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Abstract

The role of surface charge heterogeneity on particle deposition and particle tra-
jectory has been investigated in the vicinity of a heterogeneous surface inside
the radial impinging jet flow geometry. The charge heterogeneity is modelled as
concentric circular bands bearing different surface charges. Particle deposition
is studied in context of Lagrangian approach (trajectory analysis) as well as Eu-
lerian approach (convection-diffusion equation). The presence of surface charge
heterogeneity on the substrate gives rise to an oscillating particle trajectory
near the collector surface. It was observed that when the collector is initially
fully unfavorable, the presence of charge heterogeneity in form of a small frac-
tion of favorably charged bands enhances the deposition rate substantially. In
contrast, when the collector is initially fully favorable, the presence of charge
heterogeneity in form of a small fraction of unfavorably charged bands does not

affect the particle deposition rate significantly.
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Chapter 1

Introduction

1.1 Background and Overview

Particle transport from flowing suspensions onto solid substrates (known as
collectors) followed by the attachment of these particles to the collector surface is
defined as particle deposition. Particle deposition is of great importance in many
natural and industrial processes [Hirtzel and Rajagopalan, 1985, Adamczyk,
1989] such as deep bed filtration [Rajagopalan and Tien, 1977, Wnek et al.,
1975], paper making, detergency and biological applications such as adhesion
of bacteria and viruses to human organs [Bitton et al., 1991]. Consequently,
particle deposition is receiving attention from both an applied [Boluk and van de
Ven, 1990, McCarthy, 1989] and a fundamental point of view [Adamczyk and
van de Ven, 1981, Adameczyk, 1989]. Different flow regimes have been developed
to study particle deposition under controlled mass transfer conditions such as
the rotating disk system [Dabros and Adamczyk, 1979, Prieve and Lin, 1980},
both the radial and slot impinging jet geometry [Adamczyk et al., 1986], and
the parallel plate flow system [Adamczyk and van de Ven, 1981].

The impinging jet system has been a popular tool for studying particle de-
position in various engineering and applied science disciplines [Adamczyk et
al., 1986, Elimelech, 1995]. There are two types of impinging jet system, namely
slot impinging jet system and radial impinging jet system. A schematic rep-

resentation of the radial impinging jet system is shown in Figure 1.1. In the
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radial impinging jet system, a fluid stream impinges vertically on a flat surface
(collector) and flows away radially in all directions. The flow configuration in
the impinging jet system can be categorized to two distinctive regions. In the
vicinity of the stagnation point, the fluid velocity is almost normal to the col-
lector surface whereas far from the stagnation point, the fluid velocity is almost
parallel to the collector surface. This attributes a unique feature to the imping-
ing jet system. Due to the nature of the fluid velocity, the thicknesses of the
hydrodynamic and diffusion boundary layers are constant in the vicinity of the
stagnation point. This means that in the vicinity of the stagnation point, there
is a uniform probability for particle deposition on the collector surface while far
from the stagnation point, the probability of particle deposition becomes depen-
dent on the position over the collector surface and is not uniform anymore. As
a result, the particle deposition in the impinging jet system manifests both uni-
form and nonuniform deposition behaviours close and far from the stagnation
point. Regarding the experimental studies, in an impinging jet flow system, it is
possible to observe the deposition of the particles directly by microscopes when
a transparent collector is being used. Furthermore, the deposition of particles
inside an impinging jet flow can be considered as an approximation for depo-
sition in more complicated systems such as spherical or cylindrical collectors.
Different theoretical and experimental studies have been conducted to investi-
gate deposition of particles inside the impinging jet system [Dabros and van de
Ven, 1983, Adamczyk et al., 1986].

In context of theoretical studies, there are two approaches to the study of
particle deposition [Masliyah, 1994, Adamczyk, 1989]. The first method is the
Eulerian approach where the distribution of particles in space is evaluated from
a continuum picture. The generalized convection-diffusion equation is solved
for the colloidal particles subjected to appropriate boundary conditions. The
second method is the Lagrangian approach. Here, the attention is focused on a
single particle trajectory based on Newton’s second law of motion. The particle

trajectories are obtained by solving the trajectory equations for colloidal parti-
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cles. This leads to determination of limiting trajectories, which can be employed
to determine the particle deposition values. Since the trajectory analysis is de-
terministic, most of the literature studies employing the Lagrangian approach
do not consider the Brownian motion of the particles due to the mathematical
complexities involved. However, if the Brownian effect is included in trajectory
analysis, both Eulerian and Lagrangian approaches should, in principle, yield
similar result [Masliyah, 1994, van de Ven, 1989].

Most of the deposition related studies in literature have investigated par-
ticle deposition over homogeneous surfaces. However, solid surfaces in many
engineering and natural systems exhibit both physical and chemical hetero-
geneities [Vaidyanathan and Tien, 1991, Kihira et al., 1992, Song et al., 1994,
Shellenberger and Logan, 2002]. The presence of physical heterogeneity results
in surface roughness which has been the subject of interest in studying the
particle deposition [Shellenberger and Logan, 2002]. The chemical heterogene-
ity on the other hand, generally results in an uneven or heterogeneous surface
charge distribution at various length scales [Richmond, 1974, Khachatourian
and Wistrom, 1998, Vreeker et al., 1992]. A schematic representation of a surface
containing charge heterogeneity is shown in Figure 1.2. In this figure, the surface
contains two types of surface charges, namely favorable and unfavorable with
respect to particle deposition. Throughout this study, the negatively charged
region acts as a unfavorable region and positively charged region acts as a favor-
able region with respect to deposition. Some of the sources of chemical hetero-
geneity include differences in constituent minerals, chemical imperfections, and
surface bound impurities [Walz, 1998]. Numerous large scale studies on particle
deposition and capture onto charge heterogeneous substrates, generally pertain-
ing to porous media transport, have been conducted [Elimelech, 1995]. Most
of the theoretical studies on this subject resort to a continuum type approach
in describing the charge heterogeneity of the substrate. In other words, the ex-
isting modelling techniques do not exactly track the distribution of the charge

heterogeneity on a substrate, instead focusing on a macroscopic definition of
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heterogeneity based on surface area fractions of the collectors bearing different
charges [Song et al., 1994]. A common approach is to define two types of sur-
face charge locations on a given collector (for instance, positive and negative),
assigning the surface area fraction occupied by one type of charge, and using a
two site averaging process generally referred to as the patchwise heterogeneity
model [Song et al., 1994]. Such an approach works remarkably well for granular
porous media, where the large length and time scales of the transport process
are amenable to macroscopic spatial averaging.

