
University of Alberta

A Visual Query Facility for Multimedia Databases

by

Ghada El-Medani

Technical Report TR 95–18
June 1995

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada



Abstract

Multimedia databases store large data objects with complex spatial and temporal relationships. For users
to easily and effectively access and make use of this large information space, there is a need for an interactive
user interface to act as an intermediary between the database and the user. Many existing multimedia systems
provide a browsing-based user interface for their users. However, with large information spaces, browsing
does not provide an efficient mechanism for accessing the database. Thus, there is a need for a query facility
which enables users to pose queries to the database, and, directly, retrieve information of interest.

This research determines the user interface requirements of multimedia information systems and provides
a template solution. That is, it presents an easy and efficient way of accessing a multimedia database. This
is achieved through a visual query facility which provides a rich visual query interface as well as a browsing
facility. The visual query facility provides an interactive graphical interface, relieving users from having to
type complicated queries which can be difficult. The system also provides users with the facility to customize
system settings to suit their preferences and needs.

The design and implementation of the visual query facility is targeted towards a news-on-demand appli-
cation which is a distributed multimedia news application that allows its users/subscribers to remotely access
multimedia news articles inserted in a distributed database over a broadband ATM network. However, the
same design and implementation principles can be applied to other distributed multimedia applications.



Contents

1 Introduction 1
1.1 Motivation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
1.2 Thesis Scope and Organization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2

2 Related Work 3

3 The News-On-Demand Application 5
3.1 Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5
3.2 Application Scenario � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5
3.3 System Architecture � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6
3.4 Requirements For the User Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8

4 System Design and Functionality 10
4.1 Design Principles � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10

4.1.1 Hypermedia � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10
4.1.2 Query Facility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10
4.1.3 Input Modality � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11

4.2 System Functionality � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11
4.2.1 Viewing/Browsing Documents � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11
4.2.2 Filtering Documents � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11
4.2.3 Searching Documents � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12
4.2.4 System Customization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12

4.3 Generalizing the Design � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 13

5 The User Interface 14
5.1 News-on-demand User Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 14
5.2 Generalizing the Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 29

6 The Multimedia Type System 33
6.1 Modeling of Monomedia Objects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 33

6.1.1 Atomic Types � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 33
6.1.2 Storage Model for Text � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 33

6.2 Modeling of Document Structure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 34
6.2.1 SGML Markup and Elements � � � � � � � � � � � � � � � � � � � � � � � � � � � � 34
6.2.2 Type System for Elements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 34

6.3 Modeling of Presentation Information � � � � � � � � � � � � � � � � � � � � � � � � � � � � 34

7 Querying - Linking to the Database 37
7.1 ObjectStore Queries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 37
7.2 The Type System and Queries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 39
7.3 Classes of Queries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 40

7.3.1 Queries on Articles’ Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � 40
7.3.2 Queries on User Profiles � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 40

1



7.3.3 Search Queries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 41
7.4 Implications of Using ObjectStore � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 43

8 Implementation Issues 44
8.1 The Smalltalk User Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 44
8.2 The C++ Query Agent � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 45
8.3 Alternatives for Implementation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 48

9 Conclusion and Future Work 49
9.1 Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 49
9.2 Unimplemented Features � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 49
9.3 Future Enhancements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 50

Bibliography 51

A User Profile Class Definitions 54

B Valid Command Strings 57

C Glossary 61

2



List of Figures

3.1 Distributed System Architecture � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 7

5.1 Multimedia News Startup Window � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 15
5.2 MMnews Launcher � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 15
5.3 Launcher Icons � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 16
5.4 Document Filter � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 18
5.5 Media Settings � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 19
5.6 MMnews Global Search � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 21
5.7 MMnews Global Search (Text Submenu) � � � � � � � � � � � � � � � � � � � � � � � � � � 22
5.8 Search Result � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 23
5.9 Document List � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 24
5.10 Document Abstract � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 25
5.11 Document History � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 26
5.12 Document View � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 27
5.13 Document Icons � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 28
5.14 Style Sheet Window � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 30
5.15 Document Editorial Information � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 31
5.16 Viewing an Image � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 32

6.1 Atomic Types Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 34
6.2 First-Level Element Type Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 35
6.3 Type Hierarchy for Other Text Elements � � � � � � � � � � � � � � � � � � � � � � � � � � � 35
6.4 Type Hierarchy for Structured Text Elements � � � � � � � � � � � � � � � � � � � � � � � � 35
6.5 Type Hierarchy for HyTime Elements � � � � � � � � � � � � � � � � � � � � � � � � � � � � 36

8.1 Visual Query Components � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 45
8.2 Smalltalk Main Modules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 46
8.3 C++ Main Modules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 47

3



Chapter 1

Introduction

1.1 Motivation

One of the major reasons for the recent popularity of multimedia information systems is the opportunities
they provide for easier and more effective human-computer interaction (HCI). The significance of multimedia
systems lie in enhancing the communication between computers and human users [Ada93]. Traditionally, text
was the primary medium for interacting with computer systems, thus limiting users to a restricted framework
for interaction. Today, multimedia systems incorporate and integrate information from diverse media sources,
such as text, graphics, images, audio and video, presenting the users with various channels for communication
and information delivery, thus allowing for a broader and richer means for interaction. This increases system
usability as humans communicate more effectively through various channels [BD92].

The media sources, incorporated in multimedia documents, involve large data objects with complex
spatial and temporal relationships. This results in a large body of information, with a need for an effective
means for managing and accessing it. Traditional file systems fall short when trying to fulfill this require-
ment as they leave to the user/application the responsibility of properly formatting files for the multimedia
objects as well as the management of the data itself. The problem becomes more complicated in the case
of multi-user multimedia systems where concurrency control, security, and application independence are
very important issues. Multimedia systems can benefit from database management system (DBMS) services
such as data abstraction, high-level access through query languages, application independence, controlled
multi-user access (concurrency control), fault tolerance, and access control (security). Multimedia systems
are generally distributed, requiring multiple servers for their storage requirements. Thus, distributed DBMS
technology can be used to efficiently and transparently manage data distribution. Object-Oriented techniques
should be used to provide encapsulation, abstraction, and extensible type systems. Therefore, we proclaim
the use of an object-orientedmultimedia database at the heart of multimedia informationsystems [VÖSEM94].

A multimedia database efficiently stores multimedia objects and models the relationships between them.
For a user to easily and effectively access and make use of this large information space, there is a need for an
interactive user interface to act as an intermediary between the database and the user. Thus, a considerable
portion of achieving the usability and effectiveness desired from multimedia systems lies in being able to
provide users with easy-to-use effective interfaces for accessing information.

Many multimedia information systems provide a browsing-based user interface for users. Perhaps, the
most popular interfaces of this type are Mosaic are Netscape for accessing the World Wide Web. However,
with large information spaces, browsing does not provide an efficient mechanism for accessing the database.
This research focuses on adding a querying capability that enables users to retrieve information of interest.
Users can still browse through the retrieved information in the same manner as in the browsing-based systems.
The novel aspects of this approach are the following:

� Combining querying and browsing to provide a richer interface.

1



� Relieving users from having to type complicated queries (which can be difficult) by using a visual
querying interface.

1.2 Thesis Scope and Organization

This thesis determines the user interface requirements of multimedia information systems and provides an
easy and efficient way of accessing a multimedia database. This is achieved through a visual query facility
which provides a rich visual interface for querying the database as well as a browsing facility. The visual
query facility is not intended to provide a complete user interface that adequately covers all the needed
functionality for multimedia information systems. Instead, its main purpose is to provide the users with an
easy and efficient way of accessing the multimedia database. However, the thesis looks at the requirements
of a user interface for such systems even though the full interface is not implemented. The following aspects
are central to this research:

� Studying the user interface requirements for multimedia information systems.

� Designing a visual query interface to relieve users from typing complex database queries.

� Tightly integrating the interface with the multimedia database.

� Separating the logical document content from presentation to provide a completely customizable system.

The design and implementation of the visual query facility is targeted towards a news-on-demand applica-
tion. However, the same design and implementation principles can be applied to other distributed multimedia
applications.

The news-on-demand application is described in detail in Chapter 3. It follows a distributed client/server
model. The client application environment includes the visual querying facility (the focus of this thesis), the
synchronization routines [LG94], a quality-of-service negotiationcomponent [VBD�93], and the ObjectStore
[LLOW91] database client [Vit95]. The clients are connected to a set of servers over a broadband ATM net-
work. The servers are responsible for the storage and management of multimedia documents. This research is
part of the Broadband networking services project supported by the Canadian Institute of Telecommunications
Research (CITR). Several other universities are involved in this project: University of Waterloo, University
of Ottawa, Université de Montréal, INRS Telecommunications, and University of British Columbia.

The rest of the thesis is organized as follows. Chapter 2 provides a discussion of the approaches and
systems dealing with accessing multimedia information spaces. Chapter 3 describes the target application,
news-on-demand, and the constraints it imposes on the user interface and querying facility. Chapter 4 dis-
cusses the functions provided by the system and the design principles followed to fulfill the system functional
requirements. Chapter 5 discusses the user interface in detail. Chapter 6 describes the document type system.
Chapter 7 describes the underlying querying of the multimedia database. Chapter 8 discusses important as-
pects and choices regarding the implementation. Chapter 9 summarizes the thesis, describing unimplemented
features and possible enhancements and future developments.

2



Chapter 2

Related Work

The design and specification of interfaces for information systems have gained the attention of many re-
searchers in a variety of fields including query languages, hypertext systems, and user interfaces. This is due
to the fact that the power of information systems can only be realized when tools are provided for effective
access to the stored information. In this chapter, query languages are first discussed, followed by hypertext
systems. Finally, systems that combine both to achieve better functionality are highlighted.

Query languages and database access tools provide users with the facility to access stored information.
Structural Query Languate (SQL), being the most popular query language in the relational database world,
provides a variety of functions to manipulate data [Eme89]. For simple data sets, relational databases and
SQL provide adequate functionality, but as the need arose to store and manipulate complex data such as
multimedia information, they fell short of providing the necessary functionality. Object-oriented database
management systems (OODBMS) provide capabilities for modeling complex data. Some OODBMS query
languages are SQL extensions such as O2 [D�91] and ONTOS [Ont91], while others are new languages such
as GEMSTONE [MS87] and ORION [K�90]. ObjectStore provides a query facility by defining C++ types
and methods [OHMS92]. Some OODBMSs come with an advanced graphical user interface for designing,
browsing, and modifying the database schema [ADE93]. However, their query facilities are text-based. To
use these query facilities, users have to learn the query language syntax and the data model. This poses
a problem to system users who do not possess a deep knowledge of computer science. One approach to
overcome this problem is to define graphical query languages that allow users to query information in the
database graphically, rather than by formal query languages. Some of these systems are:

� DOODLE (Draw an Object-Oriented Database LanguagE) is a visual language which allows users
to query object-oriented databases using arbitary pictures. DOODLE visual programs use the same
semantics as F-logic [Cru92].

� Image databases are often coupled with query by visual example capabilities which enable the user to
retrieve images by providing rough sketches or diagrams. Examples of such systems are described in
[HK92, KFS90].

In addition to visual query languages, research work is being done on query languages supporting mul-
timedia issues, namely the temporal and spatial aspect of information retrieval. In [DG92], EVA, a query
language with multimedia support, is described.

