

Project Report

For
Capstone Project

On

Model-driven device provisioning

Presented by

Mayank Marwaha

As Part of

Master of Science in Internetworking

University of Alberta

Under the Supervision

of

Dr. Ali Tizghadam

 2

Table of Contents

1 INTRODUCTION .. 6

1.1 CONTEXT .. 6
1.2 MOTIVATION .. 6
1.3 OBJECTIVES ... 6
1.4 STRUCTURE OF THE PROJECT .. 6

2 BACKGROUND INFORMATION .. 7

2.1 SOFTWARE DEFINED NETWORKING (SDN) .. 7
2.1.1 WHAT IS SOFTWARE DEFINED NETWORKING?.. 7
2.1.2 WHY SHIFT TO SDN? WHAT ARE THE ADVANTAGES OF SDN? ... 8
2.2 SNMP (SIMPLE NETWORK MANAGEMENT PROTOCOL) .. 9
2.2.1 COMPONENTS OF SNMP .. 9
2.2.2 DIFFERENT VERSIONS OF SNMP ... 11
2.2.3 SNMP OPERATIONS... 11
2.2.4 IS SNMP STILL A GOOD OPTION? WHAT ARE ITS LIMITATIONS? ... 12
2.3 OPERATIONAL DATA VS CONFIGURATION DATA VS STATISTICAL DATA ... 12
2.4 DATA MODEL-DRIVEN MANAGEMENT ... 13
2.4.1 WHAT IS A DATA MODEL? ... 13
2.4.2 WHY DO WE NEED DATA MODELS? ... 14
2.5 YANG: THE DATA MODELING LANGUAGE .. 15
2.5.1 UNDERSTANDING YANG DATA MODEL WITH AN EXAMPLE .. 16
2.5.2 YANG FOR NETWORK OPERATORS .. 19
2.6 NETCONF ... 20
2.6.1 PROTOCOL FUNDAMENTALS ... 20
2.6.2 NETWORK MANAGEMENT DATASTORE ARCHITECTURE (NMDA) ... 22
2.6.3 NETCONF PROTOCOL OPERATIONS .. 25
2.7 RESTCONF .. 29
2.7.1 RESTCONF VS NETCONF .. 31
2.8 CISCO NSO ... 32
2.8.1 NSO ARCHITECTURE .. 33
2.8.2 ADVANTAGES OF USING NSO ... 34

3 PROPOSED SOLUTION... 35

3.1 THE COMPONENTS ... 35
3.2 IMPLEMENTATION .. 37
3.2.1 STEP 1: COMPILING SNMP MIBS AND IMPLEMENTING SNMP NEDS IN NSO 37
3.2.2 STEP 2: ADDING THE DEVICES TO BE MANAGED TO NSO... 39
3.2.3 STEP 3: ADDING THE DEVICES TO A GROUP WITHIN NSO .. 42
3.2.4 STEP 4: IMPLEMENTING SNMP COLLECTOR... 43
3.2.5 STEP 5: IMPLEMENTING THE PUBLISHER .. 48
3.2.6 STEP 6: IMPLEMENTING DB QUERIER ... 55

4 LIMITATIONS .. 62

 3

5 BIBLIOGRAPHY.. 63

 4

TABLE OF FIGURES

FIGURE 2.1: DATA PLANE AND CONTROL PLANE [2] ... 7
FIGURE 2.2: CENTRALISED CONTROL PLANE AND A DISTRIBUTED DATA PLANE [2] ... 8
FIGURE 2.3: COMPONENTS OF SNMP [8] ... 9
FIGURE 2.4: MIB-II SUBTREE [9] ... 10
FIGURE 2.5: IF-TABLE [10] ... 12
FIGURE 2.6: IETF-INTERFACES.YANG IN TREE FORMAT .. 14
FIGURE 2.7: YANG AS API CONTRACT [14] .. 15
FIGURE 2.8: NETCONF PROTOCOL LAYERS [19] ... 20
FIGURE 2.9: EXAMPLE OF RPC GET REQUEST [20] ... 22
FIGURE 2.10: RPC REPLY TO THE RPC GET REQUEST [20] ... 22
FIGURE 2.11: ARCHITECTURAL MODEL OF DATASTORES [14] .. 24
FIGURE 2.12: EXAMPLE OF NETCONF GET OPERATION [17] .. 25
FIGURE 2.13: GET-CONFIG OPERATION [17] ... 26
FIGURE 2.14: EDIT-CONFIG OPERATION [17] .. 27
FIGURE 2.15: COPY-CONFIG OPERATION [17] ... 27
FIGURE 2.16: DELETE-CONFIG OPERATION [17] .. 27
FIGURE 2.17: LOCK OPERATION [17]... 28
FIGURE 2.18: UNLOCK OPERATION [17] .. 28
FIGURE 2.19: CLOSE-SESSION OPERATION [17] ... 28
FIGURE 2.20: KILL-SESSION OPERATION [17] .. 29
FIGURE 2.21: COMMIT OPERATION [17] .. 29
FIGURE 2.22: RESTCONF OPERATIONS RELATED TO NETCONF PROTOCOL OPERATIONS [26].. 30
FIGURE 2.23: GET REPLY FOR WELL-KNOWN HOST-META INFORMATION .. 30
FIGURE 2.24: GET REQUEST ON THE ROOT URL OF RESTCONF SERVER ... 31
FIGURE 2.25: USE CASE FOR RESTCONF AND NETCONF [14] .. 32
FIGURE 2.26: CISCO NSO ARCHITECTURE [28]... 33
FIGURE 3.1: MAPE-K LOOP [29]... 35
FIGURE 3.2: PROPOSED SOLUTION ... 35
FIGURE 3.3: MIB CORRESPONDING TO OID [29] .. 37
FIGURE 3.4: IMPORT SECTION OF IP-MIB.MIB .. 37
FIGURE 3.5: CONTENTS OF MIB DIRECTORY ... 38
FIGURE 3.6: COMMANDS TO COMPILE MIBS TO SNMP NED ... 38
FIGURE 3.7: OUTPUT OF MAKE COMMAND... 38
FIGURE 3.8: CONTENTS OF /VAR/OPT/NCS/PACKAGES ... 39
FIGURE 3.9: PACKAGES RELOAD IN NSO.. 39
FIGURE 3.10: CREATING SNMP-GROUP AUTHGROUP .. 40
FIGURE 3.11: ADDING A DEVICE TO NSO ... 40
FIGURE 3.12: CONNECTION STATUS OF DEVICES ADDED TO NSO .. 41
FIGURE 3.13: PERFORMING LIVE STATUS ON A DEVICE FROM NSO.. 41
FIGURE 3.14: LIVE STATUS COMMAND FROM NSO ON A DEVICE WITH OUTPUT IN JSON FORMAT .. 42
FIGURE 3.15: ADDING DEVICES TO A GROUP IN NSO.. 42
FIGURE 3.16: RESTCONF QUERY TO THE GET DEVICES PART OF SNMP GROUP .. 43
FIGURE 3.17: CHECKING CONNECTION BETWEEN NSO AND THE DEVICE ... 43
FIGURE 3.18: CURL OPERATION TO GET THE ARP INFORMATION FROM SNMP-NOKIA-2 .. 44
FIGURE 3.19: DEFINITION OF GET_DEVICES_FROM_NSO() .. 45
FIGURE 3.20: GET_ARP(DEVICE_NAME) FUNCTION .. 45
FIGURE 3.21: REST ENDPOINT FOR SNMP-COLLECTOR ... 46
FIGURE 3.22: GET OPERATION ON /DEVICES ... 47
FIGURE 3.23: RELATIONSHIP DIAGRAM OF DATABASE ... 48
FIGURE 3.24: SQLALCHEMY MODEL FOR OPERATIONALDATATYPE .. 49
FIGURE 3.25: SQLALCHEMY MODEL FOR TIMEDTRANSACTIONS ... 49
FIGURE 3.26: SQLALCHEMY MODEL FOR ARP... 50
FIGURE 3.27: CRUD_OPERATIONAL_DATA_TYPE.PY ... 50
FIGURE 3.28: CRUD_TIMED_TRANSACTIONS.PY .. 51

 5

FIGURE 3.29: CRUD_ARP.PY .. 52
FIGURE 3.30: PUBLISHER.PY .. 53
FIGURE 3.31: OPERATIONALDATATYPE TABLE .. 54
FIGURE 3.32: TIMEDTRANSACTIONS TABLE .. 54
FIGURE 3.33: ARP_INFO TABLE .. 55
FIGURE 3.34: SWAGGER ENDPOINTS FOR ARP.YANG... 58
FIGURE 3.35: FUNCTION GET_ARP_ALL_DEVICES() .. 58
FIGURE 3.36: ALL THE RECORDS OF TIMEDTRANSACTIONS ... 59
FIGURE 3.37: GET OPERATION ON /DEVICES ENDPOINT .. 59
FIGURE 3.38: FUNCTION GET_ARP_SINGLE_DEVICE(DEVICE) ... 60
FIGURE 3.39: CURL ON ARP:DEVICES=SNMP-XR/IPNETTOMEDIATABLE/IPNETTOMEDIAENTRY ENDPOINT 60
FIGURE 3.40: FUNCTION GET_ARP_FILTER_FOR_IP_AND_INDEX() ... 61
FIGURE 3.41: GET ON THIRD ENDPOINT .. 61

 6

1 INTRODUCTION
 This chapter describes the context, motivation, objective and limitations of the study.

1.1 Context
The traditional network OAM (Operations, Administration and Management) had

network engineers as the consumers who used the data collected from network OAM to

monitor and diagnose the networks, but these tools are not enough for the modern

networks where the consumer of all this operational and management data is not humans

but rather other applications or services [1]. This is where term Network Telemetry

comes in. Network telemetry means using automated data collection processes for

collecting operational data from the network devices, analyzing this data and further use

this data for different use cases like anomaly detection, network performance etc. which

can be further used to improve network optimization techniques like real time load

balancing, traffic engineering and network planning [1].

1.2 Motivation
With the increased adoption of SDN and machine learning based artificial intelligence,

data obtained from the networks using network telemetry can be used to detect network

faults, anomalies, policy violations and can further be used to prevent these incidents [1].

With such use cases, the aim is to reduce the human labor, provide better services to the

customer and to efficiently use the network resources in place [1]. Network operators

have both new as well as legacy devices in their network. The presence of legacy devices

in the network poses a challenge to implementing network telemetry throughout the

network. The unstructured data from conventional OAM techniques like CLI hinder the

tool automation and application extensibility [1]. SNMP seems to be the only choice

when it comes to getting structured data from the legacy devices. Another major concern

is to come up with a solution that will be compatible with devices from different vendors.

1.3 Objectives
This project aims to discuss various technologies that can be used together to collect

operational data from network devices irrespective of the vendor. The major focus of this

project will be on collecting operational data from the legacy devices. Keeping the

above-mentioned challenges in mind. This framework will be capable of collecting data

from the legacy as well as the modern network devices that can further be exposed using

API to any northbound applications which can utilize this data to provision new services

or network devices.

1.4 Structure of the Project
The project is divided into 5 chapters:

 Introduction: This chapter provides the context, motivation and objects of the

project

 Background Information: This chapter provides a deep insight into the various

technologies that I studied during the course of project. Each technology

discusses its advantage over the other and some technical details.

 Proposed Solution: This chapter contains the proposed solution and

implementation details of the project.

 Limitations: This chapter discusses the limitations of the approach.

 Bibliography: This chapter provides references to all the resources referred during

the project.

 7

2 BACKGROUND INFORMATION
 This chapter discusses the various technologies and terms that needs to be understood

before understanding the network telemetry framework developed later in this study.

