[LL]]

£q University of Alberta

S

LS

A Visual Query Facility for Multimedia Databases

by

Ghada EI-M edani

Technical Report TR 95-18
June 1995

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Abstract

Multimedia databases store large data objects with complex spatial and temporal relationships. For users
to easily and effectively access and make use of thislarge information space, there isaneed for an interactive
user interface to act as an intermediary between the database and the user. Many existing multimedia systems
provide a browsing-based user interface for their users. However, with large information spaces, browsing
does not provide an efficient mechanism for accessing the database. Thus, there isaneed for a query facility
which enables users to pose queries to the database, and, directly, retrieve information of interest.

Thisresearch determines the user interface requirements of multimediainformation systems and provides
atemplate solution. That is, it presents an easy and efficient way of accessing a multimedia database. This
is achieved through a visual query facility which providesarich visual query interface as well as a browsing
facility. The visua query facility provides an interactive graphical interface, relieving users from having to
type complicated queries which can be difficult. The system also provides users with thefacility to customize
system settings to suit their preferences and needs.

The design and implementation of the visual query facility is targeted towards a news-on-demand appli-
cation which is a distributed multimedia news application that allowsits users/subscribersto remotely access
multimedia news articles inserted in a distributed database over a broadband ATM network. However, the
same design and implementation principles can be applied to other distributed multimedia applications.

Contents

11
12

31
3.2
3.3
3.4

41

4.2

4.3

51
52

6.1

6.2

6.3

7.1
7.2
7.3

Introduction

Motivation L
ThesisScopeand Organization

Related Work

The News-On-Demand Application

OVEIVIBW
ApplicationScenario L
System Architecture L
Requirements For theUser Interface

System Design and Functionality

DesignPrinciples.
411 Hypermedia
412 Query Facility e
413 InputModality
System Functionality
421 Viewing/BrowsingDocuments.
422 FilteringDocuments L
423 SearchingDocuments
424 SystemCustomization
GeneradlizingtheDesign L

TheUser Interface

News-on-demand User Interface
Generdlizingthelnterface

The Multimedia Type System

Modeling of MonomediaObjects
6.1.1 AtomicTypes e
6.1.2 StorageModel for Text
Modeling of Document Structure.
6.21 SGML MarkupandElements
6.22 TypeSystemforElementso
Modeling of Presentation Information oL

Querying - Linking to the Database

ObjectStore Queries L
TheType Systemand Queries
Classesof Queries
7.3.1 QueriesonArticles Attributes.
732 QueriesonUser Profiles

NP

w

o o 011 gl

733 SearchQueries
7.4 Implicationsof Using ObjectStore

8 Implementation Issues
81 TheSmaltalk Userinterface
82 TheC++Query Agent e
8.3 Alternativesfor Implementation o

9 Conclusion and Future Work
9.1 Conclusion
9.2 Unimplemented Features
9.3 FutureEnhancementso

Bibliography
A User Profile Class Definitions
B Valid Command Strings

C Glossary

49
49
49
50

51

57

61

List of Figures

31

51
52
5.3
5.4
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
515
5.16

6.1
6.2
6.3
6.4
6.5

8.1
8.2
8.3

Distributed System Architecture 7
MultimediaNews StartupWindow 15
MMnewsLauncher 15
Launcherlcons 16
Document Filter 18
MediaSettings 19
MMnews Global Search 21
MMnews Global Search (Text Submenu) 22
Search Result. 23
Document List 24
Document Abstract L 25
Document History 26
Document View L 27
DocumentIcons 28
StyleSheet Window 30
Document Editorial Information 31
Viewinganimage 32
Atomic TypesHierarchy 34
First-Level Element TypeHierarchy L 35
Type Hierarchy for Other Text Elements 35
Type Hierarchy for Structured Text Elements 35
Type Hierarchy for HyTimeElements 36
Visual Query Components 45
Smdltalk MainModules 46
C++ManModules L 47

Chapter 1

| ntroduction

1.1 Motivation

One of the major reasons for the recent popularity of multimedia information systems is the opportunities
they providefor easier and more effective human-computer interaction (HCI). The significance of multimedia
systemsliein enhancing the communication between computers and human users [Ada93]. Traditionally, text
was the primary medium for interacting with computer systems, thuslimiting users to a restricted framework
for interaction. Today, multimediasystemsincorporate and integrate information from diverse media sources,
such astext, graphics, images, audio and video, presenting the userswith various channel s for communication
and information delivery, thus allowing for a broader and richer means for interaction. Thisincreases system
usability as humans communicate more effectively through various channels [BD92].

The media sources, incorporated in multimedia documents, involve large data objects with complex
spatial and temporal relationships. This results in a large body of information, with a need for an effective
means for managing and accessing it. Traditional file systems fall short when trying to fulfill this require-
ment as they leave to the user/application the responsibility of properly formatting files for the multimedia
objects as well as the management of the data itself. The problem becomes more complicated in the case
of multi-user multimedia systems where concurrency control, security, and application independence are
very important issues. Multimedia systems can benefit from database management system (DBMYS) services
such as data abstraction, high-level access through query languages, application independence, controlled
multi-user access (concurrency control), fault tolerance, and access control (security). Multimedia systems
are generally distributed, requiring multiple servers for their storage requirements. Thus, distributed DBMS
technology can be used to efficiently and transparently manage data distribution. Object-Oriented techniques
should be used to provide encapsulation, abstraction, and extensible type systems. Therefore, we proclaim
theuse of an object-oriented multimediadatabase at the heart of multimediainformation systems[VOSEM94].

A multimedia database efficiently stores multimedia objects and models the rel ationships between them.
For a user to easily and effectively access and make use of thislarge information space, thereisaneed for an
interactive user interface to act as an intermediary between the database and the user. Thus, a considerable
portion of achieving the usability and effectiveness desired from multimedia systems lies in being able to
provide users with easy-to-use effective interfaces for accessing information.

Many multimedia information systems provide a browsing-based user interface for users. Perhaps, the
most popular interfaces of thistype are Mosaic are Netscape for accessing the World Wide Web. However,
with large information spaces, browsing does not provide an efficient mechanism for accessing the database.
This research focuses on adding a querying capability that enables users to retrieve information of interest.
Userscan still browse through theretrieved informationin the same manner as in the browsing-based systems.
The novel aspects of this approach are the following:

o Combining querying and browsing to provide aricher interface.

¢ Relieving users from having to type complicated queries (which can be difficult) by using a visual
guerying interface.

1.2 Thesis Scope and Organization

This thesis determines the user interface requirements of multimedia information systems and provides an
easy and efficient way of accessing a multimedia database. This is achieved through a visual query facility
which provides a rich visua interface for querying the database as well as a browsing facility. The visual

query facility is not intended to provide a complete user interface that adequately covers al the needed

functionality for multimedia information systems. Instead, its main purpose is to provide the users with an

easy and efficient way of accessing the multimedia database. However, the thesis looks at the requirements
of a user interface for such systems even though the full interface is not implemented. The following aspects
are central to thisresearch:

¢ Studying the user interface requirements for multimediainformation systems.

o Designing avisual query interface to relieve users from typing complex database queries.

o Tightly integrating the interface with the multimedia database.

¢ Separating thelogical document content from presentationto provide acompletely customizable system.

The design and implementation of the visual query facility istargeted towards a news-on-demand applica
tion. However, the same design and implementation principles can be applied to other distributed multimedia
applications.

The news-on-demand application is described in detail in Chapter 3. It followsa distributed client/server
model. The client application environment includes the visual querying facility (the focus of thisthesis), the
synchronizationroutines[LG94], aquality-of-service negotiation component [VBD + 93], and the ObjectStore
[LLOW91] database client [Vit95]. The clients are connected to a set of servers over a broadband ATM net-
work. The servers are responsiblefor the storage and management of multimediadocuments. Thisresearchis
part of the Broadband networking services project supported by the Canadian | nstitute of Telecommunications
Research (CITR). Several other universitiesare involved in this project: University of Waterloo, University
of Ottawa, Université de Montréal, INRS Telecommunications, and University of British Columbia.

The rest of the thesis is organized as follows. Chapter 2 provides a discussion of the approaches and
systems dealing with accessing multimedia information spaces. Chapter 3 describes the target application,
news-on-demand, and the constraints it imposes on the user interface and querying facility. Chapter 4 dis-
cusses the functions provided by the system and the design principlesfollowed to fulfill the system functional
requirements. Chapter 5 discusses the user interface in detail. Chapter 6 describes the document type system.
Chapter 7 describes the underlying querying of the multimedia database. Chapter 8 discusses important as-
pects and choices regarding the implementation. Chapter 9 summarizes thethesis, describing unimplemented
features and possible enhancements and future developments.

Chapter 2

Related Wor k

The design and specification of interfaces for information systems have gained the attention of many re-
searchersin avariety of fieldsincluding query languages, hypertext systems, and user interfaces. Thisis due
to the fact that the power of information systems can only be realized when tools are provided for effective
access to the stored information. In this chapter, query languages are first discussed, followed by hypertext
systems. Finally, systems that combine both to achieve better functionality are highlighted.

Query languages and database access tools provide users with the facility to access stored information.
Structural Query Languate (SQL), being the most popular query language in the relational database world,
provides a variety of functions to manipulate data [Eme89]. For simple data sets, relational databases and
SQL provide adequate functionality, but as the need arose to store and manipulate complex data such as
multimedia information, they fell short of providing the necessary functionality. Object-oriented database
management systems (OODBMS) provide capahilities for modeling complex data. Some OODBMS query
languages are SQL extensions such as O2 [D*91] and ONTOS [Ont91], while others are new languages such
as GEMSTONE [MS87] and ORION [K*90]. ObjectStore provides a query facility by defining C++ types
and methods [OHM S92]. Some OODBM Ss come with an advanced graphical user interface for designing,
browsing, and modifying the database schema [ADE93]. However, their query facilities are text-based. To
use these query facilities, users have to learn the query language syntax and the data model. This poses
a problem to system users who do not possess a deep knowledge of computer science. One approach to
overcome this problem is to define graphical query languages that allow users to query information in the
database graphically, rather than by formal query languages. Some of these systems are;

e DOODLE (Draw an Object-Oriented Database LanguagE) is a visual language which alows users
to query object-oriented databases using arbitary pictures. DOODLE visual programs use the same
semantics as F-logic [Cru92].

o Image databases are often coupled with query by visual example capabilities which enable the user to
retrieve images by providing rough sketches or diagrams. Examples of such systems are described in
[HK92, KFS90].

In addition to visual query languages, research work is being done on query languages supporting mul-
timedia issues, namely the temporal and spatia aspect of information retrieval. In [DG92], EVA, a query
language with multimedia support, is described.

Hypertext systems promise to deliver information to users in new and unconventional ways. As early
as the 1950s, Doug Engelbart was working on hypertext concepts and office automated systems, providing
frameworks for hyperlinks and collaborative work. In 1967 and 1968, Andries Van Dam developed the
first two working hypertext systems known as: Hypertext Editing System and FRESS. Nine years later, in
1978, the first hypermedia system, Aspen Movie Map, was developed by the MIT Architecture Machine
Group [Nie90g). Today, many researchers are developing hypertext and hypermedia systems. Literature
provides reviews of a variety of systems from different application domains which employ the concepts of
navigating information spaces and following links to related information. Many multimedia information

systems provide elaborate hypertext graphical user interfaces with limited search capabilities. Perhaps, the
most popular interfaces of this type are Mosaic and Netscape for accessing the World Wide Web. Akscyn
[AMY 88] describes KM S (Knowledge Management System), a distributed hypermedia system that supports
organization-wide collaboration. In addition to its browsing facility, KMS allows its users to search for
text stringsin the hypertext nodes. In [Wil91], a hypermedia system for on-line technical documentation is
presented. It providesitsuserswith abrowsing facility aswell asalimited keyword search facility. Examples
of other hypermedia systems are presented in [GT94, HKRT92, Plag1, BD92]. Along the same lines, amodel
for hypertext-based information retrieval is presented in [Luc90].

The complexity of current multimedia applications raise more challenges to meet the ease and efficiency
requirement of user accessibility. Halasz [Hal88] indicates that providing search and query facilitiesis the
number one issue in hypermedia systems of the future. Research has been conducted to develop systems
which combine the strengths of query languages and hypertext navigation. No standard specification for the
design and implementation of such systems has yet been reached.