Hypertext systems promise to deliver information to users in new and unconventional ways. As early
as the 1950s, Doug Engelbart was working on hypertext concepts and office automated systems, providing
frameworks for hyperlinks and collaborative work. In 1967 and 1968, Andries Van Dam developed the
first two working hypertext systems known as: Hypertext Editing System and FRESS. Nine years later, in
1978, the first hypermedia system, Aspen Movie Map, was developed by the MIT Architecture Machine
Group [Nie90a]. Today, many researchers are developing hypertext and hypermedia systems. Literature
provides reviews of a variety of systems from different application domains which employ the concepts of
navigating information spaces and following links to related information. Many multimedia information

3



systems provide elaborate hypertext graphical user interfaces with limited search capabilities. Perhaps, the
most popular interfaces of this type are Mosaic and Netscape for accessing the World Wide Web. Akscyn
[AMY88] describes KMS (Knowledge Management System), a distributed hypermedia system that supports
organization-wide collaboration. In addition to its browsing facility, KMS allows its users to search for
text strings in the hypertext nodes. In [Wil91], a hypermedia system for on-line technical documentation is
presented. It provides its users with a browsing facility as well as a limited keyword search facility. Examples
of other hypermedia systems are presented in [GT94, HKR�92, Pla91, BD92]. Along the same lines, a model
for hypertext-based information retrieval is presented in [Luc90].

The complexity of current multimedia applications raise more challenges to meet the ease and efficiency
requirement of user accessibility. Halasz [Hal88] indicates that providing search and query facilities is the
number one issue in hypermedia systems of the future. Research has been conducted to develop systems
which combine the strengths of query languages and hypertext navigation. No standard specification for the
design and implementation of such systems has yet been reached.

One approach is to define systems that integrate a functional query language with navigational facilities.
The users can retrieve information by following links (navigation) or by querying the database using the query
language. Examples of such systems include:

� Frei [FS91] describes a system which supports storage, retrieval as well as browsing of multimedia
information. These functions are achieved by providing hyperlinks between related information as well
as a searching facility. Queries are handled using a functional database query language (FQL*) which
is extended to include elementary similarity functions to allow for imprecise queries.

� MMIS is a multimedia information system developed at the University of Manchester [GOC�92,
O’D93]. It currently handles the storage and retrieval of text and raster images. Users can store media
instances on the system’s server using different editors. After storing a medium instance, a module
must be activated to interpret that instance producing semantic nets which are subsequently used for
querying. Prolog queries can then be entered and processed against the stored semantic nets.

Another research direction is using a graphical query language which manipulates hypertext concepts.
Andonoff [ACMZ91, ACMZ92] describes OHQL (Object Hypertext Query Language) which uses hypertext
concepts to query object-oriented databases. The database is presented to the user in the shape of a hypergraph
with nodes representing classes and links representing inheritance and domain constraints. Users formulate
queries by graphically selecting nodes and links on the hypergraph.

Other systems integrate query facilities together with hypertext capabilities within the same graphical user
interface to provide users with a uniform way of accessing multimedia information. Individual systems vary
in the facilities they provide.

� Keim [KKL91] describes a system where natural language captions are used to describe the contents
of multimedia data. During retrieval, users express their queries via a graphical user interface using
natural language to describe the query constraints. The query is represented graphically by a set of boxes
(representing simple constraints or subqueries) and connections between them (to represent operators).
The system allows users to define their queries in an incremental fashion. The system then translates
user queries into a formal query language (SQL) to execute on the underlying entity-relationship data
model.

� In [Fer94], the KIM (Knowledge-based Information System) query system is described. KIM provides
users with homogeneous access to distributed, heterogeneous, multimedia databases. The system
provides both iconic and diagrammatic (entity-relationship) interfaces to the database. Users select an
entity or icon and define filters in the retrieval process by defining the attributes of interest and the
selection conditions. Queries are associated with icons for later usage or update. The system supports
incremental development of queries.

4



Chapter 3

The News-On-Demand Application

3.1 Overview

News-on-demand is an application that provides its subscribers/users with access to multimedia news doc-
uments that are inserted into a distributed database. Multimedia documents are inserted into the database
by news providers. Examples of news providers are television networks, newspapers, magazines, and wire
services. Once inserted in the database, the multimedia news documents cannot be updated. The subscribers,
at different client sites, access the news database, via a broadband network, to retrieve and read articles
according to their own interest. The cost of this service to the users includes the cost of the information
content as well as the transmission and retrieval costs. The users can affect the cost they have to pay by
specifying quality-of-service parameters for the system’s operations.

In this context, a multimedia document is defined “as a structured collection of pieces of information
related to a particular subject” [VÖSEM94]. The information units can include any media type such as text,
image, audio and video. They can also include combinations of different media, such as video synchronized
with audio and text captions. Documents often have links to other information (whether complete documents
or components of documents). Examples of such links are more news coverage, background information,
and expert analysis. The structure of the document consists of two entities: the logical structure and the
presentation structure. The logical structure is concerned with the logical organization of the document
components. For instance, logically, a news article is made up of a headline, a number of paragraphs, figures,
and so on. The presentation structure is concerned with the layout of the document; in other words, how the
document is actually displayed. Examples of parameters of interest to presentation are font typeface, font
sizes, the number of columns in which text is displayed, etc.

The news-on-demand application suggests several issues of interest to the querying facility and user
interface:

� There is a need for a standard representation for the documents inserted in the database. The standard
chosen is SGML/HyTime [VÖSEM94]. By following a standard, the system provides a uniform
document representation that facilitates document entry by news providers and access by users.

� Different subscribers/users are likely to customize their system view due to personal preferences and/or
hardware constraints (e.g., absence of a color graphics display). The user interface should allow such
customization.

� There is a need for separating the logical structure of documents from the presentation structure when
storing documents in the database. This separation allows for a more customizable system where
presentation issues can be decided upon by the users without affecting the documents’ logical structure.

3.2 Application Scenario

The interaction between the user and the multimedia news database is achieved by posing queries to the
database and receiving results. The visual querying interface is responsible for translating the user’s requests

5



into actual queries that are executed on the database. The results obtained from the database are presented to
the user via the interface as well. The following example scenario illustrates the interaction between the user
and the system:

Typically, the user wishes to view news articles on a specific subject. Using the visual querying
facility (as will be explained in more detail in Chapter 5), the user specifies the subject he/she
is interested in. The system returns a list of headlines of articles that meet the user’s request.
The user can then view the abstracts of any of the returned articles. The user selects a particular
article to view. The system retrieves the article and displays it. The user can read the article,
view images, listen to attached sound recordings, play video, or follow links to other information
of interest.

The above scenario is only an example of a possible interaction between the user and the system. Users
can perform many more types of queries. Examples of these queries are:

� Return documents whose media source a particular news provider.

� Return documents with a certain location, date, and/or keywords.

� Return documents written by a certain author.

� Return documents which contain text, but not video.

� Return documents with a particular text string within the text of the article.

� Return documents whose images, audio and/or video contain certain keywords.

� Return the images which contain certain keywords.

� Return the abstracts and/or paragraphs which contain a particular text string.

Currently, the query facility provides extensive support for searching document attributes (headline,
location, date, author, media source, etc) and text elements (abstract, sections, paragraphs, quotes, etc).
Keyword searches are provided for other media types: images, audio and video. Apart from queries on
documents and/or document components, users can pose queries regarding user settings of the system and/or
presentation settings. Queries for retrieving meta-information about continuous media are another category
of queries to the database.

3.3 System Architecture

The news-on-demand application follows a distributed multiple server multiple client model (Figure 3.1).
The clients are connected to a set of servers over a broadband ATM network. The servers are responsible
for the storage and management of multimedia documents. There are two kinds of servers, depending on the
type of media they manage and store: the continuous media servers (CM servers), and the non-continuous
media servers (NCM servers). Continuous media refers to media with real-time constraints, such as audio
and video. Non-continuous media include text and still images which do not have the real-time constraints
of audio and video. Currently, the server database integrates the non-continuous media servers, but not
the continuous media servers. Instead, the database stores meta-information about files stored on the CM
servers. The meta-information is used, by the client, to locate the file and then it is accessed directly from
the CM file server. Several system modules reside on the client side. The client application environment
includes the visual querying facility, the synchronization routines [LG94], the quality-of-service negotiation
component [VBD�93], and the database client. The distribution of the data among the servers is transparent
to the clients since all accesses to the servers are done through the client DBMS and the other system modules.

The testbed environment for the system consists of client machines which are IBM RS6000/360’s with
128 Mbytes of memory. The server machines are RS6000/360’s with 64 Mbytes of memory. The servers and

6



C
lie

nt
s

S
er

ve
rs

 ATM Network 

NCM
Server #1

NCM
Server #n

CM
Server #1

CM
Server #m

Figure 3.1: Distributed System Architecture

7



clients are connected via a Newbridge ATM switch 1. A commercial object-oriented database management
system, ObjectStore, is used as the database engine.

3.4 Requirements For the User Interface

The news-on-demand application suggests several requirements for the user interface of such a system. This
section first discusses the general requirements imposed on multimedia user interface design. Then it focuses
on the requirements specifically emerging from the news-on-demand application.

Since multimedia systems have a lot of potential in delivering information to the users, special attention
should be given to the actual usabilility of these systems. A system’s usability is determined by how easily
and effectively the users can communicate with the system to achieve a desired task. Usability parameters for
most systems include ease of use, efficiency, ease of remembering, and pleasantness [Nie90a]. Some general
design requirements for usable multimedia user interfaces are [Hay93]:

� Simplicity: A multimedia user interface should be simple to use, requiring only a minimal cognitive
load from the user. Overwhelming the user with complex icons, too many choices, various color
patterns (as might be the trend in some of the current multimedia interfaces) may not always help.
Instead, such interfaces will distract the user from the real purpose of the application.

� Consistency: Providing a consistent design throughout the system makes it easier and more predictable
for the user to follow. This reduces the efforts that the user puts in trying to follow the interface and
allows the user to concentrate on the actual information presented.

� Engagement: Engagement is determined by the degree to which the user can participate, affect and con-
trol the actions of the system. “Multimedia should invite the user to participate” [Hay93]. Interactive
interfaces provide added value by providing the user with the means to interact with the system.

� Depth: A multimedia interface should encourage users to explore the system to a greater depth by
making it easy to do so. However, it should not force the user to understand the system to any greater
depth than the user wishes to explore.

� Fun: Multimedia user interfaces should be fun. This will encourage more people to use the system and
each person to use the system in more ways. Note that the goal is not to encourage users to waste time
using the system. The goal is to encourage them to use the system in novel, but productive ways.

The above general design requirements apply to the news-on-demand application as well as all multimedia
applications. For any multimedia application, the user interface should be simple, consistent, inviting for
users to participate and explore, and pleasant to use. However, there are more specific requirements of news-
on-demand users. Users of news-on-demand are expected to use the system to achieve several tasks related to
the news. These tasks include analysis of financial and political situations which can affect planning, regular
follow-up of news, and access to background and reference news material. The general high-level functions
required of the system can be summarized as follows:

� Viewing/Browsing information: Users should be able to view multimedia documents, read text, look
at images, play video, listen to audio, and follow links to related information.

� Searching for information: In addition to the browsing facility, users should be able to search the
multimedia database with a variety of criteria such as date, author(s), category, location, keywords, etc.
Searches on document content should also be provided. The system should provide a fast and easy way
for searching.

� Customizing the system: Users should be able to define and modify their own settings of the system.
Settings can include: documents layout, window specifications, quality-of-service parameters and
others.

1This testbed environment is not exactly replicated at the University of Alberta where the client and server machines are connected
by an Ethernet network

8



� Other functions: These include, but are not limited to, allowing users to add their own annotations
to news documents, providing users with additional navigational aids such as subject indexes and a
history of the visited documents.

