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Abstract

This study employed a psychometric modeling approach to investigate the
importance of six problem features in determining the difficulty of arithmeic word
problems. Three of the problem features related to logico-mathematical knowledge and
ihe other three to linguistic knowledge.

Forty children from each of Grades 1, 2, and 3 were asked to solve 32 addition
and subtraction word problems consisting of eight problems from each of four problem
categories (change, combine, compare, and equalize).

The linear logistic test model (LLTM) was used to explore the influence of the
six problem features (or complexity factors) on children’s performance. The LL'TM is
a constrained Rasch model that combines a mathematical model of component processes
or task features and a psychometric model of individual differences at the item level.

As an item-response theory (IRT) model, the LLTM makes strong assumptions
about test data. No evidence was found that the assumptions of this model were violated
by the test data, which allowed the application of the model to the data.

The six complexity factors were found to be related to problem difficulty, as
defined by the Rasch item difficulties, for the whole sample and for cach grade level.
Each of ihe two different sets of complexity factors (i. e., the logico-mathematical and
the linguistic) was also related to problem difficulty, but not as strongly as the full set
of complexity factors. In other words, the full cognitive model, consisting of all six
complexity factors had significantly more predictive power than each of the two

submodels consisting of the two different sets of complexity factors.

vi



Only three complexity factors contributed to problem difficulty, namely,
knowledge of part-whole relationships, consistency of language, and double-role vs.

single-role counters.

The implications of these findings for educational practice and for research in
children’s performance on arithmetic word problems were discussed. It was also

concluded that the LLTM, as illustrated in the present research, could be a useful

modeling tool in many research areas.
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I. INTRODUCTION

A. Background of the problem

Mary kas 6 marbles. John has 2 marbles. How many marbles does John have
less than Mary?

This problem exemplifies the many types of problems that researchers have used
to investigate children’s performance on one-step arithmetic word problems. As reported
by Cummins, Kintsch, Reusser, and Weimer (1988), only 29% of the first grade children
in their study could solve this problem correctly. However, when the same problem was
stripped of the features making it a word problem, that is, when it was presented in a
numeric format as a number sentence (i.e., 6 - 2 = ?), all the children in their study
could solve it correctly.

This is by no means an isolated finding. In effect, researchers and educators have
long recognized that one of the most troublesome areas of mathematical instruction at the
elementary school level involves arithmetic word-problem solving. At present, it is
known that, in the United States of America, children perform 10 to 30 percent worse
on arithmetic word problems than on comparable problems presented as number
sentences. The National Assessment of Educational Progress (NAEP) has drawn the
attention of educators, policy makers, and the general public to children’s poor
performance on arithmetic word problems. For instance, the second NAEP mathematics
assessment at the elementary school level revealed that “only 28%, as compared to 46%
on the previous assessment, could solve a word problem involving the product of a 2-

digit number by a 1-digit number" (Carpenter, Kepner, Corbitt, Linquist, & Reys, 1980;
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p. 12). As explicitly stated in the previous quote, there was even a downward trend in
children’s ability to solve arithmetic word problems, during the period covered by the
second NAEP. Indeed, children’s difficulties in arithmetic word problem solving have
been referred to as a "national crisis" (Kameenui & Griffin, 1989; p. 575).

It is not surprising then that the topic of arithmetic word-problem solving during the
elementary school years has been a major concern of both researchers and educators for
many years. Furthermore, research in this area has been stimulated by the idea that
"problem solving must be the focus of school mathematics in the 1980s" (National
Council of Teachers of Mathematics, 1980; p. 2).

The main objective of much research dealing with children’s performance on
arithmetic word problems has been to determine the sources of children’s difficulties with
these problems. This research thrust has led many investigators to focus on the
knowledge structures and cognitive processes involved in children’s performance on
arithmetic word problems. To dafe, several process models of children’s arithmetic
word-problem solving have been proposed (e.g., Briars & Larkin, 1984; Kintsch &
Greeno, 1985; Riley & Greeno, 1988; Riley, Greeno, & Heller, 1983). The knowledge
required for competent performance on arithmetic word problem is often implicit. The
intent of the research on knowledge structures is to make that knowledge explicit by
specifying it in detail, sometimes in the form of computer-simulation models.

In their attempt to build models of the knowledge underlying various levels of
problem-solving ability in arithmetic word problems, researchers have taken two different

approaches. The first approach involves making detailed analyses of children’s solutions
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to arithmetic word problems. The second approach involves making detailed analyses
of the mathematical content of the problems to be solved. Although the two approaches
can be distinguished, they are not mutually exclusive, as they have been used together
by several researchers.

The research on knowledge structures has resulted in rich descriptions of how
children solve arithmetic word problems. These descriptions include not only the various
types of errors or incorrect applications children make, but also the kinds of correct or
appropriate procedures children employ and sometimes invent to solve various arithmetic
word problems. The research has resulted in a typology of onc-step addition and
subtraction word problems, and some consensus has been reached among researchers
about its adequacy in characterizing the problems.

Investigators studying children’s performance on arithmetic word problems have
concluded that skilled performance depends heavily on the kinds of knowledge structures,
or schemata, that children bring to the problems. This schema notion is a "close
relative” of the Piagetian idea that people’s cognitive structures determine the nature and
power of their problem-solving abilities. Clearly, in both accounts, the available
structures, or schemata, limit the range of problems a person can solve. Furthermore,
the aspects of a problem that are attended to, the interpretations that they receive, and

the ways in which they are approached, are believed to be heavily dependent on the

interpretive structures, or schemata, brought to the problerm.



B. The problem

The general view that the knowledge structures available to children determine the
course and the outcome of their arithmetic word-problem solving is fairly
uncontroversial. There is ample evidence, for example, that expert and novice problem
solvers differ in the schemata they possess, and hence reason differently, and adopt
different strategies when solving problems. Although the research evidence (e.g., Chi,
Feltovich, & Glaser, 1981; Larkin, McDermott, Simon, & Simon, 1980) has come
mostly from other problem-solving domains (e.g., chess, physics), it seems intuitively
compelling that the same should hold true in the domain of arithmetic word-problem
solving. Indeed, it is widely accepted among researchers that arithmetic word probiems
will prove difficult to children when the capacities required to process them are not yet
in the children’s repertoires. The change of problem difficulty patterns with age has led
many investigators to adopt a Piagetian view, that is, a compertence interpretation of
solution characteristics.

However, the question concerning which capacities develop over time to improve
children’s solution performance is still open to debate among investigators. A quick
perusal of the relevant literature quickly reveals that two main groups of researchers hoid
contrasting views concerning the quesiion. For one group of investigators, improvement
in performance on arithmetic word problems can be attributed to the development of
logico-mathematical knowledge. In other words, children become capable of solving
certain problems because they have acquired the conceptual knowledge required to solve

them. Briars and Larkin (1984), Carpenter and Moser (1982, 1982), Nesher, Greeno,
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& Riley (1982), Riley and Greeno (1988), Riley et al. (1983), and Vergnaud (1982) are
among the proponents of the logico-mathematical view.

According to Riley and her colleagues, poor performance on certain word problems
reflects a lack of sufficient knowledge concerning part-whole set relations. For these
investigators, the development of the part-whole schema in children is the crucial
determinant of solution success on the most difficult addition and subtraction word
problems. On these problems, text phrases do not provide key words that problem
solvers can map onto solution procedures, as in the case of using a counting procedure
when the word "altogether” is heard. Hence, Riley and her colleagues view the part-
whole schema as the hallmark of the most advanced level of arithmetic word-problem
solving. They argue that the part-whole schema enables children to deal with problems
more flexibly by interpreting the semantic structures of different arithmetic word
problems in terms of parts and wholes. In other words, the acquisition of the part-whole
schema has an indirect effect on children’s problem-solving skills in that it improves
children’s problem representations.

Other proponents of the logico-mathematical view (e.g., Briars & larkin, 1984;
Nesher et al., 1982) contend that the acquisition of appropriate conceptual knowledge
exerts a more direct effect on problem-solving strategies. For Briars and Larkin, the
acquisition of logical knowledge (e.g., single-role and double-role counters, subset
equivalence, and time reversal) directly determines the strategies chosen by children in
solving arithmetic word problems. However, it is important to realize that Briars and

Larkin go beyond a pure logico-mathematical view, as they also think that, for some
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problems involving comparisons, children’s knowledge of "consistent-comparison” and
"conflict-comparison” language is critical to problem-solving success. For Nesher et al.
(1982), the development of knowledge concerning sets, logical operations, and
mathematical operations are aspects of conceptual knowledge that are critical in the
development of arithmetic word-problem solving skills.

There are other investigators who espouse a linguistic development view. They
argue that certain word problems are difficult to solve "because they employ linguistic
forms that do not readily map onto children’s conceptual knowledge structures”
(Cummins et al., 1988; p. 407). They contend that a child may, for example, understand
part-whole set relations and yet be uncertain as to how the comparative verbal form
(e.g., more than) in some arithmetic word problems maps onto them. In that case,
children’s problems with word problems are really with the understanding of such verbal
forms. This is clearly a performance interpretation. Investigators that have reported
evidence consistent with that view include Cummins (1991), Cummins et al. (1988), De
Corte, Verschaffel, and DeWin (1985), Davis-Dorsey, Ross, and Morriscn (1991)
Hudson (1983), Lewis (1989), Lewis and Mayer (1987), and Stern (1993).

It should be observed that the logico-mathematical view and the linguistic
development view are not completely antithetical positions. Rather, they can be viewed
as complementary, since investigators favoring the linguistic development view do not
claim that part-whole knowledge is not critical to successful problem-solving
performance. Proponents of the linguistic development view only emphasize that, for

some problems, "solution failures result from missing or inadequate mappings of verbal
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expressions to part-whole structures leading to a failure to access part-whole knowledge”
(Cummins, 1991; p. 265). Thus, these researchers explain the facilitative effect of
rewording reported by several investigators (e.g., De Corte et al., 1985; Hudson, 1983)
by suggesting an increase in the probability of successfully accessing part-whole
knowledge.

The linguistic development view, then, proposes that word problems containing
certain verbal forms constitute tests of verbal sophistication (i.e., linguistic development)
as well as of conceptual maturity (i.e., logico-mathematical knowledge). Consequently,
when errors occur on these problems, one is confronted with the problem of determining,
their source; specifically, are errors the result of deficiencies in language-comprehension
skills, part-whole knowledge, or both? Proponents of the linguistic developmental view
contend that, most often, what is implicated in children’s failures is not lack of
conceptual knowledge, but deficiencies in linguistic knowledge.

In summary, some proponents of the logico-mathematical view of the development
of problem-solving skills in arithmetic word problems consider part-whole knowledge as
a necessary and sufficient component of problem-solving success on certain arithmetic
word problems, when text phrases provide no cues to appropriate solution strategies.
Other proponents of the same view emphasize the crucial role of the understanding of
other concepts; for example, subset equivalence and time reversal.  On the opposite
side, proponents of the linguistic development view contend that, aithough part-whole
knowledge is necessary for competent performance on some arithmetic word problems,

it may not be sufficient in cases when performance factors (e.g., inability to understand



the language) hinder access to that knowledge, making its use impossible.

There are problems with both views of the development of competence in solving
arithmetic word problems. The difficulty with the logico-mathematical view is that, at
present, empirical investigations about its propositions are either lacking or have reported
ostensibly conflicting findings. First, conzerning the lack of evidence, the present writer
is not aware of any studies that have investigated the hypothesized role of children’s
understanding of the concept of re-representation, for example, in performance on
arithmetic word problems. Second, with regard to discrepant empirical results, some
have been reported about the role of part-whole knowledge in performance on arithmetic
word problems (e.g., Dean & Malik, 1986; Fuson & Willis, 1989; Morales, Shute, &
Pellegrino, 1985; Rathmell, 1986; Tamburino, 1982; Willis & Fuson, 1988: Wolters,
1983). The problem with the linguistic development view is that it raises to the status
of an established fact the hypothesis that part-whole knowledge plays a crucial role in
children’s performance on some arithmetic word problems, although other factors also
may play a role.

Current cognitive theories of the development of problem-solving skill in arithmetic
word problems refer to knowledge of part-whole set relations as the part-whole schema.
The part-whole schema is an abstract knowledge structure that specifies that any quantity
(the whole) can be partitioned (into the parts), as long as the combined parts neither
exceed nor fall short of the whole. By implication then, the parts make up or are
included in the whole. As is the case for every schema, the part-whole schema consists

of elements or slots (i.e., the whole and the parts) and relations between them. In the
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domain of arithmetic word problems the relations are quantitative, i.e..the part-whole
relationships that are of interest are numerical in nature.

The purpose of the present study was to explore the role of conceptual and linguistic
knowledge in the development of problem-solving competence in addition and subtraction
word problems using a psychometric modeling approach. More specifically, an extension
of the one-parameter logistic (1-PL) or Rasch model of item-response theory {IRT},
namely, the linear logistic test model (LLTM) was employed to investigate the role of
children’s conceptual knowledge (as embodied primarily in their understanding of
numerical part-whole set relations) and the role of their linguistic understanding of
problem statements. The LLTM is one of several modifications of one of the originai
IRT models. The development of the LLTM was motivated by the need, in problem-
solving research, to identify the cognitive components underlying performance on a
specific task or to test the adequacy of the response processes or cognitive components
hypothesized by a given problem-solving model.

The objectives of the present study were both substantive and methodological. On
the substantive side, the purpose of the study was to evaluate the adequacy of models that
posit conceptual knowledge and linguistic knowledge as crucial determinants in the
development of children’s competence in solving arithmetic word problems. On the
methodological side, the objective of the study was to illustrate the use of a latent trait
model as a technique for investigating the structural features and processing requirements
of one-step addition and subtraction word problems.

The next chapter provides a review of related literature as it pertains to (i) research
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on children’s arithmetic, with a focus on their performance on one-step addition and
subiraction word problems and (ii) models of modern test theory useful in the

investigation of problem-solving processes.
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1l. LITERATURE REVIEW

The review is organized under four sections. Section 1 presents a historical
overview of research dealing with children's arithmetic. Section 2 presents models of
children's performance on arithmetic word problems. It also provides a description of
the various kinds of arithmetic word problems that have been studied by researchers.
Section 3 reviews studies that have investigated the role of knowledge in children’s
performance on arithmetic word problems, with an emphasis or logico-mathematical
knowledge and linguistic knowledge. Section 4 is a methodology review of item-
response theory (IRT) modeis tools for analyzing test data. This section also describes
the linear logistic test model (LLTM) and explicates its use as a technique for identifying

the components or complexity factors underlying performance in specific task domains.

A. Research trends in children’s arithmetic

1. Beginnings of research into children’s arithmetic: the "ancients" revisited

Psychological and educational investigations into children’s problem-solving
processes in arithmetic and their learning of arithmetic have a long history. Studies of
children’s solutions to arithmetic problems date back to the beginning of the century
(e.g., Arnett, 1905; Browne, 1906). These early reports were instrumental in setting the
stage for a frenzied research activity dealing with children’s arithmetic, as evidenced by
the substantial number of writings on the topic during the first half of the century. For

example, Brownell (1928, 1947), Buswell and Judd (1925), Clapp (1924), Knight and
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Behrens (1928), and Wheeler (1939) were just a few of all those cited in The Psychology
of Mathematics for Instruction (Resnick & Ford, 1981).

Several reasons can be identified that account for these researchers’ interest in
children’s arithmetic. First, as noted by Carpenter and Moser (1983), because arithmetic
is a clearly specifiable domain, researchers strongly believed it could be used to study
general principles of learning and instruction. For instance, when Thorndike (1922), in
The Psychology of Arithmetic, formulated his seven rules for the teaching of arithmetic,
the rules were also intended to be his rules for good teaching in general; arithmetic was
only taken for convenience. Second, researchers also thought that arithmetic was well
suited for the task of providing "a window on basic cognitive processing within a
child..." (Carpenter & Moser, 1983; p. 7). Finally, when researchers endeavored to
apply psychology to education, very often, arithmetic was the target domain. For
example, Thorndike (1922) chose arithmetic in his attempt to apply psychological
principles such as associations between stimuli and responses, bonds, and the law of
effect, to school learning.

A sizable part of early research into children’s arithmetic focused on addition and
subtraction and was concerned essentially with the relative difficulty of combinations of
small numbers (i.e., from 0 to 9) in these two operations. The main task was to identify
addition and subtraction problems children could and could not solve. The ultimate
product was a ranking, with respect to relative difficulty, of the basic number facts.
This, of course, was not an idle exercise, as it was meant to provide valuable information

for curriculum sequencing and instructional time allocation. There was also an interest
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in some studies (e.g., Knight & Behrens, 1928) in uncovering some of the factors
underlying the difficulty of number combinations in addition and subtraction.

For both lines of research the literature was replete with contradictory findings. For
example, with respect to the first line of research, different rankings of the relative
difficulty of number facts were reported by different studies. Indeed, only one consistent
pattern emerged from each line of research. First, almost all studies found that difficulty
increases as the numbers in the problem get bigger. Second, there was a clear agreement
among various studies that combinations in which the numbers were the same (e.g., S
+ § = 7) were easier than other combinations of numbers of comparable size (¢.g., 4
+6=7.

It should be noted that early studies of children’s arithmetic were not limited to the
relative difficulty of number facts. There were also investigations concerned with
arithmetic story probl-ms, or word problems, such as those of Brownell and Stretch
(1931), Hydle and Clapp (1927), Kramer (1933), all cited in Resnick and Ford (1981).
Here also much of the research effort was directed towards ranking problems on the basis
of various measures of problem complexity. Researchers uncovered many features of
the problems, most of them related to context and wording, that had marked effects on
performance, for instance, the level of vocabulary used, the number of unfamiliar and
nonessential elements, and the intrinsically interesting nature of the story problems.
There was, however, no overall agreement among researchers on the relevance of all the
identified factors. A case in point was the exchange between Hydle and Clapp (1927)

and Brownell and Stretch (1931) on the critical role of the familiarity of problem
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situations.

In summary, early research on children’s arithmetic was mainly concerned with
problem difficulty and had, as objectives, the ranking of problems with respect to relative
difficulty and the identification of factors underlying problem difficulty. The problems
studied were number combinations in addition and subtraction, as well as story problems.
As will be seen later, these topics still interest researchers in the field.

2. Research into children’s arithmetic: the interim years

The research on the relative difficulty of number combinations in addition and
subtraction continued unabated throughout the 1950s and 1960s and well into the 1970s.
There was, however, a major difference with previous research concerned mainly with
rankings based on the relative difficulty of problems. In effect, it became progressively
clear to investigators that difficulty rankings were influenced, to a large extent, by the
conditions under which they were obtained and by the techniques by which they were
determined. One direct implication of this fact was that the notion of the intrinsic
difficulty of number facts that had guided previous research was now viewed as
misleading, or at least counterproductive. Consequently, although researchers continued
to be interested in the relative difficulty of different number combinations in addition and
subtraction, they shifted their emphasis to the structural features of the problems and the
conditions under which the problems were administered. To illustrate, one of the
structural variables considered by investigators was the type of open sentences used in
the problems, which is determined by the identity of the unknown. By changing the

identity of the unknown, researchers have generated six open sentences problems for both
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addition and subtraction. The type of open sentence has proved to be a "fruitful”
variable, in that various results were found consistently across studies (e.g., Grouws,
1972; Weaver, 1971) investigating the effects of the type of open sentence on the
difficulty of number facts. For instance, studies have repeatedly shown that canonical
addition sentences (a + b = ?) are easier than noncanonical addition sentences (a + 7
= 6, 7 + b = 6). They have also shown that the missing minuend sentence (? - b =
c) is more difficult than are the other five subtraction sentences. (For the other results
about the effects of the type of open sentence, see Carpenter and Moser, 1983.)

The new empbhasis on the structural features and the conditions of administration of
number facts was extended to research on word problems as well. Many studies (¢.g.,
Hebbeler, 1977; Steffe, 1970; Steffe & Johnson, 1971) investigated the effects of
concrete and pictorial aids on children’s performance on addition and subtraction word
problems. These concrete and pictorial aids were found to have facilitative etfects on
performance. Other studies (e.g., Jerman, 1973; Jerman & Mirman, 1974; Jerman &
Rees, 1972; Suppes, Loftus, & Jerman, 1969) attempted to build regression models to
predict the difficulty of different problems. In these models, various structural and
syntactic variables such as problem length and sentence complexity, were used as
p-edictor variables. Note, however, that this endeavor was clearly atheoretical because
the models constructed by researchers were not based on any explicitly stated theories
of arithmetic performance.

Alongside the foregoing studies, there were investigations concerned with the

relationship between the development of Piagetian logical reasoning abilities in children
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and children's performance in arithmetic. The impetus for this research was provided
by The Child's Conception of Number (Piaget, 1952). Piaget proposed that addition and
subtraction require inversion reversibility, which is not achieved, according to him, until
the period of concrete operations. This contention raised the issue of the usefulness of
Piagetian tasks as readiness measures, that is, whether they were good empirical
predictors of children’s ability to learn arithmetic and other mathematical concepts and
skills. Hiebert and Carpenter (1982) provided a good review of that research. As
observed by these authors, some investigators (e.g., Freyberg, 1966; Kaufman &
Kaufman, 1972) adopted a global approach whereby a battery of Piagetian tasks and a
test of mathematics achievement were administered to primary grade children and
correlations between scores were computed. Other researchers (e.g.. Dimitrovsky &
Almy, 1975; Dodwell, 1961) considered the relationship between specific measures of
logical reasoning (e.g., number conservation) and children’s skill in particular
mathematical domains (e.g., arithmetic computation). Here, the task was not to calculate
a single correlation coefficient; rather, the goal was to compare the performance of
children at different developmental levels. For instance, a comparison of addition and
subtraction computations was done among CONSErvers, nonconservers, and those at a
transitional level in conservation acquisition.