One approach isto define systems that integrate a functional query language with navigational facilities.
Theusers canretrieveinformation by following links (navigation) or by querying the database using the query
language. Examples of such systems include:

o Frei [FS91] describes a system which supports storage, retrieval as well as browsing of multimedia
information. These functionsare achieved by providing hyperlinks between related information as well
as asearching facility. Queries are handled using a functional database query language (FQL*) which
is extended to include elementary similarity functionsto allow for imprecise queries.

e MMIS is a multimedia information system developed at the University of Manchester [GOC*92,
O'D93]. It currently handles the storage and retrieval of text and raster images. Users can store media
instances on the system’s server using different editors. After storing a medium instance, a module
must be activated to interpret that instance producing semantic nets which are subsequently used for
guerying. Prolog queries can then be entered and processed against the stored semantic nets.

Another research direction is using a graphical query language which manipulates hypertext concepts.
Andonoff [ACMZ91, ACMZ92] describes OHQL (Object Hypertext Query Language) which uses hypertext
conceptsto query object-oriented databases. The database is presented to the user in the shape of ahypergraph
with nodes representing classes and links representing inheritance and domain constraints. Users formulate
queries by graphically selecting nodes and links on the hypergraph.

Other systemsintegrate query facilitiestogether with hypertext capabilities withinthe same graphical user
interface to provide users with a uniform way of accessing multimediainformation. Individual systems vary
inthe facilities they provide.

o Keim [KKL91] describes a system where natural language captions are used to describe the contents
of multimedia data. During retrieval, users express their queries via a graphical user interface using
natural language to describe the query constraints. The query isrepresented graphically by aset of boxes
(representing simple constraints or subqueries) and connections between them (to represent operators).
The system allows users to define their queries in an incremental fashion. The system then translates
user queriesinto aformal query language (SQL) to execute on the underlying entity-relationship data
model.

o In[Fer94], the KIM (Knowledge-based Information System) query system isdescribed. KIM provides
users with homogeneous access to distributed, heterogeneous, multimedia databases. The system
provides both iconic and diagrammatic (entity-relationship) interfaces to the database. Users select an
entity or icon and define filters in the retrieval process by defining the attributes of interest and the
selection conditions. Queries are associated with icons for later usage or update. The system supports
incremental development of queries.

Chapter 3

The News-On-Demand Application

3.1 Oveview

News-on-demand is an application that provides its subscribers/users with access to multimedia news doc-
uments that are inserted into a distributed database. Multimedia documents are inserted into the database
by news providers. Examples of news providers are television networks, newspapers, magazines, and wire
services. Once inserted in the database, the multimedia news documents cannot be updated. The subscribers,
at different client sites, access the news database, via a broadband network, to retrieve and read articles
according to their own interest. The cost of this service to the users includes the cost of the information
content as well as the transmission and retrieval costs. The users can affect the cost they have to pay by
specifying quality-of-service parameters for the system’s operations.

In this context, a multimedia document is defined “ as a structured collection of pieces of information
related to a particular subject” [VOSEM94]. The information units can include any media type such as text,
image, audio and video. They can also include combinations of different media, such as video synchronized
with audio and text captions. Documents often have links to other information (whether compl ete documents
or components of documents). Examples of such links are more news coverage, background information,
and expert analysis. The structure of the document consists of two entities: the logical structure and the
presentation structure. The logical structure is concerned with the logical organization of the document
components. For instance, logically, anews article is made up of aheadline, a number of paragraphs, figures,
and so on. The presentation structure is concerned with the layout of the document; in other words, how the
document is actually displayed. Examples of parameters of interest to presentation are font typeface, font
sizes, the number of columnsin which text is displayed, etc.

The news-on-demand application suggests several issues of interest to the querying facility and user
interface:

e Thereisaneed for a standard representation for the documents inserted in the database. The standard
chosen is SGML/HyTime [VOSEM94]. By following a standard, the system provides a uniform
document representation that facilitates document entry by news providers and access by users.

o Different subscribers/users are likely to customize their system view dueto personal preferences and/or
hardware constraints (e.g., absence of a color graphics display). The user interface should allow such
customization.

o Thereisaneed for separating the logical structure of documents from the presentation structure when
storing documents in the database. This separation allows for a more customizable system where
presentation issues can be decided upon by the users without affecting the documents’ logical structure.

3.2 Application Scenario

The interaction between the user and the multimedia news database is achieved by posing queries to the
database and receiving results. The visual querying interface is responsible for trandating the user’ s requests

into actual queriesthat are executed on the database. The results obtained from the database are presented to
the user viathe interface aswell. The following example scenario illustratesthe interaction between the user
and the system:

Typicaly, the user wishes to view news articles on a specific subject. Using the visual querying
facility (as will be explained in more detail in Chapter 5), the user specifies the subject he/she
is interested in. The system returns a list of headlines of articles that meet the user’s request.
The user can then view the abstracts of any of the returned articles. The user selects a particular
article to view. The system retrieves the article and displaysit. The user can read the article,
view images, listen to attached sound recordings, play video, or follow linksto other information
of interest.

The above scenario is only an example of a possible interaction between the user and the system. Users
can perform many more types of queries. Examples of these queries are:

¢ Return documents whose media source a particular news provider.

¢ Return documents with a certain location, date, and/or keywords.

¢ Return documents written by a certain author.

¢ Return documents which contain text, but not video.

¢ Return documents with a particular text string within the text of the article.

¢ Return documents whose images, audio and/or video contain certain keywords.
¢ Return the images which contain certain keywords.

¢ Return the abstracts and/or paragraphs which contain a particular text string.

Currently, the query facility provides extensive support for searching document attributes (headline,
location, date, author, media source, etc) and text elements (abstract, sections, paragraphs, quotes, etc).
Keyword searches are provided for other media types. images, audio and video. Apart from queries on
documents and/or document components, users can pose queries regarding user settings of the system and/or
presentation settings. Queries for retrieving meta-information about continuous media are another category
of queriesto the database.

3.3 System Architecture

The news-on-demand application follows a distributed multiple server multiple client model (Figure 3.1).

The clients are connected to a set of servers over a broadband ATM network. The servers are responsible
for the storage and management of multimedia documents. There are two kinds of servers, depending on the
type of media they manage and store: the continuous media servers (CM servers), and the non-continuous
media servers (NCM servers). Continuous media refers to media with real-time constraints, such as audio
and video. Non-continuous media include text and still images which do not have the real-time constraints
of audio and video. Currently, the server database integrates the non-continuous media servers, but not
the continuous media servers. Instead, the database stores meta-information about files stored on the CM

servers. The meta-information is used, by the client, to locate the file and then it is accessed directly from
the CM file server. Severa system modules reside on the client side. The client application environment
includes the visual querying facility, the synchronization routines [L G94], the quality-of-service negotiation

component [VBD*93], and the database client. The distribution of the data among the servers is transparent
totheclientssince all accesses to the servers are done through the client DBM S and the other system modules.

The testbed environment for the system consists of client machines which are IBM RS6000/360’s with
128 Mbytes of memory. The server machines are RS6000/360' swith 64 Mbytes of memory. The serversand

NCM
Server #1

ATM Network

NCM CM
Server #n Server #1

CM
Server #m

Clients

Servers

Figure 3.1: Distributed System Architecture

clients are connected via a Newbridge ATM switch®. A commercial object-oriented database management
system, ObjectStore, is used as the database engine.

3.4 Requirements For the User Interface

The news-on-demand application suggests several requirements for the user interface of such a system. This
section first discusses the general requirementsimposed on multimediauser interface design. Then it focuses
on the requirements specifically emerging from the news-on-demand application.

Since multimedia systems have a lot of potential in delivering information to the users, special attention
should be given to the actual usabilility of these systems. A system’s usability is determined by how easily
and effectively the users can communicate with the system to achieve adesired task. Usability parametersfor
most systems include ease of use, efficiency, ease of remembering, and pleasantness [Nie90a]. Some general
design requirements for usable multimedia user interfaces are [Hay93]:

e Simplicity: A multimedia user interface should be simple to use, requiring only a minimal cognitive
load from the user. Overwhelming the user with complex icons, too many choices, various color
patterns (as might be the trend in some of the current multimedia interfaces) may not always help.
Instead, such interfaces will distract the user from the real purpose of the application.

o Consistency: Providing aconsistent design throughout the system makes it easier and more predictable
for the user to follow. This reduces the efforts that the user puts in trying to follow the interface and
allows the user to concentrate on the actual information presented.

e Engagement: Engagement isdetermined by the degree to which the user can participate, affect and con-
trol the actions of the system. “ Multimedia should invite the user to participate” [Hay93]. Interactive
interfaces provide added value by providing the user with the means to interact with the system.

o Depth: A multimedia interface should encourage users to explore the system to a greater depth by
making it easy to do so. However, it should not force the user to understand the system to any greater
depth than the user wishes to explore.

¢ Fun: Multimediauser interfaces should be fun. Thiswill encourage more people to use the system and
each person to use the system in more ways. Note that the goal is not to encourage users to waste time
using the system. The goal isto encourage them to use the system in novel, but productive ways.

The above general design requirements apply to the news-on-demand applicationaswell asal multimedia
applications. For any multimedia application, the user interface should be simple, consistent, inviting for
users to participate and explore, and pleasant to use. However, there are more specific requirements of news-
on-demand users. Users of news-on-demand are expected to use the system to achieve several tasksrelated to
the news. These tasks include analysis of financial and political situationswhich can affect planning, regular
follow-up of news, and access to background and reference news material. The general high-level functions
required of the system can be summarized as follows:

¢ Viewing/Browsing information: Users should be able to view multimedia documents, read text, ook
at images, play video, listen to audio, and follow linksto related information.

e Searching for information: In addition to the browsing facility, users should be able to search the
multimedia database with avariety of criteria such as date, author(s), category, location, keywords, etc.
Searches on document content should also be provided. The system should provide afast and easy way
for searching.

o Customizing the system: Users should be able to define and modify their own settings of the system.
Settings can include: documents layout, window specifications, quality-of-service parameters and
others.

1This testbed environment is not exactly replicated at the University of Albertawhere the client and server machines are connected
by an Ethernet network

o Other functions: These include, but are not limited to, allowing users to add their own annotations

to news documents, providing users with additional navigational aids such as subject indexes and a
history of the visited documents.

These requirements point to a customizable and easily extensible interface which combines the browsing
capability (found in most existing multimediainterfaces) with a querying capability (lacking in many of the
same interfaces). Furthermore, the querying capability should be a visua one that merges seamlessy (is

consistent) with the browsing facility and satisfies the other general usability requirements of a multimedia
user interface.

Chapter 4

System Design and Functionality

4.1 Design Principles

In the previous chapter, the various design goals and requirements for multimedia user interfaces in general
and for the news-on-demand application in particular are examined. According to these requirements, the
design principles chosen can categorized into three major points:

e Hypermedia
o Query facility
o |nput modality

411 Hypermedia

Hypertext/Hypermediaprovidesthe user with anon-sequential means of freely browsing information accord-
ing to hig’her needs by following linksfrom one information unit to another [Nie90a]. Links are maintained
between related units of information, providing users with several optionsto follow when reading a unit of
information, thus enriching the user interaction with the system. Traditionally, hypertext networkslink units
of text together. In case of hypermedia systems, information units can contain text, graphics, images, audio
and video. Hypertext/Hypermedia systems can also provide navigational aids such as subject indexes, maps,
tours, backtracking facilities, graphical representation of the hypertext network, history of visited nodes, etc.
to facilitate browsing information. Note that not all multimedia systems use hypermedialinks[BD92] unless
itisrequired as part of the application functionality.

In the news-on-demand application, multimedia news documents often have logical linksto other related
information such asbackground information, more news coverage, follow-ups, and expert analysis. Therefore,
ahypermediainterface isagood design choice as it provides the news readers with an easy and efficient way
of accessing and browsing related information.

4.1.2 Query Facility

A hypertext/hypermediainterface to a multimedia system may not always be sufficient to provide al of the
accessing mechanisms the user needs to obtain information from a database. In many applications, such as
news-on-demand, users need to search for specific information based on partial knowledge. This must be
achieved more simply and quickly than is possible through the browsing facilities of hypermedia. Moreover,
as the information increases in quantity and complexity, the browsing facility of hypermedia becomes more
and more inadequate. According to studies [Nie91, NieQ0b] of the usability of hypertext systems, users have
often reported that they become disoriented while navigating through hypertext systems and fail to reach
points of interest. This phenomenon was reported even when using the most popular commercia hypertext
systems. For the news-on-demand application, a querying facility that allows users to search and retrieve
information directly from the database is a good design choice. The user interface should provide an easy

10

way for performing queriesand searches, aswell as examining theresults. A typical scenario isfor the user to
first filter the list of documents in the database to include only relevant news articles. The user then performs
asearch for documents and document components that are of interest for specific topicsand then browses this
limited set. The design must support thisincremental process.

4.1.3 Input Modality

A “good” user interface should provide the user with appropriate interaction modes, depending on the
application and the types of input needed from the user. The modes of interaction can be categorized into
three mgjor categories [BD92]:

o direct manipulation of graphical objects on the screen;
¢ the use of natura language;
¢ theuse of formal languages.

