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Abstract

Geostatistical models are often generated with widely spaced data configurations. Data collection
costs prohibit exhaustive sampling and necessitate statistical inference from limited samples. Spatial
prediction with sparse data in the presence of extreme values is an enduring challenge in the mining
industry. Extreme values may have significant local influence, leading to overstated resources and
the risk of production shortfalls. Practitioners are presented with difficult decisions for restricting
extreme value influence and characterizing their spatial continuity. Inputs to numerical geologic
models consist of observed data, a representative histogram and spatial controls on mineralization.
Each of these components presents challenges in the presence of extreme values. Extreme values
are rare events, making inferences about their probability of occurrence difficult. The influence of
extreme values is often controlled in practice through grade capping, which could significantly impact
the final resource. Extreme values’ spatial continuity often differs from the barren or lower grade
background. Traditional estimation and simulation methodologies are limited in adapting to extreme
values and asymmetric spatial continuity features. These challenges motivate the development of
a framework for the simulation of continuous variables with explicit consideration of high-order
extreme value features. The proposed network model of regionalization (NMR) framework constructs
a continuous regionalized variable as a non-linear mixture of latent Gaussian factors and does not
require capping or modification of extreme grade values. The network parameters are inferred
via optimization, considering two- and multi-point connectivity features at grade thresholds. This
permits the reproduction of high-order connectivity features and asymmetric spatial continuity of
high and low grades that cannot be captured by a single Gaussian random function (RF) model. The
latent Gaussian factors are imputed such that they exactly reproduce the observed data values when
mixed. The applicability of the proposed methodology is demonstrated on a mineral deposit where
the project operators note non-Gaussian, extreme value features in drillhole data. In this deposit
the NMR approach shows a 7% improvement in expected metal relative to traditional approaches

using a hold-out data set for validation.
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Chapter 1

Introduction

The field of geostatistics encompasses the problem of spatial prediction and the characterization of
uncertainty within geological systems (Deutsch & Journel, 1992). We are concerned with describing
the spatial aspects of mineralization and its variability or dispersion. Geostatistics was developed
based on the need to forecast the recoverable resources at unsampled locations in mineral deposits
(Matheron, 1963). Though initially developed in a mining context, geostatistics has found practi-
cal uses in many fields concerned with spatially correlated data, such as petroleum, hydrogeology,
environmental science, remote sensing and others (Goovaerts, 1997).

Geostatistics utilizes observed categorical and continuous properties to generate exhaustive nu-
merical models of the subsurface. These models are either deterministic or probabilistic, where
equiprobable realizations are generated through stochastic simulation (Chiles & Delfiner, 2012).
These realizations honour the spatial and multivariate characteristics of the input data with statis-
tical fluctuations and provide a measure of joint uncertainty within the region of interest (Rossi &
Deutsch, 2013). Characterizing and quantifying geologic uncertainty gives engineers and decision-
makers practical tools for optimizing orebody extraction.

Mineral deposits, particularly precious metals, often exhibit strongly positively skewed grade
distributions. These distributions pose challenges for spatial prediction as there is usually limited
data characterizing the upper tail. Some components of the high values in the upper tail characterize
“outliers” based on a subjective threshold. There is a risk of local overestimation with smooth
kriging estimators if sparse, high-value data are left unmanaged (Leuangthong & Nowak, 2015).
Standard practice in mining is to cap high values to a maximum to avoid local conditional bias,
but those high values may have tremendous economic value. Appreciating the potential and the
upside of such values in a quantitative and repeatable manner is of great practical interest. The
term “extreme value” is not regularly used in the mining industry; rather, “outlier” is used. Some
mineral distributions with high coefficients of variation likely do contain extreme values in the classic

statistical sense. A mineral deposit is an extreme value in the context of regional geology.

1.1 Problem Setting

Mitigating the impact of extreme values on resource estimation is a long-standing issue. Extreme
values present unique challenges because there are few samples, and understanding their spatial
distribution is difficult. This lack of data is coupled with the potential of significant economic risk

if mismanaged. High grades are typically capped in practice to mitigate the risk of overestimation.
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Numerous problems remain outstanding concerning (1) objectively defining what an extreme value
is, (2) explicit approaches for limiting extreme value influence, (3) characterizing the statistical
or distribution component of extreme values, (4) characterizing the spatial component of extreme
values and (5) develop practical advice to combine the statistical and spatial components.

The mining industry has not established a consensus regarding outlier management, and many
approaches are developed case by case. Should high grades be capped? Should sub-regions be
delineated to isolate higher grades? Should we use decile analysis, cumulative probability plots,
cutting curves, coefficient of variation, production reconciliation, arbitrary percentiles, metal at risk,
indicator correlations, multiple indicator kriging or no capping? If we cap, should it be before or
after compositing? Answers to these questions influence the final metal content of resource estimates.
The impact of restricting outliers may be significant depending on the distribution of the available
data.

High-grade values are generally sparse in mining data sets. Though sparse, these high-grade
values may contribute significantly to the project’s economics. For example, at the Brucejack deposit
in Northwest British Columbia, the top 1% of drill core samples contain 83% of the total deposit
metal (Au) (Pretium Resources Inc., 2020). Anecdotal evidence from producing gold mines suggests
this scenario poses an economic risk if samples in the upper tail are not explicitly managed. The use
of smooth deterministic estimators such as kriging potentially exacerbates this issue. Many strongly
positively skewed distributions also exhibit non-Gaussian spatial characteristics (Journel & Alabert,
1989). There is a need for a simulation framework that can correctly characterize the non-Gaussian
spatial features related to extreme values without arbitrarily restricting their influence.

The spatial continuity of extreme values in the upper tail may differ from low values. The
multivariate Gaussian assumption underlying many geostatistical algorithms does not allow for
spatial connectivity of extreme values, nor does it allow for asymmetry in the loss of correlation
away from the median (Journel & Alabert, 1989). Multiple indicator kriging (MIK) (Journel, 1983)
was conceived for this purpose; however, it has proved difficult to implement effectively in practice,
and simpler Gaussian techniques can outperform MIK (Vincent & Deutsch, 2021). The challenges
associated with MIK and traditional extreme value management motivate the need for a new spatial

model to characterize the non-Gaussian spatial continuity of extreme values.

1.1.1 Thesis Statement

A framework for the simulation of continuous variables in the presence of extreme values is proposed
to address these challenges. The framework constructs numerical geologic models with explicit con-
sideration for extreme values’ presence and spatial structure. These models can better characterize
high-grade geologic features by representing a regionalized variable by a non-linear combination of

underlying latent Gaussian factors.
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The framework consists of a non-linear network model of regionalization (NMR), which is an
expansion of the linear model of regionalization (LMR) concept (Journel, 1974). Rather than a
positive linear combination of latent factors, the network model of regionalization (NMR) intro-
duces non-linear activations and a hidden layer to form a network structure. Non-linearity allows
the spatial model to capture complex, high-order features and better control the known indicator
asymmetry between low and high grades with non-Gaussian distributions (Journel & Alabert, 1989).
High-order measures of connectivity are shown to characterize non-Gaussianity. These connectivity
measures are extracted from drill strings and incorporated into the spatial models. Capturing richer
spatial structures beyond what is possible with two-point statistics improves the prediction of high-
grade in-situ resources. The NMR framework is particularly advantageous for strongly positively

skewed distributions such as precious metals, uranium or diamonds.

Thesis Statement: The breakdown of regionalized variables into fundamental latent com-
ponents coupled with a non-linear network model of regionalization permits improved proba-

bilistic modeling of strongly positively skewed grade distributions.

The key contributions of this thesis are the development of:

1. The NMR framework for the simulation of high-order spatial features improves the modeling

of continuous variables in the presence of extreme values. The framework includes:

a) Methodology for the parameterization of the network, permitting mapping between latent
and observed spaces. This inverse problem is approached through stochastic optimization.

b) Methodology for stable imputation of latent factors that (1) reproduce the correct spatial
statistics and (2) reproduce the observed data values.

¢) A novel activation function to impose spatial features in the tails of the continuous dis-

tribution.

2. Tools for calculating high-order connectivity measures from drillhole sequences; these connec-
tivity features are a proxy for non-Gaussianity.
3. An algorithm for identification of outliers in a spatial context. The algorithm considers the

spatial arrangement and shape of the global empirical distribution to assign an outlier score.

Little research has been done on the continuous simulation of high-order spatial features with-
out training images. In the NMR framework, all high-order features are extracted directly from the
observed data with no assumptions made regarding the geological system or underlying physical
processes. These one-dimensional (1-D) patterns are restricted to the drill strings; however, the net-
work parameters enforce connectivity away from the data. Another key difference is the introduction
of the latent Gaussian space. The local conditional cumulative distribution functions (CDFs) are

3
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not approximated by a combination of high-order statistical moments but rather calculated directly
under a multivariate Gaussian assumption. The non-Gaussian spatial model is constructed as a

mixture of Gaussians; the transform from latent to observed space captures the high-order features.

1.2 Geostatistical Background

The proposed research covers a wide range of subjects involving modeling continuous, positively
skewed variables with geostatistical simulation. The following section reviews the relevant geostatis-
tical concepts. This section does not intend to be exhaustive but rather provide a review of concepts

related to the NMR framework.

1.2.1 Overview

Geostatistics is a field of applied statistics concerned with characterizing and modeling spatially
correlated variables. A variable dispersed in space and exhibiting spatial structure is said to be
regionalized (Matheron, 2019). A foundation of geostatistics is the concept of random variables
where unknown values, z, at an unsampled location are modeled as outcomes of a random variable
Z (Deutsch & Journel, 1992). A random function represents a collection of spatially correlated,
location-dependent random variables Z(u) for every location u within the study region (Goovaerts,
1997).

The decision of stationarity is one to group or pool relevant data together. As no data replicates
are available at location u to infer the random function Z(u), geologically similar data must be
pooled, permitting reliable inference of population statistics. This decision of stationarity allows
the trade of unavailable replicates for data at other locations for statistical inference (Deutsch &
Journel, 1992). Pooling too little data may lead to unreliable statistics, and too much data may lead
to the masking of important geological features. Stationarity is a property related to the underlying
random function model and cannot be checked or validated with data (Goovaerts, 1997).

Geostatistical estimation and simulation algorithms require inference of the random function’s
first and second-order moments (mean and covariance). When divided into a sub-region D, the
variable of interest is considered first-order stationary if the expected value is constant within D.
The variable is second-order stationary if the covariance depends only on the separation vector h

within D. A random function Z(u) is second-order stationary when:
E{Z(w)} =p
E{Z(u) - 1} = C(0) = o
E{Z(u) - Z(u+h)} - 1 = Clu,u+h) = C(h)

YVuu+h €D
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where p, 02 and C(h) are the mean, variance and covariance, respectively, and do not depend
on location. The invariance of the random function parameters to a location within D allows the
relation C(h) = 0% — y(h) which is the foundation of variogram interpretation (Pyrcz & Deutsch,
2014).

The linear model of regionalization (LMR) is used to fit experimental variograms with models
that ensure positive definite covariance matrices. As not all combinations of variogram models
may lead to a permissible model, the LMR constructs a random function Z(u) to be the linear
combination of L + 1 independent, standard random functions {Yz(u),¢ = 0,..., L}, each with its

permissible variogram function (Goovaerts, 1997), plus the stationary mean:

L
Z(w) = 3 ar¥o(u) + p(u)
=0

where L is the number of nested structures in the model. By convention, the isotropic nugget
effect is the 0*" structure. The variogram model of can Z(u) then be expressed as the sum of the

variograms for each of the factors:

L
72(h) =D bele(h),  be = (ar)’
£=0

where I'y(h) is the variogram of Y; and by represents the variance contribution of each £ =0, ..., L
factors.

The LMR extends to the multivariate case with k = 1,..., K coregionalized variables. With the
liner model of coregionalization (LMC), each coregionalized random function, Zy(u), is also the sum

of the standard, uncorrelated factors:

L
Z(u) = agYe(w) + p(w)
£=0

where ay j is the contribution of the 0" factor the k' variable. The direct and cross variograms

can be expressed as:

L
Ve (h) = agrarpTe(h), kK =1,... K
=0

The LMC is commonly modeled in the cokriging paradigm for multivariate covariance inference.

1.2.2 Factorial Kriging

As demonstrated with the LMR notation, the regionalized variable is characterized by m(u), the
L+1 ag values and the L + 1 variograms I'p(h). Factorial kriging aims to model each nested spatial
structure present in the LMR for filtering or feature extraction. The idea is that each regionalized
factor has a correlation structure responsible for a different scale of continuity, and they can be

estimated independently (Matheron, 1982). The factors are estimated as linear combinations of the
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data values Deutsch (2007):
2(w) = arYe(w) = 32 Aoz (u)
i=1

By convention, ordinary kriging is used, though there is no reason simple kriging cannot be used
(Hong & Deutsch, 2007). The estimation weights for the £** factor are obtained by minimizing the

estimation variance, leading to the factorial kriging equations:

> NeCui, ug) + pe = Ce(ugu), i=1,...,n

E?:H\MZO, £=0,...,L

The right hand side covariances are the covariances corresponding to the particular structure ¢

being estimated. The sum of the estimated factors returns the original ordinary kriging estimate:

L
() =) 2 () +pu(w)
=0

Filtering properties of factorial kriging may be helpful if one is interested in removing a particular
factor from estimated maps. For example, high-frequency variation from the nugget effect could be
filtered by only considering the ¢/ = 1,..., L factors. Factorial kriging extends to the multivariate
context by considering the LMC fitted to the direct and cross variograms where each coregional-
ized variable {Z(u),k = 1,..., K} is a linear combination of the standard, independent factors

{Y/(u),v=1,...,K;£=0,...,L} (Wackernagel, 1988):

K n

K
zip(0) = ZazkYe”(u) = Z Z Aiz"(u;)
v=1

v=1 i=1

The cokriging equations for a particular spatial component are then:

25:1 Z;’L:l )\k/’jck,k/ (lli, llj) + pup = Cﬁ,k(uh Ll)7 k= ]., ceey K;i = 1, o, Nn
Z;-Lzl)\k,j =0 k=1,... K

Again, the sum of the estimated factors returns the original regionalized variable:

L
() =Y 2 (w) + pi(u)
=0

Multivariate factorial kriging is a technique for characterizing the regionalized factors Y7 ;, from
observations of Z. This technique is advantageous if the correlation between variables depends on
scale and one would like to extract or filter a particular spatial structure.

Simple factorial kriging equations are equivalent to the simple kriging equations except for the
right hand side covariance is the covariance of the nested structure being estimated (Hong & Deutsch,

2007):

> A iC(ug, v ) = Co(uy, u)

i=1,...,n ¢=1,...,L
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L
() =) () +p
£=0

The sum of the estimated factors plus the mean equals the simple kriging estimate.

1.2.3 Simulating Continuous Variables

Kriging and its variants generate smooth, deterministic estimates that do not reproduce the true
variability of the data (Deutsch & Journel, 1992). The smoothness of this estimate is not desirable
if the transfer function is sensitive to extreme values; under-representing the variability may be
consequential. Simulation methods reproduce the input variables’ covariance structure and spatial
variability while honouring data values at their locations (Goovaerts, 1997). Generating a set of
equiprobable realizations captures uncertainty in the random variable (RV). Conventional simula-
tion algorithms rely on the assumption that the input variables are multivariate Gaussian after a
univariate normal score transform. Under the multivariate Gaussian assumption, all conditional
distributions are defined by the normal equations and thus are linear combinations of the condi-
tioning data (Chiles & Delfiner, 2012). Many algorithms are available for conditional simulation
of Gaussian random functions (RFs). Pinto (2020) presents a comprehensive overview of the most
common algorithms and best practices for selecting an algorithm given the problem context.
Gaussian simulation algorithms are prevalent in the mining industry, with sequential Gaussian
simulation (SGS) likely being the most common (Rossi & Deutsch, 2013). SGS is a Monte Carlo
simulation (MCS) technique for simulation of Gaussian RFs (Gémez-Herndndez & Journel, 1993;
Gomez-Hernéndez & Srivastava, 2021; Goovaerts, 1997; Isaaks, 1990). SGS requires (1) parameter-
izing a multivariate conditional CDF, and (2) drawing realizations. Given the dimensionality of the
problems faced in mining, (1) is only possible if a parametric, multivariate Gaussian distribution
is adopted (Leuangthong, Khan, et al., 2008). The curse of dimensionality (Bellman, 1961), plus
the simplicity and tractability of the Gaussian distribution, precludes the use of other distributions.

The following steps generalize the process of generating a realization with SGS:

1. Define a random path through the grid nodes.

2. At each location, calculate the first and second-order moments of the conditional CDF using
the normal equations.

3. Randomly draw a simulated value from the conditional CDF.

4. Add the simulated value to the conditioning data.

5. Visit the next grid node in the path.

As the simulation progresses, the amount of conditioning data increases. In practice, the calcu-

lation of the conditional moments is restricted to a local neighbourhood about the location being
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simulated to prevent unreasonably large systems of equations. Multiple realizations are generated

by varying the random path and draws from the conditional CDFs.

1.2.4 Multiple Point Statistics

Two-point statistics summarize the relationship between points separated by a lag vector h. Two-
point statistics, such as the variogram or correlogram, are measures of linear continuity. Multiple
point statistics (MPS) are measures of continuity between multiple spatial arrangements of points
with the possibility of reproducing curvilinear or ordering patterns (Boisvert, Pyrcz, et al., 2007).
There are numerous MPS including the n-point connectivity function (Journel & Alabert, 1989),
the distribution of runs (Ortiz, 2003) and the multiple-point density function (MPDF) (Boisvert,
Pyrcz, et al., 2007).

The foundation of multiple-point simulation algorithms (Guardiano & Srivastava, 1993; Strebelle,
2002) is the replacement of inference of two-point statistics with the MPDF, where the MPDF
describes the frequency of occurrence of a particular pattern. The local conditional probabilities
are derived from multiple-point configurations, allowing for the reproduction of non-linear features
(Silva, 2014). A challenge of simulation with MPS is that inference of the MPDF with limited
data. This challenge is overcome by extracting the MPDF from a training image (TI) (Journel,
2005). The TT acts as a substitute for a RF model and is an exhaustive image at the same support
of realizations. The TI should have the expected geologic variability of the final models (Gémez-
Hernéndez & Srivastava, 2021). Though the TT allows for inference of MPS not available from the
data, one faces the challenge of selecting an appropriate TI. Boisvert, Pyrcz, et al. (2007) describes
the choice of TI being analogous to variogram modeling in the two-point paradigm, and is of first-
order importance. In general, the TI should represent the physics of the underlying geological
process and be characteristic of the conceptual geology. TIs can be generated from outcrop data,
object-based models, or process-based models (Tahmasebi, 2018). More recently, Minniakhmetov
and Dimitrakopoulos (2022) present methodology for high-order simulation of categorical variables
that does not rely on a training image.

Traditionally, MPS simulations focus on categorical modeling of stratigraphic deposits where
object-based or process-mimicking models are applicable across geologic environments (Mariethoz
& Caers, 2014). Multi-point simulation of continuous variables is approached with high-order spatial

cumulants, discussed in the next section.

1.2.5 High-Order Simulation

High-order simulation methods are similar in concept to the multi-point simulation framework, with
applications for both continuous and categorical variables. These methodologies are predominantly

data-driven, complemented by a TI. Rather than inferring high-order conditional probabilities ex-



1. Introduction

clusively from a TI, they are approximated by spatial cumulants calculated from the data. Dim-
itrakopoulos, Mustapha, et al. (2009) and Mustapha and Dimitrakopoulos (2010, 2011) propose
high-order simulation based on spatial cumulants. A cumulant is defined as the logarithm of the
moment-generating function of a RF. The idea is that spatial cumulants can generalize the co-
variance to orders beyond two; Dimitrakopoulos, Mustapha, et al. (2009) shows that the first and
second order cumulants are the mean and variance, respectively. The high-order cumulants, similar
to MPS, can characterize complex non-linear and non-Gaussian geologic features. By incorporating
spatial cumulants up to order five, Mustapha and Dimitrakopoulos (2010) show the ability to cap-
ture multi-point periodicity, connectivity of extreme values and complex geometric characteristics.
The key idea in the HOSIM approach (Mustapha & Dimitrakopoulos, 2011) is that the local condi-
tional CDFs take the form Legendre polynomial expansions, where spatial cumulants approximate
the polynomial coefficients (Mustapha & Dimitrakopoulos, 2010). Both a TT and available data are
used to infer the Legendre polynomial coefficients; third- and fourth-order statistics are estimated
from the data, while higher-order features come from the TI (Minniakhmetov & Dimitrakopoulos,
2022). Minniakhmetov and Dimitrakopoulos (2017) extends the high-order simulation framework
to the multivariate context. Minniakhmetov, Dimitrakopoulos, et al. (2018), Yao, Dimitrakopoulos,
et al. (2020) and Yao, Dimitrakopoulos, et al. (2021) present further refinements to the polynomial
approximations.

Though largely data-driven, a drawback of these methodologies is that a TI is required. The
inference of the spatial cumulants draws from both the TI and available data; if the high-order
multi-point replicates are not available in the data, they are incorporated from the TI (Mustapha
& Dimitrakopoulos, 2010; Yao, Dimitrakopoulos, et al., 2021). Selecting or generating a TI for
continuous variables in mining problems is challenging without dense sampling; Minniakhmetov,
Dimitrakopoulos, et al. (2018) and de Carvalho, Dimitrakopoulos, et al. (2019) use blast hole samples
for TT construction. Yao, Dimitrakopoulos, et al. (2021) presents methodology for TI free simulation

with aggregated kernel statistics.

1.2.6 Imputation

Imputation is a key component of probabilistic modeling of continuous heterotopic data (Barnett
& Deutsch, 2015; Hadavand & Deutsch, 2023; Silva & Deutsch, 2018) and in truncated Gaussian
categorical modeling techniques (Armstrong, Galli, et al., 2011; Arroyo & Emery, 2020; Madani &
Bazarbekov, 2021; Silva, 2018). Simulation often considers a multiple imputation framework (Little
& Rubin, 2019) where one generates realizations of missing values to transfer imputation uncertainty
to the final models correctly.

The goal of imputation in the heterotopic data context is to fill in missing values. Modern geosta-

tistical workflows necessitate the use of multivariate transforms like projection pursuit multivariate
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transform (PPMT), stepwise conditional transform (SCT), and principal component analysis (PCA)
which require homotopic data. Any heterotopic data observations must be either excluded or im-
puted. Geologic data is often “missing not at random” and simply excluding heterotopic observations
can lead to biases in the final model (da Silva & Costa, 2019). The goal of any imputation algorithm
is to define the distribution of the missing values conditional to the observed values. Barnett and
Deutsch (2015) proposed a non-parametric methodology for imputing continuous variables based on
Bayesian updating and Gibbs sampling. A simple kriging (SK) mean, and variance is merged with
a collocated conditional distribution estimated with a multivariate kernel density estimate (KDE).
The parameters calculated with SK account for the univariate spatial component, while the KDE
accounts for the collocated multivariate component. Imputed values are drawn from the merged
distribution. This methodology is computationally expensive with many data due to KDE calcula-
tions and Gibbs sampler iterations. Silva and Deutsch (2018) proposed a non-parametric imputation
algorithm based on Gaussian mixture models (GMMs) to relieve the burden of KDE calculations.
SK defines the local conditional spatial distribution, however the collocated multivariate density
is sampled from a fitted GMM. Hadavand and Deutsch (2023) proposed another non-parametric
methodology where deep learning characterizes the multivariate relationships, rather than a GMM.
Two neural networks are trained to quantify the moments of the conditional missing value distri-
bution; one for the mean and another for the second, third, and fourth-order moments. A lambda
distribution is fit given the conditional moments that characterize the collocated multivariate rela-
tionship.

Latent imputation is a special scenario where all values are missing (Little & Rubin, 2019). Trun-
cated Gaussian modeling techniques utilize the idea that categorical observations are generated by
truncating underlying latent variables (Matheron, Beucher, et al., 1987). These latent variables are
not observed and are a synthetic feature of the model. Imputation of latent variables subject to cate-
gorical observations is commonly approached with a Gibbs sampler (Geman & Geman, 1984), where
directly sampling the multivariate truncated Gaussian distribution is not possible, but sampling the
marginal conditional distributions is possible (Arroyo & Emery, 2020; Madani & Bazarbekov, 2021;
Silva, 2018). Though the Gibbs approach is common, Emery, Arroyo, et al. (2014) and Silva (2018)
note convergence issues with spatially correlated variables. More recently Lauzon and Marcotte
(2020a, 2020b, 2023) proposed the sequential spectral turning band simulator as an alternative for
Gibbs sampling, where Gaussian RFs are constructed by addition of cosine functions. The proposed
spectral approach begins with Gaussian RFs that meets the inequality constraints. Then, the spatial
component is introduced by sampling the spectral density. In contrast, the Gibbs sampler approach
begins with Gaussian RFs with the correct spatial structure and gradually introduces constraints
through Gibbs iterations. The authors show that the spectral approach is a valid alternative to the
Gibbs sampler with stable convergence of many data, multiple rock types, and complex truncation

rules.
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1.3 Extreme Value Background

The following section provides background literature on extreme values, outliers, and their signif-
icance in geospatial and mining-related problems. Though the NMR framework does not directly

incorporate extreme value theory (EVT), the statistical foundation is presented for completeness.

1.3.1 Outlier Detection

Outlier detection is relevant to all statistical modeling, and the literature is vast (Zimek & Filz-
moser, 2018). Hodge and Austin (2004) note that authors may refer to outlier detection as novelty,
noise, anomaly or deviation detection. In all cases, however, an outlier is an observation sufficiently
dissimilar to other observations (Barnett & Lewis, 1984). Wang, Bah, et al. (2019) group outlier
detection methodologies into (1) statistical methods, (2) distance-based methods, (3) density-based
methods, (4) clustering-based methods, and (5) ensemble-based methods. Statistical methods, ei-
ther parametric or non-parametric, compare the relationship of potential outliers with the remaining
distribution. Distance-based methods (euclidean or non-euclidean) compare the distance between
observations where potential outliers are “far” from other observations. Density-based methods
consider outliers in low-density regions of a probability density function (PDF). Clustering-based
methods classify each observation, and potential outliers are not within or near dense clusters. Fi-
nally, ensemble methods are combinations of dissimilar methodologies to create a more robust outlier
detection model. Boukerche, Zheng, et al. (2021); Hodge and Austin (2004); Pimentel, Clifton, et al.
(2014); Wang, Bah, et al. (2019) provide comprehensive reviews of outlier detection methodologies
with applications to fraud detection, cybersecurity, sensor networks, image processing, time series
and data streams, medical diagnostics and industrial monitoring. Pang, Shen, et al. (2022) presents
a comprehensive review of outlier detection with deep learning, though the concepts are largely

beyond the scope of this thesis.