In spite of the uniformly high positive correlations between performance on
Piagetian tasks and various measures of arithmetic proficiency, Piagetian tasks appeared
to have limited use as readiness measures. The key result was that children who did not

pass tests of conservation, seriation, transitivity, or class inclusion, could nonetheless
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'earn to add and subtract.

To sum up, the trends set during the previous decades of rescarch into children’s
arithmetic were nurtured during the three decades from the 1950s to the 1970s.
Specifically, investigators continued to show a marked interest in the relative difticulty
of number combinations in addition and subtraction. However, in their attempt to
account for problem difficulty, they were now emphasizing the structural features of the
problems and their conditions of administration. Other important investigations during
these decades were stimulated by Piaget's ideas on the development of number concepts
in children. Piaget (1952) underestimated the significance of basic quantitative skills
such as counting in the acquisition of skill in arithmetic. Rather, he posited prerequisite
logical abilities to children’s understanding of arithmetic. Researchers who have
followed Piaget’s lead also have tended to de-emphasize the processes and strategies used
by children to solve arithmetic problems. Instead, they have focused on several Piagetian
logical abilities, which they thought, intuitively at least, might be necessary for learning
arithmetic. The empirical evidence was not supportive of these claims.

3. Research into children’s arithmetic: the current scene

A large part of the more recent and the current research into children’s arithmetic
differs from the older studies, both in its techniques and its theoretical approach. As
observed by Romberg (1982), "to a large extent, the many studies on addition and
subtraction represent an eclectic morass” (p. 1). This was clearly an accurate description

of older studies on children’s arithmetic because these studies were not guided by any

unified theoretical perspective.
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However, currently there exists a research consensus in children’s arithmetic, a view
echoed by Ashcraft (1982) and Romberg (1982). Both authors observed that a paradigm,
in Kuhn's (1970) sense of the term, has emerged in psychological research in general and
in research into children’s arithmetic in particular. As observed by Ashcraft (1982),
"what has emerged is a psychology of cognition, a paradigm which relies heavily on
time-based, that is to say, 'chronometric’, methods for its models and theories..." (p.
214). What Ashcraft is referring to is clearly the information-processing perspective,
which is arguably today the leading general framework for the study of cognition and
cognitive development. According to Siegler (1983), the appeal of the information-
processing paradigm derives from many sources, including its general perspective on
human beings, the usefulness of its language for characterizing cognition, its arsenal of
powerful methodologies and techniques for studying cognition, and the issues it
addresses. (For a detailed treatment of the information-processing perspective, see Kail
& Bisanz, 1982; Klahr, 1989; Lachman, Lachman, & Butterfield, 1979; and Siegler,
1983.)

Certainly, specific results from information-processing studies of arithmetic are
important; however, the most potentially impactful ideas are the core constructs
underlying the approach, such as representation, processes, limited artentional resources,
and automaticity. One distinguishing feature is that humans are characterized as limited
capacity manipulators of symbols. Another feature concerns the methods developed to
test information-processing theories, which are detailed models of performance and

development of skill in specific task domains (e.g., children’s arithmetic). The models
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are often computer-simulation models (e.g., Briars & Larkin, 1984; Riley & Greeno,
1988), a fact which is consistent with the view that the computer can be used
productively as a metaphor to study human cognition. They are usually evaluated using
various kinds of data and types of analysis. The latter include (1) chronometric methods,
which utilize patterns of subjects’ reaction times, as these are assumed to reflect the time
course of information processing; (2) error analyses, which emphasize patterns of correct
answers and errors to clarify subjects’ conceptual understanding; and (3) protocol
analyses, which rely on subjects’ verbalizations to uncover the strategies used to solve
cognitive tasks.

A process approach: Most current research into children’s arithmetic shows an
obvious concern for internal cognitive processes. The goal for research is to identity not
only which problems children can solve, but aiso the processes and skills they use to
solve them. The focus is not on underlying mental abilities such as class inclusion or
number conservation, but on the processes children use to solve arithmetic problems.
Indeed, Romberg (1982) thought that this is the essence of the new paradigm when he
wrote: "The emerging general paradigm is to formulate precise models of the cognitive
processes used by subjects when carrying out specific tasks and how those processes
change over time" (p. 3).

It should also be observed that current research provides a much clearer specification
of both problem structure and children’s solution strategies than was found in earlier
studies (e.g., Brownell, 1928; Gibb, 1956). Furthermore, as pointed out by Carpenter

and Moser (1983), in current research, investigators attempt to describe both problem
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structure and children’s strategies in such a way that a clear connection can be drawn
between different problems and the strategies used to solve them. Finally, researchers
are no longer content to simply describe the overt strategies that children use; the goal
is now to describe the cognitive processes related to the overt strategies.

A problem-solving focus: The learning of school mathematics has now been widely
recognized as an opportunity for students to learn about problem solving. Pleas have been
made that time and effort be redirected from drill and practice on computations to the
development of problem-solving strategies. The focus of school mathematics on problem
solving accounts for the increasing interest of many investigators in information-
processing approaches to problem solving.

Early information-processing research was focused on the study of puzzle-like
problems (Newell & Simon, 1972). More recently, however, interest has turned towards
problem solving in complex subject-matter domains such as physics (e.g.. Larkin,
McDermott, Simon, & Simon, 1980; Simon & Simon, 1978), computer programming
(e.g., Jeffries, Turner, Polson, & Atwood, 1981), geometry (e. g., Greeno, 1978), and
arithmetic word problems (e.g., Briars & Larkin, 1984; Riley & Greeno, 1988; Riley
et al., 1983). Very often, the problems examined are fairly standard textbook problems

of the kind students typically encounter in school.

Mental arithmetic and arithmetic word problems: Two maijor topics for research into

Children’s mathematical cognition: The literature on current research into children’s

mathematical problem solving is voluminous, and researchers have been interested in

various questions. However, even a casual perusal of the literature will quickly reveal
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that children’s arithmetic has continued to attract the attention of investigators. A
multitude of studies have been concerned with mental arithmetic, mostly addition and
subtraction (e.g., Ashcraft, 1982; Ashcraft & Fierman, 1982; Ashcraft, Fierman, &
Bartolotta, 1984; Baroody, 1984; Brainerd, 1983; Groen & Parkman, 1972; and Haman
& Ashcraft, 1985, 1986), but also multiplication, albeit to a lesser degree (e.g..
Campbell & Graham, 1985). As observed by Campbell and Graham, a concern with the
basic arithmetic operations is motivated primarily by one consideration: Despite more
than a half century of research on the topic, no firm conclusions can be drawn regarding
how basic arithmetic should be taught to children, and why the acquisition of simple
number facts presents a real challenge to a large number of children.

Children’s performance on arithmetic word problems also has continued to be a
major focus of research into children’s mathematical cognition. Here again, the practical
concern of improving school learning is among the chief motivating factors. Carpenter
(1985) was unequivocal about the other reasons for researchers’ sustained interest in
arithmetic word problems when he wrote:

The domain of problems is simple enough that differences betweei problems

can be specified with a reasonable degree of clarity. On the other hand, the

domain is rich enough to provide a variety of problems, solution strategies, and

errors. By the same token, children’s solution processes appear (o be simple
enough to provide some hope of understanding and modeling them but complex

enough to be interesting. (p. 17)

Studies of children’s performance on arithmetic word problems arc legion. For
instance, taxonomies of arithmetic word problems have been proposed and a common

scheme for classifying problems has virtually emerged (e.g., Carpenter, 1985; Carpenter

& Moser, 1982, 1983; Nesher, Greeno, & Riley, 1982; Riley & Greeno, 1988; Riley
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et al., 1983; Vergnaud, 1982). Models of children’s solutions to arithmetic word
problems have been proposed and refined (Briars & Larkin, 1984; Kintsch & Greeno,
198S; Riley & Greeno, 1988; Riley et al., 1983). Various suggestions have been made
regarding children’s shortcomings and misconceptions when solving arithmetic word
problems (De Corte & Verschaffel, 1985, 1987; Lewis & Mayer, 1987). Teaching
experiments have been conducted in an attempt to boost children’s performance (Fuson
& Willis, 1989; Willis & Fuson, 1988; Wolters, 1983). Children’s sorting patterns of
arithmetic word probiems have been examined to clarify their problem representations
and to relate these representations to their problem solutions (Morales, Shute, &
Pellegrino, 1985). Their skills in detecting errors in word-problem statements have been
investigated (Haneghan, 1990). Performance on arithmetic word problems has been
considered from the point of view of developmental sequences (Dean & Malik, 1986;
Nesher et al., 1982). Arithmetic word problems found in American and Soviet textbooks
have been compared with regard to difficulty (Stigler, Fuson, Ham, & Kim, 1986).
Several interpretations of problem difficulty have been investigated, such as those based
on working memory (Fayol, Abdi, & Gombert, 1987), problem wording (Davis-Dorsey,
Ross, & Morrison, 1991; De Corte, Verschaffel, & Dewin, 1985; Hudson, 1983), and
involvement of a specific knowledge schema (Willis & Fuson, 1988: Wolters, 1983).

Clearly, as already mentioned, children’s performance on arithmetic word problems has

provided a ground for a vigorous research activity.
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B. Models of children’s performance on arithmetic word problems

1. Overview of the models

A view that has been expressed in recent irformation-processing investigations of
the development of problem solving in children is that performance on most tasks and
acquisition of skill on those tasks involve an interaction between conceptual knowledge
and procedural knowledge. Conceptual knowledge has been defined as knowledge of
relationships, and procedural knowledge as knowledge of rules, principles, and
algorithms in a problem domain. This view is now prominent in current analyses of
children's counting and numerical competence (Briars & Siegler, 1984; Gelman & Mceck,
1983; Gelman, Meck, & Merkin, 1986; Hiebert, 1985) and in models of the development
of problem-solving skills in arithmetic word problems (Briars & Larkin, 1984; Riley &
Greeno, 1988; Riley et al., 1983).

Greeno and his colleagues (e.g., Kintsch & Greeno, 1985; Riley & Greeno, 1988;
Riley et al., 1983) and Briars and Larkin (1984) designed and implemented computer-
simulation models of children’s solutions to arithmetic word problems. In cach model,
problem solving is viewed as an interaction between conceptual knowledge and
procedural knowledge. Specifically, for each model, the way children so!ve addition and
subtraction word problems involves at least two steps. One step involves problem
representation. It is assumed that children are able to construct representations
corresponding to different types of problems. The other component common to all

models is the selection of an appropriate strategy for solving the problem.
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2. A schema-based model
The model developed by Riley et al. (1983), Kintsch and Greeno (1985), and Riley
and Greeno (1988), henceforth referred to as the RGH model (because Riley et al.
provided the initial presentation of the model), is a schema-based model. Successful
problem-solving performance is accounted for by the availability of appropriate schemata
in memory. As described previously, for the domain of arithmetic word problems, a
schema is an organized structure consisting of elements and relations. The elements are
organized in terms of quantitative (or numerical), temporal, and logical relations defining
a general class of problems. The process of constructing a problem representation
involves mapping the verbal problem statements with an appropriate assignment of
specific quantities to the slots (or elements) of a relevant schema. Children are said to
have, or be able to construct, schemata corresponding to different types of problems.
Greeno and his colleagues have identified three main classes of addition and
subtraction word problems. Some problems involve a change schema. These problems
describe situations in which an initial quantity is modified following a gain or loss of
some amount, as illustrated in the following problem: Rick had 9 stickers. He gave 3
to Lisa. How many stickers does he have left? There are also problems that evoke a
combine schema. These problems describe the combination of subsets into a superset,
or the decomposition of a superset into subsets, as can be seen in the follswing example:
There are 7 children on the playground. There are 3 boys among them. How many are
girls? Finally, there are problems that involve a comparison schema. These problems

describe situations in which two disjoint sets are being compared, as illustrated by the
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following problem: Rick has 6 stickers. Lisa has 3 stickers. How many stickers does
Rick have more than Lisa?

There are other conceptual schemata proposed in the RGH model in addition to the
change, combine, and compare schemata. An example is the parr-whole schema, which
is believed to be involved in some of the more difficult arithmetic word problems.

According to proponents of the RGH model, the conceptual schemata are activated
during the initial representation of the problem. However, the successful solution of the
problem is also contingent on the selection of appropriate action schemata. These action
schemata are directly activated by the conceptual representation, although additional
knowledge or processing may be required in order to select the appropriate schemata.

A key proposition of the RGH model is that "improvement in performance results
mainly from improved understanding of certain conceptual refationships” (Riley et al.,
1983; p. 154). In other words, the difficulty of arithmetic word problems is primarily
a function of problem characteristics that affect problem representation. Indeed, on the
basis of these conceptual relationships, or the semantic structure of the problems, word
problems requiring simple addition and subtraction operations have been grouped into
four major classes. Table 1 portrays each of these classes of problems and the specific
subtypes within each class. The designations used in the table follow those in the
classification systems of Carpenter and Moser (1982), Riley and Greeno (1988), Riley

et al. (1983), and Willis and Fuson (1988).



26

Table 1. Classificaton of Addition and Subtraction Word
Problems According to the RGH Madel

Result Set Unknown:

1. Jack had 7 marbles.
Then Rose gave him 2 more
marbles.
How many marbles does Jack have
now?

Change Set Unknown.

3. Jack had 6 marbles.
Then Rose gave him some more
marbles.
Now Jack has 10 marbles.
How many marbles did Rose give
him?

Start Set Unknown.

S. Jack had some marbles.
Then Rose gave him 3 more
marbles.
Now Jack has 9 marbles.
How many marbles did Jack have in
the beginning?

COMBINE (CB)

Superset Unknown

1. Jack has 6 marbles.
Rose has 3 marbles.
How many marbles do they have
altogether?

Subset Unknown:

3. Jack has 4 marbles.
Rose has some marbles.
They have 9 marbles altogether.
How many marbles does Rose
have?

5. Jack and Rose have 8 marbles
altogether.
Jack has 3 marbles.
How many marbles does Rose
have?

Jack has 9 marbles.

Then he gave 4 marbles to Rose.
How many marbles does Jack have
now?

Jack had 8 marbles.

Then he gave some marbles to
Rose.

Now Jack has S marbles.

How many marbles did he give to
Rose?

Jack had some marbles.

Then he gave 4 marbles to Rose.
Now Jack has 5 marbles.

How many marbles did he give to
Rose?

Jack and Rose have some
marbles.

Jack has 4 marbles.

Rose has 2 marbles.

How many marbles do they have
altogether?

Jack has some marbles.

Rose has S marbles.

They have 10 marbles altogether.
How many marbles does Jack have?

Jack and Rose have 7 marbles
altogether.

Jack has some marbles.

Rose has 2 marbles.

How many marbles does Jack have?



Table 1. (Continued)

Difference Unknown:

1.

Jack has 9 marbles.

Rose has 4 marbles.

How many marbles does Jack have
more than Rose?

Compared Quantity Unknown:

3.

Jack has 3 marbles.

Rose has § more marbles than Jack.
How many marbles does Rose
have?

Referent Unknown:

Jack has 8 marbles.

He has § more marbles than Rose.
How many marbles does Rose
have?

Jack has 6 marbles.

If Rose wins 3 marbles she will
have the same number as Jack.
How many marbles does Rose
have?

Jack has 8 marbles.
Rose has 3 marbles.
How many does Rose have to win
to have the same number as Jack?

Jack has 2 marbles.

If he wins S marbles, he will have
the same number as Rose.

How many marbles does Rose
have?
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Jack has 7 marbles.

Rose has 4 marbles.

How many marbles does Rose have
less than Jack?

Jack has 10 marbles.

Rose has 4 marbles less than Jack.
How many marbles does Rose
have?

Jack has 3 marbles.

He has 6 marbles less than Rose.
How many marbles does Rose
have?

Jack has 9 marbles.

If he loses 3 marbles he

will have the same number as Rose.
How many marbles does Rose
have?

Jack has 9 marbles.

Rose has 4 marbles.

How many marbles does Jack have
to lose to have the same number as
Rose?

Jack has 3 marbles.

If Rose loses S marbles, she will
have the same number as Jack.
How many marbles does Rose
have?
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Change problems are composed of three subtypes, all of which involve an exchange
of quantity. Whether the unknown is the start set, the change set, or the result set, is
what determines the subtypes. Each subtype involves either addition or subtraction,
yiclding two broad classes of change problems. In change/join problems, which involve
addition, there is an initial quantity (the start set) and a direct or implied action causes
an increase (the change set) resulting in a new quantity (the result set). In
change/separate problems, which involve subtraction, a subset (the change set) is
removed from a given set (the start set), resulting in a new set (the result set). Note that
in both classes of problems, the change occurs over time. Specifically, there is an initial
condition at timet, which is followed by a change at time t, resulting in a final state at
time t;. As Table 1 shows, there are three change/join and three change\separate
problems.

Both combine and compare problems involve static relationships for which there is
no direct or implied action. Combine problems describe the relationship existing among
a superset and its subsets. Two problem types exist. In the first type, the two subsets
are given and a question is posed about the size of the superset. In the second type, one
of the subsets and the superset are given and the problem consists in finding the size of
the other subset (see Table 1).

Compare problems involve the comparison of two disjoint sets. It is customary to
label one set the referent set and the other the compared set. The third set in these
problems is the difference set, or the amount by which the larger set exceeds the smaller

set. In compare problems, any one of the three sets can be the unknown. Furthermore,
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the larger set can be either the referent set or the compared set. These two factors make
it possible to construct six different types of compare problems (see Table 1).

Equalize problems constitute the final class of addition and subtracticn word
problems. They are best conceptualized as a hybrid category of change and compare
problems. Specifically, there is the same sort of action as in change problems; however,
it is based on the comparison of two disjoint sets. As in compare problems, two disjoint
sets are compared; and the question is asked about what could be done to one of the sets
to make it equal to the other set. If the action to be performed is on the smaller of the
two sets, then the problem is an equalize/join problem. On the other hand, if the action
to be performed is on the larger set, then the problem becomes an equalize/separate
problem. One can vary the unknown, as in compare problems, to produce three distinct
problems of each of the two types of equalize problems (see Table 1).

Little research has been concerned with equalize problems. In additicn, these
problems are not frequently encountered in North American mathematics programs. It
should be noted, however, that equalize problems are found in experi mental mathematics
programs developed in Japan and in the Soviet Union.

Several studies (e.g., Hiebert, 1982; Ibarra & Lindvall, 1980; Riley ct al., 1983)
have provided data on the relative difficulty of the various problem types across grade
levels. Among the most difficult problems for children are those that involve the
comparison schema, and those that involve the change schema with the starting set
unknown. Up to the age of eight or nine years, children have a great deal of difficulty

with these problems, and they tend to make characteristic errors. The distinctions
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between problems portrayed in Table 1 are also reflected in children’s solution strategies.
Children’s solution processes tend to mode) the actions or relationships described in the
problems.

The RGH model posits three levels of problem-solving competence in addition and
subtraction word problems, from the least sophisticated (Level 1) to the most powerful
(Level 3). Riley and Greeno (1988) describe the hierarchy as follows:

In general, Level ] processes represent sets that are specified so models can

be constructed directly as sentences are presented, and Level | processes count

sets that are present in problem madels. Level 2 processes represent sets that

cannot be constructed externally, because they do not have specified numbers,

and these processes represent relations between seis that are needed to make

inferences. Level 3 processes can add part-whole relations 1o representations
that already have other relations involving changes or comparisons of sets (p.

62).

3. A model emphasizing problem-solving procedures

Another model of word problem solution has been proposed by Briars and Larkin
(1984). This model, called CHIPS (Concrete Humanlike Inferential Problem Solver) by
its proponents, solves arithmetic word problems concretely, doing the computer
equivalent of laying out piles of poker chips to represent problem situations and then
counting appropriate piles to find the answer. CHIPS also develops mathematical
relations among the piles of chips.

According to Briars and Larkin, CHIPS has three levels of performance. These
levels are viewed as models for stages in children’s ability to understand arithmetic word
problems. The simplest version of CHIPS represents problems using counters that have
only one associated meaning tag. Thus, for instance, a chip can represent a penny that

belongs to Erik. It cannot represent a penny that both belongs now to Eric and used to
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belong to his father. When CHIPS transfers the counter from the father’s pile to Eric’s,
it loses the knowledge that the chip used to be in the father’s pile. This version of
CHIPS can solve simple problems like the following:

Jerry had three candies. He got five more. How many does he have now?

To solve this problem, CHIPS makes a pile of three counters, representing Jerry's
candies; then, adds to it a pile of five more counters; finally, counts the result. As is
clear here, each counter is always understood as one of Jerry's candies. This version of
CHIPS cannot solve the following problem:

Jerry had three candies. He got some more. Now he has eight. How many
did he get?

