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Abstract
Geostatistical models are often generated with widely spaced data configurations. Data collection

costs prohibit exhaustive sampling and necessitate statistical inference from limited samples. Spatial

prediction with sparse data in the presence of extreme values is an enduring challenge in the mining

industry. Extreme values may have significant local influence, leading to overstated resources and

the risk of production shortfalls. Practitioners are presented with difficult decisions for restricting

extreme value influence and characterizing their spatial continuity. Inputs to numerical geologic

models consist of observed data, a representative histogram and spatial controls on mineralization.

Each of these components presents challenges in the presence of extreme values. Extreme values

are rare events, making inferences about their probability of occurrence difficult. The influence of

extreme values is often controlled in practice through grade capping, which could significantly impact

the final resource. Extreme values’ spatial continuity often differs from the barren or lower grade

background. Traditional estimation and simulation methodologies are limited in adapting to extreme

values and asymmetric spatial continuity features. These challenges motivate the development of

a framework for the simulation of continuous variables with explicit consideration of high-order

extreme value features. The proposed network model of regionalization (NMR) framework constructs

a continuous regionalized variable as a non-linear mixture of latent Gaussian factors and does not

require capping or modification of extreme grade values. The network parameters are inferred

via optimization, considering two- and multi-point connectivity features at grade thresholds. This

permits the reproduction of high-order connectivity features and asymmetric spatial continuity of

high and low grades that cannot be captured by a single Gaussian random function (RF) model. The

latent Gaussian factors are imputed such that they exactly reproduce the observed data values when

mixed. The applicability of the proposed methodology is demonstrated on a mineral deposit where

the project operators note non-Gaussian, extreme value features in drillhole data. In this deposit

the NMR approach shows a 7% improvement in expected metal relative to traditional approaches

using a hold-out data set for validation.
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Chapter 1

Introduction
The field of geostatistics encompasses the problem of spatial prediction and the characterization of

uncertainty within geological systems (Deutsch & Journel, 1992). We are concerned with describing

the spatial aspects of mineralization and its variability or dispersion. Geostatistics was developed

based on the need to forecast the recoverable resources at unsampled locations in mineral deposits

(Matheron, 1963). Though initially developed in a mining context, geostatistics has found practi-

cal uses in many fields concerned with spatially correlated data, such as petroleum, hydrogeology,

environmental science, remote sensing and others (Goovaerts, 1997).

Geostatistics utilizes observed categorical and continuous properties to generate exhaustive nu-

merical models of the subsurface. These models are either deterministic or probabilistic, where

equiprobable realizations are generated through stochastic simulation (Chilès & Delfiner, 2012).

These realizations honour the spatial and multivariate characteristics of the input data with statis-

tical fluctuations and provide a measure of joint uncertainty within the region of interest (Rossi &

Deutsch, 2013). Characterizing and quantifying geologic uncertainty gives engineers and decision-

makers practical tools for optimizing orebody extraction.

Mineral deposits, particularly precious metals, often exhibit strongly positively skewed grade

distributions. These distributions pose challenges for spatial prediction as there is usually limited

data characterizing the upper tail. Some components of the high values in the upper tail characterize

“outliers” based on a subjective threshold. There is a risk of local overestimation with smooth

kriging estimators if sparse, high-value data are left unmanaged (Leuangthong & Nowak, 2015).

Standard practice in mining is to cap high values to a maximum to avoid local conditional bias,

but those high values may have tremendous economic value. Appreciating the potential and the

upside of such values in a quantitative and repeatable manner is of great practical interest. The

term “extreme value” is not regularly used in the mining industry; rather, “outlier” is used. Some

mineral distributions with high coefficients of variation likely do contain extreme values in the classic

statistical sense. A mineral deposit is an extreme value in the context of regional geology.

1.1 Problem Setting

Mitigating the impact of extreme values on resource estimation is a long-standing issue. Extreme

values present unique challenges because there are few samples, and understanding their spatial

distribution is difficult. This lack of data is coupled with the potential of significant economic risk

if mismanaged. High grades are typically capped in practice to mitigate the risk of overestimation.
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Numerous problems remain outstanding concerning (1) objectively defining what an extreme value

is, (2) explicit approaches for limiting extreme value influence, (3) characterizing the statistical

or distribution component of extreme values, (4) characterizing the spatial component of extreme

values and (5) develop practical advice to combine the statistical and spatial components.

The mining industry has not established a consensus regarding outlier management, and many

approaches are developed case by case. Should high grades be capped? Should sub-regions be

delineated to isolate higher grades? Should we use decile analysis, cumulative probability plots,

cutting curves, coefficient of variation, production reconciliation, arbitrary percentiles, metal at risk,

indicator correlations, multiple indicator kriging or no capping? If we cap, should it be before or

after compositing? Answers to these questions influence the final metal content of resource estimates.

The impact of restricting outliers may be significant depending on the distribution of the available

data.

High-grade values are generally sparse in mining data sets. Though sparse, these high-grade

values may contribute significantly to the project’s economics. For example, at the Brucejack deposit

in Northwest British Columbia, the top 1% of drill core samples contain 83% of the total deposit

metal (Au) (Pretium Resources Inc., 2020). Anecdotal evidence from producing gold mines suggests

this scenario poses an economic risk if samples in the upper tail are not explicitly managed. The use

of smooth deterministic estimators such as kriging potentially exacerbates this issue. Many strongly

positively skewed distributions also exhibit non-Gaussian spatial characteristics (Journel & Alabert,

1989). There is a need for a simulation framework that can correctly characterize the non-Gaussian

spatial features related to extreme values without arbitrarily restricting their influence.

The spatial continuity of extreme values in the upper tail may differ from low values. The

multivariate Gaussian assumption underlying many geostatistical algorithms does not allow for

spatial connectivity of extreme values, nor does it allow for asymmetry in the loss of correlation

away from the median (Journel & Alabert, 1989). Multiple indicator kriging (MIK) (Journel, 1983)

was conceived for this purpose; however, it has proved difficult to implement effectively in practice,

and simpler Gaussian techniques can outperform MIK (Vincent & Deutsch, 2021). The challenges

associated with MIK and traditional extreme value management motivate the need for a new spatial

model to characterize the non-Gaussian spatial continuity of extreme values.

1.1.1 Thesis Statement

A framework for the simulation of continuous variables in the presence of extreme values is proposed

to address these challenges. The framework constructs numerical geologic models with explicit con-

sideration for extreme values’ presence and spatial structure. These models can better characterize

high-grade geologic features by representing a regionalized variable by a non-linear combination of

underlying latent Gaussian factors.
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The framework consists of a non-linear network model of regionalization (NMR), which is an

expansion of the linear model of regionalization (LMR) concept (Journel, 1974). Rather than a

positive linear combination of latent factors, the network model of regionalization (NMR) intro-

duces non-linear activations and a hidden layer to form a network structure. Non-linearity allows

the spatial model to capture complex, high-order features and better control the known indicator

asymmetry between low and high grades with non-Gaussian distributions (Journel & Alabert, 1989).

High-order measures of connectivity are shown to characterize non-Gaussianity. These connectivity

measures are extracted from drill strings and incorporated into the spatial models. Capturing richer

spatial structures beyond what is possible with two-point statistics improves the prediction of high-

grade in-situ resources. The NMR framework is particularly advantageous for strongly positively

skewed distributions such as precious metals, uranium or diamonds.

Thesis Statement: The breakdown of regionalized variables into fundamental latent com-

ponents coupled with a non-linear network model of regionalization permits improved proba-

bilistic modeling of strongly positively skewed grade distributions.

The key contributions of this thesis are the development of:

1. The NMR framework for the simulation of high-order spatial features improves the modeling

of continuous variables in the presence of extreme values. The framework includes:

a) Methodology for the parameterization of the network, permitting mapping between latent

and observed spaces. This inverse problem is approached through stochastic optimization.

b) Methodology for stable imputation of latent factors that (1) reproduce the correct spatial

statistics and (2) reproduce the observed data values.

c) A novel activation function to impose spatial features in the tails of the continuous dis-

tribution.

2. Tools for calculating high-order connectivity measures from drillhole sequences; these connec-

tivity features are a proxy for non-Gaussianity.

3. An algorithm for identification of outliers in a spatial context. The algorithm considers the

spatial arrangement and shape of the global empirical distribution to assign an outlier score.

Little research has been done on the continuous simulation of high-order spatial features with-

out training images. In the NMR framework, all high-order features are extracted directly from the

observed data with no assumptions made regarding the geological system or underlying physical

processes. These one-dimensional (1-D) patterns are restricted to the drill strings; however, the net-

work parameters enforce connectivity away from the data. Another key difference is the introduction

of the latent Gaussian space. The local conditional cumulative distribution functions (CDFs) are
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not approximated by a combination of high-order statistical moments but rather calculated directly

under a multivariate Gaussian assumption. The non-Gaussian spatial model is constructed as a

mixture of Gaussians; the transform from latent to observed space captures the high-order features.

1.2 Geostatistical Background

The proposed research covers a wide range of subjects involving modeling continuous, positively

skewed variables with geostatistical simulation. The following section reviews the relevant geostatis-

tical concepts. This section does not intend to be exhaustive but rather provide a review of concepts

related to the NMR framework.

1.2.1 Overview

Geostatistics is a field of applied statistics concerned with characterizing and modeling spatially

correlated variables. A variable dispersed in space and exhibiting spatial structure is said to be

regionalized (Matheron, 2019). A foundation of geostatistics is the concept of random variables

where unknown values, z, at an unsampled location are modeled as outcomes of a random variable

Z (Deutsch & Journel, 1992). A random function represents a collection of spatially correlated,

location-dependent random variables Z(u) for every location u within the study region (Goovaerts,

1997).

The decision of stationarity is one to group or pool relevant data together. As no data replicates

are available at location u to infer the random function Z(u), geologically similar data must be

pooled, permitting reliable inference of population statistics. This decision of stationarity allows

the trade of unavailable replicates for data at other locations for statistical inference (Deutsch &

Journel, 1992). Pooling too little data may lead to unreliable statistics, and too much data may lead

to the masking of important geological features. Stationarity is a property related to the underlying

random function model and cannot be checked or validated with data (Goovaerts, 1997).

Geostatistical estimation and simulation algorithms require inference of the random function’s

first and second-order moments (mean and covariance). When divided into a sub-region D, the

variable of interest is considered first-order stationary if the expected value is constant within D.

The variable is second-order stationary if the covariance depends only on the separation vector h

within D. A random function Z(u) is second-order stationary when:

E{Z(u)} = µ

E{Z(u) − µ2} = C(0) = σ2

E{Z(u) · Z(u + h)} − µ2 = C(u,u + h) = C(h)

∀ u,u + h ∈ D
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where µ, σ2 and C(h) are the mean, variance and covariance, respectively, and do not depend

on location. The invariance of the random function parameters to a location within D allows the

relation C(h) = σ2 − γ(h) which is the foundation of variogram interpretation (Pyrcz & Deutsch,

2014).

The linear model of regionalization (LMR) is used to fit experimental variograms with models

that ensure positive definite covariance matrices. As not all combinations of variogram models

may lead to a permissible model, the LMR constructs a random function Z(u) to be the linear

combination of L + 1 independent, standard random functions {Yℓ(u), ℓ = 0, . . . , L}, each with its

permissible variogram function (Goovaerts, 1997), plus the stationary mean:

Z(u) =

L
∑

ℓ=0

aℓYℓ(u) + µ(u)

where L is the number of nested structures in the model. By convention, the isotropic nugget

effect is the 0th structure. The variogram model of can Z(u) then be expressed as the sum of the

variograms for each of the factors:

γz(h) =

L
∑

ℓ=0

bℓΓℓ(h), bℓ = (aℓ)
2

where Γℓ(h) is the variogram of Yℓ and bℓ represents the variance contribution of each ℓ = 0, . . . , L

factors.

The LMR extends to the multivariate case with k = 1, . . . ,K coregionalized variables. With the

liner model of coregionalization (LMC), each coregionalized random function, Zk(u), is also the sum

of the standard, uncorrelated factors:

Zk(u) =

L
∑

ℓ=0

aℓ,kYℓ(u) + µk(u)

where aℓ,k is the contribution of the ℓth factor the kth variable. The direct and cross variograms

can be expressed as:

γk,k′(h) =

L
∑

ℓ=0

aℓ,kaℓ,k′Γℓ(h), k, k′ = 1, . . . ,K

The LMC is commonly modeled in the cokriging paradigm for multivariate covariance inference.

1.2.2 Factorial Kriging

As demonstrated with the LMR notation, the regionalized variable is characterized by m(u), the

L+ 1 aℓ values and the L+ 1 variograms Γℓ(h). Factorial kriging aims to model each nested spatial

structure present in the LMR for filtering or feature extraction. The idea is that each regionalized

factor has a correlation structure responsible for a different scale of continuity, and they can be

estimated independently (Matheron, 1982). The factors are estimated as linear combinations of the
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data values Deutsch (2007):

z∗
ℓ (u) = aℓYℓ(u) =

n
∑

i=1

λi,ℓz(ui)

By convention, ordinary kriging is used, though there is no reason simple kriging cannot be used

(Hong & Deutsch, 2007). The estimation weights for the ℓth factor are obtained by minimizing the

estimation variance, leading to the factorial kriging equations:














∑n
j=1 λj,ℓC(ui,uj) + µℓ = Cℓ(ui,u), i = 1, . . . , n

∑n
j=1 λj,ℓ = 0, ℓ = 0, . . . , L

The right hand side covariances are the covariances corresponding to the particular structure ℓ

being estimated. The sum of the estimated factors returns the original ordinary kriging estimate:

z∗(u) =

L
∑

ℓ=0

z∗
ℓ (u) + µ∗(u)

Filtering properties of factorial kriging may be helpful if one is interested in removing a particular

factor from estimated maps. For example, high-frequency variation from the nugget effect could be

filtered by only considering the ℓ = 1, . . . , L factors. Factorial kriging extends to the multivariate

context by considering the LMC fitted to the direct and cross variograms where each coregional-

ized variable {Zk(u), k = 1, . . . ,K} is a linear combination of the standard, independent factors

{Y v
ℓ (u), v = 1, . . . ,K; ℓ = 0, . . . , L} (Wackernagel, 1988):

z∗
ℓ,k(u) =

K
∑

v=1

av
ℓ,kY

v
ℓ (u) =

K
∑

v=1

n
∑

i=1

λv
i z

v(ui)

The cokriging equations for a particular spatial component are then:














∑K
k′=1

∑n
j=1 λk′,jCk,k′(ui,uj) + µk = Cℓ

k,k(ui,u), k = 1, . . . ,K; i = 1, . . . , n

∑n
j=1 λk,j = 0 k = 1, . . . ,K

Again, the sum of the estimated factors returns the original regionalized variable:

z∗
k(u) =

L
∑

ℓ=0

z∗
ℓ,k(u) + µ∗

k(u)

Multivariate factorial kriging is a technique for characterizing the regionalized factors Yℓ,k from

observations of Zk. This technique is advantageous if the correlation between variables depends on

scale and one would like to extract or filter a particular spatial structure.

Simple factorial kriging equations are equivalent to the simple kriging equations except for the

right hand side covariance is the covariance of the nested structure being estimated (Hong & Deutsch,

2007):














∑n
j=1 λℓ,jC(ui,uj) = Cℓ(ui,u)

i = 1, . . . , n ℓ = 1, . . . , L
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z∗(u) =

L
∑

ℓ=0

z∗
ℓ (u) + µ

The sum of the estimated factors plus the mean equals the simple kriging estimate.

1.2.3 Simulating Continuous Variables

Kriging and its variants generate smooth, deterministic estimates that do not reproduce the true

variability of the data (Deutsch & Journel, 1992). The smoothness of this estimate is not desirable

if the transfer function is sensitive to extreme values; under-representing the variability may be

consequential. Simulation methods reproduce the input variables’ covariance structure and spatial

variability while honouring data values at their locations (Goovaerts, 1997). Generating a set of

equiprobable realizations captures uncertainty in the random variable (RV). Conventional simula-

tion algorithms rely on the assumption that the input variables are multivariate Gaussian after a

univariate normal score transform. Under the multivariate Gaussian assumption, all conditional

distributions are defined by the normal equations and thus are linear combinations of the condi-

tioning data (Chilès & Delfiner, 2012). Many algorithms are available for conditional simulation

of Gaussian random functions (RFs). Pinto (2020) presents a comprehensive overview of the most

common algorithms and best practices for selecting an algorithm given the problem context.

Gaussian simulation algorithms are prevalent in the mining industry, with sequential Gaussian

simulation (SGS) likely being the most common (Rossi & Deutsch, 2013). SGS is a Monte Carlo

simulation (MCS) technique for simulation of Gaussian RFs (Gómez-Hernández & Journel, 1993;

Gómez-Hernández & Srivastava, 2021; Goovaerts, 1997; Isaaks, 1990). SGS requires (1) parameter-

izing a multivariate conditional CDF, and (2) drawing realizations. Given the dimensionality of the

problems faced in mining, (1) is only possible if a parametric, multivariate Gaussian distribution

is adopted (Leuangthong, Khan, et al., 2008). The curse of dimensionality (Bellman, 1961), plus

the simplicity and tractability of the Gaussian distribution, precludes the use of other distributions.

The following steps generalize the process of generating a realization with SGS:

1. Define a random path through the grid nodes.

2. At each location, calculate the first and second-order moments of the conditional CDF using

the normal equations.

3. Randomly draw a simulated value from the conditional CDF.

4. Add the simulated value to the conditioning data.

5. Visit the next grid node in the path.

As the simulation progresses, the amount of conditioning data increases. In practice, the calcu-

lation of the conditional moments is restricted to a local neighbourhood about the location being
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simulated to prevent unreasonably large systems of equations. Multiple realizations are generated

by varying the random path and draws from the conditional CDFs.

1.2.4 Multiple Point Statistics

Two-point statistics summarize the relationship between points separated by a lag vector h. Two-

point statistics, such as the variogram or correlogram, are measures of linear continuity. Multiple

point statistics (MPS) are measures of continuity between multiple spatial arrangements of points

with the possibility of reproducing curvilinear or ordering patterns (Boisvert, Pyrcz, et al., 2007).

There are numerous MPS including the n-point connectivity function (Journel & Alabert, 1989),

the distribution of runs (Ortiz, 2003) and the multiple-point density function (MPDF) (Boisvert,

Pyrcz, et al., 2007).

The foundation of multiple-point simulation algorithms (Guardiano & Srivastava, 1993; Strebelle,

2002) is the replacement of inference of two-point statistics with the MPDF, where the MPDF

describes the frequency of occurrence of a particular pattern. The local conditional probabilities

are derived from multiple-point configurations, allowing for the reproduction of non-linear features

(Silva, 2014). A challenge of simulation with MPS is that inference of the MPDF with limited

data. This challenge is overcome by extracting the MPDF from a training image (TI) (Journel,

2005). The TI acts as a substitute for a RF model and is an exhaustive image at the same support

of realizations. The TI should have the expected geologic variability of the final models (Gómez-

Hernández & Srivastava, 2021). Though the TI allows for inference of MPS not available from the

data, one faces the challenge of selecting an appropriate TI. Boisvert, Pyrcz, et al. (2007) describes

the choice of TI being analogous to variogram modeling in the two-point paradigm, and is of first-

order importance. In general, the TI should represent the physics of the underlying geological

process and be characteristic of the conceptual geology. TIs can be generated from outcrop data,

object-based models, or process-based models (Tahmasebi, 2018). More recently, Minniakhmetov

and Dimitrakopoulos (2022) present methodology for high-order simulation of categorical variables

that does not rely on a training image.

Traditionally, MPS simulations focus on categorical modeling of stratigraphic deposits where

object-based or process-mimicking models are applicable across geologic environments (Mariethoz

& Caers, 2014). Multi-point simulation of continuous variables is approached with high-order spatial

cumulants, discussed in the next section.

1.2.5 High-Order Simulation

High-order simulation methods are similar in concept to the multi-point simulation framework, with

applications for both continuous and categorical variables. These methodologies are predominantly

data-driven, complemented by a TI. Rather than inferring high-order conditional probabilities ex-
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clusively from a TI, they are approximated by spatial cumulants calculated from the data. Dim-

itrakopoulos, Mustapha, et al. (2009) and Mustapha and Dimitrakopoulos (2010, 2011) propose

high-order simulation based on spatial cumulants. A cumulant is defined as the logarithm of the

moment-generating function of a RF. The idea is that spatial cumulants can generalize the co-

variance to orders beyond two; Dimitrakopoulos, Mustapha, et al. (2009) shows that the first and

second order cumulants are the mean and variance, respectively. The high-order cumulants, similar

to MPS, can characterize complex non-linear and non-Gaussian geologic features. By incorporating

spatial cumulants up to order five, Mustapha and Dimitrakopoulos (2010) show the ability to cap-

ture multi-point periodicity, connectivity of extreme values and complex geometric characteristics.

The key idea in the HOSIM approach (Mustapha & Dimitrakopoulos, 2011) is that the local condi-

tional CDFs take the form Legendre polynomial expansions, where spatial cumulants approximate

the polynomial coefficients (Mustapha & Dimitrakopoulos, 2010). Both a TI and available data are

used to infer the Legendre polynomial coefficients; third- and fourth-order statistics are estimated

from the data, while higher-order features come from the TI (Minniakhmetov & Dimitrakopoulos,

2022). Minniakhmetov and Dimitrakopoulos (2017) extends the high-order simulation framework

to the multivariate context. Minniakhmetov, Dimitrakopoulos, et al. (2018), Yao, Dimitrakopoulos,

et al. (2020) and Yao, Dimitrakopoulos, et al. (2021) present further refinements to the polynomial

approximations.

Though largely data-driven, a drawback of these methodologies is that a TI is required. The

inference of the spatial cumulants draws from both the TI and available data; if the high-order

multi-point replicates are not available in the data, they are incorporated from the TI (Mustapha

& Dimitrakopoulos, 2010; Yao, Dimitrakopoulos, et al., 2021). Selecting or generating a TI for

continuous variables in mining problems is challenging without dense sampling; Minniakhmetov,

Dimitrakopoulos, et al. (2018) and de Carvalho, Dimitrakopoulos, et al. (2019) use blast hole samples

for TI construction. Yao, Dimitrakopoulos, et al. (2021) presents methodology for TI free simulation

with aggregated kernel statistics.

1.2.6 Imputation

Imputation is a key component of probabilistic modeling of continuous heterotopic data (Barnett

& Deutsch, 2015; Hadavand & Deutsch, 2023; Silva & Deutsch, 2018) and in truncated Gaussian

categorical modeling techniques (Armstrong, Galli, et al., 2011; Arroyo & Emery, 2020; Madani &

Bazarbekov, 2021; Silva, 2018). Simulation often considers a multiple imputation framework (Little

& Rubin, 2019) where one generates realizations of missing values to transfer imputation uncertainty

to the final models correctly.

The goal of imputation in the heterotopic data context is to fill in missing values. Modern geosta-

tistical workflows necessitate the use of multivariate transforms like projection pursuit multivariate
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transform (PPMT), stepwise conditional transform (SCT), and principal component analysis (PCA)

which require homotopic data. Any heterotopic data observations must be either excluded or im-

puted. Geologic data is often “missing not at random” and simply excluding heterotopic observations

can lead to biases in the final model (da Silva & Costa, 2019). The goal of any imputation algorithm

is to define the distribution of the missing values conditional to the observed values. Barnett and

Deutsch (2015) proposed a non-parametric methodology for imputing continuous variables based on

Bayesian updating and Gibbs sampling. A simple kriging (SK) mean, and variance is merged with

a collocated conditional distribution estimated with a multivariate kernel density estimate (KDE).

The parameters calculated with SK account for the univariate spatial component, while the KDE

accounts for the collocated multivariate component. Imputed values are drawn from the merged

distribution. This methodology is computationally expensive with many data due to KDE calcula-

tions and Gibbs sampler iterations. Silva and Deutsch (2018) proposed a non-parametric imputation

algorithm based on Gaussian mixture models (GMMs) to relieve the burden of KDE calculations.

SK defines the local conditional spatial distribution, however the collocated multivariate density

is sampled from a fitted GMM. Hadavand and Deutsch (2023) proposed another non-parametric

methodology where deep learning characterizes the multivariate relationships, rather than a GMM.

Two neural networks are trained to quantify the moments of the conditional missing value distri-

bution; one for the mean and another for the second, third, and fourth-order moments. A lambda

distribution is fit given the conditional moments that characterize the collocated multivariate rela-

tionship.

Latent imputation is a special scenario where all values are missing (Little & Rubin, 2019). Trun-

cated Gaussian modeling techniques utilize the idea that categorical observations are generated by

truncating underlying latent variables (Matheron, Beucher, et al., 1987). These latent variables are

not observed and are a synthetic feature of the model. Imputation of latent variables subject to cate-

gorical observations is commonly approached with a Gibbs sampler (Geman & Geman, 1984), where

directly sampling the multivariate truncated Gaussian distribution is not possible, but sampling the

marginal conditional distributions is possible (Arroyo & Emery, 2020; Madani & Bazarbekov, 2021;

Silva, 2018). Though the Gibbs approach is common, Emery, Arroyo, et al. (2014) and Silva (2018)

note convergence issues with spatially correlated variables. More recently Lauzon and Marcotte

(2020a, 2020b, 2023) proposed the sequential spectral turning band simulator as an alternative for

Gibbs sampling, where Gaussian RFs are constructed by addition of cosine functions. The proposed

spectral approach begins with Gaussian RFs that meets the inequality constraints. Then, the spatial

component is introduced by sampling the spectral density. In contrast, the Gibbs sampler approach

begins with Gaussian RFs with the correct spatial structure and gradually introduces constraints

through Gibbs iterations. The authors show that the spectral approach is a valid alternative to the

Gibbs sampler with stable convergence of many data, multiple rock types, and complex truncation

rules.
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1.3 Extreme Value Background

The following section provides background literature on extreme values, outliers, and their signif-

icance in geospatial and mining-related problems. Though the NMR framework does not directly

incorporate extreme value theory (EVT), the statistical foundation is presented for completeness.

