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Abstract

This thesis uses hidden Markov models to analyze an asset pricing problem
and to model the term structure of interest rates.

Chapter 1 reviews selected topics in mathematical finance. It discusses
discrete-time and continuous-time models of financial markets and some models
of interest rates.

Chapter 2 discusses hidden Markov models. In these models, a discrete-
time, finite-state Markov chain ix observed through a function whose values are
distorted by noise.

In Chapter 3, a unit-delay mode! with a real-valued observation process is
applied in three examples using IBM stock prices, gold prices, and United States-
Canadian exchange rates.

In Chapter 4, a zero-delay model with a vector-valued observation process is
applied in an analysis of the United States term structure of interest rates.

Two appendices give the computer programs written to implement the esti-

mation procedures of Chapters 3 and 4.
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Chapter 1

Related Mathematical Finance

Theory

This chapter reviews selected topics in mathematical finance which are related
to the concepts and models of Chapters 2, 3, and 4. It discusses discrete-time
models of financial markets, continuous-time models of financial markets, and
some models of interest rates. The motivation for much of the theory discussed

in this chapter is to provide a foundation for the pricing of contingent claims.

1.1 Discrete-Time Models

This section discusses the discrete-time model of financial markets originally

formulated by Harrison and Kreps [12] and Harrison and Pliska [13].

1.1.1 Price Dynamics

In the model, all processes are defined on a probability space (2, F, P), where
0. the sample space, has a finite number of elements each representing a possible

state of the world, F is a o-field in 2, and P is a probability measure on F.



Definition 1.1.1 A o-field defined on Q is a class, F, of subsets of Q having

the following properties:
1. ¢ € F;
2. A€ F implies A° € F; that is, F is closed under complementation; and

3. Ay, A, ... € F implies AyUAU ... € F; that is, F is closed under the

formation of countable unions.

Definition 1.1.2 A set function P on a o-field F is called a probability measure

if it satisfies the following conditions:

1.0< P(A) L1 for AE F;

o

P(Q) =1, and

Lo

if Ay, Ay, ...1is a disjoint sequence of sets in F and if Upe, Ax € F, then
P (Ui, Ax) = Ziz P(Ax).

Definition 1.1.3 A sub o-field is a collection of subsets of a o-ficld, which is
itself a o-field.

Definition 1.1.4 On (Q,F,7;, a filtration is an increasing family of sub o-

fields 7, C F. Increasing means that if n < m, then F,, C Fp; n,m €
{0,1, ... ,N}.

The prebability space (2, F, P) is equipped with a filtration {F,}, where n €
{0,1, ... ,N} and N is finite. Without loss of generality, we take Fo = {4, 1!}
and Fy = F = P(Q), where P(€) denotes the power set of 0. We also assume
P(w) > 0 for all w € Q.

The model considers a financial market with D 4 1 securities.

Now, before proceeding further, we define some additional tern s.

2



Definition 1.1.5 On (Q,F,P), the function X : @ — IR, s called a random
variable if it is F-measurable — that is, if X"'(B) = {w € Q: X(w) € B}
€ F for every B € B(R), where B(IR) denotes the Borel o-field in R.

Definition 1.1.6 On (), F,P), astochastic process, {X;;t € T}, is a collection

of random variables indezed by t € T.

In what follows, 7', the time set, equals {0,1, ... ,N}.

Note that t' ‘wo definitions extend to random vectors.

On (Q,F. =0,1, ... ,N}is a D+ 1 dimensional stochastic
process with S, = (wppo s --- »SP) € RP*) where §¢,d = 0,1, ... , D,

represents the price of the dth security at time n. Here, S¢ > 0 and 52 is Fo-
measurable. The latter means that, at time n, investors know the present and
past prices of the D + 1 securities.

The security with superscript ‘0’ represents riskless investments. Without
loss of generality, suppose S§ = 1. This defines a discount process 8 = {f.} by
setting fn, = ('élﬁ) If the rate of interest on the riskless investments is positive,
constant, and equal to r, then S2 = (1 + r)".

The model also defines the stochastic process § = {Sp;n = 0,1, ... ,N}
with §, = (89,8, ... ,5P) € RP*, where §¢ = 8,54, d = 0,1, ... ,D,
represents the discounted price of the dth security at time n. Note 5'2 = 1 for

all n.

1.1.2 Trading Strategies

On (Q,F,P), ¢ = {¢a;n = 0,1, ... ,N} is a D + 1 dimensional stochastic

process with ¢, = (¢2.4}, ... ,¢P) € RP*!, where ¢ denotes an investor’s



trading strategy and ¢2, d = 0,1, ... , D, represents the quantity of the dth
security held by the investor in his portfolio between times n — 1 and n. The
quantities 2 may be positive or negative.

The process, ¢, is assumed to be predictable.

Definition 1.1.7 A trading strategy, ¢, is said to be predictable if, for all d €
{0,1, ... ,D}, ¢2 is Fo-measurable and ¢ is F,,_,-measurable, n =1, ... ,N.

Thus if ¢ is predictable, it follows that the investor constructs his portfolio,
én, after the prices, S,_;, are observed and holds this portfolio until after the
prices, S,, become known.

The value of the portfolio ¢,, just after it has been established at timen — 1,

is given by the inner product:
(Bny Sn-1 Zqﬁ‘,’iS;f_
Its value at time n is:

Vi(9) = (n, Sn de‘S’;‘.‘ :

d=0

Thus, the change in value of the portfolio, due to changes in security prices

between times n — 1 and n, is:

D
($n, ASa) = 3 gi(S2 - S2_,) .

d=0

Also, the present value of the portfolio at time n is:

f/n(d’) = ﬂn(¢nasn) = <¢m5~'n) .

The model assumes, as well, that trading strategy ¢ is self-financing; that is,

it requires that:

(¢n1 Sn) = (¢n+17sﬂ> ) (11)



n=1, ... ,N—1. This means that no funds are added to or withdrawn from

the portfolio at any of the timesn =1, ... ,N.

Remark 1.1.8 A trading strategy is self-financing if and only if any change in
the value of the portfolio between times n and n + 1 is entirely attributable to
changes in security prices between times n and » + 1 or to capital gains. From

(1.1), we have:

Vﬂ+1(¢) - Vn(¢) = (¢n+1,ASn+1) , = 1, ,N —1. (12)

Remark 1.1.9 It is straightforward to show that (1.2) is equivalent to each of

the following:

1. foralln € {1, ... ,N}, Vo(¢) = Vo(é) + i(q&;,AS,-) , (1.3)

1=1

2. foralln€{l, ... ,N}, Vo(¢) = v;,(d,)+§ﬂ:(¢.-,AS.-) :

=1

Thus, since 31, (i, AS;) represents the capital gains that the investor realizes
on his portfolio up to time n, n = 1, ... N, (1.3) indicates that a trading
strategy is self-financing if and only if all changes in the value of the portfolio,

between inception and time n, are due to capital gains on the investments.

The model also assumes that trading strategy ¢ is admissible.

Definition 1.1.10 A trading strategy ¢ ts said to be admissible if it is self-
financing and V,(¢) >0 for alln € {0,1, ... ,N}.

Let ® denote the set of all admissible trading strategies.

5



1.1.3 Viable and Complete Financial Markets

Definition 1.1.11 An arbitrage opportunity is some ¢ € ® such that Vo(¢) =0
and E{Vn(¢)] > 0, where E denotes ezpectation under P.

Definition 1.1.12 A market is said to be viable if no opportunities for arbitrage

extst.

As noted earlier, the motivation for much of the theory discussed here is to

provide a foundation for the pricing of contingent claims.

Definition 1.1.13 A contingent claim is a nonnegative, Fn-measurable random
variable Xn defined on the probability space (Q,F,P). Ii can be viewed as a

contract or agreement that pays an amount Xn(w) at time IV if state w prevails.

Definition 1.1.14 A contingent claim is said to be attainable if there erists a

trading strategy, ¢ € ®, such that Vy(¢) = Xy.

Definition 1.1.15 A market is said to be complete if every contingent claim is

attainable.

In what follows, we state the condition under which a market is viable and
complete in the discrete-time model. First, however, we give some additional

definitions.

Definition 1.1.16 Suppose {F.}, n € {0,1, ... ,N}, is a filtration of the
measurable space (0, F) and 2 = {2,} is a stochastic process defined on (2, F)
with values in (E,£). Then Z is said to be adapted to {F,} if 2, is F,-

measurable for each n.



Definition 1.1.17 Suppose (2, F, P) is a probability space with a filtration {F,},
n € {0,1, ... ,N}. An adapted stochastic process M = {M,} is said to be a
martingale (or a martingale relative to the filtration {F,.}) if E[|M.|] < co and

E[Myym | Fu] = M, almost surely, m € {0,1, ... ,N —n}.
Note that these definitions extend to random vectors. We say that a sequence

M = {M,} of random vectors in IRP is a martingale if each component of the

vector M, defines a real martingale.

Definition 1.1.18 On the measurable space (2, F), two probabilities P and Q
are equivalent if and only if, for all events A € S}, P(A) = 0 if and only if
Q(A) = 0.

In the context of this model, @ equivalent to " signifies that @(w) > 0 for all

w € N.

Finally, the result which establishes the condition under which a viable mar-

ket is complete follows.

Theorem 1.1.19 A market is viable and complete if and only if there ezists a
unique probability measure Q equivalent to P under which the discounted prices

of the securities are martingales.

Proof: A proof of this result is given in Lamberton and Lapeyre [15], page

20. ]

1.2 Continuous-Time Models

This section discusses the continuous-time model of financial markets originally

formulated by Harrison and Pliska [13].

7



1.2.1 Price Dynamics

In the model, all processes are defined on a filtered probability space (2, F, {F:}, P)
where t € [0,7] and 0 < T’ < oo. The filtration, {F}, is an increasing family of
sub o-fields F; € F. Increasing means that if s < t, then F, C Fy; s,t € [0,7"

The following conditions are also assumed:
1. Fo={ACQ|PA)=0} U Q;
2. {F:} is right continuous, meaning that 7y =N,5, F, ,0 <t < T; and

3. Fr=F.

The model considers a financial market with D + 1 securities.

On (Q,F,{F:},P), S = {S:;;0 <t < T}is a D 4 1 dimensional stochastic
process with S, = (59,8}, ... ,SP) € RP*'. The components of S, S° =
{S?}, S* ={S}}, ..., SP = {SP}, are assumed adapted (meaning S¢ € F, for
0 <t < T), right continuous with left limits, and strictly positive. S? represents
the price of the dth security at time ¢.

The security with superscript ‘0’ represents riskless investrr ents. The price

process, S° = {57}, of this security is modelled as:

So=ehmt o0<i<T,

Here, r = {r;}! represents the instantaneous rate process, an adapted random

process on (2, F,{F:}, P). Furthermore, a discount process # = {,} is defined
1As Duffie and Kan[4] state:

We may think of r; as the interest rate at time ¢t on loans of infinitesimal maturity.
More properly, it is possible to invest one unit of account at any time in deposits,
and receive at any time s > ¢ the payoff exp ( f: rudu).



by setting B, = (g‘?), 0<t<T.
The model also defines a discounted price process § = {$;0 < ¢t < T},
with components S} = {81}, ... ,8P2 = {5P}. Here, §¢ = B,5S¢ denotes the

discounted price of the dth security at time t.

1.2.2 Trading Strategies

On (R, F,{F:}, P), a trading stategy, ¢ = {¢,;0 < t < T}, is a D+1 dimensional
stochastic process with ¢, = (42,4}, ... ,4P) € RP*, Here, ¢¢ represents the
quantity of the dth security held by the investor in his portfolio at time ¢. The
components of ¢, ¢° = {¢'},¢' = {¢}}, ... ,¢P = {¢P}, are assumed locally
bounded and predictable. ®

The value of the portfolio can again be expressed as a stochastic process

V(¢) = {Vi(4);0 <t < T}, where:

D
Vi(8) = (¢, St) = 3 7S¢ .

d=0

The discounted value process, V(¢) = {Vi(#)}, is expressed as follows:
D
Vi(¢) = BVi(9) = ¢/ + 3_ 4157 .
d=1

The model assumes that trading strategy ¢ is self-financing; that is, it re-

quires that:

(@) = Va(#)+ [ budS.,

D .
= V(@) + Y [ #ldst, 0st<T.

d=0

For a discussion of stochastic integrals such as fj ¢dS, see for example Elliott[5].

2Definitions of these terms, for the continuous-time model, are provided in Harrison and
Pliska [13], pages 233-234.



Remark 1.2.1 It can be demonstrated that ¢ is self-financing if and only if the

following condition holds: 3

. - t -
Vo) = Va(¢)+ /0 $udS,

. Dt .
= Val#)+ 3 [ 4ddSi 0<t<T. (1.4)
d=1v0

The model also assumes that the trading strategy ¢ is admissible.

Definition 1.2.2 A trading strategy ¢ is said to be admissible if V(¢) > 0,
condition (1.4) holds, and f/(d)) is @ martingale under Q, where Q is a probability

measure equivalent to P. 4

The definitions of the terms adapted process and martingale, for the continuous-

time case, are similar to those given earlier.

Definition 1.2.3 Suppose {F.}, t € [0,T), is a filtration of the measurable space
(R, F) and Z = {2} is a stochastic process defined on (2, F) with values in
(E,E). Then Z is said to be adapted to {F;} if Z, is F,-measurable for each t.

Definition 1.2.4 Suppose (Q, F, P) is a probability space with filtration {F},
t € [0,T]. An adapted stochastic process M = {M,} is said to be a martingale
(or a martingale relative to the filtration {F,} ) if E[|M,|] < oo for all t and
EM, | F,)=M,, s<t.

Let ® denote the set of all admissible trading strategies.

3See Harrison and Pliska [13], Proposition 3.24, page 238.
This definition is given in Harrison and Pliska [13], pages 239-240.

10



1.2.3 Viable and Complete Financial Markets

As in the discrete-time model, we are interested in establishing the condition
under which a financial market is viable and complete. Our definitions of vi-
able market and completeness are identical to those given earlier. However, the
definitions of arbitrage opportunity, contingent claim, and attainable contingent

claim require some minor modifications for the continuous-time case.

Definition 1.2.5 An arbitrage opportunity is some ¢ € ® such that Vy(¢) = 0
and E[Vr(4)] > 0, where E denotes ezpectation under F.

Definition 1.2.6 A contingent claim is a positive, Fr-measurable random vari-

able Xt defined on the probability space (Q,F, P).

Definition 1.2.7 A contingent claim is said to be attainable if there ezxists a

trading strategy, ¢ € ®, such that Vr(¢) = Xr.

Finally, we give a result for the continuous-time model analogous to Theorem

1.1.19 .

Theorem 1.2.8 A market is viable and complete if and only if there ezxists a
unique probability measure () equivalent to P under which the discounted prices

of the securities are martingales.

Proof: See Harrison and Pliska [13], Corollary 3.36, page 241. |

1.3 Models of Interest Rates

Models of interest rates are used primarily for the pricing and hedging of bonds
and options on bonds. In what follows, we discuss these models briefly, with

specific reference to the model of Cox, Ingersoll, and Ross [3].

11



1.3.1 Bond Price Dynamics

We model the instantaneous rate process r = {r}, t € [0,T],0 < T' < 00, as an
adapted random process on the filtered probability space (Q, F, {F:}, P). Heve,

{F:} represents the complete filtration generated by Brownian motion.

Definition 1.3.1 A Brownian motion is a stochastic process {wy;t > 0}, on

some probability space (Q, F, P), with the following properties:
1. the process starts at zero:

we =0 a.s.;

2. its sample paths are continuous:

the map t — wy(w) is continuous for almost all w € Q; and

3. it has stationary normally distributed, independent increments:

for 0 < s < t, the increment wy — w, is normally distribuled with mean 0

and variance t — s and is independent of F, = o{w, : u < s}.

Definition 1.3.2 On (Q,F,P), the o-field generated by the randorn variables
X,, s <t, where s,t € [0,T}], is the family of sets X;'(B) = {w € N: X,(w) €
B}, B € B(R).

In this context, if F? denotes the o-field generated by the random variables
w, , 8 < 1, then {F,} complete means that A C B, B € F7, and P(B) = 0
together imply that A € F,. {F;} also has the three properties listed earlier in

section 1.2.1 .

12



In this model, we suppose that two classes of assets, a savings account and
zero-coupon bonds, are traded. The price of the savings account is modelled as

an adapted process S = {S?} where:
S? —= ej: reds .

Sog=1.

It is assumed that [T |r;Jdt < oo almost surely. The prices of the bonds are
modelled as an adapted process P = {P(t,u); 0 < < u} where P(t,u) denotes
the price at time t of a zero-coupon bond with expiry date u < T..

If the market is viable, it follows from the earlier results for continuous-time
models, that there exists a probability measure @) equivalent to P under which,
for all real u € [0, T}, the discounted price process P = {P(t,u); 0<t<u}is
a martingale. Here, P(t,u) = exp(— i r,ds) P(t,u).

Assuming viability and using P(u,u) = 1, we get the following result:
Plt,u) = Eq (e-ﬁ“ reds | }}) (1.5)

where Eq denotes expectation under Q.

Before proceeding further, we give a number of definitions and results.

Definition 1.3.3 On (Q,F), probability measure @ is absolutely continuous
with respect to probability measure P if for each set A in F, P(A) = 0 implies

Q(A) =0.

Theorem 1.3.4 On (Q, F), Q is absolutely continuous with respect to P if and

only if there erists a nonnegative random variable, £ , such that:
for all A€ F, Q(A):/AfdP.

13



Proof: See Lamberton and Lapeyre [15], page 73. n

Remark 1.3.5 We can observe the following:

1. The implication from left to right in Theorem (1.3.4) is the Radon-Nikodym

theorem. °

2. £ is called both the Radon-Nikodym derivative and the density of (Q with

respect to P. It is sometimes denoted %% .

Theorem 1.3.6 (Girsanov) Consider the filtered probability space (2, F,{F}, P),
t € [0,T], where {F:} is the complete filtration generated by Brownian motion.

Let {f " be an adapted process such that

T
/ fi - 0 a.s.
0

~ud such that the process {€(f)} defined by:

t 1 t 9
&(f) =exp (/0 fedw, — -2—/0 S d.s)
is a martingale. Then under the probability P defined by d;’;,“ = &r(f), the

process {b;}, where b, = w, + [y fsds, is a Brownian motion.

Proof: See Elliott [5]. »

Now we let &7 denote the density of @ with respect to P. Because of the

assumption that we have made on the filtration {F;}, we get the following results.