2.1 Software Defined Networking (SDN)

2.1.1 What is Software Defined Networking?
In order to understand SDN in a better way we need to understand what are the main

functions that a networking device performs. Whatever a network device does can be

categorized as being in a particular plane. There are three planes that define the functionality

of the networking device completely and these are:

a. The Data Plane: Data plane consists of everything a router or switch might do when

receiving, processing and forwarding a message. It involves de-encapsulating and re-

encapsulating the packet in a data link frame, matching the frame’s destination MAC

address with the MAC address table, matching the destination IP address to the IP

routing table and then re-encapsulating the packet with the information necessary to

forward the packet [2].

b. The Control Plane: Control plane supplies the information that the data plane needs

to know beforehand so that it can work properly. It involves creating tables like IP

routing tables, MAC address tables etc. and modifying the entries in these tables. For

example, the OSPF process running on each router in the network runs in the control

plane and makes changes to the routing table. Based on these changes in the routing

table, the data plane further makes the packet forwarding decision. Some other control

plane protocols are EIGRP, BGP, ARP, IPV6 NDP, STP etc. [2]

Figure 2.1: Data plane and Control plane [2]

c. The Management Plane: Management plane includes the protocols that allows the

network engineers to manage the device. Telnet and SSH are two of the most

commonly used management protocols [2].

Traditional networks used distributed control planes where each device had their own

instance of control plane process that communicated with each other using protocol

messages. Now imagine if instead of having a distributed control planes, there was a

centralized software acting as the control plane that used protocol messages to learn

information from the devices but did all the processing of the information at a centralized

location. This is the key factor in defining Software Defined Networks [2].

According to Open Network foundation:

“In the SDN architecture, the control and data planes are decoupled, network

intelligence and state are logically centralized, and the underlying network

infrastructure is abstracted from the applications. As a result, enterprises and

carriers gain unprecedented programmability, automation, and network control,

enabling them to build highly scalable, flexible networks that readily adapt to

changing business needs.” [3]

 8

The centralized control plane in this case is called the controller. The controller itself can

create a centralized repository of all the useful information about the network.

In figure 2.1 which depicts a centralized control plane and a distributed data plane, all the

network devices sit below the controller. There exists a software interface or API which lets

the program on controller to communicate with the program on networking devices to let the

controller program the data plane of networking devices. Since in most networking and

architecture diagrams, this interface sits below the controller hence the interface is called as a

Southbound Interface. [2]

Figure 2.2: Centralised Control Plane and a Distributed Data Plane [2]

In order to make this architecture truly programmable, other applications and programs

should be able to program the network. To facilitate that, controller is exposed to other

applications and services by another interface or API which is called Northbound Interface

since it sits on top of the controller.

2.1.2 Why shift to SDN? What are the advantages of SDN?

In the traditional networks, once the network has been designed and implemented, the only

way to make an adjustment to the flow is via changes to the configuration of devices which

demand expert skills, change requests, maintenance window and sometimes manual rollback.

This makes the network operations complex with the need to maintain, manage and upgrade

heterogenous infrastructure. On the other hand, SDN architecture offers a centralized,

programmable network that can support the dynamic nature of future networks. [4] [5]

Here are some of the benefits that come along with adopting the SDN architecture:

a. Direct Programmability: Automation tools like OpenStack, Ansible, Puppet, Chef etc.

can be used to programmatically configure the network which is only possible

because the control plane is decoupled from the data plane. [6]

b. Centralized management: The SDN controller maintains the global view of the

network and therefore it is easy to implement to make changes to services without the

need to remotely login to every device on the network. [6]

c. Reduced Capex: SDN follows a pay-as-you-grow model when it comes to scalability.

Most of the networking devices in the market these days support SDN capabilities and

hence in order to scale the network, all you need is a infrastructure composed of

devices with SDN capabilities. [6]

d. Reduced Opex: Since the updates can be pushed automatically to the network

software uniformly, there is no need to change the infrastructure when the business

need arises. Also, most of the monotonous tasks which were earlier being done by the

network administrators can be automated which not only reduces the chances of

human error but also makes the network management efficient timewise. [6]

e. Agility and flexibility: SDN can help organizations rapidly deploy new applications,

services and infrastructure to quickly meet changing business goals and objectives as

a simple deploy will be enough to make the changes network wide. [6]

 9

f. Openness: All of the SDN controllers support API which can be used for a wide range

of applications like cloud orchestration, business-critical networked apps. Using the

APIs, the network operators can write services that can utilize the SDN APIs to give

the applications control over the network behavior. These network aware applications

can monitor network and automatically adapt to the network conditions as needed. [7]

2.2 SNMP (Simple Network Management Protocol)
SNMP originated in 1988 when the number of IP devices in networks was growing in size.

SNMP is a network management protocol that allows network administrators to remotely

access or change the management information on a network device. SNMP operates on the

application layer.

2.2.1 Components of SNMP

SNMP consists of the following components:

a. SNMP Manager: Manager is a device that runs the Network Management System

(NMS) and polls SNMP agents running on the managed devices periodically to

collect information from the devices or receives traps from the management agents in

the network. This information can then be presented to the network administrator

using GUI or can be used to take appropriate action [8] [9]. Polling is a pull-based

method of collecting information from the management agents where the manager

queries for information whereas traps are push based and are sent by the management

agents in case some alarming event is noticed on the side of management agents.

b. Managed Device: Network devices like PCs, servers, routers and gateways which are

managed by the manager are called managed devices. These devices house the

management agents.

c. Management agents: Management agent is a software running on managed devices

that stores information related to the device. It responds to the manager's queries and

generates traps to inform the manager about certain events. [8] Since trap are push

based, they are considered a better and efficient way to collect information as there is

no delay in reporting the event and it does not consume as much bandwidth or

resources as polling does.

d. Protocol: SNMP is the protocol. It uses UDP as the transport layer protocol. Traps

are sent to manager with the destination port of 162. The manager sends queries to

management agents with the destination port of 161 and a random source port.

Figure 2.3: Components of SNMP [8]

 10

e. Management Information Base (MIB): MIB is the database that stores the

information related to all the managed objects that an agent track. The Structure of

Managed Information (SMI) file defines how the managed objects are named and

provides their associated datatypes whereas the managed objects are themselves

defined in the MIB. Different agents from different vendors implement different

MIBs but all the network devices have to compulsorily implement MIB-II or RFC

1213 which contains general information related to TCP/IP. [9]

It is very essential to understand the MIB and the structure of MIB in order to

understand the proposed solution implemented later. Managed objects are defined

using these three attributes:

i. Name: Managed objects are organized in a tree-like structure. Each managed

object is uniquely defined by a OID or object ID. The object ID is made of

integers which represent the different nodes as we traverse the Object tree.

The Object ID can also be represented in a human readable format which is

nothing, but the name of each node separated by dots as we traverse the Object

tree. [9]

Figure 2.4: MIB-II Subtree [9]

 Just like in any tree, the node at the top of Object tree is called the root node

 and anything under that is called the subtree. Figure 2.4 shows the MIB-II

management group. Every device that supports SNMP has to provide the

 MIB-II management group. So IP management group under MIB-II can be

accessed as 1.3.6.1.2.1.4 or iso.org.dod.internet.mgmt.1.4

ii. Type and Syntax: Some of Abstract Syntax Notation One (ASN.1) are used to

define the data type of a managed object. ASN.1 specifies how data is

represented and transmitted between the managers and agents. ASN.1 is

machine independent and so we need not worry about byte ordering when a

Unix machine is communicating with the windows machine. [9]

 11

iii. Encoding: Managed objects are encoded and decoded using the Basic

Encoding Rules (BER) for transmission over a transport medium. [9]

2.2.2 Different Versions of SNMP

a) SNMPv1 is the first version of the protocol that was introduced in 1988. It is

described in RFC 1157. SNMPv1 uses community strings to establish the trust

between the manager and the agent. Community strings are nothing but passwords.

Each managed agent is configured with three community strings, each serving the

following purpose: read-only, read-write and trap. Read-only string allows the

manager to just access the managed objects with read-only access rights. Read-write

string allows the manager to change the values as well and trap string is used to

receive traps. Even though SNMPv1 has been replaced by SNMPv2 and SNMPv3 it

is still the most used of all the other versions. SNMPv1 supports Get, GetNext, Set

and Trap operations [9]

b) SNMPv2 was the next release of SNMP protocol. Not much was changed in the

SNMPv2. Just like SNMPv1 it uses community strings as well. GetBulk, Inform were

added as new operations to the protocol and the PDU format of trap was modified to

be the same as that of Set and Get. [9]

c) The most recent version SNMPv3 supports strong authentication between the

managed entities. SNMPv3 uses USM by default. Another operation Report was

added to the protocol in this release [9]

2.2.3 SNMP Operations

Manager and the managed agents communicate the information using a set of operations.

SNMP supports the following operations:

a. Get: The get request is issued by the manager to the agent. The get request contains

the snmp version, community string or authentication details along with the object ID

of the object that the manager wants to access. The managed agent replies with a

getresponse back to the manager. This type of request is best suited for retrieving a

single MIB object at a time. [9]

b. Getnext: When the manager wants to retrieve a group of values from the managed

agent, it issues a getnext command for each MIB object and the managed agent

replies with a separate getresponse for each getnext. Just like the get request, the

manager provides the snmp version and accordingly either provides the community

string or authentication details along with the managed object. [9]

c. Getbulk: The getbulk operation is only available in SNMPv2 and SNMPv3. It allows

the manager to request a section of a table at once. The request contains the snmp

version along with community string or authentication details, max repetition and

nonrepeater values. [9]

d. Set: The set operation is used to make changes to the managed object. The set request

contains the snmp version along with the community string or authentication details,

managed object id and the new value you want to set it to. [9]

e. Getresponse: the managed agent replies with getresponse every time a manager

requests something with the get, getnext or getbulk operation. [9]

f. Trap: The trap originates at the managed agent and is sent to the trap destination

which in most of the cases is the manager. The manager should be capable of

interpreting the trap. The trap numbers can vary from 0 to 6. For the traps 0 to 5, the

knowledge of what the trap contains is defined within the NMS itself. The trap

number 6 is enterprise specific which is defined by the manufacturer of product. [9]

 12

g. Notification: Since the pdu format of trap is different from the get and set request in

case of SNMPv1 thus SNMPv2 defined Notification which has the same pdu format

as that of the get and set operation. [9]

h. Inform: SNMP inform is exclusive to SNMPv2 and SNMPv3. Whenever an event is

sent, the receiver acknowledges that it received the event by sending a SNMP inform.

[9]

i. Report: SNMP Report was introduced as a draft in SNMPv2 but was officially

implemented in SNMPv3. It was developed to provide a mechanism for

communication between SNMP engines. [9]

2.2.4 Is SNMP still a good option? What are its limitations?

With SDN gaining popularity and the number of network devices in the network of an

organization continuously increasing, it has become very hard to manage all these devices

with SNMP. SNMP has helped the network administrators a lot when the Internet was

gaining popularity, but it has failed to keep up with the scale and speed that modern networks

require. [10]

SNMP polling is based on pull. To get large amounts of data from the management agents,

SNMP uses GetBulk operation which further sends a series of GetNext operations. The poller

receives as many entries from an object table as the IP packet can carry across the network. It

keeps sending the GetNext requests until the poller detects that the management agent is now

sending the entries from the next object table. In this case each request is individually

processed by the router. More than that if you have more than one poller then that further

creates delay as now the router has to keep the record of all the incoming requests separate

and thus the SNMP response gets slow. [10]

Figure 2.5: IF-Table [10]

Another issue is the way data is ordered in the object table. Let us consider the above table in

figure 2.5. If a GetBulk request is made to obtain the table, the internals of router fulfil the

request by going through each column (returning a list of ifIndex, followed by ifDescr and so

on) one by one. Even though methods like indexing can be implemented in the router object

table but implementing such mechanisms means more processing work as well as increased

retrieval time which makes the data stale. [10]

AI and Machine learning techniques can be used to perform data analysis on the operational

data obtained from the network devices. This data analysis can further be put to use for

anomaly detection and improving network performance etc. but due to slow response times

of SNMP, this is not possible in a large network.