These requirements point to a customizable and easily extensible interface which combines the browsing
capability (found in most existing multimedia interfaces) with a querying capability (lacking in many of the
same interfaces). Furthermore, the querying capability should be a visual one that merges seamlessly (is
consistent) with the browsing facility and satisfies the other general usability requirements of a multimedia
user interface.

9



Chapter 4

System Design and Functionality

4.1 Design Principles

In the previous chapter, the various design goals and requirements for multimedia user interfaces in general
and for the news-on-demand application in particular are examined. According to these requirements, the
design principles chosen can categorized into three major points:

� Hypermedia

� Query facility

� Input modality

4.1.1 Hypermedia

Hypertext/Hypermedia provides the user with a non-sequential means of freely browsing information accord-
ing to his/her needs by following links from one information unit to another [Nie90a]. Links are maintained
between related units of information, providing users with several options to follow when reading a unit of
information, thus enriching the user interaction with the system. Traditionally, hypertext networks link units
of text together. In case of hypermedia systems, information units can contain text, graphics, images, audio
and video. Hypertext/Hypermedia systems can also provide navigational aids such as subject indexes, maps,
tours, backtracking facilities, graphical representation of the hypertext network, history of visited nodes, etc.
to facilitate browsing information. Note that not all multimedia systems use hypermedia links [BD92] unless
it is required as part of the application functionality.

In the news-on-demand application, multimedia news documents often have logical links to other related
information such as background information,more news coverage, follow-ups, and expert analysis. Therefore,
a hypermedia interface is a good design choice as it provides the news readers with an easy and efficient way
of accessing and browsing related information.

4.1.2 Query Facility

A hypertext/hypermedia interface to a multimedia system may not always be sufficient to provide all of the
accessing mechanisms the user needs to obtain information from a database. In many applications, such as
news-on-demand, users need to search for specific information based on partial knowledge. This must be
achieved more simply and quickly than is possible through the browsing facilities of hypermedia. Moreover,
as the information increases in quantity and complexity, the browsing facility of hypermedia becomes more
and more inadequate. According to studies [Nie91, Nie90b] of the usability of hypertext systems, users have
often reported that they become disoriented while navigating through hypertext systems and fail to reach
points of interest. This phenomenon was reported even when using the most popular commercial hypertext
systems. For the news-on-demand application, a querying facility that allows users to search and retrieve
information directly from the database is a good design choice. The user interface should provide an easy

10



way for performing queries and searches, as well as examining the results. A typical scenario is for the user to
first filter the list of documents in the database to include only relevant news articles. The user then performs
a search for documents and document components that are of interest for specific topics and then browses this
limited set. The design must support this incremental process.

4.1.3 Input Modality

A “good” user interface should provide the user with appropriate interaction modes, depending on the
application and the types of input needed from the user. The modes of interaction can be categorized into
three major categories [BD92]:

� direct manipulation of graphical objects on the screen;

� the use of natural language;

� the use of formal languages.

In the case of the news-on-demand application, as well as other multimedia applications, a graphical
user interface with direct manipulation techniques is sufficient to deal with user input. Typically, users need
to click on icons to follow links, choose options from menus and lists, type text, etc. A natural language
interface would be a great facility if provided with the graphical interface. However, this is beyond the scope
of this research. The need for using formal languages (in this case, a query language) has been eliminated
by designing the visual query interface to make the system more usable, especially by novice users. In other
words, the visual query interface is used as a front-end to the ObjectStore database management system’s
query constructs.

4.2 System Functionality

The system’s functionality for the visual query facility falls under four main categories: viewing and browsing
documents, filtering documents, searching documents, and system customization.

4.2.1 Viewing/Browsing Documents

The system allows the users to view and browse multimedia documents. Users can view a document’s abstract
before fetching the whole document from the server. This helps users decide the relevance of a document
before retrieving it. Once a document is viewed, users can read its text, look at images, play video, listen
to audio, and follow links to related information (although following hyperlinks is not implemented in the
current version of the system, it is still recognized as a main function of the system). Users can also view the
document’s editorial information, such as: author(s), location, media source, date, etc.

4.2.2 Filtering Documents

Filtering is a search on document attributes. It is used to specify the scope of documents that the user
views/browses. The result of a filtering operation is a set of documents whose attributes match the ones
specified by the user. A filtering operation is done by defining a filter object and applying it to the set of
documents stored in the database. Filters can be based on news category, keyword(s), location, headline,
media source, author(s), and/or date. The user can also filter documents depending on the type of media they
include, so users can choose only to view documents which contain certain media types and not others. This
feature is used to answer queries such as: “Return documents with text and no audio”. Filter objects are
stored in the database in the user profile. Users can identify one filter to be the default filter which is used
during system startup, but filters can be applied to document lists anytime. The system also defines a set of
filters to provide short cuts for users. These include filtering news documents published today (using system
date) and filtering documents on news category.

11



4.2.3 Searching Documents

The system provides users with the capability of searching documents’ content for specific information (in
addition to searching on document attributes which is provided through filtering). Users specify the text
to search for (optionally using Boolean combinations of text strings). For completeness, both conjunctive
and disjunctive normal forms are supported as search expressions (explained in more detail in Chapter 5).
The media types to be searched and the scope of the search are also specified by the user. The scope of
the search can be all the documents in the database, the documents in a list, only the current document, or
documents directly linked to the current document. As mentioned before, the user specifies the media types
to be searched. In case of text, the user can select all or any number of text elements to be searched. These
include headline, abstracts, sections, paragraphs, quotes, etc. Documents’ editorial information (part of the
document attributes) such as category, location, keyword(s), source, and author(s), can also be searched. In
case of other media types (images, audio, and video), a keyword search is performed. We are ultimately
interested in enhanced searching of images, audio, and video to provide content-based searching and access
techniques. The search facility allows the user to query the database and locate specific information directly
as needed. This provides an easier and more efficient way of accessing data than using the navigation facility
where exploration can be very time-consuming.

The search facility returns a list of objects that match the query. The objects returned can be text paragraphs
(or any text element), images, video clips, audio streams, or complete documents. The types of objects returns
are specified by the user during the search (they correspond to the media types to search for).

4.2.4 System Customization

Another important feature of the interface is allowing the users to customize the system. Customization
ranges over a variety of system parameters, such as defining default settings for system startup, as well as
presentation preferences.

Style Sheets

Style sheets store user preferences with regards to presentation of documents. Information stored in style sheets
include defining the presentation of anchors (which are the departure points to hyperlinks) within a document,
attaching a font format (such as italics, bold, reversed video, etc) to an emphasized text, and selecting a
primary font for the document. Users can define different style sheets to render different presentations of the
same document. The concept of separating the document’s logical structure from the presentation structure
makes this possible and easy to handle by the system. Style sheets are stored in the database in the user
profile. Users identify one style sheet to be the default style sheet for displaying documents. However, users
can apply style sheets to documents at any time.

Media Settings

Users can also define other presentation settings (apart from those in the style sheets) to customize the system.
These include defining immediate playing of a video when the icon is clicked versus opening up a control
panel (similar to a VCR) to allow explicit activation of the video. Users can also define whether they want to
open windows for all of the media types contained in a document once the document is viewed or whether
they should be displayed explicitly when clicking on a specific icon. Also, when following links, users can
either choose to open every link destination in a separate window or in the same window. These settings are
called media settings as they deal with the presentation of media types in the system. They are also saved as
part of the user profile. There is only one set of media settings per user (in contrast to possibly several filters
and style sheets) as users are likely to want to keep a uniform setting for presenting media irrespective of
which document they are viewing.

User Profiles

User profiles contain all the user preferences. In other words, they are the central objects for system
customization. Every user of the system has a user profile which stores his/her preferences. User profiles

12



contain a list of filters, a list of style sheets, the default system filter, the default style sheet, and the media
settings. User profiles are identified by user name. When a new user connects to the system, a user profile
(with default settings) is automatically created for him/her. Users can update their profiles any time.

4.3 Generalizing the Design

The above system design and functionality, although discussed in the framework of the news-on-demand
application, is extendable and applicable to other distributed multimedia information systems. A design
which combines hypermedia browsing capabilities with a rich visual query facility in one graphical user
interface provides adequate functionality for multimedia information systems. Allowing users to customize
the system according to their preferences is also a desirable design feature in all software systems. Therefore,
applications, where users need to search and browse information stored in a large multimedia database,
are good candidates for such a design. Futhermore, these applications also require the same high-level
system functionality, described earlier for news-on-demand; namely: viewing/browsing documents, filtering
documents, searching, and system customization. Although details of each function may vary depending on
the specific application targeted, the higher level functions are still the same. For example, in most multimedia
applications, filtering documents is a desirable feature. However, the attributes on which documents can be
filtered will differ from one application to the other.

Examples of applications that can make use of this design are distant teaching applications, online
museums, and multimedia library systems.

13



Chapter 5

The User Interface

5.1 News-on-demand User Interface

This section describes the user interface for the news-on-demand multimedia information system (also called
MMnews in the interface windows). This discussion covers the full functionality of the user interface; a few
of these features were not implemented in the current version.

The user interface for the news-on-demand multimedia information system provides a number of funda-
mental functions:

� initiate a quality-of-service negotiation;

� start a filtering operation in the database;

� perform a search;

� customize the system by defining media settings, style sheets, and filters;

� retrieve and display a document;

� display a list of visited documents.

System Startup

When starting a multimedia news session, the startup window (Figure 5.1) is displayed, prompting the user
to enter his/her username and the news database file the user wishes to connect to. A user can only connect
to one news database file during a session. However, different files can be used in different sessions. Once
the user chooses Connect to connect to the database and start the session, the system proceeds to fetch the
user’s profile. The username acts as an ID for fetching the user profile. In case of new users, the system
automatically creates a new profile, with default settings, for the user in the specified database. The system
then displays the MMnews launcher.

Application Launcher

The MMnews launcher is the gateway to the news-on-demand application. Through the launcher, the user
can get to all the other services and functions provided by the system. The launcher (Figure 5.2) provides a
set of menus as well as some action buttons. For an explanation of the launcher icons, refer to Figure 5.3.
The launcher menus provide users with a variety of services.

14



Figure 5.1: Multimedia News Startup Window

Figure 5.2: MMnews Launcher

15



Figure 5.3: Launcher Icons

16



Implementation Menu

Implementation menus are available in all the MMnews windows. They provide debugging capabilities to
the system implementors.

Show ObjectStore query Displays the ObjectStore queries that correspond to the various functions
performed in that window. Queries are discussed in more detail in Chapter
7.

Inspect Inspects the Smalltalk code of that particular window.

Document List Menu

All Documents Displays a list of document titles of all the documents in the database.

Filtered Documents Displays a list of document titles of documents filtered on the default
filter specified in the user profile.

Empty Opens a Document List window without any documents.

Tools Menu

Category Index Displays a submenu of all the news categories in the system. By se-
lecting any item of the submenu, a document list window containing the
documents belonging to that category is displayed.

History Gives a history of all the documents visited in this session. (Not imple-
mented in this version)

Document Hotlist Opens the user’s document hotlist. The user can proceed by viewing any
document in that list, etc. (Not implemented in this version)

News Today Displays a list of document titles of news articles published today.

User Settings Menu

Filter Displays a submenu of all the filters in the user profile. Users can edit
any of these filters or create new ones.

QofS Displays a submenu of all the quality-of-service parameters in the user
profile. Quality-of-service is not linked to the query facility in this
version.

Media Settings Opens the media settings window which allows the users to define pre-
sentation preferences.