5 A statement and proof of the Radon-Nikodym theorem are given in Billingsley (2], pages
443-445.
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Lemma 1.3.7 There ezists an adapted process {f;}, 0 < t < T, such that for
all t < 0,7},

t t
£r = exp (/ fadw, — l/ f? ds)
0 2Jo
almost surely.

Proof: A proof is give in Lamberton and Lapeyre [15], page 115 and Artzner
and Dalbaen (1], page 106. =

Corollary 1.3.8
P(t,u) _ E (e"f.u r,da+f"-‘ !,dw_,_%f"‘ !;243 l ]:t) (1.6)
where E denotes ezxpectation under P.

Proof: A proof is given in Lamberton and Lapeyre [15], page 115 and Artzner

and Dalbaen [1], page 107. =

Equations (1.5) and (1.6) show that to calculate the price of bonds, we need to
know either the evolution of r, under @ or the evolution - { the pair (r¢, ft) under
P. The model of Cox, Ingersoll, and Ross, which we examine next, describes the
evolution of r, under P by an equation of diffusion and then chooses the form of

fi su as to preserve the same type of equation under Q.

1.3.2 The Cox-Ingersoll-Ross Model

In this model, which is discussed in [3], the evolution of the instantaneous interest

rate, rq, is expressed as follows:
dry = k(0 — ry)dt + o/r¢ dw,

15



where &, 8, and o are positive, real-valued constants and w = {w,} represents a
Brownian motion on a probability space (2, F, P). As a result of the specification
of the drift term, (6 —r¢), the process {r:} is mean-reverting; that is, the interest
rate r, is pulled toward a long-term value, 8, at a rate which is governed by the
parameter . Also, the specification of the diffusion coefficient, o\ /r; , precludes
negative interest rates.

Applying equation (1.5), it can be demonstrated that P(ry,t,u), the price at

timet, 0 <t < T, of a zero-coupon bond with expiry date u < T, is ©:

P(‘[‘t,t,u) = EQ (e_f‘“fgds |ft)

A(t,u) e~ Bltw) T

where:

k]

2
O ellistA+a)(u=1)]/2 2m6/e
A(t,u) = e

= [ e
g(ew(u-l) -1)
t =
B( 7u) (’7+K+A)(€7(u_t) — 1) +27 N and

v=((k+ A +20%)7 .

The term structure of interest rates at time ¢ is given by :
R(re, t,u) = [reB(t,u) — log A(t,u)] /(u—1) .

Furtherinore, of interest to the application reported in Chapter 4 of this
thesis, are the results of Pearson and Sun [18]. They test a version of the
two-factor Cox-Ingersoll-Ross (CIR) model, which is an extension of the one-

factor model discussed above. 8 Based on the method of maximum likelihood,

6See Cox, Ingersoll, and Ross [3], page 393.

“See Cox, Ingersoll, and Ross[3], page 394.
8The two-factor CIR model is discussed in Section 7 of [3]. Whereas in the one-factor

model, bond prices and the term structure of interest rates are determined by the instantaneous
interest rate, in the two-factor model a second state variable, the price level, also drives the

evolution of these variables.
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they estimate the parameters of the CIR model using data on discount and
coupon bonds. They reject the CIR model by the likelihood ratio test. They
also assess the performance of the model in predicting the yield rates on bonds.
They conclude that it performs as poorly as a naive “martingale model”, which
assumes that expected future yields are the current yields. This is of interest to

the analysis of both Chapters 3 and 4.
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Chapter 2

Hidden Markov Models

This chapter discusses hidden Markov models which will, in Chapters 3 and 4,
be applied in the analysis of two financial problems. It considers a discrete-time,
finite-state Markov chain which is observed through a function whose values are
distorted by noise. ! The chapter considers both real-valued and vector-valued
observation processes and examines models that incorporate both a unit delay
and a zero delay. It begins with a discussion of concepts and processes on which

the model is based.

2.1 Preliminaries

All processes are defined on a complete probability space, (2, F,P), where
denotes a set of points, F a o-field in 2, and P a probability measure on F.
Completeness means that A C B, B € F, and P(B) = 0 together imply that

A € F. Some additional definitions follow.

Iinportant references on this subject are Elliott, Aggoun, and Moore (8}, Elliott [7}, and
Elliott {6].
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Definition 2.1.1 On (Q,F,P), the function X : Q — RN, N e N, is called a
random variable if it is F-measurable — that is, if X" (B) = {w € Q: X(w) €
B} € F for every B € B(RY), where B(RY) denotes the Borel o-field in R™.

Definition 2.1.2 On (R, F, P), a stochastic process, {X;;t € T}, is a collection

of random variables indered byt € T.

In what follows, T, the time set, represents discrete time.

On the probability space (2, F,P), we suppose that the stochastic process
X = {Xi;k € IN} is a Markov chain taking on values in a finite set S =
{s1, ... ,sn}. We consider the function ¢;, 1 <i < N, defined by ¢i(s;) = 6;;
and the vector function ¢(s) := (¢1(s), ... ,én(s))’, where " denotes transpose.
Then ¢ is a biiection from S onto the set ¥ = {e;, ... ,en} of unit vectors of
RV, Using such a bijection, we can, without any loss of generality, take the
state space of the Markov chain to be the set ¥.

We assume that Xj is given, or that its distribution is known. We also assume

that X is a time homogeneous Markov chain, so
P(Xk.H =€ I fk) = P(Xk.H =€; |Xk), k= 0,1, ceny

where F? = o{Xo, ... ,Xi} denotes the o-field generated by Xo, ... ,Xj and

{F:} represents the complete filtration generated by F{. Again, completeness

means that A C B, B € F?, and P(B) = 0 together imply that A € F;.
Writing aj; = P(Xi41 = € | Xk =€), welet A = (aj:), 1 < 2,5 < N,

):ﬁ__, aj; = 1, represent the transition matrix of X.

Definition 2.1.8 On (Q,F,P), the o-field generated by the random variables
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Xo. , Xk is the family of sets X71(B) = {w € Q: Xi(w) € B}, B € B(R"),
1=0,1, ... k.

Definition 2.1.4 On (Q,F,P), a filtration is an increasing family of cub o-
fields Fy C F. Increasing means that if k < I, then F, C Fi; I,k € IN.

Definition 2.1.5 A sub o-field is a collection of subsets of a o-field, which is
itself a o-field.

Definition 2.1.6 Suppose {F.}, k € N, is a filtration of the measurable space
(Q,F) and Z = {Z;} is a stochastic process defined on (2, F) with values in
(E,E). Then Z is said to be adapted to {Fi} if Zi is Fy-measurable for each k.

Definition 2.1.7 Suppose (2, F, P) is a probabilily space with a filiration {F},
k € IN. An adapted stochastic process M = {My} is said to be a martingale (or
a martingale relative to the filtration {Fi}) if E[|Mi]] < 00 and E[Miyi | Fi] =
M, almost surely, | € IN.

Lemma 2.1.8 The Markov chain X has the representation:
Xiey1 = AXi + My,
where M = {M,} is a sequence of ve~tor-valued {Fi} martingale increments.

Proof: The result will follow if we can show that E[M4; | Fi] =0 € IRV,
Now:
EMin | Fi] = ElXip1 — AXi | Fi]
= E[Xi41 | Fi] — E[AXi | Fi
= E[AX: | X - AXq
= 0.
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We suppose that the X process is not observed directly, but rather there is

an observation process y = {yi; k € Z*} that provides noisy observations of X.

2.2 Unit Delay Observation Model

2.2.1 Real-Valued Observation Process

In this section, we consider the observation model:

Xip1 = AXk + Mi

Y1 = Q(Xk) + ’Y(Xk)bkﬂs yer1 € R, ke N

Note that there is a unit delay between the state X at time k and the obse:-
vation y at time k + 1. Here, {bx} is a sequence of independent and identically
distributed (i.i.d.) N(0,1) random variables. Because X; € ¥, the functions g
and ~ are determined by vectors ¢ = (g1, ... ,gn) and ¥ = (W, ... ,7n) in
IRY; that is, g(Xi) = (g, X&) and ¥(Xk) = {7, Xx) where (,) denotes the inner
product in R".

We assume that 4; # 0 and thus, without any loss of generality, that v; >
0,1 < ¢ < N. Also, on (2,F,P), we let 7 = o{Xo, ... ,Xs}, W} =
o{yi, ... ,¥x}, and G = o{Xo, ... , Xk, ¥1, ... ,¥y}. Then Fi, %, and
G\ represent, respectively, the completions of F2, J¢, and G; all are contained

in F.
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Change of Mcasure:

Suppose b(.) is a real random variable with density ¢(b) and g and 5 are known

constants. Let y(.) =g+ v5(.) .

We wish to introduce a new probability measure P, using a density A, so that

(%) = ), and under P the random variable y has density ¢.2 That is,

t

Pys<t) = [ ey

-0

= /ﬂ I,<.dP
= /ﬂ I< AP

= [ Lz M®)(b)ab

- [ A(b)«zs(b)fiE .

It follows that A(b) = 25,
In our observation model, the by are i.i.d. N(0,1) random variables. We let

¢(.) represent the N(0, 1) density,

(s Xn-1)9(yn)

An L) € INa
3(bs) "
Ao = 1, and
k
Ae = J[An2>1

n=1

We then define a new probability measure Py on (2, Gi) by setting the restric-
tion of the Radon-Nikodym derivative to G equal to Ay; that is, (% | gk) = Ay
Lemma 2.2.1 {A.} is a {Gx} martingale under P.

Proof: We must show that E[Ax41 | Gk] = Ax.

2This analysis is based on Elliott, Aggoun, and Moore (8], page 60.
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Now E[Ak“ ng]

- E [Ak:f_(ﬁ)ﬁ’_(&ﬁ_) |gk]

@(br+1)
_ A(Yr+1)
= Ak‘y(Xk)E [———-¢(ka]) lgk]

_ B(9(Xx) + 7(Xk)br+1)
_ An(xk)E[ L lgk]

_ Aw(Xk)/R ¢(9(Xk%)7(Xk)b)¢(b)dP
dz

¥(Xk)

(z = g(Xk) + ¥(Xk)b)

= M) [ 4G2)
= Ak

and the result follows. »

Remark 2.2.2 It can be shown that:
1. E[A] I go] = Ao =1 where go = O'(Xo).

2. Ak Z 0 and E[Ak] = fQ Ade = E[E[Ak ‘ gk_I]] = ... =1 Therefore, Ak

is a density.

Corollary 2.2.3 Py is a probability measure on (Q,Gx).
Remark 2.2.4 It should be noted that:
1. The restriction of —Fk“ to Gi is Py.

2. Let G = V2 Gk, the smallest o-field generated by all the Gx. The existence

of P on G follows from Kolmogorov's Extension Theorem.
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Definition 2.2.5 On (Q,F, P), the probability measure v is absolutely contin-

uous with respect to probability measure u if for each A in F, u(A) = 0 implies
7(A) = 0.

Theorem 2.2.6 Suppose (2, F,P) is a probability measure space, G C F is a
sub o-field, Q is another probability measure absolutely continuous with respect
to P and with Radon-Nikodym derivative (%) = A, and X is any integrable

F-measurable random variable. Then:

FIx|6]= { e i E(A1G)>0

otherwise.

Proof:

We must show for any set A € G:
J BiX 161dP = | (EIAX | G)/EIA | G))dP.

Let G={weN:E[A|G]=0}€G. Also,G° €.

Then [; E[A | G}JdP = [ AdP = 9.

Now A 2> 0 a.s., so either A = 0 a.s. on G or P(G) = 0. In either case, A =0
a.s. on G.

Consider any set A € ¢. Then A = BUC where B= ANG°and C = ANG
and B and C are disjoint. Now C C G,s0 A =0 as. on C and

/C AXdP =0 = /C (E[AX | G)/E[A | G))dP.
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Also:

[ (EIAX |G)/E(A | G))dP
= E[I(E[AX | G)/E[A | G])]
= E[AIg(E[AX |G]/E[A | G))]
= E[E[AI5(E[AX | G)/E[A | G)) | O]
= E[Is(E[AX |G]/E[A | G))E[A | G))
= EIE[IgAX | G]]
= E[IsAX]

/B AXdP.

Therefore, if A= BUC :

[(EIAX | GI/EIA 1G1dP = [ AXaP = [ XdP = [ EIX | GldP.

Note that under P, the y process is a sequence of i.i.d. N(0,1) random

variables. In particular, the y; are independent of the Xj.

Theorem 2.2.7 Under P, the y; are i.i.d. N(0,1) random variables.

Proof: Now:

_ E[Ad(y £t) | Gia)

P(yx <t | Gk-1) = (3 < t) | Gea]
(Theorem 2.2.5)

E[Ax | Gi-1]

_ A1 EQAdI(yr < 1) | Gka] _

A1 EjAi | Gk-i)
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Also:

E{Me | Goms] = E [M*—) | gk_,]

¢(bx)

 Xe)E [¢(g(xk-lzﬁztb ;Y)(Xk-l)bk) ng_l]
= ) [ "“g(x*“zbmx"“)”*)¢(b~)dbk
= 7(Xeo1) / 5 (5= 90Xk + 2(Xem )b
= 1.
Therefore:
P(yx < t|Gk1)
= E[Md(yr 1) | Gii]
= E [’7(A:§-(;’)‘;S(yk)l(yk < t) I Gres
= 2(Xecr) [ S o) (e < 1
= /_: A(ye)I (yr < t)dys
= [ dudu =Pl <)
The result follows. ]

Also note that under P, the behaviour of the X process is unchanged; that
is, X is still a Markov chain with transition matrix A and Xy4, = AX; + Miy,,

where E[Mi41 | Fi] = 0.

Lemma 2.2.8 Under P, X is a Markov chain with the same transition proba-

bilities as under P.

26



Proof: Note that:

P(Xy =¢€; | Fio1) = P(Xx = €j | Gr-1)

= E[(Xk = ¢;) | Gka]
A1 E[ A Xk, €5) | Gr—1]
Ak—1E[Ai | Gr-1]

_ Y(Xk=1)B(yx) e
= E [_—_———¢(bk) (Xkr ;) | gk—l]

= 20X B[S0 e 162, 61| (G = 61 Ut

¢(bx)
Y(Xk- 1)¢ Yk)

be) | gk—l]

= (AXi-1,€ [

= Xk I)E[ yk)E [ AXk 1+Mkse_] ng 1] gk 1]
VE
vz (AXk 1,61)

Therefore, X is a Markov chain under P and P(X; = ¢; | Fx_1) =
F(.\’k = €; l Xk—l)- If Xx-1 = e;, then F(.Xk = ¢; | Xio1 = e,') = aj; and the

resuli follows. [}

In light of the above observations, it is mathematically convenient to work un-
der P. However, P represents the “real-world” dynamics underlying our model.
To construct P from P on (2, F), we define the by as b := %{ﬂ‘-‘;—’z, k € IN,
and probability measure P by (:—1’—; | g,,) = Ak, where Ay = [I*_, X, n € IN and

-— _ g —_ ¢!bn! -
n2>1,A=1,and A, Y Xn=1)d(yn) °

Lemma 2.2.9 Under P, {b;}, k € IN, is a sequence of i.i.d. N(0,1) random

variables.
Proof: The proof is similar to that of Theorem 2.2.6 .
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Recursive Estimation:

We wish to estimate X, k € N, given Y.

Lemma 2.2.10 Suppose X € L*(Q,F,P) and G C F. Then the best estimate
(in the mean square sense) in L*(Q,G, P) of X is E[X | G].

Proof: Suppose Y € L*(Q,G, P). Then:

| X —Y |>= E[(X - Y)?
= E[X?|+ E[E[Y? -2XY | G]]
E[X*+ E[Y? - 2YE[X | G]]

E[X?| + E[Y - E(X | 6)’] - E[E(X | G)’].

Therefore, || X — Y || is minimized over integrable G-measurable random vari-

ables when Y = E[X | G]. [

It follows than that the best estimate (in L?) of X given Y is E[Xi | Vi)

Earlier results indicate that:

E[Ac Xy | Vi

E[Xk ka] = E[Kk ka]

V=9

— . o U=
Write qr = E[Aka l yk], P'(yk) = poy P and a; = AC,‘.
Lemma 2.2.11 ¢ = 2ﬁl(qk_1,e.~)l"'(yk)a,- .
Proof:

gk = E[AcXx | Vi

= -E[Xk—l_xk(AXk—l + Mk) I yk]
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’T(Xk 1)

[ Y (Xko1)8(ye)

(A Xk )|yk}

= E[f:(Xk_,,eg)Kk_llyk_,} I (yx)a. (i()\’k-he;) 1)

=1 =1
N
= S(EMRi-1Xior | Vi) )T (yx)ai -

1=1

The result follows. -

Lemma 2.2.12  E[A: | Vi) = (g&, 1).

Proof: Recall that &N (Xi, e} = 1.
Therefore, SN, (Ax Xk, €;) = Ax and:
— N —
E [Z(Akxkaei) |yk]
i=1

(E[/\k Xk | Vi), €i)

(% i) = E[Ac | V4] -

b= itge

In conclusion. we observe that E[Xy | Y] = %, k € Z*.

We also seek estimators for the occupation time in state r up to time (k—1),
the number of jumps from state r to state s in time k, and two processes related
to observation drift and observation variance.

In what follows, let Jf = ¥%_,(Xn-1,¢,), that is, the amount of time the X
process has spent in state r up to time (k — 1); N[* = ko {(Xne1,€:){Xn, ),
that is, the number of jumps from state r to state s in time k; and Gi(f) =

Sk (Xn-1,€)f(yn) where f denotes either f(y) =y or f(y) = y2.
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Remark 2.2.13 We observe the following:

. r ERJIY =
1. Based on earlier results, E[J{ | V] = —-I-(_:r[X:JIlT“] and E[Ax | W] = (gr, 1) .

2. o(Jf) := E[AxJ] | Yk] does not provide a recurrence relation.

3. a(JiXx) := E[AJ; Xk | Ji) does provide a recurrence relation; (shown

below).

4. Since N, (Xi, ;) = 1,it follows that TN (A4 JI Xk, e;) = AxJ],
NAERJIL Xk | Vi), &) = E[AJL | Vi), and so a(Jf) = (a(JFXk), 1) .