1.3.1 Outlier Detection

Outlier detection is relevant to all statistical modeling, and the literature is vast (Zimek & Filz-

moser, 2018). Hodge and Austin (2004) note that authors may refer to outlier detection as novelty,

noise, anomaly or deviation detection. In all cases, however, an outlier is an observation sufficiently

dissimilar to other observations (Barnett & Lewis, 1984). Wang, Bah, et al. (2019) group outlier

detection methodologies into (1) statistical methods, (2) distance-based methods, (3) density-based

methods, (4) clustering-based methods, and (5) ensemble-based methods. Statistical methods, ei-

ther parametric or non-parametric, compare the relationship of potential outliers with the remaining

distribution. Distance-based methods (euclidean or non-euclidean) compare the distance between

observations where potential outliers are “far” from other observations. Density-based methods

consider outliers in low-density regions of a probability density function (PDF). Clustering-based

methods classify each observation, and potential outliers are not within or near dense clusters. Fi-

nally, ensemble methods are combinations of dissimilar methodologies to create a more robust outlier

detection model. Boukerche, Zheng, et al. (2021); Hodge and Austin (2004); Pimentel, Clifton, et al.

(2014); Wang, Bah, et al. (2019) provide comprehensive reviews of outlier detection methodologies

with applications to fraud detection, cybersecurity, sensor networks, image processing, time series

and data streams, medical diagnostics and industrial monitoring. Pang, Shen, et al. (2022) presents

a comprehensive review of outlier detection with deep learning, though the concepts are largely

beyond the scope of this thesis.

1.3.2 Geospatial Outlier Detection

Outlier detection in the mining industry is based largely on graphical methods (Leuangthong &

Nowak, 2015; Silva, 2021). These methods are necessarily subjective as the practitioner must in-

terpret a plot and select a threshold to define an outlier. Leuangthong and Nowak (2015), Nowak,

Leuangthong, et al. (2013), and Rossi and Deutsch (2013) provide practical advice on threshold se-

lection for cumulative probability plots (CPPs) where breaks in the upper tail may represent outlier

populations. Babakhani (2014) proposed a spatial bootstrap-based methodology to characterize the

relationship between the naive and capped mean. The methodology aims to identify the values that

cause higher mean values as potential outliers.

Practitioners often omit the spatial characteristics of sample values when identifying outliers.

The spatial context of the samples is likely relevant; an extreme value surrounded by other high val-
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ues may not be an outlier. The correlation structure of the variable(s) is relevant to understanding

the spatial context (Filzmoser, Ruiz-Gazen, et al., 2014). Babakhani (2014) proposed a methodology

for identifying spatial outliers based on the rank transform of cross-validation estimates. Outliers

identified by the rank transform consider the spatial neighbourhood and are different from simply

considering the univariate distribution. Many authors (Chen, Lu, et al., 2008; Ernst & Haesbroeck,

2017; Filzmoser & Gregorich, 2020; Filzmoser, Ruiz-Gazen, et al., 2014; Harris, Brunsdon, et al.,

2014; Leung, Balamurali, et al., 2021) have proposed methodology for spatial multivariate geochem-

ical outlier detection using the minimum covariance determinant (MCD) estimator of Rousseeuw

and Driessen (1999). The Mahalanobis distance (Mahalanobis, 2018) is a common distance metric

in multivariate space. However, it is sensitive to outliers (Filzmoser, Ruiz-Gazen, et al., 2014). The

MCD is a robust measure of the global correlation structure in the presence of outliers. Given the

MCD estimate, various measures of local and global multivariate distances are calculated to deter-

mine an outlier score. Chen, Lu, et al. (2008) calculate an outlying distance based on the differences

between each sample value and the median value over its neighbours. Filzmoser, Ruiz-Gazen, et al.

(2014) calculate a degree of isolation for each observation based on the robust Mahalanobis distance

(MCD estimate) globally, as well as within a local neighbourhood; values above a defined threshold

are considered potential multivariate outliers.

1.3.3 Geospatial Outlier Management

Once one identifies outliers, the practitioner must decide on a management strategy. Managing

extreme values and outliers prior to resource estimation is a key component, particularly for heavy-

tailed mineral deposits. The general idea is that unadjusted grades may lead to unrealistic local

estimates adjacent to high-grade composites (Nowak, Leuangthong, et al., 2013). Leuangthong and

Nowak (2015) provide an overview of outlier management practices in the context of mineral re-

source estimation. The practices are grouped into three general categories: (1) choosing appropriate

domains, (2) grade capping, and (3) limiting the influence of outliers through the estimation process.

The following sections touch on categories (2) and (3)—trade-craft and practitioner experience is

the foundation of many suggested practices.

There are numerous practical methods to manage the influence of high-grade samples explic-

itly. Traditional methods published in mining technical reports largely fall into the grade-capping

category. Techniques for selecting a capping threshold include decile analysis (Parrish, 1997), cumu-

lative probability plots (Rossi & Deutsch, 2013), cutting curves (Roscoe, 1996), coefficient of varia-

tion thresholds (Parker, 1991), production reconciliation, arbitrary quantiles, metal-at-risk (Parker,

2006), and indicator correlations (Nowak & Leuangthong, 2019). More recently, Dutaut and Mar-

cotte (2021) proposed using an error-free coefficient of variation (CV) calculated from coarse dupli-

cate correlation to determine a capping limit.
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Babakhani (2014) proposed a less conventional method of projecting outliers to an extra dimen-

sion to reduce the local influence. This method requires specifying a distance d to project the outlier;

the distance could be determined by calibrating kriging results to an expected value from simulation

or selecting a specific quantile. Babakhani (2014) also proposed calibrating a capping limit based

on an expected value from simulation. This approach is similar to the previous; however, instead

of projecting an outlier some distance, d, away, the outlier value is reduced. Within some local

volume of influence, the outlier grade is reduced until the kriged grade matches the expected value

of 100 simulated realizations. The idea is that simulation is more robust in the presence of outliers

and this resistance is exploited to calibrate a capping grade. Rivoirard, Demange, et al. (2013) and

Maleki, Madani, et al. (2014) propose the selection of an optimal capping limit through analysis of

the ratios of direct and cross-indicator variograms. The goal is to identify the range [zmin, zmax] in

where the capping limit should fall. The minimum value is defined by the first threshold where the

ratio of the cross and direct indicator variogram values are constant, independent of the lag vector.

The maximum value is the threshold where the residual variogram is pure nugget.

Many methodologies have been proposed to circumvent the practice of capping. Some techniques,

such as MIK (Journel, 1983), directly treat outliers through the specification of upper-class means

and do not require explicit capping (Rossi & Deutsch, 2013). Costa (2003) proposed a variant of

robust kriging (Hawkins & Cressie, 1984) where the weight to outlier samples differs from that of

inliers. The “robust-edited” values are adjusted based on the difference between the sample value

and the weighted median at the same location. Rivoirard, Demange, et al. (2013) proposed the

decomposition of the grade value into a truncated grade, a weighted indicator above the top cut

grade, and a residual. The residual is uncorrelated with the truncated grade and the indicator

if the cutoff is sufficiently high. The final estimate is a kriged estimate of the residual plus a

cokriged estimate of the indicator and truncated grade. Maleki, Madani, et al. (2014) proposed

a similar decomposition approach where they suggest spatial prediction is improved by omitting

outlier values from variogram calculations. Fourie, Morgan, et al. (2019) proposed a methodology

that post-processes kriging weights to generate realistic estimates without grade smearing. Kriging

weights are adjusted based on the ratio of the frequency of outlier samples to median samples. The

methodology requires a subjective selection of bin widths after the normal score transform of the

variable. More recently, Silva (2021) proposed a methodology for adjusting outlier grades based on

Bayesian updating of the data distribution with a cross-validation error distribution.

Restricting the spatial range of influence of outlier values during estimation is another prac-

tical approach to circumvent capping. This restriction allows using extreme values or outliers in

estimation without explicit capping. Restricting the search around extreme values allows them to

influence within that range but not beyond it. There is no theory to support this restriction, though

the idea is that the search should be within the range of high-grade continuity. The restricted search

ellipsoid dimensions could come from understood mineralization controls, high-grade indicator vari-
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ogram continuity analysis, or the p-gram (Leuangthong & Nowak, 2015). Leuangthong and Nowak

(2015) provide an estimation example with a restitched search radii placed on high-grade samples

in a South American gold deposit.

1.3.4 Extreme Value Theory (EVT)

Extreme value theory (EVT) is a statistical foundation for quantifying probability distributions and

magnitudes of atypically high or low events. Early works by Fréchet (1927), Fisher and Tippett

(1928), von Mises (1936) and later by Gnedenko (1943) systematically developed the theory and

formalized the asymptotic distribution of extremes for block maximums. Fisher and Tippett (1928)

show that for a sequence of independent and identically distributed (iid) random variables with a

common distribution function F , the so-called “block maximum”, Mn = max{Z1, ..., Zn}, can only

converge to one of three distributions:

GI(z) = exp


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σ
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







exp



−

(

−
(

z−µ
σ

)ξ
)



 , z < µ

1, z ≥ µ

(1.3)

To avoid degeneracy, the variable Mn is normalized to M∗
n = a−1

n (Mn − bn) for a sequence of

“normalizing” constants an > 0 and bn. Fisher and Tippett (1928) show that if these sequences of

real numbers can be chosen such that M∗
n has a non-degenerate limiting distribution, it must be

one of type I, II or III. These are the only possible limits for the distributions of M∗
n regardless of

the population distribution FZ . This Extremal Types Theorem is analogous to the Central Limit

Theorem for extreme values (Coles, Bawa, et al., 2001).

These collectively are termed extreme value distributions with Equation 1.1 being Gumbel-type,

Equation 1.2 being Fréchet-type and Equation 1.3 being Weibull-type. Each distribution has a

location µ, scale σ and Equation 1.2 and Equation 1.3 have shape parameter ξ. The extreme value

distributions are obtained as limiting distributions of Mn as n → ∞. The limit distributions for

block maximum can be grouped into a single family termed the generalized extreme value (GEV)

14



1. Introduction

distribution (De Haan & Ferreira, 2007):

G(z) = exp






−



1 + ξ

(

z − µ

σ

)
−1

ξ










(1.4)

The block maximum methodology may be inefficient as it ignores all but the maximum value in

a given block (Davison & Huser, 2015). The second approach to identifying extremes is the so-called

“peak-over-threshold” (POT) method. Consider a random variable Z with distribution function F .

The CDF of the excess over some threshold u, is defined by:

Fu(y) = P (Z − u ≤ y|Z > u)

=
F (u+ y) − F (u)

1 − F (u)
, 0 ≤ y ≤ zF − u

(1.5)

where y = z − u and zF is the right endpoint of F (Gilli & Kellezi, 2006). Pickands (1975)

states that if u is large, the conditional distribution of Z given Z is much larger than u is well

approximated by the generalized Pareto distribution (GPD):

G(y) =















1 −
(

1 + ξy
σ

)
−1

ξ

, if ξ 6= 0

1 − exp
(

−y
σ

)

, if ξ = 1

(1.6)

The conditional distribution of the exceedances (Equation 1.5) can be modeled asymptotically

with the GPD by estimating the scale (σ) and shape (ξ) parameters.

In a geoscience context, Caers, Beirlant, et al. (1999a, 1999b) use the GPD to model earthquake

magnitudes, size distributions of diamonds and the size distributions of impact craters. Deligne,

Coles, et al. (2010) use a Poisson process to model the recurrence rate of explosive volcanic eruptions,

while Nguyen, Veraart, et al. (2023) use the GPD to forecast volcanic eruptions. Miniussi, Marani,

et al. (2020) model the frequency of flooding events across the United States based on stream

gauge measurements. Lee, Kim, et al. (2021) use a Gumbel distribution to predict the exceedance

probability of extreme rainfall-induced landslides.

1.3.5 Spatial Extreme Value Theory

The assumption of independent and identically distributed (iid) observations underlies classical

EVT. In many real-world applications, one must account for correlation in space or time and the

multivariate nature of regionalized variables. Spatial extreme value theory represents an intersection

between classical EVT and geostatistics (Neves, 2015). The primary difference between spatial EVT

and geostatistics is that in the geostatistical framework, there are no observed replicates at Z(u).

Fitting of a GEV or GPD in the classical EVT sense requires multiple realizations of Z(u) for

parameter inference.

Spatial EVT builds on the concepts of max-stable distributions extending to the max-stable

process. A max-stable process is the infinite dimension generalization of the max-stable distribution
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where all lower-order marginal distributions are GEV distributions (Schlather & Tawn, 2003). If

there exists normalizing constants an(u) > 0 and bn(u) such that a−1
n (u){maxi=1,...,∞ Zi(u) −

bn(u)} = Y (u) then Y is a max-stable process (De Haan & Ferreira, 2007). The max-stable process

applies to maximums as stable Gaussian processes with finite variance apply to the average (Chilès

& Delfiner, 2012). All marginal distributions of a max-stable process are GEV distributions defined

by Equation 1.4.

Unlike a Gaussian RF, which is fully defined by its correlogram ρ(h), there is no unique model

for max-stable processes (Chilès & Delfiner, 2012). Many models are found in the literature. First

introduced by Smith (1990) and later modified by Schlather (2002), Gaussian storm and extremal

Gaussian processes are commonly used for modeling spatial extremes. The Brown-Resnick processes

(Brown & Resnick, 1977; Kabluchko, Schlather, et al., 2009) relaxes the assumption of second-order

stationarity and permits the use of the variogram, which has shown to be practical in practice

(Gaume, Eckert, et al., 2013). The extremal-t model (Opitz, 2013) is another popular max-stable

model in the literature. A consequence of the max-stable processes is asymptotic dependence in the

tails (Davison, Huser, et al., 2013).

1.4 Optimization Background

The following section provides background literature regarding geoscience and engineering-related

inverse problems and the use of optimization to infer unknown model parameters.

1.4.1 Inverse Problems

Inverse problems encompass a broad class of problems where the objective is to infer a system’s

underlying causes or parameters from observed data or measurable outputs (Sen & Stoffa, 2013).

Predicting a response is a forward problem while using a response or observed measurements to

infer the properties of a model is an inverse problem (Tarantola, 2005). Inverse problems arise in

various scientific disciplines, including physics, engineering, geosciences, medical imaging, and more.

Geospatial inverse problems are common in both the fields of geophysics (Giraud, Lindsay, et al.,

2019; Grana, Azevedo, et al., 2022; Linde, Renard, et al., 2015) and hydrogeology (Ghorbanidehno,

Kokkinaki, et al., 2020; Zhou, Gómez-Hernández, et al., 2014) where the underlying geologic model is

unknown, however a set of measured responses, such as hydraulic conductivities or seismic properties,

are known. The inverse problem involves inferring interpretable geologic properties of the unknown

model, such as lithology or porosity, that satisfy the observed measurements. Grana, Azevedo, et

al. (2022) describe these problems as rock-physics inversions with seismic measurements predicting

rock and fluid properties.

Solving inverse problems involves constructing a mathematical forward model that describes the

relationship between the unknown parameters and the observed data and then using this model
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to infer the unknown parameters. Seismic wave propagation and rock-physics models are generally

well-understood forward models in geophysics (Grana, Azevedo, et al., 2022) where hydrogeological

forward models consider mass conservation and Darcy’s law to predict hydraulic head, drawdown

or solute concentrations (Zhou, Gómez-Hernández, et al., 2014). A challenge of inverse problems

is ill-posedness, or the lack of a unique solution (Tarantola, 2005). Multiple (or infinite) solutions

may be valid given the observed data. As an exact solution is rarely possible in natural, non-linear

systems, one looks for solutions close to actual observations (Bárdossy & Hörning, 2016).

For this reason, many inverse problems are framed as optimization problems, minimizing an ob-

jective function relevant to the problem at hand (Athens & Caers, 2022; Giraud, Lindsay, et al., 2019;

Nava-Flores, Ortiz-Alemán, et al., 2023). The objective function is minimized iteratively, which is

generally computationally expensive (Zhou, Gómez-Hernández, et al., 2014). A forward modeling

operator predicts an outcome for the model parameters’ current state, and the objective function

evaluates the loss between this prediction and the observed measurements. The optimization algo-

rithm updates the parameter vector until it matches the model output and observed measurements.

Any iterative optimization algorithm is permissible; Athens and Caers (2022) use gradual deforma-

tion to generate a set of perturbed model realizations; Nava-Flores, Ortiz-Alemán, et al. (2023) use

simulated annealing for joint inversion of gravity gradient data; Balkaya, Ekinci, et al. (2017) use

differential evolution, and Dávila Rodríguez, Palafox González, et al. (2024) a general evolution

strategy for inversion of magnetic anomalies.

1.4.2 Genetic Algorithms

Genetic algorithms (GAs) are metaheuristic global optimization algorithms inspired by natural

processes like evolution and natural selection (Cui, Zhang, et al., 2024). This family of algorithms

was first proposed by Holland (1992) and has wide-ranging applicability to engineering optimization

problems as robust global optimizers that do not require differentiable objective functions (Carbas,

Toktas, et al., 2021). The GA framework can efficiently explore a large solution space, handle

constraints, and lend itself to parallel applications. In general, genetic algorithms are derivative-

free, population-based algorithms with three main characteristics: crossover, mutation, and selection

operators (Yang, 2018). Each member of the population is a feasible solution vector. The crossover

operator exchanges information between members of the population and can enhance key features

of the population; the mutation operator permits exploration of the solution space by increasing

population diversity; the selection process drives the population towards convergence by selecting

the fittest or most elite member of the population for mutation and crossover (Yang, 2018). A

problem-specific objective function evaluates the fitness of each population member. Yang (2018)

describes the general behaviours and components of GAs as:

• A population of agents representing solution vectors, each with an associated fitness.
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• The population evolves through mutation and crossover operations. The algorithm converges

when all members of the population are sufficiently similar.

• New solutions are generated with random perturbations to avoid local optima.

• GAs search locally and globally, with the local and global search ratio controlled by the genetic

operators.

• GAs employ a survival of the fittest approach, where the fittest members of the population

are retained for the next generation, driving the population towards convergence.

Differential evolution (DE), first proposed by Storn and Price (1997), is a GA that uses the

scaled difference between population members as a mutation operator. Many mutation variants

exist (Meng, Chen, et al., 2020); purely random mutation variants explore the global solution space

by exploiting differences between randomly selected vectors, while others explore both local and

global spaces by mutating random vectors and the current best vector. Crossover occurs after

mutation, generating a trial vector. If a randomly generated uniform number ∈ [0, 1] is less than a

specified crossover probability, the element from the mutated vector transfers to the current member

of the population (Price, 2013). The crossover generates a trial vector hybrid between the current

population and the mutation. The selection operator evaluates the fitness of the trial vector and

replaces the current population member if ftrial < fpop. If the trial vector improves the solution, it

is kept in the population. DE is widely used in engineering optimization problems (Georgioudakis &

Plevris, 2020), geophysical inversion (Balkaya, Ekinci, et al., 2017), optimization of neural network

architectures (Mirjalili, 2019; Ünal & Başçiftçi, 2022), and others including electrical power systems,

image processing, chemical engineering and manufacturing (Bilal, Pant, et al., 2020). Due to the

widespread use of DE, Ahmad, Isa, et al. (2022) report over 40 variants of the original algorithm.

1.5 Thesis Outline

Chapter 2 discusses outlier management in the mining industry. Though the NMR framework does

not require explicit management of extreme values, it would be remiss not to discuss capping due to

its ubiquitous presence and relation to outliers. A range of outlier management tools are discussed

and a novel algorithm for identifying outliers in a spatial context is presented. The chapter finishes

with an analytical model for predicting the frequency of intersecting extreme values.

Chapter 3 explores the core components of the NMR framework. It begins with the concepts

of high-order connectivity and the relationship with non-Gaussianity. The chapter introduces the

network components: (1) definition of a latent Gaussian pool, (2) non-linearity and mapping to

observed space, (3) latent imputation, and (4) continuous simulation and mapping. Here, the

parameterization of the NMR is posed as an inverse problem. The chapter finishes with a synthetic,

non-Gaussian example to emphasize the effects of high-order connectivity on contained resources.
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Chapter 4 presents details of implementing the NMR, including the network architecture, ac-

tivation function, latent factor design and parameter inference via optimization. The effects of

mixing latent factors are discussed in detail, and an objective function relevant to the modeling

goals is formulated. The concepts of differential evolution (DE) and its application to NMR pa-

rameter optimization are presented, followed by checking and validating the network output. A

three-dimensional (3-D) example is introduced and carried over into chapter 5. Finally, practical

implementation details are discussed including the potential non-uniqueness of the solution.

Chapter 5 introduces a novel algorithm for imputing latent factors within the NMR framework.

Imputation concepts and traditional Gibbs sampler approaches are touched on, followed by a presen-

tation of sequential Gaussian rejection imputation (SGRI). The algorithm is an iterative, sequential

imputation algorithm that uses the normal equations and rejection sampling to impute spatially

correlated latent variables. Minimum acceptance criteria for checking the latent realizations are pre-

sented, followed by conditional simulation and practical checking using the example from Chapter

4.

An application of the complete NMR framework with a real dataset is shown in Chapter 6. The

data comes from an operating underground mine where personnel note that multivariate Gaussian

simulation algorithms do not reproduce the connected high-grade features observed in drillhole data.

This scenario is the ideal application of the NMR, where it shows a 7% improvement over SGS in

high-grade stopes. The NMR results are validated with a hold-out dataset.

Chapter 7 summarizes the contributions made in this thesis. Consideration is given to the

limitations of the developed methodologies and avenues for future work and improvements to the

NMR framework. All software developed for this research is documented in the appendices.
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Chapter 2

Outlier Management
This chapter presents some underlying motivation the NMR framework. The generation of non-

Gaussian spatial fields and the presence of extreme values are linked. Research initially focused

on developing objective measures to identify spatial extreme values and best practices for explicitly

managing these values. Then it evolved into a simulation framework with applicability beyond

extreme values. A key idea of the NMR is that extreme values and outliers do not require explicit

management. This idea contrasts many standard practices in the mining industry; Dutaut and

Marcotte (2021) mention that methods that avoid capping are interesting but rarely applied in

mining applications. The presence of extreme values and the correct characterization of their spatial

distribution are important. This importance warrants methodologies beyond the standard graphical

approaches (Silva, 2021) and motivates a holistic approach incorporating both the statistical and

spatial components of extreme values.

The following sections present the concepts of outliers and extreme values in a mining context.

Nomenclature is first defined, delineating the differences between an outlier and an extreme value.

These terms have similar connotations, though different meanings when rigorously defined. An

overview of outlier management practices in the mining industry is given, including commonly

employed tools and methodologies, followed by a review of methodologies from a survey of 125

national instrument (NI) 43-101 reports published between 2019 and 2021. Though the NMR

framework does not require explicit management of extreme values, the practice is ubiquitous in

the mining industry. For this reason, a spatial outlier identification algorithm is developed that

considers a data point’s degree of “outlierness” from a local neighbourhood perspective and the

global CDF. The final section presents an analytical approach for forecasting extreme values. Though

one must make some assumptions regarding the underlying distribution, predicting the frequency

of intersecting extreme values is valuable from a data collection and risk-qualified decision-making

perspective.

2.1 Outliers and Extreme Values

“Outlier” is a general term for an observation sufficiently dissimilar to other observations that further

investigation is warranted (Barnett & Lewis, 1984). Outliers may be random fluctuations of the data

generation mechanism (noise), true anomalies, or measurement errors. An extreme value is a value in

the tails of the distribution that is believed to be real but occurs rarely. Extreme values are different

from outliers in that all extreme values are possible outliers, but the reverse is not always true
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(Aggarwal, 2016). A key distinction here is that an outlier is not necessarily restricted to the tails of

a distribution, while extreme values are. Consider the 1-D set of values: {1, 2, 2, 50, 98, 98, 99}. In

the extreme value context mentioned above, 1 and 99 could (weakly) be considered extreme values,

while 50 (the average) is not an extreme value. However, in the context of an outlier, the value of 50 is

distant or isolated from the remaining values. Distance- or density-based outlier detection methods

would likely classify 50 as an outlier, which is correct given that it is sufficiently dissimilar from the

remaining values. This simple but illustrative example adapted from Aggarwal (2016) highlights

the core differences between outliers and extreme values. The terms are typically synonymous in

the mining industry: one is only interested in outliers if they are also extreme values. Throughout

this text, the term outlier will refer to abnormal or extreme data values assumed to be in either the

upper or lower tail of the distribution.

Practitioners often generate geostatistical models using widely spaced data configurations. Data

collection costs prohibit exhaustive sampling and necessitate statistical inference from limited sam-

ples. Spatial prediction with widely spaced data in the presence of extreme values is a long-standing

issue in the mining industry (Leuangthong & Nowak, 2015). Extreme values may have significant

local influence, leading to overstated resources and the risk of production shortfalls. Practitioners

face difficult decisions when limiting extreme value influence and characterizing their spatial conti-

nuity. Inputs to numerical geologic models consist of observed data, a representative histogram and

spatial controls on mineralization. Each of these components presents challenges in the presence of

extreme values. Extreme values are often under-sampled, making inferences about their probability

of occurrence difficult. The influence of extreme values is often limited in practice through grade

capping, which could significantly impact the final resource. The spatial continuity of extreme val-

ues differs from that of the barren or mineralized background. Traditional geostatistical methods

are limited in capacity to adapt to both extreme values and asymmetric spatial continuity features.

2.1.1 Outlier Detection

Outlier detection is applicable in virtually all statistical modeling. Measures of “inlierness” or

“outlierness” are typically based on (1) statistics of observations for the rest of the distribution

(parametric or non-parametric); (2) distances (euclidean or non-euclidean) between observations

with outliers being “far” from neighbours and (3) probability density-based measures where outliers

have low densities (Li, Zhao, et al., 2022). A comprehensive review of outlier detection methods

is beyond the scope of this chapter; the reader is referred to Aggarwal (2016); Hodge and Austin

(2004); Leuangthong and Nowak (2015); Nowak and Leuangthong (2019); Pang, Shen, et al. (2022);

Wang, Bah, et al. (2019) for a review of methodology in the mining industry and beyond.

A challenge of many outlier detection techniques is the choice of a threshold to delineate an

abnormal measurement. Whether the technique is statistical or proximity-based, a threshold must
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be chosen to classify samples based on the measure of “outlierness” or the outlier score. If the

threshold is too restrictive, the algorithm may not identify true outliers, and if it is too relaxed, it will

lead to false positives. For simple methodologies, selecting a threshold may have physical meaning,

such as a grade distribution. For spatial (multivariate) outlier detection, selecting a proximity-

based threshold in a possibly non-euclidean space is non-trivial. The following section details outlier

detection methodologies specific to the mining industry; generally, these approaches are univariate

and do not consider the spatial or proximity component of outliers. Threshold selection in these

cases is subjective but straightforward.