CHIPS makes a pile of three and adds counters to it until it contains eight. But then
CHIPS cannot distinguish the original three counters from the additional counters; it
cannot find the added counters in order to count them. The reason is that all the counters
are identified with the single tag "Jerry's". This version of CHIPS cannot sustain a
second identifier like "the new candies” or "the ones that Jerry got". This model has
been called by its proponents CHIPS with single-role counters, or CHIPS, for short.

The second version of CHIPS has the ability to represent two roles for a counter.
This CHIPS model solves the preceding problem easily. The second tag on each counter
indicates whether it is an old or a new candy, and CHIPS readily counts Jerry’s new
candies. This model supports double-role counters and it has been referred to as
CHIPS,z. Note that CHIPS;; can relate sets and subsets. By adding to the
representation of each of Jerry's candies whether it is an old or a new candy, CHIPS

represents the relation that Jerry’s candies are a superset with two subsets. Of course,
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CHIPS,,; does not have all the subtleties of relations between sets and subsets. For
instance, this model of CHIPS is stumped by the following problem:

Sue had some baseball cards. She got five more. Now she has eight. How
many baseball cards did she have before?

The reason is that CHIPS concretely acts out each problem situation using chips. But
it does not know how to use chips to represent the abstract idea "some". When simply
following the basic language of the problem statement, CHIPS has no way to represent
"some" as an indeterminate initial set to be affected by future actions.

The ability to represent "some” comes only with the third CHIPS model, which has
several new abilities, all of which involve being able to re-represent the problem in a
new way. This third model is called CHIPS with re-representation or CHIPS,,. This
model solves the preceding problem in one of the following ways: (i) It collects
information from the problem in a knowledge structure called a time-reversal schema.
It includes a first set (here unknown), a changed set, and a final set. It also includes the
knowledge that, when convenient, time can be run backwards. Thus, to find the original
number of baseball cards one can start with the final set, "undo" the change, and come
up with the initial set. (ii) It collects information from the problem in another knowledge
structure called a set-subset schema. Thus, it transforms the baseball card problem into
a problem about a set of eight with a subset of five. The problem can then be solved by
a variety of means, including separating five from eight.

In summary, the foregoing description of the three CHIPS models proposes that
children’s abilities in Jolving arithmetic word problems develop hierarchically, with each

new component involving actions on entities of the previous levels. Specifically,
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CHIPS;, represented only counters with a single meaning; CHIPS,,, assigned chips two
meanings and so could represent the set-subset relation; CHIPS,, could operate on a set-
subset array to produce a new array.

CHIPS works directly on problems with actions that it can imitate, problems about
getting, losing, finding, buying, etc. But there are arithmetic word problems that do not
include actions. CHIPS needs additional knowledge to solve those problems. To
illustrate, consider the following problems:

There are nine cookies on a plate. Five are vanilla and the rest are chocolate.
How many are chocolate?

There are seven dogs and three bones. How many more dogs are there than
bones?

CHIPS cannot solve these problems because there are no cues about what piles of
chips to set out or to count. It needs additional knowledge that lets it interpret statements
like the previous ones in order to lay out piles of chips. For the first problem, CHIPS
sets out nine chips. It then responds to the phrase "Five are vanilla and the rest are..."
as a cue to separate five chips from the rest. The question is then answered by counting
the remaining chips (chocolate). In the second problem, CHIPS sets out two piles of
chips representing dogs and bones. It then interprets the phrase "How many more..."
as a cue to match dogs and bones and to separate dogs with bones from dogs without
bones. The question is answered by counting the dogs without bones.

Notice that CHIPS is a minimal model, that is, it includes the smallest amount of
knowledge that one could imagine being sufficient to solve the set of arithmetic word

problems commonly encountered by children. For instance, CHIPS solves comparison
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problems not with any special extra mathematical knowledge, but with the same
mechanisms for combining, separating, and counting chips used in other problems.

In sum, for Briars and Larkin (1984), several elements are believed to contribute
to the degree of difficulty of word problems. The first element is whether the required
action involved in the word problem is cued or not cued. Action-cued problems (e.g.,
all change problems) are easier to solve than problems with no action cues (e.g., all
compare problems). Another aspect is whether the problem requires a single-role (sr)
counter (e.g., Change 1 and Change 2) or a double-role (dr) counter (e.g., Change 3 and
Change 4). A third difficulty factor hypothesized in this model involves re-
representation: Word problems that need to be re-represented for solution are said to be
more difficult than those not requiring this conceptual leap. All the aforementioned three
elements can be viewed as aspects of conceptual knowledge.

In addition, Briars and Larkin (1984) observed that in compare problems there are
additional language elements, such as consistent or conflicting language, which can affect
problem difficulty. Obviously, this aspect relates to linguistic knowledge.

A comparison of the RGH and CHIPS models focusing on their explanatory power
(i.e., children’s performances they can explain) will quickly reveal that their predictions
are the same concerning various empirical results. The hypothesized levels of
competence are the same in both models. What is of prime importance in the present

research is the emphasis both models place, implicitly or explicitly on conceptual

knowledge.
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C. Role of knowledge in children’s solutions to arithmetic word problems

1. Knowledge and cognitive performance

Early information-processing research of human problem solving (¢.g., Greeno,
1978; Newell & Simon, 1972) explored knowledge-lean problems, mostly puzzlelike
problems such as the Tower of Hanoi problem. The focus was on basic information-
processing capabilities that humans employ to solve problems in situations where they
lack any specialized knowledge and skill. As a result, that knowledge oftered limited
insight into problem solving that requires domain-specific knowledge.

In contrast, more recent research in problem solving done in knowledge-rich
domains such as physics, mathematics, and medicine, has repeatedly suggested that
knowledge is at the heart of problem-solving performance. In a similar vein, most
current theories of problem solving (e.g., Greeno, 1980; Simon, 1980) are based on the
idea that solving a particular problem requires both domain-specific knowledge and
knowledge of general strategies. They emphasize a new dimension of difference between
individuals who show more or less ability in problem solving, namely, the possession of
an accessible and usable body of knowledge.

As observed by Glaser (1984), the focus on the role of knowledge in cognitive tasks
in general and problem-solving tasks in particular, rests on evidence from a variety of
sources, including developmental studies of memory, reasoning, and problem solving
(e.g., Carey, 1985; Chase & Simon, 1973; Chi, 1978; Chi & Koeske, 1983; Siegler &
Klahr, 1982; Siegler & Richards, 1982), studies of expert and novice problem solvers

(e.g., Chase & Simon, 1973; Chi, Glaser, & Rees, 1982; Larkin, McDermott, Simon,
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& Simon, 1980), and process analyses of tests involving intelligence and aptitude items
(e. g., Pellegrino & Glaser, 1982; Sternberg, 1977, 1981).

The conclusions drawn from the three sets of studies were unequivocal. The
developmental studies of memory, reasoning, and problem solving clearly showed that
changes in the knowledge base could produce sophisticated cognitive performance. With
respect to memory, Chase and Simon (1973) and Chi (1978) found in their chess studies
that high-knowledge subjects exhibited better memory performance than low-knowledge
subjects. Concerning reasoning and problem solving, the acquisition of specific content
knowledge as a determining factor in the emergence of increasingly sophisticated ability
in those domains, was apparent in Carey’s (1985) study of animistic th:inking in children
and in Siegler’s rule assessment approach to the study of developmental change (e.g.,
Siegler & Klahr, 1982; Siegler & Richards, 1982).

An important conclusion reached by Carey was that the scant knowledze of 4- to 7-
year-old children resulted in their inability to justify the inclusion and exclusion of
humans, animals, plants, and inanimate objects under the concept ‘alive’. The
acquisition of domain-specific information about biological functions (brought about by
school learning and world knowledge) allowed 10-year-olds to think about the properties
of the concept and to reason appropriately.

In his versior of the balance-scale task, Siegler showed that 5-year-olds could not
solve some problems because of their failure to encode distance information in addition
to weight information. Training these children to encode distance was to equip them

with a more powerful "theory" about the relationship of weight and distance in balance-
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scale problems.

The studies of expert and novice problem solvers also converged on the notion that
the problem-solving difficulty of novices could be attributed largely to the inadequacies
of their knowledge bases and not to limitations in their processing skills (e.g.. inability
to use strategies for problem solving). In addition, it became apparent that the relation
between the structure of the knowledge base and problem-solving processes was mediated
by the quality of problem representation.

The third converging area of research, namely, process analyses of intelligence and
aptitude test items, consisted of a set of empirical investigations of information-
processing approaches to the study of intelligence and aptitude (e.g.. Pellegrino &
Glaser, 1982; Sternberg, 1977, 1981). In those investigations, researchers uncovered
several interrelated components of performance differentiating individuals who scored
high and those who scored low on intelligence and aptitude tests. Two such components
involved conceptual knowledge, i.e., knowledge of relationships in the content domain,
and procedural knowledge, i.e., knowledge of appropriate solution procedures in the
domain. High-aptitude individuals appeared to display considerable skill in reasoning
because of the high level of their knowledge of relationships in the content domain and
because of their knowledge of procedural constraints of the problem domain. In other
words, as individuals acquire knowledge, they become empowered to think and reason
at a high level of sophistication.

2. Knowledge and children’s mathematical cognition

As cognitive researchers became increasingly interested in studying learning and
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performance in specific domains of knowledge, mathematics has received a great deal of
attention. A large portion of the research on mathematical thinking has been concerned
with describing the knowledge, in the form of cognitive structures and processes,
hypothesized to underlie competent performance on various mathematical tasks.

As observed by Putnam, Lampert, and Peterson (1990), the goal of this program of
research (often dubbed the "knowledge-structure program"”) is to make explicit knowledge
that is often implicit, but that is required for competent mathematical performance. Once
this implicit knowledge is made explicit, it can be viewed as revealing the knowledge
underlying understanding in the domain.

Two different approaches have been taken by cognitive researchers in building
models of the knowledge underlying mathematical performance. The first approach
involves carrying out a detailed analysis of children’s performance on mathematical tasks.
The second approach involves making a rich description of the mathematical content of
various mathematical tasks.

Several domains of mathematics have been investigated from the perspective of the
krowledge-structure program, including word problems, both in arithmetic (e.g.,
Carpenter & Moser, 1983; Riley et al., 1983; Vergnaud, 1982), and in algebra (e.g.,
Mayer, Larkin, & Kadane, 1984); problems involving rational numbers and fractions
(e.g., Behr, Lesh, Post, & Silver, 1983); and problems involving decimal fractions (e.g.,
Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989)
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performance in specific domains of knowledge, mathematics has received a great deal of
attention. A large portion of the research on mathematical thinking has been concerned
with describing the knowledge, in the form of cognitive structures and processes,
hypothesized to underlie competent performance on various mathematical tasks.

As observed by Putnam, Lampert, and Peterson (1990), the goal of this program of
research (often dubbed the "knowledge-structure program"”) is to make explicit knowledge
that is often implicit, but that is required for competent mathematical performance. Once
this implicit knowledge is made explicit, it can be viewed as revealing the knowledge
underlying understanding in the domain.

Two different approaches have been taken by cognitive researchers in building
models of the knowledge underlying mathematical performance. The first approach
involves carrying out a detailed analysis of children’s performance on mathematical tasks.
The second approach involves making a rich description of the mathematical content of
various mathematical tasks.

Several domains of mathematics have been investigated from the perspective of the
krowledge-structure program, including word problems, both in arithmetic (e.g.,
Carpenter & Moser, 1983; Riley et al., 1983; Vergnaud, 1982), and in algebra (e.g.,
Mayer, Larkin, & Kadane, 1984); problems involving rational numbers and fractions
(e.g., Behr, Lesh, Post, & Silver, 1983); and problems involving decimal fractions (e.g.,
Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989)
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acquisition of more advanced problem-solving skills. Clearly, all these are aspects of
conceptual or logico-mathematical knowledge.

There are other researchers (e.g., Cummins, 1991; Cummins et al., 1988) who have
attributed the improvement in children’s skills in solving arithmetic word problems to the
development of language-comprehension skills. According to them, the words used in
some problems are too difficult for children to understand, even for children who possess
the required logico-mathematical knowledge.

A case in point is the use of comparative verbal forms (e. g., more than, less than,
fewer than) in problem texts. Note that these forms are always present in the usual
formulations of all compare problems. For Cummins et al. (1988), the view that
language difficulties underlie poor solution performance has some empirical support in
results showing that children often transform comparatives into simple assignment or
possession terms when they are asked to retell word problems (Cummins et al., 1988),
skip over them when reading phrases containing them (De Corte & Verschaffel, 1986),
and perform better when problems are reworded to exc'ude the comparative terms (¢.g.,
De Corte & Verschaffel, 1985; Hudson, 1983).

The major thrust of the present research was to investigate further the role of
conceptual and linguistic knowledge in children’s performance on arithmetic word
problems. Most accounts of the development of children’s skills in solving these stress
the role of the understanding of part-whole set relations or the part-whole schema.

Empirical research on the part-whole schema: To date, the part-whole schema has

been the single most important piece of conceptual knowledge proposed by researchers
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espousing the logico-mathematical view to explain the development of competence in
solving arithmetic word problems. However, empirical evidence for its critical role is
both scant and conflicting.

Wolters (1983) developed an instructional sequence of 26 to 30 lessons that provided
diagrams representing part-whole relations. This instructional sequence was used in
third- and fourth-grade classrooms over a period of two to three months. Instruction
involved relating diagrams to addition and subtraction formulas and drawing part-whole
diagrams for some word problems. Following the instruction, children solved two-step
problems in the combine category more successfully than did children in a control group;
however, their performance was poorer than that of the control group in the change and
compare categories. Hence, a training program stressing the general schema for making
inferences was not quite effective in Wolters’ study.

Using a developmental sequence perspective, Dean and Malik (1986) asked children
to solve problems in the change category, and to anticipate questions when the given
information in the problems had been presented. They found that children who could not
solve at least one problem among the Change S and Change 6 problems were unable to
anticipate questions. Dean and Malik concluded that knowledge of the part-whole
schema is a pre-requisite for acquiring the change schema. What this implies is that to
solve any change problem, children must have developed the part-whole schema.
Clearly, this conclusion was based on the assumption that solutions of Change 5 and
Change 6 problems involve using the part-whole schema, and the assumption that

anticipation of questions involves using the change schema. Riley and Greeno (1988),
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however, have advanced an alternative interpretation for Dean and Malik's results.

Willis and Fuson (1988) taught two classes of second graders of average and above-
average mathematical ability to use differing schematic drawings to represent differing
categories of addition and subtraction word problems. Children were asked to enter the
numbers used in the problems onto the schematic drawings and then to use the drawings
to facilitate the choice of the solution procedure. Clearly, this approach was emphasizing
the semantic structure of the problem situation: Children were observed to choose a
schematic drawing that matched the structure of a given word problem, filling the
numbers given in the word problem into appropriate locations in the schematic drawing.
Use of the part-whole schema was indicated by use of a Put-Together drawing consisting
of two parts and a whole.

The investigators found little evidence in support of Resnick’s (1983) suggestion that
children use a part-whole schema (like the Put-Together drawing) to solve all types of
arithmetic word problems. There was also little support for the more restricted proposal
of Riley and Greeno (1988), Riley et al. (1983), and Kintsch and Greeno (1985) that
children solve some of the more difficult problems (e.g., Change 5 and Change 6
problems) by using a part-whole schema.

Fuson and Willis (1989) used a more complete testing procedure addressing more
adequately than in their earlier study issues of problem difficulty and choices of
alternative drawings. This permitted a better test of the hypothesis concerning children’s
use of the part-whole schema to solve addition and subtraction word problems. Their

findings revealed that children did not use the part-whole schema to solve the most
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difficult change and compare problems.

Morales et al. (1985) asked a group of third grade children and a group of fifth and
sixth grade children to solve problems and to sort problems into different categories.
Their results for problem sclving were generally consistent with findings reported by
Riley et al. (1983). Their cluster analysis of the sorting data revealed that both groups
sorted change problems into a category, with subtypes based on whether the unknown
was the result set, the change set, or the start set. Fifth and sixth grade children also
formed a category containing two combine problems along with Compare 3, Compare
4, Compare S, and Compare 6 problems. Riley and Greeno (1988) interpreted these
results as supporting the proposal that "difficult compare problems are understood by
older children in a way that includes part-whole relations involving subsets of the larger
of the two sets in the problem" (p. 55). Clearly, however, these results are only
suggestive.

F. E. Fischer (1990) taught 42 kindergarten children using a "part-part-whole"”
curriculum that stressed set-subset relationships. These children were later found to be
more successful in solving addition and subtraction word problems, even though addition
and subtraction applications were not part of the instructional treatment.

Two unpublished studies (Rathmell, 1986; Tamburino, 1982) were also cited by
Riley and Greeno (1988) as supportive of the proposal that the part-whole schema is
involved in performance on arithmetic word problems. The apparent success of
Rathmell's and Tamburino’s instructional sequences was due, according to Riley and

Greeno, to their use of specific problems of various types mapped onto representations
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of part-whole relations among quantities, as opposed to the procedures by Wolters
(1983).

In summary, the evidence is at best mixed that the part-whole schema is a
component of successful performance on arithmetic word problems, which means that
more research is needed about the question.

Concerning the importance of other aspects of conceptual knowledge, that is those
proposed in the CHIPS model (e.g., understanding of double-role counters, re-
representation), evidence beyond that reported by Briars and Larkin (1988) is lacking.

The position taken in the present research is that a different perspective or
framework may be more productive for research dealing with the role of conceptual
knowledge in children’s performance on arithmetic word problems. This is what is

attempted in this research.

D. Latent trait theory and a model for component processes

1. Latent trait theory

verview tent trait theo

Latent trait theory, also known as item characteristic curve theory or item-response
theory (IRT) is currently receiving considerable attention from measurement experts and
testing practitioners. This popularity of IRT can be accounted for by iis potential for
providing viable answers to many measurement and testing problems.

In many respects, the actual development of IRT is due to the independent work of

Lord (1952) and Rasch (1960). Much of Lord's earlier work was of theoretical interest
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only, because of the mathematical intractability of his proposed formulations. With
Birnbaum's (1968) development of logistic models, the applications of Lord’s theoretical
works became possible. However, it was only with the development of powerful
computers and sophisticated software that applying IRT to real measurement and research
problems became practicable.

At the core of IRT is the item characteristic curve (ICC), which is a description of
the relationship between an examinee’s ability level on the trait (or construct) being
measured by the item and the probability that the examinee will respond to the item
correctly. In IRT, the ability level of an examinee on the trait being measured is denoted
by 6 and is simply referred to as ability. The probability that examinee j responds
correctly to item i in a test is denoted by P(X; = 1/6,, B), a notation sometimes
shortened to P,(8). Both expressions are used in this thesis.

The basic idea of IRT is that, if the relationship between 6, and P(X;; = 1) is known
for each item in a test, the item characteristics of each item, the ability of each examinee,
and the measurement error associated with each score can be derived mathematically.
Furthermore, the characteristics of any test made up of items with known item
characteristics can also be derived. The obvious payoff is that knowledge of the
characteristics of each item will lead to better solutions for various measurement and
testing problems, such as problems in adaptive testing and equating.

One important characteristic of IRT is its item-level orientation. More specifically,
IRT models make definite statements about the relationship between the probability of

answering an item correctly and the examinee’s ability or level of achievement.
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However, as noted by Bejar (1983), a model that considers groups, such as classrooms
or schools, has been proposed by Bock and Mislevy (1981). Even this group-level IRT
model has retained the item-level orientation of IRT. Indeed, for many psychometricians
the power of IRT resides precisely in the willingness to make a statement about
performance at the item level.

jons s i

As a test theory based on a family of mathematical models, there are certain
assumptions that must be made about test scores, and these are conditions under which
the model under consideration can be assumed to hold. IRT makes strong assumptions
about test data. There are three basic assumptions that must be made when IRT is used
to model examinees’ test behavior.

The first assumption involves the dimensionality of the latent space. In general, IRT
models assume that the probability of a correct response by an examinee can be attributed
to his or her standing on a specific number (k) of latent traits or abilities. Geometrically,
an individual’s position on each of the latent traits can be conceptualized as a point in k-
dimensional space. For most applications of IRT, it is assumed that k = 1, i.c., that the
latent space is unidimensional, which implies that examinee performance can be
accounted for by a single latent trait.

Although most IRT models currently in use involve unidimensional latent spaces,
significant progress has been made in recent years in the development and applications
of multidimensional IRT (MIRT) models (e.g., Batley & Boss, 1993; Carlson, 1987,

McKinley, 1989; Reckase & McKinley, 1985). The development of MIRT models
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originated in the belief that most test data are multidimensional in nature. Many
psychometricians (e.g., Ackerman, 1989; Ansley & Forsyth, 1985; Harrison, 1986;
Humphreys, 1962, 1986; Reckase, 1979, 1985; Reckase & McKinley, 1991; Traub,
1983) have emphasized that real test data most often cannot be well modeled by
unidimensional models. They consider unidimensionality as a "fragile assumption”
(Traub, 1983; p. 59).