In the case of the news-on-demand application, as well as other multimedia applications, a graphical
user interface with direct manipulation techniques is sufficient to deal with user input. Typically, users need
to click on icons to follow links, choose options from menus and lists, type text, etc. A natural language
interface would be a great facility if provided with the graphical interface. However, thisis beyond the scope
of thisresearch. The need for using formal languages (in this case, a query language) has been eliminated
by designing the visual query interface to make the system more usable, especially by novice users. In other
words, the visual query interface is used as a front-end to the ObjectStore database management system'’s
query constructs.

4.2 System Functionality

The system’sfunctionality for the visua query facility fallsunder four main categories. viewingand browsing
documents, filtering documents, searching documents, and system customization.

4.2.1 Viewing/Browsing Documents

The system allowsthe usersto view and browse multimediadocuments. Users can view adocument’sabstract
before fetching the whole document from the server. This helps users decide the relevance of a document
before retrieving it. Once a document is viewed, users can read its text, ook at images, play video, listen
to audio, and follow links to related information (although following hyperlinksis not implemented in the
current version of the system, it is still recognized as a main function of the system). Users can also view the
document’s editorial information, such as: author(s), location, media source, date, etc.

4.2.2 Filtering Documents

Filtering is a search on document attributes. It is used to specify the scope of documents that the user
views/browses. The result of a filtering operation is a set of documents whose attributes match the ones
specified by the user. A filtering operation is done by defining a filter object and applying it to the set of
documents stored in the database. Filters can be based on news category, keyword(s), location, headline,
media source, author(s), and/or date. The user can aso filter documents depending on the type of mediathey
include, so users can choose only to view documents which contain certain media types and not others. This
feature is used to answer queries such as: “ Return documents with text and no audio” . Filter objects are
stored in the database in the user profile. Users can identify one filter to be the default filter which is used
during system startup, but filters can be applied to document lists anytime. The system also defines a set of
filters to provide short cuts for users. These include filtering news documents published today (using system
date) and filtering documents on news category.

11

4.2.3 Searching Documents

The system provides users with the capability of searching documents’ content for specific information (in
addition to searching on document attributes which is provided through filtering). Users specify the text
to search for (optionally using Boolean combinations of text strings). For completeness, both conjunctive
and digiunctive normal forms are supported as search expressions (explained in more detail in Chapter 5).
The media types to be searched and the scope of the search are also specified by the user. The scope of
the search can be al the documents in the database, the documents in alist, only the current document, or
documents directly linked to the current document. As mentioned before, the user specifies the media types
to be searched. In case of text, the user can select al or any number of text elements to be searched. These
include headline, abstracts, sections, paragraphs, quotes, etc. Documents’ editorial information (part of the
document attributes) such as category, location, keyword(s), source, and author(s), can also be searched. In
case of other media types (images, audio, and video), a keyword search is performed. We are ultimately
interested in enhanced searching of images, audio, and video to provide content-based searching and access
techniques. The search facility allows the user to query the database and locate specific information directly
as needed. This providesan easier and more efficient way of accessing datathan using the navigation facility
where exploration can be very time-consuming.

Thesearch facility returnsalist of objectsthat match the query. The objectsreturned can betext paragraphs
(or any text element), images, video clips, audio streams, or complete documents. The types of objectsreturns
are specified by the user during the search (they correspond to the media types to search for).

4.2.4 System Customization

Another important feature of the interface is allowing the users to customize the system. Customization
ranges over a variety of system parameters, such as defining default settings for system startup, as well as
presentation preferences.

Style Sheets

Stylesheetsstore user preferenceswith regardsto presentation of documents. Information storedinstylesheets
include defining the presentation of anchors (which are the departure pointsto hyperlinks) withina document,

attaching a font format (such as italics, bold, reversed video, etc) to an emphasized text, and selecting a
primary font for the document. Users can define different style sheets to render different presentations of the
same document. The concept of separating the document’s logical structure from the presentation structure
makes this possible and easy to handle by the system. Style sheets are stored in the database in the user
profile. Users identify one style sheet to be the default style sheet for displaying documents. However, users
can apply style sheets to documents at any time.

Media Settings

Users can aso define other presentation settings (apart from thosein the style sheets) to customize the system.
These include defining immediate playing of a video when the icon is clicked versus opening up a control

panel (similar to a VCR) to allow explicit activation of the video. Users can also define whether they want to
open windows for al of the media types contained in a document once the document is viewed or whether
they should be displayed explicitly when clicking on a specific icon. Also, when following links, users can

either choose to open every link destination in a separate window or in the same window. These settings are
called media settings as they deal with the presentation of media typesin the system. They are also saved as
part of the user profile. There isonly one set of media settings per user (in contrast to possibly several filters
and style sheets) as users are likely to want to keep a uniform setting for presenting media irrespective of

which document they are viewing.

User Profiles

User profiles contain al the user preferences. In other words, they are the central objects for system
customization. Every user of the system has a user profile which stores his/her preferences. User profiles

12

contain a list of filters, alist of style sheets, the default system filter, the default style sheet, and the media
settings. User profiles are identified by user name. When a new user connects to the system, a user profile
(with default settings) is automatically created for him/her. Users can update their profiles any time.

4.3 Generalizingthe Design

The above system design and functionality, although discussed in the framework of the news-on-demand
application, is extendable and applicable to other distributed multimedia information systems. A design
which combines hypermedia browsing capabilities with a rich visual query facility in one graphical user
interface provides adequate functionality for multimediainformation systems. Allowing users to customize
the system according to their preferences isalso adesirable design feature in al software systems. Therefore,
applications, where users need to search and browse information stored in a large multimedia database,
are good candidates for such a design. Futhermore, these applications also require the same high-level
system functionality, described earlier for news-on-demand; namely: viewing/browsing documents, filtering
documents, searching, and system customization. Although details of each function may vary depending on
the specific applicationtargeted, the higher level functionsare still thesame. For example, in most multimedia
applications, filtering documents is a desirable feature. However, the attributes on which documents can be
filtered will differ from one application to the other.

Examples of applications that can make use of this design are distant teaching applications, online
museums, and multimedialibrary systems.

13

Chapter 5

The User Interface

5.1 News-on-demand User Interface

This section describes the user interface for the news-on-demand multimediainformation system (also called
MMnews in the interface windows). This discussion covers the full functionality of the user interface; a few
of these features were not implemented in the current version.

The user interface for the news-on-demand multimediainformation system provides a number of funda-
mental functions:

o initiate a quality-of-service negotiation;

start afiltering operation in the database;

perform a search;

customize the system by defining media settings, style sheets, and filters;

retrieve and display a document;

display alist of visited documents.

System Startup

When starting a multimedia news session, the startup window (Figure 5.1) is displayed, prompting the user
to enter hig’her username and the news database file the user wishes to connect to. A user can only connect
to one news database file during a session. However, different files can be used in different sessions. Once
the user chooses Connect to connect to the database and start the session, the system proceeds to fetch the
user’s profile. The username acts as an ID for fetching the user profile. In case of new users, the system
automatically creates a new profile, with default settings, for the user in the specified database. The system
then displays the MM news launcher.

Application Launcher

The MMnews launcher is the gateway to the news-on-demand application. Through the launcher, the user
can get to all the other services and functions provided by the system. The launcher (Figure 5.2) providesa
set of menus as well as some action buttons. For an explanation of the launcher icons, refer to Figure 5.3.
The launcher menus provide users with avariety of services.

14

Usemame

ALL_MEWS.dh

Connect | Help | Guit...l

Figure5.1: MultimediaNews Startup Window

Implementation Document List Tools User Settings Help |

Y | s | & | | uuit...l

Figure 5.2 MMnews Launcher

15

«

| Mewr Filter

E New Quality of Service
Global Search

b _ R
Online Documentation

Figure 5.3: Launcher Icons

16

Implementation Menu

Implementation menus are available in all the MMnews windows. They provide debugging capabilities to

the system implementors.

Show ObjectStore query

Inspect

Document List Menu

All Documents

Filtered Documents
Empty

ToolsMenu

Category Index

History
Document Hotlist
News Today

User SettingsMenu

Filter

QofS

Media Settings

Help Menu

About MMnews
About Launcher

Online Documentation

Filter Window

Displaysthe ObjectStore queries that correspond to the various functions
performedinthat window. Queriesarediscussedinmoredetail in Chapter
7.

Inspects the Smalltalk code of that particular window.

Displaysalist of document titles of all the documentsin the database.

Displays a list of document titles of documents filtered on the default
filter specified in the user profile.

Opens a Document List window without any documents.

Displays a submenu of all the news categories in the system. By se-
lecting any item of the submenu, a document list window containing the
documents belonging to that category is displayed.

Gives a history of al the documents visited in this session. (Not imple-
mented in thisversion)

Opens the user’s document hotlist. The user can proceed by viewing any
document in that list, etc. (Not implemented in this version)

Displaysalist of document titles of news articles published today.

Displays a submenu of al the filters in the user profile. Users can edit
any of these filters or create new ones.

Displays a submenu of all the quality-of-service parameters in the user
profile. Quality-of-service is not linked to the query facility in this
version.

Opens the media settings window which alows the users to define pre-
sentation preferences.

Displays a general message about the application.
Displays help on the functions of the MM news launcher window.

Provides online help for al the system with browsing capabilities. (Not
implemented in thisversion)

As has been mentioned before, filtering is a search on document attributes. Its purposeis to reduce the scope
of the documents the user sees, thus facilitating further searching and browsing of thislimited set. A filtering
operationisdone by defining afilter object in the database and applyingit to the documentsin the database to
get areduced subset. Users can create and edit filters by means of the Filter Window (Figure 5.4). The Filter
window allows users to specify the attributes they wish to search for. These include: keyword(s), location,

17

= MMnews Launcher | |O]

Implementation Document List Tools User Settings Help I

Implementation

~ Naime

I Includelmages,

~ Keyword(s) ~ Location

~ Category

I Campus Mews :l I

~ Headline —Author(s)

~ Date

From To
Today
I 17141395 ar141395

~ Media Content

Text Don’t care Images Include

Video Don’t care Audio Don’t care

Save |

T Save as default

Apply | Hesetl Help | Close

Figure 5.4: Document Filter

18

= Mknews Launcher

Implementation Document List Tools User Settings Help |

Implementation

~Viewing Floating Media
+» Open separate window immediately

4> Open window when explicitly choosing icon or menu option

~Links to AudiofVideo
+ atart playing immediately

4> Start playing when clicking on control panel

- Links to Textflmages

4> Display in a new window

+ Display in the same window

T Save as default Apply | Reset | Help | Close

Figure 5.5: Media Settings

category, source, headline, authors, time period, and media content. In case of locations, category, and source,
the user is provided with alist of the items available in the database to reduce errors. The user only needs to
define the attributes he/she is interested in searching for; the others can be left empty. Users can specify a
filter to be the default by checking the Save As Default checkbox. Every filter must have a name which is
used as an ID for accessing thefilter in the user profile.

In Figure 5.4, the user creates afilter to retrieve news articles that were published in thefirst five months
of 1995 whose category is“Campus News’ and that include images.

Media Settings Window

The Media Settings window (Figure 5.5) alows the user to specify some presentation settings concerned
with the display of the various media typesin the system. Users select their preferences by simply checking
the corresponding checkboxes. Once the user modifies the media settings, the new settings are applied to
the system immediately. For example, if, at any point of a session, the user chooses to view floating media
(images, audio, and video) immediately when fetching the document, the system will, subsequently, display
all the images, audio, and video included in a document once this document isfetched. The user can go back
and re-modify the media settings anytime he/she wishes. Media settings can also be saved in the user profile
to become the system default.

19

Search Windows

Users can perform searches on documents' content for specific information through the Search windows.
Searches can be performed from the Application Launcher, from adocument list, or from within adocument.
The Search window (Figure 5.6) allows users to specify thetext string to search for, optionally using Boolean
combinations of strings. The agebraic operators provided by the system are AND and OR. NOT is not
provided because, in news-on-demand, the usual scenario is to search for information of interest to users,
rather than the exclusion of information. For that reason, NOT was not provided. However, incorporating that
facility is straight-forward. The system supports both conjunctive and disjunctive normal forms for search
expressions:

e (SearchTerml OR SearchTerm2) AND (SearchTerm3 OR SearchTermd)
e (SearchTerml AND SearchTerm2) OR (SearchTerm3 AND SearchTernd)

where the SearchTerms can be any textual substring surrounded by quotes (spaces can be included in sub-
strings). The algebraic operators (ANDs and ORs) are inserted when pressing the corresponding action
buttons. Brackets are automatically provided by the system once an expression is built. The Search String
is used to build sub-queries and then add them to the complete Query string. Of course, users can still build
simpler queries consisting of one search term or two. Thus, the system provides the facility for complicated
as well as simple query expressions. The user also specifies the media to be searched by checking the
corresponding checkboxes for Text, Images, Video, and Audio; at least one of the media types must be
checked. The text elements to search for should be specified by checking menu items in the Text submenu
(Figure5.7). Text elements include abstracts, headlines, paragraphs, sections, quotes, etc. The scope of the
search can be all the documents in the database, the documents in a list, the current document only, or the
documents directly linked to the current document. However, in case of the global search (initiated from the
Application Launcher - Figure 5.6), the scope isfixed to al the documents in the database.

