models to the re-

lationship of parameter estimates of subsamples and the subsampling amount n. For

each parameter, I fitted two models. One model was more restrictive and represented

a priori expectations, whereas the other model had an additional free parameter that

allowed more flexibility for the parameter transformation.

The general movement kernel k has one parameter, the standard deviation σ of

the Gaussian distribution. This kernel describes the general movement tendencies

of the animal, and σ influences the distance covered in each step. With increasing

subsampling, the temporal resolution of the movement path becomes coarser, and I thus

expected the standard deviation of the kernel to increase. Each step in a subsample

is in fact the accumulated result of one or several steps in the full trajectory. If the

kernel is the only force driving the movement, the linearity of the Gaussian distribution

caused me to expect the standard deviation of the kernel to increase as
√
nσ; compare

section 5.3.1. With additional resource selection, however, there may be deviations

from this behaviour.

For the resource selection parameters α and β, an ideal behaviour would be that
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they remain unaffected by the subsampling, analogously to my assumptions in sec-

tion 5.3.1. In my model, I assume that each step is influenced by the weighting func-

tion. One of the underlying assumptions of a traditional RSF or RSPF is that it

gives weights to locations independently of the values of other locations, which means

each location is weighted by its present resource only, without consideration of alter-

native locations. Therefore, resource selection parameters should be independent of

the temporal resolution of the data. However, within the spatially-explicit movement

framework, resource selection always occurs in the context of the current location and

the available surrounding area as defined by the general movement kernel. Therefore,

a change in the movement kernel due to increased subsampling may be accompanied

by a change in resource selection parameters.

I fitted the non-linear regression models to the parameter estimates separately for

each parameter combination. This means that in each regression, I fitted estimates

of 16 trajectories and their subsamples. Because of my previous considerations about

the kernel parameter σ, I assumed a power relationship between the estimate σ̂ and

the subsampling amount n, stratified by trajectories. I chose the stratification because

trajectories were simulated on different landscapes. Also, for the resource selection

parameters, especially when their true values were close to zero, estimates could vary

between being positive and negative. In these cases, the stratification allowed for

flexibility. The model for the estimate of the nth subsample of trajectory i is

σ̂i,n = σ̂i,1 · nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16, (5.20)

where the error term ε is normally distributed with mean zero and positive standard

deviation ζ. The maximum likelihood estimate of b should ideally be close to 0.5,

however as noted above, it may deviate from this value because of resource-selection

mechanisms. To test whether b differs from 0.5, I used model selection via AIC between

the model in equation (5.20) and the model in which I fixed b = 0.5.

Model choice for the resource selection parameters was less clear. Visual inspec-

tion of the estimates, preliminary fits with varying models and inspection of residuals

suggested a power law for the parameter β as well. I thus fitted the following model,

β̂i,n = β̂i,1 · nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (5.21)

I compared the fit of this model with the model in which I assumed that subsampling

does not change the estimate by setting b = 0.

For the intercept parameter α in the logistic form of the resource selection function,
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I chose a linear model,

α̂i,n = α̂i,1 + b (n− 1) + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (5.22)

Inspection of residuals suggested that in some cases the relationship between α̂ and n

was non-linear. However, a power-law model or other non-linear relationships were not

consistently more suitable either. Therefore I remained with the simpler, the linear,

model, noting that this is a mainly illustrative analysis.

Calculating approximate robustness

To accompany the simulation analysis, I examined approximate robustness properties

of the two models with exponential and logistic weighting functions. I focused on

approximate robustness of degree 2, and I tested the ideal parameter transformations

g2(σ, β) = (
√

2σ, β) and g2(σ, α, β) = (
√

2σ, α, β) for wexp and wlog, respectively. I

numerically calculated a magnitude δ = maxx,y(|v(x, y)−1|) for every possible scenario

that I used in the previous section. This means that I calculated a magnitude for each

combination of the parameters σ, β, and α (in case of the logistic weighting function)

and for each of the 16 simulated resource landscapes. We may therefore think of δ

as δ(σ, α, β, i), for 1 ≤ i ≤ 16; compare Figure 5.2. I examined whether magnitudes

were influenced by parameter values and specific characteristics of the landscapes, such

as their spatial autocorrelation and their overall variation Var(r(x)) over the spatial

domain. I further calculated an overall maximum maxσ,α,β,i δ(σ, α, β, i). I compared

results between the models with exponential and logistic weighting functions, wexp and

wlog.

5.4 Results

5.4.1 Analytical and numerical results

I found few special cases of weighting functions wθ that, together with the Gaussian

kernel kσ, resulted in a robust movement model according to Definition 5.1.

The simplest case was a constant weighting function. Such a weighting function

reduces equation (5.14) to the case of a homogeneous environment, where only general

movement tendencies play a role, but no environmental information. The model is then

a simple random walk with normally distributed steps between locations. Because of

the linearity of the normal distribution, the model is robust of degree n for all n ∈ N
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for the assumed parameter transformation gn(σ) =
√
nσ; compare also Theorem 5.2

for parameters a = b = 0.

A natural next step was to consider a linear weighting function. However, a linear

weighting function violates the assumption of being strictly positive everywhere. If

in equation (5.14) the current location y is the point at which w becomes zero, the

normalization integral vanishes. Also, equation (5.14) can become negative and cease

to be a valid density function. Still, I could draw on the linearity of the expectation of a

random variable to look into this further. The normalization constant in the transition

density (5.14) can be viewed as an expectation of the form E(w(Z)) for a normally

distributed random variable Z with mean y. Therefore, if the function w is linear, the

normalization constant reduces to w(y). Equation (5.14) then becomes

p1(x|y, σ,θ) = kσ(x; y)
wθ(x)

wθ(y)
. (5.23)

The right-hand side of the equation is positive whenever x and y are either both

negative or both positive. If movement only occurs in the domain where the weighting

function is positive the model is robustness within this domain. The details of the

proof can be found in Appendix E.1.

Theorem 5.1 (Linear weighting function). Let w be a linear function w(x) = ax+ b,

for a, b ∈ R. Let I ⊂ R be the interval where w > 0. For the restricted domain I, the

movement model with transition densities (5.14) is robust of degree n for all n ∈ N.

The parameter transformation is given by gn(σ, a, b) = (
√
nσ, a, b).

I found another special case to be given by an exponential weighting function. Here,

no restriction on the domain is necessary. Again, see Appendix E.1 for details of the

proof.

Theorem 5.2 (Exponential weighting function). Let w be an exponential function of

the form w(x) = Ceax+b for C, a, b ∈ R. Then the movement model with transition

densities (5.14) is robust of degree n for all n ∈ N with parameter transformation

gn(σ,C, a, b) = (
√
nσ,C, a, b).

The above two theorems show that it is possible to verify exact robustness with the

ideal parameter transformation gn(σ,θ) = (
√
nσ,θ) for certain weighting functions.

However, the cases are very restrictive, and robustness will fail for many other, and

especially more complex, weighting functions.
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I could additionally establish asymptotic robustness for more general conditions on

the weighting function. The main result is summarized in the following theorem. For

a detailed proof of the theorem, see Appendix E.2.

Theorem 5.3 (Asymptotic robustness of degree 2). Let wθ be continuous and bounded

away from zero. Let wθ further be twice differentiable with bounded second derivative.

Then the model with transition densities (5.14) is asymptotically robust of degree 2 with

parameter transformation g2(σ,θ) = (
√

2σ,θ).

Thus, if the weighting function is well-behaved according to the theorem, we can

place a bound on the factor by which the 1- and 2-step density vary; compare equa-

tion (5.6). This bound is of order τ , such that the discrepancy between 1- and 2-step

density decreases with the time interval.

Example 5.1 (Asymptotic robustness of degree 2). As a simple example, consider the

weighting function w(x) = sin(αx)+β for α > 0 and β > 1. The choice of β guarantees

that the weighting function is positive everywhere. The function w is bounded between

0 < β − 1 ≤ w(x) ≤ β + 1 for all x ∈ R, and its second derivative is bounded by

|w′′(x)| = α2. Therefore, Theorem 5.3 holds.

The proof of Theorem 5.3 is constructive in the sense that it provides us with a

constant C for equation (5.6) in terms of the bounds on w and w′′. However, this

constant may be rather large and does not necessarily provide the closest bound on

the function v. Therefore, it can be informative to calculate approximate robustness

numerically.

Example 5.2 (Approximate robustness of degree 2). I continue the above example with

weighting function w(x) = sin(αx) + β for α > 0 and β > 1. I calculated the func-

tion v(x, y;σ, α, β) from Definition 5.3 numerically, using different values of α and β

(Figure 5.3a). From this, I obtained δα,β(σ) (Figure 5.3b), which is the magnitude

of approximate robustness (degree 2) for the model with specific weighting function,

that is with specific parameters; compare Figure 5.2. In each case, after reaching a

maximum the function vanishes for increasing σ. Therefore it appears that it is pos-

sible to find δα,β := maxσ δα,β(σ). The wavelength of the sine curve, determined by

α, and the intercept β have different effects on the function δα,β(σ). While α shifts

the curve, β changes the height of the peak (Figure 5.3b). Therefore, it appears that

δα,β is independent of α and decreases for larger β. For the weighting function to be

positive, β needs to be larger than one. For β = 1, the function δα,β has a maximum

at one. From these considerations, I conclude that maxα,β δα,β = 1. This is the overall

magnitude of approximate robustness (degree 2) for the family of weighting functions

106



CHAPTER 5. ROBUSTNESS OF SPATIALLY-EXPLICIT MODELS

w(x) = sin(αx) + β, α > 0, β > 1; compare Figure 5.2. As a word of caution, I

emphasize that I only calculated δα,β for a fixed number of parameter values and only

within finite intervals for x and y, and therefore results may be limited to these ranges.

In the region where δ(σ) peaks, the approximation of the parameter-adjusted 1-

step density p1(x|y,
√

2σ, α, β) to the actual 2-step density p2(x|y, σ, α, β) is only rough.

However, for larger values of σ, and independent of α and β, the function δα,β(σ) seems

to vanish, which means that the approximation is good and the discrepancy between 2-

and 1-step densities may be neglected. Theorem 5.3 allows to conclude that δα,β(σ(τ))

is bounded by Cτ , for a constant C > 0, for all α > 0 and β > 1. As can be seen from

the steep initial slope of δα,β(σ), especially for higher values of α, the constant C would

need to be rather large (Figure 5.3b). The calculations of approximate robustness could

additionally show that the bound on v(x, y) is in fact much smaller.

5.4.2 Simulation results

Results for parameter estimates

When analyzing parameter estimates from the simulated trajectories and their sub-

samples, I found a difference in the behaviour of parameters between the exponential

and the logistic weighting function. Generally, subsampling had less effect on the value

of parameter estimates using the logistic form, and the behaviour of estimates agreed

closer with my expectations.

For both weighting functions, estimates σ̂ showed a good fit with the power-law

model. When I used the exponential form, the estimated power b ranged from 0.45

to 0.5 for varying parameter combinations, thus deviating from expected behaviour

for some parameter combinations (Figure 5.4a). For small selection parameter β, the

estimate σ̂ showed the expected increase as σ̂
√
n. With increasingly strong selection,

i.e. higher value of β, estimates σ̂ became smaller with increased subsampling relative

to the ideal relationship. An increase in σ did not influence the fit other than leading

to a larger residual standard error ζ̂, which is to be expected because of the overall

larger values of the dependant variable. In contrast, when using the logistic form, the

estimated power b differed only very slightly from 0.5 and in some cases, the simpler

model with fixed b was preferred by model selection right away (Figure 5.4b).

The behaviour of the resource-selection parameter β also differed between expo-

nential and logistic weighting function. For the exponential form, β̂ showed a clear

increase with increased subsampling, fitted well by the power-law model (Figure 5.5a).

The power b remained similar (ranging 0.105–0.124) across parameter combinations,
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increasing slightly with larger σ (Figure 5.5b). For the logistic form, estimates β̂ gen-

erally remained closer to the original values for n = 1 (Figure 5.5c,d). In most cases,

model selection via AIC preferred the power-law model to the ideal constant relation-

ship, however, the estimated values of the power b are small, with 53 out of 60 values

being below 0.1 (total range 0–0.156, with one exceptional negative value b = −0.041).