More recently, it has become increasingly clear that while patchwise hetero-
geneity models provide reasonably accurate description of macroscopic charge
heterogeneity, it is not very accurate when the charge heterogeneous patches
have a comparable length scale to the particle size [Elimelech et al., 2003]. In
most microfluidic and microscale transport processes, we may encounter sur-
faces where the charged patches have dimensions comparable to the suspended
particles. In such cases, the coupled influence of particle-substrate colloidal in-
teractions and the hydrodynamic forces imposed by the flow field are suscepti-
ble to considerable modifications due to the influence of chemical heterogeneity.
This implies that the simple averaging methods such as patchwise heterogeneity
model may not be adequate to predict the particle deposition in the presence
of micro-scale charge heterogeneity. It is therefore of great importance from
both theoretical and practical perspective, to fundamentally explore the effects
of micro-scale charge heterogeneity on governing mechanisms of the particle

deposition process.

1.2 Objectives and Scope

Naturally occurring deposition substrates generally contain surface charge het-
erogeneity that are randomly distributed, of arbitrary geometrical shapes, and
having widely varying chemical properties. Consequently, it becomes extremely

difficult to systematically study the influence of charge heterogeneity on the
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particle deposition behavior on to such substrates. In this context, it might be
pertinent to systematically create such heterogeneity by chemically patterning
homogeneous model substrates. Studying particle deposition on to such a model
substrate where the heterogeneity is artificially created can lead to considerable
insight regarding how the deposition behavior is influenced by the presence of
surface charge heterogeneity. If the distribution of the heterogeneous patches
is known a priori, elucidation of their influence on particle deposition becomes
more tractable.

In this thesis, we develop a theoretical model to investigate the effect of
microscopic surface charge heterogeneity on particle trajectories and particle
deposition inside the radial impinging jet system. The objectives of this thesis

can be summarized as

1. In order to systematically investigate the role of charge heterogeneity on
the particle deposition behavior, the charge heterogeneity on the collector
surface is modelled as alternate stripes or bands of microscopic dimen-
sions bearing positive and negative charge. In a radial impinging jet flow
context, such stripes can be construed as concentric circular rings bearing

different surface potentials.

2. The role of hydrodynamic interactions in the particle deposition process is
investigated by first solving the velocity field in the whole radial impinging
jet geometry. Due to the nature of the fluid velocity in this geometry, the
collector in the impinging jet system acts as a uniform collector close to
the stagnation point whereas far from the stagnation point, it acts as a
non-uniform collector with respect to particle deposition. This enables us
to investigate the role of surface charge heterogeneity in the scope of both

uniform and non-uniform collectors.

3. A trajectory analysis based on Lagrangian approach has been developed
to study the particle trajectory and particle deposition behaviour in the

vicinity of a charge heterogeneous collector. The trajectory model takes
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into account the effects of hydrodynamic interactions as well as external

forces.

4. In order to support the results obtained by trajectory analysis and also
achieve a better understanding about the particle deposition behaviour
in presence of micro-scale charge heterogeneity, a convection-diffusion-
migration model based on Eulerian approach has been developed. This
model provides the particle concentration distribution and particle depo-

sition rate in the vicinity of the micro-scale charge heterogeneity.

In general, this work is intended to conduct a systematic theoretical investi-
gation in the role of micro-scale charge heterogeneity on the particle distribution
and particle trajectory in the vicinity of a charge heterogenous collector in the
radial impinging jet system. The study is geared toward prediction of the ini-
tial deposition rate on a clean collector. To our knowledge, this has been the
first time that the role of charge heterogeneity on deposition process is studied
systematically using the available theoretical methods such as Lagrangian and

Eulerian approaches.

1.3 Organization of the Thesis

In this chapter, the overall objectives and scope of the study have been delin-
eated. The general introduction and the motivation behind this research have
been also laid out.

In Chapter 2, a numerical simulation based on finite element analysis is
developed to calculate the fluid velocity in the entire impinging jet system.

The external forces that a charged particle is subjected to inside the im-
pinging jet system in the vicinity of a heterogeneous substrate are explained in
detail in Chapter 3. The corresponding expression for each of these forces are
also provided in this chapter. Furthermore, a detailed description of modelling
surface charge heterogeneity and definition of pertinent variables are given in

Chapter 3 as well.
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In Chapter 4, a trajectory analysis of a charged particle based on Lagrangian
approach inside the impinging jet flow system in the vicinity of a charge hetero-
geneous collector is presented. The results of solution of velocity field obtained
in Chapter 2 and the external forces described in Chapter 3 are put in use
for calculating particle trajectories. The trajectory equations are then solved
numerically. The limiting trajectory method has been incorporated to obtain
the particle deposition rate over both homogeneous and charge heterogeneous
collectors. The available model known as patchwise heterogeneity model pre-
dicting particle deposition over heterogeneous surfaces is described in detail in
Chapter 4 as well. Finally, the particle deposition rate obtained by numeri-
cally solving the trajectory equations is compared with those predicted by the
patchwise heterogeneity model.

In Chapter 5, the Eulerian approach is adopted to calculate particle de-
position rate over heterogeneous collectors by solving the convection-diffusion-
migration equation inside the impinging jet system. The convection-diffusion-
migration equation is solved numerically using the finite element method. A
detailed numerical simulation scheme is provided. The particle deposition rate
obtained by numerically solving of convection-diffusion equation is then com-
pared with those obtained by trajectory analysis, as well as, those predicted by
the patchwise heterogeneity model.

Finally, Chapter 6 summarizes the contributions made by this study and
conclusions obtained during this research. This chapter also provides some rec-
ommendations for future studies on the role of charge heterogeneity on particle

deposition.
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Figure 1.1: A schematic representation of a radial impinging jet system along
with the fluid streamlines.
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favorably charged
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Figure 1.2: A schematic representation of the distribution of charge hetero-
geneity on a solid surface. The surface contains two types of surface charges,
favorable and unfavorable.
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Chapter 2