1.3.2 Geospatial Outlier Detection

Outlier detection in the mining industry is based largely on graphical methods (Leuangthong &
Nowak, 2015; Silva, 2021). These methods are necessarily subjective as the practitioner must in-
terpret a plot and select a threshold to define an outlier. Leuangthong and Nowak (2015), Nowak,
Leuangthong, et al. (2013), and Rossi and Deutsch (2013) provide practical advice on threshold se-
lection for cumulative probability plots (CPPs) where breaks in the upper tail may represent outlier
populations. Babakhani (2014) proposed a spatial bootstrap-based methodology to characterize the
relationship between the naive and capped mean. The methodology aims to identify the values that
cause higher mean values as potential outliers.

Practitioners often omit the spatial characteristics of sample values when identifying outliers.
The spatial context of the samples is likely relevant; an extreme value surrounded by other high val-
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ues may not be an outlier. The correlation structure of the variable(s) is relevant to understanding
the spatial context (Filzmoser, Ruiz-Gazen, et al., 2014). Babakhani (2014) proposed a methodology
for identifying spatial outliers based on the rank transform of cross-validation estimates. Outliers
identified by the rank transform consider the spatial neighbourhood and are different from simply
considering the univariate distribution. Many authors (Chen, Lu, et al., 2008; Ernst & Haesbroeck,
2017; Filzmoser & Gregorich, 2020; Filzmoser, Ruiz-Gazen, et al., 2014; Harris, Brunsdon, et al.,
2014; Leung, Balamurali, et al., 2021) have proposed methodology for spatial multivariate geochem-
ical outlier detection using the minimum covariance determinant (MCD) estimator of Rousseeuw
and Driessen (1999). The Mahalanobis distance (Mahalanobis, 2018) is a common distance metric
in multivariate space. However, it is sensitive to outliers (Filzmoser, Ruiz-Gazen, et al., 2014). The
MCD is a robust measure of the global correlation structure in the presence of outliers. Given the
MCD estimate, various measures of local and global multivariate distances are calculated to deter-
mine an outlier score. Chen, Lu, et al. (2008) calculate an outlying distance based on the differences
between each sample value and the median value over its neighbours. Filzmoser, Ruiz-Gazen, et al.
(2014) calculate a degree of isolation for each observation based on the robust Mahalanobis distance
(MCD estimate) globally, as well as within a local neighbourhood; values above a defined threshold

are considered potential multivariate outliers.

1.3.3 Geospatial Outlier Management

Once one identifies outliers, the practitioner must decide on a management strategy. Managing
extreme values and outliers prior to resource estimation is a key component, particularly for heavy-
tailed mineral deposits. The general idea is that unadjusted grades may lead to unrealistic local
estimates adjacent to high-grade composites (Nowak, Leuangthong, et al., 2013). Leuangthong and
Nowak (2015) provide an overview of outlier management practices in the context of mineral re-
source estimation. The practices are grouped into three general categories: (1) choosing appropriate
domains, (2) grade capping, and (3) limiting the influence of outliers through the estimation process.
The following sections touch on categories (2) and (3)—trade-craft and practitioner experience is
the foundation of many suggested practices.

There are numerous practical methods to manage the influence of high-grade samples explic-
itly. Traditional methods published in mining technical reports largely fall into the grade-capping
category. Techniques for selecting a capping threshold include decile analysis (Parrish, 1997), cumu-
lative probability plots (Rossi & Deutsch, 2013), cutting curves (Roscoe, 1996), coefficient of varia-
tion thresholds (Parker, 1991), production reconciliation, arbitrary quantiles, metal-at-risk (Parker,
2006), and indicator correlations (Nowak & Leuangthong, 2019). More recently, Dutaut and Mar-
cotte (2021) proposed using an error-free coefficient of variation (CV) calculated from coarse dupli-

cate correlation to determine a capping limit.
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Babakhani (2014) proposed a less conventional method of projecting outliers to an extra dimen-
sion to reduce the local influence. This method requires specifying a distance d to project the outlier;
the distance could be determined by calibrating kriging results to an expected value from simulation
or selecting a specific quantile. Babakhani (2014) also proposed calibrating a capping limit based
on an expected value from simulation. This approach is similar to the previous; however, instead
of projecting an outlier some distance, d, away, the outlier value is reduced. Within some local
volume of influence, the outlier grade is reduced until the kriged grade matches the expected value
of 100 simulated realizations. The idea is that simulation is more robust in the presence of outliers
and this resistance is exploited to calibrate a capping grade. Rivoirard, Demange, et al. (2013) and
Maleki, Madani, et al. (2014) propose the selection of an optimal capping limit through analysis of
the ratios of direct and cross-indicator variograms. The goal is to identify the range [zmin, Zmaz] I
where the capping limit should fall. The minimum value is defined by the first threshold where the
ratio of the cross and direct indicator variogram values are constant, independent of the lag vector.
The maximum value is the threshold where the residual variogram is pure nugget.

Many methodologies have been proposed to circumvent the practice of capping. Some techniques,
such as MIK (Journel, 1983), directly treat outliers through the specification of upper-class means
and do not require explicit capping (Rossi & Deutsch, 2013). Costa (2003) proposed a variant of
robust kriging (Hawkins & Cressie, 1984) where the weight to outlier samples differs from that of
inliers. The “robust-edited” values are adjusted based on the difference between the sample value
and the weighted median at the same location. Rivoirard, Demange, et al. (2013) proposed the
decomposition of the grade value into a truncated grade, a weighted indicator above the top cut
grade, and a residual. The residual is uncorrelated with the truncated grade and the indicator
if the cutoff is sufficiently high. The final estimate is a kriged estimate of the residual plus a
cokriged estimate of the indicator and truncated grade. Maleki, Madani, et al. (2014) proposed
a similar decomposition approach where they suggest spatial prediction is improved by omitting
outlier values from variogram calculations. Fourie, Morgan, et al. (2019) proposed a methodology
that post-processes kriging weights to generate realistic estimates without grade smearing. Kriging
weights are adjusted based on the ratio of the frequency of outlier samples to median samples. The
methodology requires a subjective selection of bin widths after the normal score transform of the
variable. More recently, Silva (2021) proposed a methodology for adjusting outlier grades based on
Bayesian updating of the data distribution with a cross-validation error distribution.

Restricting the spatial range of influence of outlier values during estimation is another prac-
tical approach to circumvent capping. This restriction allows using extreme values or outliers in
estimation without explicit capping. Restricting the search around extreme values allows them to
influence within that range but not beyond it. There is no theory to support this restriction, though
the idea is that the search should be within the range of high-grade continuity. The restricted search

ellipsoid dimensions could come from understood mineralization controls, high-grade indicator vari-
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ogram continuity analysis, or the p-gram (Leuangthong & Nowak, 2015). Leuangthong and Nowak
(2015) provide an estimation example with a restitched search radii placed on high-grade samples

in a South American gold deposit.

1.3.4 Extreme Value Theory (EVT)

Extreme value theory (EVT) is a statistical foundation for quantifying probability distributions and
magnitudes of atypically high or low events. Early works by Fréchet (1927), Fisher and Tippett
(1928), von Mises (1936) and later by Gnedenko (1943) systematically developed the theory and
formalized the asymptotic distribution of extremes for block maximums. Fisher and Tippett (1928)
show that for a sequence of independent and identically distributed (iid) random variables with a
common distribution function F, the so-called “block maximum?”, M,, = maz{Z;, ..., Z,}, can only

converge to one of three distributions:

G1(z) = exp —ezp(— (Z“>> , —00 <2< 00 (1.1)

Z—p £ 5
Grri(z) = U <_ <T) > o (1.3)

1, zZ2>

To avoid degeneracy, the variable M, is normalized to M} = a_ (M, — b,) for a sequence of
“normalizing” constants a,, > 0 and b,. Fisher and Tippett (1928) show that if these sequences of
real numbers can be chosen such that M has a non-degenerate limiting distribution, it must be
one of type I, II or III. These are the only possible limits for the distributions of M} regardless of
the population distribution Fz. This Extremal Types Theorem is analogous to the Central Limit
Theorem for extreme values (Coles, Bawa, et al., 2001).

These collectively are termed extreme value distributions with Equation 1.1 being Gumbel-type,
Equation 1.2 being Fréchet-type and Equation 1.3 being Weibull-type. Each distribution has a
location u, scale o and Equation 1.2 and Equation 1.3 have shape parameter £&. The extreme value

distributions are obtained as limiting distributions of M, as n — oco. The limit distributions for

block maximum can be grouped into a single family termed the generalized extreme value (GEV)
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distribution (De Haan & Ferreira, 2007):
-1

G(2) = exp | — 1+§(ZU">S (1.4)

The block maximum methodology may be inefficient as it ignores all but the maximum value in
a given block (Davison & Huser, 2015). The second approach to identifying extremes is the so-called
“peak-over-threshold” (POT) method. Consider a random variable Z with distribution function F.
The CDF of the excess over some threshold wu, is defined by:
Fu(y) = P(Z —u<y|lZ > u)

F(u+y) — F(u) (1.5)
= 1—F(u) , 0<y<zrp—u

where y = 2z — u and zp is the right endpoint of F (Gilli & Kellezi, 2006). Pickands (1975)

states that if u is large, the conditional distribution of Z given Z is much larger than u is well
approximated by the generalized Pareto distribution (GPD):
-1
ey E .
G 1—(1+7) . HfEA0 w6
lfezp(%y), ifé=1

The conditional distribution of the exceedances (Equation 1.5) can be modeled asymptotically
with the GPD by estimating the scale (o) and shape (£) parameters.

In a geoscience context, Caers, Beirlant, et al. (1999a, 1999b) use the GPD to model earthquake
magnitudes, size distributions of diamonds and the size distributions of impact craters. Deligne,
Coles, et al. (2010) use a Poisson process to model the recurrence rate of explosive volcanic eruptions,
while Nguyen, Veraart, et al. (2023) use the GPD to forecast volcanic eruptions. Miniussi, Marani,
et al. (2020) model the frequency of flooding events across the United States based on stream
gauge measurements. Lee, Kim, et al. (2021) use a Gumbel distribution to predict the exceedance

probability of extreme rainfall-induced landslides.

1.3.5 Spatial Extreme Value Theory

The assumption of independent and identically distributed (iid) observations underlies classical
EVT. In many real-world applications, one must account for correlation in space or time and the
multivariate nature of regionalized variables. Spatial extreme value theory represents an intersection
between classical EVT and geostatistics (Neves, 2015). The primary difference between spatial EVT
and geostatistics is that in the geostatistical framework, there are no observed replicates at Z(u).
Fitting of a GEV or GPD in the classical EVT sense requires multiple realizations of Z(u) for
parameter inference.

Spatial EVT builds on the concepts of max-stable distributions extending to the max-stable

process. A max-stable process is the infinite dimension generalization of the max-stable distribution
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where all lower-order marginal distributions are GEV distributions (Schlather & Tawn, 2003). If
there exists normalizing constants a,(u) > 0 and b,(u) such that a,!(u){max;—1, o Zi(u) —
bp(u)} =Y (u) then Y is a max-stable process (De Haan & Ferreira, 2007). The max-stable process
applies to maximums as stable Gaussian processes with finite variance apply to the average (Chiles
& Delfiner, 2012). All marginal distributions of a max-stable process are GEV distributions defined
by Equation 1.4.

Unlike a Gaussian RF, which is fully defined by its correlogram p(h), there is no unique model
for max-stable processes (Chiles & Delfiner, 2012). Many models are found in the literature. First
introduced by Smith (1990) and later modified by Schlather (2002), Gaussian storm and extremal
Gaussian processes are commonly used for modeling spatial extremes. The Brown-Resnick processes
(Brown & Resnick, 1977; Kabluchko, Schlather, et al., 2009) relaxes the assumption of second-order
stationarity and permits the use of the variogram, which has shown to be practical in practice
(Gaume, Eckert, et al., 2013). The extremal-t model (Opitz, 2013) is another popular max-stable
model in the literature. A consequence of the max-stable processes is asymptotic dependence in the

tails (Davison, Huser, et al., 2013).

1.4 Optimization Background

The following section provides background literature regarding geoscience and engineering-related

inverse problems and the use of optimization to infer unknown model parameters.

1.4.1 Inverse Problems

Inverse problems encompass a broad class of problems where the objective is to infer a system’s
underlying causes or parameters from observed data or measurable outputs (Sen & Stoffa, 2013).
Predicting a response is a forward problem while using a response or observed measurements to
infer the properties of a model is an inverse problem (Tarantola, 2005). Inverse problems arise in
various scientific disciplines, including physics, engineering, geosciences, medical imaging, and more.
Geospatial inverse problems are common in both the fields of geophysics (Giraud, Lindsay, et al.,
2019; Grana, Azevedo, et al., 2022; Linde, Renard, et al., 2015) and hydrogeology (Ghorbanidehno,
Kokkinaki, et al., 2020; Zhou, Gémez-Hernandez, et al., 2014) where the underlying geologic model is
unknown, however a set of measured responses, such as hydraulic conductivities or seismic properties,
are known. The inverse problem involves inferring interpretable geologic properties of the unknown
model, such as lithology or porosity, that satisfy the observed measurements. Grana, Azevedo, et
al. (2022) describe these problems as rock-physics inversions with seismic measurements predicting
rock and fluid properties.

Solving inverse problems involves constructing a mathematical forward model that describes the

relationship between the unknown parameters and the observed data and then using this model
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to infer the unknown parameters. Seismic wave propagation and rock-physics models are generally
well-understood forward models in geophysics (Grana, Azevedo, et al., 2022) where hydrogeological
forward models consider mass conservation and Darcy’s law to predict hydraulic head, drawdown
or solute concentrations (Zhou, Gémez-Herndndez, et al., 2014). A challenge of inverse problems
is ill-posedness, or the lack of a unique solution (Tarantola, 2005). Multiple (or infinite) solutions
may be valid given the observed data. As an exact solution is rarely possible in natural, non-linear
systems, one looks for solutions close to actual observations (Bardossy & Hoérning, 2016).

For this reason, many inverse problems are framed as optimization problems, minimizing an ob-
jective function relevant to the problem at hand (Athens & Caers, 2022; Giraud, Lindsay, et al., 2019;
Nava-Flores, Ortiz-Alemén, et al., 2023). The objective function is minimized iteratively, which is
generally computationally expensive (Zhou, Gémez-Herndndez, et al., 2014). A forward modeling
operator predicts an outcome for the model parameters’ current state, and the objective function
evaluates the loss between this prediction and the observed measurements. The optimization algo-
rithm updates the parameter vector until it matches the model output and observed measurements.
Any iterative optimization algorithm is permissible; Athens and Caers (2022) use gradual deforma-
tion to generate a set of perturbed model realizations; Nava-Flores, Ortiz-Aleméan, et al. (2023) use
simulated annealing for joint inversion of gravity gradient data; Balkaya, Ekinci, et al. (2017) use
differential evolution, and Dévila Rodriguez, Palafox Gonzélez, et al. (2024) a general evolution

strategy for inversion of magnetic anomalies.

1.4.2 Genetic Algorithms

Genetic algorithms (GAs) are metaheuristic global optimization algorithms inspired by natural
processes like evolution and natural selection (Cui, Zhang, et al., 2024). This family of algorithms
was first proposed by Holland (1992) and has wide-ranging applicability to engineering optimization
problems as robust global optimizers that do not require differentiable objective functions (Carbas,
Toktas, et al., 2021). The GA framework can efficiently explore a large solution space, handle
constraints, and lend itself to parallel applications. In general, genetic algorithms are derivative-
free, population-based algorithms with three main characteristics: crossover, mutation, and selection
operators (Yang, 2018). Each member of the population is a feasible solution vector. The crossover
operator exchanges information between members of the population and can enhance key features
of the population; the mutation operator permits exploration of the solution space by increasing
population diversity; the selection process drives the population towards convergence by selecting
the fittest or most elite member of the population for mutation and crossover (Yang, 2018). A
problem-specific objective function evaluates the fitness of each population member. Yang (2018)

describes the general behaviours and components of GAs as:
¢ A population of agents representing solution vectors, each with an associated fitness.
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e The population evolves through mutation and crossover operations. The algorithm converges
when all members of the population are sufficiently similar.

o New solutions are generated with random perturbations to avoid local optima.

e GAs search locally and globally, with the local and global search ratio controlled by the genetic
operators.

e GAs employ a survival of the fittest approach, where the fittest members of the population

are retained for the next generation, driving the population towards convergence.

Differential evolution (DE), first proposed by Storn and Price (1997), is a GA that uses the
scaled difference between population members as a mutation operator. Many mutation variants
exist (Meng, Chen, et al., 2020); purely random mutation variants explore the global solution space
by exploiting differences between randomly selected vectors, while others explore both local and
global spaces by mutating random vectors and the current best vector. Crossover occurs after
mutation, generating a trial vector. If a randomly generated uniform number € [0,1] is less than a
specified crossover probability, the element from the mutated vector transfers to the current member
of the population (Price, 2013). The crossover generates a trial vector hybrid between the current
population and the mutation. The selection operator evaluates the fitness of the trial vector and
replaces the current population member if fiiq1 < fpop. If the trial vector improves the solution, it
is kept in the population. DE is widely used in engineering optimization problems (Georgioudakis &
Plevris, 2020), geophysical inversion (Balkaya, Ekinci, et al., 2017), optimization of neural network
architectures (Mirjalili, 2019; Unal & Basgiftci, 2022), and others including electrical power systems,
image processing, chemical engineering and manufacturing (Bilal, Pant, et al., 2020). Due to the

widespread use of DE, Ahmad, Isa, et al. (2022) report over 40 variants of the original algorithm.

1.5 Thesis Outline

Chapter 2 discusses outlier management in the mining industry. Though the NMR framework does
not require explicit management of extreme values, it would be remiss not to discuss capping due to
its ubiquitous presence and relation to outliers. A range of outlier management tools are discussed
and a novel algorithm for identifying outliers in a spatial context is presented. The chapter finishes
with an analytical model for predicting the frequency of intersecting extreme values.

Chapter 3 explores the core components of the NMR framework. It begins with the concepts
of high-order connectivity and the relationship with non-Gaussianity. The chapter introduces the
network components: (1) definition of a latent Gaussian pool, (2) non-linearity and mapping to
observed space, (3) latent imputation, and (4) continuous simulation and mapping. Here, the
parameterization of the NMR is posed as an inverse problem. The chapter finishes with a synthetic,

non-Gaussian example to emphasize the effects of high-order connectivity on contained resources.
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Chapter 4 presents details of implementing the NMR, including the network architecture, ac-
tivation function, latent factor design and parameter inference via optimization. The effects of
mixing latent factors are discussed in detail, and an objective function relevant to the modeling
goals is formulated. The concepts of differential evolution (DE) and its application to NMR pa-
rameter optimization are presented, followed by checking and validating the network output. A
three-dimensional (3-D) example is introduced and carried over into chapter 5. Finally, practical
implementation details are discussed including the potential non-uniqueness of the solution.

Chapter 5 introduces a novel algorithm for imputing latent factors within the NMR, framework.
Imputation concepts and traditional Gibbs sampler approaches are touched on, followed by a presen-
tation of sequential Gaussian rejection imputation (SGRI). The algorithm is an iterative, sequential
imputation algorithm that uses the normal equations and rejection sampling to impute spatially
correlated latent variables. Minimum acceptance criteria for checking the latent realizations are pre-
sented, followed by conditional simulation and practical checking using the example from Chapter
4.

An application of the complete NMR framework with a real dataset is shown in Chapter 6. The
data comes from an operating underground mine where personnel note that multivariate Gaussian
simulation algorithms do not reproduce the connected high-grade features observed in drillhole data.
This scenario is the ideal application of the NMR, where it shows a 7% improvement over SGS in
high-grade stopes. The NMR results are validated with a hold-out dataset.

Chapter 7 summarizes the contributions made in this thesis. Consideration is given to the
limitations of the developed methodologies and avenues for future work and improvements to the

NMR framework. All software developed for this research is documented in the appendices.
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Chapter 2

Outlier Management

This chapter presents some underlying motivation the NMR framework. The generation of non-
Gaussian spatial fields and the presence of extreme values are linked. Research initially focused
on developing objective measures to identify spatial extreme values and best practices for explicitly
managing these values. Then it evolved into a simulation framework with applicability beyond
extreme values. A key idea of the NMR is that extreme values and outliers do not require explicit
management. This idea contrasts many standard practices in the mining industry; Dutaut and
Marcotte (2021) mention that methods that avoid capping are interesting but rarely applied in
mining applications. The presence of extreme values and the correct characterization of their spatial
distribution are important. This importance warrants methodologies beyond the standard graphical
approaches (Silva, 2021) and motivates a holistic approach incorporating both the statistical and
spatial components of extreme values.

The following sections present the concepts of outliers and extreme values in a mining context.
Nomenclature is first defined, delineating the differences between an outlier and an extreme value.
These terms have similar connotations, though different meanings when rigorously defined. An
overview of outlier management practices in the mining industry is given, including commonly
employed tools and methodologies, followed by a review of methodologies from a survey of 125
national instrument (NI) 43-101 reports published between 2019 and 2021. Though the NMR
framework does not require explicit management of extreme values, the practice is ubiquitous in
the mining industry. For this reason, a spatial outlier identification algorithm is developed that
considers a data point’s degree of “outlierness” from a local neighbourhood perspective and the
global CDF'. The final section presents an analytical approach for forecasting extreme values. Though
one must make some assumptions regarding the underlying distribution, predicting the frequency
of intersecting extreme values is valuable from a data collection and risk-qualified decision-making

perspective.

2.1 Outliers and Extreme Values

“Outlier” is a general term for an observation sufficiently dissimilar to other observations that further
investigation is warranted (Barnett & Lewis, 1984). Outliers may be random fluctuations of the data
generation mechanism (noise), true anomalies, or measurement errors. An extreme value is a value in
the tails of the distribution that is believed to be real but occurs rarely. Extreme values are different

from outliers in that all extreme values are possible outliers, but the reverse is not always true

20



2. Outlier Management

(Aggarwal, 2016). A key distinction here is that an outlier is not necessarily restricted to the tails of
a distribution, while extreme values are. Consider the 1-D set of values: {1,2,2,50,98,98,99}. In
the extreme value context mentioned above, 1 and 99 could (weakly) be considered extreme values,
while 50 (the average) is not an extreme value. However, in the context of an outlier, the value of 50 is
distant or isolated from the remaining values. Distance- or density-based outlier detection methods
would likely classify 50 as an outlier, which is correct given that it is sufficiently dissimilar from the
remaining values. This simple but illustrative example adapted from Aggarwal (2016) highlights
the core differences between outliers and extreme values. The terms are typically synonymous in
the mining industry: one is only interested in outliers if they are also extreme values. Throughout
this text, the term outlier will refer to abnormal or extreme data values assumed to be in either the
upper or lower tail of the distribution.

Practitioners often generate geostatistical models using widely spaced data configurations. Data
collection costs prohibit exhaustive sampling and necessitate statistical inference from limited sam-
ples. Spatial prediction with widely spaced data in the presence of extreme values is a long-standing
issue in the mining industry (Leuangthong & Nowak, 2015). Extreme values may have significant
local influence, leading to overstated resources and the risk of production shortfalls. Practitioners
face difficult decisions when limiting extreme value influence and characterizing their spatial conti-
nuity. Inputs to numerical geologic models consist of observed data, a representative histogram and
spatial controls on mineralization. Each of these components presents challenges in the presence of
extreme values. Extreme values are often under-sampled, making inferences about their probability
of occurrence difficult. The influence of extreme values is often limited in practice through grade
capping, which could significantly impact the final resource. The spatial continuity of extreme val-
ues differs from that of the barren or mineralized background. Traditional geostatistical methods

are limited in capacity to adapt to both extreme values and asymmetric spatial continuity features.

2.1.1 Outlier Detection

Outlier detection is applicable in virtually all statistical modeling. Measures of “inlierness” or
“outlierness” are typically based on (1) statistics of observations for the rest of the distribution
(parametric or non-parametric); (2) distances (euclidean or non-euclidean) between observations
with outliers being “far” from neighbours and (3) probability density-based measures where outliers
have low deunsities (Li, Zhao, et al., 2022). A comprehensive review of outlier detection methods
is beyond the scope of this chapter; the reader is referred to Aggarwal (2016); Hodge and Austin
(2004); Leuangthong and Nowak (2015); Nowak and Leuangthong (2019); Pang, Shen, et al. (2022);
Wang, Bah, et al. (2019) for a review of methodology in the mining industry and beyond.

A challenge of many outlier detection techniques is the choice of a threshold to delineate an

abnormal measurement. Whether the technique is statistical or proximity-based, a threshold must
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be chosen to classify samples based on the measure of “outlierness” or the outlier score. If the
threshold is too restrictive, the algorithm may not identify true outliers, and if it is too relaxed, it will
lead to false positives. For simple methodologies, selecting a threshold may have physical meaning,
such as a grade distribution. For spatial (multivariate) outlier detection, selecting a proximity-
based threshold in a possibly non-euclidean space is non-trivial. The following section details outlier
detection methodologies specific to the mining industry; generally, these approaches are univariate
and do not consider the spatial or proximity component of outliers. Threshold selection in these

cases is subjective but straightforward.

2.2 Mining Industry Practices

Identifying and managing extreme values is essential, particularly concerning heavy-tailed mineral
deposits and smooth deterministic estimators. A practitioner forecasting resources should under-
stand extreme values’ statistical influence and spatial distribution. Though numerous tools exist for
these purposes, there is no generally accepted workflow in the mining industry, and professional judg-
ment guides best practices. Assessing the influence of extreme values with a variety of techniques
seems reasonable. The Canadian Institute of Mining, Metallurgy and Petroleum (CIM) mineral re-
source and mineral reserve best practices summarizes outlier management as (CIM Mineral Resource

& Mineral Reserve Committee, 2019):

“Recognition of the spatial extent of outlier values (a component of grade continuity)
should be investigated and a procedure devised for incorporating such data appropriately
into an estimate. Procedures including domaining, grade capping (also known as top
cutting), spatially restricting the influence of high-grade assays, single and multiple indi-
cator kriging, and Monte Carlo simulation methods all compensate in varying ways for
potential overestimation. Regardless of the methodology selected, the Practitioners must
provide documentation of the approach selected, along with justification and support for
the decision, possibly including reconciliation of estimated block model grades with avail-
able production information. Comparisons of the outcome of the different approaches

can be useful.” (pg. 18)

Leuangthong and Nowak (2015), echoed by CIM best practices, break the process of outlier
management into three categories: (1) choosing appropriate domains, (2) grade capping, and (3)
limiting the influence of outliers through the estimation process. Grade capping or “top-cutting” is
common in the mining industry. Grades above a given threshold are reset to that threshold. The
general idea is that uncapped grades may lead to unrealistic local estimates adjacent to high-grade
composites (Nowak, Leuangthong, et al., 2013). The “smearing” may be significant if sparse data are

estimated with kriging. Due to the normal score transform, simulation is more robust in the presence
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of outliers, though some cases may still require capping. As point scale realizations reproduce the
input CDF, directly capping the realizations avoids iterative re-simulation (Harding, Lagos, et al.,

2023).