There was a tendency of b to be smaller and more concentrated under stronger selection

(Figure 5.5d).

Estimates of the intercept α in the logistic function showed a slight decline with

increased subsampling in most cases (Figure 5.6). This decreasing trend existed no

matter whether α was positive, negative, or zero. In general, slopes of the linear fit

were all close to zero (ranging -0.047–0.058), and in a few cases the null model with

b = 0 was chosen. I found a trend in the realized intercept values in the simulated

trajectories. With stronger effect of selection (larger β), the intercept estimate α̂ of

original trajectories (n = 1) was stronger concentrated around the true underlying

value, which subsequently led to a stronger concentration of estimates of subsamples

(Figure 5.6).

Results about approximate robustness

When comparing magnitudes δ(σ, α, β, i) of approximate robustness (degree 2) be-

tween the two models with exponential and logistic weighting function, I found lower

magnitudes for the model with logistic function wlog. Magnitudes for the model with

wexp ranged between 0.067 and 1.82, whereas those for the model with wlog ranged

between 0.02 and 1.19. The 5% quantile, the median and the 0.95% quantile were

[0.092, 0.34, 0.97] (wexp) and [0.046, 0.21, 0.64] (wlog).

I found that especially the selection parameter β had a strong influence on mag-

nitudes, higher values of β leading to higher magnitudes (Figure 5.7). For the model

with exponential weighting function, there was a tendency that weighting functions

whose underlying landscapes had higher variation Var(r(x)) led to smaller magnitudes

(Figure 5.7a). However, I did not find an effect of the parameter s that was used in

the simulations to influence the spatial autocorrelation of the landscapes. The model

with logistic weighting function did not show such an effect of landscape variation. The

logistic model had the additional intercept parameter α. I found that higher values of

α tended to result in lower magnitudes (Figure 5.7b).
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5.5 Discussion

I have proposed a new rigorous framework for analyzing movement models’ capacities

to compensate for varying temporal discretization of data. My framework comprises

three definitions of varying strength for robustness of discrete-time movement models.

Generally, if a model is robust, it can overcome problems of mismatching temporal

scales between different data sets or between data and biological questions. Because

my robustness is a very strong condition that holds only for very few and generally

more simple models, I have introduced the additional concepts of asymptotic and, most

importantly, approximate robustness. While for many movement models it is difficult,

or even impossible, to examine the transition densities and their marginals analyti-

cally, approximate robustness properties of a model can be calculated numerically also

for analytically intractable models. Therefore, I believe that especially approximate

robustness will prove a useful new concept for movement analyses.

I have formulated my robustness definitions in terms of the transition densities

of Markov models, because these models are often fitted to movement data with

likelihood-based methods of statistical inference. For the considered models, we can

obtain the likelihood function by multiplying the transition densities of subsequent

steps. If a model is robust, the transition densities keep their functional form across

varying temporal scales, and parameters are transformed via a well-defined function

gn. The likelihood function therefore remains the same but will yield different parame-

ter estimates. However, if the parameter transformation is known, estimates from one

scale can be translated to estimates at other scales. If a model is only approximately

robust, the likelihood function will not remain exactly but at least approximately the

same under a change of scale. Depending on the magnitude of the approximate robust-

ness, the approximation of the likelihood function may be sufficiently good to allow

parameter estimates to be reasonably comparable for different scales, especially if the

difference in scales is small.

Our concept of robustness for discrete-time movement models is related to the for-

mal concept of robustness in statistics. Generally speaking, robust methods in statistics

acknowledge that models are approximations to reality and seek to protect outcomes of

statistical procedures (e.g. hypothesis testing, estimation) against deviations from the

underlying model assumptions. Classic examples are the arithmetic mean and median

as estimates of a population mean: while the median is robust against outliers the

mean is not (e.g. Hampel, 1986). Often, robustness is viewed in the context of devia-

tions from assumed probability distributions (distributional robustness; e.g. Huber &
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Ronchetti, 2009). For example, data may be contaminated by few observations with

heavier tailed distribution than the majority of the observations. In regression analy-

ses, robustness may also relate to the homoscedasticity assumption or the functional

form of the response function (Wiens, 2000; Wilcox, 2012). Additionally, robustness

has been considered when the assumption of independence is violated and instead

observations are correlated (Hampel, 1986; Wiens & Zhou, 1996). In this chapter, I

considered robustness in the context of discrete-time movement models with respect

to assumptions about the temporal discretization. In view of statistical robustness, I

studied violations against the assumption that the temporal resolution of the move-

ment model, a stochastic process, matches the resolution of the data, when in fact the

data is only a subsample of the assumed process.

There is also a difference between my robustness of movement models and the well-

established robustness in statistics. In my framework, robustness is a direct property

of a model. In contrast, classical robustness in statistics is defined for objects such

as estimators, test-statistics, or more generally, functionals (real-valued functions of

distributions) (Hampel, 1971, 1986). For the type of models I have considered here,

parameter estimates cannot be obtained analytically but through numerical optimiza-

tion of the likelihood function. The likelihood function is build by the model’s transition

densities, and thus I have defined robustness at a very basic level. A possibility for

future research is to investigate whether some of the formal concepts of statistical ro-

bustness can be applied to my framework to add further insight. With this chapter, I

provide a new perspective for studying effects of temporal discretization of movement

processes, and I hope to encourage further research.

My analytical investigations indicate that robustness is a rare property among

movement models, especially when behavioural mechanisms such as resource selec-

tion are added. Therefore, if we apply models to data without considering this issue,

we are in danger of misinterpreting results and drawing erroneous conclusions. How-

ever, my analysis also shows positive prospects with respect to approximate robustness.

Theorem 5.1 suggests that in slowly varying environments that produce locally linear

weighting functions we may find some robustness. Theorem 5.3 and the following ex-

amples show that certain smoothness and boundedness conditions on the weighting

function can lead to approximate robustness. In addition, Example 5.2 further demon-

strates that approximate robustness can be investigated numerically on a case-by-case

basis. I have illustrated this with a smooth weighting function w(x) that is a direct

function of space. In data applications, an animal’s preferences for locations usually

do not depend on space per se but rather through the type of habitat and available
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resources, and the weighting function will be less regular. In the simulation study, I

have therefore presented a case with a more realistic model.

While it is difficult to analyze the transition densities and resulting n-step densi-

ties with analytical calculations, I have demonstrated with the simulation approach

how we can still investigate robustness properties of complex models. Sampling from

probability distributions instead of calculating them is the key idea of Monte Carlo

methods. I have used this method to examine sub-models that have the n-step den-

sities as transition densities. With this, I obtained the parameter transformation gn.

My approach differs from previous studies that have used subsamples of fine-scale data

to establish an empirical relationship between sampling interval and movement char-

acteristics (Pépin et al., 2004; Ryan et al., 2004; Rowcliffe et al., 2012). When using

data, it can be difficult to tease apart effects that result from the methodology and

effects of actual behavioural changes at different scales. Analyzing model properties as

I have proposed here allows us to identify those effects of temporal discretization that

are attributable to the methodology.

In the demonstration of the simulation approach, I analyzed spatially-explicit re-

source selection models. These models have an advantage over traditional resource-

selection and step-selection functions. In the traditional, regression-type approach,

observed movement steps are compared to potential steps that are obtained separately

from an empirical movement kernel (Fortin et al., 2005; Forester et al., 2009). In this

approach, movement and resource-selection are treated independently, although it is

highly likely that both influence each other. In contrast, when fitting the full ran-

dom walk with resource selection to data by using the likelihood function (5.18), we

can simultaneously estimate parameters both of the general movement kernel and the

weighting function.

In my analysis of the resource-selection model, I observed systematic trends in

values of parameter estimates with changing temporal discretization of movement tra-

jectories. The main purpose was not to analyze these relationships in full detail but

to illustrate that they occur and must not be neglected. Comparing the exponential

and logistic form of the spatially-explicit resource selection model, I found that esti-

mates varied more with increased subsampling when the exponential form was used,

compared to the logistic form. Using the exponential form, estimates of the kernel

standard deviation σ decreased with increased subsampling compared to the ideal re-

lationship
√
nσ. On the other hand, using the logistic form, σ followed the ideal

relationship that would occur for a purely Gaussian process very closely, even under

additional influence of resource selection. The estimated strength of resource selection,
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indicated by β, increased with the subsampling amount. While this effect was strongly

pronounced for the model with exponential weighting function, it was only weak for

the logistic model. Therefore, if using the logistic model, one may expect to obtain

similar inference results across varying temporal discretization.

When I calculated the magnitudes of approximate robustness for the models used

in the simulations, I found that those were in line with the results for the parameter

estimates. Overall, the model with logistic weighting function had better robustness

properties than the model with exponential weighting function. I also found a matching

trend for the movement parameter σ with varying true values of β. Estimates of σ were

closer to the expected behaviour for weaker resource-selection parameters. This was

also reflected in magnitudes of approximate robustness. If selection was weaker in the

original model, the model exhibited better robustness properties. These results suggest

that numerical calculations of approximate robustness can assist our expectations about

changes in parameter estimates. On the other hand, although parameter estimates of

the weighting function showed a clear difference in behaviour when comparing between

the exponential and logistic weighting function, differences within one model between

different parameter combinations were less clear. More analyses would be required to

entangle more detailed effects.

Overall, the results from the simulations suggest that depending on the resolution

of movement data, we may misinterpret animals’ movement tendencies and also may

overestimate resource selection effects. It is therefore important that we are aware of

the changes to statistical inference that can arise merely from the methodology. Here,

I have shown that changes in inference results were stronger for the resource selection

model with exponential weighting function compared to the logistic form. A possible

explanation may be the additional intercept in the logistic function. With increased

subsampling, estimates of α tended to decrease, possibly counteracting the increase in

estimates β̂. This could have led to more stability for the parameter σ of the general

movement kernel. However, this may not explain why resource selection parameters

generally varied less themselves compared to the exponential model. Another possibil-

ity is that the different form of the weighting functions causes their different behaviour.

While the exponential form of the weighting function greatly enhances differences in

landscape values, the logistic form is restricted to values in the interval (0, 1). Theo-

rem 5.3 suggests that variation in the rate of change of the weighting function influences

robustness properties. Thus the logistic form may produce more stable inference results

for varying temporal resolutions. Lele & Keim (2006) suggested several alternatives to

the exponential form of a classic resource selection function. These function could also
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be implemented as weighting functions in the spatially-explicit model considered here.

My study case showed that the choice of weighting function can have implications for

statistical inference, and I encourage to choose these more deliberately.

With my study I have illustrated that the concept of the parameter transformation

gn can help to bridge the gap between different temporal resolutions of data. In the

model with exponential weighting function, I found that with increased subsampling

estimates of the resource selection parameter β deviated strongly from the original val-

ues. However, the increase in β̂ could be fitted with a power-relationship. Thus, using

the idea of Monte Carlo sampling, I was able to obtain a parameter transformation gn.

