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Abstract

Movement ecology thrives from a successful synergy of data and models. In a field
where experiments are difficult or impossible, linking field data with mathematical and
statistical models allows us to test hypotheses and increase our quantitative under-
standing of movement processes. Owing to technological progress, data availability
and quality are growing rapidly, inspiring new questions and challenging methodology.
In my thesis, I address two modelling challenges, one at the forefront of current research
on memory-based movement and the other long-standing, yet prevailing, in movement
data analysis.

Movement serves needs, such as foraging, but also requires time and energy. There-
fore, we expect animals to have evolved strategies for efficient movement, likely drawing
on cognitive abilities. Indeed, one of the current challenges in movement ecology is to
understand the role of cognition, including memory, for movement. To date, very few
models that include memory mechanisms have been confronted with data. In my the-
sis, I present a new cognitive-based model, in which an individual’s travel history feeds
back to future movement decisions. I focused on the pure spatio-temporal aspect of the
travel history, assuming that an individual keeps track of elapsed times since last visits
to locations and uses this information during the movement process. I showed that,
despite the dynamic interplay of information gain and use, statistical inference can
successfully identify this mechanism. I further applied the new modelling framework
to wolf (Canis lupus) movement data to test whether wolves adopt a prey management

strategy, based on memory, that is directed at reducing impacts of behavioural depres-
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sion of prey through optimal timing of returns to hunting sites. I found support for
the hypothesis but also point out the need to analyze a larger number of individuals
to reach stronger conclusions.

Data collection methods, as well as standard modelling approaches, discretize the
temporal dimension of movement processes. This discretization is a challenge for data
analysis, because results may be affected by data sampling rate. In my thesis, I de-
velop the formal concept of movement models’ robustness against varying temporal
resolution. I provide a series of definitions for movement model robustness. These
definitions vary in their strength of conditions but all rest on the same requirement
that a model can validly be applied to data with varying resolutions, while parameters
change in a systematic way that can be predicted. In an analysis of random walks
and spatially-explicit extensions thereof, I found that while true robustness is rare,
approximate robustness is more widely present in models. I further demonstrate how
robustness can be used to mitigate the influence of temporal resolution on statistical

inference.
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This thesis is an original work by Ulrike E. Schléagel.
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Chapter 1

Advances in movement ecology

spur new methodological challenges

Animals show fascinating movement capacities. Humpback whales travel more than
8,000 km between wintering and feeding areas (Rasmussen et al., 2007), and arctic
terns even reach one-way migration distances of more than 25,000 km (Egevang et al.,
2010). Many fish aggregate in schools and coordinate their movements in large groups of
thousands, even millions, of individuals spaced less than a body length apart (Misund,
1993). The well-known cheetah, the fastest mammal, can sprint at 100 km/h (Sharp,
1997), while diving falcons such as the peregrine can even reach speeds up to 360 km/h
(Tucker, 1998).

It is not only these spectacular and eye-catching phenomena that attract our atten-
tion to movement but also the importance of movement for many ecological processes.
Many animals must move to meet their daily and lifetime needs related to maintenance
(e.g. foraging), survival (e.g. escaping predation) and reproduction (e.g. finding mates,
travelling to breeding sites). Movement of individuals scales up to population patterns,
affecting populations’ abundances and distributions as well as community structures
(Mueller et al., 2008; Morales et al., 2010; Buchmann et al., 2011). Additionally, move-
ment processes have far-reaching consequences for disease dynamics in host-pathogen
systems, being able to both promote and impede transmissions (White et al., 2000;
Altizer et al., 2011). By facilitating seed dispersal, motile frugivorous animals provide
important ecosystem service to their mutualistic plant partners (Mueller et al., 2014).

During the last decades, studies of animal movement have benefitted from major
advances in tracking technology that opened new dimensions for data collection. GPS-
and Argos-based tracking devices have become widespread and allow automatic data

collection over large spatial and temporal scales (Rutz & Hays, 2009; Cagnacci et al.,
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2010). Owing to increasing miniaturization of these tagging devices, they can be fitted
to a wide range of species, which continues to grow (Bridge et al., 2011; Recio et al.,
2011). Not only the extent to which data can be collected has increased but also the
precision and frequency (Frair et al., 2007; Tomkiewicz et al., 2010; Bridge et al., 2011).
For example, by now GPS devices often reach an average precision of 10-28 m (Frair
et al., 2007). These technological advances have led to an unprecedented availability
of movement data across the globe, as for example demonstrated by the Movebank
project (Kranstauber et al., 2011).

At the same time, mathematics, statistics and computing have contributed new
methods and tools to study movement theoretically and to analyze the newly available
movement data. Within both the individual-based Lagrangian and the population-
based Eulerian framework, descriptions of movement have progressed from simple ran-
dom walks and diffusion models towards models that explicitly acknowledge spatial het-
erogeneity of environments and selective behaviour of animals. Contemporary models
include, for example, resource selection mechanisms (Rhodes et al., 2005; Hanks et al.,
2011; Mckenzie et al., 2012; Potts et al., 2014), interactions of predators with their prey
and conspecifics (Lewis & Murray, 1993; Moorcroft et al., 2006), and switches in be-
havioural modes (Morales et al., 2004; McClintock et al., 2012; Langrock et al., 2013).
Studies of movement have even started to consider the role of cognitive processes within
contexts such as optimal foraging (Barraquand & Benhamou, 2008; Boyer & Walsh,
2010; Grove, 2013) and home range formation (Borger et al., 2008; Van Moorter et al.,
2009).

It is in the nature of scientific progress that advances lead not only to increased
knowledge and understanding but also to new questions. Thus, advances in technology,
methodology and theory have resulted in a movement ecology paradigm and continue
to inspire new goals and ambitions (Nathan et al., 2008; Holyoak et al., 2008; Borger
et al., 2008; Tomkiewicz et al., 2010; Fagan et al., 2013). In my PhD thesis, I address
methodological challenges in movement ecology, contributing to two different aspects

of modelling movement.

1.1 Memory matters: modelling informed animal

movement

Animals demonstrate a variety of cognitive skills. For example, food-caching birds

find previously buried seeds up to nine months later (Balda & Kamil, 1992); bees can-
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not only navigate efficiently but also communicate spatial information through their
famous waggle dances (Menzel et al., 2006); birds parasitized by cuckoos can adjust
their probability of rejecting eggs depending on whether they have seen a cuckoo on
their nest (Davies et al., 1996). In general, animal cognition refers to all mechanisms by
which animals acquire, process and use information (Shettleworth, 2010). This includes
mechanisms such as conditioning and associative learning, in which animals learn to re-
spond to cues and stimuli, as well as mechanisms by which animals act on information
retrieved from memory. We have learned much about animal cognition through care-
fully designed experiments. Manipulative experiments allow researchers to construct
test situations that are tailored to induce specific, and often predicted, behaviours in
animals, while minimizing and controlling for potential confounding factors (for a vari-
ety of examples, see e.g. Shettleworth, 2010). At the same time, experiments are often
limited to small scales and may require habituation of animals (but see Thorup et al.,
2007; Tsoar et al., 2011).

One of the present challenges in movement ecology is to understand the role of cog-
nition, including memory, for movement processes (Borger et al., 2008; Smouse et al.,
2010; Fagan et al., 2013). Movement usually serves a goal (“why move?”), triggered
by an individual’s internal state. Motion capacities (“how to move?”) work together
with navigation capacities (“where to move?”), under the influence of external factors,
to achieve the goal (Nathan et al., 2008). Within this paradigm, cognition serves the
navigation process, which includes orientation in space and time and selection of tar-
get locations. Orientation and navigation skills allow animals to reach target locations
and thus assist processes such as homing and migration, but also foraging. Foraging
animals benefit from information about the location of resources, temporal availability
of resources and resource quality. At any time, information may be perceived or ob-
tained from memory. If animals remember profitable places, this involves both spatial
memory of the location and attribute memory about the locations’ features (Fagan
et al., 2013).

Much work has concerned the mechanisms by which animals orient themselves and
navigate in space. A relatively simple mechanism is path integration (also termed
dead reckoning), in which an individual internally keeps track of all distances and
directional changes of its path and at any point can orient back straight towards its
starting location (Wittlinger et al., 2006; Collett et al., 2006). Path integration is
an egocentric mechanism, that is spatial information is encoded with respect to the
individual itself. In contrast, exocentric mechanisms establish spatial orientation based

on external references, such as beacons and landmarks (Shettleworth, 2010). It is
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generally thought that landmarks can be integrated into cognitive maps for navigation,
but it is still debated how landmarks are used, e.g. whether interlandmark relations
or landscape contours are more important, and how flexible maps needs to be, e.g.
whether they allow a euclidian view that preserves distances and angles (O’Keefe &
Nadel, 1978; Bennett, 1996; Lew, 2011). To date, navigation strategies have mainly
been tested in insects such as ants and bees, small rodents and in particular rats, and to
some degree birds, because of these species’ suitability for experiments (Griffin, 1952;
Collett et al., 2006; Shettleworth, 2010).

The relevance of cognition for foraging and search for resources has started to be in-
vestigated theoretically, often using individual-based simulation models. These studies
evaluate the benefits that information-based and especially memory-based movement
strategies can provide, and under which conditions. Results suggest that memory-
based foraging strategies are particularly successful in environments with patchy, or
clumped, resources (Barraquand et al., 2009; Fronhofer et al., 2013) and in tempo-
rally predictable landscapes (Mueller et al., 2010). When temporal unavailability of
resources reduces predictability, a mixed strategy of both random and informed steps
can be optimal (Boyer & Walsh, 2010). Barraquand et al. (2009) point towards the
importance of considering costs, e.g. higher energy requirements, of cognitive abilities
that reduce their benefits, which still needs to be further investigated (Fagan et al.,
2013). Memory has also sparked interest with respect to the mechanisms underlying
home range formation. Simulations of memory-based movement have been able to lead
to restricted space-use patterns when memorized information increased the expected
value of familiar resources patches compared to unfamiliar patches despite temporary
resource depletion (Van Moorter et al., 2009; Spencer, 2012).

To test predictions from theoretical findings, we need to confront them with data.
However, studying the link between cognition and movement in free-ranging animals
in their natural habitats is challenging. First, due to less controllability, alternative
explanations than the hypothesized ones can be difficult to rule out. Nonetheless,
there have been attempts to infer spatial cognition and memory in foraging animals,
primarily primates (Asensio et al., 2011; Janmaat et al., 2006; Janmaat & Chancel-
lor, 2010). These studies benefited from the possibility to follow the animals and
record detailed behavioural and environmental data. Second, when relying on models,
movement is a complex process because of its both spatial and temporal dimension.
This process becomes even more intricate when detailed behavioural mechanism such
as memory-based resource selection are included. Applying memory-based models to

data demands suitable, including identifiable, models, appropriate statistical methods,
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and also computational tools for model fitting. Therefore, many approaches at the
memory-movement interface have remained theoretical, and very few inferential stud-
ies exist (Dalziel et al., 2008; Avgar et al., 2015). In my thesis, I propose a new model
that incorporates a memory-based movement strategy, yet is tractable enough to allow

likelihood-based statistical inference.

1.2 Fitting models to data: mitigating impacts of

temporal discretization

To test hypotheses about movement behaviour and to estimate parameters of move-
ment processes, we need both data and quantitative methods. Pure data, e.g. in form
of field observations, and descriptive analyses give important impulses to research, gen-
erating questions and hypothesis. On the other hand, mathematical models provide
abstraction and simplification for hypotheses and allow us to test “what if” situations.
Theoretical model analyses can help us to identify key mechanisms of a process, reveal
threshold phenomena and make quantitative predictions (e.g. Lewis & Kareiva, 1993;
Neubert et al., 1995; Lewis et al., 1997). Computer-based simulations of models (also
termed individual-based or agent-based models) are a useful tool to hypothetically
explore more complex processes that are hard to tract analytically (e.g. Barraquand
et al., 2009; Berbert & Fagan, 2012). However, only a synergy of movement data and
models, mediated by rigorous statistical methods, enables us to explain and quantify
animal movement processes and their implications for ecology (Hilborn & Mangel, 1997;
Turchin, 1998). Additionally, simulation models that are qualitatively and quantita-
tively informed by previous data analyses, are a valuable tool for wildlife management
and conservation (e.g. Colchero et al., 2010; DeCesare et al., 2012; Webb & Merrill,
2012).

Both movement data and models are approximations of reality. Animal movement
often spans large spatial and temporal scales and may occur in inaccessible habitat.
Thus, our ability to observe movement is limited, and we usually rely on techniques that
deliver series of snapshots of individuals’ locations and behaviours (Turchin, 1998). By
contrast, it is the very nature of models to approximate and simplify. Approximations
can ease analysis and application, as expressed in the famous statement “all models are
wrong, but some are useful” (Box & Draper, 1987). Additionally, through simplifying
reductions we can focus on a few important mechanisms of a process without being

distracted by too much detail. This is, in fact, one of the merits of modelling, allowing



CHAPTER 1. METHODOLOGICAL CHALLENGES IN MOVEMENT ECOLOGY

us to identify and understand key mechanisms that generate observed patterns and
phenomena (Levin, 1992). Whether approximations are necessary or desirable, we
should, if possible, conduct them with care and be mindful about their consequences.

Movement processes occur in space and time, and approximations can pertain to
both of these dimensions. Much progress has been made with respect to improving
the accuracy of spatial approximations of movement data. Often, data is collected
by automated tracking devices, which are attached to an individual (e.g. as collars
or backpacks). Common technologies include GPS, mainly for terrestrial species, and
Argos, mainly for marine species (Rutz & Hays, 2009; Frair et al., 2010). GPS data
has reached high spatial accuracy, many devices reaching an average precision of 10-28
m (Frair et al., 2007). Argos devices are less precise, with measurement errors ranging
from a few hundred meters to several kilometres (Rutz & Hays, 2009; Patterson et al.,
2010). However, Argos technology offers other advantages (e.g. tags require less battery
power and do not need to be retrieved for data recovery), and a body of research has
successfully attended to state-space models and associated methods as a means to
correct for measurement errors (Jonsen et al., 2005; Patterson et al., 2008; Patterson
& Hartmann, 2011).

Temporal resolution of movement data still poses challenges. In view of data collec-
tion, one of the major limiting factors of data sampling rate is battery life of tracking
devices. Signal reception, transmission and on-board processing require battery power,
constraining the number of possible measurements (Breed et al., 2011; Patterson &
Hartmann, 2011). Ideally, we would like to measure movement paths both over long
time spans and at high frequency, however, usually we must make compromises. For
example, to collect data over a year or longer, GPS collars are often programmed to
attempt location fixes every 2-4 hours or similar (Webb & Merrill, 2012; DeMars et al.,
2013; Avgar et al., 2015). An additional factor to consider is signal to noise ratio.
Spatial measurement error should be small compared to distances between successive
location fixes, which may require larger time intervals, especially when movement is
slow (Ryan et al., 2004; Jerde & Visscher, 2005; Bradshaw et al., 2007). Therefore,
most current data sets represent temporally discretized movement paths, where the
resolution is at least partly dictated by technological constraints.

From a modelling perspective, temporal discretization of movement processes arises
mainly in the Lagrangian view of movement. When analyzing movement data with a
place-based Eulerian approach, for example to estimate population space-use patterns,
models are often of diffusion type (Turchin, 1998; Smouse et al., 2010). In this case,

high temporal resolution of data is less important, on the contrary, some models rely on
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location measurements to be spaced enough in time to be void of directional correlations
(Moorcroft & Lewis, 2006). In the Lagrangian view, the focus lies on understanding the
movement behaviour of individuals in relation to internal and external cues (Turchin,
1998; Nathan et al., 2008; Smouse et al., 2010). Here, the movement process is often
modelled as some type of random walk or extension thereof. A few studies have linked
discrete-time movement data with continuous-time random walks, in particular the
Ornstein-Uhlenbeck process (Johnson et al., 2008; Hanks et al., 2011). However, most
approaches use discrete-time random walks (for a review, see McClintock et al., 2014).
Discrete-time descriptions are particularly intuitive at scales at which movement oc-
curs between natural stopping sites or resource patches, for example, when insects fly
between ovipositing sites (Kareiva & Shigesada, 1983). But even in more complex
situations, discrete-time random walks remain useful to disentangle scales (at which
movement processes are stationary) and searching modes (intensive versus extensive
searching behaviour) and to understand the movement behaviour of individuals with
respect to their environment (Morales et al., 2004; Langrock et al., 2013; Benhamou,
2013; McClintock et al., 2014; Avgar et al., 2015).

We are therefore often faced with a situation in which both data and model ap-
proximate the temporal dimension of a movement process. Several problems arise from
this. First, because the discretization of the data is constrained by collection meth-
ods, the available snapshots of an animal’s path may not necessarily correspond to
the biologically most relevant events, e.g. behavioural change points. The mismatch
between behavioural “moves” and modelled “steps” has already been pointed out by
Turchin (1998). However, this problem may be better understood in the context of
multiple-mode multiple-scale movement, and a random-walk model can still be useful
to describe movement between behavioural change points (Benhamou, 2013). Second,
the temporal resolutions of data and model are usually treated in unison. An exception
are models that need to handle temporally irregular data, for example as they arise
when tracking marine mammals. For this situation, state-space models have become
a tool to connect irregular data with a discrete-time movement model (Breed et al.,
2012; McClintock et al., 2012). In contrast, time series of regular observations are
usually matched directly with the model. However, before doing so, ideally one should
evaluate whether the temporal resolution of the data is a suitable approximation of the
movement process of interest.

Third, given the implied link between the data and model’s temporal resolution, a
major problem is that the data’s resolution can influence statistical inference. Move-

ment ecologists have recognized this issue and devoted a number of studies to demon-
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strating especially the negative effects of low resolution, which lead to inaccurate bi-
ological results as well as difficulties in generalizing and comparing results (Turchin,
1998; Breed et al., 2011; Rowcliffe et al., 2012; Postlethwaite & Dennis, 2013; Yackulic
et al., 2011). A few attempts have been made to design methods that can compensate
for varying temporal resolution of data, especially with respect to measuring travel
distance and path tortuosity (Pépin et al., 2004; Benhamou, 2004; Codling & Hill,
2005; Avgar et al., 2013). However, approaches to the problem have remained spo-
radic. Given this situation, we may expect that many current movement analyses are
in danger of being influenced by assumptions about an implicitly adopted temporal
discretization of data and model, without knowing how large the influence is. In my
thesis, I draw on the rigour of mathematics and statistics to address the problem with

a new perspective as well as generality.

1.3 Dissertation outline

The following chapters of my thesis address the previously introduced methodological
challenges in equal parts. Chapters 2 and 3 answer the call for new inferential models
at the memory-movement interface. Chapters 4 and 5 establish a new theoretical
framework for understanding and mitigating the impact of data and models’ temporal
discretization on statistical inference.

In Chapter 2, I propose a new model that includes a dynamic interplay of move-
ment decisions and information gain. This model builds on previous formulations of
movement as result of general movement capacities and available resources. In my
model, I account for movement not only being influenced by information, e.g. resource
information, but also affecting information itself. This takes up observations that ani-
mals use their travels not only to forage, for which they may use information, but also
to acquire information, e.g. about temporary resource statuses. Also, animals may
change information as they move, e.g. by depleting resources. As an example of such
dynamic interplay, I model how an individual’s movement decisions interact with in-
formation about its own travel history. I focus on the pure spatial and temporal aspect
of the travel history in form of time since last visit to locations. The model yields a
likelihood function and can thus be fitted to empirical movement data. Because the
variable time since last visit is a dynamic covariate, not only influencing movement
decisions but being affected by them, I test the functionality of the framework with
simulated data. With this, I show that a classic model selection approach can identify

the cognitive-based movement strategy and that parameter estimation can recover the
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quantities that are shaping the process.

In Chapter 3, I apply the new model developed in Chapter 2 to wolf (Canis lupus)
movement data. I use the model’s dynamic interplay between movement decisions and
travel history to formulate a movement strategy, in which wolves move so as to minimize
their impact on prey. This impact includes in particular behavioural depression of
prey caused by the wolves. Wolves, however, can reduce prey’s behavioural changes
by leaving and returning to hunting sites in a timely manner. By confronting the
model with data, I show that observed movement patterns of wolves support this
hypothesized prey-management strategy, although quantitative results do not fully
align with expectations. In addition to the ecological relevance of the analysis, it
also serves to demonstrate how to infer a sophisticated movement strategy that likely
involves spatial and temporal memory from empirical data.

With Chapter 4, I turn towards the problem that statistical inference is often af-
fected by the temporal discretization of movement data and models. I approach the
problem by dissociating a model’s resolution from the data’s resolution, thereby allow-
ing the view that data may in fact only represent a subprocess of the behavioural pro-
cess of interest (which is formulated in the model). In this view, the problem becomes
related to the formal concept of robustness in statistics. In Chapters 4 and 5, I there-
fore develop a series of definitions for movement models’ robustness against changes in
temporal resolution, and I examine if, and which, existing models have this property.
In Chapter 4, I start by defining robustness and a weaker version, semi-robustness,
for classic random walks with independently and identically distributed steps. In this
case, robustness implies that a model can be validly applied to both finer and coarser
data, while keeping information about parameters intact via an appropriate parame-
ter transformation. Semi-robustness only allows the model to be scaled up to coarser
resolutions, which, however is a useful property already. I investigate which step dis-
tributions lead to (semi-) robust random walks, and how we can make models robust
by extending step distributions within larger families. I also show how robustness and
semi-robustness relate to the probabilistic concept of infinite divisibility.

In Chapter 5, I extend the idea of robustness to more general first-order Markovian
models. Due to the more complex situation, robustness is defined slightly different
than in Chapter 4. In fact, the robustness definition in Chapter 5 is closer related to
the semi-robustness definition in Chapter 4 in the sense that it addresses the issue of
linking a model with suboptimal, i.e. coarser, data. Because exact robustness is a very
strong condition, I also propose two alternative definitions, asymptotic and approxi-

mate robustness. Especially the new definition of approximate robustness is designed
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to become a practical tool. Again, I investigate which models are robust. I focus
on spatially-explicit resource selection models, which constitute the class of models I
use in Chapters 2 and 3, without the dynamic information component. In addition
to presenting theoretical results based on analytical calculations, I also show how the
new definitions can be used more practically via numerical calculations. Finally, I
contrast robustness properties of two spatially-explicit resource selection models that
incorporate an exponential and logistic resource selection function, respectively.

In Chapter 6, I conclude my thesis with a discussion of the newly developed models
and methods in light of their application for movement ecology. I highlight specific
features of the new movement model and how these can be used to test hypotheses
about cognitive-based movement strategies. I also discuss the relevance of spatial and
temporal memory for the modelling approach. Furthermore, I discuss my theoretical
work on movement models’ robustness in the context of the well-established concept
of robustness in statistics. I highlight the key findings of my analysis, discuss how the
new concept can be applied to analyses of movement data, and suggest directions for

further research.
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Chapter 2

Detecting effects of spatial memory

and dynamic information on animal

movement decisions!

2.1 Introduction

Animal movement serves important needs such as food acquisition, escape from preda-
tors, and travel to reproduction sites. Consequently, many species have evolved capac-
ities to move efficiently and purposefully by considering varying sources of information
for their movement decisions (Janson & Byrne, 2007; Sulikowski & Burke, 2011). Ex-
plaining the mechanisms that underly such informed movement behaviour will allow us
to better understand animal space-use patterns and their responses to environmental
changes (Dalziel et al., 2008; Nathan et al., 2008; Sutherland et al., 2013).

Most animals live in heterogenous environments, and the link between movement
and environment has received much attention. Using classical resource-selection anal-
yses (Manly et al., 2002), a wide range of studies have demonstrated that animals
selectively use the biotic and abiotic features that are available to them (Fortin et al.,
2005; Gillies et al., 2011; Squires et al., 2013). Analyses of movement characteristics
have shown that animals express different movement behaviours, e.g. encampment or
travel, in different habitats (Morales et al., 2004; Forester et al., 2007).

Most mechanistic models have concentrated on incorporating relationships between

environmental factors and movement behaviour within a static environment (but see

LA version of this chapter has been published as: Schligel, U.E. & Lewis, M.A. (2014). Detecting
effects of spatial memory and dynamic information on animal movement decisions. Methods in Ecology
and Evolution, 5(11), 1236-1246.
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Avgar et al., 2013); however, observations show that animals also take into account
dynamically changing information and respond with their movements to temporal avail-
ability or unavailability of resources (Martin-Ordas et al., 2009). For instance, fruit-
eating primates express goal-oriented travel towards those trees in their home range
that carry ripe fruit (Asensio et al., 2011), and it has been suggested that monkeys
use their daily travels to monitor fruiting histories of trees (Janmaat et al., 2013; Jan-
son & Byrne, 2007). On the other hand, many resources, once depleted, need some
time before they become available again, providing reason for animals to avoid depleted
food patches (Davies & Houston, 1981; Owen-Smith et al., 2010; Bar-Shai et al., 2011).
Avoidance behaviour may be a response not only to depletion of resources, such as plant
biomass or prey, but also to behavioural depression. Behavioural depression refers to
a reduction in prey availability that is caused by behavioural changes of the prey in
response to predation (Charnov et al., 1976). For example, prey may show greater
alertness or seek shelter. This reduces capture rates, to which predators may respond
in turn by changing their hunting areas (Jedrzejewski et al., 2001; Amano & Katayama,
2009). Temporal considerations also become important for movement decisions if ter-
ritorial defence mechanisms require animals to visit certain locations regularly, e.g. to
scent-mark territory boundaries (Moorcroft & Barnett, 2008; Giuggioli et al., 2011).
As the above examples highlight, spatio-temporal information drives movement
decisions and at the same time movement allows animals to update this information.
Experimental findings additionally support that animals make decisions based on infor-
mation that they have obtained through previous experiences. Memory of information
about the “what, where and when” of events, obtained through subjective experi-
ence, is termed “www-memory” (Martin-Ordas et al., 2009) or “episodic-like memory”
(Griffiths et al., 1999). It is possible that animals acquire information about current
environmental conditions through perceptual cues, even over large distances (Tsoar
et al., 2011), and that information about the recent travel history is stored in exter-
nalized “memory”, such as pheromone trails or slime (Deneubourg et al., 1989; Reid
et al., 2012). However, it is likely that many animals draw upon internal memory, es-
pecially for behaviours that require information about temporal distances (“how long
ago?”) (Griffiths et al., 1999; Martin-Ordas et al., 2009; Janmaat et al., 2013). During
recent years, movement models have started to incorporate influences of memorized
information on movement decisions (for a review see Fagan et al., 2013). Most of these
are simulation models that are used for theoretical considerations only (but see Avgar
et al., 2013); however to test our understanding of the feedbacks between movement

and information acquisition, we must also interface memory-based models with data
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(Smouse et al., 2010).

Here, I present a new model for animal movement that is amenable to likelihood-
based inference, and in which I mechanistically incorporate the interplay of movement
decisions, environmental information and dynamically changing temporal information.
The model is similar in its form to recent spatially explicit resource-selection models
(e.g. Rhodes et al., 2005; Forester et al., 2009), in which movement steps are assigned
probabilities based on general movement tendencies and resource preferences. In pre-
vious models, resource information enters as a static covariate, providing knowledge
about features of the landscape, such as land cover type or topographical features.
In my model, I add dynamic information obtained through experiences made during
movement. To realize the interplay of movement and information acquisition, I draw
on the concept of a cognitive map (Tolman, 1948; Asensio et al., 2011). T use this
concept here as a helpful mathematical construct that provides a map-like representa-
tion of the animal’s environment containing all relevant information. For an example
of a dynamic information-gain process I introduce information about the time since
last visit to locations. Time since last visit is useful information that can play a role,
for example, in the process of patrolling in canids or food acquisition across species if
food availability varies (Davies & Houston, 1981). With the inclusion of this informa-
tion acquisition process, I present a practical model that incorporates both dynamic
information and spatial memory.

I place the model into a model selection framework that allows to identify which
types of information most likely shape the movement decision process. [ first out-
line the general formulation of my model and how memory effects can be integrated.
Subsequently, I present the details of several candidate models that correspond to
different underlying mechanisms of animal movement behaviour. Next, I show how
the models can be fitted to empirical movement trajectories to perform statistical in-
ference. Finally, using simulated data, I test the functionality of my framework and
assess whether the method can correctly detect effects of static resource information
and dynamically changing temporal information and whether model parameters can

be estimated reliably.

2.2 Methods

For several decades, the basis of many animal movement models have been random
walks. In a classical random walk, movement is described as a series of discrete steps

that have independent and identical probability distributions. This has been extended
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to include correlations between steps, biases towards specific locations, and step prob-
abilities that depend on the behavioural state of the individual (Morales et al., 2004;
McClintock et al., 2012; Breed et al., 2012; Langrock et al., 2013). Random walks and
their extensions have been used both to analyze movement behaviour at an individual
level (Lagrangian approach; e.g. Smouse et al., 2010) and to derive partial-differential
equation models that describe spatio-temporal patterns at a population level or ex-
pected space-use of individuals (Eulerian approach; e.g. Codling et al., 2008).

I am interested in understanding decision processes that underly movement be-
haviour on the scale of individuals. I draw upon a modelling framework that bridges
the gap between statistical resource-selection analysis and spatially explicit movement
models (Rhodes et al., 2005; Moorcroft & Barnett, 2008; Forester et al., 2009). The
framework builds on a random walk and defines movement via step probabilities, which
have two components. A resource-independent movement kernel assigns probabilities
to steps based on the animal’s general movement tendencies. Given this, a weighting
function evaluates the attractiveness of steps according to resource availability and
resource preferences. I extend this framework by generalizing the weighting function.
In this generalization, the weighting function does not only describe the influence of
resources but allows for the inclusion of any information relevant to the animal. Infor-
mation can pertain to landscape features and resources, as in previous models, but also
to memories of past events and timing aspects, which cannot be obtained externally but
only through the movement process and the animal’s behaviour itself. I assume that
information at a given time is either obtained through direct perception or retrieved
from the animal’s cognitive map (i.e. memory) which itself is updated through expe-
rience. In my model, the cognitive map is a function that assigns values to locations
according to their information content at a given time. Thus, it serves as a mathemati-
cal tool without the claim that it truly represents the underlying cognitive mechanism.
With the framework of the cognitive map I provide a general method for including
an explicit information-acquisition process. The cognitive map itself can take many
forms, depending on the species and behaviour of interest. In my candidate models, I

demonstrate examples of types of information the cognitive map may contain.

2.2.1 The modelling framework

I consider movement paths of individual animals, and I assume that an individual’s
trajectory consists of a series of locations (xy, ..., xx) at regular times 7" = {1,..., N}.

Each location has an Easting and a Northing in two-dimensional space, which is dis-
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cretized into a regular grid of square cells. The resolution of the spatial discretization
depends on the available environmental data and should be fine enough compared to
the animal’s movement such that steps generally range over multiple cells. I model
movement as a stochastic process, where the probability of making a step to location
x; depends on the location at time ¢ — 1 and, if movement is persistent, on the previous

step from x;_5 to x;_1. I define this step probability as

k(2 @1, T2, 01) we(xy; 02)
ZyeQ k(yQ Li—1, Li—2, 91) wt(y; 02)’

p(xe|Ti1, @12,0) = (2.1)
where k is an information-independent movement kernel, w; is an information-based
weighting function, and @ = (64, 60:) is a collection of model parameters. The sum
in the denominator ensures that p is an appropriately normalized probability mass
function over space. The spatial domain 2 is the area within which the animal can
choose to travel during the time relevant to the study.

Using the conceptual framework of Nathan et al. (2008), the kernel k can be inter-
preted as describing the animal’s motion capacity and w; as formulating the influence
of external factors, to which I add memorized information. Both k and w; can be
affected by the animal’s internal goal. For instance, if a herbivore is foraging it is
likely that it moves slowly, changes its movement direction frequently and generally
stays in an environment with suitable foraging material. It may additionally prefer
to forage in an area with low predation risk. Such behaviour could be implemented
by a kernel that assigns higher probabilities to locations in the animal’s close vicinity
with the same values in all directions and a weighting function that has highest values
in preferred foraging habitat. The weighting function could also include information
about previously experienced presence of predators (Latombe et al., 2014).

In general, the movement kernel k£ can be very simple, e.g. constant within the
animal’s maximum movement radius (Rhodes et al., 2005); however, we can also use
a more complex kernel that accounts for persistence in movement direction or biases
towards specific locations (Moorcroft & Lewis, 2006). Directions can be measured by
either turning angles (the angles between successive steps) or bearings (the angles of
steps with respect to a fixed direction, e.g. North).

I model the weighting function w; as a resource selection function (Manly et al.,
2002; Lele & Keim, 2006). There are several forms available for resource selection

functions, and here I present the logistic form,

wy(@;0,B,7) = [ +exp(—a — Ty(x) - B— f(Tu(x),7))] (2.2)
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where - denotes the dot product of two vectors. The vector Z;(x) € R™ is the cognitive
map content at location & at time ¢ containing the values of all information variables
of location x at time ¢, and B8 € R" is a parameter vector describing the animal’s
preference for a location of type Z;(x). The intercept a@ € R determines the baseline
weight of a location when all information variables are zero. The function f and
parameter vector 7 account for possible interactions between different information
variables. Locations with preferred features have high weights, thereby increasing the
chance that an animal will visit those. The logistic form of the weighting function
restricts weights to be between zero and one, and therefore the weighting function can
in fact be viewed as a resource selection probability function (Lele & Keim, 2006).
Because of the dependence structure of the step probabilities in equation (3.1), they
are only valid for times ¢ > 3. Here, I chose to define an initial probability for the first
two locations, p(xy,2|0) = p(x2|x1,0)p(x1]0). A simple option is to assume that
every location in the spatial domain has the same probability to be the first location,

p(x1]0) = ﬁ, and to let

k<w27 L1, R, )\) ’LUt<fB2; a, /87 7)
ZyEQ k(y’ L1, K, A) wt(y7 Q, ﬂ7 7)’

p(x1|xe, 0) = (2.3)

where £ is possibly a simplified form of k£ in case that k£ describes persistent movement.

2.2.2 Candidate models

I consider four different models that represent biological hypotheses about the types
of information that an individual may consider for making movement decisions. In
the simplest case, the null model, I assume that the animal considers no specific in-
formation. In the resource model, an individual considers static information about the
environment, where ‘static’ means that the information content remains constant over
the time span of the analysis. Information can be given about any resources pertain-
ing to the animal, e.g. any variables as they are typical in resource-selection analyses.
To include dynamically changing information, I allow information, and thereby the
weighting function, to change through time. If information were only given externally,
this would constitute a dynamic version of the resource model. However, my aim is
to model a dynamic interplay of movement decisions and information content. In the
memory model, 1 therefore introduce time since last visit as new type of information.
To account for the possibility that both resources and the dynamic variable time since

last visit influence movement decisions simultaneously, I consider a combination model
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as the most complex model.
I implement the different models by varying the information variable Z; in the

weighting function (3.2) while using the same movement kernel for all models.

Null model

In the null model, I assume that the information content of all locations is zero. There-
fore, the weighting function is homogeneous across the landscape and constant over
time, w(x) = 1 for all z € ,t € T This means that the animal moves only according
to the kernel k.

Resource model

In the resource model, information is static and includes all resource variables of inter-
est, Zy(x) = Z(x) = (r1(x),...,ro(x)) for every location x € Q. It is straightforward
to extend this to dynamic resource information to include, e.g. seasonal changes in the

landscape or disturbance events.