Fluid Flow Field in an
Impinging Jet System

2.1 Introduction

The movement of the particles suspended in a fluid is affected by the fluid mo-
tion. The fluid exerts a drag force on the solid particles, which are convected
along the flow direction. In obtaining particle deposition rates, knowledge of
fluid velocity is required regardless whether Lagrangian or Eulerian approaches
are employed for particle transport. In context of Lagrangian approach, the fluid
velocity should be determined first to calculate the drag force exerted on the par-
ticles. In context of Eulerian approach, the fluid velocity should be determined
first to calculate the convection term in the convection-diffusion-migration equa-
tion. Therefore, an understanding of the fluid flow field is essential to predict
the particle motion induced by the fluid velocity. In this chapter, we calculate
the fluid velocity in the entire flow field in the impinging jet geometry. The ge-
ometry of the radial impinging jet flow will be described first then the equations
governing fluid velocity in such a geometry will be explained. These equations
are then solved numerically using finite element analysis. The numerical meth-
ods and the computational domain will be described in detail as well. As it
is well-documented in literature [Adamczyk et al., 1986, Elimelech, 1995], the

flow field inside impinging jet system near the stagnation point region follows
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the stagnation flow patterns. For such flow patterns, there are some analytical
expressions available that provide the fluid velocity inside stagnation flow re-
gion which are only valid in a small region close to the stagnation point. These
analytical expressions are employed to examine the validity of the present nu-
merical methods. Increasing the radial distance from the stagnation point, the
fluid velocity changes from the stagnation point flow patterns to the parallel
flow patterns in the vicinity of the collector surface. The expecting velocity

streamlines in the radial impinging jet system are shown in Figure 2.1a.

2.2 Impinging Jet Flow Geometry and Govern-
ing Equations

A schematic representation of the radial impinging jet system is illustrated
in Figure 2.1a. A colloidal suspension is introduced to the system through
a circular jet of radius Rj. with an average velocity of Us. The fluid then
impinges vertically on the collector surface (hatched line) and flows radially
outward from the impinging jet flow domain. The separation distance between
the collector surface and the impinging jet tip is denoted by L. The geometry
of the system described here ensures the radial symmetry and allows use of
axisymmetric cylindrical coordinate system. The origin of cylindrical coordinate
system is located at the stagnation point.

In this study, a steady state, laminar flow of an incompressible Newtonian
fluid is considered. Therefore, the flow fields are governed by continuity and
momentum conservation equations ,which, in an axisymmetric cylindrical coor-
dinate system, are written as

Continuity equation
10(ru,) + ou,

r Or 0z

=0 (2.1)

Momentum conservation

ou, Ou, _ 1 0ps LM [8 [la(rur)] 4 82ur]

Up—m— + Uy—/— = —
" or * 0z pyr Or  ps r Or 022

or

(2.2a)
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where u, and u, are the fluid velocity components along the r and z directions,
respectively. p; and py are the density and viscosity of the liquid, respectively.

The above set of equations can be nondimensionalized as follows

19(fi,) = Ou
7 (af )+ 5z 0 (2.3a)
_ Ou, _ Ou, 0pf 1 Rje [0 [10(TE,)] = 0%
gy = L I | 2.3b
o T %z o ' Re [87* For | T o (2:3b)
_Ou, _ 0u, opr 1 Rjee [10 [ 8u,] 0%,
= =L, - = el 2.
“or T Yoz 2z | Re a, |707 | or ton (2.3¢)
where
- = = _ _D
o =t r= aLp Pi= 202
- _u > 2 _ pr'etUoo
Uy = 5= z=g Re = ;f

It is worth noting here that in the present study, we used particle radius (a,)
to nondimesionalize the length variables in the Navier-Stokes equations while in
literature, the nozzle radius (Rje:) has often been used to nondimesionalize the
length variables in the Navier-Stokes equation for an impinging jet flow system.
This is because in the present study, a, has been also used to nondimesional-
ize the trajectory equation (Chapter 4) and the convection-diffusion-migration
equation (Chapter 5).

In order to obtain the fluid velocity, the above non-linear, second order
partial differential equations should be solved numerically. This requires that
the computational domain and the appropriate boundary conditions be specified

first.

12
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2.3 Computational Domain and Boundary Con-
ditions

Figure 2.1b illustrates the computational domain that has been considered for
this study. In this figure, OA is the axis of symmetry and its length is equal to
L. O is the stagnation point and the origin of the cylindrical coordinate system.
AB represents the exit of the jet nozzle and is equal to the nozzle radius, Rje.
OD denotes the collector surface. BC is the exit plane along the jet wall and
parallel to the exiting flow. DC is the outflow boundary. The dimensions of the
computational domain, OABCD, used in the simulation are provided in Table
2.1.

The boundary conditions for the above set of partial differential equations
in the specified domain are as follows; along all of the solid surfaces inside the
computational domain including collector surface (OD) and the exit plane (BC),
the no-slip boundary condition is applied. The boundary condition along the
symmetry axis (OA) is defined such that it conforms to the radial symmetry
of the system. As mentioned before, AB represents the jet nozzle which is
assumed to be circular. Therefore, the velocity along this line has a parabolic,
fully-developed profile expressed as Poiseuille’s flow.

The boundary condition along the outflow boundary (DC) is difficult to de-
fine regardless of the numerical method employed since the velocity along this
line remains unknown until the numerical solution has been achieved. Fortu-
nately, similar studies in literature [Yang et al., 1998] reveals that the boundary
condition set at the outflow region has little influence on the solution of velocity
field as long as this line is located far enough from the jet. In this study, consid-
ering the geometry of the system, we assume that the fluid velocity is normal to
this exit plane. All the lengths are nondimensionalized with respect to particle
size, ap.

The above boundary conditions can be summarized as

@ =0, %=0 80 € 0A (2.4a)

13
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G =1, =0 80 € OD, BC (2.4b)

G =0, @, =—2 {1 i )2] o0 € AB (2.4c)
=0, p=Pam 89 € DC (2.4d)

where 0f is the boundary of the computational domain.

2.4 Numerical Methods

The flow governing equations, Eq. (2.3), along with boundary conditions ,Eq.
(2.4), can now be solved numerically. In literature, several approaches have
been developed to solve the above set of partial differential equations [Polat,
1991, Deshpande and Vaishnav, 1982, Dabros and van de Ven, 1983]. In this
study, a finite element analysis is employed to solve the governing Navier-Stokes
equations. The numerical solution provides the fluid velocity in the entire flow

field inside the radial impinging jet system.

2.4.1 Finite Element Analysis Using FEMLAB ®

The numerical solution of Navier-Stokes equation, Eq. (2.3), along with bound-
ary conditions ,Eq. (2.4) is obtained using finite element analysis. The un-
knowns in the Navier-Stokes equations are u,,,, and py. The starting point
for the finite element analysis is a mesh, a partition of the geometry into small
units of a simple shape. In 2D, the method partitions the subdomains into
mesh elements. Once the mesh is defined, the finite element method approx-
imates the exact solution of each unknown, for instance ,, as a combination
of piece-wise polynomial shape functions with a finite number of parameters,
the so-called degrees of freedom, on each element. In this study, the quadratic
shape functions ¢; with U; degrees of freedom are used where ¢; = 1 at node ¢
and ¢; = 0 at all other nodes. The solution of u, for an element can be written

in terms of shape functions and degrees of freedom as
=Y Usp; (2.5)
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where 1 is the number of nodes inside an element. The same method is employed
for calculating 4, and py.