2.2 Mining Industry Practices

Identifying and managing extreme values is essential, particularly concerning heavy-tailed mineral

deposits and smooth deterministic estimators. A practitioner forecasting resources should under-

stand extreme values’ statistical influence and spatial distribution. Though numerous tools exist for

these purposes, there is no generally accepted workflow in the mining industry, and professional judg-

ment guides best practices. Assessing the influence of extreme values with a variety of techniques

seems reasonable. The Canadian Institute of Mining, Metallurgy and Petroleum (CIM) mineral re-

source and mineral reserve best practices summarizes outlier management as (CIM Mineral Resource

& Mineral Reserve Committee, 2019):

“Recognition of the spatial extent of outlier values (a component of grade continuity)

should be investigated and a procedure devised for incorporating such data appropriately

into an estimate. Procedures including domaining, grade capping (also known as top

cutting), spatially restricting the influence of high-grade assays, single and multiple indi-

cator kriging, and Monte Carlo simulation methods all compensate in varying ways for

potential overestimation. Regardless of the methodology selected, the Practitioners must

provide documentation of the approach selected, along with justification and support for

the decision, possibly including reconciliation of estimated block model grades with avail-

able production information. Comparisons of the outcome of the different approaches

can be useful.” (pg. 18)

Leuangthong and Nowak (2015), echoed by CIM best practices, break the process of outlier

management into three categories: (1) choosing appropriate domains, (2) grade capping, and (3)

limiting the influence of outliers through the estimation process. Grade capping or “top-cutting” is

common in the mining industry. Grades above a given threshold are reset to that threshold. The

general idea is that uncapped grades may lead to unrealistic local estimates adjacent to high-grade

composites (Nowak, Leuangthong, et al., 2013). The “smearing” may be significant if sparse data are

estimated with kriging. Due to the normal score transform, simulation is more robust in the presence
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of outliers, though some cases may still require capping. As point scale realizations reproduce the

input CDF, directly capping the realizations avoids iterative re-simulation (Harding, Lagos, et al.,

2023).

2.2.1 Tools for Outlier Management

This section discusses commonly used tools for outlier management in the mining industry. These

tools are largely qualitative, provide general guidance, and require subjective decision-making from

the practitioner. Statistical methods attempt to guide the selection of a capping limit by exploring

characteristics of the distribution tails or the relationship between contained metal and high-grade

restrictions. Some methodologies, such as the p-gram (Nowak & Leuangthong, 2019), attempt

to characterize the spatial continuity of high grades to support restrictions on their area of influ-

ence. Simulation-based methods such as metal-at-risk (Parker, 2006) or mean uncertainty (Nowak,

Leuangthong, et al., 2013) “resample” the deposit to characterize the uncertainty in metal over some

number of realizations. This section does not intend to be an exhaustive list of the available tools;

however, it presents some of the most frequently used methodologies.

Probability plots are ubiquitous in resource estimation. The variable value is plotted on the

x-axis against the corresponding cumulative probability of the normal distribution on the y-axis.

Log scaling of the x-axis results in a lognormal probability plot. Inflection points may indicate the

presence of multiple populations, and gaps in the distribution are typically targeted as potential

capping limits. A survey of 125 43-101 reports with gold as the primary commodity (Section 2.2.2)

shows that the CPP is the most common tool for assessing and classifying outliers. This prevalence is

likely due to (1) the simplicity of the technique and the ease of implementation and (2) the historical

prevalence of the technique in the mining industry. Figure 2.1 illustrates a log-probability plot for

a synthetic positively skewed distribution with some tail decomposition. A proposed capping limit

is selected where the upper tail begins to break down. Tukey’s fences are a simple non-parametric

method to identify outliers where the fence intervals are defined by (Tukey, 1977):

[Q1 − k(Q3 −Q1)), Q3 + k(Q3 −Q1))] (2.1)

where Q1 and Q3 are the first and third quartiles, respectively. Generally, k = 1.5 defines an

“outlier” while k = 3 indicates a “far outlier”.

Decile analysis or the Parrish method (Parrish, 1997) assesses the metal content of each decile

of the grade distribution. The assay population is sorted and arranged into deciles containing equal

samples; the upper decile will likely contain less data than the rest. The length-weighted mean and

standard deviation of each decile are calculated, as well as metal content (grade value x length). The

top decile is split into percentiles, and the same summary statistics are calculated for each. Table

2.1 shows an example decile table for a synthetic positively skewed distribution. The general rules

proposed by Parrish (1997) are:
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“The positive tail of the grade distribution does not break down (tail decomposition

method) until well into the multi-kilogram per tonne range, and even then, the more data

that is collected, the higher the value before tail decomposition. Using a percentile-based

approach results in an arbitrary and unjustifiable capping of extreme gold grades.” (pg.

14-11)

Though MIK is more robust concerning extreme values than traditional kriging algorithms, Car-

valho and Deutsch (2017) suggests outlier values should still be managed in the usual (industry best

practices) way. Artemis Gold Inc. (2020) is an example of a project where both an explicit grade

cap (from CPP analysis) and MIK are employed.

A small proportion of the projects report no grade capping (Eldorado Gold Corporation, 2020;

Medgold Resources Corp., 2021; Pasofino Gold Ltd., 2020). The justification of no grade capping is

based primarily on a relatively low coefficient of variation and no “tail decomposition” in the CPPs.

Indicator correlation (analogous to p-grams) is another commonly employed practice. This ap-

proach considers the degradation of the spatial correlation of grades above a threshold. For many

increasing thresholds, the spatial correlation decreases. The sill of the indicator variogram identifies

the range of high-grade influence. This approach was employed at the Cariboo Gold Project (Osisko

Gold Royalties Ltd, 2020) where the range corresponding to 99% of the indicator variogram sill is

the maximum range of influence.

The remaining outlier management strategies are relatively straightforward. Some projects utilize

an experience-based CV or percentile threshold. The CV threshold, commonly 2.0, selects a grade

cap such that the remaining population has a CV equal to or less than the threshold. A percentile

threshold, commonly the 98th or 99th, sets all grade values greater than F−1(0.99) to that value.

Production reconciliation involves an iterative estimation process with a range of grade caps. The

estimated metal content is reconciled to available production data for each capping threshold. The

threshold that reconciles best is selected. Reconciliation is a reasonable approach, but it assumes

that past production is characteristic of future production.

Another point of general indecision is whether to cap before or after compositing. In this survey,

it is more or less a 50-50 split. One approach is not more correct than the other. The author

generally believes it is more appropriate to apply a capping grade after assays have been brought to

the same support. It seems logical to compare values that are effectively equally weighted. If much

of the assay data is the same length, one could cap before compositing.

2.3 Spatial Outlier Detection

Most outlier detection methodologies employed in the mining industry neglect the spatial compo-

nent of outliers and focus solely on the univariate distribution (quantiles, decile analysis, CPPs).

Assessing the univariate distribution is considered a density-based approach; if a statistical model is
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fit to the empirical distribution, samples in the tails of the distribution have low density relative to

the underlying PDF. Inliers exist in high-density regions and outliers in low-density regions (Géron,

2019). While this is a justifiable line of reasoning, one must also consider the local spatial component

of outliers. An extreme value located in a neighbourhood of other high values may be an outlier

from a density perspective but not in the context of its local spatial arrangement.

Additionally, one must understand the volume of influence of a potential outlier. Isolated ex-

treme values, or ones with large areas of influence, pose a risk of overestimation (Leuangthong &

Nowak, 2015). The spatial context of a sample motivates the development of an outlier identifica-

tion algorithm that considers both the spatial neighbourhood of the sample and its position within

the global distribution. The spatial dimension characterizes the relationships within the local neigh-

bourhood, while the density dimension characterizes the global relationship with the remaining data.

The following sections describe the proposed algorithm components and provides examples of its

use first on a synthetic 1-D example and then on a real two-dimensional (2-D) dataset.

2.3.1 Methodology

Consider a dataset {z(ui), i = 1, . . . , n} where n is the total number of data and ui is a coordinate

vector at the ith location. About location ui, there exists a neighbourhood of k nearest locations,

NN(ui; k). This neighbourhood could be defined by a fixed search radius and maximum k or a

fixed number k. The data {z(uj), j = 1, . . . , k, j 6= i} define the neighbourhood of samples about

location ui. Next, consider a function m(ui) that returns a summary statistic, such as the mean

or median, for all data values within the neighbourhood NN(ui; k). The spatial component of the

algorithm compares the data value z(ui) to the value returned from m(ui): h(ui) = |z(ui) −m(ui)|.

The function m(ui) is chosen to be the median value of all samples in the neighbourhood (excluding

location ui), weighted by distance from ui. The median is chosen as it is a more robust measure

of central tendency in the presence of outliers than the mean. The vector {h1, h2, . . . , hn} contains

the absolute differences between each data value and the median of the surrounding neighbourhood.

The hn values are scaled ∈ [0, 1] where values closer to 1 differ most from their neighbourhood.

This comparison accounts for the local spatial relationship between data values. The choice of k is

problem-specific. If k is too small, the median values will be noisy and not represent the true local

variation. If k is too large, the median values will be smooth and not representative of the true local

variation.

The neighbourhood NN(ui; k) accounts for the area of influence of each sample. The area (in

2-D) or volume (in 3-D) of influence is calculated using the maximum distance to any sample in the

neighbourhood (rmax in Figure 2.5):

A2D(ui) = π · rmax(ui)
2 (2.2)

A3D(ui) = 4 · π · rmax(ui)
2 (2.3)
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This measure is only applicable if NN(ui; k) considers a fixed number k rather than a fixed search

radius. A fixed search radius amounts to equal area weighting of each sample. The area directly

accounts for the sparseness of the data configuration within the neighbourhood. The anisotropic

area values are scaled ∈ [0, 1]. Samples located in sparse regions have values closer to one. A sample

being geographically isolated does not constitute an outlier, and thus, one must consider the area

of influence in conjunction with h(ui).

The spatial neighbourhood approach is similar to the “Median Algorithm” proposed by Chen,

Lu, et al. (2008); however, some key differences exist. Firstly, the neighbourhood NN(ui; k) is

determined using covariance-based distances rather than Euclidean distance. The covariance dis-

tance comes from the anisotropy ratios of a robust measure of spatial correlation. As the traditional

semi-variogram is sensitive to the presence of outliers, one should use robust measures of correlation

such as the correlogram, normal score variogram, or pairwise relative variogram (Babakhani, 2014;

Drumond, Rolo, et al., 2019). Covariance-based distance ensures that the local neighbourhoods align

with relevant geologic features. Secondly, the function f(ui) is a weighted statistic, incorporating

information about the data configuration and sparseness. The weight given to each sample in the

neighbourhood is w(uj) = 1
d(ui,uj)p (d(i, j) in Figure 2.5). Accounting for the area of influence

further incorporates spatial information.

The second component of the algorithm considers the relationship of each data value within the

global distribution. This relationship is quantified by fitting a GMM to the univariate distribution to

approximate the underlying PDF. GMM models are commonly used for outlier or anomaly detection

(Géron, 2019; Qu, Du, et al., 2021), where data values falling in low-density regions of the fitted

GMM are potential outliers. The details of fitting the GMM with the expectation-maximization

(EM) algorithm are not given here; the reader is referred to McLachlan, Lee, et al. (2019) for more

details. After the GMM is fit to the univariate data, estimating the density at any location is

straightforward. The log of the PDF is calculated as:

log p(zi) = log





J
∑

j=1

πjN (zi|µj ,Σj)



 (2.4)

where zi is the ith sample of z, J is the number of fitted GMM components, πj is the weight

to the jth component, and N (zi|µj ,Σj) is the PDF of a multivariate Gaussian distribution with

mean µj and covariance Σj . Exponentiation of Equation 2.4 results in an estimate of the PDF

for each sample. The higher the probability density, the more likely the sample belongs to the

fitted distribution. As this calculation results in an estimate of the PDF and not a true probability,

the values are scaled to sum to one. The vector {p1, p2, . . . , pn} then contains an estimate of the

probability that the ith sample belongs to the fitted distribution. Low-probability samples that come

from low-density regions are possible outliers. This result depends on the number of components,

J , which must be chosen. Practice shows that 2-3 components are reasonable for a 1-D distribution,
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The methodology from Section 2.3.1 is employed to identify spatial outliers. An experimental

correlogram is calculated and fitted with an exponential model to characterize the spatial relationship

between sample locations. The neighbourhood NN(ui; k) is characterized by k = 25 neighbours and

an inverse distance weighting exponent of p = 1.0. The area of influence for each sample is calculated

in 2-D (Equation 2.3). The GMM is fitted to the histogram using J = 2 components. The final

outlier measure is calculated using wh = 0.4, wA = 0.2, and wp = 0.4. The weight to the area of

influence is less than the other measures to not overly weight all sparse samples, or samples near

the edges of the domain.

The top row of Figure 2.9 shows the absolute difference between each sample value and its

corresponding neighbourhood. The left column shows values along the east-west direction, and the

right column shows the north-south direction. There are some clear outlying samples, though h(ui)

does not show a clear delineation between two populations. The second row of Figure 2.9 shows

each sample’s area of influence measure. Row three shows 1 − p(ui), where values closer to one are

in lower-density regions of the distribution. The fourth row shows the final outlier measure. The

division between inliers and outliers is not immediately clear, but one could argue there is a grouping

of points above the g(ui) = 0.6 threshold, highlighted by the red dashed lines.

Figure 2.10 shows the identified outliers in the spatial context. The algorithm identifies high and

low values: ten above the mean and three below. Potential outliers must be aligned with geologic

intuition. There is a clustering of extreme value outliers in the northern part of the domain, where

neighbouring samples are medium-grade. An extreme low-grade sample adjacent to an extreme high-

grade sample is also flagged. Given the position of each sample in the CDF and spatial arrangement,

these samples appear to be appropriate candidates for outliers. Three high-grade samples in the

sparsely sampled southern portion of the domain are also flagged as outliers. These samples are

also appropriate outlier candidates due to their high grades relative to adjacent samples and their

potential influence area for each sample. In an estimation paradigm, these samples could influence

the grades in many blocks and lead to overestimation. One could derive a capping limit as the

minimum grade of the high-grade samples flagged as outliers.

The spatial outlier detection algorithm effectively identifies potential outliers. Measures of “out-

ierness” in spatially correlated data must consider both the univariate distribution and the spatial

context of the data. The proposed algorithm directly incorporates features of the grade distribution,

robust measures of geologic distance, and features of the data configuration, including sparseness.

The final outlier measure is practical in the sense that it includes multiple sources of relevant infor-

mation, being a weighted blend of a proximity-based algorithm and a parametric statistical model

(GMM) (Li, Zhao, et al., 2022). The algorithm could be extended to the multivariate context by

considering the Mahalanobis distance between a K dimensional vector of medians and the center of

the data (Chen, Lu, et al., 2008). A challenge of the outlier detection algorithm is that an arbitrary

threshold must be chosen. The final measure may not have a clear demarcation between inlier and
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appear “reasonable” from a geologic perspective. Immediately adjacent extreme high and low values

warrant further investigation. One could employ an unsupervised clustering method on the final

outlier measure to remove subjectivity from the choice of threshold. Outlier detection methodologies

should generally form an ensemble, with higher confidence given to samples identified by multiple

methods (Zimek & Filzmoser, 2018). The spatial outlier detection algorithm is another tool in con-

junction with those in Section 2.2.1 and provides further justification for the choice of capping limit

or outlier management strategy.

2.4 Analytical Extreme Value Models

Many techniques have evolved to restrict the influence of outliers or extreme high grades. No

statistical or geostatistical model exists to understand and manage the resource contributions of

extreme high-grade (EHG). The validity of such a model could only be established based on many

data or bulk mining. The idea is to develop a simple and intuitive model that accommodates the

resource contributions of EHG. This model could be applied to understand and explain historical

mining and to project the possibility of EHG mineralization in unmined areas.

2.4.1 Methodology

The geological processes that led to the precipitation and preservation of the grades under consider-

ation in a particular deposit are complex and defy a simple deterministic assessment. The processes

influence our understanding, but we adopt a statistical model since there is no way to understand

the initial and boundary conditions of the non-linear and chaotic processes that led to the deposit

under consideration. This section describes a trimodal model for mineralization: (1) mineralized

(M), (2) high-grade (HG), and (3) extreme high-grade (EHG). Figure 2.11 illustrates this. The

three populations overlap, mix and are not exclusive, but we could reasonably define a range that

represents them, for example, 0.1 to 1.0 g/t for mineralized (M), 5 to 20 g/t for high-grade (HG),

and 500+ g/t for EHG.

The concept of three populations is reasonable. The illustration in Figure 2.11 appears discrete

as three populations; however, the data distribution from this model would appear highly skewed.

Considering one highly skewed population may be possible; however, a flexible parametric distribu-

tion is not available to satisfy observed data, explain outliers, and avoid unrealistically high grades.

Considering more than three populations would be possible; however, it seems reasonable to have

M, HG and EHG. Additional intermediate populations would complicate the model and could be

grouped into one of the three.

An assumption is that the M and HG are more pervasive while EHG is encountered rarely. How-

ever, the EHG is assumed to have some reasonable thickness within geologic structures. A drill hole

intersecting M, HG or EHG would be identified as such. We do not expect many EHG intersections.
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Combining the equations above for the overall mean:

mOverall = PM ·mM + PHG ·mHG + PEHG ·mEHG

=

(

1 − PHG −
f · PHG ·mHG

mEHG

)

·mM + PHG ·mHG +
f · PHG ·mHG

mEHG

·mEHG

= mM + PHG ·

(

−mM −
f ·mM

mEHG

+mHG + f ·mHG

)

The proportions of the populations are defined in sequence by the following:

PHG =
mOverall −mM

−mM ·
(

1 + f ·mHG

mEHG

)

+mHG(1 + f)

PEHG =
f · PHG ·mHG

mEHG

PM = 1 − PHG − PEHG

The mean values of the three populations could be estimated with reasonable confidence. The overall

mean could be estimated from historical mining. The fraction of metal in the EHG population

relative to the HG population (the f value) is a model parameter that could be inferred from

available drilling if enough intersections are available. Given the mean values and f , we could infer

the proportions of the populations and the contribution to metal from each population.

2.4.2 Probability of Drilling EHG

The probability of drilling n successive drill holes without encountering EHG could be computed

by:
(

1 − PEHG

)n

This approach assumes the drill holes are independent, which may or may not be reasonable, given

drillhole spacing. It also assumes the EHG will be seen in a drill hole with a significant thickness;

that is, the EHG is not distributed in very small nuggets. This assumption is reasonable since if the

EHG were at a very small scale, it would be composited with other rock and end up as mineralized

(M) or high grade (HG).

Consider mOverall = 10g/t, mM = 0.1g/t, mHG = 10g/t, mEHG = 1000g/t, and f = 1 that

is, there is the same metal in the HG and the EHG. These numbers appear reasonable given the

intersections encountered at epithermal vein systems. Following the calculations described above:

PHG =
10 − 0.1

−0.1 ·
(

1 + 1·10
1000

)

+ 10(1 + 1)
= 0.4975

PEHG =
1 · 0.4975 · 10

1000
= 0.0050

PM = 1 − 0.4975 − 0.0050 = 0.4975

The overall mean of the model is checked: mOverall = 0.4975·0.1+0.4975·10+0.0050·1000 = 10 as it
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Table 2.2: Inferred and calculated model parameters.

Value
Overall mean (g/t) 1.4500
Mineralized mean (g/t) 1.1500
High grade mean (g/t) 8.5500
Extreme high grade mean (g/t) 48.3500
f 0.0200
Mineralized proportion 0.9601
High grade proportion 0.0398
Extreme high grade proportion 0.0001

Table 2.3: Overall metal proportions by category.

Proportion
Mineralized 0.7611
High grade 0.2352
Extreme high grade 0.0037

Table 2.4: Analytical versus simulated EHG probability.

EHG Prob. Samples Expected Prob.
0.1 957 0.1012
0.5 6301 0.4873
0.9 20931 0.8876

probability, say 0.1, 0.5 or 0.9, the number of additional samples required to intersect an EHG value

with that probability is calculated analytically as above. High-resolution simulated realizations of

gold using all available data are considered the truth. If we randomly sample the realizations with

the calculated number of samples for some number of trials, we can directly observe how many EHG

intersections occur. Ten realizations are used for numerical stability. Each realization is sampled

1000 times with the calculated number of samples. Table 2.4 summarizes the predicted number of

samples required to have a 0.1, 0.5 and 0.9 probability of intersecting EHG and the corresponding

expected probabilities from resampling. The simulation results closely reproduce the analytical

predictions.

Access to a high-resolution “true” model is rarely possible in practice. Often, when data is

sufficiently dense to be considered the truth, mining has already occurred. One does not have the

luxury of calibrating their analytical model. Though applying the proposed analytical model is

unverifiable in a practical scenario, the example presented highlights that the analytical model could

be reasonable. The simulation study shows that the model can accurately predict the probability of

intersecting EHG. Determining how much data is required to infer model parameters is a topic of

future research.
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2.5 Discussion

Outlier management is an important component of the traditional resource estimation paradigm,

particularly with precious metals. Using smooth estimators, such as kriging, in the presence of

unadjusted extreme values poses a risk of overestimation. High grades in sparse data configurations

exacerbate this risk. The selection of grade caps is a long-standing issue; high-grade values are

important from an economic perspective, though they are problematic to resource estimation. There

is no definitive recipe for outlier management. There is a necessarily subjective threshold choice if one

decides to cap. The capping strategies outlined in this chapter provide general guidance; however,

no definitive metric exists. One must first assess that the extreme values are valid. If possible, one

should address high grades with domain boundaries. A capping strategy may be considered if there

is little continuity between high grades. Best practice suggests considering multiple strategies as an

ensemble and determining a consistent grade cap across multiple methods.

Many outlier detection methodologies do not consider the spatial context of the samples. To

overcome this, a spatial outlier detection algorithm is proposed, which considers the spatial configu-

ration and the probability density of each sample in the distribution. The idea that outliers fall in

low-density regions is only sometimes true. The context of each sample within its local neighbour-

hood should influence the decision to classify an outlier. If an extreme value is discordant within a

geologically-driven neighbourhood, it should be flagged as an outlier. An extreme value near other

high values is likely a true feature of the underlying distribution. High-grade samples with large

areas of influence should also be flagged. The algorithm effectively identifies outliers in a real 2-D

example with variable data density across the domain. Multiple features of the sample distribution

are combined and projected into a feature space where the threshold selection may be more intuitive

than directly selecting a grade value. High-grade samples flagged as outliers permit the inference

of a capping limit: the minimum grade of the high-grade outliers. The algorithm provides the

practitioner with another tool in the ensemble to guide and detect outliers.

An analytical extreme value model is developed to understand the contributions of EHG on

model resources. The effect of extreme values is significant from an economic perspective. The

EHG model allows the practitioner to predict the frequency of intersecting extreme values, which

is powerful in the context of drillhole planning or designing data collection schemes. The analytical

approach is limited in that historic mining or dense drilling is required to parameterize the model.

However, a simulation study with the Witwatersrand data set shows the model can correctly predict

the occurrence of EHG.

The remaining chapters in this thesis are dedicated to developing the NMR framework. The

NMR explicitly accounts for the spatial features of extreme values through high-order connectivity

metrics. If the high-order features are correct, the data does not require explicit capping or outlier

management. For this reason, outlier management is not discussed beyond this chapter.
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Chapter 3

Network Model of Regionalization
Framework
This chapter introduces the NMR paradigm and the framework for generating non-Gaussian spatial

fields. The main idea of the NMR is that capturing non-Gaussian spatial features requires repro-

ducing high-order statistics. Reproduction of high-order statistics should also reproduce two-point

statistics such as the variogram. Multi-point connectivity measures can be easily calculated from

drillholes by considering them as sequences. The NMR is ultimately a function that maps an un-

known latent space to an interpretable observed space. The mapping of the latent space generates

a non-Gaussian spatial distribution with the correct high-order statistics. Inference of this mapping

function is an inverse problem as we only observe the system’s output. The chapter begins by fram-

ing the problem setting and addressing known issues with the multivariate Gaussian assumption.

Next, the relationship between connectivity and non-Gaussianity is discussed. Multi-point measures

of spatial connectivity, like distributions of runs, are a core component of the NMR framework. Con-

nectivity measures are critical in the context of extreme values; the spatial arrangement of these

values is likely significant concerning a transfer function. The connectivity of extremes likely drives

the project economics in many mining scenarios. Finally, an overview of the NMR methodology

is presented with a 2-D synthetic example highlighting improved resources relative to a traditional

SGS model.

3.1 Problem Overview

Geostatistical problems are often high dimensional, considering multiple variables at millions of

locations. The appeal of the Gaussian distribution is its mathematical tractability in any dimensions,

where a mean vector and variance-covariance matrix fully parameterizes it; thus, it is pervasive in

geostatistics. Many algorithms take advantage of the fact that under the multivariate Gaussian

assumption, all conditional distributions are Gaussian and calculated by linear combinations of the

conditioning data. Multivariate geostatistical problems necessitate a parametric distribution as there

are typically only hundreds to thousands of data available. The curse of dimensionality (Bellman,

1961) precludes the use of non-parametric distributions.

Connectivity of extreme values is commonly discussed as a shortcoming of the Gaussian RF model

(Guthke & Bárdossy, 2017; Journel & Alabert, 1989; Journel & Deutsch, 1993; Kerrou, Renard, et

al., 2008; Yan, Jeong, et al., 2020). The maximum entropy characteristic of the Gaussian RF model

leads to maximum disorder for a given covariance structure; it does not allow for spatial correlation
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measurements at the data locations. This model-based inverse problem is approached through

stochastic optimization. This approach allows the incorporation of multi-point geologic information

from various sources into the final model while honouring the statistics of the observed data. A

network-based mixing architecture and non-linearities allow the final models to capture richer and

higher-order spatial features; this is particularly useful when constructing models in the presence of

extreme values.

The following components summarize the overall structure of the NMR framework:

1. Objective targets: specifying the two- and multi-point statistics for the final model to repro-

duce.

2. Latent factor design: selection of the base pool of Gaussian distributions for mixing.

3. Parameter inference: determining the parameters of the mixing function that result in a

distribution with the correct spatial features.

4. Latent factor imputation: imputation of the latent factors such that mixing reproduces the

observed data values.

5. Latent factor simulation and mapping: conditional simulation of the imputed latent factors

from (4) and mapping to observed space with parameters from (3).

The first component is specifying the goals of the model. These goals, or objectives, are quan-

tified by two-point spatial statistics and higher-order statistics. The second component involves

choosing the covariance structure of each latent factor to mix. These choices depend strongly on

the modeling goals. The third component involves inferring the parameters of the mixing function,

which results in the model meeting the objective targets. The fourth component involves generating

synthetic realizations of the factors. The fifth component is conditionally simulating the factors on

a modeling grid and mapping them to observed space. This mapping results in gridded realizations

that reproduce the observed data and the objective targets away from the data. Figure 3.2 shows

the complete NMR framework as a flow chart. There are three junctions in the workflow where

the practitioner must decide if there is acceptable reproduction of desired statistics. Given the in-

terconnected nature of the framework, if acceptable reproduction is not achieved, one may have to

revisit one or multiple previous steps. This interconnectedness is highlighted by reverse-flow arrows

leading to multiple actions in Figure 3.2.