The search facility returnsalist of objects that match the query (Figure 5.8). The objects returned can be
text paragraphs, images, audio streams, video clips, etc or complete documents. The type of objectsreturned
is dependent on the media searched, and retrieved types specified (whether Documents or Components or
both). For example, if the user checked Video as the media searched and Components for retrieval, the
search will return only video objects, but not the complete documents containing them. However, if the user
also specified Documents, the complete documents that contain video components will aso be returned.

InFigures5.6 - 5.8, theuser issearching for thewords* Waterloo” and“ Edmonton” in headlines, abstracts,
images (figure captions), video, and audio (textutal descriptions). Accordingly the search returnsthe matching
items depending on the Retrieve options. In this case, articles, abstracts, and images are returned because
the user specified both Documents and Componentsfor retrieval.

Document List Window

The Document List window displays a list of document titles. Thislist can contain al the documentsin
the database or documents matching a certain criteria (a specific filter, news today, etc). Figure 5.9 depictsa
Document List window showing documents filtered using the | ncl udel mages filter (Figure 5.4). Users
can perform several actions from the Document L ist window:

Search Allows the user to perform a search on the documents in the list, the
selected document, or al the documents in the database. The search
window and the search result are the same as those depicted in Figures
5.6-5.8.

Abstract Displaystheabstract paragraph of the sel ected documentinthelist (Figure
5.10). Viewing a document abstract helps users decide the relevance of
the document before retrieving it.

View Fetches and displaysthe selected document (Figure5.12). The document
is displayed according to the default media settings and style sheet.

20

= MMnews Launcher | g I:||

Implementation Document List Tools User Settings Help
|

Implementation

Search String

Query

| ("Materloo" OR "Edmonton™) AMD

Media Searched —— Scope - Retrieve

T Text SOmMe... —'l ¢ Current document only

o T Documents
4 Documents in list

T Images
T video
T Audio

4 Follow links 7 Components

4 all documents

ﬂpplyl Help | Close |

Figure 5.6: MMnews Global Search

21

= MMnews Launcher |- |0

Implementation Document List Tools User Setfings Help
]

Implementati p

All
- Search Strn pe i
= Ahstract

- Section
— Query - Paragraph

I { "Waterloo 4 List

- Quote
- Media Searc Emphasis pe

T Text Editorial Info... - Jauthor{s) lnt only
_ - Category L I Documents

7 Images 4 Keywaorl(s)
T video | < Location
T Audio 4 - Source

[Components

Figure 5.7: MMnews Global Search (Text Submenu)

22

= MMnews Launcher 2 |} |
Implementation Document List Tools User Settings Help | |
| = Global Document Search 2 |]

Implementation

article: New federation leaders talk guality

article: Students build house in Pennsylvania

aricle: & Waterborne Snowmobile

Article: Renison Lecture series begins

article: Profile: Jeff Voskamp

Article: Campus Day promises crowds

Abstract: Renison Lecture series begins; ("Thinking ...1ast night)

abstract: Campus Day promises crowds; (High .7 Waterloo)

Abstract: Profile: Jeff Woskamp; (Profile on..le Theatre)

Image: Mew federation leaders talk quality; uw_gazette_image_1m; (Uni...eaders
Image: Mew federation leaders talk quality; uw_gazette_image_2I; { Un..Jane & |
Image: Students build house in Pennsylvania; uw_gazette_image_4m; { Un...ingte
Image: & Waterborne Snowmobile; ww_gazette image_5Sh; (Un..Hugh & Rok)

1 -

.H.hstrac:tl View | Help | Close

Figure 5.8: Search Result

23

=

Mkdnews Launcher

Implementation Document List Tools

Implementation Filter

User Settings Help I

Qof3

& Waterbarne Snowmohile

Rew federation leaders talk quality

students build house in Pennsylvania
Frogrammers 10th in World competition

-

Seah::hl Hhstra[:tl Views | Histuryl Help | Close

Figure5.9: Document List

24

= Mknews Launcher

— Mews Document List Filtered On: Includelmages

Implementation Filt
oA Waterhorne Snowmo

Implementation

Students build house il
Programmers 10th in W Mew federation leaders tafk quafity

"Cyality” is an impaortant word to the new executive
members of the Federation of Students: quality of education,
guality of service and guality of communications.

-
Figure 5.10: Document Abstract

History Displaysalist of all the previously visited documents from that window
(Figure 5.11). The users can redisplay the abstracts or the complete
documents again. This facility helps users easily locate information
which was previously viewed.

Help Displays help on the functions of the Document List window.

Filter Menu

Displaysasubmenu of all thefiltersinthe user profile. Users can edit any of these filters or create new ones.
Filters can be applied to the document list to change the scope of the documents listed.

QofSMenu

Displays a submenu of all the quality-of-service parameters in the user profile. Quality-of-service is not
linked to the query facility in thisversion.

Document View Window

25

Minews Launcher

|

Mews Document List Filtered On: Includelmages

Implementation

i Fragrammers 10th in Warld competitian

& Waterborne Snowmaohile

Figure5.11: Document History

26

Mknews Launcher

News Document List Filtered On: Includelmages

Implementation Style Sheet Annotate View

Mew federation leaders tafk quality

Pak, Bilicic and Suska say that it is important "to hear from students” and
to do that "we need to go out of the office,” they say, something they plan to
o,

The new Federation office space in the Campus Centre should help as
well, they say. It will he more easily accessible and more visible than the old
space, especially when the "front doors" are put in place. The old space is
tucked away up some stairs from the Great Hall of the CC. The new space is
located just off the Great Hall with windows facing the ring road,

If all goes as planned, the Feds should be moving today, and the front
entrance should be ready for use by karch 15,

Fak is currently a student councillor so she’s aware of the on-campus
and off-campus issues facing the current executive. She plans to continue to
work on those issues,

“I'm ecstatic that the referendum passed,” and LY is officially & member of
Ointario University Student Alliance, Pak says. She’ll also be invalved with
Casa, the new Canadian Alliance of Student &ssociations.

The federal government has now said it Wwill keep transfer payments to

/

Figure 5.12: Document View

27

i IE — ﬁ _.‘ * — Eeaﬁ:hl Histuryl Help | Close |
v T

Images

Audio

Video

Style Sheet

Figure 5.13: Document Icons

28

The Document View window (Figure 5.12) displays the different components of a document. It provides
a set of menus and action buttons that allows users to perform severa functions. For explanations of the
different icons, refer to Figure 5.13. The text portion of the document, if any, is displayed in the window’s
text view. Users can perform a search from within a document by selecting the Search button. History and
Help are aso provided. In addition, the menus provide the following functions:

Style Sheet Menu

Displaysa submenu of all the style sheetsin the user profile. Users can edit any of these style sheets or create
new ones. Style sheets can be applied to the document view to alter the presentation of the document. The
Style Sheet window (Figure 5.14) will be opened when any of the style sheets in the menu is selected. The
user can then specify the anchor presentation (underlined, borderd, iconified, or plain), the font format (bold,
italics, or underline) attached to the emphasis elements, and the primary font (Times, Courier, or Helvetica)
used for the document. These settings as well as the options given for each setting can be extended to allow
for more presentation control.

Annotate Menu

The Annotate menu allows the users to add, delete, and edit their own annotationson the news articles. This
featureis not implemented in this version.

View Menu

Editorial Displays editorial information about the current document (Figure 5.15).
Editorial information includes the article’s headline, author(s), location,
category, media source, date, and keyword(s).

Images Displays a submenu of the names of images (if any) included in this
article. The user can display any of these images by clicking on itsname
in the images submenu. Figure 5.16 shows a displayed image from the
current document.

Video Displays a submenu of the names of video clips (if any) included in this
article.

Audio Similarly, displaysa submenu of the names of audios (if any) included in
thisarticle.

5.2 Generalizing the Interface

Similar to the system design and functionality, the general features and structure of the user interface can
be used for other multimedia information systems. In this case, the menu items and window fields will
be modified according to the specific functionality of the target application. In the current implementation,
menus are built dynamically to make it easier to modify them according to the application. Examples of such
modifications are:

e The Tools menu will contain facilities which are related to the target application, instead of the tools
provided specifically for news-on-demand. In case of online libraries, this can include subject index,
periodicalsindex, etc.

e The Filter window will show the target application’s document attributes.

¢ The Search windowswill bemodified tofit thetarget application. For example, the Text elements menu
will contain thetext elements contained inthe application’sDTD (instead of those of news-on-demand).

o Similarly, the Style Sheet window and the M edia Settings window will be modified.

29

Currently,
hecause peo)
year students
students, he

auska pla
more student
want in bars.

another tl
have their pre
facilities. "Wh
spent in Fed
aperations cc

Bilicic pla
and the safet

A5 weall sk

F N
h 4

[= MMnews Launcher |« |O]
= Hews Document List Filtered On: Includelmanes sl
= Document Views = [O]
Implementati
Implementation
MNew federai
~ Name
He plans
"the deficit is Defaultss
off-campus ti
price and en

—anchors

4 Underlined <« Bordered

+ lconified < - Plain

~Emphasis #1

+ Italics

+~ Underine

~Emphasis #2

4 Italics

+ Undetine

~ Font

4 Times

+ Helvetica

Save |

T Save as default

Apply | Hesetl Help | Close

Figure5.14: Style Sheet Window

30

= MMnews Launcher | = |f
[= Mews Document List Filtered On: Includelmanges [=]
= Document View E=

Implementation

Style Sheet Annotate View

New federat

Implementation

Jane Pak,
funiversity aff:
Yice-presiden
service and ci

Fak, Bilicir
put our persar

Eilicic and
humber of yes
familiar with e:

Universit:

Universii
Rosze

Fak., Bilicii
to do that "we

2

MNew federation leaders lafk quafity

HEADLIME: Mew federation leaders talk gquality
AUTHOR({S): Anton Micolas Monymous
CATEGORY: Campus Mews

LOCATIOMN: Waterloo

SOURCE: LW Gazette

DATE: 1 March 1935

KEYWORDS: University, federation of students.

Figure 5.15: Document Editorial Information

31

|=| MMnews Launcher

=] Document View

Implementation Style Sheet Annotate View

MNew federation feadlers talk quality

Jane Pak, the president-elect, and Rose Bilicic, the vice-president-elect
[university affairs), ran together on that platform, and Mike Suska, becoming
vice-president (operations and finance), also endorses guality of education,
gervice and communication.

Fak, Bilicic and Suska stress that they will be able to work together. "We’ll
put our personal things aside,” says Sab

Bilicic and suska are both Villag
humber of years. Pak and Suska first
familiar with each other,” they say.

Il e Peim Be mim e momeeeem dle = adivalmand = 1

University of Waterloo: Federat
University of \Waterloo: Federa
Rose

Fak, Bilicic and Suska say that i
to do that "we need to go out of the

2 (B8 >

F'S

Eearc:hl Histuryl Help | Close |

H:z H —

=

v

Figure 5.16: Viewing an Image

32

Chapter 6

The Multimedia Type System

This chapter summarizes the important features of the design of the multimedia type system for the news-
on-demand application. A full description of the type system is available in [Vit95]. Four major issues were
considered when designing the multimedia database:

¢ The different media components of the document (monomedia objects) need to be modeled and stored
in the database.

o A representation of the document’slogical structureis also needed.

o The spatia and temporal relationshi psbetween the different monomedia objects need to be represented
in the database. Thisinformationis needed for the presentation of the multimedia documents.

¢ The meta-information needed for the operation of the different system components should also be
stored in the database.

The logical design of the database uses an object-oriented approach, and follows the SGML/HyTime
document standard. SGML [ISO86] deals with textual documents whereas HyTime [1SO92] provides the
hypermedia support.

6.1 Modeling of Monomedia Objects
6.1.1 Atomic Types

Instances of the atomic types hold the raw (mono) media representation together with other parameters. In
case of non-continuous media (NCMType), such as text and images, the actual datais stored in the database.
In case of continuous media (CMType), such as audio and video, only meta-information is stored in the
database whereas the actual datais stored on the continuous media file server. Other parameters related to the
quality-of-service (QoS) and synchronizationis a so stored. The type hierarchy for the atomic typesis shown
inFigure 6.1.