Note that the above discussion of the dimensionality of the latent space underlying
test scores does not make a distinction between major and minor dimensions. This is in
line with the traditional IRT definition of dimensionality. However, in recent years,
Stout and his colleagues (e.g., Nandakumar, 1991, 1993; Nandakumar & Stout, 1993;
Stout, 1987, 1990) have proposed a new conceptualization of test dimensionality. They
make a fundamental distinction between traditional dimensionality and essential
dimensionality. Whereas traditional dimensionality refers to the number of dimensions
in the latent space, essential dimensionality refers to the number of dominant dimensions
only. Clearly, it may be important in some situations to be able to assess the number of
dominant dimensions underlying a set of test scores.

The second assumption relates to conditional or local independence, which means
that item scores are statistically independent for examinees at the same ability level. For
this assumption to be satisfied, an examinee’s performance on an item must not affect his
or her answers to any other items on the test. Consequently, this assumption is violated
if, for instance, the content of an early item in a test provides clues to the correct

response for a later item. When local independence holds, the probability of occurrence
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of any pattern of item scores for an examinee is simply the product of the probability of
individual item response probabilities. To illustrate, in a situation in which local
independence is satisfied, the probability of the occurrence of the five-response pattern
VvV = (0, 1, 1, 0, 1), where 1 denotes a correct answer and 0 an incorrect answer, is
given by (1-P)) ( Py) (Py) (1-Py) (Ps), where P, is the probability that the examinee
responds correctly to item i and |-P; is the probability that he or she responds incorrectly
to the item. Conversely, the assumption of local independence is satisfied when the
probability of any response pattern for an examinee is equal to the product of the
probabilities associated with the examinee’s responses to the items. !t a set of test items
measures a single ability, the assumption of local independence is necessarily satisfied;
that is, local independence is a consequence of unidimensionality. In other words, the
assumption of Jncal independence in a case in which a single ability dimension accounts
for item performance and the assumption of a unidimensional latent space are equivalent.
It is important to realize that the assumption of local independence does not imply that
test items are uncorrelated over the total group of examinees. Positive correlations
between pairs of items will result whenever there is variation among the examinecs on
the ability measured by the test items. Item scores are uncorrelated only for examinees
at a given ability level.

The relationship between test dimensionality and local independence has been
formalized by McDonald (1981, 1982), who has argued that a meaningful definition of
dimensionality should be based on the principle of local independence. For him, a set

of test items is k-dimensional if, for examinees with an identical profile of ability scores
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in a k-dimensional space, the covariation between items in the set is equal to zero. He
defines the dimensionality of a set of test items as the number of traits needed to satisfy
the assumption of local independence.

Stout (1987, 1990) has provided a weaker form of local independence that he has
referred to as essential independence from which flows his theory of essential
dimensionality. Essential independence requires only that, in an N-item test, as N goes
to infinity, the average absolute covariation over item pairs is small in magnitude for all
values of 6.

The third assumption of IRT concerns the assumed shape of the item characteristic
curve (ICC). An ICC is a mathematical function that relates an examinee’'s probability
of success on an item to the ability measured by the set of items in the test. More
specifically, it is the nonlinear function for the regression of item scores on the trait or
ability measured by the test. The main difference among currently popular IRT models
is in the mathematical form of the ICC. The test developer or researcher has to choose
one of the many mathematical functions that could serve as ICCs. In doing so, some
assumptions are being made that can be evaluated later by how well the chosen model
accounts for the test data. If the model accounts for the data, the appropriateness of all
the model assumptions is justified. One is forced to conclude that one or more of the
assumptions of the model are untenable when the fit of the model to test data is
unsatisfactory.

Some of the current IRT models are based on the form of the normal ogive. This

function is approximated by the logistic ogive, which is less mathematically cumbersome.
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In general, with the common IRT models, the nuinber of parameters i the mathematical
function determines the form of the ICC, resulting in what has been generally reterred
to as an n-parameter logistic model, where usually, n = 1, 2, or 3.

In the currently popular unidimensional IRT models, invariably, there is @ parameter
for location (difficulty, 8,); some models include a parameter for strength of relation to
the latent trait (discrimination, a); and some models include a parameter for lower
asymptote (guessing or pseudo-guessing, Ci).

The difficulty parameter §; corresponds to the point of inflection on the ability (0)
scale. For the 1-parameter and 2-parameter models, this is the point on the ability scale
at which an examinee has a 50% chance of correctly answering an item. For the 3-
parameter model, this the point at which the probability of correctly answering an item
is (1 + c)/2, where c; is the lower asymptote parameter.

Theoretically, difficulty values can range from -infinity to +infinity; in practice,
values usually are in the range -3 to +3, when 6; is scaled to have 4 mean of O and a
standard deviation of 1.0. Similarly, examinee ability values can range from -infinity to
+infinity, but values beyond -3 or +73 seldom are seen. Items with high values of 3, are
hard items, with low-ability examinees having low probabilities of correctly responding
to the item. Items with low values of 3;are easy items, with most examinees, even those
with low-ability values, having at least a moderate probezbility of getting the item right,

The 2- and 3-parameter models have a discrimination parameter (a) that allows
items to differentially discriminate among examinees. Technically, a, is defined as the

slope of the ICC at the point of inflection. This parameter can range in value from -



52
infinity to +infinity, with typical values being less than or equal to 2.0 for multiple-
choice items. The higher the value of the discrimination parameter, the more sharply the
item discriminates at the point of inflection.

The 3-parameter model also has a lower asymptote parameter (c), which is
sometimes referred as a guessing or pseudo-guessing parameter. This parameter allows
for examineeé; even those with low ability, to have perhaps substantial probability of
correctly answering even moderate or hard items. Theoretically, ¢, ranges from 0.0 to
1.0., but is less than 0.3 in most cases.

The 1-, 2-, and 3-parameter models are now described in more detail. The 2-
parameter logistic model is presented first, as the other two models are easily derived
from it.

The 2-parameter logistic model: The 2-parameter logistic (2-PL) model has been
proposed by Birnbaum (1968) as a  re mathematically tractable alternative to Lord’s
(1952) 2-parameter normal-ogive model. The 2-PL model is defined mathematically as:

'-‘«XP[Da,- (61 - B,)] m
1 + exp[Da; (6 - B)]

P(XU'-'I/BJ, p,) =

where a, and @;are respectively the discrimination and difficulty parameters as defined
above, and exp(x) is used to denote the constant e raised to the power x. The constant
D is an arbitrary scaling factor. It is customary to set D = 1.7, since it has been shown
that when D = 1.7, values of P(¥, = 1/6;, B, for the 2-PL and the normal-ogive models

differ. in absolute value, by no more than .01 for all levels of 6, (Lord & Novick, 1968).
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Hence, by setting D = 1.7, the interpretation of item parameters in the logistic models
is the same as in the normal-ogive models.

Note that there is an alternative way of writing the equation for the 2-PL model. By

dividing the numerator and denominator of Equation 1 by exp[Da; (6, - 8, )], then P, (6)

becomes:

B _ 1
P(X(l'llaj’ P 1 + exp[-Da, (ej - B .

which is also written as:

P(X;=1/6, B) = {1 + exp[-Da, (6; - PIV'! (3]

Four sample ICCs for the 2-PL model are presented in Figure . As can be seen,
the curves are not parallel; they have different slopes, which reflects the fact that the
discrimination parameter values are different. Also, all three curves have lower
asymptote values of zero, indicating that in the 2-PL model it is assumed that examinecs

do not guess when attempting to solve items.
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The 1-parameter logistic model: The l-parameter logistic (1-PL) model is a
special case of the 2-PL model in that it assumes that all items have equal discriminating
power and vary only in difficulty. Thus, for this model, the discrimination parameter
is represented by a constant, a, instead of the variable a. The 1-PL model is
mathematically defined as:

exp[Da (6, - B/} (4]
1 + exp[Da (Bj - Bl

P(X,;=1/0, B) =

If a new scaling is adopted such that 8* = Da§; and B°, = Dag,, then the |-PL

model can also be written as:

Pox, <176, B - —2 — B [$)
1 +exp® - )

From Equation S, it can be clearly seen that with the 1-PL model, the probability
that an examinee responds correctly to an item is a function of the examinee’s ability and
the difficulty of the item only. This model is the most restrictive of all three logistic
models because of the two constraints imposed on the discrimination parameter (@i. ¢., 4,
= a for any item i) and the pseudo-guessing parameter @(i. e., ¢; = 0 for any item 1).
The 1-PL model is also known as the RASCH model. George Rasch was a Danish
mathematician who developed a mode! equivalent to the 1-PL model.

In Figure 2 are shown four sample ICCs for the 1-PL model. Except for an axis

translation for representing their different locations on the 6 scale, the curves are the
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same, which is expressed by their parallelism. This makes sense because for the 1-PL
model, it is assumed that only the difficulty parameter influences performance on the

items. In addition, as in the ICCs presented in Figure 1 for the 2-PL model, the lower

asymptote values of all four curves are zero.

The 3-parameter logistic test model: The 3-parameter logistic (3-PL) model is
constructed from the 2-PL model by adding a third parameter, denoted c;. The

mathematical representation of the model is as follows:

exp[Da(6; - )] [6)
1 + exp[Da(6; - B)]

P(X;=1/6, B) = C, +(Q1-C)

The parameter c; is the lower asymptote of the ICC and it gives the probability that
low ability examinees respond correctly to an item. This parameter is inciuded in the
model to "correct” the misfit of ICCs at the lower end of the ability continuum where
guessing can be a factor in performance on objective tests. However, typically, ¢; is
ascribed values that are smaller than the values that would result if examinees of low
ability were to randomly guess in responding to items. The 3-PL. model is the least
restrictive of the three logistic models described here since it involves more parameters
to be estimated. In other words, the requirements that ai and ci be equal to specific
constants, as in the 1-PL model, are removed in the 3-PL model.

Six sample ICCs for the 3-PL model along with their respective parameter values
are displayed in Figure 3. Since this model contains all three parameters, it can be used

to highlight the role of the parameters in shaping ICCs. For example, in Figure 3, a
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comparison of Items 1, 2, and 3 with Items 4, S, and 6 makes clear the influence of 8,
(difficulty parameter) on the location of ICCs. Items I, 2, and 3, which are more
difficult, are located at the higher end of the 8 (ability) scale, whereas ltems 4, §, and
6, which are easier are shifted to the lower end. Likewise, a comparison of Items 1, 3,
and 4 with Items 2, S, and 6 highlights the effect of a; on the steepness of ICCs. Finally,
a comparison of Items 1, 2, and 4 with Items 3, 5, and 6 informs about the role of ¢
(lower asymptote paramneter) in shaping ICCs.

The influence of the difficulty, discrimination, and lower asymptote parameters on
the shape of ICCs is more clearly illustrated, respectively, in Figures 4, 5, and 6. In
each of these figures, only the values of the parameter whose effect is being shown differ
for the three items under consideration.

Note that the 1-PL, 2-PL, and 3-PL models are applicable to binary items, that is,
test items that are scored dichotomously. There are other models suited for other scoring
formats, such as the nominal response model (Bock, 1972; Samejima, 1969), the graded
response model (Samejima, 1969), and the continuous response model (Samejima, 1973).
Thissen and Steinberg (1986) provided a useful taxonomy of item response models in
which they organized models as members of three distinct classes, within which the

models are distinguished only by assumptions and constraints on their parameters.
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For IRT to be used in solving measurement problems, procedures must be
implemented for estimating the parameters of the items and of the examinees. The
various parameter-estimation methods being used in practical applications of and research
with IRT models include conditional maximum likelihood, joint maximum likelihood,
marginal maximum likelihood, Bayesian, and heuristic (or intuitive) methods.

In practice, two main estimation situations arise: (i) estimation of ability parameters
when item parameters are known, that is, when the item-parameter estimates obtained
from an earlier calibration are taken to be the true values; and (ii) simultancous
estimation of ability and item parameters. For the first situation, conditional maximum
likelihood is the most frequently used method. For a more detailed presentation of
parameter-estimation methods, see for example, Baker (1987) and Hambleton (1989).

The parameter-estimation methods are based on asymptotic statistical theory. Asa
result, to optimally estimate parameters in IRT, large data sets are required. In general,
suitable test lengths and sample sizes are needed. However, it is difficult to state an
omnibus rule which is satisfactory in every situation, as many factors are involved. One
such factor is the IRT model being used: the greater the number of model parameters,
the larger the sample size needs to be. For instance, with N examinees, n items, and the
3-PL model, there are N + 3n parameters to be estimated; for the 2-PL model, there are
N + 2n parameters; and for the 1-PL model, there are N + n parameters to be
estimated.

Another factor is the choice of parameter-estimation method. For example, it is
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now known that Bayesian methods give better estimates than maximum likelihood
methods when both N and n are small. A third factor to consider is the distribution of
ability in the sample of examinees. More specifically, other things being equal,
heterogeneous samples are more satisfactory than homogeneous samples. A fourth factor
is whether estimation involves only item parameters or ability parameters or both. In this
regard, larger numbers of examinees and items are needed when both ability and item
parameters are being estimated. Finally, when IRT is being used for important
applications, only small errors are acceptable, making it crucial to have larger examinee
samples and longer tests.

Various computer programs that implement the aforementioned estimation methods
are now available for parameter estimation in IRT. Several of the most widely used
include BICAL (Wright & Stone, 1979), BILOG (Mislevy & Bock, 1984), LOGIST
(Wingersky, 1983; Wingersky, Barton, & Lord, 1982), MULTILOG (Thissen, 1986),
ASCAL (Assessment Systems Corporation, 1988), RASCAL (Assessment Systems
Corporation, 1988), NOHARM (Fraser, 1981; Fraser & McDonald, 1988), ANCILLES
(Urry, 1978), and OGIVIA (Urry, 1977). For more information on these programs, sce
for example, Hsu and Yu (1989), Hambleton (1989), Mislevy and Stocking (1989), and
Yen (1987).

sessment o odels to test dat

Among the advantages of IRT models is the fact that they are falsifiable. This is

so because "it is possible to make various tangible predictions from the model and then

to check with observed data to see if these predictions are approximately correct” (Lord,
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1980; p. 15). IRT theorists and researchers have directed considerable effort toward the
goal of developing and refining goodness-of-fit tests by which to falsify IRT models in
specific situations. However, it is important here to realize that "there exists no basis
in inductive logic for concluding that a model fits data, yet it is just this conclusion we
usually wish to justify” (Traub, 1983; p. 57). What accounts for this fact is that tests
of fit can only provide means for rejecting hypotheses, not accepting them. In other
words, goodness-of-fit investigations are really about the assessment of model-data misfit,
IRT has the potential for contributing to the solution of many measurement problems
arising both in research and applied contexts. However, the success of specific
applications is not assured merely by using IRT models; that is, simply by processing test
data through one of the computer programs for the estimation of IRT parameters. IRT
model advantages can be obtained only when there is a satisfactory fit between the model
and the test data on hand. An IRT model showing clear misfit for a specific set of test
scores will not reveal any measurement properties of these scores. This means that
goodness-of-fit investigations are critical for any careful IRT modeling endeavor.
There are three generally accepted strategies taken by researchers when investigating
the appropriateness of an IRT model to test data. First, one can determine if the test data
satisfy the assumption of the model of interest. Recall that the adoption of a given model
implies specific assumptions about the test data. In the case of IRT, these assumptions
are strong assumptions. For instance, adoption of the 1-PL model implies the following
assumptions about the test data: (i) that only one ability is measured by the test; (ii) that

all items on the test have the same discriminating power; and (iii) that guessing is not a
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factor in test performance, even for low-ability examinees.
Second, one can determine if the expected advantages derived from the use of the
IRT model are obtained. Three advantages are obtained when an IRT model fits a set
of test data: (i) Examinees’ ability estimates are obtained on the same ability scale and
can be compared even though examinees may have taken different sets of items from an
item pool measuring the ability under consideration. In other words, ability estimates
are invariant; that is, they do not vary as a function of the specific items taken from a
given item pool. This model feature is referred to as test-free person measurement; (ii)
Item statistics are obtained which are invariant, that is, they are not dependent on the
sample of examinees used in the estimation of item parameters. This model advantage
is called person-free item calibration; and (iii) Information is provided about the precision
of ability estimates at each point on the ability scales. This is accomplished by
conditional standard errors, that is, standard errors that are dependent on ability level.
Attempts to check model features car. be based on features described in (i) and (ii) above.
Third, one can determine the closeness of fit between the predictions derived from
an IRT model and actual or simulated outcomes. More specifically, one substitutes
estimated parameters for true parameters and then one can see whether or not an
approximate fit is obtained between predictions and outcomes. Thus, the most obvious
indicator of (mis)fit is the residual difference between the observed item score for an
examinee and his or her expected item score under the IRT model under consideration.
The IRT literature is replete with discussions of methods for investigating goodness

of fit in IRT modeling. For instance, Traub and Lam (1985) list the most widely used
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indicators of (mis)fit; Hambleton (1989), Hambleton and Murray (1983), Hambleton and
Swaminathan (1985), Hambleton, Swaminathan, and Rogers (1991) review the possible
methods for checking model assumptions, expected model features, and model
predictions of real and simulated test data; and Hattie (1984, 1985) evaluates numerous
methods for assessing the unidimensionality of tests and items.

Latent trait theory has had a substantial impact on testing research and practice,
especially in North America. However, as useful as they are for constructing tests and
analyzing test data, standard IRT models do not address the cognitive processes that
examipees must use to have a high probability of making a correct response. They also
do not address the features that make some tasks more difficult than others. Recall that
the two main model parameters only indicate the relative proficiencies of examinees (0)
and the relative difficulties of tasks (8;).

To fill this gap, IRT models needed to be extended to include, for example,
parameters reflecting the processing requirements of tasks or test items. Many
researchers in Europe as well as in North America were aware of the limitations of
standard IRT, but those in Europe were among the first to propose extending standard
IRT to make it useful for investigating problem-solving processes. According to Iischer
and Forman (1982), "latent trait theory in Europe has developed more towards a theory

of psychological measurement and towards modeling the process of problem solving,

.. ." (p. 397; emphasis added).
In that context, as noted by Fischer and Forman, the Rasch model has been the most

influential model. In effect, two extensions of the Rasch model have been particularly
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important and are "currently attracting the attention of cognitive psychologists and
psychometricians" (Hambleton, 1989; p. 159). The first extension has been proposed
by Fischer and his colleagues (e.g., Fischer, 1973, 1983; Fischer & Forman, 1982;
Spada & McGaw, 1985) and has been referred to as the linear logistic test model
(LLTM). 7The second extension is found in the work of Embretson and her colleagues
(e.g., Embretson, 1984, 1985; Embretson, Schneider, & Roth, 1986; Whitely, 1980) and
has been called the muiticomponent latent trait model (MLTM). Both the LLTM and the
MLTM are constrained Rasch models. However, whereas the LLTM is a unidimensional

model, the MLTM is a multidimensional model. The present research was concerned

with modeling applications of the LLTM.

2. The linear logistic test model
ription o 0

The LLTM was developed in the early 1970s (G. H. Fischer, 1973), but until
recently, it was virtually unknown in North American psychometrics. As stated above,
it is an extension of the Rasch model. As is well known, the Rasch model predicts the
encounter of person j with item i by just two parameters, the person’s ability, 6, , and
the difficulty of the item, B;. The probability that the encounter leads to a correct
solution of the item , P(X;; = 1/6;, B), is modeled as follows:

exp(Bj - ﬁ)
: (71
1+ exp(Bj - ‘3,)

P(X,;=1/8, B)) -
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Note that Equation 7 is equivalent to both Equations 4 and 5. In other words,
Equation 7 is an alternative way of mathematically representing the Rasch model. The
present formulation is more convenient here. As is true for all IRT models, Equation
7 implies that person ability and item difficulty are scaled in the same metric on a
common continuum. It also shows that ability and difficulty combine additively to atfect
performance; that is, the model postulates a compensatory relationship between ability
and difficulty.

The difference between the Rasch model and the LLTM is that the latter provides
a decomposition of item difficulties of the Rasch model. Data that are "external” to the
encounter of the person and the item are required to identify the parameters.
Specifically, items must be scored on k complexity factors that are hypothesized to
determine item difficulty.

A simple linear model of the complexity factors, Qy, multiplied by their difficulty,

7., is assumed to explain item difficulty as follows:

Bf=)k3n,0.~,+d 8]

where:

Q, = the score of item i on factor k or the complexity of factor k in item i
n, = the weight of factor k in difficulty

d = a normalization constant

The factors that are scored, Q,. may have either positive or negative weights, n,,
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in item difficulty.
This mathematical model! for task processes is combined with the Rasch model as
formulated in Equation 7. Thus, the full LLTM is written as frllows:

cxp[ﬁj - (Ek N Qu + d)] [9]
1 + cxp[al - (El nl Qu + d)]

P(X,=1/6, B) =

As can be clearly seen in Equation 9, the LLTM combines a mathematical model
of component processes or task features (complexity factors) and a psychometric model
of individual differences at the item level. (Answering an item correct depends in part
on the ability of the person encountering the item.) So, the LLTM links item difficulty

>

to external or theoretical variables and yet retains the properties of the Rasch model as
a psychometric modei.