Using such transformations when comparing results obtained from data with different

temporal resolutions could greatly improve our statistical inference, leading to a better

understanding of movement behaviour.
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Figure 5.1. The second sub-model consists of every second location. The transition
densities of the sub-model, which I refer to as 2-step densities, are the marginals over
the two intermediate 1-step densities of the original model.
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Figure 5.2. Steps for calculating the magnitude of approximate robustness of degree
2 for a given model, where σ is the parameter of the movement kernel, and α and
β are parameters of the weighting function. The 1-step density p1 can, for example,
be equation (5.14) with the weighting function from Example 5.2, or the resource
selection model (5.15) with weighting function (5.16) or (5.17). When the resource
selection model is used, the flowchart shows the calculation of the magnitude for one
specific resource landscape r(x). When calculating an overall magnitude, practically
we do this for a subset of the parameter space.
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Figure 5.3. Panel a): Numerical calculation of the function v(x, y), which is the ratio
of 2-step density pt−2τ,t(x|y, σ, α, β) and 1-step density pt−τ,t(x|y, g2(σ, α, β)), for the
weighting function w(x) = β+sin(αx). Parameter values are σ = 1, α = 1, β = 2. The
function v(x, y) varies roughly between 0.72 and 1.31. Panel b): Numerical calculation
of δ(σ) := maxx,y |v(x, y;σ) − 1| for the weighting function w(x) = β + sin(αx) for
varying values of α and β. The parameter α, which determines the wavelength of the
sine, shifts the curve δ(σ) and varies the skewing, while retaining the height of the
maximum. The parameter β in contrast changes height of the maximum, which is the
magnitude δ of the approximate robustness.
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Figure 5.4. Simulation results for the kernel parameter σ: values of σ against in-
creasing subsampling amount n. Estimates σ̂ (gray dots) were fitted with a power-
relationship, stratified by trajectories, and separately for several combinations of true
parameter values (σ, β, and α for the model with logistic weighting function). The
power b was either fixed at 0.5 (ideal relationship; upper orange lines) or flexible and
estimated (lower blue lines). The noted range of b refers to variation for different
parameter combinations. Estimates and predictions are standardized by the corre-
sponding true value. Panel a): Model with exponential weighting function. With
increasing value of β, estimates σ̂ tended to increase less with subsampling compared
to the ideal relationship. Panel b): Model with logistic weighting function. The fitted
power-relationship was very close to the ideal relationship, such that lines indicating
the ideal relationship are overlaid by lines showing the fitted relationship.
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Figure 5.5. Simulation results for the resource selection parameter β for the model
with exponential weighting function wexp (panels a,b) and logistic weighting function

wlog (panels c,d). Panels a) and c): Estimates β̂ (gray dots) for increasing subsam-
pling amount n were fitted with a power-relationship, stratified by trajectories, and
separately for several combinations of true parameter values (σ, β, and α for wlog). The
power b was either fixed at zero, representing the assumption that resource-selection pa-
rameters do not change with changing temporal resolution (ideal relationship; straight
orange lines), or flexible and estimated (curved blue lines). Estimates and predictions
are standardized by the corresponding true value. In panel c), only estimates and
predictions for α = 0, β = 1 are shown. Panel b): For wexp, the estimated power
b was always above 0.1 and tended to increase with σ. Panel d): For wlog, the esti-
mated power b was mainly below 0.1 and tended to decrease and concentrate more for
increasing β.
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Figure 5.6. Simulation results for the resource selection parameter α for the model
with logistic weighting function: values of α against increasing subsampling amount
n. Estimates were fitted with a linear relationship, stratified by trajectories, and
separately for several combinations of true parameter values (σ, α, β). The slope b was
either fixed at zero, representing the assumption that resource-selection parameters do
not change with changing temporal resolution (ideal relationship; straight orange lines),
or flexible and estimated (blue lines). Estimates and predictions are standardized by
the corresponding true value and only shown for α = 0.5. The noted range of b refers
to variation for different parameter combinations.
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Figure 5.7. Magnitudes of approximate robustness for the study case models with
exponential and logistic weighting functions. The plots depict δ for varying values
of σ and selection parameter β (dots). Lines join values for the same landscape i,
1 ≤ i ≤ 16. Panel a): Magnitudes for the model with exponential weighting function.
Values of δ tend to be lower for landscapes with less variation Var(r(x)). Panel b):
Magnitudes for the model with logistic weighting function. Values of δ tend to be lower
for higher values of the additional intercept parameter α.
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Chapter 6

New modelling tools improve

qualitative and quantitative

understanding of animal movement

In 2008, Nathan et al. coined the term “movement ecology” as a paradigm for studying

movement of all types and of all organisms. The paradigm emerged from a need to

unify a rising number of movement analyses and approaches, fuelled by a significant

increase in data availability. Within the paradigm, Nathan et al. (2008) proposed a

new conceptual framework, in which movement arises from an interplay of three major

components: internal state (“why move?”), motion capacity (“how to move?”) and

navigation capacity (“where to move?”) – all possibly affected by biotic and abiotic

external factors. The framework is directed towards deciphering both the proximate

and the ultimate causes of movement.

With the first part of my thesis, I contributed a new model that implements this

conceptual framework. I particularly focused on expanding the navigation process

compared to previous approaches. My model has a similar form as spatially-explicit

resource selection models (Rhodes et al., 2005; Moorcroft & Barnett, 2008), which

formulate movement decisions as a result of general movement tendencies (given by

motion capacities) and resource preferences (external factors mediated by navigation

capacities). In these models, the navigation process involves an evaluation of the en-

vironment, for example with respect to land cover types. In my model, I extended

this navigation process by two features. First, I included a new type of information

variable that influences movement decisions, which is dynamic. This means that re-

alized movement feeds back to the variable, interactively changing it values. Second,

this variable can encode previous experience and be more abstract than directly ob-
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servable environmental information. I exemplified this with the variable time since last

visit (TSLV) to locations. This variables contains information about the spatial and

temporal aspect of an individual’s travel history, keeping track of temporal distances

(“how long ago?”) to locations in a spatially-explicit manner. With this new model, I

provide a framework for modelling movement strategies in which the realized movement

path changes the environment, e.g. due to resources depletion, changes information,

e.g. about the travel history, or serves to acquire information, e.g. about temporary

availability of resources. Such feedbacks close the loop of the external factors dynamics

sensu Nathan et al. (2008), but also provide a direct link between the movement path

and navigation capacities. In Chapters 2 and 3, I verified the new model’s suitability

for statistical inference, including both model selection and parameter estimation, and

demonstrated its applicability with an analysis of wolf movement data. I discuss this

in more detail in the following section 6.1.

In the second part of my thesis, I turned towards a more subtle, yet fundamen-

tal, methodological problem in movement ecology. Data collection methods, and often

modelling approaches as well, discretize the temporal dimension of movement processes,

by necessity and also as helpful simplification. However, this discretization challenges

data analysis, because data sampling rate may affect results and conclusions. In my

thesis, I developed a rigorous and comprehensive new framework for studying this

problem. I took the view that data sampling rate is given, but that we may compen-

sate its influence through model choice and modelling tools. I therefore developed the

concept of movement models’ robustness against varying temporal resolution, drawing

on the clear language of mathematics and statistics. In Chapters 4 and 5, I introduced

a series of definitions for movement models’ robustness, which vary in their strength of

conditions but all rest on the same requirement that a model can validly be applied to

data with varying resolutions while parameters change in a systematic way that can be

predicted. I used my new definitions for a thorough analysis of existing models, start-

ing with classic random walks (Chapter 4) and moving on more generally to first-order

Markov models that add a spatially-explicit component to random walks (Chapter 5).

I showed that true robustness with respect to temporal resolution is rare, thus sub-

stantiating the general apprehension that many contemporary movement analyses are

tied to their particular resolution, making it difficult to transfer and compare results.

However, even more importantly, my work also opens new avenues to solutions, which

I discuss in more detail in section 6.2.
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6.1 Inferring cognition and memory use from move-

ment patterns

In Chapters 2 and 3, I answered the call for considering the role of cognition, including

memory, for movement processes. In my model, I implemented that movement can

be influenced by TSLV, which keeps track of the spatial and temporal component of

an individual’s travel history. Information about elapsed times since previous visits

to locations can be important for determining return behaviour, for example whether

to adopt a “win-stay” (revisit a location) or “win-shift” (shift to alternative location)

strategy in a foraging situation (Burke & Fulham, 2003; Janmaat et al., 2006). Op-

timal behaviour also depends on characteristics of the resources at the focal location,

for example with respect to resource depletion or mobility (Pyke, 1984; Sulikowski &

Burke, 2011). As an example, I assumed that TSLV influences the probability that an

individual will move to a location in two ways. First, for recently visited locations, with

low TSLV, the probability of return is small. Second, for locations with long absence,

i.e. high TSLV, the probability of return approaches one. Such behaviour may occur

particularly in a situation with depleting resources that need time to replenish (Davies

& Houston, 1981; Burke & Fulham, 2003). Being able to formulate such movement

strategies in movement models that are amenable to statistical inference allows us to

test hypotheses about cognitive-based behaviours in free-ranging animals and natural

environments.

The dynamic information variable TSLV increases the model’s complexity substan-

tially. TSLV is not only an additional, temporally dynamic variable that influences

movement but also affected by movement itself. Therefore, I tested in Chapter 2

whether this dynamic mechanisms could be correctly identified, using simulated data.

With the simulation study, I showed that classic model selection was able to distinguish

the dynamic model, also in mixed form, from traditional models that only contained

static environmental effects. Also, parameter estimation generally recovered the values

used in the simulation. With a detailed estimability analysis (Lele et al., 2007), pre-

sented in Appendix B, I illustrated that Data Cloning estimability diagnostics are a

useful complementary tool to understand model fitting problems (Lele et al., 2010). In

my analysis, model fitting problems occurred systematically, that is primarily when a

model with the dynamic variable TSLV was fitted to data generated without this effect.

This attests that model fitting problems, e.g. due to ridges in the likelihood function,

should alert and prompt a reconsideration of the model. However, my analysis also

showed that when TSLV was a driver of movement decisions, the framework was able
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to identify it correctly.

In Chapter 3, I demonstrated the applicability of the new model with a data anal-

ysis. I fitted the model to movement paths of gray wolves in south-west Alberta,

Canada, to test whether wolves engage in an active prey-management strategy. The

aim of such a strategy would be to reduce impacts of behavioural depression of prey

through optimal timing of returns to hunting sites, a behaviour that S. L. Lima called

“prudent” (Jedrzejewski et al., 2001; Lima, 2002). Jedrzejewski et al. (2001) reported

observed movement patterns in line with the hypothesis, however, my modelling frame-

work allowed to test the involved mechanisms in more detail. I found that wolves in

my analysis did not appear to patrol their territories per se as the wolves observed by

Jedrzejewski et al. (2001). Instead, TSLV only mattered in very specific areas, which

were locations close to the territory boundary and with very high prey density. Here,

the effect of TSLV was in agreement with the prey-management strategy. However, the

combined effect of prey and TSLV, necessary to support the prey-management hypoth-

esis, was only pronounced significantly in one of three wolves. In my Chapter, I only

analyzed the movement paths of three wolves in total. To reach stronger conclusions,

it will be necessary to analyze more data.

In my modelling framework, I assumed that prey-management is achieved by con-

sideration of time via TSLV. One aspect of the strategy is to leave a site when anti-

predator behaviour depresses prey availability, as predicted by optimal foraging theory

(Charnov et al., 1976; Pyke, 1984). An open question is whether wolves learn to

perceive and react to prey depression, or whether they have learned, evolutionarily,

an adaptive movement strategy that uses TSLV as a proxy (Burke & Fulham, 2003;

Sulikowski & Burke, 2011).

I further assumed implicitly that information about TSLV is mediated by mem-

ory. There is evidence that animals use spatial memory and memory about temporal

distances for decision making (Clayton & Dickinson, 1998; Burke & Fulham, 2003;

Janmaat et al., 2006; Martin-Ordas et al., 2009). However, it is difficult to inevitable

confirm the use of memory, especially when we only have a sampled movement path and

relatively coarse environmental data. Instead of drawing on internally stored memory,

animals may be able to use externalized memory, a famous example being the slime

mould Physarum polycephalum, which leaves a trail of extracellular slime and subse-

quently uses it for navigation (Reid et al., 2012). In case of the wolves, it is possible

that they navigate with the help of scent marks. Wolves scent mark not only along the

territory boundary but also along common routes and at junctions (Peters & Mech,

1975; Peters, 1979). Scent marks could provide wolves with information about previ-
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ous visits by themselves and pack members and thus serve as externalized memory of

TSLV (Peters & Mech, 1975). A drawback of relying on scent marks is that they need

to be probed, hence they are only useful at their very location. To test whether wolves

keep track of TSLV via scent marks or memory, one could analyze wolves’ path for

goal-orientedness. If animals set target locations for their travels, it is more likely that

memory is involved (Asensio et al., 2011; Janson & Byrne, 2007)

With its features, the new model opens new avenues towards future research. In

my thesis, I combined effects of TSLV only with other static environmental variables.

The model could become even more powerful with inclusion of additional layers that

represent specific events or multiple behavioural modes. For example, wolves’s move-

ments are certainly influenced by kill events. Handling a kill can require a significant

amount of time, ranging from a few hours for small-bodied prey such as deer to 24-48h

for large-bodied prey such as moose (Franke et al., 2006). Therefore bouts of extensive

search alternate with more stationary phases (Franke et al., 2006; Webb et al., 2008).