5. Therefore, E[JI | k] = (_‘Z(_-(’%"l_k)l;l

Lemma 2.2.14 o(J[ Xk) = Zfil (o(JL_1 Xk=1), €T (v )i + {gi—1, )" (i )a,

Proof: Now:
k

Ji = Y (Xao1se)

n=1

= Jiop + (Xkorser)
and:
Tt X6 = J0_ Xe + (Xee1, 1) X
So:
o(JiXx) := E[AeJi Xx | V]
= ERe-adi_((AXir + ML) | Vi) + E[Aka M X1y €. ) (AXkor + Mi) | Vi)

N . — ——
> (Xio1yedAi1Ti-y | Veor| T (va)ai + E[Arr(Xi-1,60) | Vit ]T (34 )ar

i=1

I
tx:l

(E[Ak—le X1 | Ve1), €T (wa) i + (E[Ak=1Xk-1 | Vi-1), )T (yi)a,

Il
Mz

-
Il
-
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The result follows. =

Remark 2.2.15 Similar to the above, E[N[* | Ji] = M, where

(kal)
O’(N,:'Xk) = —E—[KkN,:’Xk | yk]

Lemma 2.2.16 o(N[°X;) = TN (a(N2 3 Xk-1), €T (yr)ai+ (e, €, )T (yk ) aores.

Proof: Now:

k
jVI:J = Z(Xn—h er)(Xna 63)

n=1

= N2+ (Xiosen) (X es)
and:
NI* X = NI% Xk + (Xoots e2) (X, €4)es.
So:
a(NXi) := E[ANE Xy | D]
= E[Ak1 AN (AXior + Mi) | Vi) +
EAk-1{Xk-1,€.){(AXko1 + My, €,) | VeI (yx)es
= E [ﬁ;(Xk—l,ei)Kk—lNzil | Ve1] T (yx)ai +
T B Xene) | Bl ane,
= f}(i[_xk—nNﬁ;Xk-x | Vi-1), &) (yi)a; +
- (E[Ak=1Xk-1 | Vi1), € )T7(y1)asres.

The result follows. [
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Remark 2.2.17 E[GL(f) | k] =
E[AGy(f)Xx | Y] and f denotes either f(y) =y or f(y) = y>.

Lemma 2.2.18 o(G}(y)Xi) =

(gk-1,€r)ux T (yi)ar.

Proof: Now:

x(y)

and:

H(Y) Xk = G (1) Xk + (Xioa, e

So:

o(Gr(y)Xk) :

(o(GL(£) Xa).1)

e Whereo(

k

Z (Xn—] y er)yn

n=1

TN {0(Groy (¥) Xk-1), )T (wi )

;-1(?/) + <Xk—x ’ Cr)yk

= E[AGi(y) Xk | Vi)
= E[A 1 MG (9)(AXk1 + Mi) | Vi] +

)yk/‘-’k-

K(f)Xk) =

i+

ElA k1 M Xeo1, ) (AXkoy + Mi) | Vilye

N

= E D (Xk-1,€)A1Gisy(9) | Vet | T(w)a, +
ElRer(Xecrs e | Yeor " ()

N
= Z IGk 1 y)Xk-l 'yk l] el)

1=1

(yk)a; +

(E[Ak-1Xk-1 | YVear), en)ual (yi)a,

The result follows.

Similarly, it can be shown that o(Gy(y?)X) =

T (yx)ai + (gk-1,€r)YET" (yi)a-.
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Parameter Re-estimation:

Our model:
Xip1 = AXe+ My

Yee1 = g(Xi) + v(Xk)brsr
= (g, Xk) + (v, Xx)bk41, k€ IN —

has N2 4 2N parameters which we seek to estimate based on the information in
the y process. These parameters are the N? elements a;;, 1 < 7,7 < N, of the
transition matrix A, the N components of the vector g, and the N components
of the vector 7. The size of the state space of the Markov chain, which we have
denoted by N, is not estimated; rather, we take it as given.

To estimate the above-mentioned parameters, we use the expectation maxi-
mization (EM) algorithm. 3 Based on the data, ¥, ... ,yk, we seek an estimate

0 of parameter 0 that maximizes the likelihood function:
dPy
L(0) = Ea [(IPT | gk) | yk] .
Here, {P;,0 € O} denotes a family of probability measures on measurable
space (2, F) all absolutely continuous with respect to fixed probability measure
Ps,; 0o denotes an initial or re-estimated value of §; and Yk C Gx C F. In

general, the maximum likelihood estimate is difficult to compute directly, and

the EM algorithm provides an iterative approximation method:

1. Step 1. Set p = 0 and choose bo.

2. Step 2. (E-step) Set §° = ép and compute Q(.,8*), where

Q(8,8") = Eq. [log (j—;:%) | y] .

3The discussion of this paragraph follows Elliott, Aggoun, and Moore [8], pages 35-37.
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3. Step 3. (M-step) Let épﬂ equal that value 6 € © that maximizes Q(0,0").

4. Step 4. Replace p by p + 1 and repeat beginning with Step 2 until a

stopping criterion is satisfied.

The EM algorithm implies that the estimates improve montonically; that is, the

generated sequence {0;,} gives nondecreasing values of the likelihood function.

Lemma 2.2.19 The value of g;, 1 < i < N, that mazimizes the conditional

likelihood is:

. _ o(Giy)

YTaldy)

Proof: The preceding analysis with respect to change of measure indicates
that we have a density, A?, for each value of g € RV.

Suppose we have an estimate for g and wish to use the data, y,, ... ,y, to
obtain a better estimate, §. To do this, we consider a change of measure from

P, to P; given by:

L R
ap, ' 7* A

I
=~
S
I
=~
p3Y
b

]
1
A
F]
1

Now:
oz ? (tzilXa)) g (tnzsiXec))

Y(Xa-1)d(¥n) " ¥(Xn-1)9(yn)

= €exp (m{g(xn—l )2 - ’?(A,'n—l)2 - 2yng(Xn—l) + 2yng(Xn—l)}) .

Then, we maximize E [log (:—ﬁ: | gk) | yk] over §, where E denotes expecta-

tion under g.
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Now:

dP
log g I gk)

(27()("_ {g(X -1 ) - g(/Yn-1)2 — 2yng{(Xn-1) + 2uag(X -1)})

1l
Mﬂ'

-
H
it
-

1 . . N
(Xn-1s €)= (g7 — 67 — 2yngi + 2ynGi) (Z(Xn-—la ')—1)

I
MH‘
.Mz

n=1 =1 27: i=1
N k 1

= 3 (S0 gl - 8 = 2+ 2000).
i=1 \n=l

Also:

ol (8215) )

- o (2 |3 oo 1 ] - 2 [ ttucnied 1)) + )

=1 n=1 n=1

N
= 22 7 (2 BIGL(Y) | V4] = GEELL | ) + Rlg)

i=1
where R(g) involves only the g.

Differentiating in §; and equating the derivative to zero, we see that the

maximizing value of g;, given the observations up to time £, is:
. _ E[Gi(y) | i)
' E[J; | Vil
E[AGi(w) | Ve)/E[Ax | Y]
E[AJi | D)/ ElA | Vi)
9(Gi(v))

- ,

T

where E denotes expectation under §. [ ]

Lemma 2.2.20 The value of 7;, 1 < ¢ < N, that mazimizes the conditional

likelihood 1s:

5 = o(Gi(y*)) — 29i0(Gi(y)) + glo(Ji)
' o(Ji) '
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Proof: The proof is similar to that of Lemma 2.2.18 .
In our model, the X process is a Markov chain with transition matrix 4. We

now wish to estimate A. We do this by using a density defined by:
25416,) = h=T15
dpy ' 7F) TR T AL

where

i _ DL {AXa ej)Knen

o 1=1<A~\n-1,ej)(xn.e,) )

It can be shown that, with Ay = [T*_, A, and X, = N ﬂﬁ,(AX,,..,,e,-)("'""J),
X is a Markov chain with transition matrix A under P4.

Given observations, yy, ... ,yx, we wish to choose the transition matrix A
that maximizes Eflog Ax | Vi] subject to the constraints that the columns of A

have components whose values sum to one. Here, E denotes expectation under

A

- __ a(N))
Lemma 2.2.21 a;; = 7(—‘;2)— .

Proof:

E[log Ak | yk]
AXﬂ-—la eJ X &) J

= E lgHH (AXn_1, €, <xne,)|y

n=1 j=1

ST
b

N
= F (X,,,e,)log((AX,, 1.¢)) + R(A) | yk]

3
I
-

S,
I
bt

1r

k "
z n—1, &) XmeJ)log((AXn-laej)) + R(A) | yk}

n=1

i

&
.Mz
.Mz

“
I
[
-
N
-

T r

I

t
.Mz
.Mz

'S
1
-
-
1
-

Ny log(;i) + R(A) | yk}
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where R(A) depends only on A.

Now this is not a free choice for a;; ; rather, we must have Z,—] (AXn,e;) =1

or ©F_, EJ-=](AX,,,eJ~) = k.

Using the Lagrange multiplier u, we consider:

F(an, a2, ... a&NNs#)

= SSSEING | log(d) + R(4) +
e k N
(s EEE

N N B N N .
= Y3 E[NJ | Vi]log(aji) + R(A) + [ZZE[J; | Vilaji —k] :

7=11=1

.

[V]z

..
Il
—

(Xn, e (AX,, e5) — k |ykD

j=11=1
Differentiating F' with respect to aj;, 1 < 7,7 < N, and g, in turn, and

equating each derivative to zero, we get:

- E[N 1

T EJL | Wl
E[AcNZ | Y/ EAx | Vi)
E[AcJ{ | Yi]/E[Ak | Vil
a(NY)
o(Ji) ’

"

where £ denotes expectation under A. .

2.2.2 Vector-Valued Observation Process

The observation process y may be vector-valued ¢ with:

ve = (9h - ¥F), k€EZH;
‘Important references in this section are Elliott [7), Section 7 and Elliott, Aggoun, and
Moore {], pages 70-72.
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vl = (¢, Xe=1) + (¥ Xao)bl, 1<j<m;
gJ = (g{a agJN)EIRNa IS]Sm, and

Y = (... A eERY, 1<j<m

Here, the b}, 1 < j < m, k€ 2%, are i.i.d. N(0,1) random variables.

We derive recursive relations similar to those given earlier:

g = i(qk_l,e.-)l"‘(yk)a.- ;

o(JiXk) = é(G(JZ-le-:),er)l“‘(yk)as + (gk-1, €))7 (wi)ar ;

o(Np Xy) = é(a(NZilxk-x)aes)l"‘(yk)af + {gr-1, € )" (yk)aore, 3 and
U(Gi(yj)Xk)=g;(0(Gk 1) Xi1), €T (ye)ai + (gr-1, ) yiT" (wi ),

where k € Zt,1 < j < m, and:

T'ye) = Tyky oo »95)
- ﬁ¢( )), 1<i<N.
=1 yk

Again, ¢ denotes the N(0,1) density.

Based on the EM algorithm, the parameter estimators are:

"i U(Gi(y’))

) 0 7\2Yy J

i 7(GH)) 2g.:(<ik)(y))+(g. 98 | < < mi and
oWV

b= Syt SIS
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2.3 Zero Delay Observation Model

2.3.1 Real-Valued Observation Process

On the probability space (2, F, P), we now define the zero delay observation

model:5

X = AXio + M,
9(Xe) +v(Xi)bk, yr €ER, ke Z* .

Yk

Note that there is now no delay between the state X ai time k and the

observation y. Here, the process {b:}, the functions g and «, and the complete

o-fields Fi, Vi, and Gi are defined as in section 2.2.1 .

Change of Measure:

To facilitate estimation of the state of the chain and the model parameters, based
on the information in the y process, we again define a new probability measure

P, on (92, Gx) by setting the restriction of the Radon-Nikodym derivative to Gx

equal to Ay; that is, (% | gk) = A, where now:

k
Ay = HAnanZI;

n=]
Ao = 1; and
A {7, Xn)9(y) nelN.

$(bn)
We then construct P from P by letting (f:% | gk) = Ay, where A = k., X,

n>1,and A, = A7L
In this section, reference was made to Elliott(1994)] and Elliott, Aggoun, and
Moore(1995)[], pages 72-73.
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Recursive Estimation:

We derive the following recursive relations that are similar, but not identical, to

those of section 2.2.1 :

N
g = Z(AQk—l,ei)r‘i(yk)ei (2.1)
1=1 N | N
o(JiXi) = Y _(Ac(Ji_1 Xk1), e (yi)ei + (qe-1,er Z (yi)aire;  (2.2)
i=1 i=1
N
o(N*Xg) = Z(AU(Nrixxk—l)»Ci)Fi(yk)ei + (gr=1, €. ) (yk)agre,  and
=1
N
U(GZ(fk)Xk) = Z(ﬁ "(GZ-l(fk—l)Xk—l), ci)ri(yk)ei
=1
N
+(gr-1, ) fr O T (yx)aives. (2.3)

=1
In (2.3), fi = yx or fi = y}. We give proofs for (2.1) and (2.2).
Proof: (of (2.1))
gk = E[AXi | Vi)

¢ (u32)

= [z(Xk, '¢( ) 5 € I yk:l

= [ (AXk-1 + Mk, ko |yk} T (yx)es

Z

= Z AXk 1,8;)/\}; 1 ka I]F (yk)60

:=1

= Z(AE[KI:—IXI:—I | Veo1), )T (ya)es

!--l

= Z(AQk 1 € (yi)e.

i=]
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Proof: (of (2.2))

o(JIXi) := E[Aed[ Xk | Vi
= E[Re-12di_y Xi | Vi) + E[A k1 M Xko1s €)Xk | Vi
N
B} [Z Yoo eIy | 9] il
N

+FE [Z(Xmei)xk—l<xk—laer) | yk} T (yi) e

=1

E[(AXyi-1 + My, e)Ar1J0_y | T (v )es

il
i)

N
+ D E[(AXio1 + My, e) Ao (Xior, e0) | Vil (i)
i=1

N
= Y AAEAer Jioy Xim1 | Vi), )T (yk)e

i=1

+}_‘E[Ak_ (AXk-1, ) (Xk-1, €0) | Vi )T (yi)ei

N i=1
= Y (Ac(Jr_1 Xk-1), )T (yi)es

=1
N
+ Y (ERkc1 Xko1 | Veer]s en)T (yi)aive

=1

and tt : resu - follows.

Parameter Re-estimation:
Using the EM algorithm, we derive the following parameter estimators:

i = 2w, oy

o(J})
§ 2V D (N 2 ( 7i
o - 2N = 200G +29UD | e oo
A
. o(N/ ..
a;; = -;(75',131,]51\’-
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2.3.2 Vector-Valued Observation Process

In the zero delay observation process, the y process may also be ve.

with:

e =k - 7)), k€2
yi={g", Xe) + (', Xu)b}, 1 < j <m; and
¢,7 € RV,

The b},1 < j < m,k € 2%, are i.i.d. N(0,1) random variables.

The following recursive relations can be derived:

N .
gk = Y _(Agr-1, )T (ya)ei ;
=1
N .
o(JiXk) = Z(AU(J,:_le_I),e;)F'(yk)e;

=1

N
+(gk-1,€r) Y (i )aire; ;

i=1
N
o(N*Xi) = 3 _(Ao(N{2, Xior), )T (yi)es

=1

+(qk-1, )T (yx)asre, ; and
N
o(Gr(¥)Xx) = Y (A0(Gr_y () Xi-1), €T (3 )e:

=1

. N .
+(g-1,e-)y1 D_ T (yx)aire;

=1

where k € Z+,1 < j < m, and

T'(ys) = Ty, ... ,37)

¢ (V’i‘g:)

- ¥ .

= 54 1<i<w
=1 Yio(yi)
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Again, ¢ denotes the N(0,1) density.
Using the EM algorithm, we get parameter estimators, §/, 47, and &j;, 1 <

1,J < m, identical to those of section 2.2.2 .
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Chapter 3

Application: Asset Pricing

This chapter applies the theory of Chapter 2 to the problem of asset pricing.
It makes some preliminary observations and then discusses the model, price

prediction, and applications and results.

3.1 Preliminaries

The application in this chapter is motivated by the log-normal model for price
processes in continuous time. In a 1965 paper, Paul Samuelson [19] proposed
that the price of a risky asset might evolve according to the following stochastic

differential equation:

B — pdt +yduy, 120 (3.1)
t

where S; denotes the price of an asset at time ¢; 4 and v are model parameters
(assumed constant here); and w; represents Brownian motion.
Using the Ito formula which arises from the Ito calculus for stochastic inte-

grals 2, it can be demonstrated that equation (3.1) has solution:

Important references in this chapter are Elliott, Aggoun, and Moore [8], Elliott and
Hunter [9], and Elliott, Hunter, and Jamieson [10].
2Stochastic integrals are discussed ir:, for example, Oksendal {17].
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or
St 72\)
(2= {,-2L 1>

log(s,o) (p 2/t+7w¢ 0

In fact:
2
jog (St - (;1-32—)/1+‘7(wt+h—w¢); tLh20. (3.2)
t \

3.2 The Model

We now turn to a discrete time price process {Si; k € Z*}. Motivated by (3.2),

we propose a model of the following form:

S
log ("——;“) = gk + Yebir -
&

Here, the by, are i.i.d. N(0,1) random variables. The functions g; and Tk
now depend on k and play the roles of (p - 323) and 7, respectively. In fact,
we suppose there is some discrete time, finite state Markov chain X such that
gk = g (Xi) and vy = v (Xi). The state space of X is taken to be the set of unit
vectors in IR, where N denotes the cardinality of the state space of X. Then,

as in Chapter 2:

Xk+1 = AXk + Mk+1 (33)
S
Yit1 = log (——;,—;—'—l)
= g+ b
= g(Xk) + Y( Xk )b
= (g’Xk) + (7st)bk+l ’ kelN ’ (34)
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where S; denotes the price of an asset at tune k. This is the unit delay obser-
vation model of Chapter 2; furthermore, the observation process, y = {y}, is
real-valued. Thus all the results of Chapter 2, section 2.2.1 carry over to the
discussion here.

In this model, g, represents the drift in prices at time & and v the volatility.
The Markov process X = {X;} drives the evolution of these parameters and
hence it drives the evolution of asset prices.

Process X is not observed dire .. in the modei; rather, process y gives noisy
observations of X. From the y, = <1 tions, we seek to estimate the state of the
chain at a given time, the transition probabilities associated with the chain, and
the components of the vectors g and . We also seek to make price predictions.

The estimators for the parameters enumerated above are given in Chapter 2,

section 2.2.1 .

3.3 Price Prediction

Based on the information in the observed asset prices, using the results of Chap-
ter 2 we seek to predict future prices. In what follows, we give both the one-

step-ahead price predictor and the two-step-ahead predictor.

Lemma 3.3.1 One-step-ahead predictor:

N

2
= 9t 4 (q"’e")
E[Sks1 | Vi) = Skge ? D)

Proof:

E{Sks1 | Vi
= E[Skexp(9(Xi) + 7(Xk)bks1) | Vi
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N
= S F [}:(Xk,ei)exp (9(Xx) + 7(Xk)bis1) | ykJ

=1

N
= S 3 E (X e)en it | 3

l-—l

— S Eeg, ‘Ik,l

=1 7 —

By completing the square:

oo V27

= [7 L e~ 3=l e gp
- 00 27r
.72

= e7 .