A major advantage of the LLTM resides in its capability of testing hypotheses about
models of task performance or difficulty. Since it attempts to explain task or item
difficulty from a small set of parameters, the LLTM is an explanatory model. The
explanatory factors in the LLTM may be either scored variables derived from some
theory, or empirical ratings or classifications of the item stimuli on variables that are
postulated to influence performance by the target population. The LLTM is a
multicomponent model in the sense that multiple stimulus or component factors are
hypothesized to underlie task or item difficulty. However, it should be noted that the
LLTM is a unidimensional model, as it contains only one ability parameter for a person.

Since the LLTM is an extension of the Rasch model, the assumptions of the Rasch
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models are also assumptions of the LLTM. Even the assumption of unidimensionality
is preserved in the LLTM, which is not the case for the MLTM.

With regard to estimation, G. H. Fischer (1973) has derived conditional maximum
likelihood estimators for the item parameters of the LLTM, n,. But, although conditional
maximum likelihood estimators are statistically superior to unconditional estimators for
several reasons (see G. H. Fischer, 1981), they are impractical for large sets of items.
Hence, the conditional maximum likelihood estimation procedure is useful for the
estimation of LLTM parameters when the data set is not large (not over 80 items
(Fischer & Forman, 1982)). G. H. Fischer and Forman (1972) have implemented the
conditional maximum likelihood estimation method in a computer program. Whitely and
Nieh (1981) have adopted the same procedure in their LINLOG computer program.

Normal applications of LINLOG yield both person- and item-parameter estimates

for both the LLTM and the Rasch model. The adequacy of the complexity-factor model

for item difficulty may be evaluated in three ways: (i) by a log-likelihood x° for
differences in goodness-of-fit between the LLTM and the Rasch model. The x? value is
-2 times the likelihood difference between the two models; (ii) by correlations of item
difficulties 8* and j obtained, respectively, under the restricted LL'TM and the Rasch
model; and (iii) by testing the significance of each complexity factor, since standard
errors and error correlations are also obtained in a LINLOG analysis.

In LINLOG, the conditional maximum likelihood estimates for the item parameters

are computed by the gradient search method described by G. H. Fischer and Forman

(1972). Person parameters are estimated by the Newton-Raphson method, after the item
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parameters habe been obtained.

Several investigations have been done using the LLTM as a modeling tool. An early
example of the application of the LLTM is G. H. Fischer’s (1973) study of the
procedures required to solve problems in the differentiation of explicit functions, as
taught in secondary schools in Austria. Eight basic cognitive operations that the
examinees must apply to solve the problems were derived from an analysis of the
structure of the calculus test. These operations were hypothesized to account for the
relative difficulties of the problems. Fischer found an agreement between the Rasch
item-difficulty parameters and a linear combination of the occurrence and difficulty of
the hypothesized operations. In other words, the LLTM parameters could explain the
Rasch item difficulty parameters, as hypothesized by the investigator.

Another example of the application of the LLTM is Whitely and Schneider’s (1981)
study of models of the course of information processing for geometric analogies. These
researchers tested three alternative accounts of processing on geometric analogies.

Model 1 in their study represented Mulholland, Pellegrino. and Glaser's (1980)
information-structare variables. Mulholland et al. postulated that two processing
variables are crucial in the solution of geometric analogies, namely, encoding complexity
and transformation complexity. The former is determined by the number of elements in
the first stimulus in an analogy; the latter depends on the number of transformations
required to transform the first stimulus to the second stimulus. (See Whitely &

Schneider, 1981; p. 384, for an example of a geometric analogy.) Hence, each item can
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be scored on the two complexity factors, encoding and transformation. In the study,
Model Il made a distinction between figure distortion transformations (e. g., a change
in shape) and displacement transformations (e. g., rotation).  Finally, Model 111
considered several types of transformations.

Likelihood ratio chi-square tests were used to compare the goodness-of-fit of the
models. Model II was found to fit the data better than Model I and Model 111 was better
than Model II, although the difference between the latter two was trivial.  For
parsimony, Model II was selected as the best of the three models.

Whitely and Schneider (1981) also evaluated the ability of Model [1I to account for
Rasch item-difficulty parameters. Note that the Rasch model can be considered as a
saturated model, since it can be used to reproduce the item-difficuity data. Moadel 111,
the most complex information-processing model estimated for the data, was significantly
different from the Rasch model. That conclusion was reached because the obtained
LLTM parameters could not account for the item difficulties. This implies that other
types of complexity factors should be considered for geometric analogies.

More recently, another investigator, Medina-Diaz (1993), used the LL'TM to define
the cognitive structure of an algebra test involving one-variable linear equations. Eight
production rules representing the mathematical procedures required to solve the problems
described the cognitive structure of the test. Another technique, quadratic assignment
(QA, Hubert & Schultz, 1976) was employed to validate the hypothesized structure, that
is, to ascertain that examinees solved the problems using the specified production rules.

This research shows that there are benefits in applying both the LLTM and QA in test
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analysis.

G. H. Fischer (1978) has provided several examples of European studies with the
LLTM.

In the present study, the LLTM was used as a modeling tool to investigate the
structure cf simple addition and subtraction word problems as hypothesized by current

models of children’s performance on those problems.

E. Summary and rationale for the present study

To summarize, the factors underlying the relative difficulty of addition and
subtraction word problems have been of paramount importance, over the years, to
researchers and educators interested in the development of children’s problem-solving
skills in arithmetic. As was evident in the literature review, to many of the scholars
currently involved in determining these factors, the question of how children interpret
and represent arithmetic word problems deserves particular attention. This makes sense,
since children’s ability to understand arithmetic problem texts antecedes their ability to
apply problem-solving procedures. This is why research perspectives based on
knowledge structures have taken center stage in investigations of children’s arithmetic.
In this respect, the distinction between conceptual knowledge and procedural knowledge
as been emphasized by researchers.

The question of the role of conceptual knowledge and linguistic knowledge in the
development of children’s skills in solving addition and subtraction word problems has

been the focus of many investigations. Various approaches have been used in these
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investigations, including retelling data (e.g., Cummins et al., 1988; Stern, 1993;
Verschaffel, 1994), problem rewording (e.g., Cummins, 1991; Davis-Dorsey et al.,
1991), computer simulation (e.g., Riley & Greeno, 1988), training studies (e.g., F. E.
Fischer, 1990; Lewis, 1989), and eye-movement studies (e.g., De Corte, Verschaffel,
& Pauwells, 1990; Hegarty, Mayer, & Green, 1992; Verschaffel, De Corte, & Pauwells,
1992).

From previous studies, it seems clear that some characteristics of the problems
themselves (e.g., semantic structure, linguistic complexity) and children’s conceptual and
procedural knowledge influence children’s s~lution success on the problems. But, what
are these characteristics of the problems?

The position taken here was that a modeling approach based on the LLLTM could be
useful in that it would make it possible to use the structural features of the problems as

a basis for explaining children’s performance levels on the problems.
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ni. METHOD

A. Subjects

Forty children from each of Grades 1, 2, and 3, with an equal number (i.e., 20) of
girls and boys at each grade level, served as participants in the study. Mean ages were
6 years S months, 7 years 6 months, and 8 years S months, respectively, for first
graders, second graders, and third graders. The children were attending a large,
predominantly white middle-class elementary school located in an outlying district of a
large Western Canadian city. For all children participating in the study, English was the
native language.

The study was conducted during the first half of the school year, in November and

December. Written parental consent was secured for each child’s participation in the

study.

B. Tasks and materials

Thirty-two arithmetic word problems were used as test problems in the study. The
problems were constructed to represent each of the four major categories of problems
that researchers have used to chart the domain of simple addition and subtraction word
problems; namely, change, combine, coinpare, and equalize problems. In each problem,
three different sets were mentioned: a start set, a change or transfer set, and a result set.

But, the number of objects in only two of the sets was stated in each problem.
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In change problems, a start set undergoes a transfer-in or transfer-out of items; then,
a question is asked about the cardinality of one of the three sets. In combine problems,
the cardinality of a subset or superset must be computed given information about the
other two sets. In compare problems, a question is asked about the cardinality of one
set, which must be computed by comparing the information given about the relative sizes
of the other sets. Equalize problems are thought of as a hybrid category, as they have
features of both change and compare problems. Specifically, there is the same sort of
action as in change problems, but that action is based on the comparison of two disjoint
sets. Hence, all the problems were one-step problems that could be solved either by
addition or by subtraction by using two of the numbers stated in the problems. A more
detailed description of each of these categories of problems can be found in the literature
review.

Each problem was stated in three or four sentences. In problems consisting of three
seatences, the first two sentences contained information about the number of objects in
two of the sets. For problems consisting of four sentences the information about the
cardinality of two of the sets was contained in the first three sentences. For these
problems, one sentence among the first three sentences did not refer to a specific number
as the cardinality of one of the sets; rather, the sentence always contained the word
"some", which was a reference to the unpecified number in the sct whose cardinality
had to be computed. Invariably, the last sentence in each problem was a question about

the cardinality of one of the three sets mentioned in the problem.
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The problems were constructed from two problem frames. A problem frame
involves the same kinds of objects, related to the same locations or individuals. In the
present study, one frame involved marbles, ownership, Connie, and Eric, as exemplified

by the following problem:

Eric had 7 marbles. Then Connie gave him 3 more marbles. How many
marbles does Eric have now?

Twenty-four problems were prepared from the first frame.  These problems
consisted of six instances within each of the four major categories of arithmetic word
problems. The other problem frame involved cows, ownership, Butcher Joe, and Farmer

Pete, as illustrated by the following problem:

Butcher Joe had some cows. Then Farmer Pete sold him 3 cows. Now Buicher
Joe has 7 cows. How many cows did Butcher Joe have in the beginning?.

Eight problems were constructed from the second frame. These problems consisted
of two instances within each of the four major problem categories. For the second
frame, only two instances were used within each problem type for two reasons. The first
reason was to keep testing time to a reasonable level for children of these age groups.
The second reason was to present more of the most difficult problems, since these
problems were of most interest in the present study.

The use of two problem frames to construct the test problems for the present study
was a departure from studies in which a different frame was employed for each problem
(e.g., Riley & Greeno, 1988), and those in which the same frame was used for all
problems (e.g., Cummins et al., 1988). The present investigator thought that using a

different frame for each problem could be distracting to subjects or could increase the
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memory load required by the tasks, as subjects would have to attend to diftferent "actors”
and "objects" in order to comprehend the problems. Note that for successful
performance on the test problems, chiidren only need to attend to the relationships among
the sets and to remember the numbers stated in the problems to describe the absolute or
relative sizes of the sets. It was also believed that the use of only one frame for all
problems could bore subjects as they would have to hear the "same story” over and over
again. The 32 problems are presented in Tables 2 and 3.

For any problem, the two numbers used to refer to the sets whose cardinalities were
given, included only the numbers 2 through 10. Small numbers were used in the
problems in keeping with previous studies (e.g., Cummins, 1991; Cummins et al., 1988,
Riley & Greeno, 1988; Riley et al., 1983) that have investigated children’s performance
on arithmetic word problems. In these studies, the practice has been to deemphasize
computational complexity resulting from the use of large numbers. Additionally, in the
present study, the numbers were selected such that, for any problem, the correct answer
was always 10 or less, and always different from the two numbers stated in the problem.
This constraint was motivated by young children’s widespread use of what has been
referred to as a "given number strategy" (e.g., Cummins et al., 1988; p. 417), as
frequently reported in the literature (e.g., De Corte et al., 1985; Riley et al., 1983). I
was important here, as in previous studies, that the use of that strategy by children
produce an error: Had a number given in a problem been the coriect answer, it would

have been difficult to interpret a correct answer to that problem given by a child.
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Table 2. Test Problems Used in the Study

Frame 1

Change Problems

I.
2.

Eric had 7 marbles. Then Connie gave him 3 more marbles. How many marbles

does Eric have now?
Eric had 9 marbles. Then he gave 4 marbles to Connie. How many marbles does

Eric have now?

Eric had 3 marbles. Then Connie gave him some marbles. Now Eric has 10
marbles. How many marbles did Connie give him?

Eric had 8 marbles. Then he gave some marbles to Connie. Now Eric has S
marbles. How many marbles did he give to Connie?

Eric had some marbles. Then Connie gave him 3 marbles. Now Eric has 9
marbles. How many marbles did Eric have in the beginning?

Eric had some marbles. Then he gave 4 marbles to Connie. Now Eric has 6
marbles. Flow many marbles did Eric have in the beginning?

Combine Problems

1.

2.

Eric has 6 marbles. Connie has 4 marbles. How many marbles do they have
altogether?
Eric and Connie have some marbles. Eric has 6 marbles. Connie has 4 marbles.

How many marbles do they have altogether?

Eric has 2 marbles. Connie has some marbles. Eric and Connie have 10 marbles
altogether. How many marbles does connie have?

Eric has some marbles. Connie has § marbles. Eric and Connie have 9 marbles
altogether. How many marbles does Eric have?

Eric and Connie have 10 marbles altogether. Eric has 3 marbles. How many

marbles does Connie have?
Eric and Connie have 10 marbles altogether. Eric has sorie marbles. Connie has

7 marbles. How many marbles does Eric have?
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Table 2. (Continued)

Compare Problems

I.
2.

Eric has 3 marbles. Connie has 8 marbles. How many marbles does Connie have

more than Eric?
Eric has 10 marbles. Connie has 3 marbles. How many marbles does Connie have

less than Eric?
Eric has 4 marbles. Connie has S marbles more than Eric. How many marbles

does Connie have?
Eric has 8 marbles. Connie has 3 marbles less than Eric. How many marbles does

Connie have?
Zric has 7 marbles. He has 3 marbles more than Connie. How many marbles does

Connie have?
Eric has 3 marbles. He has 7 marbles less than Connie. How many marbles does

Connie have?

Equalize Problems

1.

2.

Eric has 9 marbles. If Connie gets 3 more marbles she will have the same number
of marbles as Eric. How many marbles does Connie have?

Eric has 10 marbles. If Eric gives 3 marbles away he will have the same number
of marbles as Connie. How many marbles does Connie have?

Fric has 8 marhles. Connie has 3 marbles. How many more marbles does Connice
need to get to have as many marbles as Eric?

Eric has 9 marbles. Connie has § marbles. How many marbles does Eric need to
give away to have as many marbles as Connie?

Eric has 4 marbles. If he gets S more marbles, he will have the same number of
marbles as Connie. How many marbles does Connie have?

Eric has 6 marbles. If Connie loses 2 marbles, she will have the same number of
marbles as Eric. How many marbles does Connie have?
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Table 3. Test Problems Used in the Study

Frame 2

Change Problems

S. Butcher Joe had some cows. Then Farmer Pete sold him 3 cows. Now Butcher Joe
has 7 cows. How many cows did Butcher Joe have in the beginning?

6. Butcher Joe had some cows. Then he sent 2 cows to Farmer Pete. Now Butcher
Joe has § cows. How many cows did Butcher Joe have in the beginning?

Combine Problems

S. Butcher Joe and Farmer Pete have 9 cows altogether. Butcher Joe has 4 cows.

How many cows does Farmer Pete have?
6. Butcher Joe and Farmer Pete have 9 cows altogether. Butcher Joe has some cows.

Farmer Pete has 5§ cows. How many cows does Buicher Joe have?

Compare Problems

S. Butcher Joe has 8 cows. He kas 3 cows more than Farmer Pete. How many cows

does Farmer Pete have?
6. Butcher Joe has 6 cows. He has 2 cows less than Fa:mer Pete. How many cows

does Farmer Pete have?

Equalize Problems

S. Butcher Joe has 3 cows. If he buys 4 more cows, he will have the same number of
cows as Farmer Pete. How many cows does Farmer Pete have?

6. Butcher Joe has 4 cows. If Farmer Pete sells 3 cows, he will have the same number
of cows as Butcher Joe. How many cows does Farmer Pete have?

In addition to the test problems, two practice problems were prepared, using Farmer
John and Butcher Tom as protagonists and cows as objects. The first practice problem

was the following Change 2 problem :
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Farmer John has S cows. Then he sold 2 cows to Burcher Tom. How many cows
does Farmer John have now?

The second practice problem was the following Cempare 4 problem:

Farmer John has 5 cows. Butcher Tom has 2 cows less than Farmer John.
How many cows does Buicher Tom have?

There were 32 white cards, 30 centimeters long and 5 centimeters wide, on which
the response alternatives were printed. More specifically, or each card five numbers
were printed, one of which was the correct answer to a given problem. The numbers
were equally spaced on each card. Furthermore, the position of the correct answer was
chosen so that the correct answer appeared, across all problems, approximately an equal
number of times in each position.

Finally, marbles and plastic cows were available to children to work with when

solving the problems.

C. Procedure

Children were tested individually in a quiet room at their school during school
hours. Following the procedure used in previous studies, all problems were presented
orally: They were read by the experimenter to the child, who was required to solve
them without benefit of paper and pencil. Problem presentation followed the same order
for each child. Twelve problems from the first frame werc presented | oilowed by
four problems from the second frame; then the remaining 12 problems from the first
frame, and the other four problems fiom the second frame, were administered.

Each child participating in the study was brougkt from his or her classroom to the
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testing room by the experimenter to whom the child was assigned. Then the
experimenter and the child sat on the same side of a small desk on which the testing
materials were placed. After a short informal conversation during which she established
rapport with the child, the experimenter proceeded with the testing session.

Each session began with instructions, followed by the two practice problems.
Children were assisted in solving the practice problems, if necessary. Once it was clear
that the child understood the procedure, the experimental session was begun. No help
by the experimenters was available to children when children were solving the test
problems. Before the practice problems were read to them, children were told that they
could use the marbles and the plastic cows to solve the problems. However, nota single
child used the objects in solving all the problems. In fact, many children completed all
the problems without using any marbles or plastic cows. Children were also allowed to
solve the problems at their own pace. Specifically, they were told that there was no time
limit set for solving each problem or for completing all the problems. Children took an
average of 15 mn to complete the test problems. No children were found to be either
exceedingly fast or slow in solving the problems. Most problem statements were
repeated twice by the experimenters; a few problems were solved after only one reading;
an even smaller number of problems needed to be read more than twice before children
could provide answers to them.

Two white female experimenters administered the tasks. Children were randomly
assigned to the experimenters with the constraint that the two experimenters test an equal

number of children of the same sex at each of Grades 1, 2, and 3. The two
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experimenters were trained by the principal investigator during a 4-hour session
consisting of two parts. In the first part of the session, the experimenters were
introduced to the test materials; then they were asked to familiarize themselves with the
instructions and the test problems. During this process, the experimenters were
encouraged to ask any questions they might have on the instructions and the problems
by the principal investigator.  Finally, the principal investigator emphasized to the
experimenters the importance of keeping the procedure uniform across children.

During the second part of the session, each experimenter administered the tasks to
three children (one child from each of Grades 1, 2, and 3), in the presence of the other
experimenter and the principal investigator. At the conclusion of each session with a
child, the two experimenters and the principal investigator critiqued the administration
of the tasks. The practice sessions, in addition to providing guided practice to the
experimenters, were an attempt to keep all aspects of the administration of the tasks
uniform across children. It should be noted tht the data for the children who served in
the practice sessions were not used in any analysis.

A key feature of the instructions worth mentioning was that children were
discouraged against guessing and impulsive responding. Rather, they were encouraged
to "think through" each problem and respond by the best possible answer.

Children were awarded one point for each test problem solved correctly and zero
point for each problem solved incorrectly.

Some data were collected also from teachers whose pupils served as participants in

the study. They were asked to rate their pupils on mathematical competence on a 5-point
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scale, on which a larger number indicated more competence.
D. Data-analysis strategies and presentation of results

The statistical analysis of the data was composed of two parts: a preliminary analysis
anG a2 main analysis. The preliminary analysis was designed to provide classical item
staristics that were used to evaluate the psychometric adequacy of the measuring
instrument. Some of these indices (e.g., the point-biserial correlation coefticients) were
also used in the assessment of the IRT modzl assumptions.

The main analysis was carried out in three steps. The objective of the first step in
the analysis was to make it possible to compare and contrast the pattern of findings in
the present study with the patterns of findings in other studies of children’s performance
on arithmetic word problems. This step consisted of a descriptive level and an inferential
level.

At the descriptive level, children’s performance on the problems was presented in
detail using relevant summary statistics, with an emphasis on performance level as a
function of the following variables: grade, sex, category of problem (e.g., change
problems vs. compare problems), and presumed difficulty of problems (¢.g., Compare
1 problem vs. Compare 5 problem). At the inferential level of the first step in the data
analysis, statistical tests of significance were conducted to ascertain whether or not some
of these variables reliably explained performance differences among subject groups and
among different problems.

The second step in the analysis of data dealt with the assessment of model-data fit.

In IRT applications, the importance of model-data fit cannot be over-emphasized, as the
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success of any application is predicated on the appropriateness of the model for the data
under consideration. As noted earlier, many methods have been proposed for assessing
goodness-of-fit in IRT modeling (see, for example, Hambleton, 1989). The safest
strategy for an investigator is to use several of these methods, preferably from different
categories (i.e., model assumptions, expected model features, and model predictions)
when assessing goodness-of-fit. In the present study, several methods related to model
assumptions and model predictions were employed.

Since the modeling technology used here was the LLTM, which is a modified Rasch
model, the following assumptions were checked: unidimensionality, equal discri mination
indices, absence of guessing or minimal guessing, and non-speeded test administration.