2.2.1 Tools for Outlier Management

This section discusses commonly used tools for outlier management in the mining industry. These
tools are largely qualitative, provide general guidance, and require subjective decision-making from
the practitioner. Statistical methods attempt to guide the selection of a capping limit by exploring
characteristics of the distribution tails or the relationship between contained metal and high-grade
restrictions. Some methodologies, such as the p-gram (Nowak & Leuangthong, 2019), attempt
to characterize the spatial continuity of high grades to support restrictions on their area of influ-
ence. Simulation-based methods such as metal-at-risk (Parker, 2006) or mean uncertainty (Nowak,
Leuangthong, et al., 2013) “resample” the deposit to characterize the uncertainty in metal over some
number of realizations. This section does not intend to be an exhaustive list of the available tools;
however, it presents some of the most frequently used methodologies.

Probability plots are ubiquitous in resource estimation. The variable value is plotted on the
x-axis against the corresponding cumulative probability of the normal distribution on the y-axis.
Log scaling of the x-axis results in a lognormal probability plot. Inflection points may indicate the
presence of multiple populations, and gaps in the distribution are typically targeted as potential
capping limits. A survey of 125 43-101 reports with gold as the primary commodity (Section 2.2.2)
shows that the CPP is the most common tool for assessing and classifying outliers. This prevalence is
likely due to (1) the simplicity of the technique and the ease of implementation and (2) the historical
prevalence of the technique in the mining industry. Figure 2.1 illustrates a log-probability plot for
a synthetic positively skewed distribution with some tail decomposition. A proposed capping limit
is selected where the upper tail begins to break down. Tukey’s fences are a simple non-parametric

method to identify outliers where the fence intervals are defined by (Tukey, 1977):

Q1 — k(Q3 — Q1)), Qs + k(Q3 — Q1))] (2.1)

where @ and @3 are the first and third quartiles, respectively. Generally, k¥ = 1.5 defines an
“outlier” while k£ = 3 indicates a “far outlier”.

Decile analysis or the Parrish method (Parrish, 1997) assesses the metal content of each decile
of the grade distribution. The assay population is sorted and arranged into deciles containing equal
samples; the upper decile will likely contain less data than the rest. The length-weighted mean and
standard deviation of each decile are calculated, as well as metal content (grade value x length). The
top decile is split into percentiles, and the same summary statistics are calculated for each. Table
2.1 shows an example decile table for a synthetic positively skewed distribution. The general rules

proposed by Parrish (1997) are:
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Figure 2.1: CPP showing a possible capping threshold based on upper tail decomposition (left), and the
same CPP showing outlier and far outlier thresholds based on Tukey’s fences (Tukey, 1977).

1. If the top decile contains more than 40% of the metal, capping is warranted.
2. If the top decile contains more than twice the metal of the 80-90% decile, capping is warranted.

3. If the top percentile (or more) contains more than 10% of the total metal capping is warranted.

Table 2.1: Parrish decile analysis for a positively skewed distribution with 334 samples. The data is binned
by deciles (0-9) and the upper decile is further split into percentiles (90-99). The Parrish methodology
suggests a capping limit of 33.66.

count mean  std min 25%  50% 5% max Metal % Total

Decile
0 34 0.14 0.05 0.04 0.11 0.15 0.19 0.23 4.5 0.7
1 34 0.34 0.06 0.23  0.29 0.35 0.40 043 10.0 1.5
2 34 0.56 0.07 043 0.51 0.55 0.62 0.68 15.9 2.4
3 34 0.78 0.07 0.70 0.72 0.76 0.84 0.90 23.3 3.5
4 34 1.06 0.08 0.92 0.99 1.02 1.12 1.19 27.0 4.0
5 34 1.32 0.09 1.21 1.26 1.29 1.37 1.51 41.4 6.2
6 34 1.82 0.23 1.51 1.59 1.77 2.02 2.17 51.0 7.6
7 34 2.57 0.23 2.22 2.36 2.53 2.75 3.05 78.3 11.6
8 34 4.02 0.61 3.06 3.48 3.87  4.62 530 116.0 17.3
9 28 13.59 13.27 547 7.50 8.44 1249 66.00 304.5 45.3
90 3 5.51 0.04 547 5.48 5.48 5.52 5.57 14.6 2.2
91 3 6.20 0.36 5.93 5.94 5.95 6.33 6.71 18.6 2.8
92 3 7.53 0.05 7.44 7.48 7.52 7.55 7.57 15.1 2.2
93 3 8.06 0.02 8.04  8.05 8.06 8.08 8.11 16.9 2.5
94 3 8.33 0.17 818 8.24 8.29 8.44  8.59 19.3 2.9
95 3 10.47  0.41 9.74 10.06 10.39 10.66 10.93 29.0 4.3
96 3 12.02 0.29 11.58 11.84 12.10 12.20 12.31 30.0 4.5
97 3 17.11  3.13 13.03 14.69 16.35 1879 21.23 394 5.9
98 3 31.38  2.69 27.47 2855 29.64 31.65 33.66 55.5 8.3
99 1 66.00 0.00 66.00 66.00 66.00 66.00 66.00 66.0 9.8

TOTAL 334 242 509 004 055 1.17 246 66.00 671.9 100.0

If the practitioner decides that capping is appropriate, one could reduce the high values in each
percentile exceeding 10% of the total metal to the maximum value of the next lowest percentile.
For example, in Table 2.1, all values in P99 could be reset to the maximum value of 33.66 in P98.

However, P98 contains 8.3% of the total metal, suggesting further capping may be required based

24



2. Outlier Management

on practitioner judgment.

Cutting curves (Leuangthong & Nowak, 2015; Roscoe, 1996) is another simple tool to assess the
average capped grade versus the capping limit. The idea is that the average grade will eventually
stabilize as the threshold increases and a reasonable capping limit exists near the inflection point.
Figure 2.2 (left) shows an example of a cutting curve for a synthetic positively skewed data set. The

proposed capping limit is from the decile analysis.
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Figure 2.2: Cutting curve showing the relationship between the top cut grade and the mean of the adjusted
data (left) and cumulative CV versus sample grade for a lognormal-like dataset (right). The cumulative
CV plot shows a rapid increase at approximately CV=1.25. The capping limit corresponds to the value
determined with the Parrish method.

Parker (1991) proposed plotting the cumulative CV against the grade distribution to identify
a point where the influence of high values in the upper tail becomes strong. The data are sorted
in descending order, and the cumulative CV is calculated considering all samples with grades less
than or equal to the current sample. A rapid increase in cumulative CV characterizes this point
where the influence of the upper tail is significant. Parker (1991) then breaks the distribution into
two parts and fits the upper distribution with a truncated lognormal distribution; estimation is
performed without capping the distribution. Figure 2.2 (right) shows an example cumulative CV
plot of a synthetic log-normal-like data set.

The influence of suspected outlier values can be investigated by assessing uncertainty in the
average grade of the domain through the spatial bootstrap (Solow, 1985). The procedure proposed
by Nowak, Leuangthong, et al. (2013) involves bootstrapping the grade distribution while leaving
out some percentage of the highest data (arbitrarily 2%) and comparing the expected mean to the
uncapped mean. If the expected mean with the top 2% of samples removed is significantly lower than
the uncapped mean, capping may be warranted within the domain. Figure 2.3 shows an example of
1000 bootstrapped means capped at P98 of the data distribution and the declustered uncapped mean
(left) and the bootstrapped distributions for reference (right). The difference between the expected
and declustered actual mean suggests that the grade distribution within the domain is sensitive to
high values in the upper tail. If the expected and uncapped means are similar, this suggests that
the upper tail of the distribution has little influence, and capping may not be necessary.

Metal-at-risk, summarized in Parker (2006), is a procedure that establishes uncertainty related
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Figure 2.3: Distribution of 1000 bootstrapped mean values with the top 2% of values removed (left), and
the CDFs of 50 of those realizations (right).

to the amount of high-grade metal within annual or global production volumes. The deposit can be
“re-drilled” utilizing Monte Carlo simulation, where the total number of samples drawn equals the
annual production tonnage divided by the number of tonnes per assay in the domain. The assay
distribution is sampled randomly with replacement, assuming that high-grade can occur anywhere
in the domain. The total metal above a given high-grade cutoff is calculated for each resampled
realization. The P20 value of this distribution is added to the metal content below the cutoff to
calculate a “risk-adjusted” metal content. Parker (2006) states that theoretically, the mine should
exceed the risk-adjusted metal in four out of five periods; however, “there is additional and largely
unquantifiable uncertainty related to the representivity of the sample-grade frequency distribution
input to the simulation”. Metal-at-risk can be used as a guide to restrict the influence of high-
grade samples during estimation or to calibrate a capping limit that removes this metal content.
An advantage of the metal-at-risk approach versus others is that it accounts for data density and
production volume; as data density increases, metal-at-risk decreases, and larger production volumes
have less risk than small ones.

P-grams are a spatial statistic to characterize the continuity of high grades: the average proba-
bility that the tail and head of a lag vector h are both above a cutoff grade (Leuangthong & Nowak,
2015; Nowak & Leuangthong, 2019). The p-gram value for each lag is the ratio of the number of
pairs where both ends of h are above the cutoff to the number where only the tail is above the cutoff.
This average probability decreases as the lag distance increases. The p-gram can highlight a range
of continuity for a specified cutoff value; this range guides restrictions to the search parameters for
high-grade samples during estimation.

Regardless of the methodology, restricting extreme values aims to mitigate downside risk in re-
source estimates. The following section presents a survey of outlier management strategies published
in publicly available technical reports. The survey provides an overview of current practices in the

mining industry.
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2.2.2 Current State of the Art

This section summarizes 125 NI 43-101 reports published by companies traded on Canadian secu-
rities exchanges between May 2019 and May 2021. For each deposit, the decision to cap or not,
the capping methodology if so, and the decision to cap either assays or composites is recorded. For
producing operations, whether underground or open-pit, is also recorded. Numerous reports docu-
mented multiple outlier management strategies. Due to many possible combinations of strategies,
each is recorded separately. If one project uses cumulative probability plots and decile analysis, it
contributes to the total methodology fraction twice. The left panel of Figure 2.4 shows the results
for capping methodology, and the right panel shows a summary of assays versus composites for those
who capped. Unknown refers to reports that stated a grade cap was applied, though it provides no

methodology.

Outlier Management Strategy Support to be Capped

Figure 2.4: Summary of capping methodology (left) and, if capped, the data support to which the cap is
applied (right) from 125 NI 43-101 reports. CPP - cumulative probability plot; P99 - 99" percentile; CV -
coefficient of variation; MIK - multiple indicator kriging; Parrish - decile analysis after Parrish (1997).

The most common method is the analysis of CPPs. Practitioners look for infection points to
identify multiple populations or look for a point where the upper tail “degrades”. The choice of
threshold is necessarily subjective, though gaps and infection points guide selection. The second
most common methodology is decile analysis developed by Parrish (1997).

MIK is a risk-qualified estimation methodology that can manage highly skewed distributions
without needing grade capping (Journel, 1983). The non-linear transform of the original variable
to indicators reduces the influence of extreme values in the upper tail, and practitioners suggest
this removes the need for explicit grade capping (Cardinal Resources, 2019; Nevada Gold Mines
LLC, 2020; Pretium Resources Inc., 2020; TriStar Gold Inc., 2021). Pretium Resources Inc. (2020)
describe the logic of not applying a grade cap as:
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“The positive tail of the grade distribution does not break down (tail decomposition
method) until well into the multi-kilogram per tonne range, and even then, the more data
that is collected, the higher the value before tail decomposition. Using a percentile-based

approach results in an arbitrary and unjustifiable capping of extreme gold grades.” (pg.

14-11)

Though MIK is more robust concerning extreme values than traditional kriging algorithms, Car-
valho and Deutsch (2017) suggests outlier values should still be managed in the usual (industry best
practices) way. Artemis Gold Inc. (2020) is an example of a project where both an explicit grade
cap (from CPP analysis) and MIK are employed.

A small proportion of the projects report no grade capping (Eldorado Gold Corporation, 2020;
Medgold Resources Corp., 2021; Pasofino Gold Ltd., 2020). The justification of no grade capping is
based primarily on a relatively low coefficient of variation and no “tail decomposition” in the CPPs.

Indicator correlation (analogous to p-grams) is another commonly employed practice. This ap-
proach considers the degradation of the spatial correlation of grades above a threshold. For many
increasing thresholds, the spatial correlation decreases. The sill of the indicator variogram identifies
the range of high-grade influence. This approach was employed at the Cariboo Gold Project (Osisko
Gold Royalties Ltd, 2020) where the range corresponding to 99% of the indicator variogram sill is
the maximum range of influence.

The remaining outlier management strategies are relatively straightforward. Some projects utilize
an experience-based CV or percentile threshold. The CV threshold, commonly 2.0, selects a grade
cap such that the remaining population has a CV equal to or less than the threshold. A percentile
threshold, commonly the 98" or 99t"  sets all grade values greater than F~1(0.99) to that value.
Production reconciliation involves an iterative estimation process with a range of grade caps. The
estimated metal content is reconciled to available production data for each capping threshold. The
threshold that reconciles best is selected. Reconciliation is a reasonable approach, but it assumes
that past production is characteristic of future production.

Another point of general indecision is whether to cap before or after compositing. In this survey,
it is more or less a 50-50 split. One approach is not more correct than the other. The author
generally believes it is more appropriate to apply a capping grade after assays have been brought to
the same support. It seems logical to compare values that are effectively equally weighted. If much

of the assay data is the same length, one could cap before compositing.

2.3 Spatial Outlier Detection

Most outlier detection methodologies employed in the mining industry neglect the spatial compo-
nent of outliers and focus solely on the univariate distribution (quantiles, decile analysis, CPPs).
Assessing the univariate distribution is considered a density-based approach; if a statistical model is
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fit to the empirical distribution, samples in the tails of the distribution have low density relative to
the underlying PDF. Inliers exist in high-density regions and outliers in low-density regions (Géron,
2019). While this is a justifiable line of reasoning, one must also consider the local spatial component
of outliers. An extreme value located in a neighbourhood of other high values may be an outlier
from a density perspective but not in the context of its local spatial arrangement.

Additionally, one must understand the volume of influence of a potential outlier. Isolated ex-
treme values, or ones with large areas of influence, pose a risk of overestimation (Leuangthong &
Nowak, 2015). The spatial context of a sample motivates the development of an outlier identifica-
tion algorithm that considers both the spatial neighbourhood of the sample and its position within
the global distribution. The spatial dimension characterizes the relationships within the local neigh-
bourhood, while the density dimension characterizes the global relationship with the remaining data.
The following sections describe the proposed algorithm components and provides examples of its

use first on a synthetic 1-D example and then on a real two-dimensional (2-D) dataset.

2.3.1 Methodology

Consider a dataset {z(u;), i =1,...,n} where n is the total number of data and u; is a coordinate
vector at the i*" location. About location u;, there exists a neighbourhood of k nearest locations,
NN (u;; k). This neighbourhood could be defined by a fixed search radius and maximum k or a
fixed number k. The data {z(u;), j =1,...,k, j # i} define the neighbourhood of samples about
location u;. Next, consider a function m(u;) that returns a summary statistic, such as the mean
or median, for all data values within the neighbourhood NN (u;; k). The spatial component of the
algorithm compares the data value z(u;) to the value returned from m(u;): h(u;) = |z(u;) — m(w;)|.
The function m(u;) is chosen to be the median value of all samples in the neighbourhood (excluding
location u;), weighted by distance from u;. The median is chosen as it is a more robust measure
of central tendency in the presence of outliers than the mean. The vector {hi, ha, ..., h,} contains
the absolute differences between each data value and the median of the surrounding neighbourhood.
The h,, values are scaled € [0,1] where values closer to 1 differ most from their neighbourhood.
This comparison accounts for the local spatial relationship between data values. The choice of k is
problem-specific. If k is too small, the median values will be noisy and not represent the true local
variation. If k is too large, the median values will be smooth and not representative of the true local
variation.

The neighbourhood NN (u;; k) accounts for the area of influence of each sample. The area (in
2-D) or volume (in 3-D) of influence is calculated using the maximum distance to any sample in the

neighbourhood (7,4, in Figure 2.5):

AQD(ui) =T rmaz(ui)z (22)

A3D(ui) =4-7- rmar(ui)Q (23)
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This measure is only applicable if NN (u;; k) considers a fixed number k rather than a fixed search
radius. A fixed search radius amounts to equal area weighting of each sample. The area directly
accounts for the sparseness of the data configuration within the neighbourhood. The anisotropic
area values are scaled € [0,1]. Samples located in sparse regions have values closer to one. A sample
being geographically isolated does not constitute an outlier, and thus, one must consider the area
of influence in conjunction with h(u;).

The spatial neighbourhood approach is similar to the “Median Algorithm” proposed by Chen,
Lu, et al. (2008); however, some key differences exist. Firstly, the neighbourhood NN (u;;k) is
determined using covariance-based distances rather than Euclidean distance. The covariance dis-
tance comes from the anisotropy ratios of a robust measure of spatial correlation. As the traditional
semi-variogram is sensitive to the presence of outliers, one should use robust measures of correlation
such as the correlogram, normal score variogram, or pairwise relative variogram (Babakhani, 2014;
Drumond, Rolo, et al., 2019). Covariance-based distance ensures that the local neighbourhoods align
with relevant geologic features. Secondly, the function f(u;) is a weighted statistic, incorporating
information about the data configuration and sparseness. The weight given to each sample in the

neighbourhood is w(u;) = (d(i,7) in Figure 2.5). Accounting for the area of influence

further incorporates spatial information.

The second component of the algorithm considers the relationship of each data value within the
global distribution. This relationship is quantified by fitting a GMM to the univariate distribution to
approximate the underlying PDF. GMM models are commonly used for outlier or anomaly detection
(Géron, 2019; Qu, Du, et al., 2021), where data values falling in low-density regions of the fitted
GMM are potential outliers. The details of fitting the GMM with the expectation-maximization
(EM) algorithm are not given here; the reader is referred to McLachlan, Lee, et al. (2019) for more
details. After the GMM is fit to the univariate data, estimating the density at any location is

straightforward. The log of the PDF is calculated as:
J
logp(z:) = log [ > miN (zilu;, %) (2.4)
j=1

where z; is the i*" sample of z, J is the number of fitted GMM components, m; is the weight
to the j' component, and N (z;|u;,%;) is the PDF of a multivariate Gaussian distribution with
mean f; and covariance ;. Exponentiation of Equation 2.4 results in an estimate of the PDF
for each sample. The higher the probability density, the more likely the sample belongs to the
fitted distribution. As this calculation results in an estimate of the PDF and not a true probability,
the values are scaled to sum to one. The vector {pi,p2,...,pn} then contains an estimate of the
probability that the i** sample belongs to the fitted distribution. Low-probability samples that come
from low-density regions are possible outliers. This result depends on the number of components,

J, which must be chosen. Practice shows that 2-3 components are reasonable for a 1-D distribution,
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and fitting is generally straightforward. The final outlier measure is then a weighted combination

of h;, A;, and p; for each data value:
gi=wpxh;+waxAi+wyx(1—p;), i=1,...,n (2.5)

where wy,, w4, and w), weights to the neighbourhood, radius and density components, respectively,
and wy, + w4 +w, = 1.0. Figure 2.5 shows a sketch of the local and global components to calculate
a final outlier measure. The first two components of g; come from the spatial neighbourhood (1) in
Figure 2.5 while the third component comes from the fitted probability density (2). Thresholding
the final outlier measure in Equation 2.5 results in the binary classification of each sample as an

inlier or outlier.

(1) Spatial Neighbourhood  (2) Probability Density ~ (3) Outlier Measure

Figure 2.5: A sketch illustrating the spatial and density components of the spatial outlier algorithm. (1)
shows an example search neighbourhood with k = 5 where d(%, j) is the distance between location u; and
u;, and Tz is the distance to the furthest neighbour. (2) shows the PDF of all samples fitted by a GMM
with J = 2 components. (3) shows an example domain with samples classified as inliers (black) and outliers
(red); thresholding the outlier measure in Equation 2.5 results in the binary classification of each sample.

Consider the 1-D synthetic data in Figure 2.6a. The data show cyclicity and a trend with
increasing x, which are common properties of earth science data. Random noise drawn from a
Gaussian distribution (¢ = 1.0, o = 3.0) is added to ten samples in the sequence to simulate the
presence of outliers. The degree of “outlierness” varies across the samples. A variogram model is
fit to the original data without noise for a robust measure of spatial continuity. Access to the true
data values is not possible with real data; alternatively, a correlogram or pairwise relative variogram
could be fit to the noisy data. The spatial neighbourhood considers k£ = 10 data after scaling the
coordinates according to the fitted variogram model.

Figure 2.6b shows the difference between the data and weighted neighbourhood median values.
The red x’s indicate the data with added noise. Except for one noisy value, the suspected outliers
show moderate to significant differences with their neighbourhoods. Figure 2.6¢ shows the J = 3
GMM components fit to the univariate distribution f(x). The solid line is the fitted model, and
the dashed lines are the individual components. The number of components is chosen based on
trial and error to minimize false positives. Again, this is not possible with real data, but this

process allows exploration of the bounds of reasonable parameters. Figure 2.6d shows the outlier
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Figure 2.6: (a) 1-D function of the coordinate position z; (b) the difference between each sample the
neighbourhood median, h(x); (c) fitted GMM model with J = 3 components; (d) the combined outlier
measure g(z); (e) detrended g(x) measure with flagged outliers; (f) the 1-D function from (a) with outliers
identified. The red x’s denote the samples with added noise, and the green circles are the samples classified
as outliers by the algorithm.

measure of Equation 2.5 considering w, = 0.5, wa = 0.0 and w, = 0.5. wa = 0.0 as all samples
are equidistant and thus equally weighted. Values closer to one are more likely to be outliers.
Compared to Figure 2.6b, the algorithm identifies additional values (near x = —10) as discordant
with the rest of the population. Removing the trend from g(z) using a moving window average
(MWA) further elucidates the potential division between inliers and outliers. Figure 2.6e shows the
detrended distribution ¢'(x). At this point, a threshold must be selected to define the division. The
green circles in Figure 2.6e identify all data above the threshold of ¢'(x) = 0.08. Figure 2.6f shows

the final outliers identified by the algorithm (green circles) with the original data configuration.

32



2. Outlier Management

The algorithm effectively identifies the noisy data points. Two points remain undetected, though
the magnitude of the noise is small, and there are no drastic intra-neighbourhood changes in these
areas. In addition to the noisy data, the algorithm identifies three additional outliers near x = —10.
It is possible that a traditional univariate method such as visual examination of a CPP would identify
outliers in the upper and lower tails of the distribution (i.e. the values flagged in the lower left and
upper right corners of Figure 2.6f); however, the outliers in the middle of the distribution would go

undetected without considering the spatial component.

2.3.2 Application

Consider the 2-D spatial distribution of platinum group elements (PGE) in Figure 2.7. There
are scattered high values throughout the northwest portion of the domain where the data density is
highest; there are also isolated high values in the more sparse regions to the south. These samples are
potential outliers in a spatial context. Figure 2.8 shows the CDF and CPP for the PGE distribution.
The empirical CDF shows a degree of tail decomposition for high values - this is evident in the CPP.

Tukey’s fences (Tukey, 1977) identify potential outliers in both distribution tails.
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Figure 2.7: Location map of PGE sample locations.
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Figure 2.8: CDF plot and CPP for the PGE distribution. The green shaded area in the CPP are Tukey’s
fences (Tukey, 1977), identifying potential outliers.
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The methodology from Section 2.3.1 is employed to identify spatial outliers. An experimental
correlogram is calculated and fitted with an exponential model to characterize the spatial relationship
between sample locations. The neighbourhood NN (u;; k) is characterized by k = 25 neighbours and
an inverse distance weighting exponent of p = 1.0. The area of influence for each sample is calculated
in 2-D (Equation 2.3). The GMM is fitted to the histogram using J = 2 components. The final
outlier measure is calculated using wy, = 0.4, wa = 0.2, and w, = 0.4. The weight to the area of
influence is less than the other measures to not overly weight all sparse samples, or samples near
the edges of the domain.

The top row of Figure 2.9 shows the absolute difference between each sample value and its
corresponding neighbourhood. The left column shows values along the east-west direction, and the
right column shows the north-south direction. There are some clear outlying samples, though h(u;)
does not show a clear delineation between two populations. The second row of Figure 2.9 shows
each sample’s area of influence measure. Row three shows 1 — p(u;), where values closer to one are
in lower-density regions of the distribution. The fourth row shows the final outlier measure. The
division between inliers and outliers is not immediately clear, but one could argue there is a grouping
of points above the g(u;) = 0.6 threshold, highlighted by the red dashed lines.

Figure 2.10 shows the identified outliers in the spatial context. The algorithm identifies high and
low values: ten above the mean and three below. Potential outliers must be aligned with geologic
intuition. There is a clustering of extreme value outliers in the northern part of the domain, where
neighbouring samples are medium-grade. An extreme low-grade sample adjacent to an extreme high-
grade sample is also flagged. Given the position of each sample in the CDF and spatial arrangement,
these samples appear to be appropriate candidates for outliers. Three high-grade samples in the
sparsely sampled southern portion of the domain are also flagged as outliers. These samples are
also appropriate outlier candidates due to their high grades relative to adjacent samples and their
potential influence area for each sample. In an estimation paradigm, these samples could influence
the grades in many blocks and lead to overestimation. One could derive a capping limit as the
minimum grade of the high-grade samples flagged as outliers.

The spatial outlier detection algorithm effectively identifies potential outliers. Measures of “out-
ierness” in spatially correlated data must consider both the univariate distribution and the spatial
context of the data. The proposed algorithm directly incorporates features of the grade distribution,
robust measures of geologic distance, and features of the data configuration, including sparseness.
The final outlier measure is practical in the sense that it includes multiple sources of relevant infor-
mation, being a weighted blend of a proximity-based algorithm and a parametric statistical model
(GMM) (Li, Zhao, et al., 2022). The algorithm could be extended to the multivariate context by
considering the Mahalanobis distance between a K dimensional vector of medians and the center of
the data (Chen, Lu, et al., 2008). A challenge of the outlier detection algorithm is that an arbitrary

threshold must be chosen. The final measure may not have a clear demarcation between inlier and
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Figure 2.9: Absolute difference between the sample value and corresponding neighbourhood (1% row);
area of influence for each sample (2"¢ row); density measure (3" row); final outlier measure (4'" row) with
flagged outliers above the g(u;) = 0.6 threshold. The left column shows values in the east-west direction,
and the right column shows the north-south direction.
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outlier. Using additional outlier detection measures, such as CPP analysis, as an ensemble may

aid threshold selection. For instance, the outliers identified by Tukey’s fences in Figure 2.8 roughly

correspond to the spatial outliers, suggesting appropriate parameters. The identified outliers also
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2. Outlier Management

appear “reasonable” from a geologic perspective. Immediately adjacent extreme high and low values
warrant further investigation. One could employ an unsupervised clustering method on the final
outlier measure to remove subjectivity from the choice of threshold. Outlier detection methodologies
should generally form an ensemble, with higher confidence given to samples identified by multiple
methods (Zimek & Filzmoser, 2018). The spatial outlier detection algorithm is another tool in con-
junction with those in Section 2.2.1 and provides further justification for the choice of capping limit

or outlier management strategy.