Memory model

In the memory model, I assume that while the animal moves through the environment,
it monitors the time since last visit from locations and uses this information for move-
ment decisions. For instance, recently visited areas may be avoided for a period of
time, whereas locations with long absence may be attractive. In my model, I include
this feature by defining the cognitive map as m; : 2 — N, which at any time assigns
values to all locations in the spatial domain based on the map values at the previous
time and the most recent movement step. If the animal moves from location x;_; to

x; between times ¢t — 1 and ¢, I define for any location y in the spatial domain

() 0, if d(y,z) <0 for any z € path(z;—1 — @) (2.4)
myYy) = .
my_1(y) + 1, otherwise.

Because of the spatial discretization, T use d(y,z) = |yg — zg| + |yn — 2n]| as the
distance between two locations y, z with Easting and Northing y = (yg,yn) and
z = (zg, 2n), such that all locations within a distance 0 of a fixed location z form a
diamond-shaped area around z. I assume that path(a;_; — ;) is the straight line
between x; ; and x;. Via equation (2.4), an individual counts the number of steps

it remains absent from locations, and therefore m;(x) is the time since last visit to
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location & at time ¢t. A location is considered visited when the animal comes within
a distance 6 > 0. Because m; is obtained recursively, I have to define appropriate
starting values. Here, I use movement data prior to the trajectory (xy,...,xy) for
initialization. If a location @ was visited during the initialization phase, I calculate the
time between the last visit to this location and the beginning of the actual trajectory
and thus reconstruct time since last visit at time ¢ = 1, my (). For all locations not
visited during initialization, I set time since last visit as the length of the initialization
phase. The dynamic variable time since last visit is used in the memory model to
inform movement decisions via Z;(x) = m;_1(x). Once x; is chosen according to the
probability mass function in (3.1), m, is updated via (2.4). Here, I track time since last
visit for the entire spatial domain €2. If the selection coefficient with respect to m;(x)
is positive, this leads to any location eventually becoming highly attractive after long
enough absence. If this behaviour is not desired, one may adjust the definition of the
cognitive map or weighting function appropriately. For example, if prior information
about an animal’s behaviour is given, it is possible to track time since last visit only

for certain locations of specific interest.

Combination model

In the combination model, 1 allow information types from both the resource and the
memory model to influence movement simultaneously by letting the information vector
be Z,(x) = (ri(x),...,ro(x), m_1(x)). In particular, this models allows for interactive
effects of time since last visit and resource variables, e.g. by incorporating multiplicative
terms of the form (&) m;_1(x) into the interaction term f(Z;(x), ) in the weighting
function (3.2). This is important in situations where return times to locations matter
depending on the resources at the location, e.g. average return times to preferred

foraging areas may differ from those to locations used as shelter.

Information-independent kernel

I define the movement kernel k£ based on a step length distribution with density S and
a distribution for movement directions with density ®. For step length, I use a Weibull
distribution with scale and shape parameter x > 0 and A > 0, respectively, because it

has a flexible form and generally shows a good fit with empirical data (Morales et al.,

2004). Thus,

k—1 K
8<Hwt—xt1um,x>:§(w) xp(—(w)) (2.5)
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To measure movement directions, I use bearings, and I denote the bearing of the step
from x;_1 to x; by p(a;_1,x;) € [, 7). I include directional persistence by choosing
a wrapped Cauchy distribution for bearings with scale parameter p > 0 and mode at

the previous step’s bearing p(@;_2, 1),

1 sinh p

" 27 coshp — cos(p(xy_1, @) — (X9, Ts_1))
(2.6)

The wrapped Cauchy distribution is convenient for implementation, and it has been

P (p(@i—1, 1) P(Ti—2, T1_1), p)

used commonly to model movement directions (Morales et al., 2004; Codling et al.,
2008, note that (2.6) is equivalent to their formula with parameter transformation r =
exp(—p)). One could use alternative distributions, such as the von Mises distribution
or wrapped normal distribution (Codling et al., 2008). Assuming that the choices for
step length and movement direction are independent, the kernel becomes the product

of § and ®, describing a correlated random walk,
k(ivt; Ti1, Ti—2, K, A, P) = S(Hwt - wt—l“; K, )\) (I)(@(ivt—l, CUt)% SO(fUt—% af't—l)7 p). (2-7)

Because the kernel formulates persistent movement and takes into account the

bearing of the previous step, I define a simplified kernel for ¢t = 2 as

- 1w (o — x| \*" x, —x, 1| \"
k(xo; a1, Kk, \) = 77 (—H ! 5 ! 1||> exp (— <—H ! ) ! 1”) ) (2.8)

This means that I assume a uniform distribution for the first bearing.

Note that this definition of the movement kernel from step length and bearing
distributions does not mean that I obtain the kernel from empirical step lengths and
bearings in advance and then use this observed kernel to estimate the weighting function
parameters in a case-control study, as has been previously suggested for resource-
selection analysis (Fortin et al., 2005; Forester et al., 2009). Because movement and
resource selection are not independent processes, a decoupled treatment of the processes
can lead to biased estimates. I circumvent this problem, and I use the formulation in
terms of step length and bearing only to define the functional form of the information-
independent movement kernel. During model fitting (see next section) I estimate all

model parameters simultaneously from the data.
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2.2.3 Statistical inference

If information Z; is known, the likelihood function for the collection of parameters

0 = (k,\, p,a, B,7) for the general model is

N

L(0) = p(z1, 0) p(za|10) x [ [ p(zi|ai—1, 202, 6). (2.9)

t=3

In the memory and combination model, Z includes the variable time since last visit
m = (my,t € T), which represents internal information of the animal that in general
cannot be observed. However, because of the way I define and initialize m, I am able
to iteratively calculate the time series (my, ..., my) based on the movement trajectory.
Therefore, given the data (&1, ..., xy), time since last visit becomes a known covariate,
and the likelihood function in equation (5.11) is valid for all models.

To obtain parameter estimates and their confidence intervals for all models I use
data cloning (Lele et al., 2007). Data cloning uses Markov Chain Monte Carlo (MCMC)
methods, which are usually employed in Bayesian statistical inference. However, data
cloning provides approximations to maximum likelihood estimates (MLE), together
with Wald-type confidence intervals, thus facilitating frequentist inference; see Ap-
pendix A.1.

I use the approximate MLEs for the model parameters in (5.11) to calculate the cor-
responding approximate maximum likelihood values. From these, I obtain the Bayesian
Information Criterion (BIC) for each of the four models (Burnham & Anderson, 2002).
Alternatively, I could have used Akaike information criterion (AIC); however for large
datasets, AIC tends to favour overly complex models (Link & Barker, 2006). For each
trajectory, I select the model with smallest BIC as the one that explains the decision
mechanism of the trajectory best. I use the BIC of this best model as a reference to
calculate BIC differences for all alternative models (ABIC = BIC,jtemative — BIChest)-

A common problem in statistical inference are missed observations. Missed lo-
cations in an otherwise regular movement trajectory occur, for instance when GPS
devices fail to acquire satellite signal due to closed canopy or otherwise limited avail-
able sky. In an autocorrelated trajectory, with each missed location we additionally
lose associated information. Calculations of step lengths and bearings require two suc-
cessive locations. In models with persistent movement, we require not only the current
but also the previous bearing for step probabilities. Therefore, in a correlated random
walk, one missed location can effectively lead to a gap of two full steps. In MCMC-

based data cloning, we can treat missed locations explicitly as unknown variables and
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account for this in the likelihood function,

L(G) = /p(wavailywmiss) dwmiss- (210)

This allows to preserve the entire dependency structure of the trajectory and avoids

the need to discard any information. For more information on this, see Appendix A.2.

2.3 Simulation study

To verify the functionality of my method I applied the modelling framework and sta-
tistical inference method to simulated data. Because (3.1) defines probability mass
functions for movement steps, I can sample from them to iteratively generate individ-
ual movement trajectories according to the four candidate models. These data have the
advantage that I know both a trajectory’s underlying mechanism and the parameter
values that were used to generate the trajectory. By applying the inference procedure
to these data, I investigated whether it was possible to identify the true underlying

mechanism of a trajectory and to correctly estimate parameter values.

2.3.1 Simulation of landscapes

Because movement decisions in the resource and combination model are based on en-
vironmental information, I first simulated landscapes of covariate values. 1 consider
two resources (r1,72), one having a continuous range of values, e.g. a biomass mea-
sure or elevation, and the other representing presence or absence of a feature, e.g. a
preferred food source, via a binary variable that takes either value 1 or 0. To include
biological realism, I accounted for spatial correlations in the covariate values. I sim-
ulated five pairs of landscapes with varying spatial structures. For more information

see Appendix A.3.

2.3.2 Simulation of movement trajectories

I generated movement trajectories using the four candidate models presented above.
When I used the null model, I called the resultant trajectory a null trajectory, and 1
named trajectories analogously for the other models.

On each of the five landscape pairs, I simulated a null, resource, memory and
combination trajectory, using the same movement parameter values on all landscapes

and across all four models, as applicable (Figure 2.3). The kernel parameters x, A,
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p appear in all models. The resource model has additional parameters oues, 81, 5o,
which are the intercept and the selection parameters with respect to the two resources
(r1,72) of the weighting function (3.2). In this model, I assumed there is no interaction
between the two resources. The memory model instead has additional parameters aypen
and Bmem, which describe the animal’s preferences with respect to time since last visit
m. In the combination model, the weighting function includes all effects, such that it
has parameters Qeom = Qres + Qmem, F1, B2, and Buem. In this model, I further allowed
for interactions between resources and time since last visit by defining the interaction
term in the weighting function as f((rl, T, M), V15 ’)/2) = y1 71 My + Y2 12 My, where v;
and v, are the interaction parameters. I chose the main set of parameter values to
represent realistic movement behaviour. To account for scenarios for which parameter
values were potentially more difficult to estimate from data, e.g. small values of selection
parameters, I generated two supplemental data sets, comprising two additional sets of
20 trajectories each generated from alternative sets of parameters; see Appendix A.4.

For all trajectories, I simulated 2600 time steps, of which I discarded the first 1400
steps as initialization. This was particularly important for the memory model, in which
I started with a cognitive map having value 0 everywhere. I used the last 400 steps
from the initialization phase to calculate m;. Each final trajectory consisted of 1200
time steps, which I considered a length commonly available (e.g. 1200 time steps could
represent 50 days of 1-hr data or 100 days of 2-hr data).

For an example of how to handle missed observations, I simulated a combination
trajectory with 90% fix rate by removing locations from a trajectory, 5% as single
locations and 5% as two successive locations. I chose a trajectory from the main data
set, which allowed me to compare results for completely and incompletely observed

trajectory; see Appendix A.2 and B.1.2.

2.3.3 Analysis of simulated data

To every simulated trajectory, I fitted all four candidate models (Figure 2.3) using data
cloning. For details about the data cloning and MCMC procedures, such as number of
clones and iterations used, see Appendix A.1. There were two basic types of model fits
that I distinguished in my analyses. A model could be fitted to a matching trajectory,
i.e. a trajectory that had been simulated using the same model’s mechanism (e.g. a
resource model fitted to a resource trajectory). Or, a model could be fitted to a non-
matching trajectory (e.g. a resource model fitted to a null, memory or combination

trajectory). Each model fit generated estimates of the model parameters, together
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with Wald-type confidence intervals. Here, I used 95% confidence intervals. Using the
approximate maximum-likelihood parameter estimates from data cloning, I estimated
the maximum value of the model likelihood, and BIC, for each model fit.

For all parameter estimates, I examined whether their potential scale reduction
factors R were close to 1 (Gelman & Rubin, 1992). For an MCMC fit, in which
parallel Markov chains are used to generate the posterior distribution of a parameter,
the potential scale reduction factor of a parameter indicates whether the chains have
mixed well and converged. If this is not the case, the estimate that results from such an
MCMC is not meaningful. I considered a potential scale reduction factor R <1.1tobe
sufficiently close to 1 (Gelman & Rubin, 1992), and I excluded all parameter estimates
that did not meet this condition from my analysis. Whenever such a non-convergent
or non-mixing parameter occurred within a model fit, the resultant likelihood and BIC
values of the fit were possibly inaccurate. Therefore, if a model fit included one or more
parameters with R > 1.1, I excluded the BIC value from the model-selection analysis.

For each trajectory, I compared whether the best model according to model selec-
tion via BIC coincided with the true underlying model of the trajectory. Under the
assumption that the framework is functional, I expected the model that matched a
trajectory’s underlying mechanism to have minimal BIC. Because both the resource
model and the memory model are nested within the combination model, I further ex-
pected the combination model, when applied to a resource or memory trajectory, to
perform better than the simple alternative (e.g. a memory model applied to a resource
trajectory).

For matching model fits, I compared true parameter values that were used to gen-
erate a trajectory to the parameter estimates obtained from applying the matching
model, and I examined whether 95% confidence intervals of parameters included the
true values. This should be achieved 95% of the time if parameters are identifiable and
the statistical methodology is functional.

In resource-selection analysis, it is usual to use hypothesis testing to determine
whether a covariate has an effect or not. I performed an equivalent analysis and
examined confidence intervals of the selection parameters 1, B2, Bmem, 71, Y2 in those
model fits, in which the combination model was fitted to a trajectory. The combination
model includes all possible covariates, but not all covariates were simulated to have
an effect in all trajectories, e.g. a resource trajectory includes effects of the resource
variables but not time since last visit. Confidence intervals that corresponded to true
underlying effects should exclude zero and vice versa. However, by definition, an a-level

hypothesis test results in a Type I error of o, which I expected to observe approximately
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in this analysis. Additionally, I expected a Type II error to occur, where a confidence
interval included zero, although the corresponding covariate had an effect. I compared
the outcome of this method with the results from model selection via BIC.

I performed all simulations of movement trajectories and statistical analyses in R
(R Core team, 2013), using additionally package ‘dclone’ (Solymos, 2010). To generate
MCMC samples, I used JAGS via the R package ‘rjags’ (Plummer, 2013).

2.4 Simulation results

Here, T present results for data generated with the main set of parameters 6, (Fig-
ure 2.3). Results for supplemental data generated by additional sets of parameters can
be found in Appendix B.1.1.

Of all 80 model fits (four models fitted to 20 trajectories each), 80% had potential
scale reduction factor R < 1.1 for all model parameters. In the remaining model fits, at
least one parameter had R>11 (Figure 2.4). Convergence or mixing problems never
occurred when the null model was fitted to a trajectory, even if the trajectory had a
more complex underlying mechanism. Large R values only occurred if the fitted model
contained parameters that were inapplicable to the model that was used to generate the
trajectory. This was the case when any of the more complex models was fitted to a null
trajectory, when the combination model was fitted to a resource or memory trajectory,
or when the memory model was fitted to a resource trajectory and vice versa. In these
model fits, the non-convergent parameters were mainly those that did not correspond
to true underlying covariate effects. However, when in a model fit problems occurred
for multiple parameters, occasionally even applicable parameters failed to converge. In
matching model fits, Markov chains always mixed well and converged. For more details
on convergence, see Appendix B.2 and B.3.

Our model selection framework was able to correctly identify the true underlying
model for all trajectories (Figure 2.4). When a trajectory had underlying resource or
memory mechanism, the next best model was always the combination model with ABIC
being a magnitude smaller than for the alternatives. This pattern was only disturbed if
the combination model experienced convergence problems and was therefore excluded
from further analysis.

Parameter estimates in matching model fits agreed well with true underlying pa-
rameter values. Parameter estimates generally were both close to and balanced around
their true values (Figure 2.5). 95% confidence intervals (n=115) included the true pa-

rameter value 91% of the time. Considering also results from the supplemental data,
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94% of all confidence intervals (n=345) included the true value.

Our hypothesis test as to whether covariates had an effect agreed with my expec-
tations. The combination model fitted to the 20 trajectories lead to 73 estimates of
selection parameters, of which 39 corresponded to true underlying effects. Analyzing
their confidence intervals, I obtained a false positive rate (Type I error rate) of 0.09
and a false negative rate of zero, i.e. Type II errors did not occur. However, if T also
considered the supplemental data and thereby increased the amount of resultant pa-
rameter estimates with confidence intervals to a total of 217, I obtained a Type I error

rate of 0.04 and again a Type II error rate of 0.09.

2.5 Discussion

In recent years, the link between animal movement and spatial memory has received
increasing attention (Smouse et al., 2010; Fagan et al., 2013). Studies of animal be-
haviour and cognition have given useful insights into animals’ capacities to remember
past experiences and use spatial memory. Most results have been obtained through
experiments in confined and synthetic settings. However, to better understand how
important ecological processes such as movement and dispersal are shaped by cogni-
tive processes and memory, we also need to look at animals in their natural environ-
ments (Tsoar et al., 2011). Understanding the components of individual movement
decisions and their interactions ultimately will help us to predict how population dis-
tribution patterns respond to environmental changes, such as landscape fragmentation
and changing climate.

I have presented a modelling framework that can be used to detect the influence
of memorized information on movement decisions. I recognize that in many situations
it is difficult to confirm that animals draw upon memorized information instead of
momentarily perceived information; however, there is evidence that animals use infor-
mation that they have obtained during past experiences (Martin-Ordas et al., 2009;
Janmaat et al., 2013). As an example of such information, I use time since last visit
to locations. In my model, time since last visit is continuously updated during the
movement process and at the same time influences movement decisions. I formulate
my models in a way that makes them amenable to likelihood-based statistical infer-
ence. This allows to fit the models to data to test whether the timing of events plays
a role for movement decisions. Fitting the full model (3.1), encompassing both general
movement tendencies and selective behaviour, to data via the likelihood function (5.11)

enables simultaneous estimation of parameters of both the general movement kernel
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and weighting function. This distinguishes my method from step selection approaches
that use an empirical movement kernel to estimate resource selection parameters in a
case-control framework (Fortin et al., 2005; Forester et al., 2009).

In my definition of the weighting function (3.1), I followed the classical formulation
of resource-selection functions and evaluated a movement step based on the information
at the endpoint of the step. In the memory model this means that an animal may cross
recently visited locations on its path although these have low weights. Depending
on the behaviour of the study species, it may be appropriate to change this so that
cognitive map values along the entire path are considered, thus following the idea of
step selection functions (Fortin et al., 2005; Potts et al., 2014). In my framework, it is
straightforward to define the weighting function as a function not only of a; but also
x;_ 1 and to include any information related to the step from @x; ; to ;. Endpoints
are observed locations and therefore have certainly been used. To include information
about entire steps, we must make an assumption about which locations were visited
between observed locations. In the memory model, I assume this is a straight line,
however one may use more sophisticated methods similar to Brownian bridges (Horne
et al., 2007).

I used simulated landscapes and movement data to verify the functionality of my
modelling framework and statistical inference method. Adding the memory process to
the modelling framework considerably increased model complexity and the amount of
data that had to be processed. I was therefore interested in whether I could correctly
detect memory effects in empirical movement patterns and whether parameters that
describe the memory process and its interactions with other variables were possible
to estimate reliably. To perform inference, I used data cloning, which uses MCMC
techniques but facilitates frequentist inference. I used the software package JAGS,
which allowed me to define models in an easily understandable language and provides
a stable implementation of MCMC sampling. JAGS was able to adapt the sampling
process successfully so that parameters of very different magnitude could be reliably
estimated. However, this came at the cost of long computation times (ranging 0.5-5
days per single chain for different models) and high memory needs (ranging 1-5 GB
RAM). Alternatively, I could have used conventional numerical maximization of the
likelihood function, which in this case may have been faster but at the same time more
limited. Because data cloning is based on MCMC, it is amenable to extensions of my
model to include partially observed and hidden processes. I have demonstrated this
with an example on missed observations. Any Bayesian method would provide this

option and it may be a matter of belief whether frequentist of Bayesian approaches
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are used. However, data cloning additionally provides tools to detect parameter es-
timability problems (Lele et al., 2010), which was relevant in my analysis; compare
Appendix B.2. At this stage, data cloning via JAGS was computationally intense, and
it may be worth to explore alternative options, e.g. a ‘home made’ MCMC sampler in
a fast language such as C/C++. Still, with quickly increasing computational capacities
and advances in statistical software, I believe that my method has a promising future.

Verification of the method was successful. In matching model fits, almost all MCMC
runs mixed well and converged. Convergence and mixing problems occurred in non-
matching model fits and especially for parameters that were not meaningful to the
trajectory (e.g. a resource selection parameter for a memory trajectory). For further
application of the method, I have given recommendations how to proceed in cases
on non-convergent model fits (Appendix B.3). Model selection via BIC successfully
identified trajectories’ true underlying mechanisms, and if parameters in a model fit
were applicable to the underlying trajectory, I was able to recover true parameter
values. Simulated movement trajectories were samples of stochastic processes, and
therefore realized parameter values were subject to stochasticity. Thus, parameter
estimates could not be expected to exactly coincide with the true values. Verifying
the functionality of my method was particularly important with respect to the newly
introduced memory process. I conclude that if time since last visit is a driver of
observed movement trajectories, my framework is able to detect this.

When I compared results from model selection to outcomes of hypothesis tests, I
found that model selection was better able to distinguish true underlying mechanisms of
trajectories. By definition, hypothesis tests allow for a Type I error, the size of which is
influenced by the level of the test. However, decreasing the Type I error simultaneously
decreases the power to correctly detect effects of covariates and increases the Type II
error. The model selection framework is not based on this concept, and it proved to
be more accurate in my analysis.

I have built on the framework of spatially explicit resource-selection models and
added the influence of a dynamic memory process on movement decisions by introduc-
ing a dynamic cognitive map and linking it with the movement and resource-selection
process. The existence of cognitive maps in animals is debated, and there is especially
controversy about what form such maps may take, e.g. whether animals use topological
cognitive maps for landmark-based navigation or whether animals can create and use
geometric cognitive maps that preserve angles and distances between locations (Ben-
nett, 1996; Asensio et al., 2011; Collett et al., 2013). This debate also includes the

question whether spatial information in the brain is encoded with respect to the posi-
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tion of the viewer, i.e. egocentrically, or independently of the position of the viewer, i.e.
allocentrically (Yeap, 2014). In my models I do not focus on navigational mechanisms
but decision making processes, and I use the cognitive map as a useful mathematical
tool to model spatial information. Investigation of different navigational mechanisms
within a model-selection framework similar to that presented here could be the goal of
future research. With my model formulation in terms of a cognitive map, I have pro-
vided a general framework for linking movement with information use and acquisition.
I emphasize that within this general formulation, a variety of more specific formulations
of cognitive maps can be realized, tailored to the situations and behavioural processes
of interest.

In my candidate models, I have used time since last visit to locations as an example
of a form of dynamic information that is mediated by the cognitive map. I have demon-
strated how the time since last visit to a location can shape the movement process,
either on their own or in interaction with environmental variables. Such behaviours
can, for instance, occur when animals patrol their home ranges for defence purposes,
when predators counteract behavioural depression, or when animals rely on resources
that vary in their availability due to depletion. However, my modelling framework
and its elements are flexible and can be extended to include other forms of dynamic
information and experiences that animals collect during their movement. For instance,
while animals travel they may gather information about seasonally available resources.
Observations of Mangabeys show evidence that they remember fruiting statuses of fig
trees and use this information to predict the fruiting status of those trees at later times
(Janmaat et al., 2013). Prey species can use their movement to collect information
about the distribution of predators. Such information can enable prey to reduce costly
anti-predatory behaviours and therefore outweigh attack risks connected to the infor-
mation collection. This has been suggested to explain movement behaviour of caribou
towards wolf paths (Latombe et al., 2014).

In my models, I have reconstructed time since last visit from the movement path,
using an initialization period as basis. Because an observed movement path consists
of a discrete series of locations, we must make an assumption about the path between
two successive locations. Here, I simply defined a buffer zone around the straight line
between two locations and considered all locations within this buffer as visited. Another
option would be to formulate time since last visit as a random variable and incorporate
it via a hierarchical model structure, e.g. a state-space model, in which time since last
visit is a hidden process. Such a formulation may also become useful when integrating

a dynamic variable that cannot be reconstructed from the movement path. Including
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a high-dimensional hidden process, however, would increase the computational burden
mentioned above even further.

Although my models describe movement behaviour of individual animals, the ideas
I have presented can also apply to other systems. A specific feature of my models
is the interaction between a movement process and an information, or memory, pro-
cess. A similar dynamic interplay can arise on a larger scale when a species disperses
and expands its range. While moving into a new environment, the dispersing species
might alter the environment and its species composition, which in turn could affect the
dispersing species (Gilman et al., 2010). Such processes could be analyzed with the
same mathematical ideas and modelling tools as I have presented here. Thus, I have
presented a powerful modelling approach to identify spatial memory and dynamic infor-
mation as drivers of movement decisions, and my framework and its elements promise

a wide range of applications within movement ecology.
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Figure 2.1. Example trajectories from the four candidate models, 100 steps long,
with starting location marked by a green box and final location marked by a blue
triangle. All trajectories are plotted on top of an example resource selection function
w(z;a,B) = [1+exp(—a— firi(z) — o 7“2(:8))]_1 generated from two resources
and ry. The null model does not consider resource information and therefore the
null trajectory visits locations irrespective of the resource selection function. The
memory model does not consider resource information either, however, the animal
avoids recently visited locations and is attracted to locations with long time since last
visit. Therefore, the memory trajectory efficiently explores the spatial domain in a
patrolling fashion. In contrast, the resource trajectory mainly remains in areas where
the resource selection function has high values. The combination trajectory shows a
mixture of behaviours from the resource and the memory model. The trajectories were
generated using the first landscape pair and main parameter set from the simulation
study; compare Figure 2.3.
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Figure 2.2. In the memory model, the weight w;(x) of a location & depends on time
since last visit m;_1 () to that location. Locations that have been visited recently have
low weights and are thus avoided. A weight of 0.5 is attained when m;_;(x) = —%

B
(dotted vertical line).
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Figure 2.3. Overview of data simulation and model fitting. For a set of parameter
values, I generated trajectories using all four candidate models. Using each model, I
simulated trajectories on five different landscapes resulting in 20 trajectories. Each
trajectory was then fitted with all four models, leading to a total of 80 model fits.
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Figure 2.4. Each column shows model selection results for one simulated trajectory
when fitted with the null (N), resource (R), memory (M) and combination(C) model.
For each trajectory, I calculated BIC values for the four fitted models, and the figure
shows differences in BIC with respect to the minimal BIC value, i.e. the model with
minimal BIC has ABIC = 0. I excluded model fits with non-convergent MCMC.
Triangles indicate trajectories for which I calculated estimability diagnostics; compare
Appendix B.2.

>
= ]
(8]
1)
o} >
= =
g v
o T '
©
£
©
I o[l !%‘! ! +
Q > i P lidh W‘“ N i
= ] gt .. L\ * o/ P Y A ) | T olo-d-- . I F--- - JRULLSL - --- - Tliea')....... ol .L........LLY
§ - wmﬁ] ::!‘}’ﬁ" R £ TRRRRRRRK «f 4 AREREERIS ( | & TEERRREL |11() N EEREER | B i ;i :
— 1] i
g i
E |
S
5 > .
0
o

\ T T T T T T T T T T
K A Y Qres Omem Acom B+ B2 Bmem Y1 Y2

Figure 2.5. Parameter estimates and their 95% confidence intervals for matching
model fits (each trajectory fitted with the same model that was used to generate the
trajectory). Both parameter estimates and Wald-type confidence intervals are scaled
by the true parameter values (TV): Kk = 5.5, A = 1.6, p = 1, tpes = —1, Omem = —4,
Qcom = =D, B1 =1, P2 =2, Bem = 0.03, 71 = 0.01, 72=0.05.
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Chapter 3

Prudent prey-management: do
wolves keep track of space and

time?

3.1 Introduction

Wolves play on one side of intricate predator-prey interactions. Predators do not only
reduce prey numbers through consumption but also have non-lethal effects on prey that
can be far-reaching. By posing fatal risks, predators create a “landscape of fear”, to
which prey respond by altering their foraging behaviour (Brown et al., 1999; Laundré
et al., 2001). Although anti-predator behaviours increase survival, they also result in
lower consumption rates (Lima & Dill, 1990). For example, in the presence of wolves,
ungulates increase their vigilance and spend more time scanning the environment,
thus reducing the time available for feeding (Laundré et al., 2001; Liley & Creel, 2007).
Additionally, when exposed to predation risk, prey tend to select safer habitats by
moving into open areas where predators can be earlier detected or by seeking shelter in
forested areas (Fortin et al., 2005; Latombe et al., 2014). Because safe habitats often do
not coincide with optimal foraging habitat, this means to forego foraging opportunities.
Predator-induced shifts in behaviour have further implications for communities and
ecosystems because they release herbivory from plants (Fortin et al., 2005; Ripple &
Beschta, 2012) and can also stabilize predator-prey population dynamics (Brown et al.,
1999).

Predators’ non-lethal effects on prey feed back to predators, requiring them to adapt

their behaviour themselves. Anti-predatory behaviours make prey less vulnerable to
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predation, thereby reducing capture rates. Prey availability thus reduced is termed
behavioural depression of prey (Charnov et al., 1976). While prey should adjust their
behaviour to optimize food intake while minimizing predation risk, predators face an-
other optimization problem: they must pursue prey but also temporarily release hunt-
ing pressure to allow prey recovery. Charnov’s marginal value theorem (MVT) predicts
that predators should leave a foraging patch when the rate of food intake drops to the
overall expectation over the available space (Charnov et al., 1976; Charnov, 1976). For
wolves, food intake rate may not be the only measure to determine patch departure
time. Ungulates respond in their behaviour not only to hunting events by wolves but
also to mere wolf presence or passage within distances of one kilometre or more (Liley
& Creel, 2007; Latombe et al., 2014). With this in mind, we may interpret the MVT in
the sense that wolves should give up search in an area when the expectation of making
a successful kill drops below the average over their available space.

To optimize hunting success, wolves should not only optimize giving-up times but
also adjust return times, which is influenced by the time it takes prey to reduce anti-
predator behaviour (Latombe et al., 2014). In a call for a stronger consideration of
predators as strategically behaving actors in predator-prey interactions, Lima (2002)
proposed that predators may adopt a prey-management strategy that is “prudent”
in the sense that it avoids excessive hunting in a given area and instead spreads the
risk over all hunting sites. This idea that wolves actively act against behavioural
depression has been supported by Jedrzejewski et al. (2001), who studied movements
of wolves in Bialowieza Primeval Forest, Poland. They found that wolves changed
their travel routes daily, with little overlap between daily hunting areas, both during
spring-summer and fall-winter seasons. Especially in fall and winter, wolves tended
to rotate through their territories, returning to the same areas roughly every sixth
day. As second explanation for wolves’ rotational movement patterns, Jedrzejewski
et al. (2001) mention territorial mechanisms. Packs strongly defend their territories
against intruders and use scent marks, among other cues, to signal their presence to
foreign wolves (Peters & Mech, 1975; Mech & Boitani, 2006). To maintain active scent-
marks, which are most numerous along territory boundaries, wolves need to revisit
locations and traverse their territories regularly (Peters & Mech, 1975; Zub et al.,
2003). However, the study by Jedrzejewski et al. (2001) remained largely descriptive,
not testing the proposed explanations for their observed movement patterns.

[ apply the models developed in Chapter 2 to movement data of gray wolves (Canis
lupus) in Alberta, Canada, to investigate whether wolves move according to the pru-

dent prey-management strategy. The models describe movement as a decision process
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that can incorporate effects of the environment as well as cognitive effects. Therefore,
I can use them to test wolves’ movement strategies and their underlying mechanisms.
Unless wolves follow fixed routes very strictly, rotational movement behaviour requires
wolves to incorporate information about their own travel history into movement de-
cisions. This information has both a spatial (“where?”) and a temporal (“how long
ago?”) component. Basically, wolves need to follow two rules: 1) avoid recently visited
areas, and 2) travel to areas with long absence. I incorporate these behavioural rules
into the modelling framework and combine them with effects of prey density to test the
hypothesis that wolves counteract behavioural depression of prey. Under the assump-
tion that the hypothesis is true, timing of visits is particularly important for areas with
high prey densities and less relevant for areas without prey. Thus, I expect rules 1) and
2) to drive movement decisions in interaction with prey density. I additionally account
for possible territorial defense mechanisms. Wolves tend to avoid locations close to the
territory boundary, because they pose a greater risk of fatal interactions with foreign
wolves (Mech, 1994). However, to maintain scent-marks along the boundary, especially
rule 2) becomes important for outer regions of territories, and I expect this effect to

reduce an general avoidance of boundary locations, given long absence.

3.2 Methods

3.2.1 Wolf movement and prey data

The data used for this study were collected in an 25,000 km? area west of Rocky
Mountain House, about 200 km southwest of Edmonton in Alberta, Canada (52°27'N,
115°45'W). The area is part of the east slopes of the Rocky Mountains, and terrain
includes gentle foothills in the eastern parts as well as mountains (< 3100m) towards
the west. Much of the landscape is covered by conifer forest (52.1%), which is in-
terspersed with smaller areas of natural lowlands (10.4%), forestry cut-blocks (5.7%)
and stands of deciduous forest (2.7%) (Webb et al., 2008). During the time of data
collection, wolf density was on average 22.3 wolves/1000km? in the eastern part of the
study area, which declined to 9.7 wolves/1000km? towards the more mountainous west
(Webb, 2009).

During the years 2004-2006, wolves were captured and fitted with GPS collars
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(Lotek 3300Sw store-on-board GPS collars); for details see Webb (2009). The collars
were programmed to collect location measurements every two hours. This led to time
series of observed movement steps, each step representing an interval of two hours.
Unsuccessful fix attempts, for example due to poor satellite signal, led to missed ob-
servations. Because I expected rotational movement patterns to be strongest during
the winter, which is the season where cubs are old enough to leave den and rendezvous
sites and travel with the pack, I focused on movement data during the time period
1 November — 15 April. I analyzed data from three wolves with IDs 220, 284, and
285. To avoid strong effects of elevation, for example movements being concentrated
in valleys, I selected individuals with territories in the eastern part of the study area
with lower elevations. Additionally, I only chose wolves with long enough time series
(more than 1200 steps).

In addition to the wolf movement data, information was collected about winter
prey densities in the study area. The four major prey species for wolves were deer
(Odocoileus spp.), elk (Cervus elaphus), moose (Alces alces) and feral horses (Equus
caballus). To obtain spatially-explicit maps of densities, fecal pellet groups deposited
over winter were counted across transects after snow melt. Pellet counts from transects
were interpolated across the study area using inverse-distance weighting. Counts of
pellet groups were converted to numbers of individuals with the help of estimated
numbers of individuals within wildlife management units obtained through winter areal
surveys. For moose and elk, ratios of number of pellet groups to number of individuals
were calculated directly based on the aerial surveys. For deer and feral horses, the
ratio obtained for moose was adjusted for deer and horses based on differences in
winter defecation rates of the species. For more details, see Webb (2009) and McPhee
et al. (2012).