The remaining sections of this chapter discuss the calculation of high-order statistics and their

use for measures of non-Gaussianity, details regarding the components of the NMR framework, and

finally, a small synthetic example of the complete NMR workflow with highly structured extreme

values.
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Define
Objectives

Define
Latent Pool

Infer
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Acceptable Objective Reproduction?

Latent
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Acceptable Latent Reproduction?

Gridded Latent
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Acceptable Gridded Reproduction?

Final Gridded
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yes

no

yes

no
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Figure 3.2: High level flow chart illustrating the key components of the NMR framework. There are
multiple junctions where previous steps can be revisited and refined. Reverse-flow arrows leading to multiple
actions emphasize the interconnected nature of each component.
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3.2 Connectivity and Non‐Gaussianity

A sequence is a collection of elements where the order of the elements matters. The arrangement

or order of the elements can be used to characterize the connectivity within the sequence. Grades

assayed on intervals down a drillhole represent a one-dimensional sequence of real numbers in a geo-

statistical context. The connectivity of high and low values is often of practical importance, mainly

when the transfer function is sensitive to extreme values. A one-dimensional sequence provides ac-

cess to data-driven multiple-point configurations or patterns that would be difficult to infer in two-

or three-dimensions. Connectivity is a different way of measuring correlation within a sequence.

Each drillhole can be considered an exhaustive, one-dimensional training image from which n-point

statistics can be inferred.

A natural extension of this concept is the analysis of runs of binary sequences from linear strings

of data (Ortiz, 2003). A binary sequence is either 0 or 1 and computed through the indicator

transform of a continuous RV. For a given threshold zk, k = 1, . . . ,K:

I(ui; zk) =















1, if z(ui) ≤ zk

0, otherwise
(3.1)

It is common to consider multiple thresholds resulting in multiple binary sequences. A run

of length L is defined as L identical values bound on either end by an opposite value. Runs of

consecutive values above or below the threshold can be assessed. The theory of the distributions

of runs for random uniform sequences is well documented by Fu and Lou (2003); the moments

of the distribution of runs have analytical expressions, and they show that the limit distributions

are normal. Though useful in many applications like cryptography and random number generation

(Rukhin, Soto, et al., 2010), the assumption of independence between elements in the sequence is

limiting in the spatially correlated scenario.

Ortiz (2003) shows that the analytical derivation of multi-point events is only possible when the

multivariate spatial law is known. Practically, this is either the random or multivariate Gaussian

case. A run of length L above a threshold zk consists of L + 2 elements where the first and last

elements are below the threshold. In the general case, the probability of a run of length L is defined

as:

P{run L} =

P{Z(u) ≤ zk|Z(u + h) > zk, . . . , Z(u + L · h) > zk, Z(u + (L+ 1)) ≤ zk}·, . . . , ·

P{Z(u + L · h) > zk|Z(u + (L+ 1)) ≤ zk}·

P{Z(u + (L+ 1)) ≤ zk}

(3.2)

The separation vector between elements is h. This definition amounts to a recursive application

of Bayes’ Law to determine the joint probability of the multiple-point event. In the multivariate

Gaussian case, the conditional probabilities are calculated using simple indicator kriging (Journel
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non-Gaussian sequence with connectivity of extremes is expected to exhibit a greater number of cu-

mulative runs than a Gaussian sequence. The second measure calculates the cumulative run-length

frequencies within the binary sequence. Increased connectivity within the sequence leads to fewer

but longer run lengths. Similar to the first measure of total runs, a non-Gaussian sequence with

connectivity of extremes is expected to exhibit a greater frequency of longer run lengths. The na-

ture of cumulative run lengths leads to a histogram of lengths that decreases as run length increases,

facilitating a more straightforward comparison of distributions. The third measure is the binary

sequence’s n-point connectivity. The n-point connectivity function quantifies the probability of n

successive elements in the sequence being below (or optionally above) the indicator thresholds. Only

elements below the threshold contribute to the probability in Equation 3.3. As connectivity within

the sequence increases, the probability of successive elements being jointly below the given threshold

increases. A highly structured non-Gaussian sequence is expected to have a greater probability of

n connected steps compared to a maximum entropy Gaussian sequence as n increases. Figure 3.5

highlights this characteristic.

The fourth measure is not sequence-based but calculates the change of support for the original

continuous variable. This measure is quantified by averaging n consecutive elements within the

sequence and calculating the change in variance relative to the original. As volume increases, the

variance of the elements within the sequence decreases. The idea is that if the sequence has structured

or connected extreme values, the variance of the sequence should be less sensitive to scale. A non-

Gaussian sequence with connected extreme values is expected to show a less drastic reduction in

variance as scale increases compared to a maximum entropy Gaussian sequence.

The covariance structure of each sequence is calculated from the exhaustive drill string to measure

non-Gaussianity. This covariance is used to generate multivariate Gaussian realizations with the

exact covariance of the original sequence. The Gaussian realizations are back-transformed to original

units, and then indicator transformed with Equation 3.1. Each metric is calculated for each one-

dimensional data string and compared to the distribution of metrics observed from the Gaussian

realizations. The deviation between the original sequence and the Gaussian distribution measures

non-Gaussianity. The general workflow for calculating the proposed measures of non-Gaussianity

on a drillhole-by-drillhole basis is as follows:

1. Indicator transform the grades of all drillholes for quantiles of interest.

2. Calculate cumulative runs and run-length frequencies for all thresholds for all drillholes.

3. Calculate the n-point connectivity function for all thresholds for all drillholes.

4. Composite the continuous variable by a number of length factors to calculate the relationship

between variance and scale.

5. Normal score transform the grades of all drillholes.

6. Calculate the autocovariance matrix for each drillhole and simulate ℓ = 1, . . . , L unconditional
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3.3.1 Notation

This section shows an overview of the NMR mathematical notation and definitions, while Chapters

4 and 5 present complete details. Consider a continuous RF:

{Z(u), ∀u ∈ D} (3.5)

where D is a domain of interest. The location vector u could be data or grid node locations.

Next, consider a set of M + 1 latent variables, each characterized by a Gaussian RF:

{Y(u) = (Y0(u), . . . , YM (u)), ∀u ∈ D} (3.6)

Finally, consider a forward mapping function Fθ that defines the mapping from the real-valued

latent space to the real-valued observed space:

{Fθ : RM 7→ R} (3.7)

where θ is a parameter vector that characterizes F , and Fθ is such that the mapping of the latent

space to the observed space reproduces the observed data values:

{Fθ(Y(u)) = Z(u), ∀u ∈ D} (3.8)

The NMR approximates the forward mapping function Fθ. Chapter 4 discusses inference of the

parameter vector, θ, and Chapter 5 presents imputation of the Gaussian RFs such that the equality

in Equation 3.8 holds.

3.3.2 The NMR Inverse Problem

The NMR approximates the forward mapping function from latent to observed space and can be

considered a model-based inversion problem (Sen & Stoffa, 2013). The parameters of this function

(or model) are unknown and must be inferred from the observed measurements or data. The goal

is to find the unknown parameters, θ, so the model output has the desired spatial characteristics.

In this context, the observed measurements are drillhole data or empirical statistics calculated from

these data. Synthetic data are generated by mapping latent Gaussian variables though Fθ for a

given state of θ. If the match between the spatial characteristics of the synthetic data and those

of the observed data is acceptable, then the parameters are retained. Otherwise, θ is perturbed

until the match is acceptable. An objective function quantifies the mismatch between the model

output and observed data. Figure 3.8 shows a high-level flowchart of this optimization process. The

iterative parameter search, or minimization of the objective function, is an optimization problem

approached with DE, a directed Monte Carlo search method; Chapter 4 presents details on the

specific formulation of this problem.

Inverse problems are typically ill-posed; that is, the solution is non-unique. To help mitigate the

non-uniqueness of the solution, constraints in the form of (1) prior information and (2) parameter

constraints are imposed on the solution. Prior geologic information is incorporated through models
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M + 1
Prior Latent

Models
Update θi

Fθi
(Y(u)) = Z(u)

Evaluate
Objective
Function

Finish if
i = iMAX or
fobj = 0.0

i = i+ 1

Figure 3.8: Flowchart showing an overview of the optimization workflow for determining the parameter
vector θ.

of latent Gaussian variables (Section 3.3.3) and forms the basis of the NMR output. Careful de-

sign of these latent variables ensures the optimization algorithm explores the appropriate solution

space from a geologic perspective and acts as a regularization element (Zhou, Gómez-Hernández,

et al., 2014). The model output is a mixture of these latent variables; the observed statistics are

reproduced by integrating spatial features from the prior models. Geologically reasonable prior in-

formation ensures a solution for θ is feasible. Limiting parameter values based on their physical

meaning can further constrain the problem. As the NMR is a positive, non-linear combination of

the latent variables, each latent variable’s relative contribution cannot be negative; these values are

always constrained to be ≥ 0. Uncertainty in the parameter vector θ is captured by considering

multiple realizations of the prior models during optimization. The objective function is minimized

in expectation; that is, it considers the mismatch error across all realizations. Considering a space

of uncertainty in the prior models ensures the parameters are not overly sensitive to the features of

a particular realization, acting as an additional regularization element.

Determining the parameters of the NMR does not directly consider the reproduction of the

observed data values but rather the observed two- and multi-point statistics. The goal is to learn

how to map from the latent to the observed space, which results in the desired spatial structure. As

discussed above, multiple distributions could reproduce these statistics, so explicit data matching is

unnecessary, simplifying the optimization. Additionally, by relaxing this data-matching constraint,

the prior latent models can be generated through unconditional simulation. Exact reproduction of

the observed data values is ultimately required, and Chapter 5 addresses this imputation problem

in detail.

3.3.3 Latent Spatial Structure

The set of latent Gaussian variables of Equation 3.6 is the foundation of the NMR. This set is

referred to as the Gaussian “pool” throughout this text; the components of the pool are referred

to as latent “factors”. It is a pool in that there is a collection of Gaussian RFs to be shared with

the goal of reproducing high-order statistics. This pooling is analogous to a GMM in the spatial

context. The idea of a GMM is that a finite mixture of Gaussian densities can approximate a

continuous distribution (as in Equation 3.5) (McLachlan, Lee, et al., 2019). Furthermore, Silva and
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anisotropic factors is oriented 100 degrees with a 10 : 1 anisotropy ratio, and the second is oriented

45 degrees with a 5 : 1 anisotropy ratio. The normal score variogram factor can influence any grade

range with ω ∈ [0.25, 4.0] while the additional factors are constrained to influence high values with

ω ∈ [2.0, 4.0]. The first factor can capture the orientation of medium to high-grade values, while

factors two and three capture the orientation of the highest-grade structures. The mapping function,

Fθ, is inferred by minimizing the sum of squared errors between the objective function components

and the two and multi-point statistics extracted from the synthetic data. Chapter 4 gives the

complete details of the objective function and optimization algorithm. One hundred realizations of

each latent factor are imputed at the data locations such that Equation 3.9 holds using α = 0.01.

Once the latent factors are defined at the data locations, they are conditionally simulated on a 1 x

1 pixel point scale grid using SGS. The point scale latent realizations are mapped through the same

function, resulting in a univariate Gaussian spatial mixture with features characterized by θ.

The point scale realizations are back-transformed from Gaussian to original units and block

averaged to a 5 x 5 pixel selective mining unit (SMU) scale grid. The SMU scale realizations are

post-processed to calculate the e-type mean. Figure 3.19 shows the block averaged reference truth

(top left) and corresponding 0.9 quantile indicator transform (bottom left), with the SMU scale

NMR e-type model and indicators (top middle, bottom middle), and the SMU scale SGS e-type

model and indicators (top right, bottom right). An outcome of correctly characterizing the point

scale, high-grade continuity is that the SMU scale realizations should show more connectivity. As

discussed in Section 3.2.3, disordered realizations are more sensitive to changes in scale; connected

or organized features should remain as scale increases (to an extent). This connectivity is evident

in the 0.9 quantile indicator transform of the NMR e-type model. The indicator model exhibits

increased east-west high-grade continuity over the SGS model, particularly in the central and top

portions of the grid. The SGS model effectively captures the vertical high-grade continuity; however,

the east-west structures are visibly more disconnected.

Table 3.2 summarizes the resources of the SMU scale NMR and SGS models above the 0.1,

0.5, and 0.9 quantiles as a fraction of true resources. The resources assume the synthetic variable

is measured in grams per metric tonne, priced in troy ounces, and density is a constant value of

2.6g/cm3. The NMR and SGS models show similar resources for the 0.1 and 0.5 quantile cutoffs.

However, the NMR model shows improvement in both tonnes and grade above the 0.9 quantile

cutoff, leading to a 9% increase in contained metal ounces relative to the SGS model. The increase

in tonnes above the true 0.9 quantile is attributed to the increase in east-west continuity imparted

by factors two and three. A single covariance model considering the complete range of grade values

cannot effectively capture the non-stationary features of the true image.

Drill hole data may exhibit non-Gaussian features that are difficult to capture with a single covari-

ance model based on two-point statistics. The NMR model permits generating multiple realizations

that consider both two- and multi-point statistics from the observed data. These considerations al-
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statistics in generating a probabilistic model. Examples highlight spatial structures that cannot be

reproduced with a two-point covariance structure and a multivariate Gaussian simulation algorithm.

A core concept of the NMR is that it is a spatial GMM, where the mixing of Gaussian components

results in a non-Gaussian output.

A unique covariance structure defines each component of the mixture; this “pool” of components

is designed such that certain components impart certain spatial features in the final model. A power

law activation function applies non-linearity to the input components. This non-linear activation

function allows features of the latent factors to be emphasized in particular regions of the continuous

grade range. That is, the low values and high values can have different spatial structures and

different multi-point connectivity. This difference in continuity is something that cannot be easily

achieved with two-point statistics alone. The spatial features of the final model are defined at the

beginning of the modeling process. The practitioner specifies the model’s goals using two-point and

high-order statistics. These goals include the normal score variogram model, indicator variogram

models, cumulative run-length frequencies, and the n-point connectivity function. The parameters

of the mapping function are inferred with stochastic optimization. These parameters result in

a spatial mixture reproducing the statistics outlined in the modeling goals. The generation of

conditioning data for latent factor realizations is an imputation problem, and these imputed factors

become conditioning data for gridded factor realizations. Finally, the gridded factors are mapped

to observed space with the inferred parameters, resulting in the final gridded realizations with the

correct high-order statistics.

A small example highlights the ability of the NMR to capture connected extreme values and

non-stationary features like orientation changes. A well-designed Gaussian pool can accommodate

multiple orientations and anisotropies. The model significantly improves contained metal relative to

an SGS model characterized by a two-point covariance structure. The following chapter presents the

details of network components of the NMR framework, including latent factor design and parameter

inference.
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Chapter 4

Network Implementation
This chapter presents the implementation details of the NMR introduced in Chapter 3. The network

is the first component of NMR framework and operates in conjunction with sequential Gaussian re-

jection imputation (SGRI), introduced in Chapter 5. Inference of network parameters, θ, is an

inverse problem as only the true data values are known. Therefore, a mapping function, Fθ, is

required to map the unknown latent space to the known observed space. The function is parame-

terized such that a pool of unconditional, latent Gaussian factors have the desired spatial features

when mapped with Fθ. As the latent space is a synthetic feature of the NMR, it is free to contain

any number of components with arbitrary covariance structure. This flexibility permits creativity

with latent factor design; combining latent covariance structures in unique ways allows a mixture of

univariate Gaussian distributions to possess non-multivariate Gaussian spatial features. Practical

implementation details include considerations for the design of the network and the latent Gaussian

pool, as well as sensitivities associated with these model parameters. A synthetic example demon-

strates latent factor design, network parameter inference and non-uniqueness properties of the NMR.

This example highlights the network component of the NMR workflow and is carried forward into

Chapter 5 to illustrate imputation.

4.1 Network Design

The NMR is not a true neural network but rather a model of regionalization inspired by neural

network structure. The network consists of an input layer where the number of latent factors

determines the number of input nodes, a single “hidden layer” of the same dimension, and an

output layer with a single node. The single output node makes the NMR univariate (analogous to

the LMR); however, there is no reason it could not be extended to the multivariate case (analogous to

the LMC). However, with geospatial data, one commonly considers extreme values in the univariate

context; it is not immediately clear what constitutes a multivariate extreme.

4.1.1 Architecture

The number of latent factors in the Gaussian pool controls network architecture. The current NMR

implementation restricts the network architecture to an input layer, a single hidden layer and a

univariate output layer. The input and hidden layer both contain M +1 nodes. Figure 4.1 shows an

example network configuration with M = 3 input latent factors, {Y0, . . . , Y3}, where the nugget effect

is the 0th factor by convention. The network’s hidden layer is a transformation layer, transforming
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activation values are then normal score transformed, resulting in a temporary, iteration-specific

transformation table. This transformation table establishes the relationship between the activation

and the observed space for the given parameter state. Using this transformation table (acting as

the G−1 operator in Equation 4.2), any activation value can be transformed to a Gaussian value.

4.1.2 Activation Function

The goal of the NMR is to parameterize the arbitrary mapping function, Fθ, between the latent

and observed spaces. The form of this function is not obvious; hence, a network-based approach

is used as a function approximation. Given the complex spatial features we wish to capture in the

final models, a polynomial of degree greater than one is useful. Suppose the activation function is

linear. As the forward pass through the network is a weighted, linear combination of the inputs, a

linear activation function (or simply c · y where c is a constant) results in a linear output or single-

order polynomial (Sharma, Sharma, et al., 2020). To achieve a non-linear network output, one

must introduce a non-linearity as an activation function. Real data commonly contain non-linearly

separable features, and a non-linear activation function permits the projection of these features onto

a non-linear feature space (Dubey, Singh, et al., 2022).

In the traditional machine learning (ML) context, the constraint of differentiability is placed on

neural network activation functions due to the use of the back-propagation algorithm (Rojas, 1996).

The NMR structure is only inspired by a neural network, and is not subject to this constraint. NMR

parameters are “learned” through gradient-free stochastic optimization. This gradient-free approach,

and a strength of the NMR, permits using virtually any activation function, differentiable or not.

The NMR activation function considered here is the modified power-law (MPL) function with the

form:

ϕ
(

y, ω
)

=















yω, if y > 0

y
1

ω , if y < 0

(4.4)

where ω is a trainable parameter. The magnitude of ω allows the activation function to emphasize

certain regions of the latent distribution. If ω = 1, the activation is linear and ϕ
(

y, 1
)

= y. If ω

is less than one, the function takes on a concave shape that emphasizes low values and mutes the

influence of high values. When ω is greater than one, the opposite is true. The function takes

on a convex shape that emphasizes high values and mutes the influence of low values. Figure 4.2

(left) shows the relationship between ϕ
(

y, ω
)

and y for various values of ω. As the magnitude of

ω increases, the activation function becomes steeper above zero and flatter below zero. The high

values’ magnitude increases exponentially, and low values are muted significantly. This non-linear

amplification allows the network to embed high-grade features of latent factors in the mapping

function Fθ. Low-grade features are embedded in opposite fashion.

Notably, the MPL activation has three inflection points: -1, 0, and 1. The inflections exist as
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4.2 Latent Factor Design

Latent factor design is critical to the workflow of the NMR. The latent factors form the Gaussian

“pool” from which the NMR draws structure. The univariate Gaussian factors are mixed to generate

a spatial distribution that is univariate Gaussian but not multivariate Gaussian. The mixture

distribution can only contain features, or a combination of features, present in the Gaussian pool.

Therefore, any feature required in the final model must be in the pool. The Gaussian pool is

similar to the concept of factorial kriging (Goovaerts, 1997), where the nested variogram model is

a composition of L basic variogram structures, and the regionalized variable is a composition of L

independent, standard normal, spatial components operating at different geologic scales:

γ(h) =

L
∑

ℓ=1

γℓ(h) (4.6)

Z(u) =

L
∑

ℓ=1

bℓYℓ(u) + µ(u) (4.7)

where the coefficient bℓ is the square root of the variance contribution of γℓ. The key difference be-

tween the NMR and factorial kriging approaches is that the regionalized NMR variable is a weighted,

linear combination of non-linear, independent spatial components as Equation 4.1 highlights. With

the LMC or factorial kriging, the Yℓ independent factors are synthetic features of the model and are

not directly observed; only characterized by γℓ. The NMR requires explicit definition of a pool of

independent Gaussian factors. The pool may contain any structures. It is straightforward to gen-

erate realizations of the independent Gaussian factors with any unconditional simulation algorithm

such as SGS (Gómez-Hernández & Journel, 1993), LU simulation (Davis, 1987) or turning-bands

(Journel, 1974).

The choice of covariance structures for the Gaussian pool must consider the end goal of the

spatial mixture. The latent factors must be reasonable in the sense that achieving the objective is

possible. For example, if the final goal is short-range features, the pool must contain short-range

features. Long-range and short-range structures can produce a final mixture with medium-range

features. The mixing of factors causes destructive interference; that is, feature ranges in the final

mixture are shorter than their corresponding ranges in the pool. A pool of long-range structures

could conceivably generate short-range features through destructive interference and noise from the

nugget effect, though it is recommended the ranges of structures in the pool be slightly longer than

the ranges of the model objectives.

Pool considerations include (1) the conceptual geological model, (2) the L nested components of

the normal score variogram, (3) the L nested components of each indicator variogram model and

their potential asymmetry, (4) the downhole connectivity measures from the observed data and the

potential connectivity of extreme values, and (5) the composition of the objective function, discussed

in more detail in Section 4.3. The factorial kriging concept provides a reasonable starting point for
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the design of the Gaussian pool. An initial pool can be inferred by decomposing all variogram models

into their basic components (as in Equation 4.6). Each basic variogram component is a single licit

structure with three orientation parameters, three range parameters, a nugget of zero and a sill of

one. By convention, a pure nugget latent factor is added as the 0th factor.

Consider a small 2-D synthetic example where the goal of the NMR is to generate gridded real-

izations with strongly asymmetric 0.1 and 0.9 quantile indicator variograms. That is, the low-grade

two-point spatial continuity differs drastically from the high-grade. This scenario is challenging for

multivariate Gaussian simulation algorithms and has been discussed at length by many practitioners

(Gómez-Hernández & Wen, 1998; Guthke, 2013; Journel, 1983; Journel & Deutsch, 1993; Renard,

Straubhaar, et al., 2011). The maximum entropy characteristic of the multivariate Gaussian dis-

tribution tends towards disconnected extremes and maximum connectivity of intermediate values.

The destructuring of indicators away from the median is symmetric in the multivariate Gaussian

case. The NMR framework can overcome this challenge using a well-designed Gaussian pool and ω

bounds. Consider two factors with the goal of asymmetric indicator variograms. Factor 1 is a highly

anisotropic factor, oriented in a north-south direction, and factor 2 is isotropic with a range off ≈ 1
2

the domain size. The factors are activated using the MPL with ω1 = 4 emphasizing the high values

and ω2 = 1/ω1 = 0.25 emphasizing the low values, followed by linear combination (Equation 4.1)

and normal score transform. The top row of Figure 4.3 shows the factors in activated units (left

and center) and the normal score transform of the mixture (right). The mixture model is univariate

Gaussian but not multivariate Gaussian. Note the difference in activation units between the factors.

The bottom row shows the 0.1 (black) and 0.9 (red) indicator variograms of the final NMR mixture

in the north-south and east-west directions. The longer range, more-isotropic, low-grade continu-

ity is preserved through factor 2 and ω < 1, and the highly-anisotropic, higher-grade continuity

is preserved through factor 1 and ω > 1. This small example is illustrative of three key concepts

concerning latent factor design:

1. Latent factors should be designed in conjunction with ω constraints, targeting continuity in

specific grade ranges and the final model goals.

2. The ranges of factors are reduced through mixing. Mixing of factors cannot increase continuity

beyond the longest-range structures in the pool. Factor 2 in Figure 4.3 (top row, center) has an

isotropic variogram range of 64 meters. The 0.1 quantile indicator variogram range is reduced

to roughly 40 and 25 meters in the north-south and east-west directions, respectively.

3. Anisotropy ratios of factors are affected through mixing. The anisotropy ratio of factor 1

is roughly unchanged in Figure 4.3 (top row, left); however, the anisotropy ratio of factor

two is increased from 1:1 to ≈ 1.6:1. In general, isotropic factors will tend to become more

anisotropic, and anisotropic factors will become more isotropic.

The Gaussian pool must be reasonable concerning the optimization targets discussed in Section
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long as the longest range factor. Increase the variogram ranges of factors if required.

The next step is initializing the objective function components after establishing a reasonable

Gaussian pool. Optimizing the parameter vector θ occurs after this initialization. The following

section discusses details of the objective function, optimization algorithm and NMR parameter

inference.

4.3 Parameter Inference

The NMR approximates the mapping function, Fθ, between latent and observed space. This func-

tion is parameterized by the unknown vector θ. The unknown parameters are inferred from known

features: (1) the observed data, (2) the specified latent pool, and (3) the objective function compo-

nents. Features (2) and (3) are specified by the user and guide the parameter optimization process.

θ is a vector of 2 · (M + 1) real values of factor weights and MPL exponents:

θ = {a0, . . . , aM , ω0, . . . , ωM } (4.8)

where θ is optimized with the heuristic, genetic algorithm DE (Price, 2013). A population of

candidate solutions is initialized and then evolved to mimic natural selection. Each member of

the population has an associated “fitness” value, and the fittest members of the population are

carried over to subsequent generations. Through multiple generations of mutation and crossover

operations, the candidate solutions converge towards a solution that minimizes the objective function.

Parameter inference begins by simulating a set of L · (M + 1) unconditional realizations at the input

data locations, where L is the number of realizations and M + 1 is the number of independent

factors, including the nugget. These unconditional realizations permit the evaluation of the objective

function and evolution of θ.

4.3.1 Differential Evolution (DE)

The optimization of θ uses a gradient-free, heuristic genetic algorithm. Gradient-free methods are

typically employed when information about the derivative of the objective function is either costly

to obtain or unreliable and noisy (Conn, Scheinberg, et al., 2009). Differential evolution (DE)

is a global stochastic search algorithm that is practical for non-linear, non-differentiable objective

functions with a necessarily large search space (Rios & Sahinidis, 2013). Any objective function is

permissible, an advantage of DE.