The result follows.

Lemma 3.3.2 Two-step-ahead predictor:

E[Sk42 | V] = Sk Zzeg"""' iqk’i*)) y,+-l— asi .

=1 j=1 Gk,
Proof:
Sk+1 = Sk exp (9(Xx) + (X )bes1)
Af
= Sk ) (X, ei)exp(gi + vibis) -
=1
From lemma 3.3.1:
y 2
E[SH.] | gk] = S; Z(Xk,e,-)eg"‘*’ 2,
1=1
Therefore:

N 42
E[Sis2 | Grar] = Skar 3 (Xisa, €5)e9+ 7

i=1
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and:

E[E[Sk+2 | Gk+1]G]
N 42 N +2
= S (X e)est S (AXk + My, e5)ert 7

i=1 7=1

42

= SkZZey' Xke e”’*:a

i=1 =1

It follows that:

E[Sk+2 l yk] S"ZZ e-"'*‘l'z" ((Qk, l‘)’ 91-7- ta,

=1 j=1 9k, L

3.4 Applications and Results

This section discusses three applications in asset pricing. It begins with some
general comments and ovservations applicable to all three cases and then con-

siders each case In turn.

3.4.1 The Program

A program was written in the S language to implement the estimation procedure
of Chapter 2, section 2.2.1 . A copy of the program is given in Appendix A.
The program uses an iterative procedure. First, it assigns starting values to
the model parameters. Then taking at least two prices, it estimates parameter
values. With these estimates and at least one further observation, parameter
values are re-estimated. The procedure can be repeated any number of times.
As mentioned in Chapter 2, the EM algorithm implies that parameter estimates

improve monotonically with each iteration.
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The only parameter vaiue that is not estimated is N, the size of the state
space of the Markov chair. X In chocsing a v.lue for N, we were guided by the
following considerations: on the cne hand, we = 2nted N large enough that we
could calculate E[Jf | Jk] and E[N{® | Vi] and on the otker hand, we sought a

parsimonious model. In the three cases discussed below, N was assigned a value

of four.

3.4.2 Starting Values

Starting values were assigned to the vectors g and v and the matrix A. A number
of approaches were taken to obtain starting values.
First, guided by the continuous time model, we determined starting values

for the g and « vectors in the following way:
1. Choose m,n€ Z¥ .
2. Take N = mn .

3. Any ¢, 1 < ¢ < N, has unique representation: i = (¢ — 1)m + p for

1 < p<m,1< q< n. This gives vectors p and ¢ in R".

4. Take g = 2% and v, = %,1 <i < N.

All entries in the A matrix were assigned a starting value of 3.

Second, based upon consideration of the simulations in Elliott [7} and Kr-
ishnamurthy and Moore [14] and assuming N = 4, we tried the following start-
ing values: g = (1.0,0.0,1.0,0.0)', v = (0.25,0.25,0.25,0.25), and a;; = 0.25,
1 <, £ 4. We also tried minor variations of these starting values.

This subject is discussed further in the three case studies.
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3.4.3 The Time Step

The price data that were analyzed were observed at varying time intervals, for
example, weekly or monthly. To incorporate into the analysis the fact that
the time interval between observations can vary, we redefined the ¢ function of
Chapter 2 to be the N(0,dt) density, where dt represents the time step between
observations. The discussion of Chapter 2 had assumed dt = 1.

Now, the model is:

Xi@ry = AXoryay + Miar

Sk(d)
Yrdt)y = log| =———
S(k=1)(d1)

= g(Xk) + ¥(Xk)bi(ar

b
= g(Xi) + 7(Xi) 22

Vit

bi(ar)

vt ’

where k € Z*, dt € R*, and My, is a martingale incr=ment. lHere, biqar)

is distributed N(0,dt) and %;‘-:l is distributed N(0,1). Also, 7,5 € R and

= (9, X&) + (7, X)

In what follows, we assume that the noise in the observations is N(0,1).
Thus, we estimate the vectors ¢ and 4 and then obtain the vector of interest,
7, by setting 4; = ﬂi‘:’ 1 <1< N. Also, we revert to our earlier representation
of the model, as in equations (3.3) and (3.4), since, assuming N(0,1) noise, the
two representations are equivalent if we simply define the time interval between
observations to b.» one wnit of time.

The time step i~ ivi-a-~ured in number of days between observations or number
of working days between observations divided by 252, 252 being (approximately)

tlie total number of working days in a year.
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3.4.4 Checking the Model
The equation:
Y41 = g(Xk) + ¥(Xi)bes1

where k € IN and {b;41} is a sequence of i.i.d. N(0,1) random variables, suggests
that the statistic:
log (%) — (i)
7(Xe)

where X = Gi—‘fl—), should be normally distributed with mean zero and variance

*

one. In the case studies that follow, we check the model by testing jor the
normality of this statistic and by calculating its mean and variance.
Also, because N}’ represents the number of jumps from state r to state s up
o(NE* Xi).d

to time k, the value of E[N;* | k] = L—(::W—l vk € Z*, must be less than the

number of time steps up to time k. We check this in the case studies below.

3.4.5 Magnifying the Price Changes

. ¢ ta=fr
It was observed that I'(y:) = - 1<i<N,1< k<LK, goes to zero for

nd(ye)

small 4; and large |yx — g;|. If this occurs, parameter estimates are not obtained.
To avoid this, we specified a tolerance value, usually 1.0e-10, below which we
would not let the value of I'(y;) fall. However, if the values of yx, g;, and Y
were such that I'"(y,) assumed this tolerance value for most values of i and k,
important price information was lost to the subsequent parameter estimation.

We found it useful to multiply the y, values by a factor & > 1. By magnifying
the price changes in this way, we obtained larger I¥(y) values. However, having

multiplied the yx by a > 1, we had, of course, to adjust the parameter estimates

and price predictions that were subsequently derived.
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If we consider the model:

Sk
ve = log Sk-1

= g(Xk-1) + 7(Xe-1)bs

= (g, Xk=1) + (v, Xpo1 )b —

where k € Z* and {bi} is a sequence of i.i.d. N(0,1) random variables, then:

Yi = ayx
= a(g, Xk—1) + oy, Xeo1)bi
= (ag, Xi-1) + (ay, Xi=1)bi

= (9(0),Xk_]> + <7(a)1)\’k—]>1)k -

where g(a) = ag and ¥(a) = ay. Therefore, g(AQ) =af and § = 3%—’). Similarly,

E[Zk1 | Vil
= S E :exp ('(I;Yk-{-l) | yk]

= 5 E [exp (5 ((9(e), X} + (r(0), Xi)besn) ) | %]

[ N
= s B[S0 e (2 x + (12, Kb ) 1]

Li=1

= SkiE [(Xk,eg) exp (g-'%.-ll + I(Zcﬁbkn) | yk]

i=1
_ Al gi(@)\ (gr,€) [ 1 a2
- Skgexp( a ) (qx,1) ~/—oo T Tdb
e w gi(@) | v2(a) (gx, €
= Skg;exp( o + 007 ) (e D) (3.5)

52



3.4.6 Case 1: IBM Stock Prices

In this first case, we analyzed a data set consisting of 240 monthly observations on
the price of IBM stock. The sample period ran from November 1975 to October
1995. The data were compiled by Star Data Systems Inc. and published in The

Financial Post.

The data were processed in 15 groups of 16 prices each; at the end of each
pass through the data, parameter estimates were updated using the formulas of

Ch-apter 2, section 2.2.1 .

Size of N:

As noted earlier, in the analysis the size of the state space of the Markov chain,
denoted by N, was taken to be four. We did experiment with other values of NV,
for example, N= 2, 9, 16, and 25 and compared the results using g5 and 45,

computed after the fifteenth pass through the data. Note that:

g = El(g, Xi)] = (9, Xx) (3.6)
and

= E[(v, Xk)] = (v, Xi) (3.7)
where

)‘(k=E[x,,|yk]=<q—Z’i-l_), 1<k<K.

Here, K=1" since yx,1 < k < K, is observed 15 times in each pass. Table 3.1
gives the values of §15 and 4,5, after the fifteenth pass, for the cases N= 2, 4,
and 9. It can be observed that these values are of the same order of magnitude

across the three cases.
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The Time Step:

Because the data consisted of monthly observations, we used a time step of 21,
21 being the number of working days between observations. As an alternative,
we could have used a time step of 21/252. However, we found, using this latter
value, that '(v), 1 <7 < 4,1 < k <15, which is calculated in each of the
15 passes, assumed the tolerance value of 1.0e-10 785 out of the 900 possible
times. As a resuit, information contained in the prices was lost to subsequent

parameter estimation.

Starting Values:

The starting values that were assigned to the distribution of the state of the
Markov chain, that is, to E[Xj), the transition matrix A, and the vectors g and
5 are reported in Table 3.2 . We also did the analysis using the starting values
based on the continuous time model (discussed in section 3.4.2). In this latter
case, the components of the estimated g and 7 vectors were small; for example,
the estimated 4 vector, after the fifteenth pass, was (0.0004802504, 0.0136553556,
0.0002319098,0.0047173382)" . Thus, we rejected these starting values in favour
of the former since a problem with our results appears to be an inability of the
model to capture fully the variability in the data. This is discussed further in

what follows.

Magnifying the Price Changes and Checking the Model:

In the analysis, we multiplied the y values, 1 < k < 15, by a factor of a = 2.5
in each pass through the data. We did the analysis using other values of ¢ as

well, for example, a= 1.0, 5.0, 7.5, 10.0, 20.0, and 100.0 and then selected that
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value of a that gave the best results based on the following considerations: the
values of I(yx), 1 < ¢ < 4,1 < k <15 in each of the fifteen passes; the price
prediction results; and the checks on the model (discussed in section 3.4.4). For
example, using a = 2.5 rather than a = 1.0, we were able to reduce the number
of times I''(yx) assumed the tolerance value of 1.0e-10 from 371 to 183, out of a
possible total of 900. Also, in regard to our two checks on the model, we report,

in Table 3.3, the mean and variance of the test statistic:

log {3t-) — g(Xse
g(sk-l)A g( k_l_)" ]Sk_<_15_
Y(Xk-1)

and the correlation between this statistic and its normal scores, calculated for
each pass through the data. These results are reported for the case a = 2.5 .
As was mentioned in section 3.4.4, this statistic should be normally distributed
with a mean of zero and a variance of one. The results of Table 3.3 support
the hypothesis of normality, based on the Ryan-Joiner test [16], as well as the
hypothesis of zero mean.> However, the hypothesis of unit variance is not sup-
ported. These results are, however, superior to those obtained for other values
of a. The second check on the model, based on the value of E[N]* | V], is also

supported for the case @ = 2.5 .

Parameter Re-estimation:

Table 3.2 gives the re-estimated values of the conditional distribution of the state
of the Markov chain, that is, of E[X)s | }1i], the transition matrix A, and the
vectors g and 7, after the fifteenth pass through the data. These results are for

the case o = 2.5 .

3The 95 percent confidence interval for the sarpls mean is (—0.790, 3.240).
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Price Prediction:

At the end of each pass through the data, we calculated the predicted price
for the following month using formula (3.5). For example, the first pass uses
the prices at the beginning of each month for the period November 1, 1975 to
February 1, 1977 and predicts the price for March 1, 1977. Proceeding in this
manner, we obtained a data set of 15 predicted prices. Figure 3.1 plots actual
prices and predicted prices for the study period.

We also regressed the actual prices on the predicted prices using the model:
Actual price = a+ (3 * Predicled price 4 ¢ . (3.8)

The regression results obtained were assessed on the basis of the following criteria
proposed by Fama and Gibbons (1984)[]: (1) conditional unbiasedness, that is, an
intercept, a, close to zero, and a regression coefficient, 3, close to one; (2) serially
uncorrelated residuals; and (3) a low residual standard error. Table 3.4 reports
the results. On the basis of these results, we can conclude that the intercept is
zero 4, although its standard error is quite large, and that the residuals do not
display first-order serial correlation. Alsc, there is a high probability of a slope
close to one.?

Table 3.4 also reports regression results based on “naive martingale” pre-
diction. In this case, the predicted price for a given month is equated to the
actual price for the preceding month. For example, the price prediction for
March 1, 1977 is the February 1, 1977 price. What follows from this analysis is

the observation that the price predictions emerging from our modei are largely

4The 95 percent confidence interval for o is (-2.82516, 20.72316).
5The 95 percent confidence interval for 3 is (0.7504804, 0.9775396).
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indistinguishable from the “naive martingale” predictions. If we refer back to

formuia (3.5):

N ) 2 -1, 6
E[St | Yem] = Sk Y exp (g'if’) 210) ) Zﬁ_‘l ’j)) ISkSK,

i=1

this observation implies that the term:

N gi(a) | v(a)Y (gk-1,€)
;exp( o 2 ) (qe-1,1)

is roughly one. This follows because the values of gi(a) and v,(a), 1 <i < N,
are small; exp (L&ﬂ + 1;-‘(:;—)) is roughly one for 1 <7 < N; and 2{‘_"__1 ‘&"T‘_’ﬁ} =
1,1 €< k < K. The second column of Table 3.5 reports the values of this term,

calculated at the end of each of the fifteen passes through the data.

Further Remarks:

Our model does not appear to capture fully the variability in the data. This is
reflected ir. the earlier observation, reported in Table 3.3, that the variance of the
test statistic, our estimate of the noise term in the model, exceeds one. Thus, it
appears that the variability in the data is being absorbed to an excessive degree
into the noise term rather than into our drift and volatility estimates.

To cast more light on this, we calculated the mean of the yx = log (S—ff:) , 1L
k < 15, for each pass through the data. We used this as a measure of the drift in
prices during each pass. We then plotted these data along with §5,% calculated

at the end of each pass, and compared the time paths. See Figure 3.2. This

plot does suggest that our estimate of drift understates the true drift in prices.

63,5 is referred to as g.hat in Figure 3.2 .
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However, on the positive side, our estimate appears to reflect accurately the di-
rection of price changes; that is, if prices are trending upward our estimate of
drift is positive and vice versa.

We also calculated the variance of the yix, 1 < &k < 15, for each pass through
the data and used this as a measure of price volatility. We then plotted these
data along with 4;5,” calculated at the end of each pass. See Figure 3.3. Again,
this suggests that our estimate of volatility understates true volatility but that

it accurately reflects the fluctuations in true volatility.

Conclusions:

We can improve the performance of the model by a careful selection of starting
values for the model parameters, the time step, and the factor “a” which was
used to magnify the price changes. However, our estimates of drift and volatility
are too small, although they do appear to reflect accurately the direction of
actual drift anc volatility changes. As a result, our model does not capture fully

the movement in prices and our price predictions are not as successful as we

would wish.

3.4.7 Case 2: Gold Prices

In this second case, we analyzed a data set of 90 monthly observations on the
price of gold. The sample period ran from November 1988 to April 1996. The
data were compiled by Reuters and published in The Financial Post.

The data were processed in 15 groups of 6 prices each; at the end of each
pass through the data, parameter estimates were updated using the formulas of

Chapter 2, section 2.2.1 .

74,5 is referred to as gamma.hat in Figure 3.3 .
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Size of N:

In the analysis N, the size of the state space of the Markov chain, was given a
value of four. Table 3.6 gives the values of jx and 9k, as defined in equations
(3.6) and (3.7), after the fifteenth pass and for the cases N = 2, 4, and 9. Here,
K =5 since y;, 1 < k < K, is observed five times in each pass. Note that g5 and

45 ar:: of the same order of magnitude for the three cases N = 2, 4, and 9.

The Time Step:

We again used a time step of 21. Using the alternative time step of 21/252, we
observed that I'(yi), 1 <: < 4,1 < k < 5, which was calculated in each of
the 15 passes, assumed the tolerance value of 1.0e-10 278 times out of a possible
total of 300. Thus, using the latter time step, information contained in the prices

was lost to the parameter estimation.

Starting Values:

The starting values that were assigned to the distribution of the state of the
Markov chain, that is, to E[Xy], the transition matrix A, and the vectors g and
v are reported in Table 3.7. We also did the analysis using the starting values
based on the continuous time mouel (discussed in section 3.4.2). Using these
latter starting values, we observed that the components of the estimated g and v
vectors were small; for example, the estimated 4 vector, after the fifteenth pass,
was (0.001585783,0.002141250,0.001776593, 0.022201497)". Thus, we rejected

these starting values in favour of the former.
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Magnifying the Price Change and Checking the Model:

In the analysis, we multiplied the yi values, 1 < k < 5, by a factor of @ = 10.0 in
each pass through the data. We did the analysis using other values of a as well,
for example, o = 1.0, 2.5, 5.0, 7.5, 20.0, and 100.0 and then selected that value
of a that gave the best results based on the considerations enumerated earlier in
section 3.4.6. For exampiz, using a = 10.0 ra:ier than a = 1.0, we were able to
reduce the number of times I'*(y;) assumed the tolerance value of 1.0e-10 from
173 to 126, out of a possible total of 300. Also, in regard to our two checks on
the model, we report, in Table 3.8, the mean and variance of the test statistic:

log (s—ffj) ~ 9(Xi1)

7(Xx-1)

and the correlation between this statistic and its normal scores, calculated for

y, 1SkLS -

each pass through the data. These results are reported for the case @ = 10.0. As
we mentioned earlier, this statistic should be normally distributed with a mean
of zero and a variance of one. The results of Table 3.8, excluding those for the
thirteenth pass, support the hypothesis of normality; as well, they support the
hypothesis of zero mean.® However, the hypothesis of unit variance is rejected.
These results are, however, superior tc those obtained for the other values of
a. The second check on the model, based on the value of E[N[* | )], is also

supported for the case a = 10.0.

Parameter Re-estimation:

Table 3.7 gives the re-estimated values of the conditional distribution of the state

of the Markov chain, that is, of E[X;s | Vs], the transition matrix A, and the

8The 95 percent confidence interval for the sample mean is (-12.976, 22.793).
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vectors ¢ and v, after the fifteenth pass through the data. These results are for

the case a = 10.0.

Price Prediction:

At the end of each pass through the data, we calculated the predicted price
for the following month using formula (3.5) and thus obtained a data set of 15
predicted prices. Figure 3.4 plots actual prices and predicted priccs for the study
period.