From densities of individual prey species (deer, elk, moose and feral horse), I cal-
culated a weighted sum of all prey densities to obtain a combined measure of available
prey biomass. For this, I used ungulate weights from the literature, averaging estimates
of adult males and females (Knopff et al., 2010). Prey densities (numbers per area)
were available at a resolution of 30 m, that is as number per 900 m?. I aggregated these
data to a coarser spatial resolution with 300 m x 300 m cells. I discretized location
measurements of the movement trajectories accordingly. That is, I considered trajec-
tories as movement on a discrete spatial grid of land cells, using the coordinates of the
cell centres. A continuously measured location was converted to a cell by assigning it
to the cell that it fell in.
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3.2.2 Models

Step probabilities

I analyzed the trajectory of each wolf separately, using the individual-based statisti-
cal models introduced in Chapter 2 (Schligel & Lewis, 2014). The models build on
random walks and incorporate effects of spatial information on movement decisions.
They are based on spatially-explicit resource selection models, which have arisen from
traditional resource selection functions (Manly et al., 2002; Boyce et al., 2002) from a
need to improve the definition of availability of resources (Arthur et al., 1996) and to
incorporate spatially-explicit effects of home ranges (Rhodes et al., 2005).

In these models, the probability of a movement step from location x;_; to location
x; between times t — 1 and t is affected by general movement tendencies as well as
preferences for certain locations based on environmental features and past experiences.

The step probability is given by

k(xy; i) we(Z(z4))
Yoea bz w1) w(Z(2))

p(xe]ai-1) = (3.1)
The function £ is an information-independent movement kernel that reflects general
movement tendencies, that is how far and and in which direction an individual may
travel within a time interval without considering the environment. Thus, the function
k takes care of motion capacities, as defined in the framework by Nathan et al. (2008).
The information-based weighting function w, assigns weights to locations based on
spatial information. Both functions, & and w;, depend on model parameters that I
describe in more detail further below. Note that locations x;_1, z;, 2z represent discrete
cells in space, as described above. The sum in the denominator of equation (3.1) is a
normalization constant over space. To reduce computational burden, I only summed
over a large enough area {2 around the individual’s current location x;_;. I chose this
area large enough so that the probability of stepping outside this area was negligibly
small.

The weighting function wy is a central element of this model. Given the probability
that an individual may encounter a location based on its motion capacities, which is
given by the kernel k, the weighting function gives the probability that an individual
may select a location based on certain features of that location. In general, relevant
features could be topographical, for example elevation, the land cover type, food avail-
ability, or even past experiences about the location. The weighting function is thus a
resource-selection probability function (RSPF) (Lele & Keim, 2006; Lele et al., 2013).
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An RSPF can take various forms, and here I used one of the most common forms, in
which the RSPF is a logistic function. The value of the weighting function at location

z is then defined as

wi(Z(x)) = [1+exp(—a = B Ti(x) = f(Zolx),7)] ", (3.2)

where the dot - defines the dot product between two vectors. The vector Z,(z) contains
all spatial information about location x at time t. The spatial information Z;(z) about
location x may change over time, which also leads to a change in the weighting function.
Therefore, I use the subscript ¢ for both the spatial information and the weighting
function.

The parameters a, 3, and « shape the weighting function. The parameter o can
be thought of as an intercept that determines the values of the weighting function
when the information variables are zero. Generally, parameters 8 and = influence
the direction of selection and selection strength. The weighting function includes an
additive term 3 - Z;(z) and a multiplicative term f(Z,(x), ), which contains terms of
the form v - Z,;(z) - Zyo(z). Note that because the weighting function is non-linear,
both additive and multiplicative terms can lead to interactive effects on the overall
probability of selection. This is in contrast to linear models (e.g. linear regression
models), in which additive (i.e. independent) and multiplicative (i.e. interactive) terms
can be distinguished.

The general movement kernel k is the density function of a random walk in dis-
cretized two-dimensional space. For this, I sampled a continuous-space density at
discrete points (representing the centre location of each cell in the landscape). The
normalization constant in equation (3.1) assures that step probabilities are properly
normalized over the discretized space. I used a Weibull distribution for step lengths
(Morales et al., 2004) and assumed a uniform distribution for bearings. A major rea-
son for using simply a uniform distribution for bearings was to retain as much steps as
possible. In a correlated random walk, bearings are autocorrelated, and therefore three
successive location measurements are needed to define the probability for one move-
ment step. With missing measurements in the time series, this would additionally

decrease the number of available steps. Thus the kernel is given by

k(y;x) = 27T||$1— y||§ (”x ; y”)nleXp (— (L:y”)ﬁ) ; (3.3)

where k and o are the shape and scale parameter of the Weibull distribution, respec-
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tively. When the kernel k is included in the step probability (3.1), the factor % can be
1

omitted, because it cancels with the denominator. The factor To=al is due to a change
from polar coordinates (using step lengths and bearing to define a step) to euclidean
spatial coordinates.

In this analysis, I concentrated on movement decisions within a wolf’s territory, and
I defined probabilities for steps outside the territory to be zero. This means that, given
a current location x;_; close to the territory boundary, the step probability (3.1) is zero
for x; outside the territory. For locations inside the territory, the probabilities are ad-
justed accordingly via the normalization constant in equation (3.1) by only summing
over locations within the territory. The main reason for this was to avoid biased results.
Especially in areas of high wolf density, territory formation is not only influenced by
available resources but also other wolf packs. Therefore, if a wolf did not visit a location
outside the territory, this may have been due not only to the spatial information con-
sidered in Z;, but also to the presence of other wolf packs or anthropogenic features. I
did not consider these effects in the weighting function but concentrated on movement
decisions of wolves on a daily basis within the territory. To define the territory, I used
an estimate of space use based on Brownian bridges (Horne et al., 2007). Brownian
bridges estimate the movement path between two successive locations of a sampled
trajectory by assuming Brownian motion, considering both the distance between the
locations and the length of the time interval. Brownian bridges can be used to estimate
density functions for space use not only from independent observations but based on
the full movement path of an animal. To calculate the Brownian bridge home range
estimate, I used the R package adehabitatHR, which implements the method proposed
by Horne et al. (2007) (Calenge, 2006). The calculation of the utilization distribution
required two parameters. Because movement trajectories were defined on discretized
space with 300 x 300 m cells, I chose a small value (0.05) for the parameter represent-
ing location measurement error. The second parameter, the Brownian motion variance
parameter, is related to the speed of the animal, and was obtained through maximum
likelihood estimation based on the movement trajectory (Horne et al., 2007). From
the resulting utilization distribution, I defined the territory by all locations within the
99.9% quantile. This high quantile was chosen to ensure that all locations of the trajec-
tory were contained within one connected area (without single points or small islands),
and with this choice of the home range this was achieved with very few exceptions. I
also chose the high quantile from a conservative perspective to avoid restricting step

probabilities too much.
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Spatial information

To test the hypothesized explanations of rotational movement behaviour, I considered
three different types of spatial information in the weighting function (3.2). First, I
included the combined prey density measure, which was a weighted sum of densities
over all prey species according to their body mass. I used this combined prey density
to average out species-specific effects. Prey availabilities of individual species varied
across territories, and wolves’ habitat selection may vary with prey availability but
also landscape configurations (Milakovic et al., 2011). Such differences were not the
focus here, and the combined prey density allowed to consider prey availability more
generally. Second, for territorial defense mechanisms, locations closer to the territory
boundary play an important role. Therefore I defined a type of spatial information to
give the minimum distance from each location to the territory boundary. The territory
boundary is the outer edge of the territory estimate based on Brownian bridges. Note
that this is reverse from typically used measures, which calculate the distance from a
central location (Rhodes et al., 2005).

The third type of spatial information was based on an individual’s own travel his-
tory, which changed at every time step. I defined the variable time since last visit
(TSLV) to specify at each time step t, and for each location z, the time since the
animal had last been to the location, denoted by m,(z). For example, if between times
t — 1 and t the animal moved from location x;_; to x;, I considered all locations on
the path from x;_; to x; as most recently visited and and set their value of TSLV at
time ¢ to be one. That is, I defined m,(z) = 1 for all locations z that lie on the path
between z; 1 and z;. For the calculation of TSLV, I defined the path to be the straight
line between x and y. Because it is unlikely that an individual moved in a straight
line, T also considered locations within a certain distance of the line as visited (for the
purpose of calculating TSLV). For these locations, TSLV was also set to one. Using a
buffer around the straight line between two locations is a simple way of accounting for
the fact that we do not observe all locations that an animal visits on its path. A more
sophisticated approach would be to implement, for example, a Brownian bridge (Horne
et al., 2007) for the estimated path between two successive locations. One could even go
further and expand a Brownian bridge model to include the more complex movement
mechanisms studied here.

For all other locations that were not considered visited, TSLV increased by one at
every time step. That is, I set m;(2) = my_1(z) + 1 for locations z not visited during
times ¢ — 1 and ¢. This led to a map with values of TSLV similar to a map with

environmental information, but which changes at every time step. TSLV increased in
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areas that the individual stayed away from and was reset to one whenever an individual
visited a location, that is when it came sufficiently close to the location. The dynamic
map was updated at the end of each movement step, and therefore the weighting
function w; at time t was based on TSLV at time ¢ — 1, m;_;(z) for all .

Given TSLV for some point in time, it is straightforward to update it for all following
time steps based on the animal’s movement path. To obtain an initial map of TSLV,
I separated movement trajectories into two segments. I used the first 300 or 400
movement steps, depending on data availability, to initialize TSLV and used the rest
of the trajectory for statistical inference. The time that corresponded to the beginning
of the second part of the trajectory was set to be t = 1. I calculated TSLV at t = 1
for all locations that were visited during the initialization phase. For locations that
were not visited, I set TSLV to the length of the initialization phase, that is to 300 or
400, as appropriate. Note that in Chapter 2, the variable TSLV was described in the
section “Memory model” and the spatial map with values of TSLV was referred to as
cognitive map. The variable remains the same.

To calculate TSLV, it was necessary to define which locations were considered as
visited, additionally to the straight line between the beginning and end of a movement
step. Because [ aimed to understand the influence of the travel history in relation to
prey, I took into account at which distances wolf presence influences prey behaviour.
Studies on elk-wolf relationships found that wolf presence can affect elk behaviour,
such as group size, vigilance, and movement rates, at distances of 1-5 km (Liley &
Creel, 2007; Proffitt et al., 2009). Here, I used discretized space with landscape cells
of size 300 x 300 m. I defined a buffer around a cell by using the distance measure
d(x,y) = |Teast — Yeast| T |Znorth — Ynorth|, Where the subscripts relate to the eastern and
northern component of a two-dimensional location. The coordinates were taken from
the centre of each cell. With this distance measure, the buffer becomes a diamond-
shaped area around the centre cell. If we define a buffer of size ¢ around the location
x, the corners of the buffer area are those cells that are § cells away from z in exact
northern, eastern, southern and western direction. For the calculation of TSLV, I used
a buffer of size of four cells. I calculated the buffer for each cell that is intersected by
the straight line of a step. A distance of four cells in the discretized space corresponds
to 1.2 km in continuous space.

All of the trajectories contained missed observations. If at a time step ¢ the corre-
sponding location was missing, I updated TSLV by increasing TSLV for all locations
by one. I did not reset any value to one, because there was no current path available.

However, I accounted for this later at the next available time step. At that time, I reset
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TSLV to one for the entire path since the last available location. Because at least two
time intervals had passed since the last location, I increased the buffer size for these
longer steps by two.

The different types of spatial information varied greatly in their ranges, and there-
fore I transformed most of them before inclusion in the models. Because TSLF exhib-
ited a very wide range of values, I log-transformed it. In contrast, prey densities were
very low (all below one, often substantially), and I standardized them by subtracting
the mean and dividing by the standard deviation (Lele, 2009). To calculate the mean
and standard deviation for prey density, I only used values within the minimum con-
vex polygon of the relevant movement trajectory. Measurements of distance to the
territory boundary were left untransformed.

I tested the effect of the three different types of spatial information by including
them in different combinations in the weighting function. I tested all three variables
as additive terms, and additionally considered multiplicative terms between TSLV and

prey density and between TSLV and distance to territory boundary.

3.2.3 Parameter estimation and model selection

I fitted individual models to data within a maximum-likelihood framework. The like-
lihood function could be composed from the step probabilities (3.1). If trajectories
were available completely, that is if locations were observed for every time step, one
could simply multiply the probabilities for all steps because of the Markov structure
of the model. However, some observations were missing in all of the trajectories. For
steps with missing start or end location, no step length can be determined. Therefore,
I omitted these steps and conditioned the likelihood function on the first location of
each segment of successively available locations. By using this method, I assumed that
steps were missing randomly and not correlated to environmental variables.

I further omitted steps with length below a threshold. This was mainly due to the
inclusion of the variable TSLV. Wolves express different behavioural modes, such as
handling a kill, resting away from a kill site, or relocating (Franke et al., 2006). When
wolves are at a Kkill site or resting, movement steps tend to be short, and I assumed that
TSLV was less likely to be important for these steps. Timing may play a role when
wolves revisit a kill site, however, I was interested in understanding the effect of TSLV
with respect to territorial defense and behavioural depression of prey. Therefore, I
focused on movement steps that were more likely associated with relocating behaviour.
Franke et al. (2006) used a hidden Markov model to identify the three major modes
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“bedding”, “localized activity” and “relocating”. They found that the relocating mode
was characterized by steps with length above 200 m, with the majority of steps between
500-2500 m. These distances were obtained using movement data with hourly location
measurements and therefore were not immediately transferrable to my study with 2-
hourly movement data. Roughly, steps at a rate of 500 meter per hour may be converted
to 1000 meter per two hours, although it is known that measurements of travel distance
are influenced by sampling rate, and the longer the time interval between location
measurements the larger the risk of underestimating true travel distance (Pépin et al.,
2004; Rowcliffe et al., 2012). Still, with these considerations it seemed appropriate
to set the threshold for defining relocating steps at about 1000 m. If movement was
straight in east-west or north-south direction, 1000m corresponded to about three cells
in the discretized space. Another point to consider for the threshold was the use of the
buffer for TSLV. If a step was within the buffer size of the last visited location, the
step naturally ended at a location with TSLV=1. In contrast, if a step was larger than
the buffer size, which was four cells, it could end at a location with TSL=1, especially
when the animal backtracked. However, there was also a chance that the step ended in
a location outside the buffer of the previous step with TSLV > 1. To avoid an artificial
bias towards smaller values of TSLV for small steps, I defined the threshold to be five
cells, corresponding roughly to 1500 m in continuous space. The likelihood function

was then

N
L(K'> Uaﬁ>7) = Hp(xtz Tg;—1, '%707,67'7) (34)

for all available steps from zy,_; to x;, with ||zt,_1 — z,|| > 5. Note that I omitted
small steps after calculating TSLV for the entire time series. Therefore, steps used for
the final analysis have appropriate values of TSLV, representing correct times based
on the full path.

I obtained parameter estimates by optimizing the likelihood function using a Nelder-
Mead algorithm implemented in R (R Core team, 2013). To find the global maximum,
I optimized the likelihood function starting at various points in parameter space. From
these results, I chose the parameters with the highest likelihood value and used them
as starting point for the final optimization. I used an estimate of the Hessian matrix
of the log-likelihood at the optimal parameter values to obtain standard errors of the
maximum likelihood estimates. To find the best fitting model, 1 performed model
selection via AIC.

I analyzed parameter estimates for their effects on movement decisions. Parameter

estimates of the weighting function w; are best understood when considering their
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implications for the weighting function itself. In the step probabilities (3.1), the
weighting function wy(Z,(z)) is a function of geographical space (sensu Aarts et al.
(2011)), but via the spatial information Z;(x) at each location. The weighting function
can alternatively be viewed as a function w;(Z) over the different ranges of the three
information variables TSLV, prey density, and distance to territory boundary. This
corresponds to viewing the weighting function in environmental space sensu Aarts
et al. (2011). This perspective revealed the effects of the information variables on the
probability of selecting a location.

To test whether wolves showed rotational movement patterns per se, I inspected
the resulting weighting function from a fit with the pure model that only included
TSLV as information variable. Because the weighting function is modelled after a
logistic function, I expected to see a switching behaviour with a generally positive
relationship between TSLV and probability of selection: low probability of selection
for small values of TSLV and high probability of selection for larger values of TSLV.
Under the hypothesis that wolves counteract behavioural depression of prey, I expected
models that included prey density to perform better than the null model. The effect
of TSLV on the probability of selection should vary between locations with low and
locations with high prey density. This could be either in form of shifting the switching
curve, by strengthening the switching behaviour (steeper sigmoidal curve), or both.
With respect to the distance variable, I generally expected to see a positive effect on
the probability of selection, which would reflect a tendency to prefer locations further
away from the boundary. If TSLV played a role for territorial defense mechanisms,
I expected to see such an overall avoidance of boundary locations become weaker as
TSLV increased.

3.3 Results

Wolf movement time series spanned approximately four months (December to April;
wolves 284, 285) or five months (November to April; wolf 220), with successful fix rates
ranging 82-91%. After selecting relocating steps, the number of available steps for
analysis were 302 (wolf 220), 243 (wolf 284) and 264 (wolf 285). Prey distributions
within territories varied, however, generally many of the high prey density areas were
located in the outer regions of territories (Figure 3.1).

When considering only pure models that tested the three information variables
independently, the pure time model (with TSLV) was always significantly better than
the null model, with large differences in AIC ranging 33.8-63.4 for the three wolves
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(Table 3.1). However, when inspecting the effect of TSLV on the weighting function
wy(Z), that is the probability of selection in environmental space, I found it to be weak
(Figure 3.2a-c). Although locations with very small value of TSLV had low probability
of selection, the weighting function quickly reached one, indicating a nearly indifferent
behaviour with respect to TSLV. The pure prey model was only in one case better
than the null model, and the effective influence of prey density on the probability of
selection was negligible. The pure prey model always had considerably higher AIC
than the pure time model. The pure distance model was better than the null model
for wolves 284 and 285. For wolf 284, locations closer to the territory boundary had a
low probability of selection (Figure 3.2d). For wolf 285, this effect was only present for
very small distances from the boundary (Figure 3.2e). Note that territory estimates
were obtained in the same way for all wolves, but their geometry and the configuration
of visited locations within the territory varied (Figure 3.1). Again, the pure distance
model had higher AIC than the pure time model.

Model selection via AIC revealed two models that generally described the data
best. These were the model that included both additive and multiplicative effects of
TSLV and distance to territory boundary and the model that additionally had additive
and multiplicative terms of prey density (Table 3.1). As mentioned above, all models
with more than one variable must be considered as interactive models because of the
non-linearity of the weighting function. However, additive and multiplicative terms
in the weighting function act on different aspects of the resulting sigmoidal curve in
environmental space, w,(Z). When considering the weighting function as a function of
one of the variables, e.g. TSLV, additive terms of the other variables cause the sigmoidal
curve to shift horizontally, whereas multiplicative terms influence the steepness of the
curve. Thus, additive terms shift an individual’s preferences, whereas multiplicative
terms may strengthen, weaken, or even reverse, preferential behaviour.

Within the best models, the overall positive relationship between TSLV and prob-
ability of selection observed in the pure time model remained (Table 3.2). Although
the additive selection coefficient Sine for TSLV was negative for wolf 284, the overall
coefficient Bime + Vaist - dist + Yprey - Prey, considering all interactions, was only negative
for very small values of distance. When this was the case, the entire combination of
parameters resulted in a weighting function (as function of TSLV) close to zero, such
that the negative slope had only a very weak effect. For most parameter combinations,
the overall selection coefficient for TSLV was positive. The overall relationship between
distance to territory boundary and probability of selection was positive as well, that

is wolves generally preferred locations away from the boundary. When prey density
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was included in the best model, the relationship between prey density and probability
of selection was positive, that is locations with higher prey densities were preferred.
For wolf 285, the multiplicative prey parameter 7,., Was negative, however, because
the additive prey parameter 3., was larger, the overall selection coefficient for prey,
Bprey + Yprey - 10g(TSLV), was always positive.

All best models included an interactive effect of TSLV and distance to territory
boundary, and the effect on the weighting function w;(Z), given the probability of
selection, was similar for all three wolves. Within central areas of the territory (corre-
sponding to larger values of distance to boundary), the weighting function was nearly
one for the entire range of TSLV except for very low values (Figure 3.3a, 3.4a, 3.5a).
This reflected an almost constant probability of selection over most of the range of
TSLV, and probability of selection was only smaller for very recently visited locations.
In areas closer to the territory boundary (corresponding to lower values of distance),
the effect of TSLV became more pronounced. The range of TSLV with low probability
of selection extended, followed by a switch towards high probability of selection for
locations with higher TSLV. When considering the weighting function as a function
of distance to boundary, I observed a similar general pattern as presented in the pure
distance model, boundary locations having a lower probability of selection than loca-
tions further away from the boundary (Figure 3.3b). However, in combination with
TSLV, the avoidance of boundary locations became weaker as TSLV increased. After
several days of absence, the probability of selection for locations close to the boundary
increased to values considerable above zero (Figure 3.3b).

For two of the wolves, the best model was the most complex model with interaction
terms for both distance to boundary and prey density. However, for wolf 284, the
difference between this model and the model that only included TSLV and distance
to boundary was small (AAIC = 1). This was also reflected in an only weak effect of
prey density on the weighting function. Close to the territory boundary, the weighting
function (as function of TSLV) was slightly steeper for high prey densities compared to
lower prey densities (Figure 3.4b,c). Thus, selection with respect to TSLV is stronger
in areas with high prey density. This effect vanished as distance to boundary became
larger (Figure 3.4d).

In contrast, for wolf 285, the model with prey density was significantly better
than the model with distance only (AAIC = 5.1). Again, the effect of prey density
on the weighting function occurred mainly in the outer regions of the territory (Fig-
ure 3.5b,c,d). Here, prey density acted mainly through the additive term by shifting
the sigmoidal curve of TSLV (Figure 3.5b,c) to the right. This resulted in a larger

47



CHAPTER 3. PRUDENT PREY-MANAGEMENT BY WOLVES

range of TSLV values being avoided (low probability of selection). Or reworded, longer
times of absence were required before the individual became likely to return. For ex-
ample, fixing distance at the 0.1 quantile of attained values and prey density at the
0.95 quantile of attained values, the probability of selecting such a location started to
exceed 0.5 when TSLV corresponded to approximately three days (Figure 3.5b). For
areas further away from the boundary, the effect of TSLV vanished almost entirely
(Figure 3.5d).

Parameter estimates of the movement kernel k showed a systematic trend when
comparing between estimates obtained from the null model and from the best model
according to AIC. Both k£ and &, the shape and scale of the Weibull distribution for
step length, respectively, were smaller for the better fitting model with inclusion of
spatial information (Table 3.3). This resulted in a lower mean of the resulting Weibull
distribution in all cases (Table 3.3).

3.4 Discussion

I used a novel method to investigate how the spatio-temporal component of an individ-
ual’s own travel history influences wolf movement decisions in relation to prey densities
and territory effects. With this approach, I tested whether observed wolf movement
patterns support the hypothesis that wolves follow a prudent prey-management strat-
egy. This strategy aims at counteracting anti-predator behaviour in prey by avoiding
too frequent and prolonged exposure of prey to predation risk. Instead, the predator
spreads the risk temporally and spatially. Managing prey in this way should be most
successful when a predator has exclusive access to prey, which could be one of the ben-
efits of a territory (Charnov et al., 1976; Davies & Houston, 1981). Although wolves
inhabit territories in packs and not alone, pack member usually do not act as competi-
tors in hunting (Mech & Boitani, 2006). Therefore, a prey-management strategy could
be advantageous for wolves.

Additionally to conventional environmental variables, I included the variable time
since last visit into a movement-based resource selection model. The variable TSLV en-
codes both spatial and temporal information about previous visits to locations. There-
fore, keeping track of TSLV for movement decisions suggests spatial memory and a
sense of time. Wolves may also use external cues to guide them, for example their own
scent marks can convey information about their travel history (Peters & Mech, 1975).
However, scent marks can only be utilized when encountered. TSLV changes perma-

nently as result of movement, while I assumed that it influences movement decisions at
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the same time. Resource selection must be viewed in relation to what is available to an
individual, and a suitable definition of what constitutes available becomes crucial where
availability of the variable TSLV changes permanently and interacts with movement.
The movement-based model is suitable for this situations, as it assesses availability for
every step based on the current position of the individual via the movement kernel k.
An additional advantage of the movement-based approach is that it allows simul-
taneous estimation of movement kernel and RSPF parameters. This is in contrast to
the more traditional step selection approach that first estimates an empirical kernel
from the data, and in a second step uses this to sample available control points (Fortin
et al., 2005; Forester et al., 2009). The problem with this approach is that the empirical
kernel is already likely influenced by selective behaviour, which can bias the following
actual resource selection estimation (Forester et al., 2009). Within the movement-based
framework here, the step probability given in equation (3.1) is the joint probability of
a step being available by movement capacities and being selected based on spatial in-
formation. The joint probability is equivalently formulated as probability of selecting
a location based on its characteristics, conditional on the location being available by
movement capacities. During statistical inference, all parameters are estimated simul-
taneously. The difference between the two approaches becomes also apparent when
comparing parameter estimates of the kernel k between the null and the best model.
The estimates from the null model correspond to those that would be obtained for
the empirical kernel in the traditional step-selection approach. I observed that these
estimates were higher and resulted in a higher mean of the Weibull distribution for
step length, compared to the estimates from the integrated approach (estimates from
the best model). Thus, the null model overestimates general movement tendencies.
During model selection, models that included TSLV were always considerably bet-
ter than models that did not include this variable. Therefore, I did not consider an
interactive model of distance and prey only. The dominance of TSLV suggests that
this variable played a role for movement decisions. However, TSLV only effectively
influenced the weighting function, which is the RSPF, in areas close to the territory
boundary, whereas further away from the boundary, the RSPF remained nearly con-
stant. The fact that TSLV did not influence movement more generally was contrary to
my expectations. If wolves had a general tendency to avoid recently visited areas for
several days before returning, as suggested by the work of Jedrzejewski et al. (2001),
I would have expected a sigmoidal shape of the weighting function, as function of
log(TSLV), also within inner areas of the territory. It is possible that I did not observe
a stronger effect of TSLV within the territory due to methodological choices. First, the
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time interval between successive locations was two hours, and TSLV was measured at
the same scale. It is possible that this time scale is unsuitable (possibly too small) to
observe an effect of TSLV for rotational movement patterns. Second, an underlying as-
sumption of the movement model was that TSLV influenced each relocating step. This
reflects the premise that a wolf completely avoids an area recently visited. However,
it may be necessary to release this strict assumption. For example, steps may cross
recent paths to reach other important areas of the territory.

My observation that the effect of TSLV on the weighting function changed towards
the territory boundary supports the hypothesis that TSLV played a role for territorial
defense mechanisms. The results suggest that generally wolves preferred locations
within some safety distance from the boundary. This is in line with observations that
the risk for a wolf to be killed in an encounter with neighbouring wolves increases
towards the boundary (Mech, 1994). The probability of selecting a location closer to
the boundary became larger when TSLV increased. This suggests that when durations
of absence from boundary locations were long enough, these locations switched from
being unattractive to being attractive. This agrees with the need to renew scent marks
or similar signs of presence (Peters & Mech, 1975).

Because of the territories’ geometry, the amount of locations with certain distance
values varies within a territory, and generally there are more boundary than central
locations. One may suspect that this could lead to a false positive interaction effect
of TSLV and distance. However, under the Null model movement is a simple random
walk according to the kernel k, which is radially-symmetric and assumes a Weibull
distribution for step lengths. For diffusive movement, we would expect a spatially
uniform distribution at the steady state (Turchin, 1998). For my Null model, I expect
a similar behaviour, which means that under the Null model, an animal should have
the same probability of being in any location, whether close to the boundary or not.
Therefore, and because my model is spatially-explicit, I consider the observed effect
of distance to be a true effect. Additionally, my results from Chapter 2 demonstrate
that misclassification of models is rare in this modelling framework. The models in
Chapter 2 did not include the geometrical distance measure, however, future work
could rule out the possibility of false positive results for effects of distance, using a
simulation approach as that presented in Chapter 2.

For one of the wolves, the full model with prey density was significantly better than
the less complex model without prey density. For this wolf with ID 285, prey density
influenced the weighting function in a way that agreed with the hypothesis that wolves

counteract behavioural depression of prey. For locations with low prey density, TSLV
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had only a weak effect on the RSPF, suggesting an indifferent behaviour with respect
to TSLV in areas of low prey density. With increasing prey density, the effect of
TSLV became more pronounced and differentiated, with higher probability of selection
for locations with high TSLV. This may be interpreted as a tendency of the wolf to
avoid areas with high prey density for some time before returning. Effects of prey
occurred primarily towards the territory boundary and less in more central areas of
the territory. This could be due to the territories’ geometry and prey distribution.
Especially in the territory of wolf 285, higher prey densities occurred rather in regions
with smaller distance to boundary. In general, in all three territories high prey densities
occurred often towards the territory boundaries. This may reflect a strategy of prey to
inhabit buffer zones between different wolf pack’s territories (Lewis & Murray, 1993).
To discern the effects of prey and territory boundary, one would have to investigate
possible interactions between prey density and distance to territory boundary. Based
on my results, this would be an important step for future analysis.

However, overall effects of prey density were less pronounced than expected. When
considering only pure models, the model with prey density received the weakest sup-
port from the data. A reason for finding only few effects of prey density may lie in the
data. First, is is possible that the measure for prey density used was not the best to
reflect prey availability for wolves. Prey availability may not only be driven by prey
abundance and prey habitat selection but also by landscape features that enhance en-
counter rates and prey vulnerability (Bergman et al., 2006; Milakovic et al., 2011).
Second, several approximating steps, including interpolation via habitat models and
conversion from fecal pellet counts to numbers of individuals, were required to obtain
estimates of prey densities across the study area. All these steps likely introduced inac-
curacies. Also, fecal pellet counts were based on pellets deposited over an entire winter.
This may have identified areas with high prey accumulation at some point during the
winter, but accumulation may have been temporary only. Prey densities thus obtained
rather gave estimates of expected prey densities based on habitat features, and actual
presence of prey may have deviated considerably. All these reasons likely decreased the
ability to detect effects of prey densities on wolf movement decisions. Further analyses,

considering more individual wolves, will help to reach stronger conclusions.
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Table 3.1. Model selection results. Values of AAIC = AIC — AIC,,;, refer to the
difference between each model and the best model with AAIC = 0. Highlighted in
grey are best models and in addition more parsimonious models with AAIC < 2.

wolf 220 wolf 284 wolf 285
Model AIC  AAIC | AIC AAIC| AIC AAIC
null 4189.2 440 |3621.4 1052 | 3643.6  74.9
TSLV 41554 10.2 | 3558.0  41.8 | 3602.5 3338
dist 4189.4 441 | 35773 611 | 3623.8 55.1
prey 4184.7 395 | 3625.4 109.2 | 3645.6 76.9
TSLV+dist 4153.6 8.4 |3559.0  42.7 |3599.9 313
TSLV +prey 4156.5 11.3 | 3554.9  38.7 | 3600.8 32.2
dist-+prey 4190.2  44.9 | 3574.8 585 | 36184  49.7
TSLV+dist-+prey 4155.6 104 | 3555.3  39.0 | 3599.5 309

TSLV+dist+TSLV*dist 4145.2 0 3517.2 1.0 | 3573.8 5.1
TSLV+prey+TSLV*prey 4156.5 11.3 | 3556.5  40.2 | 3600.1 314

TSLV+dist+prey
+TSLV*dist+TSLV*prey 41484 3.2 | 3516.2 0 3568.7 0
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Table 3.2. Parameter estimates with their standard errors for the weighting function
wy. Given are estimates from the best model fit; compare Table 3.1. For wolf 284,
estimate are given for the two best models with AAIC = 0 (full model) and AAIC =1
(distance interaction model).

a Btime Bdist ﬁprey Vdist Vprey
wolf 220 Est. —2.33 0.441 0.072 — 0.206 —
SE 0.59  0.151 0.050 — 0.083 —

wolf 284 Est. —3.16 —0.548 0.018 0.284 0.335 0.237
AAIC=0 SE 0.85 0.292 0.055 0.328 0.108 0.174

wolf 284 BEst. —3.27 —-0.270 0.028 — 0.255 —
AAIC=1 SE 0.75 0.345 0.057 — 0.029 —

BEst. —4.25 0.251 0.204 1.465 0.863 —0.363

wolf 285 gp 105 0.228 0007 0.657 0308  0.157

Table 3.3. Parameter estimates with their standard errors for the movement kernel k.
The last column gives the mean of the resulting Weibull distribution for step length.
The best model is the one with AAIC = 0. For wolf 284, this is the model with both
interactions; compare Table 3.1.

Mean
# SE &6 SE 6I(1+13)

null 236 0.10 13.37 0.37 11.84
best 2.01 0.12 12.22 0.12 10.83

null 1.94 0.08 15.95 0.60 14.15
best 1.55 0.10 13.96 0.10 12.55

null 226 0.10 12.83 0.39 11.37
best 1.87 0.12 11.45 0.12 10.17

wolf 220

wolf 284

wolf 285
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Figure 3.1. Wolf observations on prey density maps. Panels correspond to wolves
with IDs a) 220, b) 284, and c) 285. Depicted are only relocating steps (lines),
with end points of steps marked by small circles. Colours reflect the combined prey
density measure, which was standardized for each wolf separately. The maps show the
territories obtained from a Brownian bridge home range estimate, which was based on
the full trajectory (consisting of relocating and all other steps).

o4



CHAPTER 3. PRUDENT PREY-MANAGEMENT BY WOLVES

a) ~ - b) ~ c) — A
5 9 5 9 5 9
o - o - o H
T T T T 1 T T T T 1 T T T T 1
0o 1 2 3 4 5 0o 1 2 3 4 5 0o 1 2 3 4 5
log(TSLV) log(TSLV) log(TSLV)
d) ~ e) —
5 9 5 9
o - o -
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
distance to boundary distance to boundary

Figure 3.2. Panels a), b), c): Weighting function w;(Z) as a function of TSLV (on
a logarithmic scale as used in the model) using parameter estimates from a fit with
the pure model that only included TSLV for a) wolf 220, b) wolf 284, and c) wolf 285.
The probability of selection reaches values close to one quickly, for values of log(TSLV)
that correspond to only very few time steps. Panels d), e): Weighting function w;(Z)
as a function of distance using parameter estimates from a fit with the pure distance
model for the two wolves for which this fit was significantly better than the null model,
which were d) wolf 284, e) wolf 285.
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Figure 3.3. Wolf 220. Panel a): Weighting function w;(Z) as a function of TSLV
(on a logarithmic scale as used in the model) and distance to territory boundary, using
parameter estimates from the best fitting model; compare Table 3.2. Note that here
the weighting function is displayed over the ranges of the information variables instead
of geographical space. Panel b): Slice through the weighting function for four fixed
values of TSLV: 1 (visited during last step, solid line), 3 (last visit few hours ago, dashed
line), 12 (last visit one day ago, dotted line), 60 (last visit five days ago, dot-dashed
line).
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Figure 3.4. Wolf 284. Weighting function w;(Z) using parameter estimates from the
best fitting model (AAIC = 0) with both interaction terms; compare Table 3.2). Note
that here the weighting function is displayed over the ranges of the information variables
instead of geographical space. Panel a): Prey density is fixed at zero, corresponding
to the mean value over the territory. Panel b): Slice through the previous plot at
low distance 5.1 (0.05 quantile of attained values among relocating steps; black solid
line). The same slice is depicted when prey density is fixed at -1.3 (0.05 quantile of
attained values; red dashed line) and at 1.6 (0.95 quantile of attained values; blue
dotted line). Panel c): Distance to boundary fixed at 5.1 (0.05 quantile of attained
values). Panel d): Distance to boundary fixed at 9.1 (mean distance value over the
territory).
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Figure 3.5. Wolf 285. Weighting function w;(Z), using parameter estimates from
the best fitting model with both interaction terms; compare Table 3.2). Note that
here the weighting function is displayed over the ranges of the information variables
instead of geographical space. Panel a): Prey density is fixed at zero, corresponding
to the mean value over the territory. Panel b): Slice through the previous plot at
low distance 2.2 (0.1 quantile of attained values among relocating steps; black solid
line). The same slice is depicted when prey density is fixed at -2.1 (0.05 quantile of
attained values; red dashed line) and at 1.27 (0.95 quantile of attained values; blue
dotted line). Panel c): Distance to boundary fixed at 2.2 (0.1 quantile of attained
values). Panel d): Distance to boundary fixed at 7.14 (mean distance value over the
territory).
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Chapter 4

A framework for analyzing
movement models’ robustness

against varying temporal

discretization!