Unidimensionality was assessed by several procedures. The first procedure was
linear factor analysis (LFA), using both phi correlations and tetrachoric correlations, and
two factoring methods, principal-components analysis (PCA) and principal-axes factoring
(PAF) .

LFA remains the most commonly used approach for assessing test dimensionality.
However, there are some fundamental probiems in applying LFA to binary (i.e., 0-1)
data. For instance, LFA assumes that the relationship between test scores (the cbserved
variables) and the underlying factors or components (the latent variables) is linear and
that the variables are continuous, although it can be shown that this relationship is
nonlinear. Hence, applying LFA to binary data amounts to approximating a nonlinear
relationship by one that is iinear.

LFA was employed in the present research to allow comparisons with previous
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studies and to provide baseline dimensionality results against which to compare the
results of otner dimensionality-assessment procedures used here.

In an attempt to determine the number of dominant dimensions underlying the data,
as revealed by the LFA, several approaches were taken: Kaiser's criterion (eigenvalue
greater than 1), the scree plot, amount of variance accounted for, parallel analysis, and
goodness-of-fit statistics based on descriptive measures of the residual correlations. Only
parallel analysis needs to be described here, as the other approaches are well known, as
they are frequently used in factor analyses.

Parallel analysis (e.g., Cota, Longman, Holden, & Fekken, 1993a; Hays, 1987;
Horn, 1965; Humphreys & Montanelli, 1975; Zwick & Velicer, 1986) provides an upper
bound for the number of factors to retin in exploratory factor analysis. The method
compares eigenvalues from the interitem correlation matrix of the real data on hand, and
"criterion” eigenvalues from an interitem correlation matrix of random normal deviates
in data based on the same sample size and the same number of variables as the real data.

Horn (1965) suggested that criterion eigenvalues be obtained by generating a few
sets of random data and computing mean eigenvalues for each ordinal position.
Currently, computer programs (€.8., Hays, 1987; Lautenschlager, 1989; Longman, Cota,
Holden, & Fekken, 1989a) are available for direct computation or estimation of mean
criterion eigenvalues. However, there is some evidence (e.g., Zwick & Velicer, 1386)
that parallel analysis shows a slight bias toward the retention of too many components
or factors, especially when mean criterion eigenvalues are used. This finding prompted

Longman et al. (1989b) to suggest using 95th percentile eigenvalues, which logically
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should lead to slightly more conservative results than the mean eigenvalue approach.
Cota et al. (1993b) provided an empirical example of the interpolation of 95th percentile
eigenvalues irom random data.

In parallel analysis, factors of the matrix of real data that have eigenvalues greater
than those of the comparison matrix of random data are retained. In other words, the
number of eigenvalues of the real data greater than the largest eigenvalue of the random
data is taken as the number of significant factors underlying the data under consideration.

In a comparison of five criteria for determining the number of components 1o retain,
Zwick and Velicer (1986) found that parallel analysis was one of the two best performing
rules across seven systematically varied data conditions. The use of parallel analysis in
dimensionality assessment has been suggested by various investigators (e.g., Hambleton,
1989; Silverstein, 1987, 1990; Zwick & Velicer, 1986). In the present research, parallel
analysis was performed using Hays’s (1987) PARALLEL computer program.

The second procedure used for assessing unidimensionality was noniinear factor
analysis (NLFA), using two different computer implementations, NOHARM (Fraser,
1981 Fraser & McDonald, 1988) and NOFA (Etezadi-Amoli & McDonald, 1983). Note
that NLFA "fits nicely” with IRT, that is, NLFA is conceptually consistent with IRT,
because IRT models are nonlinear in nature (McDonald, 1982).

Following the recommendations of Hattie (1985) and McDonald (1981, 1982), a
one-factor NLFA model was fitted to the interitem correlation matri‘es (phis and
tetrachorics) and the residual correlations were examined. Several NLFA models of high

dimensionality (i.e., more than one factor) also were fitted to the data. This allowed to
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examine the resulting residual correlations. Hambleton and Rovinclli (1986) have
successfully applied these procedures in assessing the dimensionality of a set of test
items. Fitting several NLFA models of high dimensionality also made possible to
compute De Champlain and Gessaroli’s (1991) incremental fit index (IFI) based on the
sum of squares of the residual covariances obtained in the NOHARM analyses. These
investigators define the IF1 in the context of assessing the dimensionality of a set of test
items as follows:

SS,.s (k-jactor) - SS,, Lk + 1)-factor]
SS,.s (k~factor)

[10]

IFI, =

As can be seen from Equation 10, the iFl computes the proportion of the sum of
squares of the residual covariances from the k-factor soiution that is accounted for by the
(k + 1)ih factor. For example, if kK = 1, then the value of IF1 is the proportion of the
sum of squares of the residual covariances from the one-factor solution that is duc 1o the
second factor. The advantages of the IFI have been noted by its proponents and are
twofold. First, dimensionality assessment is carried out using a model (NLIFA) on which
IRT is based. Second, the index of model misfit is directly related to the mathematical
function minimized in the estimation procedure.

The third procedure used to assess unidimensionality was Stout’s (1987, 1990)
statistical significance test of essential unidimensionality (i.e., existence of one dominant
dimension in the data), as implemented in the DIMTEST computer program. The test

hypotheses are stated as:
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Hy: di =1 vs. H: de > 1,
where d;, denotes the essential dimensionality of the item domain. The test statistic is the
unidimensionality statistic T given by:

r-G -1 (1]
V)

For the meaning of T; in Equation 11 and the derivation of the T statistic, see Stout
(1987, 1990), Nandakumar ( 1991, 1993), and Nandakumar and Stout (1993).

The computed T value is referred to the upper tail of the unit normal distribution.
Consistent with the above hypotheses, the p-values of essentially unidimensional tests are
expected to be large whereas those of multidimensional tests are expected to be less than
or equal to the specified level of significance. Stout’s T statistic has been shown to
discriminate well between essentially unidimensional and multidimensional sets of test
scores, for both simulated (Nandakumar, 1994 Nandakumar & Stout, 1993; Stout, 1987)
and real data (Nandakumar, 1993, 1994).

For the assessment of the assumption of equal discrimination indices, the point
biserial correlations between items and total test and between items and subtests were
evaluated for homogeneity.

For the assessment of the assumption of minimal guessing, an analysis of the
performance of low-ability students (based on their total score on the test) was done to
see whether performance levels are close to zero, which would lend support to the

viability of the assumption. Other considerations were important here, including item
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format, the instructions given to the participants, and the observations by the data
collectors.

The assumption of nonspeeded test admiristration was assessed by referring to
relevant data-collection procedures and the observations by the two experimenters.

Concerning model predictions, the assessment focused on the investigation of
residuals and standardized residuals after a relevant model was fitted to the data.

The third step in the data analysis dealt with the LLTM analysis. The goal of this
analysis was to evaluate the knowledge requirements (i.e., logico-mathematical
knowledge and linguistic knowledge) for solving arithmetic word problems suggested in
the literature. The 32 word problems used in the present study were dichomously scored
on three aspects of logico-mathematical knowledge and three aspects of linguistic
knowledge requirements.

The three aspects of logico-mathematical knowledge were part-whole schema,
double-role vs. single-rcle counters, and re-representation.  The three aspects of
linguistic knowledge requirement were comparative terms, action cues vs. no action cues,
and consistent language vs. conflicting language. These characterizations of arithmetic
word problems were described and explained in the literature review. It should be noted
that the distinction between consistent and conflicting language was not limited to
compare problems as in Briars and Larkin (1988) or in Lewis and Maycer (1987); rather
it was applied to all the problem types used in the present study.

A problem was scored 1 when a knowledge aspect was required for solving the

problem or when a structural or processing feature making the problem more difficult
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was present. It was scored 0 when a knowledge aspect was not required for solving the
problem or when a feature making the problem more difficult was absent.

These dichotomous item scores made up a 32 X 6 weight matrix Q required for the
LLTM analysis. Table 4 presents the vector of weights corresponding to each test
problem used in the study. Using the LINLOG program (Whitely and Nieh, 1981),
conditional maximum likelihood estimates of the 7, and (3;* parameters were cbtained,
and significance tests of the parameters corresponding to the structural features of the

problems were carried out. These significance tests evaluated the importance of the

structural features in determining problem difficulty.



Table 4. Item Sequence, Item Code and the Q Matrix
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Structural And Processing Complexity (Q Matrix)

Item Item Part- Double- Re- Comparative
Sequence Cede Whole Role Representation  Terms
Counters

1 CHI 0 0 0 0

2 CHS 1 0 0 0

3 CH3 0 1 0 0

4 CHeo 1 0] 1 0

5 CH4 0 1 0 0

6 CH2 0 0] I 0

7 CPS 1 0 0 !

8 CP1 0 0 () 1

9 CP3 0 0 o] |
10 cP2 0 0 0 !
1 CP6 1 0] 0 1
12 CP4 0 0 0 i
13 EQ6 0] 0 0 0
14 CBS 1 1 0 0
15 EQS 0 0 0] 0
16 CBé6 i 0 0 0
17 CB1 0 0 0 0
18 CBS 1 1 0 0
19 CR3 1 1 0 0
20 CB6 1 0 0 0
21 CB4 1 0 0 0
22 CB2 0 0] 0 0
23 EQl 0 0 0 V]
24 EQS 0 0 0 0
25 EQ3 o 0] 0 0
26 EQ6 ] 0 0 0
27 EQ4 0 0 0 0
28 EQ2 0 0 0 0
29 CHS 1 0 ] 0
30 CP6 1 0 0 1
31 CHeo 1 0 I 0
32 CPS 1 0 0 1

Action  Langnuye

Cues

Canetany
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IV. RESULTS

This chapter provides a detailed presentation of the results of the statistical analyses
described in the preceding part of the thesis. This presentation involves two parts, the
first dealing with the preliminary analysis and the second focusing on the main analysis.
A. Preliminary analysis: sizing up the measuring instrument

This section reports the results of the analysis carried out to obtain classical item
statistics. Tables 5, 6, 7, and 8 contain these statistics, respectively, for change,
combine, compare, and equzlize problems. Each table gives the following information:
order of preseniation of the item (sequence number), type of item (item code), difficulty
and discrimination indexes, point-biserial correlation coefficients of the item with the
total test and with the subtest to which the item belongs, the proportion of the total,
high, and low groups selecting each alternative, the discrimination index for each
alternative, the average total test score and the average subtest score for examinees
selecting a given option.

The test used in the present study was not developed using any elegant psychometric
procedures. However, an inspection of the item statistics obtained in the preliminary
analysis shows that the numbers are within acceptable limits or are reasonable for what
they indicate. For instance, item difficulties vary from a high of .83 (for Change 1) to
a low of .39 (for Compare 6), the discrimination indexes are all higher with the
corresponding point-biserial correlation coefficients with the total test; all point-biserial

correlations with the subtest are higher with the corresponding point-biserial correlations
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with the total test; all discrimination indexes for the distractors are negative numbers,
that is, all distractors show negative discrimination, which means that they were chosen
more often by members of the low group than by those of the high group; all the average
total test scores and average subtest scores for examinees choosing the correct option
are higher than the corresponding averages for examinees choosing any other alternative.
All these patterns are expected if the test is adequate.

Some descriptive information about the classical psychometric indexes of the test
items is presented in Table 9.

The analysis considered the four major categories of arithmetic word problems as
component subtests. Based on that decomposition of the test, subtest statistics were
computed and are shown in Table 10. There do not seem to be any marked differences
among change, compare, and equalize problems; however, all these problem types seem
to be different from compare problems. A subtest correlation matrix was also obtained
and can be seen in Table 11.

For the whole instrument, Cronbach’s alpha for internal consistency reliability was

.92, and the standard error was 2.312. Thus, the instrument had good internal

consistency reliability.
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Table S. Classical Item Analysis Results for Change Problems

Ttem statistics Alternative statistics

Sequence llem Diff. Discr. M. bis. P bis. Alt. Prop. select. al. Discr. Mecans  Means
numbher  code index index (total] test) (subtest) (1otal (high) (low) index (total test) (subtest)
! CHI K3 34 .38 44 1 .08 .00 .16 -.16 9.67 2.00
2 .83 1.00 .66 34 19.49 5.31
3 .07 .00 .09 -.09 12.56 3.11
4 .03 .00 .06 -.06 11.00 3.78
s .02 .00 .03 .01 §.00 1.00
6 CH2 i .80 .49 .68 1 .78 1.00 .50 .50 20.20 5.63
2 .08 .00 13 =13 12.80 2.60
3 .08 .00 22 -.22 9.20 2.00
4 .02 .00 .06 -.06 9.67 2.00
s .02 .00 .09 -.09 7.00 2.00
3 CH3 .59 72 .58 .66 1 .07 .00 .07 -.07 13.78 3.33
2 .03 .00 .03 -.03 16.28 4.25
3 .08 .06 .09 -.03 17.10 4.40
4 .59 94 22 72 22.04 6.07
N 22 .00 .59 -.59 9.38 2.50
s CH4 .67 .56 .44 .87 1 .06 .03 19 -.16 9.43 2.00
.09 10 .16 -.06 16.82 3.91
3. 67 .87 31 .56 20.66 5.78
4 .02 .00 .00 .00 16.50 4.50
] 17 .00 34 -.34 11.60 3.08
2 CHS .50 .65 .49 48 1 .09 .06 12 -.06 15.55 4.09
2 32 .06 .50 -.44 14.18 3.84
3 .07 .00 13 =13 11.63 3.63
4 .02 .00 .03 -.03 12.00 3.67
5 .50 RY) 22 .65 22.17 593
29 CHY 45 72 .58 .65 1* A4S .81 .09 72 23.11 6.43
2 .09 .00 13 -.13 13.45 427
3 17 .00 .38 -.38 11.20 2.5§
4 17 .16 19 -.03 17.19 4.67
5 12 .03 22 -.19 13.43 3.14
4 CH6 51 .59 .46 58 1 .03 .03 .03 .00 15.50 4.25
2 .08 .00 19 -.19 11.60 2.90
3 .16 .03 .25 =22 13.32 337
4 51 .81 .22 .59 2]1.84 6.11
S 22 .13 .31 -.18 15.62 4.00
31 CH6 .56 71 .53 .S 1 A1 .00 .19 -19 14.5¢ 392
2 .07 .00 13 -13 13.67 3.1
3 .14 .03 .28 -.22 12.41 3.29
4 .56 87 .16 71 21.96 5.94
N 12 .10 .28 -.18 12.50 3.86

* Undetlined item codes indicate Frame 2-problems.
o For each item, the alternative with the asterisk is the keyed oplion.
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Table 6. Classical Item Analysis Results for Combine Problems

Tiem statistics Alternative satistics
Sequence Jtem DifT. Discr. Pt bis. Pt bis. Alt. Prop. select. alt. Discr. Means  Means
number code index index (tota) test) (subtest) (towal) (high) (low) index (total tewt)(mibtest)
17 CBI! .87 22 28 X} 184 A7 97 78 22 1897 §.28
2 04 .00 .06 06 13.40 280
3 .02 .00 RO -8 6.67 2.0
4 .02 .00 R} -.03 14.67 4.0
S .04 .03 .06 -.03 13.00 2.0
22 cB2 .64 34 .68 N i .07 .00 Ay -9 988 2.8%
2 22 .00 44 -.44 11.54 2.0
3e .64 1.00 6 R4 22.26 6.0
4 02 .00 .06 =06 9.67 3.0
S .08 .00 .16 .16 7.83 2.17
19 CB3 .61 65 54 69 1 A3 .03 A9 - 16 14.56 RPR1 )
2° .61 99 29 68 21.70 6.36
3 .06 .00 .09 -.09 14.29 2.%6
4 10 .03 A9 -6 11.83 2.67
s .10 .00 28 228 9.17 1.67
21 CB4 .53 81 .68 N | 14 .00 22 222 13.24 3.68
2 .06 .00 A3 B R) 10,14 2.8
3 14 00 31 ]| 10.76 2.8
4 13 .06 22 -.16 12.93 3.20
Se .83 94 13 A1 2338 6.64
18 CBS .68 .62 57 .70 | 07 .00 .09 -9 11.88 2.3
2¢ 68 94 31 63 21.27 6.19
3 02 00 03 -.03 12.67 2.67
4 18 03 AR -.35 10.56 2.17
s .07 .03 19 -6 11.33 2.4
14 CBS .65 .66 .55 67 f .08 .(¥) .06 -.06 1.67 1.83
2 .04 00 03 -03 15.60 4.00
3 19 00 44 -.44 14.30 2.30
4 .68 1.00 34 .66 21.42 6.19
5 .07 .00 13 - 13 11.28 288
20 CB6 .48 91 71 .83 1 17 00 31 -.31 12.62 2.52
2 .15 .00 22 222 14.50 3.7
3 .07 .00 13 -3 11.00 2.22
4 48 97 .06 91 24.17 742
N A2 .03 28 =25 10.14 2.64
16 CB6 45 88 72 76 ] .04 .00 06 06 12.20 1.20
2 45 94 .06 A8 24.65 7.07
3 .14 .00 19 -.19 13.41 2.04
4 17 .03 3 28 12.76 3.8
5 19 .03 .38 -.3% 12.22 3.13

e Underlined item codes indicate Frame 2-problems.
o For each item, the alternative with the asterisk is the keyed option.
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Table 7. Classical Item Analysis Results for Compare Problems

Item statistics Alternative statistics

Sequence ltem DifY. Discr. M. bis. P bis Alt. Prop. select. alt. Discr. Means  Means
number  code index index (total 1est) (subtest) (total) (high) (low) index (total test) (subtest)
L CPl .57 R .61 72 ] .08 .00 .09 -.09 14.80 1.9¢
2 .06 .00 .09 -.09 17.71 2.00
3e .57 97 .16 81 22.49 5.40
4 .10 .00 .16 -.16 15.00 2.33
S 19 .03 .50 -.47 10.00 0.78
10 cP .58 51 66 n 1 33 .00 7e -.78 10.80 1.20
2 .02 .00 .03 -.03 16.00 2.67
3 .04 .00 .06 -.06 15.00 3.00
4 .02 .00 .03 -.03 13.50 1.00
Se S8 1.00 .09 91 22.67 §.33
9 cP3 .40 74 S8 67 184 .40 81 .06 .74 23.98 5.90
2 .08 .03 .06 -.03 16.83 3.17
3 .09 .00 22 -.22 10.73 1.88
4 .36 .10 .53 -.43 14.09 2.14
s .10 .06 A3 -.06 16.08 2.92
12 CP4 .58 81 .63 7 1 .07 .06 13 -.07 14.50 2.38
2e 58 .94 13 81 22.57 5.358
3 19 .00 41 -.41 11.70 1.00
4 .07 .00 19 -.19 9.89 1.44
s .09 .00 .16 -.16 12.55 2.00
7 CPS 43 78 62 .75 1 .20 .00 22 =22 14.67 2.50
2 .05 .03 .09 -.06 12.17 2.00
3 .09 .03 A9 -.16 11.73 .82
4+ 43 87 .09 .78 24.04 6.02
s 23 .06 41 -.35 13.89 1.68
32 CcPS .40 .78 55 .58 1 .40 81 .03 .78 23.69 5.60
2 24 .10 31 -.21 15.21 2.66
3 .07 .03 .09 -.06 16.78 3.44
4 17 .03 34 -3 12.20 1.80
N A2 .03 22 -.19 14.00 2.36
1" CP6 38 74 59 67 i 28 .16 44 -.28 14.56 2.50
2 .04 .00 .06 -.06 14.60 2.00
3 .05 .03 .06 -.03 16.83 2.67
4 25 .06 .44 -.38 13.40 217
Se .38 .74 00 .74 24.40 6.00
30 cps 39 .62 42 59 1 .08 .00 .16 -.16 11.70 0.90
2 .03 .00 .06 -.06 11.50 2.75
3 .03 .00 .09 -.09 8.50 0.78
4 .39 .68 .06 62 22.45 5.66
S .46 32 .63 -.31 16.67 2.85

e Underlined item codes indicate Frame 2-problems.
o For each item, the alternative with the asterisk is the keyed option.
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Table 8. Classical Item Analysis Results for Equalize Problems

ltem statistics Alternative statistics
Sequence ltem Diff. Discr. P bis. Pt bis. Al Prop. select alt. Discr. Mcans  Means
number code index index (total test) (subtest) (total) (high) (Jow) (total test) (subtest)
23 EQI 43 .52 43 59 1* 43 N 19 82 2.2 6.10
2 13 10 13 .0} 16.60 o0
3 a2 13 06 -.07 20.14 4.71
4 .20 .06 34 -.2% 13.78 37
N 13 .00 28 -.28 11.00 2.44
28 EQ2 .67 .46 40 .50 1 .07 .03 K] -6 1588 448
2 .08 10 .00 10 .00 5.50
3e 67 87 41 46 20,92 §.38
4 .07 .00 19 -9 10.78 1.56
S 14 .00 31 -3 10,18 242
2s EQ3 .83 77 .68 13 1 22 .00 44 - 44 1088 2N
2 A1 .00 28 -2% 9.(X) .88
3 ki 03 03 00 17.10 3.80
4 .07 .06 R R] -.07 14.88 3.6l
Se .52 .90 13 .1 23 .48 6.1
27 EQ4 73 .53 .51 .63 1* .73 97 .44 583 20.64 .41
2 .02 .00 09 -9 S.67 0.67
3 12 03 .22 A9 12.79 2.43
4 .02 00 .03 -.403 12.67 3.00
5 .10 00 .22 -.22 9.92 2.08
24 EQS .60 .53 43 SS ! 1 .06 22 -.16 13.38 118
2 .02 00 03 -.03 11.00 2.50
3 17 13 .22 -.09 15.62 3.9
4 .60 Rl 2% 53 20.99 5.587
S .10 .00 .28 -.25 17 2.67
15 EQS .69 46 42 54 1 .07 .03 16 ER 11.50 2.78
2 .07 .00 19 -.19 10.63 2.50
3 1 10 19 -.09 14.23 2.69
4 .07 X .09 =06 14.28 3.00
h3d .69 R 38 .46 20.40 S.36
26 EQ6 48 .85 48 57 1 .16 .06 .31 -.28 12.79 2.47
2¢ 48 74 19 .85 22.2% S.91
3 .22 A9 28 -.09 15.67 3.589
4 .06 00 .03 -.03 17.00 4.71
) .08 .00 19 - 19 11.40 3.20
13 EQ6 43 .78 .58 .59 1 .01 .00 .03 -.03 8.00 3.00
2 .48 43 .84 -7 13.55 3.26
3 .02 .03 .01 .02 23.00 5.50
4« .43 84 .06 78 23.5% 6.08
S .06 .00 .06 -.06 14.71 3.86

e Underlined item codes indicate Frame 2-problems.
e For each item, the alternative with the asterisk is the keyed option.
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Table 9. Descriptive Information About Classical Psychometric Indexes of Test

