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Abstract 

Construction labour productivity (CLP) significantly influences the profitability of construction 

companies; however, CLP exhibits the highest variability among project resources and is a major source 

of project risk. The construction industry is thus constantly searching for ways to improve labour 

productivity. Unfortunately, despite long-term, continued research and industry practice, predicting and 

improving CLP remains a challenge. Previous productivity studies mainly focus on factor and activity 

models, using factor models to model productivity with context-specific influencing parameters (factors 

and practices), and activity models to model the relationship between productivity and work sampling 

proportions (WSP). However, modeling CLP remains a challenge as for a given context, the complex 

impact of the multiple subjective and objective variables, made up of critical factors, practices, and WSP; 

have to be considered simultaneously, while maintaining a high accuracy and interpretability in developed 

models. To address these challenges, this thesis presents advanced frameworks for the development of 

a series of interpretable and accurate fuzzy inference based context-specific CLP models, which are then 

abstracted to develop the universal CLP models, and facilitate a better understanding of the variables that 

influence CLP.  

The development of the CLP models included identifying, classifying, quantifying, and 

documenting the variables influencing CLP. By analyzing existing literature in the field of CLP analysis 

and modeling, the influencing variables, made up of 169 parameters and 7 work sampling categories, 

were identified and quantified. The research conducted extensive field data collection from 11 

construction projects across Alberta, Canada, spanning over a time period of 29-months; and 

documented information using factor survey, factors and practices documentation, work sampling studies, 

foreman delay surveys, craftsman questionnaires, and productivity measurements.  

First, the research identified the key variables influencing CLP using expert and data-driven 

approaches in order to reduce the large feature space of the variables. Next, the role of work sampling 

proportions in CLP modeling was formulated by testing the fundamental assumption of activity models—

that CLP improves if more time is spent on direct work activities—and analysis results showed that using 
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work sampling proportions alone, it is not possible to accurately predict CLP. Thus, a system-based 

modeling framework to incorporate work sampling proportions with factors and practices leading to 

improved CLP modeling and analysis was developed. Then, an operational definition of context for CLP 

modeling was formulated and associated context attributes were developed, based on the 5W1H (Who, 

What, Where, When, Why, and How) question and answers approach, and employed together with the 

system-based CLP modeling framework for the development of a series of context-specific CLP models 

after combining projects sharing similar contexts. Using a hybrid fuzzy multi-objective optimization 

framework, the learning ability of the developed fuzzy inference system CLP models was improved. 

Finally, a context adaptation framework for transferring knowledge among contexts was developed using 

linear and non-linear adaptation on the membership functions of the context-specific fuzzy CLP models, 

and a framework for developing universal CLP models is established.  

The main contributions of this research to the state of art of CLP modeling and analysis are: (1) 

evaluation of the usefulness of relying on work sampling proportions like direct work or tool time to predict 

CLP, (2) development of a system model framework for CLP, which provides a better understanding of 

CLP and the variables influencing CLP, (3) addressing the challenges faced in past CLP models by 

developing and optimizing fuzzy inference CLP models, (4) presenting an operational definition of context 

for CLP modeling for characterizing and classifying construction projects and assisting in the process of 

grouping similar projects for more accurate context-specific CLP model development, and (5) developing  

frameworks for adaptation and abstraction of context-specific CLP models. The developed frameworks 

and findings of this study are of a value to researchers and industry practitioners and provide a better 

understanding of CLP, the variables influencing CLP, and how work-study methods like work sampling 

can be integrated to provide an accurate CLP analysis tool. 
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Chapter 1: Introduction1 

1.1: BACKGROUND 

The construction industry is a discipline that attempts to successfully deliver and manage capital 

facility and infrastructure projects under uncertain, dynamic, and risk-filled environment (PMI 2007). The 

industry is a vital part of many national economies and in Canada for the last five years, construction, on 

average, contributed to 7.2% of the Gross Domestic product and provided employment for about 7.6% of 

the workforce (Statistics Canada 2015a; Statistics Canada 2015b). According to Walker (2015), the 

industry can be effectively framed as an open system conversion process, where a set of inputs (land, 

knowledge, information, energy, materials, etc.) are transformed, using labour and/or machines, to 

outputs (buildings, roads, industrial plants, bridges, etc.). The efficiency of construction systems is 

measured using construction productivity; consequently, construction productivity has a wide range of 

applications, each having different meanings and definitions.  

Traditionally, research studies have defined productivity to suit a specific purpose for the 

construction industry, at either, the industry, project, or activity level (Thomas et al. 1990). Productivity 

can be generally defined as the “amount of goods and services produced by a productive factor in a unit 

of time” (Drewin 1982). The most common construction productivity metrics are: unit rate (ratio of labour 

cost to units of output); labour productivity (ratio of work hours to units of output); and productivity factor 

(ratio of scheduled or planned to actual work hours) (Gouett et al. 2011). The efficiency of activity level 

systems, focusing on the labour resource of the construction process, is measured using construction 

labour productivity (CLP). In this thesis, the focus is on CLP, which is defined as the ratio of units of 

output to units of input work hours—as shown in Eq. (1.1), where higher values are better than lower 

values. 

                                                      
1 Parts of this chapter have been published in the Proceedings, ASCE Construction Research Congress 2012, West 
Lafayette, Indiana, US, May 21-23, pp. 1420-1429; published in Canadian Journal of Civil Engineering, Volume 41, 
Issue 10, pp. 878-891; and submitted for publication in Journal of Construction Innovation: Information, Process, 
Management, JCI, 36 manuscript pages, submitted July 28, 2015.   
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Construction labour productivity (CLP) = 
Output (installed quantity)

Total labour work-hours
 (1.1) 

Construction labour productivity, the most commonly used single factor productivity measure, 

significantly influences the profitability of construction companies, as it represents a significant component 

of the project cost, ranging from 30-50% (Hanna 2010). However, construction productivity at industry 

level has stagnated in the Canadian and U.S. construction industries (Harrison 2007; Nasir et al. 2014). 

CLP also remains low, and is a major source of project risk and exhibits the highest variability among 

project resources (Moselhi and Khan 2012). The construction industry is thus constantly searching for 

ways to improve labour productivity. However, before they can propose and implement improvement 

strategies, industry representatives need an activity-level construction labour productivity model that 

enables them to fully understand which parameters (factors and practices) cause productivity to change 

and by how much (Thomas et al. 1990). Such models also play a key role in construction estimating, 

scheduling, and planning decisions (Yi and Chan 2014). Construction labour productivity, referred to as 

the output variable (O), deals with the efficiency of labour crews in the complex process of converting 

inputs (labour, material, equipment, etc.) to outputs (project products) in various construction project 

contexts. CLP is situated in an environment that is more complex and unpredictable than the conversion 

process itself, causing a number of parameters to either directly or indirectly influence CLP. Different 

parameters, made up of various factors and practices (e.g., crew size, crew composition, co-operation 

among craftsperson, location of work scope, complexity of task, weather condition, risk management 

practice, etc.) are known to affect the conversion process. Of these parameters, this study considers 

those that critically influence CLP as input variables (I) in order to further examine their effects on CLP 

(Fig. 1.1).  

Additionally, understanding how time is used during the input-to-output conversion process is also 

vital to modeling CLP; work-study methods are commonly employed for this purpose. Work sampling, a 

method used to determine the amount of time workers spend performing direct (productive) work, 

handling material, waiting, etc. is the most widely used work-study method (Josephson and Björkman 
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2013). Work sampling proportions summarize the actual utilization of labour work hours, and in this 

research are represented as process variables (P); they provide an in-depth examination of what 

happens during the conversion process (Fig. 1.1). In order to improve CLP, appropriate analysis and 

modeling is required so as to clearly illustrate how input variables affect the efficiency of the conversion 

process. Such an analysis must establish the relationships between the three system model variables—

Input, Process, and Output (Fig. 1.1)—so as to examine the cause and effect of the input and process 

variables on CLP.  

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1: Representation of the System Model of CLP as an Open Conversion Process 

1.2: PROBLEM STATEMENT  

Because of its significance to project performance, CLP has been well studied. Accordingly, 

several CLP studies have identified numerous parameters that influence CLP (Thomas et al. 1990; 

Oduba 2002; Liberda et al. 2003; Song and AbouRizk 2008; Dai et al. 2009; Oral et al. 2012; Tsehayae 

and Fayek 2014; Gerek et al. 2014). However, despite the extensive research in the area, consensus on 

the classification of parameters and generalization of key parameters is yet to be achieved (Panas and 

Pantouvakis 2010). Therefore, the first problem in CLP modeling is related to the identification of the 
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multilevel, complex, and context-dependent key parameters (factors and practices), influencing CLP in 

different project contexts. Additionally, numerous CLP models have been developed for analyzing the 

impact of the influencing parameters on CLP, and have used a variety of modeling techniques (Yi and 

Chan 2014). Overall, these tested approaches can be categorized as either factor or activity models. 

Factor models relate the different input variables—made up of key influencing parameters (factors and 

practices) like crew size, weather condition, etc.—to labour productivity. Activity models mainly relate the 

process variables, in terms of work sampling proportions, to labour productivity. However, no previous 

studies have succeeded in developing an integrated system approach by investigating the overall 

relationship between both input and process variables and CLP. Therefore, the second problem in CLP 

modeling is related to the lack of a system-based CLP modeling framework, which would have enabled 

the examination of the relationship among the three system variables. 

The third problem is related to the development of accurate and interpretable CLP models, which 

remains a challenge due the complex variability of CLP, the limited data availability to study CLP under 

various contexts, and the requirement of considering the complex impact of the multiple variables 

simultaneously, while maintaining a high accuracy and interpretability in the developed models. CLP 

studies have thus focused on the use of artificial intelligence techniques like neural networks and fuzzy 

inference systems to model CLP (Oral et al. 2012; Fayek and Oduba 2005). Fuzzy inference systems 

(FISs) are based on fuzzy set theory and if-then rules and have provided effective tools to solving 

engineering problems in biomedical engineering, robotics, pattern recognition, image processing, and 

control application areas (Botta 2008), and have the ability to address the identified challenges in 

modeling CLP. The use of FISs have also been gaining widespread attention in construction research 

(Chan et al. 2009), however, FISs have had limited application in CLP modeling, and the few studies 

using FIS had limitations in the development of membership functions and if-then rules from data (Mao 

1999; Fayek and Oduba 2005). FISs have the capability to deal with the large number of subjective 

variables, by means of fuzzy sets representing linguistic terms; model the complexity of CLP using if-then 
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rules, which can be developed using limited data; and are highly interpretable. However, fuzzy inference 

systems have one significant limitation in that they lack the ability to learn from data and optimize their 

model parameters, resulting in the fourth problem faced in modeling CLP using FIS. FIS-based models 

contain several model parameters that can be optimized; thus hybridizing FISs through combination with 

other artificial intelligence techniques has been tested, resulting in improved learning capabilities (Awad 

and Fayek 2013).  

In past CLP studies, the identified influencing parameters and the associated CLP models were 

context dependent, as the identified parameters and their degree of impact on CLP varied from project to 

project (Gerek et al. 2014), implying that CLP is a context-sensitive problem, and as such the developed 

CLP models are specific to the context of development (Thomas et al. 1990). However, only a few CLP 

studies had an explicit definition of the context of the CLP modeling processes. Most models overlooked 

the role of context in CLP modeling and its importance for formulating the circumstances that form the 

setting of the CLP model and its development process (Yi and Chan 2014). The fifth problem in CLP 

modeling is thus the lack of a clear and explicit representation of context in past CLP studies, and 

evaluation of the usefulness of context to characterize and classify construction projects and assist in the 

process of grouping similar projects for more accurate CLP model development.  

Context plays an essential role in CLP research, as it defines in which scenarios the findings of 

the CLP models are applicable. Thus, past CLP models can be conceptualized as the observation of 

activity level construction systems from different points of view or contexts, denoted as Context 1, Context 

2,…, Context-p, which are formulated based on the data collected for each context, denoted as Data 1, 

Data 2,…, Data-p, as shown in Fig. 1.2. However, in CLP modeling field an approach for transferring the 

knowledge represented in the context-specific CLP models from one context to another is missing. Such 

an approach is particularly important when modeling new contexts for which data availability is limited; 

and existing models cannot be applied without some adaptation. The sixth problem is thus the 

unavailability of a context adaptation framework to modify CLP model parameters and enable the transfer 
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of knowledge from one context to another. Additionally, in CLP modeling, a universal model that 

represents a versatile knowledge that can be used in any context is needed, as developing adequate 

number of context-specific models representing each unique construction context is difficult to achieve. A 

universal CLP model represents the generalized context-free knowledge base and can be used to 

develop best practices and principles for improvement of CLP.Therefore the seventh problem in CLP 

modeling research is the absence of a universal CLP model and an approach for its development.  

Construction Labour Productivity (CLP) 
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CLP Model 1

Context-Specific

CLP Model 2
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Data pData 2Data 1
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Figure 1.2: The Emergence of Context-Specific and Universal CLP Modeling Approach 

1.3: RESEARCH OBJECTIVES 

The overall aim of this thesis is to present a methodology for the development of interpretable 

and accurate context-specific and universal CLP models that facilitate a better understanding of the 

variables that influence CLP. The methodology examines the effect of the numerous context-sensitive 

influencing variables, made up of subjective and objective factors, practices, and work sampling 
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proportions causing the complex variability of CLP, using data-driven and optimized fuzzy inference 

system CLP models. The detailed objectives of the research, addressing the identified problems in CLP 

modeling, are grouped under the following three main categories:  

1. To advance the body of knowledge related to the input and process variables influencing CLP; 

thereby addressing the first problem in CLP modeling using objectives 1 (a)—1(d) and the second 

problem using objectives 1(e) and 1(f): 

a. To identify, classify, and develop a comprehensive hierarchal list of the multilevel and 

context-dependent parameters (factors and practices) influencing CLP in different project 

contexts.  

b. To develop a methodology for quantification of subjective and objective parameters 

influencing CLP.  

c. To identify the most critical context-specific parameters (factors and practices) influencing 

CLP using two staged approach: (1) expert-driven approach employing context-centered 

surveys intended to verify the hierarchal list of parameters influencing CLP, establish the 

existence or frequency of the parameters in studied construction projects, and establish 

the context-specific nature of key parameters based on positive and negative effects on 

CLP as reported by respondents from project management and trade groups; and (2) 

data-driven approach employing a feature selection algorithm on the hierarchal list of 

parameters and field data collected for respective contexts.  

d. To test the fundamental assumption of activity models—that CLP improves if more time is 

spent on direct work activities, and evaluate the role of process variables or work 

sampling proportions in CLP modeling.  

e. To develop a novel system model approach for improved prediction of CLP using input 

variables made up of key influencing parameters in conjunction with process variables 

made up of work sampling proportions. 
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2. To advance the state of the art in the development of accurate and interpretable fuzzy inference 

system-based CLP models; thereby addressing the third problem in CLP modeling using 

objective 2(a) and the fourth problem using objective 2(b): 

a. To develop a methodology for the development of fuzzy inference systems and 

membership functions using limited data.  

b. To develop a multi-objective optimization framework for improving not only the accuracy, 

but also the interpretability of fuzzy inference CLP models, and validation of such models 

using appropriate validation strategies.  

3. To develop a novel context-specific and universal  CLP modeling methodology providing an 

improved approach to modeling CLP; thereby addressing the fifth problem in CLP modeling using 

objectives 3(a)—3(c),  the sixth problem using objective 3(d), and the seventh problem using 

objective 3(e):   

a. To develop an operational definition of context and associated context attributes to 

explicitly define the context of projects under investigation. 

b. To examine the application of context in CLP modeling by applying the formalized context 

definition to identify the uniqueness of the studied construction projects.  

c. To investigate the effect of context in CLP modeling using context-specific models, 

addressing the unique contexts and compare and contrast the performance of context-

specific models against a generic CLP model, developed by combining the context-

specific data sets.  

d. To develop a context adaptation framework for adapting fuzzy inference CLP models so 

as to properly adapt the models from one context to another.  

e. To develop an advanced framework for the development of universal CLP model by 

abstracting context-specific fuzzy models.   



 9 

1.4: EXPECTED CONTRIBUTIONS 

This research described in this thesis is expected to produce the following academic 

contributions, relevant to academic researchers, and industrial contributions, relevant to industry 

practitioners.   

1.4.1: Academic Contributions  

The expected academic contributions of this research are as follows:  

 Presenting a comprehensive and hierarchical set of parameters comprised of not only factors but 

also project practices influencing CLP, thus providing a broader view of CLP and the key issues 

affecting it.   

 Providing a new methodology for quantifying subjective and objective parameters influencing 

CLP, this is essential for gathering accurate data on parameters influencing CLP.  

 Presenting a new hybrid expert and data-driven methodology for evaluating and ranking of the 

input parameters based on the positive and the negative influence of each distinct parameter on 

CLP, thereby enabling the identification of enablers as well as barriers to betterment of CLP 

under different contexts.  

 Evaluating the usefulness of relying on work sampling proportions like direct work or tool time to 

predict CLP, and test the assumption witnessed in CLP research that direct work proportions are 

highly correlated to CLP.  

 Developing a system model framework for CLP, which provides a better understanding of CLP, 

the parameters influencing CLP, and how work-study methods like work sampling can be 

integrated to provide an accurate CLP analysis tool. 

 Addressing the challenges faced in past CLP models by developing interpretable and accurate 

fuzzy inference CLP models that explain the impact of multiple subjective and objective variables 

on CLP, while requiring limited data for development.   

 Advancing the state of art in hybrid fuzzy modeling using a genetic algorithm-based optimization 

process to improve the interpretability and accuracy of developed CLP models.  
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 Presenting an operational definition of context for CLP modeling and for characterizing and 

classifying construction projects and assisting the process of grouping similar projects for more 

accurate context-specific CLP model development.   

 Providing a novel context adaptation framework for adapting CLP models from one context to 

another, thereby facilitating the transfer of knowledge among existing CLP models.   

 Providing a novel framework for developing universal CLP models through abstraction of the 

knowledge bases represented in the context-specific CLP models.   

1.4.2: Industrial Contributions  

The expected industrial contributions of this research are as follows:  

i. Establishing a multilevel factors and practices list affecting construction labour productivity of 

construction projects.  

ii. Identifying and comparing key parameters influencing CLP in building and industrial project 

contexts in Alberta, Canada, which will provide useful insight on the issues to focus on during 

construction planning and execution phases.     

iii. Offering measurement scales for documenting subjective and objective parameters influencing 

CLP, and presenting a comprehensive data collection protocol, which provides detailed 

guidelines for carrying out labour productivity improvement studies.  

iv. Developing a Productivity Database to facilitate data collection and analysis, useful for industry 

practitioners carrying out productivity improvement studies.  

v. Developing a tool for predicting CLP for use in construction project cost estimation and 

scheduling, and developing CLP improvement strategies by identifying optimum values of 

influencing variables leading to better CLP values.  

1.5: RESEARCH METHODOLOGY 

The research work presented in this thesis is conducted in four main stages, which are described 

in the following subsections:  
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1.5.1: The First Stage 

The development of the context-specific and universal CLP models begins with identifying, 

classifying, quantifying, and documenting the input and process parameters influencing CLP. By 

analyzing existing literature in the field of CLP analysis and modeling, the input and process parameters 

are identified and classified into a hierarchal list. Next, quantification of the numerous subjective and 

objective parameters influencing CLP is carried out. A detailed data collection protocol is also developed 

to facilitate data collection by several different collectors and to ensure the validity of the data collected 

from a number of projects. Additionally, a custom-made, server-based database, called 

ProductivityTracker©, is established to store the vast amount of gathered data and facilitate further 

modeling steps.  

1.5.2: The Second Stage 

The large input parameters feature space, made up of the influencing factors and practices, had 

to be reduced to maintain the interpretability and accuracy of the CLP models. The reduction of the 

feature space is carried out by identifying the key input parameters (factors and practices) influencing 

CLP using a hybrid expert and data-driven approaches. A methodology based on factor surveys for 

collecting expert opinions from different contexts is developed using two survey forms, namely the project 

management survey and the trade survey. Based on survey responses from project management and 

trade level project participants, categorized under building and industrial contexts, the key parameters 

influencing CLP positively and negatively are identified. The internal consistency of the survey responses 

were examined using Cronbach’s alpha values and using statistical analysis the difference in perspective 

between contexts and also respondents were examined. Using the expert-driven approach, the 

developed hierarchal list of parameters influencing CLP is verified and the context-specific nature of key 

parameters is established. A data-driven methodology based on feature selection technique is also 

employed and the most critical parameters are identified using field data collected for each of the 

hierarchal parameters. Feature selection was carried out using the Waikato Environment of Knowledge 

Analysis (WEKA) tool and correlation-based feature selection (CFS) algorithm.  
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1.5.3: The Third Stage 

The role of process variables or work sampling proportions in CLP modeling is then formulated 

using the collected field data. The fundamental assumption of activity models—that CLP improves if more 

time is spent on direct work activities—is tested using scatter plots, correlation analysis, and multivariate 

regression analysis. A linear and non-linear regression analysis is carried out between direct work and 

output or CLP variables and a multivariate linear regression analysis is carried out between the process 

and output variables to examine the capability of process variables in providing a credible explanation to 

the variability of CLP, and based on the results of the null hypothesis tests, inferences on the role of 

process variables in CLP modeling are made.  

Then, a system-based modeling framework to incorporate the key process variables with input 

variables for improved construction labour productivity modeling and analysis is proposed, developed, 

and tested.   In the system-based modeling framework, depending on the mediation or moderation role of 

the P variables (work sampling proportions) in explaining the variability of CLP, three different paths were 

considered. The first path is based on the I–O relationship and comprises the factor CLP model. The 

second path is based on the I–P–O relationship and assumes that process variables have a mediating 

effect; it comprises a “mediated system” CLP model. In the mediated system CLP model, the assumption 

is based on complete mediation, where the I variables influence the P variables as mediator variables, 

which in turn influence the output or dependent variable (O). The third path is based on the (I and P)–O 

relationship and assumes that P variables have a moderating effect; it comprises a “moderated system” 

CLP model. In the moderated system CLP model, the assumption is that the P variables, as moderator 

variables, affect the direction and strength of the relationship between the I and O variables. The 

mediation and moderation effect of the process variables are tested by developing artificial intelligence 

technique-based models and evaluating which model and path provided the most accurate results. 

Timeliness, precision, repeatability, and accuracy performance metrics are used to determine the overall 

accuracy of a given model path, and the three model paths were tested using field data collected for this 

research and the most accurate path was identified. 
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1.5.4: The Fourth Stage 

Based on the developed system-based CLP modeling framework, the context-specific and 

universal CLP models are developed at this stage. By analyzing existing literature in the field of context-

aware computing, context and its application in computing fields was examined and, an operational 

definition of context for CLP modeling is formulated and associated context attributes are developed 

based on the 5W1H (Who, What, Where, When, Why, and How) question and answers approach. Then, 

a framework for the development of context-specific CLP models based on fuzzy inference systems (FIS) 

is developed. The framework first formulates the unique contexts of the studied construction projects 

using 5W1H approach and projects sharing similar contexts are combined. Additionally a generic CLP 

model, based on the combined data set of the unique contexts, is developed. Finally, the learning ability 

of the developed FIS CLP models is improved using a multi-objective optimization framework which 

optimizes several model parameters for improving the accuracy and interpretability of the developed CLP 

models.  

The context adaptation framework for transferring knowledge among contexts is proposed using 

linear and non-linear scaling of the membership functions of the context-specific fuzzy CLP models. 

However, the determination of the parameters of the non-linear function requires an optimization process 

and genetic algorithm based optimization is used. Both linear and non-linear adaptations are 

implemented on each of the context-specific CLP models and further sensitivity analysis of the adapted 

models using fuzzy operators and defuzzification methods is carried out. Then, the performance of the 

adapted CLP models was evaluated, and the most accurate adaptation technique is identified. Finally, a 

framework for the development of the universal CLP model is proposed and tested. The framework 

abstracts the context-specific fuzzy models, which could be used to model and predict CLP for specific 

contexts, in order to develop a single generalized, more abstract universal CLP model. The development 

of the universal model is based on a granular fuzzy case-based reasoning approach.  
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1.6: THESIS ORGANIZATION 

This thesis’s organization is based on a combination of traditional and paper-based formats, and 

consists of eight chapters and three appendices. The first two chapters provide the background and 

research methodology and are followed by five CLP modeling chapters addressing the sequential steps 

of the CLP model development process. Finally a concluding chapter is presented. Each appendix 

provides the information associated with the referring chapter.  

Chapter 1 provides a brief background of the research, the statement of problems faced in CLP 

modeling, and the objectives of this research. The expected contributions and a brief methodology of this 

research are also explained in this chapter.   

Chapter 2 reviews existing literature, identifies limitations of past CLP studies, and presents the 

detailed description of the first stage of the research methodology. The methodology used for identifying, 

classifying, quantifying, and documenting the influencing input and process parameters together with CLP 

is described. The results of the extensive data collected for the research is also presented.  

Chapter 3 presents the methodology for identifying key input parameters (factors and practices) 

influencing labour productivity using expert and data-driven approaches. Analysis of the collected factors 

surveys and results on key parameters influencing labour productivity in building and industrial contexts is 

presented. Then, the data-driven approach for identifying key parameters using the collected field data is 

presented and discussed.  

Chapter 4 describes the system-based labour productivity modeling framework for establishing 

the role of work sampling proportions in addition to the input parameters in labour productivity modeling. 

The formulation and evaluation of the framework is presented and discussed in detail.   

Chapter 5 presents the framework for the development of context-specific CLP models based on 

fuzzy inference systems (FIS). This chapter describes the operational definition of context for CLP 

modeling, and the procedure for the development, optimization, and validation of a series of context-

specific fuzzy inference CLP models. 
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Chapter 6 presents the context adaptation framework for adapting context-specific models from 

one context to another. This chapter describes the detailed adaptation process, which is based on linear 

and non-linear scaling of the membership functions of the context-specific CLP models and further 

sensitivity analysis of adapted models for fuzzy operators and defuzzification methods, and evaluates the 

performance of the adapted CLP models.     

Chapter 7 presents the framework for the development of universal CLP models. This chapter 

describes the processes involved in the abstraction of the context-specific models, the development of 

information granules of the universal model, and the optimization of the universal CLP model.   

Chapter 8 describes the conclusions, contributions, and limitations of this research. 

Recommendations for future research are also included.  
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Chapter 2: Literature Review and Research Methodology2 

2.1: INTRODUCTION 

In this study, construction labour productivity is modeled using a system approach which involves 

three model parameters—Input, Process, and Output—so as to examine the cause and effect of the input 

and process variables on CLP. Construction labour productivity, referred as output parameters (O), deals 

with the efficiency of labour crews converting inputs (land, knowledge, information, energy, materials, 

etc.) to outputs (project products). Input parameters (I) refers to a number of factors and practices (e.g., 

crew size, crew composition, co-operation among craftsperson, location of work scope, complexity of 

task, weather condition, risk management practice, etc.), which either directly or indirectly influence CLP. 

Process parameters (P) refers to work sampling proportions summarizing the actual utilization of labour 

work hours and provide an in-depth examination of what happens during the conversion process.  

In this chapter, first a review of the existing literature on labour productivity models developed to 

formulate the impact of the influencing parameters on CLP is carried out, limitations are established, and 

the rational for the proposed system model is presented. Then, the proposed research methodology to 

fulfil the objectives of this thesis, indicated in the previous chapter, is presented. Additionally, the initial 

part of the research methodology addressing the identification, classification, quantification, and data 

collection on model parameters is presented. The identification and classification of influencing input and 

process parameters, based on review of past labour productivity studies, is presented together with the 

quantification of the parameters for field data collection. Then, the data collection methodology including 

the developed research ethics procedure, data collection protocol, and database tool for data storage and 

analysis is presented. Finally, the results of the extensive data collection process are summarized.  

                                                      
2 Parts of this chapter have been published in Canadian Journal of Civil Engineering, Volume 41, Issue 10, pp. 878-
891; the Proceedings, ASCE Construction Research Congress 2014, Atlanta, Georgia, US, May 19-21, pp. 837-846; 
and submitted for publication in Journal of Construction Innovation: Information, Process, Management, JCI, 36 
manuscript pages, submitted July 28, 2015.   
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2.2: REVIEW OF CLP MODELS  

The successful completion of construction projects is highly dependent on construction labour 

productivity (CLP), which measures the efficiency of construction craftspeople in converting a given set of 

inputs to tangible outputs. Thus, the ability of estimating team in construction firms to accurately predict 

CLP values for different activities has a significant impact on the labour cost component of a project, and 

decision making processes during planning, bidding, and control stages of projects. As a result, 

numerous predictive modeling approaches as shown in Fig. 2.1 have been developed and tested. 

Overall, these tested approaches can be categorized as either factor or activity models. Factor models 

relate the different input variables—made up of key influencing parameters (factors and practices) like 

crew size, weather condition, etc.—to labour productivity. Activity models mainly relate the process 

variables, in terms of work sampling proportions, to labour productivity. So far, no study has succeeded in 

developing an integrated system approach investigating the overall relationship between both input and 

process variables and CLP. The following subsection reviews and notes the limitations of past studies 

dealing with factor and activity models.  

2.2.1: Factor Models  

Several past studies have quantified the impact of different parameters on CLP using factor 

models. Factor modeling is a multivariate approach to modeling crew-level productivity using influencing 

parameters (factors and practices) as independent variables and productivity as the dependent variable. 

Factor model development requires practitioners to gather and measure input parameters, and identify 

the key independent (i.e., input) variables and to model the complex relationship between these variables 

and productivity (the output) using appropriate analysis methods. Accordingly, numerous parameters that 

either directly or indirectly influence CLP have been presented, and critical parameters or variables were 

usually identified according to the study objective, and were then documented and applied in CLP 

modeling. Such studies have often relied on author’s knowledge and factor surveys with groups of 

experts to establish critical parameters, before proceeding with data collection. Alternatively, when 
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detailed parameter documentation is carried out, data-driven analysis methods can used to identify the 

critical parameters for modeling CLP. 

        

Figure 2.1: Summary of Past CLP Models   

Numerous factor modeling approaches for CLP have been developed based on different data 

analysis methods including: regression analysis, artificial neural networks, expert systems, fuzzy 

inference systems, discrete event simulation, system dynamics, and agent based simulation. The 

following subsections present a review of the different factor models, which have been grouped into 

regression analysis, artificial neural networks, inference systems, and other emerging methods, and 

limitations are summarized. 
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Koehn and Brown (1985); Thomas and Mathews 
(1986); Thomas and Yiakoumis (1987); Herbsman 
and Ellis (1990); Sanders and Thomas (1993); 
Thomas and Sakarcan (1994); Ibbs (1997); Hanna 
et al. (1999a); Hanna et al. (1999b); Srinavin and 
Mohamed (2003); Hanna et al. (2008); Jarkas and 
Horner (2011) 

Neural Networks

Knowles (1997); Portas and AbouRizk (1997); 
Sonmez and Rowings (1998); Lu et al. (2000); 
AbouRizk et al. (2001); Mosehli et al. (2005); 
Ezeldin and Sharara (2006); Oral et al. (2012); 
Gerek et al. (2014);Heravi and Eslamdoost (2015)

Inference Systems 
Hendrickson et al. (1987);El-Rayes and Mosehli 
(2001); Mao (1999) ; Fayek and Oduba (2005) 

Emerging Methods
Song and AbouRizk (2008); Xue et al. (2008); 
Watkins et al. (2009); Lin and Huang (2010);Oral 
and Oral (2010); Nasirzadeh and Nojedehi (2013) 

Activity Models

Regression 
analysis

Thomas et al. (1984); Liou and Borcherding (1986) 
; Handa and Abdalla (1989); Thomas (1991); Al–
Ghamdi (1995); Silva and Ruwanpura (2006)

Inference Systems
Chirstian and Hachey (1995); Shahtaheri et al. 
(2014) 
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2.2.1.1: Regression Analysis  

The relationship between the assorted input variables (key parameters) and CLP, and the degree 

of their impact on it, has most frequently been modeled using regression analysis. The method relies on 

actual data and curve fitting techniques between a set of independent variables and productivity as a 

dependent variable. Once the regression models are developed, normality of the residuals (predicted 

minus observed values) has to be verified using standardized histograms, normality plots, and scatter 

plots of residuals so as to ensure the validity of the developed modes. In a multivariate factor model for 

modeling labour intensive crew-level productivity, it was argued that although factors affecting crew level 

productivity can lead to random or systematic, controlled or uncontrolled disturbances, they can be 

individually isolated to quantify the effects of each factor on ideal productivity (Thomas and Yiakoumis 

1987). Subsequently, most existing factor models address the effect of a single input variable, like 

temperature, on CLP (Yi and Chan 2014).  

Koehn and Brown (1985) studied the relationship between productivity and weather factors 

(temperature and humidity) by combining data from different activities (manual excavation, erection, 

masonry, electrical, carpentry, labourer, and equipment excavation), and provided two non-linear 

equations for cold and warm weather conditions. Thomas and Mathews (1986) studied five learning curve 

models using precast concrete floor planks erecting activity data, and concluded that the cubic learning 

model is the best predictor of productivity unit rates. Thomas and Yiakoumis (1987) studied masonry, 

structural steel, and formwork activities and using multiple regression analysis, developed a factor model 

for predicting the performance factor, defined as a ratio of actual to expected productivity. Herbsman and 

Ellis (1990) using regression analysis, investigated the relationship between influencing factors and 

productivity of steel form erection activity. Moselhi et al. (1991) studied the effect of change orders on 

productivity of civil, electrical, and mechanical works. Sanders and Thomas (1993) developed a statistical 

model to forecast the productivity of masonry activities based on an additive regression model and data 

collected from 11 masonry projects. Thomas and Sakarcan (1994) developed a factor model for masonry 

projects as shown in Eq. (2.1), where 𝐸𝑡 = predicted productivity for time period 𝑡; 𝐼𝑠 = productivity for 
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standard conditions; 𝑚 = number of condition variables; 𝑎𝑖 = coefficient of condition variable i; 𝑥𝑖 = 

indicator of condition variable i (0 = not present, 1 = present); 𝑛 = number of submodels; and 𝑓(𝑦)𝑗 = 

mathematical function of submodel j. 

𝐸𝑡 = 𝐼𝑠 + ∑𝑎𝑖  𝑥𝑖

𝑚

𝑖=1

+ ∑𝑓(𝑦)𝑗

𝑛

𝑗=1

 (2.1) 

Ibbs (1997) studied the impact of change orders on productivity during design and construction 

phases using regression. The impact of change orders on labour efficiency was also investigated for 

electrical and mechanical work (Hanna et al. 1999a; Hanna et al. 1999b). Srinavin and Mohamed (2003) 

developed a thermal factor model using air temperature, relative humidity, radiant temperature, wind 

velocity, and nature of task, and indicated that the developed model performed satisfactorily in light and 

moderate tasks, but much less in for heavy tasks. Hanna et al. (2008) assessed effects of employing 

additional shift work during acceleration of construction schedule, and showed that shift work has the 

potential to be both beneficial and detrimental to CLP. Jarkas and Horner (2011) revisited the applicability 

of learning curve theory in CLP analysis and showed that there was no significant improvement in 

formwork labour productivity due to learning.  

However, the above factor models based on regression method have a number of major 

limitations including: lack of capacity to deal with numerous factors, intolerance to noisy data, and 

impracticality of deciding the best fitting curve (linear, quadratic, etc.) for representing the highly complex 

nonlinear relation between the input variables and CLP (Thomas et al. 1990; Lu 2001). Additionally, 

multiple regression analysis requires each input variable to have a linear relationship with CLP, input 

variables not be correlated with one another, and residuals (predicted minus observed values) to be 

normally distributed. As, the input variables (factors) in CLP analysis are often related to one another 

(Nasirzadeh and Nojedehi 2013), and the relationship between input variables and CLP is highly complex 

and nonlinear, the stated requirements of multiple regression will be violated in modeling CLP, and the 

produced models will produce inefficient predictions.       
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2.2.1.2: Neural Networks 

More recent CLP studies focus on the use of artificial neural networks (NNs). Knowles (1997) 

presented a two-stage neural network model for predicting CLP for concrete formwork activity in 

commercial walls and slabs, and industrial pipe handling and welding activities. Portas and AbouRizk 

(1997) developed a three-layered feed-forward, back-propagation NN model with fuzzy output layer to 

estimate the likelihood of the production rate of concrete formwork activity. Sonmez and Rowings (1998) 

developed labour productivity models for concrete pouring, formwork, and concrete finishing activities 

using neural networks, and showed that NNs have the potential for quantitative evaluation of the 

nonlinear effect of multiple interacting factors on CLP. Lu et al. (2000) used probability inference neural 

networks to develop CLP models for field pipe installation and shop spool fabrication activities. AbouRizk 

et al. (2001) developed a two-staged neural network based CLP model for industrial welding and pipe 

installation activities. Mosehli et al. (2005) utilized NN for modeling the impact of change orders on 

labour-intensive operations based on historical company-specific data. Ezeldin and Sharara (2006) 

developed CLP prediction models for forms assembly, steel fixing, and concrete pouring activities using 

feed-forward back-propagation neural networks, and indicated that the concrete pouring CLP model was 

the least accurate one as compared to others. Oral et al. (2012) compared the performance of feed-

forward neural networks, generalized regression neural networks, and self-organizing maps in predicting 

construction crew productivity for plastering crews and indicated that the self-organizing maps had better 

prediction ability. Gerek et al. (2014) also compared the performance of feed-forward neural networks and 

radial basis neural network in modelling the productivity of masonry crews, and showed that radial basis 

NN performed better, although both slightly overestimated the masons’ productivity. Heravi and 

Eslamdoost (2015) studied labour productivity of concreting work for gas, steam, and combined cycle 

power plant construction projects using neural networks.   

Neural networks provide an effective tool for complex problems, such as modeling CLP where the 

relationships between inputs and output cannot be easily represented by mathematical functions (Moselhi 

et al. 1991). However there are limitations to its application for construction labour productivity studies. 
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NN models will first need high quality data, which is difficult to guarantee in CLP studies, as poor or 

insufficient data could result in an incorrect CLP model (Huh 2004). Additionally, the mapping of the input 

and output data is not interpretable or transparent and makes NNs difficult to understand, thus, limit the 

application of NN models. Finally, neural network models are not appropriate for adaptation to suit other 

contexts, as users cannot calibrate the developed model without going through the process of retraining.  

2.2.1.3: Inference Systems  

Because CLP modeling is a complex problem with limited data availability, and deals with a large 

number of subjective variables, CLP modeling is an exceptional target for another artificial intelligence 

technique: inference systems. Two types of inference systems are recognized: expert systems and fuzzy 

inference systems. While fuzzy inference systems are based on fuzzy logic and if-then rules; expert 

systems are based on traditional two valued logic systems. Expert systems were first used in construction 

productivity to predict activity duration and productivity for masonry construction (Hendrickson et al. 

1987). The expert system, called MASON, was developed based on interviews with one professional 

mason and one supporting labourer, but the model was not validated, and the system relies on two 

staged approach of predicting the maximum expected productivity followed by experts based adjustments 

to establish realistic productivity estimates (Lu 2001). El-Rayes and Mosehli (2001) also created a 

database of climatic historical data and combined it with knowledge-based rules to create an expert 

system, called WEATHER that could estimate the lost productivity due to rainfall on highway construction.  

Construction researchers have found the use of fuzzy logic useful due to its focus on human 

thinking and natural language than the traditional two valued logic systems (Mao 1999). However, there 

are few applications of fuzzy logic in the CLP modeling field (Yi and Chan 2014). Mao (1999) used fuzzy 

inference system to model a labour productivity of concrete wall formwork activity, and used an assumed 

membership functions together with a rule-base developed based on historical data; however, the data 

used did not cover all input factors. Fayek and Oduba (2005) also used fuzzy inference systems to model 
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industrial pipe rigging and welding activities CLP, the models showed high linguistic accuracy but the 

numeric accuracy was low.  

However, several limitations in inference systems are also observed. Expert systems are mainly 

advantageous in very narrow defined problems; additionally, experts used to develop the systems might 

lack the ability to map the inputs with output, and also expert systems cannot be adapted to changing 

environments (Lu 2001). Fuzzy inference systems (FISs) have proved effective tools for solving 

engineering problems in biomedicine, robotics, pattern recognition, image processing, and control 

application areas, and are suitable for adaption to suit other environments (Botta 2008). Thus, in this 

research the developed labour productivity models are based on fuzzy inference systems. However, there 

have been few applications of FISs in CLP modeling, and the few studies using FISs were limited in that 

they did not develop membership functions and if-then rules using adequate data (Mao 1999; Fayek and 

Oduba 2005). Additionally, FIS inability to learn from data and develop and optimize system parameters 

is a major limitation that needs to be addressed in CLP modes.  

2.2.1.4: Emerging Methods   

Recently a number of advanced methods are being employed in modeling CLP. Song and 

AbouRizk (2008) studied steel fabrication and steel drafting activities and combined discrete-event 

simulation with a neural network to model the productivity of a production system that had a number of 

related activities. The NN was used to model individual activities and the complex relationship between 

productivity and influencing factors, and discrete-event simulation was used to simulate the entire shop 

fabrication production process.  

Data envelopment analysis (DEA) measures the relative efficiency of decision-making units, 

without specifying a function to express production relationship between inputs and outputs. Xue et al. 

(2008) used DEA based Malmquist productivity index to measure the productivity change over time in 

Chinese construction industry. Lin and Huang (2010) also applied DEA for deriving baseline productivity 

and concluded that DEA is the best method to derive contractors’ relative performances and benchmarks 
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for best practice. Oral and Oral (2010) developed CLP models for concrete pouring, formwork, and 

reinforcement placement activities using self-organizing maps. Nasirzadeh and Nojedehi (2013) studied 

the highly dynamic nature of the influencing factors throughout the life cycle of the project using system 

dynamics technique, and the complex inter-related structure of different factors was modeled using cause 

and effect feedback loops and a qualitative CLP model was developed for concrete pouring activity. 

Agent based modeling (ABM) is a computer simulation technique that allows the examination of 

how system rules and patterns emerge from the behaviors of individual agents. ABM creates artificial 

agents that represent individuals that have the ability to perceive and interact with each other and their 

environment and based on their interactions make autonomous decisions (Archiszewski et al. 2005). 

Watkins et al. (2009) used ABM to represent a construction site as a system of complex interactions and 

explored whether labour efficiency can be treated as an emergent property resulting from individual and 

crew interactions in space; thereby allowing for a “bottom-up” approach to analyzing labour efficiency. 

2.2.2: Activity Models  

Activity models relate labour time utilization measures like work sampling proportions (i.e., 

process parameters) to CLP. How construction workers spend their working time is of great concern to 

construction companies. Under the influence of lean thinking in the construction industry, interest in 

labour time utilization and eliminating waste is rising (Yi and Chan 2014). Work sampling (WS), a widely 

used work-study method in the construction industry, uses random observation to investigate how a 

workforce uses its work time. WS establishes the percentage of work time spent on categories, and direct 

work (tool time), which represents the proportion of work time spent exerting  physical effort directed 

toward the completion of an activity, has been used as a surrogate measure of CLP (Thomas et al. 1991; 

Gouett et al. 2011). However, WS studies have been inconsistently implemented (Yi and Chan 2014). 

The activity model is based on WS and is readily applicable to labour-intensive activities. A valid activity 

model is required to show that direct work times and outputs are related in some predictable fashion 

(Thomas et al. 1991; Yi and Chan 2014). However, past studies have shown that the definition of work 
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categories and the subsequent task classifications can significantly affect the different proportions, and, 

hence, their relationships with CLP (Thomas et al. 1991).  

The relationship between process variables and CLP has so far been investigated using mainly 

regression analysis, while some studies have used inference systems. There are two opposing views of 

the validity of activity models. For the most part, the literature argues that WS can be used to predict 

productivity (Josephson and Björkman 2013). Thomas et al. (1984) studied the relationship between 

direct work percentage and productivity, defined as a ratio of earned man-hours to actual man-hours, and 

established an activity model for pipefitting activity. The study reported a positive Pearson correlation 

coefficient of 0.86 between productivity and direct work category. As is common in any regression 

analysis, the dependent and independent variables have to be carefully formulated. Contrary to Drewin’s 

assumption that labour productivity is the dependent variable and WS data (direct, delay, etc.) is the 

independent variable (1982), Thomas et al. (1984) assumed crew output as independent and direct work 

values as dependent. Liou and Borcherding (1986) statistically proved that WS results strongly correlate 

with unit-rate productivity for power plant construction projects. By using 41 data points for concrete work 

elements, the authors demonstrated a relationship between unit productivity (concrete man hours/cubic 

yard) and different WS activity categories (direct work, material or equipment handling, late and break). 

Similar to Thomas et al. (1984), unit productivity was the independent variable and the WS components 

were assumed to be the dependent variable. A detailed study on Canadian housing sector showed that 

process variables could be used to indicate actual site productivity and crew learning rates (Handa and 

Abdalla 1989). A study on concreting operations of four commercial construction sites in Alberta, Canada, 

also developed an activity model, with a Pearson correlation coefficient of 0.90 between productivity 

(m3/hr) and tool ratio or direct work proportion (Silva and Ruwanpura 2006).  

Chirstian and Hachey (1995) developed a prediction model for production rates of concrete 

placement activities using an expert system. The model was developed based on concrete placement 

data from several projects, and relied on question and answer routine to develop a domain expert rule-
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base; however, there was significant variation in data sources, and sample size was limited and the 

developed rule-base was inconsistent (Sonmez 1996; Lu 2001). Shahtaheri et al. (2014) assumed that 

labour performance can be improved by increasing the direct-work rate, and developed a fuzzy inference 

model to estimate appropriate baselines and set realistic goals for direct-work rate.  

Conversely, Thomas (1991) stated that direct work is not related to productivity; using data from 

seven databases (five papers and two data sets) containing over 158 WS studies, mainly from nuclear 

power plant projects, he concluded that previous studies lacked validity.  An activity model study on wall 

building activities using work sampling observations also concluded that work sampling is not a strong 

predicator of productivity (Al–Ghamdi 1995). According to the author, the study which used work sampling 

data of six masons in 35 field experiments showed a Person’s correlation of coefficient of 0.498, -0.675, 

and -0.914, between direct or effective work categories and productivity, between support or essential 

contributory work categories and productivity, and delay or ineffective work categories, respectively.   

2.2.3: Limitations of Past CLP Models  

Despite its obvious importance in construction project management, developing accurate and 

interpretable CLP models for analysis and improvement of construction productivity has not been fully 

achieved (Yi and Chan 2014). Modeling CLP remains a challenge due the complex variability of CLP, the 

limited data availability to study CLP under various contexts, and the requirement of considering the 

complex impact of the multiple subjective and objective variables simultaneously, while maintaining a high 

accuracy and interpretability in the developed models. However, most of the past CLP studies focused on 

limited number influencing variables and additional researches are required for the identification of the 

multilevel, complex, and context-dependent key variables influencing CLP in different project contexts. 

The factor and activity models discussed above were developed for specific contexts and their 

implementations were mostly restricted to the information used to develop each specific model. However, 

only a few CLP studies had an explicit definition of the context of the CLP modeling processes, and 
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overlooked the role of context in CLP modeling and its importance for formulating the circumstances that 

form the setting of the CLP model and its development process.  

Most of the factor models were not able to deal with subjective variables in a comprehensive 

manner, and due to the high dimension and non-linear nature of the CLP modeling problem, recent CLP 

studies are focusing on neural networks, which are not interpretable by users. Furthermore, activity 

models lacked statistically significant results, and are limited by their inability to model the effect of the 

process parameters in influencing CLP and their dependence on assumptions regarding category 

definitions, caused due to a lack of standardization (Josephson and Björkman 2013). Additionally, in past 

CLP studies a lack of an integrated system approach, that investigates the overall relationship between 

both input and process variables and CLP, is observed. As a result of these limitations, the above CLP 

models have been unable to provide useable solutions for the highly complex, context-dependent, and 

non-linear modeling problem of CLP.  

Construction productivity is one of the most studied areas in construction engineering and 

management field (Yi and Chan 2014). As discussed above, numerous predictive CLP models have been 

developed. However, in CLP modeling field an approach for transferring the knowledge represented in 

such models from one context to another context is also lacking. Such an approach is particularly 

important when modeling new contexts for which data availability is limited; and existing models cannot 

be applied without some adaptation. Additionally in CLP modeling, a universal or generalized modelling 

framework to abstract the various CLP models and represent a versatile knowledge is also missing. Such 

generalized CLP models are useful for analyzing CLP irrespective of the context of the projects.  

2.3: RESEARCH METHODOLOGY   

It is well known that research yields unique and significant results improving the body of 

knowledge, and innovative research is vital in today’s highly complex construction process (Halpin 2007). 

With the increasing complexity of construction projects and their performance requirements, the role and 

expectations of construction management practices and research endeavors are becoming even more 
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critical. Proven management practices are often based on relevant and successful past experiences 

which have been validated by sound research methods to develop validity and reliability (Richard and Liu 

2008). In this research, construction labour productivity is considered as an applied research involving the 

study of an open-ended system, as shown in Fig. 1.1. Additionally, this study mainly focuses on inductive 

or problem solving research approach and uses a mix of qualitative (factor surveys, foreman delay 

surveys, and craftsman questionnaires) and quantitative (factors and practices documentation, work 

sampling observations, and productivity measurement) strategies to establish the methodology for 

developing a series of context-specific and universal CLP models. The research methodology of this 

research, developed to fulfil the research objectives described in Section 1.3, is diagrammatically 

explained in Fig. 2.2.  

In the following subsections the initial part of the research methodology dealing with the 

identification and quantification of the system parameters is described in detail. Additionally the data 

collection methods and data collections results are discussed. Chapters 3—7 discuss the CLP modeling 

steps 1—5 (see Fig. 2.2) and present the respective research methodologies together with the data 

analysis and modeling approaches specific to the part of the research presented in the particular chapter.   
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Figure 2.2: Research Methodology  
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2.3.1: Identification and Quantification of Input Parameters Influencing CLP 

 Because of its significance to project performance, CLP has been well studied, and numerous 

parameters that influence CLP have been identified. Past studies generally grouped parameters across 

internal and external categories, and varying number of parameters were established. Lim and Alum 

(1995) identified 17 influencing factors grouped under three categories—manpower, management, and 

environment. Oduba (2002) identified 57 influencing factors grouped under context and input; the factors 

were further classed according to project or activity level. Liberda et al. (2003) identified 51 influencing 

factors grouped under three categories—human, external, and management. CII (2006) identified 83 

influencing factors grouped under eleven categories: supervisor direction, communication, safety, tools 

and consumables, materials, engineering drawing management, labour, foreman, superintendent, project 

management, and construction equipment. Durdyev and Mbachu (2011) identified 56 influencing factors 

grouped under two main categories—internal constrains and external constraints. Jarkas and Bitar (2012) 

identified 45 influencing factors grouped under four categories—technological, human/labour, 

management, and external. The summary of the identified parameters, presented in Appendix A.1, shows 

that despite the extensive research in the area, consensus on the classification of parameters, listings of 

the context-specific parameters, and generalization of common parameters is yet to be achieved. 

Furthermore, past CLP modeling studies did not investigate project practices as key factors influencing 

CLP (Tsehayae and Fayek 2014a). 

In this study, input parameters, referred as 𝐼, and made up of factors (all factors influencing CLP 

except for project practices) and practices (practices related to the management of the project based on 

Project Management Institute [PMI] 2007, and identified best practices based on Construction Industry 

Institute [CII] 2011) were investigated. A total of 169 input parameters influencing CLP were thus 

gathered from related literature (CII 2006; Liberda et al. 2003; Jergeas 2009; Knight and Fayek 2000; 

Oduba 2002; O’Connor and Huh 2006; AbouRizk et al. 2001; Chan et al. 2004; Dissanayake et al. 2005). 

Construction practices like the use of a material tracking system have been shown to significantly improve 

CLP (Grau et al. 2009; Chanmeka et al. 2012); however, such practices have not been properly 
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integrated into CLP analysis and modeling efforts. The developed list of parameters was verified using 

factor surveys with respondents from project management and trade groups. 

Labour productivity naturally tends to be a micro level issue where a group of organized workers 

are required to transform a set of inputs to tangible project outputs (Drewin 1982). However, the factors 

and practices directly or indirectly influencing labour productivity are multileveled ranging from macro to 

meso and then to micro levels (CII 2006; Knight and Fayek 2000). In order to capture and demonstrate 

their multilevel nature, a hierarchal structure was adopted wherein the input parameters were classified 

according to the following six levels: activity, project, organizational, provincial, national, and global. The 

activity level parameters were further grouped under labour and crew, materials and consumables, 

equipment and tools, task property, location property, foreman, and engineering and instructions 

categories. The project level parameters were further grouped under project delivery/design document, 

project nature, project condition, project owner, project team, project labour and union, salary and 

benefits, and project practices (initial planning, scope, time, cost, quality, procurement, safety, risk, 

communication, human resource, environmental, and claim management) categories. In Table 2.1, the 

full list of the input parameters is presented, which introduces a number of factors and practices that were 

not included in previous research works, and provides a solid foundation that researchers and industry 

practitioners can use to conduct a complete study on the causes of CLP variation among projects, so as 

to obtain more useful insights into which factors and practices lead to improved CLP.  In Table 2.1, the 

identification labels of each input parameter are also included. 
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Table 2.1: Input Parameters (Factors and Practices) Influencing CLP 

Parameter category Activity level parameters, ID  

Labour and crew  

Crew Properties [Crew sizex1, Craftsperson educationx2, Craftsperson on job trainingx3, Craftsperson technical  
trainingx4, Crew compositionx5, Crew experience (seniority)x6, Number of languages spokenx7, Co-operation 
among craftspersonx8], Craftsperson learning effectx9, Treatment of craftsperson by foremanx10, Craftsperson 
motivationx11, Craftsperson fatiguex12, Craftsperson trust in foremanx13, Team spirit of crewx14, Level of 
absenteeismx15, Crew turnoverx16, Discontinuity in crew makeupx17, Level of interruption and disruptionx18, 
Fairness of work assignmentx19, Crew participation in foreman decision-making processx20, Crew flexibilityx21, Job 
site orientation programx22, Job securityx23, Availability of craftspersonx24, Multiskilling of crewx25 

Materials and consumables 
Task materials: availability x26 and qualityx27, Temporary material storages (availability, distance, travel time)x28, 
Consumables (availability, policy)x29, Material tracking systemx30, Material unloading practicesx31, Material 
movement practices: horizontal x32 and verticalx33 

Equipment and tools 
Availability of work equipmentx34, Availability of transport equipmentx35, Equipment breakdownx36, Availability of 
tools x37, Tools management (sharing, quality, location and efficiency of tool room attendant, misplacement, 
quality of maintenance)x38, Availability of electric powerx39, Availability of extension cordsx40     

Task property  
Task (complexity, repetitiveness, total work volume)x41, Rework: level x42 and frequencyx43, Task change 
ordersx44, Placement techniquex45, Building/structural elementx46   

Location property 
Working condition (noise)x47, Location of work scope: distancex48 and elevationx49, Congestion of work areax50, 
Cleanliness of work areax51, Cover from weather effectx52, Location of facilities (lunch rooms, washrooms)x53 

Foreman  
Foreman experiencex54, Trainingx55, Skill and responsibilityx56, Fairness in performance review of crew by 
foremanx57, Change of foremenx58, Span of controlx59, Use of assistant foremenx60, Provision of feedback on 
foreman's performancex61 

Engineering and 
instructions  

Drawings (availability, quality, number of revisions) x62, Specifications (use of standard specifications, availability, 
quality of specification)x63, Response rate with request for information affecting task at handx64, Adequacy of 
instructionsx65 

Parameter category Project level parameters, ID  

Project delivery/Design 
document 

Project delivery (delivery system, contract type, level of fast tracking)x66, Changes (design drawings, 
specifications, contract conditions)x67, Lack of informationx68, Approval for building permitx69   

Project nature Typex70, Size x71, Complexityx72, Locationx73, Year of constructionx74, Amount of modularizationx75, Organizational 
structurex76, Project level reworkx77, Project level change orderx78, Project percent completex79 

Project condition Site transportation (flight arrangements, provision of ground transportation for workers to site)x80, Camp 
conditionx81, Weather: Temperaturex82, Precipitationx83, Humidityx84, Wind speedx85, Radiationx86, Variability of 
weather (number of heating days, cold days)x87, Ground conditionsx88, Site layoutx89, Site congestionx90, Site 
access (queue time to access site)x91, Parking facilities (within project)x92, Site main storagex93, Site facilities for 
workers (lunch room, wash room)x94, Unloading/laydown areax95, Project work times (use of overtime, multiple 
shifts, shift length)x96 
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Table 2.1: Input Parameters (Factors and Practices) Influencing CLP (continued) 

Parameter category Project level parameters, ID, continued  

Project owner  Owner staff on sitex97, Supervision from owner or representativex98, Owner's primary driverx99, Delivery of site to 
contactorx100, Approval of shop drawings and sample materialsx101, Suspension of project work (owner 
reasons)x102 

Project team: Project 
manager, superintendent 

Experience of project management team membersx103, Support and administrative staffx104, Level of paper work 
for work approvalx105, Treatment of foremen by superintendent and project managerx106, Performance competition 
system within the companyx107, Uniformity of work rules by superintendentx108, Superintendent (education, 
training)x109, Project Manager (education, training)x110 

Project labour and union Labour union (type and influence)x111, Availability of labourx112, Labour disputes (legal cases between a worker on 
a project)x113 

Salary and benefits  Salary (project manager, superintendent, foreman, craftsperson: journeyman and apprentice)x114, Benefitsx115 

Project initial planning 
practice 

Detailed front end planningx116, Constructability reviewx117 

Project scope 
management practice 

Project scope (definition, verification, change control)x118  

Project time management 
practice 

Project planning (activity definition, activity sequencing, activity duration)x119, Project scheduling (project duration, 
criticality of project schedule)x120, Project schedule control (schedule compression, activity weights definition, 
project progress curves development and progress monitoring)x121  

Project cost management 
practice 

Project resource planningx122, Project cost estimating (development of material and equipment list, estimation 
team experience, time allowed for estimation, bidding climate, labour climate)x123, Project cost budgetingx124, 
Project cost controlx125, Labour productivity measurement practicex126  

Project quality 
management practice  

Project quality planningx127, Project quality assurancex128, Project quality control (out of sequence inspection or 
survey work)x129 

Project procurement 
management practice 

Procurement (planning, solicitation)x130, Procurement administration (material, equipment, tool)x131, Trade 
subcontracting (Subcontracted amount, Number of subcontractors)x132 

Project safety 
management practice 

Project safety planningx133, Project safety plan execution (use of daily job hazard assessment forms, use of site 
safety meetings, construction equipment safety procedure, drug testing, safety inspections, safety audits, 
adequacy of protective gear, uniformity of safety procedures)x134, Safety training x135, Safety incidentsx136, Safety 
incident investigation x137, Project safety administration and reportingx138  

Project risk management 
practice 

Risk planning (identification, planning, use of risk assessment tool)x139, Risk monitoring and controlx140, Crisis 
managementx141 

Project communication 
management practice 

Project communication (communication between different trades)x142, Availability of communication devices)x143   

Project human resource 
management practice 

Project interface developmentx144, Project team (team development)x145 
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Table 2.1: Input Parameters (Factors and Practices) Influencing CLP (continued) 

Parameter category Project level parameters, ID, continued 

Project environmental 
management practice 

Environmental rating of projectx146, Project environmental assurance (sorting of waste material)x147 

Project claim 
management practice 

Project claim (identification, quantification)x148, Project claim resolution (resolution method, resolution process)x149 

Parameter category Organization level parameters, ID  

Organizational  Organization's nature (principal project type, year in industry, annual turnover in dollars, structure, work execution 
approach)x150, Annual employee turnoverx151, Project loadx152 

Parameter category Provincial level parameters, ID  

Provincial  Provincial (economy, income tax, GST, unemployment rate of construction workers, provincial codes and 
regulations,)x153, Labour strikesx154, Total number of project within provincex155, Available supervisor pool in 
provincex156, Construction material fluctuationx157, Expenditure level towards projects (residential, non-residential, 
energy)x158, Cost of project (index)x159    

Parameter category National level parameters, ID  

National  Political systemx160, Competing project across the nationx161, National labour (availability of labour in nation, foreign 
workers recruitment)x162, Canada population (size of population, growth of population, aging of population)x163, 
Economy (interest rate, inflation rate)x164    

Parameter category Global level parameters, ID  

Global  Global economy (outlook, energy demand and supply)x165, Oil pricex166, Oil price fluctuationx167, Natural gas 
pricex168, Natural gas fluctuationx169    
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The vital and starting point of any CLP analysis and modeling study involves the quantification of 

input parameters (factors and practices) influencing CLP. However, the parameters affecting labour 

productivity are numerous, complex, interlinked, and dynamic thus making quantification and data 

collection a challenging task. Additionally, quantification of the parameters is complicated as the factors 

and practices are a mix of subjective and objective concepts and require the development of an 

appropriate measurement scheme (Thomas et al. 1990). Parameters having subjective concepts like 

fairness of foreman in work assignment or uniformity of safety procedures require detailing of the 

parameter to a level that accurate data can be collected. Though measurement of objective parameters, 

such as temperature and crew size, has been easy to carry out, measurement of subjective parameters 

like supervision skill of superintendent has presented challenges that researchers have attempted to 

address through the use of simple rating scales without calibration of each measurement scale (Oduba 

2002; Thomas et al. 1990). As a result, past CLP studies have tried to first identify the critical parameters 

based on expert knowledge before completing detailed measurements so as to simplify the data 

collection process (Thomas et al. 1990; AbouRizk et al. 2001; Chan et al. 2004; Dai et al. 2009). 

Unfortunately, this deductive approach has not improved understanding of the parameters and their 

impact on the complex construction process (Panas and Pantouvakis 2010).  

Additionally, in rare cases where detailed parameter quantification and documentation was 

carried out together with documentation of the output parameter (achieved labour productivity), data-

driven method could be employed to identify critical parameters; as data-driven methods like correlation 

analysis, feature reduction, and principal component analysis have been useful in identifying critical 

parameters, resulting in better prediction ability (Gray and MacDonell 1997; Jang et al. 2011; Moselhi and 

Khan 2012). Unfortunately, quantifying and documenting the number of parameters known to affect 

labour productivity is not an easy task so it has rarely been tried let alone achieved to a level at which the 

actual parameters could be determined using data-driven techniques (Moselhi and Khan 2012).  

Therefore, in this research, for each of the 169 input parameters identified from existing literature, 

a measurement scale must be developed so as to quantify the input parameters and enable construction 

site data collection. The input parameters were first verified with experts from different levels of the project 



 39 

management teams; the detail discussion of the process is presented in Chapter 3. Quantification of the 

numerous input parameters influencing CLP is itself a topic of research, so past researchers have opted 

to measure only a select few (Yi and Chan 2014). This research uses data collected on all 169 identified 

input parameters to provide complete coverage of all issues influencing CLP. Naturally, some of these 

parameters are objective—with explicit concepts like crew size—while others are subjective—with implicit 

concepts like fairness of work assignment—so the need to develop appropriate measurement schemes 

for each kind of parameter compounds the challenge presented by their numerousness. As, parameters 

with subjective concepts must be defined in detail so their measurement scales can function across 

different project contexts, this study developed a measurement scheme for all identified parameters using 

appropriate objective and subjective measurement scales. Table 2.2 shows some example measurement 

scales for objective (e.g., weather (wind speed)) and subjective (e.g., fairness of work assignment and 

foreman skill in resource allocation) parameters.  

Objective parameters have well-defined numerical measures (e.g., crew size is measured in 

terms of number of workers). Subjective parameters (e.g., foreman skill in resource allocation) lack well-

defined measurement schemes; hence, for each of them a pre-determined 1–5 scale based on sub-

parameter has been developed. The use of sub-parameter is required when a parameter cannot be 

measured directly and an indicator is needed that suggests the extent of the parameter’s existence. Sub-

parameters are based on explicit concepts associated with the parameter. For example, the fairness of 

work assignment parameter’s sub-parameters were defined based on consistency, reasonableness, and 

information provision (Sheppard and Lewicki 1987). The sub-parameters enabled the development a 

predetermined 1–5 rating scale capable of measuring the parameter (see Table 2.2). By developing 

descriptions of what each predetermined rating scale represents, this study standardizes the 

documentation of subjective parameters so they remain relevant no matter the project (Awad and Fayek 

2012). The quantification process to formulate appropriate measurement scales and facilitate the 

documentation of the input parameters (factors and practices) influencing CLP resulted in a total of 314 

detailed sub-parameters. Accordingly, there were 96 sub-parameters at activity level, 180 at project level, 

7 at organizational level, 15 at provincial level, 9 at national level, and 7 at global level. 
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Table 2.2: Examples of Input Parameter Quantification 

Parameter Scale of measure (unit) Cycle Data source 
Sample 
data  

Crew size Integer (total number of crew 
members) 

Daily Researcher 6 

Crew composition  Proportion (ratio of journeymen to 
apprentices) 

Daily Foreman 0.5 

Fairness of work 
assignment 

1–5 Predetermined rating a Daily Crew members 3 

Foreman skill in resource 
allocation 

1–5 Predetermined rating Daily Superintendent 4 

Number of drawing 
revisions  

Integer (number of drawing revisions 
per week) 

Weekly Project Manager 0 

Change of foremen Turnover rate (turnovers per month) Monthly  Superintendent 1 

Project location Categorical Initially Researcher  Nisku 

Note: a Descriptions for predetermined scale ratings are: (1) INCONSISTENT work assignment on daily 

basis, UNREASONABLE work assignment among crew members, VERY POOR information provision; 

(2) INCONSISTENT work assignment on a daily basis, UNREASONABLE work assignment among crew 

members, POOR information provision;  (3) SOMEWHAT CONSISTENT work assignment on a daily 

basis, REASONABLE work assignment among crew members, AVERAGE information provision; (4) 

VERY CONSISTENT work assignment on a daily basis, REASONABLE work assignment among crew 

members, GOOD information provision; and (5) VERY CONSISTENT work assignment on a daily basis, 

REASONABLE work assignment among crew members, VERY GOOD information provision. 