4.1 Introduction

To learn about animal movement behaviour, researchers across the world collect in-
creasing amounts of data for many different species. Often, these data consist of time
series of individual animals’ locations, together with information about environmental
aspects such as habitat and resource availability (Rhodes et al., 2005; Mueller et al.,
2008), topography (Moorcroft & Lewis, 2006; Squires et al., 2013), presence of preda-
tors (Latombe et al., 2014), and anthropogenic features (Tracey et al., 2010; Colchero
et al., 2010; Latham et al., 2011). Additional biotelemetry data even can give us
cues about activity patterns, for example via acceleration sensors (Brown et al., 2012;
Frohlich et al., 2012), or about the animal’s internal state, for example via internal
sensors that measure stomach temperature and indicate food ingestion (Austin et al.,
2006; Bestley et al., 2008). Our ability to collect more extensive and detailed data
provides an unprecedented opportunity to understand the mechanisms of movement
behaviour in greater detail (Hebblewhite & Haydon, 2010; Bridge et al., 2011).

A lot of work has been dedicated towards increasing the efficacy and accuracy of

LA version of the chapter has been submitted to Journal of Mathematical Biology as: Schligel, U.E.
& Lewis, M.A. A framework for analyzing movement models’ robustness against varying temporal
discretization.
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tagging devices, and much improvement has been achieved. For example, modern GPS
devices can measure locations with an accuracy of 10-20 m and less than 24 per cent
data loss (Frair et al., 2010; Rowcliffe et al., 2012). At the same time, new methods for
analyzing movement data are emerging, allowing us to ask more complex and in-depth
questions about movement behaviour. Hierarchical modelling approaches including
state-space models help us to split movement paths into behaviourally meaningful
segments and to estimate activity budgets for behaviours such as resting, foraging and
travelling (Morales et al., 2004; Breed et al., 2012; McClintock et al., 2013). New models
combine resource selection with cognitive processes in creative ways to study animals’
navigational mechanisms and the role of spatial memory (Dalziel et al., 2008; Mueller
et al., 2010; Avgar et al., 2013). While much progress has been made, challenges remain
(Borger et al., 2008; Smouse et al., 2010; Fagan et al., 2013).

When tracking an animal’s movement path, e.g. via GPS-based telemetry, locations
are measured at discrete times, and the rate and regularity of measurements are critical
features. From raw location data we can estimate classic movement characteristics
such as mean square displacement, measures of directional persistence or tortuosity,
and travel distance (Turchin, 1998; Codling et al., 2008; Rowcliffe et al., 2012). These
quantities can vary largely when derived from movement data with different temporal
resolutions (Ryan et al., 2004; Codling & Hill, 2005; Nouvellet et al., 2009; Rowcliffe
et al., 2012). A few studies used fine-scale movement data to empirically estimate
correction factors to adjust measured travel distances according to the sampling interval
(Pépin et al., 2004; Ryan et al., 2004). While this is a first approach to understand
the influence of sampling interval on measured travel distance, it is unclear whether
results can be generalized from these studies to other species and systems. Using
simulations of unbiased and biased velocity jump processes, Codling & Hill (2005)
estimated linear equations that relate the sampling rate of a discretized path to the
angular deviation (or sinuosity) and apparent speed of the movement. They found that
these relationships break down when the observed sinuosity becomes large, either due
to large sinuosity in the underlying movement or a relatively large sampling time step.
Generally, sampling a continuous path of an animal at discrete intervals can lead to
various degrees of information loss (Turchin, 1998). When we fit a movement model to
data to perform statistical inference, the temporal resolution of our sampling can affect
parameter estimates and result in erroneous inference such as misclassified behavioural
states (Breed et al., 2011; Postlethwaite & Dennis, 2013).

One may think that the best solution to avoid undersampling and information loss

is to take measurements at high rates to approximate a continuous path as best as
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possible. However, this is often not feasible, because limited battery life of tagging
devices gives rise to a tradeoff between sampling frequency and total sampling time
span (Mills et al., 2006; Breed et al., 2011). In addition, oversampled movement paths
can be problematic in data analysis, because they lead to strong and long-lasting au-
tocorrelations and require the processing of very long time series. Also, very frequent
fix attempts can reduce GPS transmitter efficiency (measured as total number of suc-
cessful locations obtained during the deployment time) (Mills et al., 2006), and noise
can become very large compared to the actual signal, especially if animals are resting
or moving slowly (Ryan et al., 2004). It is therefore important to choose measurement
rates appropriately to the behavioural scale of interest. Even if we decide about sam-
pling rates with care, it remains a problem that results are often tied to the scale of
particular studies. Generalizing or transferring results as well as comparison between
different studies is limited (Tanferna et al., 2012; Postlethwaite & Dennis, 2013).

Here, I introduce a new theoretical framework for analyzing movement models’
robustness against varying resolutions of temporal discretization. I formally define ro-
bustness as a specific property of a model. Generally speaking, I consider a model to be
robust if it can be applied validly to movement data with different temporal resolutions,
thus allowing consistent statistical inference. While I do not require important move-
ment characteristics expressed in model parameters to be the same across sampling
rates, I ask for them to vary systematically in a way that allows translation of results
between scales. Here, I present the new framework in terms of random walk models
with independently and identically distributed steps. Although many contemporary
movement models have surpassed these classical random walk models in complexity, I
believe that my analyses here are important to understand the new concept of robust-
ness and to put it in context with other established ideas in probability theory and
movement ecology.

This chapter is organized as follows. In section 4.2, I describe the set-up of my
study, after which I follow with two introductory example models that illustrate my
framework. I then give formal definitions of two types of robustness that vary in their
strength of requirements but also benefits. In section 4.3, I analyze robustness prop-
erties of one-dimensional models. I present models that are robust, suggest a way to
construct robust models from non-robust models and relate robustness to the proba-
bilistic concept of infinite divisibility. In section 4.4, I extend results about robustness
to two-dimensional models, in particular models with radially symmetric step densi-
ties. My framework provides a new systematic, mathematically founded approach to

analyze if, and how, sampling rate of movement paths influences inference.
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4.2 The robustness framework

4.2.1 Temporal resolution of random walks

Random walks have a long history as animal movement models. As a basis for deriving
partial-differential equation models for population distributions (Patlak, 1953; Skellam,
1951), for building simulation models for moving individuals (Kaiser, 1976; Jones,
1977), and for developing metrics that summarize movement characteristics (Kareiva
& Shigesada, 1983), random walks have proved useful early on in movement ecology and
have remained so. Although models have become more complex to include behavioural
mechanisms such as territorial defense (Moorcroft & Lewis, 2006; Potts et al., 2013)
or resource selection (Mckenzie et al., 2012; Potts et al., 2014), to describe temporally
switching behaviour (Morales et al., 2004; McClintock et al., 2013), and to account for
stochasticity of the measurement process (Patterson et al., 2008; Breed et al., 2012),
random walks remain at the root of many movement models (Borger et al., 2008;
Smouse et al., 2010).

The classic random walk model for movement is a stochastic process {X;,t € N},
where the location X; € R? of an organism for each time index ¢ € N is given as a sum
of independently identically distributed (i.i.d.) steps (Klenke, 2008). That is,

t
Xt :$0+Zsi7 (41)
=1

where @ is the (fixed) start location of the movement path, and S; is the vector, that
is the step, between location X;_; and X;. Note that here I use S to denote steps and
X to denote locations, which are sums of steps. In the statistical literature, often S
is used for sums of random variables. However, I have chosen notation according to
the movement context. For a graphical clarification of notations, compare Figure 4.1.
The random walk models an observed movement path, that is a series of locations
x = {xp, 1, ..., TN}, where x; € R? measured at regular time intervals.

As a convenient way for systematically studying varying temporal discretization
of movement data, we can mimic different sampling rates of movement paths via
subsampling. The nth subsample of & consists of every nth location, that is &, =
{xo, ®p, Ton, - .. }. As n increases, the temporal resolution of the data becomes coarser.
Note that ; = « is the original time series. If  is modelled by the process { X;,t € N},
then the subsample x,, which consists of every second location of the original time se-

ries, is correctly described by the subprocess { Xy, ¢t € N}. A priori, the subprocess
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has different probability distributions than the original process, however, there is a
simple relationship between the two processes. For the subprocess we have X, =
T+ Zfil S; = xy+ Zle S’iyg, for steps S'i,2 = Sy;_1 + S5. Compare also Figure 4.1.

More generally, for an arbitrary subprocess, we have
nt t
Xnt =Xy + Z Sl =Xy + Z Si,na (42)
i=1 i=1

for the larger steps S'M = Z;:Ol Syi—j. Therefore, the distribution of X, is based
on steps that are themselves sums of steps of the original process. Recall that for a
random walk with i.i.d. steps, all S; have the same distribution, however, their sum
may generally have a different distribution.

If a movement model were robust against changes in temporal resolution, the same
model should be able to describe validly both a path x and its subsample z,. As |
have described above, in a random walk model the distributions of the steps define the
process. If the steps {S;,7 € N} and {Sm,z € N} for a range of subsampling indices
n € N can be described by the same probability model, with appropriate adjustment
of model parameters, then I consider the model to be robust against varying temporal

discretization within that range.

4.2.2 Two illustrative examples

I illustrate the concept of robustness with two simple examples. For simplicity, I
consider one-dimensional models. First, for an example of a robust model, I assume
that all steps S; have identical normal distribution, with zero mean and some positive
variance o2, which I denote by S; ~ Normal(0,0?). A step density centred at zero
means that steps to the right and left have the same probability. Because of the linearity
of the normal distribution, it follows that the location X; is normally distributed as
well, X; ~ Normal(zg,to?). The steps gi’z of the subsampled process {Xy,t € N}
are sums of two normally distributed random variables, and therefore we have Sy ~
Normal(0, 202) and Xs; ~ Normal(zg,2tc?). Thus, the probability distributions that
describe the original and the subsampled process are both normal with the same mean
but different variances. However, the variances are related through a simple linear
function. Therefore, we can make inference using the subsampled data and process
and simply divide the estimated variance by 2 to obtain an estimate of the variance
of the original process. Conversely, we can multiply the variance obtained using the

original process by 2 to obtain the valid variance for the coarser process. This also

63



CHAPTER 4. ROBUSTNESS OF RANDOM WALKS

works analogously for n > 2. Because of this property, the random walk model with
normally distributed steps is robust.

For a counterexample of robustness, I consider steps that have Laplace distribution,
which is also termed double-exponential distribution. The Laplace distribution, similar
as the normal distribution, is symmetric, however it is more peaked and has slightly
heavier tails than the normal distribution. It commonly serves as a one-dimensional
(or marginal, in two-dimensional models) redistribution kernel in models for dispersing
organisms (Neubert et al., 1995). T assume that steps S; are i.i.d. Laplace distributed
with location parameter zero, i.e. the density is centred at zero, and scale parameter
o, that is S; ~ Laplace(0, c). Consequently, the location X; is distributed as a sum of
Laplace distributions. Sums of Laplace distributed random variables are not as simple
or well-known as the previous Normal example. Still, we can employ characteristic
functions to look into this case further. The characteristic function (ch.f.) of a random
variable X is defined by the expectation ¢x(u) = E(e™X). Characteristic functions
uniquely define distributions, and they have the convenient property that summing
independent random variables corresponds to multiplying their characteristic functions
(Klenke, 2008). The ch.f. for the above step distribution is given by

1

(u) = ——. 4.
b5,(1) = T (4.3
The steps of the subsampled process, 5@2 = So;_1 + Sa;, consequently have ch.f.
9 1
0g,,(U) = ¢s,(u)” = (4.4)

1+ (vV20)2u2 + odut

This function cannot be expressed as the characteristic function of any Laplace distri-
bution, which would have to be of the form e**(1+02u?)~! for some location parameter
1 € R and scale 0 > 0. With a bit more work, one can also compare probability density

functions. While the step .S; has the Laplace density
sz‘(S) =--€ 7, (45)
the density of the sum of two such random variables is given by
Fs.a(8) = 7oge 7 (o + Is]) (4.6)
5..(8) = 3¢ o+ |s|), .

which we cannot write in form of fg,(s) by transforming the parameters. It follows that

the step distribution for the subsampled process does not belong to the same family of
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distributions as the original process, namely the Laplace family. This means that if we
fit the original model with Laplace distributed steps to both & and xs, the resulting
parameter estimates are not truly comparable. If, however, instead we fit a different
model to @ that uses densities (4.6), the parameter o describes the same quantity as
in the original model. Therefore, the model that has Laplace distributed steps is not

robust against varying temporal resolution; but see section 4.3.2.

4.2.3 Formal definition of robustness

I now define robustness formally. As demonstrated above, the step distribution plays
an essential role for the robustness of random walk models. In the Laplace example,
the characteristic function has been a convenient tool to analyze step distributions of
random walk models. Therefore, I use them in my definitions of robustness. For a
two-dimensional model, the ch.f. of a step S; € R? is ¢(u) = E(e™5:) for u € R?,

where - denotes the scalar product of vectors.

Definition 4.1 (Semi-robustness). Let ¢(u;0) be the characteristic function of the
i.i.d. steps in a random walk movement model, where @ € © is the vector of model
parameters. The movement model is semi-robust (with respect to distribution class) if

for every n € N there exists a function g, : @ — © such that

P(u;0)" = p(u; gn(0)). (4.7)

As mentioned before, summing independent random variables (here, steps in a
random walk) corresponds to multiplying their respective characteristic functions. In
the random walk models, steps are identically distributed. Therefore, the LHS of
equation (4.7) is the ch.f. of the sum of n steps and therefore defines the distribution
for the steps S'm of the model for the nth subsample. The RHS of the equation is the
ch.f. of the steps S;, however with transformed parameters. Therefore, semi-robustness
requires that subsamples of the random walk are defined by the same step distribution
up to a known parameter transformation. The parameter transformation g, is an
important part of the definition, because it allows to scale up model parameters to a
coarser discretization. Say, a model represents a temporal discretization 7, that is 7 is
the time interval between two locations. If the model is semi-robust, it is also valid for
any discretization n7, n € N, with parameter ¢, ().

If we want to be able to compare results of studies that use different temporal

resolutions for their models more generally, we also need be able to translate parameters
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downwards, that is to a finer discretization. The following definition characterizes

models that can be scaled both upwards and downwards.

Definition 4.2 (Robustness). A semi-robust movement model is robust (with respect
to distribution class) if the function g, in Definition 4.1 is bijective, that is both one-

to-one and onto.

This definition allows scaling upwards just as before. Additionally, we can translate
the parameter 6 to a finer scale %7’. The surjectivity of g, guarantees that there exits
an inverse image ¥ = g, (@) € ©, which is unique by injectivity. Therefore, ¢(u; 1))

defines a valid characteristic function, and by property (4.7) we have

d(u; )" = o(u; gn()) = d(u; 0). (4.8)

This means that there is a valid sub-model for the discretization %7’ with parameter
vector .

The introductory example model with Normally distributed steps is robust. The
transformation for the only model parameter, the standard deviation o, is g,(0) =
v/no. The second example with Laplace distributed steps is neither robust nor semi-
robust since property (4.7) is not met. In section 4.3.2, I will show that it is possible

to embed the Laplace model within an extension so as to make it robust.

4.3 One-dimensional models

In the following, I look further into the question which random walk models are robust.
First, I focus on one-dimensional models, that is random walks on the real line. These
models can play a role in situations where movement is naturally limited, e.g. movement
within a stream or along a river bank. Also, univariate step distributions arise as
marginals of two-dimensional movement or dispersal kernels; see section 4.4.2. After
presenting classes of robust models, I describe the relationship of robustness with the
probabilistic concept of infinite divisibility. With this, I hope to deepen the reader’s

understanding of robustness and to set robustness apart from other concepts.

4.3.1 Robust random walk models

To find robust models, I look for steps with probability distributions that are closed
under summation. Such a property ensures semi-robustness, which is a necessary con-

dition for robustness. Whether a semi-robust model is also robust depends largely on
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the parameter space for which the step distribution is well-defined. A straightforward
example is given by distributions, whose ch.f. is a power of some function and the

power is a model parameter.

Theorem 4.1. Consider a one-dimensional random walk movement model with i.i.d.
steps that have characteristic function of the form ¢(u;0) = h(u;01)% for some func-
tion

h:R x ®; — C and model parameters @ = (01,0;) € ©; X Oy. If the parameter
space is such that n®y = {nfy; 05 € B2} C O4 for all n € N, the model is semi-robust.
If additionally %@2 C Oy for all n € N, then the model is robust.

Proof. Define the parameter transformation as g,(0) = g,(01,62) = (61,n60;) € O4 X
©,. Then, trivially, we have ¢(u; 0)" = h(u; 0,)"%? = ¢(u; g,(0)), and semi-robustness
follows. Let %2 € Oy for all n € N and all §; € ©5. Then for each @ there is a
unique inverse image g, '(0) = (6, %2), which lies within the valid parameter range.
Therefore, the model is robust. O

For such models, the parameter transformation only affects the parameter that
constitutes the power in the ch.f. For example, consider i.i.d. steps S; that have Gamma
distribution with shape x > 0 and scale ¢ > 0. Note that the support of the Gamma
density is only the positive real line, so movement steps are always into the same
direction (to the right). The Gamma distribution has the well-known property that a
sum of independent Gamma random variables, all having the same scale parameter,
again has a Gamma distribution (Casella & Berger, 2002). The ch.f. of the Gamma
distribution is ¢(u;k,0) = (1 — oiu)™". Therefore, we directly obtain ¢(u; k,0)" =
(1 — giu)™™ = ¢(u;nk,o). Hence, the summation affects the shape parameter, and
we have g, (k,0) = (nk, o). Because the Gamma distribution is defined for all positive
shapes k € R", the transformation g, is invertible, and it follows that steps with
Gamma distribution lead to robust models.

The chi-squared distribution is a special case of the Gamma distribution for a scale

o = 2 and shape Kk = g for degrees of freedom k£ € N. The ch.f. is

k
2

d(u; k) = (1 — 2iu)z. (4.9)
The nth power of ¢ is still a ch.f. of a chi-squared distribution with degrees of freedom
nk € N, and therefore a model with chi-squared steps is semi-robust. However, for
an arbitrary k£ € N, the fraction % is a rational but not necessarily a natural number.

Thus, the second condition of Theorem 4.1 is not satisfied. For more examples of
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distributions that meet the conditions of Theorem 4.1, see Table 4.1. Note that there
are also discrete distributions that belong to the group of distributions described in
the theorem (e.g. the binomial, Poisson and negative-bionomial).

Another class of distributions that are suitable as step distributions for robust mod-
els is given by the family of stable distributions (Samorodnitsky, 1994; Nolan, 1997;
Klenke, 2008). The stable distributions comprise a four-parameter family of distribu-
tions, which I denote by S(a, 3,0, 1), with index of stability 0 < a < 2, skewness
—1 < B <1, scale ¢ > 0 and location ;4 € R. Note that the scale parameter does
not necessarily correspond to the variance of the distribution, which is in fact infinite
for most stable distributions. Only for certain values of o and [, stable distributions
have closed-form density functions. However, for any parameter values, we can define
a stable distribution uniquely by its characteristic function. There are multiple ways
to parameterize stable distributions, which differ slightly in the interpretation of the

parameters o and p. Here I use the form of the ch.f. provided in Nolan (1997),

expipu — o®|ul*(1 — if tan(%2) sign(u))], a#1

(4.10)
exp [ipu — olu| (1 + i sign(u) In |u])], a=1.

o(u;a, B, 0, 1) =

The most famous example of a stable distribution is the normal distribution for a = 2.
Using the above parameterization of the stable distribution, the mean and variance of
the normal distribution are p and 202, respectively. For o = 2, the term including the
parameter [ vanishes. For @« = 1 and g = 0, the Cauchy distribution is another well-
known case, for which a closed-form density is known. While the normal and Cauchy
distribution are symmetric, the Lévy distribution for & = 1 and 8 = 1 is an example

2
of a stable distribution with skewed density function (Samorodnitsky, 1994).

Theorem 4.2. A one-dimensional random walk movement model with i.i.d. steps is
robust if steps are distributed according to the stable law S(«, 3,0, 1), i.e. have char-

acteristic function (4.10).

Proof. We can easily verify that the ch.f. of the stable distribution satisfies prop-
erty (4.7). We have

exp [i(np)u — (néa)o‘]u|0‘(1 —iftan(Z2)sign(u))], a#1

exp[i(np)u — (no)|u|(1 + iBsign(u) In |ul)], a=1.
(4.11)

Therefore, choose g, (a, 8,0, 1) = (o, 5, nao, nu). It is easy to see that g, is a bijection

o(u;a, B,0,p)" =

of the parameter space, leaving o and 8 unchanged and being monotone on R™ x R in
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the last two arguments. Therefore, stable steps distributions lead to robust models. [

I have just demonstrated that if we sum n steps, each having stable distribution

S; ~ S(a, 5,0, 1), the sum is again stable according to

Sin ~ S<aaﬁan£0a 7’L,U) (412)

)

In fact, stable distributions are a family of distributions that have been constructed to
have this special summation property. Equivalently to defining a stable distribution by
its characteristic function, we can also say a random variable S has stable distribution
if the sum of independent copies of S is a scaled and shifted version of S, that is we
have .
S £ a,8+0, (4.13)
i=1
for some a,, > 0,b, € R, where 2 stands for equality in distribution (Samorodnitsky,
1994; Kotz et al., 2001). In fact, the only choice for a, is a, = ne (Samorodnitsky,
1994). Because the location X; is a sum of steps, X; = z + 22:1 S;, the distribution

of the location X; is also stable,
X NS(a,/B,técr,onrtp), (4.14)

for any ¢ € N. The analogue holds for the locations of the subsampled process { X,,;,t €
N},
Xnt ~ S(a, 5, nétéa, xo + ntp). (4.15)

The parameters a and § remain unchanged under summation. The parameter 3 de-
termines skewness, with § = 0 corresponding to a symmetric density, and therefore a
stable distribution S(a, 0, -, -) is also termed a-symmetric stable distribution.

A special case is given by models that have starting location zo = 0 and step
distribution S ~ S(«,0,0,0). These specific stable distributions are symmetric with

centre at zero, and they lead to
X, ~ S(a,0,t=0,0). (4.16)
Such a random walk is self-similar because

X L na X, (4.17)

69



CHAPTER 4. ROBUSTNESS OF RANDOM WALKS

Also, the probability density function of the step distribution, pg(s), is related to the
density of the summed steps S’M via a scaling property (Klafter et al., 1995),

1 S

.. = o (7). (418
na na

This specific random walk is called a Lévy flight (Klafter et al., 1995). Note that this
(original) definition of a Lévy flight is different from a Lévy walk. A Lévy walk is
based on a continuous-time random walk, describing the movement of an organism at
constant speed between reorientation events (Klafter et al., 1995). In the movement
literature, the two terms are often used interchangeably (Reynolds & Rhodes, 2009;
James et al., 2011). Note that because of the different assumptions data are processed
slightly different in a Lévy walk analysis, where usually steps (as I have defined them
here) are combined as long as directional changes between them remain under a certain
threshold (Plank et al., 2013).

Although stable step distributions are predestined to lead to robust models, ro-
bustness is a more general concept. In terms of the characteristic function ¢ of S, the
summation property (4.13) is ¢(u)" = e™n¢(a,u), or simply ¢(u)"” o< ¢(a,u). In com-
parison, the robustness property (4.7) is a weaker condition. It means that the sum of
n i.i.d. steps has the same distribution as a single step up to adjusted parameter values
according to a known function g,. In the case where steps have stable distribution,
the function g, affects the scale and location parameter of a distribution. However,
distributions may have other types of parameters that can be affected. For example,
in the above case of Gamma distributed steps, summation of steps results in a mod-
ified shape parameter. In contrast, scaling a Gamma distributed random variable by
a constant c leads to a Gamma distribution with same shape x but adjusted scale co.
Therefore, the Gamma distribution is not stable, and the resulting random walk does
not exhibit self-similarity. However, the random walk model with Gamma distributed

steps in robust.

4.3.2 Robust model extensions

As I have shown in Theorem 4.1, a step distribution having ch.f. that is the power
of some function leads to a semi-robust or robust model, depending on the definition
of the parameter space. This leads to the idea that we can obtain robustness by
embedding a distribution into a larger family of distributions by adding an additional

power parameter to the ch.f. Starting with a ch.f. ¢(u;0), 8 € ©, we can augment the
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model parameters by k € N, that is we define a new parameter vector 8 = (0, k) €
© x N. We can then define a new distribution via the ch.f. ¢ (u;0) = ¢(u; 8)*. For
k € N we know that v is again a ch.f., because by construction it is the ch.f. of a
distribution of a sum of k£ independent random variables. Because nk € N for all
n,k € N, and according to Theorem 4.1, a step distribution with ch.f. ¥)(u; ), where k
is simply one of the model parameters, leads to a semi-robust random walk model with
gn(0,k) = (8,nk). To go a step further and construct a robust model, the range of the
parameter k would need to include positive rational numbers. However, for k£ # N, we
have in general no guarantee that v is again the ch.f. of a distribution

As an illustration of these ideas, consider the Laplace distribution. The Laplace

distribution with mean zero and scale parameter ¢ > 0 has ch.f.

1

= 4.19
1+ o2u? ( )

P(u;0)
I have shown above that a model with Laplace distributed steps is not robust. However,

we can define a new family of distributions via the ch.f.

1
Y(uyjo, k) = = (4.20)
where k € N. This is the ch.f. of the sum of k£ independent Laplace random variables and
therefore a valid ch.f. Using this distribution for steps and treating k as a regular model
parameter leads to a semi-robust model. In this particular case of the extended Laplace
distribution, the function ¢ in equation (4.20) is also a valid ch.f. for any non-negative,
real k € R>o (Kotz et al., 2001). It corresponds to a generalized asymmetric Laplace
distribution with location parameter zero and symmetry parameter being zero (and
hence being symmetric); compare also Table 4.1. This generalized Laplace distribution
is not widely known, however, it has found several applications. In particular, it has
been used in financial modelling, where it is also known as variance gamma model
(Madan & Seneta, 1990; Seneta, 2004). A movement model with step distribution
determined by the ch.f. (4.20) for k& € Ry is robust.

For applications in which likelihood functions play an important role, e.g. for sta-
tistical inference, a remaining question is whether we can find the corresponding prob-
ability density function for the ch.f. ¢). In principle, the probability density function
of a distribution can be calculated as inverse Fourier transform of the characteristic
function (Klenke, 2008). Alternatively, for k& € N, the density of 1) can be obtained as

the convolution of the k single step densities. Both methods can be difficult or may
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not result in a closed-form density. However, for the above example of the generalized
asymmetric Laplace distribution, a density function is available in terms of a Bessel
function (Kotz et al., 2001). In the symmetric case with location parameter zero, the

density that corresponds to the ch.f. ¢ in equation (4.20) is

1
o=t —

where K| k_%(x) is a modified Bessel function of the third kind. This formula is valid
for any k£ > 0. For the case where k is restricted to the non-negative integers, k € Ny,
the Bessel function Kk_%(x) has a closed form (Kotz et al., 2001, Appendix C), and

we can alternatively write

2k+§ak§\x|kéf(ké<m>, (4.21)
g

—1+j) ()T
flz) = ) 'ka _1_] TR (4.22)

This density function can be used for likelihood-based inference, and both ¢ and k
can be estimated simultaneously. While the new parameter k£ may take the role of a
nuisance parameter, it allows the distribution to be more flexible. Most importantly,
estimates of o become comparable across different temporal resolutions; see Figure 4.2.

Robust model extensions highlight that (semi-) robustness is defined with respect
to a distribution class. If we want to use a random walk model validly across a range
of resolutions, we need to preserve the statistical distribution that defines movement
steps. If a model is not robust a priori, we can embed its step distribution in a larger
class of distributions, within which the model become robust with respect to this larger

class.

4.3.3 Robustness and infinite divisibility

Robustness is related to the probabilistic concept of infinite divisibility. Roughly speak-
ing, a distribution is infinitely divisible if it can be expressed as the distribution of a
sum of independent random variables. More precisely, in terms of the characteristic
function ¢ of a distribution, ¢ is infinitely divisible if for every n € N, there exists
another ch.f. ¢, such that ¢(u) = ¢, (u)" (Steutel & Van Harn, 2004; Klenke, 2008).
It is important that ¢, is not just any function but the ch.f. of a random variable.

An example of an infinitely divisible distribution is the normal distribution with mean

72



CHAPTER 4. ROBUSTNESS OF RANDOM WALKS

i € R and standard deviation o € R*. Its ch.f. is

2,,2

o(u; p, o) = einu—30%u?, (4.23)
We can choose ¢, (u) = ¢(u; &, \/Lﬁ), which is the ch.f. of another normal distribution
with mean £ € R and standard deviation =€ R*. In general, many of the commonly
known distributions are infinitely invisible.

Both concepts, robustness and infinite divisibility, are linked to sums of random
variables. However, the two concepts are not the same. The Laplace distribution is
infinitely divisible, however, the factors of the ch.f. do not again correspond to Laplace
distributions. Instead, the ch.f. of a zero-mean Laplace distribution can be factored as
follows (Kotz et al., 2001),

olu) = ﬁ - [(1 —1z‘au>i (1 —i—liau) i] - Pnlu)". (4.24)

Each factor ¢, is the ch.f. of a random variable that is a difference between two i.i.d.

Gamma random variables (Kotz et al., 2001). This second example highlights that a
distribution can be infinitely divisible but, as a step distribution, does not lead to a
robust model. This is due to the fact that infinite divisibility only requires the existence
of random variables that sum up to the variable in question. Robustness additionally
requires that the summands belong to the same distribution as the original, only with
modified parameter values. On the other hand, the converse is true and every robust
random walk model of the form considered here must have infinitely divisible step

distribution.

Theorem 4.3. Let S;, i € N, denote the i.i.d. steps of a random walk movement
model. If the step distribution leads to a robust model, then S; is infinitely divisible.
The converse is not true, that is not every infinitely divisible step distribution leads to

a robust model.

Proof. Let ¢(u;8), with 6@ € ©, be the ch.f. of a single step S;. Let n € N, and let g,
be the parameter transformation given by robustness. Because g, is bijective, we can
define a unique 1 := g, '(0) € © and choose ¢, (u) := ¢(u;1p). It follows that

O ()" = P(u; )" = P(u; gn () = d(u; gn(g,"(9))) = ¢(u; 0), (4.25)

which shows infinite divisibility. As a counterexample for the converse, I have demon-

strated above that the Laplace distribution is infinitely divisible, but a model with
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Laplace distributed steps is not robust. O]

In the preceding proof, the bijectivity, and in particular the surjectivity, of the
transform g, is crucial for the existence of ¢,. Therefore, semi-robustness is not a
sufficient criterion for infinite divisibility. Consider the Binomial distribution, which is
discrete and not typically used as distribution for movement steps. Still, it serves as a
counterexample for a distribution that is not infinitely divisible, yet as step distribution
leads to a semi-robust model. For its ch.f. is ¢(u;p,n) = (1 — p + pe™)" for p € [0, 1]
and n € N, and therefore meets the first, but not the second, condition of Theorem 4.1.
On the other hand, as a distribution with bounded support, namely {k € N, k < n},
it is not infinitely divisible (Steutel & Van Harn, 2004).

Even if a model both is semi-robust and has infinitely divisible step distribution, it
does not follow that it is robust. Consider the model with chi-squared distributed steps.
As I have illustrated in section 4.3.1, this model is semi-robust but not robust. Still, the
chi-squared distribution is a special case of the Gamma distribution and thus infinitely
divisible; compare Table 4.1. The reason for the model not being robust is that the
summands, which a chi-squared random variable can be decomposed into, are generally
Gamma and not again chi-squared random variables. This examples highlights that the
definition of the model parameter space is an important consideration for robustness. If
instead of the chi-squared distribution, which is embedded in the Gamma distribution,
we directly use the Gamma distribution as probability model for steps, we immediately
obtain a robust model.

I have used the same idea in section 4.3.2 to embed the Laplace distribution within
the more comprehensive generalized Laplace distribution. Although the Laplace dis-
tribution is infinitely divisible, Laplace distributed steps lead to neither a robust nor a
semi-robust model. If we define the extension described by the ch.f. (4.20) for & € N,
we obtain a random walk model that is semi-robust. If we go even further and define
the extension for k € R, the resulting model is robust.

From these considerations I conclude that robust random walk models lie within the
intersection of semi-robust models and models with infinitely divisible steps, however,

they do not constitute the entire intersection; see Figure 4.3.
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4.4 Two-dimensional models

4.4.1 Radially-symmetric step densities

Many applications of movement modelling, especially those that consider movement
of terrestrial animals, require the use of two-dimensional models. We then often de-
scribe steps by their length and bearing, which corresponds to describing a vector in
polar coordinates. Accordingly, instead of assigning a distribution to steps directly, we
compose step distributions from a step length distribution and a distribution for the
bearing. From these, we can obtain a step distribution (i.e. a distribution for the two-
dimensional vector) by taking into account the transformation from polar coordinate

formulation to euclidean space. Let S = (g;) € R? be the two-dimensional step. Then

let
R=/5%+52 (4.26)

denote the step length, which is the radius of the vector in polar coordinates, and let
pr(r) be the step length distribution. Let pp(8) denote the distribution of the bearing.
Note that, in accordance with common usage, I use capital letters for random variables
and small letters for their realizations. The transformation between the two coordinate
systems is given by S; = Rcos B and Sy = Rsin B. Assuming that step length and

bearing distributions are independent, we obtain as step density

1 )
D8y.5, (51, 82) = m -pR(\ /53 + 3%) - pp(Arg(sy +is7)), (4.27)

where Arg(:) denotes the principle argument of a complex number. The factor
(v/s? + s2)7! is due to the coordinate system transformation.

A classic assumption for simple random walk models is that bearings have uniform
1
2n

(Bartumeus et al., 2005; Smouse et al., 2010; James et al., 2011). If movement is

distribution on the interval (—m, 7], which leads to a bearing density pg(8) =

assumed to be persistent in its direction, we may release this assumption and use a von
Mises or wrapped Cauchy distribution instead (Morales et al., 2004; Codling et al.,
2008; McClintock et al., 2013). Here, I only consider models with uniform bearing

distribution and therefore step densities of the form

1
— . 2 2
psulo1,32) = oy pr(\/st+ ). (4.28)

5



CHAPTER 4. ROBUSTNESS OF RANDOM WALKS

This density function is radially symmetric, and we can simply write

Psy5,(1) = - pr(r) (4.29)

for r = \/m . Note that I distinguish the radius density pgr and radially-symmetric
step density pg, s, via the subscript.