Help Menu

About MMnews Displays a general message about the application.
About Launcher Displays help on the functions of the MMnews launcher window.

Online Documentation Provides online help for all the system with browsing capabilities. (Not
implemented in this version)

Filter Window

As has been mentioned before, filtering is a search on document attributes. Its purpose is to reduce the scope
of the documents the user sees, thus facilitating further searching and browsing of this limited set. A filtering
operation is done by defining a filter object in the database and applying it to the documents in the database to
get a reduced subset. Users can create and edit filters by means of the Filter Window (Figure 5.4). The Filter
window allows users to specify the attributes they wish to search for. These include: keyword(s), location,

17



Figure 5.4: Document Filter

18



Figure 5.5: Media Settings

category, source, headline, authors, time period, and media content. In case of locations, category, and source,
the user is provided with a list of the items available in the database to reduce errors. The user only needs to
define the attributes he/she is interested in searching for; the others can be left empty. Users can specify a
filter to be the default by checking the Save As Default checkbox. Every filter must have a name which is
used as an ID for accessing the filter in the user profile.

In Figure 5.4, the user creates a filter to retrieve news articles that were published in the first five months
of 1995 whose category is “Campus News” and that include images.

Media Settings Window

The Media Settings window (Figure 5.5) allows the user to specify some presentation settings concerned
with the display of the various media types in the system. Users select their preferences by simply checking
the corresponding checkboxes. Once the user modifies the media settings, the new settings are applied to
the system immediately. For example, if, at any point of a session, the user chooses to view floating media
(images, audio, and video) immediately when fetching the document, the system will, subsequently, display
all the images, audio, and video included in a document once this document is fetched. The user can go back
and re-modify the media settings anytime he/she wishes. Media settings can also be saved in the user profile
to become the system default.

19



Search Windows

Users can perform searches on documents’ content for specific information through the Search windows.
Searches can be performed from the Application Launcher, from a document list, or from within a document.
The Search window (Figure 5.6) allows users to specify the text string to search for, optionally using Boolean
combinations of strings. The algebraic operators provided by the system are AND and OR. NOT is not
provided because, in news-on-demand, the usual scenario is to search for information of interest to users,
rather than the exclusion of information. For that reason, NOT was not provided. However, incorporating that
facility is straight-forward. The system supports both conjunctive and disjunctive normal forms for search
expressions:

� ( SearchTerm1 OR SearchTerm2 ) AND ( SearchTerm3 OR SearchTerm4 )

� ( SearchTerm1 AND SearchTerm2 ) OR ( SearchTerm3 AND SearchTerm4 )

where the SearchTerms can be any textual substring surrounded by quotes (spaces can be included in sub-
strings). The algebraic operators (ANDs and ORs) are inserted when pressing the corresponding action
buttons. Brackets are automatically provided by the system once an expression is built. The Search String
is used to build sub-queries and then add them to the complete Query string. Of course, users can still build
simpler queries consisting of one search term or two. Thus, the system provides the facility for complicated
as well as simple query expressions. The user also specifies the media to be searched by checking the
corresponding checkboxes for Text, Images, Video, and Audio; at least one of the media types must be
checked. The text elements to search for should be specified by checking menu items in the Text submenu
(Figure 5.7). Text elements include abstracts, headlines, paragraphs, sections, quotes, etc. The scope of the
search can be all the documents in the database, the documents in a list, the current document only, or the
documents directly linked to the current document. However, in case of the global search (initiated from the
Application Launcher - Figure 5.6), the scope is fixed to all the documents in the database.

The search facility returns a list of objects that match the query (Figure 5.8). The objects returned can be
text paragraphs, images, audio streams, video clips, etc or complete documents. The type of objects returned
is dependent on the media searched, and retrieved types specified (whether Documents or Components or
both). For example, if the user checked Video as the media searched and Components for retrieval, the
search will return only video objects, but not the complete documents containing them. However, if the user
also specified Documents, the complete documents that contain video components will also be returned.

In Figures 5.6 - 5.8, the user is searching for the words “Waterloo” and “Edmonton” in headlines, abstracts,
images (figure captions), video, and audio (textutal descriptions). Accordingly the search returns the matching
items depending on the Retrieve options. In this case, articles, abstracts, and images are returned because
the user specified both Documents and Components for retrieval.

Document List Window

The Document List window displays a list of document titles. This list can contain all the documents in
the database or documents matching a certain criteria (a specific filter, news today, etc). Figure 5.9 depicts a
Document List window showing documents filtered using the IncludeImages filter (Figure 5.4). Users
can perform several actions from the Document List window:
Search Allows the user to perform a search on the documents in the list, the

selected document, or all the documents in the database. The search
window and the search result are the same as those depicted in Figures
5.6 - 5.8.

Abstract Displays the abstract paragraph of the selected document in the list (Figure
5.10). Viewing a document abstract helps users decide the relevance of
the document before retrieving it.

View Fetches and displays the selected document (Figure 5.12). The document
is displayed according to the default media settings and style sheet.

20



Figure 5.6: MMnews Global Search

21



Figure 5.7: MMnews Global Search (Text Submenu)

22



Figure 5.8: Search Result

23



Figure 5.9: Document List

24



Figure 5.10: Document Abstract

History Displays a list of all the previously visited documents from that window
(Figure 5.11). The users can redisplay the abstracts or the complete
documents again. This facility helps users easily locate information
which was previously viewed.

Help Displays help on the functions of the Document List window.

Filter Menu

Displays a submenu of all the filters in the user profile. Users can edit any of these filters or create new ones.
Filters can be applied to the document list to change the scope of the documents listed.

QofS Menu

Displays a submenu of all the quality-of-service parameters in the user profile. Quality-of-service is not
linked to the query facility in this version.

Document View Window

25



Figure 5.11: Document History

26



Figure 5.12: Document View

27



Figure 5.13: Document Icons

28



The Document View window (Figure 5.12) displays the different components of a document. It provides
a set of menus and action buttons that allows users to perform several functions. For explanations of the
different icons, refer to Figure 5.13. The text portion of the document, if any, is displayed in the window’s
text view. Users can perform a search from within a document by selecting the Search button. History and
Help are also provided. In addition, the menus provide the following functions:

Style Sheet Menu

Displays a submenu of all the style sheets in the user profile. Users can edit any of these style sheets or create
new ones. Style sheets can be applied to the document view to alter the presentation of the document. The
Style Sheet window (Figure 5.14) will be opened when any of the style sheets in the menu is selected. The
user can then specify the anchor presentation (underlined, borderd, iconified, or plain), the font format (bold,
italics, or underline) attached to the emphasis elements, and the primary font (Times, Courier, or Helvetica)
used for the document. These settings as well as the options given for each setting can be extended to allow
for more presentation control.

Annotate Menu

The Annotate menu allows the users to add, delete, and edit their own annotations on the news articles. This
feature is not implemented in this version.

View Menu

Editorial Displays editorial information about the current document (Figure 5.15).
Editorial information includes the article’s headline, author(s), location,
category, media source, date, and keyword(s).

Images Displays a submenu of the names of images (if any) included in this
article. The user can display any of these images by clicking on its name
in the images submenu. Figure 5.16 shows a displayed image from the
current document.

Video Displays a submenu of the names of video clips (if any) included in this
article.

Audio Similarly, displays a submenu of the names of audios (if any) included in
this article.

5.2 Generalizing the Interface

Similar to the system design and functionality, the general features and structure of the user interface can
be used for other multimedia information systems. In this case, the menu items and window fields will
be modified according to the specific functionality of the target application. In the current implementation,
menus are built dynamically to make it easier to modify them according to the application. Examples of such
modifications are:

� The Tools menu will contain facilities which are related to the target application, instead of the tools
provided specifically for news-on-demand. In case of online libraries, this can include subject index,
periodicals index, etc.

� The Filter window will show the target application’s document attributes.

� The Search windows will be modified to fit the target application. For example, the Text elements menu
will contain the text elements contained in the application’s DTD (instead of those of news-on-demand).

� Similarly, the Style Sheet window and the Media Settings window will be modified.

29



Figure 5.14: Style Sheet Window

30



Figure 5.15: Document Editorial Information

31



Figure 5.16: Viewing an Image

32



Chapter 6

The Multimedia Type System

This chapter summarizes the important features of the design of the multimedia type system for the news-
on-demand application. A full description of the type system is available in [Vit95]. Four major issues were
considered when designing the multimedia database:

� The different media components of the document (monomedia objects) need to be modeled and stored
in the database.

� A representation of the document’s logical structure is also needed.

� The spatial and temporal relationships between the different monomedia objects need to be represented
in the database. This information is needed for the presentation of the multimedia documents.

� The meta-information needed for the operation of the different system components should also be
stored in the database.

The logical design of the database uses an object-oriented approach, and follows the SGML/HyTime
document standard. SGML [ISO86] deals with textual documents whereas HyTime [ISO92] provides the
hypermedia support.

6.1 Modeling of Monomedia Objects

6.1.1 Atomic Types

Instances of the atomic types hold the raw (mono) media representation together with other parameters. In
case of non-continuous media (NCMType), such as text and images, the actual data is stored in the database.
In case of continuous media (CMType), such as audio and video, only meta-information is stored in the
database whereas the actual data is stored on the continuous media file server. Other parameters related to the
quality-of-service (QoS) and synchronization is also stored. The type hierarchy for the atomic types is shown
in Figure 6.1.

6.1.2 Storage Model for Text

In the news documents, the text component of the article is richly structured, consisting of many elements
such as: paragraphs, sections, emphasis,...etc. Instead of fragmenting the text and storing it with each of
these elements (which affects performance and poses several other problems), we store the entire text of a
document as a single string. Particular element instances are then associated with their text by storing the
start and end positions of their text portion with respect to the document’s entire text string. These pairs of
integers (positions) are called annotations. Every document instance in the database has a base object which
points to the document’s text string and the list of annotations on it. This approach allows for a fast and
efficient way for searching and displaying text. However, updates to the text content are costly as they may
require updating all the annotations. A solution to that problem is to have the annotations relative to some
structure (such as a paragraph or section) rather than to the start of the whole text string.

33



Atomic

Text SyncText Temporal

NCMType CMType

Video Audio

Image

Figure 6.1: Atomic Types Hierarchy

6.2 Modeling of Document Structure

6.2.1 SGML Markup and Elements

SGML is a language which describes the logical structure of a document by using markups to mark the
document’s logical elements. Hierarchies of elements can be formed. A Document Type Definition (DTD)
must be specified to determine the element types in a document, the relationships between them, and the
attributes associated with them. In case of the news-on-demand application, a DTD for multimedia news
articles is defined. Examples of logical elements in the defined DTD are: article, headline, author, date,
paragraph, figure, figure captions, etc.

Hypermedia support is provided by HyTime which defines 69 special hypermedia elements, called
architectural forms (AF) that can be used in DTDs. These AFs define links, temporal relationships, events in
time, etc.

6.2.2 Type System for Elements

The type system for the logical document elements is shown in Figure 6.2, 6.3, and 6.4. Element is subtyped
into TextElement, Structured, and HyElement. The TextElement is the supertype for all the textual
elements in the DTD that have no subelements (simple text elements). The Structured is the supertype for
textual elements with complex content models. These usually have subelements. The HyElement abstracts
all the HyTime elements. All elements maintain a link to their parent element, as well as a link to the article
that contains them.

6.3 Modeling of Presentation Information

As has been mentioned earlier, the spatial and temporal relationships between the document elements should
be represented in the database. This information is used by the synchronization routines to retrieve and
present these related objects according to a presentation scenario. The HyTime standard is followed when
defining this representation.