2.3 Operational data vs Configuration data vs Statistical data
Configuration data is the changes done to a network device to change the initial state of the

device to its current state. [11]

Operational state data is the data that has been obtained from the network device at runtime

and unlike configuration data is modified by interactions with internal components or by

other systems using specialized protocols. [11]

Statistical data is read only and provides information about the performance of system as well

as the various components in the system. [11]

Let us consider the following examples to make the difference clear:

 13

a) IP Routing table: When you statically configure a route in the router that will be

considered as the configuration data. When a router learns about other networks

available in the topology due to a routing protocol running on it, then the learned

information about network is called the operational data. In addition, the routing

process on a router may also provide information like how often the routing entry was

used. [11]

b) MTU value on Interface: Every port has a default speed or MTU value that it uses by

default when it detects a particular type of cable plugged in. This value becomes the

operational state associated with the interface when the interface is being used. The

value of MTU or speed can be configured on the interface. This will be configuration

data for the interface. The interface can record statistics for the number of bytes,

packets received on the interface and this will be considered the statistical data. [11]

c) Account Information: Configurations about the accounts locally on the system.

Further additional information can be obtained using protocols like LDAP

dynamically which counts as the operational state data. Information like account

usage will be considered statistical data. [11]

2.4 Data Model-Driven Management

2.4.1 What is a Data model?

In simple words, a Data model is nothing but an agreed upon and commonly understood

method to describe something. Consider that you have to describe a person, the simple data

model for this person will be [12]

--Person

 --Gender: male, female, other

 --Height: in feet, inches or centimeter

 --Weight: kgs or lbs

 --Hair Color: Brown, Blonde, Black, other

 --Eye Color: Brown, Black, Green, other

According to RFC 3444, Data Models define managed objects at a lower level of abstraction.

They include implementation- and protocol-specific details, e.g. rules that explain how to

map managed objects onto lower-level protocol constructs. [13]

Data models can be represented using the following formats:

 Yang

 XML

 JSON

 HTML/JavaScript

Yang is most commonly used language for making Data models in networking world these

days. Different organizations are working together to come up with the industry standard

yang data models as well as the specific-to-vendor data models.

The yang data models from standard organizations like IETF, open-source projects like Open

Daylight, vendors can be accessed at: https://github.com/YangModels/yang

A Data model can be used to describe the

 Device Data Models: Interface, VLAN, Device ACL, Tunnel, OSPF, etc. [12]

 Service Data Models: MPLS VPN, BGP, VRF, etc. [12]

 14

Figure 2.6: IETF-INTERFACES.yang in tree format

Figure 2.6 shows the ietf-interfaces.yang which is the IETF standard data model for an

interface in a tree format. The output is obtained using a python library called PYANG which

is used to validate the yang data models. As you can see the Data model describes the various

properties of an interface and also mentions if they are RO – read only or RW – read write.

RO is for the operational or statistical data whereas RW is for the configuration data related

to the object.

2.4.2 Why do we need Data Models?

The need for Data models came from the need of automation in the networking equipment.

Even though CLI and SNMP were being used for configuration and management purposes,

let’s see where they fail, and this will help us understand why there was a need for data

models.

The cli of a networking device is meant to be user-friendly for the network engineers. While

cli may be the most interactive way of handling networking equipment, it most certainly is

not the most efficient way to introduce new service in the network. For network operators,

launching a new service sometimes involves doing changes to thousands of devices

sometimes which would mean that a network expert would have to login to each and every

one of these devices to make the changes. Using highly trained network experts for inserting

commands into the network devices is a wastage of resource and time as well. More than that

since the commands are being typed by a network professional manually, there is a high

probability of fat-finger typing which can bring the whole network down. What if a need

arises to make the changes to this network service? Will this entire process be repeated

again? Using tools like expect and libraries like paramiko, the cli can be automated but only

to a limit because of the following reasons:

a) The cli is not standardized across all the vendors. Different vendors use different

operating system and thus different set of commands for a particular configuration.

[14]

b) Dependency issues while configuring the devices using cli is another issue. For

example, a vlan has to be created in the networking device before an interface can be

 15

assigned to the vlan. The configuration fails and, in some cases, it is partially

completed. [14]

c) Cli provide no error reporting while configuring the devices using scripts. This makes

it difficult to cover the edge cases with scripts. [14]

d) The output obtained from cli is not structured. The only way to extract data from the

output of scripts is using regex or screen scraping which is not the best method. A

slightest change in the output can break the script. [14]

As explained in the SNMP section above, snmp is not a good option for bulk transfers and is

not efficient when fetching information from the device. More than that SNMP can only be

used for monitoring but not for making the changes to configuration.

In order to make the management and configuration of network devices easier model driven

architecture was introduced. Adopting the model driven architecture provides an API that has

the following benefits:

a) Abstraction: a programmable API abstracts the underlying implementation

complexities. Thus, making configuration changes does not involve making changes

in a particular order. It is more like filling a checklist. [14]

b) Data specification: This API provides how the data is organized and what the type of

data is. [14]

c) Means of accessing data: the API provides a standardized way of reading and

manipulating device data. [14]

Thus, Data model-driven management builds on the idea of specifying in models the

semantics, the syntax, the structure, and constraints of management objects. [14] The

advantage is that, as long as the models are updated in a backward-compatible way, the

previous set of APIs is still valid. [14]

[15]

2.5 YANG: The Data Modeling Language
As per RFC 7950 YANG, Yet Another Next Generation language, can be defined as:

“YANG is a data modeling language used to model configuration data, state data, Remote

Procedure Calls, and notifications for network management protocols.”

Yang is an API contract language that is used to write the specifications of an interface

between a client(controller or an application) and a server(network element or an application)

on a particular topic. A Yang module consists of a specification and a set of Yang modules

forms the Yang model. [14]

Figure 2.7: Yang as API Contract [14]

 16

As shown in figure 2.7, the Yang based server publishes its Yang modules which taken

together form the server’s Yang model. On the basis of what the yang model contains, these

yang models can be used to configure, monitor status, receive notifications from server and

invoke actions on the server. [14]

2.5.1 Understanding YANG data model with an example

Let us consider table 1 as an ARP table obtained from the device

IfIndex PhysAddress NetAddress MediaType

1 6c:9c:ed:11:73:a5 10.10.55.3 dynamic

2 f8:6b:d9:10:98:28 172.25.1.1 static

102 78:ba:f9:11:47:89 172.25.139.249 dynamic

201 f4:b5:2f:40:b8:e1 10.1.2.3 other
Table 1: ARP Table

The Yang model corresponding to the ARP table is:

module ArpTable{

 yang-version 1.1;

 namespace http://www.example.com/netconf/yang/arp;

 prefix arp;

import ietf-inet-types {

 prefix inet;

 }

import ietf-yang-types {

 prefix yang;

 }

revision 2021-02-08 {

 description

 "Initial revision of ARP table";

 }

container ArpTable {

 config false;

 list ArpEntry {

 key "NetAddress";

 leaf IfIndex {

 description

 "Interface index";

 type int32

 {range "1..2147483647";}

 }

 leaf PhysAddress {

 description

 "Mac Address associated with the IP address";

 type yang:phys-address;

 17

 }

 leaf NetAddress

 {

 description

 "IP address associated with the MAC address";

 type inet:ipv4-address;

 }

 leaf MediaType {

 description

 "specifies how the binding was learned";

 type enumeration {

 enum "other"

 {

 value 1;

 }

 enum "invalid"

 {

 value 2;

 }

 enum "dynamic"

 {

 value 3;

 }

 enum "static"

 {

 value 4;

 }

 }

 }

 }

 }

 }

Please note that the data model described here is just to demonstrate an example and is not

complete.

Each of the Yang module starts with the keyword module which is followed by the module

name. In our case the name of the module is ArpTable. The name of the file must be same

as the module name followed with a .yang extension. [14] A module is the smallest unit for

defining models in YANG. A module contains only one data model. A module can also

include other existing data models. [15]

The yang-version states that this particular module is written in yang version 1.1.

namespace is used to give a unique name to the module. No two modules can have the

same namespace and it is up to the yang developer to make sure of that. Ideal suggestion is to

include the domain name of the organisation in the namespace. [14]

The prefix statement defines the prefix associated with the particular module. Since the

namespace section is long, it becomes hard to refer to the definitions inside the module with

 18

the namespace and thus there is the prefix which is the abbreviation of the module name. the

prefix name should be unique among the set of yang modules being used in the organisation

otherwise it leads to confusion while reading as well as importing. In our case we have used

to the prefix arp. [14]

The import statement makes all the definitions and types in the imported module available

to the current module. [14] The prefix statement is mandatory as it is used to assign a prefix

to the definitions in the imported module in order to define it in the scope of the calling

module. [15] In the above example we are importing two modules namely: ietf-inet-

types and ietf-yang-types. The revision statement is optional, it is not required

but it is a good practise to add the revision date to the module as it is published. The revision

statement contains the revision history of the model. The format of date string is “YYYY-

MM-DD”. You can further add a description section to define the changes in each revision.

[15]

Now comes the definition part where the specifications of the managed object is defined. A

Yang container is a collection of information elements that belong together [14]. A

container has only child nodes and no value. It can contain any number of child nodes which

can be leafs, lists, containers etc. In our case ArpTable is the container for all the arp

entries of a device. The config is set to false which means that the data under this container is

read only and cannot be changed. Config set to false represents the operational data. If config

is set to true then that means that the data elements under that particular node can be changed

and hence the model represents the configuration data.

A Yang list works like a container and is a sequence of list entries. [14] A list can have

many child nodes. Each entry in the list is uniquely identified by its key leafs [15]. In our

case a single ArpTable will have many ArpEntry. The key leaf is just like the primary

key in the database. The key can be from one child leaf node or multiple child nodes. [15]

Under the list ArpEntry we see many leaf nodes. Each leaf node represents a column of

the Arp table shown in table 1. A leaf has no child nodes and is of a particular type [15]. By

default all the leafs are optional unless they are marked as key or mandatory. [14] Each leaf

has a type statement which describes the kind of data this leaf can hold. You can define

the type as one of the 19 built in types or define the derived type which are made from built-

in types. Some of the example built-in types are Boolean, bits, binary, enumeration, int8,

int32, int64, string, uint16, uint32, uint64 etc. [15] In the data model of ArpTable we have

used int32 for IfIndex with the values in the range of 1 to 2147483647, a derived type

called phys-address from the module ietf-yang-types for PhysAddress, a derived

type called ipv4-address from the module ietf-inet-types for the IP address and

enumeration type where the values other, invalid, dynamic, static are given

the integer values 1,2,3,4 respectively.

The definition of phys-address from ietf-yang-types and ipv4-address

from ietf-inet-types is available as part of RFC 6021 [16] as :

typedef phys-address {

 type string {

 pattern

 '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';

 19

 }

 description

 "Represents media- or physical-level addresses

represented as a sequence octets, each octet represented by

two hexadecimal numbers. Octets are separated by colons. The

canonical representation uses lowercase characters. In the

value set and its semantics, this type is equivalent to the

PhysAddress textual convention of the SMIv2.";

 reference

 "RFC 2579: Textual Conventions for SMIv2";

 } [16]

typedef ipv4-address {

 type string {

 pattern

 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-

5])\.){3}' + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-

5])' + '(%[\p{N}\p{L}]+)?';}

 description

 "The ipv4-address type represents an IPv4 address in

dotted-quad notation. The IPv4 address may include a zone

index, separated by a % sign. The zone index is used to

disambiguate identical address values. For link-local

addresses, the zone index will typically be the interface

index number or the name of an interface. If the zone index

is not present, the default zone of the device will be used.

The canonical format for the zone index is the numerical

format";

} [16]

Both the derived type phys-address and ipv4-address are formed from built-in type

string using regular expression pattern statement.