Inserting this approximation into the weak form of the equation governing
the fluid velocity inside the computational framework, generates a system of
equations for the degrees of freedom. Solving this system of equations pro-
vides the solution for ,, %, and py in the computational domain. More details
regarding implementation of finite element approximation in solving partial dif-
ferential equations is available in standard textbooks [Zienkiewicz, 1989).

Recently, several commercial finite element solvers of general nature have
been available which can significantly simplify the implementations of such tech-
niques by preserving the stringent accuracy of the results. In this context, the
whole solution methodology in this study was conducted using the commercially
available software FEMLAB® 3.1 (COMSOL, Inc., USA), which can be run
either as a programmable toolbox on MATLAB (The MathWorks, Inc., USA),
or as a simple graphical user interface (GUI) for solving the partial differen-
tial equations using the finite element method. The software can run the finite
element analysis together with adaptive meshing and local error control using
a variety of numerical solvers until a global convergence criterion is achieved.
Once this convergence is obtained, the program is terminated automatically.

FEMLAB® provides a number of application modules that consist of prede-
fined templates and user interfaces already set up with equations and variables
for different areas of physics. Using the predefined momentum conservation
model inside the Chemical Engineering Module of FEMLAB®, the govern-
ing Navier-Stokes equation, Eq. (2.3), can be modelled by simply defining
the corresponding constants and coefficients of the Navier-Stokes equation for
the specified application mode. The existing predefined boundary conditions
in the momentum conservation application mode of FEMLAB® support all
of the boundary conditions in Eq. (2.4). This allows the implementation
of the boundary conditions without any further modifications. More details

about implementing partial differential equation in FEMLAB® can be found
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in FEMLAB® user’s manual.
The next step in solving the partial differential equation using finite element

analysis is the descretization of the computational domain.

2.4.2 Mesh Generation

The computational domain was discretized using triangular Lagrangian ele-
ments of second order (quadratic elements). Mesh distribution can be controlled
by tuning different mesh parameters such as maximum element size, element
growth rate, and mesh curvature factor. In a finite element analysis, a small
mesh size is necessary for the regions of high velocity gradients, i.e. regions
where large variation of velocity with respect to small distances occurs. Due
to the presence of no slip boundary condition on the collector wall, the regions
close to the collector surface has the highest velocity gradients. By adjusting the
maximum element size on the collector surface (OD) and defining the appropri-
ate element growth rate, a non-uniform mesh structure is generated with high
mesh density close to the collector surface where the higher values of velocity
gradients occur. The non-uniform mesh configuration employed in the compu-
tational domain, OABCD, is shown in Figure 2.2. As can be seen in Figure
2.2, the regions close to the collector surface with the radius around R has
the highest mesh density compared to the other regions in the computational
domain. This is the region where the fluid velocity changes from the stagnation
flow patterns to the parallel flow patterns and hence has the highest velocity
gradients. The maximum element size on the collector surface in the area with
radius around R, is 0.5 ym. The element growth rate is 1.2. The solution
of fluid velocity presented in this study is obtained with 35,000 total elements
in the computational domain. The governing equations are solved using a sta-
tionary non-linear solver employing damped Newton method with initial and
minimum damping factors set to 1 and 10~%. The relative tolerance is assumed
to be 107%. Once the relative error is less than the relative tolerance the soft-

ware stops iterating and the solution is complete. The maximum number of
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iteration is set to 25.

The dependence of the numerically obtained values of velocity on number
of elements is verified for different values of flow Reynolds number, Re, ranging
from 50 to 200, which correspond to the average nozzle velocity, U, from
0.05 m/s to 0.2 m/s. For each value of Re, the simulation is repeated with
different element numbers ranging from 20,000 to 63,000. It has been observed
that the numerically obtained fluid velocity is not affected by changing the
mesh density for element numbers larger than 30,000 within the defined range
of Reynolds number. This ensures the mesh independence of the numerical
results. In Table 2.2, the dependence of the dimensionless fluid velocity, @
(@ = \/m) , on the number of elements has been shown for Re of 100.
The fluid velocity corresponds to a point in the computational domain with the
distances of (7, Z) = (100, 10) from the stagnation point. It can be seen in Table

2.2 that the value of fluid velocity became constant for element number greater
than 30,000.

2.4.3 Validation of Numerical Results

Analytical expressions for the velocity field inside impinging jet flow system
are available under some limiting conditions, such as, in the vicinity of the
stagnation point. These analytical expressions can be employed to validate the
accuracy of the present numerical results for fluid velocity.

Near the stagnation point, analytical expressions for the radial and normal
components of the fluid velocity, u, and u,, respectively, take the following

forms [Dabros and van de Ven, 1983, Masliyah, 1994]
Up = QT2 (2.6a)

Uy = —@g2° (2.6b)

where o, is a function dependent on the Reynolds number and the geometry of

the system given by
__avRe

Qg =
3
Rjet

(2.7)
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The term & is a function characterizing the intensity of stagnation flow and
dependent on the Reynolds number and flow geometry. For the case of L/Rje; =
2 that is used in the present study, we have [Adamczyk et al., 1986, Masliyah,
1994]

a=3.71 Re < 5.0 (2.8a)
& =5.3VRe — 813 Re > 5.0 (2.8b)

where the Reynolds number for the stagnation flow geometry is defined as

__ UooRjet

v

Re (2.9)

where v is the kinematic viscosity of the fluid.

Figure 2.3 depicts a comparison between the velocity fields obtained using
the analytical expression, Eq. (2.6), and using the numerical solution of the
Navier-Stokes equations, Eq. (2.3). This figure shows the variation of radial
and normal components of the fluid velocity in the impinging jet flow region
with radial position, r, at a fixed vertical distance from the collector surface, z.
This figure was obtained for a Reynolds number of 100 (Uy = 0.1m/s).

From Figure 2.3, it is evident that the analytical expressions for fluid velocity
are in accordance with the numerical solutions of the Navier-Stokes equations
in the vicinity of the stagnation point region (r/R;e; < 0.15). This comparison
ensures the accuracy of the numerical results in the stagnation region.