To represent relatively simple spatial and temporal constraints between document elements, the finite
coordinate space (FCS) architectural form is used. A finite coordinate space is a set of axes modeling space
and time. The FCS we use has three axes: two for space and the third for time. An extent on the FCS is a set

34



Element

StructuredTextElement HyElement

StructuredText AudioVisual SyncArticle

Figure 6.2: First-Level Element Type Hierarchy

TextElement

Loc Source

Author Subject Date

QuoteEmphasis

Emph1 Emph2

FigcaptionEdinfoElement

Keywords

Figure 6.3: Type Hierarchy for Other Text Elements

StructuredText

ListItem Section

Figure

Async

Paragraph

Link

FrontMatter

List Abs-pEdinfo

Ilink-AF

Figure 6.4: Type Hierarchy for Structured Text Elements

35



TextElement Structured HyElement

StructuredText

Ilink_AF
Evsched_AF

Extlist_AF

Event_AF Fcs_AF
Axis_AF

Dimspec_AF

Link

Temporal

Saudio Spatio-temporal

SvideoStext

Av-fcs Av-evsched

Av-extlist

X Time

Xdimspec Ydimspec

Tdimspec

HyDoc_AF

Article

Y

Figure 6.5: Type Hierarchy for HyTime Elements

of ranges along the various axes defined. An event is modeled as an extent on the FCS. The document instance
associates a data object with an event. The semantics and the manner in which the events are rendered are
defined by the application.

The HyTime elements in the type system are shown in Figure 6.5. Currently, the visual querying interface
does not heavily interact with the HyTime elements. For that reason, these elements are not discussed here.
For a detailed description of them, please refer to [Vit95].

36



Chapter 7

Querying - Linking to the Database

A unique feature of the visual query facility is its tight integration with the multimedia database system.
Each user action results in one or more queries to be issued to the underlying database which is managed by
ObjectStore [OHMS92]. The visual query facility, running on client machines, issues ObjectStore queries to
fetch the required information from the server. The ObjectStore client then returns the matching objects to
the visual query facility. It is then the responsibility of the visual query interface to manipulate these objects
depending on the task to be achieved.

This chapter first discusses ObjectStore queries in general, and then, specifically, explains the categories
of queries used in the news-on-demand application. Example queries are given to clarify the discussion.

7.1 ObjectStore Queries

ObjectStore provides query processing facilities to make possible the associative access of data objects which
is needed by many applications [Obj94a, Obj94b]. The ObjectStore query optimizer produces efficient search
strategies to minimize the number of objects examined in response to a query.

A query is performed on a collection of data objects of type os Collection or any of its subtypes. Calls
to the query function look as follows [Obj94b]:

collection-expression.query (
element-type-name,
query-string,
schema-database)

where the collection-expression is the collection over which the query will execute. The element-type-
name is a string indicating the element type of the collection being queried. The query-string is an expression
indicating the query selection criterion. An element satisfies the selection criterion if the control expression
evaluates to a nonzero int; otherwise the element does not satisfy the criterion. Query strings can contain any
integer-valued C++ expression as long as there are no variables which are not data members, and there are
no function calls except to strcmp. The schema-database is the database in which the queried collection
resides.

An example query that returns a collection of teenagers among the elements of the set people can be
performed as follows [Obj94b]:

os_database *people_database;
os_Set<person*> *people;
...
os_Set<person*> *teenagers =

people->query (
"person*",
"this->age >= 13 && this->age <= 19",
people_database);

37



The above query() function returns a collection that is allocated on the heap. In case no elements satisfy
the selection criteria, an empty collection is returned.

Two other types of ObjectStore queries are worth mentioning here [Obj94b]:

� Single Element Queries
Some queries are intended to return one element, rather than a collection of elements. Theos Collection::query pic
is used, in that case, to return a single element. This allows for more opportunities for query optimiza-
tion. If more than one element satisfies the query, one element will be chosen at random and returned.
Calls to query pick() are similar to calls to query().

� Existential Queries
Existential queries are used to determine whether there exists some element that satisfies the query
selection criterion in the queried collection in cases when there is no interest in the identity of such an
element (or elements). The os Collection::exists() provides this functionality. Calls to exists() are
similar to calls to query() and query pick(). However, it returns a nonzero int in case of true and 0 in
case of false.

The above query functions are used when the selection criterion is fixed and all the values are known.
In cases where this information changes or when string comparisons are part of the selection criterion,
pre-analyzed queries must be used.

Pre-analyzed Queries

When a query is performed several times, perhaps with different values or on different collections, a pre-
analyzed query should be used to reduce the query analysis cost by only analyzing the query once instead
of several times. To do this, an object of type os coll query is created. The query is analyzed once upon
creation. Every time the query is performed, bindings for the free variables and the function calls, as
well as the collection over which the query will run, should be provided. To create a pre-analyzed query,
one of the following member functions is used: os coll query::create(), os coll query::create pick() ,
and os coll query::create exists(). These are equivalent to the query types discussed earlier. The create
functions look as follows [Obj94a]:

const os_coll_query &create (
element-type-name,
query-string,
schema-database,
cache_query=0)

The element-type-name, query-string, and schema-database follow the same rules as parameters
explained earlier. The query-string, in case of pre-analyzed queries, can also include calls to non-overloaded
global functions, provided that:

� the return type of the function is explicitly specified by a cast,

� the function references are bound during query binding time, and

� all function calls involve zero, one, or two arguments, and in case of two arguments, the first one is a
pointer.

Variables can also be included in the query-string as long as the type of each variable (except data members)
is explicitly defined by a cast, and bound during query binding.

The cache-query is an optional flag indicating whether the query object is created persistently in the
schema-database or transiently allocated. If cache-query has zero int value, the query object is created
transiently (the default); otherwise, it is created persistently.

An example for creating a pre-analyzed query for people in a given age range is as follows [Obj94b]:

38



const os_coll_query &age_range_query =
os_coll_query::create (

"person*",
"age >= (int) min_age && age <= (int) max_age",
people_database);

Subsequently, anytime one needs to run this query, a bound query (os bound query) is constructed to
provide the necessary bindings for the pre-analyzed query:

int teenage_min_age = 13, teenage_max_age = 19;
os_bound_query teenage_range_query (

age_range_query,
(

os_keyword_arg("min_age", teenage_min_age),
os_keyword_arg("max_age", teenage_max_age)

)
);

This creates a bound query for finding teenagers using the previously analyzed query age range query.
The bound query is then used to evaluate the query in the usual manner:

people.query (teenage_range_query);

In case of function calls in the query-string, bindings are also provided for the function call as well as its
arguments (if any) in the bound query.

7.2 The Type System and Queries

The multimedia type system, described in the previous chapter, is implemented using C++ and ObjectStore.
Each type corresponds to a C++ class. Instances of types/classes are made persistent using ObjectStore.

The extents of objects of each type are maintained to allow queries to search objects of a particular
type. Type extents are implemented as persistent parameterized collections with the type as a parameter.
Persistent names are given to the extents to identify them as database roots. The name for a type extent is
given as the type name, followed by the string " extent root". For example, the Article extent is named
"Article extent root". When an object of a particular type is instantiated, a reference to that object
is also inserted in its type’s extent.

In order to perform a query on objects of a particular type, the extent of this type must be fetched from
the database. For example, to fetch the Article extent, the application does the following:

os_typespec *Article_extent_type
= os_Set<Article*>::get_os_typespec();

os_Set<Article *> *Article_extent
= (os_Set<Article*>*) (db->find_root("Article_extent_root")

->get_value(Article_extent_type);

Subsequently, a query can be performed on the Article extent, which is the collection of all articles in
the database, to get a subset of that collection.

Due to the nature of the news-on-demand application which requires that queries be performed several
times with different string values, pre-analyzed queries are created, and bindings are provided before the
query is executed on some collection.

For example, to perform a query to fetch all the articles whose location (which is an attribute of Article) is
“Edmonton”, a pre-analyzed query to fetch all the articles whose location matches a specific string is created
persistently and a reference to the query object is kept:

39



articleLocQuery = & os_coll_query::create (
"Article*",
"!strcmp (location, (char *) string)",
news_database, 1);

Subsequently, to fetch all the articles whose location is the string “Edmonton”, the following bound query
is provided and used to perform the query:

strcpy (loc_string, "Edmonton");

os_bound_query location_query (
*articleLocQuery, (
os_keyword_arg ("string", loc_string)));

os_Set<Article*> *matching_articles
= Article_extent->query (location_query);

For any subsequent queries of the same types (i.e., on article location), a different binding needs to be
provided before executing the query.

An alternative to storing the query object persistently and subsequently referencing it is to create it
transiently every time you need to bind and execute a query. Either of these implementation choices can
be followed. Tests to determine performance implications showed that there is hardly any difference in
performance between the two methods.

Extents for all the types in the type system are maintained and queried in the same fashion as will be
explained in the following section.

7.3 Classes of Queries

As has been mentioned earlier, all user interactions with the system are translated into ObjectStore queries
that are executed on the database to fetch the requested results. These queries can be classified in three main
categories:

7.3.1 Queries on Articles’ Attributes

Queries on articles’ attributes return collections of articles whose attributes match the specified values. An
example of this category of queries is querying articles whose location string is “Edmonton” which was
discussed earlier.

Other article attributes include title, category, source, authors, keywords, and date. For each attribute, a
pre-analyzed query (similar to articleLocQuery) is created. Bindings are provided before executing the
query.

These queries are used in filtering operations. Filters contain values which match some or all the different
attributes of articles. A filtering operation involves going over the different values in a filter and using these
values to provide bindings for the corresponding queries. The result is a collection of articles whose attributes
match the values specified in the filter.

7.3.2 Queries on User Profiles

As has been mentioned earlier, in addition to news articles, the multimedia database stores the user profiles for
users of the system. It is useful to refer to Appendix A for a detailed description of the user profile attributes
and member functions.

The extent of user profiles is maintained and fetched in exactly the same fashion as the Article’s extent
explained earlier. Every user profile is uniquely identified by its username. One type of query is performed
on the extent of user profiles to return the user profile whose username matches a given user. And since it is

40



known that there can be at most one user profile that matches the search criteria, the query pick() is used to
allow for more optimization. The pre-analyzed query is defined as follows:

userProfileNamePick = & os_coll_query::create_pick (
"UserProfile*",
"!strcmp (userName, (char *) string)",
news-database, 1);

When starting a multimedia news session, the user enters his/her username and the news database file
he/she wishes to connect to (Chapter 5). The system opens the specified database file and proceeds to fetch
the user’s profile. This is done by binding the userProfileNamePick query using a bound query to the
given username as follows:

os_bound_query profile_pick (
userProfileNamePick, (
os_keyword_arg("string", currentUserName)));

currentUserProfile = Profile_extent->query_pick (profile_pick);

If the querying operation returns NULL, it means that the profile with the specified username does not
exist, the system creates a new user profile for this new user. After fetching the user profile, a reference to it
is kept throughout the session.

Subsequently during a session, two other types of queries can be executed on the userStyleSheets
collection and the userFilters collection which are data members in the user profile. Each style sheet
and/or filter is identified by a unique name which is used when querying the collections. The query scenario
is similar to querying the user profile extent discussed above.

7.3.3 Search Queries

Search queries are queries focusing on content rather than attributes. The system allows users to search
documents as well as document components such as: abstracts, paragraphs, sections, quotes, images, audio,
video, editorial information, etc. Users also specify the scope of the search which can be all the documents
in the database, the documents in the current list, or the current document. Also, the types of objects returned
by the search is specified by the users to be either complete documents, document components or both.