In order to get the ARP entry corresponding to a particular IP address using the above data

model, we would use something called as the XPath. Using the XPath

/ArpTable/ArpEntry[NetAddress=”10.10.55.3”]/ we could access the ArpEntry for net

address of 10.10.55.3

2.5.2 YANG for Network Operators

During the 2002 IAB Network Management Workshop, many network operators raised

issues related to network management architectures that were being used. Strengths and

weaknesses of various technologies were assessed, and network operators came up with a

number of requirements for the management architecture that the industry must follow.

YANG was one of the outcomes of that workshop and it addresses the following

requirements:

a) Separation between the configuration data and state data: Yang makes it easier to

differentiate the configuration data from the state data with the help of config

statement. If the config is set to True, that would imply that the data can be

changed or configured but if it is set to False then that makes the data as just read only

 20

or operational. All the child nodes under a container or list with config as

false will be considered as part of the operational data. [14]

b) Easy to Use: The syntax of Yang is human friendly and easily readable just like some

of the programming languages. Many of the issues remain unresolved in Yang but its

ease of usage is attracting many developers. [14]

c) Generation of Deltas: Since every managed object is represented using a yang data

model, it is very easy to generate the delta between the two configuration data sets.

This makes it easier to switch back to old configuration quickly in case the new

configuration creates problems. [14]

d) Task Oriented: Using data models, not only can you map the leafs nodes with the

underlying network data, but you can also define specific tasks as RPC operations

which can act on this underlying data. [14]

e) Full coverage: All the capabilities of the network device can be accessed with a

proper data model. Due to all this, there is no more need to CLI based tools. [14]

f) Simple data modeling language: Yang data models make it very easier to integrate the

network devices into the infrastructure or with another application. [14]

g) Timeliness: It is very easy to tie the cli operations to a yang module, thus making all

the operations available immediately. [14]

h) Implementation difficulty: The ease of implementation of new modules in Yang

makes it is very easy to add new features and integrate them with the current data

models. [14]

2.6 NETCONF
NETCONF is a network management protocol defined by IETF in RFC 6241 to “install,

manipulate, and delete the configuration of network devices” [17]. It provides a set of

operations built on top of remote procedure calls (RPC) using xml encoding and are used to

get and edit the configuration of network devices. [18] NETCONF was the result of

complaints brought forward during the 2002 IAB Network Management Workshop by

network operators who were struggling with the network management tools at that time.

2.6.1 Protocol Fundamentals

NETCONF uses a client server architecture based on the RPC calls. In this case NETCONF

client is the application or script running as part of the network manager whereas the

NETCONF server is the managed network device [17]. NETCONF client communicates with

the NETCONF server over a session using a series of XML structured messages. The

messages in this case are either the remote procedure call or RPC reply [14].

Figure 2.8: NETCONF protocol layers [19]

 21

All this communication occurs on top of SSH session using the concept of SSH subsystem.

Figure 2.8 depicts the various layers of the NETCONF protocol. IANA has assigned port 830

as the default port for NETCONF. As per RFC 6241:

“A device MUST support at least one NETCONF session and SHOULD support multiple

sessions. Global configuration attributes can be changed during any authorized session, and

the effects are visible in all sessions. Session-specific attributes affect only the session in

which they are changed.” [17]

When a client wants to connect to the NETCONF server, it opens only one channel. If the

client wants to perform multiple things in parallel on a particular device, it can create another

channel to perform the particular activity. For example, the client can have three SSH

channels in a single SSH connection, one to configure the device, another to read the

operational status from the device and the third to read notifications in case of any change in

the operational state of a device. [14]

When a NETCONF session is opened between a NETCONF client and NETCONF server,

both the sides share their capabilities as part of the hello message. The server replying with

the hello message must include the session id for this particular NETCONF session in the

message. The client does not include a session id in the hello message sent from its side. [17]

As part of the hello message, following capabilities are declared:

 The version of NETCONF supported by server and client (1.0, 1.1 or both).

 The YANG data models supported by server and client.

 The optional capabilities supported by both the parties.

In order to connect to a NETCONF capable device from the unix/linux terminal, enter the

following command:

ssh -2 -l root -p 830 ios-xe-mgmt.cisco.com

In the above command root is the username and ios-xe-mgmt.cisco.com is the

device acting as NETCONF server.

The hello message received from the device looks something like this:
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <capabilities>

 <capability>urn:ietf:params:netconf:base:1.0</capability>

 <capability>urn:ietf:params:netconf:base:1.1</capability>

 <capability>urn:ietf:params:netconf:capability:writable-

running:1.0</capability>

...

 </capabilities>

 <session-id>1132</session-id>

</hello>

Once the client receives the capabilities from the NETCONF server as part of the hello

message, the client knows the data models supported by the server(device). The client

communicates with the server using Remote Procedural Calls. The client sends RPC

requests to the NETCONF server and the server replies with RPC replies. The RPC reply

can be a simple OK message or an rpc-error. The server tracks each RPC with the message

id and replies back the same message id in the rpc reply. NETCONF supports different RPC

operations which will be explained later. For an example let’s consider the get operation as

shown in figure 2.9 in order to understand the structure of a rpc request.

 22

Figure 2.9: Example of RPC get request [20]

In the above RPC request, the message-id is 1. Xmlns is used to specify the capability that the

server supports and thus this particular yang module is referenced to get the information from

the NETCONF server. In the above example we are also using the filtering capabilities to get

the information corresponding to the interface eth0 only.

Figure 2.10: RPC reply to the RPC get request [20]

Figure 2.10 shows the RPC reply to the RPC get request. You can notice that the server

replies with the same message id as the client originally sent in the rpc request.

2.6.2 Network Management Datastore Architecture (NMDA)

RFC 6241 that provides the specification of NETCONF also introduces the concept of one or

more configuration datastores and the various configuration operations that can be performed

on each datastore. As defined in RFC 6241:

“A configuration datastore is defined as the complete set of configuration data that is

required to get a device from its initial default state into a desired operational state.” [17]

As mentioned earlier, one of the major requirements put forward by the network operators

during the 2002 IAB Network Management Workshop was the need to separate the

operational data and configurational data. NETCONF originally did not have any mechanism

to differentiate between the configuration data and operational data as it treated both of them

as plain data. Yang made it easier to differentiate between the two types of data by using the

config flag. Since a yang list has to be either true or false for the data under the list element

 23

to be considered as configurational or operational data, the initial Yang data models had two

list elements – one for the configuration data that was readable and could be changed as

well, the other one for the operational data that could only be read. [14]

One of the examples of this type of data model is the initial version of ietf-interfaces as

described in the RFC 7223 [21]:

+--rw interfaces

 | +--rw interface* [name]

 | +--rw name string

 | +--rw description? string

 | +--rw type identityref

 | +--rw enabled? boolean

 | +--rw link-up-down-trap-enable? enumeration

 +--ro interfaces-state

 +--ro interface* [name]

 +--ro name string

 +--ro type identityref

 +--ro admin-status enumeration

 +--ro oper-status enumeration

 +--ro last-change? yang:date-and-time

 +--ro if-index int32

 +--ro phys-address? yang:phys-address

 +--ro higher-layer-if* interface-state-ref

 +--ro lower-layer-if* interface-state-ref

 +--ro speed? yang:gauge64

This approach was not clear on how to navigate between the operational data and

configurational data. For example, looking at the data model described above, it may be easy

to say that for an interface “x”, the configuration data can be accessed at /interfaces/interface

[name= “x”] and the operation data can be accessed at /interfaces/interface-state [name=

“x”] but what it actually means is that any configuration list abc should have an operational

list called abc-state and that this should be like a naming convention. This approach is not

scalable, and you can see it involves duplication of data in both lists. [14]

Thus, another approach which suggested using new datastore to represent the operational data

was suggested. The only problem with this approach is making changes to the already

developed Yang data models which is currently being done at IETF. In this revised NMDA

model, the data objects are defined only once in the Yang data model but different datastores

can be used to store the independent instantiations. [14]

The modified form of ietf-interfaces compliant with the new NMDA model is described in

RFC 8343 [22] as:
+--rw interfaces

 +--rw interface* [name]

 +--rw name string

 +--rw description? string

 +--rw type identityref

 +--rw enabled? boolean

 +--rw link-up-down-trap-enable? enumeration {if-mib}?

 +--ro admin-status enumeration {if-mib}?

 +--ro oper-status enumeration

 +--ro last-change? yang:date-and-time

 24

 +--ro if-index int32 {if-mib}?

 +--ro phys-address? yang:phys-address

 +--ro higher-layer-if* interface-ref

 +--ro lower-layer-if* interface-ref

 +--ro speed? yang:gauge64

With this new architecture in place, the length of models decreased significantly and there

was no need for any kind of naming convention.

The conceptual model of datastores as per the NMDA is as follows:

Figure 2.11: Architectural Model of Datastores [14]

As you can see in figure 2.11, the NMDA includes the following datastores:

2.6.2.1 The Startup Configuration Datastore<startup>

<startup> is the configuration datastore that contains the configuration that the device loads

when it boots up. This datastore is optional and may not be implemented by all the

implementations of protocol. If the device supports non-volatile memory, the contents of this

datastore are persistent across reboots. In this case the configuration from <startup> datastore

is copied into the <running> datastore when the device boots up. [23]

2.6.2.2 The Candidate Configuration Datastore<candidate>

<candidate> is the configuration datastore that can be altered without changing the device’s

current configuration. These configurations can later be committed to the <running>

datastore. <candidate> datastore is optional and is not supported by most of the

implementations of protocol. [23]

2.6.2.3 The Running Configuration Datastore<running>

<running> is the datastore that holds the current valid configuration of the device. <running>

datastore is not optional and must be supported by the device. If the device does not have

 25

<startup> datastore implemented and a non-volatile memory is available, then the device will

use that non-volatile memory to save the <running> configuration across reboots. [23]

2.6.2.4 The Intended Configuration Datastore<intended>

<intended> datastore holds the configuration that is intended to be used by the device. It is

nothing but the <running> configuration after all the configuration transformations have been

performed on it. In most implementation, the <intended> is similar to <running> but it can be

updated independently as well, provided that the configuration it holds is valid. This datastore

is optional and does not have to be persistent across reboots. [23]

2.6.2.5 The Operational State Datastore<operational>

<operational> contains the state of the system. Request to <operational> datastore returns the

value in use for a node. This datastore is read only and consists the nodes with config set as

true or false. <operational> datastore does not persist across reboots. [23]

2.6.3 NETCONF Protocol Operations

NETCONF supports a set of base operations to manage the configuration of device and to

retrieve the operational state data. Some devices support some additional operations

depending on the capabilities of the device.

The basic protocol operations are:

2.6.3.1 get

The get operation is used to get the configuration as well as the operational data from a

datastore. Further parameters like source to specify the datastore being queried and

filter to identify the portion of the data being queried can be used. [17]

Figure 2.12 provides an example of RPC with get operation and the RPC reply returned by

the device. In the example, a filter to only retrieve data corresponding to interface with

name “eth0” has been supplied.

Figure 2.12: Example of NETCONF get operation [17]

2.6.3.2 get-config

the get-config is similar to the get operation but is used to only fetch the configuration

data from a particular datastore. Like get, different parameters like source and filter

can be used to retrieve certain parts of a configuration datastore. [17]

 26

Figure 2.13: get-config operation [17]

Figure 2.13 provides an example of get-config operation. Notice how <source> tag is

used to specify the datastore which should be queried. The filter tags are used to get the

configuration related to the users.