As in Case 1, we regressed the actual prices on the predicted prices using
model (3.8) and assessed the results obtained using the Fama-Cibt ons criteria.
Table 3.9 reports the results. They imply that the residuzls do not display first-
order serial correlation. However, the hypotheses of zero intercept and unit slope
are not supported.®

Table 3.9 also reports regression results based on “naive nartingale” predic-
tion. Here again, as in Case 1, the price predictions arising from our model are

largely indistinguishable from the “naive martingale” predictions. This implies

that the term:

4! gi(@) @)\ (ge-1,¢:)
Eexp( o + 2a? ) (qk-1,1) ’ Iskss-

=1
that occurs in formula (3.5) is roughly one. The third column of Table 3.5 reports

the values of this term, calculated at the end of each of the fifteen passes through

the data.
®The 95 percent confidence intervals for a and B, respectively, are (20.4036, 175.0164) and
(0.5219136, 0.9378864).
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Further Remarks:

As in Case 1, it appears that our model does not capture fully the variability in
the data. Note that the gold price data are more variable than the 1BM stock
price data.

We again calculated the mean of y; = log (gf‘:) ,1 £ k <5, for each pass
through the data and used this as a measure of the drift in prices. We plotted
these data along with §5'® and compared their time paths. See Figure 3.5. This
plot suggasts that our estimate of drift understates the true drift in prices but
that it accurately reflects the direction of price trends.

We also calculated the variance of yx, 1 < k < 5, for each pass through
the data and, using this as a measure of price volatility, plotted these data
along with 4s in Figure 3.6.!' This plot suggests that our estimate of volatility
understates true price volatility but that it accurately reflects the fluctuations

in true volatility.

Conclusions:

We conclude that our estimates of drift and volatility are too small, although
they do appear to accurately reflect the direction of actual drift and volatility

changes.

3.4.8 Case 3: United States Dollar Prices

In this third case, we analyzed a data set of 90 monthly observations on the price

of the United States (U.S.) dollar relative to the Canadian dollar. The sample

105¢ is referred to as g.hat in Figure 3.5.
115. is referred to as gamma.hat in Figure 3.6.
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period ran from October 1988 to March 1996. The data were compiled by the
Royal Bank of Canada and published in The Financial Post.
The data were processed in 15 groups of 6 prices each; at the end of each

pass through the data, parameter estimates were updated using the formulas of

Chapter 2, section 2.2.1.

Size of N:

In the analysis, we let N take the value four. Table 3.10 gives the values of gs
and 4s, as defined in equations (3.6) and (3.7), after the fifteenth pass and for

the cases N = 2, {, and 9.

The Time Step:

We again used a time step of 21. Using the alternative time step of 21/252, we
observed that I"(yx),1 < < 4,1 <k <5, which was calculated in each of the

15 passes, assumed the tolerance value of 1.0e-10 278 times out of a possible

total of 300.

Starting Values:

See Table 3.11 for the starting values that were assigned to the distribution
of the state of the Markov chain, that is, to E[Xp], the transition matrix A,
and the vectors ¢ and 4. We also did the analysis using the starting values
based on the continuous time model (discussed in section 3.4.2). Using these
latter st. .ing values, we observed that the components of the estimated g and
4 vectors were small; for example, the estimated v vector,after the fifteenth pass,

was (0.0001226494, 0.0003273091,0.0001618913, 0.0001520375) .
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Magnifying the Price Changes and Checking the Model:

In the analysis, we multiplied the yi values, 1 < k < 5, by a factor of a = 5.0
in each pass through the data. We did the analysis using other values of a as
well and then selected that value of a that gave the best results based on the
considerations given earlier in section 3.4.6. For example, using a = 5.0 rather
than a = 1.0, we were able to reduce the number of times I'(y) assumed the
tolerance value of 1.0e-10 from 224 to 181, out of a possible total of 300. Also,
in regard to the two checks on the model, we report, in Table 3.12, the mean

and variance of the test statistic:
log (fﬁ) - 9(Xix1)
Y(Xk-1)

and the correlation between this statistic and its normal scores, calculated for

1<k<5 -

each pass through the data. These results are reported for the case a = 5.0.
Except for the third, ninth, and twelth passes, the results of Table 3.12 support
the hypothesis that the statistic is normally distributed. Also, the statistic has
zero mean.!? However, the hypothesis of unit variance is not supported. These
results are superior to those obtained for other values of a. The second check
on the model, hased on the value of E[N[* | k], is also supported for the case

a = 5.0.

Parameter Re-estimation:

Table 3.11 gives the re-estimated values of the conditional distribution of the
state of the Markov chain, that is, of E[X5 | Js], the transition matrix A, and
the vectors g and +, after the fifteenth pass through the data. These results are

for the case a = 5.0.

12The 95 percent confidence interval for the sample mean is (-12.9756, 22.7934).
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Price Prediction:

At the end of each pass through the data, we calculated the predicted price
for the following month using formula (3.5) and thus obtained a data set of
15 predicted prices. Figure 3.7 plots actual and predicted prices for the study
period.

As in Cases 1 and 2, we regressed the actual prices on the predicted prices
using model (3.8) and assessed the results obtained using the Fama-Gibbons
criteria. Table 3.13 reports the results. They imply that the intercept is zero, !3
the slope is one,!* and the residuals are serially uncorrelated.

Table 3.9 also reports regression results based on “naive martingale” pre-
diction. As in Cases 1 and 2, the price predictions arising from our model are
largely indistinguishable from the “naive martingale” predictions. The fourth

column of Table 3.5 gives the values of the term:

N gi(@) . YHa)\ {gk-1,€) ‘
gexp( o " 22 ) (1) * L SRS5

that occurs in formula {3.5) for E[Si | Yk-1]. This term is reported for each of

the fifteen passes through the data. As can be observed, it takes values close to

one.

Further Remarks:

Figures 3.8 and 3.9 support our earlier observations, arising from the analyses of
IBM stock and gold prices, that our model does not capture fully the variability

in the data, although the data here are less variable than in the previous two

13The 95 percent confidence interval for o is (-0.1262092, 0.1702292).
14The 95 percent confidence interval for 8 is (0.867156, 1.103244).
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cases. Estimates of price drift and price volatility appear to understate the
true drift and volatilitv in prices. However, the direction of drift and volatility

changes appear to be captured accurately in our estimates.

Conclusions:

Our conclusions are the same as those of Cases 1 and 2.

66



TABLE 3.1: §;5 and 4,5, after the fifteenth pass,

for selected values of N — IBM stock prices

15 | 0.025564643 | 0.037539863 | 0.022820964

s | 0.006360731 | 0.007960336 | 0.005953758
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TABLE 3.2: Starting values and parameter estimates ~ IBM stock

prices

Starting values:

E[X,] vector:

A matrix:

g vector:

7 vector:

After the fifteenth pass:

E[X1s | V1s] vector:

A matrix:

g vector:

v vector:

(0.25, 0.25, 0.25, 0.25)
0.23 0.27 0.20 0.30
0.20 0.30 0.30 0.27
0.30 0.20 0.27 0.20
0.27 0.23 0.23 0.23

(0.9, 0.1, 0.8, 0.2)

(0.25, 0.25, 0.25, 0.25)

(0.55317729, 0.35354643, 0.00091133, 0.09236493)

1.094e — 11 0.5303 3.372¢ — 07
9.995¢ — 01 0.4527 9.999¢ - 01
4.334e — 04 0.0049 2.164e — 08
8.976e — 06 0.0119 3.408e¢ — 06

8.820¢ — 08
9.999¢ - 01
6.093¢ — 10
2.028¢ — 11

(0.05846258, 0.02057468, -0.05771766, -0.02188939)

(0.00566290, 0.01352559, 0.00310218, 0.00046546)
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TABLE 3.3: The mean and variance of the test statistic and its

correlation with its normal scores, calculated for each pass through

the data — IBM stock prices

Pass
number Mean Variance | Correlation

1 4.0679480 | 443.8428 | 0.9671332
2 -1.4273101 | 455.9257 | 0.9590864
3 0.4883605 | 530.3145 | 0.9616368
4 0.8699806 | 294.5432 | 9.9644653
5 -4.2289792 | 907.3855 | 0.9659001
6 9.3639345 | 238.4010 | 0.9849245
7 0.5278630 | 289.6081 | 0.9118571
8 6.3914976 | 1649.2339 | 9.9724559
9 0.5370361 | 4423.4478 | 0.9645612
10 1.9824365 | 204.5500 | 0.9670112
11 -3.4370434 | 676.7271 | 0.9617791
12 0.6918717 | 401.0032 | 0.9889625
13 -2.6111324 | 106.5434 | 0.9302095
14 1.0123313 | 282.5690 | 0.9734133
15 4.1499271 | 381.6925 | 0.9826179
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stock prices

TABLE 3.1: Regressions of actual prices on predicted prices — IBM

The Martingale
Parameter model prediction
« 8.949 8.610
(5.451) (5.582)
B 0.86401 0.86921
(0.05256) | (0.05396)
R-squared 0.954 0.952
Durbin-Watson
D statistic 2.25 2.13
s | 7.395
!

Note: The numbers in parentheses wie the standard errors of the corres-

ponding parameter estimates. ‘s’ denotes the residual standard error.
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TABLE 3.5: The term that is multiplied by Si_; to get E[Sk | Vi-1],
calculated at the end of each pass through the data

Pass IBM stock Gold U.S. dollar

number prices prices prices
1 1.006418 | 0.998674 | 0.999401
2 0.999028 | 0.999419 | 0.999549
3 1.002490 | 0.999440 | 1.000052
4 0.997722 | 1 000562 | 0.999479
5 1.002435 | 0.998346 | 0.999830
S 1.021541 | 1.000247 { 0.999404
7 1.003608 | 0.997265 | 1.001900
8 0.999131 | 1.002309 | 1.000132
9 1.001876 | 0.998845 | 1.000118
10 0.994414 | 1.000939 | 1.001943
11 1.005082 | 1.001163 { 1.000738
12 0.982428 | 1.000565 | 0.999563
13 0.975443 | 1.000213 | 1.G01373
14 1.001213 | 0.999272 | 0.998569
15 1.015181 | 1.000814 | 1.001388
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TABLE 3.6: g5 and 4s, after the fifteenth pass,

for selected values of N — gold prices

gs | 0.0065892649 | 0.008115679 | 0.0071034259

¥s | 0.0144979179 | 0.0161086519 | 0.0170995747
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TABLE 3.7: Starting values and parameter estimates — gold prices

Starting values:

E[Xo] vector:

A matrix:

g vector:

4 vector:

After the fifteenth pass:

E[Xs | V5] vector:

A matrix:

g vector:

v vector:

(0.25, 0.25, 0.25, 0.25)
0.23 0.27 0.20 0.30
0.20 0.30 0.30 0.27
0.30 0.20 0.27 0.20
0.2/ 023 0.23 0.23

(0.9, 0.1, 0.8, 0.2)

(0.25, 0.25, 0.25, 0.25)

(0.3363017, 0.1633632, 0.0001140, 0.0002209)
5.864e—01 9.992e—01 9.695e¢~-02 9.999e-01
4.133e—01 2.845e—06 9.029e—01 3.099e—09
2.793e—07 7.284e—04 2.97le—15 1.324e—07

\ 1.819e—04 6.330e—05 8.356e—05 2.145e—15

(0.01146567, -0.00900794, 0.01776684, -0.01602404)

(0.01879905, 0.00234592, 0.00538968, 0.01411942)
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TABLE 3.8: The mean and variance of the test statistic and its
correlation with its normal scores, calculated for each pass through

the data - gold prices

Pass

number Mean Variance | Correlation
1 -18.6914141 | 1489.4856 | 0.9793188
2 -5.9482811 | 1242.3133 | 0.9761170
3 -0.5587373 | 147.8234 0.9838245

4 19.7914630 | 2277.4604 | 0.9841864

5 -8.4694556 | 783.1129 0.9556415

6 -14.0825716 | 34990.0607 | 0.9208052

7 -6.6966485 | 849.2314 0.9842449

8 5.9121606 806.3495 0.9587379

9 -52.3198635 | 35832.8194 | 0.97369941
10 -2.8389682 | 401.4180 0.9635492
11 33.5893993 | 4903.857. . .00
12 87.1144038 | 23598.5¢ ! 0.954:5"56
13 46.7625758 | 14303.3264 | 0.7713421
14 -13.2721931 | 10657.8872 | 0.9737155

15 3.3429573 710.5670 0.9533481

74




TABLE 3.9: Regressions of actual prices on predicted prices — gold

prices

The Martingale

Parameter model prediction

a 98.00 95.59
(36.41) | (36.42)

B 0.72880 | 0.73522
(0.09794) | (0.09795)

R-squared 0.810 0.813

Durbin-Watson
D statistic 1.75 1.74

s 7.589 7.536

Note: The numbers in parentheses are the standard errors of the corres-

ponding parameter estimates. ‘s’ denotes the residual standard error.



TABLE 3.10: g5 and 4, after the fifteenth pass,

for selected values of N — U.S. dollar prices

N=2 N=4 N=9

gs | 0.0053162479 | 0.0069351150 | 0.0060696187

¥s | 0.0002449577 | 0.0002750454 | 0.0002519512
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TABLE 3.11: Starting values and parameter estimates — U.S. dollar

prices

Starting values:

E|[X,) vector:

A matrix:

g vector:

v vector:

After the fifteenth pass:

E[Xs | V5] vector:

A matrix:

g vector:

4 vector:

(0.25, 0.25, 0.25, 0.25)

0.30
0.27
0.20
0.23

0.20
0.30
0.27
0.23

0.23
0.20
0.30
0.27

0.27
0.30
0.20
0.23

(0.9, 0.1, 0.8, 0.2)

(0.25, 0.25, 0.25, 0.25)

(0.04875742, 0.73922200, 0.10572331, 0.10629726)

0.4608361
0.1484816
0.1745457
0.2161360

0.3403128
0.1195731
0.2981371
0.2419771

0.2322707
0.4857810
0.1555276
0.1264207

0.33886943
0.46581355
0.09744800
0.09786903

(0.00560040, 0.00863796, 0.00140784, 0.00120267)

(0.00018385, 0.00032621, 0.00012265, 0.00011262)
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TABLE 3.12: The mean and variance of the test statistic and its

correlation with its normal scores, calculated for each pass through

the data — U.S. dollar prices

Pass

number Mean Variance | Correlation
1 -13.8703781 | 6913.785 | 0.9548172
2 -16.2439767 | 10332.270 | 0.9311556
3 0.3138419 | 7730.959 | 0.8176349
4 -32.9241847 | 20968.686 | 0.9646766
) -7.7404597 | 21351.889 | 0.9956543
6 -60.5868133 | 26576.208 | 0.9287732
7 52.1525553 | 5402.729 | 0.9342805
8 7.3336312 | 16832.732 | 0.9688997
9 1.2685814 | 3754.749 | 0.8297596
10 51.3008225 | 3642.245 | 0.9508829
11 9.7377676 | 6056.353 | 0.9765218
12 -38.4199756 | 24104.886 | 0.8676565
13 31.8379451 | 5985.651 | 0.9819447
14 -29.9925761 | 5348.683 | 0.9916077
15 55.0524817 | 12091.701 | 0.9889897
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TABLE 3.13: Regressions of actual prices on predicted prices — U.S.

dollar prices

The Martingale

Parameter model prediction

a 0.02201 | 0.01707
(0.06862) | (0.06997)

g 0.98520 0.98940
(0.05465) | £0.05575)

R-squared 0.962 1.960

Durbin-Watson
D statistic 1.98 1.94

s 0.01920 0.01949

Note: The numbers in parentheses are the standard errors of the corres-

ponding parameter estimates. ‘s’ denotes the residual standard error.
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Chapter 4

Application: Modelling the
Term Structure of Interest

Rates

This chapter applies the theory of Chapter 2 to the problem of modelling the
term structure of interest rates.! It makes some preliminary comments and then

discusses the model, an application of the model, and results.

4.1 Preliminaries

In this chapter, we a.sume that all processes are defined on a complete proba-

bility space {{?. ¥, P}. We first recall the following:

Definition 4.1.1 7 . orobabilities P and Q) are equivalent if and only if, for

all events ACQ, & .+ -0 if and only if Q(A) = 0.

- -

Important references in tais chapter are Elliott, Aggoun, and Moore {8] , Elliott (7] ,
Elliott [6], and Elliott, Hunter, and Jamieson [11] . The discussion of the first two sections

follows Flliott, Hunter, and Jamieson [11].
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We also assume that there exists a probability measure @, equivalent to P, such

that under @) the discounted prices of all securities, Treasury bills and bonds in

this case, are martingales.

4.2 The Model

4.2.1 Instantaneous Rate Process

Having assumed the existence of an equivalent martingale measure @, we suppose
that all processes are defined on probability space (2, F, Q). On this space, let
X = {X;;t > 0} be a Markov chain taking on values in a finite set §. Without
loss of generality, we can identify the points in S with the unit vectors in IR",
where N is the cardinality of S. Let ¥ = {e1, ... en} denote the set of siandard
unit vectors in IRY, where ¢; = {0, ... ,0,1,0, ... ,0). Because X; € X for
t > 0, any function of X, say h(X), is given by a vector h = (h;, ... ,hy) and
h(X;) = (h,X;). Letting E represent expectation under @, the distribution of
X, isthen E[X;} = p, = (p}, ... ,p])’, where pi = Q(X, = &;) = E[(Xy, ¢;)]. We

suppose that this distribution evolves according to the Kolmogorov equation:

dp,
'E = Cp,

where C = (¢;;), 1 <7,j < N, Zf’:, cji=0,and ¢;; 2 0if 7 # j.

Furthermore, we suppose that the instantaneous rate process, r = {r} ,? has
the property that r; is a function of X, t > 0; that is, r, = r(X;) = (r, X,) for
some vector r € R".

We let {F:}, t > 0, represent the right continuous, complete filtration gen-

erated by X. In chapters 1 and 2, we defined the terms generated o-field and

2See Chapter 1, section 1.3.1 for a definition of the instantaneous interest rate.
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completeness, as well as the term filtration, for the discrete-time case. The

definition of filtration, for the continuous-time case, is similar.

Definition 4.2.1 On (Q, F, P), a filtration is an increasing family of sub o-
fields Fy C F. Increasing means that if s < t, then F, C Fy, s,t > 0.