Next, the appropriate data collection cycle and data source for each sub-parameter, shown in 

Table 2.2, was determined. This process began by formulating standardized data collection cycle and 

source categories. Based on when data for each sub-parameter should be collected, the following data 

collection cycle categories were determined: daily, weekly, monthly, initially and with crew change, and 

initially. Each sub-parameter was assigned a data collection cycle based on its particular nature, which 

was established using expert opinions collected using factor surveys (discussed in the following chapter), 

which evaluated not only the impact but also the existence/frequency of the parameters influencing CLP, 

together with assumed data variability. Of the 314 detailed sub-parameters, 36 were assigned to be 

collected daily, 63 weekly, 52 monthly, 7 initially with a change in crew, and 156 initially. The detail of the 

data collection cycle of the sub-parameters at the different hierarchy levels is shown in Fig. 2.3.  
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Figure 2.3: Input Sub-parameters Data Collection Cycle   

The following data source categories were determined: crew members, foreman, superintendent, 

project manager, and researcher or data collector. Each sub-parameter was assigned a data source 

based on which respondent type would have the best knowledge of the state of the sub-parameter. Using 

multileveled factor surveys and expert opinions, each sub-parameter’s level within the project hierarchy 

was verified, and sub-parameter’s level was used to determine its data source in terms of the most 

appropriate project member to be targeted so as to gather accurate values; detail discussion of the 

process is presented in the following chapter. Generally, for sub-parameters defined at the activity level, 

crew members and the foreman were identified as the most appropriate sources to target for data 

collection, while for sub-parameters defined at the project level and higher, the superintendent and project 

manager were identified as the best sources. Sub-parameters whose values can be collected from direct 

observation or other accessible sources, like weather databases, were assigned to the researcher or data 

collector. The detail of the data source categories of the sub-parameters together with the data collection 

cycles is shown in Fig. 2.4. The detail results of the input sub-parameters quantification process is 

discussed in the following sub-sections based on the hierarchal levels of the parameters and their 

respective sub-parameters.  
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Figure 2.4: Input Sub-parameters Data Sources and Data Collection Cycle    

2.3.1.1: Activity Level Input Parameters  

A total of 96 sub-parameters were developed characterizing the identified activity level input 

parameters shown in Table 2.2. As shown in Fig. 2.5, the activity level input parameters were further 

grouped under the following categories:  

 1.1. Labour characteristics,  

 1.2. Material,  

 1.3. Equipment and tool 

 1.4. Task property,  

 1.5. Task location property,  

 1.6. Foreman, and  

 1.7. Engineering and instructions.  

The full details of the developed input sub-parameters together with description, scale of 

measure, data collection cycle, and data source are shown in Appendix A.2. Selected examples of activity 

level parameters are shown in Table 2.3. The data collection cycles have been abbreviated as daily (D), 

weekly (W), monthly (M), initially and with crew change (C), and initially (I). The data source have been 

abbreviated as crew members (CM), foreman (FM), superintendent (SI), project manager (PM), and data 

collector (DC).  
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Table 2.3: Activity Level Input Parameters Quantification  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.1 Crew Properties Refers to the nature and property of the crew 
and its members which will directly involve with 
execution of the tasks.  

  D FM 

1.1.1.1 Crew size The total size of the crew performing the actual 
task will have a direct effect on the amount of 
output.  

Integer (Total number of crew 
members) 

D DC 

1.1.1.2 Craftsperson 
education 

Refers to the highest achieved education level of 
craftsperson in a crew. The most common 
education level of the crew members is 
recorded.  

Categorical (Below Secondary, 
Secondary School, Technical or 
Apprentice, College, University) 

C DC 

1.1.1.3 Craftsperson on job 
training 

Craftspeople are expected to get job specific 
trainings to improve their skillset. Any training, 
for erecting scaffolding, rigging and hoisting, 
zoom boom operation, etc. provided to 
craftspeople during his/her career is recorded. 
The average training hour per crew is recorded.  

Real number (No. trainings attended 
x Duration of Training, hrs.) 

C FM 

1.1.12 Fairness of work 
assignment 

Refers to the feeling of the crew members 
towards the assignment of work by foreman to 
the different crews and crewmembers. It will be 
measured in terms of consistency (same policy), 
reasonableness (use of common sense), and 
information (provision of information)a 

1 - 5 Predetermined rating (shown 
below) 

D CM 

  1. Inconsistent work assignment on a daily basis, Unreasonable work assignment among crew members, 
VERY POOR Information provision; 2. Inconsistent work assignment on a daily basis, Unreasonable work 
assignment among crew members, POOR Information provision; 3. SOMEWHAT Consistent work assignment 
on a daily basis, Reasonable work assignment among crew members, AVERAGE Information provision; 4. 
VERY Consistent work assignment on a daily basis, Reasonable work assignment among crew members, 
GOOD Information provision; 5. VERY Consistent work assignment on a daily basis, Reasonable work 
assignment among crew members, VERY GOOD Information provision 

1.2.10 Material movement 
practices 
(horizontal) 

Refers to the horizontal distance between the 
site main storage and the location where the 
task is being executed.  

Real Number (average distance, m) W DC 

Source: a Sheppard, B. H., and Lewicki, R. J. (1987). “Toward general principles of managerial fairness.” Social Justice Res., 1(2), 161-176. 
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2.3.1.2: Project Level Input Parameters  

A total of 180 sub-parameters were developed characterizing the identified project level input 

parameters shown in Table 2.2. Selected examples of project level parameters are shown in Table 2.4. 

The details of the developed sub-parameters together with description, scale of measure, data collection 

cycle, and data source are shown in Appendix A.3, where the project level input parameters were further 

grouped under the following categories, as shown in Fig. 2.6:  

 2.1. Project delivery, contract, design documents,  

 2.2. Project nature,  

 2.3. Project condition,  

 2.4. Project owner, 

 2.5. Project team, 

 2.6. Project labour and union, 

 2.7. Salary and benefits, 

 2.8. Project initial planning practice, 

 2.9. Project scope management practice, 

 2.10. Project time management practice, 

 2.11. Project cost management practice, 

 2.12. Project quality management practice, 

 2.13. Project procurement management practice, 

 2.14. Project safety management practice, 

 2.15. Project risk management practice, 

 2.16. Project communication management practice, 

 2.17. Project human resource management practice, 

 2.18. Project environmental management practice, and 

 2.19. Project claim management practice categories. 
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Figure 2.6: Project Level Input Parameters and Sub-parameters   
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Table 2.4: Project Level Input Parameters Quantification  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.1.1 Project delivery 
system 

Refers to the arrangement between the owner 
and contractor on the means to design, 
execute, and operate the project.  

Categorical (Design bid build, Design 
build, Build operate transfer, Private 
public partnership) 

I SI 

2.2.1 Project type Self-explanatory.  Categorical (Commercial, Institutional, 
Residential, Industrial) 

I DC 

2.1.3 Level of fast 
tracking  

Refers to whether the project construction 
begun before the completion of the design 
process.  

Real number (% Overlap between 
design and construction schedule) 

I PM 

2.2.3.3 Construction 
methods and 
techniques 

Refers to the construction methods and 
techniques adopted for the project and the 
experience and availability of proper 
procedure with methods and technologies.  

1 - 5 Predetermined rating (shown 
below) 

I PM 

  1. VERY POOR Experience with methods and technology, LACK of proper procedure; 2. POOR Experience with 
methods and technology, LACK of proper procedure; 3. FAIR Experience with methods and technology, WITH 
proper procedure; 4. GOOD Experience with methods and technology, WITH proper procedure; 5. VERY GOOD 
Experience with methods and technology , WITH proper procedure 

2.3.3 Weather 
(temperature) 

Refers to the recorded temperature at 1:00 
PM of the work day.  

Real number (˚C) D DC 

2.4.1 Owner staff on 
site 

Refers to the total number of owner staff on 
site to supervise the project works.  

Integer (Total number of owner staff on 
site) 

I PM 

2.5.11 Project Manager 
experience  

Self-explanatory.  Real number (years of experience ) I PM 

2.5.6 Uniformity of 
work rules by 
superintendent 

Self-explanatory.  1 - 5 Predetermined rating (shown 
below) 

W PM 

  1. VERY Irregular among crews and HIGHLY Variable in daily work times and work days; 2. Irregular among 
crews and Variable in daily work times and work days; 3. Uniform among crews and Variable in daily work times 
and work days; 4. Uniform among crews, Always the same in daily work times and work days; 5. VERY Uniform 
among crews, Always the same in daily work times and work days 

2.11.2.2 Estimation team 
experience  

Self-explanatory.  Real number (Average years of 
experience of estimation team) 

I PM 

2.11.2.3 Time allowed for 
estimation  

Self-explanatory.  Integer (Time taken for estimation, 
working days) 

I PM 
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2.3.1.3: Organization Level Input Parameters  

A total of seven sub-parameters were developed characterizing the identified organization level 

input parameters shown in Table 2.2. The details of the developed organizational level sub-parameters 

together with description, scale of measure, data collection cycle, and data source are shown in Appendix 

A.4. Selected examples of organization level parameters are shown in Table 2.5. 

2.3.1.4: Provincial Level Input Parameters  

A total of 15 sub-parameters were developed characterizing the identified provincial level input 

parameters shown in Table 2.2. The details of the developed provincial level sub-parameters together 

with description, scale of measure, data collection cycle, and data source are shown in Appendix 4.5. 

Selected examples of provincial level parameters are shown in Table 2.5. 

2.3.1.5: National Level Input Parameters  

A total of nine sub-parameters were developed characterizing the identified national level input 

parameters shown in Table 2.2. The details of the developed national level sub-parameters together with 

description, scale of measure, data collection cycle, and data source are shown in Appendix 4.6. Selected 

examples of national level parameters are shown in Table 2.5. 

2.3.1.6: Global Level Input Parameters  

A total of seven sub-parameters were developed characterizing the identified global level input 

parameters shown in Table 2.2. The details of the developed global level sub-parameters together with 

description, scale of measure, data collection cycle, and data source are shown in Appendix 4.7. Selected 

examples of global level parameters are shown in Table 2.5.   
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Table 2.5: Organization, Provincial, National, and Global Level Input Parameters Quantification  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

3.1 Organization's 
principal project 
type 

Defines the types of industries or projects types 
the organization is seeking 

Categorical (Industrial, Commercial, 
Infrastructure, Institutional, Other) 

I PM 

3.2 Organization year 
in industry 

This factor indicates the number of years an 
organization has been in  
operation.  

Real number (Years in industry) I PM 

4.2 Total number of 
project within 
province 

Refers to the number projects similar to the 
project under study which will compete for 
resource in the province. 

Integer (Number of projects under 
construction per year in province) 

I DC 

4.3 Provincial codes 
and regulations  

Refers to the flexibility of provincial codes and 
regulations towards the construction industry.  

1 - 5 Predetermined rating I DC 

  1. Most restricted regulations, 2. Strict regulations, 3. Normal regulations, 4. Flexible regulations, 5. Most flexible 
regulations 

5.1 Political system  Refers to relative stability of the Canadian 
political system during the initiation and execution 
of the project.  

1 - 5 Predetermined rating I PM 

  1. VERY unstable; 2. Unstable; 3. Stable; 4. Stable; 5. Very Stable 

5.2 Foreign workers 
recruitment  

Refers to the execution of the foreign workers 
recruitment program in terms of strictness and 
processing times.  

1 - 5 Predetermined rating I DC 

  1. VERY STRICT regulations, VERY LONG process time; 2. STRICT regulations, LONG process time; 3. 
NORMAL regulations, FAIR process time; 4. Flexible regulations, SHORT process time; 5. VERY flexible 
regulations, VERY SHORT process time 

6.1 Global economic 
outlook  

Refers to the national economic outlook in terms 
of real GDP for the coming year, based on the 
IMF world economy outlook b 

Real number (Real GDP growth, %) I DC 

6.3.1 Oil price The average WTC (Western Texas Intermediate) 
oil price is recorded.  

Real number (Dollar / barrel) D DC 

6.3.2 Price fluctuation  The average net price fluctuation on a weekly 
basis is recorded.  

Real number (Weekly price change, %) W DC 

Source: b IMF (2015). “World economic outlook.” International Monetary Fund, < http://www.imf.org/external/pubs/ft/weo/2015/01/ > (June 28, 2015). 
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2.3.2: Identification and Quantification of Process Parameters Influencing CLP   

In the construction industry, understanding how time is used during the input-to-output conversion 

process is also vital to understanding CLP; work-study methods are commonly employed for this purpose. 

Existing work-study data collection methods related to CLP include: work sampling (activity sampling), 

field rating (five-minute rating), process analysis, time studies, predetermined motion time systems, 

method productivity delay model, and crew balance charts (Drewin 1982; Dozzi and AbouRizk 1993). 

Dozzi and AbouRizk (1993) also suggested the use of field surveys (craftsman questionnaires and 

foreman delay surveys) to gather information on causes of delays, obstacles to the work, and possible 

improvements.  

Work sampling (WS), a method used to determine the amount of time workers spend performing 

direct (productive), support, or delay work proportions, is the most widely used work-study method (Picard 

2004; Josephson and Björkman 2013). Some advantages of WS include its suitability for activities that 

are non-repetitive (Liou and Borcherding 1986). WS is among the few quantitative tools that can show 

inefficiencies and problem areas, it is also simple, requires minimal resources to conduct, and provides 

quick results. As a procedure, it is less intrusive as compared to other work studies, such as time-lapse 

photography, and focuses on crew-level measurements (Liou and Borcherding 1986; Drewin 1982; Al–

Ghamdi 1995). Its disadvantages include its inability to reveal the sources of inefficiency and differences 

between individuals, plus its inability to provide a reliable productivity estimate (Drewin 1982; Al–Ghamdi 

1995).  

In the 1970s and 1980s, work sampling gained increased application in the construction industry 

(Thomas et al. 1984). Craftsman questionnaires and foreman delay surveys have also been used to both 

supplement and complement it (Chang and Borcherding 1985; Gouett et al. 2011). Recently several 

studies have demonstrated its application to productivity improvements (Gouett et al. 2011). However, 

since WS studies do not measure actual output, such as units installed, it does not assess actual labour 

productivity (Thomas et al. 1990). The use of matching productivity data with a crew-level WS study can 



 51 

improve on its shortcomings to clearly indicate the actual efficiency of the crew. The usefulness of such 

studies, however, has yet to be reliably established (CII 2010). In part, this is because past WS studies 

have focused on decreasing the delay (ineffective) proportion of activities, in order to maximize direct 

work (tool time), based on the assumption that an increase in direct work will increase productivity 

(Thomas 1991; Tsehayae and Fayek 2012).  

Work sampling proportions summarize the actual utilization of labour work hours using 

proportions of work time spent on performing work categories like direct work, support, etc., and provide 

an in-depth examination of what happens during the conversion process. Past studies have shown that 

the definition of WS categories and the subsequent task classification can significantly affect the accuracy 

of the WS proportions, and, hence, their relationships with CLP (Thomas 1991). However, past work 

sampling studies had different and mostly not clear aims, resulting in varied definition of WS categories 

(Josephson and Björkman 2013). Hada and Abdalla (1989) employed 10 WS categories—direct work, 

receiving instructions, tools and materials, transportation, waiting, travel, breaks, personal, late starts, and 

unexplained, to study a house framing activity. Josephson and Björkman (2013) adopted three lean 

focused WS categories—direct value-adding work (representing tasks physically adding to the product); 

preparations (representing tasks which cannot be immediately eliminated without affecting the customer 

value, but still do not add value); and waste (representing tasks if eliminated would not affect the 

customer value).  

In WS studies, observers make continuous judgments in identifying the tasks a worker is carrying 

out and assign them to any one of the work sampling categories. Thus, it is imperative that the WS 

categories are kept to the minimum and the definitions of the WS categories are standardized (Josephson 

and Björkman 2013). CII (2010) presented the Guide to activity analysis, which formalized and 

standardized the procedure for conducting work sampling studies, and developed standard seven WS 

categories—direct work, preparatory work, tools and equipment, material handling, waiting, travel, and 

personal to study any construction activity (refer to Table 2.6). Thus, these seven WS categories are 
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adopted in this study as process parameters (P), and are used to properly examine what happens during 

the conversion process, and develop the input-process-output CLP models. In Table 2.6, the identification 

labels of each process parameter are also included. 

Table 2.6: Process Parameters (Work Sampling Proportions) Influencing CLP  

Source WS Categories Tasks 

CII 2010 
 
 

Direct Work y1 
Exertion of physical effort directed towards an activity or towards 
assisting in an activity; involves workers installing materials, but 
also includes the physical effort of support groups  

Preparatory Work y2 

Activities related to receiving assignments and determining 
requirements prior to performing tasks. Preparatory work includes 
stretching activities, safety talks, start-card process, and 
discussions to explain or plan the assigned task at the work 
location. These discussions can take place between craft workers 
or between supervisors and craft workers.  

Tools and Equipment y3 
Activities associated with obtaining, transporting, and adjusting 
tools or equipment in preparation of performing direct work  

Material Handling y4 
Includes the transportation of materials from one part of the facility 
to another, not including items moved in the general area of the 
task or into their final position  

Waiting y5 
Periods of waiting or idleness, even if workers are attentive to on-
going work by others  

Travel y6 
Walking or riding either empty-handed or without tools, materials, 
or technical information  

Personal y7 

Time taken or periods of idleness during normal work-hours; 
workers taking personal time are normally not attentive. This 
category excludes normal unpaid breaks like lunch periods but 
includes paid breaks like coffee breaks.  

2.3.2.1: Quantification of Process Parameters  

In this study, the process parameters were quantified using the following three steps: defining the 

WS categories, determining the observation method, and defining the sample size. The various activities 

under this study were represented using the work time proportions based on seven work categories; for 

each WS category, the corresponding Construction Industry Institute (CII 2010) category names and 

definitions shown in Table 2.6 were applied. The proportion of time spent on each WS category is 

calculated for each crew observed for a certain period of time and based the total head counts for each 

WS category. For example, the direct work-time proportion, also known as “tool time” or “wrench time”, 

represents the amount of time spent actively producing units of output that contribute to the completion of 

the project components. The direct work-time was calculated as shown in Eq. (2.2). Similarly, the work 



 53 

proportions for each of the six other WS categories were calculated by taking the ratio of their respective 

number of observations to the total number of observations. 

Direct Work Proportion =  
Total Observations of Direct Work

Total Number of Observations
 (2.2) 

In WS studies, three observation methods, namely the tour, crew, and modified crew methods are 

recommended (CII 2010). Accordingly, the tour observation method studies all craft so as to establish the 

overall process efficiency of the entire site; while the crew observation method focuses on an individual 

crew. The modified crew observation method extends the crew approach by studying the entire craft and 

sampling representative crews performing the craft, resulting in improved results over the crew method 

(CII 2010). Thus, taking electrical craft as example, a subset of all electrical crews, performing activities 

like wire pulling, switch installation, piping, etc. will be studied (CII 2010). In this study, the modified crew 

observation method is adopted, and the WS observation focuses on the study of representative crews 

performing selected activities.  

In order to achieve statistically significant process parameters, a sufficient number of random 

observations must be made for each of the crews performing the activities under study. Traditionally a 

binomial distribution sample size, shown in Eq. (2.3), is used to determine WS sample size 𝑛 (Dozzi and 

AbouRizk 1993; Aft 2000), where 𝑍𝛼/2 represents the standard normal variable corresponding to a given 

confidence level and 𝑝 represents the category percentage:   

n =  
(𝑍𝛼/2)

2 𝑝 (1 − 𝑝) 

𝑑2
 (2.3) 

In WS studies the use an error of ±5% at a confidence level of 95% is recommend (CII 2010), 

resulting 𝑍𝛼/2 = 1.96. Considering the worst case category percentage (𝑝 = 50%), the total binomial WS 

sample size would be equal to 384 (Dozzi and AbouRizk 1993). However, as there are seven WS 

categories in study, a multinomial distribution sample size, shown in Eq. (2.4), was used to determine 

sample size 𝑛 (Gouett et al. 2011). The equation was calculated at varying numbers of categories 
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𝑚 (regardless of the number of categories in particular WS study) to find the maximum number of 

observation 𝑛 in the worst case scenario.  

n = max [
(𝑍

(1−
𝛼

2𝑚
)
)2  

1
𝑚

 (1 −
1
𝑚

) 

𝑑2
]  (2.4) 

Thus, using Eq. (2.4) and for a 95% confidence level and error of 𝑑 = 0.05, the maximum number 

of observations 𝑛 in the work case scenario results in 𝑚 = 3, and 𝑛 = 510 observations per hour of the 

study. Additionally, it is desirable to study WS category proportions for each 1-h period of a workday, so 

for 8-h workday, there will be 8 study periods and resulting in a total of 4,080 observations. However, not 

all 510 observations have to be made during a single hour, and the study could be completed over a 

certain period of time, thereby reducing the required number of observation (CII 2010). Therefore, the 

length of WS study depends on the sample size as only finite number of observations can be collected in 

a day, and it is recommend that such study shall last at least one to three weeks (CII 2010). In this study, 

WS observations were complemented by foreman delay surveys and craftsman questionnaires, which are 

used to quantify the causes of delays for each crew under study.      

2.3.2.2: Foreman Delay Surveys   

The purpose of the foreman delay surveys is to record the causes of delays for each crew under 

study, as a foreman is the person most familiar with the crew and the problems that cause delays (Dozzi 

and AbouRizk 1993). Use of foreman delay surveys have shown that reasonably accurate information 

can be collected on causes of delay, and aid the measurement and improvement of productivity (Oglesby 

et al. 1989). Foreman delay surveys are collected either daily for several weeks, daily with weekly 

reporting, or as needed (CII 2013). In this study, such surveys are collected daily, and at the end of the 

daily data collection process, the foreman estimated the number of hours lost due to the delay sources 

included in the survey, for each of the crews under observation. Each lost hour value is multiplied by the 

number of workers affected and then summed to determine the overall lost work-hours of each shift.  
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2.3.2.3: Craftsman Questionnaires  

The purpose of the craftsman questionnaire is to identify the occurrence of common factors that 

inhibit the productivity of the craft workers and to estimate the work-hours lost per craftsman per day 

(Dozzi and AbouRizk 1993; Hanna 2010). Craftsman questionnaires are useful for identifying the possible 

reasons for inefficiencies, delays, and available solutions, and offer a means of verifying other 

management reporting procedures and their results (Chang 1986; Rivas et al. 2011; CII 2013). Craftsman 

questionnaires are collected either daily for several weeks or when needed (CII 2013). In this study, the 

questionnaire is completed daily in an interview format with a randomly selected crew member. 

The lost hours values determined using the foreman delay surveys were deducted from the crew 

total labour work-hours, see Eq. (2.3), used to calculate CLP, if verified by crew members via the 

craftsman questionnaires; the lost hours values also provide an explanation for WS results associated 

with delay events. If, for example, a crew worked for 8 hours in a shift and had a delay due to weather 

amounting to 1 hour (verified in both the foreman delay survey and craftsman questionnaire collected at 

the end of the shift), the work hours would be reduced to 7 hours and the total work-hours used to 

calculate productivity would be computed as a product of 7 hours and the crew size. 

2.3.3: Quantification of Output Parameter or CLP   

The efficiency of activity level systems, focusing on the labour crew of the construction process, is 

measured using construction labour productivity (CLP). In this thesis, CLP is defined as the ratio of units 

of output to units of input work hours—as shown in Eq. (2.5), where higher values are better than lower 

values. 

Construction labour productivity (CLP) = 
Output (installed quantity)

Total labour work-hours
 (2.5) 

According to CII (2013), for crew-output variable, the units of measure for reporting quantities 

should be simple, easy to apply, and accurate. Several quantity measurement methods such as, units 

completed, percent complete, level of effort, incremental milestone, and start/finish percentage are used 

to quantify the output, in terms of installed quantities. Physical measurement of units completed is the 
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preferred output measurement, and is applicable for activities with well-defined scope, few subtasks, 

single craft or trade, short duration for completing each unit of output, and installed quantity can be 

quickly determined by counting or using elementary math (CII 1990); and as in this study, the activities 

under investigation had met these requirements, and physical measurement of units was used to 

determine the installed quantities. The total labour work-hours were recorded based on the total man-

hours the crew worked including scheduled breaks but minus lunch time and the recordings were made 

by the data collector.   

2.3.5: Data Collection Methodology   

Construction labour productivity is a cause of great concern for both the construction industry and 

academia, however CLP measurement and modeling is yet to be fully standardized. Construction 

companies mainly focus on cumulative average productivity value and ensuring the estimated level of 

productivity is achieved or bettered, while researchers focus on “average level of productivity during much 

shorter periods of time when a particular set of conditions exist” (Thomas et al. 1990). This research aims 

to develop interpretable and accurate context-specific and universal CLP models based on the Input-

Process-Output system variables. Thus, in order to achieve this goal, labour intensive project activities 

related to four trades: concreting, electrical, mechanical, and boilermakers were studied. The four trades 

are among the most labour intensive trades in the construction industry, and have been among the most 

studied trades in past CLP researches (Koehn and Brown 1985; Sonmez and Rowings 1998; Hanna et al. 

2005; Ezeldin and Sharara 2006; Silva and Ruwanpura 2006; Nasirzadeh and Nojedehi 2013; Heravi and 

Eslamdoost 2015). Selected activities for each trade were studied with a number of construction 

companies, with at least three projects per company. Thus, projects under different contexts, based on 

project types, location, etc. were examined, so as to properly capture the effect of context on CLP.  

This research data collection process had four main steps, which involve: (1) identifying 

candidate projects from construction companies; (2) conducting site kick-off meeting to introduce the 

study to the research to participants; (3) conducting factor survey to identify critical input parameters 
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(factors and practices); and (4) field data collection on system parameters made up of labour productivity, 

work sampling, and input parameters. A data collection methodology having two main data collection 

components was developed to carry out the study of the activities. In the first step, the research began by 

identifying three candidate projects from a number of construction companies, through a research 

recruitment meeting. The three projects were required to have activities for the principal trades under 

study: concreting, electrical, mechanical, or boilermakers. The criteria for identifying projects, activities, 

and crews for this study are summarized as shown in Table 2.7.  

Table 2.7: Project, Activity, and Crew Selection Criteria 

Item Criteria Preference 

Project - Include the principal trade types for study, and has activities that 
extend for at least three months   

Three projects per 
company  

- Shall be within a close proximity to city of Edmonton 

Activity  - Activities that are labour intensive and have higher man-hours for 
the trade under study  

Preferably carried 
out by multiple 
crews  

- Quantifiable outputs in terms of installed quantities  

- Common among several projects   

- Executed by at least three crews 

Crew - Crews for study shall be randomly selected from the existing crews 
performing similar activities  

Three crews 

The activities were also required to extend for a minimum of three data collection cycles, and 

were executed by at least three crews. The crews performing the activities were randomly selected, 

based on similarity of assigned activities. A data collection cycle was considered to be of a month period, 

and when needed, was extended to provide additional data sets. The three data collection cycles were 

positioned in such a way that the activity was examined under different weather seasons. Once the 

projects and activities were identified, general information on the construction company and the candidate 

projects was gathered. In the second step, the research commenced through a site kick-off meeting for 

each of the identified projects in the presence of the researcher, project manager, supervisors, foreman, 

and crew members. The kick-off meeting was intended to provide research participants the background of 
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the research, the data collection process, and most importantly the research ethics procedure. The third 

step involved conducting factor surveys for the candidate projects, so as to identify the critical factors and 

practices affecting CLP based on the opinion of project respondents. The respondents were identified 

from project management (construction manager, project manager, project coordinator, superintendent, 

and supervisor) and trade (foreman and craftsperson) levels. Following the factor surveys, the last step 

involved the field data collection for the trades and activities under study. 

2.3.5.1: Data Collection Protocol   

To facilitate and standardize the field data collection of the three system variables, a 

comprehensive data collection protocol was developed (Tsehayae and Fayek 2014b). The protocol 

describes the steps and details for the field data collection of output parameters (counting work hours and 

measuring quantities installed), process parameters (carrying out work sampling together with delay 

surveys), and input parameters (documenting the state or presence of various factors and practices that 

can potentially affect labour productivity). Data collectors were required to read and understand the 

protocol, as the quality and consistency of data was of a paramount importance. The data collection 

protocol was based on 10 data collection forms, as shown in Table 2.8, and included detail presentation 

of the forms and instructions on how the forms should be filled.  

Table 2.8: Summary of Data Collection Forms  

Form  Description  Data Collection Frequency 

1 Productivity Data  Daily 

2 Work Sampling  Daily 

3 Foreman Delay Survey Daily 

4 Craftsman Questionnaire Daily 

5 Daily Input Variables Daily 

6 Weekly Input Variables Weekly 

7 Project Diary Daily 

8 Monthly Input Variables Monthly 

9 Project Features Initially and when there is a change in crew members   

10 Context Variables Initially 
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2.3.5.2: Productivity Tracker Database   

To facilitate the comprehensive data collection and analysis required for modeling CLP, a 

database application tool, ProductivityTracker©, was developed. The tool has a setup, data inventory, and 

report/analysis modules (see Fig. 2.7), and stores the CLP system variables data from all construction 

projects studied. Additionally, a help module was developed to facilitate data entry and report generation. 

The tool’s security setting allowed users different levels of access in order to preserve the data anonymity 

and security.  

 

 

 

 

 

 

 

 

 

 
Figure 2.7: ProductivityTracker: Database Architecture 

The setup module consists of three main components: a setup module for adding the details of 

companies, projects, activities, and the crews under study (see Fig. 2.8); a setup module for defining the 

input parameters for factor surveys and field data collection (see Fig. 2.9); and a security module for 

creating user lists, and also defining roles of users as administrator, data analyzer, or data entry. The 

data inventory module consists of factor survey module (see Fig. 2.10), and field data module (see Fig. 

2.11), used for adding the collected factor surveys and field data on system variables of CLP.  The report 

module generates reports from the collected data.    

Goal:  

Facilitate 
current and 
future data 
analysis by 
developing 
comprehensive 
database that 
centralizes 
access to 
collected 
surveys, work 
sampling, 
factors, and 
productivity 
data System architecture: consisting of 3 modules 

Setup 
Module 
establishes 
common data 
lists for: 
company, 
project, 
activities; and 
system 
parameters 

Data 
Inventory 
Module 
collects 
factor 
surveys and 
field data of 
CLP system 
parameters 

Report/Analysis 
Module 
facilitates data 
analysis, 
generates, 
reports 

Database 
status:  

Developed, 
operational, 
and 
collected 
data 
archived  
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Figure 2.8: ProductivityTracker: Setup for Companies, Projects, and Activities 

 
Figure 2.9: ProductivityTracker: Setup for Input Parameters (Factors and Practices)  
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Figure 2.10: ProductivityTracker: Factor Survey Module 

 
Figure 2.11: ProductivityTracker: Field Data Module 
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2.3.5.3: Research Ethics Procedure    

The study presented in this thesis involves the study of construction crews converting inputs to 

outputs, and implicates living human participants or their data. Accordingly, a research ethics procedure 

was developed and approved by the Research Ethics Office of University of Alberta. The research 

information collected from the several construction projects was kept strictly confidential using data 

encryption and locked filling cabinets. Appropriate safeguards were put in place for data collection, use, 

and dissemination. Additionally, research results were released if and only if there is no risk of participant 

(individuals or companies) re-identification.  

For the factor survey data collection stage, the following research ethics procedure was adopted: 

participants were informed of the study goals and the consent process (information letter and consent 

form), and written consent was documented; also, appropriate environment was selected in conducting 

the interview survey so as to protect the privacy of the participant, and participants were given the right to 

withdraw (2 weeks from date of survey data collection). Collected surveys were then anonymized using 

code sheets.  

For the field data collection stage, several procedures were adopted. In conducting field data 

collection, an anonymous random observation of crews was adopted; participants were informed of the 

work sampling observation during the kick off meeting, and consent was not documented as construction 

projects have limited expectation of privacy. However, in conducting field data collection of foreman delay 

surveys and craftsman questionnaires, consent was documented.  

2. 4: DATA COLLECTION RESULTS   

In order to gather adequate data for detailed analysis and modeling of CLP, extensive data for 

input, process, and output parameters were collected from 11 projects across Alberta, Canada over a 29-

month period. The activities were studied in three data collection cycles, where each cycle extended over 

a month-long period and encompassed different weather seasons. The following trades were studied: 

concreting, electrical, mechanical, and boilermakers. However, limited data were available for the 

mechanical trade and only the factor survey data was found useful. The trade categories (total number of 



 63 

studied projects shown in parentheses), project type, activities studied, description of the activities, and 

the number of total data instances (N) collected is shown in Table 2.9. Data collection took place between 

June 2012 and November 2014. 

Table 2.9: Profile of Activities Studied for CLP Modeling    

Trade 
category 

Project types Activity Activity description N 

Concreting (6) 

Commercial mixed-use 
office-staff facility 
building, industrial 
warehouse building, 
commercial warehouse 
building, mixed 
residential-community 
center building, high-rise 
mixed commercial-
residential building, 
institutional building 

Columns  Concrete placement for columns 21 

Footings Concrete placement for footings 5 

Grade beams Concrete placement for grade beams 6 

Pile caps Concrete placement for pile caps 2 

Slabs  Concrete placement for slabs 28 

Walls  Concrete placement for walls 30 

Electrical (3) 

Commercial mixed-use 
office-staff facility 
building, seniors 
residence, residential 
apartment 

Box installation  Installation of pull & outlet boxes  48 

Conduits  Installation of flexible conduit  13 

Panel   Installation of main board panel  2 

Piping  Installation of rigid galvanized steel 
conduit 

57 

Switches Switch installation  6 

Wire pulling  Pulling wire  43 

Fire alarms Fire alarm installation 5 

Light fixtures Light fixture installation 17 

Boilermaker (3) 
Coal power plant boiler 
shutdowns   

Buffing  Smoothing of tube surface before 
overlays  

7 

Overlays  Welding additional metal layer on 
tubes to reinforce their thickness 

38 

Shields 
installation  

Replacing shields over tubes by 
removing old ones and welding new 
shields over tubes 

68 

Tube 
replacement 

Cutting tubes and installing and 
welding new ones 

3 
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A total of 92, 191, and 116 data instances were recorded for concreting, electrical, and 

boilermaker trade categories, respectively. For each data collection instance, WS observations were 

made for the crew under study and parameters (factors and practices), total man-hours, and installed 

quantities were documented. For the concreting, electrical, and boilermaker activity categories, a total of 

3,526; 5,108; and 6,672 random work sampling observations, respectively, were made. 

The data was collected in collaboration with six partnering companies. In case of concreting 

activities, the first three projects were built by Company 1, a multinational construction company with over 

100 years of experience, and the last three were built by Company 2, a local construction company with 

over 40 years of experience. In case of electrical activities, the first project was built by Company 3, a 

multinational electrical company with over 50 years of experience, and the last two were built by 

Company 4, a local electrical company with over 5 years of experience. In case of boilermaker activities, 

the three shutdowns were carried out by Company 6, a multinational energy company with over 70 years 

of experience. In case of mechanical activities, the lone project was carried out by Company 7, a local 

mechanical company with over 20 years of experience.   

2.5: CHAPTER SUMMARY 

Because of its significance to project performance, CLP has been well studied. However, despite 

the extensive research in the area, consensus on the classification and quantification of influencing 

parameters, and modeling the relationship between the influencing parameters and CLP is not full 

achieved. This chapter first examined past CLP modeling studies, and challenges and limitations were 

identified. To address these limitations, this study aimed to model construction labour productivity using a 

system approach which involves three model parameters—Input, Process, and Output and developed a 

detailed research methodology to identify, document, and mode the system parameters under various 

contexts.  

This chapter using critical review of CLP literature identified and classified 169 input parameters 

made up of influencing factors and practices. The process parameters were identified based on review of 
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available work-study methods, and work sampling method was selected for its simplicity, minimal 

resource requirement, and suitability for non-repetitive activities. Accordingly, seven standard WS 

categories—direct work, preparatory work, tools and equipment, material handling, waiting, travel, and 

personal were adopted. Additionally, the process parameters were supplemented with foreman delay 

surveys and craftsman questionnaires to collected causes of delay. Next, an approach for the 

quantification of the numerous subjective and objective input and process parameters influencing CLP 

was carried out. For the identified input parameters, measurement scales were developed so as to 

quantify and enable construction site data collection. The process parameters were also quantified using 

the definition of the seven standard WS categories, and determining the observation method together 

with determination of appropriate sample size. The quantification of the output parameter or CLP was 

carried out using the crew-output in terms of installed quantities and total labour work-hours, and the 

output measurement method was presented. The details of the data collection methodology having four 

main steps was also presented together with the details of the custom-made, server-based database tool, 

called ProductivityTracker©. Additionally, the research ethics procedure developed to ensure the 

anonymity and confidentiality of research participants was summarized. Finally, the results of the 

extensive data collection process were summarized. The next chapter presents the methodology for 

identifying key input parameters (factors and practices) influencing labour productivity using expert and 

data-driven approaches.   
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Chapter 3: Identification of Key Input Parameters Influencing CLP3 

3.1: INTRODUCTION  

The input parameters, which are made up of various objective and subjective factors and 

practices (e.g., crew size, foreman skill in planning, complexity of task, quality of drawings, weather 

condition etc.), define the internal and external environments that in turn, whether directly or indirectly, 

influence the efficiency of the conversion process. The parameters are also used to understand the cause 

and effect relation of the environment to the efficiency of the conversion process, represented in terms of 

efficiency measures like CLP. However, CLP is situated in an environment that is more complex and 

unpredictable than the conversion process itself. Accordingly, several CLP studies have identified 

numerous input parameters defining the internal and external environments of CLP (Oduba 2002; Liberda 

et al. 2003; CII 2006; Song and AbouRizk 2008; Tsehayae and Fayek 2014b; Gerek et al. 2014). 

However, the identified influencing parameters and the associated CLP models were context-dependent, 

as the identified parameters and their degree of impact on CLP varied from project to project (Gerek et al. 

2014). Context plays an active part in CLP research analysis as it is invariably dynamic and imperative for 

the development of meaningful findings (Engwall 2003). However, only a few CLP studies explicitly 

defined the context of the CLP study. 

Given the often large project development expenditures made by construction owner and 

execution organizations, the project team’s ability to understand the project context and accurately predict 

CLP is a key element in the analysis and control of project costs. As skilled construction labour is a 

scarce resource (Dai and Goodrum 2012), its effective use remains a priority; optimizing CLP through 

appropriate analysis and modeling is therefore critical. Such analysis and modeling requires identification 

of the multilevel, complex, and context-dependent key parameters (factors and practices) influencing CLP 

in different project contexts. However, despite the extensive research in the area, consensus on the 

identification and generalization of key influencing parameters is yet to be achieved (Panas and 

                                                      
3 Parts of this chapter have been published in Canadian Journal of Civil Engineering, Volume 41, Issue 10, pp. 878-
891, and the Proceedings, ASCE Construction Research Congress 2014, Atlanta, Georgia, US, May 19-21, pp. 837-
846. 
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Pantouvakis 2010). The identification of the key influencing parameters also reduces the large feature 

space, resulting from the numerous input parameters, thereby improving the interpretability and accuracy 

of CLP models. In a study of concrete pouring, formwork, and concrete finishing activities, CLP models 

having fewer significant parameters showed better prediction than models based on many parameters 

which did not consider their significance (Sonmez and Rowings 1998). Gerek et al. (2014) also showed 

that removing some parameters improved the accuracy of masonry activity CLP model.  

The reduction of the input feature space through identification of the key influencing input 

parameters can be carried out using either an expert or data-driven approaches. Expert-driven 

approaches focus on factor surveys for collecting expert opinions, and identify the key parameters based 

on perceived influence on CLP. On the other hand, data-driven techniques utilize actual data of input 

parameters and CLP, and identify the key parameters based on their relation with CLP. In this research, 

both approaches are employed. First, the expert-driven approach is used to: (1) verify the hierarchal list of 

parameters influencing CLP, (2) establish properties of the parameters by identifying their level of 

existence together with the most appropriate project member to be targeted, so as to gather accurate 

parameter data values, and (3) establish whether key parameters influencing CLP are context-specific. 

Then, based on the findings of the expert-driven approach, data was collected on the parameters and key 

parameters were identified using the data-driven approach.    

In this chapter, the methodology for identifying key input parameters (factors and practices) 

influencing labour productivity using expert and data-driven approaches is presented and discussed. To 

begin with, a literature review of studies that established key parameters for the analysis and modeling of 

CLP is presented. Then, the details of the expert-driven approach methodology, data collection, and 

analysis is discussed. Next, using the data collected from 141 surveys comprehensively addressing 

project management (PM) and trade respondents from six Canadian projects, the expert-driven 

methodology and findings on properties of the parameters and identified key parameters are presented 

and discussed. The chapter also explores whether a gap exists in experts’ (project management and 
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trade groups’) knowledge in identifying the critical parameters. Finally, the data-driven approach for 

identifying the key parameters using feature selection algorithm and the collected field data is discussed.  

3.2: BACKGROUND AND LITERATURE REVIEW  

Because of its significance to project performance, CLP has been well studied. As discussed in 

Section 2.2.1 and summarized in Appendix A.1, numerous input parameters that influence CLP have 

been identified. Most of the past studies identifying key input parameters used an expert-driven approach. 

Lim and Alum (1995) identified 17 influencing factors grouped under three categories and carried out 

surveys with 67 respondents from civil engineering and building contractors in Singapore to identify the 

relative importance of the identified 17 factors and establish the top six critical factors. Liberda et al. 

(2003) identified 51 factors grouped under three categories—human, external, and management—and 

carried out an interview survey with 20 project management experts from Alberta, Canada to identify the 

relative importance of the identified 51 factors and establish the top 15 critical factors. CII (2006) identified 

83 influencing factors grouped under 11 categories: supervisor direction, communication, safety, tools 

and consumables, materials, engineering drawing management, labour, foreman, superintendent, project 

management, and construction equipment. In the most extensive and detailed existing study of factors 

influencing CLP, Dai et al. (2009) carried out a factor survey based on an identified 83 factors with 1,996 

craftspeople on 28 U.S. industrial construction projects to identify the top 10 critical factors and the 

relationship between these factors. Detailed investigation of differences in perception between the 

different generations of craft workers (Dai and Goodrum 2012), foremen and craft workers (Dai et al. 

2007), union and non-union craft workers, and trades (Dai et al. 2009) was carried out using the same 

survey data; significant differences were observed between the compared groups.  

Durdyev and Mbachu (2011) identified 56 influencing factors grouped under two main categories 

and carried out surveys with 37 respondents from project management consultants, contractors, and 

subcontractor in New Zealand to identify the relative importance of the identified 56 factors and establish 

the top eight critical factors. Jarkas and Bitar (2012) identified 45 influencing factors grouped under four 
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categories and conducted a questionnaire survey with 157 respondents from civil engineering and 

buildings construction firms in Kuwait to identify the relative importance of the identified 45 factors and 

establish the top five critical factors. Eslamdoost and Heravi (2013) identified 15 factors grouped under 

five categories and carried out a survey with 106 site and office staff in thermal power plant construction 

projects in Iran; they were able to establish the relative importance of the identified 15 factors and five 

factor categories. Table 3.1 shows a summary of previous studies that identified key input parameters. 

The list of the identified key input parameters is ranked in descending order of influence on CLP.  

Table 3.1: Literature Summary of Key Input Parameters Influencing CLP  

Study details  Key parameters ranked in descending order of influence   

Lim and Alum (1995) 
6 Key Factors 

Difficulty in recruitment supervisors; Difficulty in recruiting workers; 
High rate of labour turnover; Absenteeism at work site; Communication 
problems with foreign workers; Inclement weather that requires work 
stoppage for one day or more 

Liberda et al. (2003) 
15  Key Factors  

Lack of detailed planning; Worker experience and skills; Inadequate 
supervision; Worker motivation; Non availability of materials; Worker 
attitude and morale; Team-spirit of the crew; Non availability of 
information; Changes in drawings and specifications; Non availability of 
tools; Non availability of equipment; Nature of project (size and 
complexity); Lack of procedures for construction methods; Changes in 
contract; Congested work area 

Dai et al. (2009)  
10 Key Factors 

I have to wait for people and/or equipment to mode the material I need; 
There are errors in the drawings that I use; When there is a question or 
problem with a drawing, the engineers are slow to address the issue; If 
I need a manlift to do my job, there aren’t any available; When I need a 
crane or forklift to help me, there aren’t any available; I can’t get the 
consumables I need to do my job; I have to search in a lot of places to 
find the tools I need to do my job; When I go to install prefabricated 
items, work has to be done on them to fix quality problems; I can’t get 
the power tools from the contractor that I need to do my job; My 
supervisor does not provide me with enough information to do my job  

Durdyev and Mbachu (2011) 
8 Key Factors 

Reworks; Level of skill and experience of the workforce; Adequacy of 
method of construction; Buildability issues; Inadequate supervision and 
coordination; Statutory compliance; Unforeseen events; Wider external 
dynamics  

Moselhi and Khan (2012) 
9 Factors  

Temperature; Work type; Floor level; Wind speed; Labour percent; 
Precipitation; Gang size; Humidity; Work method  

Jarkas and Bitar (2012) 
5 Key Factors 

Clarity of technical specifications; extent of variation/change orders 
during execution; coordination level among various design disciplines; 
lack of labour supervision; proportion of work subcontracted 
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However, the use of data-driven approach for identifying key input parameters has been limited 

due to the lack of field data on input parameters and CLP. As discussed in Section 2.3, the parameters 

affecting labour productivity are numerous, complex, interlinked, dynamic, and involve a mix of subjective 

and objective concepts, thus making field data collection a challenging task. In rare cases where detailed 

parameter documentation was carried out together with documentation of the output parameter (achieved 

labour productivity), data-driven methods have been employed to identify critical parameters. In a recent 

publication, Moselhi and Khan (2012) compared three data-driven CLP parameter ranking approaches, 

namely, fuzzy subtractive clustering, neural networks, and stepwise variable selection procedure, for 

evaluating the influence of nine parameters on labour productivity of formwork installation activity. Using a 

ten month field data from two building construction projects, located in Montreal, Canada; the authors 

showed that the three most important parameters were identified in the same order by the artificial 

intelligence based methods (fuzzy subtractive clustering and neural networks); however the step wise 

regression analysis provided somewhat different results.   

Despite extensive research in the area, consensus on the development of context-specific key 

parameters and generalization of common parameters is yet to be achieved (Tsehayae and Fayek 2014a; 

Tsehayae and Fayek 2014b). Past studies ranked factors irrespective of positive or negative influence 

and mainly focused on factors negatively influencing CLP, while failing to comprehensively address the 

factors positively influencing CLP. They considered the perspective of either PM or trade level 

respondents without addressing differences in perspective between the two groups, thereby 

misrepresenting the multilevel and context-specific nature of productivity factors. Additionally, researches 

mainly identified critical parameters using expert-driven approach, which were based on a limited number 

of parameters and expert opinions; this approach has not provided a better understanding of the 

parameters and their impact on labour productivity (Panas and Pantouvakis 2010). Furthermore, past 

studies did not investigate practices as key factors influencing CLP. Therefore, in this chapter, input 

parameters made up of factors and practices are investigated using both expert and data-driven 
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approaches; and the study methodology and findings presented in this chapter attempt to address the 

aforementioned gaps in previous research.  

3.3: EXPERT-DRIVEN APPROACH FOR IDENTIFICATION OF KEY INPUT PARAMETERS OF CLP  

3.3.1: Research Methodology of Expert-driven Approach  

The expert-driven approach uses surveys to identify the key parameters (factors and practices) 

positively and negatively influencing CLP according to project management (PM) and trade level 

respondents from a number of ongoing construction projects. The list of 169 parameters influencing CLP 

categorized into a hierarchal structure as shown in Table 2.1 was used to develop the surveys for 

collecting expert opinions. While CLP tends to be considered a micro level subject wherein a group of 

organized workers are required to transform a set of inputs into project outputs, parameters influencing 

CLP are multilevel, ranging from macro, to meso, and to micro levels. Accordingly, for this study, macro 

parameters are defined to include organizational, provincial, national, and global level parameters; meso 

parameters are defined to include project level parameters; and micro parameters are defined to include 

task-at-hand level parameters directly related to the on-site workforce.  

The survey, administered to personnel from various organizational levels of participating 

construction companies executing the projects under study, required a systematic approach to address 

the key factors and practices influencing CLP. The survey firstly addressed the various levels of factors 

and practices—from micro and some meso parameters at the trade level (craftspeople and foremen) to 

meso and macro parameters and practices at the PM level (Dai et al. 2009)—and their effects on CLP. 

Two surveys were developed to address parameters relevant to the trade (craftspeople and foremen) and 

PM (project managers, supervisors, and superintendents) levels. Secondly, the survey also addressed 

the differences in worker perspectives between project levels by collecting these perspectives in terms of 

agreement on the rankings of the identical micro and meso parameters included in both surveys. The 

perspective aspect provides a better understanding of the individual parameters and their relevance for 

further study, and also help in identifying the most appropriate project member for gathering parameter 
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data. The two survey forms, namely the project management survey (PM survey) and the trade survey, 

were thus developed to meet the two design objectives. The two surveys together with respondent 

information letters and consent form were developed for data collection (Tsehayae and Fayek 2014c). 

The PM survey addresses some micro (activity), all meso (project), and all macro (organizational, 

provincial, national, and global) level parameters—a total of 141 parameters in 16 categories, as shown in 

Table 3.2. The trade survey addresses all micro (activity) and some meso (project) level parameters—a 

total of 89 parameters in 9 categories, as shown in Table 3.2. All the identified practices (PM practices 

and project best practices) were included in the PM survey.  

Table 3.2: Factor Surveys: Categories of Parameters 

Category 
label 

Parameter category 
Number of parameters 

PM survey Trade survey Common 

A Labour and crew   18 27 10 

B Material and consumables  6 9 5 

C Equipment and tools   4 8 3 

D Foreman  6 9 3 

E Task property 3 7 3 

F Location property 5 10 1 

G Project delivery and contract  2 * * 

H Engineering and instructions 2 4 2 

I Project complexity  2 * * 

J Health, safety, and environment   11 4 2 

K Project management practices  19 * * 

L Project best practices  14 * * 

M Project owner nature  9 * * 

N Management of project  * 11 * 

O Organizational  9 * * 

P Provincial   13 * * 

Q National   11 * * 

R Global  7 * * 

 Total 141 89 29 

Note: *Denotes that the parameters category is not included in the survey 

Both surveys collected respondents’ opinions on parameters influencing labour productivity in the 

given context under study—unlike past surveys, which focused on respondents’ general or context-free 

opinions on parameters influencing CLP. As the parameters influencing CLP are multilevel, it is important 
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to determine instances where PM and trade personnel disagree. While a higher level of agreement on 

parameters between the two groups will help in implementing improvement strategies, a lack of 

agreement will demand further investigation into the sources of these differences of perspective. To 

investigate these differences between respondent groups, a total of 37 parameters in 9 categories, 

illustrated in Table 3.2, are common to the PM and trade surveys. 

The surveys were first distributed to a focus group representing different construction companies, 

and were then improved and revised according to the feedback received. The surveys also allowed for 

focus group respondents to add parameters they considered important, and necessary revisions were 

made, and the final 169 parameter were verified. The surveys have a background section to collect the 

general attributes of the respondents in terms of demographic information, union status, trade, and 

position. Survey questions are divided into two sections: (1) agreement or frequency, and (2) impact. The 

agreement or frequency section evaluates the extent to which each parameter exists in the given project 

setting. Agreement questions, as shown in Table 3.3, are for parameters that will become an issue if they 

occur on a continual basis (e.g., crew size is not adequate for the task at hand). Frequency questions 

focus on parameters that occur with varying frequencies (e.g., power equipment breakdown). Frequency 

questions, as shown in Table 3.3, are only used for micro level parameters (activity factors related to 

material and equipment).  

Table 3.3: Sample Agreement/Frequency and Impact Survey Statements  

Parameter 

Agreement Impact 

Strongly 

Disagree 
Disagree 

Slightly 

Disagree 

No 

Opinion 

Slightly 

Agree 
Agree 

Strongly 

Agree 

Strongly 

Negative 
Negative 

Slightly  

Negative 

No 

Impact 

Slightly 

Positive 
Positive 

Strongly 

Positive 

The work area 

is clean 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Parameter 

Frequency Impact 

Never 
Very 

Rarely 
Rarely Sometimes Often 

Very 

Often 
Constantly 

Strongly 

Negative 
Negative 

Slightly  

Negative 

No 

Impact 

Slightly 

Positive 
Positive 

Stron

gly 

Positi

ve 

I wait in a line 

for manlifts 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 
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All the parameters common to the PM and trade surveys were designed as agreement-type 

survey statements. All questions also assess parameter influence (positive, negative, or none at all) on 

CLP for the project under study. Past studies have mainly relied on the possible negative influencers of 

CLP (Dai et al. 2009; Jarkas and Bitar 2012) and have not properly addressed the positive influencers. 

This study aims to identify both kinds of influencers, so as to use the positive influencing parameters to 

further improve work conditions while addressing the undesirable effects of the negatively influencing 

parameters.  

The survey is similar in structure to the “Voice of the Worker” survey (CII 2006; Dai et al. 2009): 

bipolar, seven-point Likert scales structured into positively and negatively worded statements collect 

ratings on agreement with/frequency of and impact of parameters, and the two scales then enable the 

analysis and ranking. In the administered survey, the parameters are presented in both positively and 

negatively worded statements, as shown in Table 3.3, in order to improve the accuracy of responses by 

ensuring respondents pay attention to each parameter statement (Stewart and Frye 2004). Once the 

required value for each statement has been determined by individual respondents, calculations for 

positive and negative effect scores, as shown in the next section, are performed to determine the 

rankings for the positive and negative effects of the various parameters.  

3.3.1.1: Parameter Survey Collection  

As discussed in Section 2.5, in order to identify the participating construction companies, an 

invitation was first sent to a number of construction companies in the province of Alberta, Canada and a 

workshop was held to introduce the research and its data collection protocol. A total of seven companies 

involved in commercial (three), residential (two), and industrial (two) projects agreed to participate in the 

study and provided a total of six projects, as shown in Table 3.4, from which data used to identify the key 

parameters of the given contexts were collected.  
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Table 3.4: Profiles of Companies and Projects    

Characteristics Context Type 
Number of 

projects 
Notes 

Companies  
(7) 

Building (5) Commercial 3 1 Main contractor and 2 subcontractors  

 Residential 2 2 Main contractors  

Industrial (2) Turnaround 2 2 Main contractors  

Projects  
(6) 

Building (3) Commercial 1 Commercial mixed-use office-staff 
facility building 

 Residential 2 Seniors residence; Mixed apartment-
community center building 

Industrial (3) Turnaround 3 Coal power plant boiler shutdowns   

Note: Values in bracket represent the total values in the group.  

The projects under study have been divided into two main context categories based on industry 

type. The first deals with the building construction context and involves commercial and residential 

projects; the second deals with the industrial construction context and involves industrial plant shutdown 

projects. Accordingly, since there was only one project in the commercial category, the survey data from 

that project were merged with that of the residential projects and the context was classified as the building 

project context. 

The data collection effort produced a total of 141 surveys: 78 for the building context and 63 for 

the industrial context. Out of the 141 surveys, 42 were from PM staff (project manager, superintendent, 

estimator, coordinators, etc.) and 99 were from trade staff (foremen, apprentices, helpers, and others). 

Details of the participating companies, characteristics of the projects, and respondents are shown in 

Table 3.4. Surveys were administered to project personnel from the participating construction companies. 

Determining sample size—the number of respondents to be surveyed from the population of workers—

was essential to ensure the reliability and accuracy of results. As the survey addresses parameters from 

macro to micro levels, respondents from different levels of the project were sought, and the population 

(number of workers in a given project) for the survey was assumed to be comprised of all construction 

project-related personnel for each of the projects under study. This study population ensures that the 

critical parameters identified through the survey will be applicable to each company’s context and its 

project work force. The survey population in terms of the total workers was stratified into PM and trade 
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levels. Once the population for each stratum was established, random sampling was taken. The stratified 

random sampling technique was considered an appropriate method in this situation, as the structure 

within the population of each stratum is assumed to be similar in terms of role and function, and an 

adequate sample size is used to ensure proper representation of the population as a whole. The sampling 

aim in this study was to achieve a 10% margin of error and 95% confidence interval based on the 

established populations as shown in Table 3.5. Using the Cochran formula Eq.(3.1) for determining 

survey sample size and for a 10% margin of error and 95% confidence interval, the sample size for the 

infinite population (𝑆𝑆𝑖𝑝) is 96 (Jarkas and Bitar 2012). Thus, the target sample is 32 for the PM survey 

and 80 for the trade survey, based on the study population of 46 for the PM survey and 459 for the trade 

survey as shown in Table 3.5. Table 3.5 shows that of the collected surveys, 42 responses were received 

for the PM survey and 99 for the trade survey; these numbers fulfill the target size requirements and the 

sample is therefore deemed adequate for analysis.  

𝑆𝑢𝑟𝑣𝑒𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒𝑝𝑒𝑟 𝑠𝑡𝑟𝑎𝑡𝑎 = 
𝑆𝑆𝑖𝑝 

1 + 
𝑆𝑆𝑖𝑝   −    1

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑡𝑟𝑎𝑡𝑎

 
(3.1) 

Table 3.5: Survey Data Collection and Respondents’ Profile per Context    

Context Category Population Sampled 
Average years 
of experience 

Respondents’ profile 

Building  PM 
survey  

24 20 11.0 Construction manager (15%), project 
manager (35%), superintendent (10%), 
safety supervisor (10%), project 
coordinator (10%), other (20%) 

 Trade 
survey  

59 58 7.9 Carpenters (34%), scaffolders (3%), 
labourers (5%), crane operator (3%), 
electricians (40%), mechanical (9%), 
other (5%) 

Industrial  PM 
survey  

22 22 7.4 Construction manager (9%), project 
manager (5%), project control (27%), 
superintendent (27%), project 
coordinator (9%), planner (9%), other 
(5%) 

 Trade 
survey  

400 41 15.5 Boilermakers (27%), sheet metal 
workers (2%), labourers (2%), welders 
(15%), millwright (34%), electricians 
(7%), other (12%) 

   Total 505 141   
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Of PM survey respondents in the building context, whose average years of experience was 11 

years, 95.0% rated the management of the current project as “Good” or better; of PM survey respondents 

in the industrial context, whose average years of experience was 7.4 years, 68.2% rated the management 

of their current project as “Good” or better. The trade survey respondents’ positions were journeyman 

(51.5%), apprentice (29.3%), foreman (14.1%), helper (4.0%), and other (1.0%). Of the trade respondents 

in the building context, whose average years of experience was 7.9 years, 87.9% rated the management 

of the current project as “Good” or better, and of trade respondents in the industrial context, whose 

average years of experience was 15.5 years, 80.5% rated the management of their current project as 

“Good” or better. Overall, the respondents represented a broad range of positions and trades within each 

project, reported adequate industry experience, and rated the management of their projects as good or 

better.  

3.3.1.2: Survey Data Analysis to Determine Parameter Evaluation Scores 

The analysis in this study expands upon similar work by the CII (2006) and Dai et al. (2009) by 

not only addressing the ranking of parameters, but also by exploring both their positive and negative 

effects on productivity. Furthermore, the current survey design enables comparison of the PM and trade 

perspectives, furthering understanding of the parameters and their possible use in CLP improvement 

strategies.  

For agreement-type parameters, which are presented in either positive or negative parameter 

statements, first, the level of agreement (RA) or disagreement (RD) with a given parameter statement by a 

number of respondents was computed using equations (3.2) and (3.3), where the maximum possible 

weighted percentage of agreement or disagreement is equal to 50: 

𝑅𝐴 =
(𝐴 𝑥 1+𝐵 𝑥 2+𝐶 𝑥 3) 

6
 𝑥 100                                                                                 (3.2) 

𝑅𝐷 =
(𝐷 𝑥 1+𝐸 𝑥 2+𝐹 𝑥 3) 

6
 𝑥 100                                                                                (3.3) 

where A = percentage of respondents rating the positively worded parameter as 5 (slightly 

agree); B = percentage of respondents rating the positively worded parameter as 6 (agree); C = 
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percentage of respondents rating the positively worded parameter as 7 (strongly agree); D = percentage 

of respondents rating the negatively worded parameter as 3 (slightly disagree; E = percentage of 

respondents rating the negatively worded parameter as 2 (disagree); and F = percentage of respondents 

rating the negatively worded parameter as 1 (strongly disagree).  

The impact in terms of positive (IP) or negative (IN) impact of a given agreement-type parameter 

statement by a number of respondents was computed using equations (3.4) and (3.5), where the 

maximum possible weighted percentage of positive or negative impact is equal to 50: 

𝐼𝑃 =
(𝑋 𝑥 1+𝑌 𝑥 2+𝑍 𝑥 3)

6
 𝑥 100                                                                                                                                                                                         (3.4) 

𝐼𝑁 =
(𝑈 𝑥 1+𝑉 𝑥 2+𝑊 𝑥 3)

6
 𝑥 100                                                                              (3.5) 

where X = percentage of respondents rating the impact of the parameter as 5 (slightly positive); Y 

= percentage of respondents rating the impact of the parameter as 6 (positive); Z = percentage of 

respondents rating the impact of the parameter as 7 (strongly positive); U = percentage of respondents 

rating the impact of the parameter as 3 (slightly negative); V = percentage of respondents rating the 

impact of the parameter as 2 (negative); and W = percentage of respondents rating the impact of the 

parameter as 1 (strongly negative). Next, the positive and negative effects of each parameter were 

evaluated separately. For the positive effect of a positively worded parameter the evaluation index and 

evaluation score was computed using equations (3.6) and (3.7); similarly, equations (3.8) and (3.9) were 

used to calculate the positive effect of a negatively worded parameter. First, the evaluation index based 

on the product of the agreement/disagreement and impact scores was computed. Then, the evaluation 

score was computed by dividing the evaluation index of a given parameter by the maximum possible 

evaluation score. The maximum possible evaluation score is equal to 2500—the product of the maximum 

values of agreement/disagreement (50) and impact (50). 

Positively worded parameters and positive effect: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑃(+𝑣𝑒) = 𝑅𝐴 𝑥 𝐼𝑃 
(3.6) 
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𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐴𝑃(+𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑃(+𝑣𝑒)

2500
 𝑥 100 

(3.7) 

Negatively worded parameters and positive effect:  

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑁(+𝑣𝑒) = 𝑅𝐷 𝑥 𝐼𝑃 (3.8) 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐴𝑁(+𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑁(+𝑣𝑒)

2500
 𝑥 100 

(3.9) 

For the negative effect of a positively worded parameter, the evaluation index and evaluation 

score were computed using equations (3.10) and (3.11); similarly, equations (3.12) and (3.13) were used 

to calculate the negative effect of a negatively worded parameter. 

Positively worded parameters and negative effect: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑃(−𝑣𝑒) = 𝑅𝐷 𝑥 𝐼𝑁 
(3.10) 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐴𝑃(−𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑃(−𝑣𝑒)

2500
 𝑥 100 (3.11) 

Negatively worded parameters and negative effect: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑁(−𝑣𝑒) = 𝑅𝐴 𝑥 𝐼𝑁 (3.12) 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐴𝑁(−𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐴𝑁(−𝑣𝑒)

2500
 𝑥 100 

(3.13) 

The frequency-type parameters were only used for micro parameters under the “material and 

consumables” and “equipment and tools” categories for the trade survey (see Table 3.3). The parameters 

were all negatively worded and the evaluation index and scores were calculated as follows. First, the 

frequency rating of a parameter by a number of respondents (FR) was computed using the weighted 

percentage of respondents rating the parameter’s frequency based on the seven-point Likert scale, as 

shown in equation (3.14), where the maximum possible weighted frequency rating is equal to 100:  

                                      𝐹𝑅 =
(𝐻 𝑥 1+𝐼 𝑥 2+𝐽 𝑥 3+𝐾 𝑥 4+𝐿 𝑥 5+𝑀 𝑥 6+𝑁 𝑥 7) 

7
 𝑥 100                                                                                              (3.14) 

where H = percentage of respondents rating the parameter frequency as 1 (never); I = 

percentage of respondents rating the parameter frequency as 2 (very rarely); J = percentage of 

respondents rating the parameter frequency as 3 (rarely); K = percentage of respondents rating the 
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parameter frequency as 4 (sometimes); L = percentage of respondents rating the parameter frequency as 

5 (often); M = percentage of respondents rating the parameter frequency as 6 (very often); N = 

percentage of respondents rating the parameter frequency as 7 (constantly).  

Then, the effect in terms of positive or negative impact of a given frequency parameter-type 

statement by a number of respondents was computed using equations (3.4) and (3.5). Finally, the 

evaluation index and score was computed for positive effect of the parameter using equations (3.15) and 

(3.16), and for negative effect using equation (3.17) and (3.18). The evaluation index was based on the 

product of frequency rating and impact score, and the evaluation score was computed by dividing the 

evaluation index of a given parameter by the maximum possible evaluation score. The maximum possible 

evaluation score is equal to 5000—the product of the maximum values of frequency rating (100) and 

impact (50). 

Positive effect: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐹(+𝑣𝑒) = 𝐹𝑅  𝑥 𝐼𝑃 (3.15) 

                             𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐹(+𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐹(+𝑣𝑒)

5000
 𝑥 100                                                      (3.16) 

Negative effect: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐹(−𝑣𝑒) = 𝐹𝑅 𝑥 𝐼𝑁 (3.17) 

                             𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝐹(−𝑣𝑒) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥𝐹(+𝑣𝑒)

5000
 𝑥 100                                                      (3.18) 

The ranking considered the evaluation scores of the individual parameters in the PM survey and 

the trade survey. The evaluation scores of each parameter were normalized on a scale of 0 to 100, where 

an increased evaluation score indicates greater effect, either positive or negative, on CLP. For ranking of 

the parameter categories shown in Table 3.2, group ranking scores were determined by taking the 

average evaluation score of the individual parameters under each category. The group ranking scores 

were then normalized on a scale of 0 to 100. For each of the two surveys (PM survey and trade survey), a 

list of parameters ranked according to their positive effects on CLP was produced; similarly, a list of 



 92 

parameters ranked according to their negative effects on CLP was also produced for each of the two 

surveys. For the purpose of comparing all of the various parameters ranked according to their positive 

effects in discussion of study results, the original survey parameter statements have been modified so 

that they all read as positive statements which imply favourable conditions for better CLP. Similarly, for 

the purpose of comparing the various parameters ranked according to their negative effects, the original 

survey parameter statements have been modified so that they all read as negative statements which 

imply unfavourable conditions for better CLP. Additionally, using the normalized category evaluation 

score, computed by taking the average positive and negative evaluation scores of the parameters under 

each parameter category, the rankings of the parameter categories have also been determined and 

reported. However, the category evaluation scores and the ranking will also depend on the number of 

parameters within the category. As shown in Table 3.2, the number of parameters per category varies, 

and therefore the category evaluation scores will be skewed towards categories with fewer parameters 

where any of the parameters have a high evaluation score. 

3.3.2: Findings and Discussion on Expert-driven Key Input Parameters Influencing CLP   

First, the internal consistency or reliability of the PM and trade surveys was examined using 

Cronbach’s alpha method (Stewart and Frye 2004). Since the evaluation scores shown in equations 

(3.11), (3.13), (3.16), and (3.17) are based on weighted percentages of all responses, it is not possible to 

use the evaluation scores to measure the different parameters survey statistical values, since the survey 

statistical values require individual response values; therefore, the use of the impact rating for each 

parameter is appropriate for such survey designs (CII 2006; Dai et al. 2009). The impact rating responses 

of the 141 parameters included in the PM survey and 89 parameters included in the trade survey were 

extracted from the surveys collected in building and industrial contexts. Then, using IBM SPSS 22® 

statistical package, the Cronbach’s alpha statistical values for the PM and trade surveys were 

determined. The Cronbach’s alpha values for the building context PM and trade surveys and for the 

industrial context PM and trade surveys were found to be 0.938, 0.956, 0.961, and 0.950, respectively. 
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The overall Cronbach’s alpha value for all surveys was actually higher than the minimum value of 0.70 

(Eslamdoost and Heravi 2013), which indicated a strong internal consistency or reliability of the PM and 

trade surveys. Next, the survey results in terms of overall parameter group rankings, top 10 key 

parameters for each context, and top overall parameters are presented. Furthermore, an investigation 

into the differences in perspective on parameters (both factors and practices), based on positive and 

negative effects on CLP, is presented for each of the two contexts: building and industrial.  

3.3.2.1: Parameter Category Ranking  

The rankings of the parameter categories, with normalized category evaluation scores based on 

the results of the PM and trade surveys from both the building and industrial contexts, are shown in 

Appendix B.1. Based on the PM survey respondents from the building and industrial contexts “equipment 

and tools” category (e.g., “adequate and quality work tools”) was identified as the top ranked category by 

respondents from both contexts, indicating its commonly perceived positive effect on CLP.  