2.4 Analytical Extreme Value Models

Many techniques have evolved to restrict the influence of outliers or extreme high grades. No
statistical or geostatistical model exists to understand and manage the resource contributions of
extreme high-grade (EHG). The validity of such a model could only be established based on many
data or bulk mining. The idea is to develop a simple and intuitive model that accommodates the
resource contributions of EHG. This model could be applied to understand and explain historical

mining and to project the possibility of EHG mineralization in unmined areas.

2.4.1 Methodology

The geological processes that led to the precipitation and preservation of the grades under consider-
ation in a particular deposit are complex and defy a simple deterministic assessment. The processes
influence our understanding, but we adopt a statistical model since there is no way to understand
the initial and boundary conditions of the non-linear and chaotic processes that led to the deposit
under consideration. This section describes a trimodal model for mineralization: (1) mineralized
(M), (2) high-grade (HG), and (3) extreme high-grade (EHG). Figure 2.11 illustrates this. The
three populations overlap, mix and are not exclusive, but we could reasonably define a range that
represents them, for example, 0.1 to 1.0 g/t for mineralized (M), 5 to 20 g/t for high-grade (HG),
and 500+ g/t for EHG.

The concept of three populations is reasonable. The illustration in Figure 2.11 appears discrete
as three populations; however, the data distribution from this model would appear highly skewed.
Considering one highly skewed population may be possible; however, a flexible parametric distribu-
tion is not available to satisfy observed data, explain outliers, and avoid unrealistically high grades.
Considering more than three populations would be possible; however, it seems reasonable to have
M, HG and EHG. Additional intermediate populations would complicate the model and could be
grouped into one of the three.

An assumption is that the M and HG are more pervasive while EHG is encountered rarely. How-
ever, the EHG is assumed to have some reasonable thickness within geologic structures. A drill hole

intersecting M, HG or EHG would be identified as such. We do not expect many EHG intersections.
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Figure 2.11: Trimodal distribution model of mineralized (M), high-grade (HG) and extreme high-grade
(EHG).

The model is parameterized by the probability of each population (Pys, Py, and Prpe) and three
lognormal distributions defined by mean values (mas, myg, and mgpgg) and variance or standard

deviation parameters for each (o, oG, and cgga). The sum of the proportions is one:
Py + Pac + Peae =1
The overall mean is defined as:

Moverall = Prr - My + Prg - muag + Peac - mEHG

The variation of each distribution (M, HG, and EHG) is important and relevant, but the metal
and resource are defined mainly by the proportions and mean values. There is a great challenge
in inferring the parameters of this model. A key parameter is establishing the metal in the HG
population versus the EHG population. A straightforward way to parameterize this is to assume
that the metal in the FHG population is a fraction of that in the HG population. The fraction
is essential to understand the probability of encountering extreme high grades and, ultimately, for
spatial prediction. Historical mining or external information guides the fraction of the total metal

from FHG. Considering this fractional model leads to the following:

Pepe -merc = f - Pac - muc

f-Pug - -muc
MEHG

Perg =

If there is enough data, the precise value of the fractional metal in EHG versus HG (the f parameter
in the equations above) will be inferred from the data. If there are too few data, it could be assumed.

For example, assuming f = 1 as a reasonable value, a sensitivity study could be performed.
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Combining the equations above for the overall mean:

Moverall = Py - myr + Pug - mupe + PEog - MEnG

fPug -muag
)'mM+PHG'mHG+ "MEHG
MEHG
f'm]M

MEHG

f+Pag - -mug
MEHG

<1 — Prg —

=muy + Pug - <—mM - +myg+ f- mHG)

The proportions of the populations are defined in sequence by the following:

MOoverall — MM
—may - <1 + M) +muc(l+f)

MEHG

Ppg =

f+Puc - -muc
MEHG

Prrug =

Py =1— Pyg — Penc

The mean values of the three populations could be estimated with reasonable confidence. The overall
mean could be estimated from historical mining. The fraction of metal in the EHG population
relative to the HG population (the f value) is a model parameter that could be inferred from
available drilling if enough intersections are available. Given the mean values and f, we could infer

the proportions of the populations and the contribution to metal from each population.

2.4.2 Probability of Drilling EHG

The probability of drilling n successive drill holes without encountering EHG could be computed
by:

(1- Peuc)"

This approach assumes the drill holes are independent, which may or may not be reasonable, given
drillhole spacing. It also assumes the EHG will be seen in a drill hole with a significant thickness;
that is, the EHG is not distributed in very small nuggets. This assumption is reasonable since if the
EHG were at a very small scale, it would be composited with other rock and end up as mineralized
(M) or high grade (HG).

Consider moyeran = 10g/t, mpyr = 0.1g/t, mpgg = 10g/t, mpre = 1000g/t, and f = 1 that
is, there is the same metal in the HG and the EHG. These numbers appear reasonable given the

intersections encountered at epithermal vein systems. Following the calculations described above:

10-0.1
Py = — 0.4975
—0.1- (1+ £18) + 1001+ 1)
1-0.4975 - 10

Py =1-0.4975 — 0.0050 = 0.4975

The overall mean of the model is checked: moyerany = 0.4975-0.14+0.4975-10+0.0050-1000 = 10 as it
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must. So, for thirty (n = 30) drill holes there is an 0.9953° = 0.86 = 86% chance of not intersecting
EHG. To get to a 50% chance of encountering an EHG drill hole log(0.5)/l0g(0.995) = 138 drill

holes would be required.

2.4.3 Application

The following demonstrates the conceptual trimodal model for extreme high grades applied to an
actual data set. The data comprises 61,027 channel samples across a gold-bearing Witwatersrand
reef structure with cumulative grade (cmg/t) and thickness (cm) measurements. Gold values (g/t)
are back-calculated from the other two measurements. A significant proportion of the samples are
considered “high grade”. The data set is sufficiently dense such that some valid extreme values are
likely observed, and we can infer the parameters of the extreme high-grade model with reasonable
confidence.

Figure 2.12 (left) shows the Au distribution. The overall distribution is high grade with multiple
oz/t assays. Log probability plots are a useful tool for identifying multiple populations and visual-
izing the upper tail of the distribution. Figure 2.12 (right) shows the log probability plots for Au.
Au plot shows a distinct inflection point near 0.1 g/t and tail decomposition around 30 g/t. These

may be reasonable thresholds for the initial assessment of mineralized, high grade and extreme high

grade.
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Figure 2.12: Au CDF with log scaling (left) and log probability plot with Tukey’s fences (Tukey, 1977)
(right).

Parameterization of the extreme high-grade model requires four mean values (overall, mineralized,
high grade and extreme high grade) and the fraction of extreme high-grade metal contributing to
the overall high-grade metal. Thresholds must be selected to delineate sub-populations. A sub-
sample of the full data set is used to calculate the proportions of each population. 80% of the data
is withheld, and the distribution of the remaining 20% is used for inference to simulate a sparse
sampling regime. Thresholds are defined based on distribution quantiles. Mineralized is defined
by the 0.1-0.9 interquantile range, high grade from 0.95-0.9995, and extreme high grade 0.9999

and above. Though subjective, threshold selection is informed by log probability plots. The 0.1-
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0.9 quantile range roughly defines the “inlier” range based on Tukey’s fences (Tukey, 1977). 0.95
roughly defines the break between “outlier” and “far outlier”. 0.9999 roughly defines the point of tail
decomposition, suggesting extreme values. The thresholds consider the number of samples within
each distribution; we do not expect to encounter many extreme values. Figure 2.13 shows a location

plot of all samples with the corresponding EHG locations highlighted in red.
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Figure 2.13: Location plot of all samples with EHG locations highlighted in red.

A sub-sample of the full data set is used to calculate the proportions of each population, summa-
rized in Table 2.2. Table 2.3 summarizes the proportion of metal contributed by each population.

The overall mean of the model can be checked:

Moverall = Py - mar + Pag - muag + PEag - MerG
1.45 =0.9601 - 1.15 + 0.0398 - 8.55 + 0.0001 - 48.35

1.45=1.45

In this scenario, the fractional EHG component, f, is quite small due to a significant number of
samples in the HG population. The channel samples are narrow (tens of cm) and likely only sample
mineralized material. If the samples were drill core, one would expect more internal dilution, lower
grades, and a higher f value. Given the proportions, we can calculate the probability of sampling
extreme high grade with n successive channel samples or the required number of samples for a P,
probability of sampling EHG. For example, the probability of not sampling EHG in 100 channel
samples is (1 — 0.0001)1%° = 98.9%. In order to get a 50% chance of observing an EHG sample,
10g(0.5)/log(1 — 0.0001) = 6301 additional channels are required.

The reasonableness of this model can be checked with a simple simulation study. For a given
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Table 2.2: Inferred and calculated model parameters.

Value
Overall mean (g/t) 1.4500
Mineralized mean (g/t) 1.1500
High grade mean (g/t) 8.5500
Extreme high grade mean (g/t) 48.3500
f 0.0200
Mineralized proportion 0.9601
High grade proportion 0.0398

Extreme high grade proportion 0.0001

Table 2.3: Overall metal proportions by category.

Proportion
Mineralized 0.7611
High grade 0.2352
Extreme high grade 0.0037

Table 2.4: Analytical versus simulated EHG probability.

EHG Prob. Samples FExpected Prob.

0.1 957 0.1012
0.5 6301 0.4873
0.9 20931 0.8876

probability, say 0.1, 0.5 or 0.9, the number of additional samples required to intersect an EHG value
with that probability is calculated analytically as above. High-resolution simulated realizations of
gold using all available data are considered the truth. If we randomly sample the realizations with
the calculated number of samples for some number of trials, we can directly observe how many EHG
intersections occur. Ten realizations are used for numerical stability. Each realization is sampled
1000 times with the calculated number of samples. Table 2.4 summarizes the predicted number of
samples required to have a 0.1, 0.5 and 0.9 probability of intersecting EHG and the corresponding
expected probabilities from resampling. The simulation results closely reproduce the analytical
predictions.

Access to a high-resolution “true” model is rarely possible in practice. Often, when data is
sufficiently dense to be considered the truth, mining has already occurred. One does not have the
luxury of calibrating their analytical model. Though applying the proposed analytical model is
unverifiable in a practical scenario, the example presented highlights that the analytical model could
be reasonable. The simulation study shows that the model can accurately predict the probability of
intersecting EHG. Determining how much data is required to infer model parameters is a topic of

future research.
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2.5 Discussion

Outlier management is an important component of the traditional resource estimation paradigm,
particularly with precious metals. Using smooth estimators, such as kriging, in the presence of
unadjusted extreme values poses a risk of overestimation. High grades in sparse data configurations
exacerbate this risk. The selection of grade caps is a long-standing issue; high-grade values are
important from an economic perspective, though they are problematic to resource estimation. There
is no definitive recipe for outlier management. There is a necessarily subjective threshold choice if one
decides to cap. The capping strategies outlined in this chapter provide general guidance; however,
no definitive metric exists. One must first assess that the extreme values are valid. If possible, one
should address high grades with domain boundaries. A capping strategy may be considered if there
is little continuity between high grades. Best practice suggests considering multiple strategies as an
ensemble and determining a consistent grade cap across multiple methods.

Many outlier detection methodologies do not consider the spatial context of the samples. To
overcome this, a spatial outlier detection algorithm is proposed, which considers the spatial configu-
ration and the probability density of each sample in the distribution. The idea that outliers fall in
low-density regions is only sometimes true. The context of each sample within its local neighbour-
hood should influence the decision to classify an outlier. If an extreme value is discordant within a
geologically-driven neighbourhood, it should be flagged as an outlier. An extreme value near other
high values is likely a true feature of the underlying distribution. High-grade samples with large
areas of influence should also be flagged. The algorithm effectively identifies outliers in a real 2-D
example with variable data density across the domain. Multiple features of the sample distribution
are combined and projected into a feature space where the threshold selection may be more intuitive
than directly selecting a grade value. High-grade samples flagged as outliers permit the inference
of a capping limit: the minimum grade of the high-grade outliers. The algorithm provides the
practitioner with another tool in the ensemble to guide and detect outliers.

An analytical extreme value model is developed to understand the contributions of EHG on
model resources. The effect of extreme values is significant from an economic perspective. The
EHG model allows the practitioner to predict the frequency of intersecting extreme values, which
is powerful in the context of drillhole planning or designing data collection schemes. The analytical
approach is limited in that historic mining or dense drilling is required to parameterize the model.
However, a simulation study with the Witwatersrand data set shows the model can correctly predict
the occurrence of EHG.

The remaining chapters in this thesis are dedicated to developing the NMR framework. The
NMR explicitly accounts for the spatial features of extreme values through high-order connectivity
metrics. If the high-order features are correct, the data does not require explicit capping or outlier

management. For this reason, outlier management is not discussed beyond this chapter.
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Chapter 3

Network Model of Regionalization
Framework

This chapter introduces the NMR, paradigm and the framework for generating non-Gaussian spatial
fields. The main idea of the NMR is that capturing non-Gaussian spatial features requires repro-
ducing high-order statistics. Reproduction of high-order statistics should also reproduce two-point
statistics such as the variogram. Multi-point connectivity measures can be easily calculated from
drillholes by considering them as sequences. The NMR is ultimately a function that maps an un-
known latent space to an interpretable observed space. The mapping of the latent space generates
a non-Gaussian spatial distribution with the correct high-order statistics. Inference of this mapping
function is an inverse problem as we only observe the system’s output. The chapter begins by fram-
ing the problem setting and addressing known issues with the multivariate Gaussian assumption.
Next, the relationship between connectivity and non-Gaussianity is discussed. Multi-point measures
of spatial connectivity, like distributions of runs, are a core component of the NMR framework. Con-
nectivity measures are critical in the context of extreme values; the spatial arrangement of these
values is likely significant concerning a transfer function. The connectivity of extremes likely drives
the project economics in many mining scenarios. Finally, an overview of the NMR methodology
is presented with a 2-D synthetic example highlighting improved resources relative to a traditional

SGS model.

3.1 Problem Overview

Geostatistical problems are often high dimensional, considering multiple variables at millions of
locations. The appeal of the Gaussian distribution is its mathematical tractability in any dimensions,
where a mean vector and variance-covariance matrix fully parameterizes it; thus, it is pervasive in
geostatistics. Many algorithms take advantage of the fact that under the multivariate Gaussian
assumption, all conditional distributions are Gaussian and calculated by linear combinations of the
conditioning data. Multivariate geostatistical problems necessitate a parametric distribution as there
are typically only hundreds to thousands of data available. The curse of dimensionality (Bellman,
1961) precludes the use of non-parametric distributions.

Connectivity of extreme values is commonly discussed as a shortcoming of the Gaussian RF model
(Guthke & Bardossy, 2017; Journel & Alabert, 1989; Journel & Deutsch, 1993; Kerrou, Renard, et
al., 2008; Yan, Jeong, et al., 2020). The maximum entropy characteristic of the Gaussian RF model

leads to maximum disorder for a given covariance structure; it does not allow for spatial correlation
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or connectivity of extreme quantile indicators (Kerrou, Renard, et al., 2008). Figure 3.1 emphasizes
these disconnected extreme values. The left panel is a reference image showing the volume of shale
for interbedded sands and shale of the McMurray Formation. The middle panel shows a Gaussian
realization generated with the normal score variogram calculated from the reference. The right
panel shows the connection probability for subsequent steps in the vertical direction. The Gaussian
realization is more disorganized and shows less connectivity than the true image. Furthermore,
the nature of the bivariate Gaussian relationship leads to symmetric destructuring of the indicator
variogram about the median. In practice, natural non-Gaussian distributions show asymmetric
destructuring of indicator variograms (Vincent, 2021) and correlation need not approach zero as z

approaches an extreme quantile (Journel & Alabert, 1989).
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Figure 3.1: Reference image showing the volume of shale for interbedded sands and shale of the McMur-
ray Formation (left), a Gaussian realization generated with SGS (middle), and the corresponding n-point
connectivity functions (right). The reference image is part of a core photograph.

High-order connectivity metrics can characterize non-Gaussianity. This concept is explored in
detail in Section 3.2. These multi-point measures include the frequencies of runs and the n-point
connectivity function. As properties of the Gaussian RF model lead to maximum disorder, one can
use a connectivity measure to assess non-Gaussianity from sequences. The idea is that a Gaussian
RV would show different connectivity than a non-Gaussian RV. The multi-point spatial arrangement
would differ depending on the underlying RV. RVs with more connectivity, will have fewer but longer
runs. This connectivity concept applies to sequences with structured extreme values not suited by
a Gaussian distribution. There is some degree of connectivity of extremes in mineral systems; the
underlying spatial phenomena are not entirely disorganized.

The challenges associated with MIK and traditional outlier management motivate the need for
spatial models that can characterize the non-Gaussian continuity of extreme values. Though the
goal is to achieve non-Gaussian features, the NMR framework remains based on Gaussian distri-
butions. The idea is to extend the concept of the linear model of regionalization (LMR) and map
a collection of regionalized, independent, standard normal factors {Y,,, m = 0,..., M} through a
weighted network consisting of non-linear activations. The NMR framework poses aspects of the
generation of stochastic realizations as an optimization problem rather than the traditional random

function approach. The parameters that map the factors are unknown, though we have observed
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measurements at the data locations. This model-based inverse problem is approached through
stochastic optimization. This approach allows the incorporation of multi-point geologic information
from various sources into the final model while honouring the statistics of the observed data. A
network-based mixing architecture and non-linearities allow the final models to capture richer and
higher-order spatial features; this is particularly useful when constructing models in the presence of
extreme values.

The following components summarize the overall structure of the NMR framework:

1. Objective targets: specifying the two- and multi-point statistics for the final model to repro-
duce.

2. Latent factor design: selection of the base pool of Gaussian distributions for mixing.

3. Parameter inference: determining the parameters of the mixing function that result in a
distribution with the correct spatial features.

4. Latent factor imputation: imputation of the latent factors such that mixing reproduces the
observed data values.

5. Latent factor simulation and mapping: conditional simulation of the imputed latent factors

from (4) and mapping to observed space with parameters from (3).

The first component is specifying the goals of the model. These goals, or objectives, are quan-
tified by two-point spatial statistics and higher-order statistics. The second component involves
choosing the covariance structure of each latent factor to mix. These choices depend strongly on
the modeling goals. The third component involves inferring the parameters of the mixing function,
which results in the model meeting the objective targets. The fourth component involves generating
synthetic realizations of the factors. The fifth component is conditionally simulating the factors on
a modeling grid and mapping them to observed space. This mapping results in gridded realizations
that reproduce the observed data and the objective targets away from the data. Figure 3.2 shows
the complete NMR framework as a flow chart. There are three junctions in the workflow where
the practitioner must decide if there is acceptable reproduction of desired statistics. Given the in-
terconnected nature of the framework, if acceptable reproduction is not achieved, one may have to
revisit one or multiple previous steps. This interconnectedness is highlighted by reverse-flow arrows
leading to multiple actions in Figure 3.2.

The remaining sections of this chapter discuss the calculation of high-order statistics and their
use for measures of non-Gaussianity, details regarding the components of the NMR framework, and
finally, a small synthetic example of the complete NMR workflow with highly structured extreme

values.
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Figure 3.2: High level flow chart illustrating the key components of the NMR framework. There are
multiple junctions where previous steps can be revisited and refined. Reverse-flow arrows leading to multiple
actions emphasize the interconnected nature of each component.
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3.2 Connectivity and Non-Gaussianity

A sequence is a collection of elements where the order of the elements matters. The arrangement
or order of the elements can be used to characterize the connectivity within the sequence. Grades
assayed on intervals down a drillhole represent a one-dimensional sequence of real numbers in a geo-
statistical context. The connectivity of high and low values is often of practical importance, mainly
when the transfer function is sensitive to extreme values. A one-dimensional sequence provides ac-
cess to data-driven multiple-point configurations or patterns that would be difficult to infer in two-
or three-dimensions. Connectivity is a different way of measuring correlation within a sequence.
Each drillhole can be considered an exhaustive, one-dimensional training image from which n-point
statistics can be inferred.

A natural extension of this concept is the analysis of runs of binary sequences from linear strings
of data (Ortiz, 2003). A binary sequence is either 0 or 1 and computed through the indicator
transform of a continuous RV. For a given threshold z;, k=1,...,K:

1, if z(w) < 2z
I(us; 21) = (i) = 2 (3.1)

0, otherwise

It is common to consider multiple thresholds resulting in multiple binary sequences. A run
of length L is defined as L identical values bound on either end by an opposite value. Runs of
consecutive values above or below the threshold can be assessed. The theory of the distributions
of runs for random uniform sequences is well documented by Fu and Lou (2003); the moments
of the distribution of runs have analytical expressions, and they show that the limit distributions
are normal. Though useful in many applications like cryptography and random number generation
(Rukhin, Soto, et al., 2010), the assumption of independence between elements in the sequence is
limiting in the spatially correlated scenario.

Ortiz (2003) shows that the analytical derivation of multi-point events is only possible when the
multivariate spatial law is known. Practically, this is either the random or multivariate Gaussian
case. A run of length L above a threshold zj consists of L + 2 elements where the first and last
elements are below the threshold. In the general case, the probability of a run of length L is defined
as:

P{run L} =
P{Z(u) < z|Z(u+h) > z,...,Z(u+L-h) >z, Z(u+ (L+ 1)) <z}, 0y (32)
P{Z(u+L-h)>z|Z(u+ (L+1)) <z}
P{Z(u+ (L +1)) < 2z}

The separation vector between elements is h. This definition amounts to a recursive application
of Bayes’ Law to determine the joint probability of the multiple-point event. In the multivariate

Gaussian case, the conditional probabilities are calculated using simple indicator kriging (Journel
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& Alabert, 1989). With correlated sequences, the range of correlation influences the frequencies of
runs. As correlation increases, there are fewer short and more long runs relative to random (Ortiz,
2003).

Correlated Gaussian sequences with an arbitrary covariance structure can be easily generated
using any stochastic simulation algorithm and the indicator formalism of Equation 3.1. The total
number of runs and frequencies of run lengths can be determined experimentally for the multivariate
Gaussian scenario. If the covariance structure of the Gaussian realizations matches that of the true
one-dimensional drillhole sequence, run-based statistics can measure non-Gaussianity. Section 3.2.3
presents this idea further. If the number or frequency of runs in the data deviates significantly
from the Gaussian case, one may investigate the sequence as non-Gaussian. These measures can
provide insight into domain sub-regions that exhibit non-Gaussian behaviour and warrant further
investigation. Run-based connectivity measures in the following sections provide access to high-order

statistics to characterize non-Gaussianity.

3.2.1 Distribution of Runs

High-order statistics characterize the spatial relationship between multiple points. In contrast to two-
point statistics, such as the variogram, multiple-point statistics can reproduce curvilinear features
and more complex ordering (Guardiano & Srivastava, 1993). Runs are one-dimensional patterns or
a type of multi-point statistic calculated from data sequences like drillholes (Boisvert, Pyrcz, et al.,
2007).

The indicator formalism (Equation 3.1) applied to linear, one-dimensional drill strings (Fig-
ure 3.3) generates binary sequences. This transform characterizes each element in the sequence as a
binary event relative to thresholds z;, &k =1,..., K. It is implicit that the elements in the sequence
are equidistant; that is, the drillhole is composited. Multiple-point configurations, such as runs,
can then be extracted from the sequences. In practice, one may have to adapt tolerances to infer

statistics from approximately linear or equidistant sequence elements (Ortiz, 2003).

DXOOSOX XX DOOC

0.1 Indicator

)00000000000060 0 ____ 0 1600000006 0000000000000

0.5 Indicator

0.9 Indicator

Composite Index

Figure 3.3: Indicator transform of a Gaussian RV using the 0.1, 0.5, and 0.9 quantiles as thresholds.

Calculating runs considers a cumulative or “overlapping” approach. That is, one run of 3 is
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also two runs of 2 and three runs of 1; Figure 3.4 shows this nesting. This generalizes to a run
of length L being ¢ runs of length L — i+ 1, ¢ = 1,..., L. This cumulative approach accounts
for the dependence between overlapping runs within the sequence (Fu & Lou, 2003). Considering
cumulative runs generates a histogram of run lengths that decreases as run lengths increase. This

consideration controls long runs as a long run contains elements for all shorter runs (Ortiz, 2003).

1 2 3
1 2
1 2
1
1
1

Figure 3.4: Example of lower-order runs for a single run of 3. One run of 3 is also two runs of 2 and three
runs of 1.

It is interesting to note that the indicator transform results in nested sequences. Sequences
that are above the current threshold are also above any lower threshold. Figure 3.3 illustrates this
concept where all sequences above the 0.9 quantile (zeros) are nested within a sequence above the 0.5
quantile, which is nested within a sequence above the 0.1 quantile. Ortiz (2003) uses this property
of sequences to simulate hierarchically as a run at one threshold can be used to condition the next

threshold.

3.2.2 N-point Connectivity Function

A connectivity function quantifies the connectedness of a sequence (Renard, Straubhaar, et al., 2011).
Two-point connectivity is characterized by the expected value of the product of indicators I(u; z)
and I(u + h;z). The n-point connectivity function, proposed by Journel and Alabert (1989), in a
given direction can be generalized as the expected value of the product of n indicators where the

lag distance h is the distance between sequence elements:

oy (mih) = B [ I+ (G - Dhsz) (3.3)

j=1
The n-point connectivity function describes the probability of n successive elements in the se-

quence being jointly below the threshold z;. To consider the probability of being jointly above the
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threshold zg, Equation 3.3 becomes:

e (nih) = BX [ 1= T(u+ (G — Dh; 2) (3.4)

j=1

Journel and Alabert (1989) show that the n-point connectivity function for a RV with connected
extreme values simulated with a Gaussian RF model is much less than the true connectivity. Fig-
ure 3.5 shows an example of an n-point connectivity function for a non-Gaussian one-dimensional
string data (red) and a Gaussian realization of the same string (gray). The Gaussian realizations
are generated with LU matrix simulation (Davis, 1987) and have the same covariance structure as
the non-Gaussian string. The n-point connectivity function shows that the probability of connected

steps within the Gaussian realizations is significantly less than the non-Gaussian data for the first

20 steps.
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Figure 3.5: n-Point connectivity function for a string of non-Gaussian data (red) and the expected value
of Gaussian realizations (gray) with the same covariance structure.

Notably, the n-point connectivity function considering runs above the threshold (Equation 3.4)
is analogous to cumulative run-length frequencies of runs above the threshold scaled to the fraction
of total elements in the sequence. Considering the n-point connectivity function above a quantile is

the same as considering the cumulative run-length frequency above that quantile.

3.2.3 Measures of Non-Gaussianity

Four measures of non-Gaussianity are proposed. Three based on the concepts of runs and connec-

tivity within drill string sequences, and one based on the volume-variance relation:

1. Total Runs: the number of unique runs above or below a threshold.

2. Run Length Frequencies: the frequency of cumulative run lengths above or below a threshold.
3. N-Point connectivity: the number of connected steps above or below a threshold.
4

. Change of Support: the relationship between continuous variance and scale.