2.6.3.3 edit-config

edit-config is one of the most important features of NETCONF because of its

transactional nature. edit-config changes all or a part of the configuration in a datastore

and all this happens in a single transaction. There is no concept of time in a transaction. As a

result, there is no need to sequence the commands as you would do while configuring the

device manually from a cli. In case if the changes requested are invalid or if the server fails to

process these changes, it provides a feature rollback-on-error. This feature guarantees

that if any of the changes fail then all the other changes that were part of the same transaction

are discarded and the server returns to its initial state before the transaction. This mechanism

is built into the protocol and as a result does not require implementing code for detecting

failure and rollback on the client side. [14]

As part of the edit-config operation you can specify the datastore as target on which you want

to perform the operation. The operation attribute is used to set the kind of operation that

should be performed on the configuration as part of the edit-config operation. These can be:

 merge: the configuration data sent as part of the edit-config, which contains this

attribute, is merged with the configuration present at a particular level of the datastore

identified by the <target> [17].

 replace: the configuration data sent as part of the edit-config, which contains this

attribute, replaces the configuration present at a certain level in the datastore

identified by <target>. If the configuration data does not exist, it is created. [17]

 create: if the configuration data which contains this attribute is not present as

configuration on the datastore identified by the <target>, then and only then will

this configuration be added as configuration otherwise an <rpc-error> element

with the <error-tag> value of “data-exists” will be returned. [17]

 delete: if the configuration data which contains this attribute is present as

configuration on the datastore identified by the <target>, then and only then will

this configuration be deleted from the configuration datastore otherwise an <rpc-

error> element with the <error-tag> value of “data-missing” will be returned.

[17]

 remove: if the configuration data identified by the element that contains this attribute

exists in the configuration datastore identified by the <target>, then the

configuration data is deleted, otherwise the operation is silently ignored. [17]

 27

Figure 2.14: edit-config operation [17]

Figure 2.14 provides an example of edit-config operation which will replace

configuration data under Ethernet0/0 interface with the configuration specified as part of

this operation.

2.6.3.4 copy-config

copy-config is used to copy or replace an entire configuration datastore. <target> and

<source> tags are sent as attributes as part of the operation to specify the destination and

source datastores. [17] Figure 2.15 below gives an example of copy-config operation.

Figure 2.15: copy-config operation [17]

2.6.3.5 delete-config

delete-config is used to delete an entire configuration datastore. The running

configuration datastore cannot be deleted. <target> tag is used to specify the datastore that

has to be deleted. [17] Figure 2.16 provides an example of delete-config.

Figure 2.16: delete-config operation [17]

 28

2.6.3.6 lock

The lock operation locks the configuration datastore for a brief period of time so that no

other NETCONF client can make the changes to the configuration datastore in that period.

An attempt to lock the configuration datastore fails if it is already locked by another client.

The lock is maintained until it is released or until the session closes. The <target> tag is

used to specify the datastore which has to be locked. [17] The figure below provides an

example to lock the running configuration datastore.

Figure 2.17: lock operation [17]

2.6.3.7 unlock

The unlock operation is used to release the lock on a configuration datastore. The

operation fails in case the lock is already released or in case the lock was acquired in a

different session. [17] The figure below provides an example of the unlock operation.

Figure 2.18: unlock operation [17]

2.6.3.8 close-session

close-session is used to gracefully close a NETCONF session. When a close-

session request is received, the server releases any lock or resources associated with the

session and closes the session. [17] The figure below provides an example of close-session

operation.

Figure 2.19: close-session operation [17]

2.6.3.9 kill-session

kill-session is used to forcefully terminate the NETCONF session. When a server

receives the kill-session request, the server aborts the current operation, releases all the

locks and resources associated with the session. If the server receives a kill-session

while the server is processing a commit, it must restore the configuration to the state before

the commit was issued. The session id is specified for the session that has to be killed. [17]

figure 2.20 provides an example of kill-session operation performed on session with session-

id of 4.

 29

Figure 2.20: kill-session operation [17]

2.6.3.10 commit

The commit operation is used to commit the configuration data in the <candidate>

datastore to the <running> datastore. If the device fails to commit all the changes then the

running configuration datastore is not changed. This operation is only available if the

candidate datastore is available [17]. Figure 2.21 provides an example of commit

operation.

Figure 2.21: commit operation [17]

2.7 RESTCONF
Representational State Transfer Configuration protocol is based on REST. REST is not a

protocol but a design pattern. REST is a very popular RPC mechanism based over HTTP and

HTTPS. REST is the most popular choice of interaction between multiple web services and

can be implemented using any programming language. Due to its popularity, there was a

demand among the network automation community for a HTTP interface that follows the

principle of REST and is compatible with NETCONF. This led to IETF eventually coming up

with RESTCONF in early January 2017 when RFC 8040 specifying the details of

RESTCONF was published. [14] RESTCONF follows the following constraints that make up

the REST architectural style:

 Client-Server: Implementing the client server architecture makes the system more

scalable and makes it easier to evolve the components on either side to evolve

independently. [24]

 Statelessness: The communication between the client and server should be stateless

in nature. This means that every request from the client must contain all the necessary

information that the server needs to respond to the request. [24]

 Cacheability: The data in the response from server can be labelled as cacheable or

non-cacheable. If the data is cacheable, the client can reuse the data for a particular

period of time after which it received the response. [24]

 Layered System: The client cannot tell if it is communicating directly to the server or

through a proxy server. This constraint makes it easier for the applications to scale

properly and use techniques like load balancing to distribute the load evenly on the

servers. This also provides a way to implement an extra layer of security. [24]

 Uniform Interface: The architecture emphasizes on a uniform interface between

different components of the system. It does so by resource identification in

requests(each request has a resource id which provides the resource it operates on),

resource manipulations through representations(the information needed to create,

update or delete the resource are part of the request), self-descriptive messages(each

request enough information to describe how to process the message), hypermedia as

 30

the engine of application state (responses from the server should provide the client

with the dynamically available resources available to a client through hyperlink). [14]

[25] [24]

Just like REST, RESTCONF has standardized requests like GET, POST, PUT, PATCH,

DELETE.

RESTCONF is a schema-driven API based on the YANG modules. If the client knows about

the yang modules used by the server, it can easily derive all the resource URLS and also the

structure of all the RESTCONF requests as well as responses. The Yang modules supported

by the server are listed in the module named “ietf-yang-library” [26].

RESTCONF is not a replacement of NETCONF and neither does it replicate the way

NETCONF is implemented. In fact, it just provides an HTTP interface to implement the

equivalent of NETCONF operations. Thus, basic CRUD operations on the data in different

resources are possible with the HTTP GET, POST, PUT, PATCH, DELETE operations. [26]

The figure 2.22 below shows how the RESTCONF operations are related to the NETCONF

protocol operations.

Figure 2.22: RESTCONF operations related to NETCONF protocol operations [26]

If you know you have a RESTCONF server running on localhost port 8080, you can enter the

following command to find the root URL of this server:

curl -i -X GET http://localhost:8080/.well-known/host-meta --header

"Accept: application/xrd+xml" -u username:password

Figure 2.23: GET Reply for Well-Known host-meta Information

 31

The server reply to the well known host-meta information can be seen in figure 2.23. The

href response[‘/restconf’] can be concatenated to the server address

[‘http://localhost:8080’] to get the root URL for this server. From the reply, we

can say that the root URL for the server is http://localhost:8080/restconf.

Running a GET request on the root URL of the RESTCONF server using the following

command:

curl -i -X GET http://localhost:8080/restconf -u username:password

gives the output shown in figure 2.24

Figure 2.24: GET request on the root URL of RESTCONF server

We can notice that the /restconf root resource has the following child resources:

 restconf/data: This is a mandatory resource and has to be present in every

implementation of RESTCONF. This resource contains both the configuration and

state data of the device. [26]

 restconf/operations: This is an optional resource, and an implementation of

protocol can choose to avoid implementing this feature. This resource provides access

to all the RPCs depending on the data models supported by the server. [26]

 restconf/yang-library-version: This resource identifies the revision date

of the ‘ietf-yang-library’ module implemented by the server. [26]

2.7.1 RESTCONF vs NETCONF

RESTCONF is guided by the principles of REST. Even though NETCONF follows some of

the REST principles like client-server architecture, layered system approach, it differs from

REST in some perspectives. The main difference is the stateless server principle. In case of

NETCONF, in order to perform a number of edit-config operations on server, the client

first makes a connection with the server and then performs all the edit-config

operations. Failure of a single edit-config operation means that the server has to roll

back to the previous stable configuration. This is not possible to achieve in RESTCONF

keeping the stateless server principle of REST in mind as this would mean that all the

requests from the client to server should be sent in a single message (which is not possible)

and should be acted upon by the server immediately. Implementing more than one changes in

the entire network would mean sending multiple requests. Since each request will treated as

one transaction this would mean that a network wide transaction is not possible in case of

RESTCONF. This means the key feature of network-wide transactions in NETCONF is not

possible in case of RESTCONF. [14]

 32

Unlike NETCONF which deals with multiple datastores there is no concept of datastore in

RESTCONF. In RESTCONF the resource under restconf/data behaves like a datastore

which imitates the functionality of <running> datastore in NETCONF. [14]

Also, RESTCONF does not have a concept of lock. If a datastore is locked by the

NETCONF session, there is no provision in RESTCONF to check if the datastore is locked or

to acquire the lock. [14]

Keeping the above-mentioned differences in mind, it will be easier to conclude that

RESTCONF should be used in cases when the client is managing a single system, but in case

when the client is required to manage multiple system, NETCONF is a better option. Thus,

RESTONF is the preferred option for web application running on top of the network

orchestrator but NETCONF is a better option for communication between the orchestrator

and network elements. [14]

Figure 2.25: Use case for RESTCONF and NETCONF [14]

2.8 Cisco NSO

Cisco NSO or Network Service Orchestrator is a tool developed by Tail-f (now owned

by Cisco). It is an orchestration tool to manage hybrid networks. It is designed to

deliver high-quality services in an easy and faster way. [27]

NSO uses YANG as a modelling language to manage the devices as well as the services. This

makes NSO model driven. NSO also provides a set of Northbound interfaces like CLI, GUI

for human interaction and programmable interfaces like RESTCONF, NETCONF and

language bindings for Java, Python.

NSO can be used to access and manage the entire network irrespective of the vendors or the

type of device (legacy or modern). All the devices and services can be managed from a single

CLI. Whenever a user logs in to the NSO CLI, a session is created, and this session provides

a local copy of configuration of the entire network. This configuration can be changed by the

user which is then validated before committing them to the devices. On making a commit, the

changes are copied to the local copy of configuration and the deltas are then pushed out to the

network devices. If the changes do not produce any validation errors or network failures, then

 33

the changes are committed to the devices otherwise they are rolled back into the previous

stable state. Each commit is a single transaction. A commit either succeeds or fails and thus

the changes are either implemented or rolled back. [27]

2.8.1 NSO Architecture

Refer to figure 2.26 to take a look at the architecture of NSO. NSO consists of Service

manager, Device Manager, Configuration Database (CDB) and Network Element Drivers

(NED).

Figure 2.26: Cisco NSO Architecture [28]

Device manager manages the device configuration in a transactional manner. It supports

features like fine grained configuration commands, device groups and templates, compliance

reporting. [28]

The service manager makes it possible for NSO to support creating and managing high level

services in the network. An example of this will be creation and configuring of Vlan across

certain devices in the network. Service manager will itself compute the configuration changes

for each device and push the changes to them. [28]

While making changes to the devices using NSO, you don’t have to worry about the

sequence of the commands or the syntax of the commands. This is taken care by the NSO.

The life cycle of the service is covered by FASTMAP. While creating a service using NSO,

NSO stores the reverse of the device configuration changes as a result of the service

alongside the service instance. If someone makes some other changes to the service using

NSO, NSO first applies the reverse difference of the previous service creation and then runs

the logic to create the service again and finds the difference with the current configuration.

This difference is then sent to the devices. [27]

Configuration Database (CDB) is used to store complete network configuration as seen by

NSO. All the data stored in the CDB is validated against the YANG model for the devices or

services. Any changes done to the configuration of device from anywhere but NSO are

considered out of band changes. Doing out of band changes to NSO makes the configuration

in NSO CDB to be out of sync with the actual device configuration. Further functionality to

synchronize the NSO CDB configuration with the device configuration by either writing

NSOs view to the device or reading device configuration into NSO has been implemented.