The radial symmetry of the density (4.28) enables us to compute its ch.f. via a
Hankel transform. The Hankel transform of order v of a function f(r) for » > 0 is

given by the integral

H{fHu) = /OO rf(r)J,(ru)dr, (4.30)

0
where J, denotes the Bessel function of the first kind of order v (Piessens, 2000). The

ch.f. of a two-dimensional random vector with joint density (4.29) can be calculated as

¢(u) = 21 Ho{ps, s} ([[ul])- (4.31)

For details about the calculation, see Appendix C. Because ¢ only depends on the
norm of w and hence is radially symmetric as well, T also use the notation ¢(||ul|).
Hankel transforms have been computed for a variety of functions, which in the following

simplifies my analysis of characteristic functions for two-dimensional step distributions.

4.4.2 Robust two-dimensional models

In the following, I look for robustness among two-dimensional models. A direct way
of verifying robustness is via the two-dimensional ch.f. according to Definition 4.1 or
4.2. In the case where the step distribution has a radially symmetric density function,
it depends on the step distribution pg, s,(r) whether or not the Hankel transform in
formula (4.31) can be readily obtained. Alternatively, we can draw on previous results

for one-dimensional models.

Theorem 4.4. Consider a random walk model with two-dimensional steps that have
radially symmetric density of the form (4.28). If the marginal step distribution, given
by the density ps,(s1) = [ o psy,s,(s1,52) dsa, leads to a (semi-) robust model in one

dimension, then the two-dimensional model is (semi-) robust as well.

Proof. Let ¢(||u||; @) denote the radially symmetric ch.f. of the two-dimensional steps,
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where 8 € © are the model parameters. The ch.f. of the marginal density is

oo 0 x
/ ewlslpsl(51) ds; = / / eZUISIPSLSQ(Sla 82) ds; dssy
— —00 J —00

= o([[ull;0)],,_, = ¢(lus]; ) = ¢5,(u1:0) (4.32)

u2=0 -

Let n € N. By assumption, there exists a function g, such that

b5, (u1;0)" = ¢g,(u1; gn(0)). (4.33)

Because of the previous calculations, we also have ¢(|u|;0)" = ¢(|ui]; g.(0)). Replac-
ing u; by ||ul|| yields semi-robustness for the two-dimensional model. The parameter
transformation is the same for the two-dimensional and the marginal one-dimensional
model, therefore if the one-dimensional model is robust, the same holds for the two-

dimensional one. O

With this result, I have established a link between one- and two-dimensional models.
The correspondence of the characteristic functions given in equation (4.32) allows to
compute the ch.f. of the radially symmetric two-dimensional model directly from the
ch.f. of the one-dimensional model, and vice versa. Whether it is easier to obtain
the two-dimensional ch.f. via the Hankel transform of the two-dimensional density or
via the ch.f. of the one-dimensional marginal depends on which of the two densities
is available. Conversely, from the two-dimensional ch.f. we can calculate the two-
dimensional, radially symmetric step density via an inverse Hankel transform, which
is self-reciprocal.

To demonstrate these relationships, I now present three example models and their

robustness properties.

Ezample 4.1 (Ezponential step length). A common step length distribution used for
movement analyses is the exponential distribution (Smouse et al., 2010; DeMars et al.,
2013), which has density pr(r) = +e~x. Using this in the step density (4.29), we obtain

1
2w Ar

>3

Psy.s, (1) = e x. (4.34)
The Hankel transform of order zero is given by Ho{ps,s,}(u) = 5=(1 + A2y2) "2
(Piessens, 2000), and thus the ch.f. is

o(llull; N) = ———— (4.35)

Vv 1+ A2|ull?
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From this, we can already see that the exponential step length model, where A > 0

is the only parameter, is neither robust nor semi-robust. The marginal of the density

Psy,8, 18

psi(s1) = %Ko <|ST1|> : (4.36)

where K denotes the Bessel function of the second kind of order zero. The ch.f. of the
marginal is ¢(u; \) = (1+A2u2)~z. This is in fact the ch.f. of a generalized (asymmetric)
Laplace distribution with location and asymmetry parameters being zero, and with
scale A and power k = %, which was shown before to be robust; compare section 4.3.2
and Table 4.1. Therefore, if we embed the exponential step length model in an extended

model with step characteristic function

1

O(||lull; A, k) = ESY DR

(4.37)
for £ € R>y, we obtain a robust model with the two parameters A > 0 and k£ € R>,.
In the one-dimensional case, we could obtain the density from the ch.f. (4.20) via
an inverse Fourier transform. However, the two-dimensional step density needs to
be computed from (4.37) as an inverse Hankel transform. Unfortunately, the inverse

Hankel transform of order zero of the function (4.37) is not readily available.

Ezample 4.2 (Heavy-tailed step length distribution). In one dimension, I have shown
that stable step distributions lead to robust models. An example of a stable distri-
bution with closed-form density function is the Cauchy distribution. According to
Theorem 4.4, we can therefore construct a robust two-dimensional model by finding
the two-dimensional density (4.29) that has the Cauchy density as marginal. We can
achieve this via the identity of characteristic functions established in (4.32). From
the ch.f. of the Cauchy distribution, we obtain a corresponding two-dimensional ch.f.
o(||ulj;o) = eIl Applying an inverse Hankel transform according to the iden-
tity (4.31), we obtain (Piessens, 2000)
o

Ps1,5:(r) = m- (4.38)

According to (4.29), this results in a step length density for the two-dimensional models

as follows
or
Pr(r) = R (4.39)

The variance does not exist for this density, and the density is heavy-tailed. More
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precisely, the tail is of order %2, that is we have

(02 Z_T;a)g B O(T_i)’ (4.40)

as r — oo. I will later show that the step distribution in this example is a special case
of a bivariate stable distribution. Because of its relation with the univariate Cauchy,
it is also known as bivariate (isotropic) Cauchy (Achim & Kuruoglu, 2005; Nadarajah
& Kotz, 2007).

Ezample 4.3 (Normally distributed steps, or Rayleigh step length distribution). The
normal distribution is another special case of a stable distribution. Its radially sym-
metric two-dimensional version with mean zero is the bivariate normal distribution

. . . 2 . .
with covariance matrix ("O 002 ), having density

1 .2
e 37 (4.41)

Psi,5, (T) = 202

and ch.f. ¢(||u: o) = e~271I” The corresponding step length distribution with density
pr(r) = —e 27 (4.42)
is a Rayleigh distribution with scale parameter ¢ > 0. As can be easily seen from the

ch.f. and also via Theorem 4.4, this model with normally distributed steps is robust.

In the latter two examples, the step distributions are special cases of bivariate
stable distributions. Analogously to one-dimension, an a-stable random vector S € R?,

0 < a <0, by construction has the property

Y S E£naS+b, (4.43)

=1

for some b, € R? (Samorodnitsky, 1994). If S is elliptically contoured, its ch.f. is
E(e™®) = exp <z’u = (uTZu)%) (4.44)

for location vector p € R? and positive definite shape matrix 3 (Nolan, 2013). From
this form of the ch.f., it can easily be seen that the nth power is again the ch.f. of an
a-stable random vector, with location vector np and shape matrix ney. Therefore,

we immediately obtain the following theorem.
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Theorem 4.5. A two-dimensional random walk model with elliptically contoured steps
S that have bivariate stable distribution, i.e. have ch.f. (4.44), is robust. ]

The bivariate normal distribution with mean g and a general covariance matrix

s o rno (4.45)
PO102 O'g ’ '

where p is the correlation, is an example of such a bivariate stable distribution for
a = 2. If S is not only elliptically contoured but even radially symmetric with location
p =0, the ch.f. (4.44) simplifies to

olllull; @, 0) = e=o"II°, (4.46)

for o > 0. Example 4.2 and 4.3 were special cases for &« = 1 and a = 2, respectively.
As in the univariate case, closed-form expressions for the density of bivariate sta-
ble distributions are available only for some special cases, e.g. the cases presented in
Examples 4.2 and 4.3. However, there are results that allow simulation of random
variables with stable distributions. For an a-stable, radially symmetric stable random

vector S, we have

S < VATU, (4.47)

where U is a random vector with uniform distribution on the unit circle, 7" is a chi-
squared random variable with degrees of freedom 2, and A is a univariate stable random
variable, A ~ S§(%,1,20%(cos %)%, 0) (Nolan, 2013). Thus, to obtain a bivariate stable
random vector, it is enough to generate a univariate stable random variable. For this,
an algorithm is available (Weron, 1996), which has been implemented in the R package
stabledist (Wuertz et al., 2013). This package also provides numerical calculations of

density and cumulative distribution functions.

4.5 Discussion

I presented a new way of classifying movement models according to their robustness
against changes in temporal discretization. After providing a formal definition for
movement model’s robustness, I explored which models have this property. My defi-
nition emphasizes a systematic transformation of model parameters between temporal
resolutions. This ensures that, if a model is robust, we can fit it to movement data

with varying time intervals between locations, and we know how to translate model
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parameters between resolutions. Conversely, if a model is not robust, any results we
derive from it are tied to its particular temporal scale, and therefore comparison of
studies is difficult if they use data obtained at different sampling rates.

The question of robustness may already arise at a fundamental level when interfac-
ing models with data. If a model is not robust, then it cannot use data measured at a
particular temporal scale of sampling to make inferences about movement behaviours
at shorter and longer time scales. This is of particular concern in movement ecology,
because time scales for sampling animal movement data are often subject to logisti-
cal constraints. For example, limited battery life of GPS devices often leads to lower
sampling rates in favour of longer total time spans. The time scales thus imposed
on data may be very different than those for behavioural or ecological questions about
movement. If a model is not robust, then it may still be semi-robust, which means that
inference can be made at longer but not at shorter time scales. Because the conditions
for robustness and semi-robustness are rather stringent, it appears that many existing
movement models may fail in this regard.

Previous approaches to the problem have been empirical or based on simulations.
Several studies used fine-scale movement data with sampling intervals of a few minutes
(Pépin et al., 2004; Postlethwaite & Dennis, 2013) or even a few seconds (Ryan et al.,
2004). These data were subsampled at various scales to obtain empirical relationships
between the sampling interval and measured or inferred movement parameters. Such
investigations have demonstrated that the sampling interval can have a strong effect
on results from movement analyses. However, each of these studies is based on a
specific species within a particular environment, and it is unclear whether the obtained
relationships and possible correction factors can be transferred to other species and
systems. Also, fine-scale movement data is rarely available, and therefore we need
a more general method that relates sampling rates to movement parameters. As an
alternative to using very fine movement data, Codling & Hill (2005) and Rowcliffe
et al. (2012) simulated synthetic data from movement models and subsampled these.
All of these approaches remain empirical and constitute case studies for particular
data sets, parameters, and models. In contrast, my newly introduced framework is
mathematically rigorous and provides analytical methods and results to determine
whether a model is robust against changes in sampling intervals.

In my investigations, I found that robustness is a rather strong condition for a
model. This is in line with previous empirical results that highlight the sensitivity of
movement characteristics to the sampling interval. For one-dimensional models, I en-

countered two groups of step distributions that lead to robustness. First, Theorem 4.1
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established robustness for distributions whose characteristic function is a simple power
function. Among the common distributions, those that meet this condition have sup-
port R>o and therefore only allow steps into positive direction. Such models can be
applicable in situations where movement experiences external forces, such as move-
ment within strong water currents (Luschi et al., 2003) or wind-driven dispersal (de la
Giroday et al., 2011). The second class of step distributions that lead to robust models
are the stable distributions. If steps have a-symmetric stable distribution S(a, 0, 0, 0),
the resulting random walk is a Lévy flight (Klafter et al., 1995). In my analysis of
two-dimensional models, I found few robust models. It is, again, mainly the stable dis-
tributions that constitute examples of robust models. Stable distributions are fat-tailed
and do not have second (and higher) moments, the normal distribution for a = 2 being
the only exception. To circumvent this problem, the related Lévy walk was introduced
(Klafter et al., 1995).

On the one hand, Lévy walks may be attractive models because of their scale-
invariance and optimality in certain foraging situations (Viswanathan et al., 1999).
On the other hand, it is highly debated whether Lévy walks are suitable models for
movement and fit empirical data (Benhamou, 2007; James et al., 2011; Edwards, 2011;
Pyke, 2015). A major point of controversy arises from the difficulty of inferring pro-
cesses from patterns. Although movement patterns may fit Lévy walks, the underlying
process does not necessarily need to be a Lévy walk but may be due to more complex
behaviour (Benhamou, 2007; Plank et al., 2013). The debate further concerns statisti-
cal methods that are used to detect Lévy walk behaviour in data (White et al., 2008;
Edwards, 2011). Even the application of Lévy walks within optimal foraging theory as
Lévy foraging hypothesis has been met with scepticism (Pyke, 2015).

In this chapter, I was merely interested in the question if there are models that
are robust against changes in sampling rates, and which models these are. Because
of the complexity of the issue, I concentrated on investigating this question for basic
random walks. Even among these rather simple models, I found few that are robust.
This foreshadows that robustness may be rare, if existent at all, among more complex
models. But many contemporary models include forms of behavioural mechanisms
beyond the mere random walk and will likely continue to become more sophisticated
(Holyoak et al., 2008; Smouse et al., 2010; Fagan et al., 2013). This means that most
analyses of movement data to date are restricted to the measurement time scale of
each study, limiting extrapolation of results and comparison between studies. With
the analysis here, I have proposed a new fundament for analyzing movement models’

robustness against varying sampling rates. An important next step will be to extend the
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framework to more complex models that include temporal or spatial heterogeneities.

I suggest that a path for further investigation lies in continuing to look for robust
extensions of models. The results I have presented about robust random walk models
need not be exhaustive. In Example 4.1, I have shown that the two-dimensional model
with exponential step length is not robust but can be extended to a robust model
with an additional parameter (the power of the ch.f.). This would be similar to the
one-dimensional example in section 4.3.2, where I demonstrated a robust extension
to the Laplace model. If we would use this extended model and during statistical
inference estimate the power parameter together with all other parameters, we would
be using a robust model. Such an extension is, in theory, also possible for other
models. Unfortunately, although we may be able to straightforwardly construct the
characteristic function of such a robust extension, it can be more difficult to derive
the bivariate step density. To overcome this problem, one could fall back on numerical
solutions. For example, one could solve the inverse Hankel transform of equation (4.37)
numerically and embed this process into an inferential optimization routine such as
likelihood maximization or an MCMC algorithm.

Another possibility is to somewhat release the strict conditions of robustness. In my
definition presented here, the parameter transformation g, is a key element. It assures
that we can systematically translate results about model parameters between analyses
using different sampling rates. The works by Pépin et al. (2004) and Codling & Hill
(2005) tried to establish such a transformation empirically for some specific movement
quantities. The relationships they found were able to correct for different sampling
rates to some extent. This suggests that although my robustness is a strong condition
on a model, there may be models that are approximately robust within certain ranges
of sampling intervals. Often, we do not wish to compare data analyses with widely
varying sampling intervals. When we analyze movement, we always have to be aware
of the behavioural scale of interest, as the behavioural processes may vary across scales
(Yackulic et al., 2011; Fleming et al., 2014). However, it may be a reasonable goal to
compare movement analyses with sampling intervals within a range of a couple hours

or so. Within this range, an approximate type of robustness may be sufficient.
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Table 4.1. List of univariate distributions, which as random walk step distributions
lead to semi-robust or robust models. The table indicates which of these distributions
are also robust or infinitely divisible.

Distribution Ch.f. ¢(u) Parameter Semi- Rob. h.lf'
space rob. div.

Continuous distributions

with support R

Normal elun—g0%u peER, oceRT v v v

Cauchy elur—olul peER oeRT v v v

, S
Lévy etunloul2(1=isimn() ) e R, o € RY oo/ /
Jr

Laplace extension (HU;QUQ)]C Z g E’ o €RT, v/ * v/

Generalized ciun w,v eR, v v v

asymmetric Laplace —(I+ou?+ivu)t o,k € Ry

Continuous distributions

with support Rxg

Gamma m o € Rt keRT v v v

Chi-squared — keN v X v

(1-2u)3

Discrete distributions

Poisson M=) A€ Ry v v o/

Bionomial (pe™+(1—=p)" pel0,1],neN, v X X
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-

Northing

Easting

Figure 4.1. Schematic of locations X; and steps S; between locations. Solid lines

indicate the original process, grey dashed lines represent the subprocess for n=2. The
subprocess consists of steps S o.
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Figure 4.2. Inference results when using the Laplace model versus the generalized
Laplace model. Panel a: Simulated 1D-random walk with Laplace distributed steps
with mean zero and scale ¢ = 1. Panel b: Excerpt of panel a for time steps 1 to
25. Panel c: Histogram of realized steps of the random walk, fitted with a Laplace
distribution with mean zero. The estimate of the scale ¢ is denoted by 6. Panels
d, f, h: I subsampled the random walk, taking every 4th location. The panels show
the original random walk (in grey) and the subsample (in black). Different subsamples
arose depending on the starting location of the subsampling procedure.
panels start the subsampling at z1, x5, and x3, respectively. Each subsampled path is
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Figure 4.2. Panels e, g, i: Histograms of realized steps of the subsampled paths.
Each histogram corresponds to the subsample to its left. Steps were fitted with a
Laplace distribution (dashed purple line) and with a generalized Laplace distribution as
given in equation (4.22) (solid red line). The generalized Laplace model accounts for the
subsampling with its additional parameter k (here k = 4) and is thus the correct model.
When fitted to the subsampled random walks, k was estimated simultaneously with o.
The estimate of k varies for the different subsamples, reflecting the stochasticity of the
data, but it is always close to 4. When using the generalized Laplace model, estimates
of the scale o are valid estimates for the scale of the original random walk as well.
In contrast, the scale estimate from the simple Laplace model (given in parenthesis)
cannot validly represent the original scale and naturally overestimates o.

Models w/ Semi-
infinitely robust
divisible models
steps

« Laplace « Binomial

« Laplace extension
« Chi-squared

Figure 4.3. Graphic depiction of the relationships between semi-robust and robust
models and models with infinitely divisible step distributions. Each section contains
examples from the text for step distributions that lead to the type of model.
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Chapter 5

Robustness of movement models:
can models bridge the gap between
temporal scales of data sets and

behavioural processes?!

5.1 Introduction

Major advances in tracking technology during the last decades have made large datasets
of animal movement available to ecologists, and analyses of data have become widespread
in ecology. These analyses have shed light on mechanisms that underly fundamental
processes such as migration (Robinson et al., 2009; Costa et al., 2012), navigation
(Tsoar et al., 2011; Benhamou et al., 2011), or home range behaviour and territoriality
(Borger et al., 2008; Potts & Lewis, 2014; Giuggioli & Kenkre, 2014). They have helped
to identify conservation goals by revealing habitat preferences and critical environmen-
tal features for populations (Sawyer et al., 2009; Colchero et al., 2010; Ito et al., 2013;
Masden et al., 2012), as well as the role of important mutualistic interactions between
mobile animals and immobile plants (Cortes & Uriarte, 2013; Mueller et al., 2014).
These are only few of the many facets of movement ecology.

Mathematical and statistical models provide a framework for studying movement
(Schick et al., 2008; Smouse et al., 2010; Langrock et al., 2013). When linking models

to data, we can estimate model parameters and identify best-fitting models, thus infer-

LA version of the chapter has been submitted to Journal of Mathematical Biology as: Schligel,
U.E. & Lewis, M.A. Robustness of movement models: can models bridge the gap between temporal
scales of data sets and behavioural processes?
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ring unknown quantities or mechanisms in movement behaviour. Although movement
itself is a continuous process, many individual-based movement models treat time as
a discrete variable, viewing movement as a series of locations in space, or equivalently
as a series of steps (Turchin, 1998; McClintock et al., 2014). This may largely be as-
cribed to data being available in this format. Discrete-time models may thus be an
intuitive first choice to describe a sampled movement path. However, there may be
more reasons to use discrete-time models. The continuous movement path of an animal
may consist of various behaviours at different scales (Johnson et al., 2002; Benhamou,
2013). Using a discrete-time model at the scale of interest allows us to focus on the
behavioural mechanisms at that scale, while, for example, combining other unknown
processes as stochastic effects. Also, the choice of time formulation in a movement
model can have side effects that impact inference results. For example, McClintock
et al. (2014) demonstrated that using a continuous-time Ornstein-Uhlenbeck process in
a hierarchical model for identifying behavioural states led to difficulties discriminating
between states, due to an inherent correlation between the variables step length and
bearing in the Ornstein-Uhlenbeck process.

Many movement models are based on random walks (Turchin, 1998; Codling et al.,
2008; McClintock et al., 2014). From simple random walks that assume independently
and identically distributed steps, we have moved to correlated random walks, which
include directional persistence (Kareiva & Shigesada, 1983), and biased random walks,
which can, for example, be used to model centralizing tendencies or long-term direc-
tional goals (Benhamou, 2006; Borger et al., 2008; McClintock et al., 2012). Many
animals live in heterogeneous environments, and the composition of the environment
and availability of resources influence movement decisions (Fortin et al., 2005; McPhee
et al., 2012). Therefore, another trend of random-walk extensions has left behind as-
sumptions about environmental homogeneity in favour of spatially-explicit models that
incorporate habitat effects on movement decisions (Rhodes et al., 2005; Avgar et al.,
2013; Potts et al., 2014). These models have an advantage over statistical resource-
selection and step-selection functions (Manly et al., 2002; Fortin et al., 2005; Forester
et al., 2009) by allowing simultaneous estimation of movement parameters and envi-
ronmental effects.

When linking discrete-time models to data, the temporal resolution of the dis-
cretization is a critical feature that must be chosen with care. Different time scales
may come into play and need to be consolidated. On the one hand, a time scale is given
by the biological process of interest. For example, we may be interested in inferring

behavioural mechanisms of a movement process and thus need to consider the time
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scale at which these mechanisms are relevant. The discretization of a model should
represent this scale appropriately. On the other hand, a different time scale may be
given by the data collection rate. In practice, the sampling rate of data is subject to
technological constraints. One of the major limitations of electronic tagging devices
such as Argos or GPS tags is battery life, imposing a tradeoff between measurement
rate and total deployment time (Ryan et al., 2004; Breed et al., 2011). Also, to avoid a
large noise to signal ratio, the time interval should be chosen so that measurement error
relative to distance travelled during a time interval is small (Ryan et al., 2004). For
slow moving animals and depending on the accuracy of the tagging device, a minimum
time interval of an hour may be necessary (Jerde & Visscher, 2005). Therefore, the
resolution of the data may not always match the time scale of the behavioural process
of interest. In this case, it becomes a challenge for a model to overcome the conflict.

A related problem is that sampling rate can affect data analysis results (Codling &
Hill, 2005; Rowcliffe et al., 2012; Postlethwaite & Dennis, 2013). A common measure
calculated from raw movement data is the total distance travelled, which can provide
useful information about an animal’s energetic expenditures. It is well documented
that this quantity is highly influenced by the sampling rate of the data (Ryan et al.,
2004; Mills et al., 2006; Tanferna et al., 2012; Rowcliffe et al., 2012). A range of studies
demonstrated that other fundamental movement characteristics vary with data sam-
pling frequency as well, for example path sinuosity and apparent speed (Codling &
Hill, 2005), movement rate and turning angle (Postlethwaite & Dennis, 2013), and
estimates of territory size (Mills et al., 2006). One of the main problems underlying
these effects is information loss when subsampling a movement path. This also impairs
our capacity to correctly estimate behavioural states through hierarchical modelling
approaches that have become widespread in movement analyses (Breed et al., 2011;
Rowcliffe et al., 2012). These findings demonstrate that great care is needed when
extrapolating movement analysis results beyond the temporal scale of a study. Com-
parisons of results may not be appropriate if the temporal resolution of the data varies
too much, but it is unclear what constitutes “too much”.

Despite the evidence of the extent of the problem, little is known about how to
solve it. Previous approaches have been mainly empirical, using very fine scale data or
synthetic data from simulations, which are subsampled at various resolutions. Move-
ment characteristics calculated at these varying sampling rates are then compared to
the values based on the full data, which represent the true values. Some studies have
fitted functions to the relationships of movement characteristics and sampling rate
(Pépin et al., 2004; Codling & Hill, 2005; Mills et al., 2006). These empirically ob-
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tained functions may be used to correct movement characteristics for sampling rate.
While correction factors derived from movement data remain situation-specific and
cannot easily be applied across species (Ryan et al., 2004; Rowcliffe et al., 2012), we
can obtain more general results by analyzing the effects of sampling rate at the level of
the model (Codling & Hill, 2005; Rosser et al., 2013). Often, important characteristics
of movement can be well captured by models, and therefore analyzing the properties
of models can provide more general insights. However, only few such studies exist.
An approach to circumvent the problem of scale-dependent statistical inference has
been taken by Fleming et al. (2014), who use the semivariance function of a stochastic
movement process to identify multiple movement modes acting at different temporal
scales. The method takes into account all possible time lags between observations.
However, there are limitations as to the movement processes that can be included in
this analysis (Fleming et al., 2014).

Here, I present a rigorous framework for studying how movement models react to
changes in sampling rate, and I use this framework to analyze a class of models based
on random walks. With my analysis, I seek to understand whether, and how, mod-
els can help to compensate mismatching temporal scales between different data sets
or between data and behavioural process of interest. Focusing on spatially-explicit
random walks, I investigate whether there are models that can validly be applied to
data with different temporal resolutions and how we can account for the differences
in resolutions in our interpretation of statistical inference results. In particular, I
am interested in how model parameters, and their estimates, change with decreasing
temporal resolution. While estimates may change due to a shift in behavioural scale,
which we always need to be aware of, I am interested in the changes that arise from the
method, that is the model. My framework is related to the statistical concept of ro-
bustness, which aims at safeguarding statistical procedures against violations of model
assumptions (Hampel, 1986; Huber & Ronchetti, 2009). Often, such violations refer
to deviations from assumed probability distributions (e.g. Normal errors), which may
result in outliers, misspecified relationships between response and explanatory vari-
ables in regression analyses, or violations of the common independence assumption.
Here, I define robustness of movement models against changes in temporal discretiza-
tion. In my framework, I treat robustness as a formal property of a model, namely the
movement model. If a model has this property, it can be applied to data with varying
resolutions. Additionally, while model parameters do not stay the same, they change
systematically and can be translated between resolutions.

Our paper is outlined as follows. In section 5.2, I define what I mean by a movement
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model to be robust against changes in temporal resolution. I provide three different
definitions, varying in their strength of conditions. In section 5.3, I present different
approaches how the definitions can be used to analyze robustness of movement mod-
els. Depending on models’ complexity and preexisting information, we can use formal
analytical methods, numerical calculations, as well as Monte Carlo and simulation ap-
proaches. I use these approaches to examine robustness of spatially-explicit random
walks and resource-selection models, and I summarize my findings in section 5.4. In
section 6, I discuss the relevance of my robustness framework for statistical inference

and also draw specific conclusions for spatially-explicit resource-selection models.

5.2 Robustness of Markovian movement models

I consider movement models that are discrete-time Markov processes of the form
(X¢, t € T), where X; € R? is an individual’s location and T' = {0, 7,27,...} is a
set of regularly spaced times. This means that I assume that the time interval 7 > 0
between two successive location measurements is fixed. Such data often arise from ter-
restrial animals fitted with GPS devices (Frair et al., 2010). The time interval 7 of the
model is usually specified by the resolution of the data. I denote the 1-step transition
density for the probability of moving from location y to & between times ¢t — 7 and ¢ by
pi—rt(x|y, @), where 8 € © is a vector of model parameters. This notation highlights
that the transition density can be time-heterogeneous.

I consider sub-models that consist of every nth location of the original model for
n € N. The transition density of the nth sub-model for the probability of moving
from location y to x between times t — n7 and ¢ is denoted by pi—n-+(x|y, 0); com-
pare Figure 5.1. A priori, the function p;_,.; can have an entirely different form
than p;_.; and may correspond to a different probability distribution. However, via
the Chapman-Kolmogorov equation, the n-step transition density can be written as a

marginal density,

Pt—nrt(Tt|Ti—nr, 0)
= / pjoint(mta Li—rye- mz‘,f(nfl)7'|:vt—n'ra 9) dmt—'r s dmtf(nfl)fa (51)
R2x---xR2
where the marginalization is over all intermediate locations visited between times t —nr

and t. For simplicity, I use the general subscript “joint” to denote any joint density

of multiple locations. From the notation of the locations it is clear which joint density
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is meant. The Markov property of the model allows us to stepwise split up the joint

density as follows

pjoint(wty L7y 7wt—(n—1)7‘mt7n7—7 9)

= pt—r,t($t|wt—r; 9)pjoint($t—r; e 7a:t—(n—1)7‘mt—n77 9)- (5-2)

We can continue this until we obtain

pt—m’,t(mt‘wt—nﬂ 0)

n—1

= / Hpt—k'r,t—(k—l)'r(xt—(k—l)r|wt—k'ru 0) dwt—T S dwt—(n—l)'r- (53)
R

2x-exR2 L

Therefore, we can use the 1-step densities to calculate the n-step density; compare
Figure 5.1. For statistical inference, and thus for my robustness concept, the model
parameter vector @ plays a crucial role. Although the n-step density may belong to a
different distribution than the 1-step density, equation (5.3) justifies to use the same
parameter 6 in the notation of the n-step density as in the 1-step density.

I define robustness in terms of the 1-step and n-step densities of a model.

Definition 5.1 (Robustness of degree n). Let n € N be finite. A movement model of
the above type is robust of degree n if there exists an injective function g, : @ — ©
such that

Pinrt(Z|Y, 0) = pi_ri(x|y, 9,(0)) for all t € T and xz,y € R*. (5.4)

This definition requires that the n-step densities are of the same functional form as
the 1-step transitions, where parameters of the model are appropriately transformed
via the function g,. This means that if a model is robust, the nth sub-model is in
fact the same as the original model but with systematically adjusted parameters. The
parameter transformation g, allows us to extrapolate the original parameter @ to the
coarser temporal discretization of the nth sub-model. Additionally, we can use the nth
sub-model to infer the parameter 6 of the original model, because we can invert g, ().
Note, however, that this rests on the assumption that the original model defines the
process of interest. If, instead we start at the coarser resolution, we would also need
surjectivity of the function g, to conclude the existence of the finer model.

Robustness of degree n has important implications. Given a behavioural process

of interest, described by a robust model with parameter @, we can apply the model
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not only to data with matching temporal resolution 7 but also to coarser data with
resolution n7 (e.g. double time interval for n = 2). The parameter estimate 1) that
we obtain from the coarser data is in fact an estimate of ¢,(6). From this, we can
infer the value of 6 via @ = g,'(¢). Additionally, robustness allows us to compare
studies pertaining to the same behavioural process but using data sets with different
resolutions. If @ is the estimate based on the finer data, it can be extrapolated to the
coarser scale via the parameter transformation g, (@), for all degrees n for which the
model is robust.

Robustness as in Definition 5.1 is a strong condition that I do not expect to hold
but in few special cases of the density p;_,.(x|y, ). However, equation (5.4) may hold
up to a function v(x,y), where v is a bounded function that could also depend on n
or 7. For practical applications, such approximate or asymptotic robustness may be

sufficient. Therefore, I provide two additional definitions.

Definition 5.2 (Asymptotic robustness of degree n). Let n € N be finite. A movement
model of the above type is said to be asymptotically robust of degree n if there exists
an injective function g, : ® — O and a function v : R? x R? x Rt — R* with the
property v(x,y;7) — 1 = O(7) on R? x R? x RT, such that

pt—n’r,t(m|y7 0) = pt—T,t(m|y7gn(0)) U(CE, ya 7_) fOI' au 14 € T and CE, y € RQ' (55)

Here, O denotes the Landau symbol for the order of a function. If a model is
asymptotically robust, the n-step densities are not exactly the same as the 1-step
densities, as was required in Definition 5.1. However, the discrepancy between the
densities is bounded by a function that is proportional to 7. More precisely, for an

asymptotically robust model we have

1— CT < ptfn‘r,t(w’y7 0)

< <1+4Cr 5.6
pth,t(wlyagn(H» ( )

for all &, y and 0, for some constant C' > 0. Therefore, if the time interval 7 of the
model is sufficiently small, the n-step density will closely resemble the 1-step density
with appropriately adjusted parameters. Asymptotic robustness of degree n implies
that robustness of degree n is achieved as 7 — 0, that is when the time interval 7
approaches zero.

In applications, the time interval 7 may not be chosen sufficiently small for Def-
inition 5.2 to be useful. Therefore, I give a variation of Definition 5.2, in which the

function v does not depend on 7.
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Definition 5.3 (Approximate robustness of magnitude § and degree n). Let n € N
be finite. A movement model of the above type is said to be approrimately robust
of magnitude 6 and degree n if there exists an injective function g, : @ — © and a
function v : R? x R? — R* with the property 0 < 1 — 4§ < v(x,y) < 1+ 4 for all x,
y € R?, for a § > 0, such that

Pinrt(Z|Y,0) = pr_rr(x|y, gn(0)) v(x,y) for allt € T and x,y € R2. (5.7)

Analogously to equation (5.6), condition (5.7) can be written as

ptfnr,t (w | y7 0)

1-40<
- ptf‘r,t(w‘yagn(o))

<1+ (5.8)

In fact, we may consider two different types of magnitudes. Setting

pt—nT,t(m|y7 9)

Di—ri(|y, 9.(0))’ (5.9)

v(z,y) =

this function depends a priori on the parameters, that is we have v(x,y;8), and the
magnitude is dg. If maxg dg exists, then this is the overall magnitude for the model with
all possible parameter values. The magnitude determines how close n-step densities are
to the parameter-adjusted 1-step densities. If 9 is small, then the correction function v
is close to one everywhere, and thus the n-step density has similar values as the 1-step
density over its entire domain.

Asymptotic and approximate robustness have similar implications for inference as
robustness, but only approximately. The quality of the approximation depends on 7
or the magnitude . Suppose we wish to estimate parameters of a behavioural process
that we formulate in a model. Suppose we consider the time interval 7 as suitable
for the process. If the model is robust of degree n, we can use data not only at the
matching scale but also at a coarser scale. For example, if the model is robust of degree
2, we can use data obtained at time interval 27. Because the model is also valid for the
coarser scale, we can translate parameter estimates between the scales via the function
gn. If a model is asymptotically or approximately robust, the model is not exactly
but still approximately valid for the coarser scale. To see this, consider the likelihood

function

L1(0|{w07w77m27'7"‘7}) - H pt—T,t(mt|mt—770)‘ (510)

te{r,27,...}
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If a model is robust of degree n, the likelihood for data at time interval nr is

Ln(0|{w0a Lnr, w(n—i—l)ﬁ sy }) - H pt—nT,t(wt|mt—nT7 0)
te{nr(n+1)r....} (5.11)

= L1(9.(0) {0, Tyr, Tnr1)rs -, })-

If a model is asymptotically robust, we have instead
L1(ga(0)) - (1 = C7 + O(r%)) < La(0) < L1(9a(0)) - (1+ C7 + O(r%)),  (5.12)

omitting the notation of the data, which is the same as in equation (5.11). Analogously,

for approximate robustness we have
L1(9n(8)) - (1 = 6 + O(6%)) < Lu(6) < Li(ga()) - (1 + C3 + O(6%)). (5.13)

Therefore, if a model is asymptotically or approximately robust of degree n, we
may loosely write L, (0) ~ L1(g,(0)), that is the likelihood functions based on data at
time interval 7 and on data at interval n7 are approximately the same. Thus, if data
at time interval 7 is not available, we can analyze data at time interval n7 instead,
using the likelihood L; of the original model. Parameter estimates obtained in this
way can be translated to the scale 7 by using the inverse parameter transformation
g, ', Such results from statistical inference based on L; may be close to results based
on the correct L,,, which may be difficult to compute. How close results are depends
on the quality of the approximations in Definitions 5.2 and 5.3 via 7 or §. For example,
if a model is approximately robust with a very small magnitude ¢, the likelihood I,

will describe data at time interval nT almost as well as L,,.