A similar ranking of parameter categories by Dai et al. (2009) also confirmed “tools and 

consumables” as first and construction “equipment” as fourth among 11 categories. The PM respondents 

from the building context identified global (e.g., “global economy’s uncertainty in facing another slow 

down”) as the top category having negative effects on CLP, while industrial context PM respondents 

identified “engineering and instruction” (e.g., “drawings and specifications unavailability well ahead of 

implementation”) category. Knight and Fayek (2000) also ranked “insufficient/incomplete drawings” as the 

top ranked factor causing cost escalation of construction projects in Alberta. The top three categories 

negatively influencing CLP were found to be similar between the two contexts.  

The trade survey respondents from the building context identified “foreman” as the top category 

having positive effects on CLP, while industrial context trade respondents identified “labour and crew” 

category. The trade respondents from the building context identified “material and consumables” as the 

top category having negative effects on CLP, which was ranked second among 11 categories by Dai et 

al. (2009), while industrial context trade respondents identified “equipment and tools” category. Overall, 



 94 

the top three categories influencing CLP positively and the top two categories influencing CLP negatively 

were ranked similarly by respondents in the two contexts. The negative effect categories identified by 

respondents from the industrial context conform to the CII study which also identified “equipment and 

tools”, “materials”, and “engineering drawings” as the top three ranked parameter categories for severity, 

or negative influence, on CLP based on trade level surveys (CII 2006; Dai et al. 2009). However, it should 

be noted that the category rankings are dependent not only on the evaluation scores of the individual 

parameters but also on the total number of parameters within a category.   

3.3.2.2: Key Parameters Influencing CLP in Building and Industrial Contexts   

Building Context 

 The rankings of the top 10 parameters, with evaluation scores, identified by PM and trade survey 

respondents and based on positive and negative effects on CLP for building projects are shown in Table 

3.6. According to the PM respondents, of the 141 parameters included in the PM survey, “adequate and 

quality work tools” was identified as the top parameter having a positive effect. However, Jarkas and Bitar 

(2012) found “unavailability of suitable tools” ranked only 34th among 45 factors affecting CLP in Kuwait. 

The “aging of Canada’s population” was identified as the top parameter having a negative effect, which is 

in line with the expected retirement of many construction workers and the expected shortage of labour 

supply in the Canadian construction industry (CSC 2013).  

Of the 89 parameters included in the trade survey, respondents identified “job site orientation 

program for new craftsmen” as the top parameter having a positive effect on CLP and “lack of protection 

from weather effect” as the top parameter having a negative effect. “Weather conditions” and the “need 

for protection” are in agreement with the findings reported by Knight and Fayek (2000). The rankings of 

the top 10 key parameters shown in Table 3.6 provide further insight into parameters influencing building 

projects.  
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Table 3.6: Building Context: Top 10 Parameters   

Rank 
PM survey  

ES 
Trade survey  

ES 
Parameters  Parameters 

 Positive influence:  Positive influence:  

1 
There are adequate and quality work 
tools 

100 For new craftsmen, the job site 
orientation program is carried out 

100 

2 
The organization has many successful 
years in industry 

87.2 Frequency of accidents and personal 
injury is low 

88.8 

3 
Daily job hazard assessment system is 
in place 

82.6 
Foreman has the required experience 

85.9 

4 
Efforts are taken to reduce turnover of 
foremen 

72.6 There is really good cooperation 
between craftsmen in a crew 

78.1 

5 

Integration management practices: 
The process required to ensure that 
the various elements of the project are 
properly coordinated is properly 
implemented 

69.5 Crew is given adequate training before 
commencement  

74.5 

6 
Zero accident techniques are 
effectively applied  

64.0 Craftsmen trust in the skills and 
judgment of their supervisors 

74.1 

7 
Leadership training is provided to 
foremen 

64.0 Crew is experienced and has the 
necessary competence  

70.1 

8 

Cost management practices: A 
reporting system at company level is in 
place for the identification of cost 
overruns 

63.6 
Foreman’s management style is 
participative and motivating 

67.5 

9 Delivered materials are of high quality 
62.2 Work is fairly assigned to the different 

crews 
67.3 

10 
There are adequate material 
transportation equipment (cranes, 
forklifts) 

60.5 
Temporary electrical service is always 
provided 

66.1 

 Negative influence:   Negative influence:  

1 Canada’s population is aging 
100.
0 

The work area is not protected from 
weather effect 

100.
0 

2 
Global economy still faces uncertainty 
of facing another slow down 

56.1 Materials are not delivered on time to 
task location  

88.6 

3 
Drawings and specifications are often 
not complete and require updates 

54.4 The materials delivered have quality 
problems 

78.8 

4 
Natural gas prices (dollar/GJ) are 
currently low 

47.8 Stringent safety rules are negatively 
affecting productivity 

74.9 

5 
The available supervisors for 
construction projects in Alberta is not 
adequate 

46.9 
The work area is congested 

65.0 

6 
Oil prices (dollar/barrel) are highly 
volatile     

45.0 Correction work due to quality 
problems of prefabricated products is 
necessary 

64.1 

7 
There are many competing projects 
within the province 

43.9 Work conditions are compromised by 
excessive noise, dust and fumes 

63.9 

8 
Crew experience and competence is 
not meeting expectations 

42.0 Electrical power gets disconnected 
during operation   

53.1 

9 
Craftsmen are not flexible in 
accommodating task changes 

38.0 There is a shortage of good 
transportation equipment (cranes, 
forklifts) 

49.5 

10 
Prices for outputs (project completion 
costs) are substantially increasing 

37.4 
There a shortage of consumables 

48.1 
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According to PM respondents, parameters in the “project practices” (PM practices and project 

best practices) and global categories were the most frequent in the top 10 parameter lists for positive and 

negative effects, respectively. “Project practice” parameters, such as the “application of integration 

management”, “zero accident techniques”, and “cost management practice (reporting system for 

identification of cost overruns)” comprised three of the top ten parameters for positive effect; global 

parameters like “uncertainty of global economy”, “low natural gas prices”, and “volatility of oil price” 

comprised three of the top ten parameters for negative effect on CLP, which is expected in energy driven 

economies like that of Alberta and Canada (Chanmeka et al. 2012; Chan et al. 2004).  

For trade respondents, parameters related to “labour and crew” comprised six of the top ten 

parameters for positive effect, confirming the findings of El-Gohary and Aziz (2014), where “labourer 

experience and skill” was ranked first among 30 factors, while parameters in the “material and 

consumables” and “location property” categories comprised seven of the top ten parameters having 

negative effect on CLP. According to Thomas et al. (1990) and Dai et al. (2009), these categories are 

manageable on jobsites and can lead to improvements in CLP if properly considered in planning and day-

to-day work.  

Industrial Context   

The rankings of the top 10 parameters, with evaluation scores, identified by PM and trade survey 

respondents and based on the positive and negative effects on industrial projects are shown in Table 3.7. 

Of the 141 parameters included in the PM survey, respondents identified “use of daily job hazard 

assessment system” as the top parameter having a positive effect. This finding substantiates the results 

obtained by Liberda et al. (2003) where “safety systems including protective gear requirement” was 

ranked last out of 53 factors based on negative effect on CLP. The PM survey respondents also identified 

“presence of many competing projects within the province” as the top parameter having a negative effect. 

Having many competing projects will create a higher demand for construction workers, and a lack of 

adequate supply could result in the inability to fulfill required human resource needs for projects, misuse 

of workers skill, and use of unskilled labourers in place of skilled ones, all negatively influencing CLP (El-

Gohary and Aziz 2014).  
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Table 3.7: Industrial Context: Top 10 Parameters   

Rank 
PM survey  

ES 
Trade survey  

ES 
Parameters  Parameters 

 Positive influence:   Positive influence:  

1 Daily job hazard assessment 
system is in place 

100 There is really good cooperation 
between craftsmen in a crew 

100 

2 There are adequate and quality 
work tools 

82.3 Craftsmen have shown acceptable 
learning speed 

79.6 

3 Accidents and injury are infrequent 68.3 For new craftsmen, the job site 
orientation program is carried out 

71.3 

4 Cost management practices: A 
reporting system at company level 
is in place for the identification of 
cost overruns 

65.0 Craftsmen’s labour union status 
(unionized or not unionized) and its 
benefits are important in their day to day 
performance 

67.9 

5 The organization has many 
successful years in industry 

63.7 Foreman has the required experience 67.2 

6 Material order tracking system is in 
place 

62.0 Adequate lunchrooms are closely 
located 

67.0 

7 Planning for start-up is being 
properly carried out 

60.3 There is really good cooperation 
between the different crews 

63.0 

8 Daily project briefing and debriefing 
is properly practiced   

55.5 Crew is experienced and has the 
necessary competence 

62.0 

9 Delivered materials are of high 
quality    

51.7 The work area is protected from weather 
effect 

60.7 

10 Quality management practices: 
Identifying quality requirements 
and/or standards and 
documentation on compliance 
properly implemented 

49.8 Frequency of accidents and personal 
injury is low 

59.4 

 Negative influence:  Negative influence:  

1 There are many competing projects 
within the province 

100 Work conditions are compromised by 
excessive noise, dust and fumes 

100 

2 Global economy still faces 
uncertainty of facing another slow 
down 

80.0 Materials are not delivered on time to 
task location   

96.1 

3 Prices for outputs (project 
completion costs) are substantially 
increasing 

76.7 Workers cannot access the required 
power tools to do their jobs 

90.8 

4 Canada’s population is aging 70.1 Workers cannot access the required 
hand tools to do their jobs 

79.1 

5 Work locations are confronted with 
excessive noise, dust, and fumes 

68.5 The materials delivered have quality 
problems 

69.6 

6 The available labour for 
construction projects in Alberta is 
inadequate 

60.1 Electrical power gets disconnected 
during operation 

68.9 

7 Oil prices (dollar/barrel) are highly 
volatile   

47.7 Correction work due to quality problems 
of prefabricated products is necessary 

66.3 

8 Recession of global economy is 
expected in the near future 

47.3 There a shortage of consumables 60.4 

9 Drawings and specifications are 
often not complete and require 
updates 

40.4 There is a shortage of good 
transportation equipment (cranes, 
forklifts) 

46.0 

10 Owners are frequently suspending 
projects 

37.0 Washrooms are not closely located 43.8 
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Of the 89 parameters included in the trade survey, respondents identified “good cooperation 

between craftsmen in a crew” as the top parameter having a positive effect on CLP. This outcome is 

supported by Jergeas (2009), whose work identified “labour relations” as the top target area for labour 

productivity improvement in industrial projects, and Liberda et al. (2003) who ranked it 12th among 33 

factors in the “management” category. The trade survey respondents also identified “work conditions 

compromised by excessive noise, dust, and fumes” as the top parameter having a negative effect. The 

rankings of the top 10 key parameters shown in Table 3.7 provide deeper insight into parameters 

influencing industrial projects. 

According to PM respondents, and similar to the building context, parameters in the “project 

practices” (PM practices and project best practices) categories and the “global” category most frequently 

appeared in the top 10 parameter lists for positive and negative effects, respectively. “Project practice” 

parameters, specifically “application of cost management practice (reporting system for identification of 

cost overruns)”, “material order tracking system”, “proper planning for startup”, and “quality management 

(identifying quality requirements and/or standards and documentation of how the organization will 

demonstrate compliance)”, comprised four of the top ten parameters for positive effect; global 

parameters, specifically “uncertainty of global economy”, “volatility of oil price”, and “expected recession 

of global economy”, comprised three of the top ten parameters for negative effects on CLP. The result 

related to the global economy parameters and their influence on CLP is in line with the finding by Chan et 

al. (2004), which identified “economic environment” as a key factor contributing to the success of 

construction projects. Similar to the trade respondents in the building context, parameters related to 

“labour and crew” comprised six of the top ten parameters having positive effects on CLP. Eight of the top 

ten parameters rated as having negative effects on CLP included those in the “material and 

consumables” and “equipment and tools” categories, which is in line with the CII study on industrial 

projects (CII 2006; Dai et al. 2009). 
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3.3.2.3: Overall Key Parameters Influencing CLP    

 This research investigated the positive and negative influence of 169 parameters on CLP using 

PM and trade surveys. The overall most significant parameters influencing CLP either positively or 

negatively, regardless of project context, are as follows: (1) adequate and quality work tools; (2) aging of 

Canada’s population; (3) job site orientation program for new craftsmen; (4) lack of protection from 

weather effect; (5) use of daily job hazard assessment system; (6) presence of many competing projects 

within the province; (7) good cooperation between craftsmen in a crew; and (8) work conditions 

compromised by excessive noise, dust, and fumes. These top eight parameters were extracted from both 

industrial and building context results shown in Table 3.6 and Table 3.7, where the first ranked 

parameters for positive and negative influence are taken from both the PM and trade survey respondent 

groups. Notably, out of the top eight ranked parameters, five are at the activity level and are related to 

“labour and crew”, “equipment and tools”, and “location property”. This finding is consistent with the 

findings of CII (2006), Dai et al. (2009), Jarkas and Bitar (2012), and Eslamdoost and Heravi (2013); 

however, it is in contrast to the studies by Liberda et al. (2003) and El-Gohary and Aziz (2014), which 

indicated that “management” level factors were ranked higher than “human/labour” factors.   

3.3.2.4: Comparison of Perspectives on Parameters between Project Managers and Trades within 
the Same Context 

As the parameters influencing CLP are multilevel, it is important to determine instances where 

there is a lack of consensus on parameters between PM and trade personnel so as to formulate effective 

improvement strategies. While a higher level of agreement on parameters between the two groups will 

help in implementing improvement strategies, a lack of agreement will demand further investigation into 

the sources of difference before taking action. Thus, in order to investigate the differences in perspective 

between PM and trade survey respondent groups, the 37 common parameters shown in Table 3.2 were 

evaluated for differences in perspective. As the respondents rank parameters based on positive and 

negative effect on CLP, the comparison was made for each parameter based on positive and negative 

evaluation scores, and parameters with the greatest positive and negative evaluation score differences 

between the two perspectives were identified. Then, the impact ratings of the identified parameters from 
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both perspectives were again used for statistical analysis and the results were subsequently used to 

compare group means using an F-test. The significance of the differences was reviewed using the null 

hypothesis that there is no difference between the groups, which will be rejected at a significance level (p-

value) of 5% (i.e., 95% confidence level). The results of the investigation into the perspectives of the 

different respondents are shown in Appendix B.2, where the top five parameters having the greatest 

positive and negative evaluation score differences between the two perspectives have been identified for 

discussion.  

Results at the 95% confidence level indicate that the PM and trade groups perceived some 

parameters’ influences on CLP very differently. Statistically significant differences were reported between 

different generations of craft workers (Dai and Goodrum 2012), foremen and craft workers (Dai et al. 

2007), union and non-union craft workers, and trades (Dai et al. 2009). Eslamdoost and Heravi (2013) 

also observed similar differences among office and site staff respondents in comparing the rankings of 

factors influencing CLP. In the building context, according to respondents’ rankings of positive effect 

parameters, the most significant difference in perception between the PM and trade groups was found for 

the “crew experience and competence” parameter, which the trade group ranked highly for positive effect.  

According to respondents’ rankings of negative effect parameters, the most significant difference 

in perception between the PM and trade groups was found for “harshness of weather”, which the trade 

group ranked highly for negative effect. In the industrial context, according to respondents’ rankings of 

positive effect parameters, the most significant difference in perception between the PM and trade groups 

was found for the “good cooperation between craftsmen in a crew” parameter, which the trade group 

ranked highly for positive effect. According to respondents’ rankings of negative effect parameters, the 

most significant difference in perception between the PM and trade groups was found for “workers not 

getting required hand tools to do their jobs”, which the trade group ranked highly for negative effect.  

Most importantly, all of the top five parameters perceived as having negative effects and having 

the greatest evaluation score differences between the PM and trade groups in the industrial context were 

related to “material and consumables” and “equipment and tools”; in all cases only trade respondents 

rated them highly for negative effect. These findings on perspective differences are important for project 
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productivity management and improvement; the parameters with greater differences in perspectives 

should be further investigated, as trade workers provide detailed insight into the parameters influencing 

their daily productivity and their opinions are critical for CLP analysis and improvement (Dai et al. 2007).    

3.3.2.5: Comparison of Perspectives between Project Management and Trade Respondents 
between Contexts   

Further analysis was conducted to examine differences in perspective between similar 

respondents from the two different contexts, building and industrial. Such analysis is often missing in CLP 

studies, even though it could result in a better understanding of the contextual differences between 

respondents (Dai and Goodrum 2012). The findings of the analysis can improve our understanding of 

which parameters are specific to each context. Similar to the analysis shown above, to compare 

perspectives on parameters within a context, the top five parameters having the greatest differences in 

perspective between the two contexts (building and industrial) for both the PM and trade perspectives 

have been identified for discussion and are illustrated in Appendix B.3. 

Results at the 95% confidence level indicate that respondents from the two contexts perceived 

some parameters’ influences on CLP very differently. According to the PM survey respondents’ rankings 

of positive effect parameters, the most significant difference in perception between the building and 

industrial context PM groups was found for the “presence of adequate and quality work tools” parameter, 

which was ranked highly for positive effect in the building context. According to the PM survey 

respondents’ rankings of negative effect parameters, the most significant difference in perception 

between contexts was found for “presence of many competing projects within the province”, which was 

ranked highly for negative effect in the industrial context.  

According to the trade survey respondents’ rankings of positive effect parameters, the most 

significant difference in perception between the different contexts was found for “protection of work area 

from weather effect”, which was ranked highly for positive effect in the industrial context. According to the 

trade survey respondents’ rankings of negative effect parameters, the most significant difference in in 

perception between the different contexts was found for “workers not getting required hand and power 

tools”, which was ranked highly for negative effect in the industrial context.  
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In summary, using a focus group representing different construction companies, the hierarchal list 

of 169 parameters influencing CLP was first verified. The factor survey respondents from the different 

construction projects under building and industrial contexts examined and verified the relevance of the 

169 hierarchal parameters. The extent to which each parameter exists in the given project setting was 

evaluated by the experts using the agreement or frequency sections of the factor surveys, and the results 

showed that the parameters do exist in each of the studied project, but with varying degrees of 

occurrence.The comparison among PM and trade workers within the same context showed difference in 

perception; which indicated that data on parameters at activity level could be provided by trade level 

workers (crew members and foreman) and parameters at project level and higher could be provided by 

PM workers (superintendent and project managers). Additionally, the comparison of the building and 

industrial context groups’ perceptions of parameters influencing CLP were compared, and significant 

differences were observed, indicating the context-specific nature of parameters influencing CLP.  

3.4: DATA-DRIVEN APPROACH FOR IDENTIFICATION OF KEY INPUT PARAMETERS OF CLP 

The results of the expert-driven approach indicated that all parameters have to be documented 

using data sources at different levels of the project. Therefore, in this research input parameter 

documentation was carried out for all input (factors and practices) parameters together with CLP values. 

The collected data was then used to identify key parameters for CLP modeling using data analysis 

methods. Data-driven approaches for identifying key variables or features mainly focus either on feature 

extraction or feature selection techniques and are commonly used to reduce features of datasets (Guyon 

and Elisseeff 2003). In modeling studies, the predictive power of developed models is hampered when 

the number of features increases, commonly referred as the curse of dimensionality. Feature extraction 

techniques like principal component analysis build derived features from existing ones so as to reduce the 

dimensionality of the feature space and improve model performances; while feature selection reduces the 

dimensionality by selecting only a subset of measured features and is recommended when the original 

units and meaning of features are important and the modeling goal is to identify an influential subset.  
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In this research, instead of feature extraction, feature selection is used, as feature extraction 

would create new sets of features, or parameters, in addition to the existing ones, and these new features 

would be less informative as they would not have the same meaning as the original set of features. 

Feature selection produces an optimal subset of relevant parameters and is often used in data mining 

areas such as classification, clustering, association rules, and regression (Saeys et al. 2007). Feature 

selection generally requires two main processes: feature subset evaluator and search method (Liu and 

Yu 2005). Feature sets are assessed for their merit for explaining the target or output variable using the 

feature subset evaluator process, while the search method process facilitates a search of all possible 

subsets. Filter, wrapper, and hybrid methods are the most commonly used feature subset evaluators (Liu 

and Yu 2005). Filter methods, the most commonly used feature selection method, evaluates and ranks 

features without involving any mining algorithm (Saeys et al. 2007). Wrapper methods requires one pre-

determined mining algorithm and assess subsets of the features according to their suitability to the mining 

algorithm and improve the prediction performance; while, hybrid methods perform feature selection by 

combining the different filter and wrapper evaluation criteria in different search stages (Guyon and 

Elisseeff 2003).  

Classically having features in the range of hundreds will result into a large dimension problem 

and in cases where the available data instances are relatively limited, the use of filter methods is 

recommended (Xing et al. 2001). As discussed in Section 2.3.1 and shown in Table 2.1, a total of 169 

input parameters influencing CLP are identified; additionally, the data instances collected for the trades 

under study are limited (refer to Table 2.9). Therefore, in this study filter based feature selection algorithm 

as shown in Table 3.8 was adopted for identifying the key influencing parameters. The filter algorithm, for 

a given data set D of activity input and output parameter, starts the search from a given subset 𝑆0 and 

searches through the feature space using a search strategy; while each generated subset S is evaluated 

by an independent measure M and compared with the previous best one (Liu and Yu 2005). Accordingly, 

if the new subset is found to be better, it is regarded as the best subset, and the search is iterated until a 

predefined stopping criterion 𝛿 is met and the resulting best subset 𝑆𝑏𝑒𝑠𝑡 provides the key input 

parameters influencing CLP.  
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Table 3.8: Generalized Filter Algorithm (Liu and Yu 2005)  

input:     𝐷 (𝐹0, 𝐹1, … , 𝐹𝑘−1)  // a training data set with 𝑘 features, where 𝑘 = 169 for input parameters 

               𝑆0                         // a subset from which to start the search   

               𝛿                         // a stopping criterion    

output:   𝑆𝑏𝑒𝑠𝑡 

     begin  

           initialize: 𝑆𝑏𝑒𝑠𝑡 = 𝑆0; 

           𝛾𝑏𝑒𝑠𝑡 = 𝑒𝑣𝑎𝑙(𝑆0, 𝐷,𝑀); // evaluate 𝑆0 by an independent measure 𝑀 

           do begin  

                    𝑆 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 (𝐷); // generate a subset for evaluation  

                    𝛾 = 𝑒𝑣𝑎𝑙(𝑆, 𝐷,𝑀); // evaluate the current subset S by M  

                   if (𝛾 is better than 𝛾𝑏𝑒𝑠𝑡) 

                          𝛾𝑏𝑒𝑠𝑡 =  𝛾; 

                          𝑆𝑏𝑒𝑠𝑡 = 𝑆; 

           end until (𝛿 is reached); 

           return 𝑆𝑏𝑒𝑠𝑡; 

       end; 

Correlation-based feature selection (CFS) algorithm is a simple and powerful filter method that 

evaluates the relevance of features using Pearson correlation coefficient (Hall 1998). CFS has been 

proven to perform very well in experiment with small datasets (Hall 1998). In this research the use of the 

CFS algorithm was found to be suitable, as it has the ability to deal with a high dimension of the 

parameters influencing CLP and small number of data instances; while preserving the original 

representation of the parameters and providing better understanding of the underlying process that 

generated the data (Guyon and Elisseeff 2003). CFS ranks feature subsets based on heuristic evaluation 

function shown Eq. (3.19), where 𝑀𝑠 is the heuristic “merit” for the feature subset S containing k features, 

𝑟𝑐𝑓̅̅ ̅̅  is the mean feature to output (i.e., class or CLP) correlation (𝑓 ∈ 𝑆), and 𝑟𝑓𝑓̅̅ ̅̅  is the average feature to 

feature inter-correlation (Hall 1998): 

𝑀𝑠 =
𝑘 𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘 (𝑘 − 1) 𝑟𝑓𝑓̅̅ ̅̅
 

(3.19) 

According to Hall (1998), the numerator in Eq. 3.19 can be considered as providing an indication 

of how predictive of the output or class a set of features are, while the denominator indicates how much 

redundancy there is among the features. The correlation between features and output or among features 

is computed using Pearson’s correlation coefficient as shown in Eq. 3.20—Eq. 3.25; where 𝑥1, 𝑥2, … , 𝑥𝑗  

represents the subset containing 𝑃 features (input parameters) and 𝑦 represents the output 
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(CLP), �̅�1, �̅�2, … , �̅�𝑗, and �̅� are the mean values, 𝑐𝑜𝑣(𝑥𝑗 , 𝑥𝑗+1) is the covariance of any two features and 

𝑐𝑜𝑣(𝑥𝑗 , 𝑦) is the covariance of any one of the features and output,  𝑁 are the number of data instances, 

and  𝜎𝑥1
, 𝜎𝑥2

, … , 𝜎𝑥𝑗
 and 𝜎𝑦 are standard deviations:  

𝑐𝑜𝑣(𝑥𝑗 , 𝑥𝑗+1) = ∑
(𝑥𝑗𝑖 − 𝑥�̅�)(𝑥𝑗+1𝑖 − 𝑥𝑗+1̅̅ ̅̅ ̅)

𝑁

𝑁

𝑖=1

 (3.20) 

𝑐𝑜𝑣(𝑥𝑗 , 𝑦) = ∑
(𝑥𝑖𝑗 − 𝑥�̅�)(𝑦𝑖 − �̅�)

𝑁

𝑁

𝑖=1

 (3.21) 

𝑟𝑥𝑗𝑥𝑗+1
=

𝑐𝑜𝑣(𝑥𝑗 , 𝑥𝑗+1)

𝜎𝑥𝑗
 𝜎𝑥𝑗+1

 
(3.22) 

𝑟𝑥𝑗𝑦
=

𝑐𝑜𝑣(𝑥𝑗 , 𝑦)

𝜎𝑥𝑗
 𝜎𝑦

 
(3.23) 

𝑟𝑓𝑓̅̅ ̅̅ =
∑ 𝑟𝑥𝑗𝑥𝑗+1

𝑃
𝑗=1

𝑃 − 1
 (3.24) 

𝑟𝑐𝑓̅̅ ̅̅ =
∑ 𝑟𝑥𝑗𝑦

𝑃
𝑗=1

𝑃
 (3.25) 

Three search strategies are recognised: complete, sequential, and random. In complete search 

strategy an exhaustive search is carried out and optimal results are guaranteed; however, the search 

space, due to the large dimension in CLP modeling, will be quite large to handle with limited data 

instances. Additionally, the use of simple heuristic based sequential search strategies (e.g. BestFirst) 

have been found to be as efficient as random search strategies based on genetic algorithm and 

simulation annealing (Rodrigues et al. 2015). Thus, in this research BestFirst sequential search strategy 

has been adopted. BestFirst searches the feature space using a greedy hill climbing approach 

augmented with a backtracking facility (Xu et al. 1988), and the search strategy starts either from empty 

set of features and searches forward, or starts with the full set of features and searches backward, or 

starts at any point and searches in both directions (by considering all possible single feature additions 

and deletions at a given point). The search stops when subsequent addition (or deletion) of any feature 

does not produce a better subset (Liu and Yu 2005).  

3.4.1: Implementation of Data-driven Approach  

A number of open source and commercial programs are available for implementing the data-

driven approach for selecting key parameters using feature selection. In this research, the most relevant 

features were selected using the Waikato Environment of Knowledge Analysis (WEKA) tool. Accordingly, 
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WEKA’s correlation-based feature selection (CfsSubsetEval) algorithm was employed as the feature 

subset evaluator with the BestFirst algorithm for the search method, as together, they provide the most 

efficient approach to correlation-based feature selection (Rodrigues et al. 2015).  

3.4.2: Key Parameters Influencing Concreting Activity    

The construction industry is constantly searching for ways to improve labour productivity, as 

labour productivity significantly impacts the project costs and profitability of construction companies 

(Fulford and Standing 2014). However, before they can propose and implement improvement strategies, 

industry representatives need an activity-level construction labour productivity model that enables them to 

fully understand which parameters (factors and practices) cause productivity to change and by how much 

(Thomas et al. 1990). The data-driven approach relies on the field data for construction labour 

productivity and the influencing parameters; therefore, the approach is applicable to identification of 

parameters at activity level, where labour productivity values are studied, and provides the much needed 

key parameters for CLP model development.  

In this section, the identification of the key parameters influencing the concreting (concrete 

placement) activity is presented. The analysis focused on concreting data collected from six building 

projects. Data instances from the six structural elements were combined, which, compared to the other 

activities studied (also shown in Table 2.9), produced the largest data set with a total of 92 data 

instances. Using the WEKA tool and CfsSubsetEval algorithm together with the BestFirst search 

algorithm, 14 key parameters, shown in Table 3.9, were identified from a total of 105 input parameters, 

which were made up of recorded factors and practices. Key input parameters (factors and practices), or 

features having high correlations with CLP but low inter-correlations, were identified. The full detail of the 

correlation results among key input parameters and CLP is shown in Appendix B.4. 
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Table 3.9: Key Input Parameters Influencing Concreting Activity: Pearson Correlation with CLP 

ID Parameter (ID) Scale of measure Correlation 
coefficient 

x97 Owner staff on site  Integer (total number of owner staff on site) -0.343 a (0.001) 

x143 Availability of communication 
devices  

Real number (ratio number communication 
radios: total number of crews) 

-0.289 a (0.005) 

x13 Craftsperson trust in foreman  1–5 predetermined rating 0.273 a (0.008) 

x11 Craftsperson motivation  1–5 predetermined rating -0.261 a (0.012) 

x96 Project work times  Real number (ratio total worked hours per day) 0.227 a (0.030) 

x46 Structural element type  Categorical: columns (1), footings (2), grade 
beams (3), pile caps (4), slabs (5), walls (6) 

0.227 a (0.30) 

x126 Labour productivity 
measurement practice  

1–5 predetermined rating 0.218 a (0.037) 

x101 Approval of shop drawings and 
sample materials  

Real number (average time taken to approve, 
days) 

-0.175 (0.095) 

x12 Craftsperson fatigue  Real number (ratio total weekly worked hours: 
regular weekly work hours) 

-0.143 (0.173) 

x58 Change of foremen  Integer (number of turnovers per month) -0.135 (0.199) 

x15 Level of absenteeism  Real number (ratio absent crew member: total 
crew size) 

0.099 (0.346) 

x37 Availability of tools  Real number (average waiting time, minutes) 0.091 (0.387) 

x45 Concrete placement technique  Categorical: pump (1), crane and bucket (2), 
direct chute (3) 

-0.078 (0.461) 

x23 Job security Real number (average length of 
unemployment period, months) 

-0.073 (0.487) 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test  
a Denotes a statistically significant correlation at a significance level of 0.05.  

The data-driven results indicate that the owner staff on site, availability of communication devices, 

craftsperson trust in foreman, craftsperson motivation, project work times, structural element type, and 

labour productivity measurement practice parameters significantly correlated to the actual productivity 

and its variability. Using the signs of the correlation coefficient the positive and negative impact of the 

parameters can also be evaluated. The results showed some similarity with the top 10 parameters for 

building context, shown in Table 3.6, where adequacy and quality of work tools (PM survey), taking efforts 

to reduce foremen turnover (PM survey), drawings and specification are often not complete and require 

updates (PM survey), and craftsmen trust in the skills and judgment of their supervisor (Trade survey) 

were identified as a key parameters.  

However, the key parameters established using data-driven approach are specific to an activity, 

while the expert-driven approach is applied at project level using opinions of project participants at 

different level. Thus, the key parameters identified using the two approaches are rather complementary 

and provide a better oversight of the parameters influencing CLP. Additionally, the key parameter lists for 
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building and industrial contexts, based on the expert-driven approach, have shown differences; which 

indicated that key parameters influencing CLP are context specific. This finding confirms with findings of 

previous studies which recognized the context specificity of key parameters, and documented project 

features like building type, project location, contract type, union type, etc. to contextualize the studied 

parameters (Christian and Hachey 1995; Thomas and Raynar 1997).    

3.5: CHAPTER SUMMARY  

The construction industry, being project-based in execution, is exposed to a complex and 

unpredictable setting, or context, which influences the efficiency of construction labour productivity (CLP) 

either directly or indirectly. This being the case, one major problem in CLP studies is identifying key 

influencing parameters that are relevant for the context under study. Such an effort requires careful 

consideration of the parameters influencing CLP and their multilevel, complex, and context-dependent 

nature. Accordingly, in this thesis a comprehensive list of 169 parameters (factors and practices) 

influencing CLP was established based on a detailed review of past studies addressing various contexts, 

and was verified using experts from various companies carrying out several building and industrial 

projects. To examine and elucidate the interlinked and context-dependent nature of the parameters 

influencing CLP, this study evaluated the positive as well as the negative influences of the parameters 

based on survey responses from PM and trade level participants from a number of ongoing construction 

projects categorized under two contexts: building and industrial. Unlike previous studies on CLP, the 

survey questions in this study focused on specific project contexts and examined differing perspectives of 

project managers and trades on a given project. The results of the survey analysis established ranked 

lists of parameters for the building and industrial project contexts; additionally, the differences in 

perspectives between the PM and trade level respondents were examined for each given context as well 

as between the two contexts. Using the results of the expert-driven, a data-driven feature selection 

approach was applied to collected field data; and the key parameters influencing concreting (concrete 

placement) activity were identified.  



109 
 

The results of this chapter demonstrate the complex and interlinked nature of the parameters 

influencing CLP, and the need and importance of identifying the key parameters based on positive and 

negative influence, and using both expert and data-driven approaches. They also confirm that PM and 

trade workers within the same context perceive the influence of some parameters on CLP very differently, 

and that the key parameters influencing CLP are context-dependent. These findings indicate that in order 

to formulate effective CLP analysis models and, accordingly, CLP improvement strategies, studies must 

include different levels of project personnel and clearly establish the context from which the key 

parameters were identified. Accordingly, the context-specific nature of the key parameters will lead to the 

development of CLP models which are specific to the studied context. In the next chapter, the effect and 

role of the other influencing process parameters or work sampling proportions on CLP is formulated, and 

an approach for integrating the key input and process variables using a system based CLP modeling 

approach is proposed, developed, and tested. 
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Chapter 4: System Based CLP Modeling4 

4.1: INTRODUCTION  

The construction industry is constantly searching for ways to improve labour productivity, as 

labour productivity significantly impacts the project costs and profitability of construction companies 

(Fulford and Standing 2014). However, before they can propose and implement improvement strategies, 

industry representatives need an activity-level construction labour productivity model that enables them to 

fully understand which parameters (factors and practices) cause productivity to change and by how much 

(Thomas et al. 1990). Such models also play a key role in construction project estimating, scheduling, 

and planning decisions (Yi and Chan 2014).  

Construction labour productivity (CLP) deals with the efficiency of labour resources in the process 

of converting input resources, like materials, into the outputs of labour-intensive construction project 

activities. In this study, CLP, referred to as the output variable (O), is defined as the ratio of units of 

output—in terms of installed quantity—to units of input—in terms of total labour work-hours. Different 

parameters, made up of various factors and practices (e.g., crew size, safety practice, etc.) are known to 

affect the conversion process. Of these parameters, this study considers those that critically influence 

CLP as input variables (I) in order to further examine their effects on CLP.  

Understanding how time is used during the input-to-output conversion process is also vital to 

modeling CLP; work-study methods are commonly employed for this purpose. Work sampling, a method 

used to determine the amount of time workers spend performing direct (productive), supportive, and delay 

(non-productive) work, is the most widely used work-study method (Josephson and Björkman 2013). 

Work sampling proportions summarize the actual utilization of labour work hours and are represented as 

process variables (P) in this study; they provide an in-depth examination of what happens during the 

conversion process as shown in Fig. 1.1. 

 

 

                                                      
4 Parts of this chapter have been submitted for publication in Journal of Construction Innovation: Information, 
Process, Management, JCI, 36 manuscript pages, submitted July 28, 2015; and have been published in the 
Proceedings, NAFIPS Annual Meeting 2012, Berkeley, California, US, August 6-8, pp. 1-6.   
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In order to improve CLP, appropriate analysis and modeling is required so as to clearly illustrate 

how input variables affect conversion process efficiency. Such an analysis must establish the 

relationships between the three system model variables—Input, Process, and Output (Fig. 1.1)—so as to 

examine the cause and effect of the input and process variables on CLP. The main objective of this 

chapter is to present a novel system-based approach for modeling the output variable (O) (i.e., CLP) 

using input (I) and process (P) variables. This chapter begins with a literature review of past approaches 

used for modeling CLP. Next, it discusses the research methodology used to collect data related to the 

system model variables. Subsequently, using extensive field data collected for eight activities, it examines 

the validity of activity models by testing the relationship between the output (CLP) and process variables 

so as to verify the usefulness of relying on work sampling proportions like direct work (also called “tool 

time”) in the prediction of CLP. Finally, this chapter presents a novel system model of CLP using input 

variables in conjunction with process variables, tests the approach using field data, and then summarizes 

conclusions.  

4.2: BACKGROUND  

Because of its significance to project performance, CLP has been well studied. As discussed in 

detail in Section 2.2, numerous modeling approaches have been developed and tested. Overall, these 

tested approaches can be categorized as either factor or activity models. Factor models related the 

different input variables—made up of key influencing parameters (factors and practices) to labour 

productivity. Activity models mainly related the process variables, in terms of work sampling proportions, 

to labour productivity. Most of the past CLP studies have quantified the impact of different parameters on 

CLP using factor models. The relationship between the assorted input variables and CLP, and the degree 

of their impact on it, has most frequently been modeled using regression analysis. Thomas et al. (1994) 

developed a factor model for masonry projects to forecast the labour productivity of masons. More recent 

CLP studies focus on the use of neural networks (NN). Gerek et al. (2015) developed NN models to 

predict the productivity of masonry crews. Because it is a complex problem with limited data availability 

and deals with a large number of subjective and linguistic variables, CLP is an exceptional target for fuzzy 
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set modeling. However, there are few applications of fuzzy sets in the CLP modeling field (Yi and Chan 

2014). One such application is the fuzzy inference based labour productivity model Oduba (2002) 

developed for industrial pipe rigging and welding activities.  

Activity models relate labour utilization measures like work sampling proportions (i.e., process 

variables) to CLP. Work sampling (WS), a widely used work-study method in the construction industry, 

uses random observation to investigate how a workforce uses its work time. Craftsman questionnaires 

and foreman delay surveys have been used to both supplement and complement WS (CII 2010). Such 

surveys are useful for identifying the causes of delays (e.g., rework, equipment breakdown, waiting for 

instruction, etc.) and quantifying the resulting lost labour work-hours. WS establishes the percentage of 

work time spent on WS categories like direct work; which represents the proportion of work time spent 

exerting physical effort directed toward the completion of an activity, has been used as a surrogate 

measure of CLP (Thomas et al. 1990). The activity model is based on WS and is readily applicable to 

labour-intensive activities. A valid activity model is required to show that direct work times and outputs are 

related in some predictable fashion (Thomas 1991). There are two opposing views of the validity of 

activity models. For the most part, the literature argues that WS can be used to predict productivity 

(Shahtaheri et al. 2015). Handa and Abdalla (1989) stated that activity models with 10 WS categories 

could be used to indicate actual site productivity; however the developed models were statistically 

insignificant. Silva and Ruwanpura (2006) developed an activity model using direct work proportion to 

predict concreting operations’ productivity. Shahtaheri et al. (2015) assumed labour performance can be 

improved by increasing the direct work rate and the developed baselines for direct work proportions 

without testing and verifying the relationship between direct work and CLP. Conversely, Thomas (1991) 

stated that direct work is not related to productivity; using data from seven databases containing over 158 

WS studies, mainly from nuclear power plant projects, he concluded that previous studies lacked validity. 

Josephson and Björkman (2013) also concluded that WS studies provide little value in measuring 

productivity.  

Most of the factor models were not able to deal with subjective variables in a comprehensive 

manner, studied limited number of influencing parameters, and focused on non-interpretable neural 
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networks for developing CLP models. Furthermore, activity models did not show statistically significant 

results, and were limited by their inability to model the effect of the parameters influencing CLP and, due 

to a lack of standardization, depended on assumptions regarding WS category definitions (Josephson 

and Björkman 2013). So far, no previous studies have succeeded in developing an integrated system 

approach investigating the overall relationship between both input and process variables and CLP. As a 

result of these limitations, the above models have been unable to provide useable solutions for the highly 

complex, context-dependent, and non-linear modeling problem of CLP.  

4.3: RESEARCH METHODOLOGY FOR DEVELOPING THE SYSTEM (I–P–O) VARIABLES  

This chapter proposes a novel approach to overcome the limitations and challenges of CLP 

analysis and modeling through the use of a system-based model. Accordingly, it aims to accomplish the 

selection of key parameters that, together with work sampling proportions, help explain the variability in 

CLP. In this subsection the research methodology, also described in Section 2.3, used to collect data on 

the system model variables—namely, input, process, and output variables, is briefly summarized. 

The vital and starting point of any CLP analysis and modeling study involves the identification, 

quantification, and documentation of parameters influencing CLP and then the establishment of key 

parameters. These key parameters make up the input variables for models that can then be used to 

develop improvement opportunities. Using the identified 169 parameters (factors and practices) 

influencing CLP (shown in Table 2.1), and the measurement scheme described in Section 2.3.1, the input 

parameters were documented. Additionally, one major objective of this research is to test the validity of 

using process variables, based on the key work sampling proportions, for explaining variance in CLP. For 

the first time in CLP research, this study properly investigates the relationship between process variables 

and input variables. This chapter presents insights into how input variables influence process efficiency 

and, consequently, CLP. This research focused on crew-level WS by studying as a whole the specific 

crew performing a given activity. The “modified crew” method of WS is adopted, by which WS observation 

focuses on the study of representative crews performing selected activities (CII 2010). In this study, 

process parameters are collected using the CII Guide to activity analysis (2010); accordingly, the CII’s 
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seven standard categories—direct work, preparatory work, tools and equipment, material handling, 

waiting, travel, and personal—are used in WS observations. In order to achieve statistically significant 

process parameters and taking into account the seven WS categories and a confidence level of 95% with 

a margin of error of ±5%, a total of 510 observations were targeted per hour of the study (Gouett et al. 

2011). Activities were studied in three data collection cycles, where each cycle extends over a month so 

as to attain the required number of observations. After all the hourly observation periods of a given day 

have been completed, the total head counts for each WS category are tabulated. The proportion of time 

spent on each WS category is then calculated for each crew by taking the ratio of their respective number 

of observations to the total number of observations.  

Determination of the output variable—CLP—was based on the ratio of output (installed quantity) 

to input (total work-hours), as shown in Eq.(1.1). The labour productivity data includes details about the 

size of the crew performing the task, the total man-hours, and the installed quantity. The actual size of a 

crew on a given day was determined according to the number of workers present, which was verified by 

comparing it with the crew size observed during WS. The total man-hours were based on the actual craft 

work hours spent by a crew, and were computed based on the sum of the recorded activity work time for 

each of the crew members. The lost hours values determined using the foreman delay surveys were 

deducted from the crew total work-hours used to calculate productivity (refer to Eq. (1.1)) if verified by 

crew members via the craftsman questionnaires. The installed quantity was collected using a 

measurement of units, as in the projects in this study, the relevant activities could be completed in less 

than a shift and so counting the activity units completed was easily and accurately done.  

4.4: TESTING THE VALIDITY OF ACTIVITY MODELS (P–O RELATIONSHIP)   

This section examines the validity of activity models by testing the relationship between the 

output (CLP) and process parameters, so as to verify the usefulness of relying on work sampling 

proportions in the prediction of CLP. First, a correlation analysis is carried out between the process 

parameters and CLP data. Next, validity of activity models based on the relationship between direct work 

proportions or tool time and CLP is tested. Finally, validity of activity models based on the relationship 
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between the process parameters (seven WS category proportions) and CLP is tested. The analysis was 

carried out using the IBM SPSS 22® statistical package. 

4.4.1: Description of Data  

As discussed in Section 2.4, in order to gather adequate data for detailed analysis of CLP, 

extensive data for input, process, and output parameters were collected from 11 projects across Alberta, 

Canada. Data collection took place between June 2012 and November 2014 in collaboration with seven 

partnering companies. The activities were studied in three data collection cycles, where each cycle 

extended over a month-long period and encompassed different weather seasons. The detailed data-

collection protocol was adopted to facilitate data collection by several different collectors and to ensure 

the validity of the data collected from a number of projects.  

As the minimum suggested number of data instances for any regression analysis is 30 (Green 

1991), activities that had close to 30 data instances were selected from Table 2.9 for testing the validity of 

the activity model based on the relationship between process and output variables (i.e., the P–O 

relationship). Thus, a total of eight activities—three from concreting (column, slab, and wall concrete 

placements), three from electrical (box installation, piping, and wire pulling), and two from shutdown 

(overlays and shield installation)—were further investigated.  

The project type, activities studied, description of the activities, and the number of total data 

instances used for system model analysis is shown in Table 4.1. A total of 92, 148, and 106 data 

instances were used from concreting, electrical, and shutdown activity categories, respectively. For each 

data collection instance, WS observations were made for the crew under study and parameters (factors 

and practices), total work-hours, and installed quantities were documented. CLP data were computed for 

each of the eight activities; the mean and standard deviation values are shown in Table 4.2, where higher 

values are desired. The mean and standard deviation values of the proportions of the seven CII WS 

categories are also shown in Table 4.2. The direct work proportions observed in the 11 studied projects 

are in line with the North American industry trend, where direct work proportions are reported to fall 

between 40 to 60% (CII 2010).  
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Table 4.1: Profile of Activities Studied for Activity and System Based CLP Modeling    

Activity 
category 

Activity Activity description 
Total data 
instances 

Concreting (6) 

Columns a Concrete placement for columns 21 

Footings Concrete placement for footings 5 

Grade beams Concrete placement for grade beams 6 

Pile caps Concrete placement for pile caps 2 

Slabs a Concrete placement for slabs 28 

Walls a Concrete placement for walls 30 

Electrical (3) 

Box installation a Installation of pull and outlet boxes  48 

Piping a Installation of rigid galvanized steel conduit 57 

Wire pulling a Pulling wire  43 

Boilermaker (3) 

Overlays a Welding additional metal layer on tubes to reinforce 
their thickness 

38 

Shields installation a Replacing shields over tubes by removing old ones 
and welding new shields over tubes 

68 

Note: Values in parentheses indicate the total number of studied projects and a Denotes the activities 
used to test the P–O relationship 

To begin with, using boxplots, outlier data instances were identified, and 4, 5, 6, 13, 7, 11, 9, and 

19 outlying data instances were removed from column concreting, slab concreting, wall concreting, box 

installation, piping, wire pulling, overlays, and shield installation activity data sets, respectively.  

Then, a correlation analysis on the seven work sampling activity categories and CLP was carried 

out. Significance probability was tested using a two-sided t-test at a p-value of 0.05. The results, shown in 

Table 4.3, reveal that direct work proportion is not significantly correlated with CLP for all eight activities. 

In all cases, the R-values are quite low. These results are consistent with the observed insignificant 

correlation coefficient of −0.250 (p = 0.153) in Handa and Abdalla’s framing crew study (1989); however, 

they contradict the 0.90 correlation coefficient reported by a concreting study that used a group-timing 

technique and only two categories—working or idle (Silva and Ruwanpura 2006). This result dispels the 

assumption commonly witnessed in CLP research that direct work proportions are highly correlated to 

construction labour productivity.  
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Table 4.2: Mean and Standard Deviation of Work Sampling Proportions (%) and CLP Values   

Activity 
Total data 
instances Unit 

Direct 
work 

Preparatory 
work 

Tools and 
equipment 

Material 
handling 

Waiting Travel Personal 
CLP 
(units/mhr) 

Column 
concreting 

21 m3 
37.76 
(15.34) 

15.24  
(10.88) 

6.57  
(8.94) 

9.24 
(11.41) 

27.48 
(16.06) 

3.86 
(3.88) 

0.00  
(0.00) 

2.61  
(1.18) 

Slab 
concreting 

28 m3 
46.57 
(13.96) 

6.79  
(6.30) 

8.57  
(6.69) 

1.21  
(2.38) 

29.32 
(12.55) 

1.79 
(2.17) 

5.79  
(6.16) 

2.27  
(0.90) 

Wall 
concreting 

30 m3 
49.53 
(15.21) 

9.20 
(7.47) 

11.87 
(13.14) 

3.30 
(5.17) 

23.77 
(10.86) 

1.77 
(2.50) 

0.53 
(1.59) 

4.97 
(3.60) 

Box 
installation 

48 ea. 
59.87 
(13.99) 

9.25 
(7.98) 

3.63 
(3.94) 

5.15 
(5.40)  

0.46 
(1.49)  

7.00 
(6.13) 

14.83 
(9.67) 

2.94 
(4.64) 

Piping 57 m 
51.86 
(13.34) 

12.84 
(9.27) 

8.61 
(5.90) 

6.82 
(6.14) 

1.14 
(2.29) 

9.16 
(4.60) 

8.81 
(7.89) 

3.77 
(2.21) 

Wire pulling 43 m 
53.60 
(14.52) 

12.30 
(11.22) 

2.63 
(3.81) 

5.47 
(7.98) 

1.09 
(3.21) 

4.35 
(4.86) 

21.14 
(15.98) 

10.93 
(11.61) 

Overlays 38 inches 
62.68 
(12.43) 

17.05 
(11.71) 

5.32 
(5.63) 

0.32 
(0.84) 

5.74 
(5.23) 

3.82 
(2.50) 

5.34 
(5.03) 

0.61 
(1.01) 

Shield 
installation 

68 ea. 
57.65 
(14.29) 

19.47 
(10.96) 

4.82 
(4.50) 

2.18 
(2.62) 

9.44 
(10.71) 

4.04 
(3.94) 

2.34 
(3.44) 

0.48 
(0.22) 

Note: Values in parentheses represent standard deviation.  
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Table 4.3: Pearson Correlation and Regression Analysis: Work Sampling Proportion with CLP    

Activity 

Correlation coefficient of independent variables  Model summary ANOVA 

Direct 
work 

Preparatory 
work 

Tools and 
equipment 

Material 
handling 

Waiting Travel 
Person
al 

R2  R2
adjusted F Sig.  

Column 
concreting 
N=17 

0.454 
(0.067) 

−0.398 
(0.114) 

−0.118 
(0.651) 

−0.109 
(0.677) 

−0.035 
(0.0.895 

0.043 
(0.871) 

c  
(c) 

No significant relationship  

Slab 
concreting  
N=23 

0.104 
(0.652) 

0.278 
(0.222) 

-0.169 
(0.464) 

0.398 
(0.074) 

−0.057 
(0.806) 

0.093 
(0.689) 

−0.116 
(0.618) 

 No significant relationship 

Wall 
concreting  
N=24 

0.186 
(0.384) 

0.001 
(0.997) 

0.003 
(0.989) 

−0.465 a, b 
(0.022) 

−0.041 
(0.850) 

0.024 
(0.912) 

c 
(c) 

0.216 0.180 6.058 0.022 

Box 
installation 
 N=34 

0.217 
(0.219) 

−0.343 a, c 
(0.047) 

−0.095 
(0.592) 

0.165 
(0.351) 

0.149 
(0.399) 

−0.158 
(0.373) 

0.018 
(0.918) 

0.122 0.095 4.581 0.040 

Piping                
N=50 

0.090 
(0.535) 

−0.330 a, d 
(0.019) 

0.208 
(0.147) 

−0.119 
(0.412) 

−0.201 
(0.161) 

−0.025 
(0.864) 

0.030 
(0.836) 

0.129 0.111 6.973 0.011 

Wire 
pulling     
 N=32 

−0.027 
(0.884) 

−0.027 
(0.882) 

−0.098 
(0.594) 

−0.125 
(0.497) 

−0.214 
(0.240) 

−0.076 
(0.680) 

0.089 
(0.628) 

No significant relationship 

Overlays           
 N=29 

0.317 
(0.094) 

−0.209 
(0.276) 

-0.054 
(0.779) 

-0.272 
(0.153) 

0.114 
(0.556) 

-0.334 
(0.076) 

−0.251 
(0.189) 

No significant relationship 

Shields 
installation 
N=49 

0.190 
(0.192) 

0.005 
(0.971) 

-0.270 
(0.060) 

0.077 
(0.600) 

-0.038 
(0.796) 

-0.087 
(0.551) 

-0.123 
(0.399) 

No significant relationship 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test and c indicates that the value cannot be computed as the 
data instance values are constant.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
b The test of coefficients gave a t-test value of 11.267 (p = 0.000) for constant and −2.461 (p = 0.022) for material handling variable.  
c The test of coefficients gave a t-test value of 8.749 (p = 0.000) for constant and −2.140 (p = 0.040) for preparatory variable.  
d The test of coefficients gave a t-test value of 9.577 (p = 0.000) for constant and −2.641 (p = 0.011) for preparatory variable.  
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Of the other six WS activity categories, preparatory work significantly correlates with CLP for the 

box installation and piping activities with correlation coefficients of −0.343 and −0.330, respectively, 

indicating a negative effect, even though preparatory work is expected to positively contribute to CLP. 

Material handling WS category also showed a significant correlation with CLP for wall concreting activity. 

For all eight activities, the other WS activity categories—namely, tools and equipment, waiting, travel, and 

personal—do not significantly correlate with CLP.  

4.4.2: Direct Work Proportion versus CLP 

The fundamental assumption of activity models—that CLP improves if more time is spent on 

direct work activities—was tested using the data collected for the eight activities shown in Table 4.1 and 

4.2. To begin with, scatter plots that considered CLP as the dependent variable and direct work category 

proportions as the independent variable were prepared. Linear and nonlinear regression lines were fitted 

to each activity’s data. The following nonlinear regression models were tested: logarithmic, inverse, 

quadratic, compound, power, S, growth, exponential, and logistic. The best nonlinear regression lines 

showing an improvement over linear regression lines in terms of R2-values were selected. The scatter 

plots for column concreting and wire pulling activities are shown in Fig. 4.1 and Fig. 4.2.  

 
Figure 4.1: CLP as Function of Direct Work Proportion for Column Concreting Activity  
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Figure 4.2: CLP as Function of Direct Work Proportion for Wire Pulling Activity  

The example scatter plots shown in Fig. 4.1 and Fig 4.2 indicate that an increase in the direct 

work proportion was not always accompanied by an increase in labour productivity. The scatter plots for 

the other activities, included in Appendix C.1, also showed similar result. The relationship between direct 

work proportion and CLP was then analyzed using the linear and nonlinear regression lines. A statistical 

significance test of the hypothesis that direct work is a significant predictor of the dependent variable 

(CLP) was conducted using the global F-test and a significance level of 0.05. The results, shown in Table 

4.4, indicate that for all activities, the null hypothesis that direct work predicts the dependent variable 

(CLP) cannot be rejected. This finding is consistent with Handa and Abdalla’s data analysis (1989), which 

determined an F-statistic value of 0.820 at p = 0.604.  

The coefficient of determination, based on R2 values, of the fitted regression lines shown in Table 

4.4 indicated that the linear activity models for column concreting, slab concreting, wall concreting, box 

installation, piping, wire pulling, overlays, and shield installation were able to explain 20.6%, 2.9%, 3.5%, 

5.6%, 0.8%, 0.1%, 10.0%, and 3.6%, respectively, of the variability in CLP, and all had low R2 values. 

Similarly, the nonlinear activity models for column concreting, slab concreting, wall concreting, box 

installation, piping, wire pulling, overlays, and shield installation, were able to explain 24.3%, 3.4%, 
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16.3%, 8.6%, 3.7%, 2.7%, 13.3%, and 6.7%, respectively, of the variability in CLP (see Table 4.3); though 

improved, these R2 values are again quite low. These results suggest that the relationship between 

productivity and direct work is complex, and an increase in direct work alone might not result in better 

labour productivity; however, the addition of other work sampling categories might provide a better result. 

This finding completely aligns with Thomas (1991), who concluded that direct work is not significantly 

correlated to productivity. 

Table 4.4: CLP as Function of Direct Work Proportion: Model Summary     

Activity Model R2 F Sig. 

Column concreting  Linear  0.206 3.896 0.067 

 Quadratic 0.243 2.246 0.143 

Slab concreting  Linear 0.029 0.638 0.434 

 Quadratic 0.034 0.348 0.710 

Wall concreting  Linear  0.035 0.788 0.384 

 Quadratic  0.163 2.039 0.155 

Box installation Linear 0.056 1.956 0.171 

 Compound 0.086 3.119 0.087 

 Growth 0.086 3.119 0.087 

 Exponential 0.086 3.119 0.087 

 Logistic 0.086 3.119 0.087 

Piping     Linear 0.008 0.391 0.535 

 Quadratic 0.037 0.894 0.416 

Wire pulling     Linear 0.001 0.022 0.884 

 Quadratic 0.027 0.410 0.667 

Overlays           Linear 0.100 3.013 0.094 

 Power 0.133 4.148 0.052 

Shields installation Linear 0.036 1.751 0.192 

 Quadratic 0.067 1.659 0.202 

4.4.2: Work Sampling Proportions versus CLP 

The other assumption of activity models—that work sampling proportions (WSP) can predict 

CLP—was tested using the data collected for the eight activities shown in Table 4.1. Using general 
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multiple regression analysis, activity models shown in Eq. (4.1) were developed for the eight activities, 

where 𝑍 = CLP, 𝑦1 = Direct work, 𝑦2 = Preparatory work, 𝑦3 = Material handling, 𝑦4 = Tools and 

equipment, 𝑦5 = Waiting, 𝑦6 = Travel, and 𝑦7 = Personal:   

𝑍 =  𝑏𝑜 + 𝑏1 𝑦1 + 𝑏2 𝑦2 + 𝑏3 𝑦3 + 𝑏4 𝑦4 + 𝑏5 𝑦5 + 𝑏6 𝑦6 + 𝑏7 𝑦7 (4.1) 

  The results of the correlation analysis, shown in Table 4.5 for column concreting activity, between 

the seven work sampling proportions (WSP) and CLP showed that some of the independent variables 

(WSP) are correlated to each other. The correlation analysis results for the other activities, included in 

Appendix C.2, also showed similar result.  

 
Table 4.5: Pearson Correlation: Work Sampling Proportion with CLP for Column Concreting Activity    

WSP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.206 
(0.427) 

1       

𝑦3 
0.392 

(0.120) 
-0.270 
(0.295) 

1      

𝑦4 
-0.700 a 
(0.002) 

0.241 
(0.352) 

−0.490 a 
(0.046) 

1     

𝑦5 
-0.618 a 
(0.008) 

-0.492 a 
(0.045) 

-0.409 
(0.103) 

0.238 
(0.358) 

1    

𝑦6 
-0.552 a 
(0.022) 

-0.298 
(0.245) 

-0.482 
(0.050) 

0.281 
(0.358) 

0.714 a 
(0.001) 

1   

𝑦7 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
1  

𝑍 
0.454 

(0.067) 
-0.398 
(0.114) 

-0.118 
(0.651) 

-0.109 
(0.677) 

-0.035 
(0.895) 

0.043 
(0.871) 

c 
(c) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test and c indicates 
that the value cannot be computed as the data instance values are constant.  
a Denotes a statistically significant correlation at a significance level of 0.05.  

Therefore, the magnitude of multicollinearity was checked using variance inflation factor, and for 

all activities the variance inflation factor was found to be greater than 10, indicating high multicollinearity 

(Keith 2015). Therefore, a stepwise regression analysis was performed for testing activity CLP models. 

Stepwise regression carries out multiple regressions a number of times, each time removing the weakest 

correlated independent variable, evaluated based on partial F-test values (Moselhi and Khan 2012). 
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Accordingly, the stepwise regression analysis on column concreting, slab concreting, wire pulling, 

overlays, and shield installation activities data showed that none of the independent variables (WS 

proportions) have a statistically significant relationship with the dependent variable (CLP). Similar 

analyses on wall concreting, box installation, and piping activities showed that only material handling, 

preparatory, and preparatory WS categories, respectively, had a statistically significant relationship with 

CLP.  

Further diagnosis was carried out to identify highly influential data instances that could cause a 

large difference in the regression analysis results. The highly influential data instances were identified 

using influence measures, based on Cook’s distance with a cut-off value of close to 1 (> 0.99) and 

centered leverage values with a cut-off value of 4 / 𝑛, where 𝑛 is the total number of data instances (Keith 

2015). Accordingly for wall concreting one data instance, for box installations activity one data instance, 

and for piping activity two data instances were found to be highly influential and could cause a large 

difference in the regression results. The stepwise regression analysis was repeated after removing the 

highly influential data instances for both wall concreting and box installation activities; however, the 

resulting models performance in terms of R2 and R2 
adjusted values did not show any improvement. Similar 

regression analysis was repeated for the piping activity, and three options were tested by removing: (1) 

the first influential data instance, (2) the second influential data instance, and (3) both influential data 

instances; the regression model based on the second option was selected as it showed an improvement 

in model performance. Finally, a check on the assumptions in multiple regressions was carried out for the 

three significant and diagnosed activity models. Accordingly, normality of the residuals was verified using 

standardized histograms and normality plots, and a lack of a pattern in the scatter plots of residuals was 

also confirmed. The results, shown in Table 4.3, summarize the model testing results for the selected 

activity models, which have only one independent variable as shown in Eqs. (4.2) to (4.4), where 𝑍 = 

CLP, 𝑦2 = Preparatory work, and 𝑦3 = Material handling. 

𝑍𝑊𝑎𝑙𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑛𝑔  =  4.876 − 16.668 𝑦3 (4.2) 

𝑍𝐵𝑜𝑥 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛  =  2.539 − 5.467 𝑦2 (4.3) 

𝑍𝑃𝑖𝑝𝑖𝑛𝑔  =  5.250 − 11.025 𝑦2 (4.4) 
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However, the coefficient of determination, based on R2 values, of the activity models for wall 

concreting, box installation, and piping activities showed that the models explained only 21.6%, 12.2%, 

and 12.9%, respectively, of the variability in CLP. As the coefficient of determination is low, the prediction 

error is expected to be high, and the usefulness of the activity models for predicting actual CLP is limited. 

These results suggest that the relationship between productivity and direct work is complex, and an 

increase in direct work alone might not result in better labour productivity. This finding completely aligns 

with the studies by Thomas (1991) and Josephson and Björkman (2013), which concluded that direct 

work is not significantly related to productivity. This study proves the limitations of activity models based 

on actual field data consistently collected from various projects and using accurate measures of CLP, 

standard WS categories, a strict data collection protocol, and a wide variety of activities ranging from 

commercial concreting of structural elements to boiler maintenance work in shutdowns. However, failures 

to find a significant relationship indicate that other factors or intermediate variables might have caused the 

failure to detect any significant relationship (Horman and Kenley 2005). The findings, thus, indicate that 

use of a system-based CLP model is necessary, as optimal solutions to any input-to-output conversion 

system can be found only if all the relevant parameters and components of the system are properly 

analyzed (Chang and Ibbs 2006). The research described in the following section presents a system CLP 

model that aims to advance the research framework of modeling CLP. 

4.5: SYSTEM-BASED CLP MODELING APPROACH (I–P–O Relationship)  

According to Chang and Ibbs (2006), organization operations and project performance have often 

been studied using system models. The present study develops the system model shown in Fig. 4.3. The 

system model consists of input (I), or independent, variables representing key parameters (factors and 

practices) influencing CLP; process (P) variables representing the seven work sampling proportions; and 

an output (O), or dependent, variable representing CLP. The process variables are treated as either 

mediator or moderator variables. In system models, I variables are assumed to cause an O variable, and 

this effect is represented as a direct effect (refer to Fig 4.3). Additionally, P variables can have either a 

mediating or moderating effect. In a mediation case, the P variables will have an indirect effect on the O 
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variable, and the total effect of the variables I and P on O will be the sum of the direct and indirect effects. 

“Complete mediation” occurs when, as a result of the mediating effects of the P variables, the I variables 

no longer affect the O variable, and the direct effect of I on O is zero (Hayes 2013). In contrast, in a 

moderation case, the P variables alter the strength of the causal relationship between the I and 

dependent (O) variables and may amplify or even reverse the direct effect of I on O (Hayes 2013).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Modeling Paths for System Model of CLP 

Thus, depending on the role of the P variables (work sampling proportions) in explaining the 

variability of CLP, the system model will constitute three paths (refer to Fig 4.3). The first path, 

represented as 𝑀𝑃1, is based on the I–O relationship and comprises the factor CLP model. The second 

path, represented as 𝑀𝑃2, is based on the I–P–O relationship and assumes that process variables have a 

mediating effect; it comprises a “mediated system” CLP model. In the mediated system CLP model, the 

assumption is based on complete mediation, where the I variables influence the P variables as mediator 

variables, which in turn influence the output or dependent variable (O). The third path, represented as 

𝑀𝑃3, is based on the (I and P)–O relationship and assumes that P variables have a moderating effect; it 

comprises a “moderated system” CLP model. In the moderated system CLP model, the assumption is 
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that the P variables, as moderator variables, affect the direction and strength of the relationship between 

the I and O variables.  

4.5.1: Implementation Procedure 

The following procedure was developed to test the proposed system CLP model. These steps 

indicate how to prepare the I–P–O data, develop the three path models, and test and select the most 

accurate system model of CLP:  

1. Identify parameters influencing CLP and develop a measurement scheme. Also define labour 

utilization measures using work sampling proportions and establish an appropriate output measure 

for calculating CLP.  

2. Select a labour-intensive activity and collect data on parameters, work sampling proportions, and 

CLP, which will formulate the input, process, and output variables, respectively, of the system model.  

3. Establish model input features (𝐹1) based on the key parameters influencing CLP for the factor model, 

or model path 𝑀𝑃1, based on the I–O relationship.  

4. Establish model input features (𝐹2−1) based on the key parameters influencing the process variables 

for the mediated system model, or model path 𝑀𝑃2−1, based on the I–P relationship. Also, establish 

model input features (𝐹2−2) based on the key process variables influencing the CLP variable for model 

path 𝑀𝑃2−2, based on the P–O relationship.  

5. Establish model input features (𝐹3) based on the key parameters and process variables influencing 

CLP for the moderated system model, or model path 𝑀𝑃3, based on the (I and P)–O relationship.  

6. Analyze the I–O relationship using the factor models in the 𝑀𝑃1 path.  

7. Analyze the I–P–O relationship using the mediated system models in the 𝑀𝑃2 path, which includes 

𝑀𝑃2−1 and 𝑀𝑃2−2 sub-paths. 

8. Analyze the (I and P)–O relationship using the moderated system models in the 𝑀𝑃3 path.  

9. Compare and contrast the overall accuracy of results of the three model paths and identify the most 

accurate system model.   
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4.6: SYSTEM MODEL OF CLP FOR CONCRETING ACTIVITY  

The preceding system model and procedure were tested using the field data collected for this 

research. Analysis focused on concreting data collected from six projects (see Table 2.9). Data instances 

from the six structural elements were combined, which, compared to the other activities studied (also 

shown in Table 4.1), produced the largest data set with a total of 92 instances. Due to data size 

limitations, system models of the other activities were not developed. The results of the investigation of 

the three model paths for the I–P–O relationship for the concreting activity are presented here.  

4.6.1: Establishment of System Model Features 

Before testing the mediation and moderation effect assumptions presented above, feature 

extraction techniques like factor analysis are commonly applied in system modeling so as to reduce the 

input variable feature space (Hayes 2013). In this study, the 169 input parameters and 7 process 

variables result in a high-dimension I–P–O feature space, which must be reduced. The data-driven 

approach discussed in Section 3.4 for identifying key parameters was used to reduce the feature space. 