In Chapter 3, I focused on phases of extensive movement by dismissing short steps

indicative of a stationary phase from the analysis. A more complete solution would be

to add a second behavioural mode, in which movement is characterized by small steps

and use of TSLV is reversed compared to the extensive mode. Additional layers, possi-

bly representing unobservable variables can be realized by placing the model within a

hidden Markov model or state-space model (Langrock et al., 2013; McClintock et al.,

2012).

In Chapter 2, I accounted for the possibility of such model extensions by using

the flexibility of a Bayesian model fitting technique. Such techniques, for example

Markov Chain Monte Carlo, provide a better, and sometimes the only, means to fit

hierarchical models to data. Software packages such as WinBUGS, JAGS or STAN,

provide convenient tools for performing analyses (Lunn et al., 2000; Plummer, 2013;

Stan Development Team, 2014). However, when drawing on these tools for my data

analysis in Chapter 2, I encountered challenges. The model’s likelihood function is

composed of probability densities that do not correspond to standard distributions.

While the general movement kernel is built from standard distributions (although this

is not necessary), the spatially-explicit weighting function modifies it in a highly non-

linear way. Additionally, the dynamic nature of TSLV within the spatially-explicit ap-

proach requires the processing of large amounts of data. The combination of these two

properties strained capacities of both JAGS and STAN. An alternative is to program

situation-specific model fitting algorithms in fast languages, e.g. C/C++. Naturally,

this reduces the ease with which data analysts can apply complex models. Ultimately,
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these technical challenges in movement ecology will be solved by an increasing synergy

between disciplines, including statistics, computing science and information technolo-

gies (Demšar et al., 2015).

6.2 Making movement models more robust against

varying temporal discretization

In Chapters 4 and 5, I developed the concept of movement models’ robustness against

varying temporal discretization of the movement process. This concept is related,

not only by name, to the commonly known robustness in statistics. Formal robustness

considerations in statistics explicitly acknowledge that statistical models are always ap-

proximations of the processes that generate observations and that models make simpli-

fying assumptions, which, however, may be inaccurate (Box, 1980; Huber & Ronchetti,

2009). If reality deviates from assumptions, this can heavily impact results of statis-

tical analyses. For example, it is well known that the sample mean can be affected

substantially by outliers, e.g. few observations that originate from a heavier-tailed dis-

tribution than the assumed one (e.g. Hampel, 1986; Wilcox, 2012). Robust statistical

methods are designed to safeguard results against misspecified assumptions (Hampel,

1986; Huber & Ronchetti, 2009). The same idea underlies my definitions of movement

models’ robustness. In the case of movement models, we make an assumption about

the model’s temporal resolution, often based on the data’s resolution. However, in fact,

the underlying process may be better described by another resolution. Sometimes, the

optimal resolution can be determined by scale considerations, for example when we

model inter-patch movement at the patch level (Benhamou, 2013). If, in contrast, we

are interested in the finer behavioural rules of the inter-patch movement, for example,

compared to intra-patch movement, then it may be less clear which resolution to chose.

Or, even if we have an idea about a good resolution, it may not match the data’s resolu-

tion. My robustness of movement models is designed to safeguard statistical inference

against varying temporal resolutions.

While my robustness definitions and robust statistical methods share some ideas

and objectives, they also differ. Robust methods are constructed to prevent, or limit,

outcomes from change due to deviations in model assumptions. In my definitions, I

apply this to the model form, via the step distributions, but not necessarily to the

model parameters. Instead, I ask model parameters to change systematically with the

temporal resolution. This change is described by a well-defined parameter transfor-
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mation, by which we can translate parameter values between temporal resolutions.

Another specific feature of my definition is that it is defined at the level of the model,

because in my view the model is a tool itself to analyze movement in replacement of

an experiment. The typical way to link movement models to data is via the likelihood

function, whether in a frequentist or a Bayesian framework. Given a robust model, the

robustness carries through such likelihood-based statistical inference. An alternative

approach may be to consider the problem at the stage of estimation. Here, statistical

robustness theory may offer new approaches (Huber & Ronchetti, 2009; Wilcox, 2012).

My analysis of random walks and their spatially-explicit extensions showed that few

models have the robustness property. When considering random walks, it is mainly the

stable distributions that, as step distributions, lead to robust models. With exception

of the normal distribution, stable distributed steps have heavy-tailed step length distri-

butions. These step distributions lead to movement patterns characterized by clusters

of small steps, interspersed by few long steps. Such movement patterns, however, arise

more likely as a combination of two behavioural modes (Benhamou, 2013; Plank et al.,

2013). Therefore it is not clear whether random walks with stable step distributions

are useful to describe movement within a single mode, despite their desirable property

of being robust. When considering spatially-explicit random walks, I could verify ro-

bustness for only very few models. Analytical investigations were limited to models in

which the spatially-explicit component was a simple function of space. Finding only

few robust models even within this class illustrates that robustness is a very strong

condition. This may not come surprisingly, yet it is an important starting point for

any further research.

However, in my thesis, I also identified ways to widen the scope of robustness and

increase its applicability. In Chapter 4, I illustrated that it is possible to find robust ex-

tensions of models that are otherwise not robust. Such an extension contains additional

parameters, which we may consider as nuisance parameters, while they allow the focal

parameters to remain their original values and validity. However, suitable extensions

can be difficult to find or may not admit closed-form solutions. It may still be worth-

while to investigate this new approach further. In Chapter 5, I introduced the definition

of approximate robustness. Of all the robustness definitions, this is the most applicable

one, especially for models beyond simple random walks. It requires the transferability

of a model across temporal resolutions only approximately. I demonstrated both a nu-

merical and a simulation approach for investigating approximate robustness properties

of a model. I found that in contrast to exact robustness, approximate robustness shows

promise to be more widely present in models. In my simulation study in Chapter 5, I
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demonstrated that we can also achieve better robustness properties of a model through

specific model components. If we can choose between comparable models, or model

components, one choice may perform better with respect to robustness and thus be

preferable.

The new concept of movement models’ robustness offers possibilities to mitigate

the influence of temporal resolution. If a model is (approximately) robust, it is not

only valid at a specific resolution but also at coarser resolutions. In the case of random

walks with i.i.d. steps, robustness additionally implies validity for finer resolutions. For

data analysis, the property of a model to scale up to coarser resolutions is usually more

relevant, as data is rather too coarse than too fine. A key element in robustness is the

parameter transformation. If we are in a situation where we have a reference resolution

for the process of interest but coarser data, possibly that of a second comparable

study, the transformation allows us to translate results between the reference and

coarser resolution. If, however, we are in a situation where we rely on a model to be

robust without any reference to a particular resolution, the parameter transformation

should be the identity, at least with respect to the parameters of interest. This is

necessary because to use the transformation for translation between resolutions, we

need to know not only the transformation itself but also the difference between the

resolution. I suggest that further research may be directed towards this issue. In

Chapter 5, I showed how to obtain the transformation via simulations. This is similar

to previous approaches to account for temporal resolution in estimates of travel distance

and path tortuosity (Pépin et al., 2004; Benhamou, 2004). Given that we can calculate

the magnitude of approximate robustness numerically, we may also devise a numerical

strategy to find a function that minimizes the magnitude and thus constitutes a suitable

parameter transformation. Such approaches to find a parameter transformation could

also be useful in cases where an assumed “true” resolution is missing.

6.3 Closing remarks

With my thesis work, I have contributed new modelling tools for analyzing animal

movement. First, my new model stands at the forefront of an enterprise to understand

the role of cognition, including memory, for movement processes. The new model makes

it possible to test hypotheses about cognitive-based movement strategies, taking into

account the history of the realized movement path and how it affects future movement

decisions. Such analyses will greatly increase our understanding of the behavioural

mechanisms that govern individual movement processes.
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I further provided a new rigorous framework for movement models’ robustness

against varying temporal discretization. My new framework offers many new directions

for research, from both a theoretical and an applied perspective. From the application’s

side, I suggest to particularly expand the concept of approximate robustness, because

it will prove useful for data analysis at two stages. First, it will help to determine

how strongly we should expect statistical inference results to depend on the assumed

temporal resolution. Second, with help of the parameter transformation, it will help us

to understand in which way inference results depend on temporal resolution. This will

allow us to obtain better estimates of the parameters that shape movement processes.

In conclusion, my work offers new methods to better our understanding of movement

behaviour both qualitatively and qualitatively. Ultimately, this does not only increase

our general knowledge but is particularly valuable at a time where biodiversity loss

has been identified as one of the major threats to the stable environmental state of the

Earth during the last 10,000 years (Rockstrom et al., 2009). Increased human land use,

industrialization and landscape fragmentation pose major challenges to moving animals

(Colchero et al., 2010; Ito et al., 2013; Bull et al., 2013), while on the other hand moving

animals may also be able to compensate effects of habitat loss on plant species (Mueller

et al., 2014). Therefore, an increased understanding of animal movement processes is

one piece of the puzzle of how to maintain species’ abundances and distributions.
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frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal

of Applied Ecology, 51, 684–692.

Mueller, T., Olson, K.A., Fuller, T.K., Schaller, G.B., Murray, M.G. & Leimgruber, P.

(2008) In search of forage: predicting dynamic habitats of Mongolian gazelles using

satellite-based estimates of vegetation productivity. Journal of Applied Ecology, 45,

649–658.

Nadarajah, S. & Kotz, S. (2007) A truncated bivariate cauchy distribution. Bulletin

of the Malaysian Mathematical Sciences Society Second Series, 30, 185–193.

Nathan, R., Getz, W., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E.

(2008) A movement ecology paradigm for unifying organismal movement research.

Proceedings of the National Academy of Sciences, 105, 19052–19059.

143



BIBLIOGRAPHY

Neubert, M.G., Kot, M. & Lewis, M.A. (1995) Dispersal and pattern formation in a

discrete-time predator-prey model. Theoretical Population Biology, 48, 7–43.

Nolan, J.P. (1997) Numerical calculation of stable densities and distribution functions.

Communications in Statistics Stochastic Models, 13, 759–774.

Nolan, J.P. (2013) Multivariate elliptically contoured stable distributions: theory and

estimation. Computational Statistics, 28, 2067–2089.

Nouvellet, P., Bacon, J.P. & Waxman, D. (2009) Fundamental insights into the ran-

dom movement of animals from a single distancerelated statistic. The American

Naturalist, 174, 506–514.

O’Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press,

Oxford.

Owen-Smith, N., Fryxell, J. & Merrill, E. (2010) Foraging theory upscaled: the be-

havioural ecology of herbivore movement. Philosophical Transactions of the Royal

Society B, 365, 2267–2278.

Patlak, C.S. (1953) Random walk with persistence and external bias. The Bulletin of

Mathematical Biophysics, 15, 311–338.

Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. (2008)

State–space models of individual animal movement. Trends in Ecology & Evolution,

23, 87–94.

Patterson, T.A. & Hartmann, K. (2011) Designing satellite tagging studies: estimating

and optimizing data recovery. Fisheries Oceanography, 20, 449–461.

Patterson, T.A., McConnell, B.J., Fedak, M.A., Bravington, M.V. & Hindell, M.A.

(2010) Using GPS data to evaluate the accuracy of state-space methods for correction

of Argos satellite telemetry error. Ecology, 91, 273–285.
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Appendix A

Supplemental methods for

Chapter 2

A.1 Data cloning and MCMC in simulation analy-

sis

For all model fits, I used data cloning. Data cloning uses Markov Chain Monte Carlo

(MCMC) methods, which calculate a posterior distribution for the model parameters,

given the data. This technique is usually employed in Bayesian statistical inference,

however, the resulting parameter estimates from data cloning approximate the cor-

responding maximum likelihood estimates (MLE). This is achieved by applying the

Bayesian framework to K copies of the data, which are referred to as clones. Alterna-

tively, the procedure can be viewed as a series of Bayesian updates applied to the same

data, each time using the posterior distribution from the previous update as new prior

distribution (Robert, 1993). After a movement trajectory has been cloned K times,

Bayesian parameter estimation, here via MCMC, is performed on this augmented data.