DE is based on natural evolutionary processes where the fittest members of the population

survive through a “natural selection” process. An initial population of size NP x D is generated by

randomly sampling the objective function space within the defined constraints. NP is the number

of individuals in the population, and D is the problem’s dimensionality. Each vector from the initial

population is passed through the objective function to evaluate its evolutionary “fitness”. The basic
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DE algorithm generates a mutant vector from the population by adding the scaled difference between

two randomly selected vectors to a third randomly selected vector (Price, 2013). The algorithm then

generates a trial vector by recombining the mutant vector with the initial population’s current row

vector, considering a user-defined crossover probability. The trial vector’s fitness is compared to

the current population vector’s fitness in an evolutionary sense. If the trial vector’s fitness exceeds

the current population vector’s, it replaces it. Each iteration compares all population vectors to

a randomly generated trial vector and accepts the trial vector if its fitness exceeds the current

vector. Each algorithm iteration’s “surviving” vectors become the parent vectors or the next iteration

population. The following general steps summarize the DE algorithm:

1. Initialize counter i = 0

2. Initialize a random population of size j = 1, . . . , NP

3. If i < iMAX :

a) i = i + 1

b) For each member of the population, xj :

i. Select r other individuals where xr 6= xj and r is unique

ii. Generate mutant vj

iii. Generate trial tj through crossover between xj and vj

iv. If f(tj) < f(xj) replace xj with tj

c) Finish if i = iMAX

4. Return argminj f(tj)

The algorithm begins by randomly initializing a population of candidate vectors (Equation 4.8)

and evaluating each member’s fitness. A population size of 30-50 is a reasonable balance between

sufficient diversity and algorithm runtime, though there is no definitive guideline for population

size (Balkaya, Ekinci, et al., 2017; Piotrowski, 2017). Over the specified number of iterations, each

member of the population undergoes mutation. The NMR implementation employs a DE/current-

to-best/1 mutation strategy. Georgioudakis and Plevris (2020) describes the mutated vector as:

vj = xj + F (xbest − xj) + F (xr1 − xr2) (4.9)

where r1 6= r2 6= j, F is the scaling factor controlling the amplification of the difference vectors

and xbest is the current best vector in the population. The mutation process learns from the current

best vector (local searching of the solution space) while exploring the global search space through the

randomly selected difference vector. The parameter F is analogous to the learning rate in machine

learning problems. A smaller F value will lead to smaller mutation step sizes, and the algorithm

will take longer to converge. Larger F values increase the degree of solution exploration but may

lead to divergence. Price (2013) suggests there is no upper limit for F , however effective values are

almost always F < 1.0.
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This new mutated “genetic information” is crossed over to other population members based on

a crossover probability, CR, and a binomial crossover scheme. The trial vector is built from two

vectors: the mutant and another member of the population. Price (2013) describes the crossover as:

tj =















vj,k, if randk(0, 1) ≤ CR or k = krand

xj,k, otherwise
(4.10)

where tj is the trial vector, xj,k is the target vector, k denotes the 1-D vector index of the jth

member of the population, randk(0, 1) is a uniform random number ∈ [0, 1], and krand is a random

index. For each element in the target vector, if the uniform random number is less than CR, the

element is copied from the mutant vector vj,k; otherwise, the target element remains. The random

index krand ensures the target vector is not copied completely; at least one element of the mutant

vector passes to the trial vector. CR influences the diversity of the evolving population. Larger CR

values introduce more variation in the population, resulting in a greater search of the global solution

space, while smaller values may lead to stagnation (Georgioudakis & Plevris, 2020). Optimization

employs a non-linear crossover scheme following the work of Mohamed (2014):

CR = CRhi + (CRlo − CRhi) · (1 − i/N)4, i = 1, . . . , N (4.11)

The idea behind the non-linear crossover scheme is that the crossover rate is lower when pop-

ulation variance is high in early generations. This crossover scheme prevents extreme diversity or

potential divergence in the initial iterations. In subsequent generations, the population variance de-

creases as the vectors become similar, approaching the solution. In order to thoroughly explore this

more local search space, the crossover should be high, encouraging a diverse population of “good”

solutions.

4.3.2 Objective Function

The parameter vector θ is optimized heuristically through an objective function and DE. This ap-

proach is highly flexible as the objective function can take any form with any number of components.

The practitioner provides target spatial features of the final mixture from which a loss or objective

value can be calculated for the candidate mixture. The objective value is minimized through succes-

sive iterations reproducing the target spatial features. The possible objective function components

are (1) the continuous variogram, (2) indicator variograms, (3) cumulative run length frequencies,

and (4) the n-point connectivity function. Components may have multiple sub-components for each

indicator threshold. Run length frequencies and the n-point connectivity function are higher-order

multi-point statistics that better characterize non-Gaussian features than the two-point variogram.

The objective function comprises a weighted combination of C ≤ 4 objective components:

O =

C
∑

c=1

wcOc (4.12)
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where wc is the component weight and Oc is the component objective value. The objective

function quantifies how different the desired feature is from the target feature. Weighting the

objective function components is required as each component may exist in widely different units. For

example a variogram component is expressed in units of variance squared (
∑

[γtarget − γrealization]2)

while cumulative runs is expressed as the number of runs squared (
∑

[Rtarget−Rrealization]2), and may

be orders of magnitude different. A weighting scheme to prevent one component from dominating the

objective value follows the work of Deutsch (1992). The goal is to have each component contribute

equally to the overall objective value where each weight is inversely proportional to the average

change of that objective component (Deutsch, 1992):

wc =
1
¯|∆Oc|

(4.13)

The average change of the objective component is approximated numerically by averaging the

change of J = 1000 independent forward passes through the network:

¯|∆Oc| =
1

J

J
∑

j=1

|Oj
c −Oc|, c = 1, . . . , C (4.14)

where ¯|∆Oc| is the average change of component c, Oj
c is the updated objective value for iteration

j and Oc is the initial objective value of that component. The objective value is the sum of squared

errors between the experimental values calculated on the distribution derived from Equation 4.1

and the initialized target values. The objective function (Equation 4.12) is evaluated across all

simulated realizations and minimized in expectation. Though many components can enter the

objective function, one should consider contrasting objectives. For example, one cannot expect to

reproduce continuous and indicator variograms closely if the principal directions of continuity are

orthogonal. It is less clear how the specification of run frequencies or connectivity functions affect

variograms, though there are likely confounding factors.

4.3.3 Precedence

The application of precedence is an optional component of parameter inference. Precedence allows

the spatial features of a certain latent factor to take priority in the mapping function. A particular

factor can be given precedence during optimization if one desires its spatial features in certain

portions of the grade range. The algorithm enforces precedence by employing a sigmoid weighting

function where s(y) = 1
1+e−y . The weighting function modifies the forward pass (Equation 4.1)

through the network to:

x = ap · ϕ(yp, ωp) +

M−1
∑

m=0

ϕ(ym, ωm) · s(yp · x), m 6= p (4.15)

z = G−1
(

FX (x)
)

(4.16)

where a is the weight to the factor, subscript p is the factor index with precedence, ϕ(. . . ) is

77





4. Network Implementation

Algorithm 1 NMR parameter inference pseudocode.
1: Simulate unconditional realizations (LU or SGS):
2: for ℓ = 1, . . . , L do
3: for m = 1, . . . ,M do
4: Simulate Y

(ℓ)
m

5: end for
6: end for
7: Scale objective components:
8: for c = 1, . . . , C do
9: wc = 1

¯|∆Oc|

10: end for
11: Initialize population: pop(pooldim, popsize) ▷ Candidate solutions
12: Calculate fitness of population: fpop
13: best = minloc(fpop) ▷ Index of initial best solution
14: for i=1,…, its do ▷ Begin DE
15: for j=1,…, popsize do
16: mutant = mutation(pop(j)) ▷ Best-to-current mutation
17: θ = crossover(mutant) ▷ Binomial crossover
18: a, ω = vector_to_matrices(θ) ▷ Reshape θ to a, ω vectors
19: O = 0.0
20: for ℓ = 1, . . . , L do
21: z = network_forward(a, ω) ▷ Forward pass through network
22: iz = indicator_transform(z, thresholds)
23: for c = 1, . . . , C do
24: Oc =

∑

[γtarget
c − γrealization

c ]2

25: end for
26: O =

∑C
c=1 wc ·Oc

27: end for
28: O = O/L
29: if O < fpop(best) then
30: fpop(best) = O ▷ Update objective value
31: pop(best) = θ ▷ Retain the trial
32: best = j ▷ Track the new best
33: end if
34: end for
35: end for ▷ End DE

indicator variograms are asymmetric about the median and have connectivity of high-grade values.

These features provide a reasonable test case for applying the NMR workflow. Imputation concepts

are presented using the same data set in Chapter 5. Figure 4.5 shows a plan-view and long-section

through the synthetic data in Gaussian units. Figure 4.6 shows experimental variogram points

and fitted models for the normal score variable (a), the 0.1 indicator (b) and the 0.9 indicator (c).

For brevity, the median indicator variogram is not shown; however, the indicator variograms show

asymmetric destructuring about the median. Figure 4.7 shows the n-point connectivity function,

which approaches zero at five connected steps (≈ 50m). The objective function components are the

normal score variogram model, the 0.1 indicator variogram model and the 0.9 indicator variograms

(Figure 4.6 (a), (b), and (c)), and the n-point connectivity function (Figure 4.7).

The latent factor pool contains two structures: the long-range structure from the 0.1 quantile
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that approximate the objective function targets. This non-uniqueness emphasizes the importance

of considering the conceptual geological model when designing latent factors. Some latent pools

are feasible from a numerical perspective but should also be geologically reasonable. The following

section highlights non-uniqueness examples in NMR parameter inference. Potential non-unique

scenarios are summarized as follows:

1. The NMR solution may be an arbitrary mixture of factors even if the variogram objective

targets exist within the Gaussian pool.

2. A mix of short and long-range factors can reproduce a medium-range target.

3. A mix of only short-range factors cannot reproduce a medium or long-range target, and vice

versa.

4. A mix of factors with NS and EW orientations can reproduce a target orientation of NNE,

NNW, SSE, SSW, and so on.

Consider the same data configuration from Section 4.3.5. Synthetic data values are simulated

using the NMR with a known parameter vector, θ. For clarity of the example, only the reproduction

of the continuous variogram is measured. Different pools of latent factors are mixed to highlight

the non-uniqueness scenarios mentioned above. The weight to each factor, am, is interpreted as

the relative importance of each factor to the fit of θ. This weight can be compared to the known

weight used to simulate the data to measure similarity. The solution is non-unique if multiple latent

pools and varying parameters can reproduce the target. Another approach to understanding the

dependence of each latent factor on θ is a measure of permutation feature importance (PFI) (Fisher,

Rudin, et al., 2019). Feature importance can be calculated by permuting the input latent factors

and calculating the increase in error in the output of the fitted model. PFI is in the same units as

the objective function. Features that are pertinent to the network output will show more significant

errors when they are permuted. A caveat is that shorter-range structures (more random) will always

show less feature importance than longer-range structures (less random) as permutation introduces

randomness. Shorter range structures may still contribute to the final fit of the model without

showing high permutation feature importance.

Consider the first scenario listed above. The latent pool consists of the long-range structure of

the normal score variogram model, the long-range structure of the 0.1 quantile indicator variogram

model, the single structure of the 0.9 quantile indicator variogram model, and the nugget effect

for M = 3 + 1 latent factors. Intuition suggests that if that variogram model (or its elemental

components) exists within the Gaussian pool, the network will filter all irrelevant factors and weight

the important components appropriately. In practice, this is only sometimes the case. Table 4.11b

shows the a and ω elements of θ, plus PFI for comparison. Figure 4.11a shows the corresponding

variogram reproduction. The a’s show how much weight is given to factors two and three that

correspond to the nested structures of the indicator variograms. Only and portion of the weight is
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ness” further promotes the decomposition of all variogram targets into an initial latent Gaussian

pool.

4.4.2 Number of Data

The number of data is an important consideration in the NMR workflow. Experimental statistics

form the basis of the objective function components and are sensitive to the number of available data.

Experimental variograms are an inherently uncertain statistic, particularly in the presence of sparse

data (Ortiz & Deutsch, 2002; Pardo-Igúzquiza & Olea, 2012). The variogram value at lag vector h is

the mean of the squared differences between data values separated by h. This mean value depends

on the number of data, nh, entering the calculation, which depends on the data configuration and

variogram tolerance parameters. Uncertainty in the experimental variogram points transfers to

uncertainty in chosen model parameters, though this is only quantifiable with knowledge of the true

variogram model. Sequence objective components are calculated downhole and are more sensitive

to the total number of drillholes than the total data. However, the shape of the global distribution

of runs or the global n-point connectivity function ultimately depends on the number of data.

A synthetic model is simulated to assess the sensitivity of θ to data spacing or the total number

of available data. The model is simulated on a regular 56 x 56 x 56 m 3-D grid with a resolution of

1 m. The grid is sampled with regular, square data configurations ranging from 3 x 3 m to 20 x 20

m, with 1 m spacing in the vertical direction. Table 4.14a shows the resampled data configurations

and the corresponding number of data. The grid is also sampled at a 1 x 1 m spacing, a reference

distribution for calculating the “true” variograms, distributions of runs, and n-point connectivity

functions. A parameter vector θ is inferred for each data spacing, and the unconditional latent

factors are mapped to the observed space. The objective function value is the weighted sum of

squared errors (Equation 4.12) between the mapped latent values and the objective components

calculated from the reference distribution. Figure 4.14b shows the relationship between the square

data spacings and the objective function value.

The sum of the squared errors is inversely proportional to the total number of data, which is

the anticipated response. The curve decreases quickly to a spacing of 10 x 10 m or approximately

2000 data. Beyond this spacing, the curve is much flatter but does continue to decrease towards

the tightest spacing. This relationship suggests that somewhere between 2000 and 5000 data are

enough to provide a stable inference of θ. Beyond 5000 data, the error decreases slightly, though

these improvements may be negligible when considering the increase in computation time.

4.4.3 Computational Considerations

The NMR objective function is a computationally expensive calculation. This expense is primarily

due to experimental variogram calculation. As each population vector is an entirely new network,
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of the mapping function Fθ. The following chapter introduces the second workflow component:

imputation of latent factors. The ultimate modeling goal is gridded, non-Gaussian realizations for

mine planning. Conditioning those realizations requires data. Data realizations are imputed for each

latent factor such that they have the same spatial properties as the mixture model when mapped

through Fθ. The synthetic example introduced in Section 4.3.5 is carried forward into Chapter 5.
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Chapter 5

Latent Factor Imputation
This chapter presents a novel algorithm for imputing latent factors called sequential Gaussian re-

jection imputation (SGRI). Imputation of latent factors addresses a problem where all values are

missing or unknown. Conditioning gridded realizations of latent factors requires assigning valid

latent values at the data locations. The goal is to impute latent factors with a unique covariance

structure that, when combined with the inferred NMR mapping, returns the true observed values

at the data locations within a tolerance. Traditionally, this problem has been approached through

Gibbs sampling, though there are noted challenges in achieving stable convergence with spatially

correlated variables (Silva, 2018). SGRI is a straightforward approach that combines SGS, rejection

sampling and exact data matching. Conditional moments are calculated with SGS, ensuring the

spatial relationships are correct and iterative rejection sampling ensures the collocated multivariate

relationships are correct. Realizations of latent factors are generated and become conditioning data

for gridded realizations. When mapped to observed space, the realizations reproduce non-Gaussian

spatial features specified by the NMR and uni- and multivariate statistics. A small synthetic ex-

ample continued from Chapter 4 demonstrates imputing latent factors, conditional simulation and

mapping the latent space to observed space.

5.1 Imputation Concepts

Imputation is a method to “fill in” missing values (Little & Rubin, 2019). Missing values may be uni-

or multivariate, and multiple mechanisms or patterns of missingness may be possible. Multivariate

transformations, common in modern geostatistical workflows, such as PPMT (Barnett, Manchuk, et

al., 2014), require homotopic sampling, necessitating imputation methods. Ignoring these missing

values results in a loss of information or potential bias if the missingness mechanism is not random.

The simplest deterministic approach to imputation is taking the global mean or median of sampled

values or employing a regression model. This inference permits using all data in subsequent modeling;

however, it captures no uncertainty in the imputed values.

Single imputation involves imputing a single value for each missing data value. Little and Rubin

(2019) describes single imputation techniques as (1) mean imputation, where the global mean value

is substituted; (2) regression imputation, where a predicted value from the regression of the missing

variable on the observed variables replaces missing values; and (3) stochastic regression imputation

where a predicted value plus a residual replace missing values. The single imputation paradigm

indicates that the missing values are certain or constant. Though this imputation approach includes
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all data in statistical analysis, this assumption results in incorrect uncertainty as the true values

are unknown. Furthermore, datasets imputed with mean or regression imputation will not have

the correct mean or variance (Barnett & Deutsch, 2015). For these reasons, multiple imputation

techniques are preferred when characterizing imputation uncertainty, which is important.

Multiple imputation involves generating realizations of missing values, allowing assessment of

imputation uncertainty. A model of the conditional distribution of the missing values given the

observed values is inferred and then stochastically sampled, resulting in complete dataset realiza-

tions. Multiple imputation in a geostatistical context is often a constrained problem where the

imputed values must (1) reproduce underlying multivariate relationships and (2) reproduce the spa-

tial variability of observed values (Barnett & Deutsch, 2015). Collocated variables characterize

the multivariate relationships, and the covariance structure of the observed variables characterizes

the spatial variability. The conditional distribution from which the imputed values are drawn is

informed by these components (Hadavand & Deutsch, 2023).

A latent variable is a variable that is not directly observed but is assumed related to, and can

be inferred from, measured or observed variables (Everitt & Skrondal, 2010). Imputation of latent

factors is a challenging imputation problem where all variables are missing or unsampled (Little &

Rubin, 2019). The latent factors are not directly observed; they are a synthetic feature of the inferred

mathematical model. An example of a latent model is the LMR, which is composed of multiple latent

independent random factors operating at different scales (Goovaerts, 1992). The latent factors

are never measured or directly observed but characterize the regionalized random variable Z(u).

Simulating geologic latent variables subject to other observations or constraints is a key component

of truncated Gaussian categorical simulation techniques. The techniques in this chapter do not

directly consider categorical values as constraints, though they enforce the reproduction of the

true continuous values. Latent variable imputation is most commonly performed with a Gibbs

Sampler (Arroyo & Emery, 2020; Emery, Arroyo, et al., 2014; Madani & Bazarbekov, 2021; Silva &

Deutsch, 2017) or alternatively the sequential spectral turning bands method (Lauzon & Marcotte,

2020a, 2020b, 2023). The Gibbs sampler is a Markov chain Monte Carlo method used to sample

a multivariate distribution where direct sampling is complex but sampling marginal distributions

is simple. The Gibbs sampler is practical for indirectly sampling high-dimensional distributions

using univariate conditional distributions, though convergence of the algorithm is a known issue

with correlated variables (Silva, 2018). Many data require a restricted kriging search, which may

cause the simulated Gaussian vector to deviate from the desired covariance matrix (Emery, Arroyo,

et al., 2014).
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5.2 Gibbs Sampler

The Gibbs sampler (Geman & Geman, 1984) is an iterative simulation algorithm designed to sam-

ple an M -dimensional multivariate distribution f(y1, . . . , yM ) of M random variables {Y1, . . . , YM }

(Little & Rubin, 2019). It is particularly useful where sampling the joint distribution is difficult, but

sampling the marginal conditional distributions f(ym|y1, . . . , ym−1, ym+1, . . . , yM ), m = 1, . . . ,M

is possible. The following general steps summarize the Gibbs sampler:

1. Initialize counter t = 0

2. Initialize a valid arbitrary vector y(0)

3. For each dimension m = 1, . . . ,M :

a) t = t+ 1

b) set y(t)
j = y

(t−1)
j ∀j 6= m

c) draw y
(t)
m from f(ym|y1, . . . , ym−1, ym+1, . . . , yM )

d) finish if t = tMAX

4. Return y(t)

Over a sufficient number of iterations, the sampled vector converges on the joint distribution. In

a geostatistical context, the Gibbs sampler is based on the fact that the distribution of a Gaussian

vector Y conditioned on other values is Gaussian; the mean and variance of this distribution are

calculated by simple kriging (Emery, Arroyo, et al., 2014). The Gibbs sampler simulates both condi-

tional and unconditional vectors. Conditional Gibbs simulation is commonly used for latent variable

assignment in truncated-Gaussian techniques (Armstrong, Galli, et al., 2011; Silva & Deutsch, 2017)

where latent values must respect both the mapping between categorical and continuous space and

match the categorical observations when truncated. Imputation of latent factors in the context of

this work does not require satisfying inequality constraints at the data locations. However, it does

require satisfying the mapping condition between observed and latent space.

Silva (2018) documents Gibbs sampler convergence issues related to restricting the search neigh-

bourhood for updating the marginal conditional distributions. Considering all n data requires the

inversion of a rank n−1 covariance matrix which becomes unpractical with increasing n. Restricting

the search to reduce the size of the covariance results in an approximation of the conditional mo-

ments and affects algorithm convergence (Emery, Arroyo, et al., 2014; Lauzon & Marcotte, 2020b)

as realization quantiles diverge to extreme highs and lows with increasing iterations. Lantuéjoul

and Desassis (2012) proposed the propagative Gibbs sampler to avoid the matrix inversion require-

ment, though Silva (2018) shows convergence issues are still present with greater than two latent

variables and complex truncation rules. These convergence challenges motivate the development of

a new simulation algorithm for the imputation of latent geologic variables. The SGRI algorithm also
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utilizes a restricted search neighbourhood to calculate conditional moments. However, the relaxed

constraints relative to imputation for truncated Gaussian methods allow for stable convergence.

5.3 Sequential Gaussian Rejection Imputation

Generating NMR realizations requires imputation of latent factors at the data locations. These

imputed factors become conditioning data for simulation on a regular grid. The problem involves

assigning M unknown latent Gaussian values with the correct spatial structure at the data loca-

tions. When mapped through the NMR, these imputed values must also reproduce the observed

regionalized random variable Z(u). This solution is non-unique, and multiple combinations of latent

factors could reproduce the observed values. In order to correctly transfer this latent uncertainty, a

multiple imputation (Barnett & Deutsch, 2015) approach is adopted where each realization of Z(u)

is generated with a unique imputed realization, y.

SGRI is an iterative simulation algorithm for imputing continuous latent Gaussian variables

subject to a mapping constraint Fθ

(

y
)

= z ± α, where α is a data matching tolerance. SGRI first

iteratively samples all univariate conditional distributions of the M -dimensional latent distribution

until the mapped value is within a coarse tolerance with the observed value. After the simulation

meets the coarse tolerance, a polishing step iteratively perturbs each initial imputed value until the

mapped value is within a second, finer tolerance with the observed value. At any point during the

perturbation, the sample is rejected if the new value does not decrease the error between observed

and imputed. The rejection component of the algorithm is not rejection sampling in the strict

statistical sense but rather a constraint to ensure the solution remains within a space of feasible

solutions. Initial sampling of the conditional distributions ensures the correct covariance structure

for each latent factor, and iterative polishing ensures data reproduction. Though Armstrong, Galli,

et al. (2011) suggests rejection sampling is not feasible for latent imputation, the relaxed constraints

relative to imputation for truncated-Gaussian techniques allow for stable algorithm convergence.

Latent factors are imputed such that when mapped through the NMR, the observed values are

reproduced exactly, and each latent factor reproduces its covariance structure. Figure 5.1 shows this

relationship schematically with a sketch of a drillhole with i = 1, . . . , n observed data locations. The

latent space consists of m = 1, . . . ,M factors to be imputed at each observed location. The observed

values are a function of the mapped latent factors. It is straightforward to generate independent

Gaussian values that reproduce observed values; however, latent spatial continuity must also be

correct. Fm(y) = 1, . . . ,M CDFs must be standard normal, and the spatial distribution must

reproduce variograms γm, m = 1, . . . ,M .

The three general steps of the SGRI algorithm are as follows:

1. Calculate m = 1, . . . ,M conditional means and standard deviations at the imputation location

ui using SK.
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function Fθ is inferred using unconditional realizations. There is no conditioning mechanism to

ensure the low- or high-grade features of yp align with low- or high-grade features in the data. Fθ

is non-unique and multiple latent vectors can reproduce zi. Therefore, it is possible, for example,

to have a negative value of yp where zi is a large positive value. This scenario is not ideal if we

explicitly want the spatial features of yp where zi is high and warrants the use of constraints on yp

during imputation.

Constraints can be thought of as “seeding” some number of high or low values of yp prior

to imputation by using a semi-random path. The constraint threshold and an exclusion radius

parameter control the number of seeded values. A threshold is specified, and all values in the

observed data, either above or below, are flagged. These data locations are the initial seed locations.

The initial seed locations are sorted in descending (high values) or ascending (low values) order based

on the observed grade value. The first seed location is visited, and the algorithm removes all other

initial seed locations within the exclusion radius from the available possible seed locations. The

next valid seed location is visited; again, the algorithm removes all other locations within the radius

from the possible locations. This process continues until all initial seed locations are included or

excluded. The included seed locations become the first n locations in the imputation path. Imputed

values of yp at these locations are constrained to be above or below the threshold through rejection.

The initial excluded seed locations and all other data locations become the remaining ndata − n

locations in the imputation path. Imputation of the remaining M − 1 factors uses a strictly random

path through the locations.

The exclusion radius is an important parameter as the mean and variance of the imputed yp

distribution are sensitive to the number of constrained locations. For example, if the 0.9 quantile is

used as a threshold with no exclusion radius, approximately 10% of the imputation locations will be

seeded. This strong degree of conditioning can inflate the mean and variance of the imputed values

and cause a departure from the standard normal distribution. By enforcing an exclusion radius,

only a subset of the locations are seeded, and the local effect of the conditioning is less pronounced.

Seeding many locations may also negatively affect other factors or lead to non-convergence. Too

strong of a constraint on yp may lead to a scenario where the remaining factors lack sufficient

flexibility to reproduce the observed value when mapped. Practice shows that an exclusion radius

of 5-10 times the composite length is sufficient to impart the desired factors of yp above or below

the threshold without negatively affecting convergence.