Searching Complete Documents

As has been mentioned in the previous chapter, the text string of any article is stored as one string associated
with each Article instance in the database. If users specify that they wish to search whole documents
for a specific string and get back complete documents (and not components), the system performs pattern
matching on the text string of the article instead of searching all the individual components to reduce
unnecessary overhead, and returns the articles that contained the given string. This is done by iterating
over the ArticlesToSearch collection using an ObjectStore os Cursor. Each article in the collection is
checked and the matching elements are inserted in the returned collection of articles. No other query functions
are used in this case.

Searching Text Elements

Text Elements (depicted in Chapter 6 Figures 6.3 and 6.4) include abstracts, paragraphs, sections, headlines,
quotes, emphasis elements, and editorial information.

Headlines and editorial information such as authors, keywords, etc. are modeled as attributes (data
members) of Article. Therefore, they are searched as has been explained earlier in Section 7.3.1.

Similar scenarios are followed when searching the other text elements. Therefore, an example of searching
one text element will be given here. The others follow the same way.

41



Assume the user wants to search paragraphs. Two pre-analyzed queries are needed to make it possible
to search for a particular string within instances of type Paragraph. The first query is executed over the
Paragraph extent in the database and returns the paragraphs whose text strings include the string the user is
searching for:

paragraphSearchQuery = & os_coll_query::create (
"Paragraph*",
"(int) includes ((char *)getStr(this), (char *)string",
news_database, 1);

The above query returns all the matching paragraphs in the database. However, the user is only interested
in the paragraphs which belong to the documents defined in the search scope. For that reason, the collection
returned by the first query is used by the second query which returns a subset of this collection containing the
paragraphs that belong to the articles of interest (according to the specified search scope). However, in case
the search scope is all the documents in the database, the second query is bypassed.

paragraphInArticleQuery = & os_coll_query::create (
"Paragraph*",
"articleElement == (Article *) anArticle",
news_database, 1);

After looking at the query objects, it is useful to discuss the bindings which are needed to perform the
search. The paragraphSearchQuery is bound as follows:

os_bound_query paragraph_query (
*paragraphSearchQuery, (
os_keyword_arg ("string", stringToSearchFor),
os_keyword_arg ("getStr", getParagraphStr),
os_keyword_arg ("includes", includes)));

os_Set<Paragraph*> matching_paragraphs
= Paragraph_extent->query (paragraph_query);

There are two function bindings and one variable binding. The stringToSearchFor is the string the user
specified during the search (optionally including Boolean combinations). getParagraphStr is a global
function that returns the text of its paragraph instance argument (using annotations). Finally, includes is
a global function which takes two arguments the text of the paragraph and the stringToSearchFor and
performs pattern matching between its two arguments, taking into account the Boolean combinations of strings
which might be included in the stringToSearchFor. It returns nonzero if there is a match, otherwise a
0 is returned. After providing the bindings, the bound query is executed on the Paragraph extent.

In case the search scope is not all the documents in the database (in which case the matching paragraphs
collection is returned by the search), the second query is also bound and executed as follows:

os_Cursor<Article*> aCursor(articlesToSearch);
Article *article;

for (article=aCursor.first(); article; article=aCursor.next()) {
os_bound_query paragraph_inArticle (

*paragraphInArticleQuery, (
os_keyword_arg ("anArticle", article)));

selected_paragraphs |=
matching_paragraphs.query (paragraph_inArticle);

};

The application iterates over the set of articlesToSearch which is determined by the search scope.
Each article instance in the collection is used as a binding for the paragraphInArticleQuery to return

42



a collection the paragraph instances which belong to this article. The returned collections are unioned to form
the selected paragraphs. Thus, the matching paragraphs which belong to articles outside the search
scope are discarded. This has to be done this way because ObjectStore does not provide a join facility which
would allow for the joining of two collections.

Searching Other Media

Currently, a keyword search is provided to search images, audio, and video objects. A textual description is
associated with audio and video instances. In case of images, the figure caption is used as the description of
the image. Textual descriptions and/or figure captions are searched the same way text elements are searched,
and the matching objects are returned.

Ultimately, we are interested in providing more powerful search capabilities for these media types,
including content-based searching and indexing of images.

7.4 Implications of Using ObjectStore

The implementation of the queries is limited by the capabilities provided by ObjectStore as well as the design
of the type system (which is in turn also affected by ObjectStore).

Queries are performed on collections of a particular type. For that reason, extents of all the different
types in the type system (implemented as ObjectStore parameterized collections) are maintained to allow for
querying on a particular type. A persistent object/collection in ObjectStore can be accessed by navigation
from another object or through database entry points (database roots). Therefore, type extents are defined as
database entry points to allow them to be easily fetched for subsequent queries.

ObjectStore does not support any pattern matching capabilities except for strcmp. The query imple-
mentor has to implement routines that employ any other search techniques to be used as a selection criterion
in queries. Any such routine must be a free (global) function with at most two parameters and returing an
int-value. Bindings for each function need to be provided before executing the query. Therefore, all the
search routines were implemented following these constraints.

Another disadvantage is the need to perform a lot of client processing of persistent collections or objects
when performing certain tasks. For example, in case of searching text elements or continuous media de-
scriptions, first the extents of the types to be searched are queried to get the matching objects. The returned
collection contains the matching objects of a certain type in the whole database. Further client processing
must be performed to discard objects which belong to articles outside the search scope since ObjectSore
does not provide the facility to join two collections. This processing involves iterating over the collection of
articles in the search scope and performing a query to determine the collection of objects which belong to
that article. The resulting collections are unioned together to get a collection of all objects in the search scope
(See example of searching paragraphs discussed in the previous section). This task involves a lot of client
processing which cannot be optimized by the DBMS on the server side.

Furthermore, ObjectStore poses other problems for supporting multimedia applications as it does not
provide any inherent multimedia support such as support for modeling spatial and temporal relationships or
real time constraints on the delivery of continuous data for synchronization. The current design of this project
does not integrate the continuous media file server with the database (Chapter 3). The database only stores
meta-information in the case of continuous media, and thus does not deal with synchronization and real-time
delivery issues. Therefore, these issues were not investigated in the framework of ObjectStore. However, it
is expected that ObjectStore’s functionality cannot (yet) provide adequate solutions for these problems.

43



Chapter 8

Implementation Issues

The visual query facility is made up of two components: a Smalltalk user interface and a C++ query agent
both running on the same client machine (Figure 8.1). A pipe is set up between these two components and
they communicate via a string interface. The user interface is responsible for handling all interactions with the
user. User actions are translated by the Smalltalk interface into string commands which are understood by the
C++ query agent. It then communicates with the C++ program which generates queries on the ObjectStore
database. After executing the queries and getting back the results from the server, the C++ program returns
the results to the Smalltalk interface. It is again the interface’s responsibility to display these results to the
user.

8.1 The Smalltalk User Interface

The Smalltalk user interface is implemented using ParcPlace Smalltalk/VisualWorks release 2.0 [GR85,
Par94a, Par94b] for the IBM RS/6000 machines.

The interface can be divided into two main subsystems (Figure 8.2):

� User Interface Subsystem
The user interface subsystem is responsible for all the user interactions. It contains all the application
model classes which are responsible for the interface windows, as well as the data model classes which
are responsible for modeling different entities in the system such as documents, filters, style sheets,
etc. Usually every instance of an application model class is associated with an instance of a data model
class which contains necessary information needed for presentation and interaction with the user. For
example, a MMFilter object is associated with each MUIFilter object which handles the filter view.

� Communication Subsystem
The communication subsystem is responsible for sending commands and receiving results from the
C++ program. It consists of four main classes:

– Session: is the class with which the user interface subsystem interacts to send and receive
information from the C++ program. Every news-on-demand session uses one instance of that
class which contains the global settings of that session. These include the username, database
filename, the global media settings, and the connection which maintains the pipe.

– Connection: handles the interaction between the session and the underlying communication
classes, namely the Converter and the Unix Pipe.

– Converter: converts the Smalltalk commands and objects into the corresponding strings which
are understood by the C++ program. For a list of these strings, please refer to Appendix B.

– Unix Pipe: maintains the pipe to the C++ program. During a news session startup, the pipe is
given the name of the C++ executable program. It starts it as a process and maintains a pipe to

44



USERS

END

Client Machine

Server Machine

ST

interface

ObjectStore Server

ObjectStore

Client

Strings Query

Agent

Figure 8.1: Visual Query Components

it. The C++ program only exits when a quit command is sent from the Smalltalk side through the
pipe.

8.2 The C++ Query Agent

The C++ query agent is implemented using the xlC product from IBM and ObjectStore on the IBM RS/6000
machines.

It consists of the following main classes (Figure 8.3):

� Pipe: is responsible for handling the input and output to the pipe connected to Smalltalk. Currently,
standard input and output are used for this communication. However, this class can be implemented
using sockets or any other communication protocol.

� Parser: parses the input data (commands) sent by the Smalltalk interface and generates an action code
accordingly. A list of valid commands are given in Appendix B.

� DBmanager: is the main class responsible for interacting with the ObjectStore database and returning
the results via the pipe.

� Search: is a supporting class responsible for performing searches due to their complex nature.

� Query: maintains all the persistent query objects which were discussed in the previous chapters.

� Others: Other classes are responsible for maintaining and handling specific tasks related to the database
and are used by the DBmanager class.

When the Smalltalk interface starts up the query agent as a process on the same machine, the main
program listens to input from the pipe. Once a command delimiter is reached, this signals the end of a
command. The parser then parses the command and generates an action code. According to this action code,
the DBmanager executes queries on the ObjectStore database, and then returns the results to Smalltalk via
the pipe. In case of invalid commands, an error string is sent to Smalltalk. After sending back the results, the
program continues to listen for input.

45



 Unix PipeConverter

Connection

Data Model

ClassesModel Classes

Application

 Session

User Interface Subsystem

C++ program

Communication Subsystem

Figure 8.2: Smalltalk Main Modules

46



DBmanager

Parser

 Pipe Pipe

Search Query

ObjectStore

ST interface

Figure 8.3: C++ Main Modules

47



8.3 Alternatives for Implementation

The reason for implementing the visual query facility this way is that the ObjectStore database cannot be
accessed directly from Smalltalk. It is necessary to access the ObjectStore database from a C++ program.
Attempts to link Smalltalk directly to the C++ program using the C Connect interface (available with Parc-
Place Smalltalk) also failed.

Therefore, the two components communicated via a string interface. An object-oriented interface could
have been provided. However, the entire type system would have been duplicated on the Smalltalk side.
Since there is no automatic way to do that, any change in the type system on the C++ side would result in
a modification to the Smalltalk implementation which could result in maintenance problems. Furthermore,
this approach defeats the ObjectStore philosophy which fetches objects and components from the server to
the client only when needed. For these reasons, a string interface which hides specific implementation details
of the type system from the Smalltalk side and only sends needed information for presentation and user
interaction purposes was chosen. A major advantage to this approach is that the C++ program can be used
with any interface that communicates following the same format. Details of the underlying database design
are completely transparent to the interface. Likewise, if the underlying database and the C++ program change,
there is no need to change the user interface as long as the string interface remains unchanged. A disadvantage
is the overhead encountered from parsing input on both sides and fetching additional information in some
cases. Some work can be done to optimize the communication between the two components.

A completely different alternative to this approach is to develop the user interface in C++ using the AIX
Interface Composer. This alternative was not chosen due to time constraints and the high learning curve of
the AIX interface builder as compared to the relatively easier Smalltalk interface builder.