6.1.2 Storage Model for Text

In the news documents, the text component of the article is richly structured, consisting of many e ements
such as. paragraphs, sections, emphasis,...etc. Instead of fragmenting the text and storing it with each of
these elements (which affects performance and poses severa other problems), we store the entire text of a
document as a single string. Particular element instances are then associated with their text by storing the
start and end positions of their text portion with respect to the document’s entire text string. These pairs of

integers (positions) are called annotations. Every document instance in the database has a base object which
points to the document’s text string and the list of annotations on it. This approach allows for a fast and

efficient way for searching and displaying text. However, updates to the text content are costly as they may
require updating all the annotations. A solution to that problem is to have the annotations relative to some

structure (such as a paragraph or section) rather than to the start of the whole text string.

33

Atom ¢

/\

NCMIy pe CMIype

AN e

| mage Text SyncText Tenpor al

Figure 6.1: Atomic Types Hierarchy

6.2 Modeling of Document Structure
6.2.1 SGML Markup and Elements

SGML is a language which describes the logical structure of a document by using markups to mark the
document’slogical elements. Hierarchies of elements can be formed. A Document Type Definition (DTD)
must be specified to determine the element types in a document, the relationships between them, and the
attributes associated with them. In case of the news-on-demand application, a DTD for multimedia news
articles is defined. Examples of logical elements in the defined DTD are: article, headline, author, date,
paragraph, figure, figure captions, etc.

Hypermedia support is provided by HyTime which defines 69 specia hypermedia elements, called
architectural forms (AF) that can beused in DTDs. These AFs define links, temporal relationships, eventsin
time, etc.

6.2.2 Type System for Elements

The type system for the logical document elementsis shown in Figure 6.2, 6.3, and 6.4. Element is subtyped
into TextElement, Structured, and HyElement. The TextElement is the supertype for all the textual

elements in the DTD that have no subelements (simple text elements). The Structured is the supertype for
textual elements with complex content models. These usually have subelements. The HyElement abstracts
all the HyTime elements. All elements maintain alink to their parent element, as well as alink to the article
that contains them.

6.3 Modeling of Presentation I nfor mation

As has been mentioned earlier, the spatial and temporal relationships between the document elements should
be represented in the database. This information is used by the synchronization routines to retrieve and
present these related objects according to a presentation scenario. The HyTime standard is followed when
defining this representation.

To represent relatively ssimple spatial and temporal constraints between document elements, the finite
coordinate space (FCS) architectural form isused. A finite coordinate space is a set of axes modeling space
andtime. The FCS we use has three axes: two for space and the third for time. An extent on the FCSis a set

El enent

Text El enent Structured HyEl enent
St ruct ur edText Article Audi oVi sual Sync

Figure 6.2: First-Level Element Type Hierarchy

Text El enent

N T

Ed| nf oEI ement Fi gcapti on Errpha3| s Quote

Loc Source \\ Enphl Enph2

Keywor ds Aut hor Subject Date

Figure 6.3: Type Hierarchy for Other Text Elements

St r uct ur edText

Listltem SECtI on Async L| st Ed| nfo Abs-p
Fi gure Par agr aph Front Matt er
I i nk- AF

Li nk

Figure 6.4: Type Hierarchy for Structured Text Elements

35

Text El ement Structured HyEIenentt\\\\\\\\\\\\\\
1//////) HyDoc_AF

St ruct ur edText
Article

I1i nK_AF

" Axis AF

Li nk - Event AF Fcs AF Av-extli st
//////f Di mepec_AF jigporal Av-fcs Av- evsched
X \

y Tinme Saudi o Spati o-t enpor al

Evsched AF

Xdi nspec Ydi nspec St ext Svi deo

Tdi mspec

Figure 6.5: Type Hierarchy for HyTime Elements

of ranges along the various axes defined. An event ismodeled as an extent on the FCS. The document instance
associates a data object with an event. The semantics and the manner in which the events are rendered are

defined by the application.

The HyTime elementsin the type system are shownin Figure 6.5. Currently, the visual querying interface
does not heavily interact with the HyTime elements. For that reason, these elements are not discussed here.

For adetailed description of them, please refer to [Vit95)].

36

Chapter 7

Querying - Linking to the Database

A unique feature of the visual query facility is its tight integration with the multimedia database system.
Each user action resultsin one or more queriesto be issued to the underlying database which is managed by
ObjectStore[OHM S92]. The visual query facility, running on client machines, issues ObjectStore queriesto
fetch the required information from the server. The ObjectStore client then returns the matching objects to
the visual query facility. It isthen the responsibility of the visua query interface to manipulate these objects
depending on the task to be achieved.

This chapter first discusses ObjectStore queries in general, and then, specifically, explains the categories
of queries used in the news-on-demand application. Example queries are given to clarify the discussion.

7.1 ObjectStore Queries

ObjectStore provides query processing facilitiesto make possible the associative access of data objectswhich
isneeded by many applications[Obj94a, Obj94b]. The ObjectStore query optimizer produces efficient search
strategies to minimize the number of objects examined in response to aquery.

A query is performed on a collection of data objects of type os_Collection or any of its subtypes. Calls
to the query function look as follows [Obj94h):

col I ecti on-expression. query (
el ement -t ype- nane,
query-string,
schena- dat abase)

where the collection-expression is the collection over which the query will execute. The element-type-
name isastringindicating the element type of the collection being queried. The query-stringisan expression
indicating the query selection criterion. An element satisfies the selection criterion if the control expression
evaluates to a nonzero int; otherwise the element does not satisfy the criterion. Query strings can contain any
integer-valued C++ expression as long as there are no variables which are not data members, and there are
no function calls except to strcmp. The schema-database is the database in which the queried collection
resides.

An example query that returns a collection of teenagers among the elements of the set people can be
performed as follows [Obj94b):

os_dat abase *peopl e_dat abase;
0s_Set <per son*> *peopl e;

0s_Set <person*> *teenagers =
peopl e- >query (
"person*",
"t his->age >= 13 && this->age <= 19",
peopl e_dat abase) ;

37

The above query() function returns a collection that is allocated on the heap. In case no elements satisfy
the selection criteria, an empty collection is returned.

Two other types of ObjectStore queries are worth mentioning here [Obj94b):

¢ Single Element Queries
Somequeriesareintended to return oneelement, rather than acollection of elements. Theos_Collection:
isused, inthat case, to return asingle element. This allows for more opportunitiesfor query optimiza-
tion. If more than one element satisfies the query, one element will be chosen at random and returned.
Callsto query_pick() are similar to callsto query().

o Existential Queries
Existential queries are used to determine whether there exists some element that satisfies the query
selection criterion in the queried collection in cases when there isno interest in the identity of such an
element (or elements). The os_Collection::exists() provides this functionaity. Callsto exists() are
similar to calls to query() and query_pick(). However, it returns a nonzero int in case of trueand 0 in
case of false.

The above query functions are used when the selection criterion is fixed and al the values are known.
In cases where this information changes or when string comparisons are part of the selection criterion,
pre-analyzed queries must be used.

Pre-analyzed Queries

When a query is performed several times, perhaps with different values or on different collections, a pre-
analyzed query should be used to reduce the query analysis cost by only analyzing the query once instead
of several times. To do this, an object of type os_coll_query is created. The query is analyzed once upon
creation. Every time the query is performed, bindings for the free variables and the function calls, as
well as the collection over which the query will run, should be provided. To create a pre-analyzed query,
one of the following member functions is used: os_coll_query::create(), os_coll_query::create pick() ,
and os_coll_query::create_exists(). These are equivaent to the query types discussed earlier. The create
functionslook as follows[Obj94al:

const os_coll _query &create (
el ement -t ype- nane,
query-string,
schemna- dat abase,
cache_quer y=0)

The element-type-name, query-string, and schema-database follow the same rules as parameters
explained earlier. The query-string, in case of pre-analyzed queries, can a so include callsto non-overloaded
global functions, provided that:

o thereturn type of the function is explicitly specified by a cast,
¢ the function references are bound during query binding time, and

o al function calls involve zero, one, or two arguments, and in case of two arguments, thefirst oneisa
pointer.

Variables can also beincluded in the query-string as long as the type of each variable (except data members)
is explicitly defined by a cast, and bound during query binding.

The cache-query is an optional flag indicating whether the query object is created persistently in the
schema-database or transiently allocated. If cache-query has zero int value, the query object is created
transiently (the default); otherwise, it is created persistently.

An example for creating a pre-analyzed query for peoplein a given age range is as follows[Obj94by:

38

‘query_pic

const os_col |l _query &age_range_query =
os_coll _query::create (
"person*",
"age >= (int) mn_age &% age <= (int) nax_age",
peopl e_dat abase) ;

Subsequently, anytime one needs to run this query, a bound query (os_bound_query) is constructed to
provide the necessary bindingsfor the pre-analyzed query:

int teenage_m n_age = 13, teenage_nax_age = 19;
os_bound_query teenage_range_query (
age_range_query,
(
os_keyword_arg("m n_age", teenage_m n_age),
os_keyword_arg("max_age", teenage_nax_age)
)
);

This creates a bound query for finding teenagers using the previously analyzed query age_r ange_query.
The bound query is then used to evaluate the query in the usual manner:

peopl e. query (teenage_range_query);

In case of function calls in the query-string, bindings are also provided for the function call as well as its
arguments (if any) in the bound query.

7.2 TheType System and Queries

The multimediatype system, described in the previous chapter, isimplemented using C++ and ObjectStore.
Each type correspondsto a C++ class. Instances of types/classes are made persistent using ObjectStore.

The extents of objects of each type are maintained to allow queries to search objects of a particular
type. Type extents are implemented as persistent parameterized collections with the type as a parameter.
Persistent names are given to the extents to identify them as database roots. The name for a type extent is
given as the type name, followed by thestring" _ext ent _r oot " . For example, the Article extent is named
"Articl eextent root". When an object of a particular type is instantiated, a reference to that object
isalso inserted initstype's extent.

In order to perform a query on objects of a particular type, the extent of this type must be fetched from
the database. For example, to fetch the Article extent, the application does the following:

os_typespec *Article_extent _type
= 0s_Set<Article*>::get_os_typespec();

0s_Set<Article *> *Articl e_extent
= (os_Set<Article*>*) (db->find_root("Article_extent_root")
->get _val ue(Article_extent _type);

Subsequently, a query can be performed on the Article_extent, which is the collection of al articlesin
the database, to get a subset of that collection.

Due to the nature of the news-on-demand application which requires that queries be performed several
times with different string values, pre-analyzed queries are created, and bindings are provided before the
guery is executed on some collection.

For example, to perform aquery tofetch all the articleswhose location (whichis an attribute of Article) is
“Edmonton”, apre-analyzed query to fetch all the articles whose location matches a specific string is created
persistently and areference to the query object is kept:

39

articleLocQuery = & os_coll _query::create (
"Article*",
"I'strcmp (location, (char *) string)",
news_dat abase, 1);

Subsequently, to fetch all the articleswhose location isthe string “ Edmonton”, the following bound query
is provided and used to perform the query:

strcpy (loc_string, "Ednonton");

0os_bound_query | ocation_query (
*articleLocQuery, (
os_keyword_arg ("string", loc_string)));

0s_Set<Article*> *matching_articles
= Article_extent->query (location_query);

For any subsequent queries of the same types (i.e., on article location), a different binding needs to be
provided before executing the query.

An alternative to storing the query object persistently and subsequently referencing it is to create it
transiently every time you need to bind and execute a query. Either of these implementation choices can
be followed. Tests to determine performance implications showed that there is hardly any difference in
performance between the two methods.

Extents for all the types in the type system are maintained and queried in the same fashion as will be
explained in the following section.

7.3 Classesof Queries

As has been mentioned earlier, al user interactions with the system are trandated into ObjectStore queries
that are executed on the database to fetch the requested results. These queries can be classified in three main
categories:

7.3.1 Querieson Articles Attributes

Queries on articles' attributes return collections of articles whose attributes match the specified values. An
example of this category of queries is querying articles whose location string is “Edmonton” which was
discussed earlier.

Other article attributes include title, category, source, authors, keywords, and date. For each attribute, a
pre-analyzed query (similartoar ti cl eLocQuer y)iscreated. Bindingsare provided before executing the
query.

These queries are used in filtering operations. Filters contain values which match some or all the different
attributes of articles. A filtering operation involves going over the different values in afilter and using these
valuesto providebindingsfor the corresponding queries. Theresult isacollection of articleswhose attributes
match the values specified in the filter.