[27]

 34

NSO can communicate to the NETCONF devices southbound provided it has the data models

for these devices but for the devices that do not support NETCONF and support only CLI or

SNMP, NSO uses Network Element Drivers (NED). NED can render the commands and

operations for the devices using this data model. This way if NSO contains the NED for a

particular type of device, it should be able to communicate with the device. For NSO to

communicate with the different type of OS, respective NED will have to be loaded for the

OS. For example, you will need a separate NED for Cisco IOS, Cisco XR and Juniper Junos.

[27] [28]

2.8.2 Advantages of using NSO

 NSO is completely model driven thus making it easier to create and manage services

as well as devices using data models

 NSO support multi-vendor environment since it is based on data models and standard

protocols like NETCONF and RESTCONF

 NSO provides quick mechanism to create service from the scratch to managing to

deleting of service.

 Just like NETCONF, all the configuration changes are pushed out NSO as a single

transaction. Making it easy to rollback even if a single change is not valid.

 35

3 PROPOSED SOLUTION

3.1 The Components
TINAA platform is based on the principles of MAPE-K loop which involves Monitoring to

collect information from managed devices, Analyzing the collected data to see if adaptation

is needed, if it is then the steps to meet the target condition are defined in the Plan stage.

Finally, the steps defined in the Plan stage are executed in Execute stage to reach the desired

condition. This loop uses a certain set of adaption parameters which are specified in the

Knowledge component of MAPE-K loop. [29]

Figure 3.1: MAPE-K loop [29]

The major focus of the project will be to collect the operational data from the legacy network

devices which can communicate only using CLI or SNMP. This will fit in the Monitor stage

of the MAPE-K loop implemented within the TINAA platform. The information collected

will be used in both the analyzing and plan stage. The solution abstracts the southbound

protocols used to interact with devices. Even though the project uses SNMP to communicate

with the devices southbound, it has the capability to accommodate protocols like NETCONF,

RESTCONF for the newer generation devices.

The proposed solution has been used to extract the ARP information from various devices of

different vendors over SNMP but can be used to extract other data as well. Please refer to the

below diagram Figure 3.2 to understand the proposed solution:

Figure 3.2: Proposed Solution

 36

The solution consists of three major components:

 SNMP Collector: The SNMP collector will be responsible for polling data from the

devices. SNMP Collector will be communicating with the Cisco NSO using

RESTCONF over the YANG data models. Cisco NSO will communicate with the

network devices present southbound using Network Element Driver based on SNMP.

Since the focus of the project is on legacy devices, we will be using SNMP NEDs. In

case if the devices were modern, the task becomes simple as we can communicate

with them using NETCONF NED.

 Publisher: The publisher collects the data from the SNMP collector over the REST

API and pushes the data on to the database.

 DB Querier: DB querier will provide an interface to the northbound applications to

access the data that has been pushed into the database by publisher. The endpoints of

this API are based on the yang data model for ARP.

The SNMP collector can be automated to poll the data from devices after regular intervals of

time. The data collected every time the SNMP collector runs could be pushed on to the

message queue. The publisher will be listening on the other end of this message queue and as

soon as the publisher receives the data on the queue, it will start pushing the data onto the

database. Due to the shortage of time, I was not able to implement this mechanism. In the

current implementation, Publisher calls the SNMP collector and retrieves the data from the

SNMP collector over REST API and then publishes the data to the database.

 37

3.2 Implementation
As part of the implementation, everything from setting up the communication between NSO

and network devices to the DB querier will be explained in a step by step manner.

3.2.1 Step 1: Compiling SNMP MIBs and implementing SNMP NEDs in NSO

ARP data is stored in ipNetToMediaTable SNMP object. The Object ID for

ipNetToMediaTable is 1.3.6.1.2.1.4.22. In order to find the MIB that handles this data,

the tool made available by Cisco can be used [30]:

https://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?objectInput=1.3.6.1.2.1

.4.22&translate=Translate&submitValue=SUBMIT

Figure 3.3: MIB corresponding to OID [30]

Since this OID falls under MIB-II, as explained earlier, the table has to be implemented by all

the vendors that implement SNMP. Further the highlighted section in figure 3.3 shows IP-

MIB as the one responsible for handling ipNetToMediaTable. IP-MIB is IETF

standard MIB and can be either downloaded from the ftp server provided by Cisco at [31]:

ftp://ftp.cisco.com/pub/mibs/v2/. The MIB file will be present by the name IP-MIB.my.

Download the IP-MIB.my file and rename it to IP-MIB.mib.

On opening the IP-MIB.mib, the import section of the MIB contains the following entries:

Figure 3.4: Import section of IP-MIB.mib

https://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?objectInput=1.3.6.1.2.1.4.22&translate=Translate&submitValue=SUBMIT
https://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?objectInput=1.3.6.1.2.1.4.22&translate=Translate&submitValue=SUBMIT
ftp://ftp.cisco.com/pub/mibs/v2/

 38

Figure 3.4 shows the various other MIBs that IP-MIB depends on. We can avoid SNMPv2-

SMI, SNMPv2-TC, SNMPv2-CONF since they are related to definitions of SNMPv2 but the

other MIBs i.e. IF-MIB and INET-ADDRESS-MIB will have to be downloaded in order to

compile the IP-MIB to form the SNMP NED. These mibs can also be downloaded from the

Cisco FTP server [31]. Once IF-MIB and INET-ADDRESS-MIB are downloaded, their

imports sections can be checked to find the other dependencies which can be downloaded

from the same source. In this case there is just one more MIB called IANAifType-MIB that

needs to be downloaded.

Move all the MIBs to a directory named MIB

Figure 3.5: Contents of MIB directory

Move out of the MIB directory and run the following command to compile the MIBs into

SNMP NED package called acme:

ncs-make-package --snmp-ned ./MIB/ acme

Now we make the SNMP NED using the following command:

cd acme/src; make;

Figure 3.6: Commands to compile MIBs to SNMP NED

Figure 3.7: Output of make command

 39

Figure 3.7 provides the output of make command. Notice how it says that the build was

successful. We have successfully compiled the MIBs to form a SNMP NED Package called

acme.

The next step is to load this SNMP NED package in NSO. In order to do that we will copy

the acme package to the /var/opt/ncs/packages directory by the following

command:
cp -r acme /var/opt/ncs/packages/

Figure 3.8: Contents of /var/opt/ncs/packages

We can see that the acme has been placed in the packages directory of NSO.

Login into NSO with the command:

ncs_cli -C -u admin

and do a packages reload

Figure 3.9: Packages Reload in NSO

Figure 3.9 shows the output of packages reload command. Notice that the output mentions

the package acme as acme-snmp-1.0. The addition of snmp to the name is because NSO

recognizes the kind of NED it is and 1.0 is the version of package.

3.2.2 Step 2: Adding the devices to be managed to NSO

Since the SNMP NED package is based on IP-MIB which is IETF standard for all the

vendors, we can use the same package for Cisco, Juniper or Nokia devices. The next step

involves adding the devices to NSO using the SNMP NEDs. Using acme package, we will

be able to communicate to the devices for any kind of information present in IP-MIB but

nothing else.

 40

Before adding the device, we will create a snmp-authgroup by entering the config mode in

NSO. Following commands will be used:
admin@ncs(config)devices authgroups snmp-group mayank umap

admin community-name ctolab

admin@ncs(config-umap-admin)devices authgroups snmp-group

mayank umap mayank community-name ctolab

admin@ncs(config-umap-mayank)commit

Figure 3.10: Creating snmp-group authgroup

In the above command, you can see that community-name has been entered as ctolab.

This is the community string for this particular device. By default, the umap mapping for

admin has to be created while creating the snmp-group before creating the mapping for

remote user.

Now we add the device to NSO and map it to the snmp-group we created above by entering

the following commands in NSO config mode:
admin@ncs(config)# devices device snmp-nokia-2 address

172.25.205.146 port 161 device-type snmp ned-id acme-snmp-1.0

snmp-authgroup mayank version v2c

admin@ncs(config-device-snmp-nokia-2)# state admin-state

unlocked

admin@ncs(config-device-snmp-nokia-2)# commit

Figure 3.11: Adding a device to NSO

The device connection can be checked using the following command:
admin@ncs(config)# devices device snmp-nokia-2 connect

As shown in figure 3.11, the result in this case is True which means the connection was

established.

In the same way other devices can be added to NSO. In our case we have named the devices

as snmp-juniper, snmp-nokia-3 and snmp-xr. As explained earlier, since the acme

 41

package is for IETF standard IP-MIB, thus the same package can also be used to

communicate with other devices. There will be a need to create different authgroups

depending on if the share the same community strings or not.

The below screenshot provides the connection status of these devices added to NSO

Figure 3.12: connection status of devices added to NSO

Let’s try to obtain the ARP information from snmp-nokia-2 device now. For that we will

use the following command:
admin@ncs# show devices device snmp-nokia-2 live-status IP-MIB

ipNetToMediaTable

which provides us with the desired information. Please check figure 3.13 for the same.

Figure 3.13: Performing live status on a device from NSO

When you look at the above output from the command, you might think that this is no

different from the output we get from cli but that’s not the case. The data from cli is not

structured, whereas this is. We just need to see it with a different filter. When we enter the

below command:

 42

admin@ncs# show devices device snmp-nokia-2 live-status IP-MIB

ipNetToMediaTable | display json

we get the following output:

Figure 3.14: Live status command from NSO on a device with output in JSON format

The same data can also be obtained in xml format by just replacing json with xml in the

above command.

3.2.3 Step 3: Adding the devices to a group within NSO

The concept of groups in NSO is to group together the devices which have the same NED

capabilities. This makes it easier to manage devices and even provides a unique way to

access the group from outside using RESTCONF. The importance of implementing this will

be made clear later during the implementation.

We can add the devices to a group by entering the following commands at the NSO

configuration mode:

admin@ncs(config)# devices device-group snmp device-name [

snmp-juniper snmp-nokia-2 snmp-nokia-3 snmp-xr]

Figure 3.15: Adding devices to a group in NSO

 43

3.2.4 Step 4: Implementing SNMP collector

SNMP collector will be querying NSO to collect the information from devices. The

information collected in this case will be related to ARP. NSO provides many northbound

interfaces but in the project, I will be using the RESTCONF interface to contact the device.

Since RESTCONF works similar to REST, we can do a curl on NSO to find out the

information.

In the above steps, all the devices that were to be managed using acme package were added

to a group in NSO named snmp. In order to find the members of this group, we can do a curl

on NSO with the following command, and we get all the devices that are part of the group.

curl -i -u mayank:mayank123

‘http://localhost:8080/restconf/data/tailf-ncs:devices/device-

group=’snmp’/member’ -X GET -H “Content-Type:

application/yang-data+json”

Note that in the above GET operation “mayank:mayank123” is the username and password

combination used. Since I am accessing NSO from the server where it is hosted, I am using

localhost in the URI. This can be replaced by the IP address of the server where NSO is

hosted, and the curl will still work fine.

Figure 3.16: RESTCONF query to the get devices part of snmp group

As you can see in figure 3.16, the above curl provides us with all the devices part of snmp

group in the form of a json dictionary. We can test the connection between NSO and any of

these devices with the following command:
curl -i -u mayank:mayank123

'http://localhost:8080/restconf/data/tailf-

ncs:devices/device="snmp-nokia-2"/connect' -X POST -H

"Content-Type: application/yang-data+json"

Figure 3.17: Checking connection between NSO and the device

 44

Figure 3.17 shows a POST operation on NSO RESTCONF interface to check the connection

between NSO and snmp-nokia-2 device. As a result of operation, we can see True being

returned by NSO, implying that the connection is active between the two.