The results of this procedure lead to parameter estimates in the more conventional style

of frequentist inference, namely maximum likelihood estimates. However, an important

factor to achieve this is a sufficiently large number of clones. If K is large enough, the

posterior distribution for the parameters is approximately Normal with mean at the

maximum likelihood estimate θ̂MLE of the original (i.e. uncloned) data and with vari-

ance 1
K
I−1(θ̂MLE), where I is the Fisher information of the original data (Lele et al.,

2010). This means that if we choose K large enough, the sample mean of the MCMC

is approximately the MLE of the original uncloned trajectory and if we multiply the

sample variance by K, we obtain an approximation of the inverse Fisher information
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(also termed information number; Casella & Berger, 2002). The inverse of the Fisher

information is the asymptotic variance of a maximum likelihood estimate and it can

be used to calculate Wald-type confidence intervals.

In my analysis, I used K = 15 clones. To confirm that this number of clones was

sufficient to obtain a good Normal approximation of the posterior distributions and

good approximations of the maximum likelihood estimates, I performed test runs with

the most complex combination model. I selected a combination trajectory both from

the main data set and the supplemental data and iteratively fitted the combination

model with increasing number of clones. For each run, I inspected the three diagnostic

measures described in Lele et al. (2010) and Solymos (2010) (lambda.max, ms.error,

r.squared). These diagnostics assess whether the Normal approximation of the poste-

rior distributions and the approximation of the sample mean to the MLE are adequate,

which is the case if the diagnostics converge to zero. I found that all three diagnostics

converged to zero for my test fits, and that they were all close to zero (< 0.05) for

K = 15.

For the MCMC, I used two parallel chains, each running for 7500 iterations, of which

I discarded an initialization and burn-in period of 3500 iterations. To assess whether

this was sufficient to obtain good mixing properties of the chains and convergence

to the stationary distribution, I inspected the Markov chains visually and calculated

the potential scale reduction factor R̂ (Brooks & Gelman, 1998) for each parameter.

Using these amounts of MCMC iterations, I obtained good mixing and convergence

in matching model fits. In non-matching model fits (model and simulated trajectory

mechanism did not match), mixing and convergence problems occurred. To ensure

that these problems did not simply occur because of an insufficient number of MCMC

iterations, I continued to run some of the non-mixing/non-converging MCMCs for up to

8000 additional iterations. In none of these cases I found that more iterations improved

mixing or convergence.

For further analysis, I calculated data cloning estimability diagnostic for selected

trajectories. This requires a series of model fits with increasing number of clones,

for which I used the functions dc.fit and dc.parfit from the R data cloning pack-

age (Solymos, 2010). I chose number of clones K = 1, 5, 10, 15. Because of the high

computational needs of the model fits, especially for the most complex combination

model, I refrained from increasing the number of clones further. However, as additional

test I also examined one- and two-dimensional slices of the corresponding likelihood

functions and found that these tests always lead to the same conclusions; see Ap-

pendix B. If in a model fit parameters are estimable, their variances should decrease
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with increasing number of clones. In particular, the largest eigenvalue of the posterior

variance, lambda.max, should decrease with rate 1
K

(Lele et al., 2010; Solymos, 2010).

Standardized by its value for the uncloned data, it should converge to zero as 1
K

.

A.2 Missed observations

In general, there are several approaches how to deal with missed observations in a tra-

jectory statistically. The easiest case is when locations, or steps, are modelled as being

independent from each other. However, for models that include autocorrelation, we

cannot simply ignore the dependency structure. A possibility is to use some technique

of interpolation. Alternatively, we can divide the trajectory into chunks of available

data and condition the likelihood function on the first available observation in each

chunk. In a correlated random walk, we need three consecutive locations to define one

step probability. Therefore, missed locations effectively lead to even larger gaps in the

likelihood function.

To avoid any loss of data, we can use the full likelihood based on the entire trajectory

(x1, . . . ,xn) = (xobserved,xmissed) and integrate over all missed observations,

L(θ|(x1, . . . ,xn)) = L(θ|(xobserved,xmissed)) =

∫
p(xobserved,xmiss|θ) dxmiss. (A.1)

This has the advantage that all original dependencies between locations can be pre-

served and no information is lost. Calculation of the possibly high-dimensional integral

is problematic in common frequentist methods that require optimization of the likeli-

hood function. However, MCMC techniques (and therefore data cloning) circumvent

this problem and at the same time provide estimates for the missed variables.

My model is formulated based entirely on locations (intermediate quantities such

as step length and bearing are calculated within the model formulation), and therefore

implementation of this method is, in principle, straightforward: in the MCMC, missed

locations are treated as parameters and their step probabilities serve as priors. I used

JAGS for model fitting, which was capable to perform this and to produce converging

posterior distributions for missed locations. However, this came at the cost of very

high computational needs (both memory requirements and computation time).

The memory model requires reconstruction of time since last visit m. For a missed

location at time t, we accordingly miss mt. Because mt is a function of xt and xt−1,

just as step length and bearing, I could estimate mt within the model fitting procedure.

However, mt is a high-dimensional variable for each time step and due to computational
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restrictions I treated m as known covariate. Therefore, if the location xt was missing,

I did not update mt for this time step and set mt = mt−1. At the next time step, I

updated mt+1 via the usual formula, but based on mt−1 and xt−1. To account for the

longer time, I increased the distance δ from the straight line path(xt−1 → xt+1), in

which locations are considered as visited. If more than one location was missed in a

row, I proceeded similarly, starting to update time since last visit at the next available

location.

To perform model selection for a completely observed trajectory, it is possible with

my models to calculated the likelihood functions and thus BIC. With missed locations,

this becomes computationally much more complex due to the integration; compare

equation (A.1). To avoid this, we can, as an approximation, instead use estimates of

missed locations. Because I treated missed locations as parameters, I obtained posterior

distributions and estimates for them. I used these estimates to calculate the likelihood

function. A more sophisticated method has been proposed by Ponciano et al. (2009).

Their method circumvents the problem of integration and uses data cloning itself to

obtain estimates of likelihood ratios, which can then be used for AIC or BIC.

A.3 Simulation of landscapes

I modelled the continuous valued environmental covariate as a Gaussian random field

(Haran, 2011). A Gaussian random field is a multivariate Gaussian random variable,

indexed by space. Here, the random variable is the resource r1 for each location

in the spatial domain, {r1(x)}x∈Ω. The covariance between resource values at any

two locations x and y is a function of the distance between the locations, so that

values of nearby locations are stronger correlated than values of locations that are far

apart. I chose the exponential form for the covariance function, cov
(
r1(x), r1(y)

)
=

exp(−‖x−y‖
σ

), where σ determines the rate at which locations cease to be correlated.

I varied σ among different landscapes. To simulate such landscapes, I used the R

package RandomFields (Schlather et al., 2013).

To generate correlated landscapes of binary variables I used the method and C code

provided by Hiebeler (2000). Each landscape is represented by two quantities: p0, the

overall proportion of type 0 cells, and q00, the probability that a neighbour of a type 0

cell is also of type 0. If q00 is high, the landscape is strongly clustered, and vice versa.

For my landscapes, I varied both p0, and their degree of clustering, q00.

The five landscape pairs I used for my simulations are depicted in Figure A.1
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A.4 Supplemental data

In the main text of the paper, I analyzed a simulated data set of 20 trajectories. This

data set was generated using realistic parameter values. However, to test my method

in even more scenarios, I generated two additional sets of 20 trajectories, which I refer

to as “data set 2” and “data set 3” to separate them easier from the main data set.

For these data, I used parameter sets in which I included values that I considered to

be potentially more difficult to estimate from data.

For data set 2, I chose relatively small resource selection parameters αres β1, β2 and

very small interaction parameters γ1, γ2, which means that I simulated weak effects

of the resources. The parameters αmem and βmem that regulate the influence of time

since last visit were chosen so that returns to locations were possible again after short

durations of absence. This means that the effect of time since last visit is relatively

weak. The parameter values were

parameter set 2: κ = 4 αres = −0.2 β1 = 0.5 γ1 = 0.008

λ = 0.9 αmem = −3 β2 = 0.8 γ2 = 0.005

ρ = 1.2 αcom = −3.2 βmem = 0.04

For data set 3, I set one of the interaction parameters in the combination model to

zero, so that an interaction between resource values and time since last visit was only

present for the binary variable r2. To distinguish this data set further from the main

set, I chose β1 < 0, so that resource variable r1 had an opposite effect compared to

the other data sets. All other parameters are again chosen to be realistic, but different

from previous values.

parameter set 3: κ = 4.5 αres = 0.8 β1 = −1.5 γ1 = 0

λ = 1.3 αmem = −5 β2 = 2.5 γ2 = 0.01

ρ = 1.5 αcom = −5.8 βmem = 0.05

The simulated resource landscapes were the same as for the main data set. I

performed the same analysis on the supplemental data as on the main data and I

obtained 160 model fits.
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Figure A.1. Pairs of simulated landscapes (row-wise). The left side shows the con-
tinuous valued resource r1, the left side shows the binary variable r2. Parameter values
used to simulate the landscapes are given for every landscape pair.
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Appendix B

Supplemental results and

estimability analyses for Chapter 2

B.1 Results

B.1.1 Supplemental data sets

Considering the 160 model fits, 82% had potential scale reduction factor R̂ ≤ 1.1 for

all parameters, which means that for those model fits, MCMC runs for all parameters

mixed well and converged. If convergence and mixing problems occurred, these were

cases where parameters were inapplicable to the analyzed trajectory (Figure B.1).

In contrast to the main data set, there was one instance in the supplemental data

for which R̂ > 1.1 for several parameters in a matching model fit in data set 2. This

was a combination trajectory fitted with the matching combination model. I continued

to run the Markov chains for more iterations, however, the chains’ behaviour remained

the same. I therefore looked closer into this model fit, and ultimately ran an entirely

new MCMC for this trajectory to calculate estimability diagnostics. In this second run,

the parallel chains mixed and converged well and no estimability issues were found.

For more details and discussion about this, see section B.2.

Model selection via BIC was able to correctly identify true underlying models for all

but one trajectory (Figure B.1). For the fourth resource trajectory of data set 3, BIC

was lowest for the null model, followed by the resource model. When I looked closer at

the results of the fit with the resource model, I found that selection parameters αres and

β1 had very large confidence intervals, and the estimate of the intercept αres was high.

High values of the intercept effectively result in a constant weighting function, thereby

mimicking the null model. I discuss this model fit further in section B.2. Additionally,

158



APPENDIX B. SUPPLEMENTAL RESULTS FOR CHAPTER 2

there was one matching combination model fit that did not mix properly in the first

MCMC run (compare previous paragraph), and for which I therefore did not calculate

BIC. This lead to the memory model being selected as best model for a combination

trajectory. However, when I ran a new MCMC with the combination model, the chains

converged and BIC was lowest, followed in order by the memory model (∆BIC = 178),

the resource model (∆BIC = 676) and the null model (∆BIC = 800). In the following,

I used results from the second MCMC run for the fourth combination trajectory in

data set 2.

For the hypothesis test based on confidence intervals, I obtained 139 estimates

of selection parameters (I only considered estimates from convergent and well mixing

Markov chains). Of these, 69 corresponded to true underlying effects. When I analyzed

confidence intervals as to whether they excluded zero and thus suggested covariate

effects, I obtained a Type I error rate of 0.01 (a trajectory was simulated without

effect, but confidence intervals detect an effect) and a Type II error rate of 0.14 (a

trajectory was simulated with an effect, which was not detected). When I pooled

supplemental and main data, I obtained a Type I error rate of 0.04, which is close

to the expected amount if we use 95% confidence intervals (which corresponds to a

5%-level hypothesis test). For the pooled data, the Type II error rate was 0.09. Hence,

overall the hypothesis test gives expected results that include errors, while the model

selection via BIC performs better and reliably identifies trajectories’ true underlying

mechanisms.