Right continuous means that F; = N,5, F,-

If we consider a security paying a non-random amount u at time 7" > ¢, then
its price at time ¢ is:

r

E [exp (— [T r(X,)ds) u | .7-',] =F [cxp (— /tT r(_\’,)rls) u | .\",] ,

since X is a Markov process. Taking u = 1, the price of a zero-coupon bond

maturing at time T is:

: T
pur=E [exp (— / r(x,)ds) | x.] .
t
The yield for this bond is:

-1
Yo = (_TT'_“’t‘)'long.T :

4.2.2 Bond Dynamics

Suppose a security pays a random amount u(Xr) at time T > {. Then its price

at time t, denoted by F(X,,t), is:
T
F(X,t) = E [exp (- / r(X,)ds) w(X7) | x,] .
Jt

This is a function of X;. Therefore, there exists a function ¥, = (¢}, ... ,¥) €

RY, with ¥i = F(ei,t), such that:
F(tht) = (T/)t, Xt) .
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Definition 4.2.2 Suppose (¢ F,P) is a probability space with filtration {F,},
t > 0. An adapted stochastic process M = {M,} is said to be a martingale
(or a martingale relative to the filtration {F;} ) if E[|[M,]] < oo for all t and

E[Mt Ifal = M,,S <t

Lemma 4.2.3 The discounted price of the above-mentioned security is an F;-

martingale under ().
Proof: Let E denote expectation under Q). Then:

exp (— /ol r(X,)ds) F(X.,1)
exp (— /Otr(X,)ds) E [exp (— /tT r(X,)ds) u(X7) | X,}

= FE [exp (—- /OT r(X,)ds) u{XT) IJ:,] .

Lemma 4.2.4 M, := X, - X, — fg CX.du is an Fi-martingale under Q.

Proof: To start, we write ®(t,s) = expC(t — s) for che transition matrix

associated with C.3 Therefore, we have:

gt-(b(t,s) = C®(¢,s) (4.1)

and for s < ¢:

E[X, | F] = E[X:|X,]
= &(t,s)X, .

3Note that eM represents 3°02, (&) M™ whenever M is a square matrix.
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Now:
E[M, - M, | )]
t
- E [X, =X, - [ CXudu| x]
’ t
= <1>(t,s)X,—X,—/ Co(u, s)X,du
= 0 € RY, by (4.1).

Remark 4.2.5 The semimartingale representation of the Markov chain X is,

therefore:

t
X, = Xo + /0 CX,du+ M, .

0]
Remark 4.2.6 We observe the following:
1. Using the representations:
o F(X,,s)= (¢, X,), and
o Xi=Xo+ Jo CXudu+ M,
and a general stochastic differentiation rule, it follows that:
exp ( /0 ' r(x,)ds) F(X,,t) = F(Xo,0)
t 2
+ [ =rXesp (= [ r(X)du) i, Xo)ds
+ /Otexp (—- /0’ r(Xu)du) [(%,X,) + (d),,CX,)] ds
t s
+ /0 exp (—-/0 r(X,,)du) (¥s, dM,) . (4.2)
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2.

(7]

Here we have the representation F(X,,s) = (¥,, X,) so that dF(X,,s) =
(dvs, X,) + (¥5,dX,) .

Since the left side of (4.2) is a martingale, it follows that the bounded vari-
ation terms on the right side, that is, the ds integrals, give the identically

zero process; that is:

exp (- /0 (X )du) [—r(x,w,,x,) + <%,x,) + (15, CX,)| = 0 (4.3)

r(X,) = (r, X,), where r = (ry, ... ,rn)’, and 7(X,){¢,, X,) = (diag r -
Vs, X,), where diag r is the matrix with r on the diagonal. Therefore, from

(4.3), we have:

m . |
(d—“;,x,) F(C e, Xo) — (diag - 5, X,) =0 (4.4)

for all X,.

From (4.4), it follows that v, is given by the system of equations:

% = (diag r — C")y (4.5)

with terminal condition:
Yr=u=(ui, ... ,un) (4.6)

where u(X7) = (u, X1) .
0

Letting B = diag r — C* so 9, = exp~B(T-% y, the price at time ¢t < T of a

security paying u(Xr) at time T is:

(e, X)) = <€—B(T_t)U,Xz) .
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Furthermore, a zero-coupon bond, withu =1 € RY, has price at time { < T of:

F(X.,t) = (e BT-01 X} .

4.2.3 Filtering and Model Estimation

To enable discussion of the term structure of interest rates, we now introduce
bonds of varying maturities. Let F7(.X, ) denote the price at time ¢t of a zero-
coupon bond expiring at time t + 7, , 1 < j < m. Then, by the analysis of the

previous section:

Fi(X,t) = [exp( /t' )[\']

= (B, X)), 1<j<m.

In this model, the process X is not observed directly. We suppose that X
represents the dynamics of some factors which are not observed and that the
FI(X,,t) represent some corresponding ‘perfect’ prices. In fact, we suppose
that the prices F7(X,,t), 1 < j < m, are observed in noise at discrete times
t1,82, ... ytk, ... . Since F7(X;,t) > 0, we assume that the noise is multiplica-
tive; that is, we assume that we actually observe F3(X,, t)etVX0b%  where the 8]
are distributed N(0,1), t = t;,t3, ... ¢k, ... ,and ¥ = (7], ... ,’yﬂ,)' .

Equivalently, we suppose that the yield values are observed in additive noise:

, . 30X,
v = —Llog (X, 1) - Ky
TJ' Tj

where 1 <7< m,t=1t),tz, ... g ...

Now let:

[ 2]
.

4l = and

'

Y

(gJ, Xt) = "";1‘ log FJ(Xg,t)

J
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where:

Y=0d W),
g =gl ... ,gfv ’, and
g = —;;log(e Bl e,
1<j<m,1<i<N.
Furthermore, suppose the observation times t; < t; <3 < ... are equally

spaced with tiy) —tx = s > 0. We write k = ¢4 and let ¢“* = A . Then we have

a discrete time version of the state process with:
Xk = AXkor + My

where k € Z* and M, is an Fi-martingale under Q. Also, the observation
process ¥’ = {yl} has dynamics:

vi = (¢, Xe) + (v, Xi)b]
where 1 < j < m and k¥ € Z*. Notice that this is the zero delay observation
model of Chapter 2; also, the observation process y = (y*, ... ,y™) = {yx} is

vector-valued. Thus, all the results of Chapter 2, section 2.3.2 carry over to the

discussion here.

From the y; observations, we seek to estimate the state of the chain at a given
time, the transition probabilities associated with the chain, and the components
of the vectors g7 and 47, 1 < j < m. Estimators for these parameters are given
in Chapter 2, section 2.2.2.

Note that we can also estimate the prices of the varying maturities. For

example, with Fi(X,,t) = (e7B71, X,), if k =t so that X,, = Xj, then:

E[Fi(Xi, tx) | D] = (€871, E[Xk | Vi) (4.7)
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where E[Xi | Yi] = oty and the ith componet of e"B]is exp (~g,’ r_,). ke 21,

1<j<m,and 1 <i<N.

4.3 Application and Results

This section discusses an application of the model to the United States (U.S.)

term structure of interest rates. It begins with some general comments.

4.3.1 The Program

A program was written in the S language to implement the estimation procedure
of Chapter 2, section 2.3.2. A copy of the program is given in Appendix B.
The program uses an iterative procedure. First, it assigns starting values to
the model parameters. Then it takes K observations, where each observation
is vector-valued with jth componeat equal to the yield on the jth security, 1 <
J < m. Using these observations, it estimates parameter values. With these
estimates and K further observations, parameter values are re-estimated. The
procedure can be repeated any number of times. As mentioned in Chapter 2,
the EM algorithm implies that the parameter estimates improve monotonically

with each iteration.

4.3.2 The Size of N

As was indicated earlier, N denotes the size of the state space of the Markov
chain X. It is the only parameter value that is not estimated in the model;
rather, we assign a value to N. In choosing a value for N, we were guided by
the same considerations as were enumerated in Chapter 3, section 3.4.1. In the

example that follor s, N was assigned a value of 4.
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4.3.3 Starting Values
Our model:

Xk = AXjy + M,

_ 1 m

Yi = (ykv ayk)

vi = (97, Xi) + (¥, Xe)¥,
where k € 2,1 < j < m, and ¢/,97 € R", has N? 4+ 2mN parameters which
we seck to estimate and to which we assigned starting values. These parameters
are the N? elements a;;, 1 < 7,7 < N, of the transition atrix A, the mN
elernents of the matrix g, and the mN elements of the matrix v, where the jth

columns of ¢ and v are g’ and 47, respectively.

The starting values that were used are discussed in the example that follows.

4.3.4 The Time Scvep

Because Treasury bill and bond yields may be observed at varying time inter-
vals, for example, weekly or monthly, we sought to allow for this in the analysis.
We redefined the ¢ function of Chapter 2, section 2.3.2 to be the N(0,dt) den-
sity, where dt represents the time step between observations. The discussicn of
Chapter 2 had assumed dt = 1. In the example that follows, the noise in the

observations is, however, assumed to be N(0, 1).

4.3.5 Checking the Model
The equation:

yi = (gijk)+(7jan)bi
= ¢(Xk) + 7 (X))t
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where {b)} is a sequence of i.i.d. N(0,1) random variables, k € Z*, and 1 <
J < m, suggests that the statistic:
yx — °(Xi)
7 (Xk)

where X = .(ﬁkﬁ , should be normally distributed with mean zero and variance

)

one. In the example that follows, we check the model by testing for the normality

of this statistic and by calculating its mean and variance.

4.3.6 Scaling the Yield Values

We observed in Chapter 2, section 2.3.2 that:

M'ys) = ok, - o0)
= ¢ (%)
B 1;11 é(yi)

where k € Z*,1 <1 < N, and ¢ denotes the N(0, 1) density. For small 'yf and
large |yl — g7|, T*(y«) goes to zero and parameter estimates are not obtained. To
avoid this, we specified a tolerance value, usually 1.0¢e-10, below which we would
not let the value of I'(yx) fall. ilowever, if the values of yi, gl, and 47 were such
that 1"*(yx) assumed this tolerance value for most values of ¢, j, and k, important
yield information was lost to the subsequent parameter estimation.

In the application that follows, we explored the usefulness of multiplying the
y,’; values by a factor a > 1. By scaling the yields in this way, we hoped to obt..in
larger I (yx) values.

It should be noted that if we multiply the yi by @ > 1, we must, of course,

adjust the parameter estimates. If we consider the model:

vl = (g%, Xi) + (7, Xa) ¥, ,
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then with:

Y] = oy
= a(gj7Xk> + a(’Yijk)b'I];
= (ng,Xk) + <a7j7 Xk>b}7;

= (¢’(a), Xe) + (v/(a), Xi)bL

——

. _ ) N _ ) = _ -~
we have g’(a) = ~¢’ and ~'(a) = ay’. Therefore, g’(a) = ag’ and g7 = £2),

Similarly, :ﬁ

4.3.7 Application of the Model

In the application of the model considered here, we analyzed a data set consisting
of 225 weekly observations on the yields of 1-month, 3-month, and 6-month
U.S. Treasury bills and 2-year, 5-year, 7-year, 10-year, and 30-year U.S. bonds.
The sample period ran from January 17, 1992 to June 1, 1996. The data were
compiled by the Royal Bank of Canada and published in The Financial Post.
In the analysis, we processed the U.S. yield data in 15 groups of 15 yield
vectors each. At the end of each pass through the data, parameter estimates
were updated using the formulas of Chapter 2, section 2.2.2. We let N, the
size of the state space of the Markov chain X, equal four; dt, the time step
between observations, be 5/252; and the vector, 7 = (7, ... ,7m)’, of terms
to maturity of the various securities be (21/252,63/252,126/252,2,5,7,10,30)".

Here, 7; denotes the term to maturity of the jth security,1 < 7 <m, and m = 8.
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Scaling the Yield Values, Starting Values, Parameter Re-estimation,

and Checking the Model:

In the analysis, we let the scaling factor, a, equal 1.0, 2.5, 5.0, 7.5, 10.0, and 20.0,
in turn. In each case, we multiplied the yi values,1 <7 <8,1<k <15 byain
each pass through the data. We also adjusted the starting value of the g matrix
according to the value of a in order to make I'(y), 1 <i< 4,1 < k<15, large

in the first pass through the data. We then observed:

1. for all values of a used, I"(yx), 1 < i < 4,1 < k < 15, assumed the

tolerance value of 1.0e-10 in the second and all subsequent passes, and

2. the re-estimated values of the elements of the 4 matrix were larger for

larger values of a.

In choosing the value of a that we judged to give the best results, we considered
the 'yf values, 1 <:< 4,1 < j <8, since larger 7{ values contributed to larger
values of I"(yx) in the subsequent pass through the data. We also considered

the mean and variance of the test statistic:

J __ i Y
y—k—j(ix.%i),lgjss,lgkgls.
v k

Based on these considerations, we concluded that the results for @ = 5.0 were
superior to those obtained in the other five cases.

For the case a = 5.0, the hypothesis of normality, in regard to the distribution
of the test statistic, was not rejected 109 times, out of a possible total of 120, at
a significance level of 0.05. The hypothesis of zero mean was rejected for all secu-
rities. The hypothesis of unit variance met with mixed results; for example, for

the 1-, 3-, and 6-month Treasury bills and the 2-, 5-, 7-, 10-, and 30-year bonds,
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the 95 percent confidence intervals for the sample variance were, respectively,
(2.5112, 7.2324), (1.3448, 6.2199), (1.0624, 7.1345), (1.3096, 4.8475), (0.7910,
1.8919), (0.6054, 1.3604), (0.4224, 0.9877), and (0.1901, 0.5600).

For the case a = 5.0, Table 4.1 reports the results for the first four securities.
It gives the starting values that were assigned to the distribution of the state of
the Markov chain that is, to E[Xj), the transition matrix A, and the g matrix.
Note that all the entries in the ¥ matrix were assigned a starting value of 0.25.
Table 4.1 also gives the re-esiimated values of the parameters after the fifteenth
pass through the data. Estimated Treasury bill and bond prices are also reported.
Notice that the columns of the g and  matrices and the price vector correspond,
respectively, to the 1-, 3-, and 6-month Treasury bills and the 2-year bond. Table

4.2 is similarly structured and gives resulis for the 5-, 7-, 10-, and 30-year bonds.

Yield Estimation:

At the end of each pass through the data and for each security, we calculated

the yield vector corresponding to the estimated price vector using the formula:
.P — e—-rt

or

. log P
-1

where P denotes the treasury bill or bond price, r the corresponding yield, and
t denotes time to maturity. Figures 4.1 to 4.8 provide plots of actual yields and
estimated yields for each of the securities in turn.

We also regressed actual yields on estimated yields, using the model:

Actual yield = a +  * Estimated yield + ¢ .
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The regression results obtained were assessed on the basis of the following criteria
proposed by Fama and Gibbons [11]: (1) conditional unbiasedness, that is, an
intercept, a, close to zero, and a regression coefficient, 3, close to onc; (2)
serially uncorrelated residuals; and (3) a low residual standard error. Table 4.3
reports the results for the 1-, 3-, and 6-month Treasury bills and the 2-year
bond. Table 4.4 gives results fcr the 5-, 7-, 10-, and 30-year bonds. For each of
the securities, we can conclude that the intercept is zero and the slope is one.
With the exception of the 3-month Treasury bill, we can also conclude that the

residuals do not display first-order serial correlation.

4.3.8 Concluding Remarks

We have observed that, for the case a = 5.0 and for all other values of a con-
sidered, I(yx), 1 < i< 4,1 < k < 15, assumed the tolerance value of 1.0¢-10
in the second and all subsequent passes through the data. This is undesirable
because the information in the data enters the parameter estimation in large
part through the I'(y;) values. As a result, we gave some thought to how the
I (yx) values might be increased. Based in part on our analysis of Chapter 3,
we thought that by adjusting the units for measuring time we might be able to

increase the I''(yx) values. Recall that:
Pi(yk) = Fi(yliv ayI’v:n)

(4.8)

i
ma

ke 2+,1 <i< N, where:

1 —2:2
¢(z) = (2ndt)"2 exp (W)



is the N(0, dt) density. In the example we are considering here, dt = 5/252. For
the values of z observed, exp (-",‘%) tended to be small, near zero, for dt = 5/252.
Therefore, we thought that if we measured time in days for example, with dt = 5,
we might get larger I¥(yx) values. However, formula (4.7) for the expected price
of the jth security, 1 < j < m, requires that time be measured in years. Thus
this avenue for increasing the I'(yx) values was not available.

Also, we observe in equation (4.8) that I"(yx) is a product. It follows that
if, for a given 7, 1 < ¢ < 4, and a given k, 1 < k < 15, the numbers,
¢ (f{:—ﬂi) /7{¢(yi), 1 € j < 8, are small (less than one), then I'(y,) is even
smaller. We decided to determine the values of these numbers by examin-
ing each of the securities individually, that i« by employing our model with
m = 1. When we did this, we observed that for each 7, 1 < 7 < 8, the numbers
¢<£)*;—lﬂ"-) /'yfgb(y,’;), 1 <i:1<4,1 <k <15, assumed the tolerance value of
1.0e-10 in the second and all subsequent passes through the data, for all values

of a considered when dt = 5/252. Thus the problem of low I'(yx) values is one

that is not easily overcome in this model.
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TABLE 4.1: Starting values and parameter estimates — 1-, 3-, and

6-month Treasury bills and 2-year bond

Starting values:
E[X,] vector:

A matrix:

g matrix:

After the fifteenth pass:

\ 0.27
( 0.30

\ 0.27

E[X1s | V1s] vector:

A matrix:

g matrix:

~ matrix:

Estimated prices:

0.27
0.30
0.20
0.23
0.30
0.25
0.29
0.27

0.20
0.30

0.25
0.29

0.33987850
0.00591622
0.48277644
0.17142882

0.0499820
0.0491129
0.0500093
0.0499311

0.0080009
0.0077240
0.0080096
0.0079848

(0.25, 0.25, 0.25, 0.25)
[ 0.23

0.20
0.30
0.27
0.23
0.30
0.25
0.29
0.27

0.27
0.20

0.25
0.29

0.3089177
0.0173240
0.3982955
0.2754626

0.0495271
0.0486889
0.0495562
0.0494756

0.0078514
0.0075892
0.0078604
0.0078353

0.30

0.23 |
0.30

0.27

0.2945645
0.0131932
0.4951553
0.197086,

0.0502158
0.0487352
0.0502704
0.0501196

0.0080750
0.0076104
0.0080920
0.0080451

(0.32311655, 0.01147894, 0.46589404, 0.19951047)

0.3634610
0.0161484
0.3741108
0.2462796

0.0585971
0.0543676
0.0587449
0.0583432

0.0110269
0.0095375
0.0110781
0.0109356

(0.9958441, 0.9876961, 0.9752099, 0.8894703)
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TABLE 4.2: Starting values and parameter estimates - 5-, 7-, 10-, and

30-year bonds

Starting values:
E[Xo] vector:

A matrix:

¢ matrix:

After the fifteenth pa<s:
E[X1s | Jhs] vector:

A matrix:

g matrix:

v matrix:

Estimated prices:

(0.25, 0.25, 0.25, 0.25)

[ 0.23 0.27
0.20 0.30
0.30 0.20
\ 0.27 0.23
{ 0.30 0.30

0.25 0.25

0.29 0.29
\ 0.27 0.27

0.20
0.30
0.27
0.23
0.30
0.25
0.29
0.27

0.27
0.20

0.25
0.29

0.30 \

0.23 )
0.30

0.27 )

(0.32311655, 0.01147894, 0.46589404, 0.19951047)

0.33987850
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0.48277644
0.17142882

0.0621530
0.0580654
0.0622985
0.0618951

0.0124077
0.0108665
0.0124616
0.0123120

0.3089177
0.0173240
0.3982955
0.2754626

0.0640264
0.0604820
0.0641537
0.0638003

0.0131541
0.0117646
0.0132033
0.0130667

0.2945645
0.0131932
0.4951553
0.1970868

0.0648942
0.0618388
0.0650050
0.0646984

0.0135099
0.0122835
0.0135538
0.0134322

0.3634610
0.0161484
0.3741108
0.2462796

0.0676422
0.0656157
0.0677177
0.0675094

0.0146585
0.0137987
0.0146902
0.0146026

(0.7329999, 0.6389073, 0.5227190, 0.09252945)
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TABLE 4.3: Regressions of actual yields on estimated yields - 1-, 3-,

and 6-month Treasury bills and 2-year bond

Term to maturity of security
Parameter 1-month 3-month | 6-month 2-year
a 0.000307 | 0.000595 | 0.000148 | -0.002347
(0.002543) | (0.002528) | (0.003160) | (0.005246)
B 0.99864 0.99688 1.00277 1.05136
(0.06271) | (0.05967) | (0.07141) ° (0.09795)
R-squared 0.951 0.955 0.938 0.899
Durbin-Watson
D statistic 2.08 1.34 1.53 2.00
s 0.002445 | 0.002364 | 0.002914 0.003875

Note: The numbers in parentheses are the standard errors of the corres-

ponding parameter estimates. ‘s’ denotes the residual standard error.
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10-, and 30-year bonds

TABLE 4.4: Regressions of actual yields on estimated yields 5-, 7-,

Term to maturity of security
Parameter 5-year T-year 10-year 30-year
a -0.003115 | -0.000768 | 0.000112 | 0.003958
(0.006406) | (0.006336) | (0.006973) | (0.006305)
B 1.0517 1.00764 0.9960 0.93919
(0.1048) (0.09989) | (0.1055) (0.08903)
R-squared 0.886 0.887 0.873 0.895
Durbin-Watson
D statistic 1.94 1.97 1.47 1.56
s 1.003162 | 0.002797 | 0.002738 | 0.002044

Note: The numbers in parentheses are the standard errors of the corres-

ponding param.cter estimates. ‘s’ denotes the residual standard error.