The most relevant features were selected using the Waikato Environment of Knowledge Analysis (WEKA) 

tool. The CfsSubsetEval algorithm was employed as the attribute subset evaluator with the BestFirst 

algorithm for the search method, as together, these provide the most efficient approach to correlation-

based feature selection (Rodrigues et al. 2015). Key parameters, or features having high correlations with 

CLP but low inter-correlations, were identified for use in developing the system model. 

The results of the feature selection process are shown in Table 4.6. The 𝐹1 model input features 

for the factor model, or path 𝑀𝑃1, were selected from the I–O data; 15 of 106 features were selected. 

Similarly, the 𝐹2−1 model input features were selected for the first part of the mediated system model, or 

path 𝑀𝑃2−1, from the I–P data; 43 of 108 features were selected. Next, the  𝐹2−2 model input features 

were selected for the second part of the mediated system model, or path 𝑀𝑃2−2, from the P–O data; 4 of 

7 features were selected. Finally, the  𝐹3 model input features for the moderated system model, or path 

𝑀𝑃3, were selected from the (I and P)–O data; 16 of 112 features were selected. Full descriptions of the 

selected features or variables, made up of key input and process parameters, are shown in Table 4.6. 
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Table 4.6: System Based CLP Models: Features Used for Model Development   

CLP model 
Model 
path 

Feature selection 
Selected features or model variables, ID 

F S S/F 

Factor model 𝑀𝑃1 106 15 13% 

Craftsperson motivationx11, craftsperson fatiguex12, craftsperson trust in 
foremanx13, level of absenteeismx15, job securityx23, availability of toolsx37, 
change of foremenx58, project work timesx96, owner staff on sitex97, approval of 
shop drawings and sample materialsx101, labour productivity measurement 
practicex126, availability of communication devicesx143, concrete placement 
techniquex45, structural elementx46, construction labour productivityz  

Mediated 
system model 

𝑀𝑃2−1 112 43 39% 

Project typex70, craftsperson educationx2, craftsperson on-job trainingx3, crew 
compositionx5, crew experience (seniority)x6, co-operation among 
craftspersonx8, treatment of craftsperson by foremanx10, craftsperson 
motivationx11, craftsperson fatiguex12, level of absenteeismx18, discontinuity in 
crew makeupx17, fairness of work assignmentx19, crew flexibilityx21, availability of 
craftspersonx24, quality of task materialsx26, material unloading practicesx31, 
material movement practices (horizontal)x32, equipment breakdownx36, 
availability of toolsx37, availability of extension cordsx40, complexity of taskx41, 
level of reworkx42, frequency of reworkx43, task change ordersx44, working 
condition (noise)x47, congestion of work areax50, foreman skill and 
responsibilityx56, fairness in performance review of crew by foremanx57, change 
of foremenx58, approval for building permitx67, queue time to access site x91, 
support and administrative staffx104, availability of labourx112, project cost control 
practicex125, out of sequence inspectionx129, safety incident investigationx137, 
communication between different tradesx142, project team developmentx145, 
sorting of waste materialsx147, oil price fluctuationx167, natural gas pricex168, 
concrete placement techniquex45, type of structural elementx46, direct worky1  

𝑀𝑃2−2 8 5 57% 
Direct worky1, preparatory worky2, travely6, personaly7, construction labour 
productivityz 

Moderated 
system model 

𝑀𝑃3 113 17 14% 

Craftsperson motivationx11, craftsperson fatiguex12, craftsperson trust in 
foremanx13, level of absenteeismx15, job securityx23, availability of toolsx37, 
change of foremenx58, project work timesx96, owner staff on sitex97, approval of 
shop drawings and sample materialsx101, labour productivity measurement 
practicex126, availability of communication devicesx143, concrete placement 
techniquex45, structural elementx46, direct worky1, personal y7, construction 
labour productivityz 

Note: F = total feature space based on collected parameters and/or work sampling categories, S = selected feature space after 
running the feature selection algorithm. Features in italics indicate process variables, and features in bold indicate the target variable. 
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4.6.2: Development and Evaluation of System Models   

Tests on the mediation and moderation effect assumptions are traditionally carried out using 

regression analysis approaches like structural equation modeling (Hayes 2013). According to Green 

(1991), the desired sample size (DS) for testing multiple regression is DS > 50 + 8F (where F is the 

number of independent variables) and the absolute minimum size is 30. This study examines a total of 

169 independent input and 7 process variables; even if only 15% of these variables were selected using 

the feature selection process, the desired sample size required for regression analysis would be 261 (i.e., 

50 + 8 × 176 × 0.15). 

Collecting such a large number of data instances is not realistic in CLP studies, as this would 

require extensive data collection over an extended period of time—an expensive, time-consuming 

endeavor. Therefore, as regression analysis is not realistic, this study use artificial intelligence (AI) 

techniques like neural networks and fuzzy rule-based models. Such techniques are able to deal with high 

dimension feature space with limited data, so by adopting them, the limitations associated with regression 

analysis are overcome.  

In this way, the mediation and moderation effect assumptions were tested by developing AI 

technique-based models and evaluating which model and path provided the most accurate results. As 

testing the system model assumption using only one modeling approach could be misleading, three AI-

based approaches were studied: (1) neural networks (NN); (2) a fuzzy inference system (FISm) based on 

Mamdani fuzzy rule-base; and (3) a fuzzy inference system (FISs) based on Sugeno fuzzy rule-base. AI 

models were developed for each of these approaches in the MATLAB® 2014 environment, and used 

identical model architectures for the three paths. The NN models used a feedforward backpropagation 

learning algorithm with a hidden layer, 10 neurons, a hyperbolic sigmoid transfer function, and a learning 

rate of 0.01—all of which are the default model parameters in MATLAB’s NN Tool Box.  

Fuzzy inference or rule-based models use fuzzy sets and if-then rules with condition and 

conclusion parts. In the case of Mamdani fuzzy rule-based models, the conclusion is represented as a 



 134 

fuzzy set and defuzzification is employed to obtain a crisp output value. In Sugeno fuzzy rule-base 

models, the conclusion is represented using a function (Pedrycz and Gomide 2007). Both Mamdani fuzzy 

rule-based (FISm) and Sugeno fuzzy rule-based (FISs) models were developed using the MATLAB 

“genfis3 (Mamdani)” and “genfis3 (Sugeno)” functions, respectively. The functions generate the 

respective fuzzy inference models using Fuzzy C-Means (FCM) clustering technique and approximated 

membership functions of each cluster as a Gaussian membership functions for all fuzzy sets. The FCM 

algorithm extracts the rules that model the behavior of the data and develops the fuzzy sets membership 

functions in the rule condition and conclusion for Mamdani fuzzy rule-based models, and only in the rule 

condition for Sugeno fuzzy rule-based models. The number of rules was determined using the subtractive 

clustering method with radii of 0.5 and the minimum and maximum values of the variables included in the 

model input feature space and output variable as limiting boundaries.  

The Mamdani fuzzy rule-based model consists of four parts: fuzzification, implication, 

aggregation, and defuzzification. In the fuzzification stage, the model calculates the degree of 

membership for each fuzzy set based on the value of each variable. Then, for each rule, a single value is 

calculated by applying a fuzzy operator to the membership values of each variable. The MIN (minimum) 

fuzzy operator was used to combine the different parts of the conditions of the rules and also for 

implication. The MAX (maximum) operator was used for rule aggregation, and the centroid method for 

defuzzification. These fuzzy operators are the default model parameters in MATALB’s Fuzzy Tool Box for 

Mamdani fuzzy rule-based models. The Sugeno fuzzy rule-based model consists of three parts: 

fuzzification, implication, and aggregation. Fuzzification is achieved similarly to the Mamdani model. The 

PROD (product) fuzzy operator was used to combine the different parts of the conditions of the rules and 

for the implication method. The MAX operator was used for rule aggregation. These fuzzy operators are 

the recommended operators in Sugeno fuzzy rule-based models (Pedrycz and Gomide 2007). 

To test and select the most accurate system model, this study employed a number of model 

performance metrics. For each of the three model paths, AI-based models were developed using NN, 
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Mamdani fuzzy rule-based (FISm), and Sugeno fuzzy rule-based (FISs) architectures. For each AI model, 

the mean prediction error (Ei) and standard deviation of prediction errors (STDi) were used to evaluate 

accuracy. As the objective is to evaluate which model path is most accurate, for each path, the accuracy 

results of the three different AI models were combined to get an overall accuracy evaluation of the model 

path. The combination of the results of the AI models will ensure the path selection is not dependent on 

one specific model architecture but rather on the strength of the path in providing a better explanation of 

CLP and its variance. Timeliness, precision, repeatability, and accuracy performance metrics were used 

to determine the overall accuracy of a given model path (Zemouri et al. 2010). Suppose n represents the 

total number of data instances for the activity under investigation, i represents each of the AI models in 

the three paths (for this study i=9), and MPk represents a given model path where MP represents a model 

path and k represents the number of model paths (for this study k=3).  For every model, the mean 

prediction error and standard deviation of errors are computed using Eq. (4.5) and Eq. (4.6), where 𝑡𝑗 is 

the target value for the jth data instance and 𝑦𝑗 is the corresponding predicted value. 

𝐸𝑖 = 
1

𝑛
 ∑√(𝑡𝑗 − 𝑦𝑗)

2

𝑛

𝑗=1

 
(4.5) 

𝑆𝑇𝐷𝑖 =  √∑
1

𝑛
(𝐸𝑖 − 𝑦𝑗)

2

𝑛

𝑗=1

 

(4.6) 

Timeliness of a given model path (MPk) is measured by calculating the mean of the mean of 

prediction errors of the three AI models developed for the model path (Eq. 4.7). Precision of a given 

model path is measured by calculating the mean of the standard deviations of prediction errors of the 

three AI models developed for the model path (Eq. 4.8).  Repeatability of a given model path is measured 

by averaging the standard deviation of both the mean of prediction errors and standard deviations of 

prediction errors of the three AI models developed for the model path (Eq. 4.9).  In Eq.s (4.5) through 

(4.7), 𝐸𝑖𝑘 is the mean prediction error of each ith AI model in the kth model path, and 𝑆𝑇𝐷𝑖𝑘 is the standard 

deviation of error of each ith AI model in the kth model path. 
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𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 = 𝐸𝑘
̅̅ ̅ =  

1

𝑘
 ∑𝐸𝑖𝑘

𝑘
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑆𝑇𝐷𝑘
̅̅ ̅̅ ̅̅ ̅ =  

1
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𝑘
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(4.8) 

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝜎 (𝐸𝑖𝑘) + 𝜎 (𝑆𝑇𝐷𝑖𝑘)

2
 

(4.9) 

Accuracy measures the global accuracy of the prediction path and is calculated as in Eq. (4.10). 

The accuracy measure of the three model paths is compared, and the model path that gives the highest 

accuracy is considered to be the appropriate system model.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
 

(4.10) 

 The perfect score for timeliness, precision, and repeatability performance measures is achieved 

when the values are equal to zero, and a larger value of accuracy performance measure indicates a 

greater confidence in the predictive capability of the model path in predicting CLP (Zemouri et al. 2010).   

4.6.3: Results and Discussion    

The factor model based on the I–O relationship, or model path 𝑀𝑃1, was analyzed, and three AI 

models were developed using the selected 15 features shown in Table 4.6. The performance measures 

of the factor model shown in Table 4.7 indicated that the overall accuracy of the model path was 0.2768. 

The I–P–O relationship, or model path 𝑀𝑃2, was analyzed using the mediated system model; three AI 

models were developed using the selected 43 features for model path 𝑀𝑃2−1 and 4 features for model 

path 𝑀𝑃2−2, both shown in Table 4.6. The performance measures of the mediated system model, shown 

in Table 4.7, indicated that the overall accuracy of the model path was 0.2609. The (I and P)–O 

relationship, or model path 𝑀𝑃3, was analyzed using the moderated system model; three AI models were 

developed using the selected 17 features shown in Table 4.6. The performance measures of the 

moderated system model shown in Table 4.7 indicated that the overall accuracy of the model path was 

0.3042.  
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Table 4.7: System Based CLP Models Performance Analysis  

With an accuracy value of 0.3042, of the factor (𝑀𝑃1), mediated system (𝑀𝑃2), and moderated 

system (𝑀𝑃3) models shown in Table 6, the moderated system model was found to be the most accurate, 

proving that process variables (P) have a moderation effect is accurate. The mean of prediction errors of 

the three AI models for the moderated model path were also consistently lower than the other two model 

paths. This finding implies that process variables or work sampling proportions, do not directly affect CLP 

but rather strengthen the influence of the parameters on CLP, as the moderated system model had 9.9% 

accuracy improvement over the factor model due to the moderation effect of the process variables. The 

moderated system model also had 16.7% accuracy improvement over the mediated system model. 

Timeliness performance measures also indicated that the moderated system model had the lowest 

timeliness value (1.260), indicating that this model has a higher chance of accurately predicting CLP 

compared to the factor model and mediated system model. Precision performance measures also 

indicated that, with a precision value of 1.882, the moderated system model performs better than the 

other two, as the predicted values from the moderated system model are less dispersed and more 

specific. However, with a repeatability value of 0.053, the mediated system model showed better 

repeatability performance compared to the other two models.  

The comparison of the factor and mediated models indicated that the factor model had better 

accuracy than the mediated system model, which implies that the assumption that input variables 

CLP model Path 
Model 
type 

Ei STDi Timeliness Precision Repeatability Accuracy 

Factor model 𝑀𝑃1 

NN 1.418 1.831 

1.477 1.983 0.152 0.2768 
FISm 1.645 2.243 

FISs 1.369 1.875 

Mediated 
system model 

𝑀𝑃2−1 

𝑀𝑃2−2 

NN 1.861 2.019 

1.765 2.015 0.053 0.2609 FISm 1.809 2.020 

FISs 1.626 2.006 

Moderated 
system model 

𝑀𝑃3 

NN 1.045 1.741 

1.260 1.881 0.147 0.3042 FISm 1.340 2.071 

FISs 1.396 1.829 
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influence the process variable, which in turn influences CLP, is not accurate and a causal relationship 

between input variables (key parameters) and CLP does exist. Thus, CLP optimization can be achieved 

by adjusting the key factors and practices influencing it. Additionally, the moderated system model shows 

that work sampling proportions do not directly affect CLP, but strengthen the influence of the parameters 

on CLP. Therefore, the results imply that focusing improvement efforts on key factors and practices 

identified for model path 𝑀𝑃3, as shown in Table 4.6, would lead to improved CLP—but only in 

combination with appropriate utilization of labour time characterized by higher direct work and lower 

personal work time proportions. Based on these findings, the following factors and practices should be 

considered in order to improve CLP: availability of tools, use of concrete pumps for placement, labour 

productivity measurement practice, craftsperson trust in foreman, level of absenteeism, craftsperson 

fatigue, and availability of communication devices. Additionally, the findings suggest that direct work and 

personal work proportions should be considered during execution of concreting (concrete placement) 

operations. Lastly, the accuracy of the moderated system model presents a novel approach to how work 

sampling proportions can be integrated with parameters (factors and practices) in future CLP modeling 

and analysis studies. The success of this approach supports the recommendation that future CLP studies 

should carry out work sampling studies in conjunction with documentation of key parameters to accurately 

measure productivity. 

4.7: CHAPTER SUMMARY  

The construction industry is constantly searching for ways to improve construction labour 

productivity (CLP), but until now the industry has lacked crew-level CLP models capable of explaining 

which parameters (factors and practices) cause productivity to change. As a result, the industry has been 

unable to propose CLP improvement strategies that accurately reflect the construction environment, 

where tradespeople work together in crew units. This chapter presents a research methodology that 

integrates a variety of traditional data collection methods used in CLP studies—namely: factors and 

practices documentation, work sampling (WS) studies, foreman delay surveys, craftsman questionnaires, 
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and productivity measurement—to formulate input, process, and output variables for use in CLP system 

modeling.  

Using extensive field data collected from 11 construction projects across Alberta, Canada, this 

chapter examined the validity of the existing activity and factor modeling approaches. It tested the validity 

of the activity models by investigating the relationship between CLP and seven work sampling proportions 

for 8 activities: concreting for columns, slabs, and walls; electrical box installation, piping, and wire pulling; 

and shutdown overlays and shield installations. The investigation showed that direct work proportions are 

not significantly correlated to CLP and accurate prediction of CLP is not possible with either linear or 

nonlinear regression models. No significant correlations between the proportion of direct work and CLP 

could be observed, so direct work proportions cannot be used as surrogate measures of CLP; 

furthermore, activity models are not able to explain the variability of CLP and need additional explanatory 

parameters to improve their predictive capability. 

This chapter proposes a novel system model approach for improved prediction of CLP using input 

variables made up of key influencing parameters in conjunction with process variables made up of work 

sampling proportions. Three models, namely, a factor model, mediated system model, and moderated 

system model, were formulated and evaluated. The approach used the correlation-based feature selector 

(CFS) algorithm to reduce the high dimension of the independent variables, and artificial intelligence (AI) 

techniques based on neural networks, Mamdani fuzzy rule-base (FISm) models, and Sugeno fuzzy rule-

base (FISs) models to formulate, test, and determine the most accurate system model. The analysis 

results showed that the moderated system model is the most accurate; it also had the best performance 

for timeliness and precision measures. The moderated system model proves that process variables have 

a moderating effect on factor models. The analysis results further indicate: (1) a causal relationship 

between parameters and CLP exists, and optimization of CLP can be achieved by adjusting the 

parameters or key factors and practices influencing it; (2) work sampling proportions do not directly affect 

CLP but rather strengthen the influence of the parameters on CLP; and (3) work sampling proportions can 
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be integrated with parameters in future CLP modeling and analysis studies following the presented 

methodology. In the next chapter, using the findings of the moderated system model approach and the 

context-specific nature of the key parameters influencing CLP, a framework for the development of 

context-specific CLP models based on fuzzy inference systems (FIS) is presented.  
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Chapter 5: Developing and Optimizing Context-Specific CLP Models5 

5.1: INTRODUCTION AND BACKGROUND   

Construction labour productivity (CLP) is of critical importance to the construction industry, as it 

directly affects the profitability and competitiveness of construction companies (Song and AbouRizk 

2008), and it is therefore a frequently researched topic. Nevertheless, labour productivity continues to be 

a major source of construction risk and exhibits the highest variability among construction resources 

(Tsehayae and Fayek 2014). CLP is an efficiency measure of an activity-level open system that deals 

with the process of converting inputs (material, information, etc.) to outputs (project components) using 

labour as the chief transformation mechanism. In this study, CLP is defined as the ratio of units of 

output—in terms of installed quantity—to units of input—in terms of total labour work-hours—with the 

attainment of higher CLP values being the objective of CLP systems. It is important to note that the 

environment of CLP systems is more complex and unpredictable than the construction process itself, 

causing a number of parameters to either directly or indirectly influence CLP.  

Several CLP studies have identified numerous parameters that influence CLP (Thomas et al. 

1990; Fayek and Oduba 2005; Song and AbouRizk 2008; Oral et al. 2012; Tsehayae and Fayek 2014; 

Gerek et al. 2014), and CLP models for analyzing the impact of the influencing parameters on CLP have 

been developed using a variety of modeling techniques (Yi and Chan 2014). Overall, the tested CLP 

models can be categorized as either factor or activity models. Factor models relate different input 

variables to labour productivity. These input variables are made up of key influencing parameters (factors 

and practices) such as crew size, weather conditions, etc. Activity models relate process variables, in 

terms of work sampling proportions, to labour productivity. Notably, the identified influencing parameters 

and the associated CLP models were all context-dependent, as the identified parameters and their 

degree of impact on CLP varied from project to project (Tsehayae and Fayek 2014; Gerek et al. 2014). 

However, only a few CLP studies explicitly defined the context of the CLP modeling processes. In a study 

                                                      
5 Parts of this chapter have been submitted for publication in Journal of Construction Engineering and Management, 
JCEM, 33 manuscript pages, submitted June 30, 2015; and have been published in the Proceedings, NAFIPS Annual 
Meeting 2012, Berkeley, California, US, August 6-8, pp. 1-6. 
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to model the effect of delay time on concrete placement productivity, context was used during the data 

collection stage as a control variable specifying building type, type of equipment and method, project 

location, type of contract, and union type attributes so as ensure proper comparison among studied 

projects (Christian and Hachey 1995). Thomas and Raynar (1997) quantified the effect of scheduled 

overtime on CLP by combining data from four projects; they collected project features based on type of 

project, approximate cost, and approximate planned duration attributes in order to formulate the project 

conditions under which the construction work was done. Fayek and Oduba (2005), employed fuzzy 

inference systems to predict the CLP of pipe rigging and welding activities, and clearly defined context as 

a set of multi-leveled factors whose values are fixed for a given project scenario and/or activity. The 

authors used context to categorize activities and formulate the membership functions (MFs) of the fuzzy 

sets in the CLP model. The context attributes were established at two levels: project-level context 

variables included project location, year of construction, client, contract type, project type, and season of 

construction, while activity-level context variables included material type and weld type (applicable to 

welding activities only). Thus, most of the developed CLP models were focused either on the impact of a 

few selected influencing factors or on the advancement of the state of art of modeling techniques. Most 

models overlooked the role of context in CLP model development. Additionally, the development of 

accurate and interpretable CLP models has been a challenge due the complex variability of CLP and the 

limited data availability to study CLP under various contexts; thus, studies have focused on the use of 

artificial intelligence techniques like neural networks and fuzzy inference systems to model CLP (Oral et 

al. 2012; Fayek and Oduba 2005). Fuzzy inference systems (FISs) are based on fuzzy set theory and if-

then rules, and have proved effective tools for solving engineering problems in biomedicine, robotics, 

pattern recognition, image processing, and control application areas (Botta 2008). The use of FISs has 

also been gaining widespread attention in construction research (Chan et al. 2009). However, there have 

been few applications of FISs in CLP modeling, and the few studies using FISs were limited in that they 

did not develop MFs and if-then rules from data (Mao 1999; Fayek and Oduba 2005). Additionally, FIS 
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inability to learn from data and develop and optimize system parameters is a major limitation. Thus, 

hybridizing FIS through combination with other artificial intelligence techniques such genetic algorithms 

(GA) have been tested, resulting in improved learning capabilities (Awad and Fayek 2013).  

This chapter provides a methodology that addresses CLP modelling challenges using a hybrid 

approach that incorporates fuzzy inference systems developed using a data-driven fuzzy clustering 

technique combined with a GA-based optimization process. The development of the CLP models begins 

with identifying, classifying, quantifying, and documenting the parameters influencing CLP. Past studies 

used either input variables made up of key influencing parameters (factors and practices) for developing 

factor CLP models or process variables made up of key work sampling proportions for developing activity 

CLP models. However, previous studies have not succeeded in developing an integrated system 

approach that captures the overall relationship between both input and process variables and CLP. To 

address this gap, a novel system model approach for improved prediction of CLP using input variables 

made up of key influencing parameters in conjunction with process variables made up of work sampling 

proportions was developed as discussed in Section 4.6, The system analysis results showed that the 

moderated system model is the most accurate, demonstrating that process variables have a moderating 

effect on factor models and concluded that: (1) a causal relationship between input variables (key factors 

and practices) and CLP exists; (2) work sampling proportions (process variables) do not directly affect 

CLP, instead they strengthen the influence of the input variables on CLP; and (3) work sampling 

proportions can be integrated with influencing factors and practices resulting in a moderated input 

variables for future CLP modeling and analysis studies. Thus, by adding the process variables to the list 

of factors and practices, the resulting moderated system model will improve the accuracy of predicting 

CLP as compared to using only the factors and practices in predicting CLP. Following these findings, the 

CLP influencing parameters in this study were formulated by adding process variables (work sampling 

proportions) to the input variables (factors and practices). Therefore, the 169 previously developed CLP 

parameters, which are comprised of various objective and subjective factors and practices (e.g., crew 



 147 

size, complexity of task, congestion of work area, safety training, etc.), are combined with 7 process 

efficiency measures based on work sampling proportions (direct work, preparatory work, tools and 

equipment, material handling, waiting, travel, and personal) and were used to define the CLP system and 

its environment. Accordingly, the quantification process, discussed in Chapter 2, to formulate appropriate 

measurement scales and facilitate field data documentation of the 176 influencing parameters has 

resulted in a total of 321 measurable variables. The variables were then used to investigate the following 

objectives of this chapter: (1) to apply an explicit operational definition of context for CLP model 

development and formulate context attributes, (2) to apply the operational definition of context to classify 

the studied construction projects based on context similarity, and study the complex variability of CLP 

using context-specific models addressing each of the identified unique contexts, (3) to investigate the 

effect of context in CLP modeling by comparing the performance of context-specific models against the 

generic CLP model, (4) to illustrate the application of a data-driven fuzzy clustering technique in the 

development of an interpretable FIS, and (5) to address the FIS’s major limitation, namely, the inability to 

learn from data, by using a GA-based optimization process, and validate the FIS models using a leave-

one-out strategy.  

This chapter begins by reviewing the concept of context and formulating context attributes based 

on the operational definition for application in the field of CLP modeling. Next, the chapter discusses the 

procedure for developing context-specific CLP models and, using field data collected for concreting 

activity, applies the procedure to develop, optimize, and validate a series of context-specific CLP models. 

Subsequently, it performs a comparative assessment of the context-specific models and discusses the 

role of context in CLP modeling. Finally, conclusions are presented.  

5.2: DEFINING CONTEXT FOR CLP MODELING  

Computing fields like cognitive psychology, natural language processing, business, philosophy, 

linguistics, artificial intelligence, database integration, communication, and education sciences have vastly 

explored and applied the concept of context (Bazire and Brézillon 2005). Context has been recently 
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applied in the construction domain to determine the meaning of information items coming from different 

databases used by architecture, engineering, and construction firms participating in the same 

construction projects (Zhu 2005). For real-world engineering applications, context is quite useful, as it 

restricts the state of a problem’s space within which an effective representation can be developed 

(Brézillon and Pomerol 2001); context is therefore considered static in the modeling of real-world 

problems (Turner 2014).  

However, establishing a complete description of context remains a challenge (Bazire and 

Brézillon 2005). In CLP modeling, the aim is to define context at a level that will enable the effective 

modeling of the construction process. Accordingly, this chapter relies on the following operational 

definition of context: context is what constrains the main elements of a CLP model without intervening in 

the model development process explicitly (Bazire and Brézillon 2005). Therefore, the context of a CLP 

model can be represented using a set of context attributes that define the properties of the main elements 

of a CLP model: (i) user of the developed CLP model, (ii) model developer, (iii) CLP model, and (iv) 

environment of the studied CLP system. Context attributes have been generated using the 5W1H 

questions approach: Who? What? Where? When? Why? and How? (Jang and Woo 2003). From the list 

of 169 factors and practices shown in Table 2.1, the static factors and practices providing the best 

answers to the “who,” “what,” “where,” “when,” and “why” questions were identified and mapped to the 5W 

context attributes. Table 5.1 shows a list of context attributes for CLP modeling together with example 

values.  

The “who” aspect of context characterizes the conditions of the resource (labour, material, 

equipment, etc.) directly involved in the construction process, and the “what” addresses the CLP 

conversion process under investigation. The “where” and “when” aspects represent the location and time-

specific properties, respectively, of the CLP model. The “why” aspect of context represents the intentions 

of the CLP system study (e.g., prediction and optimization of CLP, identifying effect of important factors 

like change order, etc.) and the expected user of the developed CLP model (e.g., cost estimators, project 
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planners, researchers). The “how” aspect of context addresses the modeling methodologies adopted for 

identifying influencing parameters, quantifying parameters, collecting data, applying the modeling 

technique, and validating the models. 
 

Table 5.1: Context Attributes for CLP Modeling with Example Values for Project 1 of Context 1    

Project  Context attributes 

Mixed-
use office 
and staff 
facility 
project 
 

WHO 

Labour and crew [multiskilling of crew (civil), open shop]; Materials and 
consumables [policy on material management (yes), material order tracking 
system (no)]; Project owner team [owner staff on site (none), supervision from 
owner or representative (low), owner's primary driver (safety and cost)]; Project 
contractor team [foreman experience (6 months), superintendent experience (32 
years) and project management experience (6 years)]; Contractor organization 
[organization's principal project type (commercial, institutional), organization year 
in industry (over 100 years), annual turnover , annual employee turnover, 
organizational structure (matrix), project load]; National [foreign workers use (3)] 

WHAT 

Activity property [activity type (concrete pouring), total work volume (2500m3)]; 
Engineering and instructions [use of standard specification (yes), quality of 
specifications (4), quality of drawings (4)]; Project delivery and contract type 
[project delivery system (design build), contract type (reimbursable), level of fast 
tracking (0%)]; Project nature [project type (commercial), project size, project 
complexity (3), project organization structure (line), project percent complete 
(5%)]; Project condition [site layout (4), unloading or laydown area (4)]; Project 
management practices [initial planning (front end planning (3), constructability 
review (2)), scope (definition (4), verification (2)), time (criticality of project 
schedule (80%)), cost (tracking system for labour productivity (none)), 
procurement (trade subcontracting (65%)), safety (use of safety officer (yes), 
daily job hazard assessment (yes), safety practice implementation (5)), and 
environment (environmental rating of project (LEED rated)]  

WHERE 

Activity location [cover from weather effect (no)]; Project [location (Edmonton 
region)]; Provincial or state properties [name (Alberta), economy ($312 billion), 
total number of similar projects within province (105), unemployment rate (2.5%), 
labour  strikes (none), income tax (25%), total expenditure in construction 
projects ($23 billion)]; National [name (Canada), political system stability (4), 
population (34.48 Million), interest rate (3%), inflation rate (2.08%)]  

WHEN 
Year of CLP study data collection (2012), Global attributes [global economic 
outlook (1.5% real GDP growth)]  

WHY Objectives of the CLP modeling study [prediction of CLP (yes), identifying effect 
of single factors like change order, rework, etc. (no)]; Expected users of 
developed CLP model [cost estimators (yes), project planners (yes), academic 
researchers (yes)] 

HOW Modeling methodology [parameter identification (survey and data), data 
collection (field observation), modeling technique (fuzzy inference system), and 
validation method (leave-one-out strategy)]; Model developer [academic 
researcher (yes), productivity improvement professional (no)] 

Note: Italicised context attributes are measured based on subjective 1-5 predetermined ratings.  
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 The previous CLP modeling endeavors discussed above lack a clear and explicit representation 

of context and fail to consider context in the development of the CLP models. Furthermore, the 

knowledge captured by the models is not comprehensive, as model developers have examined the 

impact of only selected factors on very few activities (Yi and Chan 2014). Context plays an essential role 

in CLP research, as it defines in which scenarios the findings of the CLP models are applicable. For 

context-sensitive problems like CLP studies, it has been recommended that models are developed 

incrementally, when needed, and for a specific context of use (Green et al. 2009; Pedrycz et al. 2012; 

Botta 2008). Therefore, the research described in the following sections presents the development of a 

series of context-specific CLP models to improve understanding of the role context plays in CLP studies.  

5.3: FUZZY INFERENCE SYSTEMS   

Due to the numerous and varied input variables influencing construction labour productivity (CLP) 

and a lack of understanding of their effects, previous CLP studies have often focused on the relationship 

between limited and mostly objective parameters and the achieved productivity. However, the same 

reasons that make CLP notoriously difficult to predict—complexity, limited data availability, and a large 

number of subjective parameters that result in an uncertainty insufficiently resolved by statistical modeling 

and probability theory—make it an exceptional target for hybrid fuzzy modeling. The context-specific 

models are thus developed using FISs, the most widely used and central architecture in fuzzy modeling 

(Pedrycz and Gomide 2007). This approach has the capability to deal with CLP’s large number of 

subjective variables by means of fuzzy partitions represented by linguistic terms, and to model the 

complexity of CLP using if-then rule base, which can be developed using limited data. The fuzzy sets 

representing the linguistic terms in the condition and conclusion parts of the if-then rules are 

characterized by their MFs, which numerically represent the degree to which an element belongs to a 

fuzzy set and fits the concept expressed by the linguistic term. Gaussian MFs have been recommended 

for their smoothness, having nonzero values at all points, possessing interpretability, and being suitable 

for optimization (Pedrycz and Gomide 2007). Nevertheless, few CLP studies have used fuzzy inference 
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systems. A CLP model for concrete wall formwork was developed using FIS, but the MFs were developed 

without using data or experts and the if-then rules were developed using inconsistent historical data that 

did not include the necessary information for some variables like crew size (Mao 1999). In another case—

fuzzy inference CLP models for industrial pipe rigging and welding activities—the MFs were developed 

using only two industry experts, and the rules were developed using simple logical reasoning rather than 

data (Fayek and Oduba 2005).  

The quality of a linguistic fuzzy inference system is guided with two contradictory requirements: 

accuracy and interpretability (Cordón 2011). In contrast to the criterion of accuracy, which is quantified 

using measures like the root-mean-square error (RMSE), the interpretability of fuzzy rules is more difficult 

to describe and deals with the complexity and semantics of the rule-base and the fuzzy partition (Gacto et 

al. 2011). The interpretability of FIS depends on several aspects: the model structure, the number of 

rules, the number of input variables, the number of linguistic terms used to characterize the input and 

output variables, and the shape and overlap of the fuzzy sets used to represent the linguistic terms 

(Gacto et al. 2011). Accordingly, it is advisable to keep the number of linguistic terms and rules as small 

as possible, include only few key input variables, and use linguistic terms that are intuitively 

comprehensible, so as reduce the complexity of the rule-base and fuzzy partition and improve 

interpretability of the FIS (Gacto et al. 2011). Thus, in FIS modeling, feature selection is first carried out to 

reduce the number of input variables by determining the most important input variables (Ahmad et al. 

2012).  

The MFs and fuzzy if-then rules of FISs can be developed using either expert-driven or data-

driven approaches (Awad and Fayek 2013). However, the curse of dimensionality results from the large 

number of model input variables in CLP models, as the number of rules grows exponentially with the 

number of input variables, and makes mapping the relationship between input variables and CLP 

complex, thus limiting the use of an expert-driven approach. To address this limitation of FISs in CLP 

modeling, a data-driven approach based on Fuzzy C-Means (FCM) clustering algorithm is used. FCM 
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clustering is the most commonly used data-driven method for forming fuzzy sets and is commonly used 

for establishing the main patterns of the input–output data set (Pedrycz and Song 2012; Ahmad et al. 

2012). Accordingly, the input–output data set of a given context, in the form (𝒙𝑖 , 𝑦), 𝑖 = 1,2, … , 𝑁, where 

input variables (factors, practices, and work sampling proportions) as 𝒙𝑖 = [𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑘𝑖]  and output 

(CLP) as 𝑦 = [𝑦𝑖], is combined to form (𝑁 + 1) − dimensional vector 𝒑 = (𝒙𝑖 , 𝑦). Then, using FCM 

clustering, a collection of 𝐶 prototypes—{𝒗1, 𝒗2, … , 𝒗𝑗} and a partition matrix 𝑈 = [𝑢𝑘𝑖] representing the 

membership degree of a data instance in the jth cluster—are developed by applying Eq. (5.1) in the 

product space of 𝑿 ×  𝑌. The process results in 𝐶 prototypes that each have a MF and corresponding to 

each of the fuzzy rules 𝑅𝑗 , 𝑗 =  1,2, … , 𝐶. Then, projecting the prototypes on the output space 𝑌 by 

considering their last coordinates as 𝑣1[𝑦], 𝑣2[𝑦], … , 𝑣𝑗[𝑦] results in the MFs of the output variable, which 

are denoted as 𝐵1 , 𝐵2, … , 𝐵𝑗. Similarly, projecting the prototypes on the input space 𝑿 as 

𝒗1[𝒙], 𝒗2[𝒙], … , 𝒗𝑗[𝒙] results in the MFs of the input variables, which are denoted as 𝐴1, 𝐴2, … , 𝐴𝑗. This 

process results in a collection of rules of the form 𝑅𝑗 : If 𝑋 is 𝐴𝑗 then 𝑦 is 𝐵𝑗, 𝑗 =  1,2, … , 𝐶. However, the 

projected MFs 𝐴𝑗 and 𝐵𝑗 do not come in a readily usable form as their shapes do not fit to common MFs 

shapes (e.g. triangular, trapezoidal, Gaussian, etc.) used in FIS models.     

𝑢𝑘𝑖 = 
1

∑ (
‖𝒑𝒊 − 𝒗𝒊‖

‖𝒑𝒊 − 𝒗𝒋‖
)

2/(𝑚−1)

𝑐
𝑗=1

 
(5.1) 

The development of the rules and respective MFs was carried out using the MATLAB “genfis3 

(Mamdani)” function. The function generated the respective fuzzy inference models using Fuzzy C-Means 

(FCM) clustering technique, and the projected input and output variable’s MFs 𝐴𝑗 and 𝐵𝑗 were 

approximated into a Gaussian membership functions. However, the Gaussian MFs are only 

approximations of the actual projected MFs, and this could reduce the accuracy of the developed FIS 

models. The fuzzification coefficient 𝑚 in Eq. (5.1), commonly set at 2.0, indicates the degree of fuzziness 

of the developed MFs of the model variables. Lower 𝑚 values (close to 1.0) will result in MFs that 

resemble the crisp set characteristic function of the model variables’ data, where membership values will 
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be close to either 1 or 0; higher 𝑚 values (𝑚 = 3) produce “spiky” MFs, where membership values are 

equal to 1 for data instances close to the prototypes, and decline in value the further they are from the 

prototypes (Pedrycz and Gomide 2007). The fuzzification coefficient 𝑚 forms another model parameter 

for further optimization of fuzzy inference systems (Pedrycz et al. 2012). FCM clustering is carried out on 

the combined input–output space; the process results in a reduced number of rules, and counteracts the 

curse of dimensionality (Ahmad et al. 2012). However, using FCM clustering, only the rules that are 

representative of the data set are formed. Consequently, the total number of prototypes, 𝐶, determines 

the number of rules, which are equivalent to the number of MFs of each input and output variable, and 

forms another one of the key FIS model parameters for further optimization (Pedrycz et al. 2012).   

The prediction process of FIS models involves coding inputs (i.e., fuzzifying input variables), input 

aggregation, fuzzy input-output implication, rule aggregation, and output decoding. In the coding inputs—

or fuzzification—stage, the FIS model calculates the degree of membership for each fuzzy set based on 

the value of each input variable. Then, for each rule, a single value is calculated using input aggregation 

by applying a fuzzy operator to the membership values of each variable. Using a fuzzy operator, the 

different parts of the inputs in the conditions of the rules are combined, and outputs based on conclusions 

are implied using the if-then rule. The results of the different rules are then aggregated using a fuzzy 

operator and the output is predicted using an output decoding or defuzzification method. According to 

(Ahmad et al. 2012), FIS model accuracies are commonly determined using the RMSE. The RMSE of a 

CLP model is calculated using Eq. 5.2, where 𝑡𝑖 is the target CLP value for the ith data instance, 𝑦𝑖 is the 

corresponding predicted CLP value, and 𝑛 is the total number of data instances.  

𝑅𝑀𝑆𝐸𝑙 =
1

𝑛
∑√(𝑡𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (5.2) 

An important interpretability measure of FIS developed using FCM clustering is the number of 

linguistic terms used to partition the model input and output variables and the number of rules (Ahmad et 

al. 2012). Maintaining a small number of linguistic terms and rules will make the rule base clearer for 

users to understand and therefore easier for them to interpret and put into practice (Gacto et al. 2011). 
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However, similar to the use of higher-order polynomial functions in regression analysis, FIS model 

accuracy will improve with a larger number of rules, as a larger number of rules will fit the data more 

accurately. On the other hand, since the number of rules is equivalent to the number of linguistic terms 

used for each model variable, having a large number of rules will result in very long if-then statements. 

For example, consider two FISs: one with two rules and the other with five. The first FIS model has two 

linguistic terms for each of the input and output variables; therefore, CLP, the output variable of the 

model, can only be linguistically represented by either of the terms “low” or “high”. The second FIS model 

has five linguistic terms for each model variable; therefore, the model’s CLP output can be linguistically 

expressed as “very low”, “low”, “medium”, “high”, or “very high”—a less interpretable result. In short, 

increasing the number of rules in an FIS model of CLP, though improving accuracy, would significantly 

reduce the interpretability of the model for users.  

Additionally, a significant limitation of FISs is that they lack the ability to learn from data and 

optimize their model parameters. FIS-based models contain several parameters that can be optimized to 

improve the accuracy and interpretability of developed CLP models. Thus, there is a necessary trade-off 

between accuracy and interpretability in the optimization of FISs (Gacto et al. 2011). Therefore, in line 

with the interpretability requirement of FIS-based models, the maximum number of linguistic terms, and 

subsequently the number of rules, is limited to seven—the recommended number of items for accurate 

human interpretation (Pedrycz and Gomide 2007)—and the smallest number of rules, according to past 

studies with FCM clustering driven fuzzy inference systems, is three (Ahmad et al. 2012).  

Furthermore, the interpretability of the fuzzy partitions is verified using completeness or coverage, 

normality, and distinguishability properties (Botta et al. 2009). The application of the FCM clustering 

approach ensures the coverage of the universe of discourse of each variable and the normality or full 

membership of the fuzzy sets at prototype values. The overlap of the fuzzy sets in the fuzzy partitions has 

to be kept to a level that the each couple of fuzzy sets are distinguishable enough (Botta 2008). The 

overlap between fuzzy sets is measured using a possibility measure   (Eq. 5.3).  



 155 

Π(𝐴, 𝐵) = 𝑚𝑖𝑛𝑥𝜀𝑈
𝑠𝑢𝑝 {𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} (5.3) 

Possibility measure is recommended for efficient computation of distinguishability of fuzzy sets 

using overlap (Mencar et al. 2007), and to ensure interpretability of fuzzy systems, the overlap of the 

fuzzy sets shall not exceed 0.8 (Pulkkinen and Koivisto 2010).     

5.4: DATA COLLECTION AND DEVELOPMENT OF CONTEXTS 

The data for concreting (concrete placement) activity shown in Table 2.9 is used for investigating 

the role of context in CLP modeling. The concrete data was gathered from six building projects in the 

greater Edmonton area of Alberta, Canada. Data collection took place between June 2012 and October 

2014 in collaboration with two partnering companies. The first three projects were built by Company 1, a 

multinational construction company with over 100 years of experience, and the last three were built by 

Company 2, a local construction company with over 40 years of experience. The projects included: (1) a 

commercial mixed-use office and staff facility building, (2) an industrial warehouse building, (3) a 

commercial warehouse building, (4) a mixed residential and community center building, (5) a high-rise 

mixed commercial-residential building, and (6) an institutional building. Concreting activity was studied in 

three data collection cycles, where each cycle extended over a month-long period and encompassed 

different weather seasons. For each data collection case, work sampling observations were made for the 

crew under study, and parameters (factors and practices), total work-hours, and installed quantities were 

documented.      

This study’s operational definition of context for CLP modeling, which states that context is what 

constrains the four elements of a CLP model (user, model developer, model, and prevailing environment 

of the model) without intervening in the model development process explicitly, was applied to the six 

projects. Using the answers to the 5W1H questions, the projects that shared similar contexts were 

grouped together, resulting in four unique contexts. The following context attributes distinguished the six 

projects that were studied, and, thus, were used as the key context attributes in comparing and identifying 

the similarity of the projects: “Who” attributes, related to the project owner’s primary driver (schedule, 
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cost, quality, or safety), contractor team’s experience, and contractor organization’s experience; “What” 

attributes related to project (i.e., building) type, site layout, project safety practice, and project productivity 

measurement and tracking practice; and “Where” attributes related to project location. Accordingly, 

projects having identical answers to key context attributes were grouped together, and the project 

(building type) context variable was used to name the four unique contexts.  

Context 1, representing concreting in industrial buildings, includes the data sets of the first two 

projects (the commercial mixed-use office and staff facility building and the industrial warehouse building). 

The context attributes used to characterize the first project of Context 1 are shown in Table 5.1. Context 

2, representing concreting in warehouse buildings, includes the data set of the third project (the 

commercial warehouse building). Context 3, representing concreting in high-rise buildings, includes the 

data sets of the fourth and fifth projects (the mixed residential and community center building and the 

high-rise mixed commercial-residential building). Context 4, representing concreting in institutional 

buildings, includes the data set of the sixth project (the institutional building). Additionally, the four 

context-specific data sets were combined to check if the context-specific models perform better than a 

generic model representing concreting in any building type and developed using the combined data set, 

and to verify the importance of applying context in CLP modeling.  

5.5: ESTABLISHMENT OF CONTEXT-SPECIFIC MODEL FEATURES   

The large feature space, made up of the 176 influencing parameters based on the moderated 

system approach, if unmodified would make the condition part of the if-then rules difficult to understand 

and interpret by model users; it must be reduced to improve the interpretability of the FIS. As discussed in 

Section 3.4, in this study, correlation-based feature selection (CFS) was applied for this purpose. The 

CFS algorithm was selected for its ability to deal with the high dimension of the features space and the 

small number of data instances, while preserving the original representation of the parameters and 

providing better understanding of the underlying process that generated the data (Guyon and Elisseeff 

2003).  



 157 

Using the Waikato Environment of Knowledge Analysis (WEKA) tool, the most relevant features 

or model variables having high correlations with CLP but low inter-correlations were identified for use in 

developing the context-specific models. A total of 16, 7, 8, and 11 features, representing the key 

influencing parameters, were selected for Context 1, Context 2, Context 3, and Context 4 CLP model 

developments, respectively. A similar feature selection process was also applied to the data set formed 

by combining the four context-specific data sets, and 16 features were established. The selected key 

influencing model features, together with their measurement scales, are shown in Table 5.2. The selected 

features clearly reveal that the key influencing features differed from one context to another. This finding 

is consistent with a previous study by Tsehayae and Fayek (2014), which compared the key influencing 

features, made up of key input parameters, among building and industrial contexts and showed that they 

are context-dependent and vary for the studied contexts. 
 
 
5.6: DEVELOPMENT AND PERFORMANCE OF ORIGINAL CONTEXT-SPECIFIC CLP MODELS   

Based on the selected features shown in Table 5.2 and associated data sets of each context, the 

four context-specific fuzzy inference CLP models were developed in an original-case form, as illustrated 

in the flow chart shown in Fig. 5.1. Additionally a fifth generic CLP model based on the combined data set 

was developed in an original-case form. For all five original-case models, the following recommended 

model parameters were used: seven rules, a fuzzification coefficient 𝑚 =  2.0, the MIN (minimum) fuzzy 

operator for input aggregation and implication, the MAX (maximum) operator for rule aggregation, and the 

CENTROID method for defuzzification (Pedrycz and Gomide 2007). Context 1, Context 2, Context 3, 

Context 4, and the generic CLP models had RMSEOC values of 1.582, 0.586, 2.193, 1.441, and 3.329, 

respectively. Comparisons indicated that all context-specific models performed better than the generic 

CLP model. The context-specific CLP models showed prediction accuracy superior to the generic CLP 

model by 52.48%, 82.41%, 34.12%, and 56.70%, respectively. These results indicate that a clear 

definition of context is useful to characterize and classify construction projects and assists in the process 

of grouping similar projects for more accurate CLP model development. 
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Table 5.2: Context-Specific CLP Modeling: Key Influencing Model Variables or Features  

Feature, ID  Scale of measure  
Context 

1 2 3 4 G 

Crew size x1 Integer (total number of crew members)      

Craftsperson on-job training x3 Real number (total duration of training, hours)      

Crew composition x5 Proportion (ratio journeyman: apprentice)      

Co-operation among craftspersons x8 1–5 predetermined rating      

Craftsperson motivation x11 1–5 predetermined rating      

Craftsperson fatigue x12 
Real number (ratio total weekly worked hours: regular weekly 
work hours) 

     

Craftsperson trust in foreman x13 1–5 predetermined rating      

Team spirit of crew x14 1–5 predetermined rating      

Level of absenteeism x15 Real number (ratio absent crew member: total crew size)      

Level of interruption and disruption x18 1–5 predetermined rating      

Fairness of work assignment x19 1 - 5 predetermined rating      

Job security x23 
Real number (average length of unemployment period, 
months) 

     

Availability of tools x37 Real number (average waiting time, minutes)      

Concrete placement technique x45 Categorical: pump (1), crane and bucket (2), direct chute (3)      

Structural element type x46 Categorical: columns (1), footings (2), grade beams (3), pile 
caps (4), slabs (5), walls (6) 

     

Location of work scope, distance x48 Real number (distance, m)      

Location of work scope, elevation x49 Real number (elevation, m)      

Congestion of work area x50 Real number (ratio of peak to average manpower)      

Fairness in performance review of crew by foreman 

x57 
1–5 predetermined rating 

     

Change of foremen x58 Integer (number of turnovers per month)      

Site congestion x90 Real number (ratio free site space: total site area)      

Project work times x96 Real number (ratio total worked hours per day)      
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Table 5.2: Context-Specific CLP Modeling: Key Influencing Model Features (continued) 

Feature, ID Scale of measure  
Context 

1 2 3 4 G 

Owner staff on site x97 Integer (total number of owner staff on site)      

Approval of shop drawings and sample materials 

x101 
Real number (average time taken to approve, days) 

     

Treatment of foremen by superintendent and 
project manager x106 

1–5 predetermined rating 
     

Uniformity of work rules by superintendent x108 1–5 predetermined rating      

Labour productivity measurement practice x126 1–5 predetermined rating      

Out-of-sequence inspection x129 Real number (number of occurrences per week)      

Safety training x135 Real number (total duration of training, hours)      

Project safety administration and reporting x138 1–5 predetermined rating      

Availability of communication devices x143 
Real number (ratio number communication radios: total 
number of crews) 

     

Oil price fluctuation x167 Real number (weekly price change, %)      

Natural gas price x168 Real number (dollar / GJ)      

Direct work proportion y1 Proportion (%)      

Preparatory work proportion y2 Proportion (%)      

Tools and equipment proportion y3 Proportion (%)      

Material handling proportion y4 Proportion (%)      

Travel proportion y6 Proportion (%)      

Personal proportion y7 Proportion (%)      

Note: G context represents the generic CLP context, based on combined data set. There were 23, 16, 28, 25, and 92 data instances for contexts 
1, 2, 3, 4, and generic, respectively.  
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5.7: OPTIMIZATION AND VALIDATION OF CONTEXT-SPECIFIC CLP MODELS    

FIS models contain several model parameters that can be optimized to improve the accuracy and 

interpretability of the developed CLP models. The model parameters available for optimizing FIS-based 

models include: the fuzzification coefficient (𝑚) in the FCM clustering; MF parameters; number of rules; 

confidence levels of rules (degree of support of rules); fuzzy operators for input aggregation, implication, 

and rule aggregation; and defuzzification methods. Optimizing these numerous model parameters at once 

will create a large search space, so optimizing each parameter separately is actually more efficient. Doing 

so will create a smaller search space where the optimization process has a better chance of arriving at 

optimal model parameter values (Cordón 2011).  

Thus, in this study, the context-specific models were optimized by dividing the search space into 

smaller spaces and conducting a stage-by-stage optimization of: (1) the fuzzification coefficient 𝑚 in FCM 

clustering, (2) MF parameters, (3) number of rules, and (4) fuzzy operators and defuzzification methods. 

Fig. 5.1 describes the optimization steps. The rules’ confidence levels or degrees of support were 

adjusted, as the rules were generated using FCM clustering, which generates unique and equally 

representative rules for the data set. Among the four model parameters optimized; the number of rules—

equivalent to the total number of prototypes 𝐶 developed in FCM clustering process, which in turn is 

equivalent to the number of linguistic terms of each model variable—is the most critical component of the 

optimization process. Thus, based on the interpretability requirement, the number of rules was increased 

incrementally from a minimum of three to a maximum of seven, creating five interpretable case models. 

The optimization process was carried out for each of the context-specific models and also for the generic 

CLP model, and was implemented in the MATLAB® 2014 environment.  
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Figure 5.1: Flow Chart for Context-Specific CLP Model Development, Optimization, and Validation 
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5.7.1: Optimization of Fuzzification Coefficient  

The fuzzification coefficient 𝑚 in the FCM clustering is used to develop the rule bases and MFs of 

the context-specific CLP models. Typically, the value of 𝑚 is assumed to be equal to 2.0, although values 

between 1.5 and 3.5 have been examined in the optimization of FCM-driven FIS models (Pedrycz et al. 

2012). Since the fuzzification coefficient 𝑚 directly affects the shape of the MFs, which are equivalent to 

the number of FIS model rules, the fuzzification coefficient 𝑚 was optimized for each of the case models. 

The best-performing model parameters were then established by averaging the RMSEOm values of each 

case model and taking the one resulting in the lowest average RMSEOm value. Accordingly, five 

fuzzification coefficient cases where 𝑚 =  1.5, 𝑚 = 2.0, 𝑚 = 2.5, 𝑚 = 3.0, and 𝑚 = 3.5 were investigated 

for the four context-specific and the generic CLP models. The results of the optimization process are 

shown in Table 5.3. The optimum 𝑚 values for the Context 1, Context 2, Context 3, Context 4, and 

generic CLP models were equal to 1.5, 2.5, 2.0, 2.0, and 1.5, respectively.   

Table 5.3: CLP Models Optimization for Fuzzification Coefficient m   

Context 
Average RMSE a 

m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 

1 1.699b 1.712 1.961 2.012 2.012 

2 0.705 0.556 0.491b 0.514 0.505 

3 6.005 2.021b 2.273 3.139 3.310 

4 1.970 1.622b 1.939 2.037 2.164 

Generic 2.657b 3.054 3.038 3.305 3.514 

a RMSE values are based on the average RMSE values of the five case models  
b Denotes the lowest average RMSE value 

5.7.2: Optimization of Membership Function Parameters   

MFs define the degree to which an element of a model feature belongs to any one of the linguistic 

terms characterizing the feature, and they are highly context-specific (Awad and Fayek 2013). In this 

study, Gaussian MFs based on Eq. (5.4) have been used for both the input features, made up of key 

influencing CLP variables, and the output, or CLP, feature and their associated linguistic terms. For a 

given feature with universe of discourse of 𝑥 and linguistic term 𝐴, the MF parameter 𝜎 represents the 
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standard deviation, denoting the spread of 𝐴, and 𝜇 represents the modal value, denoting the typical 

element of 𝐴; both parameters were optimized to improve the accuracy of the developed CLP models.  

𝐴(𝑥, 𝜎, 𝜇) = 𝑒
−(𝑥−𝜇)2

2𝜎2  (5.4) 

The optimization is carried out over the MF parameters [𝜎, 𝜇] of each of the CLP model’s 

features, resulting in a nonlinear large search space that requires an evolutionary optimization technique. 

GA is the most commonly used evolutionary optimization technique for finding optimal or near-optimal 

solutions for a given search space and have been successfully applied in the tuning or optimization of 

membership functions in fuzzy inference models, as the objective function for optimizing such problems is 

complex and nonlinear, and thus cannot be optimized using traditional gradient based techniques 

(Cordón 2011). For each of the context-specific and the generic models, two MF optimization options 

were considered. Considering 𝑃 input features, one output feature, and 𝐶 rules, the first option (Option 1) 

was based on optimizing all of the MFs in the input and output space simultaneously, resulting in search 

space 𝑈1, where 𝑈1 =  2 ∗ (𝑃 + 1) ∗ 𝐶. The second option (Option 2) was a subset of Option 1 and was 

based on optimizing only the output, or CLP feature, MFs.  

The optimization process using GA required encoding schemes to transform the MFs of the 

context-specific model features into a chromosome. The real chromosome coding structure was 

formulated based on the two parameters [𝜎, 𝜇] of each linguistic term of the model features. Then, the 

genetic operations of reproduction, crossover, and mutation were performed. Each operation generated 

new sets of chromosomes, representing a new solution that meets the optimization constraints. The 

solution chromosomes were checked according to the following MF optimization constraints: (1) The 

standard deviation 𝜎𝑗 representing the spread of any linguistic term must be greater than zero; (2) The 

modal value 𝜇1 of the first linguistic term of any model feature must not be less than the minimum value of 

the feature; (3) The modal value 𝜇𝐶 of the last linguistic term of any model feature must not be greater 

than the maximum value of the feature; (4) The modal value 𝜇𝑗 of the jth linguistic term must not be 



 164 

greater than that of the modal value 𝜇𝑗+1 of the next linguistic term, and (5) The overlap between jth and 

j+1th linguistic terms shall not exceed the limit value of 0.8.  

The optimization process was implemented in MATLAB® 2014 environment, and started with 150 

randomly generated initial population of solutions, and used expert judgment to identify the possible 

solutions which meet the above MF optimization constraints. Expert judgment was used to evaluate the 

initial random solutions as past solutions for the highly complex and nonlinear CLP problem did not exist. 

The objective function of the genetic search was to minimize the RMSEOMF of each CLP model; the 

fitness value of each solution was determined by calculating the RMSEOMF, which was then used as a 

parent for the development of the next solution using crossover and mutation. The crossover swaps parts 

of two chromosomes (i.e., solutions) according to a crossover probability, and creates the next 

chromosomes. Then after, if the average fitness of the new solution was smaller than the average fitness 

of the previous solutions, a random change in the information of the new solution was carried out 

according to the mutation probability. Crossover probability of 0.8 and mutation probability of 0.01 was 

used, and the stopping criterion was based on the fitness limit, where the iteration stopped when the 

fitness value of the last solution is greater than the best fitness value. Finally, the overlap among the MFs 

in the best solution was evaluated using the degree of overlap.  

However, due to the limited data available for the optimization process, the interpretability 

constraint limiting the degree of overlap among optimized MFs to 0.8 was not always fulfilled, and 

additional expert visual assessment of the MFs plot was carried out to verify the interpretability of the 

optimized MFs. Accordingly, in  cases when overlap among successive MFs exceeded the limit value of 

0.8 and the visual assessment verified lack of interpretability of MFs, the developed solution is rejected 

and the optimization process is repeated with new randomly generated solutions.       

Similar to the optimization process adopted for the fuzzification coefficient, the MF optimization 

process was investigated for each of the five case models of a given context. For each CLP model, the 

two MF optimization options were tested and the RMSEOMF value of each optimized case model was 



 165 

calculated. Then, the average RMSEOMF of the five submodels was calculated for each option and 

compared against the RMSEOMF value of the original-case model. The results of the MF optimization 

process, shown in Table 5.4, indicate that Option 1, which optimized all of the MFs in the input and output 

space simultaneously, did not show an improvement in RMSEOMF values. This option was not effective, as 

the search space was too large, and the associated data instances were small and unable to improve 

model accuracy. Option 2, which optimized only the output feature MFs, showed 0.58%, 5.71%, 23.00%, 

15.91%, and 16.61% improvements of average RMSEOMF over the original-case CLP models for Context 

1, Context 2, Context 3, Context 4, and the generic case, respectively. 

Table 5.4: CLP Models Membership Functions Optimization   

Context 

Average RMSE a 

Before optimization After optimization 
Improvement 

(Option 2 over original case) 

Original Case Option 1 Option 2 % 

1 1.582 2.467 1.573 0.58 

2 0.586 0.865 0.552 5.71 

3 2.193 7.392 1.689 23.00 

4 1.441 3.172 1.212 15.91 

Generic 3.329 5.150 2.776 16.61 
a RMSE values are based on the average RMSE values of the five case models  

5.7.3: Optimization of Number of Rules and Validation of CLP Models  

The quality of the developed context-specific CLP models is guided by two main criteria: accuracy 

and interpretability. The interpretability of FIS models developed using FCM clustering is directly related 

to the number of rules (Cordón 2011). Accordingly, five interpretable case models with the number of 

rules ranging from three to seven were developed for each context. Furthermore, in fuzzy inference 

system modeling it is important to confirm that the developed fuzzy models are properly validated so as to 

ensure they are capable of producing meaningful results. As the data sets in context-specific CLP 

modeling are often small, the use of a leave-one-out validation strategy is recommended (Pedrycz and 

Gomide 2007), as splitting the data into, for example, 70%–30%, will result in a very small number of data 

points available for model development. Thus, using this strategy for each of the five case models of a 
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context-specific model, all but one data point is used in model development and then the model 

performance, in terms of RMSEOV, is evaluated using the left-out data instance. This process is repeated 

for all data instances, and 𝑁 numbers of error measures based on RMSEOV values are determined, where 

𝑁 represents the number of data instances in a given context (refer to Fig.1). The lowest standard 

deviation value of the RMSEOV is then used to evaluate and identify the number of rules leading to the 

most accurate and valid context-specific CLP model.  

For the fifth generic CLP model, which is based on a relatively large combined data set, a 

traditional 70%–30% split of the data into training and testing subsets was used to validate the five case 

models (Awad and Fayek 2013). Thus, 70% of the data set was randomly selected and used for the 

development of the five cases of the generic models, with the number of rules ranging from three to 

seven, and the remaining 30% of the data set was used to test the developed models and establish the 

RMSEOV for validation. The lowest RMSEOV value, based on the test data, was used to identify the most 

valid generic case model. For each of the context-specific and the generic CLP models, the optimized 

fuzzification coefficient values were used in the validation process. The results of the validation process 

are shown in Table 5.5. 

Table 5.5: CLP Model Validation and Optimization of Number of Rules   

Context 

RMSE 

No. of rules = 3 No. of rules = 4 No. of rules = 5 No. of rules = 6 No. of rules = 7 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

1 1.488 1.389 1.567 1.312 1.502 1.272 1.453 1.255a 1.348 1.315 

2 0.679 0.543 0.655 0.530 0.574 0.521 0.610 0.508 0.647 0.502a 

3 2.492 3.131 2.348 3.072 2.380 2.907 2.320 2.845a 2.297 3.145 

4 2.078 1.328 2.003 1.409 2.022 1.305 1.974 1.301 1.985 1.270a 

Generic 

Training Testing Training Testing Training Testing Training Testing Training Testing 

3.198 3.016 2.944 1.885b 2.907 1.901 2.938 2.806 2.929 2.658 

Note: a Denotes the lowest RMSE standard deviation value of a context-specific model and b denotes the 
lowest testing RMSE value of the generic model, indicating the most valid models.  
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Accordingly, the numbers of rules leading to the most valid context-specific model are equal to 6, 

7, 6, and 7 for the Context 1, Context 2, Context 3, and Context 4 CLP models, respectively. For the 

generic CLP model, the case model having the lowest validation RMSEOV had 4 rules. The valid context-

specific and generic CLP models were highly interpretable and stable against variations in the 

experimental data used for model development. Each valid model’s output or CLP membership function 

parameters were optimized using the second MF optimization option and the overlap among the 

developed membership functions of each model were constrained using the possibility measure and the 

interpretability of the fuzzy sets was verified. 

5.7.4: Optimization of Fuzzy Operators and Defuzzification Methods  

In fuzzy inference systems, not only the MFs but also the fuzzy operators and defuzzification 

methods are context-dependent (Klir and Yuan 1995). Based on the results of the optimum model 

parameters for the fuzzification coefficient, optimized output (CLP) membership functions using GA, and 

numbers of rules, as shown in Table 5.6, the optimized CLP models were developed and sensitivity 

analysis was carried out for the fuzzy operators and defuzzification methods.  

Table 5.6: Optimized CLP Models: Structure and Model Parameters   

FIS structure and model 
parameters 

Context 

1 2 3 4 Generic 

Concreting, 
industrial 
buildings 

Concreting, 
warehouse 
buildings 

Concreting, 
high-rise 
buildings 

Concreting, 
institutional 

buildings 

Concreting,  
any 

building 

Number of input features  16 7 8 12 16 

Fuzzification coefficient  1.5 2.5 2.0 2.0 1.5 

Number of rules 6 7 6 7 4 

Input aggregation operator  PROD MIN PROD PROD PROD 

Implication method PROD MIN PROD PROD PROD 

Rule aggregation operator  MAX SUM PROBOR PROBOR MAX 

Defuzzification method MOM BISECTOR CENTROID BISECTOR CENTROID 

Accuracy (RMSE) 1.162 0.467 0.992 0.671 2.515 
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The following options of fuzzy operators and defuzzification methods were tested: for input 

aggregation [MIN (minimum) and PROD (product)], for implication [MIN (minimum) and PROD (product)], 

for rule aggregation [MAX (maximum), SUM (sum of each rule’s output set), and PROBOR (probabilistic 

OR)], and for defuzzification [CENTROID, BISECTOR, MOM (middle of maximum), LOM (largest of 

maximum), and SOM (smallest of maximum)]. The options were varied one at a time, and a total of 30 

unique combinations were tested. The options and results for Context 4 CLP model are shown in Table 

5.7.  For each optimized CLP model, the RMSEOS was determined based on the best combination of the 

listed options of fuzzy operators and defuzzification methods; the results yielding the lowest RMSEOS 

values provided the best performing fuzzy operators and defuzzification methods for CLP models, as 

shown in Table 5.6.  

The final optimized context-specific and generic CLP models parameters are as shown in Table 

5.6. The final optimized Context 1, Context 2, Context 3, Context 4, and generic CLP models had 

RMSEOF values of 1.162, 0.467, 0.992, 0.671, and 2.515, respectively. Comparing the final optimized 

models against the original-case models indicated that the optimization process improved the accuracy of 

the Context 1, Context 2, Context 3, Context 4, and generic CLP models by 26.52%, 20.22%, 54.78%, 

53.44%, and 24.46%, respectively. Furthermore, comparing the final optimized CLP models with each 

other indicated that all context-specific models performed better than the generic CLP model. 

In summary, applying the operational definition of context to CLP modeling resulted in the 

development of unique contexts derived from studied construction projects. Notably, the context-specific 

CLP models addressing the unique contexts resulted in more accurate predictions than the generic model 

did; this finding supports the need for careful examination of context in CLP research (Green et al. 2009). 

The models developed through this study can be used to predict the CLP of concreting activities for new 

projects, either using context-specific CLP models in cases where a given new project’s context attributes 

based on 5W1H questions resemble any one of the studied contexts, or using the generic CLP model.  
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Table 5.7: CLP Models Optimization of Fuzzy Operators and Defuzzification Methods   

Case 

Fuzzy operators and Defuzzification methods  

Input 
aggregation 

Implication 
method 

Rule 
aggregation 

Defuzzification 
method 

Accuracy 
(RMSE) 

1 MIN MIN MAX CENTROID 0.926 

2 MIN MIN MAX BISECTOR 0.904 

3 MIN MIN MAX MOM 0.845 

4 MIN MIN MAX LOM 1.441 

5 MIN MIN MAX SOM 1.360 

6 MIN MIN SUM CENTROID 0.908 

7 MIN MIN SUM BISECTOR 0.876 

8 MIN MIN SUM MOM 0.820 

9 MIN MIN SUM LOM 1.441 

10 MIN MIN SUM SOM 1.324 

11 MIN MIN PROBOR CENTROID 0.908 

12 MIN MIN PROBOR BISECTOR 0.876 

13 MIN MIN PROBOR MOM 0.820 

14 MIN MIN PROBOR LOM 1.441 

15 MIN MIN PROBOR SOM 1.324 

16 PROD PROD MAX CENTROID 0.674 

17 PROD PROD MAX BISECTOR 0.683 

18 PROD PROD MAX MOM 0.703 

19 PROD PROD MAX LOM 1.441 

20 PROD PROD MAX SOM 0.703 

21 PROD PROD SUM CENTROID 0.674 

22 PROD PROD SUM BISECTOR 0.683 

23 PROD PROD SUM MOM 0.683 

24 PROD PROD SUM LOM 1.441 

25 PROD PROD SUM SOM 0.703 

26 PROD PROD PROBOR CENTROID 0.674 

27 PROD PROD PROBOR BISECTOR 0.671 

28 PROD PROD PROBOR MOM 0.692 

29 PROD PROD PROBOR LOM 1.441 

30 PROD PROD PROBOR SOM 0.692 
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5.8: CHAPTER SUMMARY   

CLP is a function of various controllable and uncontrollable influencing variables; to improve CLP, 

the effects of these variables must be identified. This chapter studied the effects of numerous objective 

and subjective variables made up of factors, practices, and work sampling proportions. It also suggested 

an operational definition of context and developed associated context attributes to explicitly define the 

context of a given project under investigation. Based on the context attributes, the six projects studied 

were grouped into four unique contexts for which four context-specific CLP models were developed. 