5.3.2 Conditional Moments

The algorithm begins by determining a random (unconstrained) or semi-random (constrained) path

through all data locations to be imputed. At each imputation location, the conditional moments
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are solved using the normal equations:

ym,i ∼ N
(

µm,i, σm,i

)

(5.1)

µm,i =

Nm,i
∑

j=1

λj,i × ym,j (5.2)

σ2
m,i = 1 −

Ni
∑

j=1

λm,j,i × Cm,j,i (5.3)

Nm,i
∑

j=1

λm,j,i × Cm,j,k = Cm,k,i ∀k ∈ Nm,i (5.4)

where Nm,i is the neighbourhood about location i using search anisotropy derived from Ym; this

could either be all neighbours or a restricted search around location i. Cm,j,k is the covariance

between spatial locations j and k for latent variable m. The system of equations is solved M times

under the assumption of zero mean and unit variance, resulting in a vector of conditional means and

standard deviations. Retaining all conditional moments allows fast, repeated simulation of spatially

correlated latent values in the coarse search phase.

5.3.3 Coarse Search

The coarse search begins after calculating the M conditional moments at location i. The goal of

the coarse search is to find the trial vector ỹi that closely reproduces zi and has the correct spatial

covariance. Values are drawn from each valid conditional distribution through MCS for a set number

of iterations, j:

ỹ
(j)
m,i = r∈[0,1] × σm,i + µm,i ∀M (5.5)

ỹ
(j)
i = {y

(j)
1,i , y

(j)
2,i , . . . , y

(j)
M,i} (5.6)

where r∈[0,1] is a uniform random number between 0 and 1. Simulated ỹ(j)
m,i values are practically

constrained ∈ [−5, 5]. The trial observed value is calculated by mapping Fθ(ỹi). Coarse imputation

error, e1, is the absolute difference between the trial value, z̃(j)
i , and the true observed data value:

z̃
(j)
i = Fθ(ỹ

(j)
i ) (5.7)

e1 = |z̃
(j)
i − zi| (5.8)

ỹi =















ỹ
(j)
i , if e1 < α1

ỹ
(j−1)
i , otherwise

(5.9)

If the error, e1, is less than the first rejection tolerance, α1, the trial vector ỹ
(j)
i is retained as the

initial latent vector at the ith location, otherwise it is rejected. If the coarse search fails to converge

after the specified number of iterations, the sample ỹ(j)
m,i is flagged for resimulation. The values of

both ỹ
(j)
m,i and a small neighbourhood of the nearest samples are reset. Resimulating the nearest

96





5. Latent Factor Imputation

zi and z̃i. ∆zt tells us which direction to move, and the tornado bars tell us which factor(s) are

sensitive enough to achieve the target delta. a represents the delta between the most sensitive factor

and the target delta, b is equal to the target delta, and c is equal to the largest possible change in

z̃i given the current vector ỹ
(j)
i . Suppose the target delta lies within one or more of the sensitivity

bars, as shown in Figure 5.2. In that case, the algorithm adjusts the least sensitive factor to solve

Fθ(ỹ
(j)
i ) = zi ± α2 by performing a binary search (Nowak, 2008) on the interval ỹ(j)

m,i ± ∆y. The

least sensitive factor is selected to have the smallest possible impact on the initial vector from the

coarse search. Suppose the target delta lies outside the maximum sensitivity of any factor. In that

case, the most sensitive factor is perturbed to the maximum amount, and the algorithm reassesses

the sensitivity of all latent factors. This perturbing and sensitivity assessment loop repeats until a

binary search can solve the problem. The benefit of this approach is the latent vector ỹ
(j)
i is always

being perturbed in the correct direction, and ∆zt is always approaching zero. Given a sufficient

number of iterations, solution polishing must converge. That being said, there may be situations

where the required amount of polishing negatively influences the covariance structure imposed in

the coarse search. If at any point |z̃
(j)
i − zi| < α2 the loop breaks as Fθ(ỹ

(j)
i ) ≈ zi. Practice shows

that ≈ 0.01 is a reasonable tolerance for t2.

Assessing latent sensitivity permits the calculation of a measure of “difficulty” in the polishing

phase. Consider the equality:

b =
∆zt − c

∆zt

(5.10)

If the target delta falls within the sensitivity of one or more factors, b < 0, and the correct vector

can be solved with binary search. In this scenario, solution polishing converges quickly. If the target

delta falls outside the sensitivity of all factors, b > 0, factor sensitivity must be repeatedly assessed,

and convergence takes additional iterations. This ratio provides insight into locations or observed

samples that are more difficult to impute. However, it is possible there are locations that are difficult

to impute but require little polishing. Consider a location where resimulation is necessary for the

coarse search, but the algorithm eventually generates a latent vector where e1 ≈ α2. This scenario is

still difficult to impute, though b does not reflect this. When evaluating problematic locations, the

number of resimulations at each data location should also be considered. Data locations persistently

challenging to impute across realization are subject to further investigation. Algorithm 2 summarizes

the complete pseudocode for the SGRI algorithm.

5.3.5 Imputation Checks

There are any number of latent vectors ỹi that can reproduce the observed value zi. As the solu-

tion is highly non-unique, multiple imputed realizations of the latent factors should be considered.

Considering a multiple imputation framework transfers the uncertainty in the latent variables to

subsequent model realizations (Silva & Deutsch, 2017). SGRI imputes realizations of latent vari-
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Algorithm 2 SGRI pseudo code.
1: Initialize search parameters based on covariance
2: for ℓ = 1, . . . , L do ▷ Main loop over realizations
3: establish random or semi-random path through data
4: nresim = 0
5: for i = 1, . . . , ndata do ▷ Loop over data locations
6: for m = 1, . . . ,M do ▷ Loop over factors at ith location
7: establish search neighbourhood Nm,i

8: calculate conditional moments µm,i, σ2
m,i

9: end for ▷ End loop over factors
10: j = 0
11: while e1 < α1 do ▷ Start coarse search
12: j = j + 1
13: for m = 1, . . . ,M do
14: ym,i = r∈[0,1] × σm,i + µm,i ▷ Monte Carlo simulation
15: end for
16: z̃i = Fθ(ỹ

(j)
i )

17: e1 = |z̃
(j)
i − zi| ▷ Compare to observed value

18: if j > iter1 then
19: break
20: end if
21: end while ▷ End coarse search
22: if e1 > α1 then
23: nresim = nresim+ 1
24: cycle data loop
25: end if
26: j = 0
27: e2 = e1

28: while e2 < α2 do ▷ Start solution polishing
29: j = j + 1
30: assess latent sensitivity
31: if a

b
< 0 then

32: solve ỹ
(j)
i with binary search

33: else
34: set most sensitive factor to its bound
35: reassess latent sensitivity
36: end if
37: z̃i = Fθ(ỹ

(j)
i )

38: e2 = |z̃
(j)
i − zi| ▷ Retain new absolute difference

39: if j > iter2 then
40: break
41: end if
42: end while ▷ End solution polishing
43: end for ▷ End loop over data locations
44: if nresim > 0 then
45: resimulate at nresim locations
46: end if
47: end for ▷ End loop over realizations
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ables with the correct spatial structure, are standard normal, and are independent. The minimum

acceptance criteria of the imputed values in practice are:

1. Mapping the latent vector ỹi (red in Figure 5.1) to observed space via Fθ reproduces the

observed value zi ± α2 (blue in Figure 5.1).

2. Latent factors are standard normal: E
{

Ym

}

= 0, E
{

Y 2
m

}

= 1

3. Latent factors are independent: E
{

Ym,iYn,j

}

= 0, ∀ m 6= n, ∀ i 6= j

4. Latent factors reproduce their respective variogram model γm(h), ∀ h

Consider the same small synthetic example from Chapter 4; the problem involves imputing three

latent factors at 746 data locations. Factor three is the nugget effect. The SGRI algorithm is

run using a search neighbourhood of 40 nodes, a maximum of 20,000 and 10,000 iterations for the

coarse search and polishing steps, respectively, and rejection tolerances of 0.1 and 0.01 for the coarse

search and polishing steps, respectively. Figure 5.3 shows a scatter plot matrix between all imputed

factors, the mapped values in observed space, z̃, and the true data values, z for a single realization.

As expected, the correlation between z and z̃ is 1.0. The top row of the matrix in Figure 5.3 is

somewhat redundant due to this perfect correlation; however, it highlights the exact data matching

and validates item (1). The marginal distributions (histograms in Figure 5.3) are all standard

normal validating item (2). Deviation from the standard normal distribution is possible, and one

must consider the variogram range relative to the domain size. Long-range variogram structures may

generate low-variance imputed distributions. Imputed latent factors are uncorrelated with roughly

concentric density contours and |ρ| < 0.10 validating item (3). The relationships between factors

1 and 2 with the mapped values highlight the influence of the ω parameter. Factor 1 is correlated

with the mapped value when it is low, and factor 2 is correlated when it is high. Figure 5.4 shows

variogram reproduction for each imputed factor. There is no nugget effect variogram model, so the

reproduction is not shown. The red-shaded area highlights uncertainty in the variogram across all

imputed realizations. The expected imputed variograms reproduce the single structure variogram

models reasonably well for 746 data.

Beyond the minimum acceptance criteria, one should investigate data locations requiring multiple

resimulations. Samples at transitions between extreme grade ranges or local neighbourhood outliers

may require multiple simulation passes for ỹi to converge. Table 5.1 shows six adjacent samples from

a single drillhole, where z is the observed value, z̃ is the mapped standard normal value, Factors 1-3

are the imputed latent Gaussian values, b is the ratio in Equation 5.10, and nresim is the number

of resimulations at the given data location. The third sample represents a transition from 0.563 to

-1.306 or approximately the 71st to the 9th quantile of the Gaussian distribution. This short-scale,

extreme change is a challenge for the SGRI algorithm, though it can converge with a sufficient

number of rejection iterations. It is noteworthy that b < 0, or the coarse search was able to produce

a latent vector ỹ
(j)
i where minimal solution polishing is required.

100









5. Latent Factor Imputation

As the gridded models reproduce the data at the data locations (particularly implementations of

SGS that assign data to grid nodes), an additional step is required to check downhole statistics.

For checking runs and n-point connectivity reproduction, the entire drillhole configuration is trans-

lated within the domain. This translation retains the drillhole configuration but allows sampling

simulated values from the grid. The resampled values are then used to check multi-point statistical

reproduction.

5.4.1 Simulation Checks

The minimum acceptance criteria for checking continuous realizations (Leuangthong, McLennan,

et al., 2004) must be applied, similar to any other geostatistical model. The gridded realizations

must reproduce (1) the data values at data locations, (2) the declustered input CDF and summary

statistics for the latent Gaussian pool and the original variable, and (3) the input covariance model,

both for the latent Gaussian pool and the original variable.

Figure 5.8 shows CDF reproduction (left) and data reproduction (center) for the gridded NMR

realizations in Gaussian units. The Gaussian realizations are, on average, standard normal, and the

data values are reproduced exactly at collocated grid nodes. In some locations, more than one data

value occupies a single grid node, and there is a deviation from the 1:1 line in the scatter plot. In

this scenario, the data value closest to the grid node centroid is retained for comparison. Figure

5.8 (right) shows CDF reproduction of the gridded realizations back-transformed to original units.

The realizations, on average, reproduce the declustered CDF. The final component of the traditional

model checks is checking continuous variogram reproduction. Figure 5.9 shows gridded continuous

variogram reproduction for the NMR realizations in Gaussian units. As the realizations are generated

with a mapping function that considers multiple variogram components, there are some deviations

from the input continuous model. In this example, the 0.1 and 0.9 quantile indicator variograms

influence the continuous variogram reproduction in the major and minor directions. The 0.9 indicator

variogram introduces a slight increase in variance in the short-range lags and a slight decrease in

the longer-range lags from the 0.1 indicator variogram. Continuous variogram reproduction remains

reasonable, though the influence of other objective components is evident in the covariance structure

of the final gridded models.

Beyond the traditional simulation model checks, the NMR realizations must be checked to repro-

duce all the objective function components. These checks include indicator variograms and sequences.

Figure 5.10 shows gridded reproduction of the strongly asymmetric 0.1 and 0.9 quantile indicator

variograms. The gridded models closely reproduce the non-Gaussian indicator structure that is

apparent in Figures 5.6 and 5.7, though there is some deviation at shorter lags. This deviation is

attributed to shorter range lags having few pairs given the data configuration. In a mining context,

one is predominantly concerned with high values, and in this example, cumulative run frequencies
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lead to departure from the standard normal distribution. SGRI implements optional constraints

by seeding some number of imputation locations with values above or below a threshold, ensuring

the imputed values are extreme where observed values are extreme. The constraints are enforced

through rejection where yp values must be above or below the threshold.

SGRI is the second component the NMR framework for simulation of non-Gaussian spatial

features. Chapters 4 and 5 present a synthetic example of the NMR workflow highlighting all aspects

of latent factor design, parameter inference, factor imputation and simulation, factor mapping and

checking NMR realizations. The following chapter takes these components to a real 3-D dataset

where the connectivity of extreme values is a defining characteristic of the data.
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Chapter 6

Case Study
This chapter presents an application of the complete NMR workflow to a real 3-D dataset. The

NMR workflow is designed to capture the spatial features of non‐Gaussian distributions in a way

that the multi-Gaussian assumption and a LMR cannot. The case study aims to construct an

NMR spatial model and compare it to a traditional SGS model. The dataset comes from a mineral

deposit where the project operator observes non-Gaussian characteristics within drillholes that are

not well reproduced by SGS. Within local stope volumes SGS cannot reproduce the connectivity of

high-grades present in drillhole data.

The workflow consists of (1) inferring the parameters, θ, of the latent-observed mapping function,

Fθ, using the methodology from Chapter 4, (2) imputing the latent factors at the data locations using

the methodology from Chapter 5, and (3) conditional simulation of the imputed factors on the grid.

The learned mapping is non-linear. The idea is that the NMR realizations can capture non-Gaussian

spatial features such as asymmetric indicator variograms and connectivity of extreme values. Twenty-

five conditional realizations are generated with the NMR, and pertinent model statistics are checked

and compared to SGS. Defining characteristics of the deposit and mineralization type are omitted

for confidentiality purposes.

6.1 Exploratory Data Analysis

The complete dataset consists of 27, 983 values nominally composited to 5 meters. All coordinates

are transformed such that the spatial centroid of the data is (x = y = z = 0). For cross-validation

purposes, approximately 30% of the data is withheld as a “test set”, and the remaining 70 % is the

“training set”. Figure 6.2 shows plan-view, east-west and north-south sections through the training

dataset coloured by the variable of interest. The test data is not exposed to any subsequent modeling

step. Figure 6.1 shows CDFs and basic summary statistics for the training and test datasets. There

is a notable imbalance between the training and testing sets, with the latter being 14% higher

grade. The testing set is not a random data partition but rather a collection of data drilled after a

certain date. This choice is a reasonable approach to partitioning as it ensures complete drillholes in

both datasets, preventing optimistic metrics with leave-one-sample-out style cross-validation. The

downside of this approach is that the holes drilled after the cutoff are for stope definition purposes,

leading to a higher mean grade. This imbalance must be considered when assessing the reproduction

of the test set. All modeling considers the training set only, and Section 6.6 considers the test set.

Experimental variograms are first calculated using an omni-directional search that informs the
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Table 6.4: Covariance structures of the Gaussian pool (excluding the nugget).

Factor 1 Factor 2 Factor 3
Contribution 1.000 1.000 1.000
Model Shape exponential exponential spherical

Angle 1 277.0 277.0 0.0
Angle 2 20.0 20.0 -90.0
Angle 3 30.0 30.0 0.0
Range 1 47.6 300.0 200.0
Range 2 45.5 124.9 100.0
Range 3 45.5 100.0 100.0

to ω = 1. The sigmoid weight parameter controls the weight to remaining factors when the factor

with precedence is above or below a particular threshold. A negative weight emphasizes high values,

and a positive weight emphasizes lows. As the weight magnitude increases, the threshold approaches

zero and trends towards a binary step function. The weight to other factors is ≈ 0 when y3 > 3.0

with a sigmoid weight of -1.5.

Table 6.5: ω bounds by factor.

ωmin ωmax precedence σ wt
Factor

1 0.25 4.00 3 -
2 0.25 4.00 2 -
3 1.00 4.00 1 -1.50
4 0.25 4.00 4 -

The number of factors in the Gaussian pool dictates the network architecture. The pool consists

of three structures, plus one for the nugget, for four latent Gaussian factors, resulting in an input

layer of four nodes. Each input node has a single connection weight to a single hidden layer of the

same dimension as the input. The network has 2 ·(M+1) = 8 trainable parameters: four connection

weights, and four ω values. Table 6.6 shows DE parameters. The indicator thresholds used for

optimization correspond to the indicator variograms in Section 6.1, that is, G−1([0.1, 0.5, 0.9]) where

G−1 is the inverse of the Gaussian CDF. Runs consider a maximum of 10 steps (≈50m).

Table 6.6: Differential Evolution parameters.

Population Lower bound Upper bound F CR lo CR hi Iterations
value 30 0.25 1.00 0.80 0.10 0.80 1500

Network optimization runs for 1500 iterations, resulting in a reasonably stable objective function

value. The objective function value (Figure 6.9a) does not reach zero as it considers the expected

value across all realizations. Though the objective function components are weighted, any deviation

in the number of runs can lead to larger objective function values. Table 6.9b shows the final

optimized connection weight and ω parameters. Figure 6.10 shows plan-view, east-west and north-

south sections through the first unconditional realization at the data locations generated through

parameter inference. Objective components are calculated using these realizations.
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6.3 Latent Factor Imputation

The optimized NMR parameters from Section 6.2 are the basis for latent factor imputation. The

optimized mapping function, Fθ, and Gaussian pool are imputation inputs, simulating latent factor

realizations via SGRI. A high-grade constraint threshold at the 0.9 quantile (in Gaussian units) and

an exclusion radius of 40 m are enforced for imputation. Enforcing the high-grade constraint ensures

that some high values of the factor with precedence are seeded where the observed data values are

high. The exclusion radius ensures that not all of these locations are seeded, as seed locations must

be a minimum of 40 m apart. At the final seed locations, the value of the factor with precedence

must be above the threshold. Seeding too many imputation locations may cause a strong departure

from the standard normal distribution. Using the 0.9 quantile and a 40 m radius leads to ≈ 1.2% of

the data locations being seeded. 25 realizations are imputed for each factor specified in the Gaussian

pool, plus the nugget effect. All imputed realizations are checked to ensure they (1) reproduce the

data within the specified polishing tolerance (Table 6.7); (2) imputed realizations are on average

univariate Gaussian; (3) imputed factors are on average uncorrelated, and (4) each imputed factor

on average reproduces its single structure variogram model.

Table 6.7: Imputation parameters.

Parameter Value
Max nodes 40

Max iterations: coarse 25000
Max iterations: polish 15000
Reject tolerance: coarse 0.10
Reject tolerance: polish 0.01

Constraint quantile 0.90
Exclusion radius 40

Figure 6.14 shows a scatter plot matrix of the original data values, plus the first realization of

the mapped imputed values and all latent factors. Scatters are coloured by KDE where warmer

colours correspond to a higher density of points. The top row of the matrix is somewhat redundant;

however, it highlights the perfect correlation between the observed data and mapped imputed values.

The marginal histograms show that each latent distribution is standard normal, with reasonable

statistical fluctuation. The scatter plots between each latent factor show roughly concentric bivariate

Gaussian density contours and |ρ| < 0.10. The average correlation coefficient across all realizations

is within this tolerance, suggesting the latent factors are effectively uncorrelated. Figure 6.15 shows

variogram reproduction for each imputed factor. There is some deviation from the specified target

models, though overall, variogram reproduction is reasonable. Deviation from the specified model is

largely present in factor 2, which shows decreased short-range continuity. This deviation is attributed

to the effect of strong conditioning and does not appear to impart any negative consequences in the

final NMR model.
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coded by stope ID and compared directly to simulated realizations within the same volume. The

following section summarizes model performance.

6.6 Model Comparison

The following section compares the NMR and SGS realizations at a global scale and conditional

to high-grade stope volumes. These tests show how well each set of realizations reproduces data

the model has not seen. The main focus of the NMR implementation is getting the high-grade

connectivity correct at the local stope volume. Modeling results are discussed globally across all

test set data locations and locally within high-grade stope volumes. Recall from Figure 6.1 that the

test set is systematically higher grade than the training set. Though the conceptual geologic model

is embedded in the NMR, it is unrealistic to expect a data-driven model to reproduce unseen data

that is significantly higher or lower grade. For this reason, stopes where the deviation between the

test and training set’s mean grade is greater than 20% are excluded from the comparison. Spatially

partitioning complete drillholes into training and test sets with balanced features may not always

be possible with geologic data.

6.6.1 Global Results

The most straightforward check of model performance is the prediction error at test set locations.

Each value from the test set is compared to the simulated value at the data location for both NMR

and SGS models. The prediction error is the difference between the true and simulated data values.

Figure 6.24 shows the distributions of prediction errors across all realizations for both the NMR and

SGS models. Both histograms are symmetric and centered about zero. The NMR model shows a

slight reduction in error with a mean of −0.13 versus −0.14 for the SGS model. The negative means

indicate that both models underestimate the true values, which is expected due to the increased

mean grade of the test set relative to the training set. Figure 6.25 shows cross-validation scatter

plots between NMR and SGS realizations and true data values. Again, the NMR model shows

similar root mean squared error (RMSE) and the correlation between the estimate and the truth.

Probabilistic accuracy can be assessed by considering the local conditional CDFs defined by the

set of simulated realizations at the test set locations. Probabilistic accuracy amounts to checking

the number of true values that fall within a given probability interval. For example, 50% of the true

values should fall within the 0.5 probability interval (between the 25th and 75th quantiles). The

true value comes from the test set, and the realizations define the probability interval. Accuracy

plots are generated by plotting the actual fraction of true values within the interval against the

probability interval. An accurate and precise model will plot with points close to the 45-degree line.

Figure 6.26 shows accuracy plots for the NMR and SGS models. Both models plot close to the

45-degree line, suggesting reasonable modeling techniques. Uncertainty is slightly wide for the NMR
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NMR shows up to a 7% improvement relative to a conventional SGS workflow. This improvement is

modest, but deemed significant in a local, high-grade context. Comparison of composite averages to

stope volume expected values is assumed to be an adequate proxy to production reconciliation data;

this “test” dataset scenario is likely as close as we can get without having true as-mined shapes and

production grade information. It is also important to note that the stope optimization workflow is

not generating a true optimal shape. The stope shapes are a geotechnically feasible, heuristic proxy

to mimic the mining selectivity.
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Chapter 7

Conclusions and Future Work
The connectivity of extreme values is of great practical importance. In most real-world scenarios,

transfer functions are sensitive to extreme values, and correctly characterizing their two- and multi-

point spatial connectivity can have significant downstream impacts. A small proportion of extreme

gold grades may be the economic foundation of a mine, while extremely low permeability facies may

preclude the production of a hydrocarbon reservoir. The geologic processes responsible for generating

these features are not completely disorganized; strings of connected extreme values exist in nature

are likely the most consequential spatial features. Traditional estimation and simulation algorithms

are maximum entropy models based on multivariate Gaussian assumptions. Though practical from a

dimensionality perspective, using Gaussian RFs smooths high grades and tends toward disconnected

extreme values. These reasons motivate the development of the NMR framework. A mixture of

Gaussian RF components may result in a highly non-Gaussian RV. The NMR exploits this idea while

considering high-order connectivity measures from strings data and the potential spatial asymmetry

between extreme highs and lows.

7.1 Summary of Contributions

The main contribution of this thesis is the development of the NMR framework for simulating con-

tinuous non-Gaussian spatial fields. The framework includes important contributions to quantifying

non-Gaussianity from spatial data and multiple imputation for latent Gaussian factors.

7.1.1 Extreme Value Connectivity

The connectivity of extreme values is an important metric for understanding the potential short-

comings of multivariate Gaussian models. Extracting multi-point connectivity measures from drill

strings is not a new idea (Boisvert, Pyrcz, et al., 2007; Ortiz, 2003); however, using the n-point

connectivity function and distribution of runs to calculate a proxy for non-Gaussianity is a contri-

bution of this thesis. This non-Gaussianity metric can provide valuable insight into spatial regions

poorly modeled by a Gaussian RF. These regions could be sub-domained or simply warrant further

investigation.

Extreme value connectivity is a defining feature of the NMR framework that sets it apart from

traditional multivariate Gaussian simulation algorithms. Introducing high-order statistics to the

mixing model overcomes the maximum entropy characteristics of a Gaussian RF. It is shown that

generating NMR realizations with explicit consideration of extreme value connectivity results in
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spatial connectivity features that a traditional algorithm cannot reproduce. The n-point connectivity

function and distribution of runs provide straightforward access to high-order statistics without using

a training image.

7.1.2 Network Model of Regionalization

The NMR is a material contribution to this thesis. It expands the LMR concept for univariate spatial

modeling. Both models construct a random function as a combination of independent, standard

normal factors, each with its basic covariance model operating at different spatial scales. The key

difference with the NMR is that the combination of factors is not limited to be linear. Activation

of the latent factors with a novel MPL function prior to the linear combination permits the spatial

structure of certain features to be imparted on the distribution’s tails. Traditionally, the LMR is

limited to four or five factors, while there is no practical limit with the NMR. This flexibility allows

the creative mixing of latent covariance structures, achieving complex modeling goals. Structures

with various anisotropies and orientations can be combined to reproduce non-stationary features. A

key concept of the NMR is that a mixture of Gaussian factors can be highly non-Gaussian.

The NMR is parameterized by 2 · (M + 1) parameters: M + 1 weights and M + 1 power law

exponents. Inference of these parameters is an inverse problem. The spatial features of the ob-

served data are known. However, the parameters that map the latent space to the observed space

are unknown—framing this as an optimization problem permits using a multi-component objective

function. Through this objective function, the NMR gains the ability to reproduce statistics beyond

the second order. Two- and multi-point statistics are introduced directly through the optimization

process. The network parameters are optimized such that the NMR output has the correct con-

tinuous and indicator variogram models, n-point connectivity function, and distributions of runs.

The NMR approximates the non-linear mapping function between the latent factor space and the

observed data space. The approach is highly flexible, with no limitations on the number of latent

factors or objective function components. The NMR is an important contribution to geostatistics,

particularly for continuous simulation of high-order connectivity features.

7.1.3 Sequential Gaussian Rejection Imputation

SGRI is a novel algorithm for multiple imputation of latent factors within the NMR framework

and is a practical alternative for the Gibbs sampler. The algorithm is designed to overcome Gibbs

sampler convergence issues with spatially correlated data (Silva, 2018). SGRI combines elements

of SGS and rejection sampling to impute spatially correlated latent variables that reproduce data

observations when mixed through the NMR. The algorithm directly samples all univariate condi-

tional distributions of the M -dimensional latent distribution until the mapped value is within a

specified tolerance. Sampling the conditional distributions ensures variogram reproduction. Next,
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each sampled value is iteratively perturbed until the mapped value matches the observed value.