7.3.2 Querieson User Profiles

As has been mentioned earlier, in additionto news articles, the multimedia database storesthe user profilesfor
users of the system. It isuseful to refer to Appendix A for a detailed description of the user profile attributes
and member functions.

The extent of user profiles is maintained and fetched in exactly the same fashion as the Article’s extent
explained earlier. Every user profileis uniquely identified by its username. One type of query is performed
on the extent of user profiles to return the user profile whose username matches a given user. And sinceit is

40

known that there can be at most one user profile that matches the search criteria, the query_pick() isused to
allow for more optimization. The pre-analyzed query is defined as follows:

userProfil eNamePick = & os_col | _query::create_pick (
"UserProfile*",
"I'strcmp (userName, (char *) string)",
news- dat abase, 1);

When starting a multimedia news session, the user enters his’her username and the news database file
he/she wishes to connect to (Chapter 5). The system opens the specified database file and proceeds to fetch
the user’s profile. Thisisdone by bindingtheuser Pr of i | eNanmePi ck query using a bound query to the
given username as follows:

0os_bound_query profile_pick (
user Profi |l eNamePi ck, (
os_keyword_arg("string", currentUserNanme)));

currentUserProfile = Profil e_extent->query_pick (profile_pick);

If the querying operation returns NULL, it means that the profile with the specified username does not
exist, the system creates a new user profile for thisnew user. After fetching the user profile, areference to it
is kept throughout the session.

Subsequently during a session, two other types of queries can be executed ontheuser St yl eSheet s
collection and the user Fi | t er s collection which are data members in the user profile. Each style sheet
and/or filter isidentified by a unique name which is used when querying the collections. The query scenario
issimilar to querying the user profile extent discussed above.

7.3.3 Search Queries

Search queries are queries focusing on content rather than attributes. The system alows users to search
documents as well as document components such as. abstracts, paragraphs, sections, quotes, images, audio,
video, editorial information, etc. Users also specify the scope of the search which can be al the documents
inthe database, the documentsin the current list, or the current document. Also, the types of objects returned
by the search is specified by the users to be either complete documents, document components or both.

Searching Complete Documents

As has been mentioned in the previous chapter, the text string of any article is stored as one string associated
with each Article instance in the database. If users specify that they wish to search whole documents
for a specific string and get back complete documents (and not components), the system performs pattern
matching on the text string of the article instead of searching al the individual components to reduce
unnecessary overhead, and returns the articles that contained the given string. This is done by iterating
overtheArti cl esToSear ch collectionusing an ObjectStoreos_Cursor. Each articleinthe collectionis
checked and the matching elementsare inserted in thereturned collection of articles. No other query functions
are used in this case.

Searching Text Elements

Text Elements (depicted in Chapter 6 Figures 6.3 and 6.4) include abstracts, paragraphs, sections, headlines,
guotes, emphasis elements, and editorial information.

Headlines and editorial information such as authors, keywords, etc. are modeled as attributes (data
members) of Article. Therefore, they are searched as has been explained earlier in Section 7.3.1.

Similar scenarios are followed when searching the other text elements. Therefore, an example of searching
one text element will be given here. The othersfollow the same way.

41

Assume the user wants to search paragraphs. Two pre-analyzed queries are needed to make it possible
to search for a particular string within instances of type Paragraph. The first query is executed over the
Paragraph_extent in the database and returns the paragraphs whose text stringsinclude the string the user is
searching for:

par agr aphSearchQuery = & os_coll _query::create (
" Par agr aph*",
"(int) includes ((char *)getStr(this), (char *)string",
news_dat abase, 1);

The above query returns all the matching paragraphsin the database. However, the user isonly interested
in the paragraphs which belong to the documents defined in the search scope. For that reason, the collection
returned by the first query is used by the second query which returns a subset of this collection containing the
paragraphs that belong to the articles of interest (according to the specified search scope). However, in case
the search scope is all the documents in the database, the second query is bypassed.

par agraphl nArticleQuery = & os_coll _query::create (
" Par agr aph*",
"articleEl enent == (Article *) anArticle",
news_dat abase, 1);

After looking at the query objects, it is useful to discuss the bindings which are needed to perform the
search. The par agr aphSear chQuer y isbound as follows:

os_bound_query paragraph_query (
*par agr aphSear chQuery, (
os_keyword_arg ("string", stringToSearchFor),
os_keyword_arg ("getStr", getParagraphStr),
os_keyword_arg ("includes", includes)));

0s_Set <Par agr aph*> mat chi ng_par agr aphs
= Paragraph_extent->query (paragraph_query);

There are two function bindingsand one variablebinding. Thest ri ngToSear chFor isthe stringthe user
specified during the search (optionally including Boolean combinations). get Par agr aphSt r isa global
function that returns the text of its paragraph instance argument (using annotations). Finally, i ncl udes is
aglobal function which takes two arguments the text of the paragraph and the st ri ngToSear chFor and
performs pattern matching between itstwo arguments, taking into account the Boolean combinationsof strings
which might beincluded inthe st r i ngToSear chFor . It returns nonzero if there isa match, otherwise a
Oisreturned. After providing the bindings, the bound query is executed on the Par agr aph ext ent .
In casethe search scopeisnot al thedocumentsinthedatabase (inwhich casethemat chi ng_par agr aphs

collectionisreturned by the search), the second query is also bound and executed as follows:

os_Cursor<Article*> aCursor(articlesToSearch);
Article *article;

for (article=aCursor.first(); article; article=aCursor.next()) {
os_bound_query paragraph_i nArticle (
*paragraphl nArticl eQuery, (
os_keyword_arg ("anArticle", article)));

sel ect ed_par agraphs | =
mat chi ng_par agr aphs. query (paragraph_i nArticle);
b

The application iterates over the set of ar t i cl esToSear ch which is determined by the search scope.
Each articleinstance in the collectionis used as abinding for the par agr aphl nArti cl eQuery toreturn

42

acollectionthe paragraph instances which belong to thisarticle. The returned collectionsare unioned to form
thesel ect ed_par agr aphs. Thus, the matching paragraphs which belong to articles outside the search
scope are discarded. This has to be done thisway because ObjectStore does not provide ajoin facility which
would allow for the joining of two collections.

Searching Other Media

Currently, a keyword search is provided to search images, audio, and video objects. A textual descriptionis
associated with audio and video instances. In case of images, the figure caption is used as the description of
theimage. Textual descriptionsand/or figure captions are searched the same way text elements are searched,
and the matching objects are returned.

Ultimately, we are interested in providing more powerful search capabilities for these media types,
including content-based searching and indexing of images.

7.4 Implications of Using ObjectStore

The implementation of the queriesislimited by the capabilities provided by ObjectStore as well as the design
of the type system (which isin turn also affected by ObjectStore).

Queries are performed on collections of a particular type. For that reason, extents of all the different
typesin the type system (implemented as ObjectStore parameterized collections) are maintained to allow for
guerying on a particular type. A persistent object/collection in ObjectStore can be accessed by navigation
from another object or through database entry points (database roots). Therefore, type extents are defined as
database entry pointsto allow them to be easily fetched for subsegquent queries.

ObjectStore does not support any pattern matching capabilities except for st r cnp. The query imple-
mentor has to implement routines that employ any other search techniques to be used as a selection criterion
in queries. Any such routine must be a free (global) function with at most two parameters and returing an
int-value. Bindings for each function need to be provided before executing the query. Therefore, all the
search routines were implemented foll owing these constraints.

Another disadvantage is the need to perform alot of client processing of persistent collections or objects
when performing certain tasks. For example, in case of searching text elements or continuous media de-
scriptions, first the extents of the types to be searched are queried to get the matching objects. The returned
collection contains the matching objects of a certain type in the whole database. Further client processing
must be performed to discard objects which belong to articles outside the search scope since ObjectSore
does not provide the facility to join two collections. This processing involvesiterating over the collection of
articles in the search scope and performing a query to determine the collection of objects which belong to
that article. The resulting collectionsare unioned together to get a collection of all objectsin the search scope
(See example of searching paragraphs discussed in the previous section). Thistask involvesalot of client
processing which cannot be optimized by the DBMS on the server side.

Furthermore, ObjectStore poses other problems for supporting multimedia applications as it does not
provide any inherent multimedia support such as support for modeling spatial and temporal relationships or
real time constraints on the delivery of continuousdatafor synchronization. The current design of thisproject
does not integrate the continuous media file server with the database (Chapter 3). The database only stores
meta-information in the case of continuous media, and thus does not deal with synchronization and real-time
delivery issues. Therefore, these issues were not investigated in the framework of ObjectStore. However, it
is expected that ObjectStore's functionality cannot (yet) provide adequate solutionsfor these problems.

43

Chapter 8

| mplementation | ssues

The visua query facility is made up of two components. a Smalltalk user interface and a C++ query agent
both running on the same client machine (Figure 8.1). A pipeis set up between these two components and
they communicate viaastring interface. The user interfaceisresponsiblefor handlingall interactionswiththe
user. User actionsare trandated by the Smalltalk interface into string commands which are understood by the
C++ query agent. It then communicates with the C++ program which generates queries on the ObjectStore
database. After executing the queries and getting back the results from the server, the C++ program returns
the results to the Smalltalk interface. It is again the interface’s responsibility to display these results to the
user.

8.1 The Smalltalk User Interface

The Smalltalk user interface is implemented using ParcPlace Smalltalk/VisuaWorks release 2.0 [GR8S5,
Par94a, Par94b] for the IBM RS/6000 machines.

The interface can be divided into two main subsystems (Figure 8.2):

o User Interface Subsystem
The user interface subsystem is responsible for all the user interactions. It contains all the application
model classes which are responsiblefor theinterface windows, as well as the datamodel classes which
are responsible for modeling different entities in the system such as documents, filters, style sheets,
etc. Usually every instance of an application model class is associated with an instance of a data model
class which contains necessary information needed for presentation and interaction with the user. For
example, a MMFilter object is associated with each MUIFilter object which handles thefilter view.

¢ Communication Subsystem
The communication subsystem is responsible for sending commands and receiving results from the
C++ program. It consists of four main classes:

— Session: is the class with which the user interface subsystem interacts to send and receive
information from the C++ program. Every news-on-demand session uses one instance of that
class which contains the global settings of that session. These include the username, database
filename, the global media settings, and the connection which maintains the pipe.

— Connection: handles the interaction between the session and the underlying communication
classes, namely the Converter and the Unix Pipe.

— Converter: converts the Smalltalk commands and objects into the corresponding strings which
are understood by the C++ program. For alist of these strings, please refer to Appendix B.

— Unix Pipe: maintains the pipe to the C++ program. During a news session startup, the pipe is
given the name of the C++ executable program. It startsit as a process and maintains a pipe to

8.2

Client Machine

END -] | ST Strings ObjectStore
USERS interface Client
/
(/ ~
[ObjectStore Server }
- y,

Server Machine

Figure 8.1: Visua Query Components

it. The C++ program only exits when a quit command is sent from the Smalltalk side through the
pipe.

The C++ Query Agent

The C++ query agent isimplemented using the xIC product from IBM and ObjectStore on the IBM RS/6000
machines.

It consists of the following main classes (Figure 8.3):

Pipe: isresponsible for handling the input and output to the pipe connected to Smalltalk. Currently,
standard input and output are used for this communication. However, this class can be implemented
using sockets or any other communication protocol.

Par ser: parses theinput data (commands) sent by the Smalltalk interface and generates an action code
accordingly. A list of valid commands are given in Appendix B.

DBmanager: isthe main class responsible for interacting with the ObjectStore database and returning
the results via the pipe.

Search: isasupporting class responsible for performing searches due to their complex nature.
Query: maintains all the persistent query objects which were discussed in the previous chapters.

Others: Other classes are responsiblefor maintai ning and handling specific tasksrel ated tothe database
and are used by the DBmanager class.

When the Smalltalk interface starts up the query agent as a process on the same machine, the main
program listens to input from the pipe. Once a command delimiter is reached, this signals the end of a
command. The par ser then parses the command and generates an action code. According to thisaction code,
the DBmanager executes queries on the ObjectStore database, and then returns the results to Smalltalk via
thepipe. In case of invalid commands, an error stringis sent to Smalltalk. After sending back the results, the
program continuesto listen for input.

45

User Interface Subsystem

Application Data M odel

M odel Classes Classes

Session]

7N

[Converter } [Unix Pipe J

Communication Subsystem

C++ program

Figure 8.2: Smalltalk Main Modules

46

ST interface

I
o

[DBmanager]

AN
[Seareh H Query J

=7 e

ObjectStore

Figure 8.3; C++ Main Modules

47

8.3 Alternativesfor | mplementation

The reason for implementing the visual query facility this way is that the ObjectStore database cannot be
accessed directly from Smalltalk. It is necessary to access the ObjectStore database from a C++ program.
Attempts to link Smalltalk directly to the C++ program using the C Connect interface (available with Parc-
Place Smalltalk) also failed.