Using data-driven feature selection techniques, the key influencing variables, or features, were 

established, and comparing the key features uncovered significant difference among contexts.  

Subsequently, using data-driven fuzzy inference systems, four context-specific models and a 

generic CLP model (developed by combining the four context-specific data sets) were developed. All four 

context-specific models showed superior prediction accuracy when compared to the generic model. This 

study further examined the use of hybrid fuzzy techniques to overcome the inability of FIS to learn from 

data. In this study, the following FIS model parameters were optimized: (1) the fuzzification coefficient 𝑚 

in FCM clustering, (2) membership function parameters, (3) number of rules, and (4) fuzzy operators and 

defuzzification methods. The optimization process improved the accuracy and interpretability of the 

developed context-specific and generic CLP models. However, the FIS model development and 

optimization process has some limitations. The actual MFs projected from the FCM clusters were 

approximated using Gaussian membership functions, and this could reduce the accuracy of the 

developed FIS models. Thus, exploring other approximations of the projected MFs using triangular or 

trapezoidal shapes is recommended so as to investigate the effect of the approximated Gaussian MFs on 

the accuracy of the developed models. Additionally, during the membership function optimization process, 

the initial solutions were evaluated using expert judgment, also the overlaps among MFs of the final best 

solution were evaluated using expert visual assessment. Thus, collecting additional data to establish 

solutions and further expand the number of data instances for optimization, and introducing additional 

constraints on the standard deviation parameter of the MFs to improve the interpretability of optimized 
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MFs are recommended so as to improve the MF optimization process. In the next chapter, further 

research on context adaptation and its application in CLP modeling by developing an approach that 

allows for the adjustment of the context-specific model’s membership functions from one context to 

another, thereby transferring CLP knowledge bases represented in the context-specific CLP models 

among contexts is presented.  
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Chapter 6: Context Adaptation of CLP Models6 

6.1: INTRODUCTION AND BACKGROUND 

Construction labour productivity (CLP) is one of the most studied areas in construction 

engineering and management field (Yi and Chan 2014). As a result, numerous predictive CLP models as 

shown in Fig. 2.1 have been developed. However, in CLP modeling field, an approach for transferring the 

knowledge represented in such models from one context to another context is missing. Such an approach 

is useful in modeling new contexts for which data availability is limited; and existing models cannot be 

applied without some adaptation (Ji et al. 2012). Model adaptation is of a particular importance for 

Mamdani-type fuzzy inference system based models, as the fuzzy sets used in such models are highly 

context-specific. Mamdani-type FISs are based on fuzzy if-then rules that relate the input parameters to 

the output parameter, where both inputs and outputs are represented using linguistic variables. Fuzzy 

sets are used to describe the respective linguistic variables, which characterize say a CLP influencing 

parameter like crew size using linguistics variables such as small crew size, medium crew size, and large 

crew size (refer to Fig. 6.1).  

 
Figure 6.1: Gaussian Membership Functions for Fuzzy Sets Representing “Crew Size” 

A fuzzy set 𝐴, representing a linguistic variable is characterized using its membership function, 

which represents numerically the degree to which an element 𝑥 belongs to the fuzzy set and fits the 

linguistic variable over a continuous range 𝐴:𝑿 →  =  [0, 1] as shown in Fig. 6.1. In the fuzzy inference 

based CLP models, the input (key factors, practices, and work sampling proportions) and output (CLP) 

                                                      
6 Parts of this chapter have been submitted for publication in Journal of Construction Innovation: Information, 
Process, Management, JCI, 36 manuscript pages, submitted July 28, 2015.   
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feature were partitioned using linguistic variables over their respective universe of discourse. The 

linguistic variables were represented using Gaussian membership functions (refer to Fig. 6.1). The 

membership function for a Gaussian membership function 𝐴(𝑥, 𝜎, 𝜇) is shown in Eq. (6.1), where 𝜎 

represents the standard deviation, denoting the spread of 𝐴, and 𝜇 represents the modal value, denoting 

the typical element of 𝐴:   

𝐴(𝑥, 𝜎, 𝜇) = 𝑒
−(𝑥−𝜇)2

2𝜎2  (6.1) 

Membership functions (MFs) have many important descriptors. Membership functions employed 

in modeling endeavours are required to be normal, that is at least one element of 𝑿 attains full 

membership ( = 1) and represents a typical value of the fuzzy set. Support of fuzzy set 𝐴 represents all 

elements of 𝑿 that exhibit some association with the fuzzy set by having nonzero membership degrees 

and core of fuzzy set 𝐴 represents all elements of the universe 𝑿 that are typical to 𝐴. In FIS, the if-then 

rules are composed of fuzzy conditions (represented by the membership functions of the input features) 

and fuzzy conclusions (represented by the membership functions of the output feature), an example of a 

fuzzy rule is shown below, where the words in italics are the features and the linguistic variables are 

shown in bold:  

If the crew size is medium and the crew composition is good and the co-operation among 

craftsperson is very good and the level of interruption and disruption is low and the fairness of work 

assignment is good and the site congestion is low and the structural element type is grade beams and 

the direct work proportion is high and the tools and equipment proportion is average and the material 

handling proportion is average and the travel proportion is low then construction labour productivity is 

high. 

Fuzzy inference systems consist of two main parts: a rule-base (RB) composed of the linguistic if-

then rules and a database (DB) which associates membership functions to the linguistic variables used in 

the RB, e.g., small for crew size or high for CLP. However, it is worth nothing that in the database (DB) 

parts of FISs, the concept of “small crew size” cannot be uniquely and universally defined, while concepts 
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like “crew size under 5” can be. It is natural that construction professionals could define such fuzzy sets 

differently depending on the context of use, and the context itself is defined using context attributes like 

type of projects, e.g. commercial or industrial. Thus, the exact definition of such fuzzy sets depends on an 

external parameter like type of project (Cordón et al. 2001), as for example, industrial projects tend to 

have larger crew sizes as compared to commercial ones. On the other hand, the rule-base is assumed to 

be context-free (Pedrycz et al. 1997), as it is usually valid, independent of the context of use. This is 

because the context of use affects only the database or the meaning associated with each linguistic term 

used in the rules rather than the logic of the rules themselves (Botta et al. 2009).  

As discussed in Chapter 5, the main idea behind defining context in CLP studies is the idea of 

restriction, as when context is fixed, the universe of the system under study will also be restricted to a 

particular universe (Gudwin and Gomide 1994). Working on such restricted universes will modify the 

perception and the meaning of fuzzy sets used in such systems, indicating that fuzzy sets and in process 

the developed fuzzy inference systems are strongly context-dependent (Pedrycz and Gomide 2007). 

Therefore, the application of the developed fuzzy inference systems in new contexts will require some 

adaptation, as no past context is ever exactly the same as a new one, and old or base models should be 

adjusted to fit the new context (Ji et al. 2012).  

Furthermore, context adaptation of fuzzy inference systems have been recognized as an effective 

method for generating interpretable and accurate FIS models by tuning the parameters contained in the 

database and using context-specific information (Botta et al. 2009). However, in the construction 

engineering and management research area, context adaptation of FIS is scantly explored and studies 

have rarely studied context adaptation in a formal way. In context adaptation, the objective is to use the 

model features (key influencing variables) and associated model of one context to model another one, 

after adaptation, while using the same model features of the first context. Thus, context adaptation will 

enable the reuse of existing models and knowledge bases in new contexts. This will save model 

developers the considerable effort required to collect data for all influencing variables, and to develop and 
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optimize new models. It will also improve the implementation of existing models by industry as the 

existing models can be adapted to suit the industry’s specific context or need.  

In this chapter, a literature review of the approaches used for context adaptation of fuzzy 

inference systems is presented and viable options are identified. Next, the chapter discusses the 

procedure for adapting the series of context-specific CLP models discussed in Section 5.6 to suit new 

contexts based on the field data collected for the key variables or features of the respective CLP models. 

Subsequently, it performs a comparative assessment of the adapted and base context-specific models 

and discusses the effectiveness of context adaptation in CLP modeling. Finally, conclusions are 

presented.  

6.2: LITERATURE REVIEW   

Context plays an active part in construction research analysis as it is invariably dynamic and 

imperative for the development of meaningful findings (Engwall 2003), and subsequently, context 

adaptation has an important application in deriving new models from existing ones. However, in 

construction research field, context adaptation is not properly explored and studies have rarely studied 

fuzzy inference systems context adaptation in a formal way, but rather focused on the fine tuning of 

model parameters to improve model accuracy. The adaptation of a fuzzy inference model to improve the 

accuracy of predicting contractor’s default was investigated, based on the tuning of membership functions 

and weight of rules of the FIS and using neural network and genetic algorithm techniques, and accuracy 

of the model was improved (Awad and Fayek 2013). Oduba (2002) also explored the tuning or calibration 

of the output membership functions of FIS based CLP models for industrial pipe rigging and welding 

activities, and relied on shifting the right, left, and both legs of the membership functions, and reported 

some improvement in models accuracy.  

In the general computing field, most of the context adaptation research has been carried out on 

Mamdani-type fuzzy inference systems (FISs), which have been used in a wide range of areas due to 

their ability to handle linguist concepts and perform an accurate modeling of input-output relations (Botta 
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2008). In the context adaptation of FISs, the focus has been mainly on the linguistic variables and their 

respective membership functions as the rule-base is considered to be a context-free model (Gudwin et al. 

1998; Gudwin and Gomide 1994). According to Botta et al. (2009), the following principles have been 

followed in adapting fuzzy inference systems: (1) context adaptation will not modify the rule-base as the 

rule-base is considered to be a context-free and universal knowledge; (2) context adaptation will not 

change the number of linguistic variables and, consequently, the number of corresponding fuzzy sets 

defined in the rule-base; and (3) context adaptation will not affect the sematic ordering of linguistic 

variables. Context adaptation of FISs has been carried using either transformation functions or adaptive 

operators. Most context adaptation studies focused on use of transformation functions (Gudwin and 

Gomide 1994; Gudwin et al. 1998; Magdalena 1997). According to Botta (2008), a transformation function 

serves to adapt a database (DB) or fuzzy partition, made up a group of fuzzy sets each representing a 

linguistic term, by mapping a normalized universe of discourse to the context adapted universe, possibly 

modifying the distribution (i.e., support and core), and the shape of fuzzy sets. Transformation functions 

have been commonly applied to adapt a base partition defined over a normalized universe of discourse 

[0, 1], as shown in Fig. 6.2, where the universe of discourse is partitioned using common membership 

functions like triangular, trapezoidal or Gaussian (Ho 2013), to another context partition defined over a 

universe of discourse of [𝑎, 𝑏] as shown in Fig. 6.2.  

Linear Scaling Nonlinear Scaling

Base MBF

0 1

a b a b
 

Figure 6.2: Fuzzy Inference System Context Adaptation Using Transformation Functions  
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The use of a normalized universe of discourse makes the database more general or context 

independent as the membership functions in the DB are defined over a normalized [0, 1] range (Gudwin 

and Gomide 1994; Gudwin et al. 1998). Commonly, linear and nonlinear transformation functions are 

used. Linear transformation functions are applied on the overall partition of the fuzzy sets and will either 

linearly expand or contract all the fuzzy sets (see Fig. 6.2). However, nonlinear transformation functions 

are applied either to the overall partition or just on some points of the fuzzy sets (refer to Fig. 6.2), thus 

changing all fuzzy sets or the breakpoints (points of intersection) of selected fuzzy sets (Botta et al. 

2009). The parameters of nonlinear transformation functions are derived using genetic algorithm or neural 

network based optimization approach over a data collected for the new or target context, using either field 

experiments or experts (Gudwin et al. 1998; Gudwin and Gomide 1994). Several nonlinear transformation 

functions have been applied. Magdalena (1997) proposed a sign function for nonlinear transformation of 

fuzzy sets and provided an application example using cart-pole balancing system control problem. 

Gudwin et al. (1998) used a linear combination of sigmoidal functions and demonstrated the development 

of the functions using assumed data. Pedrycz and Gomide (2007) suggested the use of piecewise linear 

function. According to Gudwin et al. (1998), transformation functions should meet certain requirements so 

as to preserve ordering and normality of the original linguistic variables. In particular, they are required to 

fulfil continuity, non-decreasing monotonicity, and boundary conditions. Furthermore, differentiability is 

expected when a learning algorithm is used to determine the optimal parameters of the transformation 

function.  

Adaptive operators are specifically designed operators that adjust the universe of discourse of the 

fuzzy sets and modify the core, support, and shape of fuzzy sets. According to Botta (2008), the context 

adaptation process is based on a flexible nonlinear transformation function and four orthogonal fuzzy 

modifiers: core-position modifier, core-width modifier, support-width modifier, and membership function 

shape modifier, which are formulated using genetic algorithm based optimization process. The author 

tested the approach using four datasets including: a context-aware benchmarking dataset that arbitrarily 
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assigns membership functions to a universe of discourse; structure of wage dataset including years of 

experience and wage; a synthetic dataset generated using a parametric function; and fuel consumption 

dataset. However, adaptive operators modify the partition in way that affects the order of the fuzzy sets 

and reduces the interpretability of the adapted partition, thus, limiting their direct application in model 

context adaptation (Botta et al. 2009).  

The interpretability of the adapted fuzzy partitions can be verified using coverage, normality, and 

distinguishability properties (Botta et al. 2009). The adapted fuzzy partition has to cover the new context’s 

universe of discourse 𝑈 =  [𝑎, 𝑏]. The adapted membership functions of the fuzzy sets are also required 

to be normal so that at least one element of the universe of discourse will have full membership. The 

overlap of the fuzzy sets in the adapted fuzzy partitions has to be kept to a level that each couple of fuzzy 

sets are distinguishable enough (Botta 2008). The overlap between fuzzy sets 𝐴1 and 𝐴2 was measured 

using a possibility measure   (Eq. 6.2). Possibility measure is recommended for efficient computation of 

distinguishability of fuzzy sets using overlap measure (Mencar et al. 2007). In order to ensure 

interpretability of the adapted fuzzy partition, the overlap among the fuzzy sets should not exceed 0.8 

(Pulkkinen and Koivisto 2010).     

Π(𝐴1, 𝐴2) = 𝑚𝑖𝑛𝑥𝜀𝑈
𝑠𝑢𝑝

{𝜇𝐴1
(𝑥), 𝜇𝐴2

(𝑥)} (6.2) 

Several context adaptation studies have been carried out (Gudwin et al. 1998; Magdalena 2002; 

Magdalena 1997; Botta 2008); however, certain limitations are observed. First, transformation function 

based studies were applied on normalized MFs defined over [0, 1] range, resulting in the adaptation of 

theoretical context independent MFs to contexts-specific MFs. Second, most studies lacked practical 

application and rather focused on demonstrating the context adaptation method using benchmark 

datasets. Third, in fuzzy inference systems, not only the MFs but also the fuzzy operators and 

defuzzification methods are context-dependent (Klir and Yuan 1995). However, past studies mainly used 

minimum operator for input aggregation and implication, and centroid for defuzzification (Botta 2008), and 

did not evaluate the sensitivity of adapted models for fuzzy operators and defuzzification methods.  
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In this study, a context adaptation framework based on linear and nonlinear transformation 

functions have been adopted, for their ability to develop a transparent context adaptation framework for 

fuzzy inference based CLP models. The framework adapts the MFs and also tests the effect of fuzzy 

operators and defuzzification methods. The framework also focuses on adapting context-specific MFs 

that are defined over universe of discourse 𝐵 =  [𝑙, 𝑢] to another context defined over a universe of 

discourse U =  [a, b]. Additionally, the practical application of context adaptation is examined using 

construction labour productivity models developed for four unique construction contexts, where the 

context attributes that have been generated using the 5W1H (Who, What, Where, When, Why, and How) 

questions approach. The similarity of the adapted model with the original context-specific models is 

evaluated using agreement indices, and the usefulness of using the adapted models in predicting CLP is 

evaluated using the model’s accuracies in terms of root mean square errors (RMSE).   

6.3: CONTEXT ADAPTATION OF CLP MODELS USING TRANSFORMATION FUNCTIONS  

The following procedure is developed for context-adaptation of fuzzy inference based CLP 

models. The underlying process in the context adaptation framework involves the determination of a 

context adaptation or transformation function using data from the new context for adapting the base 𝐴 

fuzzy set represented by the base MF to an adapted fuzzy set 𝐴′ represented by the adapted MF (refer to 

Fig. 6.3).  

Context Adaptation 

Function j (x)

Data from 

new context

Data from 

new context

Base 

Fuzzy Set 

A (x)  

Context 

Adapted 

Fuzzy Set 

A’(x)

 
Figure 6.3: Context Adaptation Procedure 

The procedure for context adaptation is summarized in the following steps: 
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1. Identify the base or original fuzzy sets for a given context and for each model feature (model input 

and output variables) of the base context-specific CLP model. The universe of discourse of each 

feature B =  [l, u] and the parameters of the membership functions such as the standard deviation 

and modal values of the base fuzzy set 𝐴(𝑥, 𝜎, 𝜇) are documented.  

2. Collect data from the new context, using field data collection or experts, for the same features as the 

base model. The documented data set, (d1, d2, … , dN), where N represents the total number of data 

instances of a given feature, which will then be used to determine the upper and lower limits of the 

adapted fuzzy set A′(x), the initial membership functions of the adapted fuzzy set A0′(x), and the 

appropriate context adaptation function φ(x).  

3. Determine the boundary or upper and lower limits of the adapted fuzzy set U =  [a, b] using the 

absolute limit context determination approach where the lower bound a is taken as the minimum data 

value or 𝑎 = min (𝑑1, 𝑑2, … , 𝑑𝑁) and the upper bound 𝑏 is taken as the maximum data value or 𝑏 =

max (𝑑1, 𝑑2, … , 𝑑𝑁). 

4. Determine the initial membership functions of the adapted fuzzy set A0′(x) using the collect data from 

the new context using either expert or data-driven membership function development approaches. 

The initial membership functions will be used to determine the nonlinear transformation function. 

5. Determine the parameters of the context adaptation functions φ1(x) for linear and φ2(x) for nonlinear 

transformation of membership functions.  

6. Develop the membership function of the adapted fuzzy set A′(x) for linear and nonlinear adaptation 

using Eq. (6.3):  

𝐴𝑖
′(𝑥) = 𝐴(𝜑𝑖(𝑥)), 𝑥 ∈ [𝑎, 𝑏], 𝜑𝑖(𝑥) ∈ [𝑙, 𝑢], 𝑖 ∈ {1,2} (6.3) 

7. Adapt the base CLP model by replacing the base membership functions 𝐴(𝑥) with the adapted 

membership functions A′(x) for each model feature (input and output variables) and evaluate the 

prediction ability of the adapted CLP model. According to Ahmad et al. (2012), fuzzy inference model 

accuracies are commonly determined using the root mean square error (RMSE). The RMSE of the 
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adapted CLP model is calculated using Eq. (6.4), where ti is the new context’s target CLP value for 

the ith data instance, 𝑧𝑖 is the corresponding predicted CLP value, and N is the total number of data 

instances.  

𝑅𝑀𝑆𝐸𝑖 =
1

𝑁
∑√(𝑡𝑖 − 𝑧𝑖)

2

𝑁

𝑖=1

 (6.4) 

8. Evaluate the sensitivity of the adapted CLP model for fuzzy operators and defuzzification methods 

and summarize the improvement in prediction ability.  

9. Determine the agreement between the adapted and base model of the new context using model 

agreement measures. The use of the modified Willmott agreement index is recommended to 

determine the similarity between models. The index is dimensionless, bounded, less sensitive to 

extreme values and outliers, and is suitable for cross-comparison between models (Willmott et al. 

2012).  The Willmott agreement index 𝑊𝐼𝑖 is shown in Eq. (6.5), where Pi represents the predicted 

values obtained from adapted model, Oi is the observed values obtained from the base model of the 

new context, O̅ is the mean value of the observed values, and 𝑁 is the total number of data instances. 

The value 𝑊𝐼𝑖 of varies from 0 to 1 and a value of 1 indicates a perfect agreement between the 

adapted and base models.  

𝑊𝐼𝑖  = 1 −
∑ |𝑃𝑖 − 𝑂𝑖|

𝑁
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|𝑁
𝑖=1 )

 (6.5) 

10. Compare and contrast the agreement indices and prediction ability of the resulting adapted models 

for either linear or nonlinear transformation of MFs, and combinations of fuzzy operators and 

defuzzification methods, and identify the most appropriate context adaptation approach.    

6.4: CONTEXT ADAPTATION OF CONTEXT-SPECIFIC CONCRETING ACTIVITY CLP MODELS  

The preceding context adaptation procedure was tested using the field data collected for this 

research. In this study an operational definition of context for CLP modeling based on 5W1H (Who, What, 

Where, When, Why, and How) questions, which states that context is what constrains the four elements 

of a CLP model (user, model developer, model, and prevailing environment of the model) without 

intervening in the model development process explicitly, was adopted (refer to Section 5.2). Accordingly, 
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four context-specific CLP models were developed and optimized for predicting labour productivity of 

concreting (concrete placement) activity using Mamdani-type fuzzy inference models; detailed discussion 

is provided in Section 5.6. The four context-specific models addressed concreting in Industrial, 

Warehouse, High-rise, and Institutional contexts. The properties of the CLP final models, summarized in 

Table 6.1, indicate the context-specific nature of models as they had distinctly different key influencing 

features (made up of factors, practices, and work sampling proportions), number of membership functions 

or number of rules, fuzzification coefficients, fuzzy operators, and defuzzification methods. The models 

were developed using Fuzzy C-Means clustering and Gaussian membership functions (MFs) were used. 

Table 6.1: Base Context-Specific CLP Models: Features, Structure, and Model Parameters   

Features, FIS structure, 
and model parameters 

Context 

1 2 3 4 

Concreting, Industrial 
buildings 

Concreting, 
Warehouse 
buildings 

Concreting, 
High-rise 
buildings 

Concreting, 
Institutional 

buildings 

Number of input features  16 7 8 11 

Number of data instances 23 16 28 25 

Model features 

x3,x14,x45,x46,x49,x57,

x106,x108,x129,x135, 

x138,x167,x168, 

y1,y2,y3,z 

x45,x46,x48, 

x50,x108,y1, 

y7,z 

x45,x46,x57,y1, 

y2, y3,y4,y6,z 

 

x1,x5,x8,x18,x19, 

x46,x90,y1,y3,y4, 

y6,z 

Fuzzification coefficient  1.5 2.5 2.0 2.0 

Number of rules 6 7 6 7 

Input aggregation operator  PROD MIN PROD PROD 

Implication method PROD MIN PROD PROD 

Rule aggregation operator  MAX SUM PROBOR PROBOR 

Defuzzification method MOM BISECTOR CENTROID BISECTOR 

Accuracy (RMSE) 1.162 0.467 0.992 0.671 

The context adaptation framework presented in this chapter, adapts the four context-specific CLP 

models from one context to another, as shown in Fig. 6.4. Accordingly, the Industrial context CLP model 

will be adapted to suit the Warehouse, High-rise, and Institutional contexts using linear and nonlinear 
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transformation functions, and a similar process will be repeated for the other contexts. The adaptation 

process for each context will result into six adapted models: three linearly adapted models and three 

nonlinearly adapted model (see Fig. 6.4). The adapted models will be compared with the base model 

developed for the given context (shown in Table 6.1) using modified Willmott agreement indices and 

model accuracy in terms of RMSE.  

 
Figure 6.4: Context-Specific CLP Models Adaptation 

As illustrated in the flowchart shown in Fig. 6.5, for given context-specific CLP model, all model 

membership functions are adapted using linear and nonlinear transformation functions to three other 

contexts, and initial model accuracies, RMSECA-L and RMSECA-NL, respectively, are established. Then, the 

sensitivity of the adapted models for fuzzy operators and defuzzification methods are investigated for both 

linear and nonlinear adapted models and final model accuracies, RMSECA-LS and RMSECA-NLS, 

respectively, are established. Next, the agreement indices (𝑊𝐼𝑖) between adapted and base models are 

computed for identifying the appropriate linear or nonlinear adaptation approach. Finally, the model 

accuracies of the adapted models are compared and the best performing context adaptation approach is 

identified.    
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Figure 6.5: Flow Chart for Context Adaptation of CLP Models   
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In the following sections, a numerical illustration of the context adaptation framework is discussed 

based on the adaptation of the output or CLP feature from Context 4 (Institutional) to Context 3 

(Industrial) context. The Institutional CLP model has 12 features and seven rules resulting in seven 

membership functions representing the fuzzy sets 𝐴𝑗  =  {𝐴1, 𝐴2, . . . , 𝐴7}. The base membership functions 

for CLP had a universe of discourse 𝐵 =  [1.80, 11.25] and the mean CLP was 4.25 m3/mhr, with 

standard deviation of 2.21. The membership functions were as shown in Fig. 6.6, where the following 

linguistic labels are used: 𝐴1(𝑣𝑒𝑟𝑦 − 𝑙𝑜𝑤), 𝐴2(𝑙𝑜𝑤), 𝐴3(𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑙𝑜𝑤) ,  𝐴4(𝑚𝑒𝑑𝑖𝑢𝑚), 𝐴5(𝑚𝑒𝑑𝑖𝑢𝑚 −

ℎ𝑖𝑔ℎ), 𝐴6(ℎ𝑖𝑔ℎ), and 𝐴7(𝑣𝑒𝑟𝑦 − ℎ𝑖𝑔ℎ). The parameters of the seven base CLP feature Gaussian 

membership functions 𝐴(𝑥, 𝜎, 𝜇), where 𝜎 represents the spread of  𝐴 and 𝜇 represents the modal value of 

𝐴 were: 𝐴1(𝑥) = 𝐺(𝑥, 0.973,1.875),𝐴2(𝑥) = 𝐺(𝑥, 0.573,3.514), 𝐴3(𝑥) = 𝐺(𝑥, 0.786,4.569), 𝐴4(𝑥) =

𝐺(𝑥, 0.864,5.990), 𝐴5(𝑥) = 𝐺(𝑥, 0.877,7.673), 𝐴6(𝑥) = 𝐺(𝑥, 0.707,9.101), and 𝐴7(𝑥) = 𝐺(𝑥, 1.101,11.105). 

 
Figure 6.6: Base Membership Functions for CLP Feature in Institutional Context 

The CLP data from Industrial context was then retrieved from the ProductivityTracker© database 

and had values of universe of discourse 𝑈 =  [0.03, 8.66] and the mean CLP was 2.69 m3/mhr, with 

standard deviation of 1.83. Next, the parameters of the context adaptation functions 𝜑1(𝑥) for linear 

adaptation and 𝜑2(𝑥) for nonlinear adaptation were developed as discussed in the following subsections.  
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6.4.1: Linear Adaptation   

In linear adaptation, the base fuzzy sets defined over a universe of discourse of 𝐵 =  [𝑙, 𝑢] are 

adapted to the context-adapted universe of discourse by means of a linear transformation function shown 

in Eq. (6.5), where 𝑈 = [𝑎, 𝑏] is used to represents the bounds of the adapted fuzzy sets: 

𝜑1(𝑥, 𝑎, 𝑏) =
(𝑏 − 𝑎)

(𝑢 − 𝑙)
  𝑥 + 𝑎 

(6.5) 

Accordingly, the respective Institutional CLP context linguistic variables 𝐴(𝑥) were adapted to 

Industrial CLP context linguistics variables 𝐴′(𝑥) using the linear transformation function show in Eq. 

(6.6): 

𝜑1(𝑥) =  𝑥′ = 
(8.66 − 0.03)

(11.25 − 1.80)
𝑥 + 0.03 = 0.913𝑥 + 0.03 

(6.6) 

Thus, the seven membership functions for CLP feature in the adapted context (Industrial context) 

𝐴′(𝑥) are determined by replacing the parameters of the membership function [𝜎, 𝜇] of the base fuzzy sets 

𝐴𝑗  =  {𝐴1, 𝐴2, . . . , 𝐴𝑐} with adapted values based on 𝜑1(𝑥). The parameters of the seven adapted CLP 

feature Gaussian membership functions 𝐴′(𝑥, 𝜎′, 𝜇′) were: 𝐴′11(𝑥) = 𝐺(𝑥, 0.918,1.742), 𝐴′12(𝑥) =

𝐺(𝑥, 0.553,3.239), 𝐴′13(𝑥) = 𝐺(𝑥, 0.748,4.203), 𝐴′14(𝑥) = 𝐺(𝑥, 0.819,5.500), 𝐴′15(𝑥) = 𝐺(𝑥, 0.831,7.123), 

𝐴′16(𝑥) = 𝐺(𝑥, 0.676,8.341), and 𝐴′17(𝑥) = 𝐺(𝑥, 1.035,10.171).  

The results of the linear adaptation of the fuzzy sets are shown in Fig. 6.7. The degree of overlap 

among the adapted sets was lower than the recommended maximum value of 0.8 (Pulkkinen and Koivisto 

2010). Similar linear adaptation procedure was applied to the other 11 input variables or features of the 

Institutional CLP model. Then, the membership functions of the Institutional context model were replaced 

with the adapted ones, resulting in the linearly adapted Institutional context model for use in Industrial 

context. The linear adapted CLP model was used to predict CLP values of the Industrial context, which 

had 23 data instances as shown in Table 6.1. The adapted model had an initial RMSECA-L value of 1.832.    
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Figure 6.7: Linear Context Adaptation of CLP Feature from Institutional to Industrial Context 
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6.4.2: Nonlinear Adaptation   

Nonlinear adaption involves the use of nonlinear transformation function that changes the 

universe of discourse of the base fuzzy sets, and also modifies the shape and distribution of the fuzzy 

sets in the space of the adapted universe of discourse (Botta 2008). In nonlinear adaptation, the base 

fuzzy sets defined over a universe of discourse of 𝐵 =  [𝑙, 𝑢] are adapted in the context-adapted universe 

of discourse by means of a nonlinear transformation function 𝜑2, where 𝑈 = [𝑎, 𝑏] represents the 

identified bounds of the adapted fuzzy sets (refer to Fig. 6.8). The determination of the parameters of the 

nonlinear transformation function requires an optimization process (Gudwin et al. 1998).  

In this research, a piecewise linear transformation function is used in order to develop an 

interpretable, logical, and fully invertible nonlinear context adaptation process (Pedrycz and Gomide 

2007). For piecewise linear transformation function 𝜑2, shown in Fig. 6.8, the adjustable parameters 𝒑 is 

made up of a collection of the split points 𝑟1, 𝑟2, … , 𝑟5 and associated difference 𝐷1, 𝐷2, … , 𝐷5; represented 

as 𝐩 = [𝑟1, 𝑟2, … , 𝑟5, 𝐷1, 𝐷2, … , 𝐷5]. The piecewise functions will result in nonlinear mapping as some 

regions of 𝑥 will be contracted and some of them will be expanded, resulting in modification of the shape 

and distribution of the fuzzy sets in the space of the adapted universe of discourse (Pedrycz and Gomide 

2007).  

x
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Figure 6.8: Nonlinear Context Adaptation Function: 𝜑2 
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In order to improve the optimization process required for determining the parameters of the 

piecewise linear transformation function, with limited data from new contexts, the number of split points 

has been kept to five points. According to Gudwin et al. (1998), context transformation functions are 

expected to fulfil the following requirements: continuity, monotonicity, and boundary conditions. The use 

of specifically non-decreasing monotonic functions ensured that the meaning and order of the linguistic 

terms is not changed (Pedrycz et al. 1997). Additionally, the boundary conditions φ2(l) = a and φ2(u) = b 

allowed the coverage of the new context data. 

6.4.2.1: Computation of Nonlinear Transformation Function 

Once the format or type of the nonlinear transfer function 𝜑2 is selected, the determination of the 

parameters of 𝜑2 in terms of 𝐩 = [𝑟1, 𝑟2, … , 𝑟5, 𝐷1, 𝐷2, … , 𝐷5] was carried out via optimization computations. 

The optimization process begins with the collection of fuzzy sets (linguistic terms) 𝐴𝑗  =  {𝐴1, 𝐴2, . . . , 𝐴𝑐} as 

the base fuzzy sets of a given feature (model input or output variable) and the data set (𝑑1, 𝑑2, … , 𝑑𝑁) 

collected for the same feature, but from the new context. Then, using Fuzzy C-Means (FCM) clustering, 

the initial membership functions of the adapted fuzzy sets 𝐴0′ =  {𝐴′10, 𝐴′20, . . . , 𝐴′𝑐0} were developed 

using the collected data set (𝑑1, 𝑑2, … , 𝑑𝑁). The numbers of prototypes or cluster centres for FCM 

clustering are set equal to the number of base fuzzy sets, and the commonly used fuzzification coefficient 

of 2.0 is used. The resulting degrees of memberships of each data instances to the initial adapted fuzzy 

sets are arranged in the form of 𝑁 (𝑐 + 1) – tuples, as shown in Eq. (6.7), where the kth tuple consists of 

𝑑𝑘 that denotes some point in adapted universe of discourse 𝑥’ where as 𝜇𝑘1, 𝜇𝑘2, … , 𝜇𝑘𝑐 are the numeric 

values of the corresponding membership degrees to initial adapted fuzzy sets 𝐴′10, 𝐴′20, . . . , 𝐴′𝑐0, 

respectively: 

(𝑑1, (𝜇11, 𝜇12, … , 𝜇1𝑐)) 

(𝑑2, (𝜇21, 𝜇22, … , 𝜇2𝑐))
…
(𝑑𝑁 , (𝜇𝑁1, 𝜇𝑁2, … , 𝜇𝑁𝑐))

 
(6.7) 

Then, the difference between the initial adapted degree of memberships and the degree of 

memberships computed using the transformation process was computed for each fuzzy set and for the 
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respective data instance. This difference between the initial adapted fuzzy sets and the adapted fuzzy 

sets developed using the nonlinear transformation functions formed the objective function of the 

optimization process. The objective function 𝑄 was calculated using sum of squared errors as shown in 

Eq. (6.8):  

𝑄(𝑝) = ∑(𝐴𝑖(𝜑(𝑑1, 𝒑) − 𝜇1𝑖)
2

𝑐

𝑖=1

+ ∑(𝐴𝑖(𝜑(𝑑2, 𝒑) − 𝜇2𝑖)
2

𝑐

𝑖=1

+ ⋯+ ∑(𝐴𝑖(𝜑(𝑑𝑁 , 𝒑) − 𝜇𝑁𝑖)
2

𝑐

𝑖=1

 (6.8) 

Thus, the determination of the nonlinear transformation function involved the minimization of the 

objective function with respect to parameters of 𝒑. The solution of this constrained nonlinear minimization 

optimization problem can be effectively developed using genetic algorithm, as the objective function is 

nonlinear and nonconvex (has multiple feasible regions), and use of gradient based optimization 

techniques, such as generalized reduced gradient approach, will only lead to local optimum solutions 

(Gudwin et al. 1998). Accordingly, an optimization process using genetic algorithm was used, and the 

parameters of the nonlinear transformation function 𝜑2 = 𝐩 = [𝑟1, 𝑟2, … , 𝑟5, 𝐷1, 𝐷2, … , 𝐷5] were used for real 

coding of the chromosome in the genetic optimization process. The objective of the genetic search was to 

minimize the objective function 𝑄, and the fitness value of each solution was determined by calculating 𝑄. 

Then, the genetic operations of reproduction, crossover, and mutation were performed. Each operation 

generated new sets of chromosomes, representing a new solution that meets the optimization 

constraints. The solution chromosomes are checked according to the following nonlinear context 

adaptation constraints: (1) The parameters of the nonlinear transformation function must be greater than 

zero; (2) Boundary conditions for coverage of the new context data, defined over 𝑈 = [𝑎, 𝑏], and using 

the base fuzzy set range of 𝐵 =  [𝑙, 𝑢]:   𝑟1 = l, 𝑟5 = 𝑢, 𝐷1 = 𝑎, and 𝐷5 = 𝑏; (3) The jth split value 𝑟𝑗 must 

not be greater than that of the j+1th split value 𝑟𝑗+1, and (4) The jth difference value 𝐷𝑗  must not be greater 

than that of the j+1th difference value 𝐷𝑗+1. The genetic optimization was implemented using Microsoft 

Excel Solver (Frontline 2010). Initial population of 100 solutions was randomly generated. A mutation rate 

of 0.075 and stopping criteria based on convergence value of 0.0001 was used.  
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6.4.2.1: Computational Results for Nonlinear Adaptation of CLP Models  

The numerical illustration of the nonlinear context adaptation of the output or CLP feature from 

Context 4 (Institutional) to Context 3 (Industrial) building context is discussed here. As discussed above, 

the seven base fuzzy sets 𝐴𝑗  =  {𝐴1, 𝐴2, . . . , 𝐴7} for CLP feature and associated membership functions 

from Institutional context were first documented. Next the CLP data set (𝑑1, 𝑑2, … , 𝑑𝑁) collected from the 

Industrial context is retrieved from the ProductivityTracker© database and had values of universe of 

discourse of 𝑈 =  [0.03, 8.66]. Using Fuzzy C-Means (FCM) clustering, the initial membership functions of 

the adapted fuzzy sets 𝐴′0  =  {𝐴′01, 𝐴′02, . . . , 𝐴′07} were developed, where the number of prototypes for 

FCM clustering was set at seven. Then, using genetic algorithm based optimization, the parameters of 

the nonlinear piecewise transformation function 𝐩 were developed, and the resulting parameters 

were 𝜑2 = [𝑟1 = 0.03, 𝑟2 = 2.05, 𝑟3 = 5.91, 𝑟4 = 6.36, 𝑟5 = 8.66, 𝐷1 = 1.80, 𝐷2 = 5.52, 𝐷3 = 7.76,  𝐷4 =

9.63,𝐷5 = 11.25].   

Thus, the seven membership functions for CLP feature in the adapted context (Industrial context) 

𝐴′2𝑗(𝑥) =  {𝐴′21, 𝐴′22, . . . , 𝐴′2𝑐}  were determined by replacing the parameters of the membership function 

[𝜎, 𝜇] of the base fuzzy sets 𝐴𝑗  =  {𝐴1, 𝐴2, . . . , 𝐴𝑐} with adapted values based on 𝜑2(𝑥). The results of the 

nonlinear adaptation of the fuzzy sets are shown in Fig. 6.9. The parameters of the seven nonlinearly 

adapted CLP feature Gaussian membership functions 𝐴′2𝑗(𝑥, 𝜎′, 𝜇′) were: 𝐴′21(𝑥) =

𝐺(𝑥′, 0.528, 1.018), 𝐴′22(𝑥) = 𝐺(𝑥, 0.311, 1.908), 𝐴′23(𝑥) = 𝐺(𝑥, 0.427, 2.481), 𝐴′24(𝑥) = 𝐺(𝑥, 0.469, 2.860), 

𝐴′25(𝑥) = 𝐺(𝑥, 0.476, 5.760), 𝐴′26(𝑥) = 𝐺(𝑥, 0.384, 6.233), and 𝐴′27(𝑥) = 𝐺(𝑥, 0.598, 8.454). 

The results shown in Fig. 6.9 indicate that the shape and distribution of the fuzzy sets have been 

modified, and in some case the degree of overlap among the adapted sets was higher than the 

recommended maximum value of 0.8 (Pulkkinen and Koivisto 2010). This will naturally reduce the 

interpretability of the adapted models, however, this is a common problem witnessed in nonlinear 

adaptation of fuzzy systems (Ho 2013).  
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Figure 6.9: Nonlinear Context Adaptation of CLP Feature from Institutional to Industrial Context 

Similar nonlinear adaptation procedure was applied to the remaining 11 input variables or 
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0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.00 2.00 4.00 6.00 8.00 10.00

x

x'



 197 

Industrial context, which had 23 data instances as shown in Table 6.1. The adapted model had an initial 

RMSECA-NL value of 2.742.    

6.4.3: Sensitivity Analysis of Adapted Models for Fuzzy Operators and Defuzzification Methods   

The sensitivity of the linearly and nonlinearly adapted CLP models was then further evaluated by 

changing the fuzzy operators and defuzzification methods. The following options of fuzzy operators and 

defuzzification methods were tested: for input aggregation [MIN (minimum) and PROD (product)], for 

implication [MIN (minimum) and PROD (product)], for rule aggregation [MAX (maximum), SUM (sum of 

each rule’s output set), and PROBOR (probabilistic OR)], and for defuzzification [CENTROID, 

BISECTOR, MOM (middle of maximum), LOM (largest of maximum), and SOM (smallest of maximum)]. 

The sensitivity options were varied one at a time, and a total of 30 unique combinations were tested. The 

options and results for Context 4 model, which was linearly adapted to suit Context 1, are shown in Table 

6.2.  

For each linear and nonlinear adapted CLP model, the final adapted model accuracy measures 

RMSECA-LS and RMSECA-NLS of 1.832 and 2.738, respectively, were determined based on the best 

combination of the listed options of fuzzy operators and defuzzification methods. The results yielding the 

lowest RMSECA-LS and RMSECA-NLS values provided the best adapted fuzzy operators and defuzzification 

methods for CLP models. Finally, the agreement index 𝑊𝐼𝑖 between the adapted and the base model was 

computed using the modified Willmott index (Eq. 6.4). Accordingly, the appropriate context adaptation 

approach was the linear adapted model, which had an agreement index of 0.340, as the nonlinear 

adapted model had an agreement index of only 0.142.  

6.4.4: Results and Discussion    

The linear and nonlinear context adaptation framework was applied on the four context-specific 

CLP models as shown in Fig. 6.4. The results of the context adaptation process are summarized for each 

context, and are discussed in the following sections.  
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Table 6.2: Context Adapted Models Sensitivity Analysis    

Case 

Fuzzy operators and Defuzzification methods  

Input 
aggregation 

Implication 
method 

Rule 
aggregation 

Defuzzification 
method 

Accuracy 
(RMSE) 

1 MIN MIN MAX CENTROID 1.840 

2 MIN MIN MAX BISECTOR 1.840 

3 MIN MIN MAX MOM 1.955 

4 MIN MIN MAX LOM 2.030 

5 MIN MIN MAX SOM 1.955 

6 MIN MIN SUM CENTROID 1.840 

7 MIN MIN SUM BISECTOR 1.840 

8 MIN MIN SUM MOM 1.955 

9 MIN MIN SUM LOM 2.030 

10 MIN MIN SUM SOM 1.955 

11 MIN MIN PROBOR CENTROID 1.840 

12 MIN MIN PROBOR BISECTOR 1.840 

13 MIN MIN PROBOR MOM 1.955 

14 MIN MIN PROBOR LOM 2.030 

15 MIN MIN PROBOR SOM 1.955 

16 PROD PROD MAX CENTROID 1.832 

17 PROD PROD MAX BISECTOR 1.840 

18 PROD PROD MAX MOM 1.955 

19 PROD PROD MAX LOM 2.030 

20 PROD PROD MAX SOM 1.955 

21 PROD PROD SUM CENTROID 1.832 

22 PROD PROD SUM BISECTOR 1.840 

23 PROD PROD SUM MOM 1.840 

24 PROD PROD SUM LOM 2.030 

25 PROD PROD SUM SOM 1.955 

26 PROD PROD PROBOR CENTROID 1.832 

27 PROD PROD PROBOR BISECTOR 1.840 

28 PROD PROD PROBOR MOM 1.955 

29 PROD PROD PROBOR LOM 2.030 

30 PROD PROD PROBOR SOM 1.955 
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6.4.4.1: Industrial Context CLP Models 

For the Industrial context, six adapted models were developed from Warehouse, High-rise, and 

Institutional contexts and based on linear and nonlinear adaptation. The base CLP models for Industrial 

context had an RMSE value of 1.162. In Table 6.3, the initial RMSE values represent the accuracy of 

adapted models in predicting the CLP values of the Industrial context and the final RMSE values 

represent the accuracy of the adapted models after sensitivity analysis. The best performing fuzzy 

operators and defuzzification methods are also shown in Table 6.3. Based on the agreement indices  of 

the six adapted models, as shown in Table 6.3, the model linearly adapted from Institutional context has 

the highest agreement to the base model of the Industrial context, with an agreement index value of 

0.340. The linearly adapted model from the Institutional context has an RMSE value of 1.832. 

Additionally, the linear adapted models from all three contexts, as compared to the nonlinear adapted 

models, had better agreement with the base model and also had higher accuracy based on RMSE 

values. However, in terms of model accuracy, none of the adapted models performed better than the 

base model. 

Table 6.3: Context Adaptation Results for Industrial Context (C1) 

Adapted Models  

Adapted from 
Warehouse:C2 

Adapted from High-
rise:C3 

Adapted from 
Institutional:C4 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

RMSE (initial)  1.892 2.079 1.880 1.880 1.832 2.742 

RMSE (final)    1.831 2.028 1.873 1.873 1.832 2.738 

Sensitivity improvement (%) 3.26 2.47 0.32 0.32 0.00 0.14 

Agreement index 0.203 0.188 0.282 0.282 0.340 0.142 

Input aggregation operator PROD PROD PROD PROD PROD PROD 

Implication method PROD PROD PROD PROD PROD PROD 

Rule aggregation operator SUM MAX PROBOR PROBOR PROBOR PROBOR 

Defuzzification method BISECTOR MOM MOM MOM CENTROID CENTROID 
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6.4.4.2: Warehouse Context CLP Models 

For the Warehouse context, six adapted models were developed from Industrial, High-rise, and 

Institutional contexts and based on linear and nonlinear adaptation. The base CLP models for Warehouse 

context had an RMSE value of 0.467. In Table 6.4, the initial RMSE values represent the accuracy of 

adapted models in predicting the CLP values of the Warehouse context and the final RMSE values 

represent the accuracy of the adapted models after sensitivity analysis. The best performing fuzzy 

operators and defuzzification methods are shown in Table 6.4. Based on the agreement indices of the six 

adapted models, as shown in Table 6.4, the model nonlinearly adapted from Industrial context has the 

highest agreement to the base model of the Warehouse context, with an agreement index value of 0.459. 

The nonlinearly adapted model from the Industrial context has an RMSE value of 0.939. In terms of 

model accuracy, none of the adapted models performed better than the base model. 

Table 6.4: Context Adaptation Results for Warehouse Context (C2) 

Adapted Models  

Adapted from 
Industrial:C1 

Adapted from High-
rise:C3 

Adapted from 
Institutional:C4 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

RMSE (initial)  1.637 0.946 0.731 0.753 2.282 3.286 

RMSE (final)    1.610 0.939 0.719 0.753 2.267 3.264 

Sensitivity improvement (%) 1.68 0.74 1.67 0.00 0.69 0.68 

Agreement index 0.201 0.459 0.214 0.349 0.144 0.115 

Input aggregation operator PROD PROD PROD PROD PROD PROD 

Implication method PROD PROD PROD PROD PROD PROD 

Rule aggregation operator MAX MAX MAX MAX PROBOR PROBOR 

Defuzzification method CENTROID CENTROID MOM CENTROID MOM MOM 

6.4.4.3: High-rise Context CLP Models 

For the High-rise context, six adapted models were developed from Industrial, Warehouse, and 

Institutional contexts and based on linear and nonlinear adaptation. The base CLP models for High-rise 

context had an RMSE value of 0.992. In Table 6.5, the initial RMSE values represent the accuracy of 

adapted models in predicting the CLP values of the High-rise context and the final RMSE values 
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represent the accuracy of the adapted models after sensitivity analysis. The best performing fuzzy 

operators and defuzzification methods are shown in Table 6.5. Based on the agreement indices of the six 

adapted models, as shown in Table 6.5, the model nonlinearly adapted from Warehouse context has the 

highest agreement to the base model of the Industrial context, with an agreement index value of 0.427. 

The nonlinearly adapted model from the Warehouse context has an RMSE value of 3.851. Additionally, 

the nonlinear adapted models from all three contexts, as compared to the linear adapted models, had 

better or equal agreement with the base model. However, both linearly and nonlinear adapted models 

have similar accuracy based on RMSE values, and none of the adapted models performed better than 

the base model. 

Table 6.5: Context Adaptation Results for High-rise Context (C3) 

Adapted Models  

Adapted from 
Industrial:C1 

Adapted from 
Warehouse:C2 

Adapted from 
Institutional:C4 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

RMSE (initial)  3.797 3.797 4.350 4.128 4.627 4.627 

RMSE (final)    3.379 3.379 3.851 3.851 4.627 4.627 

Sensitivity improvement (%) 11.01 11.01 11.46 6.71 0.00 0.00 

Agreement index 0.048 0.048 0.395 0.427 0.181 0.181 

Input aggregation operator PROD PROD MIN MIN PROD PROD 

Implication method PROD PROD MIN MIN PROD PROD 

Rule aggregation operator MAX MAX SUM SUM PROBOR PROBOR 

Defuzzification method MOM MOM BISECTOR BISECTOR BISECTOR BISECTOR 

6.4.4.4: Institutional Context CLP Models 

For the Institutional context, six adapted models were developed from Industrial, Warehouse, and 

High-rise contexts and based on linear and nonlinear adaptation. The base CLP models for Institutional 

context had an RMSE value of 0.671. In Table 6.6, the initial RMSE values represent the accuracy of 

adapted models in predicting the CLP values of the Institutional context and the final RMSE values 

represent the accuracy of the adapted models after sensitivity analysis. The best performing fuzzy 
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operators and defuzzification methods are shown in Table 6.6. Based on the agreement indices  of the six 

adapted models, as shown in Table 6.6, the model linearly adapted from Industrial context has the 

highest agreement to the base model of the Institutional context, with an agreement index value of 0.398. 

The linearly adapted model from the Institutional context has an RMSE value of 2.552. In terms of model 

accuracy, none of the adapted models performed better than the base model. 

Table 6.6: Context Adaptation Results for Institutional Context (C4) 

Adapted Models  

Adapted from 
Industrial:C1 

Adapted from 
Warehouse:C2 

Adapted from High-
rise:C3 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

RMSE (initial)  2.552 2.212 3.343 3.083 2.950 3.609 

RMSE (final)    2.552 2.213 2.530 2.634 2.945 3.446 

Sensitivity improvement (%) 0.00 0.00 24.33 14.57 0.17 4.52 

Agreement index 0.398 0.199 0.329 0.357 0.383 0.362 

Input aggregation operator PROD PROD MIN PROD MIN MIN 

Implication method PROD PROD MIN PROD MIN MIN 

Rule aggregation operator MAX MAX SUM MAX MAX MAX 

Defuzzification method CENTROID MOM BISECTOR MOM BISECTOR MOM 

In summary, the review of the linear and nonlinear adaptation approaches indicated that, linear 

adapted models were in agreement with that of the base models for Industrial and Institutional contexts, 

and nonlinear adapted models were in agreement with that of the base models for Warehouse and High-

rise contexts. However, the use of nonlinear adaptation approach has resulted in reduced interpretability 

of the adapted models. In terms of prediction accuracy, in all four contexts, none of the adapted models 

performed better than the base models. This is expected as the base models have been developed and 

further optimized using the key context-specific variables influencing CLP and the associated dataset. 

Additionally, the sensitivity analysis on fuzzy operators and defuzzification methods did not show 

significant improvement in adapted model’s accuracy. The comparison of the adapted models accuracy 

with the accuracy of the original context-specific models before optimization showed promising results for 

the Industrial and Warehouse contexts. The original Industrial context model before optimization had an 
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RMSE value of 1.582 and the most accurate linearly adapted model from Warehouse context has an 

RMSE value of 1.831. Similarly, the original Warehouse context model before optimization had an RMSE 

value of 0.586 and the most accurate linearly adapted model from High-rise context has an RMSE value 

of 0.719. Considering the effort required for collecting data on all influencing variables and to develop and 

optimize new models, the use of context adaptation framework presented in this chapter, which enables 

the reuse of existing CLP models, has provided a simpler and efficient alternative for developing CLP 

models for the Industrial and Warehouse contexts. Additionally, context adaptation enables the transfer of 

knowledge from one context to another. Accordingly, based on the results discussed above, the following 

contexts are found to be similar to one another. For Industrial context, Institutional context was found to 

be the closest one for model adaptation purposes, which is followed by the High-rise context. For 

Warehouse context, Industrial context was found to be the closest one for model adaptation purposes, 

which is followed by the High-rise context. For High-rise context, Warehouse context was found to be the 

closest one for model adaptation purposes, which is followed by the Institutional context. For Institutional 

context, Industrial context was found to be the closest one for model adaptation purposes, which is 

followed by the High-rise context.  

6.4: CHAPTER SUMMARY   

Construction labour productivity is one of the most studied areas in the construction research 

field, and several predictive models have been developed; however, a framework for adapting the several 

models from one context to another is missing. This chapter presents a context adaptation framework for 

transferring the knowledge represented in CLP models from one context to another. The chapter has 

provided the background and review of existing approaches for context adaptation of fuzzy systems. 

Limitations of past studies were also summarized. A general procedure for linear and nonlinear 

adaptation of context-specific CLP models was formulated based on the transformation of the 

membership functions, and further sensitivity analysis of adapted models using fuzzy operators and 

defuzzification methods.  
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Subsequently, using four context-specific CLP models for concreting activity under Industrial, 

Warehouse, High-rise, and Institutional building contexts, the developed context adaptation framework 

was implemented. The results indicated that linear adaptation approach was in agreement with the base 

model in two contexts and the nonlinear adaptation approach was in agreement with the base model in 

the other two contexts. However, in terms of model accuracy, none of the adapted models performed 

better than the base models of a given context. Additionally, the sensitivity analysis on fuzzy operators 

and defuzzification methods did not show significant improvement in adapted model accuracy. 

Furthermore, the best adapted model for each context was reviewed and contextual similarities in terms 

of CLP prediction were examined. In the next chapter, the framework for the development of universal 

CLP models is presented. The framework describes the processes involved in the abstraction of the 

context-specific models, so as to develop a generalized CLP model.    
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Chapter 7: Developing and Optimizing Universal CLP Models7 

7.1: INTRODUCTION AND BACKGROUND 

Construction labour productivity (CLP) deals with the efficiency of crews in the complex 

conversion process of inputs (labour, material, equipment, etc.) to outputs (project products) in 

construction projects. Numerous objective and subjective factors, practices, and work sampling 

proportions are known to affect the process.  CLP, computed as a ratio of output to input, accounts for 

one-third to one-half of overall project costs (Hanna et al. 2005). However CLP still remains the major 

source of project risk and exhibits the highest variability among project resources, and research is being 

carried out to understand, model, and formulate improvement strategies (Tsehayae and Fayek 2014).  

Modeling CLP remains a challenge as the influencing variables (factors, practices, and work 

sampling proportions) are numerous, complex, dynamic, and inconsistent from project to project. Several 

models have been developed based on different data analysis methods to determine the relationships 

between mainly objective input variables like temperature and output in terms of labour productivity (Yi 

and Chan 2014). The most common models are based on multi-linear regression analysis.  For example, 

models for masonry wall activity were developed using data from three projects (Thomas et al. 1990). A 

study on housing project showed that work sampling proportions could be used to indicate actual site 

productivity and crew learning rates (Handa and Abdalla 1989). Since the end of 1990s, CLP studies 

have focused on the use of artificial neural networks (NN) and have been used for concrete formwork 

(Portas and AbouRizk 1997), and formwork assembly, steel fixing, and concrete pouring/finishing 

operations (Ezeldin and Sharara 2006). Expert systems were also used for masonry construction 

(Hendrickson et al. 1987) and fuzzy inference systems were used for industrial pipe rigging and welding 

activities (Fayek and Tsehayae 2012). However, the models developed for the previously encountered 

projects suit only a specific context based on project type, nature of activity under study, and external 

environment (weather, contract type, project location, etc.) and their implementation is mostly restricted to 

                                                      
7 Parts of this chapter have been published in the Proceedings, IFSA World Congress and NAFIPS Annual Meeting 
(IFSA/NAFIPS) 2013, Edmonton, Alberta, Canada, June 24-28, pp. 1096-1101. 
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the data used in their development. In addition, most models were also not able to deal with subjective 

variables in a comprehensive manner.   

A general, more abstract and universal CLP model, which is not heavily dependent on the often 

context-specific existing models, but is based on the important knowledge captured in the respective 

models is non-existent in construction research (Tsehayae et al. 2013). In one of the few labour 

productivity studies that investigated more than one context-specific models, Mosehli et al. (2005) 

developed a software platform having five change order impact evaluation models: two regression based 

models for general construction (Moselhi et al. 1991 and Ibbs 1997); a regression based models for 

mechanical activities (Hanna et al. 1999a); a regression based models for electrical activities (Hanna et 

al. 1999b); and a neural network model for general construction (Mosehli et al. 2005). However, the 

models were used for comparison purposes only and the suitability and choice for use of the included 

models was left for the user to decide. In a study to identify the levels of wasted time proportion in 

construction projects, a meta-analysis based methodology was used to provide a synthesis of the findings 

of 22 productivity studies, and the analysis revealed that an average of 49.6% of time is wasted in 

construction projects (Horman and Kenley 2005). According to the authors, meta-analysis was used to 

collect relevant statistics from individual studies and combine them to come up with an average result. 

Meta-analysis provides useful findings; however, the approach is not suited for prediction purposes, and 

the results are confined to statistical values such as averages, standard deviations, and range of values.              

A universal CLP model will make use of information granules (i.e., groups, classes, intervals, or 

clusters of the data) in the process of modeling CLP (Yao 2007).  An information granule can be defined 

as “points drawn together by indistinguishability, similarity, proximity or functionality” (Zadeh 1997) and 

fuzzy sets through the use of linguistic terms offer an important and unique feature for describing 

information granules. Information granularity and granular modeling are key in modeling complex, ill-

defined systems where a mathematical model may be difficult or impossible to build (Dick and Kandel 

2001); additionally, they have the capability to abstract context-specific models, which could come from 
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different perspectives or contexts (Pedrycz and Song 2012). Thus, by extracting the most important 

relationships contained in the context-specific models, while suppressing fine details, universal models 

provide a realistic estimate of CLP and a better representation of the complex dynamic conversion 

process (Pedrycz et al. 2012).   

The objective of this chapter is to develop a universal CLP model based on the abstraction of the 

four context-specific CLP knowledge bases for concreting (concrete placement) activity. The universal 

CLP model will represent a generalized context-free knowledge base that can be used to predict labour 

productivity of concreting activities in any context, as developing an adequate number of context-specific 

CLP models representing each unique construction context is difficult to achieve. First, the details of the 

four context-specific, also referred to as lower-level models, are presented. Then, the development of the 

universal model input and output data using the input-output data set from the four models is discussed. 

Next, steps followed in developing the higher-level universal model and optimizing its parameters are 

presented.  Finally, conclusions are provided.   

7.2: CONTEXT-SPECIFIC PRODUCTIVITY MODELS FOR CONCRETING ACTIVITY  

In the following subsections, the four lower-level models, made up of fuzzy inference system 

models for use in predicting construction labour productivity of concreting activities under four unique 

construction contexts is discussed. In this study an operational definition of context for CLP modeling 

based on 5W1H (Who, What, Where, When, Why, and How) questions, which states that context is what 

constrains the four elements of a CLP model (user, model developer, model, and prevailing environment 

of the model) without intervening in the model development process explicitly, was adopted, as discussed 

in Section 5.2. Accordingly, four unique construction contexts addressing Industrial, Warehouse, High-

rise, and Institutional contexts were formulated (refer to Fig. 7.1). Data on the 169 input parameters 

(factors and practices) and 7 process parameters (work sampling proportions) here after referred as input 

parameters, based on the findings of the moderated CLP system model approach discussed in Section 

4.6, and output or CLP parameter was collected from each context. Accordingly, the Industrial (Context 1) 
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had 23 input-output data instances (D1), the Warehouse (Context 2) had 16 input-output data instances 

(D2), the High-rise (Context 3) had 28 input-output data instances (D3), and the Institutional (Context 4) 

had 25 input-output data instances (D4).   

Construction Labour Productivity (CLP) 

Activity Level Construction Systems

Context-Specific

Augmented CLP 

Model 1 (CSAM1)

Context-Specific
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Figure 7.1: Lower-level Context-Specific CLP Models and Abstracted Universal CLP Model 

7.2.1: Establishment of Universal Model Features   

As discussed in Section 5.5, correlation-based feature selection process was applied for 

identifying the most relevant features (key input parameters), having high correlations with CLP but low 

inter-correlations were identified for use in development of the context-specific models. A total of 16, 7, 8, 

and 11 context-specific input features, representing the key influencing parameters, were selected for 

Context 1, Context 2, Context 3, and Context 4 CLP model developments, respectively. The selected key 

influencing model features for the four contexts are summarized in Table 7.1, and the full details of the 

model features together with their measurement scales are shown in Table 5.2. 
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Table 7.1: Context-Specific CLP Models: Features, Structure, and Model Parameters   

Features, FIS structure, and 
model parameters 

Context 

1 2 3 4 

Concreting, Industrial 
buildings 

Concreting, Warehouse 
buildings 

Concreting, High-rise 
buildings 

Concreting, Institutional 
buildings 

Number of data instances 23 16 28 25 

Number of context-specific input 
features  

16 7 8 11 

Context-specific  
model features 

x3, x14, x45, x46, x49, x57, 

x106, x108, x129, x135, 

x138, x167, x168, y1, y2, 

y3, z 

x45, x46, x48, x50, x108, y1, 

y7, z 

x45, x46, x57, y1, y2, y3, 

y4, y6, z 

 

x1, x5, x8, x18, x19, x46, 

x90, y1, y3, y4, y6, z 

Combined model features 
x1, x3, x5, x8, x14, x18, x19, x45, x46, x48, x49, x50, x57, x90, x106, x108, x129, x135, x138, x167, x168, 

y1, y2, y3, y4, y6, y7, z 

Number of augmented input 
features  

11 20 19 15 

Augmented model features 

x1, x5, x8, x18,x19, x48, 

x50, x90, y4, y6, y7 

x1, x3, x5, x8, x14, x18, x19, 

x49, x57, x90, x106, x129, 

x135, x138, x167, x168, y2, 

y3, y4, y6 

x1, x3, x5, x8, x14, x18, 
x19, x48, x49, x50, x90, 
x106, x108, x129, x135, 

x138, x167, x168, y7 

x3, x14, x45, x48, x49, 

x50, x57, x106, x108, 

x129, x135, x138, x167, 

x168, y2, y7 

Fuzzification coefficient  1.5 2.5 2.0 2.0 

Number of rules 6 7 6 7 

Input aggregation operator  PROD MIN PROD PROD 

Implication method PROD MIN PROD PROD 

Rule aggregation operator  MAX PROBOR PROBOR PROBOR 

Defuzzification method MOM BISECTOR CENTROID BISECTOR 

Final accuracy (RMSE) 1.761 0.441 3.470 1.946 

Note: The model features include the input features together with the output or CLP feature z  
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The four contexts, as shown in Table 7.1, have very few common features, and most features 

were specific to each context. The only key input variables common among the four contexts were 

structural element type (x46) and direct work proportion (y1). In model abstraction and universal model 

development, the focus is on capturing the important knowledge captured in the respective context-

specific or lower-level models and the associated model features (Pedrycz and Song 2012). However, the 

four contexts, as shown in Table 7.1, have very few common features and most features were specific to 

each context. Thus, in order to capture the knowledge of each context, in terms of key influencing 

parameters and develop a generalized universal model, the model features from the four contexts are 

combined, resulting in 27 input features. The resulting 27 features represent the key factors, practices, 

and work sampling proportions influencing the productivity of concreting activities in any construction 

project, irrespective of the context, and enable the development of a context-free and general CLP model. 

Therefore, for each context, additional features from the combined feature list were augmented as shown 

in Table 7.1. Accordingly, a total of 11, 20, 19, and 15 input features were augmented to Context 1, 

Context 2, Context 3, and Context 4 feature lists, respectively. The augmentation process resulted in four 

contexts having identical input features or key influencing parameters.  

Therefore, in all contexts, 27 identical input variables {𝒙𝑖𝑘 , 𝒚𝑖𝑘  }  represented as {�⃗⃗� 𝑖𝑘  } and a single 

CLP output {𝑧} were used. The input variables included: crew size (x1); craftsperson on-job training (x3); 

crew composition (x5); co-operation among craftspersons (x8); craftsperson motivation (x11); 

craftsperson fatigue (x12); craftsperson trust in foreman (x13); team spirit of crew (x14); level of 

absenteeism (x15); level of interruption and disruption (x18); fairness of work assignment (x19); job 

security (x23); availability of tools (x37); concrete placement technique (x45); structural element type 

(x46); location of work scope, distance (x48); location of work scope, elevation (x49); congestion of work 

area (x50); fairness in performance review of crew by foreman (x57); change of foremen (x58); site 

congestion (x90); project work times (x96); owner staff on site (x97); approval of shop drawings and 

sample materials (x101); treatment of foremen by superintendent and project manager (x106); uniformity 
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of work rules by superintendent (x108); labour productivity measurement practice (x126); out-of-sequence 

inspection (x129); safety training (x135); project safety administration and reporting (x138); availability of 

communication devices (x143); oil price fluctuation (x167); natural gas price (x168); direct work proportion 

(y1); preparatory work proportion (y2); tools and equipment proportion (y3); material handling proportion 

(y4); travel proportion (y6); and personal proportion (y7). The list of input variables shown in Table 7.1 

provide two key sources of knowledge. First, the full 27 input variables provide a complete list of the key 

influencing factors, practices, and work sampling proportions which have to been considered in the 

general planning of concreting activities, irrespective of the context (e.g. type or nature of the project).  

Second, if the project context is known and can be grouped under any one of the identified contexts of 

this study (concreting in industrial, warehouse, high-rise, or institutional context), focusing on the context-

specific key input variables during planning and control stages of concreting activities will lead to 

improved CLP values.  

7.2.2: Context-Specific Augmented CLP Models Development and Optimization     

As discussed in Section 5.7 of this thesis, four original context-specific CLP models, based on the 

16, 7, 8, and 11 context-specific input features shown in Table 7.1, were developed using fuzzy inference 

systems (FIS). FISs were composed of a family of conditional if-then rules where fuzzy sets were used in 

the conditions and conclusions parts of the rules. The models were developed using Fuzzy C-Means 

(FCM) clustering and Gaussian membership functions (MFs).The original CLP models were further 

optimized based on the fuzzification coefficient 𝑚 in FCM clustering, membership function parameters, 

number of rules, and fuzzy operators and defuzzification methods. The properties of the final optimized 

CLP models shown in Table 5.6 and referred to as base CLP models, indicated the context-specific 

nature of models as the models have different number of membership functions or number of rules, 

fuzzification coefficients, fuzzy operators, and defuzzification methods. However, as discussed above, for 

the development on the universal CLP model, additional model features have been augmented to each 
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context and the respective base context-specific models have to be expanded to accommodate the 

added features. 

Fuzzy inference systems are highly parallel as each if-then rule is a local descriptor of the data, 

localized based on the fuzzy sets defined in the condition parts of the rules, and the aggregation of the if-

then rules of the fuzzy inference system provides a complete description of the data (Magdalena 2015). 