The first measure calculates the total cumulative runs within the binary sequence. As connec-
tivity within the sequence increases, fewer but longer total runs exist. This connectivity translates
to more cumulative runs as each longer run contains {L —i+ 1, ¢ = 1,..., L} lower-order runs. A
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non-Gaussian sequence with connectivity of extremes is expected to exhibit a greater number of cu-
mulative runs than a Gaussian sequence. The second measure calculates the cumulative run-length
frequencies within the binary sequence. Increased connectivity within the sequence leads to fewer
but longer run lengths. Similar to the first measure of total runs, a non-Gaussian sequence with
connectivity of extremes is expected to exhibit a greater frequency of longer run lengths. The na-
ture of cumulative run lengths leads to a histogram of lengths that decreases as run length increases,
facilitating a more straightforward comparison of distributions. The third measure is the binary
sequence’s m-point connectivity. The n-point connectivity function quantifies the probability of n
successive elements in the sequence being below (or optionally above) the indicator thresholds. Only
elements below the threshold contribute to the probability in Equation 3.3. As connectivity within
the sequence increases, the probability of successive elements being jointly below the given threshold
increases. A highly structured non-Gaussian sequence is expected to have a greater probability of
n connected steps compared to a maximum entropy Gaussian sequence as n increases. Figure 3.5
highlights this characteristic.

The fourth measure is not sequence-based but calculates the change of support for the original
continuous variable. This measure is quantified by averaging n consecutive elements within the
sequence and calculating the change in variance relative to the original. As volume increases, the
variance of the elements within the sequence decreases. The idea is that if the sequence has structured
or connected extreme values, the variance of the sequence should be less sensitive to scale. A non-
Gaussian sequence with connected extreme values is expected to show a less drastic reduction in
variance as scale increases compared to a maximum entropy Gaussian sequence.

The covariance structure of each sequence is calculated from the exhaustive drill string to measure
non-Gaussianity. This covariance is used to generate multivariate Gaussian realizations with the
exact covariance of the original sequence. The Gaussian realizations are back-transformed to original
units, and then indicator transformed with Equation 3.1. Each metric is calculated for each one-
dimensional data string and compared to the distribution of metrics observed from the Gaussian
realizations. The deviation between the original sequence and the Gaussian distribution measures
non-Gaussianity. The general workflow for calculating the proposed measures of non-Gaussianity

on a drillhole-by-drillhole basis is as follows:

Indicator transform the grades of all drillholes for quantiles of interest.
Calculate cumulative runs and run-length frequencies for all thresholds for all drillholes.

Calculate the n-point connectivity function for all thresholds for all drillholes.

= W o=

Composite the continuous variable by a number of length factors to calculate the relationship
between variance and scale.
5. Normal score transform the grades of all drillholes.

6. Calculate the autocovariance matrix for each drillhole and simulate ¢ = 1, ..., L unconditional
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Gaussian realizations of each drillhole.

7. Back transform Gaussian realizations to original units.

8. Repeat steps 1-4 for each realization of each drillhole.

9. Calculate the score for each measure as y = % where zg4p, is the measure from the original
drillhole and u, and o, are the mean and standard deviation of the distribution of measures

from the realizations, respectively.

10. The final y score is taken as |y| such that only the magnitude, not the sign, is considered.

The y score measures how many standard deviations away from the Gaussian distribution the
original drillhole is. Figure 3.6 illustrates y-score calculation. This score indicates the appropriate-
ness of a Gaussian RF model, as the Gaussian realizations have the exact covariance structure of the

original drillhole. Any drillhole with a y value greater than 2.5 is considered highly non-Gaussian.

Frequency
<

Zdh U Measure

Figure 3.6: Schematic illustrating the calculation of the non-Gaussian Score y where z45 is the metric
from the drillhole, and u, and o, are the mean and standard deviation of the Gaussian distribution.

Consider a 2-D synthetic example generated from an image of a meandering river system. The
red-green-blue (RGB) colour channels are averaged to generate a greyscale image, which is then
normalized € [0,1]. The main river channels show structured high values relative to the background
flood plane and abandoned channels (Figure 3.7). These features are a natural example of non-
Gaussian characteristics in geospatial data. The image is “drilled”, resulting in 10 drill strings or
sequences used to calculate non-Gaussianity measures.

Table 3.1 shows the expected non-Gaussian scores for each sequence across 100 realizations for the
0.1 and 0.9 quantile indicator transforms. The structured regions are predominantly high-grade, so
the 0.1 quantile indicators do not show significant non-Gaussianity. Drillholes 5 and 7 show strong
non-Gaussianity for all connectivity metrics, while holes 8 and 9 are moderately non-Gaussian.
These drillholes intersect structured high-grade river channels in the eastern portion of Figure 3.7
and exhibit connectivity features that cannot be reproduced by a multivariate Gaussian RF. Abrupt
transitions between high- and low-grade regions are difficult to capture with a maximum entropy
RF that leads to increased connectivity of median values and disconnected extremes.

There is likely a spectrum of non-Gaussianity, and the practitioner must decide on appropriate
thresholds. The proposed measures indicate that some regions within the domain have non-Gaussian
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Figure 3.7: Image of a meandering river system sampled in ten locations to generate sequences of pixel
data. DHID = drillhole ID, px = pixel.

Table 3.1: Non-Gaussian metrics calculated for ten drillholes considering the 0.1 and 0.9 quantile indicator
transforms. y-scores > 2.5 are considered strongly non-Gaussian. DHID corresponds to Figure 3.7.

Total Runs Cumulative Runs N-point Connectivity
0.1 Indicator 0.9 Indicator 0.1 Indicator 0.9 Indicator 0.1 Indicator 0.9 Indicator
dhid

0 1.18 0.23 1.48 0.17 1.23 0.17
1 0.55 0.10 0.35 0.05 0.32 0.05
2 0.68 1.18 0.72 1.81 0.68 1.81
3 0.41 0.58 0.68 1.08 0.64 1.08
4 0.75 0.05 0.63 0.14 0.72 0.14
5 1.16 2.44 1.15 5.18 0.96 5.17
6 1.34 0.76 1.25 0.97 0.89 0.96
7 1.18 5.15 1.24 4.73 1.16 3.73
8 0.89 1.41 1.20 1.50 1.03 1.48
9 1.04 1.26 0.77 1.39 0.61 1.50

features. These measures can identify sub-regions that warrant further investigation. The NMR is
designed to capture these non-Gaussian connectivity measures. The goal of NMR is to develop
a framework for incorporating two- and n-point statistics where two-point statistics come from
the continuous variogram and indicator variograms, and the n-point statistics come from drillhole

sequences.

3.3 Network Methodology

Sections 3.2.1 and 3.2.2 present methodology for accessing higher-order statistics from drillhole
sequences. Section 3.2.3 shows that these statistics can effectively characterize non-Gaussianity.
This section presents the overall NMR, framework and the generation of non-Gaussian spatial fields
by integrating these statistics. Achieving higher-order connectivity is a key component of the NMR
framework. Two-point, variogram-based statistics alone cannot capture the complex multi-point
relationships we seek in a non-Gaussian RF. The indicator transform of drill strings provides access

to binary sequences that permit the calculation of multi-point connectivity statistics.
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3.3.1 Notation

This section shows an overview of the NMR mathematical notation and definitions, while Chapters

4 and 5 present complete details. Consider a continuous RF:
{Z(u), Vu € D} (3.5)

where D is a domain of interest. The location vector u could be data or grid node locations.

Next, consider a set of M + 1 latent variables, each characterized by a Gaussian RF:
{Y(u) = (Yo(u),...,Yr(u)), Yue D} (3.6)

Finally, consider a forward mapping function Fy that defines the mapping from the real-valued

latent space to the real-valued observed space:
{Fo : RM s R} (3.7)

where 0 is a parameter vector that characterizes F, and Fy is such that the mapping of the latent

space to the observed space reproduces the observed data values:
{F6(Y(u)) = Z(u), Yu e D} (3.8)

The NMR approximates the forward mapping function Fy. Chapter 4 discusses inference of the
parameter vector, 6, and Chapter 5 presents imputation of the Gaussian RFs such that the equality

in Equation 3.8 holds.

3.3.2 The NMR Inverse Problem

The NMR approximates the forward mapping function from latent to observed space and can be
considered a model-based inversion problem (Sen & Stoffa, 2013). The parameters of this function
(or model) are unknown and must be inferred from the observed measurements or data. The goal
is to find the unknown parameters, 6, so the model output has the desired spatial characteristics.
In this context, the observed measurements are drillhole data or empirical statistics calculated from
these data. Synthetic data are generated by mapping latent Gaussian variables though Fy for a
given state of #. If the match between the spatial characteristics of the synthetic data and those
of the observed data is acceptable, then the parameters are retained. Otherwise, 0 is perturbed
until the match is acceptable. An objective function quantifies the mismatch between the model
output and observed data. Figure 3.8 shows a high-level flowchart of this optimization process. The
iterative parameter search, or minimization of the objective function, is an optimization problem
approached with DE, a directed Monte Carlo search method; Chapter 4 presents details on the
specific formulation of this problem.

Inverse problems are typically ill-posed; that is, the solution is non-unique. To help mitigate the
non-uniqueness of the solution, constraints in the form of (1) prior information and (2) parameter

constraints are imposed on the solution. Prior geologic information is incorporated through models
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M+1 Evaluate Finish if
Prior Latent Update 6; Objective i — MAX o
Models Function fobj = 0.0

t=1+1

Figure 3.8: Flowchart showing an overview of the optimization workflow for determining the parameter
vector 6.

of latent Gaussian variables (Section 3.3.3) and forms the basis of the NMR output. Careful de-
sign of these latent variables ensures the optimization algorithm explores the appropriate solution
space from a geologic perspective and acts as a regularization element (Zhou, Gémez-Herndndez,
et al., 2014). The model output is a mixture of these latent variables; the observed statistics are
reproduced by integrating spatial features from the prior models. Geologically reasonable prior in-
formation ensures a solution for # is feasible. Limiting parameter values based on their physical
meaning can further constrain the problem. As the NMR is a positive, non-linear combination of
the latent variables, each latent variable’s relative contribution cannot be negative; these values are
always constrained to be > 0. Uncertainty in the parameter vector 6 is captured by considering
multiple realizations of the prior models during optimization. The objective function is minimized
in expectation; that is, it considers the mismatch error across all realizations. Considering a space
of uncertainty in the prior models ensures the parameters are not overly sensitive to the features of
a particular realization, acting as an additional regularization element.

Determining the parameters of the NMR does not directly consider the reproduction of the
observed data values but rather the observed two- and multi-point statistics. The goal is to learn
how to map from the latent to the observed space, which results in the desired spatial structure. As
discussed above, multiple distributions could reproduce these statistics, so explicit data matching is
unnecessary, simplifying the optimization. Additionally, by relaxing this data-matching constraint,
the prior latent models can be generated through unconditional simulation. Exact reproduction of
the observed data values is ultimately required, and Chapter 5 addresses this imputation problem

in detail.

3.3.3 Latent Spatial Structure

The set of latent Gaussian variables of Equation 3.6 is the foundation of the NMR. This set is
referred to as the Gaussian “pool” throughout this text; the components of the pool are referred
to as latent “factors” It is a pool in that there is a collection of Gaussian RFs to be shared with
the goal of reproducing high-order statistics. This pooling is analogous to a GMM in the spatial
context. The idea of a GMM is that a finite mixture of Gaussian densities can approximate a

continuous distribution (as in Equation 3.5) (McLachlan, Lee, et al., 2019). Furthermore, Silva and

55



3. Network Model of Regionalization Framework

Deutsch (2018) shows that a mixture of Gaussian components can fit complex non-Gaussian uni-
and multivariate distributions. The NMR is an extension of this concept; rather than a mixture
of Gaussian densities, Z(u) is approximated by a mixture of Gaussian RFs. Rather than using the
expectation-maximization algorithm to fit the parameters of each Gaussian component (McLachlan,
Lee, et al., 2019), M standard Gaussian RFs, with covariance structures specified by 7, (h), are

explicitly chosen. The factors are chosen such that:

1. Latent factors are standard normal: E {Y,,(u)} =0, E {Ym(u)Q} =1, Vu
2. Latent factors are independent: E {Ym(ui)Yn(uj)} =0, Vm#n, Vi#j

3. Latent factors reproduce their respective variogram model ~,,(h), ¥V h

The output of the mapping function Fy is a spatial mixture of the latent factor components of Y (u).
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Figure 3.9: Unconditional realizations of Gaussian RFs with orthogonal directions of continuity.

Consider a hypothetical scenario where the modeling goal is to have highly continuous low grades
in the east-west direction and highly continuous high-grade continuity in the north-south direction.
This orthogonal continuity is challenging for a multivariate Gaussian simulation algorithm, as a
normal score variogram cannot simultaneously capture both directions of continuity. The NMR
can draw different spatial structures from different latent factors within the pool; the sharing of
structures is a core concept of the NMR approach. Consider the 2-D realizations of two unconditional
Gaussian RFs in Figure 3.9. It is possible to achieve the modeling goals if we can draw high-grade
continuity from factor 1 and low-grade continuity from factor 2. A simple linear combination of the
factors, analogous to the linear model of co-regionalization (LMC), cannot capture the orthogonal
continuities as high and low values cancel when combined. Before mixing, we must emphasize the
high values in factor 1 (and mute the low values) and the low values in factor 2 (and mute the high

values). This “extraction” of specific factor features requires the introduction of a non-linearity.

3.3.4 Non-Linearity and Mapping

Emphasizing a portion of a range of values requires the definition of a threshold. Given item (1)
from the list in the previous section, zero is the logical threshold value of a Gaussian distribution.
A straightforward approach to introducing non-linearity is applying a power law type function. The
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non-linear value is the original value raised to a power, w. If we want to emphasize the high values,
all values > 0 are raised to the exponent w > 1 while the values < 0 are raised to the exponent %
The non-linearity effectively mutes the magnitude of values below zero and exponentially increases
values above zero. The opposite is true if we wish to emphasize low values; all values < 0 are raised
to the exponent % while the values > 0 are raised to the exponent w, where w < 1. Figure 3.10
shows this power law relationship graphically for the two realizations shown in Figure 3.9 using
w; = 4 and we = 0.25. Where factor 1 is greater than zero, the function significantly emphasizes
values > 1. Where factor 1 is less than zero, the function mutes or dampens values < —1. This
non-linearity advantageously isolates the high-grade structure from factor 1. The opposite is true

for factor 2. Chapter 4 presents the complete details of the non-linearity ¢(y,w).

3

—— Factor 1: w =14

—— Factor 2: w = 0.25
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Figure 3.10: Power law relationship between the linear input y and the non-linear output ¢(y,w), where
@(...) is the power law function.

Figure 3.11 (left, center) shows the spatial distribution of factors 1 and 2 after applying the power
law function. Note the magnitude of the colour bars between the plots. The power law function
can isolate the desired components of each factor and can be thought of as an “activation” function.
Figure 3.12 (left, center) shows the histograms of factors 1 and 2 after transformation. As expected
¢(y1,wn) is strongly positively skewed, and ¢(y2,ws) is strongly negatively skewed. ¢(...) resultsin a
distribution of arbitrary activation units. These units are not interpretable and require combination
and mapping to an observed space in Gaussian units. Combining the “activated” realizations is a
weighted, linear combination, followed by a normal score transform. For the sake of the example,
the weights to each factor are a = [1,1]. The final model is then z = G~(¢(Y,w) -aT), where G~*
is the inverse of the Gaussian CDF.

Figure 3.11 (right) shows the spatial distribution of the final model, while Figure 3.12 (right)
shows the histogram. Note that the spatial distribution is complex and non-multivariate Gaussian.
However, the univariate histogram is perfectly Gaussian. The high values show north-south conti-
nuity, while the lows show east-west continuity. The overprinting of the factors appears natural,
resulting in a spatial structure that a single variogram model cannot generate. These steps provide

an overview of the forward pass through the NMR. In summary, they are:
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Figure 3.11: Factors 1 (left) and 2 (center) after application of the power law function, and the final
mapped, normal score transformed realization (right).
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Figure 3.12: Histograms of factors 1 (left) and 2 (center) after application of the power law function, and
the final mapped, normal score transformed realization (right).

1. Unconditionally simulate latent factors to form the Gaussian pool
2. Activate the factors with w to emphasize certain features
3. Linearly combine the activated factors with weights a

4. Normal score transform the combination

In practice, parameters w and a are unknown and must be inferred. As Section 3.3.2 discusses,
inverse problems are commonly approached by optimization. The optimization problem consists of
determining w and a for a given Gaussian pool to minimize an objective function. The objective
function in this context is the reproduction of desired two- and multi-point statistics in the final

model produced by the steps above.

3.3.5 Two-Point Statistics

Two-point statistics are the experimental normal score and indicator variograms. The experimental
variogram is the expected squared difference between data pairs separated by lag vector h. Figure
3.13 shows the normal score variogram (blue), the 0.1 quantile indicator variogram (black), and
the 0.9 indicator variogram (red) of the mapped model in the north-south (left) and east-west
(right) directions, respectively. The final model achieves its goals from the perspective of two-point
statistics. The indicator variograms show increased low-grade continuity in the east-west direction
and high-grade continuity in the north-south direction. The normal score variogram is a blend of
the indicator variograms; in the north-south direction, it has the continuity of the highs with the
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cyclicity of the lows and the range of the lows and cyclicity of the highs in the east-west direction.
This feature blending further emphasizes how a single variogram cannot capture the complexity of

the NMR.
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Figure 3.13: Normal score experimental variogram (blue), the 0.1 quantile indicator experimental vari-
ogram (black), and the 0.9 indicator experimental variogram (red) of the mapped model in the north-south
(left) and east-west (right) directions, respectively.

An interesting experiment to confirm this behaviour is to generate a realization with a multivari-
ate Gaussian simulation algorithm using the normal score variogram from Figure 3.13 and compare
it to the final NMR model. Figure 3.14 shows the same NMR realization from above (left) and
a realization generated with SGS (right). The SGS model uses the variogram model fitted to the
blue experimental variogram in Figure 3.13. The NMR and SGS models are significantly different,
though they share the same two-point covariance structure. The SGS model shows less connectivity
in low and high values and generally more disorder. The normal score variogram shows a mixing
between the orthogonal structures and cannot adequately capture multiple anisotropies when con-
sidering the full range of values. In contrast, the NMR isolates a particular covariance structure to

values above and below zero.
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Figure 3.14: The final NMR model (left) and a SGS model generated with the same normal score variogram
model.

Beyond two-point statistics, the network approach also considers the multi-point statistics dis-
cussed in Section 3.2. A non-Gaussian RF should show increased multi-point connectivity of extreme
values over a Gaussian RF. Whether it is connectivity of high or lows depends on the structure of

the latent pool and power law exponents, w.
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3.3.6 Multi-Point Statistics

Consider the 2-D models above as sections rather than plan view. We can “drill” the realizations to
generate sequences of data. Sampling the realization results in 32 synthetic drillholes, each with 64
samples. Figure 3.15 shows the drillhole configuration and the corresponding 0.9 quantile indicator
transform for the NMR (left) and SGS models (right). The direction of continuity of the high-grade

factor corresponds with the direction of drilling.
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Figure 3.15: Synthetic drillhole samples and corresponding 0.9 quantile indicator transform for the NMR
model (left) and the SGS model (right).

As expected, the NMR model visually shows increased high-grade connectivity. The more struc-
tured high-features result in fewer total but longer connected sequences. The SGS model is more
disorganized, resulting in shorter connected sequences. The n-point connectivity function in Figure
3.16 quantifies this visual discrepancy. The probability of connection above the 0.9 quantile for
the multivariate Gaussian model steeply declines in the first five steps and is effectively zero at
seven steps. The probability of connection in the non-Gaussian model decreases notably slower and
remains > 0 at 20 connected steps.

Connectivity measures are calculated globally, that is, considering all drillholes. The primary
orientation of drilling is an important consideration when designing latent factors with the goal
of high-order connectivity. In practice, high-grade structures are generally orthogonal to the pri-
mary orientation of drilling, so specific factors aligned with the tertiary variogram direction may be

required.
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Figure 3.16: N-point connectivity function for the 0.9 quantile indicator transform of the drillholes in
Figure 3.15.

3.3.7 Latent Imputation

The previous sections consider using unconditional realizations to infer the mapping function Fy.
The ultimate goal is to generate gridded realizations conditional to the observed data with non-
Gaussian spatial features characterized by 6. This process requires gridded conditional realizations
of each latent factor in the pool. As the latent factors are a synthetic construct of the NMR model
and not directly observed, they must be imputed (Little & Rubin, 2019). The imputed factors have
the conditions listed in Section 3.3.3 plus the additional constraint that they must reproduce the

observed data (within a specified tolerance) when mapped through Fp:
Fo(y(u)) = z(u) £ «, Yu (3.9)

where « is a data matching tolerance. A straightforward approach to satisfying Equation 3.9
is to assign random Gaussian values to the vector y(u) until the equality is met (Silva, 2018).
This approach ensures the correct collocated multivariate relationship between the latent factors.
However, it does not ensure that each regionalized factor has the correct spatial variability. If the
imputed latent factors do not have the correct spatial variability defined by the pool, the mapping
function Fy is no longer valid. Directly sampling the high-dimensional multivariate distribution is
difficult, though sampling the marginal conditional distributions is possible. This problem is typically
approached by a Gibbs sampler (Geman & Geman, 1984) and commonly employed in the truncated
Gaussian simulation paradigm (Arroyo & Emery, 2020; Madani & Bazarbekov, 2021). Noted Gibbs
sampler convergence issues with spatially correlated data motivates the development of a novel
imputation algorithm presented in Chapter 5. The algorithm combines sequential simulation and
rejection sampling components to iteratively sample the marginal distributions, resulting in latent
factors that satisfy Equation 3.9 and have the correct covariance structure.

The solution to Equation 3.9 is non-unique. Multiple combinations of latent variables can repro-
duce the observed value when mapped. Figure 3.17 shows the relationship between two imputed
factors and the observed value, z(u). In this example, if z(u) is high, say 1.5, factor 2 is constrained
to be high. However, factor 1 can take any value from the range of [—2.5,2.5]. The opposite is

true for low values, where factor 1 is constrained. The NMR framework utilizes multiple imputation
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to transfer uncertainty related to non-uniqueness to the final gridded realizations. Multiple latent

factor realizations are imputed, and a unique data realization conditions each gridded realization.
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Figure 3.17: Bivariate scatter plots comparing the observed value, z, and factors 1 and 2. The histograms
are the marginal distributions of each variable.

Chapter 5 presents the details of the imputation algorithm and the of checking latent data
realizations. The algorithm shows stable convergence for spatially correlated variables and correctly

reproduces the latent pool’s collocated multivariate relationships and covariance structure.

3.3.8 Simulation and Mapping

After imputing all latent factors at the data locations, they are conditionally simulated at grid node
locations. Any conditional simulation algorithm is valid; different algorithms could be used for
different structures depending on the range of correlation, structure type and anisotropies (Pinto,
2020). Once the latent factors are defined at all grid nodes, the gridded realizations are mapped from
latent to observed space with Fy. The mapping function includes a normal score transform based
on a reference distribution of activation values output by the network. The corresponding normal
score values of these activations are used as a transform table to transform the gridded realizations
into Gaussian units.

After transformation to observed space, the gridded NMR realizations reproduce all specified two-
and multi-point spatial features while being univariate Gaussian. Transforming the realizations to
original units is simply the inverse of the normal score transform. Chapter 5 presents further details

regarding the checking and validating of both latent and mapped gridded realizations.

3.4 Effects of High-Order Continuity

The NMR framework permits a flexible approach to continuous variable simulation in the presence
of non-Gaussian geologic domains. One can design latent factors to account for differences between
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background and high-grade mineralization or changes in the orientation of continuity if sub-domains
cannot be defined. The flexibility of the latent pool is advantageous, providing M - 7 orientation,
range and covariance structure parameters, compared to the 7 of a single variogram model in a
traditional multivariate Gaussian simulation algorithm. The following section presents a small syn-
thetic, non-Gaussian example to highlight the effect of multi-point connectivity on expected mineral
resources. NMR resources are contrasted against those from SGS.

The reference truth comes from a natural image of fork lightning rotated 90 degrees. The image
is chosen as it exhibits narrow, highly connected, high-value, dendritic features with abrupt changes
in grade between the lightning and the background features. It is reasonable to suggest similarities
between the image and narrow vein-type mineral deposits. The image is rotated 90 degrees, so the
synthetic drillholes are roughly orthogonal to the lightning structures. The RGB colour channels
are averaged, generating a grayscale image. The grayscale image is normalized € [0,1] and then
transformed to a log-normal distribution with a ¢ =1 and o = 2. Data with a CV of 2 is common
in mineral systems with positively skewed distributions, such as precious metals. Twenty synthetic
drillholes are sampled from the image, extracting every third pixel, resulting in 1560 samples. Figure
3.18 shows the reference image (left) and the synthetic drillhole configuration (right). The drillhole
data is strongly non-stationary; the high-grade features are vertically continuous in some areas and
horizontally in others. The dip of the structures also changes locally. The goal of the NMR model
is to capture these non-stationary features and correctly characterize the connectivity of high and
extreme values observed in the true image. Though synthetic, this scenario provides an excellent

opportunity to highlight the capabilities of the NMR.
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Figure 3.18: The non-stationary reference truth image of fork lightning (left) and the drillhole samples
extracted from the image (right).

The normal score variogram model plus two additional highly anisotropic factors comprise the
Gaussian pool. The normal score variogram model exhibits strong zonal anisotropy where the range
in the direction parallel to the sampling is larger than the domain size. The first of the highly
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anisotropic factors is oriented 100 degrees with a 10 : 1 anisotropy ratio, and the second is oriented
45 degrees with a 5 : 1 anisotropy ratio. The normal score variogram factor can influence any grade
range with w € [0.25,4.0] while the additional factors are constrained to influence high values with
w € [2.0,4.0]. The first factor can capture the orientation of medium to high-grade values, while
factors two and three capture the orientation of the highest-grade structures. The mapping function,
Fy, is inferred by minimizing the sum of squared errors between the objective function components
and the two and multi-point statistics extracted from the synthetic data. Chapter 4 gives the
complete details of the objective function and optimization algorithm. One hundred realizations of
each latent factor are imputed at the data locations such that Equation 3.9 holds using o = 0.01.
Once the latent factors are defined at the data locations, they are conditionally simulated on a 1 x
1 pixel point scale grid using SGS. The point scale latent realizations are mapped through the same
function, resulting in a univariate Gaussian spatial mixture with features characterized by 6.