In order to get ARP information from snmp-nokia-2, the following curl command can be

used.
curl -i -u mayank:mayank123

'http://localhost:8080/restconf/data/tailf-

ncs:devices/device="snmp-nokia-2"/live-status/IP-MIB:IP-

MIB/ipNetToMediaTable/ipNetToMediaEntry' -X GET -H "Content-

Type: application/yang-data+json"

Figure 3.18: Curl operation to get the ARP information from snmp-nokia-2

Figure 3.18 provides an example of response from NSO when queried for the IP-MIB

information for device snmp-nokia-2 through RESTCONF interface. In the examples shown

above, it is important to know that the device name used in the URI is local to NSO. Above 3

operations, will be the basis of our SNMP collector implementation in python.

As part of the report, I will be pasting snippets of code for some important functions from

repository and explain what the code does.

The first function to explain is get_devices_from_nso which is present in file snmp-

poller/backend/app/app/poller.py. This is a helper function which fetches the

devices part of snmp group in NSO. Thus this function provides the devices managed by

acme SNMP NED. Figure 3.19 is the screenshot of code. Refer to the screenshot as I explain

the code.

The value of RESTCONF_BASE, RESTCONF_HEADERS, NSO_USER,

NSO_PASSWORD is set in the config.py file present at snmp-

poller/backend/app/app/core/config.py

This is what the value is set to:

RESTCONF_HEADERS = {"Accept": "application/yang-data+json"}

RESTCONF_BASE = "http://172.25.7.39:8080/restconf/data"

NSO_USER = "mayank"

 45

NSO_PASSWORD = "mayank123"

RESTCONF_BASE is the Parent URL of NSO RESTCONF server with 172.25.7.39 being

the IP where NSO is hosted. RESTCONF_HEADERS just signifies the format of data which

in our case is JSON. NSO_USER and NSO_PASSWORD are the username and password for

authentication to NSO.

Using requests library from python, a GET request is being sent to the interface_url

which is built with the combination of RESTCONF URL and path to access members of

snmp group.

Figure 3.19: Definition of get_devices_from_nso()

If response received from the GET operation is success with a response status_code

of 200, we can access “tailf-ncs:member” element of json response and return it to the

function calling get_devices_from_nso, otherwise we raise an exception.

Figure 3.20: get_arp(device_name) function

 46

Figure 3.20 shows the function get_arp present in the file snmp-

poller/backend/app/app/worker.py. This function is used to fetch the ARP

information for a particular device by sending a GET request to interface_url using

python requests library. The function takes the name of device local to NSO as an

argument device_name. Line number 37 is a wrapper which makes every call to this

function to be executed as a different process using the concept of celery workers. Celery is a

distributed task queue implemented in python. Celery workers make it possible to fetch the

information from more than one device at a time. Thus, making the snmp collector to be

scalable. If the response from the request is a success with a status_code of 200, this

function returns the ‘IP-MIB:ipNetToMediaEntry’ element from the Json response.

This element contains the ARP entries retrieved from a particular device. If the response is

not a success, the function raises an exception.

Figure 3.21: REST Endpoint for snmp-collector

Figure 3.21 shows the implementation of get_all_devices function present in

/snmp-poller/backend/app/app/api/api_v1/endpoints/poller.py. The

wrapper router.get(‘/devices’) turns this function into an API endpoint using

 47

FastAPI library from python. FastAPI is one of the quickest ways to implement RESTful

APIs. The endpoint returns the ARP information from all the devices with the help of

functions get_devices_from_nso and get_arp. The if condition in line number 20

checks if the Autodiscover is True or False. If the Autodiscover is True, then the function

gets the devices from NSO otherwise it fetches the devices from another API. Once we get

the list of devices loaded into NSO. We can do a get_arp on each device to get the ARP

information from each device. The function returns the ARP information from each device as

a dictionary.

Figure 3.22: Get operation on /devices

The above figure provides the output of GET operation done one /devices endpoint from a

swagger page associated with FastAPI app.

Let’s consider we get the data from 2 devices (snmp-juniper, snmp-xr) the return dictionary

will look something like this:
{

 ‘data’: [

 {

 ‘device_name’: ‘snmp-juniper’

 ‘arp_table’: [

 {

 "ipNetToMediaIfIndex": 13,

 "ipNetToMediaNetAddress": "172.25.130.1",

 "ipNetToMediaPhysAddress":"f0:1c:2d:7c:98:c2",

 "ipNetToMediaType": "dynamic"

 },

 {

 "ipNetToMediaIfIndex": 13,

 "ipNetToMediaNetAddress": "172.25.130.39",

 48

 "ipNetToMediaPhysAddress": "90:b1:1c:51:9e:ec",

 "ipNetToMediaType": "dynamic"

 }

]

 },

 {

 ‘device_name’: ‘snmp-xr’

 ‘arp_table’: [

 {

 "ipNetToMediaIfIndex": 13,

 "ipNetToMediaNetAddress": "172.25.130.1",

 "ipNetToMediaPhysAddress":"f0:1c:2d:7c:98:c2",

 "ipNetToMediaType": "dynamic"

 },

 {

 "ipNetToMediaIfIndex": 13,

 "ipNetToMediaNetAddress": "172.25.130.39",

 "ipNetToMediaPhysAddress": "90:b1:1c:51:9e:ec",

 "ipNetToMediaType": "dynamic"

 }

]

 }

]

 ‘data_type’: ‘Arp’

}

3.2.5 Step 5: Implementing the publisher

The function of the publisher is to collect all the data that snmp-collector polls and publish it

to a PostgreSQL database. In order to do so, models are created for different tables using

SQLAlchemy Object Relational Mapper for python.

Figure 3.23: Relationship diagram of database

Figure 3.23 provides the relationship between different tables that can be used to hold

information for ARP.

OperationalDataType holds records for different types of operational data like ARP,

route table etc. that the database can hold. Figure 3.24 shows the OperationalDataType

model present at snmp-

poller/backend/app/app/models/operational_data_type.py

TimedTransactions holds the record about when a particular type of

OperationalDataType was fetched from a particular device. Figure 3.25 shows the

TimedTransactions model present at snmp-

poller/backend/app/app/models/timed_transactions.py

 49

Figure 3.24: SQLAlchemy Model for OperationalDataType

Figure 3.25: SQLAlchemy model for TimedTransactions

Table arp_info holds the arp records associated with each TimedTransaction. It

contains all the arp entries retrieved from the device in a single TimedTransaction.

Figure 3.26 contains the Arp model which can be located at snmp-

poller/backend/app/app/models/arp.py

 50

Figure 3.26: SQLAlchemy model for Arp

For implementing the Publisher and DB Querier there is a need to implement certain CRUD

functions for models. The CRUD functions for OperationalDataType are implemented

in the file snmp-

poller/backend/app/app/crud/crud_operational_data_type.py

Figure 3.27: crud_operational_data_type.py

Figure 3.27 shows the CRUD functions for OperationalDataType. Here is what they

do:

 create_operational_data_type(db, info, retention_period):

This function creates a record of OperationalDataType. Here db is the

database session object, info string used to set the value of info_type and

 51

retention_period is the integer to set the retention period of a particular

OperationalDataType.

 read_operational_data_type(db, info_type): This function takes in

the database session object db and string info_type as argument. The string

info_type is used to filter the record from OperationalDataType table and

return the OperationalDataType object back to the calling function.

Figure 3.28: crud_timed_transactions.py

Figure 3.28 shows the CRUD functions for TimedTransactions implemented in file snmp-

poller/backend/app/app/crud/crud_operational_data_type.py. Here is

what they do:

 create_timed_transaction(db, device_name, timestamp,

info): This function takes in the database session object as db, name of device

as string device_name, time at which the transaction was run as datetime object

timestamp ,operational data that was retrieved in the transaction as

OperationalDataType object info and creates a TimedTransaction

record.

 read_timed_transaction(db, device_name): this function takes in the

database session object db and the name of device in string device_name. It then

uses device_name to filter the most recent TimedTransaction having the

same device_name and returns the TimedTransaction.

 get_last_timestamp_transaction(db, info): this function takes in the

database session object db and the type of operational data as

OperationalDataType object info. It filters to give the most recent

TimedTransaction for this particular info and returns it.

 all_transactions_for_timestamp(db, timestamp): this function takes in the database

session object db and the datetime object timestamp. It returns all the

TimedTransaction having the fetched_at value same as that of timestamp.

 52

Figure 3.29: crud_arp.py

Figure 3.29 shows the CRUD functions for Arp implemented in file snmp-

poller/backend/app/app/crud/crud_arp. Here is what they do:

 crud_arp_entry(db, device_data, device_transaction): this

function takes in database session object db, a single arp data entry as

device_data dictionary, the TimedTransaction object which was created

while fetching the arp entry from network device as device_transaction and

creates an object or record of Arp model class in the arp_info table.

 create_multiple_arp_entry(db, device_data,

device_transaction): this function takes in database session object db, a list

with multiple arp data entries as device_data, the TimedTransaction object

which was created while fetching the arp entries from network device as

device_transaction and creates multiple objects or records of Arp model class

in the arp_info table.

 get_all_arp_entries_for_transaction(db, transaction): this

function takes in database session object as db, TimedTransaction object as

transaction and returns all the entries in arp_info table associated with that

transaction.

 filter_for_ip_and_index(db, transaction, ip, index): this

function takes in database session object as db, TimedTransaction object as

transaction, ip address as string ip , if-index as string index and returns all the

entries in arp_info table associated with that transaction having the same value of

ip_address and if_index as ip and index respectively.

After implementing the various CRUD functions for different model classes, we move on to

discuss the publisher which is present in snmp-poller/backend/app/app/publisher.py.

 53

Figure 3.30: publisher.py

Figure 3.30 shows the main function in publisher.py. Line 36 is used to fetch all the arp

entries from the snmp-collector by sending a GET request to the /devices endpoint. If the

request is not successful, the publisher exits. If the request is successful, the json response is

saved in a variable called result and a database session is created by calling on the

SessionLocal. Another function called find_operational_data_type present in

the same file is used to find if there exists an OperationalDataType record with the

info_type value same as that of result[‘data_type’]. If it does not exist, the

function creates the new OperationalDataType record with the value as that of

result[‘data_type’] and puts it in the variable info_type. In line 47 we create a

datetime object timestamp which will be used to create the TimedTransactions.

Then for every device in result[‘data’] element, we create the TimedTransaction

using create_timed_transaction and further use this TimedTransaction to

create multiple arp entries for each TimedTransaction using

create_multiple_arp_entry function. If there is any exception, the transaction is

rolled back and finally the database session is closed.

Running publisher.py from the docker image where the code is hosted results in data being

pushed into the database.

 54

The figures below show the data sitting in OperationalDataType, TimedTransactions and

arp_info tables in a postgres database.

Figure 3.31: OperationalDataType table

Figure 3.32: TimedTransactions table

 55

Figure 3.33: arp_info table

3.2.6 Step 6: Implementing DB Querier

Before implementing the DB querier, we have to come up with a generic data model that

would support fetching the ARP information as the acme package compiled in the first step

does.

Below is the data model developed as part of the project to support the ARP functionality:

module arp{

 namespace "http://telus.com/yang/arp";

 prefix arp;

import ietf-inet-types {

 prefix inet;

 }

import ietf-yang-types {

 prefix yang;

 }

list devices{

 config false;

 key "device";

 leaf device{

 description

 "Device Name";

 type string;

 }

container ipNetToMediaTable {

 description

 56

 "The IPv4 Address Translation table used for mapping

 from IPv4 addresses to physical addresses";

 list ipNetToMediaEntry {

 key "ipNetToMediaIfIndex ipNetToMediaNetAddress";

 description

 "Each entry contains one IpAddress to `physical'

 address equivalence.";

 leaf ipNetToMediaIfIndex {

 type int32 {

 range "1..2147483647";

 }

 description

 "The interface on which this entry's equivalence

 is effective.";

 }

 leaf ipNetToMediaPhysAddress {

 type yang:phys-address {

 length "0..65535";

 }

 description

 "The media-dependent `physical' address.";

 }

 leaf ipNetToMediaNetAddress {

 type inet:ipv4-address;

 description

 "The IpAddress corresponding to the media-

 dependent physical' address.";

 }

 leaf ipNetToMediaType {

 type enumeration {

 enum "other" {

 value 1;

 }

 enum "invalid" {

 value 2;

 }

 enum "dynamic" {

 value 3;

 }

 enum "static" {

 value 4;

 }

 }

 description

 "The type of mapping.";

 }

 }

 }

 }

}

 57

The name of module is arp and it should be saved in a file called arp.yang for this

module to work.