Therefore, the two components communicated via a string interface. An object-oriented interface could
have been provided. However, the entire type system would have been duplicated on the Smalltalk side.
Since there is ho automatic way to do that, any change in the type system on the C++ side would result in
a modification to the Smalltalk implementation which could result in maintenance problems. Furthermore,
this approach defeats the ObjectStore philosophy which fetches objects and components from the server to
the client only when needed. For these reasons, a string interface which hides specific implementation details
of the type system from the Smalltalk side and only sends needed information for presentation and user
interaction purposes was chosen. A major advantage to this approach is that the C++ program can be used
with any interface that communicates following the same format. Details of the underlying database design
arecompletely transparent totheinterface. Likewise, if the underlying database and the C++ program change,
thereisno need to change the user interface aslong as the string interface remains unchanged. A disadvantage
is the overhead encountered from parsing input on both sides and fetching additional information in some
cases. Some work can be done to optimize the communication between the two components.

A completely different alternative to this approach isto develop the user interface in C++ using the AIX

Interface Composer. This alternative was not chosen due to time constraints and the high learning curve of
the AIX interface builder as compared to the relatively easier Smalltalk interface builder.

48

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Thisthesisdescribes avisual query facility, built on top of a distributed multimediadatabase, to allow usersto
accessthe database. Thisfacility concentrates on providing querying capabilitieswhich are necessary to allow
users to directly and efficiently retrieve needed information from the database. Some browsing capabilities
are also provided to alow users to browse through information in the database. The target application is
news- on-demand, a distributed multimedianews application. However, the same design and implementation
principlesof the visual query facility can be easily extended and applied to other multimediaapplicationssuch
as online museums and multimedialibrary systems. Thus, the issuesinvestigated in thisthesis can contribute
to user interfaces of a variety of multimediainformation systems.

The identifying and novel features of thiswork are:

e The tight integration of the user interface with a multimedia database.

¢ A rich querying facility coupled with a browsing facility.

o A visuad interface that relieves users from having to type ObjectStore queries (which can be difficult).

e The separation of the logical document content from presentation (by making use of style sheets) to
provide a completely customizable system to the user.

ParcPlace Smalltalk/VisualWorks and ObjectStore were used for the implementation of the system.
ParcPlace Smalltalk/VisualWorks provided an effective tool for building the graphical user interface. A
prototype of the system was built early onin the project. The system then evolved gradually from the initial
prototype as requirements and specifications became clearer.

9.2 Unimplemented Features

Some of the features included in the design of the user interface are not implemented in thisversion. These
features are:

¢ A hypermedia browser which enables users to navigate from one news document to others.

o User Annotationswhich allow usersto add their own comments on the news items they read and relate
them to other items.

o Hotlist which alows users to add articles of interest to their hotlist for faster access.

¢ Online Documentation: Although context-sensitive help for all MMnews windows is provided, an
online hypertext help document is not implemented in thisversion.

49

9.3 Future Enhancements

Thiswork isonly an initial step in investigating the development of query languages, access primitives, and
visua query facilitiesthat allow for sophisticated querying of multimedia databases. Thus, the visual query
facility can be enhanced in a variety of ways:

o A first step towards enhancement is to implement the features discussed in the previous section to
provide a richer more complete query interface for news-on-demand users.

¢ Aninteresting enhancement would beto providethe queryingfacility through commonly used browsers
such as Netscape. Due to the division of the query facility into the Smalltalk user interface and the
C++ query agent, it would be easy to substitute the Smalltalk user interface with Netscape forms that
can then communicate with the query agent using the same string interface. There would be no need
to change anything on the query agent side. Other user interfaces can also be used as long as they
communicate with the query agent using the defined string communication interface (Appendix B).

o Currently, thevisual query facility all ows usersto access information stored in one ObjectStore database
file. Providing access to multiple databases would provide added value to the system. Adding this
capability is very straight-forward. The user interface would allow usersto specify multiple databases
which would be opened and maintained by the query agent. Each string request sent from the user
interface will have to specify the target database(s) to perform the query on.

e Asitis now, the visual query facility provides complicated content searches for text elements in a
document. In case of other media types, only limited keyword searches are provided. An interesting
enhancement would be to provide more sophisticated searches for different mediatypes. Thisincludes
providing, in the long run, content-based indexing and querying of images. Extensions to video
searching can include providing annotations for video scenes instead of one textual description of the
whole video clip. Searching audio can also be enhanced by providing textual scripts of the audio
recordings (possibly generated automatically through speech recognition technology).

o Thevisua query facility istightly integrated with a specific multimediatype system [Vit95], generated
from a specific DTD for news articles. As we go to the meta level to provide corresponding type
systems for different DTDs and applications, parallel work can be done on the visual query facility to
produce an equivalent queryinginterface for the different type systems supported. Providingaquerying
interface that spans over multiple DTDs is another interesting step in this direction. However, it poses
several questionsin terms of the generality needed to achieve such atask.

o Furthermore, the querying facilities provided are limited by the support provided by ObjectStore which
is aclosed DBMS with no inherent support for multimedia. Research work is currently conducted at
the Laboratory for Database Systems Research, University of Alberta, to develop an extensible OBMS
that has inherent multimedia support. In the long run, TIGUKAT will replace ObjectStore. With the
development of this open system, investigating more sophisticated query facilities and languages will
be possible.

50

Bibliography

[ACMZ91]

[ACMZ92]

[Adag3]

[ADE93]

[AMY88]

[BD92]

[Bud9l]

[Cru92]

[D+91]
[DG92]

[Emes9)]

[Fero4]

[FSO1]

[GOCt92]

[GR85]

[GT94]

E. Andonoff, M. Canillac, C. Mendiboure, and G. Zurfluh. Hypertext interface for an object-
oriented database. In Intelligent Text and Image Handling. RIAO ' 91, pages 843-862, 1991.

E. Andonoff, M. Canillac, C. Mendiboure, and G. Zurfluh. OHQL: A hypertext approach for
mani pulating object-oriented databases. |nformation Processing & Management, 28(5):567—
579, 1992.

JA. Adam. Interactivemultimedia: Special report. | EEE Spectrum, pages 22—-39, March 1993.

I. B. Arpinar, A. Dogac, and C. Evrendilek. MoodView: an advanced graphical user interface
for OODBMSs. SGMOD Record, 22(4):11-18, Dec. 1993.

R. M. Akscyn, D. L. McCracken, and E. A. Yoder. KMS: A distributed hypermedia system for
managing knowledge in organizations. Communications of the ACM, 31(7):820-835, 1988.

M.M. Blattner and R.B. Dannenberg, editors. Multimedia Interface Design. New York, NY:
ACM Press, 1992.

T. Budd. An Introduction to Object-Oriented Programming. Addison Welsey Publishing Co.,
1991.

I.F. Cruz. DOODLE: A visual langauge for object-oriented databases. In Proceedings of the
1992 ACM SIGMOD. International Conference on Management Data., pages 71-80, 1992.

O. Deux et a. The O2 system. Communications of the ACM, 34(10):34-48, October 1991.

N. Dimitrovaand F. Golshani. EVA: a query language for multimediainformation systems. In
Multimedia Information Systems - An International Workshop, pages 1-20, February 1992.

S. L. Emerson. The Practical SQL Handbook: Using Structured Query Language. Addison-
Wesley Publishing Company, Inc., 1989.

F. M. Ferrara. The KIM query system. an iconic interface to the unified access to distributed
multimedia databases. S GCHI Bulletin, 26(3):30-39, July 1994.

H.P. Frel and P. Schauble. Designing a hypermediainformationsystem. In DEXA 91. Database
and Expert Systems Applications, pages 449454, 1991.

C. Goble, M. O’ Docherty, P. Crowther, M. Ireton, J. Oakley, and C. Xydeas. The manchester
multimedia information system. In Advances in Database Technology - EDBT '92, pages
39-55, 1992.

A. Goldberg and D. Robson. SmallTalk-80: The Language and its Implementation. Addison
Wesley, 1985.

K. Grgnbak and R.H. Trigg. Design issues for a dexter-based hypermedia system. Communi-
cations of the ACM, 37(2):40-49, February 1994.

51

[Hal8g]

[Hay93]
[Her94]
[HK92]
[HKRT92]
[1S086]
[1S092]
[K+90]
[KFS90]

[KKL91]

[LGY4]

[LLOWO1]

[Luc90]

[MS87]

[Nie90g]
[Nie90b]

[Nie91]

[Obj944]

[Obj94b]

[0'D93]

F. G. Halasz. Reflections on notecards. Seven issues for the next generation of hypermedia
systems. Communicationsof the ACM, 31(7):836-852, 1988.

R. Haykin. Demystifying Multimedia. Apple Computer, Inc., 1993.
E. Van Herwijnen. Practical SGML - Second Edition. Kluwer Academic Publishers, 1994.

K. Hirataand T. Kato. Query by visual example - content based image retrieval. In Advances
in Database Technology - EDBT ' 92. Proceedings 3rd International Conference on Extending
Database Technology, pages 56-71, 1992.

B.J. Haan, P. Kahn, V.A. Riley, J.H. Coombs, and N.K. Meyrowitz. IRIS hypermediaservices.
Communicationsof the ACM, 35(1):36-51, January 1992.

International Standards Organization. Information Processing — Text and Office Information
Systems — Standard Generalized Markup Language (1SO 8879), 1986.

International Standards Organi zation. Hypermedia/ Time-based Structuring L anguage: HyTime
(1SO 10744), 1992.

W. Kim et a. Architecture of the Orion next-generation database system. |EEE Transactions
on Knowledge and Data Engineering, 2(1):109-124, March 1990.

T. Kato, K. Fujimura, and H. Shimogaki. Trademark: multimediaimage database system with
intelligent human interface. Systems and Computersin Japan, 21(11):33-46, 1990.

D. A. Kem, K.-C. Kim, and V. Lum. A friendly and intelligent approach to data retrieval in
amultimediadbms. In DEXA 91. Database and Expert Systems Applications, pages 102-111,
1991.

L. Li and N. Georganas. MPEG-2 coded- and uncoded-stream synchronization control for
real-time multimedia transmission and presentation over B-ISDN. In ACM Multimedia 94.
Proceedings of Second ACM International Conference on Multimedia, pages 239246, 1994.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Commu-
nications of the ACM, 34(10):50-63, October 1991.

D. Lucarella. A model for hypertext based information retrieval. In Hypertext: Concepts,
Systems and Applications. Proceedings of the European Conference on Hypertext, pages 81—
94, November 1990.

D. Maier and J. Stein. Research Directionsin Object-Oriented Programming, pages 355-392.
MIT Press, Cambridge, MA, 1987.

J. Nielsen. Hypertext & Hypermedia. San Diego, CA: Academic Press, Inc., 1990.

J. Nielsen. The art of navigating through hypertext. Communicationsof the ACM, 33(3):296—
310, March 1990.

J. Nielsen. Usability considerations in introducing hypertext. In H. Brown, editor, Hyperme-
dia/Hypertext And Object-Oriented Databases, pages 3—-17. Chapman & Hall, 1991.

Object Design, Inc., Burlington, MA, USA. ObjectStore Reference Manual for OS2 and
AIX/XIC Systems, January 1994.

Object Design, Inc., Burlington, MA, USA. ObjectSore User Guide for OS2 and AIX/XIC
Systems, January 1994.

M. H. O’ Docherty. A multimediainformation system with automatic content retrieval. Master’s
thesis, VictoriaUniversity of Manchester, Department of Computer Science, February 1993.

52

[OHMS92]

[Ont91]
[Par94a)
[Par94b]
[Pa91]

[VBD+93]
[Vit95]

[VOSEM94]

[Wil91]

J. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query processing inthe ObjectStore
database system. In Proceedings of the 1992 ACM S GMOD International Conference on
Management of Data., pages 403412, 1992.

Ontologiclnc., Burlington, MA, USA. ONTOSDevel oper’s Guide, Version 2.0, February 1991.
ParcPlace Systems, Sunnyvale, CA, USA. VisualWorks User’s Guide, August 1994.
ParcPlace Systems, Sunnyvale, CA, USA. Visual\Works Cookbook, July 1994,

C. Plaisant. An overview of Hyperties, its user interface and data model. In H. Brown, editor,
Hypermedia/Hypertext And Object-Oriented Databases, pages 17—31. Chapman & Hall, 1991.

A. Vogel, G.V. Bochmann, R. Dssouli, J. Gecsel, A. Hafid, and B.Kerheve. On QoS negotiation
in distributed multimedia applications. Internal report, Université de Montréal, Canada, 1993.