In the regions further away from the stagnation point, the difference between
the numerical solutions of Navier-Stokes equation, Eq. (2.3), and analytical ex-
pression for fluid velocity, Eq. (2.6), is significant. In the regions far from
stagnation point, the present finite element based velocity profiles are in excel-
lent agreement with the results of Yang et al. [Yang et al., 1999], who employed
a finite difference technique to calculate fluid velocity inside the impinging jet
system.

The comparison between the velocity fields obtained using the analytical ex-
pression and using the numerical solution of the Navier-Stokes equations can be

also employed to define the domain where the stagnation flow pattern prevails.
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It was observed that the analytical expressions for flow velocity can be used to
characterize the fluid velocity around stagnation point where r/R,e < 0.15 and
2/Rjet < 0.1. This is the domain within the impinging jet geometry that is

referred to as stagnation point region from this point on in the present study.

2.5 Numerical Simulation Results

The fluid velocity inside the impinging jet geometry was obtained numerically by
solving Navier-Stokes equations along with appropriate boundary conditions as
was described in detail in Section 2.4. A good depiction of flow inside impinging
jet geometry can be provided by a display of streamlines as shown in Figure
2.4. These results are obtained for Re=100 which corresponds to an average
flow velocity of Uy, = 0.1 m/s. The nozzle is at the upper left-hand corner with
the main flow moving from left to right. It is worth noting here that according
to Polat [Polat, 1991], the impinging jet flow will remain laminar up to the
Reynolds number of 1500, which is well beyond the range of Reynolds number
used in this study.

The radial and normal fluid velocity distributions over the impinging jet
geometry are depicted in Figure 2.5 and Figure 2.6, respectively. Similar flow
patterns were obtained numerically by Yang et al. and Dabros and van de Ven
[Yang et al., 1998, Dabros and van de Ven, 1983].

The corresponding radial and normal fluid velocity components, 4, and @,
are depicted in Figure 2.7 and Figure 2.8, respectively. These figures show the
variation of velocity components with respect to r at three different vertical
distances from the collector surface i.e., z=1, 10, 100 um. It can be seen from
these figures that by increasing the radial distance from the stagnation point,
the radial component of fluid velocity increases whereas the normal component
of fluid velocity decreases.

The relative variation of radial velocity to normal velocity with respect to r

can be better seen in Figure 2.9. This figure shows the dependency of the ratio

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of radial to normal fluid velocity, 4, /., on radial distance from the stagnation
point, 7, for Re=100. According to this figure, for the regions with radius less
than 150 ym (r/R, e < 0.15) which represents the stagnation point region, the
normal fluid velocity is greater than the radial fluid velocity, (u,/u, < 1). In
contrast, in the regions further away from the stagnation point (r/Rje > 0.15),
the radial fluid velocity is greater than the normal fluid velocity, , (u,/u, >
1). This implies that the flow distribution in impinging jet geometry can be
characterized by the dominant role of normal fluid velocity near the stagnation
point (r/Rje: > 0.15) and a dominant role of tangential (radial) fluid velocity
at radial distances further away from the stagnation point. Hence, studying
particle motion and particle deposition over a collector in such a flow regime at
different distances from the stagnation point will provide a better understanding
of the role of hydrodynamic effects in defining the fate of the particles in the

vicinity of the collector surface.

2.6 Summary

The fluid velocity in impinging jet flow system has been computed by solving
the governing Navier-Stokes equations numerically using finite element analysis
employing FEMLAB® software. In order to validate the numerical method, the
numerically obtained values of fluid velocity were compared with those obtained
by analytical expressions restricted to the stagnation point region. A good
agreement between the analytically obtained velocity and numerically obtained
velocity has been observed that ensures the accuracy of the numerical procedure.
The solution of fluid velocity near and far from the stagnation point demonstrate
two different flow patterns. In the vicinity of the stagnation point, the normal
component of fluid velocity is dominant whereas far from the stagnation point,
the radial component of fluid velocity plays the dominant role. Studying particle
motion in these two different flow regimes provides a better insight into the role

of hydrodynamic effect on particle motion. The fluid velocity field obtained
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here will be incorporated in the trajectory analysis and the convection-diffusion-

migration equation, which will be discussed in following chapters.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1: Dimensions of the Radial Impinging Jet System Used in the Simu-
lations

Property Value (mm)

Vertical distance between the collector and the jet tip, L or OA
Jet radius, R;e; or AB

Exit plane along the jet wall, BC

Outflow plane, DC

Collector surface, OD

N W N
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Table 2.2: Dependence of Numerically Obtained Fluid Velocity on the Number
of Elements

Number of Elements Fluid Velocity, @ = \/u2 + 42)

22,144 0.0273

28,977 0.0274

31,346 0.0385

35,698 0.0386

47,930 0.0386

63,824 0.0386
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Figure 2.1: (a) A schematic representations of fluid streamlines and coordinate
system of an impinging jet flow field. (b) Computation domain considered for
numerically solving of Navier-Stokes equations, Eq. (2.3). In this figure, OA is
the axis of symmetry and O is the origin of the cylindrical coordinate system.
AB is the exit of the jet nozzle, OD is the collector surface, BC is the exit plane
along the jet wall and DC is the outflow.
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Figure 2.2: A schematic representation of the mesh configuration in the com-
putational domain in the impinging jet geometry.
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Figure 2.3: Variation of scaled (a) Radial and (b) Normal components of the
fluid velocity with radial distance (r) at two different vertical distances from the
substrate (i.e., z=1 pum and z=5 pm). The corresponding Reynolds number is
100. Solid lines denote the numerically calculated fluid velocity using Eq. (2.3).
Dashed lines denote the analytically calculated fluid velocity using Eq. (2.6).
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Figure 2.4: Velocity field streamlines inside the impinging jet flow system.
These streamlines correspond to Re of 100. The nozzle is at the upper left-
hand corner (AB), with the main flow moving from left to right. Hatched lines
represent the collector surface (OD), nozzle wall and exit plane along the jet
wall (BC).
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Figure 2.5: The radial fluid velocity distributions inside the impinging jet flow
geometry. These results correspond to Re=100.
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Figure 2.6: The normal fluid velocity distributions inside the impinging jet
flow geometry. These results correspond to Re=100.
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Figure 2.7: Variation of scaled radial component of the fluid velocity with
radial distance () for three different vertical distances from the substrate (i.e.,
z=1 pm, z=10 pm and z=100 pm).
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Figure 2.8: Variation of scaled normal component of the fluid velocity with
radial distance () for three different vertical distances from the substrate (i.e.,
2=1 pm, z=10 pum and z=100 um).
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Figure 2.9: Dependence of the ratio of radial to normal fluid velocity, @, /.,
on radial distance, r, at 2=100 ym. The corresponding Re=100.
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Chapter 3