The algorithm rejects samples anytime they do not improve the solution. Iterative refinement of

the solution ensures the collocated multivariate relationships are correct while still honouring the

spatial covariance structure of each factor.

When constrained and unconstrained, the algorithm shows stable convergence, correctly repro-

ducing factor variogram models and collocated multivariate relationships. SGRI is a notable contri-

bution concerning latent imputation. One could adapt it (with an appropriate mapping function) to

truncated Gaussian categorical modeling techniques such as hierarchical truncated pluri-Gaussian

simulation.

7.1.4 Simulation of Continuous High-Order Features

The complete NMR framework for the continuous simulation of high-order spatial features consists

of the NMR forward model and the SGRI algorithm. This framework is the primary contribution of

this thesis. The NMR methodology is developed to overcome the maximum entropy characteristic of

multivariate Gaussian RFs. The NMR permits the simulation of continuous variables with connec-

tivity features beyond the second order. These multi-point spatial connectivity features are critical

when characterizing the continuity of extreme values. A key differentiator from existing high-order

simulation methodologies (Mustapha & Dimitrakopoulos, 2011) is that the NMR framework does

not require a training image. All high-order statistics are extracted from strings of drillhole data

and embedded in the parameterization of the latent-observed mapping function. The order of these

statistics is practically limited by drillhole length; however, conceptually, the n-point connectivity

function can consider any number of steps n. Another key component is that the NMR framework

leverages the simplicity of the Gaussian RF model for generating non-Gaussian spatial structures.

This spatial Gaussian mixture model concept simplifies the implementation of the framework as

both unconditional and conditional Gaussian realization can be generated with any algorithm.

Imputation of latent factors proceeds after defining all parameters of the NMR. Considering

the mapping function during imputation ensures that the latent factors used for conditioning have

the correct spatial features. Finally, mapping the gridded latent realizations to observed space

with the NMR ensures the models reproduce all target two- and multi-point statistics. Practical

considerations for inference of NMR parameters are discussed in detail, including (1) latent factor

design, (2) MPL activation function parameterization, (3) objective function design, (4) potential

non-uniqueness of the solution, and (5) checking of forward model outputs. A detailed discussion

of the practical aspects of latent imputation is also provided, including the minimum acceptance

criteria for imputed realizations. Examples show the NMR framework can effectively characterize

multi-point high-grade connectivity features in a range of two- and three-dimensional scenarios,

with the ability to adapt to highly non-stationary domains. The framework is demonstrated on a
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dataset from a producing underground mine, where the non-Gaussian NMR realizations show up

to a 7% improvement in contained metal over a conventional SGS workflow in high-grade stopes.

Though a modest improvement, improving forecasts of local high-grade resources is of great practical

importance.

7.1.5 Spatial Outlier Detection

An algorithm is presented to address the spatial component of outlier detection. Traditionally, the

mining industry has employed graphical outlier detection techniques that neglect the spatial neigh-

bourhood of potential outliers. The spatial correlation of geoscience data is pertinent information for

describing a sample’s degree of outlierness. The algorithm considers the relationship of each sample

within a local neighbourhood plus its probability density from a fitted GMM. The idea is that true

outliers should be either sufficiently different from their spatial neighbours, be from a low density

region of the GMM, or a combination of both. The algorithm also considers the data configuration

through an area of influence. Extremely high- or low-grade samples in sparse data regions pose a risk

of overestimation, and the outlier score considers the area of influence. A drawback of the approach,

and others from Section 2.2.1, is that a subjective threshold must be selected to delineate inliers

and outliers. Selecting this threshold may be challenging in some instances, though practice shows

that clustering of outliers is generally apparent. The algorithm is shown to effectively identify both

outliers and extreme values in one- and two-dimensional examples. The algorithm is not intended

to replace existing methodologies but to be an additional tool in the practitioners’ toolbox. Best

practice dictates the identification of outliers with an ensemble of methodologies.

7.2 Limitations

Despite the developments made in this thesis, limitations exist with the proposed methodologies.

The following sections discuss the limitations of the NMR framework and latent variable imputation.

7.2.1 Network Model of Regionalization

A limitation of the NMR approach is that the final models reproduce linear features. The model

cannot adapt to non-linear features as two-point and linear sequences of MPS characterize the

objective function. Limiting MPS to 1-D sequences is a practical trade-off for the use of a TI.

However, this precludes the generation of curvilinear features. One could conceivably generate

curvilinear features with a sufficient number of latent factors at appropriate orientations, however

the objective function components remain linear. This linear nature is a limitation compared to other

high-order simulation algorithms. Another challenge is that even though a mixture of Gaussian RFs

can be non-Gaussian, the mixture may experience destructured extreme values depending on the
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conditioning data. Structuring the extreme values can be controlled through the objective function

components. However, this may not be possible with sparse data.

Another limitation of the NMR methodology is the necessity of numerical inversion. The outputs

of the forward model are known; however, the mapping parameters that yield the correct forward

outputs are unknown. Inverse problems are generally ill-posed or lack a unique solution. This non-

uniqueness means the solution is sensitive to initial parameter choices like the latent Gaussian pool,

ω, and a parameters. The potential exists for the algorithm to converge on a numerically reasonable

but geologically unreasonable solution. The practitioner must make initial parameter choices to

ensure the optimization process explores an appropriate solution space. The potential exists for

conflicting objective function components or components with confounding relationships. There

may be uncertainty in the objective components if they are derived from experimental statistics.

The practitioner must ensure a carefully crafted objective function, suitable conversion criteria, and

appropriate regularization through prior geologic knowledge and parameter bounds.

Numerical inversion is an iterative process and is typically computationally expensive. The speed

of NMR convergence negatively correlates with the number of available data. As each inversion iter-

ation generates a newly parameterized network, experimental variograms must be recalculated each

time. Though data paring is only performed once, updating each variogram lag is computationally

expensive. This expense is somewhat counteracted by parallelization of DE, yet algorithm run times

may be significant with greater than 10000 data.

7.2.2 Latent Imputation

Though the SGRI algorithm shows stable convergence in many scenarios, a limitation of the method-

ology is the somewhat “brute-force” approach to imputation. Sequentially sampling the conditional

distributions can lead to scenarios where imputed values at one data location yield local conditional

CDFs at another location that does not permit convergence. This non-convergence is practically

overcome by resetting all imputed values in a neighbourhood about the location and resimulating.

However, the algorithm relies on sufficient iterations to overcome this issue. For these reasons, the

rejection sampling approach may necessitate many iterations for convergence at each data location.

Like the NMR workflow, conversion may be slow with many data.

SGRI is a practical alternative to the Gibbs sampler paradigm for imputation. However, the

implementation is not general and requires a fully parameterized NMR to impute latent variables.

Overall, this is not a limitation of the methodology but a consideration for adaptation to other

workflows featuring latent imputation.
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7.3 Future Work

Future work should address the known limitations of the proposed methodology. The NMR frame-

work poses challenges as the solution space is non-unique and necessitates a numerical approach.

Another algorithm for parameter inference may perform better than DE. DE is chosen due to its

ease of implementation and widespread use in engineering problems, though another heuristic al-

gorithm may perform well. Regardless of the chosen optimization algorithm, future work could

improve the computational efficiency of both the NMR and SGRI algorithms. An efficient approx-

imation of the experimental variogram could drastically speed up NMR parameter inference. As

the NMR objective function may contain any number of components, one could explore additional

components such as directional asymmetry or third-order spatial moments from [h1,h2] triplets

(Lauzon & Marcotte, 2020b).

Another area of future research is exploring more complex network structures. The current

network architecture is simple, and there is no interaction of latent factors before the output layer.

A more complex or classical multi-layer perceptron architecture could capture even more complex,

non-Gaussian, or non-linear spatial features.

139



References
Aggarwal, C. C. (2016). Outlier Analysis. Springer International Publishing.

Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022, May). Differential evolution: A

recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–

3872. doi: 10.1016/j.aej.2021.09.013

Armstrong, M., Galli, A., Beucher, H., Loc’h, G., Renard, D., Doligez, B., … Geffroy, F. (2011).

Plurigaussian Simulations in Geosciences. Berlin, Heidelberg: Springer. doi: 10.1007/978-3

-642-19607-2

Arroyo, D., & Emery, X. (2020, October). Iterative algorithms for non-conditional and condi-

tional simulation of Gaussian random vectors. Stochastic Environmental Research and Risk

Assessment, 34(10), 1523–1541. doi: 10.1007/s00477-020-01875-0

Artemis Gold Inc. (2020). Blackwater Gold Project British Columbia - NI 43-101 Technical Report

on Pre-Feasibility Study (Tech. Rep.).

Athens, N., & Caers, J. (2022, February). Stochastic Inversion of Gravity Data Accounting for

Structural Uncertainty. Mathematical Geosciences, 54(2), 413–436. doi: 10.1007/s11004-021

-09978-2

Babakhani, M. (2014). Geostatistical Modeling in Presence of Extreme Values (Doctoral dissertation).

doi: 10.7939/R3VQ2SJ85

Balkaya, Ç., Ekinci, Y. L., Göktürkler, G., & Turan, S. (2017, January). 3D non-linear inversion of

magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal

of Applied Geophysics, 136, 372–386. doi: 10.1016/j.jappgeo.2016.10.040

Bárdossy, A., & Hörning, S. (2016, September). Random Mixing: An Approach to Inverse Modeling

for Groundwater Flow and Transport Problems. Transport in Porous Media, 114(2), 241–259.

doi: 10.1007/s11242-015-0608-4

Barnett, R. M., & Deutsch, C. V. (2015, October). Multivariate Imputation of Unequally Sampled

Geological Variables. Mathematical Geosciences, 47(7), 791–817. doi: 10.1007/s11004-014

-9580-8

Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2014, April). Projection Pursuit Multivariate

Transform. Mathematical Geosciences, 46(3), 337–359. doi: 10.1007/s11004-013-9497-7

Barnett, V., & Lewis, T. (1984). Outliers in statistical data.

Bellman, R. E. (1961). Adaptive control processes: A guided tour. Princeton: Princeton University

Press. doi: doi:10.1515/9781400874668

Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020, April). Differential Evo-

lution: A review of more than two decades of research. Engineering Applications of Artificial

Intelligence, 90, 103479. doi: 10.1016/j.engappai.2020.103479

140



References

Boisvert, J. B., Pyrcz, M. J., & Deutsch, C. V. (2007, December). Multiple-Point Statistics for

Training Image Selection. Natural Resources Research, 16(4), 313–321. doi: 10.1007/s11053

-008-9058-9

Boukerche, A., Zheng, L., & Alfandi, O. (2021, May). Outlier Detection: Methods, Models, and

Classification. ACM Computing Surveys, 53(3), 1–37. doi: 10.1145/3381028

Brown, B. M., & Resnick, S. I. (1977). Extreme values of independent stochastic processes. Journal

of Applied Probability, 732–739.

Caers, J., Beirlant, J., & Maes, M. A. (1999a). Statistics for modeling heavy tailed distributions in

geology: Part I. Methodology. Mathematical geology, 31(4), 391–410.

Caers, J., Beirlant, J., & Maes, M. A. (1999b). Statistics for modeling heavy tailed distributions in

geology: Part II. Applications. Mathematical geology, 31(4), 411–434.

Carbas, S., Toktas, A., & Ustun, D. (2021). Nature-inspired metaheuristic algorithms for engineering

optimization applications. Springer.

Cardinal Resources. (2019). Namdini Gold Project Feasibility Study NI 43-101 Technical Report,

Ghana, West Africa (Tech. Rep.).

Carvalho, D., & Deutsch, C. V. (2017, January). An Overview of Multiple Indicator Kriging.

https://geostatisticslessons.com/lessons/mikoverview.

Chen, D., Lu, C.-T., Kou, Y., & Chen, F. (2008). On detecting spatial outliers. Geoinformatica,

12(4), 455–475.

Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. John Wiley &

Sons.

CIM Mineral Resource & Mineral Reserve Committee. (2019, November). CIM Estimation of Min-

eral Resources & Mineral Reserves Best Practice Guidelines (Tech. Rep.). Canadian Institute

of Mining, Metallurgy and Petroleum.

Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling of

extreme values (Vol. 208). Springer.

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free optimization.

SIAM.

Costa, J. F. (2003). Reducing the impact of outliers in ore reserves estimation. Mathematical geology,

35(3), 323–345.

Cui, E. H., Zhang, Z., Chen, C. J., & Wong, W. K. (2024, April). Applications of nature-inspired

metaheuristic algorithms for tackling optimization problems across disciplines. Scientific Re-

ports, 14(1), 9403. doi: 10.1038/s41598-024-56670-6

da Silva, C. Z., & Costa, J. F. C. L. (2019, January). The treatment of missing ‘not at random’

geological data for ore grade modelling. Applied Earth Science, 128(1), 15–26. doi: 10.1080/

25726838.2018.1547508

Dávila Rodríguez, I. A., Palafox González, A., Guerrero Arroyo, E. A., Becerra López, F. I., &

141



References

Fregoso Becerra, E. (2024, April). Three-Dimensional Inversion of Magnetic Anomalies Using a

Low-Level Representation and an Evolution Strategy for Archaeological Studies. Mathematical

Geosciences, 56(3), 511–539. doi: 10.1007/s11004-023-10090-w

Davis, M. W. (1987, February). Production of conditional simulations via the LU triangu-

lar decomposition of the covariance matrix. Mathematical Geology, 19(2), 91–98. doi:

10.1007/BF00898189

Davison, A. C., & Huser, R. (2015). Statistics of extremes. Annual Review of Statistics and its

Application, 2, 203–235.

Davison, A. C., Huser, R., & Thibaud, E. (2013). Geostatistics of dependent and asymptotically

independent extremes. Mathematical Geosciences, 45(5), 511–529.

de Carvalho, J. P., Dimitrakopoulos, R., & Minniakhmetov, I. (2019, August). High-Order Block

Support Spatial Simulation Method and Its Application at a Gold Deposit. Mathematical

Geosciences, 51(6), 793–810. doi: 10.1007/s11004-019-09784-x

De Haan, L., & Ferreira, A. (2007). Extreme value theory: An introduction. Springer Science &

Business Media.

Deligne, N. I., Coles, S. G., & Sparks, R. S. J. (2010). Recurrence rates of large explosive vol-

canic eruptions. Journal of Geophysical Research: Solid Earth, 115(B6). doi: 10.1029/

2009JB006554

Deutsch, C. V. (1992). Annealing techniques applied to reservoir modeling and the integration

of geological and engineering (well test) data (Unpublished doctoral dissertation). stanford

university.

Deutsch, C. V. (2007). A Recall of Factorial Kriging with Examples and a Modified Version of kt3d.

, 8.

Deutsch, C. V. (2010). Display of cross validation/jackknife results. Centre for Computational

Geostatistics Annual Report, 12(406), 1–4.

Deutsch, C. V., & Journel, A. G. (1992). Geostatistical software library and user’s guide. New York,

119(147).

Dimitrakopoulos, R., Mustapha, H., & Gloaguen, E. (2009, December). High-order Statistics of

Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian

and Non-linear Phenomena. Mathematical Geosciences, 42(1), 65. doi: 10.1007/s11004-009

-9258-9

Drumond, D. A., Rolo, R. M., & Costa, J. F. C. L. (2019, January). Using Mahalanobis Distance

to Detect and Remove Outliers in Experimental Covariograms. Natural Resources Research,

28(1), 145–152. doi: 10.1007/s11053-018-9399-y

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022, September). Activation functions in deep

learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92–108. doi: 10.1016/

j.neucom.2022.06.111

142



References

Dutaut, R. V., & Marcotte, D. (2021, May). A new grade-capping approach based on coarse duplicate

data correlation. Journal of the Southern African Institute of Mining and Metallurgy, 121(5),

193–200. doi: 10.17159/2411-9717/1379/2021

Eidsvik, J., Mukerji, T., & Bhattacharjya, D. (2015). Value of information in the earth sciences:

Integrating spatial modeling and decision analysis. Cambridge University Press.

Eldorado Gold Corporation. (2020). Technical Report Kişladağ Gold Mine Turkey (Tech. Rep.).

Emery, X., Arroyo, D., & Peláez, M. (2014, April). Simulating Large Gaussian Random Vectors

Subject to Inequality Constraints by Gibbs Sampling. Mathematical Geosciences, 46(3), 265–

283. doi: 10.1007/s11004-013-9495-9

Ernst, M., & Haesbroeck, G. (2017). Comparison of local outlier detection techniques in spatial

multivariate data. Data mining and knowledge discovery, 31(2), 371–399.

Everitt, B., & Skrondal, A. (2010). The cambridge dictionary of statistics. Cambridge University

Press.

Filzmoser, P., & Gregorich, M. (2020, November). Multivariate Outlier Detection in Applied Data

Analysis: Global, Local, Compositional and Cellwise Outliers. Mathematical Geosciences,

52(8), 1049–1066. doi: 10.1007/s11004-020-09861-6

Filzmoser, P., Ruiz-Gazen, A., & Thomas-Agnan, C. (2014, February). Identification of local

multivariate outliers. Statistical Papers, 55(1), 29–47. doi: 10.1007/s00362-013-0524-z

Fisher, A., Rudin, C., & Dominici, F. (2019, December). All Models are Wrong, but Many are

Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models

Simultaneously (No. arXiv:1801.01489). arXiv. doi: 10.48550/arXiv.1801.01489

Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest

or smallest member of a sample. In Mathematical proceedings of the Cambridge philosophical

society (Vol. 24, pp. 180–190). Cambridge University Press.

Fourie, A., Morgan, C., & Minnitt, R. (2019). Limiting the influence of extreme grades in ordinary

kriged estimates. Journal of the Southern African Institute of Mining and Metallurgy, 119(4).

doi: 10.17159/2411-9717/18/090/2019

Fréchet, M. (1927). Sur la loi de probabilité de l’écart maximum. Ann. Soc. Math. Polon., 6,

93–116.

Fu, J. C., & Lou, W. Y. W. (2003). Distribution Theory of Runs and Patterns and Its Applications:

A Finite Markov Chain Imbedding Approach. WORLD SCIENTIFIC. doi: 10.1142/4669

Gaume, J., Eckert, N., Chambon, G., Naaim, M., & Bel, L. (2013). Mapping extreme snowfalls in

the French Alps using max-stable processes. Water Resources Research, 49(2), 1079–1098.

Geman, S., & Geman, D. (1984, November). Stochastic Relaxation, Gibbs Distributions, and

the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-6(6), 721–741. doi: 10.1109/TPAMI.1984.4767596

Georgioudakis, M., & Plevris, V. (2020). A Comparative Study of Differential Evolution Variants

143



References

in Constrained Structural Optimization. Frontiers in Built Environment, 6.

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

tools, and techniques to build intelligent systems. ” O’Reilly Media, Inc.”.

Ghorbanidehno, H., Kokkinaki, A., Lee, J., & Darve, E. (2020, December). Recent developments

in fast and scalable inverse modeling and data assimilation methods in hydrology. Journal of

Hydrology, 591, 125266. doi: 10.1016/j.jhydrol.2020.125266

Gilli, M., & Kellezi, E. (2006). An application of extreme value theory for measuring financial risk.

Computational Economics, 27(2), 207–228.

Giraud, J., Lindsay, M., Ogarko, V., Jessell, M., Martin, R., & Pakyuz-Charrier, E. (2019, January).

Integration of geoscientific uncertainty into geophysical inversion by means of local gradient

regularization. Solid Earth, 10(1), 193–210. doi: 10.5194/se-10-193-2019

Gnedenko, B. (1943). Sur La Distribution Limite Du Terme Maximum D’Une Serie Aleatoire.

Annals of Mathematics, 44(3), 423–453. doi: 10.2307/1968974

Gómez-Hernández, J. J., & Journel, A. G. (1993). Joint Sequential Simulation of MultiGaussian

Fields. In A. Soares (Ed.), Geostatistics Tróia ’92: Volume 1 (pp. 85–94). Dordrecht: Springer

Netherlands. doi: 10.1007/978-94-011-1739-5_8

Gómez-Hernández, J. J., & Srivastava, R. M. (2021, February). One Step at a Time: The Origins of

Sequential Simulation and Beyond. Mathematical Geosciences, 53(2), 193–209. doi: 10.1007/

s11004-021-09926-0

Gómez-Hernández, J. J., & Wen, X.-H. (1998, February). To be or not to be multi-Gaussian?

A reflection on stochastic hydrogeology. Advances in Water Resources, 21(1), 47–61. doi:

10.1016/S0309-1708(96)00031-0

Goovaerts, P. (1992). Factorial kriging analysis: A useful tool for exploring the structure

of multivariate spatial soil information. Journal of Soil Science, 43(4), 597–619. doi:

10.1111/j.1365-2389.1992.tb00163.x

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press on

Demand.

Grana, D., Azevedo, L., de Figueiredo, L., Connolly, P., & Mukerji, T. (2022, July). Probabilistic

inversion of seismic data for reservoir petrophysical characterization: Review and examples.

Geophysics, 87(5), M199-M216. doi: 10.1190/geo2021-0776.1

Guardiano, F. B., & Srivastava, R. M. (1993). Multivariate Geostatistics: Beyond Bivariate Mo-

ments. In F. M. Gradstein & A. Soares (Eds.), Geostatistics Tróia ’92 (Vol. 5, pp. 133–144).

Dordrecht: Springer Netherlands. doi: 10.1007/978-94-011-1739-5_12

Guthke, P. (2013). Non-multi-Gaussian spatial structures: Process-driven natural genesis, mani-

festation, modeling approaches, and influences on dependent processes (Unpublished doctoral

dissertation).

Guthke, P., & Bárdossy, A. (2017, May). On the link between natural emergence and manifestation

144



References

of a fundamental non-Gaussian geostatistical property: Asymmetry. Spatial Statistics, 20,

1–29. doi: 10.1016/j.spasta.2017.01.003

Hadavand, M., & Deutsch, C. V. (2023, August). Spatial multivariate data imputation using deep

learning and lambda distribution. Computers & Geosciences, 177 , 105376. doi: 10.1016/

j.cageo.2023.105376

Harding, B., Lagos, R., Pfeiffer, N., & Deutsch, C. V. (2023, October). Probabilistic Modeling of

the Round Mountain Gold Deposit: A Case Study. Mining, Metallurgy & Exploration, 40(5),

1987–2006. doi: 10.1007/s42461-023-00787-1

Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014). Multivariate spatial

outlier detection using robust geographically weighted methods. Mathematical Geosciences,

46(1), 1–31.

Hawkins, D. M., & Cressie, N. (1984, January). Robust kriging—A proposal. Journal of the

International Association for Mathematical Geology, 16(1), 3–18. doi: 10.1007/BF01036237

Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence

review, 22(2), 85–126.

Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66–73.

Hong, S., & Deutsch, C. V. (2007). Improved Factorial Kriging for Feature Identification and

Extraction. , 16.

Isaaks, E. H. (1990). The application of Monte Carlo methods to the analysis of spatially correlated

data (Unpublished doctoral dissertation). Stanford University, United States – California.

Journel, A. G. (1974, August). Geostatistics for Conditional Simulation of Ore Bodies. Economic

Geology, 69(5), 673–687. doi: 10.2113/gsecongeo.69.5.673

Journel, A. G. (1983, June). Nonparametric estimation of spatial distributions. Journal of the In-

ternational Association for Mathematical Geology, 15(3), 445–468. doi: 10.1007/BF01031292

Journel, A. G. (2005). Beyond Covariance: The Advent of Multiple-Point Geostatistics. In

O. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 225–233). Dordrecht:

Springer Netherlands. doi: 10.1007/978-1-4020-3610-1_23

Journel, A. G., & Alabert, F. (1989). Non-Gaussian data expansion in the Earth Sciences. Terra

Nova, 1(2), 123–134. doi: 10.1111/j.1365-3121.1989.tb00344.x

Journel, A. G., & Deutsch, C. V. (1993, April). Entropy and spatial disorder. Mathematical Geology,

25(3), 329–355. doi: 10.1007/BF00901422

Kabluchko, Z., Schlather, M., De Haan, L., et al. (2009). Stationary max-stable fields associated to

negative definite functions. The Annals of Probability, 37(5), 2042–2065.

Kerrou, J., Renard, P., Hendricks Franssen, H.-J., & Lunati, I. (2008, January). Issues in char-

acterizing heterogeneity and connectivity in non-multiGaussian media. Advances in Water

Resources, 31(1), 147–159. doi: 10.1016/j.advwatres.2007.07.002

Lantuéjoul, C., & Desassis, N. (2012). Simulation of a Gaussian random vector: A propagative

145



References

version of the Gibbs sampler. In The 9th international geostatistics congress (pp. 174–181).

Lauzon, D., & Marcotte, D. (2020a, February). Calibration of random fields by a sequential spectral

turning bands method. Computers & Geosciences, 135, 104390. doi: 10.1016/j.cageo.2019

.104390

Lauzon, D., & Marcotte, D. (2020b, November). The sequential spectral turning band simulator as

an alternative to Gibbs sampler in large truncated- or pluri- Gaussian simulations. Stochastic

Environmental Research and Risk Assessment, 34(11), 1939–1951. doi: 10.1007/s00477-020

-01850-9

Lauzon, D., & Marcotte, D. (2023, September). Joint hydrofacies-hydraulic conductivity modeling

based on a constructive spectral algorithm constrained by transient head data. Hydrogeology

Journal, 31(6), 1647–1664. doi: 10.1007/s10040-023-02638-1

Lee, J.-H., Kim, H., Park, H.-J., & Heo, J.-H. (2021, January). Temporal prediction modeling for

rainfall-induced shallow landslide hazards using extreme value distribution. Landslides, 18(1),

321–338. doi: 10.1007/s10346-020-01502-7

Leuangthong, O., Khan, K. D., & Deutsch, C. V. (2008). Solved problems in geostatistics. John

Wiley & Sons.

Leuangthong, O., McLennan, J. A., & Deutsch, C. V. (2004, September). Minimum Acceptance

Criteria for Geostatistical Realizations. Natural Resources Research, 13(3), 131–141. doi:

10.1023/B:NARR.0000046916.91703.bb

Leuangthong, O., & Nowak, M. (2015). Dealing with high-grade data in resource estimation. Journal

of the Southern African Institute of Mining and Metallurgy, 115(1), 27–36.

Leung, R., Balamurali, M., & Melkumyan, A. (2021, January). Sample Truncation Strategies for

Outlier Removal in Geochemical Data: The MCD Robust Distance Approach Versus t-SNE

Ensemble Clustering. Mathematical Geosciences, 53(1), 105–130. doi: 10.1007/s11004-019

-09839-z

Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., & Chen, G. H. (2022, March). ECOD: Unsupervised

Outlier Detection Using Empirical Cumulative Distribution Functions. arXiv:2201.00382 [cs,

stat].

Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015, December). Geological realism in hydrogeo-

logical and geophysical inverse modeling: A review. Advances in Water Resources, 86, 86–101.

doi: 10.1016/j.advwatres.2015.09.019

Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley.

Madani, N., & Bazarbekov, T. (2021, March). Enhanced conditional Co-Gibbs sampling al-

gorithm for data imputation. Computers & Geosciences, 148, 104655. doi: 10.1016/

j.cageo.2020.104655

Mahalanobis, P. C. (2018). On the Generalized Distance in Statistics. Sankhyā: The Indian Journal

of Statistics, Series A (2008-), 80, S1-S7.

146



References

Maleki, M., Madani, N., & Emery, X. (2014). Capping and kriging grades with long-tailed distribu-

tions. Journal of the Southern African Institute of Mining and Metallurgy, 114(3), 255–263.

Mariethoz, G., & Caers, J. (2014). Multiple-Point Geostatistics (1st ed.). John Wiley & Sons, Ltd.

doi: 10.1002/9781118662953

Matheron, G. (1963). Principles of geostatistics. Economic geology, 58(8), 1246–1266.

Matheron, G. (1982). Pour une analyse krigeante des données régionalisées (Tech. Rep. No. N-732).

Ecole des Mines de Paris.

Matheron, G. (2019). Matheron’s Theory of Regionalised Variables (V. Pawlowsky-Glahn & J. Serra,

Eds.). Oxford: Oxford University Press. doi: 10.1093/oso/9780198835660.001.0001

Matheron, G., Beucher, H., de Fouquet, C., Galli, A., Guérillot, D., & Ravenne, C. (1987). Condi-

tional simulation of the geometry of fluvio-deltaic reservoirs. In SPE annual technical confer-

ence and exhibition? (pp. SPE–16753). Spe.

McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019, March). Finite Mixture Models. Annual

Review of Statistics and Its Application, 6(Volume 6, 2019), 355–378. doi: 10.1146/annurev

-statistics-031017-100325

Medgold Resources Corp. (2021). PRELIMINARY ECONOMIC ASSESSMENT AND NI 43-101

TECHNICAL REPORT FOR THE MEDGOLD TLAMINO PROJECT LICENCES, SERBIA

(Tech. Rep.).

Meng, Z., Chen, Y., & Li, X. (2020). Enhancing Differential Evolution With Novel Parameter

Control. IEEE Access, 8, 51145–51167. doi: 10.1109/ACCESS.2020.2979738

Miniussi, A., Marani, M., & Villarini, G. (2020, February). Metastatistical Extreme Value Distri-

bution applied to floods across the continental United States. Advances in Water Resources,

136, 103498. doi: 10.1016/j.advwatres.2019.103498

Minniakhmetov, I., & Dimitrakopoulos, R. (2017, January). Joint High-Order Simulation of Spa-

tially Correlated Variables Using High-Order Spatial Statistics. Mathematical Geosciences,

49(1), 39–66. doi: 10.1007/s11004-016-9662-x

Minniakhmetov, I., & Dimitrakopoulos, R. (2022, January). High-Order Data-Driven Spatial Sim-

ulation of Categorical Variables. Mathematical Geosciences, 54(1), 23–45. doi: 10.1007/

s11004-021-09943-z

Minniakhmetov, I., Dimitrakopoulos, R., & Godoy, M. (2018, October). High-Order Spatial Sim-

ulation Using Legendre-Like Orthogonal Splines. Mathematical Geosciences, 50(7), 753–780.

doi: 10.1007/s11004-018-9741-2

Mirjalili, S. (2019). Evolutionary Algorithms and Neural Networks (Vol. 780). Cham: Springer

International Publishing. doi: 10.1007/978-3-319-93025-1

Mohamed, A. W. (2014, November). RDEL: Restart Differential Evolution algorithm with Local

Search Mutation for global numerical optimization. Egyptian Informatics Journal, 15(3), 175–

188. doi: 10.1016/j.eij.2014.07.001

147



References

Mustapha, H., & Dimitrakopoulos, R. (2010, July). High-order Stochastic Simulation of Complex

Spatially Distributed Natural Phenomena. Mathematical Geosciences, 42(5), 457–485. doi:

10.1007/s11004-010-9291-8

Mustapha, H., & Dimitrakopoulos, R. (2011, September). HOSIM: A high-order stochastic simu-

lation algorithm for generating three-dimensional complex geological patterns. Computers &

Geosciences, 37(9), 1242–1253. doi: 10.1016/j.cageo.2010.09.007

Nava-Flores, M., Ortiz-Alemán, C., & Urrutia-Fucugauchi, J. (2023, March). High Resolution

Model of the Vinton Salt-Dome Cap Rock by Joint Inversion of the Full Tensor Gravity

Gradient Data with the Simulated Annealing Global Optimization Method. Pure and Applied

Geophysics, 180(3), 983–1014. doi: 10.1007/s00024-023-03227-9

Nevada Gold Mines LLC. (2020). TECHNICAL REPORT ON THE CARLIN COMPLEX, EU-

REKA AND ELKO COUNTIES, STATE OF NEVADA, USA (Tech. Rep.).

Neves, M. M. (2015). Geostatistical Analysis in Extremes: An Overview. Mathematics of Energy

and Climate Change, 229–245.

Nguyen, M., Veraart, A. E. D., Taisne, B., Tan, C. T., & Lallemant, D. (2023, October). A Dy-

namic Extreme Value Model with Application to Volcanic Eruption Forecasting. Mathematical

Geosciences. doi: 10.1007/s11004-023-10109-2

Nowak, M., & Leuangthong, O. (2019). Optimal drill hole spacing for resource classification. In

Mining Goes Digital. CRC Press.

Nowak, M., Leuangthong, O., & Srivastava, R. M. (2013). Suggestions for good capping practices

from historical literature. In Proceedings of the 23rd World Mining Congress 2013. Canadian

Institute of Mining, Metallurgy and Petroleum Montreal.

Nowak, R. (2008, September). Generalized binary search. In 2008 46th Annual Allerton Conference

on Communication, Control, and Computing (pp. 568–574). doi: 10.1109/ALLERTON.2008

.4797609

Opitz, T. (2013). Extremal t processes: Elliptical domain of attraction and a spectral representation.

Journal of Multivariate Analysis, 122, 409–413.

Ortiz, J. (2003). Characterization of high order correlation for enhanced indicator simulation.

(Unpublished doctoral dissertation). University of Alberta.

Ortiz, J., & Deutsch, C. V. (2002, February). Calculation of Uncertainty in the Variogram. Mathe-

matical Geology, 34(2), 169–183. doi: 10.1023/A:1014412218427

Osisko Gold Royalties Ltd. (2020). NI 43-101 Technical Report and Mineral Resource Estimate for

the Cariboo Gold Project, British Columbia, Canada (Tech. Rep.).

Pang, G., Shen, C., Cao, L., & van den Hengel, A. (2022, March). Deep Learning for Anomaly

Detection: A Review. ACM Computing Surveys, 54(2), 1–38. doi: 10.1145/3439950

Pardo-Igúzquiza, E., & Olea, R. A. (2012, April). VARBOOT: A spatial bootstrap program for

semivariogram uncertainty assessment. Computers & Geosciences, 41, 188–198. doi: 10.1016/

148



References

j.cageo.2011.09.002

Parker, HM. (1991). Statistical treatment of outlier data in epithermal gold deposit reserve estima-

tion. Mathematical Geology, 23(2), 175–199.

Parker, HM. (2006). Technical Report of the Rock Creek Property, Nome, Alaska, USA (Tech. Rep.).

Parrish, I. (1997). Geologist’s gordian knot: To cut or not to cut. Mining Engineering, 49, 45–49.

Pasofino Gold Ltd. (2020). DUGBE GOLD PROJECT, LIBERIA NI 43-101 TECHNICAL RE-

PORT (Tech. Rep.).

Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of statistics, 3(1),

119–131.

Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty detection.

Signal Processing, 99, 215–249.

Pinto, F. C. (2020). Independent Factor Simulation for Improved Multivariate Geostatistics (Un-

published doctoral dissertation). University of Alberta.

Piotrowski, A. P. (2017, February). Review of Differential Evolution population size. Swarm and

Evolutionary Computation, 32, 1–24. doi: 10.1016/j.swevo.2016.05.003

Pretium Resources Inc. (2020). Technical Report on the Brucejack Gold Mine, Northwest British

Columbia (Tech. Rep.).

Price, K. V. (2013). Differential Evolution. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Hand-

book of Optimization: From Classical to Modern Approach (pp. 187–214). Berlin, Heidelberg:

Springer. doi: 10.1007/978-3-642-30504-7_8

Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modeling. Oxford university press.

Qu, J., Du, Q., Li, Y., Tian, L., & Xia, H. (2021, November). Anomaly Detection in Hyperspectral

Imagery Based on Gaussian Mixture Model. IEEE Transactions on Geoscience and Remote

Sensing, 59(11), 9504–9517. doi: 10.1109/TGRS.2020.3038722

Renard, P., Straubhaar, J., Caers, J., & Mariethoz, G. (2011, November). Conditioning Facies

Simulations with Connectivity Data. Mathematical Geosciences, 43(8), 879–903. doi: 10.1007/

s11004-011-9363-4

Rios, L. M., & Sahinidis, N. V. (2013, July). Derivative-free optimization: A review of algorithms

and comparison of software implementations. Journal of Global Optimization, 56(3), 1247–

1293. doi: 10.1007/s10898-012-9951-y

Rivoirard, J., Demange, C., Freulon, X., Lécureuil, A., & Bellot, N. (2013). A top-cut model for

deposits with heavy-tailed grade distribution. Mathematical geosciences, 45(8), 967–982.

Rojas, R. (1996). The Backpropagation Algorithm. In R. Rojas (Ed.), Neural Networks: A System-

atic Introduction (pp. 149–182). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-61068

-4_7

Roscoe, W. (1996, April). Cutting curves for grade estimation and grade control in gold mines. In

98th annual general meeting. Canadian Institute of Mining, Metallurgy and Petroleum.

149



References

Rossi, M. E., & Deutsch, C. V. (2013). Mineral resource estimation. Springer Science & Business

Media.

Rousseeuw, P. J., & Driessen, K. V. (1999, August). A Fast Algorithm for the Minimum Covari-

ance Determinant Estimator. Technometrics, 41(3), 212–223. doi: 10.1080/00401706.1999

.10485670

Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M., … Dray, J. (2010). A

Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications. , 131.

Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5(1), 33–44.

Schlather, M., & Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme

values: Properties and inference. Biometrika, 90(1), 139–156.

Sen, M. K., & Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion. Cam-

bridge: Cambridge University Press. doi: 10.1017/CBO9780511997570

Sharma, S., Sharma, S., & Athaiya, A. (2020, May). ACTIVATION FUNCTIONS IN NEURAL

NETWORKS. International Journal of Engineering Applied Sciences and Technology, 04(12),

310–316. doi: 10.33564/IJEAST.2020.v04i12.054

Silva, D. A. (2014). Guide to MPS Simulation with SNESIM (Vol. 18).

Silva, D. S. F. (2018). Enhanced Geologic Modeling of Multiple Categorical Variables (Doctoral

dissertation, University of Alberta). doi: 10.7939/R30G3HD9R

Silva, D. S. F., & Deutsch, C. V. (2017, November). Multiple imputation framework for data

assignment in truncated pluri-Gaussian simulation. Stochastic Environmental Research and

Risk Assessment, 31(9), 2251–2263. doi: 10.1007/s00477-016-1309-4

Silva, D. S. F., & Deutsch, C. V. (2018, October). Multivariate data imputation using Gaussian

mixture models. Spatial Statistics, 27 , 74–90. doi: 10.1016/j.spasta.2016.11.002

Silva, V. M. (2021, July). On the classification and treatment of outliers in a spatial context: A

Bayesian Updating approach. REM - International Engineering Journal, 74, 379–389. doi:

10.1590/0370-44672021740003

Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript, 205,

1–32.

Solow, A. R. (1985, October). Bootstrapping correlated data. Journal of the International Associ-

ation for Mathematical Geology, 17(7), 769–775. doi: 10.1007/BF01031616

Storn, R., & Price, K. (1997, December). Differential Evolution – A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359.

doi: 10.1023/A:1008202821328

Strebelle, S. (2002, January). Conditional Simulation of Complex Geological Structures Using

Multiple-Point Statistics. Mathematical Geology, 34(1), 1–21. doi: 10.1023/A:1014009426274

Tahmasebi, P. (2018). Multiple Point Statistics: A Review. In B. Daya Sagar, Q. Cheng, &

150



References

F. Agterberg (Eds.), Handbook of Mathematical Geosciences: Fifty Years of IAMG (pp. 613–

643). Cham: Springer International Publishing. doi: 10.1007/978-3-319-78999-6_30

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society

for Industrial and Applied Mathematics. doi: 10.1137/1.9780898717921

TriStar Gold Inc. (2021). Mineral Resource Update for the Castelo de Sonhos Gold Project, Pará

State, Brazil (Tech. Rep.).

Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA.

Ünal, H. T., & Başçiftçi, F. (2022, March). Evolutionary design of neural network architectures:

A review of three decades of research. Artificial Intelligence Review, 55(3), 1723–1802. doi:

10.1007/s10462-021-10049-5

Vincent, J., & Deutsch, C. (2021). MIK vs MG in Non-Gaussian Environments. , 13.

Vincent, J. D. (2021). Multiple-Indicator Kriging of Gaussian and Non-Gaussian Data (Unpublished

doctoral dissertation).

von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Interbalcanic

Union, 1, 141–160.

Wackernagel, H. (1988). Geostatistical Techniques for Interpreting Multivariate Spatial Information.

In C. F. Chung, A. G. Fabbri, & R. Sinding-Larsen (Eds.), Quantitative Analysis of Mineral

and Energy Resources (pp. 393–409). Dordrecht: Springer Netherlands. doi: 10.1007/978-94

-009-4029-1_24

Wang, H., Bah, M. J., & Hammad, M. (2019). Progress in outlier detection techniques: A survey.

IEEE Access, 7 , 107964–108000.

Wilde, B. J. (2007). Wide array declustering for representative distributions (The Ultimate DECLUS

Program) (CCG Annual Report 9). Edmonton AB: University of Alberta.

Yan, Y., Jeong, J., & Genton, M. G. (2020). Multivariate transformed Gaussian processes. Japanese

Journal of Statistics and Data Science, 3(1), 129–152.

Yang, X.-S. (2018). Nature-inspired algorithms and applied optimization (Vol. 744). Springer.

Yao, L., Dimitrakopoulos, R., & Gamache, M. (2020, July). High-Order Sequential Simulation via

Statistical Learning in Reproducing Kernel Hilbert Space. Mathematical Geosciences, 52(5),

693–723. doi: 10.1007/s11004-019-09843-3

Yao, L., Dimitrakopoulos, R., & Gamache, M. (2021, April). Learning high-order spatial statistics

at multiple scales: A kernel-based stochastic simulation algorithm and its implementation.

Computers & Geosciences, 149, 104702. doi: 10.1016/j.cageo.2021.104702

Yao, L., Dimitrakopoulos, R., & Gamache, M. (2021, October). Training Image Free High-Order

Stochastic Simulation Based on Aggregated Kernel Statistics. Mathematical Geosciences,

53(7), 1469–1489. doi: 10.1007/s11004-021-09923-3

Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014, January). Inverse methods in hydro-

geology: Evolution and recent trends. Advances in Water Resources, 63, 22–37. doi:

151



References

10.1016/j.advwatres.2013.10.014

Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical

reasoning and data mining algorithms. WIREs Data Mining and Knowledge Discovery, 8(6),

e1280. doi: 10.1002/widm.1280

152



Appendix A

Software
The following Appendix presents the software developed for the methodologies in this thesis. Pro-

grams are developed as a series of FORTRAN 90 codes with geostatistical software library (GSLIB)

style parameter files (Deutsch & Journel, 1992). NMROPT is developed for NMR parameter inference

and NMRIMP for imputation of latent Gaussian factors. These programs together form the suite of

programs for the NMR framework. The following sections present the parameter file for each pro-

gram, summarizing the key parameters. All source code is available at the authors github (NMROPT

and NMRIMP).

A.1 NMROPT

NMROPT provides functionality for the NMR parameter inference discussed in Chapter 4. The program

takes two data files as inputs: (1) specifying the drillhole data and (2) specifying the covariance

structure of each latent factor. Network architecture, thresholds, experimental variogram search

parameters, and objective functions components are specified directly in the parameter file. The

optimized network parameters are output as a text file and passed to NMRIMP for latent factor

imputation. The parameter file is shown below:

1 PARAMETERS FOR NMROPT

2 *********************

3

4 START OF PARAMETERS:

5 data.dat - file with data

6 1 4 5 6 7 11 - columns for dh, x, y, z, var and wt

7 0 - normal score transform var? (0=no, 1=yes)

8 -1.0e21 1.0e21 - trimming limits

9 100 - number of unconditional realizations

10 0 - simulation type (0=LU, 1=sequential)

11 5841044 - random number seed

12 1 1 - debugging level, realization to output

13 nmropt.dbg - file for debugging output

14 nmropt.out - file for network output

15 nmrwts.out - file for optimzed network weights

16 nmrobj.out - file for objective function value per ...
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17 nmr_ - prefix for target/experimental output

18 3 - number of network layers

19 5 5 1 - network layer dimensions

20 1 0.1 - network wt regularization (0=none, ...

21 pool.dat - file with cov. structs. of Gaussian pool

22 0 - consider factor precedence? (0=no, 1=yes)

23 1 1 1 1 - objective components: varg, ivarg, ...

24 1 1 1 1 - objective weight: varg, ivarg, ...

25 3 - number of indicator thresholds

26 -1.28 0.0 1.28 - Gaussian indicator thresholds

27 1 1 1 - threshold weights

28 1 - runs above or below threshold? ...

29 30 - max number of runs to consider

30 0 - runs target from file? (0=no, 1=yes)

31 target_runs.out - runs target file

32 1 - npoint above or below threshold? ...

33 30 - max number of connected steps to consider

34 0 - npoint target from file? (0=no, 1=yes)

35 target_npoint.out - npoint target file

36 0.8 0.5 1.0 15 1000 - DE parameters: F, CR lo, CR hi, pop ...

37 0.0 1.0 - DE bounds: lower, upper

38 omega.out - file with factor omega bounds

39 1 - num. threads for parallel DE ...

40 2 - number of experimental variogram ...

41 0.0 22.5 1000 0.0 22.5 1000 0.0 - dir 01: azm,azmtol, ...

42 8 1000.0 500.0 - number of lags,lag distance,lag ...

43 90. 22.5 1000 0.0 22.5 1000 0.0 - dir 02: azm,azmtol, ...

44 8 1000.0 500.0 - number of lags,lag distance,lag ...

45 1 - number of target variogram models

46 3 - number of target indicator variogram ...

47 1.0 - IDW power for variogram optimization ...

48 999999 - max number of exp. variogram pairs ...

49 1 - standardize sill? (0=no, 1=yes)

50 1 0.1 - nst, nugget effect

51 1 0.9 0.0 0.0 0.0 - it,cc,ang1,ang2,ang3

52 10.0 10.0 10.0 - a_hmax, a_hmin, a_vert

154



A. Software

53 1 0.1 - inst, nugget effect

54 1 0.9 0.0 0.0 0.0 - iit,icc,iang1,iang2,iang3

55 10.0 10.0 10.0 - ia_hmax, ia_hmin, ia_vert

56 1 0.1 - inst, nugget effect

57 1 0.9 0.0 0.0 0.0 - iit,icc,iang1,iang2,iang3

58 10.0 10.0 10.0 - ia_hmax, ia_hmin, ia_vert

59 1 0.1 - inst, nugget effect

60 1 0.9 0.0 0.0 0.0 - iit,icc,iang1,iang2,iang3

61 10.0 10.0 10.0 - ia_hmax, ia_hmin, ia_vert

Each line in the parameter file is summarized below:

• Lines 5-8 are standard GSLIB-style data inputs.

• Line 9 is the number of unconditional realizations to simulate for optimization; the final

objective value is the expectation across all realizations.

• Line 10 is the simulation type, either LU or sequential Gaussian simulation. LU is recom-

mended for less than ≈ 2500 data.

• Line 11 is the random number seed.

• Line 12 is debugging options; some or all unconditional realizations are written to the file

specified in line 13.

• Line 14 is the output file for the final network mixture model.

• Line 15 is the output file for the optimized network weights or the best population vector.

• Line 16 is the output file for the objective function value per iteration.

• Line 17 is the prefix for output files for the target and experimental (optimized) objective

components.

• Line 18 is the total number of network layers, including input and output layers.

• Line 19 are the corresponding layer dimensions (number of nodes per layer). The number of

layers must match line 18, or an error is thrown.

• Line 20 indicates the type of regularization (L1 or L2) and the regularization constant.

• Line 21 is the input file containing all elemental factor variogram models. Only one structure

is permitted per model.

• Line 22 is the option to consider factor precedence. Precedence is specified in the file on line

38.

• Lines 23 and 24 select the objective function components and their weighting, respectively.

Each component is automatically scaled internally; however, a user-defined weighting is per-

missible via Line 24.

• Line 25 specified the number of thresholds to consider, and line 26 specifies the threshold
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values. The number of indicator thresholds must match the number of indicator variogram

targets, or an error is thrown.

• Line 27 specifies a user defined weight to each threshold.

• Line 28 is an option to consider runs either above or below the threshold. Above the threshold

amounts to 1 − I(ui; zk). Line 29 is the maximum number of runs to consider.

• Line 30 specifies whether the target runs are calculated internally, or from a file. If 1, then

the file on line 31 is read.

• Line 32 is an option to consider n-point connectivity either above or below the threshold.

Above the threshold amounts to 1 − I(ui; zk). Line 33 is the maximum number of connected

steps to consider.

• Line 34 specifies whether the target n-point connectivity function is calculated internally, or

from a file. If 1, then the file on line 35 is read.

• Line 36 contains DE parameters. F=mutation factor; CR=cross-over probability; pop. size=population

size; its=total number of algorithm iterations.

• Line 37 are upper and lower bounds for each population vector.

• Line 38 specifies the file with upper and lower bounds of the ω parameters.

• Line 39 is an option for parallel DE.

• Line 40 is the number of directions for experimental variogram calculation. These experimental

variograms are used to calculate MSE relative to the targets.

• Lines 41-44 are standard varcalc experimental variogram calculation parameters.

• Lines 45 and 46 are the number of continuous and indicator variogram model targets to

consider.

• Line 47 is inverse distance weighting for variogram optimization. A larger power places more

weight on optimizing shorter-range lags.

• Line 48 is the maximum number of experimental pairs to consider. This option can speed up

optimization but results in greater error and potentially unstable results.

• Line 49 is the option to standardize variogram sills if not already.

• Lines 50-61 are standard GSLIB variogram model specifications for the targets outlined in

lines 45 and 46. The continuous model is first followed by some number of indicators. The

number of models here must equal line 45 + line 46, or an error is thrown.

The Gaussian pool file specified on line 21 contains a single structure variogram model for each

factor in the input layer. An example of a pool file with three input factors is shown below:

1 1 0.0 -nst, nugget effect

2 1 1.0 -40 0 0 -it,cc,ang1,ang2,ang3

3 129.6 75.6 25 -a_hmax, a_hmin, a_vert

4 1 0.0 -nst, nugget effect
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5 1 1.0 -40 0 0 -it,cc,ang1,ang2,ang3

6 232.2 124.2 50 -a_hmax, a_hmin, a_vert

7 1 0.0 -nst, nugget effect

8 1 1.0 -40 0 0 -it,cc,ang1,ang2,ang3

9 334.79 172.8 75 -a_hmax, a_hmin, a_vert

The structures can be permissible GSLIB variogram structures (spherical, experimental, Gaus-

sian). White space is permitted between the models. nst may not be greater than 1. The program

allocates arrays and reads data based on the specified input layer dimension; the number of struc-

tures must match the number of input nodes, or an error is thrown.

A.2 NMRIMP

NMRIMP provides latent imputation functionality discussed in Chapter 5. The program takes two

data files as inputs: (1) the same drillhole data provided to NMROPT, and (2) the file containing the

optimized network weights generated by NMROPT. The same network architecture must bet specified

in both programs or errors allocating arrays will occur. The program outputs all imputed realizations

to a file with the same structure as the input data; each imputed factor becomes a new variable in

the file. The parameter file is shown below:

1 PARAMETERS FOR NMRIMP

2 *********************

3

4 START OF PARAMETERS:

5 data.dat - file with data

6 1 4 5 6 7 11 - columns for dh, x, y, z, var and wt

7 0 - normal score transform var? (0=no, 1=yes)

8 -1.0e21 1.0e21 - trimming limits

9 100 - number of realizations

10 5841044 - random number seed

11 1 - debugging level

12 nmrimp.dbg - file for debugging output

13 nmrimp.out - output file with imputed realizations

14 3 - number of network layers (input to ...

15 5 5 1 - network layer dimensions (input + ...

16 nmrwts.out - input file with optimzed network weights

17 0 1 -1.5 - consider factor precedence? (0=no, ...
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18 0 0.9 1 - seed values? (0=no, 1=yes), thresh ...

19 20 - exclusion radius for seeded values ...

20 40 - maximum previously simulated nodes

21 50000 10000 - maximum iterations for step 1 and step 2

22 0.1 0.01 - rejection tolerances for step 1 and step 2

23 pool.dat - file with cov. structs. of Gaussian pool

Each line in the parameter file is summarized below:

• Lines 5-8 are standard GSLIB-style data inputs.

• Line 9 is the number of realizations to impute.

• Line 10 is the random number seed.

• Lines 11 and 12 are the debug flag and the output file for debugging.

• Line 13 is the output file for imputed realizations.

• Lines 14-15 specify the architecture of the NMR. These parameters must match those used in

NMROPT.

• Line 16 is the input file with optimized network weights. This file is output by NMROPT.

• Line 17 is an option to consider factor precedence; this must match that used by NMROPT.

• Line 18 is the option to seed values, the threshold above which to seed, and the factor index

to seed. Line 19 is the exclusion radius for seeding and setting the semi-random path.

• Line 20 is the number of previously simulated nodes to consider in sequential simulation. 40-60

is typical for a 3D problem.

• Line 21 are the number of iterations for the coarse search (step 1) and solution polishing (step

2), respectively.

• Line 22 are the rejection tolerances for the coarse search (step 1) and solution polishing (step

2).

• Line 23 is the input file containing all elemental factor variogram models. Only one structure

is permitted per model. This file should be the same as in NMROPT.
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