Because of their parallel nature, fuzzy inference systems can be easily expanded by adding additional 

features or rules (Angelov and Buswell 2002). Taking this critical advantage of fuzzy inference models, 

the four context-specific models were expanded by adding the additional features. However, in order to 

maintain the interpretability of the augmented fuzzy inference models of each context, the numbers of 

rules were kept equal to that of the base context-specific model. Thus, for Industrial context (Context 1), 

the context-specific model was developed by adding the augmented 11 input features to the existing 16 

input features. Similar to the base Context 1 model structure shown in Table 7.1, fuzzification coefficient 

of 𝑚 = 1.5 was used and 6 rules were developed using FCM clustering and Gaussian membership 

functions. The developed augmented model was used to predict CLP values of the 23 data instances of 

Context 1 and the model showed an RMSE value of 1.777. Then, using the optimization framework 

described in Section 5.7, the membership functions of the augmented model were optimized and 

sensitivity analysis was carried out for the fuzzy operators and defuzzification methods. The optimized 

model showed an RMSE value of 1.761, which indicated 0.92% accuracy improvement over the non-

optimized augmented model of Context 1. The parameters of the optimized augmented Context 1 CLP 

model (CSAM1) are shown in Table 7.1. Similarly, for Warehouse context (Context 2), the context-specific 

model was developed by adding the augmented 20 input features to the existing 7 input features. Similar 

to the base Context 2 model structure shown in Table 7.1, fuzzification coefficient of 𝑚 = 2.5 was used 

and 7 rules were developed using FCM clustering and Gaussian membership functions. The developed 

augmented model was used to predict CLP values of the 16 data instances of Context 2 and the model 

showed an RMSE value of 0.469. Then, the membership functions of the augmented model were 
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optimized and sensitivity analysis was carried out for the fuzzy operators and defuzzification methods. 

The optimized model showed an RMSE value of 0.441, which indicated 5.96% accuracy improvement 

over the non-optimized augmented model of Context 2. The parameters of the optimized augmented 

Context 2 CLP model (CSAM2) are shown in Table 7.1. 

For High-rise context (Context 3), the context-specific model was developed by adding the 

augmented 19 input features to the existing 8 input features. Similar to the base Context 3 model 

structure shown in Table 7.1, fuzzification coefficient of 𝑚 = 2.0 was used and 6 rules were developed 

using FCM clustering and Gaussian membership functions. The developed augmented model was used 

to predict CLP values of the 28 data instances of Context 3 and the model showed an RMSE value of 

3.846. Then, the membership functions of the augmented model were optimized and sensitivity analysis 

was carried out for the fuzzy operators and defuzzification methods. The optimized model showed an 

RMSE value of 3.470, which indicated 9.79% accuracy improvement over the non-optimized augmented 

model of Context 3. The parameters of the optimized augmented Context 3 CLP model (CSAM3) having 

27 input features and 6 rules are shown in Table 7.1. And, for Institutional context (Context 4), the 

context-specific model was developed by adding the augmented 15 input features to the existing 11 input 

features. Similar to the base Context 4 model structure shown in Table 7.1, fuzzification coefficient of 𝑚 =

2.0 was used and 7 rules were developed using FCM clustering and Gaussian membership functions. 

The developed augmented model was used to predict CLP values of the 25 data instances of Context 4 

and the model showed an RMSE value of 2.071. Then, the membership functions of the augmented 

model were optimized and sensitivity analysis was carried out for the fuzzy operators and defuzzification 

methods. The optimized model showed an RMSE value of 1.946, which indicated 6.03% accuracy 

improvement over the non-optimized augmented model of Context 4. The parameters of the optimized 

augmented Context 4 CLP model (CSAM4) are shown in Table 7.1. 

A comparison of the prediction accuracies of the optimized augmented and base context-specific 

CLP models was then carried out using RMSE values and for each of the four contexts. For Context 1, 
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the base context-specific model showed a better prediction of the CLP values of Context 1 with an RMSE 

value of 1.162, as compared to the optimized augmented CLP model (CSAM1) which has RMSE value of 

1.761. However, for Context 2, the optimized augmented CLP model (CSAM2) showed a better prediction 

of the CLP values of Context 2 with an RMSE value of 0.441, as compared to the base context-specific 

model which has RMSE value of 0.467. For Context 3, the base context-specific model showed a better 

prediction of the CLP values of Context 3 with an RMSE value of 0.992, as compared to the optimized 

augmented CLP model (CSAM3) which has RMSE value of 3.470. For Context 4, the base context-

specific model showed a better prediction of the CLP values of Context 4 with an RMSE value of 0.671, 

as compared to the optimized augmented CLP model (CSAM3) which has RMSE value of 1.946. The 

comparison of the RMSE results indicated the superiority of the base context-specific CLP models in 

predicting CLP in contexts 1, 3, and 4. However, for Context 2 the augmented CLP model showed better 

prediction ability, however, the improvement was marginal. Nonetheless, it should be noted that the 

purpose of the augmented context-specific CLP models is to facilitate the development of the universal 

CLP model by providing context-specific prediction of CLP using the combined input features.  

7.3: ABSTRACTION OF CONTEXT-SPECIFIC AUGMENTED CLP MODELS  

One of the objectives of this thesis is to develop a higher-level universal CLP model (UPM) from 

the respective lower-level models (CSAMi) as conceptualized in Fig. 7.1. This study is based on a 

Granular Computing and knowledge management approaches as discussed in (Zadeh 1997; Pedrycz et 

al. 2012; Zadeh 2008; Pedrycz 2011; Pedrycz and Song 2012; Reyes-Galaviz and Pedrycz 2015). The 

approach deals with an idea of knowledge transfer where a source of knowledge in terms of existing 

models can be used to develop an abstracted granular or universal model, which provides a better 

understanding of complex dynamic systems like construction (Leite et al. 2012).   

Granular Computing focuses on the construction of granules and computation with granules (Yao 

2007). While construction of granules deals with the formation, representation, and interpretation of 

granules, computation deals with the utilization of the granules in problem modeling (Yao 2007; Pedrycz 



 217 

2011). Granular modeling provides a means to abstract context-specific models so that the most 

important relationships will used to produce a reliable prediction of CLP.   

Zadeh (1997) defines an information granule as “points drawn together by indistinguishability, 

similarity, proximity or functionality”. For example, a better representation of numeric data can be 

achieved via their probabilistic information granule (such as a Gaussian probability distribution) than the 

mean or median of the data set (Pedrycz and Song 2012). Fuzzy sets offer the important and unique 

feature of describing information granules of variables using linguistic terms (e.g., large for crew size, or 

cold for temperature) whose contributing terms will belong to a certain concept with varying degrees of 

membership or belongingness (Pedrycz and Gomide 2007). The essence of granular models is then to 

describe the association between information granules or fuzzy sets formed on the input and output 

spaces (Pedrycz 2011). 

Information granules can be designed using either Fuzzy C-Means (FCM) clustering of the 

model’s input-output data or by selecting representative granules from the respective models (Pedrycz 

and Song 2012).  In case of fuzzy clustering, the primary objective is to create a family of overlapping 

partitions or clusters of the numerical model variable data {𝒙𝑘}, 𝑘 = 1,2, … , 𝑁, where 𝑁 is the total number 

of data points or instances in the respective models. The clusters will be represented by their central 

element or prototype 𝒗, and the degrees of belongingness captured in the form of a partition matrix 𝑈 of 

each data point to the respective prototypes are treated as membership function. In case of selecting 

representative granules from the respective models, the objective is to develop higher level prototypes of 

the information granules by selecting a suitable subset of lower-level information granules from the 

respective models, where the selected subset is expected to represent all prototypes of the models to the 

highest extent (Pedrycz and Song 2012). The process is a combinatorial optimization problem and 

requires a combinatory evolutionary or population based optimization to minimize the error on 

reconstruction of the prototypes at the lower-level using the subset of the prototypes formed at the higher-

level (Pedrycz and Song 2012).  



 218 

According to  Pedrycz (2011) the followings general steps are taken to realize a universal  

granular fuzzy model: (1) construction of information granules for the respective lower-level model input 

data, (2) formation of generalized information granules for input and establishing outputs from respective 

models, (3) development of a universal model, and (4) optimization of the universal model. The 

construction or formation of information granules in the first two steps, deals with the development of 

information granules from model input variables, and the meaningfulness of the information granules will 

be ensured based on the principle of justifiable granularity. Universal or granular models can then be 

developed using various methods: case-based reasoning, fuzzy regression, fuzzy rule-base, or fuzzy 

neural network (Pedrycz and Song 2012; Reyes-Galaviz and Pedrycz 2015). As discussed in the 

following sections, the parameters of granular models can be further optimized to improve the 

performance of the developed granular or universal model (Pedrycz 2011). In this study, the universal 

productivity model, was developed using the clustering approach on the prototypes formed from the four 

context-specific models, and the model utilized a granular case-based reasoning methodology (Pedrycz 

et al. 2012). The following steps were followed in the development of the universal productivity model: 

1. Construction of lower-level information granules using FCM clustering on model input variable data 

(D1, D2, D3, and D4) to develop 𝑏 number of prototypes.  

2. Development of the generalized higher-level information granules, through clustering of the lower-level 

model 𝑏 prototypes, to form 𝑐 number of prototypes. 

3. Construction of information granules of output (CLP) using an interval-based information-granule 

approach and the principle of justifiable granularity. 

4. Development of granular output intervals based on the lower and upper bounds for use in the granular 

case-based reasoning approach.  

5. Optimization of the generalized universal model using the area under curve values, and based on the 

𝑐 number of clusters built in the generalized universal fuzzy model and 𝑚-fuzzification coefficient. 
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In the following sub-sections, the successive design steps are discussed in detail and results and 

limitations are presented. 

7.3.1: Construction of Lower-level Information Granules  

The construction of information granules from the respective context-specific model input 

variables {�⃗⃗� 𝑖𝑘  }, where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … , 23 for 𝑖 = 1 or D1 (Industrial context), 𝑘 = 1,2, … , 16 for 

𝑖 = 2 or D2 (Warehouse context), 𝑘 = 1,2, … , 28 for 𝑖 = 3 or D3 (High-rise context), and 𝑘 = 1,2, … , 25 for 

𝑖 = 4 or D4 (Institutional context), were carried out using a FCM clustering approach, which is the most 

commonly used method for forming granules (Pedrycz et al. 2012). The process basically classified the 

data set of the input variables into similar groups or clusters, each represented by a prototype. The lower-

level information granules were thus made up of a collection of 𝑏 prototypes 𝒗𝑖1,𝒗𝑖2, … , 𝒗𝑖𝑏, where 𝑖 =

1,2,3,4 and the corresponding partition matrix 𝑈 relates the degree of membership in terms of the [0, 1] 

interval of each data point to the corresponding prototype. The context-specific model properties shown in 

Table 7.1, particularly the values of the fuzzification coefficient 𝑚 and number of rules indicating the 

representative number of cluster centers used in the context-specific models, were used to guide the 

construction of the lower-level information granules. Accordingly, the number of clusters 𝑏 from Context 1, 

Context 2, Context 3, and Context 4 datasets were set to 6, 7, 6, and 7, respectively, and the fuzzification 

coefficient 𝑚 was set to 1.5, 2.5, 2.0, and 2.0, respectively. The subsequent collection of 𝑏 number of 

prototypes (i.e., 6, 7, 6, and 7) from each of the four contexts resulted in a total of 26 lower-level granules.  

7.3.2: Formation of Higher-level Information Granules    

After forming the respective granules from the lower-level or context-specific model data, the 

generalized or higher-level information granules for abstracting the respective context-specific models 

were developed using FCM clustering on the collection of 𝑏 = 26 prototypes. Accordingly, a second FCM 

clustering process was applied to the collection of the 26 lower-level granules and the resulting cluster 

centers or prototypes formed the higher-level information granules. The fuzzification coefficient 𝑚 was set 

to 2.0 for optimum information granule formulation (Pedrycz and Song 2012). The resulting generalized 
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information granules, representing the high-level information granules, were made up of a collection of 𝑐 

prototypes �̇�1,�̇�2, … , �̇�𝑐, where �̇� represents the higher-level prototypes.   

In order to evaluate the effect of the number of clusters 𝑐 on the performance of the universal 

model, four universal model alternatives based on c=3, c=9, c=15, and c=21 were considered. For 

example, Fig. 7.2, Fig. 7.3, Fig. 7.4, and Fig. 7.5 show the respective higher-level granules or prototypes 

�̇�1,�̇�2, �̇�5, 𝑎𝑛𝑑 �̇�9 and the associated values of the 27 input variables for the second universal model 

alternative, where c=9. The figures display the distinct nature of each high-level granule or prototype. 

Conceptually each prototype represents a typical scenario in carrying out a concreting activity, where the 

scenario is defined using the values of the input variables which are used to predict CLP of concerting 

activity using the universal model. 

 

Figure 7.2: Higher-level Information Granule or Prototype �̇�1  for c=9 Alternative 
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Figure 7.3: Higher-level Information Granule or Prototype �̇�2  for c=9 Alternative 

 

Figure 7.4: Higher-level Information Granule or Prototype �̇�5  for c=9 Alternative 
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Figure 7.5: Higher-level Information Granule or Prototype �̇�9  for c=9 Alternative 

7.3.3: Construction of Output Information Granules    

The resulting higher-level granules or prototypes, such as the ones shown in Fig. 7.2 to Fig. 7.5, 

represent generalized input data for predicting the output (CLP) or 𝑧. Each prototype �̇�1,�̇�2, … , �̇�𝑐, was 

used as input data to the four augmented context-specific CLP models (CSAM1, CSAM2, CSAM3, and 

CSAM4) and four outputs were generated. The generated outputs represent the estimated CLP values 

𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4  based on the knowledge stored in each of the four augmented context-specific CLP 

models. The four estimates of CLP were then used to develop the universal model and form the basis of 

the abstraction of the four models. The resulting input-output set of universal model data will thus come in 

the form of Eq. (7.1): 

�̇�1  : 𝑧11 = 𝐶𝑆𝑃𝑀1(�̇�1), 𝑧21 = 𝐶𝑆𝑃𝑀2(�̇�1), 𝑧31 = 𝐶𝑆𝑃𝑀3(�̇�1), 𝑧41 = 𝐶𝑆𝑃𝑀4(�̇�1) ; 

�̇�2 ∶ 𝑧12 = 𝐶𝑆𝑃𝑀1(�̇�2), 𝑧22 = 𝐶𝑆𝑃𝑀2(�̇�2), 𝑧32 = 𝐶𝑆𝑃𝑀3(�̇�2), 𝑧42 = 𝐶𝑆𝑃𝑀4(�̇�2) ; 

.  .  . 

�̇�𝑐  : 𝑧1𝑐 = 𝐶𝑆𝑃𝑀1(�̇�𝑐), 𝑧2𝑐 = 𝐶𝑆𝑃𝑀2(�̇�𝑐), 𝑧3𝑐 = 𝐶𝑆𝑃𝑀3(�̇�𝑐), 𝑧4𝑐 = 𝐶𝑆𝑃𝑀4(�̇�𝑐) 

(7.1) 
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The next step involves the determination of the universal model input-output data. The inputs for 

the universal models were the 𝑐 prototypes (�̇�1,�̇�2, … , �̇�𝑐), and the output was an information granule 

represented using interval values Ω which was formed around the four estimated CLP values 

(𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4). The output interval value forms the basis on the granulation process of the input-output 

data set shown in Eq. 7.1. The interval aspect of the outputs is the sought-after value of universal models, 

as their outputs are not specific numeric values, and will provide a range of possible CLP values for a 

given situation represented using the 27 combined input features. Thus, the interval based prediction of 

CLP provides an improvement over the commonly used single numerical estimates of CLP, as it avoids 

the hit or miss evaluation approach by providing a range of possible CLP values.  

The construction of the output or CLP interval relied on the principle of justifiable granularity, 

where the formed information granules Ω are required to have sufficiently high levels of experimental 

evidence (coverage criterion) while maintaining high specificity (specificity criterion) (Pedrycz 2011; 

Pedrycz et al. 2012; Pedrycz and Song 2012; Reyes-Galaviz and Pedrycz 2015). However, the coverage 

and specificity requirements are conflicting as increasing the coverage aspect of the interval Ω by 

including sufficiently high level of the estimated CLP values (𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4) will result into a less specific 

interval, thereby critically limiting the usefulness of the developed universal model. The formulation of the 

interval was carried out in two stages: (1) determination of the numeric representative of the four output 

values (𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4) and (2) the construction of an interval bound Ω ∈ [e, f] based on its lower and 

upper bounds, denoted by 𝑒 and 𝑓, respectively (refer to Fig.7.6).  

The use of the median value as a numerical representative value is recommended (Pedrycz and 

Song 2012). Therefore, for a given universal model alternative, say c=3, three higher-level prototypes 

�̇�1,�̇�2,�̇�3 were constructed, and four output data values (𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4) were estimated for each of the 

three higher-level prototype and using the four context-specific models. The four estimated output data 

values were then arranged in ascending order, resulting in the following list: 𝑧𝑚𝑖𝑛 , 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧𝑚𝑎𝑥, where 

𝑧𝑚𝑖𝑛 represents the lowest estimated CLP value, 𝑧𝑚𝑎𝑥 represents the highest estimated CLP value, and 
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𝑧2 and 𝑧3 represent the two middle estimated  CLP values. Then, the median 𝑀𝑒𝑑(𝑧) was computed by 

averaging the two middle values 𝑧2  𝑎𝑛𝑑 𝑧3, as shown in Fig. 7.6.  

z1 z2 z3 z4

e f
Ω 

Med (z)
 

Figure 7.6: Determination of Representative Value of Output Interval  

Next, the interval bounds 𝑒 and 𝑓 were formed around the representative value 𝑀𝑒𝑑(𝑧) using a 

performance index 𝑉 defined in (Eq. 7.2), where 𝑓1 is an increasing function of cardinality of output data 

(𝑧1, 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧4) being covered by the interval Ω and is used to quantify the coverage criterion, and 𝑓2 is a 

decreasing function of the support (length) that is used to quantify the specificity criterion of the interval Ω.   

𝑉 =  𝑓1 ∗ 𝑓2   (7.2) 

The objective of the process is to ensure the numeric evidence within the bounds of Ω is as high 

as possible (𝑓1) and the support of the bound is as small as possible (𝑓2). The following functions, where  

is a positive parameter that provides flexibility in the formation of the Ω and 𝑢 is interval space formed 

between the representative value 𝑀𝑒𝑑(𝑧) to any one of the boundary points of granular interval (i.e., 

either 𝑓 or 𝑒), was used (Pedrycz and Song 2012): 

𝑓1 = 𝑢 (7.3) 

𝑓2 = 𝑒−𝛼𝑢 (7.4) 

However, as there are only four lower-level or context-specific CLP models, the output interval 

data will only have four values, out of which the median will be the average value of the two middle  

values 𝑧2  𝑎𝑛𝑑 𝑧3 as shown in Fig. 7.7. Additionally, based on the value of  two granulation cases for 

determining the lower and upper bounds exist. In the first granulation case is shown in Fig. 7.7a, and in 

this case the lower and upper bounds will take the lowest and highest estimated values of CLP. 

Consequently, the granulation process will not provide highly specific bound Ω ∈ [𝑒 = 𝑧𝑚𝑖𝑛 , 𝑓 = 𝑧𝑚𝑎𝑥]. The 

resulting intervals will fully fulfill the coverage requirement; however, the specificity requirement will be 

completely ruled out at value of  = 0, thereby making the developed universal model useless. The 
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second granulation case is shown in Fig. 7.7b, and in this case the lower and upper bounds will take the 

two estimated middle values 𝑧2  𝑎𝑛𝑑 𝑧3. In this case, the granulation process will provide highly specific 

bounds Ω ∈ [𝑒 = 𝑧2, 𝑓 = 𝑧3] at the maximum  value, while coverage of the output data is achieved to a 

limited extent. 

zmin Med(z)z2 z3 zmax

e f
Ω , where α = 0

zmin

e
Ω , where α = α max

Med(z)z2 z3 zmax

f

(a) (b)

 
Figure 7.7: Determination of Boundary Points of Output Interval 

Accordingly, the two middle values 𝑧2  𝑎𝑛𝑑 𝑧3 among the four context-specific model outputs or 

CLP estimates 𝑧𝑚𝑖𝑛 , 𝑧2, 𝑧3, 𝑎𝑛𝑑 𝑧𝑚𝑎𝑥 were taken to develop the lower (𝑒 = 𝑧2 = 𝑧−) and upper bounds (𝑓 =

𝑧3 = 𝑧+) of the intervals Ω of the universal model. The resulting input-output data of information granules 

will come in the following form: 

�̇�1   :  [𝑧1
−, 𝑧1

+] ; �̇�2   : [𝑧2
−, 𝑧2

+] ; .  .  ; �̇�𝑐 : [𝑧𝑐
−, 𝑧𝑐

+] (7.5) 

7.3.4: Developing the Universal CLP Model   

In the universal CLP model, the relationship between the higher-level information granules, 

represented by the 𝑐 prototypes (�̇�1,�̇�2, … , �̇�𝑐), and their respective output intervals, represented by the 

respective intervals Ω of each prototype, will form the universal CLP models. Universal or granular models 

can be developed using various methods: case-based reasoning, fuzzy regression, fuzzy rule-base, or 

fuzzy neural network (Pedrycz and Song 2012; Reyes-Galaviz and Pedrycz 2015). In this study, the use 

of a granular case-based reasoning approach was preferred, as the universal model inputs and outputs 

were developed using a clustering approach, which by its very nature provides typical cases using 

representative prototypes. Case-based reasoning relies on specific knowledge of previously experienced 

cases and solves a new problem by finding a similar past case (Aamodt and Plaza 1994; Ji et al. 2012). 

In this study, previously experienced cases were defined based on the higher-level 𝑐 prototypes and their 

interval-based (Ω) CLP estimates as shown in Eq. 7.5. Then the CLP estimate of a new case as defined 
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by given input variables �⃗⃗�  will be solved by calculating its closeness to the prototype-based cases 

(�̇�1,�̇�2, … , �̇�𝑐). As the information granules for the input part were the higher-level information granules, 

represented by the 𝑐 prototypes (�̇�1,�̇�2, … , �̇�𝑐), each case will be represented by 𝑐 number of prototypes. 

Thus, as discussed before, in order to evaluate the effect of the number of clusters 𝑐 on the performance 

of the universal model, four universal models alternatives (c=3, c=9, c=15, and c=21) have been 

developed. For a certain input variable �⃗⃗� , its closeness to anyone of the c prototypes (�̇�1,�̇�2, … , �̇�𝑐) was 

determined using the degree of activation 𝑢𝑖(�⃗⃗� ) of each case or prototype. The degree of activation was  

computed using Eq. (7.6), where the degree of belongingness to a certain prototype �̇�𝑖 is (where m >1): 

𝑢𝑖(�⃗⃗� ) =
1

∑ (
‖�⃗⃗� − �̇�𝒊‖

‖�⃗⃗� − �̇�𝒋‖
)

2
(𝑚−1)

𝑐
𝑗=1

 
(7.6) 

The model output in terms of lower (𝑧1
−) and upper bounds (𝑧1

+) of an interval was then 

determined using Eq. (7.7) and Eq. (7.8), which were derived based on the respective lower (𝑧𝑖
−) and 

upper (𝑧𝑖
+) bound values of each case or prototype:  

𝑧1
− = ∑𝑢𝑖(�⃗⃗� )

𝑐

𝑖=1

 𝑧𝑖
− (7.7) 

𝑧1
+ = ∑𝑢𝑖(�⃗⃗� )

𝑐

𝑖=1

 𝑧𝑖
+   (7.8) 

For example, among the four universal model alternatives, two universal model alternatives are 

shown in Fig. 7.8 and Fig. 7.9. The first universal CLP model shown in Fig. 7.8 has 15 higher-level 

prototypes or c=15 and the second universal CLP model shown in Fig. 7.9 has 21 higher-level prototypes 

or c=21 and the output intervals Ω ∈ [𝑒 = 𝑧2 = 𝑧−, 𝑓 = 𝑧3 = 𝑧+] are show for each prototype �̇�𝑖. 
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Figure 7.8: Universal CLP Model (c=15) 

 
Figure 7.9: Universal CLP Model (c=21) 

7.3.5: Optimization of the Universal CLP Model   

One main advantage of universal models is that as their outputs are granular or interval based, 

and the interval can be optimized to improve the prediction ability of the universal models (Pedrycz and 

Song 2012). The optimization process was achieved using the following criteria of optimizing universal 

fuzzy models: coverage criterion, which deals with how much the interval-based CLP estimate includes 

the data that represents the estimates for each new case, and specificity criterion, which deals with to 

what extent the interval estimate is focused enough to provide reliable prediction of new cases.  

The interval-based CLP estimates for optimizing the universal model were developed for a total of 

92 cases, 23 from input-output data D1 (Industrial context), 16 from input-output data D2 (Warehouse 

context), 28 from input-output data D3 (High-rise context), and 25 from input-output data D4 (Institutional 

context). The 92 cases were randomly separated into 70% (64 cases) and 30% (28 cases) to train and 

test the universal model, respectively.  
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According to Pedrycz and Song (2012), a concise and informative characterization of universal 

models can be achieved using a plot of coverage of data versus specificity represented by cumulative 

length of the interval values. As a result, the overall quality of the universal productivity models was 

evaluated using the curve of coverage-specificity plots for optimizing the model parameters and selecting 

the one with the largest area under the curve.  Following the process presented in Pedrycz and Song 

(2012), first the coverage requirement was quantified using a level of coverage measure. The level of 

coverage (LC) represents how much of the target output data points were included with in the universal 

model’s interval output and, while a high value of LC indicates a better performing universal model, a 

value of LC close to 1 indicates an unacceptable lack of specificity of the universal model (Pedrycz and 

Song 2012). The level of coverage (LC) measure has been formulated as shown in Eq. 7.9, where 𝑁𝑐 is 

the number of output or target data points covered by the universal model output, which comes in an 

interval form and 𝑁 is the total number of cases. In this study, N was set to 64 for optimizing or training 

stage and to N was set to 28 for testing stage. 

𝐿𝐶 =
𝑁𝑐

𝑁
 (7.9) 

The specificity requirement was quantified using the cumulative length (𝐿) of the interval-based 

output information granules and has been formulated as shown in Eq. 7.10, where 𝐿𝑗 is the length of an 

interval generated by the jth data input case instance. 

𝐿 = ∑𝐿𝑗

𝑗

 
(7.10) 

Thus, for each of the training or testing input variable data points from D1, D2, D3, and D4, the 

degree of activation of each case was first computed using Eq. 7.6. Then, the lower and upper bounds of 

the universal model interval output were established using Eq. 7.7 and Eq. 7.8. Then, the cumulative 

length (𝐿) was developed for the target or output data points, and the count of output data points included 

within the increasing intervals of 𝐿 was established in order to determine the coverage requirement (LC).   
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However, the number of individual lower-level or context-specific models in this study was limited 

to four. Thus, the use of  as an optimization parameter of the universal model, which influences the 

determination of the interval-based output granules Ω as shown in Eq. 7.4, was not practical as the 

maximum  value was used in the formation of the output granules as discussed in Section 7.3.4. The 

parameter optimization of the universal model was thus carried out on the other two model parameters, 

namely, the 𝑐 number of higher-level clusters built by clustering the prototypes from lower-level models, 

and the 𝑚 fuzzification coefficient used in the determination of the degree of activation of cases  𝑢𝑖(�⃗⃗� ). 

The universal CLP model was optimized using different combinations of the fuzzification 

coefficient 𝑚 𝜖 {1.3, 1.5, 1.7, 2, 3} and number of clusters of the higher-level information granules 

𝑐 𝜖 {3, 9, 15, 21}. It is recommended to set the fuzzification coefficient and the number of clusters to quite 

low and quite high values in order to compare and contrast the performance of the universal model 

(Reyes-Galaviz and Pedrycz 2015). The various combinations were evaluated using the area under curve 

values of the coverage-specificity plots, so as to explore the performance of the universal model for 

optimized parameters m and c. The area under curve values were determined using the ordinates of LC 

and cumulative length (𝐿), and the maximum values of the cumulative length (L) leading to full coverage 

were considered.  

First for each of the four universal model alternative (c=3, c=9, c=15, and c=21), five universal 

case models were developed base on the fuzzification coefficient values of m=1.3, m=1.5, m=1.7, m=2.0, 

and m=3.0. The coverage-specificity plots as shown in Fig. 7.10 were developed for optimizing the four 

alternative universal models using the optimization or training data cases (N = 64), and the coverage-

specificity plot resulting in the largest area under curve were identified.  
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 Figure 7.10: Coverage of Data LC versus the Cumulative Length of Interval L Plots 

The area under curve values of the best and worst cases are summarized in Table 7.2. 

Accordingly, the best values of m (fuzzification coefficient) leading to the largest area under curve values 

for universal model (c=3), universal model (c=9), universal model (c=15), universal model (c=21) 

alternatives, were equal to 1.7, 2.0, 3.0, and 2.0, respectively, and the associated area under curve 

values were 22.35, 24.01, 23.42, and 24.43, respectively. The worst m (fuzzification coefficient) value 

leading to the smallest area under curve values for universal model (c=3), universal model (c=9), 

universal model (c=15), universal model (c=21) alternatives, were equal to 3.0, 3.0, 2.0, and 3.0, 

respectively, and the associated area under curve values were 21.22, 21.69, 22.55, and 22.11, 

respectively. 
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Table 7.2: Best and Worst Results of Universal CLP Model Optimization Combinations 

Number of Clusters  

Combination 

Training Cases Testing Cases 

Best Worst Best Worst 

C = 3 

m 1.7 3.0 1.7 3.0 

AUC 22.35 21.22 23.76 22.94 

LC  24.68 23.73 19.64 22.83 

C = 9 

m 2.0 3.0 2.0 3.0 

AUC 24.01 21.69 24.26 22.48 

LC  29.15 29.20 28.70 30.36 

C = 15 

m 3.0 2.0 3.0 2.0 

AUC 23.42 22.55 23.93 21.10 

LC  33.25 31.47 37.76 32.53 

C = 21 

m 2.0 3.0 2.0 3.0 

AUC 24.43 22.11 22.60 22.29 

LC  34.99 36.01 33.80 33.55 

Note: m denotes the Fuzzification coefficient, AUC denotes area under curve, and I denote the coverage 
values in percent  

The performance of the universal models based on the identified 𝑚 values that lead to the best 

and worst performance measures were then evaluated using the testing data cases (𝑁 = 28). The 

performance results of the universal models, based on area under curve values as shown in Table 7.2, 

showed that the 𝑚 values leading to best performance in training data cases also lead to best 

performance using the testing cases. Similar results were observed for 𝑚 values leading to the worst 

performance results.   

Next, each of the four universal CLP models based on c=3, c=9, c=15, and c=21 were compared 

to identify the optimum universal model based on the testing data cases. In Table 7.2, the best and worst 

results for all combinations and using training and testing data cases are shown. The area under curve 

based on the testing data for the four universal models based on c=3, c=9, c=15, and c=21 were found to 

be 23.76, 24.26, 23.93, and 22.29, respectively. The best result leading to the largest area under curve 

values was obtained when m = 1.7 and c = 9. Thus, the second universal model (c=9) alternative having 

9 high-level prototypes or cases and based on fuzzification coefficient of 𝑚 =  1.7 was found to be the 

best universal CLP model (UPM).  
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The universal CLP model represents a generalized context-free knowledge base and can be 

used to predict labour productivity of concerting activities in any context. However, the universal model 

has some limitations. The coverage results, computed using Eq.  7.9, and shown in Table 7.2, indicated 

that 28.70% of the output data points will be covered by the universal model. The low coverage value is 

associated with the high specificity of the developed universal model, which was caused by the limited 

number of individual lower-level or context-specific CLP models in study and the use of the maximum  

value in the determination of the output granules. However, the high specificity of the universal model 

interval outputs is more important, as the interval estimates of the model will be narrow enough that a 

useful range of possible CLP values will be provided. On the other hand, if the coverage is high, the 

interval estimates of the model will be much wider, resulting in a less useful range of CLP estimate 

values. Another limitation arises from the low numerical accuracy of the augmented context-specific CLP 

models, which will hamper the performance of the universal model. Expanding the number and also 

improving the accuracy of the lower-level or context-specific models by examining and modeling new 

contexts is suggested. This will enable the optimization of the universal models using  values and lead 

to improved coverage performance of the universal CLP model.  

7.4: CHAPTER SUMMARY   

Construction labour productivity is an efficiency measure of crews in producing outputs usually at 

an activity level.  The relationship between the parameters influencing the efficiency of crews and the 

achieved labour productivity is being studied using various stand-alone context-specific labour 

productivity models.  However, the developed models suit only a specific context and most importantly, a 

method for generalizing the knowledge captured in the various models has not yet been fully developed.  

This chapter presents a granular fuzzy framework for developing universal construction labour 

productivity model via abstraction of context-specific CLP models. This study used four context-specific 

CLP models for concreting activity in order to develop a single generalized, more abstract universal CLP 

model.  The development of the universal CLP model has been achieved using a granular case-based 
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reasoning approach and fuzzy clustering of the prototypes developed from individual context-specific 

model input data points.   

The resulting model has provided a granular output in terms of an interval estimate of CLP for a 

given value of input variables. The granular interval estimate can realistically represent CLP, which 

corresponds to the efficiency of a crew in converting inputs like labour, material, and equipment into 

project outputs. The application of the FCM clustering algorithm to develop the information granules and 

develop granular construction labour productivity models has been demonstrated. The performance of the 

universal model has fulfilled the specificity requirement, meaning that the universal model outputs will be 

highly focused and the interval estimate of CLP will be a narrow one, however, the universal model has 

shown low coverage performance. The universal CLP model will be useful for predicting labour 

productivity of concerting activities under any context and represents a generalized CLP knowledge base. 
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Chapter 8: Conclusions and Recommendations8 

This chapter presents a review of the work conducted in this research and summarizes the 

contributions. Limitations of the research and the developed context-specific and universal construction 

labour productivity models are discussed, and recommendations for future research are outlined.  

8.1: RESEARCH SUMMARY 

Construction labour productivity (CLP) is an efficiency measure of an activity-level open system 

that deals with the process of converting inputs (material, information, etc.) to outputs (project 

components) using labour as the chief transformation mechanism. Labour productivity is of critical 

importance to the construction industry, as it directly affects the profitability and competitiveness of 

construction companies, and it is therefore a frequently researched topic. Nevertheless, labour 

productivity continues to be a major source of construction risk and exhibits the highest variability among 

construction resources. The construction industry is constantly searching for ways to improve labour 

productivity, but the industry has lacked crew-level CLP models capable of explaining which parameters 

cause productivity to change and by how much. Construction labour productivity is affected by numerous 

context-sensitive subjective and objective influencing parameters. Modeling CLP remains a challenge, 

since for a given context, the complex impact of the multiple parameters have to be considered 

simultaneously, without sacrificing accuracy and interpretability of developed context-specific CLP 

models. Previous studies also had limitations in proving the ability of work sampling proportions to explain 

the variability of CLP. Additionally, previous CLP models lacked a clear and explicit representation of 

context, and an approach for transferring the knowledge represented in the context-specific CLP models 

from one context to another was missing. Furthermore, a universal model that represents versatile 

knowledge that can be used in any context was needed.  

                                                      
8 Parts of this chapter have been published in Canadian Journal of Civil Engineering, Volume 41, Issue 10, pp. 878-
891; submitted for publication in Journal of Construction Innovation: Information, Process, Management, JCI, 36 
manuscript pages, submitted July 28, 2015; and submitted for publication in Journal of Construction Engineering and 
Management, JCEM, 33 manuscript pages, submitted June 30, 2015.   
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The main aim of this thesis is thus to present a structured methodology for the development of 

interpretable and accurate context-specific and universal CLP models that facilitate a better 

understanding of the parameters that influence CLP. The methodology examined the effect of the 

numerous context-sensitive influencing system parameters, made up of input parameters (subjective and 

objective factors and practices), process parameters (work sampling proportions), causing the complex 

variability of the output parameter (CLP) using data-driven and optimized context-specific fuzzy inference 

system models and granular case based universal CLP model. 

The research in this thesis was conducted mainly in four main stages: (1) identifying, classifying, 

quantifying, and documenting the input and process parameters influencing CLP, (2) identifying key input 

parameters (factors and practices) influencing labour productivity using expert and data-driven 

approaches, (3) developing a system-based labour productivity modeling framework for establishing the 

role of work sampling proportions, in addition to the input parameters, in labour productivity modeling, and 

(4) studying the effect of context in CLP by developing and optimizing context-specific CLP models and 

formulating context adaptation and context abstraction frameworks.     

8.1.1: The First Stage 

The second chapter reviews existing CLP modeling literature, identifies limitations of past CLP 

studies, and presents the detailed description of the research methodology of this study. The 

methodology used for identifying, classifying, and quantifying the input, process, and output system 

parameters was described. A hierarchal list made up 169 input parameters and seven work sampling 

proportion influencing CLP was developed. Then, the details of the data collection methodology were 

presented together with the details of the custom-made, server-based database tool, called 

ProductivityTracker©. Additionally, the research ethics procedure developed to ensure the anonymity and 

confidentiality of research participants was summarized. Using several data collection techniques (factor 

survey, factors and practices documentation, work sampling studies, foreman delay surveys, craftsman 

questionnaires, and productivity measurements) the system parameters were documented from 11 
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projects across Alberta, Canada. However, adequate data was available only for the following trades: 

concreting, electrical, mechanical, and boilermakers.  

8.1.2: The Second Stage 

The large input parameters feature space, made up of the influencing input parameters (factors 

and practices), had to be reduced to maintain the interpretability and accuracy of the CLP models. In the 

third chapter, a methodology for identifying the key input parameters critically influencing labour 

productivity based on a hybrid expert and data-driven approach was developed and implemented. A 

methodology based on factor surveys for collecting expert opinions from different contexts was developed 

using two survey forms, namely the project management survey (PM survey) and the trade survey.  

A total of seven companies involved in commercial (three), residential (two), and industrial (two) 

projects participated in the factor survey study and provided a total of six projects. The projects under 

study have been divided into two main context categories based on industry type. The first deals with the 

building construction context and involves commercial and residential projects; the second deals with the 

industrial construction context and involves industrial plant shutdown projects. However, since there was 

only one project in the commercial category, the survey data from that project were merged with those of 

the residential projects and the context was classified as the building project context. Based on the survey 

responses from project manager and trade level project participants under the building and industrial 

contexts, the key input parameter influencing CLP positively and negatively was identified. The internal 

consistency of the survey responses were examined using Cronbach’s alpha values, and using statistical 

analysis the difference in perspective between contexts and respondents were examined. Using the 

expert-driven approach, the following tasks were accomplished: (1) verifying the hierarchal list of 

parameters influencing CLP; (2) establishing the properties of the input parameters by identifying their 

level of existence together with the most appropriate project member to be targeted, so as to gather 

accurate parameter values; and (3) establishing the context-specific nature of key parameters influencing 



 240 

CLP. Based on the findings of the expert-driven approach, data were collected on the input parameters, 

and key parameters were identified using the data-driven approach.  

The data-driven approach relied on the field data for construction labour productivity and the 

influencing parameters; therefore, the approach is applicable to identification of parameters at activity 

level, where labour productivity values are studied, and provided the much needed key parameters for 

CLP model development. However, the analysis focused on concreting data collected from six building 

projects, as the data instances from the six structural elements were combined, which, compared to the 

other activities studied, produced the largest data set with a total of 92 data instances. The data-driven 

methodology was based on feature selection technique, and the most critical parameters were identified 

using field data collected for each of the hierarchal parameters. Feature selection was carried out using 

correlation-based feature selection algorithm.  

8.1.3: The Third Stage 

In the fourth chapter, the system-based labour productivity modeling framework for establishing 

the role of work sampling proportions in addition to the input parameters in labour productivity modeling 

was presented. The role of process variables or work sampling proportions in CLP modeling was 

formulated using the collected field data. The fundamental assumption of activity models—that CLP 

improves if more time is spent on direct work activities—was tested using scatter plots, correlation 

analysis, and linear and nonlinear regression analysis. The validity of the activity models investigated the 

relationship between CLP and seven work sampling proportions for eight activities: concreting for 

columns, slabs, and walls; electrical box installation, piping, and wire pulling; and shutdown overlays and 

shield installations. A stepwise multivariate linear regression analysis was also carried out between the 

process and output or CLP variables to examine the capability of process variables in providing a credible 

explanation to the variability of CLP, and based on the results of the null hypothesis tests, inferences on 

the role of process variables in CLP modeling were made. The investigation showed that direct work 

proportions are not significantly correlated to CLP and accurate prediction of CLP is not possible with 
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either linear or nonlinear regression models. No significant correlations between the proportion of direct 

work and CLP could be observed, so direct work proportions cannot be used as surrogate measures of 

CLP; furthermore, activity models based on other work sampling proportions are not able to explain the 

variability of CLP and need additional explanatory parameters to improve their predictive capability. 

Accordingly, a system-based modeling framework was proposed, developed, and tested for 

concreting (concrete placement) activity. The system model consisted of input (I), or independent, 

variables representing key parameters (factors and practices) influencing CLP; process (P) variables 

representing the seven work sampling proportions; and an output (O), or dependent, variable 

representing CLP. In the system-based modeling framework, depending on the mediation or moderation 

role of the P variables in explaining the variability of CLP, three different paths were considered. The first 

path was based on the I–O relationship and comprises the factor CLP model. The second path was 

based on the I–P–O relationship and assumes that process variables have a mediating effect; it 

comprised a “mediated system” CLP model. In the mediated system CLP model, the assumption was 

based on complete mediation, where the I variables influence the P variables as mediator variables, 

which in turn influence the output or dependent variable (O). The third path was based on the (I and P)–O 

relationship and assumes that P variables have a moderating effect; it comprised a “moderated system” 

CLP model. In the moderated system CLP model, the assumption was that the P variables, as moderator 

variables, affect the direction and strength of the relationship between the I and O variables. The 

mediation and moderation effect of the process variables were tested by developing artificial intelligence 

technique-based models, namely, neural networks, Mamdani fuzzy inference systems, and Sugeno fuzzy 

inference systems, and evaluating which model and path provided the most accurate results. Timeliness, 

precision, repeatability, and accuracy performance metrics were used to determine the overall accuracy 

of a given model path, and the three model paths were tested using field data collected for this research.  

The analysis results showed that the moderated system model was the most accurate; it also had 

the best performance for timeliness and precision measures. The moderated system model proved that 
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process variables have a moderating effect on factor models. The analysis results further indicated: (1) a 

causal relationship between parameters and CLP exists, and optimization of CLP can be achieved by 

adjusting the parameters or key factors and practices influencing it; and (2) work sampling proportions 

can be integrated with parameters to provide a better prediction of CLP. However, the system modeling 

analysis was carried out for concerting activity only, as the other activities (electrical and shutdown) did 

not have adequate data instance for system analysis.    

8.1.4: The Fourth Stage 

Based on the developed system-based CLP modeling framework, a series of context-specific and 

a universal CLP model were developed for concreting activity. The fifth chapter presents an operational 

definition of context for CLP modeling, and the associated context attributes were developed based on 

the 5W1H (Who, What, Where, When, Why, and How) question and answers approach. In this study, the 

context attributes were assumed to be static for any given project under study.Then, a framework for the 

development of context-specific CLP models based on fuzzy inference systems (FIS) was developed. 

The framework first formulated the unique contexts of the studied construction projects and for concreting 

activity, using 5W1H approach and the projects sharing similar contexts were combined, resulting in four 

unique construction contexts. Thus, four original context-specific CLP models addressing in Industrial, 

Warehouse, High-rise, and Institutional contexts were developed. Additionally a generic CLP model, 

based on the combined data set of the unique contexts, was developed. Finally, the learning ability of the 

developed FIS CLP models was improved using a multi-objective optimization framework which optimizes 

the following model parameters: (1) the fuzzification coefficient 𝑚 in FCM clustering, (2) membership 

function parameters, (3) number of rules, and (4) fuzzy operators and defuzzification methods. As 

optimizing the numerous model parameters at once will create a large search space, a step by step 

optimization process was applied, based on the assumption that the process will create a smaller search 

space where the optimization process has a better chance of arriving at optimal model parameter values. 



 243 

The resulting base context-specific models were validated using leave-one-out validation strategy and the 

generic CLP model was validated using 70%–30% split of data into training and testing subsets.  

The context adaptation framework for transferring knowledge among contexts was then 

developed. In the sixth chapter, the procedure for linear and nonlinear adaptation of context-specific CLP 

models was formulated based on the transformation of the membership functions and further sensitivity 

analysis of adapted models to various fuzzy operators and defuzzification methods. Using the four 

context-specific CLP models for concreting activity, the developed context adaptation framework was 

implemented. The results indicated that in terms of model accuracy, none of the adapted models 

performed better than the base models of a given context; however, this is expected as the base context 

models were developed and further optimized using the context-specific key variables influencing CLP 

and the associated dataset. However, the comparison of the adapted models’ accuracy with the accuracy 

of the original context-specific models (models before optimization) showed promising results for the 

Industrial and Warehouse contexts; thus, considering the effort required for collecting data on all 

influencing variables and developing and optimizing new models, the application of the context adaptation 

framework can provide a simpler and efficient model development alternative for Industrial and 

Warehouse contexts. The adapted models will be useful for predicting CLP in the early stages of project 

planning. Additionally, the sensitivity analysis on fuzzy operators and defuzzification methods did not 

show significant improvement of the adapted model accuracy. The adapted context-specific models were 

validated using modified Willmott agreement index between the adapted and base models of a given 

context.  

Finally, a framework for the development of the universal CLP model was proposed and tested. 

The framework abstracted the four context-specific fuzzy models into a single generalized, more abstract 

universal CLP model. The universal model was developed using Fuzzy C-Means clustering of the four 

context-specific data sets and a granular case-based reasoning approach. The universal model has 

provided a granular output in terms of an interval estimate of CLP for a given value of input variables, and 
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the granular interval estimate can realistically represent CLP. The performance of the universal model 

has fulfilled the specificity requirement, meaning that the universal model outputs will be highly focused 

and the interval estimate of CLP will be more useful. The universal CLP model was validated using 70%–

30% split of data into training and testing subsets. However, the universal model faces the following 

limitations: (1) significant data demand as the model requires field data on a total of 27 key influencing 

parameters, and gathering extensive field data for this many parameters will be time consuming and 

expensive, (2) the number of context-specific models used for abstraction was limited and additional 

context-specific models are needed to expand the knowledge base of the universal model, and (3) the 

context-specific models used for abstraction also had low accuracy in predicting CLP, which in turn limited 

the accuracy of the developed universal model.   

In the development and optimization of the several context-specific base and adapted models, 

and the universal CLP model, particular emphasis has been made on the interpretability aspect of the 

models. The number of rules and the number and overlap of the membership functions in the context 

specific CLP models, and the number of cases or cluster centers in the universal CLP model were 

designed in such a way that the developed models will have adequate transparency, so that users can 

easily comprehend the model and understand the relationships captured by it.     

8.2: RESEARCH CONTRIBUTIONS     

This research described in this thesis presents several frameworks that are relevant for 

researchers and industry practitioners. The details of the academic contributions, relevant to academic 

researchers, and industrial contributions, relevant to industry practitioners, are presented in the following 

sub-sections.   

8.2.1: Academic Contributions  

The main academic contributions of this research are summarized as follows:  

 Development of a detailed methodology for quantifying subjective and objective parameters (factor, 

practices, and work sampling proportions) influencing CLP: The developed parameter quantification 
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methodology explicitly defines each parameter, establishes measurement scales, and formulates 

data collection cycles and data sources. Hence, the parameters quantification methodology 

developed in this study provides researchers a means for gathering accurate data on not only 

objective factors, but also subjective factors and practices influencing CLP.   

 Development of a hybrid expert and data-driven methodology for identification of the context-specific 

enablers as well as barriers to better CLP: The proposed methodology evaluates and ranks the 

influencing parameters (factors and practices) based on their positive or negative influence on CLP, 

and for the first time in CLP research, the approach combines expert and data driven approaches to 

identifying the key context-specific parameters influencing CLP. In this two staged methodology, 

expert knowledge is elicited using context-centered surveys so as to verify the identified list of 

parameters and establish the properties of the parameters in terms of existence or frequency and 

context sensitivity of the parameters, and the data-driven approach, employing a feature selection 

algorithm, is used to identify the actual key influencing parameters using field data.   

 Evaluating the usefulness of relying on work sampling proportions like direct work or tool time in CLP 

modeling: Previous construction labour productivity studies had limitations in proving the ability of 

work sampling proportions to explain the variability of CLP. This study tested the assumption that 

direct work proportions are highly correlated to CLP and can provide reliable predictions of CLP using 

field data consistently collected from various projects and using accurate measures of CLP, standard 

WS categories, a strict data collection protocol, and a wide variety of activities ranging from 

commercial concreting of structural elements to boiler maintenance work in shutdowns. The results 

showed the direct work proportions were not significantly correlated to CLP and the limitations of work 

sampling proportions in accurately predicting CLP were formulated.   

 Development of a novel system model framework for CLP modeling: The proposed framework 

provides an evaluation of how input parameters (factors and practices) and process parameters (work 

sampling proportion) influence CLP. The framework provided a better understanding of CLP, the 
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parameters influencing CLP, and how work-study methods like work sampling can be integrated to 

provide accurate CLP prediction and analysis tools. 

 Development of a framework for developing and optimizing interpretable and accurate context-

specific CLP models: The proposed framework addresses the challenges faced in past CLP models 

by developing interpretable and accurate context-specific fuzzy inference CLP models based on a 

clear and explicit representation of context so as to explain the impact of multiple context-specific 

subjective and objective parameters on CLP, while requiring limited data for development. The 

framework also advances the state of art of fuzzy hybrid modeling using a multi-objective optimization 

framework for improving not only the accuracy, but also the interpretability, of developed fuzzy 

inference CLP models.  

 Development of a novel context adaptation framework for adapting CLP models from one context to 

another: The proposed framework enables the transfer of knowledge among existing fuzzy inference 

based productivity models. The framework was based on linear and nonlinear adaptation of the 

membership functions of the context-specific CLP models, followed by evaluation of the adapted 

models using combination of fuzzy operators and defuzzification methods.  The context adaptation 

framework enables the reuse of existing CLP models and provides a simpler and efficient alternative 

for developing CLP models. 

 Development of a novel framework for developing and optimizing universal CLP models: The 

proposed framework enables the abstraction of the knowledge bases represented in existing context-

specific productivity models so as to develop a single generalized and more abstract universal CLP 

model. The framework, which was based on Fuzzy C-Means clustering and granular case-based 

reasoning approaches, provides a realistic interval based estimate of CLP.  
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8.2.2: Industrial Contributions  

The main industrial contributions of this research are summarized as follows:  

 Development of key parameters made up of factors, practices, and work sampling proportions 

influencing CLP: The study presents a general multilevel list of parameters (factors, practices, and 

work sampling proportions) affecting construction labour productivity; and identifies the key 

parameters influencing CLP in various contexts. The identified key parameters provide industry 

practitioners a useful insight on the issues to focus on during construction planning and execution 

phases so as to improve labour productivity and project profitability.     

 Development of a structured construction labour productivity data collection methodology and data 

collection protocol: One of the main challenges in studying and improving construction labour 

productivity is the lack of reliable data. This study developed a detailed and structured data collection 

methodology for collecting data on the numerous influencing parameters from various construction 

projects using the following methods: factor surveys, factors and practices documentation, work 

sampling studies, foreman delay surveys, craftsman questionnaires, and productivity measurements. 

A comprehensive data collection protocol to ensure the quality and consistency of data was also 

developed. The data collection protocol provides detailed guidelines for industry practitioners 

interested in carrying out labour productivity improvement studies.   

 ProductivityTracker© tool for advanced data storage and analysis: The developed tool has a setup, 

data inventory, and report/analysis modules, and can store and analyze a variety of construction 

productivity variables data collected from numerous construction projects. The tool provides 

construction companies a means to store and analyze vast amounts of construction productivity 

related data and facilitate the development of construction productivity improvement strategies. The 

tool’s security setting also encourages the implementation of company or industry wide productivity 

improvement studies, as users are provided with different levels of access, and data anonymity and 

security are preserved.  



 248 

 Development of a series of context-specific and a universal CLP models: In this study, a number of 

context specific CLP models were developed for predicting labour productivity of concreting activities 

under four unique settings related to Industrial, Warehouse, High-rise, and Institutional construction 

contexts. The study has also developed the first of its kind generalized and context-free universal 

CLP model for concreting activities; however, the model had low coverage performance. Industry 

practitioners can use the models developed through this study to predict and analyze CLP of 

concreting activities for new projects, either using context-specific CLP models in cases where a 

given new project’s context attributes based on 5W1H (Who, What, Where, When, Why, and How) 

questions resemble any one of the studied contexts, or using the universal CLP model in case of 

projects having completely new contexts.  

The findings and developed models this study can be applied by Industry practitioners (project 

managers, planners, supervisors, etc.) in future projects. Accordingly, the following four potential areas of 

application of the developed context-specific and universal concreting activity CLP models are identified: 

 Estimating CLP for use in construction project cost estimation and scheduling: The developed models 

can be used provide reliable prediction of CLP values for concreting activity performed under 

industrial, warehouse, high-rise, or institutional contexts. A general interval based CLP estimate can 

also be predicted for planning concreting activities in future projects. The prediction will be made 

using values of the key influencing parameters (e.g. crew size, crew composition, availability of tools, 

location of work scope, direct work proportions, etc.), included in the respective context-specific and 

universal CLP models.       

 Assisting structured CLP focused scenario analysis: Using the developed CLP models, industry 

practitioners can carry our scenario analysis and examine the impact of one or more key influencing 

parameters (e.g. concrete placement technique or site congestion) on CLP. Scenario analysis will 

involve changing the level of any one of the influencing parameters, while maintaining the level of the 

other influencing parameters at expected values of a given scenario, and reviewing the associated 
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increase or decrease of CLP values, which can be easily carried out using the developed CLP 

models and for various contexts. The correlation coefficients of the key influencing parameters 

included in the CLP models indicate the positive and negative effect of respective parameters, and 

the associated fuzzy if-then rules will translate the impact of the change of the influencing parameters 

on the output (CLP). As such, the individual effect of the parameters can be evaluated and potential 

improvements in CLP can be generated using such scenario analysis. 

 Facilitating the training of project supervisors: The identified key influencing parameters made up of 

factors, practice, and work sampling proportions can be included in training manuals so as to improve 

the knowledge of project supervisors leading to better planning and control of construction projects. 

Additionally, the developed CLP models provide a virtual representation of the construction 

conversion process, and can be used as part of productivity training programs, so as to provide detail 

description of the construction process and how the influencing parameters can be used to better 

understand the efficiency of the process.       

 Facilitating the adoption of best practices: In past CLP studies a number of best practices have been 

proposed. However, substantiating the possible gain in CLP due to the adoption of such best 

practices remains difficult. This study has developed a number of CLP models, which can quantify the 

expected gains in CLP due to the adoption of best practices such as implementing labour productivity 

measurement practices or safety training, and the predicted gains in CLP can be further examined 

using case study projects.  

8.3: RESEARCH LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH AND DEVELOPMENT   

This research provides a structured methodology for the development, optimization, adaptation, 

and abstraction of interpretable and accurate context-specific CLP models that facilitates a better 

understanding of the parameters that influence CLP. The different frameworks that make up this study’s 

methodology examined the effect of the numerous context-sensitive CLP influencing system parameters 

using a series of context-specific and generalized universal CLP models. Despite achieving its initial 
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intended aims, the research has certain limitations. The limitations and recommendations for future 

research, so as to address the current limitations, are provided in the following subsections.  

8.3.1: CLP Model Scope   

This study carried out extensive data collection over a 29-month period and collected data from 

11 projects across Alberta, Canada, where four trades were studied: concreting, electrical, mechanical, 

and boilermakers. However, limited data were available for the mechanical trade. Also, only the 

concreting activities had enough data instances to carry out the system based modeling approach, and 

had adequate number of projects for the context focused modeling investigations, which address context-

specific model development and optimization, context adaptation, and context abstraction frameworks. 

Further studies are required to collect additional data instances for concreting activity so as to improve 

the developed models’ accuracy. Also, additional research is required to expand the number of context-

specific models for the other trades (electrical, mechanical, and boilermakers) by examining and modeling 

new contexts. Additional investigation with other labour-intensive activities, such as welding, piping, and 

scaffolding is recommended to further enhance the developed CLP modeling frameworks.  As the 

physical measurement of outputs for certain activities (e.g. piping in industrial projects) could prove to be 

difficult, the use of performance factor (PF) for measuring CLP is recommend in studying such activities. 

Furthermore, as construction is a physically demanding occupation and requires the handling of heavy 

loads and carrying out repetitive tasks and in this study the impact of such works tasks (e.g. fatigue) have 

been studied by accounting for overtime and documenting work related injuries. However, additional 

study on ergonomic analysis of work tasks is recommended in order to evaluate the relationship between 

work tasks and the physical and cognitive capabilities of construction workers, as such analyses could 

lead to improved capability of construction workers and lead to better CLP (Pinto et al. 2011).        

8.3.2: CLP Model Development and Optimization  

In this study, since the presence of many influencing parameters will create a curse of 

dimensionality and reduce the interpretability and usefulness of the developed fuzzy models, the feature 
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space was reduced using a correlation based feature selection approach, and key influencing parameters 

were identified for development of CLP models. In future CLP studies, the use of domain knowledge and 

the findings of this and similar researches identifying key influencing parameters is recommended to 

reduce the feature space, and facilitate the development of accurate and interpretable CLP models. 

Additional study on data instance selection is also needed so as to review the effect of the individual data 

instances on the CLP models. The use of bi-clustering algorithms, which can simultaneously cluster the 

data instances and features space matrix and find useful patterns between the influencing parameters 

(i.e., features) and CLP, is recommend for further investigation. In bi-clustering or co-clustering, the 

feature space made up of 𝐷 data instances and 𝐹 features is classified in such a way that features of the 

class 𝐹𝑘 are responsible for creating the class of data instances 𝐷𝑘, and resulting in pair (𝐷𝑘, 𝐹𝑘) called a 

bi-cluster (Madeira et al. 2004). Bi-clustering has successfully applied for dimensionality reduction in 

biomedicine, text mining, and marking fields, and could provide improved results in CLP analysis 

(Busygin et al. 2008).     

Additionally, the fuzzy rule-bases of the context-specific CLP models were developed using a 

Fuzzy C-Means (FCM) clustering algorithm, which is the most commonly employed data-driven approach 

for the development of fuzzy if-then rules. However, FCM clustering approach partitions the combined 

input-output variable space by assuming that the input and output variables have equal importance or 

weight. Therefore, further improvement of the FCM clustering algorithm is needed, as more emphasis or 

weight should be given to the output variable space. Thus, an improved clustering algorithm based on 

conditional clustering is recommended for further investigation. Furthermore, the developed FIS model 

development and optimization framework has some limitations. The MFs derived from the FCM clusters 

were approximated using Gaussian membership functions, and exploring other MFs functions such as 

triangular or trapezoidal is recommended. Also, during the membership function optimization process, the 

initial solutions and the overlaps among MFs of the final best solution were evaluated using expert 

judgment. Thus, collecting additional data to establish solutions and further expand the number of data 
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instances for optimization, and introducing additional constraints on the standard deviation parameter of 

the MFs to improve the interpretability of optimized MFs are recommended so as to improve the MFs 

optimization process. 

8.3.3: CLP Models Application    

Construction labour productivity models allow us to imitate part of the real construction world and 

provided an understanding of the current situation of CLP using the influencing factors, practices, and 

work sampling proportions. In this study, the developed CLP models were mainly used for predicting 

productivity. However, CLP models can also be applied to test the potential effects of future options and 

facilitate the optimization of CLP. CLP models can provide valuable information for evaluating scenarios 

and for development of productivity improvement strategies.  

Accordingly, further application of the developed models is needed in order to achieve the 

following tasks: (1) apply and evaluate the accuracy of the developed models in estimating labour 

productivity values for upcoming projects, and further improve the developed model’s performance using 

field CLP values, (2) develop and analyze construction project scenarios, based on relevant combinations 

of the CLP influencing parameters (e.g. crew size, craftsperson training level, season of construction, 

superintendent experience level, direct work proportion, etc.) and test the usefulness of the developed 

models in evaluating such scenarios, and (3) carry out optimization analysis using developed models and 

the associated individual and combinations of the identified key influencing parameters (factors, practices, 

and work sampling proportions) and evolutionary or population based optimization techniques, and 

propose best practices that can lead to improved CLP. Such best practices will be based on the optimal 

values of the various influencing parameters under various contexts, established using advanced 

optimization analysis with the help of the developed context-specific CLP models.   
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A.1: SUMMARY OF PAST STUDIES IDENTIFYING CLP INFLUENCING FACTORS 
 

 
 
 
 

Study Details Categories Identified factors 

Lim and Alum (1995) 
 
Country: Singapore  
 
17 Total Factors 

Manpower 
Recruitment of supervisors; Recruitment of workers; Labour turnover; Absenteeism; Communications problems with 
foreign workers; Alcoholism and similar problems among workforce; Labour disruptions 

Management 

Materials shortages; Delays in materials deliveries to site; Disruption of power/water supplies; Stop-work orders because 
of site accidents; Stoppages because of work being rejected by consultants; Stop-work orders because of infringements 
of government regulations; Stoppages because of disputes with owners/consultants; Stoppages because of insolvency of 
subcontractors/suppliers 

Environment Health; Inclement weather  

Oduba (2002) 
 
Country: Canada 
 
57  Total Factors 

Factors  

Project-level [Extent of fast tracking; Criticality of schedule; Tightness of budget], Activity-level attribute [Pipe length; Pipe 
diameter; Complexity of shape of pipe; Efficiency of rigging method; Wall thickness or schedule; Shelter requirement; 
Purge requirement; Pre-heat requirement; Bevel dimension or joint configuration; Crew ratio; Task crew size; Overall 
crew size; Elevation; Impact of weather conditions; Ground conditions; Access to work area; Crowding of work area; 
Adequacy of site storage; Sufficiency of number of crew members; Crew skill level; Crew turnover; Average temperature; 
Average wind speed; Average precipitation; Crew experience (learning); Crew experience (seniority); Number of 
consecutive days worked; Scaffold requirement; Average relative humidity; Amount of rework; Amount of change orders; 
Drawings and specifications quality; Extent and quality of training; Extent and quality of supervision; Number of 
disruptions per day; Percentage overtime per week; Frequency and extent of material shortages; Magnitude of 
organizational constraints; Inspection requirements; Safety requirements; Quality requirements; Percentage of 
prefabricated or modularized work; Equipment availability] 

Context  
Variables 

Project-level [Project location; Province; Year of construction; Client; Contract type; Project definition; Project type; Union 
status; Project sector; Season of construction; Location of work scope], Activity-level [Material type; Weld type; Filler 
material type]  

Liberda et al. (2003) 
 
Country: Canada 
 
51  Total Factors  
 

Human 
Worker motivation; Worker boredom and fatigue; Worker attitude and morale; Workers physical limitations; Worker 
absenteeism; Team-spirit of the crew; Worker learning curve; Worker experience and skills 

External 
Union rules and influences; Adverse weather conditions; Noise; dust; radiation; Congested work area; Changes in 
drawings and specifications; Changes in contract; Demand of over-quality work; Nature of project (size and complexity) 

Management 

Protective gear; Unrealistic schedule; Overtime; Multiple shifts; Excessive shift length; Disrespectful treatment of worker; 
Parking facilities; Salary and benefits; Site layout; Necessity to re-do work; Discontinuity in crew makeup; Failure to utilise 
workers skills; Incompetent personnel; Overcrowded work areas; Poor inspection programs; Unsafe working conditions; 
Inadequate equipment; Inadequate supervision; Composition of the crew; Constructability; Out-of-sequence work; 
Interruption and disruption; Adequate site facilities for worker; Lack of co-operation between crafts; Inadequate 
communication; Lack of worker training and education; Cleanliness of construction site; Lack of procedures for 
construction methods; Subcontracting; Changes in foremen; Non availability of materials; Non availability of tools; Non 
availability of information; Non availability of equipment; Lack of detailed planning 
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Study Details Categories Identified factors (continued)  

CII (2006) 
 
Country: US  
 
83 Total Factors 

Supervisor 
direction 

Inadequate instruction provided; Not receiving directions due to size of the project; Receiving compliments for doing a 
good job; Being notified of mistakes when they occur; Lack of goals for craft workers 

Communication 
Different languages spoken on a project; Disregard of crafts’ productivity improvement suggestion; Lack of “Big Picture” 
view on behalf of the crafts; Craft worker importance; Lack of communication among site management 

Safety Shortage of personal protective equipment; Lack of site safety resources 

Tools and 
consumables 

Availability of consumables; Restrictive project policy on consumables; Availability of hand tools; Availability of power 
tools; Lack of power source for tools; Lack of extension cords; Inexperienced tool room attendants; Misplaced tools; Poor 
quality power tools 

Materials 
Availability of material; Poor material quality; Availability of bulk commodities; Errors in prefabricated material; Difficulty in 
tracking material 

Engineering 
drawing 
management 

Drawing errors; Availability of drawings; Slow response to questions with drawings; Drawing legibility; Needed 
information not on drawings 

Labour 
Availability of skill training; Jobsite orientation program; Availability of health and safety training; Qualified craftsmen; 
Craftsmen’s pride in their work; Craftsmen’s incentive; Motivated craft workers; Equal pay on projects in a geographic 
area; Craft workers’ trust in supervisors 

Foreman 
Foremen people skill; Qualified foremen; Fair/just performance reviews; Foremen allowing crafts to work autonomously; 
Lack of construction knowledge on behalf of foremen; Lack of authority to discipline craft workers; Lack of proper 
resource allocation 

Superintendent 

Proper managerial and administrative support; Excessive paperwork; Superintendent’s people skill; Qualified 
superintendents; Lack of experience on behalf of superintendents; Respect for craft workers; Micromanagement on 
behalf of superintendent;  Political/performance competitions within company; Inconsistent safety policies established by 
different superintendents; Different work rules by superintendents 

Project 
management   

Delay in work permits; Out of sequence work assignments; Absenteeism; Reasonable project goals and milestones; 
Respect for craft workers and foremen; Layoff of qualified craft workers; Awareness of on-site activities and project 
progress; Pulling people off a task before it is done;  Jobsite congestion; Different pay scales for the same job on a 
project; Different per diem rate; Incentive for good performance; Material storage area too far from workface; Insufficient 
size of material storage area; Shortage of temporary facilities; Coordination between the trades; Slow decisions; Correct 
crew size; Vehicle traffic routes; Weather protection 

Construction 
equipment 

Availability of crane or forklift; Availability of man-lift; Waiting for people and/or equipment to move material; Poor 
equipment maintenance; Equipment repairs; Maintenance of power tools 
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Study Details Categories Identified factors (continued)  

Durdyev and Mbachu 
(2011) 
 
Country: New Zealand  
 
56  Total Factors 

Internal 
constraints  

Project Finance [Late payments; Reworks; Undervalued work/poor estimation; Dispute and litigation costs; Lenders‟ 
high interest charges; High insurance premiums; Inadequate supply or high cost of needed resources: money; labour]; 
Workforce [Level of commitment; Level of empowerment; Level of skill and experience; Level of familiarity with current 
job and conditions; Level of involvement of direct labour or subcontract; Workforce Absenteeism; Level of staff 
turnover/churn rate; Health of the workforce], Technology/process [Suitability or adequacy of plant and equipment; 
Method of construction; Technology employed; Lack of awareness of or training on new technologies; Resistance to 
accept new technologies; Inadequate IT infrastructure and application in construction industry], Project characteristics 
[Site conditions: access, subsoil, topography; Project complexity; Buildability issues; Site location and environment; 
Type of procurement adopted], Project management [Adequacy of planning and risk management process; 
Coordination, supervision, performance monitoring, and control; Project organisational culture; Relationship 
management; Competencies of the project team; Project management style; Frequency of design changes; Client’s 
over influence on the construction process]  

External 
constraints  

Statutory compliance [Health and safety in employment act; Resource management act; Local authority bylaws; 
Construction contracts act; Building act/building consent/building regulations; Employment relations act; Consumer 
guarantees act; Fair trading act; Arbitration act], Unforeseen events [Inclement weather; Ground conditions 
necessitating revisions; On-site accidents/ Acts of God; Natural disasters], Other external forces [Inflation/ fluctuations 
in material prices; Fluctuations in exchange rate; Energy crises/costs; Interest rate/cost of capital; Market conditions 
and level of competitions in the industry for jobs; Frequent changes in government policies/legislations impacting on 
construction; Rapid technological advances; Increase in industry or society-wide litigations/adversarial relations]  

Jarkas and  
Bitar (2012) 
 
Country: Kuwait 
 
45  Total Factors 

Technological 

Clarity of technical specifications; The extent of variation/change orders during execution; Coordination level among 
design disciplines; Design complexity level; Stringent inspection by the Engineer; Delay in responding to requests for 
information (RFI); Compatibility and consistency among contract documents; Rework; Site restricted access; 
Confinement of working space; Site layout; Inspection delay by the engineer 

Human/labour Motivation of labour; Skill of labour; Physical fatigue; Shortage of experienced labour  

Management 

Lack of labour supervision; Proportion of work subcontracted; Lack of incentive scheme; Construction manager’s lack 
of leadership; Unsuitability of storage location; Working overtime; Crew size and composition; Unrealistic scheduling 
and expectation of labour performance; Labour interference and congestion; Shortage of materials; Construction 
method; Payment delay ;Communication problems between site management and labour; Accidents as a result of poor 
site safety program; Late arrival, early quit, and frequent unscheduled breaks; Unavailability of suitable tools ;Lack of 
training offered to operatives; Inspection delay by site management; Sequencing problems; Lack of recognition 
program; Lack of periodical meetings with crew leaders; Owner’s representative intervention with site management 
and operatives; Lack of suitable rest area offered to labour on site; Lack of providing labour with transportation 

External High/low temperature; High humidity; Sandstorms; High winds; Rain  
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A.2: QUANTIFICATION OF ACTIVITY LEVEL INPUT PARAMETERS 

 

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.1 Crew Properties Refers to the nature and property of the crew and its 
members which will directly involve with execution of the 
tasks.  