Most parameter estimates of matching model fits agreed well with true underlying

values. As expected, 95% confidence intervals (n=230) included the true value 0.95%

of the time. In data set 2, there was one resource trajectory, for which the estimate

of αres was far away from the true value (α̂res = −9.7, true value was -0.2) and the

standard error was very large (sd=21.7). I looked into this further and calculated

likelihood slices and data cloning estimability diagnostics. From these, I concluded

that there was an estimability problem for αres, while the other parameters were well

behaved; for details see section B.2. Therefore, I excluded this estimate of αres. All

remaining estimates in data set 2 were balanced around and generally close to their

true values (Figure B.2a). In Figure B.2a, I plotted estimates for αres and γ2 separately,

using the original unscaled values, because their standardized confidence intervals were

larger than for the other parameters. Standardization is sensitive to the size of the

standardization constant and may be problematic here, because the true values of αres

and γ2 are small, and division by values close to zero results in large values. The

unscaled results for αres and γ2 look reasonable (Figure B.2, smaller panels).
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In data set 3, there were a few more estimates with large confidence intervals

(Figure B.3b), particularly for β2 and γ2, which I have therefore plotted in separate

panels in their original scale. I suspect that these large confidence intervals are due to

estimability problems; see also discussion in section B.2. I also plotted γ1 separately,

because its true value was zero and therefore could not be standardized. All estimates

of γ1 were close to zero and all confidence intervals overlapped zero. Therefore, the

model was able to correctly identify the lacking effect of the interaction parameter.

B.1.2 Missed observations

For the combination trajectory with missed locations, I performed a matching model fit.

I compared parameter estimates and their 95% confidence intervals for the trajectory

with missed locations and the corresponding complete trajectory. Parameter estimates

for the combination trajectory with missed locations agreed well with true values and

were similar to results for the complete trajectory (Figure B.4). Estimates of selection

parameters tended to be slightly lower for the incomplete trajectory, but standardized

values never deviated by more than 0.15. Parameters κ, λ of the movement kernel

describing step lengths (shape and scale of Weibull distribution) are slightly higher for

the incomplete trajectory, resulting in a mean step length of 5.29 compared to 5.0 for

the complete trajectory.

B.2 Convergence and estimability issues

B.2.1 Estimability in cases of non-convergence

In each data set, about 18-20% of model fits contained one or more parameters, for

which R̂ was larger than 1.1, indicating non-convergence or non-mixing of the parallel

chains. In many cases, I continued to run these chains for the double or triple amount

of iterations, without ever seeing a major change in the chains’ behaviour. Of course, I

cannot exclude the possibility that after many more iterations (tens of thousands) the

Markov chains would have finally reached convergence, or in case of non-mixing parallel

chains would have switched their behaviour. However, the model fits, especially for the

combination model, were both time-consuming (MCMC runs with two parallel chains

could take 1-10 days, depending on model) and memory-intense (using approximately

1-5 GB RAM, depending on model). Considering that processing the three presented

data sets required in total 240 model fits, I tried to reduce MCMC iterations to a
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reasonable amount, which in most cases led to convergent and well-behaved Markov

chains.

To understand convergence problems, I calculated data cloning estimability diag-

nostics and likelihood slices for selected trajectories. To obtain estimability diagnostics

for a trajectory, I had to run the data cloning algorithm several times for increasing

number of clones. This was even more computationally demanding than running data

cloning for a single fixed number of clones. Therefore, I did not calculate estimability

diagnostics for all model fits.

I performed estimability analysis on selected trajectories across all three data sets

to understand a variety of phenomena. In data set 2, large R̂ values occurred in a

matching model fit (fourth combination trajectory; see previous section). I inspected

MCMC traces and posterior distributions. The two parallel chains in the MCMC did

not mix, but each chain appeared to converge on its own (Figure B.5). This resulted

in bimodal posterior distributions of the parameters. I calculated estimates from each

of the chains separately and calculated their likelihood values. The estimates from

one chain (red chain in Figure B.5), say θ̂1, were close to the true underlying values

of the trajectory with logL(θ̂1) = −6783.94. In comparison, true parameter values

had slightly lower log-likelihood logL(θtrue) = −6788.582. The estimates from the

other chain (black chain in Figure B.5), say θ̂2, had a lower log-likelihood value of

logL(θ̂2) = −7121.017. It appears that the likelihood function has a local maximum

at θ̂2. While the first chain found the higher peak, the second chain found the second,

lower, peak and failed to move away from it. Because L(θ̂2) was distinctly lower than

L(θ̂1), it did not appear that the chains’ behaviour was due to an estimability problem.

To confirm this, I calculated estimability diagnostics. This required a new model fit

with varying number of clones. In this fit, all Markov chains converged and mixed well.

All posterior variances decreased with increasing number of clones and lambda.max

converged to zero with rate 1
K

, where K is the number of clones (Figure B.6).

I looked into estimability for three more model fits that did not converge during the

first run. I analyzed a non-convergent model fit in data set 1, in which the combination

model was fitted to a memory trajectory. When I calculated estimability diagnostics,

all Markov chains converged and lambda.max behaved well and did not indicate any

estimability problems. I further analyzed estimability for a non-convergent fit in data

set 1, where a memory model was fitted to a resource trajectory. Here, variances of

parameter estimates decreased properly for the kernel parameters, however not for

selection parameters, αmem and βmem, indicating estimability issues (Figure B.7). This

means that the selection parameters of the memory model with respect to time since
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last visit could not be determined for the resource trajectory, which indeed did not

truly contain an effect of this dynamic variable.

Because most convergence problems occurred when a more complex model was

fitted to a null trajectory, I also examined a non-convergent fit of the combination

model to a null trajectory in data set 2. Inspection of the non-convergent Markov

chains showed that for most parameters, parallel chains did not mix but sampled

different regions of the parameter space, resulting in bimodal posterior distributions. I

separately calculated estimates and their likelihood values for the two chains, and the

likelihood difference was smaller than one. Posterior variances indicated estimability

problems for all selection parameters, i.e. those parameters that were not relevant to

the null trajectory (Figure B.8).

B.2.2 Estimability in cases of large confidence intervals

In my analysis of parameter estimates and their confidence intervals in matching model

fits, I found that even though MCMC runs converged, parameters of the weighting func-

tion occasionally had very large confidence intervals. One example is the matching fit

of the fourth resource trajectory in data set 2, in which the estimate of αres had an

unusually high value, together with a large confidence interval. Estimability diagnos-

tics showed decreasing posterior variances for all parameters except αres (Figure B.9). I

suspected that these results were caused by a ridge in the likelihood along αres. I there-

fore calculated two-dimensional likelihood slices to confirm this. Figure B.10 shows two

example slices, in which αres and β2 vary, whereas all remaining parameters are fixed.

First, I fixed remaining parameters at their true values. The resulting surface over αres

and β2 has a local maximum with log-likelihood value -7099.697 (Figure B.10 (a-i) and

(a-ii)). However, when I fixed the other parameters at their MLE values obtained from

the model fit, the surface shows a ridge (Figure B.10 (b-i) and (b-ii)). This ridge has

a log-likelihood value of -7098.876, which is slightly higher than the local maximum of

the other slice. The MCMC explores this area and moves along the ridge. It appears

that the ridge has a very subtle maximum between -10 and -9, but it is so subtle that

the MCMC extensively moves along the entire ridge.

In my model selection analysis, there was one matching model fit that converged but

did not result in lowest BIC. This was a resource trajectory, for which the null model

had lower BIC. In the matching fit with the resource model, estimates of selection

parameters had high absolute values and large confidence intervals. When I calculated

estimability diagnostics for a series of clones K = 1, 5, 10, 15, lambda.max showed
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signs of estimability problems (Figure B.11a). Estimates were very similar to the first

MCMC run (α̂res = 10.4, β̂1 = −24, β2 = −3.6). However, because lambda.max

generally decreased, I considered the possibility that I had not used enough clones.

I therefore calculated estimability diagnostics for K = 1, 8, 15, 22, 30. In this run,

αres and β1 showed good behaviour, however β2 had high value and large confidence

interval (α̂res = 1.3, β̂1 = −1.3, β2 = 8.9). Estimability diagnostics showed potential

issues with β2 (Figure B.11b,d). To understand this further, I also considered the

likelihood function. I calculated log-likelihood values for the true underlying parameter

values (Ltrue = −6920), the estimates from the first estimability run for K = 15

(L1,k15 = −6915), and the estimates from the second estimability run for K = 30

(L2,k30 = −6918). I compared these with the log-likelihood value for the model fit

in which I fitted the null model to the trajectory (Lnull = −6921). It appears that

estimates from the first run approximate the MLE, whereas estimates from the last

run with 30 clones arise from a local maximum with only slightly lower likelihood.

When I plotted a likelihood slice for this model fit (fixing all parameters but β2 at

their estimates), I found a potential ridge in the likelihood for positive large values of

β2 (Figure B.11c). On the other hand, in the region of the estimates from the first

run, I did not see any signs of ridges, however log-likelihood values did not vary much.

From these tests, I concluded that the likelihood surface for this resource trajectory has

a difficult structure for optimization, but a maximum exists in the region of selection

parameters α̂res = 10.4, β̂1 = −24, β2 = −3.6. These parameter values result in a

weighting function that is almost constant (Figure B.12b) and therefore model selection

via BIC prefers the more parsimonious null model (Figure B.12d). Estimates from the

second estimability run for K = 30 are closest to the true values (Figure B.12a,c),

however, the likelihood is lower for these values.

B.3 Conclusions about model fitting

In general, the results for the supplemental data are similar to the results for the data

set presented in the main text of the paper. Although I designed the supplemental

data set to include potentially more difficult estimation scenarios, my framework was

able to detect effects of both resources and the dynamic variable time since last visit.

About 20% of data cloning MCMC runs did not converge the first time, and I did

not achieve improvement by increasing the number of MCMC iterations. However,

when I re-started certain model fits for estimability analysis, occasionally MCMC runs

converged in this second run. From this experience, I recommend to rather re-start
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MCMC sampling completely instead of running more iterations, especially when traces

show that parallel chains sample distinct regions of the parameter space, leading to

bimodal posteriors. I recommend to additionally calculate estimability diagnostics for

these model fits. If these indicate estimability problems for certain parameters, this

may be an indicator that a model contains covariates that in fact did not influence the

movement process. In this case, I recommend fitting alternative models or sub-models

and comparing them via model selection.

Convergence problems were related to two different phenomena of the likelihood

function. First, the likelihood function had local maxima or ridges but still a unique

global maximum. In such cases, single chains could occasionally fail to find the global

maximum. This could be a potential difficulty with data cloning. In data cloning,

every peak in the likelihood function is enhanced, including local maxima. If a chain by

chance, e.g. via a ridge-like structure, reaches a local maximum, it may have difficulty

moving away from it. This may also depend on the MCMC algorithm used. Other

methods such as standard maximization of the likelihood function are not safe from this

problem of local maxima either. It is thus for any method important to use multiple

starting points or parallel chains. As second reason for non-convergent chains I found

likelihood functions that had ridges or distinct multiple maxima, i.e. global maxima

with almost the same likelihood value. These were clear cases of estimability problems,

and were detected by data cloning estimability diagnostics. Any other method will fail

in these cases too, either through non-convergence or results that indicate multiple

possibilities for estimates (multiple maxima are found, bimodality of posteriors). If no

problems are detected in these cases, this is even worse, because wrong conclusions are

made.

Most convergence problems occurred when a more complex model was fitted to a

null trajectory. I suspect that this may be partly due to the form of the weighting

function. In the logistic function,
(
1 + exp(−α− βx)

)−1
, large values of the intercept

α can cause the exponential function to almost vanish, leading to a nearly constant

logistic function. Large selection parameters β can also have this effect. Therefore, if

we fit a model that includes any kind of selection to a null trajectory, we can expect

the likelihood function to have multiple maxima, ridges or plateaus, especially in those

regions of the parameter space where parameters of the weighting function are large.

Therefore, I believe there is no need to be alarmed that many of these model fits did

not converge in the analysis. Via estimability diagnostics, we have the ability to detect

such situations. As soon as trajectories contained at least one effect (either resources

or time since last visit), convergence problems occurred less frequently. However, this
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phenomenon of the logistic function may give reason to also consider alternative forms

of the weighting function that do not experience this problem.