The following dockerfile will build a container which will provide us with the swagger page

with the various endpoints that can be supported.

ARG MODEL_FILE_NAME=arp.yang

FROM mbj4668/yanger as builder

ARG MODEL_FILE_NAME

COPY ./ /workdir

RUN yanger -t expand \

 -f swagger \

 --swagger-tag-mode resources \

 --swagger-top-resource data \

 /workdir/${MODEL_FILE_NAME} -o /workdir/swagger.json

FROM node:14 as converter

ARG MODEL_FILE_NAME

COPY --from=builder /workdir /workdir

COPY --from=builder /workdir/swagger.json /workdir/swagger.json

RUN npm install -g swagger2openapi

RUN swagger2openapi /workdir/swagger.json -o /workdir/oas3.json

FROM swaggerapi/swagger-ui:latest

ARG MODEL_FILE_NAME

COPY --from=converter /workdir/swagger.json /workdir/swagger.json

COPY --from=converter /workdir/oas3.json /workdir/oas3.json

ENV SWAGGER_JSON "/workdir/oas3.json"

Place both the dockerfile and arp.yang in the same folder to build the container using the

following command:

$ docker build -t mayank-yanger .

And then you can run the container by using the following command:

$ docker container run -d -p 8080:8080 --name swagger mayank-

yanger:latest

The swagger endpoints for the above data model can be seen in figure 3.34.

 58

Figure 3.34: Swagger endpoints for arp.yang

From all the endpoints in figure 3.34, we will be implementing the one squared in red.

Figure 3.35: function get_arp_all_devices()

Figure 3.35 shows the function get_arp_all_devices() implemented in the snmp-

poller/backend/app/app/api/api_v1/endpoints/querier.py file. The

router.get is a wrapper function which turns this function to a REST endpoint. This

function returns the ARP information from all the devices using the most recent

TimedTransaction. All this is done using the CRUD functions explained in step 5 of

implementation.

If we look at figure 3.36, we get to know that the recent TimedTransaction for devices

snmp-juniper and snmp-nokia-2 has id of 5 and 6. Figure 3.37 provides the result

of GET operation on “http://localhost:8888/snmp-

 59

poller/v1/querier/data/arp:devices” and we can see the ARP entries with the

transaction id of 5 and 6. Due to the screen size, the rest of the devices could not fit into the

screenshot.

Figure 3.36: all the records of TimedTransactions

Figure 3.37: GET operation on /devices endpoint

 60

The next function get_arp_single_device(device) is used to implement the

“/data/arp:devices={device}/ipNetToMediaTable/ipNetToMediaEntr

y” endpoint. This function is also implemented in the same querier.py file. This function

returns the ARP entries for a particular device associated with the most recent

TimedTransaction. The function is implemented with the help of CRUD functions

defined in step 5.

Figure 3.38: Function get_arp_single_device(device)

Figure 3.39: Curl on arp:devices=snmp-xr/ipNetToMediaTable/ipNetToMediaEntry endpoint

 61

As shown in figure 3.39, the most recent TimedTransaction for device snmp-xr has id

8. The results of curl operation done on the “arp:devices=snmp-

xr/ipNetToMediaTable/ipNetToMediaEntry” show the ARP entries from

arp_info with the transaction_id 8.

Figure 3.40: Function get_arp_filter_for_ip_and_index()

The function get_arp_filter_for_ip_and_index() returns the ARP entry associated with the

most recent TimedTransaction containing a particular ip and if-index. The function is defined

in the same querier.py file. The function utilizes the CRUD functions defined in step 5

earlier. In figure 3.40, the third entry has an IP address of 172.25.130.105 and index value as

13. Doing a GET operation on the endpoint /data/arp:devices={device}/ipNetToMediaTable

/ipNetToMediaEntry={ip},{index} with the value of device, ip and index set to snmp-xr,

172.25.130.105 and 13 returns the same entry with transaction id 8. Check the screenshot in

figure 3.41 for the same.

Figure 3.41: GET on third endpoint

 62

4 LIMITATIONS
Cisco NSO can prove out to be a limitation to the scalability of this approach. Even though

there are various replies from Tail-f system in Cisco community saying that NSO is capable

of handling 10,000 devices on a single server, this approach does not test those limits.

While working with NSO I noticed that sometimes NSO was slow in handling the slow

legacy devices. The commands executed from NSO can take up to 2 minutes to get around

1500 records of necessary information from slow old devices.

While working with the RESTCONF interface of NSO, there were slight delays in response

sometimes. Even though RESTCONF is fast, but since it is very new it has still got to get

better.

 63

5 Bibliography

[1] H. Song, T. Zhou, Z. Li, Z. Li, P. Martinez-Julia, L. Ciavaglia and A. Wang, “Network

Telemetry Framework,” 14 December 2018. [Online]. Available:

https://tools.ietf.org/id/draft-song-opsawg-ntf-02.html#rfc.section.2.1.

[2] W. Odom, “Introduction to Controller-Based Networking,” 12 Feb 2020. [Online].

Available: https://www.ciscopress.com/articles/article.asp?p=2995354&seqNum=2.

[Accessed Feb 2021].

[3] Open Networking Foundation, “Software-Defined Networking: The New Norm for

Networks,” 13 April 2012. [Online]. Available: https://opennetworking.org/sdn-

resources/whitepapers/software-defined-networking-the-new-norm-for-networks/.

[Accessed Februaury 2021].

[4] Wipro Technologies, “Software Defined Networking,” [Online]. Available:

https://www.wipro.com/infrastructure/sdn-adoption-in-enterprises/.

[5] S. Sezer, S. Scott-Hayward, P. K. Chouhan, D. Lake, B. Fraser, N. Viljoen, J. Finnegan,

N. Rao and M. Miller, “Are We Ready for SDN? Implementation Challenges for

Software-Defined Networks,” July 2013. [Online]. Available:

https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/sdn/sdn-intro-ieee-

comm-2013.pdf. [Accessed February 2021].

[6] SDxCentral Studios, “What Is Software Defined Networking (SDN)? Definition,” 25

August 2016. [Online]. Available:

https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-

software-defined-networking-sdn/. [Accessed February 2021].

[7] Ciena, “What is SDN?,” [Online]. Available: https://www.ciena.com/insights/what-

is/What-Is-SDN.html.

[8] D. Teare, “Structuring and Modularizing the Network with Cisco Enterprise

Architecture,” 12 June 2008. [Online]. Available:

https://www.ciscopress.com/articles/article.asp?p=1073230&seqNum=4. [Accessed

February 2021].

[9] D. Mauro and K. Schmidt, Essential SNMP, 2nd Edition, O'Reilly Media, Inc., 2005.

[10

]

S. Cadora, “The limits of SNMP,” 10 June 2016. [Online]. Available:

https://blogs.cisco.com/sp/the-limits-of-snmp. [Accessed February 2021].

[11

]

P. Shafer, “An Architecture for Network Management Using NETCONF and YANG,”

June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6244#section-4.3.3.

[Accessed February 2021].

[12

]

Cisco, “Deep Dive into Model Driven Programmability with NETCONF and YANG,”

2018. [Online]. Available: https://pubhub.devnetcloud.com/media/netdevops-

live/site/files/s01t03.pdf. [Accessed February 2021].

[13

]

A. Pras and J. Schoenwaelder, “On the Difference between Information Models and

Data Models,” January 2003. [Online]. Available: https://tools.ietf.org/html/rfc3444.

[Accessed February 2021].

[14

]

J. Clarke, B. Claise and J. Lindblad, Network Programmability with YANG: The

Structure of Network Automation with YANG, NETCONF, RESTCONF, and gNMI,

First Edition, Addison-Wesley Professional, 2019.

[15

]

M. Bjorklund, “The YANG 1.1 Data Modeling Language,” August 2016. [Online].

Available: https://tools.ietf.org/html/rfc7950. [Accessed February 2021].

 64

[16

]

J. Schoenwaelder, “RFC 6021 : Common YANG Data Types,” October 2010. [Online].

Available: https://tools.ietf.org/html/rfc6021. [Accessed February 2021].

[17

]

R. Enns, M. Bjorklund, J. Schoenwaelder and A. Bierman, “Network Configuration

Protocol (NETCONF),” June 2011. [Online]. Available:

https://tools.ietf.org/html/rfc6241#page-35. [Accessed February 2021].

[18

]

Tail-f, “NETCONF OVERVIEW,” [Online]. Available: https://www.tail-f.com/what-is-

netconf/. [Accessed February 2021].

[19

]

Cisco Systems, “Breaking down NETCONF communication,” [Online]. Available:

https://developer.cisco.com/learning/lab/intro-netconf/step/2. [Accessed February 2021].

[20

]

C. Moberg and C. Justus, “NETCONF by Example,” October 2015. [Online]. Available:

https://trac.ietf.org/trac/edu/raw-attachment/wiki/IETF94/94-module-3-netconf.pdf.

[Accessed February 2021].

[21

]

M. Bjorklund, “A YANG Data Model for Interface Management,” May 2014. [Online].

Available: https://tools.ietf.org/html/rfc7223. [Accessed February 2021].

[22

]

M. Bjorklund, “A YANG Data Model for Interface Management,” March 2018.

[Online]. Available: https://tools.ietf.org/html/rfc8343. [Accessed February 2021].

[23

]

M. Bjorklund, J. Schoenwaelder, P. Shafer, K. Watsen and R. Wilton, “Network

Management Datastore Architecture (NMDA),” March 2018. [Online]. Available:

https://tools.ietf.org/html/rfc8342. [Accessed February 2021].

[24

]

R. T. Fielding, “Representational State Transfer (REST),” [Online]. Available:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm. [Accessed

February 2021].

[25

]

Wikipedia, “Representational state transfer,” [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer#Layered_system.

[Accessed February 2021].

[26

]

A. Bierman, M. Bjorklund and K. Watsen, “RESTCONF Protocol,” January 2017.

[Online]. Available: https://tools.ietf.org/html/rfc8040. [Accessed 2021 February].

[27

]

Cisco, “NSO Fundamentals,” [Online]. Available:

https://developer.cisco.com/docs/nso/#!nso-fundamentals/nso-fundamentals. [Accessed

February 2021].

[28

]

Cisco, “NSO Guide,” [Online]. Available: https://developer.cisco.com/docs/nso/guides/.

[Accessed February 2021].

[29

]

S. Jahan, I. Riley, C. Walter, R. F. Gamble, M. Pasco, P. K. Mckinley and B. H. Cheng,

“MAPE-K/MAPE-SAC: An interaction framework for adaptive systems with security

assurance cases,” August 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167739X19320527. [Accessed

February 2021].

[30

]

Cisco, “SNMP Object Navigator,” [Online]. Available:

https://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2

&mibName=IP-MIB. [Accessed February 2021].

[31

]

Cisco, “Index of /pub/mibs/v2/,” [Online]. Available: ftp://ftp.cisco.com/pub/mibs/v2/.

[Accessed February 2021].

[32

]

J. D. Case, M. Fedor, M. L. Schoffstall and J. R. Davin, “Simple Network Management

Protocol,” May 1990. [Online]. Available: https://tools.ietf.org/html/rfc1157. [Accessed

February 2021].