  D FM 

1.1.1.1 Crew size The total size of the crew performing the actual task will have 
a direct effect on the amount of output.  

Integer (Total number of crew members) D DC 

1.1.1.2 Craftsperson 
education 

Refers to the highest achieved education level of 
craftsperson in a crew. The most common education level of 
the crew members is recorded.  

Categorical (Below Secondary, 
Secondary School, Technical or 
Apprentice, College, University) 

C DC 

1.1.1.3 Craftsperson on 
job training 

Craftspeople are expected to get job specific trainings to 
improve their skillset. Any training, for erecting scaffolding, 
rigging and hoisting, zoom boom operation, etc. provided to 
craftspeople during his/her career is recorded. The average 
training hour per crew is recorded.  

Real number (No. trainings attended x 
Duration of Training, hrs.) 

C FM 

1.1.1.4 Craftsperson 
technical  training 

Craftspeople are technical trained to ensure they have the 
necessary technical skills to perform the task. Any technical 
training, including apprentice trainings to fulfill the trade 
qualification requirements is recorded.9 The average training 
hour per crew shall be recorded.  

Real number (No. trainings attended x 
Duration of Training, hrs.) 

C FM 

1.1.1.5 Crew composition  Refers to a crew composition in terms of ratio of journeyman 
to apprentice, which directly influences the overall 
experience of the crew.  

Proportion (Ratio Journeyman to 
Apprentice) 

D FM 

1.1.1.6 Crew experience 
(seniority) 

Refers to the average years of experience of the crew 
members on the trade under study where higher values are 
expected to have improved productivity and learning speed.  

Real number (Crew average years of 
experience for the trade under study ) 

C FM 

1.1.1.7 Number of 
languages spoken  

The number of languages used on principal work 
communication will influence the homogeneity of the crew.   

Integer (Number of languages used in 
site work related communication, total for 
a crew) 

C FM 

 
 
 
 
 
 

                                                      
9 Alberta Apprentice (2012). <http://www.tradesecrets.gov.ab.ca/index.html?page=setting_industry_standards/training_providers.html> (May 04, 2012).  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.1.8 Co-operation 
among 
craftsperson  

Refers to an overall measure of the cooperation among crew 
members. The measure in this study will be based on the 
diversity of crew members in terms of ability, stake value (the 
expected advantage or gain from the successful completion 
of the task at hand) and the size of the crew.10 Crew 
members are expected to have similar nationality based on 
citizenship, permanent residency, or work permit.   

1 - 5 Predetermined rating (shown below) D FM 

  1. VERY DIVERSE Ability, VERY LOW Stake Value, VERY LARGE Crew Size; 2. DIVERSE Ability, LOW Stake Value, 
LARGE Crew size; 3. DIVERSE Ability, MEDIUM Stake Value, AVERAGE Crew Size; 4. SIMILAR Ability, HIGH Stake Value, 
SMALL Crew Size; 5. VERY SIMILAR Ability, VERY HIGH Stake Value, VERY SMALL Crew Size 

1.1.2 Craftsperson 
learning effect 

Refers to the overall gain in productivity due to the effect 
working on repetitive tasks over a long period of time. 
Represented in terms of Y = axb, Y– Installation time for next 
unit, a - time for first unit, and b - learning curve coefficient 

  I SI 

1.1.2.1 Time to install the 
first unit (a) 

Refers to the time required to install first unit of the activity on 
the project under study.  

Real number (Time to install first unit, 
min) 

I SI 

1.1.2.2 Learning  
coefficient (b) 

Refers to the average time saving in percent between first 
and consecutive units.  

Real number (%, Average time saving 
between first and consecutive units) 

I SI 

1.1.3 Treatment of 
craftsperson by 
foreman  

Self-explanatory. The measure will be based on the 
respectfulness (having a respect to crew members), sincerity 
(honest without pretending to crew members), and 
counseling (giving advice and support to crew members) 
nature of foreman.  

1 - 5 Predetermined rating (shown below) W CM 

  1. ALWAYS Disrespectful, Insincere, NO Counseling; 2. OFTEN Disrespectful, Insincere, NO Counseling; 3. SOMETIMES 
Respectful, SOMETIMES Sincere, SOMETIMES Counseling; 4. OFTEN Respectful, OFTEN Sincere, OFTEN Counseling;  
5. ALWAYS Respectful, ALWAYS Sincere, ALWAYS Counseling 

1.1.4 Craftsperson 
motivation 

Refers to the measurement of the craftsperson motivation 
using the Vroom's Expectancy theory: Motivation = E x I x V2   

  W CM 

1.1.4.1 Expectancy  Subjective probability of achieving a performance with a 
given level of effort.  

Percentage (Subjective probability) W CM 

1.1.4.2 Instrumentality Subjective probability of achieving some outcomes based on 
a successful performance. 

Percentage (Subjective probability) W CM 

1.1.4.3 Valence The effect of the outcomes as being positive (bonus 
payments) or negative (disciplinary actions).  

Integer (-1 or 1) W CM 

 
 

                                                      
10 Bandiera, O., Barankay, I., and Rasul,I. (2004). “Cooperation in the Workplace: Evidence From the Field.” London Sch. Econo., Working paper.  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.5 Craftsperson 
fatigue 

Long work hours (overtime), extended work periods, and 
repetitive work tasks are used as leading indicators of 
physical fatigue11 

  W SI 

1.1.5.1. Number of 
consecutive days 
worked per week 

Consecutive days worked is used to measure the level of 
extended work period.  

Integer (average consecutive days 
worked for crew per week)  

W SI 

1.1.5.2. Level of regular 
work time  

Level of regular time is used to measure short-term physical 
fatigue.  

Integer (Total regular work hour per 
week, hrs.) 

W SI 

1.1.5.3. Level of overtime  Level of overtime is used to measure long-term physical 
fatigue.  

Integer (Total over time per week, hrs.) W SI 

1.1.6 Craftsperson trust 
in foreman 

Crew member’s trust in the judgment and overall capacity of 
the foreman will lead to better performance.  

1 - 5 Predetermined rating (shown below) W CM 

  1. VERY LOW Trust; 2. LOW Trust; 3. AVERAGE Trust; 4. HIGH Trust; 5. VERY HIGH Trust 

1.1.7 Team spirit of crew Crew member’s team spirit will directly influence their 
performance.  

1 - 5 Predetermined rating (shown below) W FM 

  1. VERY LOW Team Spirit; 2. LOW Team Spirit; 3. AVERAGE Team Spirit; 4. HIGH Team Spirit; 5. VERY HIGH Team Spirit 

1.1.8 Level of 
absenteeism 

Absenteeism is known to affect crew makeup, morale of 
workers, and labour productivity. The weekly average daily 
absenteeism per crew is recorded.  

Percentage (daily number of absent crew 
members to total crew size, daily values 
averaged weekly) 

W FM 

1.1.9 Crew turnover Crew turnover is also known to affect crew makeup and 
labour productivity. The turnover of a crew member in terms 
of ratio of number of workers getting out of work to average 
weekly crew size per week is recorded.  

Percentage turnover rate (% of crew 
turnover to average crew size per week) 

W FM 

1.1.10 Discontinuity in 
crew makeup 

Refers to the change in the makeup of a crew. Keeping a 
crew and its member’s uniform might provide better 
communication and increased productivity. The change in 
crew makeup per day is recorded.    

Percentage (% occurrence of crew 
member change to total crew size per 
day per crew) 

D FM 

1.1.11 Level of 
interruption and 
disruption 

To document the number of delay events caused due to 
several reasons, which may disrupt the crew from performing 
the assigned tasks.  

Integer (Number of  interruption and 
disruption events per day) 

D FM 

 
 
 
 
 
 

                                                      
11 Hallowell, M. R. (2010). “Worker fatigue: Managing concerns in rapid renewal highway construction projects.” Prof. Safety, 55(12), 18-26. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.12 Fairness of work 
assignment 

Refers to the feeling of the crew members towards the 
assignment of work by foreman to the different crews and 
crewmembers. It will be measured in terms of consistency 
(same policy), reasonableness (use of common sense), and 
information (provision of information)12 

1 - 5 Predetermined rating (shown 
below) 

D CM 

  1. Inconsistent work assignment on a daily basis, Unreasonable work assignment among crew members, VERY POOR 
Information provision; 2. Inconsistent work assignment on a daily basis, Unreasonable work assignment among crew 
members, POOR Information provision; 3. SOMEWHAT Consistent work assignment on a daily basis, Reasonable work 
assignment among crew members, AVERAGE Information provision; 4. VERY Consistent work assignment on a daily basis, 
Reasonable work assignment among crew members, GOOD Information provision; 5. VERY Consistent work assignment on a 
daily basis, Reasonable work assignment among crew members, VERY GOOD Information provision 

1.1.13 Crew participation 
in foreman 
decision-making 
process 

Self-explanatory.13  Categorical (Decision Type: Without 
explanation, Joint, and With) 

W SI 

1.1.14 Crew flexibility Refers to the ability and willingness of crew members in 
performing other member’s tasks14 

  D FM 

1.1.14.1 Ability of crew 
member to perform 
other's task 

Self-explanatory. 100 % percent indicates a crew member is 
fully capable of handling the other member's task.  

Percent (degree of ability to perform 
other's task).  

D FM 

1.1.14.2 Willingness to 
perform other's 
tasks 

Self-explanatory.  1 - 5 Predetermined rating (shown 
below) 

D FM 

  1. Completely Unwilling; 2. Somewhat NOT Willing; 3. Somewhat Willing; 4. Willing; 5. Completely Willing 

1.1.15 Job site orientation 
program 

Refers to an orientation process to familiarize a crew 
member with the project, its workers, and any project 
requirements.  

Categorical (Yes, No) I SI 

1.1.17 Job security Refers to the level of job security a crew members has in 
terms of availability of work over the previous year period. 
Average per crew member.  

Integer (Average length of 
unemployment period, months) 

C SI 

1.1.18 Availability of 
craftsperson 

Refers to whether the required number of workers for the 
activity at hand is met per week.    

Integer (Average number of unmet 
labour demand for the trade under study 
per week) 

W SI 

                                                      
12 Sheppard, B. H., and Lewicki, R. J. (1987). “Toward general principles of managerial fairness.” Social Justice Res., 1(2), 161-176. 
13 Heller, F. A., and Yukl, G. (1969). “Participation, managerial decision-making, and situational variables.” Organ. Behav. Human Perfor., 4(3), 227-241. 
14 Molleman, E., and van den Beukel, A. (2007). “Worker flexibility and its perceived contribution to performance:  The moderating role of task characteristics.” 
Human Factors Ergonomics in Manuf. Servi. Industries, 17(2), 117-135. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.1.19 Multiskilling of crew  Refers to the set of skills in terms of trade specialty 
(carpentry, electrical, ironworker, etc.) the crew members 
have.  

Integer (Total number of trade specialties 
per crew)  

I SI 

1.2.1 Availability of task 
materials 

Refers to whether required task materials are available in 
site main storage before the commencement of the work.  

Real number (Average waiting time for 
not getting materials at site main storage, 
min) 

W SI 

1.2.2 Quality of task 
materials 

Self-explanatory. It will be measured in terms of level of 
defect, need for adjustment on site, and level of on-site 
adjustment.15  

1 - 5 Predetermined rating (shown 
below) 

W SI 

  1. VERY HIGH Level of defect, YES Need for adjustment on site, VERY FREQUENT Site adjustment; 2. HIGH Level of defect, 
YES Need for adjustment on site, FREQUENT Site adjustment; 3. MEDIUM Level of defect, YES Need for adjustment on site, 
FREQUENT Site adjustment; 4. LOW Level of defect, NO Need for adjustment on site; 5. VERY LOW Level of defect, NO 
Need for adjustment on site 

1.2.3 Availability of 
temporary material 
storage 

Refers to whether temporary storages are provided near by 
the location where the task is being executed. 

Categorical (Yes, No) W SI 

1.2.4 Distance to 
temporary material 
storage 

Self-explanatory.  Real number (Distance, m) I DC 

1.2.5 Travel time to get 
materials from site 
main storage 

Refers to the time taken in traveling and getting back with a 
required material from the site main storage.  

Real number (Average travel time for 
getting materials from main storages, 
min) 

I DC 

1.2.6 Availability of 
consumables 

Refers to whether consumables (nails, duct tapes, drill bits, 
blades, etc.) are adequately provided.  

Categorical (Yes, No) I SI 

1.2.7 Clear policy on 
consumables 

Refers to whether a clear process is laid out for crew 
members whereby they can easily and timely get 
consumables.  

Categorical (Yes, No) I SI 

1.2.8 Material tracking 
system 

Refers to whether an automated material tracking system 
which tracks material purchases orders, delivery, and follow-
up is in place.  

Categorical (Yes, No) I SI 

1.2.9 Material unloading 
practices 

Refers to the time required to unload material from delivery 
trucks to site lay down area.  

Real Number (average unloading time, 
min) 

W SI 

1.2.10 Material movement 
(horizontal) 

Refers to the horizontal distance between the site main 
storage and the location where the task is being executed.  

Real Number (average distance, m) W DC 

1.2.11 Material movement 
(vertical) 

Refers to the vertical distance between the site main storage 
and the location where the task is being executed.  

Real Number (average distance, m) W DC 

                                                      
15 Ng, S. T., Skitmore, R. M., Lam, K. C., and Poon, A. W. (2004). “Demotivating factors influencing the productivity of civil engineering projects.” Inter. J. Proj. 
Manage., 22(2), 139-146. 
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ID Parameters Description Scale of Measure Data 
Cycle 

Data 
Source 

1.3.1 Availability of work 
equipment  

Refers to the type and number of work equipment (Zoom 
boom, Welding machine, Pipe cutter) and the average 
waiting time in getting required to properly execute the 
work.16 

  D DC 

1.3.1.1 Work equipment 
type and number 

Self-explanatory. Each equipment type and the total number 
of equipment shall be recorded.   

Categorical (Type and Number on site) D DC 

1.3.1.2 Waiting time   Self-explanatory. Waiting time for work equipment. Real number (Average waiting time, min) D FM 

1.3.2 Availability of 
transport 
equipment  

Refers to the type and number of equipment (crane, forklift, 
pump, crane, bucket, etc.) and the average waiting time in 
getting required transport workers and material to properly 
execute the work. 

  D FM 

1.3.2.1 Transport 
equipment type 
and number 

Self-explanatory. Each equipment type and the total number 
of equipment shall be recorded.   

Categorical (Type and Number on site) D DC 

1.3.2.2 Waiting time for 
transport 
equipment  

Self-explanatory.  Real number (Average waiting time, min) D FM 

1.3.3 Equipment 
breakdown 

Refers to the recorded breakdown of equipment, for each 
type of equipment identified in Section 1.3.1.1 and 1.3.2.1 

Integer (Equipment Type and Average 
no. of breakdown occurrence per week) 

W SI 

1.3.4 Availability of tools Refers to the waiting time in getting powered tools (drills, 
grinders, hammers, etc.), and measured in terms of 
shortage, misplacement, and sharing of tools.    

Real number (Average waiting time, min) D SI 

1.3.5 Sharing of tools Refers to the number of crews sharing work tools.  Real number (No. of crews sharing a 
tool) 

W FM 

1.3.6 Quality of tools Refers to the quality of work tools in terms of number of 
breakdowns per week.  

Integer (Average no. of tool breakdown 
per week) 

W FM 

1.3.7 Efficiency of tool 
room attendant 

Refers to efficiency of tool room attendant in getting tools in 
a timely fashion.  

Real number (Average waiting time for 
tool, min) 

W SI 

1.3.8 Misplacement of 
tools 

Refers to the misplacement of work tools by crew members, 
which will result in wasted time to locate them.  

Real Number (Average no. of 
misplacement per day) 

D FM 

1.3.9 Availability of 
electric power 

Self-explanatory.  Real number (Average waiting time, min) D FM 

1.3.10 Availability of 
extension cords 

Self-explanatory.  Real number (Average waiting time, min) D FM 

1.3.11 Quality of tools 
maintenance 

Self-explanatory.  Real number (Average operation time 
after maintenance, hrs.) 

W SI 

                                                      
16 Turpin, M. P., and Kamath, A. R. R. (1986). “The development of an equipment availability reporting database and analysis package.” Relia. Eng.,15(2), 95-

113. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.4.1 Complexity of task Refers to the complexity of the task in terms of known 
alternatives to doing it and the number of subtasks required; 
measured in terms of unknown or uncertain alternatives, 
inexact or unknown means - end connections, number of  
subtasks17 

1 - 5 Predetermined rating (shown 
below) 

D SI 

  1. MANY Alternatives, WELL KNOWN Means, VERY LOW No. subtasks; 2. SOME Alternatives, WELL KNOWN Means, LOW 
No. subtasks; 3. FEW Alternatives, KNOWN Means, AVERAGE No. subtasks; 4. FEW Alternatives, UNKNOWN Means, HIGH 
No. subtasks; 5. VERY FEW Alternatives, UNKNOWN Means, VERY HIGH No. subtasks 

1.4.2 Repetitiveness of 
task  

Refer to how much of the work volume is repetitive in terms 
of having identical materials and construction methods.18 

Real number (ratio of identical work 
tasks quantity to the total work task 
quantity) 

W SI 

1.4.3 Total work volume Refers to the total quantity approved for construction for the 
activity under study.   

Real number (Approved quantity for 
construction) 

I SI 

1.4.4 Level of Rework Refers to a work redone for not meeting project requirements 
in terms of a ratio of the total volume of the rework to the 
approved total work volume19  

Percentage (% of activity total volume of 
rework to total activity work volume) 

D SI 

1.4.5 Task change 
orders - Frequency  

Refers to the number of change orders happening in weekly 
basis.  

Real number (No. of occurrence) W SI 

1.4.6 Task change 
orders - Extent 

Refers to change orders related to the activity under study 
and their volume in terms of total quantities of work. 

Real number (Ratio of approved volume 
of change order to total work volume) 

W SI 

1.4.7 Placement 
technique 

Refers to the method used to execute the work.  Categorical (Pump , Crane and bucket, 
Direct chute) 

D DC 

1.4.8 Building element Refers to the element of the building/plant under construction  Categorical (Columns, Footings, Grade 
beams, Pile caps, Slabs, Walls, Boilers) 

  

1.5.1 Working condition 
(noise)  

Refers to the level of noise: number of equipment creating 
noise, level of intrusiveness of the created noise, and the felt 
effect on conversion among workers20 

1 - 5 Predetermined rating (shown 
below) 

D FM 

  1. NO Noisy Equipment, VERY LOW Intrusiveness, VERY NORMAL Voice Level in Conversation; 2. FEW Noisy Equipment, 
VERY LOW Intrusiveness, NORMAL Voice Level in Conversation; 3. SOME Noisy Equipment, AVERAGE Intrusiveness, 
NORMAL Voice Level in Conversation; 4. MANY Noisy Equipment, HIGH Intrusiveness, HIGH Voice Level in Conversation; 5. 
TOO MANY Noisy Equipment, VERY HIGH Intrusiveness, VERY HIGH Voice Level in Conversation 

 

                                                      
17 Campbell, D.J. (1988). “Task complexity: a review and analysis.” Acade. Manage. Rev., 13(1), 40–52.  
18 COAA (2012). “Benchmarking: Contractor Questionnaire.” Construction Owners Association Alberta, Version 8.4, Edmonton, Alberta. Canada.  
19 Fayek, A. Robinson, Dissanayake, M., and Campero, O. (2003). “Measuring and classifying construction field rework: A pilot study.” Construction Owners 
Association Alberta, Field Rework Committee, Edmonton, Alberta, Canada.  

20 HSE (2005). “Noise at work: Guidance for employers on the control of noise at work.” Health and Safety Executive, INDG362, Version 1. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.5.2 Working condition 
(dust and fumes)  

Refers to the level of dust and fumes in work location. It will 
be measured in terms of the sources, level and length of 
exposure21 

1 - 5 Predetermined rating (shown below) D FM 

  1. NO Source of dust and fume, VERY LOW Level of Exposure, VERY NORMAL Length of Exposure; 2. FEW Sources of dust 
and fume, VERY LOW Level of Exposure, NORMAL Length of Exposure; 3. SOME Sources of dust and fume, AVERAGE 
Level of Exposure, NORMAL Length of Exposure; 4. MANY Sources of dust and fume, HIGH Level of Exposure, HIGH Length 
of Exposure; 5. TOO MANY Sources of dust and fume, VERY HIGH Level of Exposure, VERY HIGH Length of Exposure 

1.5.3 Location of work 
scope (distance)  

Self-explanatory. Distance (horizontal) measured relative to 
crew's site main trailer.  

Real number (distance, m) D DC 

1.5.4 Location of work 
scope (elevation)  

Self-explanatory. Distance (vertical) measured relative to 
crew's site main trailer.  

Real number (distance, m) D DC 

1.5.5 Congestion of work 
area 

Refers to the effect of having more workers on the task 
location than its average (assumed as optimal) number.  

Real number (ratio of actual peak 
manpower to actual average manpower) 

W SI 

1.5.6 Cleanliness of work 
area 

Housekeeping to maintain clean work area. Integer (Number of cleaning operations 
per day) 

D FM 

1.5.7 Cover from 
weather effect 

Refers to whether building envelopes are in place in order to 
protect workers from weather effects.  

Categorical (Yes, No) I SI 

1.5.8 Location of tool 
cribs 

Location of tool cribs from crew's site main trailer.  Real number (average distance, m) I DC 

1.5.9 Location of Lunch 
rooms  

Location of lunch room from the crew's site main trailer, in 
case the lunchroom is not within the crew's site main trailer.  

Real number (average distance, m) I DC 

1.5.10 Location of 
washrooms 

Location of washrooms from the crew's site main trailer. In 
cases where there is more than one washroom, the average 
distance is recorded.  

Real number (average distance, m) I DC 

1.6.1 Foreman 
experience 

Refers to the foreman experience in terms of year in industry, 
after becoming a foreman.  

Real number (years of experience ) I SI 

1.6.2 Foreman training Foremen are expected to get a number of trainings 
(leadership for safety excellence, CSTS, standard first aid 
Certificate, supervisory training program) 22 in order to 
improve their skill. Any training provided to foreman during 
his/her career, as a foreman is recorded.  

Real number (No. trainings attended x 
Duration of Training, hrs.) 

I SI 

 
 

                                                      
21 HSE(2012). Health and Safety Executive, <http://www.hse.gov.uk/pubns/iacl95.htm> (May 05,2012).  
22 Fayek,A. Robinson, and Poveda, C. (2008). “A pilot study to develop a skills development tool for construction trades foremen.” COAA, Supervisory Training 
and Qualifications, Edmonton, Alberta, Canada.  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3 Foreman Skill and 
Responsibility  

Refers to the overall skill sets of the foreman leading the 
crew.  

  W SI 

1.6.3.1 Foreman 
leadership style  

Refers to the leadership style of the foreman in terms the 
following categories: autocratic, democratic, participative, 
goal-oriented, and situational23 

Categorical (Autocratic, Democratic, 
Participative, Goal-oriented, Situational 
Definition- Situational) 

W SI 

1.6.3.2 Foreman 
supervision skill 

Refers to the supervision skill of the foreman in terms of 
orientation of crew members; assessing competency and 
capability of crew members to meet quality requirements; 
assigning individual and crew tasks; communicating the job 
to and with the crew; identifying and coordinating job 
trainings; setting and maintaining work standards to outline 
behaviour expectation; promoting, supporting and facilitating 
teamwork and harmony14 

1 - 5 Predetermined rating (shown below) W SI 

  1. INADEQUATE in Orientation of crew members; VERY POOR in Assessing competency and capability of crew members to 
meet quality requirements; VERY POOR in Assigning individual and crew tasks; VERY POOR in Communicating the job to 
and with the crew; VERY POOR in Identifying and coordinating job training; VERY POOR in Setting and maintaining work 
standards to outline behaviour expectation; VERY POOR in Promoting, supporting and facilitating teamwork and harmony; 2. 
INADEQUATE in Orientation of crew members; POOR in Assessing competency and capability of crew members to meet 
quality requirements; POOR in Assigning individual and crew tasks; POOR in Communicating the job to and with the crew; 
POOR in Identifying and coordinating job training; POOR in Setting and maintaining work standards to outline behaviour 
expectation; POOR in Promoting, supporting and facilitating teamwork and harmony; 3. ADEQUATE in Orientation of crew 
members; FAIR in Assessing competency and capability of crew members to meet quality requirements; FAIR in Assigning 
individual and crew tasks; FAIR in Communicating the job to and with the crew; FAIR in Identifying and coordinating job 
training; FAIR in Setting and maintaining work standards to outline behaviour expectation; FAIR in Promoting, supporting and 
facilitating teamwork and harmony; 4. ADEQUATE in Orientation of crew members; GOOD in Assessing competency and 
capability of crew members to meet quality requirements; GOOD in Assigning individual and crew tasks; GOOD in 
Communicating the job to and with the crew; GOOD in Identifying and coordinating job training; GOOD in Setting and 
maintaining work standards to outline behaviour expectation; GOOD in Promoting, supporting and facilitating teamwork and 
harmony; 5. ADEQUATE in Orientation of crew members; VERY GOOD in Assessing competency and capability of crew 
members to meet quality requirements; VERY GOOD in Assigning individual and crew tasks; VERY GOOD in Communicating 
the job to and with the crew; VERY GOOD in Identifying and coordinating job training; VERY GOOD in Setting and 
maintaining work standards to outline behaviour expectation; VERY GOOD in Promoting, supporting and facilitating teamwork 
and harmony 

 
 
 

                                                      
23 Panthi, K., Farooqui, R. U., and Ahmed, S. M. (2008). “An investigation of the leadership style of construction managers in South Florida.” J. Const. Manage. 
Econ., 11, 455-565. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3.3 Foreman - 
Provision of clear 
goals to crafts 

Refers to the skill of the foreman in provision and 
communication of goals14  

1 - 5 Predetermined rating (shown below) D CM 

  1. VERY POOR Clarity in assignment of Tasks, VERY POOR Communication; 2. POOR Clarity in assignment of Tasks, 
POOR Communication; 3. AVERAGE Clarity in assignment of Tasks, AVERAGE Communication; 4. GOOD Clarity in 
assignment of Tasks, GOOD Communication; 5. VERY GOOD Clarity in assignment of Tasks, VERY GOOD Communication 

1.6.3.4 Foreman - Skill in 
proper resource 
allocation 

Refers to the skill of the foreman in understanding of 
schedule and plans, identifying and verifying resource 
availability, fairness in assignment of resource to different 
crews, and skill in resolving resource problems14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR Understanding of schedule & plans, VERY POOR in Identifying & Verifying resource availability, VERY 
UNFAIR assignment of resource, VERY POOR Skill in resolving resource problems; 2. POOR Understanding of schedule & 
plans, POOR in Identifying & Verifying resource availability, UNFAIR assignment of resource, POOR Skill in resolving 
resource problems; 3. FAIR Understanding of schedule & plans, FAIR in Identifying & Verifying resource availability, FAIR 
assignment of resource, FAIR Skill in resolving resource problems; 4.GOOD Understanding of schedule & plans, GOOD in 
Identifying & Verifying resource availability, FAIR assignment of resource, GOOD Skill in resolving resource problems; 5. 
VERY GOOD Understanding of schedule & plans, VERY GOOD in Identifying & Verifying resource availability, VERY FAIR 
assignment of resource, VERY GOOD Skill in resolving resource problems 

1.6.3.5 Foreman Skill - 
Safety facilitation 
and 
implementation  

Refers to the skill of the foreman in safety facilitation and 
implementation in terms of in knowing, understanding, 
communicating and ensuring compliance with safety 
regulation; conducting safety trainings; providing answers to 
safety related questions; participating and completing safety 
incident reports14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR in Knowing, understanding, communicating and ensuring compliance with safety regulation;  VERY POOR in 
Conducting safety trainings; ALWAYS NOT Providing answers to safety related questions; VERY POOR in Participating and 
completing safety incident reports; 2. POOR in Knowing, understanding, communicating and ensuring compliance with safety 
regulation;  POOR in Conducting safety trainings; SOMETIMES NOT Providing answers to safety related questions; POOR in 
Participating and completing safety incident reports; 3. FAIR in Knowing, understanding, communicating and ensuring 
compliance with safety regulation;  FAIR in Conducting safety trainings; ADEQUATE in Providing answers to safety related 
questions; FAIR in Participating and completing safety incident reports; 4. GOOD in Knowing, understanding, communicating 
and ensuring compliance with safety regulation; GOOD in Conducting safety trainings; ALWAYS in Providing answers to 
safety related questions; GOOD in Participating and completing safety incident reports; 5. VERY GOOD in Knowing, 
understanding, communicating and ensuring compliance with safety regulation;  VERY GOOD in Conducting safety trainings; 
ALWAYS in Providing answers to safety related questions; VERY GOOD in Participating and completing safety incident 
reports 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3.6 Foreman Skill -  
Planning  

Refers to the planning skills of the foreman in terms of 
identifying and verifying that tools and materials are available 
and complete; identifying needs and deficiencies in the 
plan/schedule and communicating these to appropriate 
persons; translating general work requirements into a 
prioritized plan for individual tasks and assignments14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR in Identifying and verifying that tools and materials are available and complete; VERY POOR in Identifying 
needs and deficiencies in the plan/schedule and communicating these to appropriate persons; VERY POOR in Translating 
general work requirements into a prioritized plan for individual tasks and assignments; 2. POOR in Identifying and verifying 
that tools and materials are available and complete; POOR in Identifying needs and deficiencies in the plan/schedule and 
communicating these to appropriate persons; POOR in Translating general work requirements into a prioritized plan for 
individual tasks and assignments; 3. FAIR in Identifying and verifying that tools and materials are available and complete; 
FAIR in Identifying needs and deficiencies in the plan/schedule and communicating these to appropriate persons; FAIR in 
Translating general work requirements into a prioritized plan for individual tasks and assignments; 4. GOOD in Identifying and 
verifying that tools and materials are available and complete; GOOD in Identifying needs and deficiencies in the plan/schedule 
and communicating these to appropriate persons; GOOD in Translating general work requirements into a prioritized plan for 
individual tasks and assignments; 5. VERY GOOD in Identifying and verifying that tools and materials are available and 
complete; VERY GOOD in Identifying needs and deficiencies in the plan/schedule and communicating these to appropriate 
persons; VERY GOOD in Translating general work requirements into a prioritized plan for individual tasks and assignments 

1.6.3.7 Foreman Skill - 
Scheduling  

Refers to the scheduling skills of the foreman in terms of 
reviewing and adjusting specific workface activities and task 
schedules to meet established production schedules; working 
with the crew to overcome work challenges; resolving 
otherwise reporting scheduling conflicts14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR in Reviewing and adjusting specific workface activities and task schedules to meet established production 
schedules; VERY POOR in Working with the crew to overcome work challenges; VERY POOR in Resolving otherwise 
reporting scheduling conflicts;   2. POOR in Reviewing and adjusting specific workface activities and task schedules to meet 
established production schedules; POOR in Working with the crew to overcome work challenges; POOR in Resolving 
otherwise reporting scheduling conflicts; 3. FAIR in Reviewing and adjusting specific workface activities and task schedules to 
meet established production schedules; FAIR in Working with the crew to overcome work challenges; FAIR in Resolving 
otherwise reporting scheduling conflicts; 4. GOOD in Reviewing and adjusting specific workface activities and task schedules 
to meet established production schedules; GOOD in Working with the crew to overcome work challenges; GOOD in Resolving 
otherwise reporting scheduling conflicts; 5. VERY GOOD in Reviewing and adjusting specific workface activities and task 
schedules to meet established production schedules; VERY GOOD in Working with the crew to overcome work challenges; 
VERY GOOD in Resolving otherwise reporting scheduling conflicts 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3.8 Foreman Skill - 
Employee relation  

Refers to the relation of the foreman with crew members in 
terms of knowing, understanding, communicating and 
ensuring compliance with all project employee relation 
requirements; recognizing, addressing and resolving 
issues/problems among/between crew(s); applying the 
company's corrective action policy consistently and fairly; 
applying project procedures, worksite policies and collective 
agreement requirements14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR in Knowing, understanding, communicating and ensuring compliance with all project employee relation 
requirements; VERY POOR in Recognizing, addressing and resolving issues/problems among/between crew(s); VERY POOR 
in Applying the company's corrective action policy consistently and fairly; VERY POOR in Applying project procedures, 
worksite policies and collective agreement requirements; 2. POOR in Knowing, understanding, communicating and ensuring 
compliance with all project employee relation requirements; POOR in Recognizing, addressing and resolving issues/problems 
among/between crew(s); POOR in Applying the company's corrective action policy consistently and fairly; POOR in Applying 
project procedures, worksite policies and collective agreement requirements; 3. FAIR in Knowing, understanding, 
communicating and ensuring compliance with all project employee relation requirements; FAIR in Recognizing, addressing 
and resolving issues/problems among/between crew(s); FAIR in Applying the company's corrective action policy consistently 
and fairly; FAIR in Applying project procedures, worksite policies and collective agreement requirements; 4. GOOD in 
Knowing, understanding, communicating and ensuring compliance with all project employee relation requirements; GOOD in 
Recognizing, addressing and resolving issues/problems among/between crew(s); GOOD in Applying the company's corrective 
action policy consistently and fairly; GOOD in Applying project procedures, worksite policies and collective agreement 
requirements; 5. VERY GOOD in Knowing, understanding, communicating and ensuring compliance with all project employee 
relation requirements; VERY GOOD in Recognizing, addressing and resolving issues/problems among/between crew(s); 
VERY GOOD in Applying the company's corrective action policy consistently and fairly; VERY GOOD in Applying project 
procedures, worksite policies and collective agreement requirements 

1.6.3.9 Foreman Skill - 
Quality control  

Refers to the skill of the foreman in quality control in terms 
overseeing the execution of the work, by ensuring crew works 
to job specifications and follows drawings and instructions; 
inspecting completed work and initiating timely resolutions14 

1 - 5 Predetermined rating (shown below) D SI 

  1. VERY POOR in Overseeing the execution of the work, by ensuring crew works to job specifications and follows drawings 
and instructions; VERY POOR in Inspecting completed work and initiating timely resolutions; 2. POOR in Overseeing the 
execution of the work, by ensuring crew works to job specifications and follows drawings and instructions; POOR in Inspecting 
completed work and initiating timely resolutions; 3. FAIR in Overseeing the execution of the work, by ensuring crew works to 
job specifications and follows drawings and instructions; FAIR in Inspecting completed work and initiating timely resolutions; 4. 
GOOD in Overseeing the execution of the work, by ensuring crew works to job specifications and follows drawings and 
instructions; GOOD in Inspecting completed work and initiating timely resolutions; 5. VERY GOOD in Overseeing the 
execution of the work, by ensuring crew works to job specifications and follows drawings and instructions; VERY GOOD in 
Inspecting completed work and initiating resolutions 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3.10 Foreman 
Administration Skill 
- Supply, Record 
Keeping  

Refers to the administration skill of the foreman in terms of 
requesting supplies to address any deficiencies in field 
installation work packages, maintaining foreman's log or 
diaries, reporting workface production and work progress, 
completing quality reports, completing required statistics, 
obtaining permits16  

1 - 5 Predetermined rating (shown below) W SI 

  1. VERY POOR in Requesting supplies to address any deficiencies in FIWPs, VERY POOR in Maintaining foreman's log or 
diaries, Reporting workface production and work progress, Completing quality reports, Completing required statistics, 
Obtaining permits; 2. POOR in Requesting supplies to address any deficiencies in FIWPs, POOR in Maintaining foreman's log 
or diaries, Reporting workface production and work progress, Completing quality reports, Completing required statistics, 
Obtaining permits;  3. FAIR in Requesting supplies to address any deficiencies in FIWPs, FAIR in Maintaining foreman's log or 
diaries, Reporting workface production and work progress, Completing quality reports, Completing required statistics, 
Obtaining permits; 4. GOOD in Requesting supplies to address any deficiencies in FIWPs, GOOD in Maintaining foreman's 
log or diaries, Reporting workface production and work progress, Completing quality reports, Completing required statistics, 
Obtaining permits; 5. VERY GOOD in Requesting supplies to address any deficiencies in FIWPs, VERY GOOD in Maintaining 
foreman's log or diaries, Reporting workface production and work progress, Completing quality reports, Completing required 
statistics, Obtaining permits; 

1.6.3.11 Foreman 
Administration Skill 
- Time keeping and 
personnel 

Refers to the administration skill of the foreman in terms of 
time keeping and time cards (including late starts/early 
starts); distributing cheques and handling any related issues; 
recommending personnel actions (hiring, promotions, and 
discipline)14 

1 - 5 Predetermined rating (shown below) W SI 

  1. VERY POOR  Time keeping and time cards (including late starts/early starts); VERY POOR in Distributing cheques and 
handling any related issues; VERY POOR in Recommending personnel actions (hiring, promotions, and discipline); 2. POOR 
Time keeping and time cards (including late starts/early starts); POOR in Distributing cheques and handling any related 
issues; POOR in Recommending personnel actions (hiring, promotions, and discipline); 3. FAIR Time keeping and time cards 
(including late starts/early starts); FAIR in Distributing cheques and handling any related issues; FAIR in Recommending 
personnel actions (hiring, promotions, and discipline); 4. GOOD Time keeping and time cards (including late starts/early 
starts); GOOD in Distributing cheques and handling any related issues; GOOD in Recommending personnel actions (hiring, 
promotions, and discipline); 5. VERY GOOD Time keeping and time cards (including late starts/early starts); VERY GOOD in 
Distributing cheques and handling any related issues; VERY GOOD in Recommending personnel actions (hiring, promotions, 
and discipline) 

1.6.3.12 Foreman regard to 
improvement 
suggestion by crew 
members  

Self-explanatory.  1 - 5 Predetermined rating (shown below) W CM 

 1. NO Regard to suggestions; 2. SOME TIMES gives regard to suggestions; 3. OCCASIONALY gives regard to suggestions; 
4. COMMONLY gives regard to suggestions; 5. ALWAYS gives regard to suggestions 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.6.3.13 Foreman fairness 
in performance 
review of crew by 
foreman 

Self-explanatory.  1 - 5 Predetermined rating (shown below) W SI 

  1. VERY UNFAIR performance review; 2. UNFAIR performance review; 3. SOMEWHAT FAIR performance review; 4. FAIR 
performance review; 5. VERY FAIR performance review 

1.6.4 Change of foremen Refers to whether there is a change in foreman.  Turnover rate (No. of turnovers per 
month) 

M SI 

1.6.5 Span of control Refers to the total number of crews controlled by the 
foreman.  

Integer (total number of crews per 
foreman) 

W SI 

1.6.6 Use of assistant 
foremen 

Self-explanatory.  Categorical (Yes, No) I SI 

1.6.7 Provision of 
feedback on 
foreman's 
performance 

Refers to provision of feedback to foreman by supervisors or 
project managers.  

Categorical (Yes, No) I SI 

1.7.1 Availability of 
drawings  

Refers to whether required work drawings are found available 
on site.  

1 - 5 Predetermined rating (shown below) M SI 

  1. Always Not Available; 2. Sometimes Not Available; 3. Sometimes Available; 4. Mostly Available; 5. Always Available 

1.7.2 Quality of drawings Refers to the quality of the drawings in terms of 
completeness, readability, reusability, clarity of information, 
and frequency of updates.  

1 - 5 Predetermined rating (shown below) M SI 

  1. Incomplete, VERY POOR Readability, VERY LOW Reusability, TOO MANY Unclear information, NOT Updated; 2. 
Incomplete, POOR Readability, LOW Reusability, SOME Unclear informations, NOT Updated; 3. Incomplete, AVERGAE 
Readability, AVERAGE Reusability, FEW Unclear informations, NOT Updated; 4. Complete, GOOD Readability, HIGH 
Reusability, FEW Unclear informations, Updated; 5. Complete, VERY GOOD Readability, HIGH Reusability, VERY FEW 
Unclear informations, Updated 

1.7.3 Number of drawing 
revisions  

Number of drawing revisions submitted to site foreman per 
week. Drawing revisions shall be approved and submitted to 
crew members by foreman. 

Integer (Number of drawing revision per 
week) 

W SI 

1.7.4 Specifications     I  

1.7.4.1 Use of standard 
specifications 

Using standard specification like MasterFormat, 
UNIFORMAT, or others. 

Categorical (Yes, No) I SI 

1.7.4.2 Availability of 
specifications 

Refers to whether required work specifications are found 
available on site.  

1 - 5 Predetermined rating (shown below) I SI 

  1. Always Not Available; 2. Sometimes Not Available; 3. Sometimes Available; 4. Mostly Available; 5. Always Available 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

1.7.4.3 Quality of 
specification  

Refers to the quality of the specifications in terms of 
completeness, and clarity of information. Measured in terms 
of clarity and completeness.  

1 - 5 Predetermined rating (shown below) I SI 

  1. VERY POOR Clarity, VERY Incomplete; 2.  POOR Clarity, Incomplete; 3.  FAIR Clarity, FAIRLY Complete; 4. GOOD 
Clarity, Complete; 5. VERY GOOD Clarity, VERY Complete 

1.7.4.4 Number of 
specification 
revisions  

Number of specification revisions submitted to site foreman 
per week. Specification revisions shall be approved and 
submitted to crew members by foreman. 

Integer (Number of specification revision 
per week) 

W SI 

1.7.6 Response rate with 
RFI's 

Refers to the response time to request for information (RFI) 
from the contractor to owner and/or engineer.  

Real number (Average response time, 
hrs.) 

W SI 

1.7.7 Adequacy of 
instructions 

Refers to the adequacy of work instructions in terms of 
information on work procedure, construction steps, and 
communication means to crew members from 
foreman/superintendent24 

1 - 5 Predetermined rating (shown below) I CM 

  1. NO Information on work procedure, NO Information on construction steps, Communication means not clearly laid out; 2. 
SOME Information on work procedure, SOME Information on construction steps, Communication means not clearly laid out; 
3.ADEQUATE Information on work procedure, ADEQUATE Information on construction steps, Communication means 
SOMEWHAT laid out; 4. VERY GOOD Information on work procedure, VERY GOOD Information on construction steps, 
Communication means laid out; 5. EXCELLENT Information on work procedure, EXCELLENT Information on construction 
steps, Communication means clearly laid out 

 
 
 
 
 
 
 
 
 
 
 
 

                                                      
24 Mourgues, C, and Fischer, M. (2008). “A work instruction template for cast-in-place concrete construction laborers.” CIFE, Working paper, 109, Stanford Univ., 

California, US.   
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A.3: QUANTIFICATION OF PROJECT LEVEL INPUT PARAMETERS  

 

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.1.1 Project delivery 
system 

Refers to the arrangement between the owner and contractor 
on the means to design, execute, and operate the project.  

Categorical (Design bid build, Design 
build, Build operate transfer, Private 
public partnership) 

I SI 

2.1.2 Contract type Refers to the contract arrangement made for the project 
between the owner and contractor or general contractor and 
subcontractor.  

Categorical (Lump sum, Unit rate, Cost 
reimbursable) 

I PM 

2.1.3 Level of fast 
tracking  

Refers to whether the project construction begun before the 
completion of the design process.  

Real number (% Overlap between design 
and construction schedule) 

I PM 

2.1.4 Change in design 
drawings  

Number of drawing revisions submitted at a project level for 
all activities.  

Real number (Ratio of number of 
changed drawings to total number of 
drawings per project) 

M SI 

2.1.5 Change in 
specifications 

Number of specification revisions submitted at a project level 
for all activities.  

Real number (Ratio of number of 
changed specifications to total number of 
specification clauses at the project level) 

M SI 

2.1.6 Changes in 
contract conditions 

Number of revisions on contract conditions submitted at a 
project level for all activities.  

Real number (Ratio of number of contract 
conditions changes to total number of 
contract clauses at the project level) 

M PM 

2.1.7 Lack of information Refers to the lack of information associated with the design 
and execution of the project and will be measured in terms of 
request for information (RFI) per month.  

Real number (Number of RFI's per month 
per discipline) 

M PM 

2.1.8 Approval for 
building permit  

Refers to the time taken to get the permit to build from 
appropriate municipality offices.  

Real number (average process time for 
work or permit approval, months) 

M PM 

2.2.1 Project type Self-explanatory.  Categorical (Commercial, Institutional, 
Residential, Industrial) 

I DC 

2.2.2 Project size Refers to the project size in terms of contract dollar value.  Real number (Project contract value,$) I PM 

2.2.3 Project complexity Refers to the overall complexity of the projects in terms of 
use of unproven technology, number of process steps, facility 
size or process capacity, past experience with configuration 
or geometry, and construction methods25 

  I PM 

2.2.3.1 Extent of use of 
new and unproven 
technology 

Self-explanatory.  Categorical (Yes, No)  I PM 

 
 

                                                      
25 COAA (2012). “Benchmarking: Contractor Questionnaire.” Construction Owners Association Alberta, Version 8.4, Edmonton, Alberta, Canada. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.2.3.2 Extent of use of 
technological 
advanced methods  

Self-explanatory.  1 - 5 Predetermined rating (shown below) I PM 

  1. Very Low; 2. Low; 3. Average; 4. High; 5. Very High 

2.2.3.3 Construction 
methods and 
techniques 

Refers to the construction methods and techniques adopted 
for the project and the experience and availability of proper 
procedure with methods and technologies.  

1 - 5 Predetermined rating (shown below) I PM 

  1. VERY POOR Experience with methods and technology, LACK of proper procedure; 2. POOR Experience with methods and 
technology, LACK of proper procedure; 3. FAIR Experience with methods and technology, WITH proper procedure; 4. GOOD 
Experience with methods and technology, WITH proper procedure; 5. VERY GOOD Experience with methods and technology 
, WITH proper procedure 

2.2.3.4 Facility size or 
process capacity 

Refers to the size of the project in terms of know measures 
like total built floor space, total man-hours, etc.  

Real number (Total unit) I PM 

2.2.3.5 Past experience 
with configuration 
or geometry  

Self-explanatory.  Real number (Total number of similar 
projects completed) 

I PM 

2.2.4 Project location Refers to the city where the project is being implemented.  Categorical (Edmonton, Nisku, Acheson, 
Calgary, Fort McMurray, Other) 

I DC 

2.2.5 Year of 
construction 

Refers to the year the data collection of the project began.  Integer (Year of Construction) M DC 

2.2.6 Amount of 
modularization  

Refers to the amount of modularization in terms of off-site 
work in a module yard or prefabrication plant.  

Real number (% off site construction cost 
to total project cost) 

I PM 

2.2.7 Project 
organization 
structure 

Refers to the way the project team is set.  Categorical (Line, Product, Functional, 
Matrix) 

I DC 

2.2.8 Project level rework Refers to the total amount of rework at the project level, 
including all activities. Project Construction Filed Rework 
Index CFRI (% of Total Cost of rework to total field 
construction phase cost)26  

Real number (Project overall CFRI) M PM 

2.2.9 Project level 
change order 

Refers to the total amount of change order at the project 
level, including all activities.  

Real number (% approved total cost of 
change order overall project to original 
approved project cost) 

M PM 

2.2.10 Project percent 
complete 

Refers to how much of the project is completed in terms of 
construction project cost.  

Real number (% complete of approved 
construction project cost) 

I PM 

 

                                                      
26 Fayek, A. Robinson, Dissanayake, M., and Campero, O. (2003). “Measuring and classifying construction field rework: A pilot study.” Construction Owners 
Association Alberta, Field Rework Committee, Edmonton, Alberta, Canada.  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.3.1 Site transportation  Self-explanatory.    I DC 

2.3.1.1 Flight 
arrangements  

Refers to whether the site is remote enough that flight 
arrangements are made.  

Categorical (Yes, No)  I DC 

2.3.1.2 Provision of ground 
transportation for 
workers to site 

Self-explanatory.  Categorical (Yes, No) I DC 

2.3.2 Camp condition Refers to whether the site is remote enough that camp 
facilities are provided. The condition of the camp will be 
evaluated in terms of room condition, food service, and 
amenities.  

1 - 5 Predetermined rating (shown below) I SI 

  1. VERY POOR Room Condition, POOR Food service, NO Amenities; 2. POOR Room Condition, POOR Food service, NO 
Amenities; 3. FAIR Room Condition, FAIR Food service, SOME Amenities; 4. GOOD Room Condition, GOOD Food service, 
SOME Amenities; 5. VERY GOOD Room Condition, VERY GOOD Food service, MANY Amenities 

2.3.3 Weather 
(temperature) 

Refers to the recorded temperature at 1:00 PM of the work 
day.  

Real number (˚C) D DC 

2.3.4 Weather 
(precipitation)  

Refers to the recorded daily average precipitation of the work 
day.  

Real number (mm) D DC 

2.3.5 Weather (humidity)  Refers to the recorded daily average humidity of the work 
day.  

Real number (%) D DC 

2.3.6 Weather (wind 
speed) 

Refers to the recorded daily average wind speed of the work 
day.  

Real number (km/hr) D DC 

2.3.7 Weather (radiation) Refers to the highest recorded radiation of the work day.  Real number (Hz) W DC 

2.3.8 Variability of 
weather 

Refers to the variability of the weather on a weekly basis. 
Average number of heating degree days (HDD), number of 
cold degree days (CDD), total precipitation per project area,  
and standard deviation of precipitation27 

  W DC 

2.3.8.1 Number of heating 
degree days (HDD) 

Heating degree-days for a given day are the number of 
degrees Celsius that the mean temperature is below 18°C.  

Integer (Number of days per week) W DC 

2.3.8.2 Number of cold 
degree days (CDD) 

Cooling degree-days for a given day are the number of 
degrees Celsius that the mean temperature is above 18°C. 

Integer (Number of days per week) W DC 

2.3.9 Ground conditions Refers to the trafficability of the ground for walking around 
during work times. 

1 - 5 Predetermined rating (shown below) W SI 

  1. HIGH Moisture content, Clay Soil; 2. MEDIUM Moisture content, Clay Soil; 3. MEDIUM Moisture content, Sandy Clay; 4. 
MEDIUM Moisture content, Sandy Soil; 5. Low Moisture content, Sandy Soil 

 

                                                      
27 Moosavi, S.F., and Moselhi,O. (2012). “Schedule assessment and evaluation.” Proc., Construction Research Congress, ASCE, West Lafayette, Indiana, US, 

535 – 544.   
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.3.10 Site layout  Refers to the efficiency of the site layout in terms of 
temporary facilities (laydown area, warehouse, fabrication 
shops, and batch plant). It will be measured in terms of 
identification of facilities, efficiency of placement of the 
different areas, and size requirements.  

1 - 5 Predetermined rating (shown below) I SI 

  1. VERY POOR Identification, POOR Placement, VERY LARGE Size requirement; 2. POOR Identification, POOR Placement, 
LARGE Size requirement; 3.  GOOD Identification, POOR Placement, LARGE Size requirement; 4.  GOOD Identification, 
GOOD Placement, AVERAGE Size requirement; 5. VERY GOOD Identification, VERY GOOD Placement, SMALL Size 
requirement 

2.3.11 Site congestion Refers to the congestion of site, measured in terms of 
available free site space.  

Real number (Ratio free site space to 
total site area) 

W SI 

2.3.12 Site access Refers to the efficiency of site access to project facility 
location in terms of crowding, width of access, and waiting 
time.  

  W DC 

2.3.12.1 Width of access  Self-explanatory.  Real number (Width of access, m) W DC 

2.3.12.2 Queue time to 
access site  

Self-explanatory.  Real number (Average queue time to 
access time, minutes) 

W DC 

2.3.13 Parking facilities 
(within project) 

Self-explanatory.  Integer (Ratio parking capacity of plot to 
total number of workers) 

I DC 

2.3.14 Site storage Refers to the total on-site storage area available.  Real number (Ratio of total on-site 
storage area to total site area) 

I DC 

2.3.15 Site facilities for 
workers  

Self-explanatory.    I DC 

2.3.15.1 Site facilities for 
workers (lunch 
room) 

Self-explanatory.  Real number (Average size, m2 and 
number of lunch room on project) 

I DC 

2.3.15.2 Site facilities for 
workers (wash 
room) 

Self-explanatory.  Integer (Average size, m2 and number of 
wash rooms on project) 

I DC 

2.3.16 Unloading/laydown 
area 

Refers to the size of the site's unloading/laydown area.  Real number (Ratio total area of 
unloading/laydown to total project site 
area) 

I DC 

2.3.17 Project work times Refers to the work times in terms of shift length, use of 
multiple shifts, and use of overtime.  

  W SI 

2.3.17.1 Use of overtime Self-explanatory. Overall project activities (besides the one 
under study). 

Real number (Average over time per 
week) 

W SI 

2.3.17.2 Multiple shifts 
(night) 

Self-explanatory. Use of night shifts in project including three 
shifts 

Categorical (Yes, No) W SI 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.3.17.3 Shift length Self-explanatory. Excessiveness of shift lengths. Real number (hours per shift) W SI 

2.4.1 Owner staff on site Refers to the total number of owner staff on site to supervise 
the project works.  

Integer (Total number of owner staff on 
site) 

I PM 

2.4.2 Supervision from 
owner  

Refers to the level of supervision by owner representatives.  1 - 5 Predetermined rating (shown below) I PM 

  1. NO Supervision; 2. VERY SMALL Supervision; 3. SOME Supervision; 4. HIGH Supervision, 5. VERY HIGH Supervision 

2.4.3 Owner's primary 
driver  

Refers to the primary focus of the owner among the project 
performance objectives.  

Categorical (Schedule, Cost, Quality, 
Safety) 

I PM 

2.4.4 Delivery of site to 
contactor 

Refers to the days taken to handover the site after notice to 
proceed.  

Real number (Days taken to handover 
site, days) 

I PM 

2.4.5 Approval of shop 
drawings and 
sample materials  

Refers to the time taken in approving shop drawings and 
sample materials by the owner or his representatives.  

Real number (Average time taken to 
approve, days) 

M PM 

2.4.6 Suspension of 
project work (owner 
reasons) 

Refers to whether the project was suspended during the 
execution process.  

  I PM 

2.4.6.1. Number of 
suspensions  

Refers if the project has been suspended during its execution 
process.  

Integer (Number of suspensions  due to 
owner) 

I PM 

2.4.6.2 Length of 
suspensions 

Self-explanatory.  Real number (Average length of 
suspensions, days) 

I PM 

2.5.1 Experience of 
project 
management team 
members 

Refers to the experience of the contractor project staff in 
terms of years in industry.  

Real number (Average years of 
experience of PM team) 

I PM 

2.5.2 Support and 
administrative staff 

Refers to number of support and administrative staff 
(secretary, drivers, and tool crib attendants) on site.  

Real number (Ratio of support to 
technical staff) 

M PM 

2.5.3 Level of paper work 
for work approval  

Refers to the level of paper work required to get work 
approvals from owner or his representatives. 

  W PM 

2.5.3.1 Forms  Self-explanatory.  Integer (number of forms to be filled) W PM 

2.5.3.2 Approval 
Signatures 

Self-explanatory.  Integer (number of approval signatures) W PM 

2.5.4 Treatment of 
foremen by 
superintendent and 
project manager 

Self-explanatory.  1 - 5 Predetermined rating (shown below) W PM 

  1. ALWAYS Disrespectful, Insincere, NO Counselling; 2. OFTEN Disrespectful, Insincere, NO Counselling; 3. SOMETIMES 
Respectful, Sincere, Counselling; 4. OFTEN Respectful, Sincere, Counselling; 5. ALWAYS Respectful, Sincere, Counselling 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.5.5 Performance 
competition system 
within the company 

Refers to whether a performance based competition system 
for trade workers exists within the company. 

Categorical (Yes, No)  I PM 

2.5.6 Uniformity of work 
rules by 
superintendent 

Self-explanatory.  1 - 5 Predetermined rating (shown below) W PM 

  1. VERY Irregular among crews and HIGHLY Variable in daily work times and work days; 2. Irregular among crews and 
Variable in daily work times and work days; 3. Uniform among crews and Variable in daily work times and work days; 4. 
Uniform among crews, Always the same in daily work times and work days; 5. VERY Uniform among crews, Always the same 
in daily work times and work days 

2.5.8 Superintendent 
education  

Self-explanatory.  Categorical (Below Secondary, 
Secondary School, Technical or 
Apprentice, College, University) 

I SI 

2.5.9 Superintendent 
training 

Self-explanatory. Trainings related to time management, 
leadership for safety excellence, CSTS, standard first aid, 
supervisory training program are documented28 

Integer (No. trainings attended x Duration 
of Training) 

I SI 

2.5.11 Project Manager 
education 

Self-explanatory.  Categorical (Below Secondary, 
Secondary School, Technical or 
Apprentice, College, University) 

I PM 

2.5.12 Project manager 
training 

Self-explanatory. Trainings related to time management, cost, 
quality, certificate for Project Management Professional 
(PMP) are documented. 

Real number (No. trainings attended x 
Duration of Training) 

I PM 

2.6.1 Labour union type Self-explanatory.  Categorical (Building Trades, CLAC, 
Non-union) 

I DC 

2.6.2 Availability of 
labour 

Refers to whether the required number of workers for the all 
activities in the project are met per month.    

Integer (Unmet labour requirement, for 
the given trade) 

M SI 

 
 
 
 
 
 
 
 

                                                      
28 Fayek,A. Robinson, and Poveda, C. (2008). “A pilot study to develop a skills development tool for construction trades foremen.” COAA, Supervisory Training 

and Qualifications, Edmonton, Alberta, Canada. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.6.3 Labour Disputes 
(legal cases 
between a worker 
on a project) 

Self-explanatory.  Integer (Average number of cases per 
project) 

M SI 

2.6.4 Union influences Self-explanatory.  1 - 5 Predetermined rating (shown below) I SI 

  1. NO Influence; 2. VERY SMALL Influence; 3. SOME Influence; 4. HIGH Influence, 5. VERY HIGH Influence 

2.7.1 Salary (Project 
Manager) 

Self-explanatory.  Real number (Average annual salary, 
thousands) 

I DC 

2.7.2 Salary 
(Superintendent) 

Self-explanatory.  Real number (Average annual salary, 
thousands) 

I DC 

2.7.3 Salary (Foreman) Self-explanatory.  Real number (Average annual salary, 
thousands) 

I DC 

2.7.4 Salary 
(Craftsperson, 
Journeyman) 

Self-explanatory.  Real number (Average annual salary, 
thousands) 

I DC 

2.7.5 Salary 
(Craftsperson, 
Apprentice) 

Self-explanatory.  Real number (Average annual salary, 
thousands) 

I DC 

2.7.6 Benefits Refers to benefits (medical and other) provided to workers.   Real number (Average benefits for a 
craftsperson per day) 

M DC 

2.8.1 Detailed front end 
planning 

Refers to efficiency of the detailed front end planning of the 
project, measured in terms of team composition, technology 
use in evaluation (like Simulation), evaluation for alternate 
options, level of risk analysis29 

1 - 5 Predetermined rating (shown below) I PM 

  1. INEXPERIANCED Team, NO Use of technological methods, ONLY FEW Alternative evaluated, NO Risk analysis; 2. 
INEXPERIANCED Team, NO Use of technological methods, FEW Alternative evaluated, NO Risk analysis; 3. EXPERIANCED 
Team, NO Use of technological methods, SOME Alternatives evaluated, SOME form of Risk analysis; 4. EXPERIANCED 
Team, SOME Use of technological methods, SOME Alternatives evaluated, SOME form of Risk analysis; 5. WELL 
EXPERIANCED Team, DETAILED Use of technological methods, MANY Alternatives evaluated, DETAILED Risk analysis    

 
 
 
 
 
 

                                                      
29 COAA (2012). “Benchmarking: Contractor Questionnaire.” Construction Owners Association Alberta, Version 8.4, Edmonton, Alberta, Canada. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.8.2 Constructability 
Review 

Refers to the efficiency of constructability reviews between 
owner and contractor representatives.  

  I PM 

2.8.2.1 Defining project 
objectives for 
constructability 
review  

Self-explanatory.  1 - 5 Predetermined rating (shown below) I PM 

  1. Project Objective/s NOT identified, Identified project objective/s NOT properly implemented; 2. Project Objective/s 
SOMEWHAT identified, Identified project objective/s SOMEWHAT implemented; 3. Project Objective/s identified, Identified 
project objective/s SOMEWHAT implemented; 4. Project Objective/s identified, Identified project objective/s SOMEWHAT 
Properly implemented; 
5. Project Objective/s identified, Identified project objective/s Properly implemented 

2.8.2.2 Constructability 
objective and 
measure  

Self-explanatory.  1 - 5 Predetermined rating (shown below) I PM 

  1. Not Well Defined Objectives, Constructability improvements VERY POORELY measured; 2. Not Well Defined Objectives, 
Constructability improvements POORELY measured; 3. FAIRLY Defined Objectives, Constructability improvements 
POORELY measured; 4.  Well Defined Objectives, Constructability improvements measured; 5. Very Well Defined Objectives, 
Constructability improvements measured to detail 

2.8.2.3 Constructability 
ideas and 
implementation  

Self-explanatory.    I PM 

A Constructability 
Ideas 

Self-explanatory.  Integer (Number of well-defined ideas) I PM 

B Implementation of 
constructability 
ideas 

Self-explanatory.  Categorical (Yes, No) I PM 

2.9.1 Project scope 
definition  

The process of subdividing the major project deliverables into 
smaller, more manageable components to develop a project 
Work Breakdown Structure (WBS) 

1 - 5 Predetermined rating (shown below) I PM 

  1. Defined project scope NOT properly used to define project WBS, VERY POOR Experience in work decomposition, 
Developed WBS NOT Comprehensively covering the project scope; 2. Defined project scope NOT properly used to define 
project WBS, POOR Experience in work decomposition, Developed WBS NOT Comprehensively covering the project scope; 
3. Defined project scope properly used to define project WBS, FAIR Experience in work decomposition, Developed WBS NOT 
Comprehensively covering the project scope; 4. Defined project scope properly used to define project WBS, GOOD 
Experience in work decomposition, Developed WBS SOMEHOW Comprehensively covering the project scope; 5. Defined 
project scope properly used to define project WBS, VERY GOOD Experience in work decomposition, Developed WBS 
Comprehensively covering the project scope 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.9.2 Project scope 
verification  

The process of obtaining formal acceptance of the project 
scope by the stakeholders 

1 - 5 Predetermined rating (shown below) I PM 

  1. Project scope verification NOT conducted; 2. Project scope verification SOMEWHAT conducted; 3. Project scope 
verification PARTIALLY conducted; 4. Project scope verification MOSTLY conducted; 5. Project scope verification FULLY 
conducted 

2.9.3 Project scope 
change control  

Deals with influencing the factors causing scope changes, 
determining that a scope change has occurred and managing 
actual changes when and if they occur.  