The point scale realizations are back-transformed from Gaussian to original units and block
averaged to a 5 x 5 pixel selective mining unit (SMU) scale grid. The SMU scale realizations are
post-processed to calculate the e-type mean. Figure 3.19 shows the block averaged reference truth
(top left) and corresponding 0.9 quantile indicator transform (bottom left), with the SMU scale
NMR e-type model and indicators (top middle, bottom middle), and the SMU scale SGS e-type
model and indicators (top right, bottom right). An outcome of correctly characterizing the point
scale, high-grade continuity is that the SMU scale realizations should show more connectivity. As
discussed in Section 3.2.3, disordered realizations are more sensitive to changes in scale; connected
or organized features should remain as scale increases (to an extent). This connectivity is evident
in the 0.9 quantile indicator transform of the NMR e-type model. The indicator model exhibits
increased east-west high-grade continuity over the SGS model, particularly in the central and top
portions of the grid. The SGS model effectively captures the vertical high-grade continuity; however,
the east-west structures are visibly more disconnected.

Table 3.2 summarizes the resources of the SMU scale NMR and SGS models above the 0.1,
0.5, and 0.9 quantiles as a fraction of true resources. The resources assume the synthetic variable
is measured in grams per metric tonne, priced in troy ounces, and density is a constant value of
2.6g/cm3. The NMR and SGS models show similar resources for the 0.1 and 0.5 quantile cutoffs.
However, the NMR model shows improvement in both tonnes and grade above the 0.9 quantile
cutoff, leading to a 9% increase in contained metal ounces relative to the SGS model. The increase
in tonnes above the true 0.9 quantile is attributed to the increase in east-west continuity imparted
by factors two and three. A single covariance model considering the complete range of grade values
cannot effectively capture the non-stationary features of the true image.

Drill hole data may exhibit non-Gaussian features that are difficult to capture with a single covari-
ance model based on two-point statistics. The NMR model permits generating multiple realizations

that consider both two- and multi-point statistics from the observed data. These considerations al-
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Figure 3.19: The reference truth block averaged to a 5 x 5 pixel SMU (top left) and corresponding 0.9
quantile indicator transform (bottom left), with the SMU scale NMR model and indicators (top middle,
bottom middle), and the SMU scale SGS model and indicators (top right, bottom right)

Table 3.2: SMU scale resources above the 0.1, 0.5, and 0.9 quantiles as a fraction of the true resources.
Cutoff values are calculated from the true image. g/t=grams per tonne.

Cutoff 0.1 0.5 0.9
Truth SGS NMR Truth SGS NMR Truth SGS NMR
Tonnes 1.00 1.00 1.00 1.00 1.07 1.04 1.00 0.82 0.88
Grade (g/t) 1.00 095 097 1.00 0.89 0.93 1.00 095 0.99
Ounces 1.00 094 0.96 1.00 095 0.97 1.00 0.78 0.87

low for extreme values that are more structured than what is possible with a multivariate Gaussian

simulation algorithm. This small example emphasizes the importance of the connectivity of ex-

treme values concerning SMU scale resources. Correctly characterizing the connectivity of extremes

significantly impacts the contained metal of a resource estimate.

3.5 Discussion

The NMR is a framework for generating non-Gaussian spatial fields. Characterizing non-Gaussian

spatial features, like the connectivity of extreme values, requires statistics above the second order. It

is shown that these higher-order statistics, such as the distribution of runs and the n-point connec-

tivity function, can differentiate non-Gaussian from Gaussian sequences. The NMR is designed to

overcome some shortcomings of the multivariate Gaussian RF model, particularly with strongly pos-

itively skewed distributions. This advancement is achieved by considering both two- and multi-point
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statistics in generating a probabilistic model. Examples highlight spatial structures that cannot be
reproduced with a two-point covariance structure and a multivariate Gaussian simulation algorithm.
A core concept of the NMR is that it is a spatial GMM, where the mixing of Gaussian components
results in a non-Gaussian output.

A unique covariance structure defines each component of the mixture; this “pool” of components
is designed such that certain components impart certain spatial features in the final model. A power
law activation function applies non-linearity to the input components. This non-linear activation
function allows features of the latent factors to be emphasized in particular regions of the continuous
grade range. That is, the low values and high values can have different spatial structures and
different multi-point connectivity. This difference in continuity is something that cannot be easily
achieved with two-point statistics alone. The spatial features of the final model are defined at the
beginning of the modeling process. The practitioner specifies the model’s goals using two-point and
high-order statistics. These goals include the normal score variogram model, indicator variogram
models, cumulative run-length frequencies, and the n-point connectivity function. The parameters
of the mapping function are inferred with stochastic optimization. These parameters result in
a spatial mixture reproducing the statistics outlined in the modeling goals. The generation of
conditioning data for latent factor realizations is an imputation problem, and these imputed factors
become conditioning data for gridded factor realizations. Finally, the gridded factors are mapped
to observed space with the inferred parameters, resulting in the final gridded realizations with the
correct high-order statistics.

A small example highlights the ability of the NMR to capture connected extreme values and
non-stationary features like orientation changes. A well-designed Gaussian pool can accommodate
multiple orientations and anisotropies. The model significantly improves contained metal relative to
an SGS model characterized by a two-point covariance structure. The following chapter presents the
details of network components of the NMR framework, including latent factor design and parameter

inference.
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Chapter 4

Network Implementation

This chapter presents the implementation details of the NMR introduced in Chapter 3. The network
is the first component of NMR framework and operates in conjunction with sequential Gaussian re-
jection imputation (SGRI), introduced in Chapter 5. Inference of network parameters, 6, is an
inverse problem as only the true data values are known. Therefore, a mapping function, Fy, is
required to map the unknown latent space to the known observed space. The function is parame-
terized such that a pool of unconditional, latent Gaussian factors have the desired spatial features
when mapped with Fy. As the latent space is a synthetic feature of the NMR, it is free to contain
any number of components with arbitrary covariance structure. This flexibility permits creativity
with latent factor design; combining latent covariance structures in unique ways allows a mixture of
univariate Gaussian distributions to possess non-multivariate Gaussian spatial features. Practical
implementation details include considerations for the design of the network and the latent Gaussian
pool, as well as sensitivities associated with these model parameters. A synthetic example demon-
strates latent factor design, network parameter inference and non-uniqueness properties of the NMR.
This example highlights the network component of the NMR workflow and is carried forward into

Chapter 5 to illustrate imputation.

4.1 Network Design

The NMR is not a true neural network but rather a model of regionalization inspired by neural
network structure. The network consists of an input layer where the number of latent factors
determines the number of input nodes, a single “hidden layer” of the same dimension, and an
output layer with a single node. The single output node makes the NMR univariate (analogous to
the LMR); however, there is no reason it could not be extended to the multivariate case (analogous to
the LMC). However, with geospatial data, one commonly considers extreme values in the univariate

context; it is not immediately clear what constitutes a multivariate extreme.

4.1.1 Architecture

The number of latent factors in the Gaussian pool controls network architecture. The current NMR
implementation restricts the network architecture to an input layer, a single hidden layer and a
univariate output layer. The input and hidden layer both contain M + 1 nodes. Figure 4.1 shows an
example network configuration with M = 3 input latent factors, {Yp, ..., Y3}, where the nugget effect

is the 0" factor by convention. The network’s hidden layer is a transformation layer, transforming
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the latent Gaussian values to arbitrary activation units. The network activation function ¢(...) is
a modified power-law (MPL) function; the following subsection presents the details. The network

output Z; is a weighted linear combination of the activated latent factors.

Figure 4.1: Schematic representation of the NMR with M = 3 latent factors. ¢(...) is the MPL activation
function. For clarity the w parameter is excluded.

The following operators define the general forward pass through the network:

M
X = Z Am * ¢(Y7mw'rn) (41)
z=G" (Fx (x)) (4.2)

where x is an intermediary activation vector, a,, is a weight applied to factor m, ¢(ym,wp,) is the
MPL activation function with exponent w applied to factor m, Fx is the CDF of x and G~! is the
inverse of the Gaussian CDF. The weights {ag, ..., an} are constrained to be greater than or equal
to zero and reflect the relative importance of each factor in the mapping function. Alternatively,

Equation 4.1 can be rewritten in matrix notation as:
x=¢(Y w)a" (4.3)

where a is a row vector of factor weights and ¢ (Y, w) is an ndata x M + 1 matrix of activated
latent factors. With the given architecture, the NMR requires inference of 2- (M + 1) parameters: a 1
x M +1 dimensional vector of factor weights and a 1 x M +1 dimensional vector of MPL exponents w.
These 2 - (M + 1) network parameters are inferred through stochastic optimization and discussed in
Section 4.3. The raw output of the network is activation units that must be transformed to Gaussian
space, necessitating the normal score transform of x to z. The univariate normal score transform
from activation units to Gaussian units in Equation 4.2 requires a representative distribution unique
to the network’s given state. Each iteration of the stochastic optimization algorithm generates an
updated parameter vector, resulting in a new mapping. The iteration-specific reference distribution
is created by drawing a le* x M + 1 dimensional matrix of independent, standard normal Gaussian
values and mapping them to a le* x 1 vector of activation values. This mapping establishes the

relationship between the latent and the activation space for the given parameter state. These
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activation values are then normal score transformed, resulting in a temporary, iteration-specific
transformation table. This transformation table establishes the relationship between the activation
and the observed space for the given parameter state. Using this transformation table (acting as

the G~! operator in Equation 4.2), any activation value can be transformed to a Gaussian value.

4.1.2 Activation Function

The goal of the NMR is to parameterize the arbitrary mapping function, Fy, between the latent
and observed spaces. The form of this function is not obvious; hence, a network-based approach
is used as a function approximation. Given the complex spatial features we wish to capture in the
final models, a polynomial of degree greater than one is useful. Suppose the activation function is
linear. As the forward pass through the network is a weighted, linear combination of the inputs, a
linear activation function (or simply ¢ -y where ¢ is a constant) results in a linear output or single-
order polynomial (Sharma, Sharma, et al., 2020). To achieve a non-linear network output, one
must introduce a non-linearity as an activation function. Real data commonly contain non-linearly
separable features, and a non-linear activation function permits the projection of these features onto
a non-linear feature space (Dubey, Singh, et al., 2022).

In the traditional machine learning (ML) context, the constraint of differentiability is placed on
neural network activation functions due to the use of the back-propagation algorithm (Rojas, 1996).
The NMR structure is only inspired by a neural network, and is not subject to this constraint. NMR
parameters are “learned” through gradient-free stochastic optimization. This gradient-free approach,
and a strength of the NMR, permits using virtually any activation function, differentiable or not.
The NMR activation function considered here is the modified power-law (MPL) function with the
form:

w
¢ (y,w) = yl’ =0 (4.4)
yv, ify<0

where w is a trainable parameter. The magnitude of w allows the activation function to emphasize
certain regions of the latent distribution. If w = 1, the activation is linear and ¢ (y, 1) =y Ifw
is less than one, the function takes on a concave shape that emphasizes low values and mutes the
influence of high values. When w is greater than one, the opposite is true. The function takes
on a convex shape that emphasizes high values and mutes the influence of low values. Figure 4.2
(left) shows the relationship between ¢ (y, w) and y for various values of w. As the magnitude of
w increases, the activation function becomes steeper above zero and flatter below zero. The high
values’ magnitude increases exponentially, and low values are muted significantly. This non-linear
amplification allows the network to embed high-grade features of latent factors in the mapping
function Fy. Low-grade features are embedded in opposite fashion.

Notably, the MPL activation has three inflection points: -1, 0, and 1. The inflections exist as
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Figure 4.2: The MPL (left) and scaled MPL (right) activation function for various values of w and input
y € [-5,5]. The scaled activation uses £ = G~'(0.999) =~ 3.09.

+1¢¥ = 41 and 0¥ = 0, regardless of w. No negative effects have been observed related to these
inflections; however, the points at -1 and 1 may be adjusted by introducing a scaling factor, &, to

the MPL activation function:
w

e(¥) . ity>o
1

e(¥)7 ify<o

The scaling parameter £ allows setting a predetermined inflection point while retaining the linear

¢ (y,w,€) = (4.5)

nature of the function when w = 1. Figure 4.2 (right) shows the scaled MPL activation function
where £ = G71(0.999) ~ 3.09 and G~! is the inverse of the Gaussian CDF. ¢ effectively controls the

threshold for dampening or emphasizing a factor:

e Whenw > 1and 0 < y < &, the MPL reduces the value of y slightly, similar to an opportunity-

seeking risk perspective (Eidsvik, Mukerji, et al., 2015). More emphasis is placed on values of

y>E.

e When w < 1and 0 < y < &, the MPL increases the value of y slightly, similar to a risk-averse

perspective. More emphasis is placed on values of y < £.

The opposite relationships hold when y < 0. It is not immediately clear when the MPL should
be scaled; however, if the practitioner notices artifacts related to the activation function, £ can be
tuned. £ could be introduced as a trainable parameter. The range of w for each latent factor is an
important component of latent factor design, discussed in Section 4.2. Constraining w,, > 1 embeds
higher-grade features of the m!* factor in the mapping. Conversely, constraining w,, < 1 embeds
lower-grade features of the m'" factor in the mapping. Values of w are practically within [0.25,4.0]

and reflect the relative influence of each latent factor’s high and low values.
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4.2 Latent Factor Design

Latent factor design is critical to the workflow of the NMR. The latent factors form the Gaussian
“pool” from which the NMR draws structure. The univariate Gaussian factors are mixed to generate
a spatial distribution that is univariate Gaussian but not multivariate Gaussian. The mixture
distribution can only contain features, or a combination of features, present in the Gaussian pool.
Therefore, any feature required in the final model must be in the pool. The Gaussian pool is
similar to the concept of factorial kriging (Goovaerts, 1997), where the nested variogram model is
a composition of L basic variogram structures, and the regionalized variable is a composition of L

independent, standard normal, spatial components operating at different geologic scales:

v(h) =) " (h) (4.6)
/=1

L
Z(w) =Y beYe(u) + pu(u) (4.7)
=1

where the coefficient by is the square root of the variance contribution of «,. The key difference be-
tween the NMR and factorial kriging approaches is that the regionalized NMR variable is a weighted,
linear combination of non-linear, independent spatial components as Equation 4.1 highlights. With
the LMC or factorial kriging, the Y, independent factors are synthetic features of the model and are
not directly observed; only characterized by 7,. The NMR requires explicit definition of a pool of
independent Gaussian factors. The pool may contain any structures. It is straightforward to gen-
erate realizations of the independent Gaussian factors with any unconditional simulation algorithm
such as SGS (Gémez-Hernéndez & Journel, 1993), LU simulation (Davis, 1987) or turning-bands
(Journel, 1974).

The choice of covariance structures for the Gaussian pool must consider the end goal of the
spatial mixture. The latent factors must be reasonable in the sense that achieving the objective is
possible. For example, if the final goal is short-range features, the pool must contain short-range
features. Long-range and short-range structures can produce a final mixture with medium-range
features. The mixing of factors causes destructive interference; that is, feature ranges in the final
mixture are shorter than their corresponding ranges in the pool. A pool of long-range structures
could conceivably generate short-range features through destructive interference and noise from the
nugget effect, though it is recommended the ranges of structures in the pool be slightly longer than
the ranges of the model objectives.

Pool considerations include (1) the conceptual geological model, (2) the L nested components of
the normal score variogram, (3) the L nested components of each indicator variogram model and
their potential asymmetry, (4) the downhole connectivity measures from the observed data and the
potential connectivity of extreme values, and (5) the composition of the objective function, discussed

in more detail in Section 4.3. The factorial kriging concept provides a reasonable starting point for
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the design of the Gaussian pool. An initial pool can be inferred by decomposing all variogram models
into their basic components (as in Equation 4.6). Each basic variogram component is a single licit
structure with three orientation parameters, three range parameters, a nugget of zero and a sill of
one. By convention, a pure nugget latent factor is added as the 0 factor.

Consider a small 2-D synthetic example where the goal of the NMR is to generate gridded real-
izations with strongly asymmetric 0.1 and 0.9 quantile indicator variograms. That is, the low-grade
two-point spatial continuity differs drastically from the high-grade. This scenario is challenging for
multivariate Gaussian simulation algorithms and has been discussed at length by many practitioners
(Gomez-Hernandez & Wen, 1998; Guthke, 2013; Journel, 1983; Journel & Deutsch, 1993; Renard,
Straubhaar, et al., 2011). The maximum entropy characteristic of the multivariate Gaussian dis-
tribution tends towards disconnected extremes and maximum connectivity of intermediate values.
The destructuring of indicators away from the median is symmetric in the multivariate Gaussian
case. The NMR framework can overcome this challenge using a well-designed Gaussian pool and w
bounds. Consider two factors with the goal of asymmetric indicator variograms. Factor 1 is a highly
anisotropic factor, oriented in a north-south direction, and factor 2 is isotropic with a range off ~ %
the domain size. The factors are activated using the MPL with w; = 4 emphasizing the high values
and wy = 1/w; = 0.25 emphasizing the low values, followed by linear combination (Equation 4.1)
and normal score transform. The top row of Figure 4.3 shows the factors in activated units (left
and center) and the normal score transform of the mixture (right). The mixture model is univariate
Gaussian but not multivariate Gaussian. Note the difference in activation units between the factors.
The bottom row shows the 0.1 (black) and 0.9 (red) indicator variograms of the final NMR mixture
in the north-south and east-west directions. The longer range, more-isotropic, low-grade continu-
ity is preserved through factor 2 and w < 1, and the highly-anisotropic, higher-grade continuity
is preserved through factor 1 and w > 1. This small example is illustrative of three key concepts

concerning latent factor design:

1. Latent factors should be designed in conjunction with w constraints, targeting continuity in
specific grade ranges and the final model goals.

2. The ranges of factors are reduced through mixing. Mixing of factors cannot increase continuity
beyond the longest-range structures in the pool. Factor 2 in Figure 4.3 (top row, center) has an
isotropic variogram range of 64 meters. The 0.1 quantile indicator variogram range is reduced
to roughly 40 and 25 meters in the north-south and east-west directions, respectively.

3. Anisotropy ratios of factors are affected through mixing. The anisotropy ratio of factor 1
is roughly unchanged in Figure 4.3 (top row, left); however, the anisotropy ratio of factor
two is increased from 1:1 to =~ 1.6:1. In general, isotropic factors will tend to become more

anisotropic, and anisotropic factors will become more isotropic.

The Gaussian pool must be reasonable concerning the optimization targets discussed in Section
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Figure 4.3: The top row shows factor 1 activated with w1 = 4 (left), factor 2 activated with w2 = 1/wy
(center), and the normal score transform the mixture (right). The bottom row shows the gridded indicator
variograms for the 0.1 quantile (black) and 0.9 quantile (red) in the north-south (left) and east-west (right)
directions.

4.3. The inferred mapping function is non-unique, so there is no “correct” Gaussian pool; however,
some latent factor combinations may be geologically unreasonable. For example, one cannot expect a
Gaussian pool of long-range structures to well reproduce short-range features in the NMR model, and
vice-versa. This is similarly true for factor orientations. If the final model requires spatial features in
certain orientations, factor design should address this requirement. Factors aimed at generating high-
order connectivity features should consider the major orientation of drilling. Factors with different
orientations may be combined; for example, a north-south and an east-west factor can generate north-
east striking features in the final model. This base-case requirement of “reasonableness” motivates
variogram decomposition as the initial approach to latent factor design. There is no definitive recipe

for latent factor design, though the following rules of thumb apply:

1. Decompose the nested variogram models into their basic components.

2. Check objective component reproduction with a traditional simulation algorithm (such as SGS)
to provide insight into any “missing” features. Add factors to capture the missing features.

3. Add factors based on the conceptual geologic model and end goals of the NMR model.

4. Prune any redundant factors. That is, the pool is only as complex as required.

5. Anisotropy of factors is reduced through mixing. The NMR model is only as anisotropic as
the most anisotropic factor. Increase the anisotropy ratio of factors if required.

6. The range of factors is reduced through mixing. That is, the range of NMR model is only as
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long as the longest range factor. Increase the variogram ranges of factors if required.

The next step is initializing the objective function components after establishing a reasonable
Gaussian pool. Optimizing the parameter vector 6 occurs after this initialization. The following
section discusses details of the objective function, optimization algorithm and NMR, parameter

inference.

4.3 Parameter Inference

The NMR approximates the mapping function, Fy, between latent and observed space. This func-
tion is parameterized by the unknown vector 6. The unknown parameters are inferred from known
features: (1) the observed data, (2) the specified latent pool, and (3) the objective function compo-
nents. Features (2) and (3) are specified by the user and guide the parameter optimization process.

0 is a vector of 2 - (M + 1) real values of factor weights and MPL exponents:
9:{a0,...,aM,w0,...,wM} (48)

where 6 is optimized with the heuristic, genetic algorithm DE (Price, 2013). A population of
candidate solutions is initialized and then evolved to mimic natural selection. Each member of
the population has an associated “fitness” value, and the fittest members of the population are
carried over to subsequent generations. Through multiple generations of mutation and crossover
operations, the candidate solutions converge towards a solution that minimizes the objective function.
Parameter inference begins by simulating a set of L- (M 4+ 1) unconditional realizations at the input
data locations, where L is the number of realizations and M + 1 is the number of independent
factors, including the nugget. These unconditional realizations permit the evaluation of the objective

function and evolution of 6.

4.3.1 Differential Evolution (DE)

The optimization of 6 uses a gradient-free, heuristic genetic algorithm. Gradient-free methods are
typically employed when information about the derivative of the objective function is either costly
to obtain or unreliable and noisy (Conn, Scheinberg, et al., 2009). Differential evolution (DE)
is a global stochastic search algorithm that is practical for non-linear, non-differentiable objective
functions with a necessarily large search space (Rios & Sahinidis, 2013). Any objective function is
permissible, an advantage of DE.

DE is based on natural evolutionary processes where the fittest members of the population
survive through a “natural selection” process. An initial population of size NP x D is generated by
randomly sampling the objective function space within the defined constraints. NP is the number
of individuals in the population, and D is the problem’s dimensionality. Each vector from the initial

population is passed through the objective function to evaluate its evolutionary “fitness”. The basic
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DE algorithm generates a mutant vector from the population by adding the scaled difference between
two randomly selected vectors to a third randomly selected vector (Price, 2013). The algorithm then
generates a trial vector by recombining the mutant vector with the initial population’s current row
vector, considering a user-defined crossover probability. The trial vector’s fitness is compared to
the current population vector’s fitness in an evolutionary sense. If the trial vector’s fitness exceeds
the current population vector’s, it replaces it. Each iteration compares all population vectors to
a randomly generated trial vector and accepts the trial vector if its fitness exceeds the current
vector. Each algorithm iteration’s “surviving” vectors become the parent vectors or the next iteration

population. The following general steps summarize the DE algorithm:

1. Initialize counter ¢ =0
2. Initialize a random population of size j =1,... , NP

3. Ifi <ipax:
a)i=i+1
b) For each member of the population, x;:
i. Select r other individuals where x, # x; and r is unique

ii. Generate mutant v;
iii. Generate trial t; through crossover between x; and v;
iv. If f(t;) < f(x;) replace x; with t;

c) Finish if ¢ = iprax

4. Return argmin; f(t;)

The algorithm begins by randomly initializing a population of candidate vectors (Equation 4.8)
and evaluating each member’s fitness. A population size of 30-50 is a reasonable balance between
sufficient diversity and algorithm runtime, though there is no definitive guideline for population
size (Balkaya, Ekinci, et al., 2017; Piotrowski, 2017). Over the specified number of iterations, each
member of the population undergoes mutation. The NMR implementation employs a DE/current-

to-best/1 mutation strategy. Georgioudakis and Plevris (2020) describes the mutated vector as:
v; =X; + F(Xpest — %) + F(xp1 — Xp2) (4.9)

where 71 # r2 # j, F is the scaling factor controlling the amplification of the difference vectors
and Xpes 1S the current best vector in the population. The mutation process learns from the current
best vector (local searching of the solution space) while exploring the global search space through the
randomly selected difference vector. The parameter F' is analogous to the learning rate in machine
learning problems. A smaller F' value will lead to smaller mutation step sizes, and the algorithm
will take longer to converge. Larger F' values increase the degree of solution exploration but may
lead to divergence. Price (2013) suggests there is no upper limit for F'; however effective values are
almost always F' < 1.0.
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This new mutated “genetic information” is crossed over to other population members based on
a crossover probability, CR, and a binomial crossover scheme. The trial vector is built from two
vectors: the mutant and another member of the population. Price (2013) describes the crossover as:

Vik, if randg(0,1) < CR or k = krana
t; = (4.10)

Xjk, otherwise

where t; is the trial vector, x; j is the target vector, k denotes the 1-D vector index of the gth
member of the population, randy(0,1) is a uniform random number € [0, 1], and kyqnq is a random
index. For each element in the target vector, if the uniform random number is less than CR, the
element is copied from the mutant vector v, ;; otherwise, the target element remains. The random
index k,qnq ensures the target vector is not copied completely; at least one element of the mutant
vector passes to the trial vector. C'R influences the diversity of the evolving population. Larger CR
values introduce more variation in the population, resulting in a greater search of the global solution
space, while smaller values may lead to stagnation (Georgioudakis & Plevris, 2020). Optimization

employs a non-linear crossover scheme following the work of Mohamed (2014):
CR=CRyp; + (CRjy — CRy;) - (1—i/N)*, i=1,...,N (4.11)

The idea behind the non-linear crossover scheme is that the crossover rate is lower when pop-
ulation variance is high in early generations. This crossover scheme prevents extreme diversity or
potential divergence in the initial iterations. In subsequent generations, the population variance de-
creases as the vectors become similar, approaching the solution. In order to thoroughly explore this
more local search space, the crossover should be high, encouraging a diverse population of “good”

solutions.

4.3.2 Objective Function

The parameter vector 6 is optimized heuristically through an objective function and DE. This ap-
proach is highly flexible as the objective function can take any form with any number of components.
The practitioner provides target spatial features of the final mixture from which a loss or objective
value can be calculated for the candidate mixture. The objective value is minimized through succes-
sive iterations reproducing the target spatial features. The possible objective function components
are (1) the continuous variogram, (2) indicator variograms, (3) cumulative run length frequencies,
and (4) the n-point connectivity function. Components may have multiple sub-components for each
indicator threshold. Run length frequencies and the n-point connectivity function are higher-order
multi-point statistics that better characterize non-Gaussian features than the two-point variogram.

The objective function comprises a weighted combination of C' < 4 objective components:

C
0=3 w0, (4.12)
c=1
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where w, is the component weight and O, is the component objective value. The objective
function quantifies how different the desired feature is from the target feature. Weighting the
objective function components is required as each component may exist in widely different units. For
example a variogram component is expressed in units of variance squared (3" [Vtarget — Vrealization]>)
while cumulative runs is expressed as the number of runs squared (Z[Rtarget —Rreahzaﬁon}z), and may
be orders of magnitude different. A weighting scheme to prevent one component from dominating the
objective value follows the work of Deutsch (1992). The goal is to have each component contribute
equally to the overall objective value where each weight is inversely proportional to the average

change of that objective component (Deutsch, 1992):

The average change of the objective component is approximated numerically by averaging the

change of J = 1000 independent forward passes through the network:
_ 1 J )
|AOC\:j§::|og—oc|, c=1,...,C (4.14)

where \Abc| is the average change of component ¢, OJ is the updated objective value for iteration
j and O, is the initial objective value of that component. The objective value is the sum of squared
errors between the experimental values calculated on the distribution derived from Equation 4.1
and the initialized target values. The objective function (Equation 4.12) is evaluated across all
simulated realizations and minimized in expectation. Though many components can enter the
objective function, one should consider contrasting objectives. For example, one cannot expect to
reproduce continuous and indicator variograms closely if the principal directions of continuity are
orthogonal. It is less clear how the specification of run frequencies or connectivity functions affect

variograms, though there are likely confounding factors.