C. Vittal. An object-oriented multimedia database system for a news-on-demand application.
Master’sthesis, University of Alberta, Department of Computing Science, 1995.

C. Vittal, M.T. Ozsu, D. Szafron, and G. El-Medani. The logical design of a multimedia
database for a news-on-demand application. Technical report, Department of Computing
Science, University of Alberta, 1994.

I. Williams. Hypermedia for multi-user technical documentation. In H. Brown, editor, Hyper-
media/Hypertext And Object-Oriented Databases, pages 17-31. Chapman & Hall, 1991.

53

Appendix A

User Profile Class Definitions

User Profile

Purpose

Handles al the settings specified by the user.

Attributes

userName
userFilters
userStyleSheets
defaultFilter
defaultStyleSheet
defaultMediaSettings

M ethods

get_.userName
get_defaultFilter
get_defaultStyleSheet
get_defaultMediaSettings

set_defaultMediaSettings

add_to_userFilters

add_to_userStyleSheets

Filter

Purpose

String

Set of filters

Set of style sheets

Ref erence to the default Filter

Ref erence to the default style sheet
Reference to the default nedia settings

Ret urns the user nane

Returns a reference to the default filter
Returns a reference to the default style sheet
Returns a reference to the default nedia
settings

Sets the defaul t Medi aSettings to the given

obj ect

Adds the given filter to the set of userFilters

Adds the given style sheet to the
user Styl eSheet s

Handles document filters defined by users

Attributes

name
keywords
location

String
String
String

category String

source String

headline String

authors String

fromDate String

toDate String

checkText {i ncl ude, exclude, dontCare}

checklmages {i ncl ude, exclude, dontCare}

checkVideo {i ncl ude, exclude, dontCare}

checkAudio {i ncl ude, exclude, dontCare}

Methods

asString Returns the values of the filter attributes in
the forma string.

get_name Returns the nane of the filter

get_keywords Returns the keywords string

get_location Returns the location string

get_category Returns the category string

get_source Returns the source string

get_headline Returns the headline string

get_authors Returns the authors string

get_fromDate Returns the fronDate string

get_toDate Returns the toDate string

get_TextInclude Returns the checkText val ue

get_Imagesinclude Returns the checkl nages val ue

get_Audiolnclude Returns the checkAudi o val ue

get_Videolnclude Returns the checkVi deo val ue

Style Sheet

Purpose

Contains style sheet information specified by the user. Style sheets are used to display documents.

Attributes

name String

anchor {underlined, bordered, iconified, plain}

emphasisl {italic, bold, underline}

emphasis2 {italic, bold, underline}

font {tinmes, courier, helvetica}

Methods

asString Returns the values of the style sheet attributes
inthe forma string.

get_name Returns the nane of the style sheet

get_anchor Ret urns the anchor val ue

get_emphasis(emphNo) Returns t he enphasis val ue

get_font Returns the font val ue

55

Media Settings

Purpose

Contains the media settings specified by the user.

Attributes

viewFloatMedia
linkAudioVideo
viewTextimage

Methods
asString
get viewFloatMedia

get_linkAudioVideo
get.viewTextimage

{imedi ate, explicit}
{imedi ate, explicit}
{i NNewW ndow, i nSameW ndow}

Returns the values of the nmedia settings
attributes in the forma string.

Returns the vi ewrl oat Medi a val ue
Returns the |inkAudi oVi deo val ue
Returns the vi ewText| nage val ue

56

Appendix B

Valid Command Strings

String commands are sent from the Smalltalk interface to the C++ engine. Any valid command can be divided
into three main parts:

e Command Head: contains the name of the command. It must prefixed by M C_ and must belong to the
set of valid commands listed below.

o Name Argument (optional): contains the name of afilter, style sheet or document depending on the
particular command. It is prefixed by MN_.

o Data Argument (optional): contains information needed by the command. For example, in case of
saving afilter, the values of thefilter’sfields are sent in the data argument. It is prefixed by MD_.

Field delimiters are used between the different parts of the command and a command delimiter is used at
the end of the command string. Thus, the general format of a command is as follows:
M C_CommandHead; M N_Name; M D_Data!

In the list of commands, italicized words mean that they are a description of a particular string and that the
actua string isused in the real implementation.

e MC_getAllDocList!
Returns alist of document entriesin the database, each of which followsthe format:
DoclD; Headline

¢ MC_getCategoryL.ist!
Returnsalist of categoriesin the database.

o MC_getDefaultFilterName!
Returns the name of the default filter in the current user profile.

o MC_getDefaultStyleSheetName!
Returns the name of the default style sheet in the current user profile.

¢ MC_getDocAbstract; MN_DoclID !
Returns the abstract text of the given document.

¢ MC_getDocAnnotations, MN _DoclD !
Returns a list of annotations of the given document. Each annotation is represented by two integers:
the starting position and the end position of the annotation object.
Frontmatter annotation
Number of section annotations

57

Section annotationlist

Number of paragraph annotations
Paragraph annotationlist

Number of figure annotations
Figure annotation list

Number of figure caption annotations
Figure caption annotation list
Number of list annotations

List annotationlist

Number of list item annotations
List item annotation list

Number of emphasisl annotations
Emphasisl annotationlist

Number of emphasis2 annotations
Emphasis2 annotationlist

Number of quote annotations
Quote annotationlist

Number of link annotations

Link annotation list

MC_getDocAudioList; MN_DoclID !
Returnsalist of the names of the audio components of the given document.

MC_getDocEdinfo; MN_DoclD !

Returns alist of the editorial information of the given document:
Headline

Location

Source

Category

Date

Keywords

Authors

MC_getDoclmage; MN_DoclD; MD_ImageName !
Returns the size of the image, followed by the binary data of the actual image.

MC_getDoclmageList; MN_DoclD !
Returns alist of the names of the images of the given document.

MC_getDocString; MN _DoclD !
Returnsthe text string of the given document.

MC_getDocVideoList; MN_DoclID !
Returns alist of the names of the video components of the given document.

MC_getFilterData; MN_FilterName !

Returnsthe filter (asString) with the given name. The filter data followsthis format:

keywords, location, category, source, headline, authors, fromDate, toDate, checkText, checklmages,
checkVideo, checkAudio

The checkText, checkimages, checkVideo, checkAudio return one of three strings: include, exclude,
dontCare.

MC_getFilterDocList; MN_FilterName !
Returnsa list of document entriesfiltered on the filter with the given name. Entriesfollow thisformat:
DoclD; Headline

MC_getFilterList!
Returns alist of filter names in the current user profile.

58

e MC_getLocationList!
Returns alist of locationsin the database.

¢ MC_getMediaDatal
Returns the media settings (asString) in the current user profilein the following format:
viewFloatMedia, linkAudioVideo, viewTextlmage
The first two fields return one of two strings: immediate or explicit. The last field returns either
newWindow or sameWindow.

¢ MC_getSearchResult; MN_FilterName-OR-Docl D; M D_queryString, searchText, searchAll Text, search-
Headlines, searchAbstracts, searchSections, searchParagraphs, searchLists, searchQuotes, searchEmpha-
sis, searchAuthors, searchCategory, searchKeywords, searchLocation, searchSource, searchlmages,
searchAudio, searchVideo, searchScope, retrieveDocuments, retrieveComponents !
The FilterName-OR-DoclID is used to determine the scope of the search. In case of searching al the
database, thisfield isignored. All the search and retrieve fields are either true or false depending on
whether the user wishes to search/retrieve these object types or not.
Returns a list of objects which match the query string. The type of the objects returned is dependent
on the search and retrieve fields. If the user is searching all the media types and retrieving al the
components, the following is returned:
Number of Articles
'DoclD;Headline’ list
Number of Headlines
Headlineslist
Number of Abstracts
'DoclD; Headline, Abstract summary’ list
Number of Sections
'DoclD; Headline, Section summary’ list
Number of Paragraphs
'Docl D; Headline, Paragraph summary’ list
Number of Quotes
'Docl D; QuoteName; Headline, Quote summary’ list
Number of Emphasis
'Docl D; Headline, Emphasis summary’ list
Number of Authors
Authors list
Number of Categories
Category list
Number of Keywords
Keyword list
Number of locations
Location list
Number of Source
Source list
Number of Images
'Docl D; ImageName; Headline, ImageName, Summary’ list
Number of Audio
'Docl D; AudioName; Headline, AudioName, Summary’ list
Number of Video
"Docl D; VideoName; Headline, VideoName, Summary’ list

e MC_getSourcelList!
Returns a list of media sourcesin the database.

o MC_getStyleSheetData; MN_StyleSheetName !
Returnsthe style sheet (asString) with the given name. The data followsthis format:
anchor, emphasisl, emphasis2, font

59

The anchor string can be: underlined, bordered, iconified, or plain. The emphasisl and emphasis2
string can be: italic, bold, or underline. The font string can be: times, courier, helvetica

MC_getStyleSheetL ist!
Returns a list of style sheet names in the current user profile.

MC_setFilterData; MN_FilterName; MD _keywords, location, category, source, headline, authors,
fromDate, toDate, checkText, checklmages, checkVideo, checkAudio !
Returns a positive acknowledgment or an error.

MC_setMediaData; MD_viewFloatMedia, linkAudioVideo, viewTextl mage !
Returns a positive acknowledgment or an error.

M C_setStyleSheetData; MN_StyleSheetName; M D_anchor, emphasisl, emphasis2, font !
Returns a positive acknowledgment or an error.

MC_quitProgram!
Returns a string indicating that the program is terminated.

60

Appendix C

Glossary

Abstraction

Annotation

Attribute
Browsing
ContinuousMedia

Customization

Document

DTD

Filter

Inheritance

Hypermedia

Hypertext

HyTime
Media Settings

Monomedia

The ability to encapsulate and isolate design and execution information of an object,
providing only a set of operationsto interface with this object [Bud91].

A pair of integers defining the start and the end position of atext element with respect
to its document’s entire text string. Annotations are used to avoid fragmenting the
text with each element.

A qudlifier indicating a property of an element other than its type and its content
[Her94]. For instance, the date of publication is an attribute of a news article.

Looking through material in acasual manner; usually to locate information of interest
for further investigation.

Mediatypes with real-time constraints such as audio and video. Real-time constraints
are needed for synchronization and playback.

Allowing users to define their own settings of the system according to their prefernce.

A collection of related information nodes containing any combination of mediatypes:
text, images, audio or video. A multimedia news article is a document according to
this definition.

Document type definition. The definition of markup rules and constraints defined for
agiven class of SGML documents [Her94].

To specify the scope of documents a user views, depending on certain criteria such
as keyword(s), location, headline, etc. This is done by defining filter objects and
applying them to the database. The result is a set of documents whose attributes
match the ones specified by the user in thefilter. In other words, filtering is a search
on document attributes, rather than content.

The property of objects by which instances of a class can have access to data and
method definitions contained in a previously defined class, without those definitions
being restated [Bud91].

Generalization of hypertext (see below) where nodes may contain any media type:
text, images, audio, and video.

A non-sequential organization of text which presents several options for readers to
follow. Pieces of information (nodes) are linked to other nodes containing related
information.

The International Standard for Hypermediaand Time based systems, 1 SO 10744:1992.

Store presentation settings concerned with the display of the various media typesin
the system.

Objects containing only one mediatype. For example, text objects or audio streams.

61

Navigation

News Providers

Non-Continuous Me-
dia

Pipe
Quality-of-service
management

Query

Search

SGML

Syle Sheet

Type System

User Profile

Traversing throughinformation by following hypertext linksfrom one nodeto anothe.

Agencies responsible for producing multimedia news articles and inserting them in
the database. Examples od news providers are television networks, newspapers,
magazines, and wire services.

Static media types that do not have any rea-time requirements, such as text and
images.

A connection between two processes that takes the output of one process and pump it
as input to the other.

Ensures that a satisfactory quality-of-service is provided to users of multimedia,
especialy with real-time delivery and quality of continuous media.

A request that is performed on the database to retrieve specific information matching
a certain selection criterion.

Allowsusersto search documents’ content for specificinformation. Thesearch criteria
is defined by a search string, the scope of the search, the media types to be searched,
and the returned types.

The Standard Generalized Markup Language, SO 8879. Defined by the standard
as “A language for document representation that formalizes markup and frees it of
system and processing dependencies.” An abstract language, with which an arbitrary
number of markup languages may be defined [Her94].

Stores user preferences with regards to presenation of documents. Thisincludes font
formats, presentation of anchors, indentation of paragraphs, etc.

A hierarchy of types corresponding to the logical elements in the system. The type
system defines the types of objects and the relationships between them needed to
model the target application.

Contains all user preferences. User profiles are used for system customization. They
contain filters, style sheets, media settings, and system defaults.

62