5.3 Analyzing spatially-explicit random walks

I used the robustness definitions to analyze spatially-explicit random walk models.
These models merge general movement tendencies of an individual with decisions based
on specific characteristics of locations, such as environmental features and available
resources. I investigated how the models react when applied to data with increasingly
coarser temporal resolution.

My robustness definitions have two key features. First, the 1-step transition den-
sities of the model and the n-step densities of the sub-models need to have the same

form. Second, model parameters, which are parameters of the densities, need to be
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transformed by a known function g,. We can assume different approaches to investi-
gate robustness properties of a model, depending on whether we have a candidate for
the parameter transformation g, or not. If prior knowledge allows us to investigate
robustness for a given or hypothesized parameter transformation, we can calculate and
compare the n-step density p;n.+(x|y, ) and the parameter-adjusted 1-step density
Pi—rt(x|y, g,(0)). By showing equality of the two densities, we can verify robustness.
For complex models, analytical calculations may be difficult, or even impossible. In
these cases, we may resort to numerical calculations, especially when approximate
robustness is sufficient.

In many situations, we may not know g,, a priori, nor have any anticipation. Or, we
may have tested robustness for a hypothesized parameter transformation but got poor
results. In these cases, we need to establish some information on possible forms of the
parameter transformation. Additionally, for complex models, numerical calculation of
the high-dimensional integral required for the n-step density (compare equation (5.3))
may become inaccurate. A solution is then to draw on the ideas of Monte Carlo
sampling. Monte Carlo methods and simulations are useful when probability densities
are difficult to compute in closed-form but can conveniently be sampled from (e.g.
Robert & Casella, 2000). In the following, I demonstrate both approaches for analyzing

movement models’ robustness.

5.3.1 Analytical and numerical approach

Spatially-explicit random walks can be created by merging two elements in the tran-
sition density of the model. One component is the general movement kernel kg, (x;y),
which can be the transition density of any standard random walk, describing the prob-
ability that an individual takes a step from y to z if there were no environmental
information available. A second part of the model, given by the weighting function
we, (), rates each possible step based on the location z. The transition densities of
the full model takes the form
ke, (%) we, (x)

(2], 01, 05) = . 5.14
Pt ,t(x’y 1 2) fR k’el (Z,y)UJQQ(Z) dz ( )

The integral in the denominator serves as a normalization constant.

For simplicity, I restricted my analysis to the 1-dimensional case, that is I assumed
that X; € R. I further focused on Gaussian kernels kg, (z;vy) = ko (z;y), where k,(x;y)
is a Gaussian density with mean y and standard deviation o. The weighting function

we, () was assumed to be positive everywhere to ensure that equation (5.14) defines
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a density. In the following I simply use 8 for the parameter vector of the weighting
function, or, when it is clear which parameters refer to the weighting function, I drop
the subscript for the parameter in the notation of the weighting function entirely.

Note that the transition density (5.14) does not depend on time explicitly. Still,
as the individual moves through space over time, the centre location y of the kernel
shifts. Although the kernel is a function of the distance ||z — y|| only, the weighting
function adds a spatially explicit component. Therefore, unless the individual remains
at the same location, the transition kernel effectively changes at every time step. In the
following, I omit the time-related subscript in the notation of the density and simply
write p; for the transition density (5.14) and p,, for the n-step density. The time interval
of the original process is always assumed to be 7. The distinction between 1-step and
n-step density is still important, because the n-step density is in fact an integral over
multiple 1-step densities; compare equation (5.3).

I investigated whether I could find weighting functions wg(z) such that the model
with transition density (5.14) is robust, asymptotically robust or approximately ro-
bust. I started by verifying Definition 5.1 for simple cases of the weighting function for
a fixed parameter transformation g,. As highlighted above, the parameter transforma-
tion is a key element, translating parameters between different temporal resolutions.
For the parameter of the Gaussian movement kernel k,, I obtained a candidate for
the transformation based on the linearity of the Gaussian distribution. If we only
consider the kernel k,, we have a simple random walk with normally distributed steps
between locations. The n-step density (5.3) is then the density of a sum of n normally
distributed random variables, which is again normal with standard deviation /no.
Therefore, I assumed that the transformation of the kernel’s standard deviation was
given by g, (c) = y/no. For the parameters of the weighting function I assumed that
they remain unaffected, that is ¢,(0) = 6. This is an ideal property for a weighting
function, as it guarantees validity of inference results across different sampling rates
without further translation.

In a next step, I used the same parameter transformation g,(o,0) = (y/no,0) to
establish conditions on the weighting function such that the model is asymptotically
robust. For this, I assumed that the parameter of the kernel, the standard deviation,
was influenced by the time interval 7, that is ¢ = (7). This reflects that an individual
may travel larger distances during longer time intervals. Because of the linearity of the
Gaussian distribution, I assumed the relationship o(7) = /7w, for some w > 0. For
certain conditions on the weighting function, I verified Definition 5.2 analytically for

the robustness degree n = 2 by calculating the function v(z,y;7) and placing bounds
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on it.

As alternative to an analytical approach, we can calculate the ratio of 2-step and
1-step density numerically to see whether we can find a function v(z,y;7) according
to Definition 5.2 for the degree n = 2. Define §(7) := max, , |v(x,y;7) — 1|. Note
that since step densities depend on 7 through o(7), we may equivalently consider
d(o). If this is independent of the other parameters €, we can obtain the bound
on v as § := max, (o), if this maximum exists. More generally, we can consider
v(z,y,0,0) and calculate dg(0) := max, , [v(z,y;0,0)—1|. This dg(0) is the magnitude
of approximate robustness (degree 2) for a model with a fixed weighting function,
including parameter values. An overall magnitude for the family of models consisting of
the model for all parameter values can be obtained as ¢ := max, g dg(c). I demonstrate

these two numerical approaches with an example weighting function.

5.3.2 Simulation approach
Resource selection models

Resource selection analyses link animal location data and environmental variables to
understand animals’ space-use patterns in relation to their habitat. These studies pro-
vide insight into species’ preferences or avoidance of habitat characteristics, which is
important information for wildlife management and conservation purposes (Hebble-
white & Merrill, 2008; Latham et al., 2011; Squires et al., 2013). Central methodolog-
ical elements are resource selection functions (RSF) and resource selection probability
functions (RSPF), describing the probability of selection of certain units (e.g. pixels of
land) by an individual based on environmental covariates (Manly et al., 2002; Boyce
et al., 2002; Lele & Keim, 2006). RSF and RSPF have been used on their own in a
mere statistical framework (Boyce et al., 2002; Courbin et al., 2013), incorporated into
spatially-explicit models (Rhodes et al., 2005; Aarts et al., 2011), and become part of
mechanistic movement models (Moorcroft & Barnett, 2008; Potts et al., 2014)).

I included resource selection in the spatially-explicit random walk with transition
density (5.14) by letting the weighting function take the form wg(z) = we(r(zx)),
where r(z) = (r1(x),...,r,(z)) is a vector of resource covariates at location x. Each
r; is a function over space, representing resource covariates such as elevation, biomass
measures, land cover type, and much more. The transition density becomes

ko (;y) wo(r(z))

pi(zly,o,0) = ARE TR E T (5.15)
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In practice, geographical information is spatially discrete, and therefore the normalizing
integral in equation (5.15) becomes a sum over pixels, or cells, of land. Note that I
still restrict attention to one-dimensional models.

The weighting function can take various forms, and here I consider two forms mod-
elled after commonly used resource selection functions (Manly et al., 2002; Lele &

Keim, 2006), an exponential function,
Wexp(T(x)) = exp (B - 7(2)) (5.16)

and a logistic function,

__exp(a+8-r(x))
l+exp(a+8-r(x))

Wiy (7 () (5.17)
The vector B comprises all selection parameters with respect to resource covariates r. A
higher selection parameter means stronger selection with respect to the corresponding
resource. In the logistic form, « is an intercept parameter, which can shift the inflection
point of the logistic function away from zero. The inflection point is the point where
the logistic function attains a value of 0.5, that is where the probability of selecting
a resource is 50%. If the exponential form (5.16) is used, an intercept similar to the
one used in equation (5.17) is not identifiable, because it cancels in the definition of
the transition density (5.15). Therefore I have omitted it in equation (5.16). The
function wi,, has range (0, 1) and can therefore be used to describe probabilities. This
means that this form can be interpreted as an RSPF, which for a given location y
specifies the probability that an animal selects this location, given the covariate values
of the location. In contrast, the exponential weighting function can only specify values
proportional to this probability, with unknown proportionality constant (Lele et al.,
2013).

Sampling models and sub-models

I examined the two models with weighting functions wey, and we, for their robustness.
Because the weighting functions depend on space through environmental information r
they are highly non-linear, and therefore the transition densities are difficult to exam-
ine analytically. Sampling probability distributions is a convenient work around and
has the additional advantage that we can control parameters and isolate processes of
interest. I thus simulated sample trajectories from the model with transition densi-

ties (5.15). The joint density of a movement trajectory (zy,...,xx) € RY of length
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N € N is given by

N
Pioint (T1, - - -, TN, 0) = p1(21,0) le(xtfﬂitfl, 6). (5.18)

t=2

Thus, I sampled successively from the transition densities to obtain a full movement
trajectory. I obtained samples from the subprocess x, = (z1,Z,41,...) consisting of
every nth location by subsampling the full trajectories. These subsamples represent
samples from the model with transition densities being the n-step densities p,(:|-, 0).
Because the models rely on environmental data, I simulated resource landscapes
as realizations of Gaussian random fields with exponential covariance model (Haran,
2011; Schlather et al., 2013). This resulted in spatially correlated resource landscapes,
thus ensuring realism; compare Figure D.1. The sampled movement trajectories were
based on these simulated landscapes. To avoid confounding effects and to keep results
as clear as possible, I assumed that the weighting function was based on only one
resource r, thus we have wg(r(x)). With the exponential covariance model, I assumed

that the covariance of resource values at two different locations is given by

Cov(r(z),r(y)) = exp( it ), (5.19)

S

where s affects the decrease of the spatial autocorrelation with increasing distance.

I sampled trajectories for varying parameter values. I used o € {5,6,7} and 8 €
{0.5,1,1.5,2} in all combinations. In the model with logistic weighting function wjeg,
I further combined the values v € {—1,—0.5,0,0.5,1} with all other parameters. For
each parameter combination, I sampled 16 trajectories for 15,000 time steps each;
compare Figures D.2 and D.3. For each of the 16 trajectories, I used a different resource
landscape, repeating the same set of resource landscapes across different parameter
combinations. The 16 landscapes were generated with varying spatial autocorrelation,
s ranging between 200-500. This led to a total of 192 sampled trajectories for the model
with exponential weighting function and 960 trajectories for the model with logistic
weighting function. I subsampled every trajectory at levels n =1, ..., 15, leaving 1000

steps for the coarsest time series. The subsample for n = 1 is the original trajectory.

Analyzing parameters

While the simulated trajectories represent samples from the original model with transi-

tion densities p;(-|-, 8), the subsamples of the full trajectories provide us with samples
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from the sub-models with n-step densities p,(-|-, 8). To learn about the models’ robust-
ness properties, we need to test whether the subsamples reconcile with the parameter-
adjusted 1-step densities p;(-|-, g,(0)) for some parameter transformation g,. For a
given parameter transformation, we can achieve this by analyzing the fit of the model
with transitions p; (-], 9,(0)) with the subsamples. When g, is unknown, or when the
fit for a hypothesized g, is poor, we first need to investigate the behaviour of the pa-
rameters under subsampling to see whether we can find a function g, as required by
the robustness definitions.

Here, I both tested a priori expectations on the parameter transformation and
searched for better alternatives. I estimated parameters for all trajectories and their
subsamples using maximum likelihood optimization. The likelihood function for the
full trajectories is given in equation (5.18). For subsamples, 1 applied the same
model, although I did not know whether subsamples of trajectories followed the same
(parameter-adjusted) process as full trajectories. I expected parameter estimates for
the full trajectories to be close to the values that I used during the simulations. I
call these the “true values”, although deviations in the simulations are possible, be-
cause simulated trajectories are realizations of stochastic processes. My main interest
are parameter estimates for the subsamples. To distinguish estimates from underlying
true parameters, I denote the estimate with a hat, e.g. &. Ideally, the parameters of
the subsamples should follow some function g, (o, «, 3), and so should the estimates.
To see whether such a function exists, I fitted non-linear regression models to the re-
lationship of parameter estimates of subsamples and the subsampling amount n. For
each parameter, I fitted two models. One model was more restrictive and represented
a priori expectations, whereas the other model had an additional free parameter that
allowed more flexibility for the parameter transformation.

The general movement kernel k£ has one parameter, the standard deviation o of
the Gaussian distribution. This kernel describes the general movement tendencies
of the animal, and ¢ influences the distance covered in each step. With increasing
subsampling, the temporal resolution of the movement path becomes coarser, and I thus
expected the standard deviation of the kernel to increase. Each step in a subsample
is in fact the accumulated result of one or several steps in the full trajectory. If the
kernel is the only force driving the movement, the linearity of the Gaussian distribution
caused me to expect the standard deviation of the kernel to increase as \/no; compare
section 5.3.1. With additional resource selection, however, there may be deviations
from this behaviour.

For the resource selection parameters a and 3, an ideal behaviour would be that
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they remain unaffected by the subsampling, analogously to my assumptions in sec-
tion 5.3.1. In my model, I assume that each step is influenced by the weighting func-
tion. One of the underlying assumptions of a traditional RSF or RSPF is that it
gives weights to locations independently of the values of other locations, which means
each location is weighted by its present resource only, without consideration of alter-
native locations. Therefore, resource selection parameters should be independent of
the temporal resolution of the data. However, within the spatially-explicit movement
framework, resource selection always occurs in the context of the current location and
the available surrounding area as defined by the general movement kernel. Therefore,
a change in the movement kernel due to increased subsampling may be accompanied
by a change in resource selection parameters.

I fitted the non-linear regression models to the parameter estimates separately for
each parameter combination. This means that in each regression, I fitted estimates
of 16 trajectories and their subsamples. Because of my previous considerations about
the kernel parameter o, I assumed a power relationship between the estimate 6 and
the subsampling amount n, stratified by trajectories. I chose the stratification because
trajectories were simulated on different landscapes. Also, for the resource selection
parameters, especially when their true values were close to zero, estimates could vary
between being positive and negative. In these cases, the stratification allowed for

flexibility. The model for the estimate of the nth subsample of trajectory 7 is
Gim=0i1-n"+e, 1<n<15 1<i<16, (5.20)

where the error term ¢ is normally distributed with mean zero and positive standard
deviation (. The maximum likelihood estimate of b should ideally be close to 0.5,
however as noted above, it may deviate from this value because of resource-selection
mechanisms. To test whether b differs from 0.5, I used model selection via AIC between
the model in equation (5.20) and the model in which I fixed b = 0.5.

Model choice for the resource selection parameters was less clear. Visual inspec-
tion of the estimates, preliminary fits with varying models and inspection of residuals

suggested a power law for the parameter 5 as well. I thus fitted the following model,
Biw=Pir-n’+e, 1<n<15 1<i<]I6. (5.21)

I compared the fit of this model with the model in which I assumed that subsampling
does not change the estimate by setting b = 0.

For the intercept parameter « in the logistic form of the resource selection function,
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I chose a linear model,
Qin=Q1+b(n—1)+¢, 1<n<15 1<i<16. (5.22)

Inspection of residuals suggested that in some cases the relationship between & and n
was non-linear. However, a power-law model or other non-linear relationships were not
consistently more suitable either. Therefore I remained with the simpler, the linear,

model, noting that this is a mainly illustrative analysis.

Calculating approximate robustness

To accompany the simulation analysis, I examined approximate robustness properties
of the two models with exponential and logistic weighting functions. I focused on
approximate robustness of degree 2, and I tested the ideal parameter transformations
92(0,8) = (V20,8) and gs(o,, B) = (V20,,8) for wey, and wyeg, respectively. I
numerically calculated a magnitude § = max, ,(|v(z,y)—1|) for every possible scenario
that I used in the previous section. This means that I calculated a magnitude for each
combination of the parameters o, 3, and « (in case of the logistic weighting function)
and for each of the 16 simulated resource landscapes. We may therefore think of ¢
as d(o,a, 8,1), for 1 < ¢ < 16; compare Figure 5.2. T examined whether magnitudes
were influenced by parameter values and specific characteristics of the landscapes, such
as their spatial autocorrelation and their overall variation Var(r(x)) over the spatial
domain. I further calculated an overall maximum max, . ,0(c, @, 5,7). I compared
results between the models with exponential and logistic weighting functions, wey, and

Wiog -

5.4 Results

5.4.1 Analytical and numerical results

I found few special cases of weighting functions wg that, together with the Gaussian
kernel k,, resulted in a robust movement model according to Definition 5.1.

The simplest case was a constant weighting function. Such a weighting function
reduces equation (5.14) to the case of a homogeneous environment, where only general
movement tendencies play a role, but no environmental information. The model is then
a simple random walk with normally distributed steps between locations. Because of

the linearity of the normal distribution, the model is robust of degree n for all n € N
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for the assumed parameter transformation g,(0) = /no; compare also Theorem 5.2
for parameters a = b = 0.

A natural next step was to consider a linear weighting function. However, a linear
weighting function violates the assumption of being strictly positive everywhere. If
in equation (5.14) the current location y is the point at which w becomes zero, the
normalization integral vanishes. Also, equation (5.14) can become negative and cease
to be a valid density function. Still, I could draw on the linearity of the expectation of a
random variable to look into this further. The normalization constant in the transition
density (5.14) can be viewed as an expectation of the form E(w(Z)) for a normally
distributed random variable Z with mean y. Therefore, if the function w is linear, the

normalization constant reduces to w(y). Equation (5.14) then becomes

we ()
we(y) .

pi(zly,0,0) = ko(z;y) (5.23)
The right-hand side of the equation is positive whenever x and y are either both
negative or both positive. If movement only occurs in the domain where the weighting
function is positive the model is robustness within this domain. The details of the

proof can be found in Appendix E.1.

Theorem 5.1 (Linear weighting function). Let w be a linear function w(zx) = ax + b,
for a,b € R. Let T C R be the interval where w > 0. For the restricted domain I, the
movement model with transition densities (5.14) is robust of degree n for all n € N.

The parameter transformation is given by g,(o,a,b) = (y/no,a,b).

I found another special case to be given by an exponential weighting function. Here,
no restriction on the domain is necessary. Again, see Appendix E.1 for details of the

proof.

Theorem 5.2 (Exponential weighting function). Let w be an exponential function of
the form w(z) = Ce®™* for C a,b € R. Then the movement model with transition

densities (5.14) is robust of degree n for all n € N with parameter transformation

gn(0,C,a,b) = (v/no,C,a,b).

The above two theorems show that it is possible to verify exact robustness with the
ideal parameter transformation g,(0,0) = (y/no,8) for certain weighting functions.
However, the cases are very restrictive, and robustness will fail for many other, and

especially more complex, weighting functions.
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I could additionally establish asymptotic robustness for more general conditions on
the weighting function. The main result is summarized in the following theorem. For

a detailed proof of the theorem, see Appendix E.2.

Theorem 5.3 (Asymptotic robustness of degree 2). Let wg be continuous and bounded
away from zero. Let wg further be twice differentiable with bounded second derivative.
Then the model with transition densities (5.14) is asymptotically robust of degree 2 with
parameter transformation go(o,0) = (v/20,6).

Thus, if the weighting function is well-behaved according to the theorem, we can
place a bound on the factor by which the 1- and 2-step density vary; compare equa-
tion (5.6). This bound is of order 7, such that the discrepancy between 1- and 2-step

density decreases with the time interval.

Ezample 5.1 (Asymptotic robustness of degree 2). As a simple example, consider the
weighting function w(x) = sin(ax)+ for a > 0 and § > 1. The choice of § guarantees
that the weighting function is positive everywhere. The function w is bounded between
0<pf—-1<wx) <p+1foral x € R, and its second derivative is bounded by
|w”(z)] = o?. Therefore, Theorem 5.3 holds.

The proof of Theorem 5.3 is constructive in the sense that it provides us with a
constant C' for equation (5.6) in terms of the bounds on w and w”. However, this
constant may be rather large and does not necessarily provide the closest bound on
the function v. Therefore, it can be informative to calculate approximate robustness

numerically.

Ezxample 5.2 (Approzimate robustness of degree 2). 1 continue the above example with
weighting function w(z) = sin(ax) + f for @« > 0 and § > 1. I calculated the func-
tion v(z,y; 0, a, f) from Definition 5.3 numerically, using different values of « and
(Figure 5.3a). From this, I obtained 6, 4(c) (Figure 5.3b), which is the magnitude
of approximate robustness (degree 2) for the model with specific weighting function,
that is with specific parameters; compare Figure 5.2. In each case, after reaching a
maximum the function vanishes for increasing o. Therefore it appears that it is pos-
sible to find d,p := max, d,3(c). The wavelength of the sine curve, determined by
a, and the intercept S have different effects on the function d, (o). While « shifts
the curve, 8 changes the height of the peak (Figure 5.3b). Therefore, it appears that
0o is independent of a and decreases for larger 5. For the weighting function to be
positive, 3 needs to be larger than one. For 8 = 1, the function ¢, s has a maximum
at one. From these considerations, I conclude that max, s 0,3 = 1. This is the overall

magnitude of approximate robustness (degree 2) for the family of weighting functions
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w(z) = sin(az) + B, a > 0, f > 1; compare Figure 5.2. As a word of caution, I
emphasize that I only calculated ¢, s for a fixed number of parameter values and only

within finite intervals for x and y, and therefore results may be limited to these ranges.

In the region where §(o) peaks, the approximation of the parameter-adjusted 1-
step density pi(x|y, V20, a, B) to the actual 2-step density py(z|y, o, a, ) is only rough.
However, for larger values of o, and independent of o and 3, the function d, z(o) seems
to vanish, which means that the approximation is good and the discrepancy between 2-
and 1-step densities may be neglected. Theorem 5.3 allows to conclude that 0, 5(0 (7))
is bounded by C'7, for a constant C' > 0, for all & > 0 and 8 > 1. As can be seen from
the steep initial slope of d, g(0), especially for higher values of a, the constant C' would
need to be rather large (Figure 5.3b). The calculations of approximate robustness could

additionally show that the bound on v(x,y) is in fact much smaller.

5.4.2 Simulation results
Results for parameter estimates

When analyzing parameter estimates from the simulated trajectories and their sub-
samples, I found a difference in the behaviour of parameters between the exponential
and the logistic weighting function. Generally, subsampling had less effect on the value
of parameter estimates using the logistic form, and the behaviour of estimates agreed
closer with my expectations.

For both weighting functions, estimates ¢ showed a good fit with the power-law
model. When I used the exponential form, the estimated power b ranged from 0.45
to 0.5 for varying parameter combinations, thus deviating from expected behaviour
for some parameter combinations (Figure 5.4a). For small selection parameter [, the
estimate & showed the expected increase as d+/n. With increasingly strong selection,
i.e. higher value of 3, estimates ¢ became smaller with increased subsampling relative
to the ideal relationship. An increase in o did not influence the fit other than leading
to a larger residual standard error é , which is to be expected because of the overall
larger values of the dependant variable. In contrast, when using the logistic form, the
estimated power b differed only very slightly from 0.5 and in some cases, the simpler
model with fixed b was preferred by model selection right away (Figure 5.4b).

The behaviour of the resource-selection parameter (8 also differed between expo-
nential and logistic weighting function. For the exponential form, B showed a clear
increase with increased subsampling, fitted well by the power-law model (Figure 5.5a).

The power b remained similar (ranging 0.105-0.124) across parameter combinations,
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increasing slightly with larger o (Figure 5.5b). For the logistic form, estimates B gen-
erally remained closer to the original values for n = 1 (Figure 5.5¢,d). In most cases,
model selection via AIC preferred the power-law model to the ideal constant relation-
ship, however, the estimated values of the power b are small, with 53 out of 60 values
being below 0.1 (total range 0-0.156, with one exceptional negative value b = —0.041).
There was a tendency of b to be smaller and more concentrated under stronger selection
(Figure 5.5d).

Estimates of the intercept « in the logistic function showed a slight decline with
increased subsampling in most cases (Figure 5.6). This decreasing trend existed no
matter whether o was positive, negative, or zero. In general, slopes of the linear fit
were all close to zero (ranging -0.047-0.058), and in a few cases the null model with
b = 0 was chosen. I found a trend in the realized intercept values in the simulated
trajectories. With stronger effect of selection (larger (), the intercept estimate & of
original trajectories (n = 1) was stronger concentrated around the true underlying
value, which subsequently led to a stronger concentration of estimates of subsamples
(Figure 5.6).

Results about approximate robustness

When comparing magnitudes d(o, a, 3,4) of approximate robustness (degree 2) be-
tween the two models with exponential and logistic weighting function, I found lower
magnitudes for the model with logistic function wj,s. Magnitudes for the model with
Wexp Tanged between 0.067 and 1.82, whereas those for the model with wi,, ranged
between 0.02 and 1.19. The 5% quantile, the median and the 0.95% quantile were
0.092,0.34, 0.97] (wexp) and [0.046,0.21,0.64] (wieg)-

I found that especially the selection parameter S had a strong influence on mag-
nitudes, higher values of 3 leading to higher magnitudes (Figure 5.7). For the model
with exponential weighting function, there was a tendency that weighting functions
whose underlying landscapes had higher variation Var(r(x)) led to smaller magnitudes
(Figure 5.7a). However, I did not find an effect of the parameter s that was used in
the simulations to influence the spatial autocorrelation of the landscapes. The model
with logistic weighting function did not show such an effect of landscape variation. The
logistic model had the additional intercept parameter «.. I found that higher values of

a tended to result in lower magnitudes (Figure 5.7b).
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5.5 Discussion

I have proposed a new rigorous framework for analyzing movement models’ capacities
to compensate for varying temporal discretization of data. My framework comprises
three definitions of varying strength for robustness of discrete-time movement models.
Generally, if a model is robust, it can overcome problems of mismatching temporal
scales between different data sets or between data and biological questions. Because
my robustness is a very strong condition that holds only for very few and generally
more simple models, I have introduced the additional concepts of asymptotic and, most
importantly, approximate robustness. While for many movement models it is difficult,
or even impossible, to examine the transition densities and their marginals analyti-
cally, approximate robustness properties of a model can be calculated numerically also
for analytically intractable models. Therefore, I believe that especially approximate
robustness will prove a useful new concept for movement analyses.

I have formulated my robustness definitions in terms of the transition densities
of Markov models, because these models are often fitted to movement data with
likelihood-based methods of statistical inference. For the considered models, we can
obtain the likelihood function by multiplying the transition densities of subsequent
steps. If a model is robust, the transition densities keep their functional form across
varying temporal scales, and parameters are transformed via a well-defined function
gn- The likelihood function therefore remains the same but will yield different parame-
ter estimates. However, if the parameter transformation is known, estimates from one
scale can be translated to estimates at other scales. If a model is only approximately
robust, the likelihood function will not remain exactly but at least approximately the
same under a change of scale. Depending on the magnitude of the approximate robust-
ness, the approximation of the likelihood function may be sufficiently good to allow
parameter estimates to be reasonably comparable for different scales, especially if the
difference in scales is small.

Our concept of robustness for discrete-time movement models is related to the for-
mal concept of robustness in statistics. Generally speaking, robust methods in statistics
acknowledge that models are approximations to reality and seek to protect outcomes of
statistical procedures (e.g. hypothesis testing, estimation) against deviations from the
underlying model assumptions. Classic examples are the arithmetic mean and median
as estimates of a population mean: while the median is robust against outliers the
mean is not (e.g. Hampel, 1986). Often, robustness is viewed in the context of devia-

tions from assumed probability distributions (distributional robustness; e.g. Huber &
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Ronchetti, 2009). For example, data may be contaminated by few observations with
heavier tailed distribution than the majority of the observations. In regression analy-
ses, robustness may also relate to the homoscedasticity assumption or the functional
form of the response function (Wiens, 2000; Wilcox, 2012). Additionally, robustness
has been considered when the assumption of independence is violated and instead
observations are correlated (Hampel, 1986; Wiens & Zhou, 1996). In this chapter, I
considered robustness in the context of discrete-time movement models with respect
to assumptions about the temporal discretization. In view of statistical robustness, I
studied violations against the assumption that the temporal resolution of the move-
ment model, a stochastic process, matches the resolution of the data, when in fact the
data is only a subsample of the assumed process.

There is also a difference between my robustness of movement models and the well-
established robustness in statistics. In my framework, robustness is a direct property
of a model. In contrast, classical robustness in statistics is defined for objects such
as estimators, test-statistics, or more generally, functionals (real-valued functions of
distributions) (Hampel, 1971, 1986). For the type of models I have considered here,
parameter estimates cannot be obtained analytically but through numerical optimiza-
tion of the likelihood function. The likelihood function is build by the model’s transition
densities, and thus I have defined robustness at a very basic level. A possibility for
future research is to investigate whether some of the formal concepts of statistical ro-
bustness can be applied to my framework to add further insight. With this chapter, I
provide a new perspective for studying effects of temporal discretization of movement
processes, and I hope to encourage further research.

My analytical investigations indicate that robustness is a rare property among
movement models, especially when behavioural mechanisms such as resource selec-
tion are added. Therefore, if we apply models to data without considering this issue,
we are in danger of misinterpreting results and drawing erroneous conclusions. How-
ever, my analysis also shows positive prospects with respect to approximate robustness.
Theorem 5.1 suggests that in slowly varying environments that produce locally linear
weighting functions we may find some robustness. Theorem 5.3 and the following ex-
amples show that certain smoothness and boundedness conditions on the weighting
function can lead to approximate robustness. In addition, Example 5.2 further demon-
strates that approximate robustness can be investigated numerically on a case-by-case
basis. I have illustrated this with a smooth weighting function w(z) that is a direct
function of space. In data applications, an animal’s preferences for locations usually

do not depend on space per se but rather through the type of habitat and available
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resources, and the weighting function will be less regular. In the simulation study, I
have therefore presented a case with a more realistic model.

While it is difficult to analyze the transition densities and resulting n-step densi-
ties with analytical calculations, I have demonstrated with the simulation approach
how we can still investigate robustness properties of complex models. Sampling from
probability distributions instead of calculating them is the key idea of Monte Carlo
methods. I have used this method to examine sub-models that have the n-step den-
sities as transition densities. With this, I obtained the parameter transformation g,.
My approach differs from previous studies that have used subsamples of fine-scale data
to establish an empirical relationship between sampling interval and movement char-
acteristics (Pépin et al., 2004; Ryan et al., 2004; Rowcliffe et al., 2012). When using
data, it can be difficult to tease apart effects that result from the methodology and
effects of actual behavioural changes at different scales. Analyzing model properties as
I have proposed here allows us to identify those effects of temporal discretization that
are attributable to the methodology.

In the demonstration of the simulation approach, I analyzed spatially-explicit re-
source selection models. These models have an advantage over traditional resource-
selection and step-selection functions. In the traditional, regression-type approach,
observed movement steps are compared to potential steps that are obtained separately
from an empirical movement kernel (Fortin et al., 2005; Forester et al., 2009). In this
approach, movement and resource-selection are treated independently, although it is
highly likely that both influence each other. In contrast, when fitting the full ran-
dom walk with resource selection to data by using the likelihood function (5.18), we
can simultaneously estimate parameters both of the general movement kernel and the
weighting function.

In my analysis of the resource-selection model, I observed systematic trends in
values of parameter estimates with changing temporal discretization of movement tra-
jectories. The main purpose was not to analyze these relationships in full detail but
to illustrate that they occur and must not be neglected. Comparing the exponential
and logistic form of the spatially-explicit resource selection model, I found that esti-
mates varied more with increased subsampling when the exponential form was used,
compared to the logistic form. Using the exponential form, estimates of the kernel
standard deviation o decreased with increased subsampling compared to the ideal re-
lationship y/no. On the other hand, using the logistic form, o followed the ideal
relationship that would occur for a purely Gaussian process very closely, even under

additional influence of resource selection. The estimated strength of resource selection,

111



CHAPTER 5. ROBUSTNESS OF SPATIALLY-EXPLICIT MODELS

indicated by 3, increased with the subsampling amount. While this effect was strongly
pronounced for the model with exponential weighting function, it was only weak for
the logistic model. Therefore, if using the logistic model, one may expect to obtain
similar inference results across varying temporal discretization.

When I calculated the magnitudes of approximate robustness for the models used
in the simulations, I found that those were in line with the results for the parameter
estimates. Overall, the model with logistic weighting function had better robustness
properties than the model with exponential weighting function. I also found a matching
trend for the movement parameter o with varying true values of 5. Estimates of o were
closer to the expected behaviour for weaker resource-selection parameters. This was
also reflected in magnitudes of approximate robustness. If selection was weaker in the
original model, the model exhibited better robustness properties. These results suggest
that numerical calculations of approximate robustness can assist our expectations about
changes in parameter estimates. On the other hand, although parameter estimates of
the weighting function showed a clear difference in behaviour when comparing between
the exponential and logistic weighting function, differences within one model between
different parameter combinations were less clear. More analyses would be required to
entangle more detailed effects.

Overall, the results from the simulations suggest that depending on the resolution
of movement data, we may misinterpret animals’ movement tendencies and also may
overestimate resource selection effects. It is therefore important that we are aware of
the changes to statistical inference that can arise merely from the methodology. Here,
I have shown that changes in inference results were stronger for the resource selection
model with exponential weighting function compared to the logistic form. A possible
explanation may be the additional intercept in the logistic function. With increased
subsampling, estimates of a tended to decrease, possibly counteracting the increase in
estimates B This could have led to more stability for the parameter o of the general
movement kernel. However, this may not explain why resource selection parameters
generally varied less themselves compared to the exponential model. Another possibil-
ity is that the different form of the weighting functions causes their different behaviour.
While the exponential form of the weighting function greatly enhances differences in
landscape values, the logistic form is restricted to values in the interval (0,1). Theo-
rem 5.3 suggests that variation in the rate of change of the weighting function influences
robustness properties. Thus the logistic form may produce more stable inference results
for varying temporal resolutions. Lele & Keim (2006) suggested several alternatives to

the exponential form of a classic resource selection function. These function could also
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be implemented as weighting functions in the spatially-explicit model considered here.
My study case showed that the choice of weighting function can have implications for
statistical inference, and I encourage to choose these more deliberately.