4.3.3 Precedence

The application of precedence is an optional component of parameter inference. Precedence allows
the spatial features of a certain latent factor to take priority in the mapping function. A particular
factor can be given precedence during optimization if one desires its spatial features in certain

portions of the grade range. The algorithm enforces precedence by employing a sigmoid weighting

function where s(y) = H% The weighting function modifies the forward pass (Equation 4.1)
through the network to:
M—1
X =ap- o(yp,wp) + Zd)ym,wm -s(yp-x), m#p (4.15)
m=0
z=G"" (Fx (x)) (4.16)

where a is the weight to the factor, subscript p is the factor index with precedence, ¢(...) is
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the MPL activation function, s(...) is the sigmoid function, and z is a constant € [—10,10]. The
sign and magnitude of x controls what part of the grade range factor y, influences. If x < 0, y,
influences high values and, > 0, y, influences low values. Figure 4.4 shows a weighting function
where x = —1.5. The y-axis is the weight to the remaining M — 1 factors for the range of values of
¥p- In this scenario, y, receives ~ 95% of the weight when equal to 2.0, ~ 80% of the weight when
equal to 1.0 and so on. As the magnitude of x increases, s(...) tends towards a binary step function

centered on zero.

s(yp x —1.5)

L

g
4
=3
=
R
Z

4 -3 -2 -1 0 1 2 3 4
Up

Figure 4.4: Sigmoid weighting function where x = —1.5. The x-axis is the range of y,, and the y-axis is
the weight to the remaining M-1 factors.

The sigmoid weighting function allows a certain factor to take precedence where the observed
data takes on either high or low values. This increased control is particularly useful for capturing

local high- or low-grade continuity with well-designed latent factors.

4.3.4 Complete Algorithm

Algorithm 1 summarizes all components of the NMR, parameter inference workflow. The first step
is the unconditional simulation of the latent Gaussian pool at the data locations (lines 2-6). The
objective function components are scaled using the unconditional realizations (lines 7-10) prior to
heuristically optimizing 6 with DE (lines 11-35).

Inference of 6 is relatively straightforward with only a handful of DE parameters. However, care
must be given to align the design of the latent pool and objective components with the final goals
of the NMR model. Depending on the modeling scenario, this is the most challenging portion of the

workflow.

4.3.5 Checks

The quality of the NMR, parameter inference is measured based on reproducing the objective function
components. Generally, these components come directly from the observed data, so the inferred
parameters reproduce observed geologic features. A small 3-D synthetic example with 746 data is

generated to highlight the concepts of parameter checking. The data set is simulated so that the
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Algorithm 1 NMR parameter inference pseudocode.

1: Simulate unconditional realizations (LU or SGS):

2: for/=1,...,L do

3: form=1,...,M do

4: Simulate Yg,)

5: end for

6: end for

7: Scale objective components:

8 forc=1,...,C do

9: We = |Aloc|

10: end for

11: Initialize population: pop(pooldim, popsize) > Candidate solutions
12: Calculate fitness of population: fpop

13: best = minloc(fpop) > Index of initial best solution
14: for i=1,..., its do > Begin DE
15: for j=1,..., popsize do

16: mutant = MUTATION (pop(j)) > Best-to-current mutation
17: 6 = CROSSOVER (mutant) > Binomial crossover
18: a,w = VECTOR__TO_ MATRICES(0) > Reshape 6 to a,w vectors
19: 0=0.0
20: for/=1,...,L do
21: z = NETWORK__FORWARD(a, w) > Forward pass through network
22: iz = INDICATOR__TRANSFORM(z, thresholds)
23: forc=1,...,C do
2. Oc — Z[,y;arget _ ,yzealization]Q
25: end for
26: 0= Zle we - O
27: end for
28: O0=0/L
29: if O < fpop(best) then
30: fpop(best) = O > Update objective value
31: pop(best) = 0 > Retain the trial
32: best = j > Track the new best
33: end if
34: end for
35: end for > End DE

indicator variograms are asymmetric about the median and have connectivity of high-grade values.
These features provide a reasonable test case for applying the NMR workflow. Imputation concepts
are presented using the same data set in Chapter 5. Figure 4.5 shows a plan-view and long-section
through the synthetic data in Gaussian units. Figure 4.6 shows experimental variogram points
and fitted models for the normal score variable (a), the 0.1 indicator (b) and the 0.9 indicator (c).
For brevity, the median indicator variogram is not shown; however, the indicator variograms show
asymmetric destructuring about the median. Figure 4.7 shows the n-point connectivity function,
which approaches zero at five connected steps (= 50m). The objective function components are the
normal score variogram model, the 0.1 indicator variogram model and the 0.9 indicator variograms
(Figure 4.6 (a), (b), and (c¢)), and the n-point connectivity function (Figure 4.7).

The latent factor pool contains two structures: the long-range structure from the 0.1 quantile
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Figure 4.5: Plan-view (left) and long-section oriented 340° (right) though the synthetic data set. Both
sections have a tolerance of +25 meters.
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Figure 4.6: Fitted experimental variograms for the normal score variable (a), the 0.1 indicator (b) and 0.9
indicator (c). Note the asymmetric destructuring of the indicator variograms.
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Figure 4.7: N-point connectivity function above the 0.9 quantile indicator for the synthetic data set.
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indicator model and the single structure from the 0.9 quantile indicator model. The goal of the
pool is to have the long-range structure spatially control the lower grades and the short-range
structure spatially control the highs. Some degree of mixing between the structures permits the
reproduction of the normal score variogram model. The omega parameters are constrained such
that 0.25 < w; < 1.0 and 2.0 < w2 < 4.0. No precedence is given to either factor. The algorithm
is run for 1500 DE iterations. The primary NMR parameter check is the reproduction of objective
function components. The mapped unconditional realizations, Fy (Y)7 must reproduce, on average,
the input objective targets. Figure 4.9 shows normal score variogram reproduction for the inferred
mapping function. Reproduction is reasonable though there is some deviation at shorter lags. This
deviation is attributed to these lags having fewer pairs. Figure 4.9 shows variogram reproduction for
the 0.1 (a) and 0.9 (b) quantile indicators. The indicators show a wider band of uncertainty related
to data density, particularly at shorter lag distances with fewer pairs. Figure 4.10 shows n-point

connectivity reproduction for the 0.9 quantile indicator.

-40° Azm, 0° Incl 50° Azm, 0° Incl 0° Azm, -90° Incl

0.0 T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 25 50 75 100
)

Lag Distance (m) Lag Distance (m) Lag Distance (m

Figure 4.8: Continuous variogram reproduction for 25 realizations. The black line is the variogram model,
the red line is the average variogram, and the shaded red area encloses the minimum and maximum variogram
values. Left to right are the major, minor and vertical directions, respectively.

At this point in the NMR workflow, the inferred parameters reasonably approximate the mapping
function between latent and observed space. The unconditional Gaussian realizations reproduce the
objective function components on average when mapped through Fy. Any deviations between the
optimization targets and mapped latent factors will manifest in the final NMR realizations as latent
factor imputation (Chapter 5) is anchored on Fy. If present, these deviations are transferred to the
imputed data realizations that condition the gridded factor realizations. This same synthetic data

configuration is used to check imputed realization in Chapter 5.

81



4. Network Implementation

ol v
-40° Azm, 0° Incl 50° Azm, 0° Incl 0° Azm, -90° Incl
0.0 T T T T T T T T T T T T
0 50 100 150 200 0O 50 100 150 200 0 25 50 75 100
Lag Distance (m) Lag Distance (m) Lag Distance (m)
(a) 0.1 Quantile
1.0
v Y v
0.5 1 B B
-40° Azm, 0° Incl 50° Azm, 0° Incl 0° Azm, -90° Incl
0.0 T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 25 50 75 100
Lag Distance (m) Lag Distance (m) Lag Distance (m)

(b) 0.9 Quantile

Figure 4.9: Indicator variogram reproduction for 25 realizations for the 0.1 (a) and 0.9 (b) quantiles. Left
to right are the major, minor and vertical directions, respectively. The black line is the variogram model, the
red line is the average variogram, and the shaded red area encloses the minimum and maximum variogram
values.
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Figure 4.10: N-point connectivity function reproduction for 25 realizations for the 0.1 quantile indicator
(left) and 0.9 quantile indicator (right). The black line is the target model, the red line is the average
experimental value, and the shaded red area encloses the minimum and maximum experimental values.

4.4 Implementation Details

The goal of the NMR model is to infer the best possible mapping between latent and observed spaces.
Given the data configuration, the design of the latent pool and the objective function components,
there may be qualitative and quantitative uncertainty in the parameter vector 6. This section
discusses some practical implementation details of NMR parameter inference that may contribute to
or mitigate parameter uncertainty. Topics in this section include the non-uniqueness of the inferred
solution, the number of data, the possibility of conflicting objectives, and overall computational

considerations.

4.4.1 Non-Uniqueness

Solutions to inverse problems are often non-unique. Experimental variograms in the presence of
sparse data are inherently uncertain statistics. Considering these facts, it is reasonable to assume

that there are multiple (possibly infinite) network configurations and pools of Gaussian factors
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that approximate the objective function targets. This non-uniqueness emphasizes the importance
of considering the conceptual geological model when designing latent factors. Some latent pools
are feasible from a numerical perspective but should also be geologically reasonable. The following
section highlights non-uniqueness examples in NMR parameter inference. Potential non-unique

scenarios are summarized as follows:

1. The NMR solution may be an arbitrary mixture of factors even if the variogram objective
targets exist within the Gaussian pool.

2. A mix of short and long-range factors can reproduce a medium-range target.

3. A mix of only short-range factors cannot reproduce a medium or long-range target, and vice
versa.

4. A mix of factors with NS and EW orientations can reproduce a target orientation of NNE,

NNW, SSE, SSW, and so on.

Consider the same data configuration from Section 4.3.5. Synthetic data values are simulated
using the NMR with a known parameter vector, 6. For clarity of the example, only the reproduction
of the continuous variogram is measured. Different pools of latent factors are mixed to highlight
the non-uniqueness scenarios mentioned above. The weight to each factor, a.,, is interpreted as
the relative importance of each factor to the fit of . This weight can be compared to the known
weight used to simulate the data to measure similarity. The solution is non-unique if multiple latent
pools and varying parameters can reproduce the target. Another approach to understanding the
dependence of each latent factor on 0 is a measure of permutation feature importance (PFI) (Fisher,
Rudin, et al., 2019). Feature importance can be calculated by permuting the input latent factors
and calculating the increase in error in the output of the fitted model. PFI is in the same units as
the objective function. Features that are pertinent to the network output will show more significant
errors when they are permuted. A caveat is that shorter-range structures (more random) will always
show less feature importance than longer-range structures (less random) as permutation introduces
randomness. Shorter range structures may still contribute to the final fit of the model without
showing high permutation feature importance.

Consider the first scenario listed above. The latent pool consists of the long-range structure of
the normal score variogram model, the long-range structure of the 0.1 quantile indicator variogram
model, the single structure of the 0.9 quantile indicator variogram model, and the nugget effect
for M = 3 + 1 latent factors. Intuition suggests that if that variogram model (or its elemental
components) exists within the Gaussian pool, the network will filter all irrelevant factors and weight
the important components appropriately. In practice, this is only sometimes the case. Table 4.11b
shows the a and w elements of 6, plus PFI for comparison. Figure 4.11a shows the corresponding
variogram reproduction. The a’s show how much weight is given to factors two and three that

correspond to the nested structures of the indicator variograms. Only and portion of the weight is
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Figure 4.11: Normal score variogram reproduction (a) in the major, minor and vertical directions, respec-
tively, and the components of 6 (b) for the first scenario. PFI=permutation feature importance.

W N

given to factor 1. The PFI backs up this weighting, showing factors two and three most important.
Granted, there is a similarity between the low-grade indicator and normal score variogram models;
the resulting variogram of the mixture model may be an arbitrary mixture of latent factors.

The second scenario is intuitive. A mix of short-range and long-range factors can reproduce
features with intermediate-range. Again, this scenario is non-unique as one may consider any number
of factors and variogram ranges are continuous and essentially unbounded. Consider a pool with
two latent structures: one long-range and one short-range. The long-range structure corresponds
to the second structure of the 0.1 quantile indicator variogram scaled by a factor of 1.5 in all
directions. The short-range structure is the 0.9 quantile indicator model scaled by a factor of 0.7 in all
directions. Table 4.12b shows the a and w elements of 8, plus PF1 for comparison. Figure 4.12a shows
the corresponding variogram reproduction. The mixture of long and short-range structures can
reproduce the variogram model of intermediate range with each factor receiving similar weight. This
concept is also applicable to the orientation of factors in the pool. For example, the mix of factors
with east-west and north-south orientations can generate features with intermediate orientation in
the final model.

The third scenario is also straightforward. A mix of short-range factors cannot reproduce a
longer-range target as destructive interference occurs when mixing factors. The range of structures
in the final model can only be as long as the longest range structure in the latent pool. The opposite
of this is also true; a mix of long-range structures will not closely reproduce a short-range target.
In this scenario, the pool consists of the two nested structures of the normal score variogram model
scaled by a factor of 0.3 in all directions. Table 4.12b shows the a and w elements of 6, plus

PFI for comparison. Figure 4.12a shows the corresponding variogram reproduction. As expected,
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Figure 4.12: Normal score variogram reproduction (a) in the major, minor and vertical directions, respec-
tively, and the components of 6 (b) for the second scenario. PFI=permutation feature importance.
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Figure 4.13: Normal score variogram reproduction (a) in the major, minor and vertical directions, respec-
tively, and the components of 6 (b) for the third scenario. PFI=permutation feature importance.

the algorithm cannot converge on an acceptable solution due to poor latent feature design. The
algorithm attempts to filter the first unnecessary factor by giving it a weight of zero, though the
remaining factors do not have sufficient flexibility to reproduce the target.

This section presents scenarios to emphasize the non-uniqueness of the NMR solution. Numer-
ous latent pools can reproduce objective targets. The final example presents a scenario where the
design of the pool and the objective function have conflicting objectives. The scenario is designed for
illustrative purposes and defies any geologic-based logic; however, it emphasizes the practitioner’s
role in ensuring the latent pool and objective function are sound concerning the conceptual geology.

Adding components to the objective function amplifies this issue. The requirement of “reasonable-
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ness” further promotes the decomposition of all variogram targets into an initial latent Gaussian

pool.

4.4.2 Number of Data

The number of data is an important consideration in the NMR workflow. Experimental statistics
form the basis of the objective function components and are sensitive to the number of available data.
Experimental variograms are an inherently uncertain statistic, particularly in the presence of sparse
data (Ortiz & Deutsch, 2002; Pardo-Igtizquiza & Olea, 2012). The variogram value at lag vector h is
the mean of the squared differences between data values separated by h. This mean value depends
on the number of data, ny, entering the calculation, which depends on the data configuration and
variogram tolerance parameters. Uncertainty in the experimental variogram points transfers to
uncertainty in chosen model parameters, though this is only quantifiable with knowledge of the true
variogram model. Sequence objective components are calculated downhole and are more sensitive
to the total number of drillholes than the total data. However, the shape of the global distribution
of runs or the global n-point connectivity function ultimately depends on the number of data.

A synthetic model is simulated to assess the sensitivity of 6 to data spacing or the total number
of available data. The model is simulated on a regular 56 x 56 x 56 m 3-D grid with a resolution of
1 m. The grid is sampled with regular, square data configurations ranging from 3 x 3 m to 20 x 20
m, with 1 m spacing in the vertical direction. Table 4.14a shows the resampled data configurations
and the corresponding number of data. The grid is also sampled at a 1 x 1 m spacing, a reference
distribution for calculating the “true” variograms, distributions of runs, and n-point connectivity
functions. A parameter vector € is inferred for each data spacing, and the unconditional latent
factors are mapped to the observed space. The objective function value is the weighted sum of
squared errors (Equation 4.12) between the mapped latent values and the objective components
calculated from the reference distribution. Figure 4.14b shows the relationship between the square
data spacings and the objective function value.

The sum of the squared errors is inversely proportional to the total number of data, which is
the anticipated response. The curve decreases quickly to a spacing of 10 x 10 m or approximately
2000 data. Beyond this spacing, the curve is much flatter but does continue to decrease towards
the tightest spacing. This relationship suggests that somewhere between 2000 and 5000 data are
enough to provide a stable inference of §. Beyond 5000 data, the error decreases slightly, though

these improvements may be negligible when considering the increase in computation time.

4.4.3 Computational Considerations

The NMR objective function is a computationally expensive calculation. This expense is primarily

due to experimental variogram calculation. As each population vector is an entirely new network,
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Figure 4.14: Square data spacings and corresponding numbers of data (a) and corresponding minimum
sum of squared error values from NMR parameter inference(b). The total number of data increases to the
right of the plot in (b).

all experimental variogram pairs must be updated on each iteration. Depending on the data con-
figuration, this updating may account for a significant portion of the algorithm run time. Two

straightforward approaches to dealing with runtime are:
1. Parallel differential evolution (PDE)
2. Constraining the maximum number of experimental variogram pairs per lag

Evaluating the objective function for each member of the population in DE is an independent
task and lends itself to parallelization. PDE is a slightly different algorithm than DE. In DE, the
population is updated after evaluating each trial vector (loop on line 15 in Algorithm 1), so each
subsequent mutation includes information from the previous. In PDE, the entire population is
mutated and evaluated before updating the next generation. This operation introduces new genetic
information to the population once per generation rather than after every mutation. Though slightly
different algorithms, DE and PDE produce similar, but different, final results. Figure 4.15 shows
the objective function value versus iteration for two optimization runs: serial and parallel. Both
scenarios use the same number of data, objective components and hyperparameters. PDE achieves

a similar objective function value to serial DE, but ~ 6.5 times quicker.

—— PDE (5.38 min.)
—— DE (34.96 min.)

Objective Value

T T T T T T T
0 500 1000 1500 2000 2500 3000
Iteration

Figure 4.15: Objective function value versus iterations for runs of the DE and PDE algorithms.
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Figure 4.16: Sensitivity of experimental variogram points to the total number of pairs per lag.

The second potential speedup comes from setting a maximum number of randomly selected
experimental variogram pairs to consider per lag when evaluating the objective function. Figure 4.16
shows that restricting the maximum number of pairs per lag to ~ 10000 yields a stable variogram
relative to all possible pairs. Restricting the pairs speeds up the objective function calculation,

though one should check variogram stability for each data configuration.

4.5 Discussion

The NMR structure is inspired by neural networks from ML. The NMR approximates the mapping
function, Fy, from latent to observed space. The parameter vector, 6, contains the weights applied
to each latent factor and the corresponding MPL activation function exponents. 6 permits the
mixture of multivariate Gaussian spatial distributions in ways that reproduce non-Gaussian spatial
features. The components of 6, a and w, are optimized stochastically with the heuristic, genetic
global optimization algorithm DE. A significant advantage of the genetic algorithm approach is the
flexibility of both the activation and the loss or objective function. There is no constraint of dif-
ferentiability on either the activation or objective function as DE is a gradient-free algorithm. The
objective function may contain any component deemed necessary for the modeling scenario. The
MPL activation function allows the influence of certain latent spatial features on certain portions of
the grade range of the final mixture model. This activation function is key to achieving asymmetric
spatial continuity between highs and lows. Some latent factors may only affect high and some low
grades, conditional on constraints placed on w. The practitioner has significant flexibility concern-
ing latent factor design in both number and covariance structure. The design of the latent factors
must consider the conceptual geologic model and be reasonable in the context of the modeling goals.
Poorly designed factors may conflict with objective function components, preventing algorithm con-
vergence; in some cases, reproducing the objective components may be impossible with the chosen
factors. Decomposition of the nested variogram structures of the objective function components is a
reasonable initial pool, provided one is confident in the variogram interpretation. One should prune
redundant factors and add specific factors as required.

This chapter has introduced the first component of the NMR simulation workflow: inference
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of the mapping function Fy. The following chapter introduces the second workflow component:
imputation of latent factors. The ultimate modeling goal is gridded, non-Gaussian realizations for
mine planning. Conditioning those realizations requires data. Data realizations are imputed for each
latent factor such that they have the same spatial properties as the mixture model when mapped

through Fy. The synthetic example introduced in Section 4.3.5 is carried forward into Chapter 5.
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Chapter 5

Latent Factor Imputation

This chapter presents a novel algorithm for imputing latent factors called sequential Gaussian re-
jection imputation (SGRI). Imputation of latent factors addresses a problem where all values are
missing or unknown. Conditioning gridded realizations of latent factors requires assigning valid
latent values at the data locations. The goal is to impute latent factors with a unique covariance
structure that, when combined with the inferred NMR mapping, returns the true observed values
at the data locations within a tolerance. Traditionally, this problem has been approached through
Gibbs sampling, though there are noted challenges in achieving stable convergence with spatially
correlated variables (Silva, 2018). SGRI is a straightforward approach that combines SGS, rejection
sampling and exact data matching. Conditional moments are calculated with SGS, ensuring the
spatial relationships are correct and iterative rejection sampling ensures the collocated multivariate
relationships are correct. Realizations of latent factors are generated and become conditioning data
for gridded realizations. When mapped to observed space, the realizations reproduce non-Gaussian
spatial features specified by the NMR and uni- and multivariate statistics. A small synthetic ex-
ample continued from Chapter 4 demonstrates imputing latent factors, conditional simulation and

mapping the latent space to observed space.

5.1 Imputation Concepts

Imputation is a method to “fill in” missing values (Little & Rubin, 2019). Missing values may be uni-
or multivariate, and multiple mechanisms or patterns of missingness may be possible. Multivariate
transformations, common in modern geostatistical workflows, such as PPMT (Barnett, Manchuk, et
al., 2014), require homotopic sampling, necessitating imputation methods. Ignoring these missing
values results in a loss of information or potential bias if the missingness mechanism is not random.
The simplest deterministic approach to imputation is taking the global mean or median of sampled
values or employing a regression model. This inference permits using all data in subsequent modeling;;
however, it captures no uncertainty in the imputed values.

Single imputation involves imputing a single value for each missing data value. Little and Rubin
(2019) describes single imputation techniques as (1) mean imputation, where the global mean value
is substituted; (2) regression imputation, where a predicted value from the regression of the missing
variable on the observed variables replaces missing values; and (3) stochastic regression imputation
where a predicted value plus a residual replace missing values. The single imputation paradigm

indicates that the missing values are certain or constant. Though this imputation approach includes
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all data in statistical analysis, this assumption results in incorrect uncertainty as the true values
are unknown. Furthermore, datasets imputed with mean or regression imputation will not have
the correct mean or variance (Barnett & Deutsch, 2015). For these reasons, multiple imputation
techniques are preferred when characterizing imputation uncertainty, which is important.

Multiple imputation involves generating realizations of missing values, allowing assessment of
imputation uncertainty. A model of the conditional distribution of the missing values given the
observed values is inferred and then stochastically sampled, resulting in complete dataset realiza-
tions. Multiple imputation in a geostatistical context is often a constrained problem where the
imputed values must (1) reproduce underlying multivariate relationships and (2) reproduce the spa-
tial variability of observed values (Barnett & Deutsch, 2015). Collocated variables characterize
the multivariate relationships, and the covariance structure of the observed variables characterizes
the spatial variability. The conditional distribution from which the imputed values are drawn is
informed by these components (Hadavand & Deutsch, 2023).

A latent variable is a variable that is not directly observed but is assumed related to, and can
be inferred from, measured or observed variables (Everitt & Skrondal, 2010). Imputation of latent
factors is a challenging imputation problem where all variables are missing or unsampled (Little &
Rubin, 2019). The latent factors are not directly observed; they are a synthetic feature of the inferred
mathematical model. An example of a latent model is the LMR, which is composed of multiple latent
independent random factors operating at different scales (Goovaerts, 1992). The latent factors
are never measured or directly observed but characterize the regionalized random variable Z(u).
Simulating geologic latent variables subject to other observations or constraints is a key component
of truncated Gaussian categorical simulation techniques. The techniques in this chapter do not
directly consider categorical values as constraints, though they enforce the reproduction of the
true continuous values. Latent variable imputation is most commonly performed with a Gibbs
Sampler (Arroyo & Emery, 2020; Emery, Arroyo, et al., 2014; Madani & Bazarbekov, 2021; Silva &
Deutsch, 2017) or alternatively the sequential spectral turning bands method (Lauzon & Marcotte,
2020a, 2020b, 2023). The Gibbs sampler is a Markov chain Monte Carlo method used to sample
a multivariate distribution where direct sampling is complex but sampling marginal distributions
is simple. The Gibbs sampler is practical for indirectly sampling high-dimensional distributions
using univariate conditional distributions, though convergence of the algorithm is a known issue
with correlated variables (Silva, 2018). Many data require a restricted kriging search, which may
cause the simulated Gaussian vector to deviate from the desired covariance matrix (Emery, Arroyo,

et al., 2014).
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5.2 Gibbs Sampler

The Gibbs sampler (Geman & Geman, 1984) is an iterative simulation algorithm designed to sam-
ple an M-dimensional multivariate distribution f(yi,...,yn) of M random variables {Y7,..., Yy}
(Little & Rubin, 2019). It is particularly useful where sampling the joint distribution is difficult, but
sampling the marginal conditional distributions f(ym|y1,- .-, Ym—1,Ym+1s---sYm), m=1,...,. M

is possible. The following general steps summarize the Gibbs sampler:

1. Initialize counter t =0
2. Initialize a valid arbitrary vector y(©)

3. For each dimension m =1,..., M:

t=t+1

set ygt) = y§t_1) Vi #m

a

=)

)
)

¢) draw y from f(ym|yt,- .- Ym—1: Ymits-- - Ynr)
)

d) finish if ¢t = tMAX

4. Return y*)

Over a sufficient number of iterations, the sampled vector converges on the joint distribution. In
a geostatistical context, the Gibbs sampler is based on the fact that the distribution of a Gaussian
vector Y conditioned on other values is Gaussian; the mean and variance of this distribution are
calculated by simple kriging (Emery, Arroyo, et al., 2014). The Gibbs sampler simulates both condi-
tional and unconditional vectors. Conditional Gibbs simulation is commonly used for latent variable
assignment in truncated-Gaussian techniques (Armstrong, Galli, et al., 2011; Silva & Deutsch, 2017)
where latent values must respect both the mapping between categorical and continuous space and
match the categorical observations when truncated. Imputation of latent factors in the context of
this work does not require satisfying inequality constraints at the data locations. However, it does
require satisfying the mapping condition between observed and latent space.