48



Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis describes a visual query facility, built on top of a distributed multimedia database, to allow users to
access the database. This facility concentrates on providingquerying capabilities which are necessary to allow
users to directly and efficiently retrieve needed information from the database. Some browsing capabilities
are also provided to allow users to browse through information in the database. The target application is
news- on-demand, a distributed multimedia news application. However, the same design and implementation
principles of the visual query facility can be easily extended and applied to other multimedia applications such
as online museums and multimedia library systems. Thus, the issues investigated in this thesis can contribute
to user interfaces of a variety of multimedia information systems.

The identifying and novel features of this work are:

� The tight integration of the user interface with a multimedia database.

� A rich querying facility coupled with a browsing facility.

� A visual interface that relieves users from having to type ObjectStore queries (which can be difficult).

� The separation of the logical document content from presentation (by making use of style sheets) to
provide a completely customizable system to the user.

ParcPlace Smalltalk/VisualWorks and ObjectStore were used for the implementation of the system.
ParcPlace Smalltalk/VisualWorks provided an effective tool for building the graphical user interface. A
prototype of the system was built early on in the project. The system then evolved gradually from the initial
prototype as requirements and specifications became clearer.

9.2 Unimplemented Features

Some of the features included in the design of the user interface are not implemented in this version. These
features are:

� A hypermedia browser which enables users to navigate from one news document to others.

� User Annotations which allow users to add their own comments on the news items they read and relate
them to other items.

� Hotlist which allows users to add articles of interest to their hotlist for faster access.

� Online Documentation: Although context-sensitive help for all MMnews windows is provided, an
online hypertext help document is not implemented in this version.

49



9.3 Future Enhancements

This work is only an initial step in investigating the development of query languages, access primitives, and
visual query facilities that allow for sophisticated querying of multimedia databases. Thus, the visual query
facility can be enhanced in a variety of ways:

� A first step towards enhancement is to implement the features discussed in the previous section to
provide a richer more complete query interface for news-on-demand users.

� An interesting enhancement would be to provide the querying facility through commonly used browsers
such as Netscape. Due to the division of the query facility into the Smalltalk user interface and the
C++ query agent, it would be easy to substitute the Smalltalk user interface with Netscape forms that
can then communicate with the query agent using the same string interface. There would be no need
to change anything on the query agent side. Other user interfaces can also be used as long as they
communicate with the query agent using the defined string communication interface (Appendix B).

� Currently, the visual query facility allows users to access information stored in one ObjectStore database
file. Providing access to multiple databases would provide added value to the system. Adding this
capability is very straight-forward. The user interface would allow users to specify multiple databases
which would be opened and maintained by the query agent. Each string request sent from the user
interface will have to specify the target database(s) to perform the query on.

� As it is now, the visual query facility provides complicated content searches for text elements in a
document. In case of other media types, only limited keyword searches are provided. An interesting
enhancement would be to provide more sophisticated searches for different media types. This includes
providing, in the long run, content-based indexing and querying of images. Extensions to video
searching can include providing annotations for video scenes instead of one textual description of the
whole video clip. Searching audio can also be enhanced by providing textual scripts of the audio
recordings (possibly generated automatically through speech recognition technology).

� The visual query facility is tightly integrated with a specific multimedia type system [Vit95], generated
from a specific DTD for news articles. As we go to the meta level to provide corresponding type
systems for different DTDs and applications, parallel work can be done on the visual query facility to
produce an equivalent querying interface for the different type systems supported. Providing a querying
interface that spans over multiple DTDs is another interesting step in this direction. However, it poses
several questions in terms of the generality needed to achieve such a task.

� Furthermore, the querying facilities provided are limited by the support provided by ObjectStore which
is a closed DBMS with no inherent support for multimedia. Research work is currently conducted at
the Laboratory for Database Systems Research, University of Alberta, to develop an extensible OBMS
that has inherent multimedia support. In the long run, TIGUKAT will replace ObjectStore. With the
development of this open system, investigating more sophisticated query facilities and languages will
be possible.

50



Bibliography

[ACMZ91] E. Andonoff, M. Canillac, C. Mendiboure, and G. Zurfluh. Hypertext interface for an object-
oriented database. In Intelligent Text and Image Handling. RIAO ’91, pages 843–862, 1991.

[ACMZ92] E. Andonoff, M. Canillac, C. Mendiboure, and G. Zurfluh. OHQL: A hypertext approach for
manipulating object-oriented databases. Information Processing & Management, 28(5):567–
579, 1992.

[Ada93] J.A. Adam. Interactive multimedia: Special report. IEEE Spectrum, pages 22–39, March 1993.

[ADE93] I. B. Arpinar, A. Dogac, and C. Evrendilek. MoodView: an advanced graphical user interface
for OODBMSs. SIGMOD Record, 22(4):11–18, Dec. 1993.

[AMY88] R. M. Akscyn, D. L. McCracken, and E. A. Yoder. KMS: A distributed hypermedia system for
managing knowledge in organizations. Communications of the ACM, 31(7):820–835, 1988.

[BD92] M.M. Blattner and R.B. Dannenberg, editors. Multimedia Interface Design. New York, NY:
ACM Press, 1992.

[Bud91] T. Budd. An Introduction to Object-Oriented Programming. Addison Welsey Publishing Co.,
1991.

[Cru92] I.F. Cruz. DOODLE: A visual langauge for object-oriented databases. In Proceedings of the
1992 ACM SIGMOD. International Conference on Management Data., pages 71–80, 1992.

[D�91] O. Deux et al. The O2 system. Communications of the ACM, 34(10):34–48, October 1991.

[DG92] N. Dimitrova and F. Golshani. EVA: a query language for multimedia information systems. In
Multimedia Information Systems - An International Workshop, pages 1–20, February 1992.

[Eme89] S. L. Emerson. The Practical SQL Handbook: Using Structured Query Language. Addison-
Wesley Publishing Company, Inc., 1989.

[Fer94] F. M. Ferrara. The KIM query system. an iconic interface to the unified access to distributed
multimedia databases. SIGCHI Bulletin, 26(3):30–39, July 1994.

[FS91] H.P. Frei and P. Schauble. Designing a hypermedia information system. In DEXA 91. Database
and Expert Systems Applications, pages 449–454, 1991.

[GOC�92] C. Goble, M. O’Docherty, P. Crowther, M. Ireton, J. Oakley, and C. Xydeas. The manchester
multimedia information system. In Advances in Database Technology - EDBT ’92, pages
39–55, 1992.

[GR85] A. Goldberg and D. Robson. SmallTalk-80: The Language and its Implementation. Addison
Wesley, 1985.

[GT94] K. Grønbæk and R.H. Trigg. Design issues for a dexter-based hypermedia system. Communi-
cations of the ACM, 37(2):40–49, February 1994.

51



[Hal88] F. G. Halasz. Reflections on notecards: Seven issues for the next generation of hypermedia
systems. Communications of the ACM, 31(7):836–852, 1988.

[Hay93] R. Haykin. Demystifying Multimedia. Apple Computer, Inc., 1993.

[Her94] E. Van Herwijnen. Practical SGML - Second Edition. Kluwer Academic Publishers, 1994.

[HK92] K. Hirata and T. Kato. Query by visual example - content based image retrieval. In Advances
in Database Technology - EDBT ’92. Proceedings 3rd International Conference on Extending
Database Technology, pages 56–71, 1992.

[HKR�92] B.J. Haan, P. Kahn, V.A. Riley, J.H. Coombs, and N.K. Meyrowitz. IRIS hypermedia services.
Communications of the ACM, 35(1):36–51, January 1992.

[ISO86] International Standards Organization. Information Processing – Text and Office Information
Systems – Standard Generalized Markup Language (ISO 8879), 1986.

[ISO92] InternationalStandards Organization. Hypermedia/Time-based StructuringLanguage: HyTime
(ISO 10744), 1992.

[K�90] W. Kim et al. Architecture of the Orion next-generation database system. IEEE Transactions
on Knowledge and Data Engineering, 2(1):109–124, March 1990.

[KFS90] T. Kato, K. Fujimura, and H. Shimogaki. Trademark: multimedia image database system with
intelligent human interface. Systems and Computers in Japan, 21(11):33–46, 1990.

[KKL91] D. A. Keim, K.-C. Kim, and V. Lum. A friendly and intelligent approach to data retrieval in
a multimedia dbms. In DEXA 91. Database and Expert Systems Applications, pages 102–111,
1991.

[LG94] L. Li and N. Georganas. MPEG-2 coded- and uncoded-stream synchronization control for
real-time multimedia transmission and presentation over B-ISDN. In ACM Multimedia 94.
Proceedings of Second ACM International Conference on Multimedia, pages 239–246, 1994.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Commu-
nications of the ACM, 34(10):50–63, October 1991.

[Luc90] D. Lucarella. A model for hypertext based information retrieval. In Hypertext: Concepts,
Systems and Applications. Proceedings of the European Conference on Hypertext, pages 81–
94, November 1990.

[MS87] D. Maier and J. Stein. Research Directions in Object-Oriented Programming, pages 355–392.
MIT Press, Cambridge, MA, 1987.

[Nie90a] J. Nielsen. Hypertext & Hypermedia. San Diego, CA: Academic Press, Inc., 1990.

[Nie90b] J. Nielsen. The art of navigating through hypertext. Communications of the ACM, 33(3):296–
310, March 1990.

[Nie91] J. Nielsen. Usability considerations in introducing hypertext. In H. Brown, editor, Hyperme-
dia/Hypertext And Object-Oriented Databases, pages 3–17. Chapman & Hall, 1991.

[Obj94a] Object Design, Inc., Burlington, MA, USA. ObjectStore Reference Manual for OS/2 and
AIX/xlC Systems, January 1994.

[Obj94b] Object Design, Inc., Burlington, MA, USA. ObjectStore User Guide for OS/2 and AIX/xlC
Systems, January 1994.

[O’D93] M. H. O’Docherty. A multimedia informationsystem with automatic content retrieval. Master’s
thesis, Victoria University of Manchester, Department of Computer Science, February 1993.

52



[OHMS92] J. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query processing in the ObjectStore
database system. In Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data., pages 403–412, 1992.

[Ont91] Ontologic Inc., Burlington, MA, USA. ONTOS Developer’s Guide, Version 2.0, February 1991.

[Par94a] ParcPlace Systems, Sunnyvale, CA, USA. VisualWorks User’s Guide, August 1994.

[Par94b] ParcPlace Systems, Sunnyvale, CA, USA. VisualWorks Cookbook, July 1994.

[Pla91] C. Plaisant. An overview of Hyperties, its user interface and data model. In H. Brown, editor,
Hypermedia/Hypertext And Object-Oriented Databases, pages 17–31. Chapman & Hall, 1991.

[VBD�93] A. Vogel, G.V. Bochmann, R. Dssouli, J. Gecsei, A. Hafid, and B.Kerheve. On QoS negotiation
in distributed multimedia applications. Internal report, Universit é de Montréal, Canada, 1993.

[Vit95] C. Vittal. An object-oriented multimedia database system for a news-on-demand application.
Master’s thesis, University of Alberta, Department of Computing Science, 1995.

[VÖSEM94] C. Vittal, M.T. Özsu, D. Szafron, and G. El-Medani. The logical design of a multimedia
database for a news-on-demand application. Technical report, Department of Computing
Science, University of Alberta, 1994.

[Wil91] I. Williams. Hypermedia for multi-user technical documentation. In H. Brown, editor, Hyper-
media/Hypertext And Object-Oriented Databases, pages 17–31. Chapman & Hall, 1991.