With my study I have illustrated that the concept of the parameter transformation
gn can help to bridge the gap between different temporal resolutions of data. In the
model with exponential weighting function, I found that with increased subsampling
estimates of the resource selection parameter 3 deviated strongly from the original val-
ues. However, the increase in B could be fitted with a power-relationship. Thus, using
the idea of Monte Carlo sampling, I was able to obtain a parameter transformation g,.
Using such transformations when comparing results obtained from data with different
temporal resolutions could greatly improve our statistical inference, leading to a better

understanding of movement behaviour.
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Figure 5.1. The second sub-model consists of every second location. The transition
densities of the sub-model, which I refer to as 2-step densities, are the marginals over
the two intermediate 1-step densities of the original model.
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Set parameter values
0-7 a) 5

alculate 2-step density
p2(zly, 0.0, 8) = p1 (2|2, 0,0, B) p1(zly, 0, @, B) dz

Y

{ Calculate ratio of 2-step density

and parameter-adjusted 1-step density

p2(zly, 0,0, B)
(z;y,0,a,0) = m

Y

{Magmtude of approximate robustness

for specific parameters

(0,a, ) = max(|v(z;y, 0,0, B) — 1)
.y

-0 Parameter range covered?
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LMagnitude of approximate robustness

over all parameters

0= ma%zé(a, a, f)
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Figure 5.2. Steps for calculating the magnitude of approximate robustness of degree
2 for a given model, where o is the parameter of the movement kernel, and a and
[ are parameters of the weighting function. The 1-step density p; can, for example,
be equation (5.14) with the weighting function from Example 5.2, or the resource
selection model (5.15) with weighting function (5.16) or (5.17). When the resource
selection model is used, the flowchart shows the calculation of the magnitude for one
specific resource landscape r(x). When calculating an overall magnitude, practically
we do this for a subset of the parameter space.
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Figure 5.3. Panel a): Numerical calculation of the function v(z, y), which is the ratio
of 2-step density pi_ori(2|y, 0, , B) and 1-step density p;—:(x|y, g2(o, @, 5)), for the
weighting function w(x) = S+sin(ax). Parameter values are 0 = 1, « = 1, § = 2. The
function v(z, y) varies roughly between 0.72 and 1.31. Panel b): Numerical calculation
of §(0) = max,, |v(x,y;0) — 1| for the weighting function w(x) = S + sin(ax) for
varying values of a and 3. The parameter o, which determines the wavelength of the
sine, shifts the curve §(o) and varies the skewing, while retaining the height of the
maximum. The parameter 3 in contrast changes height of the maximum, which is the
magnitude 0 of the approximate robustness.
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Figure 5.4. Simulation results for the kernel parameter o: values of o against in-
creasing subsampling amount n. Estimates ¢ (gray dots) were fitted with a power-
relationship, stratified by trajectories, and separately for several combinations of true
parameter values (o, 3, and « for the model with logistic weighting function). The
power b was either fixed at 0.5 (ideal relationship; upper orange lines) or flexible and
estimated (lower blue lines). The noted range of b refers to variation for different
Estimates and predictions are standardized by the corre-
sponding true value. Panel a): Model with exponential weighting function. With
increasing value of 3, estimates ¢ tended to increase less with subsampling compared
to the ideal relationship. Panel b): Model with logistic weighting function. The fitted
power-relationship was very close to the ideal relationship, such that lines indicating

parameter combinations.
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the ideal relationship are overlaid by lines showing the fitted relationship.
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Figure 5.5. Simulation results for the resource selection parameter 5 for the model
with exponential weighting function wey, (panels a,b) and logistic weighting function
wig (panels c¢,d). Panels a) and c): Estimates 3 (gray dots) for increasing subsam-
pling amount n were fitted with a power-relationship, stratified by trajectories, and
separately for several combinations of true parameter values (o, 3, and « for wyog). The
power b was either fixed at zero, representing the assumption that resource-selection pa-
rameters do not change with changing temporal resolution (ideal relationship; straight
orange lines), or flexible and estimated (curved blue lines). Estimates and predictions
are standardized by the corresponding true value. In panel c), only estimates and
predictions for @« = 0, § = 1 are shown. Panel b): For wey,, the estimated power
b was always above 0.1 and tended to increase with 0. Panel d): For wy,,, the esti-
mated power b was mainly below 0.1 and tended to decrease and concentrate more for
increasing (.
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Figure 5.6. Simulation results for the resource selection parameter a for the model
with logistic weighting function: values of o against increasing subsampling amount
n. Estimates were fitted with a linear relationship, stratified by trajectories, and
separately for several combinations of true parameter values (o, «, ). The slope b was
either fixed at zero, representing the assumption that resource-selection parameters do
not change with changing temporal resolution (ideal relationship; straight orange lines),
or flexible and estimated (blue lines). Estimates and predictions are standardized by
the corresponding true value and only shown for a = 0.5. The noted range of b refers
to variation for different parameter combinations.
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Figure 5.7. Magnitudes of approximate robustness for the study case models with
exponential and logistic weighting functions. The plots depict ¢ for varying values
of o and selection parameter [ (dots). Lines join values for the same landscape 7,
1 < < 16. Panel a): Magnitudes for the model with exponential weighting function.
Values of § tend to be lower for landscapes with less variation Var(r(z)). Panel b):
Magnitudes for the model with logistic weighting function. Values of ¢ tend to be lower
for higher values of the additional intercept parameter a.
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Chapter 6

New modelling tools improve
qualitative and quantitative

understanding of animal movement

In 2008, Nathan et al. coined the term “movement ecology” as a paradigm for studying
movement of all types and of all organisms. The paradigm emerged from a need to
unify a rising number of movement analyses and approaches, fuelled by a significant
increase in data availability. Within the paradigm, Nathan et al. (2008) proposed a
new conceptual framework, in which movement arises from an interplay of three major
components: internal state (“why move?”), motion capacity (“how to move?”) and
navigation capacity (“where to move?”) — all possibly affected by biotic and abiotic
external factors. The framework is directed towards deciphering both the proximate
and the ultimate causes of movement.

With the first part of my thesis, I contributed a new model that implements this
conceptual framework. I particularly focused on expanding the navigation process
compared to previous approaches. My model has a similar form as spatially-explicit
resource selection models (Rhodes et al., 2005; Moorcroft & Barnett, 2008), which
formulate movement decisions as a result of general movement tendencies (given by
motion capacities) and resource preferences (external factors mediated by navigation
capacities). In these models, the navigation process involves an evaluation of the en-
vironment, for example with respect to land cover types. In my model, I extended
this navigation process by two features. First, I included a new type of information
variable that influences movement decisions, which is dynamic. This means that re-
alized movement feeds back to the variable, interactively changing it values. Second,

this variable can encode previous experience and be more abstract than directly ob-
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servable environmental information. I exemplified this with the variable time since last
visit (TSLV) to locations. This variables contains information about the spatial and
temporal aspect of an individual’s travel history, keeping track of temporal distances
(“how long ago?”) to locations in a spatially-explicit manner. With this new model, I
provide a framework for modelling movement strategies in which the realized movement
path changes the environment, e.g. due to resources depletion, changes information,
e.g. about the travel history, or serves to acquire information, e.g. about temporary
availability of resources. Such feedbacks close the loop of the external factors dynamics
sensu Nathan et al. (2008), but also provide a direct link between the movement path
and navigation capacities. In Chapters 2 and 3, I verified the new model’s suitability
for statistical inference, including both model selection and parameter estimation, and
demonstrated its applicability with an analysis of wolf movement data. I discuss this
in more detail in the following section 6.1.

In the second part of my thesis, I turned towards a more subtle, yet fundamen-
tal, methodological problem in movement ecology. Data collection methods, and often
modelling approaches as well, discretize the temporal dimension of movement processes,
by necessity and also as helpful simplification. However, this discretization challenges
data analysis, because data sampling rate may affect results and conclusions. In my
thesis, I developed a rigorous and comprehensive new framework for studying this
problem. I took the view that data sampling rate is given, but that we may compen-
sate its influence through model choice and modelling tools. I therefore developed the
concept of movement models’ robustness against varying temporal resolution, drawing
on the clear language of mathematics and statistics. In Chapters 4 and 5, I introduced
a series of definitions for movement models’ robustness, which vary in their strength of
conditions but all rest on the same requirement that a model can validly be applied to
data with varying resolutions while parameters change in a systematic way that can be
predicted. I used my new definitions for a thorough analysis of existing models, start-
ing with classic random walks (Chapter 4) and moving on more generally to first-order
Markov models that add a spatially-explicit component to random walks (Chapter 5).
I showed that true robustness with respect to temporal resolution is rare, thus sub-
stantiating the general apprehension that many contemporary movement analyses are
tied to their particular resolution, making it difficult to transfer and compare results.
However, even more importantly, my work also opens new avenues to solutions, which

I discuss in more detail in section 6.2.
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6.1 Inferring cognition and memory use from move-

ment patterns

In Chapters 2 and 3, I answered the call for considering the role of cognition, including
memory, for movement processes. In my model, I implemented that movement can
be influenced by TSLV, which keeps track of the spatial and temporal component of
an individual’s travel history. Information about elapsed times since previous visits
to locations can be important for determining return behaviour, for example whether
to adopt a “win-stay” (revisit a location) or “win-shift” (shift to alternative location)
strategy in a foraging situation (Burke & Fulham, 2003; Janmaat et al., 2006). Op-
timal behaviour also depends on characteristics of the resources at the focal location,
for example with respect to resource depletion or mobility (Pyke, 1984; Sulikowski &
Burke, 2011). As an example, I assumed that TSLV influences the probability that an
individual will move to a location in two ways. First, for recently visited locations, with
low TSLV, the probability of return is small. Second, for locations with long absence,
i.e. high TSLV, the probability of return approaches one. Such behaviour may occur
particularly in a situation with depleting resources that need time to replenish (Davies
& Houston, 1981; Burke & Fulham, 2003). Being able to formulate such movement
strategies in movement models that are amenable to statistical inference allows us to
test hypotheses about cognitive-based behaviours in free-ranging animals and natural
environments.

The dynamic information variable TSLV increases the model’s complexity substan-
tially. TSLV is not only an additional, temporally dynamic variable that influences
movement but also affected by movement itself. Therefore, I tested in Chapter 2
whether this dynamic mechanisms could be correctly identified, using simulated data.
With the simulation study, I showed that classic model selection was able to distinguish
the dynamic model, also in mixed form, from traditional models that only contained
static environmental effects. Also, parameter estimation generally recovered the values
used in the simulation. With a detailed estimability analysis (Lele et al., 2007), pre-
sented in Appendix B, I illustrated that Data Cloning estimability diagnostics are a
useful complementary tool to understand model fitting problems (Lele et al., 2010). In
my analysis, model fitting problems occurred systematically, that is primarily when a
model with the dynamic variable TSLV was fitted to data generated without this effect.
This attests that model fitting problems, e.g. due to ridges in the likelihood function,
should alert and prompt a reconsideration of the model. However, my analysis also

showed that when TSLV was a driver of movement decisions, the framework was able
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to identify it correctly.

In Chapter 3, I demonstrated the applicability of the new model with a data anal-
ysis. I fitted the model to movement paths of gray wolves in south-west Alberta,
Canada, to test whether wolves engage in an active prey-management strategy. The
aim of such a strategy would be to reduce impacts of behavioural depression of prey
through optimal timing of returns to hunting sites, a behaviour that S. L. Lima called
“prudent” (Jedrzejewski et al., 2001; Lima, 2002). Jedrzejewski et al. (2001) reported
observed movement patterns in line with the hypothesis, however, my modelling frame-
work allowed to test the involved mechanisms in more detail. I found that wolves in
my analysis did not appear to patrol their territories per se as the wolves observed by
Jedrzejewski et al. (2001). Instead, TSLV only mattered in very specific areas, which
were locations close to the territory boundary and with very high prey density. Here,
the effect of TSLV was in agreement with the prey-management strategy. However, the
combined effect of prey and TSLV, necessary to support the prey-management hypoth-
esis, was only pronounced significantly in one of three wolves. In my Chapter, I only
analyzed the movement paths of three wolves in total. To reach stronger conclusions,
it will be necessary to analyze more data.

In my modelling framework, I assumed that prey-management is achieved by con-
sideration of time via TSLV. One aspect of the strategy is to leave a site when anti-
predator behaviour depresses prey availability, as predicted by optimal foraging theory
(Charnov et al., 1976; Pyke, 1984). An open question is whether wolves learn to
perceive and react to prey depression, or whether they have learned, evolutionarily,
an adaptive movement strategy that uses TSLV as a proxy (Burke & Fulham, 2003;
Sulikowski & Burke, 2011).

I further assumed implicitly that information about TSLV is mediated by mem-
ory. There is evidence that animals use spatial memory and memory about temporal
distances for decision making (Clayton & Dickinson, 1998; Burke & Fulham, 2003;
Janmaat et al., 2006; Martin-Ordas et al., 2009). However, it is difficult to inevitable
confirm the use of memory, especially when we only have a sampled movement path and
relatively coarse environmental data. Instead of drawing on internally stored memory,
animals may be able to use externalized memory, a famous example being the slime
mould Physarum polycephalum, which leaves a trail of extracellular slime and subse-
quently uses it for navigation (Reid et al., 2012). In case of the wolves, it is possible
that they navigate with the help of scent marks. Wolves scent mark not only along the
territory boundary but also along common routes and at junctions (Peters & Mech,

1975; Peters, 1979). Scent marks could provide wolves with information about previ-
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ous visits by themselves and pack members and thus serve as externalized memory of
TSLV (Peters & Mech, 1975). A drawback of relying on scent marks is that they need
to be probed, hence they are only useful at their very location. To test whether wolves
keep track of TSLV via scent marks or memory, one could analyze wolves’ path for
goal-orientedness. If animals set target locations for their travels, it is more likely that
memory is involved (Asensio et al., 2011; Janson & Byrne, 2007)

With its features, the new model opens new avenues towards future research. In
my thesis, I combined effects of TSLV only with other static environmental variables.
The model could become even more powerful with inclusion of additional layers that
represent specific events or multiple behavioural modes. For example, wolves’s move-
ments are certainly influenced by kill events. Handling a kill can require a significant
amount of time, ranging from a few hours for small-bodied prey such as deer to 24-48h
for large-bodied prey such as moose (Franke et al., 2006). Therefore bouts of extensive
search alternate with more stationary phases (Franke et al., 2006; Webb et al., 2008).
In Chapter 3, I focused on phases of extensive movement by dismissing short steps
indicative of a stationary phase from the analysis. A more complete solution would be
to add a second behavioural mode, in which movement is characterized by small steps
and use of TSLV is reversed compared to the extensive mode. Additional layers, possi-
bly representing unobservable variables can be realized by placing the model within a
hidden Markov model or state-space model (Langrock et al., 2013; McClintock et al.,
2012).

In Chapter 2, I accounted for the possibility of such model extensions by using
the flexibility of a Bayesian model fitting technique. Such techniques, for example
Markov Chain Monte Carlo, provide a better, and sometimes the only, means to fit
hierarchical models to data. Software packages such as WinBUGS, JAGS or STAN,
provide convenient tools for performing analyses (Lunn et al., 2000; Plummer, 2013;
Stan Development Team, 2014). However, when drawing on these tools for my data
analysis in Chapter 2, I encountered challenges. The model’s likelihood function is
composed of probability densities that do not correspond to standard distributions.
While the general movement kernel is built from standard distributions (although this
is not necessary), the spatially-explicit weighting function modifies it in a highly non-
linear way. Additionally, the dynamic nature of TSLV within the spatially-explicit ap-
proach requires the processing of large amounts of data. The combination of these two
properties strained capacities of both JAGS and STAN. An alternative is to program
situation-specific model fitting algorithms in fast languages, e.g. C/C++. Naturally,

this reduces the ease with which data analysts can apply complex models. Ultimately,

125



CHAPTER 6. IMPROVED UNDERSTANDING OF ANIMAL MOVEMENT

these technical challenges in movement ecology will be solved by an increasing synergy
between disciplines, including statistics, computing science and information technolo-
gies (Demsar et al., 2015).

6.2 Making movement models more robust against

varying temporal discretization

In Chapters 4 and 5, I developed the concept of movement models’ robustness against
varying temporal discretization of the movement process. This concept is related,
not only by name, to the commonly known robustness in statistics. Formal robustness
considerations in statistics explicitly acknowledge that statistical models are always ap-
proximations of the processes that generate observations and that models make simpli-
fying assumptions, which, however, may be inaccurate (Box, 1980; Huber & Ronchetti,
2009). If reality deviates from assumptions, this can heavily impact results of statis-
tical analyses. For example, it is well known that the sample mean can be affected
substantially by outliers, e.g. few observations that originate from a heavier-tailed dis-
tribution than the assumed one (e.g. Hampel, 1986; Wilcox, 2012). Robust statistical
methods are designed to safeguard results against misspecified assumptions (Hampel,
1986; Huber & Ronchetti, 2009). The same idea underlies my definitions of movement
models’ robustness. In the case of movement models, we make an assumption about
the model’s temporal resolution, often based on the data’s resolution. However, in fact,
the underlying process may be better described by another resolution. Sometimes, the
optimal resolution can be determined by scale considerations, for example when we
model inter-patch movement at the patch level (Benhamou, 2013). If, in contrast, we
are interested in the finer behavioural rules of the inter-patch movement, for example,
compared to intra-patch movement, then it may be less clear which resolution to chose.
Or, even if we have an idea about a good resolution, it may not match the data’s resolu-
tion. My robustness of movement models is designed to safeguard statistical inference
against varying temporal resolutions.

While my robustness definitions and robust statistical methods share some ideas
and objectives, they also differ. Robust methods are constructed to prevent, or limit,
outcomes from change due to deviations in model assumptions. In my definitions, I
apply this to the model form, via the step distributions, but not necessarily to the
model parameters. Instead, I ask model parameters to change systematically with the

temporal resolution. This change is described by a well-defined parameter transfor-
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mation, by which we can translate parameter values between temporal resolutions.
Another specific feature of my definition is that it is defined at the level of the model,
because in my view the model is a tool itself to analyze movement in replacement of
an experiment. The typical way to link movement models to data is via the likelihood
function, whether in a frequentist or a Bayesian framework. Given a robust model, the
robustness carries through such likelihood-based statistical inference. An alternative
approach may be to consider the problem at the stage of estimation. Here, statistical
robustness theory may offer new approaches (Huber & Ronchetti, 2009; Wilcox, 2012).

My analysis of random walks and their spatially-explicit extensions showed that few
models have the robustness property. When considering random walks, it is mainly the
stable distributions that, as step distributions, lead to robust models. With exception
of the normal distribution, stable distributed steps have heavy-tailed step length distri-
butions. These step distributions lead to movement patterns characterized by clusters
of small steps, interspersed by few long steps. Such movement patterns, however, arise
more likely as a combination of two behavioural modes (Benhamou, 2013; Plank et al.,
2013). Therefore it is not clear whether random walks with stable step distributions
are useful to describe movement within a single mode, despite their desirable property
of being robust. When considering spatially-explicit random walks, I could verify ro-
bustness for only very few models. Analytical investigations were limited to models in
which the spatially-explicit component was a simple function of space. Finding only
few robust models even within this class illustrates that robustness is a very strong
condition. This may not come surprisingly, yet it is an important starting point for
any further research.

However, in my thesis, I also identified ways to widen the scope of robustness and
increase its applicability. In Chapter 4, I illustrated that it is possible to find robust ex-
tensions of models that are otherwise not robust. Such an extension contains additional
parameters, which we may consider as nuisance parameters, while they allow the focal
parameters to remain their original values and validity. However, suitable extensions
can be difficult to find or may not admit closed-form solutions. It may still be worth-
while to investigate this new approach further. In Chapter 5, I introduced the definition
of approximate robustness. Of all the robustness definitions, this is the most applicable
one, especially for models beyond simple random walks. It requires the transferability
of a model across temporal resolutions only approximately. I demonstrated both a nu-
merical and a simulation approach for investigating approximate robustness properties
of a model. I found that in contrast to exact robustness, approximate robustness shows

promise to be more widely present in models. In my simulation study in Chapter 5, I
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demonstrated that we can also achieve better robustness properties of a model through
specific model components. If we can choose between comparable models, or model
components, one choice may perform better with respect to robustness and thus be
preferable.

The new concept of movement models’ robustness offers possibilities to mitigate
the influence of temporal resolution. If a model is (approximately) robust, it is not
only valid at a specific resolution but also at coarser resolutions. In the case of random
walks with i.i.d. steps, robustness additionally implies validity for finer resolutions. For
data analysis, the property of a model to scale up to coarser resolutions is usually more
relevant, as data is rather too coarse than too fine. A key element in robustness is the
parameter transformation. If we are in a situation where we have a reference resolution
for the process of interest but coarser data, possibly that of a second comparable
study, the transformation allows us to translate results between the reference and
coarser resolution. If, however, we are in a situation where we rely on a model to be
robust without any reference to a particular resolution, the parameter transformation
should be the identity, at least with respect to the parameters of interest. This is
necessary because to use the transformation for translation between resolutions, we
need to know not only the transformation itself but also the difference between the
resolution. I suggest that further research may be directed towards this issue. In
Chapter 5, I showed how to obtain the transformation via simulations. This is similar
to previous approaches to account for temporal resolution in estimates of travel distance
and path tortuosity (Pépin et al., 2004; Benhamou, 2004). Given that we can calculate
the magnitude of approximate robustness numerically, we may also devise a numerical
strategy to find a function that minimizes the magnitude and thus constitutes a suitable
parameter transformation. Such approaches to find a parameter transformation could

also be useful in cases where an assumed “true” resolution is missing.

6.3 Closing remarks

With my thesis work, I have contributed new modelling tools for analyzing animal
movement. First, my new model stands at the forefront of an enterprise to understand
the role of cognition, including memory, for movement processes. The new model makes
it possible to test hypotheses about cognitive-based movement strategies, taking into
account the history of the realized movement path and how it affects future movement
decisions. Such analyses will greatly increase our understanding of the behavioural

mechanisms that govern individual movement processes.
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I further provided a new rigorous framework for movement models’ robustness
against varying temporal discretization. My new framework offers many new directions
for research, from both a theoretical and an applied perspective. From the application’s
side, I suggest to particularly expand the concept of approximate robustness, because
it will prove useful for data analysis at two stages. First, it will help to determine
how strongly we should expect statistical inference results to depend on the assumed
temporal resolution. Second, with help of the parameter transformation, it will help us
to understand in which way inference results depend on temporal resolution. This will
allow us to obtain better estimates of the parameters that shape movement processes.

In conclusion, my work offers new methods to better our understanding of movement
behaviour both qualitatively and qualitatively. Ultimately, this does not only increase
our general knowledge but is particularly valuable at a time where biodiversity loss
has been identified as one of the major threats to the stable environmental state of the
Earth during the last 10,000 years (Rockstrom et al., 2009). Increased human land use,
industrialization and landscape fragmentation pose major challenges to moving animals
(Colchero et al., 2010; Ito et al., 2013; Bull et al., 2013), while on the other hand moving
animals may also be able to compensate effects of habitat loss on plant species (Mueller
et al., 2014). Therefore, an increased understanding of animal movement processes is

one piece of the puzzle of how to maintain species’ abundances and distributions.
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Appendix A

Supplemental methods for
Chapter 2

A.1 Data cloning and MCMC in simulation analy-
sis

For all model fits, I used data cloning. Data cloning uses Markov Chain Monte Carlo
(MCMC) methods, which calculate a posterior distribution for the model parameters,
given the data. This technique is usually employed in Bayesian statistical inference,
however, the resulting parameter estimates from data cloning approximate the cor-
responding maximum likelihood estimates (MLE). This is achieved by applying the
Bayesian framework to K copies of the data, which are referred to as clones. Alterna-
tively, the procedure can be viewed as a series of Bayesian updates applied to the same
data, each time using the posterior distribution from the previous update as new prior
distribution (Robert, 1993). After a movement trajectory has been cloned K times,
Bayesian parameter estimation, here via MCMC, is performed on this augmented data.
The results of this procedure lead to parameter estimates in the more conventional style
of frequentist inference, namely maximum likelihood estimates. However, an important
factor to achieve this is a sufficiently large number of clones. If K is large enough, the
posterior distribution for the parameters is approximately Normal with mean at the
maximum likelihood estimate @y of the original (i.e. uncloned) data and with vari-
ance %I _1(éMLE), where I is the Fisher information of the original data (Lele et al.,
2010). This means that if we choose K large enough, the sample mean of the MCMC
is approximately the MLE of the original uncloned trajectory and if we multiply the

sample variance by K, we obtain an approximation of the inverse Fisher information
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(also termed information number; Casella & Berger, 2002). The inverse of the Fisher
information is the asymptotic variance of a maximum likelihood estimate and it can
be used to calculate Wald-type confidence intervals.

In my analysis, I used K = 15 clones. To confirm that this number of clones was
sufficient to obtain a good Normal approximation of the posterior distributions and
good approximations of the maximum likelihood estimates, I performed test runs with
the most complex combination model. I selected a combination trajectory both from
the main data set and the supplemental data and iteratively fitted the combination
model with increasing number of clones. For each run, I inspected the three diagnostic
measures described in Lele et al. (2010) and Solymos (2010) (1ambda.max, ms.error,
r.squared). These diagnostics assess whether the Normal approximation of the poste-
rior distributions and the approximation of the sample mean to the MLE are adequate,
which is the case if the diagnostics converge to zero. I found that all three diagnostics
converged to zero for my test fits, and that they were all close to zero (< 0.05) for
K =15.

For the MCMC, I used two parallel chains, each running for 7500 iterations, of which
I discarded an initialization and burn-in period of 3500 iterations. To assess whether
this was sufficient to obtain good mixing properties of the chains and convergence
to the stationary distribution, I inspected the Markov chains visually and calculated
the potential scale reduction factor R (Brooks & Gelman, 1998) for each parameter.
Using these amounts of MCMC iterations, I obtained good mixing and convergence
in matching model fits. In non-matching model fits (model and simulated trajectory
mechanism did not match), mixing and convergence problems occurred. To ensure
that these problems did not simply occur because of an insufficient number of MCMC
iterations, I continued to run some of the non-mixing/non-converging MCMCs for up to
8000 additional iterations. In none of these cases I found that more iterations improved
mixing or convergence.

For further analysis, I calculated data cloning estimability diagnostic for selected
trajectories. This requires a series of model fits with increasing number of clones,
for which I used the functions dc.fit and dc.parfit from the R data cloning pack-
age (Solymos, 2010). I chose number of clones K = 1,5,10,15. Because of the high
computational needs of the model fits, especially for the most complex combination
model, I refrained from increasing the number of clones further. However, as additional
test I also examined one- and two-dimensional slices of the corresponding likelihood
functions and found that these tests always lead to the same conclusions; see Ap-

pendix B. If in a model fit parameters are estimable, their variances should decrease
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with increasing number of clones. In particular, the largest eigenvalue of the posterior
variance, lambda.max, should decrease with rate % (Lele et al., 2010; Solymos, 2010).

Standardized by its value for the uncloned data, it should converge to zero as %

A.2 Missed observations

In general, there are several approaches how to deal with missed observations in a tra-
jectory statistically. The easiest case is when locations, or steps, are modelled as being
independent from each other. However, for models that include autocorrelation, we
cannot simply ignore the dependency structure. A possibility is to use some technique
of interpolation. Alternatively, we can divide the trajectory into chunks of available
data and condition the likelihood function on the first available observation in each
chunk. In a correlated random walk, we need three consecutive locations to define one
step probability. Therefore, missed locations effectively lead to even larger gaps in the
likelihood function.

To avoid any loss of data, we can use the full likelihood based on the entire trajectory

(1, ..., %n) = (Tobserved; Tmissed) and integrate over all missed observations,

L(9|(£L'1, cee 7wn)) = L(0|(mobserveda mmissed)) - /p(wobserve(h mmiss|0) dwmiss- (Al)

This has the advantage that all original dependencies between locations can be pre-
served and no information is lost. Calculation of the possibly high-dimensional integral
is problematic in common frequentist methods that require optimization of the likeli-
hood function. However, MCMC techniques (and therefore data cloning) circumvent
this problem and at the same time provide estimates for the missed variables.

My model is formulated based entirely on locations (intermediate quantities such
as step length and bearing are calculated within the model formulation), and therefore
implementation of this method is, in principle, straightforward: in the MCMC, missed
locations are treated as parameters and their step probabilities serve as priors. I used
JAGS for model fitting, which was capable to perform this and to produce converging
posterior distributions for missed locations. However, this came at the cost of very
high computational needs (both memory requirements and computation time).

The memory model requires reconstruction of time since last visit m. For a missed
location at time ¢, we accordingly miss m,;. Because m; is a function of x; and x; 1,
just as step length and bearing, I could estimate m; within the model fitting procedure.

However, m, is a high-dimensional variable for each time step and due to computational
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restrictions I treated m as known covariate. Therefore, if the location x; was missing,
I did not update m; for this time step and set m; = m;_;. At the next time step, I
updated my,; via the usual formula, but based on m;_; and ;1. To account for the
longer time, I increased the distance ¢ from the straight line path(x;_; — @;41), in
which locations are considered as visited. If more than one location was missed in a
row, I proceeded similarly, starting to update time since last visit at the next available
location.

To perform model selection for a completely observed trajectory, it is possible with
my models to calculated the likelihood functions and thus BIC. With missed locations,
this becomes computationally much more complex due to the integration; compare
equation (A.1). To avoid this, we can, as an approximation, instead use estimates of
missed locations. Because I treated missed locations as parameters, I obtained posterior
distributions and estimates for them. I used these estimates to calculate the likelihood
function. A more sophisticated method has been proposed by Ponciano et al. (2009).
Their method circumvents the problem of integration and uses data cloning itself to
obtain estimates of likelihood ratios, which can then be used for AIC or BIC.

A.3 Simulation of landscapes

I modelled the continuous valued environmental covariate as a Gaussian random field
(Haran, 2011). A Gaussian random field is a multivariate Gaussian random variable,
indexed by space. Here, the random variable is the resource r; for each location
in the spatial domain, {ri(x)}zecq. The covariance between resource values at any
two locations @ and y is a function of the distance between the locations, so that
values of nearby locations are stronger correlated than values of locations that are far
apart. I chose the exponential form for the covariance function, cov(ri(x),ri(y)) =
exp(—ng;y”), where o determines the rate at which locations cease to be correlated.
I varied ¢ among different landscapes. To simulate such landscapes, I used the R
package RandomFields (Schlather et al., 2013).

To generate correlated landscapes of binary variables I used the method and C code
provided by Hiebeler (2000). Each landscape is represented by two quantities: pg, the
overall proportion of type 0 cells, and gy, the probability that a neighbour of a type 0
cell is also of type 0. If qgo is high, the landscape is strongly clustered, and vice versa.
For my landscapes, I varied both pg, and their degree of clustering, ggo.

The five landscape pairs I used for my simulations are depicted in Figure A.1
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A.4 Supplemental data

In the main text of the paper, I analyzed a simulated data set of 20 trajectories. This
data set was generated using realistic parameter values. However, to test my method
in even more scenarios, I generated two additional sets of 20 trajectories, which I refer
to as “data set 2”7 and “data set 3”7 to separate them easier from the main data set.
For these data, I used parameter sets in which I included values that I considered to
be potentially more difficult to estimate from data.

For data set 2, I chose relatively small resource selection parameters ayes 51, S2 and
very small interaction parameters v, 72, which means that I simulated weak effects
of the resources. The parameters qem and fuem that regulate the influence of time
since last visit were chosen so that returns to locations were possible again after short
durations of absence. This means that the effect of time since last visit is relatively

weak. The parameter values were

parameter set 2: k=4 Qs = —0.2 B1=0.5 v = 0.008
A=0.9 Qmem = —3 by = 0.8 vo = 0.005
p=12 Qgom = —3.2 Bmem = 0.04

For data set 3, I set one of the interaction parameters in the combination model to
zero, so that an interaction between resource values and time since last visit was only
present for the binary variable 5. To distinguish this data set further from the main
set, I chose 81 < 0, so that resource variable r; had an opposite effect compared to
the other data sets. All other parameters are again chosen to be realistic, but different

from previous values.

parameter set 3: k=4.5 Qres = 0.8 b1 =-1.5 1 =0
A=1.3 Qmem = —9D By = 2.5 v2 = 0.01
p=15 Ceom = —D.8 Bmem = 0.05

The simulated resource landscapes were the same as for the main data set. I
performed the same analysis on the supplemental data as on the main data and I
obtained 160 model fits.
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Figure A.1l. Pairs of simulated landscapes (row-wise). The left side shows the con-
tinuous valued resource ry, the left side shows the binary variable ry. Parameter values
used to simulate the landscapes are given for every landscape pair.
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Supplemental results and

estimability analyses for Chapter 2

B.1 Results

B.1.1 Supplemental data sets

Considering the 160 model fits, 82% had potential scale reduction factor R < 1.1 for
all parameters, which means that for those model fits, MCMC runs for all parameters
mixed well and converged. If convergence and mixing problems occurred, these were
cases where parameters were inapplicable to the analyzed trajectory (Figure B.1).

In contrast to the main data set, there was one instance in the supplemental data
for which R > 1.1 for several parameters in a matching model fit in data set 2. This
was a combination trajectory fitted with the matching combination model. I continued
to run the Markov chains for more iterations, however, the chains’ behaviour remained
the same. I therefore looked closer into this model fit, and ultimately ran an entirely
new MCMC for this trajectory to calculate estimability diagnostics. In this second run,
the parallel chains mixed and converged well and no estimability issues were found.
For more details and discussion about this, see section B.2.

Model selection via BIC was able to correctly identify true underlying models for all
but one trajectory (Figure B.1). For the fourth resource trajectory of data set 3, BIC
was lowest for the null model, followed by the resource model. When I looked closer at
the results of the fit with the resource model, I found that selection parameters o, and
(1 had very large confidence intervals, and the estimate of the intercept a,.s was high.
High values of the intercept effectively result in a constant weighting function, thereby

mimicking the null model. I discuss this model fit further in section B.2. Additionally,
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there was one matching combination model fit that did not mix properly in the first
MCMC run (compare previous paragraph), and for which I therefore did not calculate
BIC. This lead to the memory model being selected as best model for a combination
trajectory. However, when I ran a new MCMC with the combination model, the chains
converged and BIC was lowest, followed in order by the memory model (ABIC = 178),
the resource model (ABIC = 676) and the null model (ABIC = 800). In the following,
I used results from the second MCMC run for the fourth combination trajectory in
data set 2.

For the hypothesis test based on confidence intervals, I obtained 139 estimates
of selection parameters (I only considered estimates from convergent and well mixing
Markov chains). Of these, 69 corresponded to true underlying effects. When I analyzed
confidence intervals as to whether they excluded zero and thus suggested covariate
effects, I obtained a Type I error rate of 0.01 (a trajectory was simulated without
effect, but confidence intervals detect an effect) and a Type II error rate of 0.14 (a
trajectory was simulated with an effect, which was not detected). When I pooled
supplemental and main data, I obtained a Type I error rate of 0.04, which is close
to the expected amount if we use 95% confidence intervals (which corresponds to a
5%-level hypothesis test). For the pooled data, the Type II error rate was 0.09. Hence,
overall the hypothesis test gives expected results that include errors, while the model
selection via BIC performs better and reliably identifies trajectories’ true underlying
mechanisms.