External Forces

3.1 Introduction

In this chapter, we will focus on defining the external forces that are exerted on
particles during their motion inside the impinging jet system in the vicinity of
the collector surface. These external forces can be divided into two categories;
external body forces, and external surface forces. Generally, the external body
forces acting on the particle may include gravitational force and electrical force.
Due to the absence of any external electric field in the present study, gravita-
tional force is considered as the only body force that the particles inside the
impinging jet system are subjected to. The surface forces acting on the charged
particles suspended in a fluid consist of hydrodynamic drag force and colloidal
interactions between the particles themselves and the particle and the collec-
tor surface. In this study, it is assumed that the bulk particle concentration is
sufﬁciently low such that particle-particle interactions can be neglected. Addi-
tionally, a description of the modelling of surface charge heterogeneity of the
collector will be provided to facilitate the understanding of the colloidal in-
teractions between the particles and the charge heterogeneous substrate. The
operating and physicochemical properties of the modelled system which are re-

quired to calculate the external forces used in this work are listed in Table 3.1.
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3.2 Gravity Force

For the particles suspended in a liquid in the absence of external electric field,
the gravity and buoyancy forces can be considered as the only body forces acting
on the particles. The net gravity and buoyancy force can be expressed as

- 4
Fy= gﬂaf‘,Apg' (3.1

where Ap is the difference between the particle and fluid densities. For solid
particles that have greater densities than that of the liquid, Ap is a positive
number. Considering the geometry of the impinging jet system depicted in
Figure 2.1a, it can be deduced that the net gravity force, Eq. (3.1), just has
one component in normal, 2, direction. For positive values of Ap, this normal
component is also positive indicating that the net gravity force acts unfavorably
to the attachment of the particles to the collector surface.

The gravity force can be nondimesionalized with respect to Brownian force

(Fpr = kyT/a,) which results in

Ao Py 47 Dpg ay
9 ka/a,, B 3 ka

(3.2)

where F, is called gravity number. Here, k, is the Boltzmann constant and T

is the absolute temperature.

3.3 Hydrodynamic Drag Force

In general, a solid body moving through a viscous fluid will experience a fric-
tional resistance or hydrodynamic drag force. The drag force on a moving body
is dependent on a number of physical variables such as the size, the shape and
the translational speed of the body. It is also dependent upon the properties of
the fluid, such as its viscosity and density. For low Reynolds number flows, the

drag force on a smooth spherical particle is given by Stokes equation as
Fyq = 67 50,7 (3.3)
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where ¥ is the hydrodynamic particle velocity induced by fluid motion. In
the axisymmetric cylindrical coordinate system, the particle velocity vector has
components v, and v, along the radial and axial directions, respectively. In the
absence of a solid wall near the particle, the value of hydrodynamic particle
velocity is considered to be equal to the fluid velocity. However, in the vicinity
of a solid surface, the velocity of the particle induced by fluid motion is different
from that of the fluid due to the effect of hydrodynamic interactions between
the particle and the solid wall. In the impinging jet flow system, the fluid
velocity has radial and normal components u, and u,, as defined in Chapter
2. Following Spielman and Fitzpatrick [Spielman and Fitzpatrick, 1973], the
relationship between the fluid and particle velocities in such a flow system is
given by

v, = fa(h)u, (3.4a)

v, = fi(h) fa(h)u, (3.4b)

Here, h is the dimensionless surface to surface distance between the particle
and the substrate, (h = s/a, where s is the separation distance between the
particle and the substrate). fi(h) to fs(h) are the universal hydrodynamic
correction functions that account for the deviation from the Stokes drag formula
due to the presence of the collector wall. They have been extensively studied
in low Reynolds number flow mechanisms [Brenner, 1961, Goren, 1970, Goren
and Oneill, 1971, Goldman et al., 1967b, Goldman et al., 1967q]. The values
of these functions were tabulated in literature. In order to incorporate their
values directly into our simulations, it is advantageous to curve fit each of these
functions so that they could be expressed as empirical functions. The results of

this curve fitting are provided by Masliyah [Masliyah, 1994] as follows
fi=1—0.399zxp (—0.14869 h) — 0.6010ezxp (—1.2015 h0-92667) (3.5a)

f2=1— 1.362exp (—1.3596 h) + 0.8764exp (—0.5250 h236954) (3.5b)

fz3 =1—10.3752exp (—3.906 h) — 0.625exp (—3.105 h*150) (3.5¢)
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fa=1-1.23122exp (—0.2734 h) + 0.818%ezxp (~0.1750 h1-2043) (3.5d)

The variation of the universal hydrodynamic correction functions with respect
to the dimensionless separation distance between the particle and the collector
surface, h, is shown in Figure 3.2.

Incorporating the relation between the particle and fluid velocity in Eq.
(3.3), the hydrodynamic drag force acting on the particle inside the impinging

jet flow system can be formulated as
Frya, » = (6mpsap)u, f3(h) (3.6a)

FHyd, 2= (67T,ufap)uzf1(h)f2(h) (3-6b)

where Fyyq » and Fyyq . are the radial and normal components of the drag
force acting on the particle due to the fluid velocity. The above set of equations
can be nondimesionalized with respect to Brownian force i.e., k,T/a, which

takes the following form

Frya, r = =2ur fo() (3.72)
Fitya, » = B fa(h) falh) (3.7b)

where D, is the particle diffusion coefficient in bulk medium given by Stokes-
Einstein equation (D, = 6mpra,/kyT). The fluid velocity components u, and
u, were obtained from the numerical solution of the Navier-Stokes and continu-

ity equations as discussed in Chapter 2.

3.4 Colloidal Interactions

When the particles approach to the collector surface within a separation dis-
tance of around 0.1 pum, the particle motion is affected by colloidal interac-
tions between the particle and collector surface. The Derjaguin-Landau-Verwey-
Overbeek (DLVO) force, consisting of an attractive van der Waals interaction
and an electrostatic double layer contribution, represents the total colloidal force

exerted on a mobile particle by the substrate. These two types of colloidal forces
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are widely recognized and well documented in the literature [Masliyah, 1994,
Elimelech, 1995]. The particle-particle colloidal interaction is considered to be

negligible by assuming a dilute particle suspension.