53



Appendix A

User Profile Class Definitions

User Profile

Purpose

Handles all the settings specified by the user.

Attributes

userName String
userFilters Set of filters
userStyleSheets Set of style sheets
defaultFilter Reference to the default Filter
defaultStyleSheet Reference to the default style sheet
defaultMediaSettings Reference to the default media settings

Methods

get userName Returns the user name
get defaultFilter Returns a reference to the default filter
get defaultStyleSheet Returns a reference to the default style sheet
get defaultMediaSettings Returns a reference to the default media

settings
set defaultMediaSettings Sets the defaultMediaSettings to the given

object

add to userFilters Adds the given filter to the set of userFilters

add to userStyleSheets Adds the given style sheet to the
userStyleSheets

Filter

Purpose

Handles document filters defined by users

Attributes

name String
keywords String
location String

54



category String
source String
headline String
authors String
fromDate String
toDate String
checkText finclude, exclude, dontCareg
checkImages finclude, exclude, dontCareg
checkVideo finclude, exclude, dontCareg
checkAudio finclude, exclude, dontCareg

Methods

asString Returns the values of the filter attributes in
the form a string.

get name Returns the name of the filter
get keywords Returns the keywords string
get location Returns the location string
get category Returns the category string
get source Returns the source string
get headline Returns the headline string
get authors Returns the authors string
get fromDate Returns the fromDate string
get toDate Returns the toDate string
get TextInclude Returns the checkText value
get ImagesInclude Returns the checkImages value
get AudioInclude Returns the checkAudio value
get VideoInclude Returns the checkVideo value

Style Sheet

Purpose

Contains style sheet information specified by the user. Style sheets are used to display documents.

Attributes

name String
anchor funderlined, bordered, iconified, plaing
emphasis1 fitalic, bold, underlineg
emphasis2 fitalic, bold, underlineg
font ftimes, courier, helveticag

Methods

asString Returns the values of the style sheet attributes
in the form a string.

get name Returns the name of the style sheet
get anchor Returns the anchor value
get emphasis(emphNo) Returns the emphasis value
get font Returns the font value

55



Media Settings

Purpose

Contains the media settings specified by the user.

Attributes

viewFloatMedia fimmediate, explicitg
linkAudioVideo fimmediate, explicitg
viewTextImage finNewWindow, inSameWindowg

Methods

asString Returns the values of the media settings
attributes in the form a string.

get viewFloatMedia Returns the viewFloatMedia value
get linkAudioVideo Returns the linkAudioVideo value
get viewTextImage Returns the viewTextImage value

56



Appendix B

Valid Command Strings

String commands are sent from the Smalltalk interface to the C++ engine. Any valid command can be divided
into three main parts:

� Command Head: contains the name of the command. It must prefixed by MC and must belong to the
set of valid commands listed below.

� Name Argument (optional): contains the name of a filter, style sheet or document depending on the
particular command. It is prefixed by MN .

� Data Argument (optional): contains information needed by the command. For example, in case of
saving a filter, the values of the filter’s fields are sent in the data argument. It is prefixed by MD .

Field delimiters are used between the different parts of the command and a command delimiter is used at
the end of the command string. Thus, the general format of a command is as follows:
MC CommandHead; MN Name; MD Data!

Notation:

In the list of commands, italicized words mean that they are a description of a particular string and that the
actual string is used in the real implementation.

� MC getAllDocList!
Returns a list of document entries in the database, each of which follows the format:
DocID; Headline

� MC getCategoryList!
Returns a list of categories in the database.

� MC getDefaultFilterName!
Returns the name of the default filter in the current user profile.

� MC getDefaultStyleSheetName!
Returns the name of the default style sheet in the current user profile.

� MC getDocAbstract; MN DocID !
Returns the abstract text of the given document.

� MC getDocAnnotations; MN DocID !
Returns a list of annotations of the given document. Each annotation is represented by two integers:
the starting position and the end position of the annotation object.
Frontmatter annotation
Number of section annotations

57



Section annotation list
Number of paragraph annotations
Paragraph annotation list
Number of figure annotations
Figure annotation list
Number of figure caption annotations
Figure caption annotation list
Number of list annotations
List annotation list
Number of list item annotations
List item annotation list
Number of emphasis1 annotations
Emphasis1 annotation list
Number of emphasis2 annotations
Emphasis2 annotation list
Number of quote annotations
Quote annotation list
Number of link annotations
Link annotation list

� MC getDocAudioList; MN DocID !
Returns a list of the names of the audio components of the given document.

� MC getDocEdinfo; MN DocID !
Returns a list of the editorial information of the given document:
Headline
Location
Source
Category
Date
Keywords
Authors

� MC getDocImage; MN DocID; MD ImageName !
Returns the size of the image, followed by the binary data of the actual image.

� MC getDocImageList; MN DocID !
Returns a list of the names of the images of the given document.

� MC getDocString; MN DocID !
Returns the text string of the given document.

� MC getDocVideoList; MN DocID !
Returns a list of the names of the video components of the given document.

� MC getFilterData; MN FilterName !
Returns the filter (asString) with the given name. The filter data follows this format:
keywords, location, category, source, headline, authors, fromDate, toDate, checkText, checkImages,
checkVideo, checkAudio
The checkText, checkImages, checkVideo, checkAudio return one of three strings: include, exclude,
dontCare.

� MC getFilterDocList; MN FilterName !
Returns a list of document entries filtered on the filter with the given name. Entries follow this format:
DocID; Headline

� MC getFilterList!
Returns a list of filter names in the current user profile.

58



� MC getLocationList!
Returns a list of locations in the database.

� MC getMediaData!
Returns the media settings (asString) in the current user profile in the following format:
viewFloatMedia, linkAudioVideo, viewTextImage
The first two fields return one of two strings: immediate or explicit. The last field returns either
newWindow or sameWindow.

� MC getSearchResult; MN FilterName-OR-DocID; MD queryString, searchText, searchAllText, search-
Headlines, searchAbstracts, searchSections, searchParagraphs, searchLists, searchQuotes, searchEmpha-
sis, searchAuthors, searchCategory, searchKeywords, searchLocation, searchSource, searchImages,
searchAudio, searchVideo, searchScope, retrieveDocuments, retrieveComponents !
The FilterName-OR-DocID is used to determine the scope of the search. In case of searching all the
database, this field is ignored. All the search and retrieve fields are either true or false depending on
whether the user wishes to search/retrieve these object types or not.
Returns a list of objects which match the query string. The type of the objects returned is dependent
on the search and retrieve fields. If the user is searching all the media types and retrieving all the
components, the following is returned:
Number of Articles
’DocID;Headline’ list
Number of Headlines
Headlines list
Number of Abstracts
’DocID; Headline, Abstract summary’ list
Number of Sections
’DocID; Headline, Section summary’ list
Number of Paragraphs
’DocID; Headline, Paragraph summary’ list
Number of Quotes
’DocID; QuoteName; Headline, Quote summary’ list
Number of Emphasis
’DocID; Headline, Emphasis summary’ list
Number of Authors
Authors list
Number of Categories
Category list
Number of Keywords
Keyword list
Number of locations
Location list
Number of Source
Source list
Number of Images
’DocID; ImageName; Headline, ImageName, Summary’ list
Number of Audio
’DocID; AudioName; Headline, AudioName, Summary’ list
Number of Video
’DocID; VideoName; Headline, VideoName, Summary’ list

� MC getSourceList!
Returns a list of media sources in the database.

� MC getStyleSheetData; MN StyleSheetName !
Returns the style sheet (asString) with the given name. The data follows this format:
anchor, emphasis1, emphasis2, font

59



The anchor string can be: underlined, bordered, iconified, or plain. The emphasis1 and emphasis2
string can be: italic, bold, or underline. The font string can be: times, courier, helvetica.

� MC getStyleSheetList!
Returns a list of style sheet names in the current user profile.

� MC setFilterData; MN FilterName; MD keywords, location, category, source, headline, authors,
fromDate, toDate, checkText, checkImages, checkVideo, checkAudio !
Returns a positive acknowledgment or an error.

� MC setMediaData; MD viewFloatMedia, linkAudioVideo, viewTextImage !
Returns a positive acknowledgment or an error.

� MC setStyleSheetData; MN StyleSheetName; MD anchor, emphasis1, emphasis2, font !
Returns a positive acknowledgment or an error.

� MC quitProgram!
Returns a string indicating that the program is terminated.

60



Appendix C

Glossary

Abstraction The ability to encapsulate and isolate design and execution information of an object,
providing only a set of operations to interface with this object [Bud91].

Annotation A pair of integers defining the start and the end position of a text element with respect
to its document’s entire text string. Annotations are used to avoid fragmenting the
text with each element.

Attribute A qualifier indicating a property of an element other than its type and its content
[Her94]. For instance, the date of publication is an attribute of a news article.

Browsing Looking through material in a casual manner; usually to locate information of interest
for further investigation.

Continuous Media Media types with real-time constraints such as audio and video. Real-time constraints
are needed for synchronization and playback.

Customization Allowing users to define their own settings of the system according to their prefernce.

Document A collection of related information nodes containing any combination of media types:
text, images, audio or video. A multimedia news article is a document according to
this definition.

DTD Document type definition. The definition of markup rules and constraints defined for
a given class of SGML documents [Her94].

Filter To specify the scope of documents a user views, depending on certain criteria such
as keyword(s), location, headline, etc. This is done by defining filter objects and
applying them to the database. The result is a set of documents whose attributes
match the ones specified by the user in the filter. In other words, filtering is a search
on document attributes, rather than content.

Inheritance The property of objects by which instances of a class can have access to data and
method definitions contained in a previously defined class, without those definitions
being restated [Bud91].

Hypermedia Generalization of hypertext (see below) where nodes may contain any media type:
text, images, audio, and video.

Hypertext A non-sequential organization of text which presents several options for readers to
follow. Pieces of information (nodes) are linked to other nodes containing related
information.

HyTime The International Standard for Hypermedia and Time based systems, ISO 10744:1992.

Media Settings Store presentation settings concerned with the display of the various media types in
the system.

Monomedia Objects containing only one media type. For example, text objects or audio streams.

61



Navigation Traversing through information by followinghypertext links from one node to another.

News Providers Agencies responsible for producing multimedia news articles and inserting them in
the database. Examples od news providers are television networks, newspapers,
magazines, and wire services.

Non-Continuous Me-
dia

Static media types that do not have any real-time requirements, such as text and
images.

Pipe A connection between two processes that takes the output of one process and pump it
as input to the other.

Quality-of-service
management

Ensures that a satisfactory quality-of-service is provided to users of multimedia,
especially with real-time delivery and quality of continuous media.

Query A request that is performed on the database to retrieve specific information matching
a certain selection criterion.

Search Allows users to search documents’ content for specific information. The search criteria
is defined by a search string, the scope of the search, the media types to be searched,
and the returned types.

SGML The Standard Generalized Markup Language, ISO 8879. Defined by the standard
as “A language for document representation that formalizes markup and frees it of
system and processing dependencies.” An abstract language, with which an arbitrary
number of markup languages may be defined [Her94].

Style Sheet Stores user preferences with regards to presenation of documents. This includes font
formats, presentation of anchors, indentation of paragraphs, etc.

Type System A hierarchy of types corresponding to the logical elements in the system. The type
system defines the types of objects and the relationships between them needed to
model the target application.

User Profile Contains all user preferences. User profiles are used for system customization. They
contain filters, style sheets, media settings, and system defaults.

62