Items
Standard
Index Mean Median Deviation Maximum Minimum
Discrimination .66 .63 .16 91 22
Difficulty .57 .57 13 .87 .38
Point-biserial .54 .55 1 72 .28
with total test
Point-biserial .62 .65 10 .83 .33
with subtest
Table 10. Subtest Statistics
Standard Highest  Lowest Cronbach Standard
Error of

Subtest Mean Deviation  Score Score " Measurement
Change Problems 4.89 2.16 8 0 71 1.16
Combine Problems 4.92 2.59 8 0 .84 1.03
Compare Problems ~ 3.72 2.67 8 0 .83 1.10

Equalize Problems 4.55 2.27 8 0 .73 1.18




Table 11. Subtest Correlation Matrix
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Change Combine Compare Equalize
Problems Problems Problems Problems
Change Problems ~  ---—-----
Combine Problems 68 0 e
Compare Problems .67 Y S —
Equalize Problems .63 .60 67 -

B. Main analysis

1. Describing children’s performance on the problems

The proportions of correct solutions given for each of the 32 test problems are

presented in Table 12. As can be clearly seen, there were large differences among

problems within problem categories. For instance, the Change 1 problem was solved by

83% of the children whereas the two Change 5 problems were solved by 48% of the

children; likewise, 87% of the children could solve the Combine | problem, but only

47% could solve the two Combine 6 problems.
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Table 12. Proportions of Correct Solutions as a Function of Grade

Item Code Grade 1 Grade 2 Grade 3 Average
CHI .80 .80 .90 .83
CH2 .60 .80 .93 .78
CH3 .40 .63 .75 .59
CH4 .58 .62 .78 .66
CHS .32 .46 .67 .48
CHé6 .46 .61 .81 .63
All change problems .53 .65 .81 .66
CBl .78 .90 .93 .87
CB2 .53 .55 .83 .64
CB3 .45 .65 73 .61
CB4 .43 .45 .78 .55
CBS .49 .69 .84 .67
CB6 .26 .50 .66 .47
All combine problems .49 .62 .78 .64
CP1 .40 .50 .80 .57
CcP2 .30 .63 .83 .58
CP3 .20 .38 .63 .40
CP4 .30 .58 .85 .58
CPS 19 .43 .64 .42
CP6 .18 .39 .60 .39
All compare problems .26 .49 .73 .49
EQl .32 .33 .63 .43
EQ2 .53 .75 .73 .67
EQ3 .30 .48 .80 .53
EQ4 .70 .58 .93 .73
EQS .48 .73 .73 .65
EQ6 .23 .43 .68 .45
All equalize problems .43 .55 .75 .58
All problems .43 .58 77 .59

“For item codes with the digits S and 6, the proportions are averages based on Frame-1 and Frame-2
problems.
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Large differences were also found among the problems in different categories. For
example, some of the change and combine problems (e.g., Change | and Combine |
problems) were solved by most of the children, whereas most of the compare and
equalize problems were solved by only a few of the children. The compare problems
were the most difficult for the children. To illustrate, the Compare 6 problems were
solved by only 18% of the first graders, 39% of the second graders, and 60% of the
third graders. Overall, change problems were solved by 66% of the children, combine
problems by 64% of the children, equalize problems by 59% of the children, and
compare problems by 49% of the children.

In general, the performance levels of the children in the present research were
consistent with findings from previous studies of children's performance on arithmetic
word problems (e.g., Riley & Greeno, 1988).

An initial analysis of variance using experimenter (Experimenter K vs. Experimenter
L) and sex of participants as independent variables was conducted in an attempt to
determine whether or not these variables had any effects on children’s performance on
the problems. No significant effects were found for sex of participants and for
experimenter, first using performance on all the problems as the dependent variable; then
using performance on problems within the same category as the dependent variable.
Consequently, these two variables were collapsed in all the remaining analyses.

Then, a profile analysis was performed on the four problem categories (i. e.,
change, combine, compare, and equalize problems). The grouping variable was grade.

Profile analysis is an application of multivariate analysis of variance (MANOVA) in
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which several dependent variables are measured on the same scale. In the present study,
the four problem categories were considered the dependent variables, and they were
measured on the same scale. Hence, profile analysis was appropriate.

The assumption that the variance-covariance matrices for the transformed variables
for a particular effect be equal for all levels of the between-subjects factor was examined
using the multivariate generalization of Box's M test. The p-value for this test was .08,
implying that the assumption was tenable in the present data.

Using Wilks's criterion, the profiles did not deviate significantly from parallelism,
A = .91; F (6,230) = 1.81,p > 05. For the levels test, reliable differences were
found among groups, E (2, 117) = 16.66, p < .001. The effect size estimate 7’ was
.22, indicating a moderate association between grade levels and averaged performances
on the problems. The final omnibus test was an evaluation of the flatness hypothesis.
This hypothesis was rejected by all multivariate criteria, all of which showed essentially
the same result. For instance, Wilks’ A = 72, E@3,115) = 1493, p < .001. The
multivariate effect size estimate n° was .28.

Since only the levels and the flatness tests were significant, contrasts were
performed on the marginal means. Specifically, after the significant levels test, contrasts
were done on the marginal values for the grouping variable, grade. Hence, these
comparisons were among the overall means (i.e., on the 32 problems) for Grades 1, 2,
and 3. Children in Grade 3 had higher means than children in Grades | and 2.

Following the significant flatness test, contrasts were performed on the marginal

values for the four dependent variables (i.e., the means for change, combine, compare,
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and equalize problems). The means for compare problems were lower than the means
for the other problem categories.

A Pearson correlation coefficient was computed between overall performance on the
problems and teachers’ ratings of the children’s mathematical competence. This
correlation coefficient was significant, r (118) = .49, p < .01, indicating that the two

variables were positively related.

2. Assessing goodness-of-fit of the model to the data
ssessin idimensionali
Linear factor analyses: The first four eigenvalues (A) trom the interitem
correlation matrices (with tetrachoric and phi correlations) and the percentages of
common variance (Com. %) and of total variance (Tot. %) accounted for are displayed in
Tables 13 and 14, respectively, for principal-components analysis and principal-axes
factoring.

As can be seen from Tables 13 and 14, factor analyses using both tetrachoric and
phi correlations found results consistent with the idea that a first dominant factor underlie
the present data. Clearly, most of the variance in the data is associated with the first
factor. Thus, all the factors beyond the first factor can reasonably be considered as
minor factors, based on the relative sizes of the eigenvalues and the variance accounted
for by the factors.

The graphical technique of the scree plot was also performed and its result was

consistent with the existence of a first dominant factor.



Table 13. First Four Eigenvalues and Percentages of Variance
Accounted for (Principal-Components Analysis)
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Tetrachoric Correlations

Phi Correlations

Component A Com. % Tot. % A Com. % Tot. %
1 14.59 71.54 45.60 9.73 66.69 30.41
2 2.28 11.19 7.13 1.86 12.74 5.81
3 2.02 9.90 6.31 1.67 11.47 5.23
4 1.50 7.38 4.70 1.33 9.13 4.17

Table 14. First Four Eigenvalues and Percentages of Variance
Accounted for (Principal-Axes Factoring)

Tetrachoric Correlations

Phi Correlations

Factor A Com. % Tot. % A Com. % Tot. %
1 14.23 75.10 74.52 9.16 74.62 74.39
2 1.93 10.19 i0.11 1.30 10.56 10.53
3 1.70 8.10 8.89 1.11  9.06 9.03
4 1.09 5.74 5.70 71 5.77 5.74
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Table 15 shows the results of the parallel analysis based on 40 samples of random
data.

Since the fourth eigenvalue from the random data was larger than that for the observed
data, the results of the parallel analysis indicated a maximum of three factors. However,
if one were to plot the two sets of eigenvalues, the plots obtained would be similar,
except for the first eigenvalue for the real data, since this cigenvalue was substantially

larger than its counterpart in the random data.

Table 15. First Four Eigenvalues (A) for observed and random data
from Parallel Analysis

Sequence \ For Mean A For
Number Observed Data Random Data
1 9.17 1.42
2 1.31 1.23
3 1.13 1.09
4 .72 1.00

The results of the linear factor analyses were explored further. The residual
correlation matrices after one, two, three, and four factors were extracted by principal-
axis analysis, were examined. The percentages of residual correlations that were greater

than 0.05 (in absolute value) were respectively, 53%, 47%, 39%, and 34% after one,
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two, three, and four factors were extracted by PAF. This shows that much is not gained
by retaining more than one factor.

Nonlinear factor analyses: These analyses focused or: the examination of residuals.
NOFA results; Table 15 provides a summary of the residuals (in absolute values)
after one- and two-factor NLFA models were fitted to the data. NOFA is an

implementation of Etezadi-Amoli and McDonald’s (1988) polynomial approximation

approach to NFLA.

Table 16. Description of Residual Matrices After Fitting
Linear and Non-linear Facior Analysis Models

Goodness of Fit Index

LFA Models T; s(ry) Il s(|ryl)
1-factor .005 .034 .042 .029

2-factor -.003 .019 .022 .024

3-factor -.001 .013 .018 .009

4-factor .000 .006 015 .007

NLFA Models

1-factor, linear term .003 .017 .021 .012

1-factor, quadratic term .001 011 016 .010

1-factor, cubic term .000 012 .019 .009

2-factor, linear terms .000 .009 010 .00

As can be seen from Table 16, both the mean and standard deviation of the absolute
values of the residuals associated with a one-factor NFLA model with quadratic term

were smaller than the corresponding values for residuals obtained from a two-factor
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LFA. This means that a one-factor NLFA can summarize the bulk of the common
variance in the data.

NOHARM results: A one-dimensional model and a two-dimensional model were
fitted using NOHARM. Two residual covariance matrices were obtained, one for each
model. The program also gave two goodness-of-fit indexes: the sum of squares of
residuals and the root mean square of residuals. Both indicate the extent of fit between
the data and the fitted model. The very small size of these indexes tor even the one-
dimensional model provided some support to the hypothesis that there exists only one
dominant dimension underlying the data.

The sums of squares of the residuals for the one-dimensional model and the two-
dimensional model were used to compute De Champlain and Gessaroli's IFL. The
obtained value for the IFI was .136, which means that the two-dimensional model
accounts for only a very small proportion of the sum of squares of the residual
covariances from the one-dimensional model. The conclusion reached by using the 1F]
is the same as using the other goodness-of-fit indexes provided by NOHARM. This is
understandable because the IFI is based on the sums of squares of the residual
covariances.

DIMTEST analysis: The computed value of Stout’s T statistic was .736, and its
p-value was .231. Since this p-value is larger than .05, the null hypothesis (i.e., Ho:
d; = 1) was not rejected. This implies that essential unidimensionality holds for the data
of the present study. This conclusion is consistent with all the results foregoing analyses

pointing to the existence of a first dominant factor underlying the data.
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In summary, various statistical techniques were used to assess the unidimensionality

assumption for the research data. All analyses converged on the conclusion that the data
set was essentially unidimensional.

Many procedures were used here because to date there is no agreement among

investigators about the best method(s) for assessing the unidimensionality assumption of

the most popular IRT models.

Both the discrimination indexes and the point-biserial correlations of the items with
the total test were reviewed. As can be seen from Tables s, 6, 7, 8, and 9, there was
some variability among both discrimination indexes and point-biserial correlations. It
was concluded that the assumption of discrimination indices was not met by the present
data. However, it was also decided to proceed with the modeling attempt since Dinero
and Haertel (1977) have reported that the Rasch model was applicable in the face of

varying item discriminations.

The performance of the 24 participants with single-digit scores was examined for
Compare S, Compare 6, Change 5, and Change 6 problems, which were some of the
most dificult word problems used in the present study. These children were the low-
ability group in this study, as revealed by their total scores on the 32 problems. Being
the low-ability group, it was very likely that thcy would not be able to give correct
sclutions to the most difficult problems, except by guessing. Consistent with this

reasoning almost all of these children answered incorrectly to the most difficult problems.
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This implies that these children did not guess the answers to the problems. Furthermore,
the instructions stressed the importance of “thinking through” each problem, and
discouraged a guessing strategy. Finally, the two experimenters reported of not having
noticed (as far as they could tell) guessing tendencies in the participants.

The format used in the instrument (i.e., multiple-choice) makes it difficult to be sure
that guessing was not used by subjects. Indeed, this is one of the reasons there has been
much debate about the workability of the Rasch model with multiple choice items, in the
IRT literature (e.g., Andrich, 1989; Divgi, 1986, 1989; Henning, 1989). Ir the present
study, guessing was not viewed as an unavoidable consequence of the multiple choice
item format. Rather, whether guessing was operating or not was considered an empirical
question here. It was also thought that instructions given to participants discouraged
guessing. Based on all the foregoing, it was concluded that the assumption of minimal
guessing was met in the present data set.

Assessing the assumption of nonspeeded test administration

Based on the fact that children were given enough time to solve the problems and
that every child completed all the problems, it was at once concluded that this assumption
was fulfilled.

Item calibration using BICAL: The computer program BICAL (Wright & Stone,
1979) was used to estimate the Rasch item difficulty parameters. Some (mis)fit statistics
were also obtained through this analysis. The item difficulties and their standard errors,
as estimated by the uncondititional maximum likelihood estimation procedure

implemented in BICAL, are presented in Table 17.



Table 17. Rasch item difficulties (8) and their standard errors (SE) as
estimated by BICAL

Item B estimates SE Fit Mean Square
1 -1.759 274 .93
2 .360 222 1.22
3 -.119 224 .89
4 .360 222 1.11
S -.516 229 1.15
6 -1.291 .251 .94
7 .841 224 .86
8 .026 223 .81
9 .988 .226 .90
10 -.071 224 .74
11 1.138 228 91
12 -.022 223 .83
13 792 224 .99
14 -.567 .230 .84
15 =777 235 1.48
16 .696 223 .66
17 -2.075 .295 1.25
18 -.671 .233 1.33
19 -.217 225 .94
20 .504 222 .68
21 122 222 77
22 -.365 227 .69
23 .841 224 1.30
24 -.071 224 1.20
25 .265 222 .84
26 551 222 1.12
27 -.997 241 .89
28 -.567 .230 1.23
29 .696 223 1.15
30 .988 226 1.28
31 -.022 223 .95

32 .939 225 91
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As can be seen from the above table, the precision of the difficulty estimates is
uniform across items, as the standard errors have nearly equivalent values. The fit mean
square (for items) is an item fit statistic. It is simply the mean squared residual averaged
over persons. It will be large for an item if there are too many high ability persons who
answered the item incorrectly and/or too many low ability persons who answered it
correctly. The expected value of the fit mean square for an item is 1. The fit mean
square values for misfitung items depart considerably from the expected value of 1.
Table 17 shows that the fit of most of the items is acceptable.

To summarize, it was concluded that for the data of the present study there was no
evidence that the various assumptions of the Rasch model, except the equal
discrimination assumption, were violated. The next step of the modeling attempt was
then undertaken.

3. Applying the LLTM to the data: Using LINLOG, the weight matrix Q and the
participants’ scores on the 32 word problems were used as input to the program.

Table 18 presents the parameter estimates of the six 7's and their standard errors

based on data from the whole sample.
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Table 18. », Parameter Estimates and their Standard Errors (SE)

Complexity N SE

Factor Estimates

Part-whole .63017 .09519
Double-role counters -.41541 .12853
Re-representation -.51696 .16167
Comparative terms .11461 27305
Action cues -.12739 .25047
Language consistency .78152 .09716
Mean 07775 .16768
Standard deviation .49003 .07042

Note that these estimates are expressed on the Rasch model original metric (see
Fischer, 1983). As can be seen in Table 18, three of the six 7 estimates were positive,
ranging from .115 to .782. Hence, the complexity factors corresponding to these
estimates (i.e., language consistency, part-whole, and comparative terms) were the most
difficult for the participants in the present study. The complexity factor double-role
counters had a negative relationship to item difficulty, as indicated by the negative value
of the corresponding parameter (n = -.415). That means that the participants in the
present study found that problems involving single-role counters were more difficult than
those involving double-role counters. Re-representation was also negatively related to
item difficulty (n = -.517). The standard errors of the n's ranged trom .095 to 273,

with a mean of .168 and a standard deviation of .070, indicating an overall adequate

precision of the estimates.
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Table 19 shows the LLTM difficulty estimates (8") and the Rasch model ditticulty
estimates (8) for the 32 items. The Rasch item difficulties displayed in Table 19 were
estimated by the conditional maximum likelihood procedure implemented in LINLOG.
In comparing these § parameter estimates with the ones in Table 17, which were
estimated by the unconditional maximum likelihood method used in BICAL, it became
quickly apparent that, for most practical purposes, the estimates coul. be regarded as
identical.

One way of evaluating the adequacy of the hypothesized model for the whole sample
and for each grade level is to assess the similarity or relationship between the two sets
of item difficulty estimates. This was done by computing Pearson correlation coefticients
(r). For the whole sample, the Pearson correlation coefficient between the 87's and the
8’s was statistically significant, r (30) = .74, p < .01, indicating that therc was a fairly
strong positive association between the two sets of parameter estimates. All three
correlation coefficients computed using the data at each grade level were also significant.
For Grade 1, r (30) = .78, p < .01; for Grade 2, r (30) = .67, p < .0l; and for Grade
3, r (30) = .58, p < .0l. These results mean that the 8°'s, which are based on the
formal model, can be used to predict the Rasch item difficulties, using the data for the
whole sample, and the data for each grade level.

To further evaluate the adequacy of the cognitive model based on the six complexity
factors (full cognitive model), the log-likelihood x* test was performed. Table 20
displays the log-likelihoods for the LLTM and the Rasch model for the total group and

for the three grades.



Table 19. Normalized LLTM (8 and Rasch Model (B) Estimates
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Item B’ B
1 -.57697 -1.75499
2 31772 .36047
3 -.21086 -.11934
4 31772 .36047
5 -.99238 -.51687
6 -.57697 -1.28934
7 1.07668 .83987
8 .44654 .02579
9 -.33498 .98642
10 .44654 -.07079
11 1.07668 1.13514
12 -.33498 -.02242
13 .20454 .79141
14 -.36224 -.56808
15 -.57697 -.77756
16 .08316 .69497
17 -.57697 -2.06310
18 -.36224 -.67181
19 -.23485 -.21707
20 .05316 .50347
21 05316 12181
22 -.57697 -.36554
23 .20454 .83987
24 -.57697 -.07079
25 .20454 26515
26 .20454 55122
27 -.57697 -.99657
28 -.57697 -.56808
29 31772 .69497
30 1.07668 .98642
31 31772 -.02242
32 1.07668 .93735
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Table 20. Log-likelihoods (full model)

Group LLTM Rasch X’ DF
Model

1 - §97.58 - 565.62 63.90 26

2 - 610.51 - 584.10 §52.82 26

3 - 520.42 - 496.81 47.21 26

Total -1728.51 -1646.53 163.94 26

All the x? values were significant at the .01 level, indicating that for the total group
and for each grade level, the fits were different for the LLTM and the Rasch model.
Since the likelihood ratio test gives an overall measure of goodness-of-fit of the model
under consideration, these results imply that the LLTM and the Rasch model accounted
for item difficulties differently, for the total group and at each grade level. In other
words, the full cognitive model consisting of six complexity factors did not provide item
difficulties (the B° estimates) close enough to the Rasch item difficulties (the B estimates).
This conclusion, however, should be qualified by: (i) the fact that the significance of the
test depends on sample size. (No matter how good its fit to the data, any hypothesized
model can be rejected, given a sufficiently large sample size.) (ii) the existence of fairly
high positive correlations between the LLTM item difficuities and the Rasch item
difficulties.