Most parameter estimates of matching model fits agreed well with true underlying
values. As expected, 95% confidence intervals (n=230) included the true value 0.95%
of the time. In data set 2, there was one resource trajectory, for which the estimate
of aues was far away from the true value (Gues = —9.7, true value was -0.2) and the
standard error was very large (sd=21.7). I looked into this further and calculated
likelihood slices and data cloning estimability diagnostics. From these, I concluded
that there was an estimability problem for a,.s, while the other parameters were well
behaved; for details see section B.2. Therefore, I excluded this estimate of aye. All
remaining estimates in data set 2 were balanced around and generally close to their
true values (Figure B.2a). In Figure B.2a, I plotted estimates for a,es and ~y, separately,
using the original unscaled values, because their standardized confidence intervals were
larger than for the other parameters. Standardization is sensitive to the size of the
standardization constant and may be problematic here, because the true values of aeg
and 7, are small, and division by values close to zero results in large values. The

unscaled results for aqes and 7, look reasonable (Figure B.2, smaller panels).
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In data set 3, there were a few more estimates with large confidence intervals
(Figure B.3Db), particularly for 5y and 7, which I have therefore plotted in separate
panels in their original scale. I suspect that these large confidence intervals are due to
estimability problems; see also discussion in section B.2. I also plotted v, separately,
because its true value was zero and therefore could not be standardized. All estimates
of v; were close to zero and all confidence intervals overlapped zero. Therefore, the

model was able to correctly identify the lacking effect of the interaction parameter.

B.1.2 Missed observations

For the combination trajectory with missed locations, I performed a matching model fit.
I compared parameter estimates and their 95% confidence intervals for the trajectory
with missed locations and the corresponding complete trajectory. Parameter estimates
for the combination trajectory with missed locations agreed well with true values and
were similar to results for the complete trajectory (Figure B.4). Estimates of selection
parameters tended to be slightly lower for the incomplete trajectory, but standardized
values never deviated by more than 0.15. Parameters s, A\ of the movement kernel
describing step lengths (shape and scale of Weibull distribution) are slightly higher for
the incomplete trajectory, resulting in a mean step length of 5.29 compared to 5.0 for

the complete trajectory.

B.2 Convergence and estimability issues

B.2.1 Estimability in cases of non-convergence

In each data set, about 18-20% of model fits contained one or more parameters, for
which R was larger than 1.1, indicating non-convergence or non-mixing of the parallel
chains. In many cases, I continued to run these chains for the double or triple amount
of iterations, without ever seeing a major change in the chains’ behaviour. Of course, I
cannot exclude the possibility that after many more iterations (tens of thousands) the
Markov chains would have finally reached convergence, or in case of non-mixing parallel
chains would have switched their behaviour. However, the model fits, especially for the
combination model, were both time-consuming (MCMC runs with two parallel chains
could take 1-10 days, depending on model) and memory-intense (using approximately
1-5 GB RAM, depending on model). Considering that processing the three presented
data sets required in total 240 model fits, I tried to reduce MCMC iterations to a
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reasonable amount, which in most cases led to convergent and well-behaved Markov
chains.

To understand convergence problems, I calculated data cloning estimability diag-
nostics and likelihood slices for selected trajectories. To obtain estimability diagnostics
for a trajectory, I had to run the data cloning algorithm several times for increasing
number of clones. This was even more computationally demanding than running data
cloning for a single fixed number of clones. Therefore, I did not calculate estimability
diagnostics for all model fits.

I performed estimability analysis on selected trajectories across all three data sets
to understand a variety of phenomena. In data set 2, large R values occurred in a
matching model fit (fourth combination trajectory; see previous section). I inspected
MCMC traces and posterior distributions. The two parallel chains in the MCMC did
not mix, but each chain appeared to converge on its own (Figure B.5). This resulted
in bimodal posterior distributions of the parameters. I calculated estimates from each
of the chains separately and calculated their likelihood values. The estimates from
one chain (red chain in Figure B.5), say él, were close to the true underlying values
of the trajectory with log L(él) = —6783.94. In comparison, true parameter values
had slightly lower log-likelihood log L(@,.) = —6788.582. The estimates from the
other chain (black chain in Figure B.5), say ég, had a lower log-likelihood value of
log L(éz) = —7121.017. It appears that the likelihood function has a local maximum
at @,. While the first chain found the higher peak, the second chain found the second,
lower, peak and failed to move away from it. Because L(ég) was distinctly lower than
L(él), it did not appear that the chains’ behaviour was due to an estimability problem.
To confirm this, I calculated estimability diagnostics. This required a new model fit
with varying number of clones. In this fit, all Markov chains converged and mixed well.
All posterior variances decreased with increasing number of clones and lambda.max
converged to zero with rate %, where K is the number of clones (Figure B.6).

I looked into estimability for three more model fits that did not converge during the
first run. I analyzed a non-convergent model fit in data set 1, in which the combination
model was fitted to a memory trajectory. When I calculated estimability diagnostics,
all Markov chains converged and lambda.max behaved well and did not indicate any
estimability problems. I further analyzed estimability for a non-convergent fit in data
set 1, where a memory model was fitted to a resource trajectory. Here, variances of
parameter estimates decreased properly for the kernel parameters, however not for
selection parameters, pem and Bmem, indicating estimability issues (Figure B.7). This

means that the selection parameters of the memory model with respect to time since
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last visit could not be determined for the resource trajectory, which indeed did not
truly contain an effect of this dynamic variable.

Because most convergence problems occurred when a more complex model was
fitted to a null trajectory, I also examined a non-convergent fit of the combination
model to a null trajectory in data set 2. Inspection of the non-convergent Markov
chains showed that for most parameters, parallel chains did not mix but sampled
different regions of the parameter space, resulting in bimodal posterior distributions. I
separately calculated estimates and their likelihood values for the two chains, and the
likelihood difference was smaller than one. Posterior variances indicated estimability
problems for all selection parameters, i.e. those parameters that were not relevant to

the null trajectory (Figure B.8).

B.2.2 Estimability in cases of large confidence intervals

In my analysis of parameter estimates and their confidence intervals in matching model
fits, I found that even though MCMC runs converged, parameters of the weighting func-
tion occasionally had very large confidence intervals. One example is the matching fit
of the fourth resource trajectory in data set 2, in which the estimate of o, had an
unusually high value, together with a large confidence interval. Estimability diagnos-
tics showed decreasing posterior variances for all parameters except s (Figure B.9). 1
suspected that these results were caused by a ridge in the likelihood along av.es. I there-
fore calculated two-dimensional likelihood slices to confirm this. Figure B.10 shows two
example slices, in which a5 and [y vary, whereas all remaining parameters are fixed.
First, I fixed remaining parameters at their true values. The resulting surface over ayes
and [ has a local maximum with log-likelihood value -7099.697 (Figure B.10 (a-i) and
(a-ii)). However, when I fixed the other parameters at their MLE values obtained from
the model fit, the surface shows a ridge (Figure B.10 (b-i) and (b-ii)). This ridge has
a log-likelihood value of -7098.876, which is slightly higher than the local maximum of
the other slice. The MCMC explores this area and moves along the ridge. It appears
that the ridge has a very subtle maximum between -10 and -9, but it is so subtle that
the MCMC extensively moves along the entire ridge.

In my model selection analysis, there was one matching model fit that converged but
did not result in lowest BIC. This was a resource trajectory, for which the null model
had lower BIC. In the matching fit with the resource model, estimates of selection
parameters had high absolute values and large confidence intervals. When I calculated

estimability diagnostics for a series of clones K = 1,5,10,15, lambda.max showed
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signs of estimability problems (Figure B.11a). Estimates were very similar to the first
MCMC run (éues = 10.4, Bl = —24, By = —3.6). However, because lambda.max
generally decreased, I considered the possibility that I had not used enough clones.
I therefore calculated estimability diagnostics for K = 1,8,15,22,30. In this run,
ares and [y showed good behaviour, however [ had high value and large confidence
interval (Gpes = 1.3, Bl = —1.3, B = 8.9). Estimability diagnostics showed potential
issues with 3 (Figure B.11b,d). To understand this further, I also considered the
likelihood function. I calculated log-likelihood values for the true underlying parameter
values (Lie = —6920), the estimates from the first estimability run for K = 15
(L1 k15 = —6915), and the estimates from the second estimability run for K = 30
(Loxso = —6918). I compared these with the log-likelihood value for the model fit
in which T fitted the null model to the trajectory (Ln,m = —6921). It appears that
estimates from the first run approximate the MLE, whereas estimates from the last
run with 30 clones arise from a local maximum with only slightly lower likelihood.
When 1 plotted a likelihood slice for this model fit (fixing all parameters but (5 at
their estimates), I found a potential ridge in the likelihood for positive large values of
By (Figure B.11c). On the other hand, in the region of the estimates from the first
run, I did not see any signs of ridges, however log-likelihood values did not vary much.
From these tests, I concluded that the likelihood surface for this resource trajectory has
a difficult structure for optimization, but a maximum exists in the region of selection
parameters Ques = 10.4, Bl = —24, B = —3.6. These parameter values result in a
weighting function that is almost constant (Figure B.12b) and therefore model selection
via BIC prefers the more parsimonious null model (Figure B.12d). Estimates from the
second estimability run for K = 30 are closest to the true values (Figure B.12a,c),

however, the likelihood is lower for these values.

B.3 Conclusions about model fitting

In general, the results for the supplemental data are similar to the results for the data
set presented in the main text of the paper. Although I designed the supplemental
data set to include potentially more difficult estimation scenarios, my framework was
able to detect effects of both resources and the dynamic variable time since last visit.

About 20% of data cloning MCMC runs did not converge the first time, and I did
not achieve improvement by increasing the number of MCMC iterations. However,
when [ re-started certain model fits for estimability analysis, occasionally MCMC runs

converged in this second run. From this experience, I recommend to rather re-start
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MCMC sampling completely instead of running more iterations, especially when traces
show that parallel chains sample distinct regions of the parameter space, leading to
bimodal posteriors. I recommend to additionally calculate estimability diagnostics for
these model fits. If these indicate estimability problems for certain parameters, this
may be an indicator that a model contains covariates that in fact did not influence the
movement process. In this case, I recommend fitting alternative models or sub-models
and comparing them via model selection.

Convergence problems were related to two different phenomena of the likelihood
function. First, the likelihood function had local maxima or ridges but still a unique
global maximum. In such cases, single chains could occasionally fail to find the global
maximum. This could be a potential difficulty with data cloning. In data cloning,
every peak in the likelihood function is enhanced, including local maxima. If a chain by
chance, e.g. via a ridge-like structure, reaches a local maximum, it may have difficulty
moving away from it. This may also depend on the MCMC algorithm used. Other
methods such as standard maximization of the likelihood function are not safe from this
problem of local maxima either. It is thus for any method important to use multiple
starting points or parallel chains. As second reason for non-convergent chains I found
likelihood functions that had ridges or distinct multiple maxima, i.e. global maxima
with almost the same likelihood value. These were clear cases of estimability problems,
and were detected by data cloning estimability diagnostics. Any other method will fail
in these cases too, either through non-convergence or results that indicate multiple
possibilities for estimates (multiple maxima are found, bimodality of posteriors). If no
problems are detected in these cases, this is even worse, because wrong conclusions are
made.

Most convergence problems occurred when a more complex model was fitted to a
null trajectory. I suspect that this may be partly due to the form of the weighting
function. In the logistic function, (1 + exp(—a — Bm))fl, large values of the intercept
a can cause the exponential function to almost vanish, leading to a nearly constant
logistic function. Large selection parameters [ can also have this effect. Therefore, if
we fit a model that includes any kind of selection to a null trajectory, we can expect
the likelihood function to have multiple maxima, ridges or plateaus, especially in those
regions of the parameter space where parameters of the weighting function are large.
Therefore, I believe there is no need to be alarmed that many of these model fits did
not converge in the analysis. Via estimability diagnostics, we have the ability to detect
such situations. As soon as trajectories contained at least one effect (either resources

or time since last visit), convergence problems occurred less frequently. However, this
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phenomenon of the logistic function may give reason to also consider alternative forms
of the weighting function that do not experience this problem.

In matching model fits, I occasionally observed unusually large deviations of esti-
mates from true parameter values or large confidence intervals. Based on my inves-
tigations, I suspect that this is mainly due to estimability issues (e.g. ridges in the
likelihood). These could occur due to stochasticity in the data simulation. Each tra-
jectory is a realization of a stochastic process. In most cases, we expect trajectories to
realize a behaviour according to the parameter values used for the simulations. Still,

we must expect to see also cases that are less well behaved.
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Figure B.1. Each column in the two subfigures shows model selection results for one
simulated trajectory when it was fitted with the four candidate models (null, resource,
memory, combination). For each trajectory, I calculated BIC values for the four fitted
models, and the figure shows differences in BIC with respect to the minimal BIC value,
that is the model with minimal BIC has ABIC = 0. I excluded model fits with non-
convergent MCMC. For coherence, the figures depict the results from the first MCMC
run for each trajectory. Triangle indicate those trajectories for which I calculated
estimability diagnostics.
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Figure B.2. Parameter estimates and their 95% confidence intervals for matching
model fits for data set 2. In the large panel, both parameter estimates and Wald-type
confidence intervals are scaled by the true parameter values (TV): k = 4, A = 0.9,
p =12, apes = —0.2, e = —3, Qecom = —3.2, f1 = 0.5, B = 0.8, Brem = 0.04,
v1 = 0.008, 7,=0.005. Smaller panels have unscaled values. In all plots, dotted lines
mark true values.
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Figure B.3. Parameter estimates and their 95% confidence intervals for matching
model fits for data set 3. In large panels, both parameter estimates and Wald-type
confidence intervals are scaled by the true parameter values (TV): k = 4.5, A = 1.3,

= 1.5, apes = 0.8, Qmem = —H, Qecom = —H.8, f1 = —1.5, Bo = 2.5, Buem = 0.05,
v1 = 0, 7%=0.01. Smaller panels have unscaled values. In all plots, dotted lines mark
true values. Estimates from the matching resource model fit in data set 3 that was not
selected as best model are excluded.
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Figure B.4. Parameter estimates and their 95% confidence intervals for the com-
bination trajectory on landscape 2, fitted with the combination model. Results for
the complete trajectory (dark grey) are compared to results for the same trajectory
with 10% missing locations (light grey). Parameter estimates and confidence intervals
are scaled by the true parameter values (TV): Kk = 5.5, A = 1.6, p = 1, qes = —1,
Omem = —4, Qecom = —D, b1 =1, Bo = 2, Brem = 0.03, 71 = 0.01, 15=0.05. Dotted lines
mark the true values.
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Figure B.5. MCMC results for the misidentified combination trajectory in data set 2;
compare Figure B.1. The MCMC had mixing problems when the trajectory was fitted
with the matching combination model. Trace plots of MCMC iterations and density
plots are shown for all parameters of the weighting function. The two parallel chains
do not mix, but each appear to converge on their own. Estimates derived only from
the red chain have higher likelihood value than estimates derived from the black chain.
Estimates from the red chain are close to the true underlying values of the trajectory.
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Figure B.6. Estimability diagnostics for a second run of the model fit depicted in
Figure B.5. In the first MCMC run, mixing problems occurred. However, in a second
run to obtain estimability diagnostics, problems did not repeat. The plot shows the
comparison of lambda.max (points and solid line) and the line ¢ (dotted) for the second
run without problems.
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Figure B.7. Estimability diagnostics for a memory model fitted to a resource trajec-
tory that did not converge in data set 1; compare Figure 2.4. The plots show variances
of the posterior distributions for increasing number of clones. Non-decreasing variances
of ayes and [enm indicate estimability issues.
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Figure B.8. Estimability diagnostics for a combination model fitted to a null trajec-
tory that did not converge in data set 2; compare Figure B.1. The plots show variances
of the posterior distributions of selection parameters for increasing number of clones,

which all indicate estimability problems.
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Figure B.9. Posterior variance of o, for a matching resource model fit in data set
2, which showed estimability problems; compare Figure B.1. The dotted line indicates
the ideal line 1.
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Figure B.10. Slices of the log-likelihood function for a resource trajectory with
estimability issues in data set 2; compare Figure B.1. Panels (a-i) and (a-ii) show
the log-likelihood surface when all parameters are fixed at their true values except
Qpes and fy. The surface shows a local peak. Panels (b-i) and (b-ii) show the log-
likelihood surface when parameters instead are fixed at their MLE values. This surface
shows a ridge and the log-likelihood value of this ridge is slightly higher than the local
peak in panels (a-i) and (a-ii). Therefore, o, cannot be estimated uniquely.

175



APPENDIX B. SUPPLEMENTAL RESULTS FOR CHAPTER 2

lambda.max

0 >=0.05
® <0.05

0.6 0.8 1.0

0.4

Scaled lambda.max

0.2
I

0.0
I

Number of clones

(a) Largest posterior
variance for the first es-
timability test.

lambda.max

0 >=0.05
® <0.05

0.8 1.0

0.6

Scaled lambda.max
0.4

0.2
1
[
o

0.0
I

T T T T T
1 8 15 22 30

Number of clones

(b) Largest posterior
variance for the second
estimability test with
higher number of clones.

-6919.0

log-likelihood

-6920.5

B2

(c) Likelihood slice, all other
parameters fixed at estimates
obtained from second estimabil-
ity test for k = 30.

alpha beta[1] beta[2]

© e Qo | Qo

- - - o R.hat>=1.1

o | o | o ® Rhat<1.1
[0} S [0 S [0 S
o o o
C C C
& © ] & © ] s o °
= o = o = o
g g g
o < el < g <
3 . F ] F
g © g © g ©
o p\ o [$}
2} o \ €N o ® o

S 7 ® c 7 S 7]

tiJo—
RN LA
g i \~. g a g - ®e—o—e
— T T T 1 — T T T 1 T T T 1
1 8 15 22 30 1 8 15 22 30 1 8 15 22 30

Number of clones Number of clones Number of clones

(d) Separate posterior variances for selection parameters for the second estima-
bility test with higher number of clones.

Figure B.11. Estimability diagnostics for the fourth matching resource model fit in
data set 2, which was misidentified during model selection; compare Figure B.1. Two
different series of MCMC runs with varying number of clones suggested difficulties with
estimability. Region-wise calculation of the likelihood function confirmed a complex
likelihood surface with a potential ridge (subfigure (c)) but nonetheless a slightly higher
maximum far away from the true parameter values.
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Figure B.12. Weighting function for different parameter estimates obtained for the
resource trajectory in data set 3 on landscape 4. For the matching fit with the resource
model, I obtained different estimates from different MCMC runs due to a complex like-
lihood surface with local maxima. Panel (a): “True” parameter values used in tra-
jectory simulation. Panel (b): Estimates from a model fit with 15 clones. Panel (c):
Estimates from an alternative model fit with 30 clones. Panel (d): Constant weight-
ing function (null model). Gray dots are the locations of the trajectory. Darker dots
correspond to multiple visits to a location. Their distribution across the entire home
range indicate a rather uniform use of space in accordance with weighting functions

(b) and (d).

177



Appendix C

Characteristic function of a radially

symmetric random vector

Here, I provide details about the link between the characteristic function of a radially
symmetric random vector and the Hankel transform as stated in equation (4.31). The

ch.f. of the two-dimensional random vector S with density (4.28) is given by

/ / pS1 So 81782) dSIdSQ (Cl)

Because the density is radially symmetric, I switch to polar coordinates via s; = r cos 3
and sy = rsin 8, where the angle 3 is chosen such that the vector w has angle zero.
The determinant of the Jacobian for this transformation is |J| = r. The dot product

of the vectors u and s can be written as u - s = ||ul| 7 cos f. With this, we obtain

o(u) = /0 h ( /0 " eillulir cos 5 dﬁ) Dsy.5, (1) 7 dr. (C.2)

The symmetry of the cosine allows to simplify the inner integral as follows,

2T ™
/ eilulreoss 45 _ o / eilulreoss 4 — o 7o (Ilul|r), (C.3)
0

0

where Jy denotes the Bessel function of the first kind. The last equation follows from
an integral representation of the Bessel function (Abramowitz & Stegun, 1964, 9.1.21).

With this, the characteristic function becomes

o(u) = 2m / " psssa () oleallr) dr (C.4)
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The integral is the Hankel transform of order zero of the density pg, s,(r) evaluated at

[l
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Appendix D

Examples of simulated resource
landscapes and trajectories for

robustness study

T T T l I I I 1 l
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X

Figure D.1. Four of the simulated resource landscapes used for sampling movement
trajectories. The depicted landscapes have been generated with spatial autocorrelation
Cov(r(z),r(y)) = exp(w) for s = 200, 300, 400, 500. I standardized landscapes to

s

range within the interval (—3,3). At the boundaries, I set values to -3 to avoid move-
ment close to the boundary and resulting boundary effects in the transition densities

due to the normalization constant.
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Figure D.2. Four of the simulated trajectories from the model with exponential
weighting function. The trajectories were generated using the parameter values o = 6
and § = 1. The underlying resource landscapes are the landscapes depicted in Fig. D.1,
in the same order.
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Figure D.3. Four of the simulated trajectories from the model with logistic weighting
function. The trajectories were generated using the parameter values o =6 and § =1
(same as in Fig. D.2) and o = 0. The underlying resource landscapes are again the
landscapes depicted in Fig. D.1, in the same order.
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Appendix E

Proofs of robustness results in
Chapter 5

E.1 Proofs of results about exact robustness

Proof of Theorem 5.1. First, note that for any standard deviation of the kernel, o, the
integral [, ko (y; 2)w(y) dy reduces to the weighting function evaluated at the kernel’s

mean,

Aka(y;x)w(y)dyzAka(y;x)(ay+b)dy=Aka(y;x)(a(y—x+x)+b)dy

~(ea+8) [ ki) dy+a [ holys)y =) dy = a2 +b = w(a), (B

because k,(-|y) is a Gaussian density integrating to one and with vanishing first central
moment. If we consider w as a linear transformation of a Normally distributed random
variable with mean z, then equation (E.1) reflects a special case of Jensen’s inequality,
in which equality holds.

I now show robustness of degree n with parameter transformation g¢,(c,a,b) =
(v/no,a,b) by induction. For n = 1, we have the trivial transformation g¢(o,a,b) =
(0,a,b), and there is nothing to show for robustness of degree 1.

Assume that robustness or degree n holds, that is we have the relationship

Pn(Tn|z0, 0, 0,b) = p1 (2|70, /O, @, b). (E.2)

for all x,,x¢o € R. For n + 1, we use the Chapman-Kolmogorov equation and Markov
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property and obtain

n+1

pn+1($n+1\$0,0 a, b / le $k|33k 1,0,a, b) dz;...dz,
R™ p—1
= /P1($n+1|$n,0,aa b) (/ HP1 $k|$k 1,0,0 b) dz; .. dﬂCn—l) dz,,
R Rr-1 2

- /pl (xn+1|xna g,a, b) pn(xn|x07 g, a, b) dxn
R

:/pl(anrl‘xnao—;aa b)pl(xn’x();\/ﬁo—aaa b) dxn7 (EB)
R

where the last step follows by induction. We can now insert the model’s step proba-

bilities and use equation (E.1) to further calculate,

Pt (Tns1] 0, , a,b) / o (Tng1; Tn) W(Tpg1) k\/ﬁo(ﬂfnwﬂ)w(%)
SR Jo ko (ys zn)w(y) dy - [o k mo(y; zo)w(y) dy
)

_ / o (@i 15 ) W(Ta11) Ko (Tn; T0) W)
R w(zn) w(zo)

dx,,

dz,

_ w<$n+1)

w(o) /Rk‘f(xn-*-l;xn) k\/ﬁa(xn§$o) dz. (E.4)

Note that we have assumed that all movement steps are within the domain Z, where

the weighting function is positive. Since ko (x,11;%,) = ko(Tpi1 — ,;0), the integral

in the last expression is the convolution of two Gaussian densities with variances o2

and no?

and with means 0 and xg, respectively. Because of the linearity of Gaussian
random variables, this is again a Gaussian density with mean xy and variance (n+1)o?
Because equation (E.1) holds for the kernel with any standard deviation, we can rewrite

the denominator as w(zg) = [ k/nr1s(y: zo)w(y) dy. Thus,

k7o (Tnt1; To)w(z,
Pn+1 (anrl’xO) g,a, b) = = ( +1. 0) ( +1) =D (xn+1’$07 vVn + 1 og,a, b) (E5)
fIR k\/n-i-la(y) zo)w(y) dy

]

Proof of Theorem 5.2. We proceed analogously to the previous proof. The integral of

weighting function and kernel with arbitrary standard deviation ¢ and mean z is here
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given by
/ ki (3 2) w(y) dy = / o (y: ) Ce* dy
R R

_C (y —2)°
— 27TU/Rexp(— 552 +ay+b | dy.

By completing the square and using substitution u = ﬁ(y — x — ao?) we obtain

w252 _ _ 2\ 2
/kg(y;x)w(y) dy = ¢ eT+afE+b < T — ao ) )dy
R 2mo

= 5 e 2 tTewth u \/_Udu
o

The final integral reduces to v/2mwo, and therefore,

/ oy ) w(y) dy = C ™5 o, (E.6)
R

Again, I prove robustness of degree n by induction, using parameter transforma-
tion g,(o,C,a,b) = (v/no,C,a,b). In the induction step, we obtain, with help of

equation (E.6),
o (Tpi1; Tn) Ce®@n 1t koo (2,320) Ceswnth

w1 (Zag1]z0,0,a,b) d
Pr+1(@nta]2o0, 0,0, / Ji k(s 2)Cendy Tk g (ys o) Cerivdy "

ka(xn+l; xn) Ceaxn+1+b kﬁa(xn; ZE()) Oeaanrb
= 0202 na2o? d(L‘n
R Ce 2 +axn+b Ce 3 +azog+b
€$n+1
=~ | ko(@ni1; ) kyno(2n; T0) dz
e 2 +azo JR
ern+1
= T (ntDa2e? k\/n+1a($n+1§$o)-
R

. n b
_ k\/ﬁﬂ('xn-i-l: l’o) Cetensat

 Ja oy zo) Cevt dy

:p1($n+1|ZE0, V1N + 10‘,@,[)) (E7)
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E.2 Proof of result about asymptotic robustness

To highlight the main steps necessary to prove Theorem 5.3, I establish a series of
intermediate results. As a first step, I show that the 2-step transition density can be

broken up into a product of the form (5.5) in Definition 5.2.

Proposition E.1. The 2-step transition density of model with transitions (5.14) can

be written as
p2(It|$t—2r,U; 9) p1($t|$t 277\/_0 ) (xt,xt 27‘77—)7 (E8)

where the function v is given by

Je k\f y;r ) o(y) dy 1 we(2)
o 29 ko (2= _or dz.
V(Tg, Tp073T) = fR () dy /R ﬁ(z 2($t+xt 2 )) fR ko (s 2)we(y) dy z
(E.9)
Note that v depends on 7 through . For later convenience, I define

J kf T ) o(y) dy
Q(z;7) = B2 (E.10)

fR (y) dy

L 1 wg(z)

I(x1,m9;7) 1= /Rk\% (z — (1 + a9 > [ wo(y)dy dz. (E.11)

Proof. The proposition can be shown with a straightforward calculation. The 2-step

transition density is given by

D2 (1715’1'1& 27,0, 9)

/ mt, wg(a:t) k, (Z'Jit_gT)wg(Z) &
Je ko Y) Ay Jo ko (y; 2i-2- )wo(y) dy

we(l“t) / wev(z)
ko (245 2) ko (25 24—0r) dz. (E.12
e k(v ziar)we(y) dy Ja (#32) T fe ko (v 2)we(y) dy (B12)
The product of the two Gaussian densities in the integrand can be transformed as
follows .
ko(; 2) ko (23 21—27) = k 5, (245 Ti—27) k% <z; §(xt + xt,27)>. (E.13)
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The two-step density therefore becomes

D2 ($t|$t—2r7 g, 9)

kg, (i wiar) we () LT we(2)
e ko (v 22 )we(y) dy/Rkﬂ< gl t_%)) Jg Bo(y; 2)we(y) dy

dz. (E.14)

The numerator of the first factor is the desired one-step density up to appropriate

normalization. If we extend by the required normalization constant,

/R k3 (U5 Ti—2r)Jwe(y) dy, (E.15)

we obtain equations (E.8) and (E.9). O

It is now left to show that the function v —1 is in the order of 7 on its entire domain
R? x RT. In particular, this means that for any fixed 7%, the function v(zy, zo; 7*) — 1
is bounded on R? via er* for a constant c. It turns out to be helpful to analyze v
separately on R? x (0,7y) and R? x [rg,00) for some 75. Because the proof is simpler

for large 7, I present this result first.

Lemma E.2. Let w be continuous and bounded away from zero, that is there exist
L and U such that 0 < L < wg(x) < U for all x € R. Let w further be twice
differentiable on R with |w"(x)| < M for some M and all x € R. For any 1o > 0, we

have v(xy, x2,;7) — 1 = O(7) on R? X [19,0).

Proof. Let 75 be a number away from zero and fixed. Our goal is to establish bounds
on the functions @ and I, as defined in (E.10) and (E.11), and to use these to place
a bound on v — 1. Because w is twice differentiable we can apply Taylor’s theorem to

obtain a linear approximation for w using any point = € R,
we(y) = we(x) +w'(x)(y — x) + R(y), (E.16)

where R(y) is the remainder term. This leads to

/R ko (y; ©) wo(y) dy
— wo(2) / by (y;2) dy + 0/ (2) / bo(y:2) (y — ) dy + / ko(y:2) Ry) dy, (E17)

R

where the first term on the RHS becomes wg(x), because the kernel integrates to

one, and the integral in the second term is the first central moment of the kernel,
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hence vanishes. The remainder R(y), using the Lagrange form, is given by R(y) =
w”(€)
2
to be globally bounded, we have |R(y)| < ¥ (y — x)?. We use this to place bounds
on the third term, recognizing that the remaining integral [, k,(y;x) (y — z)*dy is

(y —x)?, for some & between x5 and y. Since the second derivative of w is assumed

the second central moment of the Gaussian kernel k,, which is given by its variance

0% = w?r. Therefore,

M

we(z) — 7w27' < / ko(y; x) we(y) dy < we(z) + —wT. (E.18)
R

In general, the lower bound can be arbitrarily close to zero, therefore we cannot simply
invert this inequality to obtain an estimate on the inverse of the integral. Instead, we
use the bounds on w and again the fact [, ko(y;2)dy = 1 for any o and any = € R to
establish

0<L< / ko (y; 2) we(y) dy < U, (E.19)
R

which can be inverted. Since inequalities (E.18) and (E.19) hold for any ¢ and any
x € R, they allow us to place bounds on both ) and I. For (), we obtain

1 1
E(wg(x) — Mw?t) <Q(z;7) < Z(wg(x) + Mw?T) (E.20)
for all z € R, 7 € RT. We can avoid the dependency of the bounds on x by again

invoking the bounds on w,

1 1

E(L — Mw’t) <Q(z) < Z(U + Mw?T). (E.21)
For the function I, we only make use of the bounds on w and inequality (E.19) and
get

0< = <I(xy,29;7) < (E.22)

Sl
~ <

for all 21,20 € R, 7 € RT. We can now continue to calculate v — 1. An upper bound
is immediately given by
uv:-r1* MU ,

v(xy, x9;7) — 1= Q(x1;7) I(x1,29;7) — 1 < 72 + T2 W (E.23)

With only few more additional steps, we obtain a lower bound by simply drawing upon
L < U, its squared version and its inverse,
U*—L* ML , Uvl-r1* MU ,

—(v(:cl,xQ;T) — 1) < iE + iE wr < 72 + 2 WwT. (E.24)
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Define C' := UL2+T§2 + MU)2 for the 7y chosen up front. Then,

Iz
U*—L* MU
lv(x1,29;7) — 1] < 72 + 732 Wt —Cr+Cr
U*—1? U*-12
=7z Tore T+ CT
U2 _L2
- (1 - %) 7+ O (E.25)

The product on the RHS is non-positive for 7 > 75, and hence |v(zq,29;7) — 1| < C7
for all R? x [rg, 00). O

The bounds on ) and I, and thus v — 1, established in the preceding proof are
not sufficient to conclude the result as 7 — 0, unless L = U, which is the trivial
case of a constant weighting function. More suitable bounds, however, can be found
if inequality (E.18) can be inverted. This can be achieved by assuming 7 to be small

enough.

Lemma E.3. Let w be continuous and bounded away from zero, that is there exist
L and U such that 0 < L < wg(x) < U for all x € R. Let w further be twice
differentiable on R with |w”(z)| < M for some M and all v € R. Let 1o = -225. Then

Mw? "
v(z1,20,;7) — 1= 0O(1) on R? x (0, 7).

Proof. Here we develop bounds on ) and I such that both ) — 1 and I — 1 are in
the order of 7. Let 7 < 7y for 7y as defined in the lemma. Then the lower bound of
equation (E.18) is bounded away from zero,

M , 2L

we(x) — 7&127' > we(z) — 7w270 > we(z) — Y A

=wg(z) — L >0. (E.26)

Hence we can invert the inequality (E.18) and obtain

we(x) — MwT

we(x) + Hw?r

we(x) + Mw?T

we(z) — %wQT.

<Qz;7) < (E.27)

Note that the values in the numerators and denominators differ slightly because the
variances of the kernel k£ in the numerator and denominator of @) differ by a factor of

2.
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Since 2wg(z) — Mw?t > 2L — Mw?m5 > 0, we can conclude

we(x) + Mw?T — we(z) — Lw?r

we(z) — Hw?r

2 2
_ Muw T < Muw T 7 (F.28)
2wg(z) — Mw?t — 2L — Mw?m

Qa;7) — 1<

for all x € R and 7 < 7. Using 2weg(z) + Mw?r > 2we(x) > 2L, we similarly obtain,

3Mw*r 3M

~@wm) -1 < 2we () + Mw?r =9’ (E.29)

for all x € R and 7 < 7. If we set

Mw? 3Mw?
Ch = E.30
LT AR <2L—2w270’ oL ) (E-30)
it follows that |Q(z;7) — 1| < Ci7 on R? x (0, 7).
Using analogous arguments as before, we can find an upper bound on 7,
1 wg(z)
I(x1,29;7) = / k.o <z —(z1 + 9 ) dz
R V2 fR Z)wf) )
1 (Z)
< [ ko (z; —(x1 +x ) dz
= /]R NG 2< 1) we(z) — Hw?r
1 — M 4+ o2
:/k‘a(z;—(l’l—i‘!)h)) wB(Z) Qw L QOJ 7_dZ
R 2\ 2 we(z) — Fw?T
1 M 27
= ki<z;—x +x )dz—l—/lw(z, T+ T ) 2 dz
1 M 27 Muw*r
<1 m( - ) 2 dz =1 E.31
B +/]R i\ 2(x1+x2) L — Fw?T : +2L—Mw27'0 ( )
A lower bound is given by
we(2)

1
I(xy, 29;7) z/k% <z;§($1 +x2)>

R we(z) + %wQT

2

1 M 2r Mw?r
- ki(;— ) 2 dz>1— . (B.32
/]R VAW 2<$1 + ) we(2) —|—%w27' 7= 2L ( )

Setting Cy := %, we obtain |I(zy,ze;7) — 1| < Co7 on R? x (0, 79).
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We can now estimate v — 1 as follows,

‘U(:El?mQ;T) - 1| = ‘QT I; — 1| < ‘QT - 1’ ’[7- - 1| + ’QT - 1| + |IT - 1‘
S Cl 027'2 + (Cl +CQ)T S (Cl 027'0 + Cl +CQ) T, (E33)

for all 1,25 € R and all 7 < 7. O

Lemmata E.2 and E.3, together with proposition E.1 prove Theorem 5.3.
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