3.4.1 van der Waals Interactions

The dispersion attractive forces between molecules, known as van der Waals
force, is present between macrobodies as well. These interactions play an im-
portant role in particle movement and attachment to the substrate. The origin
of this attractive force between macroscopic bodies in small separation distances
is the spontaneous electric and magnetic polarization occurring in molecules of
both bodies. There are two well-known approaches in calculating the van der
Waals interaction. One is Hamaker approach based on the assumption of pair-
wise additivity of all the intermolecular interactions. The second is the Lifshitz
theory based on quantum electrodynamics, which provides a more rigorous ex-
pression for van der Waals interaction [Israelachvili, 1985].

In the present study, an expression for the non-retarded van der Waals force
between a sphere and an infinite planar surface based on Hamaker’s approach

and Derjaguin’s approximation is used [Suzuki et al., 1969]

Al

Fv w = T Lo 19
4 6a, h?

(3.8)

where A is the Hamaker constant between the particle and collector surface
in the liquid medium and A is the dimensionless surface to surface separation
distance between the particle and the collector surface as is shown in Figure
3.1.

The van der Waals force between the particle and the collector surface acts
along the normal direction to the collector surface. This means that van der
Waals force is comprised of just one component in normal, z, direction. The
expression for van der Waals interaction can be nondimensionalized with respect

to Brownian force as

7 dew 1
Fogw = —7— = —Ad— .
W bT/a, h2 (39)
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where Ad = A/6k,T), is the adhesion number and indicates the strength of van
der Waals interaction. In the ﬁresent study, the Hamaker constant between
the spherical particles and the collector surface inside the aqueous solution is
considered to be a positive number. This means that van der Waals interaction
between the particle and the collector surface in this case is attractive in nature

and acts favorably in particle deposition process.

3.4.2 EDL Interactions in the Presence of Charge Het-
erogeneity

In addition to van der Waals interaction force, there is another type of colloidal
interaction between the particle and the collector surface. It has been long
known that interfaces in the aqueous environment acquire surface charge due to
different reasons such as the ionization of surface group, different affinity of the
surface towards some ions, and physical restriction of certain ions to one phase.
Whatever the origin of the surface charge is, due to the electro-neutrality of
the whole system, the surface charge should be exactly balanced by an equal
and opposite charge in solution. This balancing charge is accounted for by an
excess number of oppositely charged ions or counter-ions in the solution adja-
cent to the charged surface and a deficit of similarly charged ions or co-ions.
The overall arrangement of the electrostatic charge on the surface together with
the redistribution of the ions around the charged surface is referred to as elec-
trostatic double layer (EDL) [Hunter, 1981]. One of the accepted model for
EDL is Stern model. According to this model, due to electrostatic attraction,
some immobile counter-ions are located adjacent to the surface and form the
Stern layer. Outside the Stern layer, the mobile counter-ions are distributed
such that the motion of these ions is balanced by both electrostatic attrac-
tion and the diffusion due to thermal effects. This layer is called diffuse layer.
When two charged surfaces approach each other in an electrolyte solution, their
diffuse double layers overlap, resulting in the electrostatic double layer (EDL)

interaction. Assuming constant surface potential on the particles and the planar
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substrate [Adamczyk, 1989] and a symmetric (z:z) electrolyte solution, the well-

known Hogg, Healy, and Fuerstenau (HHF) expression [Hogg et al., 1966] for

the electrostatic double layer interaction force for the case of constant surface

potential is used in the simulations which has the form of

ky T\ exp(—rayh) (¥, — ¥,)? exp(—2kayh)
Fop = B\ uow, AV Nt P
a = 4meoe(kay) ( ze ) i [1 — exp(kayh) 20,0, 1— exp(2kayh)

(3.10)

Here, ¥, and ¥ are the scaled surface potentials (¥ = zey/kpT') of the particle

and the substrate, respectively, and k is the inverse Debye length, given by

[Hunter, 1981]
Moo 22e?
= [T~ 11
" Eoﬁka (3 )

where n, is the bulk ionic number concentration of the electrolyte, € is the
solvent dielectric constant, €g is the dielectric permittivity of vacuum, k; is
Boltzmann constant and T is the absolute temperature. The above equation

can be nondimensionalized with respect to Brownian force as

- Fear

—Kaph —2kayh
Foy= exp(—kaph) Da exp(—2kayh)
ka/ap

1 — exp(kayh) 1 — exp(2ka,h)

= Di(ray) (3.12)

where DI is the electrostatic double layer parameter indicating the strength of

electrostatic double layer interaction defined as

_ 47T€0€apka\I/p\I/s
N 22e?

DI (3.13)

and Da is the double layer asymmetry parameter accounting for the portion of
double layer force arising due to the difference between the particle and collector

surface potentials.
(\I]p - \1'8)2
Da=-———
“= oy,

According to the above definition, for ¥,, = ¥, Da is equal to zero.

(3.14)

The Hogg, Healy, and Fuerstenau (HHF) expression, Eq. (3.12), provides
the electrostatic double layer interaction between a spherical particle with sur-

face potential of ¥, and an infinite planar surface with surface potential of V.
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The direction of this force is normal to the substrate surface which by consid-
ering the geometry of the impinging jet system implies that the EDL force is
comprised of just one component in vertical (normal) direction. This equation
can be assumed to estimate accurately the electrostatic double layer interaction
between a particle and a homogeneous collector. For the case of heterogeneous
collector, the electrostatic double layer interaction between the particle and the
collector depends on how the surface charge heterogeneity is modelled on the
collector surface. Therefore, a full description of modelling charge heterogeneity
on the collector surface in the present study is required first.

The collector surface charge heterogeneity is modelled as alternate stripes
or bands of microscopic dimensions bearing positive and negative charges as is
shown in Figure 3.3. In a radial impinging jet flow context, such stripes can
be construed as concentric circular rings bearing different surface potentials.
Each negative and positive band has a specific width which is defined as w,
and w,, respectively. Since the particles are assumed to be negatively charged
throughout this study, the negatively charged band acts as a unfavorable region
and positively charged band acts as a favorable region with respect to deposition.
The total width of a pair of consecutive negative and positive band is defined
as pitch, p.