In conclusion, although the fit of the model to the data was quite good, to

"reproduce" Rasch item difficulty parameters more closely, other complexity factors, not
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included in the present model, would be needed.

Recall that the full cognitive model under consideration here, consisting of the six
complexity factors, contains two submodels of children's performance on arithmetic word
problems, namely, the logico-mathematical submodel and the linguistic submodel. The
first submodel consists of three complexity factors, part-whole, double-role counters, and
re-representation. The second submodel also consists of three complexity factors,
comparative terms, action cues, and language consistency. Each submodel and the full
model can be viewed as (hierarchically) nested models.

The goodness-of-fit of the logico-mathematical submodel was examined for the
whole sample and for each grade level. For the whole sample, the correlation between
item difficulties obtained under LLTM and those based on the Rasch model was
significant, r (30) = .51, p < .01. The correlations for all three grade levels were also
significant: For Grade 1, r(30) = .53, p < .0L; for Grade 2, r (30) = .43, p < .05;
and for Grade 3, r (30) = .43, p < .0S.

The linguistic submodel also was evaluated for fit by inspecting the Pearson
correlations between the two sets of item difficulties. For the whole sample, r (30) =
.65, p < .0l1. At each grade level, the correlation was also significant: For Grade I,
r (30) = .70, p < .01; for Grade 2, r (30) = .61, p < .01; and for Grade 3, r (30) =
.48, p < .0L.

However, there were also substantial decreases in the sizes of the correlations,
moving from the full cognitive model to the each of the two submodels. More

specifically, if the logico-mathematical submodel was considered rather than the full
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cognitive model, for the whole sample, the correlation dropped from .74 to .S1; for
Grade 1, from .78 to .53; for Grade 2, from .67 to .43; and for Grade 3, from .58 to
.43. Moving from the full cognitive model to the linguistic submodel, the correlation for
the whole sample decreased from .74 to .65; for Grade 1, from .78 t0 .70; for Grade 2,
from .67 to .61; and for Grade 3, from .58 to .48. Decreases in the correlations were
smaller when the linguistic submodel was substituted for the full cognitive model than
when the logico-mathematical submodel was considered instead of the full cognitive
model.

In the present research, the logico-mathematical submodel and the full cognitive
model were nested models. Hence, the log-likelihood x’ was used to further compare
the fits of the two models. For the whole sample, a significant difference was found
between the two models, x* (3) = 105.76, p < .001. The x? test results were also
significant for Grade 1, x* (3) = 60.95, p < .00L; and for Grade 2, x> (3) = 38.31, p
< .001; but not for Grade 3, x* (3) = 6.51, p > .0S.

Likewise, the linguistic submodel and the full cognitive model were nested models.
Based on the whole sample, the difference between the two models was significant, x’
(3) =47.86, p < .001. The log-likelihood x’ results were also significant for Grade 1,
X2 (3) = 26.86, p < .001, for Grade 2, x* (3) = 9.37, p < .05, and for Grade 3, x’
3) = 12.41,p < .0l

These results indicate that for the whole sample and for Grades | and 2, the full
cognitive model and the logico-mathematical submodel accounted for item difficulties

differently. In other words, for the whole sample and for Grades 1 and 2, the predictive
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power of the estimates was significantly improved by the addition of the linguistic
submodel to the logico-mathematical submodel. This was consistent with the substantial
decreases in the correlations for the whole sample and for Grades 1 and 2 when the
logico-mathematical submodel was substituted for the full cognitive model.

For Grade 3, the fit of the model did not significantly deteriorate when the logico-
mathematical submodel was used in lieu of the full cognitive model. This was also
reflected in the relatively small decrease in the correlation (from .58 to .43). This means
that the three linguistic complexity factors did not contribute significantly in accounting
for the Rasch item difficulties for Grade 3. But, note that the fits of both the full model
and the logico-mathematical submodel were generally poorer for Grade 3 than for the
whole sample and for Grades 1 and 2.

When the linguistic submodel was used instead of the full cognitive model, the
significance of the iog-likelihood x? tests for the whole sample and for each grade level
imply that the two models accounted for Rasch item difficulties differently. In other
words, for the whole sample and for each grade level, the addition of the logico-
mathematical submodel to the linguistic submodel significantly improved the prediction
of Rasch item difficulties.

To summane.e, for the whole sample and for each grade level, (i) the logico-
mathematical submodel provided an acceptable fit to the data; (ii) the linguistic submodel
also provided an acceptable fit to the data; (iii) furthermore, for the whole sample and
for Grades 1 and 2, but not for Grade 3, the logico-mathematical submodel contributed

significantly to the predictive power of the LLTM estimates, beyond that provided by the
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linguistic submodel; (iv) for the whole sample and for each grade level, the linguistic
submode! significantly improved the prediction of Rasch item difficulties, when it was
added to the logico-mathematical submodel.

The contributions of specific complexity factors to item difficulties were also
examined for the whole sample and for each grade level. Table 21 displays the
parameter estimates, standard errors, and t-values for the full model using data from the
whole sample. Tables 22, 23, and 24 present the parameter estimates, standard errors,
and t-values, respectively, for Grades 1, 2, and 3, for the same model. The same
parameter estimates based on the logico-mathematical submodel (Submode! 1) are shown
in Table 25 for the whole sample, and in Tables 26, 27, and 28, respectively, for Grades
1, 2, and 3. For the linguistic submodel (Submodel 2), the parameter estimates are
presented in Table 29 for the whole sample, and in Tables 30, 31, and 32, respectively,
for Grades 1, 2, and 3.

For the full model, considering the whole sample as well as each grade level, the
two complexity factors that were the strongest contributors to item difficulty were part-
whole and language consistency. Double-role counters and re-representation had a
negative relationship to item difficulty, as evidenced by their negative parameter
estimates. Action cues and comparative terms did not contribute to item difficulty. This
might be due to the fact that the estimates for action cues and comparative terms had
very large standard errors, indicating that the parameters for these two complexity factors

were not estimated with precision.
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Table 21. Full model 5 estimates, standard errrors, and t-values (whole sample)

Complexity factor N SE t-value
Part-whole .63 .10 6.30**
Double-role counters -.42 .13 -3.20%*
Re-representation -.52 .16 -3.30%
Comparative terms 11 27 .41
Action cues -.13 25 -.52
Language consistency .78 .10 7.80**
s« p < .0l

Table 22. Full model n estimates, standard errors, and t-values (Grade 1)

Complexity factor N SE t-value
Part-whole .83 A7 4.90**
Double-role counters -.36 .20 -1.80
Re-representation -.52 .29 -1.80
Comparative terms .64 .49 1.30
Action cues .00 41 .00
.92 .16 5.80**

Language consistency

**p < .01

Table 23. Full model  estimates, standard errors, and t-values (Grade 2)

Complexity factor N SE t-value
Part-whole .52 .16 3.25**
Double-role counters -.52 .22 -2.36*
Re-representation -.66 .27 -2.44%
Comparative terms A5 .46 .33
Action cues -.02 .43 -.05
Language consistency .82 .16 5.13**

*p< .05, **p< .01
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Table 24. Full mode! y estimates, standard errors, and t-values (Grade J)

Complexity factor N SE t-value
Part-whole .59 A7 3.47**
Double-role counters -.39 .25 -1.56
Re-representation -.45 .29 -1.55
Comparative terms -.39 .50 -.78
Action cues -.37 .46 -.80
Language consistency .58 .18 3.22%*
**p < .01

Table 25. Submodel 1 n estimates, standard errors, and t-values (Whole sample)

Complexity factor N SE t-value
Part-whole .73 .08 12.5%*
Double-role counters -.68 g1 -6.2%*
Re-representation -.23 A3 -1.77
**p < .01

Table 26. Submodel 1 y estimates, standard errors, and t-values (Grade 1)

Complexity factor Ny SE t-value
Part-whole .93 A5 6.20%*
Double-role counters -.76 .18 -4.22%*
Re-representation -.24 .23 -1.04

**p < .0l
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Table 27. Submodel 1 y estimates, standard errors, and t-values (Grade 2)

Complexity factor ™ SE t-value
Part-whole .60 15 4.00%*
Double-role counters -.79 .19 -4.16%*
Re-representation -.31 .22 -1.41
*sp < .01

Table 28. Submodel 1 y estimates, standard errors, and t-values (Grade 3)

Complexity factor N SE t-value
Part-whole .64 .16 4.00**
Double-role counters -.48 21 -2.29*
Re-representation -.16 .23 -.69

*p < .05;**p < .01

Table 29. Submodel 2 y estimates, standard errors, and t-values (Whole sample)

Compiexity factor N SE t-value
Comparative terms 22 .24 .92
Action cues -.24 .22 -1.09
Language consistency .76 .08 9.5%*

**p < .0l



Table 30. Submodel 2 y estimates, standard errors, and t-values (Grade 1)
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Complexity factor N SE t-value
Comparative terms 51 .39 1.31
Action cues -.30 .36 .83
Language consistency 92 .14 6.57**

**p < .0}

Table 31. Submodel 2 n estimates, standard errors, and t-values (Grade 2)

Complexity factor ™ SE t-value
Comparative terms .46 41 1.12
Action cues .01 .38 .03
Language consistency 73 .14 5.21%*

»*p < 01

Table 32. Submodel 2 5 estimates, standard errors, and t-values (Grade 3)

Complexity factor N SE t-value
Comparative terms =27 .43 -.63
Action cues .47 41 -1.15
Language consistency .57 15 3.8%>

*»*p < .01
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For the logico-mathematical submodel, for the whole sample and for each grade
level, part-whole contributed most to item difficulty. Double-role counters had again a
negative relationship to item difficulty. For the linguistic submodel, for the whole
sample and for each grade level, only language consistency contributed to item difficulty.
The other two complexity factors (i.e., comparative terms and action cues) had rather
large standard errors. This lack of precision in their estimates was the major reason for
the lack of effectiveness of these two complexity factors.

To summarize, in considering item difficulty as conceived by the cognitive model
used in the LLTM, three of the complexity factors made significant contributions to item
difficulty, namely, the part-whole schema, double-role counters, and language
consistency. Note that the first two complexity factors were related to conceptual
knowledge, whereas the third factor was related to linguistic knowledge. The part-whole
schema was found to be a knowledge aspect making some problems more difficult than
others, a finding consistent with the RGH model. The contributions of the two other
complexity factors were in a direction opposite to what was expected. More specifically,
for the logico-mathematical submodel, the complexity factor double-role counters had an
opposite contribution at all grade levels. For the full cognitive model, double-role
counters and re-representation had an opposite contribution, but only at Grade 2.

To provide converging evidence, the observed item difficulties were changed to
logits using the logit transformation, In (p/1-p). Then, these logits were regressed
on the Q matrix (the matrix of item scores on the complexity factors). The full model

and the two submodels were evaluated separately at each grade level. The change in R?
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from one submodel to the full model was tested for significance as a way of evaluating
the contribution of a submodel entered at the second step of the regression procedure.
This was done using incremental F ratios (Fi). Tables 33, 34, and 3S present the results

of this analysis, respectively, for Grades 1, 2, and 3.

Table 33. Regression analysis results for Grade 1

Model R2 F Sig- F Finu Slg. Finc
Full cognitive model (f) .60 6.28 .0004
Logico-math. submodel (1) 23 2.83 0562 92 > .10
Linguistic submodel (2) .53 10.36 .0001 .54 > .10

Table 34. Regression analysis results for Grade 2

Model R? F Sig. F F,. Sig. Fu
Full cognitive model (f) 54 494 .0019
Logico-math. submodel ) 24 2.8 0532 .50 > .10
Linguistic submodel (2) 42  6.87 .0013 .20 > .10

Table 35. Regression analysis results for Grade 3
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Model R? F Sig. F Fio Sig. Fine
Full cognitive model (f) 41 2.92 .0269
Logico-math. submodel (1) 27 3.46 .0295 .20 > .10
Linguistic submodel (2) 21 2.54 0765 .29 > .10

As can be seen, the full cognitive model led to a significant R? at each grade level.
However, the R? for the logico-mathematical submodel was significant at Grade 3, but
barely reached significance at Grades 1 and 2; the R? for the linguistic submodel was
significant at Grades 1 and 2, but was not significant at Grade 3. What this means is that
the following trend is clearly apparent in the data: As one moves from Grades | to 3,
the logico-mathematical complexity factors increase in importance, whereas the linguistic
complexity factors decrease. The increments in R? when the linguistic complexity factors
were added to the logico-mathematical complexity factors were .37, .20, and .14,
respectively, for Grades 1, 2, and 3. However, the increments in R? when the logico-
mathematical complexity factors were added to the linguistic complexity factors were .07,
.12, and .20, respectively, for Grades 1, 2, and 3. Note that these trends were only
suggestive since they failed to be reliable, as shown by the non-significance of all the
incremental F ratios displayed in Tables 33, 34, and 35.

The regression analysis also showed the following significant complexity factors in
terms of their contribution to the improvement of the fit. For the linguistic submodel,
language consistency was a significant complexity factor at ail grade levels. For the

logico-mathematical submodel, part-whole was the only significant complexity factor at
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all grade levels. For the full cognitive model, part-whole and language consistency were
the significant contributing complexity factors at all grade levels.

The contributions of two other complexity factors were in a direction opposite to
what was expected. More specifically, for the full cognitive model, double-role counters
and re-representation had an opposite contribution, but only at Grade 2. For the logico-
mathematical submodel, the complexity factor double-role counters had an opposite
contribution at all grade levels. Clearly, these results are consistent with the results of
the LLTM analysis presented earlier.

The results provided some support to the RGH model in that they were consistent
with the notion that the requirement that children possess knowledge of part-whole
relations makes some arithmetic word problems more difficult than others. The negative
relationship between double-role counters and children’s performance on the problems
was in contradiction with the BL model according to which problems involving double-
role counters are more difficult than problems involving single-role counters. The notion
that language that is inconsistent with the arithmetic operation required to solve a given
problem (e. g., "altogether” in a subtraction problem, "fewer" or “less" in an addition
problem) makes the problem more difficult for children received some empirical support,
because the complexity factor of language consistency contributed significantly to the
difficulty of the problems. Hence, some aspects of both conceptual knowledge and
linguistic knowledge were found to be factors influencing the difficulty of addition and

subtraction word problems for children who participated in the present study.
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holds that linguistic sophistication is as important as logico-mathematical knowledge in
children’s performance on arithmetic word problems. Three aspects of linguistic
knowledge were considered here, namely, children's understanding of comparative terms,
of action cues, and of inconsistent language in problem texts.

A psychometric modeling approach was taken to further investigate the role of
logico-mathematical knowledge and of linguistic knowledge in children’s performance
on arithmetic word problems.

In this part of the thesis, the results are summarized, the significance and
implications of the study are discussed, and the directions for future studies are outlined.

The modeling approach used here sought to explain the difticulty of addition and
subtraction word problems by referring to three aspects of logico-mathematical
knowledge and three aspects of linguistic knowledge.

First, the data were examined using several procedures designed for the assessment
of model-data fit. The assumptions of the model being used (i.e., the LLTM), which is
a constrained Rasch model, were evaluated using the research data. The assessment of
traditional and essential unidimensionality was quite extensive, as it involved various
procedures used in other studies dealing with the assessment of unidimensionality, or
recommended by measurement experts.

As in previous studies (e.g., Hambleton & Rovinelli, 1986), procedures based on
fitting a one-factor nonlinear model and examining the residual correlations were most
revealing, as were Stout’s (1987) T statistic of essential unidimensionality and De

Champlain and Gessaroli’s incremental fit index. The use of these procedures is
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recommended for future investigations. Based on these procedures, the conclusion that
a dominant first factor underlie the present data was rather compelling.

However, this was not quite the case for the assessment of the other assumptions of
the model under consideration, namely, the assumptions of equal discrimination indices
and of minimal guessing, although a case was also made, on both empirical and logical
grounds, about their acceptability.

The end result of most of the preliminary analyses and argumentation was the
conclusion that it was not unreasonable to consider that the data provided enough
evidence for fit to the Rasch model (or more precisely, that there was no obvious
evidence of model-data misfit).

The evaluation of the psychometric model (i.e., the LLTM) applied to the data was
a major part of the data analysis in the present study. One important finding of that
analysis was that the linear combination of complexity factors based on the three aspects
of conceptual knowledge (i.e., part-whole, double-role counters, and re-representation)
and the three aspects of linguistic knowledge (i.e., comparative terms, action cues, and
consistency of language) was adequate to account for the item difficulties based on the
Rasch model. This result was true for the whole sample and for each grade level, as
relatively high positive correlations were found between the LLTM item difficulties and
the Rasch item difficulties.

However, it was also found that the LLTM and the Rasch model did not account for
item difficulty exactly the same way. Since all the log-likelihood x? tests were significant

for the whole sample and for each grade level, the item difficulties based on the LLTM
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were different from those based on the Rasch model, in each case. This result was an
indication that the full cognitive model consisting of all six complexity factors was not
sufficient as a basis for a model that could provide item difficulties (the B* estimates)
close enough to the Rasch item difficulties. In other words, to make possible to
reproduce Rasch item difficulties more closely, that is, to improve the predictive power
of the n parameter estimates, other aspects of conceptual knowledge, linguistic
knowledge, and/or any other aspects, not included in the present model, would be
necessary.

Both the logico-mathematical and the linguistic submodels were also adequate
models accounting for the difficulty of arithmetic word problems, but necessarily less so
than the full cognitive model. For the whole sample and for Grades 1 and 2, the fit of
the submodel under consideration was significantly improved by adding the other
submodel. Hence, for children in Grades | and 2, complexity factors related to logico-
mathematical and linguistic knowledge made some problems more difficult than others.

For Grade 3, no improvement in the predictive power was gained by moving from
the logico-mathematical submode! to the full cognitive model, that is, by adding the
linguistic submodel to the logico-mathematical submodel. Thus, for Grade 3, the three
linguistic complexity factors used in the present study did not add significantly to the
predictive power of the three logico-mathematical complexity variables.

Among the three logico-mathematical complexity variables two were found to
influence item difficulty, part-whole schema and double-role counters. As already

mentioned, the part-whole schema has been viewed as the hallmark of the most advanced
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level of arithmetic word problem-solving competence, according to RGH model (e.g.,
Riley & Greeno, 1988). The present results are consistent with the view that knowledge
of part-whole relationships is a knowledge requirement making some arithmetic word
problems more difficult than others, for children in the early grades. Contrary to what
was expected on the basis of the BL model, single-role rather than double-role counters,
made some problems more difficult than others for the partcipants in the present study.
Among the three linguistic complexity variables, only consistency of language was

a reliable factor influencing the difficulty of arithmetic word problems. Problems in
which there were words that children found inconsistent with the operation required to
solve them were more difficult than others. Comparative terms as a linguistic complexity
factor did not contribute to the difficulty of the problems, as revealed by the LLTM
analysis. However, it was noted above that compare problems were more difficult than
the other types of problems. This is only an apparent contradiction. Note that not all
compare problems are more difficult than the other types of problems. Compare
problems known to be very difficult for children are usually those in which the
comparative terms are inconsistent with the operation called for in the solution of the
problems (i.e., "more” in a subtraction problem, "less" in an addition problem). Half
of the compare problems used in the present study involved inconsistent language. In
other words, compare problems are not difficult only because they contain comparative
terms; but rather when these comparative terms occur with words that are seemingly
inconsistent with them, in children’s view. Recall thai consistency of language was a

complexity factor found to contribute significantly to the difficulty of the problems in this
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study. In fact, a consistency hypothesis has been advanced by Lewis and Mayer (1987)
in an attempt to account for children’s relatively poor performance on those problems.
The present results are consistent with that hypothesis.

In conclusion, both logico-mathematical and linguistic knowledge were found to be
complexity factors influencing the difficulty of addition and subtraction word problems
for children in Grades 1, 2, and 3. But not all the aspects of these two types of
knowledge, as hypothesized by two current theories of children’s performance on
arithmetic word problems, contributed significantly in influencing problem difficulty.
The fact that part-whole and consistency of language had significant contributions in
determining the diificulty of the problems has clear educational implications. First, for
some problems, helping children understand part-whole relationships among scts may
have a facilitating effect in children’s development of skill in solving arithmetic word
problems. Second, words in problem texts or statements that children view as
inconsistent with the arithmetic operation required to solve the problems need to be
avoided, especially for the younger children, as these are the ones more prone to rely on
the rule that, for example, "altogether” and "more” always call for addition, "less” for
subtraction.

As illustrated in the present research, the LLTM is a powerful modeling tool that
can be useful in investigating the structure of cognitive tasks. Here task features were
used as complexity factors. However, complexity factors are not limited to task features
in applications of the LLTM. For instance, the processing operations used by problem

solvers are always good candidates for complexity factors. Indeed, the use of processing
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operations together with task features may improve future LLTM analyses, which are
applicable to the investigation of many research questions, especially those dealing with
performance on cognitive tasks. Future LLTM analyses will also benefit from the use
of larger sample sizes. An obvious limitation of the present study is the small sample
size used. Hence, more confidence will be placed in the present results when they are
replicated using far larger sample sizes. Another suggestion for further research is that
continued use of the LINLOG computer program in LLTM analyses will benefit from
studies examining the standard errors supplied by the program; bootstrap or jacknife

procedures are suggested for these studies.
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