108



Yields

0.050

0.040

0.030

FIGURE 4.1 Yields on 1-month T-bill

Actual yields
Estimated yields

{ 1 I | {

05/25/92 07/19/93 09/12/94

Time in weeks

T

11/06/95

109



Yields

0.050

0.040

0.030

FIGURE 4.2 Yields on 3-month T-bill

Actual yields
Estimated yields

| ! 1

05/25/92 07/19/93

09/12/94

Time in weeks

T

11/06/95

110



Yieids

0.060

0.050

0.040

0.030

FIGURE 4.3 Yields on 6-month T-bill

Actual yields
Estimated yields

—

05/25/92

I I 1 I 1 !

07/19/93 09/12/24 11/06/95

Time in weeks

111



Yields

0.07

0.06

0.05

0.04

FIGURE 4.4 Yields on 2-year bond

Actual yields
Estimated yields

1

05/25/92

| | l {

07/19/93 09/12/94

Time in weeks

11/06/95

112



Yields

0.060 0.070 0.080

0.050

FIGURE 4.5 Yields on 5-year bond

Actual yields
Estimated yields

T

056/25/92

07/19/93

09/12/94

Time in weeks

11/06/95

113



Yields

0.070

0.060

0.050

FIGURE 4.6 Yields on 7-year bond

— Actual yields
....... Estimated yields

05/25/92 07/19/93

09/12/94

Time in weeks

11/06/95

114



Yields

0.060 0.065 0.070 0.075

0.055

FIGURE 4.7 Yields on 10-year bond

—  Actual yields > .
4 ] Estimated yields .

1 l t i l { {

05/25/92 07/19/93 09/12/94 11/06/95

Time in weeks

115



Yields

0.075 0.080

0.070

0.065

0.060

FIGURE 4.8 Yields on 30-year bond

Actual yields
Estimated yields

T

05/25/92

l | 1

07/19/93 09/12/94

Time in weeks

11/06/95

116



Bibliography

(1] Philippe Artzner and Freddy Delbaen. Term structure of interest rates: The

martingale approach. Advances in Applied Mathematics, 10:95- 129, 198Y.

[2] Patrick Billingsley. Probability and Measure. John Wiley and Souns, New
York, 1986.

[3] John C. Cox, Jonathan E. Ingersoll Jr., and Stephen A. Ross. A theory of

the term structure of interest rates. Fconometrica, 53:385--407, 1985.

[4] Darrell Duffie and Rui Kan. Multi-factor term structure models. A survey
designed for presentation at a meeting of the Royal Society in London,

November 10-11, 1993.

5] R.J. Elliott. Stochastic Calcuins and Applications. Springer-Verlag, New
g g
York, 1982.

[6] R.J. Elliott. New finite-dimensional filters and smoothers for noisily ob-
served Markov chains. IEEE Transactions on Information Theory, 39:265-

271, 1993.

[7] R.J. Elliott. Exact adaptive filters for Markov chains observed in Gaussian

noise. Automatica, 30:1399-1408, 1994.

117



8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov Models: Esti-
mation and Control, volume 29 of Applications of Mathematics. Springer-

Verlag, New York, 1995.

R.J. Elliott and W.C. Hunter. Filtering a discrete time process. The ad-
dresses of the authors are, respectively, the Department of Mathematical

Sciences, University of Alberta and the Federal Reserve Bank, Chicago.

R.J. Elliott, W.C. Hunter, and B.M. Jamieson. Drift and volatility estima-
tion in discrete time. The address of R.J. Elliott and B.M. Jamieson is the
Department of Mathematical Sciences, University of Alberta. The address

of W.C. Hunter is the Federal Reserve Bank, Chicago.

R.J. Elliott, W.C. Hunter, and B.M. Jamieson. Finarcial signal processing.
The address of R.J. Elliott and B.M. Jamieson is the Department of Math-

ematical Sciences, University of Alberta. The address of W.C. Hunter is th?

Federal Reserve Bank, Chicago.

Eugene F. Fama and Michael R. Gibbons. A comparison of inflation fore-

casts. Journal of Monetary Economics, 13:327-348, 1984.

J.M. Harrison and D.M. Kreps. Martingales and arbitrage in multiperiod

securities markets. Journal of Economic Theory, 20:381-408, 1979.

J.M. Harrison and S.R. Pliska. Martingale and stochastic integrals in the
theory of continuous trading. Stochastic Processes and their Applications,

11:215-260, 1981.

Vikram Krishnamurthy and John B. Moore. On-line estimation of hid-
den Markov model paramenters based on the Kullback-Leibler information

measure. IEEE Transactions on Signal Processing, 41:2557-2573, 1993.

118



[16] Damien Lamberton and Bernard Lapeyre. Introduction au Calcul Stochas-

tique Appliqué a la Finance. ellipses, Paris, 1991.
[17] Inc. Minitab. Minitab Reference Manual Release 7. Minitab, Inc., 1989.

[18] Bernt Oksendal. Stochastic Differential Equations. Springer-Veralg, Berlin,
fourth edition, 1995.

[19] Neil D. Pearson and Tong-Sheng Sun. Exploiting the conditional density
in estimating the term structure: An application to the Cox, Ingersoll, and

Ross model. The Journal of Finance, 49:1279-1304, 1994.

[20] Paul Samuelson. Mathematics of speculative price. Industrial Management

Review, 6:13-39, 1965.

119



Appendix A

Computer Program for
Chapter 3

This appendix contains a copy of the S program written to implement the esti-

mation procedure of Chapter 3.
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I I

*

EoEE I T

The parameter values that must be entered are: No.batches, dt, m,
n, TOLERANCE, and factor. Also enter the dimensions of the data
matrix "prices*.

Enter the data and parameter values.

The data are in one column in a file called “price".

Read the data into one column cof a data frame called *"prc*“.

Then read the data into a matrix called *"prices". Specify the
dimensions of “prices".

The number of columns of *“prices* equals the number of batches
(equivalent to the number of passes).

The number of rows of “prices" equals the number of prices in each
batch.

prc<-read.table(“price")
prices<-matrix(prc[ ,1],16,2)

No.batches<-2
cat(*\n*, “The number of price batches is:","\n","\n")
print (No.batches)

# Enter the time step.

dt<-21 # Number of working days between price quotes
cat("\n","The time step is:","\n","“\n")
print(dt)

m<-Z2

<=2

N<~-m*n

cat ("\n", "The value of m is:","\n","\n")
print(m)

cat ("\n","The value ¢f n is:","*\n","\n")
print(n)

cat(*\n", *The value of N is:","\n","\n")
print (N)

TOLERANCE<-(1.0e-10) # Elements in the GAMMA matrix are not allowed

#

to fall below this level.

cat (*\n", *“The TOLERANCE value .s:","\n","\n")}
print (TOLERANCE)

factor<-2.5
cat (*\n", "The factor multiplying the y values is:","\n","“\n")

print(factor)

# Initialize.

g<-c(0.9,0.1,0.8,0.2)

cat(*\n","The g vector is:",*\n","\n")
print(g)

gamma<-rep(0.25,N)
cat{(“\n", "The gamma vector is:","\n","\n")
print (gamma)
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A<-matrix((1/N),nrow=N,ncol=N)
cat(“\n",*The A matrix is:","\n","\n")
print (A)

4 Run the batches of data.
for (b in 1l:No.batches) {

cat (*\n", “The batch number is:*,“\n","\n")
print (b)

cat (*\n",“The prices in this batch are:","\n","\n")
print (prices([ ,bl)

y<-vector(length=(1ength(prices[ ,bl)-1))
for (i in 1:(length(y)))
y[i]<—(factor*log(prices[ ,bl[i+l])/prices[ ,blI[i]))

cat{"\n*,"The y vector is:","\n","\n")

print(y)

K<-length(y)

cat ("\n", "The mean of the y vector is:","\n","\n")
print (mean(y))

cat ("\n","The variarce of the y vector is:","\n","\n")

print(var(y))

phi<-function(input) {
(((2*pi*dt)“((-1)/2))*exp(((-1)*((input)“(Z)))/(2*dt))) }

GAMMA<-matrix (nrow=K, ncol=N)
for (i in 1:K) {
for (j in 1:N)
GAMMA[i,3)<-(phi((y([i}l-g{j])/gamma(]j])/
(gamma{j]*phi(y[i]))})
if (GAMMA[i,j]<TOLERANCE) GAMMA[1i, j)<-TOLERANCE '}

cat ("\n", "The GAMMA matrix is:", "\n","\n")
print (GAMMA)

GAMMA . A<-array (dim=c(N,K,N))
for (i in 1:K){

for (j in 1:N)
GAMMA.A[ ,i,j)<-GAMMA[i,Jj)*Al ,3j] )}

# Recurrences.

e.matrixw-diag(N)
# Get g vectors.
qO<-rep((1/N),N)

q.matrix<-matrix(0,nrow:N,ncol:(K+1)) # This is used to store the
# q vector after each iteration.
g.matrix{ ,1)<-q0

g.norm<-matrix(0,nrow=N,ncol=K) # This is used to store the
# normalizec 3 vector after each iteration. This is cur estimate



# of E(Xk/Yk], for k=1, 2, .. K.
for (k in 1:K) {
gl<-matrix(nrow=N,ncol=N)
for (i in 1:N)
gl ,i]l<-(qgO(i]*GAMMA.A[ ,k,1]))
rm(g0)
g<-vector (length=N)

for (i in 1:(length(q)))
gli)<-sum(gl{i, })

rm(gl)

g.matrix({ , (k+l)}<-g # We store g at the end of each
# iteration.

q0<-q

g.norm{ ,k]l<-(g.matrix[ , (k+1)])/sum(g.matrix( ,(k+1)]1)) )
cat("\n","The g vector after K iterations is:","\n","\n")
print (g0)

cat("\n", "The normalized g vector, our estimate of E[XK/YK],")
Cat("\n", "iS:", "\n","\n")

print(g.norm{ ,K])

cat("\n","The denominator of g.norm{ ,K}], i.e. of our")
cat("\n","estimate of E[XK/YK],is:")

cat(ll\nll’ ll\nll)

g.sum<-{sum(g.matrix[ ,K+1]}))

print (g.sum)

# Get N arrays.
NO<-array (0,dim=c (N, N, N))

for (k in 1:K) {

Nl<-array (dim=c(N,N,M,N})
for (r in 1:N) (
for (s in 1:N) {
for (i in 1:N)
N1{ ,r,s,1i}<-NO{ ,r,s]lij*GAaMMA.A[ ,k,1i] }}

rm(NO)

N.hat<-array(dim=c(N,N,6N))
for (i in 1:N) {
for (r in 1:N) {
for (s in 1:N) {
N.hat[i,r,s)<-if (i===) (sum{lil{i,r,s, ])+
(g.matrix[ ,k}[rj*Als,r]*GAMMA[k,x]))
else (sum(Nl[i,r,s, 1)) }}}
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rm(N1)

MN0O0<-N.hat }
rm(A,GAMMA, e.matrix)

cat("\n", "The N.hat array after K iterations is:","\n","\n")
print (NO}

# Get J matrices.

JU<-matrix (0, nrow=N, ncol=N)

for (k in 1:K) {
Jl<-array(dim=c(N,N,N))

for (r in 1:N) {

for (i in 1:N)
J1[ .r,i)<-J0[ ,r)[i}*GAMMA.A[ ,k,1i] )}

rm{JO)

J<-matrix (nrow=N,ncol=N)
for (i in 1:N) {
for (r in 1:N)

Jli, r)l<-(sum(J1l[i,r, 1)+
(g.matrix( ,k][r]*GAMMA.A[i,k,xr])) }

rm{(J1)
J0<-J }

cat{"\n","The J matrix after K iterations is:","\n","\n")
print (J0)

# Get Gy matrices.
GO<-matrix (0, nrow=N, ncol=N}
for (k in 1:K) {
Gyl<-~-array (dim=c(N,N,N})
for (r in 1:N) {

for (i in 1:N)
Gyl[ ,r,i)<-G3[ ,r}(i)*caMMA.A[ ,k,1i] }

rm(GO0)

Gy<-matrix(nrow=N, ncol=N)
for (i in 1:N) ({
for (r in 1:N)

Gyli,rl<-(sumiGvl[i,r, ])+
(g.matrix{ ,kllr]l*y[kl*GaMMAa.A[i, k,r])) )}

rm{Gyl)

G0<-Gy }
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cat("\n", "The Gy matrix after K iterations is:",*\n","\n*)
print (GO)

# Get the Gysqg matrices.
G0.sg«<-matrix (0, nrow=N, ncol=N)
for (k in 1:K) (

Gysqgl<~array (dim=c(N,N,N))
for (r in 1:N) {
for (i in 1:N)
Gysql( ,r,i}<-GO0.sg{ ,r}[{i)*GAMMA.A[ ,k,i] }

rm(G0.sq)

Gysqg<-matrix(nrow=N, ncol=N)
for (i in 1:N) (
for (r in 1:N)
Gysqli, r}l<-(sum(Gysqlli,r, ])+
(g.matrix{ ,klir)*(v{k]~2)*GaMMA .A{i, Kk, 1))) }

rm{Gysql)
G0.sg<-Gysq }

cat ("\n", "The Gysqg matrix after ¥ iterations is:","\n","\n")
print (G0.sq)

# Get the totals.

sigma.N<-matrix{nrow=N, ncol=N)
for (r in 1:N) {
for (s in 1:N)
sigma.N{r,s]<-sum(N.hat[ ,r,s]) }

cat("\n","Sigma.N is:","\n","\n")
print(sigma.N)

N.check<-matrix(nrow=N, ncol=N)
for (r in 1:N){
for (s in 1:N)
N.check|r,s]<-(sigma.N[r,s]/g.sum)}

cat{"\n", "The N.check matrix is:","\n","\n")
print (N.check)

sigma.J<-vector(length=N)
for (r in 1:(length(sigma.J)))
sigma.J[r}<-sum(J[ ,r})

cat{".n","Sigma.J is:","\n","“\n")
print(sigma.J)

sigme.Gy<-vector(length=N)
for (r in 1l:(length(sigma.Gy)))



sigma.Gy[r)l<-sum(Gy[ ,r))

cat(*\n","Sigma.Gy is:","\n","\n")
print(sigma.Gy)

sigma.Gysg<-vector (length=N)
for (r in 1l:(length{sigma.Gvsq)))
sigma.Gysq{r]<-sum{(Gysg{ ,r)}

cat{"\n","Sigma.Gysqg is:",“\n","\n")
print(sigma.Gysq)

# Get revised values.

Al<-matrix(nrow=N, ncol=N}

for (i in 1:N)

Al{i, J<-sigma.N[ ,i]/sigma.Jd
cat (*\n", "The revised Al matrix is:","\n","\n")
print (Al)

gl<-(l/factor)*(sigma.Gv/sigma.J)
cat (“\n", "The revised gl vector is:","\n","\n")

print(gl)

garmal<-(1l/factor)*((((sigma.Gysq)-(2*gl*siagma.Gy)
+{(gl”2)*sigma.J))/\sigma.J)))

cat("\n", “The revised gammal vector is:","\rn","\n")

print {gammal)

gammal2<-(1/(dt)"~(1/2))*(1/factor)*((((sigma.Gysqg)-(2*gl*sigma.Gy)
+((gl”2)*sigma.J))/(sigma.Jd)))

cat{*\n", "The revised gammaz vector is:","\n","\n")

print {(gamma2)

4 Get gl.hat, gammal.hat, and gamma2.hat.

gl.hat<~vector{length=K)
for (k in 1l:(length(gl.hat)))
gl.hat{k]<-(gl%*%g.norm|[ ,k])
cat("\n","gl.hat is:","\n","\n")
print(gl.hat{K])

gammal.hat<-ve:tor{length=K)
for & in 1l:(length(gammal.hat)))
gammal.hat [k]<-(gammal¥*%g.norm{ ,k])
cat{"\n", "gammnal.hat is:","\n","\n")
print {gammal.hat [K])

gammaz2.hat<-vector (length=K:
for (k in 1l:(length!gamma2.hat)))
gammazl.hat (k] <-(gamma2%*%qg.norm|[ ,Lk]j)
cat(*\n", *gamma2.hat is:*,“‘n","\n")
print (gammaz2.hat{K])

rm(GAMMA . A, q.matrix,g0,q,NC,N.hat,J0,J,G0,Gy,G0.sq,Gysq)
rm{sigma.N,sigma.J,sigma.Gy, sigma.Gysq, gamma2, gamma2 .hat, g.sum)
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rm(N.check)
A<-Al
rm (Al)

# Test for normality.
vec<~-gqnorm(ppoints (K),mean=0,sd=1) # Calculate the normal scores.

testl.statistic<-vector(length=K)
for (k in 1l:(length(testl.statistic)))
testl.statistic{k]<-((y[k)-gl.hat{k])/gammal.hat{k})
cat("\n", "The vector of test statistics, using gl and gammal, is:")
cat("\n"*, "\n")
print (testl.statistic)

cat("\n", "The mean and variance of this vector are:","\n","\n")
print (mean(testl.statistic))

print (var(testl.statistic))

rm(y,gl.hat,gammal.hat)

cat ("\n", "The correlation between the values of the test statistic")
cat(*\n", "and its normal scores is:")

cat(ll\nll, ll\nll)

print{cor(vec,sort(testl.statistic)))

rm(vec,testl.statistic)

# Prediction.
predl.price<~-rep(0,K) # This is used to store the predicted prices.

predl .mult<-rep(0,K) # This is used to store the factor that is
# multiplied by St to get E[S(t+1)].

for (k in 1:K) {

predl<-~vector(length=N)
for (i in 1l:(length(predl}))
predl[i]<~(exp(gl(i]/factor)*exp((1/2)*(1/factor”™l}
*(gammal[i}~2))
g.norm[ ,k](i])

predl.mult[k]<-sum(predl)
predl.price[k]<~-(prices[ ,b][k+1l)*sum(predl)}) )}

cat("\n", "The vector of factors that is multiplied by St to get")
cat("\n",*E[S{t+1)] is:","\n","\n")

print (predl.mult)

cat{"\n", *The vector of predicted prices is:")

cat("\n", "\n")

print (predl.price)

rm(g,gamma,q.norm,predl, predl.mult)

cat("\n", "The predicted price for the next period, S.hat(K+2)")
cat("\n","(i.e. the first price in the next batch cf pricez) is:",
cat(ll\\nlllll\nll)

127



print (predl.price(K])
rm(K, predl.price)

g<-gl

gamma<-gammal
rm(gl,gammal) )}
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Appendix B

Computer Program for
Chapter 4

This appendix contains a copy of the S program written to implement the esti-

mation procedure of Chapter 4.
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The values that must be entered are: the tau vector, B
(the number of batches), K (the number of observations
# in each batch), TOLERANCE, factor, dt, m, and n.