1 - 5 Predetermined rating (shown below) I PM 

  1. LACK of project change documents, NO procedure for change management tracking and approval, VERY POOR 
performance measurement system, VERY POOR Integration with other control processes; 2. LACK of project change 
documents, NO procedure for change management tracking and approval, POOR performance measurement system, POOR 
Integration with other control processes; 3. PRESENCE of project change documents, NO procedure for change management 
tracking and approval, FAIR performance measurement system, FAIR Integration with other control processes; 4. PRESENCE 
of project change documents, EXISTING procedure for change management tracking and approval, GOOD performance 
measurement system, GOOD Integration with other control processes; 5. PRESENCE of project change documents, 
EXISTING procedure for change management tracking and approval, VERY GOOD performance measurement system, 
VERY GOOD Integration with other control processes 

2.10.1 Project planning 
and scheduling 

Self-explanatory. Contractual compliance (milestones, scope 
coverage, activity duration), Schedule development (Scope 
definition, WBS, Scheduling participation, subcontractor 
participation), Schedule components (Job logic, critical paths, 
special consideration)30 

  I PM 

2.10.1.1 Project activity 
definition  

Involves identifying and documenting the specific activities 
that must be performed to produce the deliverables identified 
in the WBS 

1 - 5 Predetermined rating I PM 

  1. VERY POOR Use of project information (WBS, Scope statement), NOT properly documentation assumptions, VERY 
POORELY decomposing activities from WBS, NOT Using concurrent engineering ideas; 2. POOR Use of project information 
(WBS, Scope statement), NOT properly documentation assumptions, POORELY decomposing activities from WBS, NOT 
Using concurrent engineering ideas; 3. AVERAGE Use of project information (WBS, Scope statement), NOT properly 
documentation assumptions, FAILRY decomposing activities from WBS, NOT Using concurrent engineering ideas; 4. GOOD 
Use of project information (WBS, Scope statement), Properly documentation assumptions, GOOD in decomposing activities 
from WBS, Using SOME concurrent engineering ideas; 5. VERY GOOD Use of project information (WBS, Scope statement), 
Properly documentation assumptions, VERY GOOD in decomposing activities from WBS, Using many concurrent engineering 
ideas 

                                                      
30 Moosavi, S.F., and Moselhi,O. (2012). “Schedule assessment and evaluation.” Proc., Construction Research Congress, ASCE, West Lafayette, Indiana, US, 

535 – 544. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.10.1.2 Project activity 
sequencing  

Involves identifying and documenting interactivity logical 
relationships 

1 - 5 Predetermined rating I PM 

  1. VERY POOR Understanding of technical and resource dependencies between activities, NOT Using activity sequencing 
tools;  
2. POOR Understanding of technical and resource dependencies between activities, NOT Using activity sequencing tools; 3. 
FAIR Understanding of technical and resource dependencies between activities, FAIR Use of activity sequencing tools; 4. 
GOOD Understanding of technical and resource dependencies between activities, GOOD Use of activity sequencing tools; 5. 
VERY GOOD Understanding of technical and resource dependencies between activities, VERY GOOD Use of activity 
sequencing tools 

2.10.2 Project activity 
duration  

Self-explanatory.    W SI 

2.10.2.1 Project activity 
duration estimation  

The process of taking information on project scope and 
resources and then developing durations for input to 
schedules 

1 - 5 Predetermined rating W SI 

  1. Development of resource requirements and resource capabilities NOT PROPERLY done, NO Use of historical information 
(past project files, commercial databases like RS Means), Experience of estimator VERY POOR; 2. Development of resource 
requirements and resource capabilities NOT PROPERLY done, NO Use of historical information (past project files, 
commercial databases like RS Means), Experience of estimator POOR; 3. Development of resource requirements and 
resource capabilities SOMEWHAT done, SOME Use of historical information (past project files, commercial databases like RS 
Means), Experience of estimator FAIR; 4. Development of resource requirements and resource capabilities WELL done, 
AVERAGE Use of historical information (past project files, commercial databases like RS Means), Experience of estimator 
GOOD; 5. Development of resource requirements and resource capabilities VERY WELL done, EXCELLENT Use of historical 
information (past project files, commercial databases like RS Means), Experience of estimator VERY GOOD 

2.10.2.2 Unrealistic activity 
duration  

Self-explanatory.  1 - 5 Predetermined rating W SI 

  1. VERY Unrealistic; 2. Unrealistic; 3. Common industry average; 4. Realistic; 5. VERY Realistic 

2.10.3 Project schedule 
development  

Develops the start and finish dates for project activities 1 - 5 Predetermined rating I PM 

  1. VERY POOR Understanding of constraints, project calendar, resource plans, VERY POORLEY Developed activity 
attributes, NOT Using scheduling tools (CPM, PERT, Simulation), NO Use of resource leveling and Project management 
software's; 2. POOR Understanding of constraints, project calendar, resource plans, POORLEY Developed activity attributes, 
NOT Using scheduling tools (CPM, PERT, Simulation), NO Use of resource leveling and Project management software's;  3. 
FAIR Understanding of constraints, project calendar, resource plans, FAIRLY Developed activity attributes, FAIR Use 
scheduling tools (CPM, PERT, Simulation), FAIR Use of resource leveling and Project management software's; 4. GOOD 
Understanding of constraints, project calendar, resource plans, WELL Developed activity attributes, GOOD Use scheduling 
tools (CPM, PERT, Simulation), GOOD Use of resource leveling and Project management software's; 5. VERY GOOD 
Understanding of constraints, project calendar, resource plans, WELL Developed activity attributes, VERY GOOD Use 
scheduling tools (CPM, PERT, Simulation), VERY GOOD Use of resource leveling and Project management software's 
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Cycle 

Data 
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2.10.3.1 Project duration  Refers to whether the contractual project duration is realistic 
or not.   

1 - 5 Predetermined rating I PM 

  1. VERY Unrealistic; 2. Unrealistic; 3. Common industry average; 4. Realistic; 5. VERY Realistic 

2.10.3.2 Criticality of project 
schedule  

Self-explanatory.  Real number (ratio of critical to total 
number of activities) 

I PM 

2.10.4 Project schedule 
control  

Deals with influencing the factors causing schedule changes, 
determining that a schedule change has occurred and 
managing actual changes when and if they occur 

  I PM 

2.10.4.1 Schedule 
Compression  

Refers to whether any of the activities have been crushed to 
achieve saving in project duration.  

Real number (Ratio crushed to normal 
schedule) 

M PM 

2.10.5 Project activity 
weights definition  

Involves evaluating activities characteristics and attributes in 
order to assess the contribution of each particular project 
activity to the overall project progress of a given phase or 
deliverable of the project 

1 - 5 Predetermined rating I PM 

  1. Defining activity attributes in terms of durations, costs, labour hours, quantities NOT DONE, NO Use of expert judgment, 
NO Use of percentage calculation; 2. Defining activity attributes in terms of durations, costs, labour hours, quantities 
SOMEWHAT, NO Use of expert judgment, NO Use of percentage calculation; 3. Defining activity attributes in terms of 
durations, costs, labour hours, quantities PARTIALLY DONE, NO Use of expert judgment, YES to Use of percentage 
calculation; 4. Defining activity attributes in terms of durations, costs, labour hours, quantities MOSTLY DONE, YES Use of 
expert judgment, YES Use of percentage calculation; 5. Defining activity attributes in terms of durations, costs, labour hours, 
quantities FULLY DONE, YES Use of expert judgment, YES Use of percentage calculation 

2.10.6 Project progress 
curves 
development and 
Progress 
monitoring  

Refers to the creation of a progress baseline to monitor actual 
versus planned performance 

1 - 5 Predetermined rating I PM 

  1. NO Use of project schedules, activity weights, Standard Performance curves NOT developed, NO Use of project 
management software; 2. POOR Use of project schedules, activity weights, Standard Performance curves NOT developed, 
NO Use of project management software; 3. FAIR Use of project schedules, activity weights, Standard Performance curves 
POORLY developed, NO Use of project management software; 4. GOOD Use of project schedules, activity weights, Standard 
Performance curves WELL developed, Use of project management software; 5. VERY GOOD Use of project schedules, 
activity weights, Standard Performance curves VERY WELL developed, Use of project management software 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.11.1 Project resource 
planning  

Determining what resources (people, equipment, materials) 
and what quantities of each should be used to perform project 
activities. Measured using use of project information (Scope, 
WBS, Historical information, Contract requirement, Activity 
duration), understanding of construction methods, use of 
Project management software's, and development of detailed 
resource requirement with a resource profile and schedule   

1 - 5 Predetermined rating I PM 

  1. VERY POOR Use of project information (WBS, Scope statement, Activity duration, Historical records), NO Use of Project 
management software's, INADEQUATELY Developed resource plan; 2. POOR Use of project information (WBS, Scope 
statement, Activity duration, Historical records), NO Use of Project management software's, INADEQUATELY Developed 
resource plan;  
3. FAIR Use of project information (WBS, Scope statement, Activity duration, Historical records), NO Use of Project 
management software's, INADEQUATELY Developed resource plan; 4. GOOD Use of project information (WBS, Scope 
statement, Activity duration, Historical records), Use of Project management software's, ADEQUATELY Developed resource 
plan; 5. VERY GOOD Use of project information (WBS, Scope statement, Activity duration, Historical records), ADVANCED 
Use of Project management software's, ADEQUATELY Developed resource plan 

2.11.2 Project cost 
estimating  

Developing an approximation (estimate) of the costs of the 
resources needed to complete project activities. Measured 
using basic estimation process details (developing material & 
equipment list, project schedule), team experience, time 
allowed for estimation, bidding and labour climate31 

  I PM 

2.11.2.1 Development of 
material, 
equipment list 

Self-explanatory.  1 - 5 Predetermined rating I PM 

  1. VERY POORLY Developed material and equipment list; 2. POORLY Developed material and equipment list; 3. FAIRLY 
Developed material and equipment list; 4. WELL DONE material and equipment list; 5. VERY WELL DONE material and 
equipment list 

2.11.2.2 Estimation team 
experience  

Self-explanatory.  Real number (Average years of 
experience of estimation team) 

I PM 

2.11.2.3 Time allowed for 
estimation  

Self-explanatory.  Integer (Time taken for estimation, 
working days) 

I PM 

 
 
 
 

                                                      
31 Trost, S., and Oberlender,G. (2003). “Predicting accuracy of early cost estimates using factor analysis and multivariate regression.” J. Constr. Eng. Manage., 

129(2), 198 – 204.  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.11.2.4 Bidding climate Refers to the bidding climate in terms of uncertainty in future, 
quality of bid document, competition level, and project type. 
Uncertainty in future, Quality of bid document, Competition 
level, Type of project 

1 - 5 Predetermined rating I PM 

  1. VERY HIGH Uncertainty in future, VERY POOR Quality of bid document, VERY HIGH Competition level, 
UNFAVOURABLE Type of project;  2. HIGH Uncertainty in future, POOR Quality of bid document, HIGH Competition level, 
UNFAVOURABLE Type of project; 3. FAIR Uncertainty in future, AVERAGE Quality of bid document, MEDIUM Competition 
level, FAVOURABLE Type of project; 4. FAIR Uncertainty in future, GOOD Quality of bid document, LOW Competition level, 
FAVOURABLE Type of project; 5. LOW Uncertainty in future, VERY GOOD Quality of bid document, VERY LOW Competition 
level, FAVOURABLE Type of project    

2.11.2.5 Labour climate Refers to the labour climate during bidding and estimating, 
measured in terms of availability of labour, quality of labour, 
and agreements with Unions 

1 - 5 Predetermined rating I PM 

  1. VERY POOR Availability of labour, VERY POOR Quality of labour, NO Agreement with Unions; 2. POOR Availability of 
labour, POOR Quality of labour, NO Agreement with Unions; 3. FAIR Availability of labour, FAIR Quality of labour, YES 
Agreement with Unions; 4. GOOD Availability of labour, GOOD Quality of labour, YES Agreement with Unions; 5. VERY 
GOOD Availability of labour, VERY GOOD Quality of labour, YES Agreement with Unions 

2.11.3 Project cost 
budgeting  

Involves allocating the overall cost estimate to individual work 
activities or work packages to establish a cost baseline for 
measuring project cost performance. Use of project 
information (Cost estimates, WBS, project schedule), Use of 
cost budgeting tools and techniques (Computerized tools), 
Development of a cost baseline (a time-phased budget to be 
used for measuring and monitoring cost performance of 
project) 

1 - 5 Predetermined rating I PM 

  1. VERY POOR Use of project information (Cost estimates, WBS, project schedule), NO Use of computerized tools, 
INADEQUATELY Developed cost baseline; 2. POOR Use of project information (Cost estimates, WBS, project schedule), NO 
Use of computerized tools, INADEQUATELY Developed cost baseline; 3. FAIR Use of project information (Cost estimates, 
WBS, project schedule), SOME Use of computerized tools, INADEQUATELY Developed cost baseline; 4. GOOD Use of 
project information (Cost estimates, WBS, project schedule), Use of computerized tools, ADEQUATELY Developed cost 
baseline; 5. VERY GOOD Use of project information (Cost estimates, WBS, project schedule), ADVANCED Use of 
computerized tools, ADEQUATELY Developed cost baseline    

2.11.4 Project cost control  Deals with influencing the factors causing changes to cost 
baseline, determining that the cost baseline has changed and 
managing actual changes when and if they occur.  

  M PM 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.11.4.1 Use of Earned 
value methods 

Self-explanatory.  1 - 5 Predetermined rating M PM 

  1. Earned value methods NOT employed; 2. Earned value methods SOMEWHAT Employed but NOT fully (in terms of use of 
forecasts); 3. Earned value methods PARTIALLY employed; 4. Earned value methods MOSTLY employed; 3. Earned value 
methods FULLY employed 

2.11.5 Labour productivity 
measurement 
practice 

Refers to the existence of a labour productivity measurement 
system, separate from Cost control systems.  

  M PM 

2.11.5.1 Labour productivity 
process  

Refers to whether a system or procedure for measuring daily 
outputs and work efficiency measures like work sampling is 
available.  

Categorical I PM 

2.11.5.2 Labour productivity 
measurement and 
tracking  

Refers to effectiveness of the practice in terms of 
understanding of labour productivity definition (output to 
input), use of standard systems to measure quantities (units 
complete, % complete or level of effort) and work hours, 
frequency of data collection properly established, productivity 
evaluation and forecasting (use of performance factor or 
Earned value method)32 

1 - 5 Predetermined rating M PM 

  1. Understanding of labour productivity definition VERY POOR, NO Use of standard systems to measure quantities and work 
hours, Frequency of data collection NOT properly established, VERY POOR Productivity evaluation and forecasting; 2. 
Understanding of labour productivity definition POOR, NO Use of standard systems to measure quantities and work hours, 
Frequency of data collection NOT properly established, POOR Productivity evaluation and forecasting;  3. Understanding of 
labour productivity definition FAIR, Use of SOME standard systems to measure quantities and work hours, Frequency of data 
collection SOMEWHAT established, FAIR Productivity evaluation and forecasting; 4. Understanding of labour productivity 
definition GOOD, Use of SOME standard systems to measure quantities and work hours, Frequency of data collection 
PROPERLY established, GOOD Productivity evaluation and forecasting; 5. Understanding of labour productivity definition 
VERY GOOD, Use of PROPER standard systems to measure quantities and work hours, Frequency of data collection 
PROPERLY established, VERY GOOD Productivity evaluation and forecasting 

2.12.1 Project quality 
planning  

Identifying which quality standards (based on project 
specifications) are relevant to the project and determining 
how to satisfy them. Use and understanding of project 
specification, design requirements, development of clear 
project quality policy 

  I PM 

2.12.1 Demand for over 
quality work 

Self-explanatory. Above quality levels set in specifications 
and drawings.  

Categorical (Yes, No) I PM 

 

                                                      
32 Hart, H. (1995).” Measuring construction productivity.” Participant handbook, Construction Industry Institute, Austin, Texas, US. 
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Data 
Cycle 

Data 
Source 

2.12.2 Project quality 
assurance 

Evaluating overall project performance on a regular basis to 
provide confidence that the project will satisfy the relevant 
quality standards. Use of quality audits and implementation of 
quality improvements 

  I PM 

2.12.1 Quality audits Refers to the quality audit process in terms of inspections per 
month.  

Real number (Number of inspections per 
month) 

M PM 

2.12.3 Project quality 
control  

Monitoring specific project results to determine if they comply 
with relevant quality standards and identifying ways to 
eliminate causes of unsatisfactory performance, as well as 
identify means to remedy to the non-compliance identified.  

  I PM 

2.12.3.1 Inspection delay Refers to the delay caused due to quality control inspections. 
On average per day. 

Real number (Average delay for 
inspection, min) 

D SI 

2.12.3.2 Interference Interference due to inspections of other trades, safety 
evaluations, management site visits, measured on average 
per week. Interference due to inspections of other trades, 
safety evaluations, management site visits. On average per 
week. 

Real number (Average number of 
interruption due to interference) 

W SI 

2.12.3.3 Inspection 
programs 

Refers to whether the project has a regularly scheduled and 
coordinated inspection program.  

Categorical (Yes, No) I SI 

2.12.3.4 Out of sequence 
inspection or 
survey work 

Refers to the occurrence of out sequence inspection or 
survey works.  

Real number (Number of occurrence per 
week) 

W SI 

2.13.1 Procurement 
planning and 
solicitation  

Refers to the practice of making make-or-buy analysis, 
developing and selecting alternatives, developing a 
solicitation and administration plan  

1 - 5 Predetermined rating I PM 

  1. VERY POOR make-or-buy analysis, Developing and selecting alternatives NOT WELL done, VERY POOR solicitation and 
administration plan; 2. POOR make-or-buy analysis, Developing and selecting alternatives NOT WELL done, POOR 
solicitation and administration plan; 3. SOME make-or-buy analysis, Developing and selecting alternatives SOMEWHAT done, 
FAIR solicitation and administration plan; 4. DETAIL make-or-buy analysis, Developing and selecting alternatives WELL done, 
GOOD solicitation and administration plan; 5. DETAIL make-or-buy analysis, Developing and selecting alternatives WELL 
done, VERY GOOD solicitation and administration plan 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.13.2 Procurement 
solicitation 
planning  

Refers to the practice of preparing procurement documents 
for bids, decisions on contract types, detail evaluation criteria 

1 - 5 Predetermined rating I PM 

  1. VERY POOR procurement documents for bids, VERY POOR Decisions on contract types, LACK of Detail evaluation 
criteria;  
2. POOR procurement documents for bids, POOR Decisions on contract types, LACK of Detail evaluation criteria;  
3. FAIR procurement documents for bids, FAIR Decisions on contract types, SOME Detail evaluation criteria;  
4. GOOD procurement documents for bids, GOOD Decisions on contract types, Detail evaluation criteria AVALIABLE;  
5. VERY GOOD procurement documents for bids, VERY GOOD Decisions on contract types, Detail evaluation criteria 
AVALIABLE 

2.13.3 Procurement 
solicitation 
execution  

Refers to the practice on the use of prequalification process, 
advertisement, evaluation of proposals, award of contract  

1 - 5 Predetermined rating I PM 

  1. NO Use of prequalification process, NO PROPER Advertisement, VERY POOR Practice in evaluation of proposals, NO 
PROPER Award of contract; 2. NO Use of prequalification process, SOME Advertisement, POOR Practice in evaluation of 
proposals, NO PROPER Award of contract; 3. SOME Use of prequalification process, SOME Advertisement, FAIR Practice in 
evaluation of proposals, PROPER Award of contract; 4. DETAIL Use of prequalification process, PROPER Advertisement, 
GOOD Practice in evaluation of proposals, PROPER Award of contract; 5. DETAIL Use of prequalification process, PROPER 
Advertisement, VERY GOOD Practice in evaluation of proposals, PROPER Award of contract 

2.13.4 Procurement 
administration 
(material, 
equipment, tool)  

Refer to the practice in terms of proper contact with suppliers, 
placing orders, developing and following deliveries and 
returns33 

1 - 5 Predetermined rating I PM 

  1. INADEQUATE Contact Process, UNORGANIZED Placement of Orders, VERY POOR Follow-up; 2. INADEQUATE Contact 
Process, UNORGANIZED Placement of Orders, POOR Follow-up; 3. ADEQUATE Contact Process, FAIRLY ORGANIZED 
Placement of Orders, FAIR Follow-up; 4. ADEQUATE Contact Process, ORGANIZED Placement of Orders, GOOD Follow-
up; 5. ADEQUATE Contact Process, WELL ORGANIZED Placement of Orders, VERY GOOD Follow-up 

2.13.5 Trade 
subcontracting 

Refer to the level of subcontracting on the project site  
Level of Subcontractors on site 

  I PM 

2.13.5.1 Subcontracted 
amount  

Amount of subcontracted amount.  Real number (%, subcontracted contract 
amount) 

I PM 

2.13.5.2 Number of 
subcontractors  

Total number of subcontractor companies on site.  Real number (Total number of 
subcontractors per project) 

I PM 

 
 
 

                                                      
33 Hanna, A. (2012). “Preconstruction planning,” Construction labour productivity management and methods of improvement, n.p., Madison, Wisconsin, US.   
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.14.1 Project Safety 
planning  

Development of the approach to manage the various safety 
hazards inherent to the project. Measured based on 
understanding of regulatory laws and regulations, contract 
requirements, detail hazard analysis of project, development 
of clear project safety plan, development of budget and time 
for implementation of safety plan, and use of safety officer 

1 - 5 Predetermined rating I PM 

  1. INADEQUATE Understanding of regulatory laws and contract requirements, VERY POORLY done project hazard 
assessment, INADEQUATE Project Safety plan, VERY POOR Budget and time development; 2. INADEQUATE 
Understanding of regulatory laws and contract requirements, POORLY done project hazard assessment, INADEQUATE 
Project Safety plan, POOR Budget and time development; 3. ADEQUATE Understanding of regulatory laws and contract 
requirements, FAILY done project hazard assessment, ADEQUATE Project Safety plan, FAIR Budget and time development; 
4. ADEQUATE Understanding of regulatory laws and contract requirements, ADEQUATELY done project hazard assessment, 
ADEQUATE Project Safety plan, GOOD Budget and time development; 5. ADEQUATE Understanding of regulatory laws and 
contract requirements, WELL done project hazard assessment, ADEQUATE Project Safety plan, VERY GOOD Budget and 
time development 

2.14.1.1 Use of site safety 
officer 

Self-explanatory.  Categorical (Yes, No) I PM 

2.14.2 Project Safety plan 
execution  

Carrying out the safety plan by performing the activities 
included in the project safety plan 

  W SI 

2.14.2.1 Use of daily job 
hazard assessment 
forms 

Self-explanatory.  Categorical (Yes, No) I SI 

2.14.2.2 Use of site safety 
meetings 

Use of daily project briefing and debriefing meetings, and 
tailgate safety meetings  

1 - 5 Predetermined rating M SI 

  1. Safety Meetings NOT conducted; 2. Safety Meetings conducted BUT NOT regularly, Effectiveness of meetings POOR; 3. 
Safety Meetings conducted REGULARLY, Effectiveness of meetings FAIR; 4. Safety Meetings conducted REGULARLY, 
Effectiveness of meetings GOOD; 5. Safety Meetings conducted REGULARLY, Effectiveness of meetings VERY GOOD   

2.14.2.3 Construction 
equipment safety 
procedure  

Availability of proper equipment use procedure 1 - 5 Predetermined rating M SI 

  1. Proper procedure NOT Available; 2. Proper procedure Available, POOR Implementation of procedure; 3. Proper procedure 
Available, FAIR Implementation of procedure; 4. Proper procedure Available, GOOD Implementation of procedure; 5. Proper 
procedure Available, VERY GOOD Implementation of procedure   

2.14.2.4 Drug testing  Self-explanatory.  Categorical I SI 

2.14.2.5 Safety training Safety orientation, Fall protection (harness), First aid, H2S.  Real number (No. trainings attended x 
Duration of Training, hrs.) 

C F 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.14.2.6 Safety Inspections  Refers to the number of safety inspection per month Real number (Number of inspections per 
month) 

M PM 

2.14.2.7 Safety Audits Refers to the number of safety audits per month Real number (Number of audits per 
month) 

M PM 

2.14.3 Safety Incidents Refers to the occurrence of safety incidents.    M SI 

2.14.3.1 Near Miss (Unsafe 
working conditions) 

Near Miss - An undesired event that, under slightly different 
circumstances, could have resulted in personal harm, loss of 
process, property and/or environmental  

Integer (Number of reported near miss 
per month) 

M SI 

2.14.3.2 First Aid (minor 
personal injury) 

First Aid - A first aid is when immediate treatment is rendered 
by a qualified person and worker immediately returns to work  

Integer (Number of reported first aid per 
month) 

M SI 

2.14.3.3 Medical Aid (major 
personal injury) 

Medical Aid - An injury which requires treatment by a 
physician beyond simple first aid care but does not result in 
time lost from work beyond the day of the injury  

Integer (Number of reported medical aid 
per month) 

M SI 

2.14.3.4 Modified Work 
Incidents 

Modified Work Incident - Work duties which have been 
modified to accommodate an injured work who cannot 
perform their regular work duties  

Integer (Number of reported modified 
work incident per month) 

M SI 

2.14.3.4 Number of Modified 
Work Days 

Number of Modified Work Days - Days spent performing 
modified work 

Integer (Number of reported modified 
work days per month) 

M SI 

2.14.3.5 Lost Time Incident  Lost Time Incident - Is an accident where a physician directs 
the injured worker to remain away from work longer that day 
of the accident  

Integer (Number of reported lost time 
incident per month) 

M SI 

2.14.3.6 Number of Lost 
time Workdays 

Number of Lost Time Workdays - Days spent away from work 
due to accident  

Integer (Number of lost day reported due 
to lost time incident per month) 

M SI 

2.14.3.7 Fatality Incident  Self-explanatory.  Integer (Number of reported personnel 
fatality per month) 

M SI 

2.14.3.8 Equipment/Propert
y Damage 

Equipment/Property Damage - Accident causing damage to 
equipment's and/or property on site 

Integer (Number of reported 
equipment/property damage incident per 
month) 

M SI 

2.14.4 Safety Incident 
investigation  

Refers to the practice of carrying out safety investigations.    M SI 

2.14.1 Personnel involved 
in investigation 

Self-explanatory.  Real number (Number of personnel 
involved in investigation) 

M SI 

2.14.2 Process time  Refers to the duration taken in completing the safety 
investigation.  

Real number (Average duration of 
investigation in hours) 

M SI 

2.14.5 Adequacy of 
Protective gear 

Self-explanatory.  Categorical (Yes, No)  I SI 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.14.6 Uniformity of safety 
procedures 

Self-explanatory.  1 - 5 Predetermined rating I SI 

  1. VERY Irregular among crews and HIGHLY Variable in daily work times; 2. Irregular among crews and Variable in daily work 
times; 3. Uniform among crews and Variable in daily work times; 4. Uniform among crews, Always the same in daily work 
times; 5. VERY Uniform among crews, Always the same in daily work times  

2.14.7 Project Safety 
administration and 
reporting  

Record keeping of hazard assessment forms, inspections, 
incidents (near miss, injury, fatality), use of photographs and 
video records, reporting to project management staff 

1 - 5 Predetermined rating W SI 

  1. VERY POORELY Kept records, NO Use of visual aids; 2. POORELY Kept records, NO Use of visual aids; 3. FAIR Record 
keeping, Use of visual aids; 4. GOOD Record keeping, GOOD Use of visual aids; 5. VERY GOOD Record keeping, VERY 
GOOD Use of visual aids 

2.15.1 Risk identification 
and planning 

Refers to proper risk identification, development of an overall 
risk management plan with risk response planning  

1 - 5 Predetermined rating I PM 

  1. NO Proper risk identification, Development of an overall risk management plan with risk response planning VERY POOR; 2. 
NO Proper risk identification, Development of an overall risk management plan with risk response planning POOR; 3. SOME 
Risk identification, Development of an overall risk management plan with risk response planning FAIR; 4. SOME Risk 
identification, Development of an overall risk management plan with risk response planning GOOD; 5. DETAILED Risk 
identification, Development of an overall risk management plan with risk response planning VERY GOOD 

2.15.2 Use of risk 
assessment tool  

Refers to the use of qualitative (probability/impact risk rating 
matrix) or quantitative (Decision tree, simulation, sensitivity 
analysis) risk assessment tools 

1 - 5 Predetermined rating I PM 

  1. Risk assessment tools NOT used; 2. Risk assessment tools SOMEWHAT used; 3. Risk assessment tools PARTIALLY 
used; 4. Risk assessment tools MOSTLY used; 3. Risk assessment tools FULLY used 

2.15.3 Risk monitoring 
and control   

Refers to keeping track of identified risks, monitoring residual 
risks and identifying new risks, ensuring the execution of risk 
plans, evaluating their effectiveness in reducing risk 

1 - 5 Predetermined rating M PM 

  1. NOT Keeping track of identified risks, VERY POOR Monitoring of residual risks and identifying new risks, VERY POOR in 
Ensuring the execution of risk plans, NO Evaluation on their effectiveness in reducing risk; 2. NOT Keeping track of identified 
risks, POOR Monitoring of residual risks and identifying new risks, POOR in Ensuring the execution of risk plans, NO 
Evaluation on their effectiveness in reducing risk; 3. Keeping SOME track of identified risks, FAIR Monitoring of residual risks 
and identifying new risks, FAIR in Ensuring the execution of risk plans, SOME Evaluation on their effectiveness in reducing 
risk; 4. Keeping DETAIL track of identified risks, GOOD Monitoring of residual risks and identifying new risks, GOOD in 
Ensuring the execution of risk plans, DETAILED Evaluation on their effectiveness in reducing risk; 5. Keeping DETAIL track of 
identified risks, VERY GOOD Monitoring of residual risks and identifying new risks, VERY GOOD in Ensuring the execution of 
risk plans, DETAILED Evaluation on their effectiveness in reducing risk 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.15.4 Crisis management Refers to understanding possible crises, understanding the 
time phase of crises (to be reactive or proactive), having 
systems to prevent crises, understanding stakeholders 

1 - 5 Predetermined rating M PM 

  1. VERY POOR Understanding possible crises and stakeholders, Reactive;  2. POOR Understanding possible crises and 
stakeholders, Reactive; 3. FAIR Understanding possible crises and stakeholders, Reactive; 4. GOOD Understanding possible 
crises and stakeholders, Proactive; 5. VERY GOOD Understanding possible crises and stakeholders, Proactive 

2.16.1 Project 
communication 
plan  

Refers to communication plan, clear roles and 
responsibilities, identification of stakeholders, distribution of 
information including reports34 

1 - 5 Predetermined rating I SI 

  1. VERY POOR Communication plan, NO Clear roles and responsibilities, NO Identification of stakeholders, VERY POOR 
Distribution of information; 2. POOR Communication plan, NO Clear roles and responsibilities, NO Identification of 
stakeholders, POOR Distribution of information; 3. GOOD Communication plan, PROPER Clear roles and responsibilities, 
PROPER Identification of stakeholders, POOR Distribution of information; 4. GOOD Communication plan, PROPER Clear 
roles and responsibilities, PROPER Identification of stakeholders, GOOD Distribution of information; 5. VERY GOOD 
Communication plan, PROPER Clear roles and responsibilities, PROPER Identification of stakeholders, VERY GOOD 
Distribution of information 

2.16.2 Communication 
between different 
trades 

Refers to effectiveness of communications between different 
trades.  

1 - 5 Predetermined rating W SI 

  1. VERY POOR Communication; 2. POOR Communication; 3. FAIR Communication; 4. GOOD Communication; 5. VERY 
GOOD Communication 

2.16.3 Availability of 
communication 
devices 

Refers to the number of communication radio devices. Real number (ratio of communication 
radio to number of crews, %) 

W SI 

2.17.1 Project Interface 
Development 

Refers to the development of site interfaces between project 
manager, superintendent and foreman with clear project roles 
and established reporting system 

1 - 5 Predetermined rating I PM 

  1. Interfaces between project team INADEQUATELY developed, NO Clearly established reporting system; 2. Interfaces 
between project team INADEQUATELY developed, POORELY established reporting system; 3. Interfaces between project 
team ADEQUATELY developed, FAIRLY established reporting system; 4. Interfaces between project team ADEQUATELY 
developed, Established reporting system; 5. Interfaces between project team ADEQUATELY developed, WELL Established 
reporting system 

 
 
 
 

                                                      
34 Awad, A. (2012). “Contractor prequalification using hybrid systems.” PhD thesis, Univ. of Alberta, Edmonton, Alberta, Canada. 
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.17.2 Project staff 
acquisition 

Refers to the recruitment practice of the company    M SI 

2.17.2.1 Hiring practices  Refers to the practice of advertisement, detail job description, 
reasonable job requirements, fair screening, interview and 
selection process35 

1 - 5 Predetermined rating M SI 

  1. VERY POOR Advertisement, NO Detail job description, Unfair screening, interview and selection process, Unreasonable 
job requirements; 2. POOR Advertisement, NO Detail job description, Unfair screening, interview and selection process, 
Unreasonable job requirements; 3. FAIR Advertisement, SOME job description, Unfair screening, interview and selection 
process, Unreasonable job requirements; 4. GOOD Advertisement, SOME detailed job description, Fair screening, interview 
and selection process, Reasonable job requirements; 5. VERY GOOD Advertisement, Detailed job description, VERY Fair 
screening, interview and selection process, Reasonable job requirements 

2.1
7.3 

Project team 
development  

Refers to team building activities (picnics, sports contests, 
holiday outings), reward and recognition systems, trainings  

  M PM 

2.17.3.1 Team building 
activities  

Use of sport contests, Holiday outings, Picnics, Barbeque 
events  

1 - 5 Predetermined rating M PM 

  1.Team building events NOT DONE;  2.Team building events DONE, Frequency ATLEAST once per year; 3.Team building 
events DONE, Frequency ATLEAST twice per year; 4.Team building events DONE, Frequency ATLEAST six times per year; 
5.Team building events DONE, Frequency ATLEAST twelve times per year 

2.17.3.2 Reward and 
recognition system  

Reward and recognition for excellence in Safety, Productivity  1 - 5 Predetermined rating M SI 

  1.Reward and recognition NOT DONE;  2.Reward and recognition DONE, Frequency ATLEAST once per year; 3.Reward and 
recognition DONE, Frequency ATLEAST twice per year; 4.Reward and recognition DONE, Frequency ATLEAST six times per 
year; 5.Reward and recognition DONE, Frequency ATLEAST twelve times per year 

2.17.3.3 Work culture Refers to the work culture in terms of fragmentation, 
antagonism, mistrust, poor communication, short-term 
mentality, blame, casual approach to recruitment, machismo 
and sexism36 

1 - 5 Predetermined rating I PM 

[1]  [2]  [3] 1. VERY HIGH Fragmentation, Antagonism, Mistrust, POOR communication, COMMON Short-term mentality, Blame; 2. 
HIGH Fragmentation, Antagonism, Mistrust, POOR communication, COMMON Short-term mentality, Blame; 3. NORMAL 
Fragmentation, Antagonism, Mistrust, FAIR communication, COMMON Short-term mentality, Blame; 4. LOW 
Fragmentation, Antagonism, Mistrust, GOOD communication, UNCOMMON Short-term mentality, Blame; 5. VERY LOW 
Fragmentation, Antagonism, Mistrust, VERY GOOD communication, UNCOMMON Short-term mentality, Blame 

 
 

                                                      
35 Weiss, D.H. (2004). Fair, square and legal: safe hiring, managing and firing practices to keep you and your company out of court. 4 ed., AMACOM, American 
Management Association, New York, US.  
36 Ankrah, N.A. (2007). “An investigation into the impact of culture on construction project performance.” PhD thesis, University of Wolverhampton, UK.  
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.17.4 Project team 
closeout 

Layoff practices, Use of personal exit interviews, 
Development of personnel records 

  M PM 

2.17.4.1 Use of personal 
exit interviews 

Self-explanatory.  1 - 5 Predetermined rating I SI 

  1. Exit interview NOT conducted; 2. Exit interview SOMEWHAT conducted; 3. Exit interview PARTIALLY conducted; 4. Exit 
interview MOSTLY conducted; 5. Exit interview FULLY conducted 

2.17.4.2 Layoff practices Refers to the layoff practices in terms of reasonable rules, 
informing the rules to employees, fairness, consistency, 
follow through37 

1 - 5 Predetermined rating M PM 

  1. VERY POOR in informing rules to employees, Unfairness among workers, LACK of Consistency and Follow through, 
Unreasonable Rules; 2. POOR in informing rules to employees, Unfairness among workers, LACK of Consistency and Follow 
through, Unreasonable Rules; 3. FAIR in informing rules to employees, Unfairness among workers, GOOD Consistency and 
Follow through, Reasonable Rules; 4. GOOD in informing rules to employees, Fairness among workers, GOOD Consistency 
and Follow through, Reasonable Rules; 5. VERY GOOD in informing rules to employees, Fairness among workers, VERY 
GOOD Consistency and Follow through, Reasonable Rules 

2.18.1 Environmental 
rating of Project  

Refers to environmental rating in terms of LEED (Certified, 
Silver, Gold, Platinum), BREEAM, BOMA BESt 

Categorical (LEED (Certified, Silver, 
Gold, Platinum), BREEAM, BOMA BESt) 

I PM 

2.18.2 Project 
Environmental 
Planning  

Refers to the practice of understanding of contract 
environmental provisions, conditions stated in permit 
applications, project scope statement, project execution 
characteristics, site and neighborhood condition analysis, 
development of environmental management plan  with 
Impact analyses and mitigation strategies, use of 
environmental checklists 

1 - 5 Predetermined rating I PM 

  1. VERY POOR Understanding of contract provisions, Site and neighborhood condition analysis VERY POORLY done, 
INADEQUATE Environmental management plan,  VERY POOR Use of checklists; 2. POOR Understanding of contract 
provisions, Site and neighborhood condition analysis POORLY done, INADEQUATE Environmental management plan, POOR 
Use of checklists; 3. FAIR Understanding of contract provisions, Site and neighborhood condition analysis FAILY done, 
INADEQUATE Environmental management plan, FAIR Use of checklists; 4. GOOD Understanding of contract provisions, Site 
and neighborhood condition analysis WELL done, ADEQUATE Environmental management plan, GOOD Use of checklists; 5. 
VERY GOOD Understanding of contract provisions, Site and neighborhood condition analysis VERY WELL done, 
ADEQUATE Environmental management plan, VERY GOOD Use of checklists 

 
 
 
 

                                                      
37 Hanna, A. (2012). “Preconstruction planning,” Construction labour productivity management and methods of improvement, n.p., Madison, Wisconsin, US.   
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ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

2.18.3 Project 
Environment 
Assurance 

Refers to the practice of sorting waste materials (Concrete, 
Steel, Wood) and environmental audits 

  M PM 

2.18.3.1 Environment audits Self-explanatory.  Real number (No. of inspections per 
month) 

M PM 

2.18.3.2 Sorting of waste 
materials  

Self-explanatory.  1 - 5 Predetermined rating W SI 

  1. Waste material sorting NOT done; 2. Waste material sorting SOMEWHAT done; 3. Waste material sorting PARTIALLY 
done; 4. Waste material sorting MOSTLY done; 3. Waste material sorting FULLY done 

2.18.4 Project 
Environment 
Control  

Refers of the practice of environmental inspections and 
rework/remedial actions to attain environmental compliance 

1 - 5 Predetermined rating M PM 

  1. NO Use of checklist, NO Rework/remedial action; 2. POOR Use of checklist, NO Rework/remedial action; 3. FAIR Use of 
checklist, NO Rework/remedial action; 4. GOOD Use of checklist, Rework/remedial action taken when needed; 5. VER GOOD 
Use of checklist, Rework/remedial action taken when needed 

2.18.5 Rework/Remedial 
action  

Corrective actions taken to meet environmental requirements 
due to felt impacts like Oil spill  

1 - 5 Predetermined rating M PM 

  1. Corrective action NOT done; 2. Corrective action SOMEWHAT done; 3. Corrective action SOMEWHAT done; 4. Corrective 
action PARTIALLY done; 5. Corrective action FULLY done 

2.18.6 Environment 
inspections 

Self-explanatory.  Integer (Number of inspections per 
month) 

M PM 

2.18.1 Project claim 
Identification  

Refers to the claim identification with adequacy of claim 
statements (evidence, contract basis, description of time and 
cost requirements) 

1 - 5 Predetermined rating M PM 

  1. VERY INADEQUATE; 2. INADEQUATE; 3. FAIRLY ADEQUATE; 4. ADEQUATE; 5. VERY ADEQUATE    

2.18.2 Project claim 
quantification  

Self-explanatory.  Experience of claim reviewer, Time take to 
finalize the review 

  M PM 

2.18.2.1 Experience of claim 
reviewer 

Self-explanatory.  Real number (Number of years working 
as claim expert) 

M PM 

2.18.2.2 Review process Self-explanatory.  Real number (Average time taken to 
finalize a review, weeks) 

M PM 

2.18.3 Project claim 
resolution  

Refers to the type of resolution (Negotiation, mediation, 
arbitration, mini-trials or litigation) and average time taken to 
resolve the claim  

  M PM 

2.18.3.1 Resolution method Refers to the method used, negotiation, mediation, 
arbitration, mini-trials or litigation. Most frequently used 
resolution method 

Categorical (Negotiation, mediation, 
arbitration, mini-trials or litigation) 

M PM 

2.18.3.2 Resolution process Average time taken to resolve the claim  Real number (Average time taken to 
resolve the claim, months) 

M PM 
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A.4: QUANTIFICATION OF ORGANIZATION LEVEL INPUT PARAMETERS  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

3.1 Organization's principal 
project type 

Defines the types of industries or projects types the 
organization is seeking 

Categorical (Industrial, Commercial, 
Infrastructure, Institutional, Other) 

I PM 

3.2 Organization year in industry This factor indicates the number of years an organization has 
been in  
operation.  

Real number (Years in industry) I PM 

3.3 Annual turnover in dollars  Measure of how much fund turns over year for the 
organization.  

Real number (Annual turnover, 
million CND$) 

I PM 

3.4 Annual employee turnover Measure of how many employees leave the organization in a 
year.  

Integer (Annual turnover, employee 
per year) 

I PM 

3.5 Organizational structure Self-explanatory.  Categorical (Matrix, Project based, 
Mixed) 

I PM 

3.6 Project load  Refers to the number of projects handled by the organization 
in a year.  

Integer (Number of projects 
awarded per year) 

I PM 

3.7 Work execution approach Refers to how much of the work is subcontracted and how 
much is executed in house.  

Real number (%, Ratio of average 
project amount subcontracted to 
total project cost) 

I PM 
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A.5: QUANTIFICATION OF PROVINCIAL LEVEL INPUT PARAMETERS  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

4.1 Provincial economy  Refers to the provincial economy in terms of the annual 
gross domestic product. 

Real number (Provincial GDP, 
Billion $) 

I DC 

4.2 Total number of project  Refers to the number projects similar to the project under 
study which will compete for resource in the province. 

Integer (Number of projects under 
construction per year in province) 

I DC 

4.3 Provincial codes and 
regulations  

Refers to the flexibility of provincial codes and regulations 
towards the construction industry.  

1 - 5 Predetermined rating I DC 

  1. Most restricted regulations, 2. Strict regulations, 3. Normal regulations, 4. Flexible regulations, 5. Most flexible 
regulations 

4.4 Unemployment rate  Refers to the annual unemployment rate for construction 
workers in the province.  

Real number (Annual 
unemployment rate, %) 

I DC 

4.5 Labour strikes  Refers to whether a labour force strike related to construction 
work force was recorded in the year.  

Integer (Number of recorded labour 
strike in construction workforce, 
annual) 

I DC 

4.6 Available supervisor pool in 
province 

Refers to the available workforce qualified for supervision of 
construction works, at level above a tradesperson and 
include foreman, superintendent, and project managers.  

Integer (Number of qualified 
supervisors in province, annual) 

I DC 

4.7 Tax  Refers to the income tax and goods and services tax levied 
by the province.  

  I DC 

4.7.1 Income tax  Refers to the minimum income tax levied by the province.  Real number (minimum income tax, 
%) 

I DC 

4.7.2 GST Self-explanatory.  Real number (GST, %) I DC 

4.8 Construction material 
fluctuation 

Refers to the Industrial Product Price Index (IPPI) which 
measures price changes for major commodities sold by 
manufacturers in Canada. 

Real number (Industrial product 
price index change, %) 

I DC 

4.9 Availability of labour in 
province 

Refers to the total number of trades people in province for 
activity under study.  

Real number (Number of qualified 
trade workers in the province, 
annual) 

I DC 

4.10 Expenditure level towards 
projects 

Refers to the recorded expenditure towards construction 
projects in the province.  

  I DC 

4.10.1 Industrial  Refers to the annual investment made towards industrial 
projects across the province.  

Real number (Annual invested 
amount, Million $) 

I DC 

4.10.2 Commercial  Refers to the annual investment made towards commercial 
projects across the province.  

Real number (Annual invested 
amount, Million $) 

I DC 

4.10.3 Institutional  Refers to the annual investment made towards residential 
projects across the province.  

Real number (Annual invested 
amount, Million $) 

I DC 

4.11 Cost of project (index) Refers to average cost of building the project per unit of 
measure like m2, km, or kW.  

Real number (Average cost of 
project per index) 

I PM 
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A.6: QUANTIFICATION OF NATIONAL LEVEL INPUT PARAMETERS  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

5.1 Political system  Refers to relative stability of the Canadian political system during 
the initiation and execution of the project.  

1 - 5 Predetermined rating I PM 

  1. VERY unstable; 2. Unstable; 3. Stable; 4. Stable; 5. Very Stable 

5.2 Availability of labour 
in province 

Refers to the total number of trades people in province for activity 
under study.  

Real number (Number of qualified 
trade workers in the province, 
annual) 

I DC 

5.3 Foreign workers 
recruitment  

Refers to the execution of the foreign workers recruitment program 
in terms of strictness and processing times.  

1 - 5 Predetermined rating I DC 

  1. VERY STRICT regulations, VERY LONG process time; 2. STRICT regulations, LONG process time; 3. NORMAL 
regulations, FAIR process time; 4. Flexible regulations, SHORT process time; 5. VERY flexible regulations, VERY SHORT 
process time 

5.4 Canada population  Refers to the properties of the population in Canada.    I DC 

5.4.1 Size of population  Self-explanatory.  Real number (Population, Million) I DC 

5.4.2 Growth of population  Self-explanatory.  Real number (Annual growth rate, 
%) 

I DC 

5.4.3 Aging of population  Self-explanatory.  Real number (Median age of 
Canada's population) 

I DC 

5.5 Interest Rates Refers to average annual interest rate set for prime business by 
the bank of Canada.  

Real number (Annual interest rate, 
Bank of Canada, %) 

I DC 

5.6 Inflation rate Refers to the average annual inflation rate based on consumer 
price index (CPI).  

Real number (% Change of CPI) I DC 
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A.7: QUANTIFICATION OF GLOBAL LEVEL INPUT PARAMETERS  

ID Parameters Description Scale of Measure 
Data 
Cycle 

Data 
Source 

6.1 Global economic outlook  Refers to the national economic outlook in terms of 
real GDP for the coming year, based on the IMF 
world economy outlook38 

Real number (Real GDP growth, %) I DC 

6.2 Global energy supply and demand Refers to the global energy supply and demand on 
the previous year.  

  I DC 

6.2.1 Global energy demand  Self-explanatory.  Real number (Energy demand, 
Quadrillion BTUs) 

I DC 

6.2.2 Global energy supply  Self-explanatory.  Real number (Energy supply, 
Quadrillion BTUs) 

I DC 

6.3 Oil price and price fluctuation  Refers to the current oil price and the weekly 
fluctuation  

  D DC 

6.3.1 Oil price The average WTC (Western Texas Intermediate) oil 
price is recorded.  

Real number (Dollar / barrel) D DC 

6.3.2 Price fluctuation  The average net price fluctuation on a weekly basis 
is recorded.  

Real number (Weekly price change, 
%) 

W DC 

6.4 Natural gas price and price 
fluctuation  

Refers to the current natural gas and the weekly 
fluctuation  

  D DC 

6.4.1 Natural gas price  The average natural gas price is recorded.  Real number (CAD per Million Cubic 
Feet) 

D DC 

6.4.2 Natural gas fluctuation  The average price fluctuation on a weekly basis is 
recorded.  

Real number (Weekly price change, 
%) 

W DC 

 
 
 
 
 
 
 
 
 
 

                                                      
38 IMF (2015). “World economic outlook.” International Monetary Fund, < http://www.imf.org/external/pubs/ft/weo/2015/01/ > (June 28, 2015). 
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Appendix B: Key Input Parameters Influencing CLP  
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APPENDIX B.1: RANKING AND EVALUATION SCORES OF PARAMETER CATEGORIES POSITIVELY AND NEGATIVELY INFLUENCING CLP 

Parameter category 

PM survey Trade survey 

Building context Industrial context Building context Industrial context 

Positive 
influence 

Negative 
influence  

Positive 
influence  

Negative 
influence 

Positive 
influence  

Negative 
influence 

Positive 
influence  

Negative 
influence  

A. Labour and crew  9 (38.5) 7 (31.6) 12 (25.1) 6 (45.0) 3 (92.4) 7 (12.2) 1 (100.0) 6 (20.8) 

B. Material and consumables  4 (72.8) 15 (5.4) 3 (80.8) 7 (37.2) 7 (43.5) 1 (100.0) 9 (28.8) 2 (93.3) 

C. Equipment and tools   1 (100.0) 16 (5.2) 1 (100.0) 11 (18.8) 8 (40.8) 2 (80.4) 8 (34.5) 1 (100.0) 

D. Foreman  2 (96.2) 17 (2.7) 8 (37.5) 12 (17.3) 1 (100.0) 9 (4.4) 3 (94.9) 9 (12.8) 

E. Task property 14(20.7) 12 (9.8) 15 (6.27) 16 (6.16) 9 (34.5) 5 (49.7) 5 (49.6) 3 (42.4) 

F. Location property 11 (36.0) 9 (18.3) 7 (40.1) 4 (54.3) 5 (53.5) 4 (57.0) 4 (60.3) 5 (30.8) 

G. Project delivery and contract  15 (18.4) 6 (32.6) 16 (3.5) 17 (6.0) * * * * 

H. Engineering and instructions 8 (38.6) 2 (97.8) 9 (35.9) 1 (100.0) 4 (80.5) 8 (9.6) 7 (45.6) 8 (17.9) 

I. Project complexity  17 (5.6) 8 (19.9) 17 (1.31) 15 (8.25) * * * * 

J. Health, safety, and environment   6 (58.5) 10 (17.0) 2 (87.6) 14 (12.7) 2 (92.5) 3 (75.7) 2 (96.2) 7 (18.0) 

K. Project management practices  5 (63.6) 13 (8.2) 4 (52.9) 9 (22.8) * * * * 

L. Project best practices  7 (55.3) 11 (11.4) 5 (52.8) 10 (22.0) * * * * 

M. Project owner nature  10 (37.6) 5 (43.9) 6 (49.0) 8 (28.3) * * * * 

N. Management of project  * * * * 6 (45.7) 6 (23.2) 6 (48.3) 4 (32.8) 

O. Organizational  3 (75.9) 14 (6.1) 10 (32.8) 13 (15.6) * * * * 

P. Provincial   13 (25.7) 3 (61.8) 13 (23.4) 3 (88.7) * * * * 

Q. National   12 (27.0) 4 (57.8 11 (30.6) 5 (47.2) * * * * 

R. Global  16 (6.4) 1 (100.0) 14(8.7) 2 (91.9) * * * * 

Note: The values in brackets indicate the normalized evaluation score of each category; values in bold represent the top three categories. 
*Denotes that the parameter category is not included in the survey  
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APPENDIX B.2: PERSPECTIVE ANALYSIS ON PM AND TRADE RESPONDENT GROUPS WITHIN THE SAME CONTEXT   

Building context  Industrial context 

Parameter 

Evaluation 
score  

F-
value 

Parameter 

Evaluation 
score  

F-
value 

PM Trade PM Trade 

Positive influence:     Positive influence:     

Crew is experienced and has the 
necessary competence   

5.3 70.1 64.8 14.9a There is a really good cooperation 
between craftsmen in a crew  

2.5 100.0 97.5 4.4 a 

Frequency of accidents and personal injury 
is low  

31.3 88.8 57.5 24.9 a Crew is experienced and has the 
necessary competence   

4.1 62.0 57.8 19.7 a 

Work is fairly assigned to the different 
crews  

26.3 67.3 41.1 1.8 Crew is given adequate training before 
commencement   

4.8 48.9 44.1 0.2 

Drawings and specifications are readily 
available   

22.6 60.5 38.0 1.3 In this project, rework is not frequent  1.4 39.6 38.3 16.2 a 

Workers can get the required hand tools to 
do their jobs 

56.2 19.7 36.6 18.0 a Craftsmen are properly treated by 
foreman  

2.9 39.1 36.2 3.2 

Negative influence:     Negative influence:     

Stringent safety rules are negatively 
affecting productivity  

4.5 74.9 70.4 2.7 Materials are not delivered on time to 
task location   

10.1 96.1 86.0 1.7 

I wait in a line for manlifts 1.3 30.6 29.4 0.2 Workers can’t get the required hand 
tools to do their jobs  

0.2 79.1 78.9 47.5 a 

On average the weather is harsh 
(temperature, wind, humidity, precipitation) 

7.9 33.9 26.0 12.7 a The materials delivered have quality 
problems 

0.6 69.6 69.1 17.0 a 

In this project, interruption and disruption 
are frequent  

2.8 21.4 18.7 0.0 There is a shortage of good 
transportation equipment (cranes, 
forklifts)  

1.8 46.0 44.2 6.2 a 

There is frequent crew turnover  5.9 23.7 17.8 2.3 The site does not have a very good 
material order tracking system  

0.8 40.0 39.2 19.1 a 

Note: Sample sizes for the PM survey in the building and industrial contexts were 20 and 22, respectively, and for the trade survey in the building 
and industrial contexts were 58 and 41, respectively. a Indicates the difference between the PM and trade respondent groups is significant at the 
95% confidence level. 
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APPENDIX B.3: PERSPECTIVE ANALYSIS OF BUILDING AND INDUSTRIAL CONTEXTS USING PM AND TRADE RESPONDENT GROUPS  

PM survey respondents  Trade survey respondents  

Parameter 
Evaluation score 

 
F-
value 

Parameter 
Evaluation score 

 
F-
value Building  Industrial Building  Industrial 

Positive influence:     Positive influence:     

There are adequate and quality 
work tools  

100.0 12.5 87.5 5.6 a The work area is protected from 
weather effect 

5.1 60.7 55.6 33.0a 

Daily job hazard assessment 
system is in place 

82.6 4.2 78.4 1.2 Craftsmen’s labour union status 
(unionized or not unionized) and its 
benefits are important in their day to 
day performance 

13.3 67.9 54.6 4.5 a 

Project site safety rules are not 
stringent  

4.2 68.3 64.2 1.1 Washrooms are closely located  55.8 9.4 46.3 51.4 a 

Efforts are taken to reduce turnover 
of foremen 

72.6 10.0 62.6 8.0 a Work permits are provided in a 
timely fashion  

7.6 51.6 44.0 3.8 

Integration management practices: 
The process of coordinating the 
various elements of the project is 
properly implemented  

69.5 10.0 59.5 10.4 a Work is fairly assigned to the 
different crews  

67.3 23.6 43.8 35.2 a 

Negative influence:     Negative influence:     

There are many competing projects 
within the province 

43.9 100.0 56.1 9.9 a Stringent safety rules are negatively 
affecting productivity  

74.9 18.6 56.4 0.4 

Drawings and specifications are 
often not complete and require 
updates 

54.4 2.1 52.3 0.1 Workers cannot get the required 
power tools to do their jobs 

34.7 90.8 56.1 25.0 a 

Crew experience and competence 
is not meeting expectations  

42.0 2.2 39.8 3.6 Workers cannot get the required 
hand tools to do their jobs  

33.8 79.1 45.3 18.4 a 

Prices for outputs (project 
completion costs) are substantially 
increasing  

37.4 76.7 39.3 1.3 The site does not have a very good 
material order tracking system 

1.1 43.8 42.8 46.6 a 

Drawings and specifications are not 
made available well ahead of 
implementations    

1.4 40.4 39.0 5.1 Work conditions are compromised 
by excessive noise, dust and fumes 

1.6 40.0 38.4 23.8 a 

Note: Sample sizes for the PM survey in the building and industrial contexts were 20 and 22, respectively, and for the trade survey in the building 
and industrial contexts were 58 and 41, respectively. a Indicates the difference between the building and industrial PM and trade respondent 
groups is significant at the 95% confidence level 
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APPENDIX B.4: PEARSON CORRELATION: KEY PARAMETERS INFLUENCING CLP USING DATA-DRIVEN APPROACH  

 x11 x12 x13 x15 x23 x37 x58 x96 x97 x101 x126 x143 x45 x46 z = (CLP) 

x11 1               

x12 -0.050 1              

 (0.633)               

x13 -0.491 a -0.262 a 1             

 (0.000) (0.011)              

x15 -0.004 0.064 0.324 a 1            

 (0.968) 0.547 0.002             

x23 0.179 0.010 -0.174 -0.140 1           

 (0.088) (0.926) (0.098) (0.182)            

x37 -0.171 0.011 0.050 -0.019 0.001 1          

 (0.104) (0.914) (0.637) (0.856) (0.990)           

x58 0.094 -0.064 -0.149 -0.034 -0.140 -0.019 1         

 (0.373) (0.545) (0.156) (0.750) (0.182) (0.856)          

x96 -0.775 a -0.031 0.515 a -0.087 0.006 0.220 a -0.087 1        

 (0.000) (0.768) (0.000) (0.407) (0.955) (0.035) (0.407)         

x97 0.436 a -0.090 -0.476 a -0.121 -0.079 -0.069 0.278 a -0.315 a 1       

 (0.000) (0.393) (0.000) (0.249) (0.452) (0.511) (0.007) (0.002)        

x101 -0.074 -0.030 -0.042 -0.016 -0.243 a -0.009 0.345 a -0.041 0.501 a 1      

 (0.481) (0.778) (0.692) (0.882) (0.020) (0.932) (0.001) (0.700) (0.000)       

x126 0.091 -0.323 a 0.210 a 0.065 -0.132 -0.061 -0.106 -0.275 a -0.382 a -0.209 a 1     

 (0.388) (0.002) (0.045) (0.537) (0.209) (0.5660 (0.314) (0.008) (0.000) (0.046)      

x143 0.417 a -0.198 -0.468 a -0.062 0.008 -0.091 0.230 a -0.413 a 0.842 a 0.416 a -.0207 a 1    

 (0.000) (0.058) (0.000) (0.558) (0.943) (0.388) (0.027) (0.000) (0.000) (0.000) (0.047)     

x45 -0.295 a 0.471 a 0.116 -0.115 -0.086 0.129 -0.115 0.431 a -0.151 0.026 -0.363 a -0.287 a 1   
 (0.004) (0.000) (0.270) (0.274) (0.413) (0.219) (0.274) (0.000) (0.151) (0.806) (0.000) (0.006)    

x46 -0.014 0.078 -0.174 -0.132 -0.066 0.101 0.083 0.005 0.086 -0.004 0.007 0.065 0.071 1  
 (0.892) (0.462) (0.097) (0.208) (0.531) (0.340) (0.429) (0.964) (0.413) (0.968) (0.945) (0.540) (0.501)   

z (CLP) -0.261 a -0.143 0.273 a 0.099 -0.073 0.091 -0.135 0.227 a -0.343 a -0.175 0.218 a -0.289 a -0.078 0.227 a 1 

 (0.012) (0.173) (0.008) (0.346) (0.487) (0.387) (0.199) (0.030) (0.001) (0.095) (0.037) (0.005) (0.461) (0.030)  

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  * Denotes a statistically significant correlation at a 
significance level of 0.05.  
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Appendix C: Work Sampling Proportion versus CLP  

APPENDIX C.1: CLP AS FUNCTION OF DIRECT WORK PROPORTION: SCATTER PLOTS   

 
Figure C1.1: CLP as Function of Direct Work Proportion for Column Concreting Activity 

 
Figure C1.2: CLP as Function of Direct Work Proportion for Slab Concreting Activity 
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Figure C1.3: CLP as Function of Direct Work Proportion for Wall Concreting Activity 

 
Figure C1.4: CLP as Function of Direct Work Proportion for Box Installation Activity 
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Figure C1.5: CLP as Function of Direct Work Proportion for Piping Activity 

 
Figure C1.6: CLP as Function of Direct Work Proportion for Wire Pulling Activity 
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Figure C1.7: CLP as Function of Direct Work Proportion for Overlay Activity 

 
Figure C1.8: CLP as Function of Direct Work Proportion for Shields Installation Activity 
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APPENDIX C.2: PEARSON CORRELATION ANALYSIS: WORK SAMPLING PROPORTIONS WITH CLP  

Table C1.1: Pearson Correlation: Work Sampling Proportion (%) with CLP for Column Concreting Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.206 
(0.427) 

1       

𝑦3 
0.392 

(0.120) 
-0.270 
(0.295) 

1      

𝑦4 
-0.700 a 
(0.002) 

0.241 
(0.352) 

−0.490 a 
(0.046) 

1     

𝑦5 
-0.618 a 
(0.008) 

-0.492 a 
(0.045) 

-0.409 
(0.103) 

0.238 
(0.358) 

1    

𝑦6 
-0.552 a 
(0.022) 

-0.298 
(0.245) 

-0.482 
(0.050) 

0.281 
(0.358) 

0.714 a 
(0.001) 

1   

𝑦7 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
1  

𝑍 
0.454 

(0.067) 
-0.398 
(0.114) 

-0.118 
(0.651) 

-0.109 
(0.677) 

-0.035 
(0.895) 

0.043 
(0.871) 

c 
(c) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test and c indicates 
that the value cannot be computed as the data instance values are constant.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
 
Table C1.2: Pearson Correlation: Work Sampling Proportion (%) with CLP for Slab Concreting Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
0.346 

(0.124) 
1       

𝑦3 
-0.362 
(0.107) 

-0.350 
(0.120) 

1      

𝑦4 
0.024 

(0.917) 
-0.148 
(0.521) 

0.104 
(0.654) 

1     

𝑦5 
-0.873 a 
(0.000) 

-0.275 
(0.228) 

0.137 
(0.555) 

-0.159 
(0.491) 

1    

𝑦6 
0.592 a 
(0.005) 

0.306 
(0.177) 

-0.124 
(0.593) 

0.056 
(0.809) 

-0.674 a 
(0.001) 

1   

𝑦7 
-0.425 
(0.055) 

-0.340 
(0.131) 

-0.175 
(0.448) 

0.137 
(0.555) 

0.108 
(0.641) 

-0.205 
(0.373) 

1  

𝑍 
0.104 

(0.652) 
0.278 

(0.222) 
-0.169 
(0.464) 

0.398 
(0.074) 

-0.057 
(0.806) 

0.093 
(0.689) 

-0.116 
(0.618) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
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Table C1.3: Pearson Correlation: Work Sampling Proportion (%) with CLP for Wall Concreting Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.133 
(0.535) 

1       

𝑦3 
-0.490 a 
(0.015) 

-0.227 
(0.287) 

1      

𝑦4 
-0.198 
(0.354) 

-0.013 
(0.953) 

-0.391 
(0.059) 

1     

𝑦5 
-0.625 a 
(0.001) 

-0.230 
(0.280) 

-0.098 
(0.647) 

0.229 
(0.281) 

1    

𝑦6 
-0.082 a 
(0.704) 

0.269 
(0.204) 

-0.089 
(0.680) 

-0.143 
(0.504) 

0.006 
(0.979) 

1   

𝑦7 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
c 

(c) 
1  

𝑍 
0.186 

(0.384) 
0.001 

(0.997) 
0.003 

(0.989) 
-0.465 
(0.022) 

-0.041 
(0.850) 

0.024 
(0.912) 

c 
(c) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test and c indicates 
that the value cannot be computed as the data instance values are constant.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
 
 

 
Table C1.4: Pearson Correlation: Work Sampling Proportion (%) with CLP for Box Installation Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.484 a 
(0.004) 

1       

𝑦3 
-0.208 
(0.237) 

-0.079 
(0.659) 

1      

𝑦4 
-0.313 
(0.072) 

-0.228 
(0.194) 

0.296 
(0.090) 

1     

𝑦5 
0.000 

(0.998) 
0.125 

(0.481) 
-0.171 
(0.333) 

0.064 
(0.721) 

1    

𝑦6 
-0.283 
(0.105) 

-0.062 
(0.728) 

0.258 
(0.141) 

0.188 
(0.288) 

0.012 
(0.001) 

1   

𝑦7 
-0.425 
(0.055) 

-0.340 
(0.131) 

-0.175 
(0.448) 

0.137 
(0.555) 

0.108 
(0.641) 

-0.205 
(0.946) 

1  

𝑍 
0.217 

(0.219) 
-0.343 
(0.047) 

-0.095 
(0.592) 

0.165 
(0.351) 

0.149 
(0.399) 

-0.158 
(0.373) 

0.018 
(0.918) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
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Table C1.5: Pearson Correlation: Work Sampling Proportion (%) with CLP for Piping Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.537 
(0.000) 

1       

𝑦3 
-0.077 
(0.595) 

-0.380 
(0.006) 

1      

𝑦4 
-0.409 
(0.003) 

0.207 
(0.149) 

-0.168 
(0.244) 

1     

𝑦5 
-0.233 
(0.104) 

0.273 
(0.055) 

0.102 
(0.482) 

-0.135 
(0.349) 

1    

𝑦6 
-0.441 a 
(0.001) 

0.028 
(0.849) 

-0.061 
(0.673) 

0.143 
(0.323) 

0.045 
(0.754) 

1   

𝑦7 
-0.508 
(0.000) 

0.048 
(0.743) 

-0.136 
(0.347) 

-0.089 
(0.541) 

-0.050 
(0.728) 

0.138 
(0.340) 

1  

𝑍 
0.090 

(0.535) 
-0.330 
(0.019) 

0.208 
(0.147) 

-0.119 
(0.412) 

-0.201 
(0.161) 

-0.025 
(0.864) 

0.030 
(0.836) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  

 
 

Table C1.6: Pearson Correlation: Work Sampling Proportion (%) with CLP for Wire Pulling Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.324 
(0.071) 

1       

𝑦3 
-0.182 
(0.319) 

0.351 
(0.049) 

1      

𝑦4 
-0.252 
(0.163) 

0.465 a 
(0.007) 

0.310 
(0.084) 

1     

𝑦5 
-0.041 
(0.826) 

0.345 
(0.053) 

0.176 
(0.335) 

0.238 
(0.190) 

1    

𝑦6 
0.001 

(0.994) 
0.264 

(0.145) 
0.406 a 
(0.021) 

0.102 
(0.580) 

0.147 
(0.421) 

1   

𝑦7 
0.577 a 
(0.001) 

-0.486 a 
(0.005) 

-0.339 
(0.057) 

-0.368 
(0.038) 

-0.224 
(0.219) 

-0.461 
(0.008) 

1  

𝑍 
-0.027 
(0.884) 

-0.027 
(0.882) 

-0.098 
(0.594) 

-0.125 
(0.497) 

-0.214 
(0.240) 

-0.076 
(0.680) 

0.089 
(0.628) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
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Table C1.7: Pearson Correlation: Work Sampling Proportion (%) with CLP for Overlays Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.789 a 
(0.000) 

1       

𝑦3 
-0.189 
(0.325) 

0.124 
(0.523) 

1      

𝑦4 
-0.374 a 
(0.046) 

0.159 
(0.409) 

0.053 
(0.786) 

1     

𝑦5 
-0.333 
(0.077) 

0.126 
(0.515) 

-0.470 
(0.010) 

0.220 
(0.252) 

1    

𝑦6 
-0.296 
(0.118) 

-0.032 
(0.870) 

-0.187 
(0.331) 

0.135 
(0.487) 

-0.067 
(0.731) 

1   

𝑦7 
-0.115 
(0.553) 

-0.381 a 
(0.042) 

-0.135 
(0.487) 

0.086 
(0.656) 

-0.067 
(0.731) 

0.568 
(0.001) 

1  

𝑍 
0.317 

(0.094) 
-0.209 
(0.276) 

-0.054 
(0.779) 

-0.272 
(0.153) 

0.114 
(0.556) 

-0.334 
(0.076) 

-0.251 
(0.189) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
  

 
Table C1.8: Pearson Correlation: Work Sampling Proportion (%) with CLP for Shields Installation Activity 

WS and 
CLP 

 
Correlation coefficient of independent variables 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑍 

𝑦1 1        

𝑦2 
-0.565 
(0.000) 

1       

𝑦3 
-0.214 
(0.139) 

-0.133 
(0.361) 

1      

𝑦4 
0.024 

(0.872) 
-0.374 
(0.008) 

0.049 
(0.737) 

1     

𝑦5 
-0.607 a 
(0.000) 

0.021 
(0.888) 

-0.201 
(0.166) 

0.087 
(0.553) 

1    

𝑦6 
-0.460 a 
(0.001) 

0.223 
(0.124) 

0.081 
(0.580) 

-0.079 
(0.590) 

0.061 
(0.679) 

1   

𝑦7 
-0.405 a 
(0.004) 

0.134 
(0.360) 

-0.165 
(0.257) 

-0.147 
(0.313) 

0.326 a 
(0.022) 

-0.087 
(0.554) 

1  

𝑍 
0.190 

(0.192) 
0.005 

(0.971) 
-0.270 
(0.060) 

0.077 
(0.600) 

-0.038 
(0.796) 

-0.087 
(0.551) 

-0.123 
(0.399) 

1 

Note: Values in parentheses indicate the significant value for a two-tailed correlation test.  
a Denotes a statistically significant correlation at a significance level of 0.05.  
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