In matching model fits, I occasionally observed unusually large deviations of esti-

mates from true parameter values or large confidence intervals. Based on my inves-

tigations, I suspect that this is mainly due to estimability issues (e.g. ridges in the

likelihood). These could occur due to stochasticity in the data simulation. Each tra-

jectory is a realization of a stochastic process. In most cases, we expect trajectories to

realize a behaviour according to the parameter values used for the simulations. Still,

we must expect to see also cases that are less well behaved.
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Figure B.1. Each column in the two subfigures shows model selection results for one
simulated trajectory when it was fitted with the four candidate models (null, resource,
memory, combination). For each trajectory, I calculated BIC values for the four fitted
models, and the figure shows differences in BIC with respect to the minimal BIC value,
that is the model with minimal BIC has ΔBIC = 0. I excluded model fits with non-
convergent MCMC. For coherence, the figures depict the results from the first MCMC
run for each trajectory. Triangle indicate those trajectories for which I calculated
estimability diagnostics.
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Figure B.2. Parameter estimates and their 95% confidence intervals for matching
model fits for data set 2. In the large panel, both parameter estimates and Wald-type
confidence intervals are scaled by the true parameter values (TV): κ = 4, λ = 0.9,
ρ = 1.2, αres = −0.2, αmem = −3, αcom = −3.2, β1 = 0.5, β2 = 0.8, βmem = 0.04,
γ1 = 0.008, γ2=0.005. Smaller panels have unscaled values. In all plots, dotted lines
mark true values.
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Figure B.3. Parameter estimates and their 95% confidence intervals for matching
model fits for data set 3. In large panels, both parameter estimates and Wald-type
confidence intervals are scaled by the true parameter values (TV): κ = 4.5, λ = 1.3,
ρ = 1.5, αres = 0.8, αmem = −5, αcom = −5.8, β1 = −1.5, β2 = 2.5, βmem = 0.05,
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true values. Estimates from the matching resource model fit in data set 3 that was not
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Figure B.4. Parameter estimates and their 95% confidence intervals for the com-
bination trajectory on landscape 2, fitted with the combination model. Results for
the complete trajectory (dark grey) are compared to results for the same trajectory
with 10% missing locations (light grey). Parameter estimates and confidence intervals
are scaled by the true parameter values (TV): κ = 5.5, λ = 1.6, ρ = 1, αres = −1,
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mark the true values.
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Figure B.5. MCMC results for the misidentified combination trajectory in data set 2;
compare Figure B.1. The MCMC had mixing problems when the trajectory was fitted
with the matching combination model. Trace plots of MCMC iterations and density
plots are shown for all parameters of the weighting function. The two parallel chains
do not mix, but each appear to converge on their own. Estimates derived only from
the red chain have higher likelihood value than estimates derived from the black chain.
Estimates from the red chain are close to the true underlying values of the trajectory.
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Figure B.6. Estimability diagnostics for a second run of the model fit depicted in
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Figure B.7. Estimability diagnostics for a memory model fitted to a resource trajec-
tory that did not converge in data set 1; compare Figure 2.4. The plots show variances
of the posterior distributions for increasing number of clones. Non-decreasing variances
of αres and βmem indicate estimability issues.
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Figure B.8. Estimability diagnostics for a combination model fitted to a null trajec-
tory that did not converge in data set 2; compare Figure B.1. The plots show variances
of the posterior distributions of selection parameters for increasing number of clones,
which all indicate estimability problems.
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Figure B.10. Slices of the log-likelihood function for a resource trajectory with
estimability issues in data set 2; compare Figure B.1. Panels (a-i) and (a-ii) show
the log-likelihood surface when all parameters are fixed at their true values except
αres and β2. The surface shows a local peak. Panels (b-i) and (b-ii) show the log-
likelihood surface when parameters instead are fixed at their MLE values. This surface
shows a ridge and the log-likelihood value of this ridge is slightly higher than the local
peak in panels (a-i) and (a-ii). Therefore, αres cannot be estimated uniquely.
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Figure B.11. Estimability diagnostics for the fourth matching resource model fit in
data set 2, which was misidentified during model selection; compare Figure B.1. Two
different series of MCMC runs with varying number of clones suggested difficulties with
estimability. Region-wise calculation of the likelihood function confirmed a complex
likelihood surface with a potential ridge (subfigure (c)) but nonetheless a slightly higher
maximum far away from the true parameter values.
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Figure B.12. Weighting function for different parameter estimates obtained for the
resource trajectory in data set 3 on landscape 4. For the matching fit with the resource
model, I obtained different estimates from different MCMC runs due to a complex like-
lihood surface with local maxima. Panel (a): “True” parameter values used in tra-
jectory simulation. Panel (b): Estimates from a model fit with 15 clones. Panel (c):
Estimates from an alternative model fit with 30 clones. Panel (d): Constant weight-
ing function (null model). Gray dots are the locations of the trajectory. Darker dots
correspond to multiple visits to a location. Their distribution across the entire home
range indicate a rather uniform use of space in accordance with weighting functions
(b) and (d).
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Appendix C

Characteristic function of a radially

symmetric random vector

Here, I provide details about the link between the characteristic function of a radially

symmetric random vector and the Hankel transform as stated in equation (4.31). The

ch.f. of the two-dimensional random vector S with density (4.28) is given by

φ(u) =

∫ ∞
−∞

∫ ∞
−∞

eiu·s pS1,S2(s1, s2) ds1ds2. (C.1)

Because the density is radially symmetric, I switch to polar coordinates via s1 = r cos β

and s2 = r sin β, where the angle β is chosen such that the vector u has angle zero.

The determinant of the Jacobian for this transformation is |J | = r. The dot product

of the vectors u and s can be written as u · s = ‖u‖ r cos β. With this, we obtain

φ(u) =

∫ ∞
0

(∫ 2π

0

ei‖u‖r cosβ dβ

)
pS1,S2(r) r dr. (C.2)

The symmetry of the cosine allows to simplify the inner integral as follows,∫ 2π

0

ei‖u‖r cosβ dβ = 2

∫ π

0

ei‖u‖r cosβ dβ = 2πJ0(‖u‖r), (C.3)

where J0 denotes the Bessel function of the first kind. The last equation follows from

an integral representation of the Bessel function (Abramowitz & Stegun, 1964, 9.1.21).

With this, the characteristic function becomes

φ(u) = 2π

∫ ∞
0

pS1,S2(r) r J0(‖u‖r) dr. (C.4)
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The integral is the Hankel transform of order zero of the density pS1,S2(r) evaluated at

‖u‖.
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Appendix D

Examples of simulated resource

landscapes and trajectories for

robustness study
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Figure D.1. Four of the simulated resource landscapes used for sampling movement
trajectories. The depicted landscapes have been generated with spatial autocorrelation
Cov(r(x), r(y)) = exp

( |x−y|
s

)
for s = 200, 300, 400, 500. I standardized landscapes to

range within the interval (−3, 3). At the boundaries, I set values to -3 to avoid move-
ment close to the boundary and resulting boundary effects in the transition densities
due to the normalization constant.
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Figure D.2. Four of the simulated trajectories from the model with exponential
weighting function. The trajectories were generated using the parameter values σ = 6
and β = 1. The underlying resource landscapes are the landscapes depicted in Fig. D.1,
in the same order.

181



APPENDIX D. SIMULATED LANDSCAPES AND TRAJECTORIES

1 2

3 4

0

5000

10000

15000

0

5000

10000

15000

0 250 500 750 1000 0 250 500 750 1000

x

ti
m

e
 s

te
p

Figure D.3. Four of the simulated trajectories from the model with logistic weighting
function. The trajectories were generated using the parameter values σ = 6 and β = 1
(same as in Fig. D.2) and α = 0. The underlying resource landscapes are again the
landscapes depicted in Fig. D.1, in the same order.
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Appendix E

Proofs of robustness results in

Chapter 5

E.1 Proofs of results about exact robustness

Proof of Theorem 5.1. First, note that for any standard deviation of the kernel, σ, the

integral
∫
R kσ(y;x)w(y) dy reduces to the weighting function evaluated at the kernel’s

mean,∫
R
kσ(y;x)w(y) dy =

∫
R
kσ(y;x)(ay + b) dy =

∫
R
kσ(y;x)(a(y − x+ x) + b) dy

= (ax+ b)

∫
R
kσ(y;x) dy + a

∫
R
kσ(y;x)(y − x) dy = ax+ b = w(x), (E.1)

because kσ(·|y) is a Gaussian density integrating to one and with vanishing first central

moment. If we consider w as a linear transformation of a Normally distributed random

variable with mean x, then equation (E.1) reflects a special case of Jensen’s inequality,

in which equality holds.

I now show robustness of degree n with parameter transformation gn(σ, a, b) =

(
√
nσ, a, b) by induction. For n = 1, we have the trivial transformation g1(σ, a, b) =

(σ, a, b), and there is nothing to show for robustness of degree 1.

Assume that robustness or degree n holds, that is we have the relationship

pn(xn|x0, σ, a, b) = p1(xn|x0,
√
nσ, a, b). (E.2)

for all xn, x0 ∈ R. For n + 1, we use the Chapman-Kolmogorov equation and Markov
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property and obtain

pn+1(xn+1|x0,σ, a, b) =

∫
Rn

n+1∏
k=1

p1(xk|xk−1, σ, a, b) dx1 . . . dxn

=

∫
R
p1(xn+1|xn, σ, a, b)

(∫
Rn−1

n∏
k=1

p1(xk|xk−1, σ, a, b) dx1 . . . dxn−1

)
dxn

=

∫
R
p1(xn+1|xn, σ, a, b) pn(xn|x0, σ, a, b) dxn

=

∫
R
p1(xn+1|xn, σ, a, b) p1(xn|x0,

√
nσ, a, b) dxn, (E.3)

where the last step follows by induction. We can now insert the model’s step proba-

bilities and use equation (E.1) to further calculate,

pn+1(xn+1|x0, σ, a, b) =

∫
R

kσ(xn+1;xn)w(xn+1)∫
R kσ(y;xn)w(y) dy

k√nσ(xn;x0)w(xn)∫
R k
√
nσ(y;x0)w(y) dy

dxn

=

∫
R

kσ(xn+1;xn)w(xn+1)

w(xn)

k√nσ(xn;x0)w(xn)

w(x0)
dxn

=
w(xn+1)

w(x0)

∫
R
kσ(xn+1;xn) k√nσ(xn;x0) dz. (E.4)

Note that we have assumed that all movement steps are within the domain I, where

the weighting function is positive. Since kσ(xn+1;xn) = kσ(xn+1 − xn; 0), the integral

in the last expression is the convolution of two Gaussian densities with variances σ2

and nσ2 and with means 0 and x0, respectively. Because of the linearity of Gaussian

random variables, this is again a Gaussian density with mean x0 and variance (n+1)σ2.

Because equation (E.1) holds for the kernel with any standard deviation, we can rewrite

the denominator as w(x0) =
∫
R k
√
n+1σ(y;x0)w(y) dy. Thus,

pn+1(xn+1|x0, σ, a, b) =
k√n+1σ(xn+1;x0)w(xn+1)∫

R k
√
n+1σ(y;x0)w(y) dy

= p1(xn+1|x0,
√
n+ 1σ, a, b). (E.5)

Proof of Theorem 5.2. We proceed analogously to the previous proof. The integral of

weighting function and kernel with arbitrary standard deviation σ and mean x is here
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given by∫
R
kσ(y;x)w(y) dy =

∫
R
kσ(y;x)Ceay+b dy

=
C√
2πσ

∫
R

exp

(
−(y − x)2

2σ2
+ ay + b

)
dy.

By completing the square and using substitution u = 1√
2σ

(y − x− aσ2) we obtain

∫
R
kσ(y;x)w(y) dy =

C√
2πσ

e
a2σ2

2
+ax+b

∫
R

exp

(
−
(
y − x− aσ2

√
2σ

)2
)

dy

=
C√
2πσ

e
a2σ2

2
+ax+b

∫
R

exp
(
−u2

)√
2σ du.