* n

# Also assign starting values to the g, gamma, and A matrices.

# The yield data are in a file called *“yield" which has one column
# for each maturity value.

# Enter the data and parameter values.
mydata<-read.table("yield")

tau<-c(21/252,63/252,126/252,504/252,1260/252,1764/252,2520/252,

7560/252)
cat("\n", “The tau vector is:*,"\n","\n")

print(tau)

M<-(length(tau)) # Number of maturities.

cat("\n", *The number, M, of maturities is:","\n","\n")
print (M)

B-:-15 # Number of batches.

cat(“\n*, *The number, E, of batches is:","\n","\n")
print (B)

K<-15 # Number of yields for each maturity within each batch.

cat ("\n", "The number, K, of yields for each maturity within each")
cat("\n"," batch is:")

Cat(ll\n“' ll\nli)

print (K)

TOLERANCE<-{(1.0e-10) # Elements in the GAMMA matrix are not allowed
# to fall below the level of TOLERANCE.

cat("\n","The specified TOLERANCE is:","\n","“\n")

print (TOLERANCE)

factor<-5.0
cat("\n", “The factor multiplying the y values is:*,"\n","\n")

print(factor)
# Enter the time step.

dt<-(5/252) # The time interval between yield quotes.
cat("\n","The time step is:","\n","\n")
print (dt)

# Initialize.

m<-2

n<-2

N<-m*n

#icat("\n", "The value of m is:",*\n","\n")
#print (m)

#cat ("\n", *The value of n is:","\n"*, *\n")
sprint(n)

130



cat(*\n"*, "The value of N is:","\n","\n")
print (N)

g<-matrix(nrow=N, ncol=M)

for (i in 1:M)

gl ,i)<-c(0.9,0.1,0.8,0.2)
cat(*\n","The g matrix is:*,"\n","\n")
print(g)

gamma<-matrix(nrows=N,ncol=M)

for (m in 1:M)

gamma| ,m}<-c{(0.25,0.25,0.25,0.25)
cat("\n", "The gamma matrix is:","\n", *\n")
print (gamma)

A<~ matrix((1/N),nrow=N,ncol=N)
cat (*\n", *The A matrix is:*,"\n","\n")
print (A)

rm(m,n,p,q)

BP.matrix<-matrix (0, nrow=B, ncol=M)
# This is used to store the estimated prices calculated after
# processing each batch of yields.

y.matrix<-matrix(0,nrow=B, ncol=M)
# This is used to store estimated yields calculated after processing
# each batch of yields.

corr.matrix<-matrix (0, nrow=B, ncol=M)
# This is used to store the M correlations calculated for each of
# the B batches of yields.

# Run the batches of data.
for (b in 1:B) {

cat ("\n", "The batch number is:","\n", *\n")
print(b)

y<-matrix(nrow=K, ncol=M)

for (k in 1:K)({

for (m in 1:M)

yi{k,m]l<-(factor*mydatal (K*(b-1)+Kk),m]/100) )
cat("\n","The y matrix is:","\n","\n"}
print(y)

mean.y<-vector (length=M)
for (m in 1:M)
mean.y(m]<-mean(y[ ,m])
cat ("\n", "The means of the entries in each of the column. of the")
cat("\n","y matrix are:","\n", "“\n")
print (mean.y)

var .y<-vector (length=M)
for (m in 1:M)

131



var.y[ml<-var(y[ ,m])
cat (*\n", *The variances of the entries in each of the columns of*)

cat{("\n","the y matrix are:","*\n","\n")
print(var.y)

phi<-function(input) (
{(((2*pi*dt)~((-1)/2))*exp(((-1)*((input)~(2)))}/(2*dt))) )

GAMMAl<-~array (dim=c(K,N,M))
for (k in 1:K)} {
for (n in 1:N) (
for (m in 1:M) {
GAMMALl (k,n,ml<-{(phi((y{k,m}l-g[n,m))/gamma(n,m})/
(gamma[n,m] *phi(y[k,m])))
if (GAMMAl[k,n,m)<TOLERANCE) GAMMAIl{k,n,m]<-TOLERANCE }}}

GAMMA<-matrix (nrow=K, ncol=N)

for (k in 1:K) (

for (n in 1:N) {(

GAMMA [k, n]<-prod (GAMMAl [k, n, ])

if (GAMMA[k,n]<TOLERANCE) GAMMA[K,n]<-TOLERANCE }}
cat ("\n"*, "The GAMMA matrix is:","\n"*,"\n")
print (GAMMA)

rm(GAMMAL)
e.matrix<-diag(N)
GAMMA .E<-array (dim=c(N,K,N))
for (k in 1:K) {
for (n in 1:N) (
GAMMA.E[ ,Lk.,nl<-GAMMA[k,n]*e.matrix[ ,n] }}
rm(e.matrix, g, gamma,mean.y,var.y)
# Recurrences.
# Get g vectors.
g0<~-rep((1/N),N)
AgO<~- (A%*%q0)
g.matrix<-matrix (0, nrow=N,ncol=(K+1))
g.matrix{ ,1]<-g0
# This is used to store the g vector after each iteration.
rm(qg0)
qg.norm<-matrix (0, nrow=N, ncol=K)

# This is used to store the normalized q vector after each iteration.
# This is our estimate of E[Xk/Yk], for k=1,2, ..., K.

for (k in 1:K) {
gl<-matrix(nrow=N, ncocl=N)

for (n in 1:N) {
ql{ ,n}<-(Ag0[n)*GAMMA.E[ ,k,n)) )}
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rm(Ag0)

g<-vector {length=N)
for ( n in 1:N)
glnl<-sum(gl(n, 1)
rm(gl)

g.matrix{ , (k+1l))<-g # Store q at the end of each iteration.
g.norm( ,kl<-(g.matrix{ ,k]/sum(g.matrix| ,k]}))
AgO0<-(A%*%q) )

# cat("\n","The g vector after K iterations is:","\n", “\n*)
# print (g.matrix[ , (K+1)])
cat ("\n*, *The normalized g vector, our estimate of E[Xk/Yk],")
cat(*\n"*,"after K iterations is:","\n","\n")
print {(qg.norm{[ ,K})
rm(Aqg0, q)

# Get the N array.
ANO<-array (0,dim=c(N,N,6N})
for (k in 1:K) {

Nl<-~array{(dim=c(N,N,N,N))

for (r in 1:N) {

for (s in 1:N) ({

for (n in 1:N) {

Nl[ ,r,s,n)J<-ANO[ ,r,s]{n]*GAMMA.E[ ,k,n} }})
rm(ANO)

N.hat<-array(dim=c(N,N,N))
for (n in 1:N) {
for (r in 1:N) (
for (s in 1:N) {
N.hat[n,r,s]<-if (n==s) (sum(Nl|[n,r,s, 1)
+(g.matrix({ ,k}{xr]*Als,r]*GAMMA[k,s] ))
else (sum(Nl(n,r,s, 1)) }}}

rm(N1)}

ANO<-array (dim=c(N,N,N) )}
for (r in 1:N) (
for (s in 1:N) {

ANO[ ,r,s]<-(A%*%$N.hat( ,r,s]) }}

}
# cat{"\n","The N.hat array after K iteraticns is:","\n","\n")
# print(N.hat)

rm(GAMMA, ANO)
# Get J matrix.

AJO0<-matrix (0, nrow=N, ncol=N)
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for (k in 1:K) (

Jl<-array (dim=c(N,N,6N))
for (r in 1:N) {
for (n in 1:N) (
J1{ ,r,n)<-AJ0[ ,r][n)*GAMMA.E[ ,k,n} }}

rm(AJO)

J2«<-array (dim=c(N,N,N))
for (r in 1:N) {
for (n in 1:N) {
J2( ,r,nl<-Aln,r)*GAMMA.E[ ,k,n] }}

J<-matrix(nrow=N, ncol=N)

for (n in 1:N) {(

for (r in 1:N) {
Jin,r}l<-(sum(Ji[n,r, }l)+(g.matrix[ ,k]({r}l*sum{(J2[n,r, ]1))) }}
rm(J1,J2)

AJO<-matrix(nrow=N, ncol=N)
for (r in 1:N) (
AJO[ ,r)}<-(A%*%J[ ,r}) )}

}

# cat("\n", "The J matrix after K iterations is:","\n","\n")
# print (J)
rm(AJO)

# Get Gy array.
AGO<-array(0,dim=c(N,N,M) )
for (k in 1:K) {

Gyl<-array(dim=c(N,N,M,N))

for (r in 1:N) {

for (m in 1:M) {

for (n in 1:N) {

Gyll ,r,m,nl<-(AGO[ ,r,m][n]*GAMMA.E[ ,k,nl]) }}}
rm(AGO)

Gy2<-array(dim=c (N,N,M,N))
for (r in 1:N) (
for (m in 1:M) {
for (n in 1:N) {
Gy2[ ,r,m,n)<-Aln,r]*y(k,m]l*GAMMA.E{ ,k,n] }}}

Gy<-array (dim=c(N,N,M))
for (n in 1:N) {
for (r in 1:N) {
for (m in 1:M) {(
Gy[n,r,ml<-(sum(Gyl(n.r,m, ])+(g.matrix( ,k][r}*
sum(Gy2[n,r,m, 1))) }}}
rm(Gyl,Gy2)

AGO<-array (dim=c (N,N,M))

134



for (r in 1:N) ({
for (m in 1:M) {

AGO[ ,r.ml<-(A%*%Gy[ ,xr,m]) })}

}
# cat("\n","The Gy array after K iterations is:*,"\n", "\n*)
# print (Gy)

rm(AGO)

# Get the Gysq array.
AGO0.sg<-array (0,dim=c(N,N,M))
for (k in 1:K) {
Gysql<-array{dim=c(N,N,M,N))
for (r in 1:N) {

for (m in 1:M) {
for (n in 1:N) {

Gysql{ ,r,m,n)<-AG0.sq(

rm(AGO.sq)

Gysg2<-array{dim=c(N,N,M,N))
for (r in 1:N) (
for (m in 1:M) {
for (n in 1:N) (

,r,m}[n]*GAMMA.E{ ,k.,n] }})

Gysg2[ .r,m,nl<-Aln,r}*(y[k,m]"2)*GAMMA.E[ ,k,n] }})

Gysg<-array (dim=c(N,N,M))
for (n in 1:N) {(
for (r in 1:N) ¢
for (m in 1:M) {

Gysqln,r,ml<- (sum(Gysqgl[n,r,m, ])+(g.matrix{ ,k}lr]*
sum{Gysqg2(n,xr,m, 1})) }}}

rm{Gysql,Gysg2)

AGO.sqg<-array(dim=c(N,N,M})
for (r in 1:N) (
for (m in 1:M) {

AGO.sql ,r,m)<-(A%*%Gysq{ ,r,m]) }])

}
# cat{"\n","The Gysq array after K iterations is:","\n","\n")
# print (Gysq)

rm(AG0.sq,A,GAMMA . E,g.matrix)
# Get the totals.

sigma.N<-matrix (nrow=N, ncol=N)
for (r in 1:N) {
for (s in 1:N) {
sigma.N[r,s)<-sum(N.hat[ ,r,s])

sigma.J<-vector (length=N)

for (r in 1:N)
sigma.J[r]<-sum(J[ ,r])
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sigma.Gy<-matrix(nrow=N, ncol=M)
for (r in 1:N) {
for (m in 1:M) (
sigma.Gy{r,m]<-sum(Gy[ ,r,m}]} }}

sigma.Gysg<-matrix(nrow=N,ncol=M)
for (r in 1:N) (
for (m in 1:M) (
sigma.Gysq[r,ml<-sum(Gysq[ ,xr,m]) })

cat("\n","Sigma.N is:","\n", "\n")
print (sigma.N)

cat("\n*, "Sigma.J is:*,*\n*,*\n")
print(sigma.Jd)

cat("\n","Sigma.Gy is:*,"\n","\n")
print (sigma.Gy)

cat("*\n","Sigma.Gysq is:*,"\n","\n")
print (sigma.Gysq)
rm(N.hat,J, Gy, Gysq)

# Get the revised values.

Al<-matrix(nrow=N, ncol=N)
for (n in 1:N) ({
Al[n, l<-sigma.N[ ,n}/sigma.J }

gl<-matrix(nrow=N, ncol=M)
for (m in 1:M) (
gl[ ,ml<-((l/factor)*(sigma.Gy[ ,m}/sigma.J)) }

gammal<-matrix(nrow=N, ncol=M)
for (m in 1:M) ({
gammal[ ,m]<-((l/factor)*(((sigma.Gysq[ ,m])-(2*gl[ ,m]*
sigma.Gy[ ,m])+((gl{ ,m)"2)*sigma.J})/!(sigma.J))) )

cat("\n", "The revised A matrix is:","\n","\n")
print (Al)

cat("\n", "The revised gl matrix is:","\n","\n")
print (gl)

cat{("\n", "The revised gammal matrix is:","\n","\n")
print (gammal)

rm{sigma.N,sigma.J, sigma.Gy,sigma.Gysq)

# Get gl.hat and gammal.hat.

gl.hat<-matrix(nrow=K, ncol=M)
for (k in 1:K) {
for (m in 1:M) {
gl.hat(k,m]<~-(gl{ ,m]%*%g.norm{ ,kl) }}

gammal.hat<-matrix(nrow=K, ncol=M)

for (k in 1:K) {

for (m in 1:M) {

gammal.hat (k,m)<-(gammal[ ,m}%*%¥q.norm[ ,k]) }}
cat("\n", *The g.hat vector is:","\n", "\n")
print (gl.hat[K, ])
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cat("\n", *The gamma.hat vector is:*,"*\n","\n")
print (gammal.hat (K, ])

# Get the prices for the various maturities.

BPl<-matrix(nrow=N, ncol=M)
for (m in 1:M) {
BP1[ ,m]<-(rayment*exp({-1)*gl{ ,m]*tau(m))) )

BP<-vector (length=M)
for (m in 1:M)
BP[m]<-(BP1l{ ,m]%*%g.norm{ ,K])
#cat(*\n", “The vector of prices for the various maturities is:")
#cat(*\n","\n")
#print (BP)

yld<-vector (length=M)
for (m in 1:M)
yld[ml<-(((~1)*log(BP[m]}))/taulm])
#cat("\n", "The vector of estimated vields for the various")
#cat("\n", "maturities is:","\n","\n")
#print (y1d)

BP.matrix([b, J]<-BP
y.matrix[b, J<-yld

rm(BP1l,BP,qg.norm,yld)
# Testing the model.

test.statistic<-matrix(nrow=K,ncol=M)
for (m in 1:M) (
test.statistic{ ,m}<-({y[ ,m]-gl.hat[ ,m])/gammal.hat{ ,m]) }

mean.vector<-vector (length=M)
for (m in 1:M) {
mean.vecteor[ml<-(mean(test.statistic[ ,mj)}) )

var.vector<-vector{length=M)
for (m in 1:M)
var.vector[m}<-(var(test.statistic{ ,m})) )}

cat ("\n", "The matrix of test statistics is:",*\n","\n")
#print (test.statistic)
cat("\n", "The mean vector is:","\n","\n")

print (mean.vector)
cat("\n*, "The variance vector is:*,"\n","\n")
print (var.vector)

vec<-gnorm(ppoints(K),mean=0,sd=1) # Calculates the normal scores.

for (m in 1:M) (
corr.matrix{b,mj<-(cor(vec,sort(test.statistic| ,m})))}

rm{test.statistic,mean.vectcr,var.vector,gl.hat,gammal.hat,y)
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A<-Al

g<-gl
gamma<-gammal
rm(Al,gl,gammal)

)

cat(*\n"*, "The matrix of prices, where the bth row gives prices")
cat("\n", "by maturity for the bth batch of data, is:")
cat("\n*,"\n")

print (BP.matrix)

cat(*\n","The matrix of estimated yields, where the bth row gives")
cat(*\n", "estimated yields by maturity for the bth batch of")
cat(*\n","data, is:","*\n","\n")

print(y.matrix)
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