Silva (2018) documents Gibbs sampler convergence issues related to restricting the search neigh-
bourhood for updating the marginal conditional distributions. Considering all n data requires the
inversion of a rank n—1 covariance matrix which becomes unpractical with increasing n. Restricting
the search to reduce the size of the covariance results in an approximation of the conditional mo-
ments and affects algorithm convergence (Emery, Arroyo, et al., 2014; Lauzon & Marcotte, 2020b)
as realization quantiles diverge to extreme highs and lows with increasing iterations. Lantuéjoul
and Desassis (2012) proposed the propagative Gibbs sampler to avoid the matrix inversion require-
ment, though Silva (2018) shows convergence issues are still present with greater than two latent
variables and complex truncation rules. These convergence challenges motivate the development of

a new simulation algorithm for the imputation of latent geologic variables. The SGRI algorithm also
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utilizes a restricted search neighbourhood to calculate conditional moments. However, the relaxed

constraints relative to imputation for truncated Gaussian methods allow for stable convergence.

5.3 Sequential Gaussian Rejection Imputation

Generating NMR realizations requires imputation of latent factors at the data locations. These
imputed factors become conditioning data for simulation on a regular grid. The problem involves
assigning M unknown latent Gaussian values with the correct spatial structure at the data loca-
tions. When mapped through the NMR, these imputed values must also reproduce the observed
regionalized random variable Z(u). This solution is non-unique, and multiple combinations of latent
factors could reproduce the observed values. In order to correctly transfer this latent uncertainty, a
multiple imputation (Barnett & Deutsch, 2015) approach is adopted where each realization of Z(u)
is generated with a unique imputed realization, y.

SGRI is an iterative simulation algorithm for imputing continuous latent Gaussian variables
subject to a mapping constraint Fy (y) = z + «, where « is a data matching tolerance. SGRI first
iteratively samples all univariate conditional distributions of the M-dimensional latent distribution
until the mapped value is within a coarse tolerance with the observed value. After the simulation
meets the coarse tolerance, a polishing step iteratively perturbs each initial imputed value until the
mapped value is within a second, finer tolerance with the observed value. At any point during the
perturbation, the sample is rejected if the new value does not decrease the error between observed
and imputed. The rejection component of the algorithm is not rejection sampling in the strict
statistical sense but rather a constraint to ensure the solution remains within a space of feasible
solutions. Initial sampling of the conditional distributions ensures the correct covariance structure
for each latent factor, and iterative polishing ensures data reproduction. Though Armstrong, Galli,
et al. (2011) suggests rejection sampling is not feasible for latent imputation, the relaxed constraints
relative to imputation for truncated-Gaussian techniques allow for stable algorithm convergence.

Latent factors are imputed such that when mapped through the NMR, the observed values are
reproduced exactly, and each latent factor reproduces its covariance structure. Figure 5.1 shows this
relationship schematically with a sketch of a drillhole with 4 = 1,...,n observed data locations. The
latent space consists of m = 1,..., M factors to be imputed at each observed location. The observed
values are a function of the mapped latent factors. It is straightforward to generate independent
Gaussian values that reproduce observed values; however, latent spatial continuity must also be
correct. Fp,(y) = 1,...,M CDFs must be standard normal, and the spatial distribution must
reproduce variograms V,,, m=1,..., M.

The three general steps of the SGRI algorithm are as follows:

1. Calculate m = 1,..., M conditional means and standard deviations at the imputation location
u; using SK.
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Figure 5.1: A schematic drillhole showing the multivariate relationships between observed and latent
spaces. The observed data values are a function Fy (y) of the imputed latent factors at location u;. The
imputed values must reproduce the true observed values, and each regionalized latent factor must reproduce
its covariance structure vyy,.

2. Repeatedly sample the Gaussian vector y(u;) = {gm(u;),m =1,..., M} from the conditional
distributions until |Fo(¥(u;)) — z(u;)| is within a specified first tolerance.
3. Tteratively refine the solution from (2) until |Fo(y(u;)) — z(u;)| is within a specified second

tolerance.

The normal score transform within the latent to observed mapping function Fy is slightly different
from the context of network parameter inference in Chapter 4. The SGRI algorithm constructs a
reference distribution for mapping trial latent vectors, y(u;), to a scalar value in observed space,
Z(u;). The reference distribution facilitates the normal score transform of a single NMR output value.
The table is constructed by mapping a 10% x M dimensional table of standard normal independent
factors through Fy, resulting in an exhaustive table of outputs of unitless, raw activation values. This
output table is normal score transformed, and Z(u;) values are calculated by linearly interpolating
the normal score array. The notation Fp(y(u;)) implies a scalar Gaussian deviate. In the following

sections, the subscript ¢ replaces the location vector u; to simplify notation.

5.3.1 Precedence and Constraints

Application of precedence is an optional component of the SGRI algorithm. Precedence is achieved
by employing the same simgoid weighting function optionally applied during network parameter
inference in Section 4.3.3. Application of constraints is an optional component of the SGRI algorithm
that may be used in conjunction with factor precedence. The use of constraints enforces the values
of a certain factor to be either above or below a chosen threshold. The goal of constraint application
is to ensure that some high or low values of a chosen factor correspond with the high or low values
of the observed data. When enforcing factor precedence, constraints are necessary as the mapping
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function Fy is inferred using unconditional realizations. There is no conditioning mechanism to
ensure the low- or high-grade features of y, align with low- or high-grade features in the data. Fj
is non-unique and multiple latent vectors can reproduce z;. Therefore, it is possible, for example,
to have a negative value of y, where z; is a large positive value. This scenario is not ideal if we
explicitly want the spatial features of y, where z; is high and warrants the use of constraints on y,
during imputation.

Constraints can be thought of as “seeding” some number of high or low values of y, prior
to imputation by using a semi-random path. The constraint threshold and an exclusion radius
parameter control the number of seeded values. A threshold is specified, and all values in the
observed data, either above or below, are flagged. These data locations are the initial seed locations.
The initial seed locations are sorted in descending (high values) or ascending (low values) order based
on the observed grade value. The first seed location is visited, and the algorithm removes all other
initial seed locations within the exclusion radius from the available possible seed locations. The
next valid seed location is visited; again, the algorithm removes all other locations within the radius
from the possible locations. This process continues until all initial seed locations are included or
excluded. The included seed locations become the first n locations in the imputation path. Imputed
values of y, at these locations are constrained to be above or below the threshold through rejection.
The initial excluded seed locations and all other data locations become the remaining ndata — n
locations in the imputation path. Imputation of the remaining M — 1 factors uses a strictly random
path through the locations.

The exclusion radius is an important parameter as the mean and variance of the imputed y,
distribution are sensitive to the number of constrained locations. For example, if the 0.9 quantile is
used as a threshold with no exclusion radius, approximately 10% of the imputation locations will be
seeded. This strong degree of conditioning can inflate the mean and variance of the imputed values
and cause a departure from the standard normal distribution. By enforcing an exclusion radius,
only a subset of the locations are seeded, and the local effect of the conditioning is less pronounced.
Seeding many locations may also negatively affect other factors or lead to non-convergence. Too
strong of a constraint on y, may lead to a scenario where the remaining factors lack sufficient
flexibility to reproduce the observed value when mapped. Practice shows that an exclusion radius
of 5-10 times the composite length is sufficient to impart the desired factors of y, above or below

the threshold without negatively affecting convergence.

5.3.2 Conditional Moments

The algorithm begins by determining a random (unconstrained) or semi-random (constrained) path

through all data locations to be imputed. At each imputation location, the conditional moments
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are solved using the normal equations:

Ym,i ™~ N (/’Lm,iy Um,i) (51)
fmi = D Aji X Ym.j (5.2)
j=1
N;
O-En,i =1- Z >\7n,j,i X Cnt,j,i (53)
j=1
Nm,i
Am,ji X Cmjk = Cmk,i Vk € N (5.4)
j=1

where IV, ; is the neighbourhood about location ¢ using search anisotropy derived from Y;,; this
could either be all neighbours or a restricted search around location i. C,, ; is the covariance
between spatial locations j and k for latent variable m. The system of equations is solved M times
under the assumption of zero mean and unit variance, resulting in a vector of conditional means and
standard deviations. Retaining all conditional moments allows fast, repeated simulation of spatially

correlated latent values in the coarse search phase.

5.3.3 Coarse Search

The coarse search begins after calculating the M conditional moments at location i. The goal of
the coarse search is to find the trial vector y; that closely reproduces z; and has the correct spatial
covariance. Values are drawn from each valid conditional distribution through MCS for a set number
of iterations, j:

(@)

gmi =Te0,1] X Om,i + mi VM (5.5)
=W u8), il (5.6)

where r¢[g 1] is a uniform random number between 0 and 1. Simulated y(J )z values are practically

constrained € [—5,5]. The trial observed value is calculated by mapping Fy(y;). Coarse imputation

z(d)

error, ep, is the absolute difference between the trial value, Z;”’, and the true observed data value:

2 = Fo39) (5.7)
er =27 — 2| (5.8)
B yz(-j), if e1 < o
yi= _ (5.9)
SIEJ Y. otherwise

<) .

If the error, ey, is less than the first rejection tolerance, oy, the trial vector §,”’ is retained as the

initial latent vector at the i" location, otherwise it is rejected. If the coarse search fails to converge
~(7)

after the specified number of iterations, the sample g,’; is flagged for resimulation. The values of

both g T )i and a small neighbourhood of the nearest samples are reset. Resimulating the nearest
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neighbours prevents situations where local conditioning leads to non-convergence. This scenario is
possible with adjacent, opposite, extreme values in a drillhole, such as at a vein’s or high-grade
structure’s boundary. Resimulation uses a default of 10 nearest neighbours. Practice shows that
~ 0.1 is a reasonable rejection tolerance for . Exact reproduction with the observed value is not
expected during this step as the multivariate relationship between M collocated factors has not been

addressed. Any exact matching now would be disturbed in subsequent polishing steps.

5.3.4 Solution Polishing

Once an initial coarse solution is accepted, it can be refined to meet the collocated multivariate
requirements. The imputed vector generated in the coarse search ensures Y, reproduces ~,,(h)

however Fy(¥;) must match z; + ag, where as is the polishing tolerance. Solution polishing at the

i'" location begins by assessing the sensitivity of each component of S/z(j ) on the target observed value

zi- Due to the nature of the learned mapping function, it is not immediately clear how each latent
(4)

m.; can either be positively or negatively correlated with z;

factor influences the observed value. g
and the magnitude of the sensitivity depends on Fy. To assess the sensitivity of each factor, a step

size of A, = G71(0.525) — G~1(0.500), or 2.5% in Gaussian probability space, is chosen. Perturbing

a component, m, of S/Ej ) by £A, results in two trial vectors yﬁ,{lﬁi, and yﬁ,?_ The trial vectors

permit calculation of sensitivity as Az, ; = Z; — Fp (yﬁ,{)ﬂ) and AZ,,_; =2, —Fg (yfjj,) Iterating

71.

3
over m = 1,..., M components establishes the sensitivity and direction of change of Z; with respect
(4)

to g,,;- Figure 5.2 shows this sensitivity graphically as a “tornado” chart.

YM

_AE 0 AZt ¢ +A%

Figure 5.2: Schematic representation of latent factor sensitivity as a tornado chart. The x-axis shows AZ,
or how much Z changes for a given perturbation of Y,,. In this scenario, the target delta is a positive value.
The y-axis shows m = 1,..., M latent factors sorted by descending sensitivity. a = Az —¢; b = Az; ¢ =
the largest possible change to Z.

Factors are sorted from most to least sensitive. Az; is the target delta, or the difference between
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z; and Z;. Az tells us which direction to move, and the tornado bars tell us which factor(s) are
sensitive enough to achieve the target delta. a represents the delta between the most sensitive factor
and the target delta, b is equal to the target delta, and c is equal to the largest possible change in
Z; given the current vector sz(-j ), Suppose the target delta lies within one or more of the sensitivity
bars, as shown in Figure 5.2. In that case, the algorithm adjusts the least sensitive factor to solve
Fo (yﬁj)) = z; + ap by performing a binary search (Nowak, 2008) on the interval gfjfz + Ay. The
least sensitive factor is selected to have the smallest possible impact on the initial vector from the
coarse search. Suppose the target delta lies outside the maximum sensitivity of any factor. In that
case, the most sensitive factor is perturbed to the maximum amount, and the algorithm reassesses
the sensitivity of all latent factors. This perturbing and sensitivity assessment loop repeats until a

()

binary search can solve the problem. The benefit of this approach is the latent vector ¥,”’ is always
being perturbed in the correct direction, and Az, is always approaching zero. Given a sufficient
number of iterations, solution polishing must converge. That being said, there may be situations
where the required amount of polishing negatively influences the covariance structure imposed in
the coarse search. If at any point |Z§j) — z;| < ag the loop breaks as Fy (S'Z(j)) ~ z;. Practice shows
that ~ 0.01 is a reasonable tolerance for to.

Assessing latent sensitivity permits the calculation of a measure of “difficulty” in the polishing
phase. Consider the equality:

Az —c
o Azt

If the target delta falls within the sensitivity of one or more factors, b < 0, and the correct vector

b (5.10)

can be solved with binary search. In this scenario, solution polishing converges quickly. If the target
delta falls outside the sensitivity of all factors, b > 0, factor sensitivity must be repeatedly assessed,
and convergence takes additional iterations. This ratio provides insight into locations or observed
samples that are more difficult to impute. However, it is possible there are locations that are difficult
to impute but require little polishing. Consider a location where resimulation is necessary for the
coarse search, but the algorithm eventually generates a latent vector where e; =~ a. This scenario is
still difficult to impute, though b does not reflect this. When evaluating problematic locations, the
number of resimulations at each data location should also be considered. Data locations persistently
challenging to impute across realization are subject to further investigation. Algorithm 2 summarizes

the complete pseudocode for the SGRI algorithm.

5.3.5 Imputation Checks

There are any number of latent vectors y; that can reproduce the observed value z;. As the solu-
tion is highly non-unique, multiple imputed realizations of the latent factors should be considered.
Considering a multiple imputation framework transfers the uncertainty in the latent variables to

subsequent model realizations (Silva & Deutsch, 2017). SGRI imputes realizations of latent vari-
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5. Latent Factor Imputation

Algorithm 2 SGRI pseudo code.

1: Initialize search parameters based on covariance
2: for/=1,...,L do

3: establish random or semi-random path through data
4 nresim = 0

5 for i =1,...,ndata do

6 form=1,...,M do

7: establish search neighbourhood N, ;
8 calculate conditional moments fi, ;, U?w
9 end for

10: 7=0

11: while e¢; < a7 do

12: j=7+1

13: form=1,...,M do

14: Ym,i = Tel0,1] X Om,i + Hm,i
15: end for

16: z = Fo(57))

17: el = |§Z(J) — Zl|

18: if 7 > iterl then

19: break
20: end if
21: end while
22: if e; > a7 then
23: nresim = nresim + 1
24: cycle data loop
25: end if

26: 7=0

27: €y = €1

28: while e; < as do

29: j=Jj+1

30: assess latent sensitivity

31: if £ <0 then

32: solve S’z('] ) with binary search
33: else

34: set most sensitive factor to its bound
35: reassess latent sensitivity

36: end if _

37: z = .7:9(}72(-]))

38: ey = |2i(j) — ZZ|

39: if j > iter2 then
40: break
41: end if
42: end while
43: end for
44: if nresim > 0 then
45: resimulate at nresim locations
46: end if
47: end for

> Main loop over realizations

> Loop over data locations
> Loop over factors at i* location

> End loop over factors

> Start coarse search

> Monte Carlo simulation

> Compare to observed value

> End coarse search

> Start solution polishing

> Retain new absolute difference

> End solution polishing
> End loop over data locations

> End loop over realizations
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5. Latent Factor Imputation

ables with the correct spatial structure, are standard normal, and are independent. The minimum

acceptance criteria of the imputed values in practice are:

1. Mapping the latent vector ¥; (red in Figure 5.1) to observed space via Fy reproduces the
observed value z; + g (blue in Figure 5.1).

2. Latent factors are standard normal: E {Y,, } =0, E {Yfl} =1

3. Latent factors are independent: E {Ym,iYnJ} =0, Vm#n, Vi#j

4. Latent factors reproduce their respective variogram model 7,,(h), V h

Consider the same small synthetic example from Chapter 4; the problem involves imputing three
latent factors at 746 data locations. Factor three is the nugget effect. The SGRI algorithm is
run using a search neighbourhood of 40 nodes, a maximum of 20,000 and 10,000 iterations for the
coarse search and polishing steps, respectively, and rejection tolerances of 0.1 and 0.01 for the coarse
search and polishing steps, respectively. Figure 5.3 shows a scatter plot matrix between all imputed
factors, the mapped values in observed space, Z, and the true data values, z for a single realization.
As expected, the correlation between z and Z is 1.0. The top row of the matrix in Figure 5.3 is
somewhat redundant due to this perfect correlation; however, it highlights the exact data matching
and validates item (1). The marginal distributions (histograms in Figure 5.3) are all standard
normal validating item (2). Deviation from the standard normal distribution is possible, and one
must consider the variogram range relative to the domain size. Long-range variogram structures may
generate low-variance imputed distributions. Imputed latent factors are uncorrelated with roughly
concentric density contours and |p| < 0.10 validating item (3). The relationships between factors
1 and 2 with the mapped values highlight the influence of the w parameter. Factor 1 is correlated
with the mapped value when it is low, and factor 2 is correlated when it is high. Figure 5.4 shows
variogram reproduction for each imputed factor. There is no nugget effect variogram model, so the
reproduction is not shown. The red-shaded area highlights uncertainty in the variogram across all
imputed realizations. The expected imputed variograms reproduce the single structure variogram
models reasonably well for 746 data.

Beyond the minimum acceptance criteria, one should investigate data locations requiring multiple
resimulations. Samples at transitions between extreme grade ranges or local neighbourhood outliers
may require multiple simulation passes for y; to converge. Table 5.1 shows six adjacent samples from
a single drillhole, where z is the observed value, Z is the mapped standard normal value, Factors 1-3
are the imputed latent Gaussian values, b is the ratio in Equation 5.10, and nresim is the number
of resimulations at the given data location. The third sample represents a transition from 0.563 to
-1.306 or approximately the 71°¢ to the 9" quantile of the Gaussian distribution. This short-scale,
extreme change is a challenge for the SGRI algorithm, though it can converge with a sufficient
number of rejection iterations. It is noteworthy that b < 0, or the coarse search was able to produce

()

a latent vector y,”/ where minimal solution polishing is required.
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Figure 5.3: Scatter plot matrix for a single imputed realization highlighting the perfect correlation between
z and Z, the uncorrelated nature of all latent factors, and the standard normal nature of all marginal
distributions. These features are the first three minimum acceptance criteria for SGRI imputed realizations.
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Figure 5.4: Latent factor variogram reproduction for the first two factors in the major (left), minor (center)
and vertical (right) directions, respectively. The expected variograms of the imputed realizations reproduce
the models well, given the data density.

Table 5.1: Six adjacent samples from a single drillhole, where z is the observed value, Z is the mapped
standard normal value, Factors 1-3 are the imputed latent Gaussian values, b is the ratio in Equation 5.10
and nresim is the number of resimulations at the given data location. The polishing tolerance is 0.01.

z z Factor 1 Factor 2 Factor 3 % nresim
0.784 0.791 1.223 0.501 -1.616 -0.411 0
0.563  0.564 1.134 0.206 -2.068 -0.834 0
-1.306  -1.310 -0.820 -1.937 -1.185 -1.638 2
-0.307 -0.305 0.165 -1.153 0.739 -0.020 0
0.988  0.982 0.255 0.974 0.202 -1.481 0
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5. Latent Factor Imputation

If solution polishing does not converge after a reasonable number of iterations, the algorithm
can draw a valid Gaussian from the internal SGRI reference distribution. §7™*" is selected from
the “lookup table” such that |El(j maz) _ 2;| is minimized. A reference distribution with 105 entries
is sufficiently large to contain a latent vector that satisfies the polishing tolerance when mapped to
observed space. Frequent use of a lookup table may affect multivariate and spatial properties of the

latent factors, so SGRI issues a warning if more than 1% of the imputed samples are drawn from

the reference distribution.

5.4 Latent Factor Simulation

NMR realizations are generated by conditionally simulating latent factors on a grid and then map-
ping the gridded factors to observed space. Latent factors imputed at the data locations become
the conditioning data for any conditional simulation algorithm. Standard conditional simulation
algorithms include SGS (Gémez-Herndndez & Journel, 1993), turning-bands (Journel, 1974) and
LU simulation (Davis, 1987). SGS is likely the most commonly implemented algorithm due to its
simplicity and availability in commercial software (Rossi & Deutsch, 2013), though any conditional
algorithm is valid. Figure 5.5 shows plan view sections through the first conditional realization of

the three gridded factors.
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Figure 5.5: Plan view sections through the first conditional realization of the three gridded factors with
imputed conditioning data.

Once the latent factors are defined at every grid node, the realizations are mapped to the observed
space through Fy. Figure 5.6 shows sections through the first NMR realization mapped to Gaus-
sian units. The non-Gaussian characteristics of the realizations are evident in these sections. The
localized high-grade values clearly overprint the low-grade, longer-range background values defined
by the Gaussian pool and w constraints. These features are also evident in the back-transformed re-
alizations in Figure 5.7. The realizations show localized but internally connected high-grade regions
that correspond to the covariance structure of the 0.9 quantile indicator variogram.
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Figure 5.6: Plan (a), east-west (b) and north-south (c) sections through the first NMR realization mapped
to Gaussian space with observed data values in Gaussian units.
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Figure 5.7: Plan (a), east-west (b) and north-south (c) sections through the first NMR realization back-
transformed to original units.

At this point, the gridded NMR realizations should reproduce the continuous variogram model,

specified indicator variogram models, cumulative run frequencies and n-point connectivity functions.
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5. Latent Factor Imputation

As the gridded models reproduce the data at the data locations (particularly implementations of
SGS that assign data to grid nodes), an additional step is required to check downhole statistics.
For checking runs and n-point connectivity reproduction, the entire drillhole configuration is trans-
lated within the domain. This translation retains the drillhole configuration but allows sampling
simulated values from the grid. The resampled values are then used to check multi-point statistical

reproduction.

5.4.1 Simulation Checks

The minimum acceptance criteria for checking continuous realizations (Leuangthong, McLennan,
et al., 2004) must be applied, similar to any other geostatistical model. The gridded realizations
must reproduce (1) the data values at data locations, (2) the declustered input CDF and summary
statistics for the latent Gaussian pool and the original variable, and (3) the input covariance model,
both for the latent Gaussian pool and the original variable.

Figure 5.8 shows CDF reproduction (left) and data reproduction (center) for the gridded NMR
realizations in Gaussian units. The Gaussian realizations are, on average, standard normal, and the
data values are reproduced exactly at collocated grid nodes. In some locations, more than one data
value occupies a single grid node, and there is a deviation from the 1:1 line in the scatter plot. In
this scenario, the data value closest to the grid node centroid is retained for comparison. Figure
5.8 (right) shows CDF reproduction of the gridded realizations back-transformed to original units.
The realizations, on average, reproduce the declustered CDF. The final component of the traditional
model checks is checking continuous variogram reproduction. Figure 5.9 shows gridded continuous
variogram reproduction for the NMR realizations in Gaussian units. As the realizations are generated
with a mapping function that considers multiple variogram components, there are some deviations
from the input continuous model. In this example, the 0.1 and 0.9 quantile indicator variograms
influence the continuous variogram reproduction in the major and minor directions. The 0.9 indicator
variogram introduces a slight increase in variance in the short-range lags and a slight decrease in
the longer-range lags from the 0.1 indicator variogram. Continuous variogram reproduction remains
reasonable, though the influence of other objective components is evident in the covariance structure
of the final gridded models.

Beyond the traditional simulation model checks, the NMR realizations must be checked to repro-
duce all the objective function components. These checks include indicator variograms and sequences.
Figure 5.10 shows gridded reproduction of the strongly asymmetric 0.1 and 0.9 quantile indicator
variograms. The gridded models closely reproduce the non-Gaussian indicator structure that is
apparent in Figures 5.6 and 5.7, though there is some deviation at shorter lags. This deviation is
attributed to shorter range lags having few pairs given the data configuration. In a mining context,

one is predominantly concerned with high values, and in this example, cumulative run frequencies
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Figure 5.8: CDF and data reproduction for the NMR realizations in Gaussian units (left and center) and
CDF reproduction in original units (right). The original units reference distribution shown in red considers
declustering weights.
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Figure 5.9: NMR continuous variogram reproduction. The black line is the variogram model; the red dots
are the experimental variogram of the imputed data; the red line is the average variogram of the gridded
NMR realizations, the shaded red area encloses the minimum and maximum gridded NMR variogram values.
Left to right are the major, minor and vertical directions, respectively.

are considered above the 0.9 quantile threshold. When considering sequences above a threshold,
the n-point connectivity function and cumulative run-length frequencies are analogous; one can be
calculated from the other. Only cumulative run-length frequencies are considered for this reason.
The chosen simulation algorithm may assign the data values to the grid, resulting in a distribution of
runs with zero uncertainty. To overcome this, the entire drillhole configuration is translated within
the domain and values are sampled from the grid at the “new” data locations. Four translations
are performed (25 meters to the NE, SE, SW and NW), and the final result is the expected value
across translations. Figure 5.11 shows gridded cumulative run-length frequencies for the 0.9 quantile
indicator. The solid red line is the expected value across translations. The black line is the target
value calculated from the drillholes. The expected value deviates slightly from the target, though
the uncertainty bandwidth captures the target.

Suppose the NMR, realizations meet the minimum acceptance criteria. In that case, the re-
alizations are (1) univariate Gaussian, (2) reproduce the observed data at the data locations, (3)
reproduce the continuous variogram model, (4) reproduce the indicator variogram models for chosen
thresholds and (5) reproduce chosen multi-point measures of connectivity. Points (4) and (5) ensure

the realizations are not multivariate Gaussian.
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Figure 5.10: NMR indicator variogram reproduction for the 0.1 (a), 0.5 (b) and 0.9 (c) quantiles. The
black line is the variogram model; the red dots are the experimental variogram of the imputed data; the red
line is the average variogram of the gridded NMR realizations, the shaded red area encloses the minimum
and maximum gridded NMR variogram values. Left to right are the major, minor and vertical directions,
respectively.
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Figure 5.11: NMR 0.9 quantile cumulative run-length frequency reproduction. The black line is the target
calculated from the drillholes, the red line is the average gridded value, and the shaded red area encloses
the minimum and maximum gridded values.

5.5 Discussion

SGRI is a novel algorithm for imputing latent Gaussian factors for use in the NMR simulation
framework. SGRI is an alternative to the Gibbs sampler approach and permits the imputation of
any number of independent, standard normal Gaussian vectors with the correct spatial structure.
When mapped from latent to observed space, the imputed factors reproduce the observed data value.
The mapping function Fy is highly flexible and incorporates components of the conceptual geological
model and features embedded in the design of the Gaussian pool. The algorithm is straightforward
and incorporates elements of SGS and rejection sampling. Simple kriging calculates the moments
of local conditional CDFs, and values are drawn with MCS subject to rejection. The rejection step
ensures that the imputed vector remains within a feasible solution space. The algorithm shows
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