The final integral reduces to
√

2πσ, and therefore,∫
R
kσ(y;x)w(y) dy = C e

a2σ2

2
+ax+b. (E.6)

Again, I prove robustness of degree n by induction, using parameter transforma-

tion gn(σ,C, a, b) = (
√
nσ,C, a, b). In the induction step, we obtain, with help of

equation (E.6),

pn+1(xn+1|x0, σ, a, b) =

∫
R

kσ(xn+1;xn)Ceaxn+1+b∫
R kσ(y;xn)Ceay+b dy

k√nσ(xn;x0)Ceaxn+b∫
R k
√
nσ(y;x0)Ceay+b dy

dxn

=

∫
R

kσ(xn+1;xn)Ceaxn+1+b

Ce
a2σ2

2
+axn+b

k√nσ(xn;x0)Ceaxn+b

Ce
na2σ2

2
+ax0+b

dxn

=
exn+1

e
(n+1)a2σ2

2
+ax0

∫
R
kσ(xn+1;xn) k√nσ(xn;x0) dz

=
exn+1

e
(n+1)a2σ2

2
+ax0

k√n+1σ(xn+1;x0).

=
k√n+1σ(xn+1;x0)Ceaxn+1+b∫
R k
√
n+1σ(y;x0)Ceay+b dy

= p1(xn+1|x0,
√
n+ 1σ, a, b) (E.7)
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E.2 Proof of result about asymptotic robustness

To highlight the main steps necessary to prove Theorem 5.3, I establish a series of

intermediate results. As a first step, I show that the 2-step transition density can be

broken up into a product of the form (5.5) in Definition 5.2.

Proposition E.1. The 2-step transition density of model with transitions (5.14) can

be written as

p2(xt|xt−2τ , σ,θ) = p1(xt|xt−2τ ,
√

2σ,θ) · v(xt, xt−2τ ; τ), (E.8)

where the function v is given by

v(xt, xt−2τ ; τ) =

∫
R k
√

2σ(y;x)wθ(y) dy∫
R kσ(y;x)wθ(y) dy

∫
R
k σ√

2

(
z;

1

2
(xt + xt−2τ )

) wθ(z)∫
R kσ(y; z)wθ(y) dy

dz.

(E.9)

Note that v depends on τ through σ. For later convenience, I define

Q(x; τ) :=

∫
R k
√

2σ(y;x)wθ(y) dy∫
R kσ(y;x)wθ(y) dy

(E.10)

I(x1, x2; τ) :=

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) wθ(z)∫
R kσ(y; z)wθ(y) dy

dz. (E.11)

Proof. The proposition can be shown with a straightforward calculation. The 2-step

transition density is given by

p2(xt|xt−2τ , σ,θ)

=

∫
R

kσ(xt; z)wθ(xt)∫
R kσ(y; z)wθ(y) dy

kσ(z;xt−2τ )wθ(z)∫
R kσ(y;xt−2τ )wθ(y) dy

dz

=
wθ(xt)∫

R kσ(y;xt−2τ )wθ(y) dy

∫
R
kσ(xt; z) kσ(z;xt−2τ )

wθ(z)∫
R kσ(y; z)wθ(y) dy

dz. (E.12)

The product of the two Gaussian densities in the integrand can be transformed as

follows

kσ(xt; z) kσ(z;xt−2τ ) = k√2σ(xt;xt−2τ ) k σ√
2

(
z;

1

2
(xt + xt−2τ )

)
. (E.13)
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The two-step density therefore becomes

p2(xt|xt−2τ , σ,θ)

=
k√2σ(xt;xt−2τ )wθ(xt)∫
R kσ(y;xt−2τ )wθ(y) dy

∫
R
k σ√

2

(
z;

1

2
(xt + xt−2τ )

) wθ(z)∫
R kσ(y; z)wθ(y) dy

dz. (E.14)

The numerator of the first factor is the desired one-step density up to appropriate

normalization. If we extend by the required normalization constant,∫
R
k√2σ(y;xt−2τ )wθ(y) dy, (E.15)

we obtain equations (E.8) and (E.9).

It is now left to show that the function v−1 is in the order of τ on its entire domain

R2 ×R+. In particular, this means that for any fixed τ ∗, the function v(x1, x2; τ ∗)− 1

is bounded on R2 via cτ ∗ for a constant c. It turns out to be helpful to analyze v

separately on R2 × (0, τ0) and R2 × [τ0,∞) for some τ0. Because the proof is simpler

for large τ , I present this result first.

Lemma E.2. Let w be continuous and bounded away from zero, that is there exist

L and U such that 0 < L ≤ wθ(x) ≤ U for all x ∈ R. Let w further be twice

differentiable on R with |w′′(x)| < M for some M and all x ∈ R. For any τ0 > 0, we

have v(x1, x2, ; τ)− 1 = O(τ) on R2 × [τ0,∞).

Proof. Let τ0 be a number away from zero and fixed. Our goal is to establish bounds

on the functions Q and I, as defined in (E.10) and (E.11), and to use these to place

a bound on v − 1. Because w is twice differentiable we can apply Taylor’s theorem to

obtain a linear approximation for w using any point x ∈ R,

wθ(y) = wθ(x) + w′(x)(y − x) +R(y), (E.16)

where R(y) is the remainder term. This leads to∫
R
kσ(y;x)wθ(y) dy

= wθ(x)

∫
R
kσ(y;x) dy + w′(x)

∫
R
kσ(y;x) (y − x) dy +

∫
R
kσ(y;x)R(y) dy, (E.17)

where the first term on the RHS becomes wθ(x), because the kernel integrates to

one, and the integral in the second term is the first central moment of the kernel,
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hence vanishes. The remainder R(y), using the Lagrange form, is given by R(y) =
w′′(ξ)

2
(y−x)2, for some ξ between x2 and y. Since the second derivative of w is assumed

to be globally bounded, we have |R(y)| ≤ M
2

(y − x)2. We use this to place bounds

on the third term, recognizing that the remaining integral
∫
R kσ(y;x) (y − x)2 dy is

the second central moment of the Gaussian kernel kσ, which is given by its variance

σ2 = ω2τ . Therefore,

wθ(x)− M

2
ω2τ ≤

∫
R
kσ(y;x)wθ(y) dy ≤ wθ(x) +

M

2
ω2τ. (E.18)

In general, the lower bound can be arbitrarily close to zero, therefore we cannot simply

invert this inequality to obtain an estimate on the inverse of the integral. Instead, we

use the bounds on w and again the fact
∫
R kσ(y;x) dy = 1 for any σ and any x ∈ R to

establish

0 < L ≤
∫
R
kσ(y;x)wθ(y) dy ≤ U, (E.19)

which can be inverted. Since inequalities (E.18) and (E.19) hold for any σ and any

x ∈ R, they allow us to place bounds on both Q and I. For Q, we obtain

1

U

(
wθ(x)−Mω2τ

)
≤ Q(x; τ) ≤ 1

L

(
wθ(x) +Mω2τ

)
(E.20)

for all x ∈ R, τ ∈ R+. We can avoid the dependency of the bounds on x by again

invoking the bounds on w,

1

U

(
L−Mω2τ

)
≤ Q(x) ≤ 1

L

(
U +Mω2τ

)
. (E.21)

For the function I, we only make use of the bounds on w and inequality (E.19) and

get

0 <
L

U
≤ I(x1, x2; τ) ≤ U

L
(E.22)

for all x1, x2 ∈ R, τ ∈ R+. We can now continue to calculate v − 1. An upper bound

is immediately given by

v(x1, x2; τ)− 1 = Q(x1; τ) I(x1, x2; τ)− 1 ≤ U2 − L2

L2
+
MU

L2
ω2τ. (E.23)

With only few more additional steps, we obtain a lower bound by simply drawing upon

L ≤ U , its squared version and its inverse,

−
(
v(x1, x2; τ)− 1

)
≤ U2 − L2

U2
+
ML

U2
ω2τ ≤ U2 − L2

L2
+
MU

L2
ω2τ. (E.24)
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Define C := U2−L2

L2τ0
+ MU

L2 ω
2 for the τ0 chosen up front. Then,

|v(x1, x2; τ)− 1| ≤ U2 − L2

L2
+
MU

L2
ω2τ − Cτ + Cτ

=
U2 − L2

L2
− U2 − L2

L2τ0

τ + Cτ

=

(
1− τ

τ0

)
U2 − L2

L2
+ Cτ. (E.25)

The product on the RHS is non-positive for τ ≥ τ0, and hence |v(x1, x2; τ)− 1| ≤ Cτ

for all R2 × [τ0,∞).

The bounds on Q and I, and thus v − 1, established in the preceding proof are

not sufficient to conclude the result as τ → 0, unless L = U , which is the trivial

case of a constant weighting function. More suitable bounds, however, can be found

if inequality (E.18) can be inverted. This can be achieved by assuming τ to be small

enough.

Lemma E.3. Let w be continuous and bounded away from zero, that is there exist

L and U such that 0 < L ≤ wθ(x) ≤ U for all x ∈ R. Let w further be twice

differentiable on R with |w′′(x)| < M for some M and all x ∈ R. Let τ0 = 2L
Mω2 . Then

v(x1, x2, ; τ)− 1 = O(τ) on R2 × (0, τ0).

Proof. Here we develop bounds on Q and I such that both Q − 1 and I − 1 are in

the order of τ . Let τ ≤ τ0 for τ0 as defined in the lemma. Then the lower bound of

equation (E.18) is bounded away from zero,

wθ(x)− M

2
ω2τ ≥ wθ(x)− M

2
ω2τ0 > wθ(x)− M

2
ω2 2L

Mω2
= wθ(x)− L ≥ 0. (E.26)

Hence we can invert the inequality (E.18) and obtain

wθ(x)−Mω2τ

wθ(x) + M
2
ω2τ

≤ Q(x; τ) ≤ wθ(x) +Mω2τ

wθ(x)− M
2
ω2τ

. (E.27)

Note that the values in the numerators and denominators differ slightly because the

variances of the kernel k in the numerator and denominator of Q differ by a factor of

2.
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Since 2wθ(x)−Mω2τ ≥ 2L−Mω2τ0 > 0, we can conclude

Q(x; τ)− 1 ≤
wθ(x) +Mω2τ − wθ(x)− M

2
ω2τ

wθ(x)− M
2
ω2τ

=
Mω2τ

2wθ(x)−Mω2τ
≤ Mω2τ

2L−Mω2τ0

, (E.28)

for all x ∈ R and τ < τ0. Using 2wθ(x) +Mω2τ ≥ 2wθ(x) ≥ 2L, we similarly obtain,

−(Q(x; τ)− 1) ≤ 3Mω2τ

2wθ(x) +Mω2τ
≤ 3M

2L
ω2τ (E.29)

for all x ∈ R and τ < τ0. If we set

C1 := max

(
Mω2

2L− 2ω2τ0

,
3Mω2

2L

)
, (E.30)

it follows that |Q(x; τ)− 1| ≤ C1τ on R2 × (0, τ0).

Using analogous arguments as before, we can find an upper bound on I,

I(x1, x2; τ) =

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) wθ(z)∫
R kσ(y; z)wθ(y) dy

dz

≤
∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) wθ(z)

wθ(z)− M
2
ω2τ

dz

=

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) wθ(z)− M
2
ω2τ + M

2
ω2τ

wθ(z)− M
2
ω2τ

dz

=

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

)
dz +

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) M
2
ω2τ

wθ(z)− M
2
ω2τ

dz

≤ 1 +

∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) M
2
ω2τ

L− M
2
ω2τ0

dz = 1 +
Mω2τ

2L−Mω2τ0

. (E.31)

A lower bound is given by

I(x1, x2; τ) ≥
∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) wθ(z)

wθ(z) + M
2
ω2τ

dz

= 1−
∫
R
k σ√

2

(
z;

1

2
(x1 + x2)

) M
2
ω2τ

wθ(z) + M
2
ω2τ

dz ≥ 1− Mω2τ

2L
. (E.32)

Setting C2 := Mω2τ
2L−Mω2τ0

, we obtain |I(x1, x2; τ)− 1| ≤ C2τ on R2 × (0, τ0).
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We can now estimate v − 1 as follows,

|v(x1, x2; τ)− 1| = |Qτ Iτ − 1| ≤ |Qτ − 1| |Iτ − 1|+ |Qτ − 1|+ |Iτ − 1|

≤ C1C2τ
2 + (C1 + C2) τ ≤

(
C1C2τ0 + C1 + C2

)
τ, (E.33)

for all x1, x2 ∈ R and all τ < τ0.

Lemmata E.2 and E.3, together with proposition E.1 prove Theorem 5.3.
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