The ratio of positive band width (w,) to the total width of a positive and
a negative band (p) specifies the fraction of the collector surface area that is
covered with favorable charge. This is called favorable area fraction of the
collector and is shown by Apatterned = Sf/Stotar Where sy represents the area of
the collector that is favorably charged and s;,:q; represent the total area of the
collector surface. Apgsterned is approximately equal to w,/p far away from the

stagnation point and we can relate p to w, as

w
A atterned — £ 3.15
patt p ( )

In order to specify each unfavorable and favorable band along the radial
direction on the collector surface, a number defined as band number, N, is

assigned to each pair of consecutive favorable and unfavorable bands on the
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collector surface such that for the first pair of unfavorable and favorable band
Ny = 1, for the second pair of unfavorable and favorable band N, = 2 and so
forth (Figure 3.3b). It is worth noting here that in this study, for a hetero-
geneous collector consisting of alternate negative and positive band, the first
circular (innermost) band at the stagnation point is always negatively charged
and therefore is unfavorable with respect to deposition.

The EDL force acting on a particle over a heterogeneous collector consist-
ing of alternate negative and positive bands is modelled assuming that when
the particle center passes over a positive band, the electrostatic interaction is
solely that between the negatively charged particle and an infinite planar surface
bearing a positive surface potential. Similarly, as long as the particle is directly
facing a negative band on the surface, the electrostatic interaction is calculated
assuming the entire collector surface to have a negative surface potential. This
assumption is clearly a gross simplification of the actual electrostatic double
layer interaction between a charge heterogeneous substrate and the particle.
However, as long as the individual band width is larger than the particle size,
the particle is sufficiently close to the substrate, and the electrostatic double
layer interactions are sufficiently screened (large xa,), use of the above approxi-
mation is expected to provide reasonably accurate estimates of the electrostatic
double layer interactions and the particle trajectories. This implies that the
expression for EDL force, Eq. (3.12), will provide a periodically attractive and
repulsive force profile as the particle traverses the substrate radially. The na-
ture of this periodic behaviour is dictated by the shape of ¥, imposed inside
the expression for EDL interaction, Eq. (3.12).

The variation of ¥, with r for a heterogeneous collector consisting of negative
and positive band was initially considered to have a periodic behavior of stepwise

nature which is

U, =0, (Ny—1)p<r < (Ny—1)p+w, (3.16a)
U, =¥, (Ny— Dp+w, <r < Npp (3.16b)
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where ¥, and ¥, are collector surface potentials corresponding to negative
and positive bands, respectively. This equation implies that the collector surface
potential changes instantaneously from ¥, to ¥, at the boundary between the
unfavorable and favorable band as is shown in Figure 3.4a. This figure shows the
variation of collector surface potential, ¥, represented by a step function such
as Eq. (3.16), for a collector consisting of alternate negative and positive bands
with surface potentials of ¥, = —1 and ¥,, = +1, respectively. The width of
negative and positive bands are equal and assumed to be w, = w, = 10 um.
The resulting EDL force between a particle with such a collector is depicted in
Figure 3.4b. These results were obtained for a negatively charged particle with
scaled surface potential of -1 using Eq. (3.12) at the distance of h around 0.001.
In this figure, r represents the radial distance of the particle center from the
stagnation point.

It can be seen from Figure 3.4a that using the stepwise function for sim-
ulating the collector surface potential behaviour seems a rough estimation of
the real function for the variation of surface potential along the heterogeneous
collector. In reality, at the boundary between the negative and positive bands,
the surface potential changes smoothly from its value over the negative band,
¥,,, to its value over the positive band, ¥,, while taking the value of zero at the
boundary between the differently charged bands. Therefore, in order to capture
this behaviour, a smoothing function of sigmoidal nature is incorporated in Eq.
(3.16) to smooth the changes of ¥, in the vicinity of the boundaries between
the differently charged bands. The parameters of this smoothing function are
defined such that it ensures the value of zero for ¥, at the boundary of a neg-
ative and positive stripe. The results of incorporating this smoothing function
are shown in Figure 3.5a. This figure shows the variation of ¥, with r, obtained
by incorporating the smoothing function inside Eq. (3.16). All the parameters
are the same as those of Figure 3.4. The resulting EDL force between a particle
and a collector with such a surface potential is depicted in Figure 3.5b. Using

the smoothing functions for ¥, provides a better estimation of the EDL force
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between a particle and a heterogeneous collector consisting of alternate nega-
tive and positive bands compared to the stepwise variation of ¥;. However, the
particle trajectories and particle deposition behaviour over the heterogeneous
collector obtained using these two different approximations for EDL force are

not significantly different.

3.5 Summary

In this chapter, all of the external forces that affect the motion of a spherical
charged particle inside the impinging jet system in the vicinity of a collector
surface were studied. It was deduced that in the radial direction, the tangen-
tial component of hydrodynamic drag is the only external force acting on the
particle whereas in normal direction, gravity, van der Waals, electrostatic dou-
ble layer, and vertical component of hydrodynamic drag were simultaneously
exerted on the particle. The total forces acting on the particle in radial and

normal directions can be given as

_ a
Fr = FHyd, r= —bLqu:;(h) (317&)

F, = Fg+FHyd,z+dew+Fedl

47 Apg a’
[ ?w ZjTap] + [;i uz f1(h) f2(h)J + [—Ad%] +

exp (—kaph) exp (—2kayh)
1 — exp (kayh) 1 — exp (2kayh) (3.17b)

Ditea) |

where the expressions for the righthand side of the above equations were pro-
vided earlier in this chapter.

The modelling of charge heterogeneity and the calculation of colloidal forces
between the particles and a heterogeneous substrate were discussed in detail
as well. The expressions for the external forces defined in this chapter will be
utilized in trajectory analysis and convection-diffusion-migration model in the

following chapters.
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Table 3.1: Physical and Chemical Properties of the System Used in Simulations

Property Value

Particle radius, a, 0.1-2 ym
Particle density, p, 2300 kg/m3
Fluid density, ps 1000 kg/m?
Fluid viscosity, p; 1.0x1073 N.s/m?
Fluid inlet velocity, Uy 0.05-0.2 m/s
Gravitational acceleration, g 9.81 m/s?
Reynolds number, Re 50-200
Temperature, T 208 K
Boltzmann constant, k; 1.38 x10723 J/K
Electronic charge, e 1.6x1071° C

Permittivity of vacuum, ¢,
Dielectric constant, €

Number of ions in the solution, n.,
Scaled particle surface potential, ¥,

Scaled collector surface potential, ¥,

Solution ionic strength, I
Hamaker constant, A
Pitch, p

valence of ion, 2z

8.85%x10712 C/Vm
78.54

1x1073

-1, -2

-1, -2, +1, 42
1073, 10733 M
10720 J

4-20 pm

1
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Figure 3.1: A schematic representation of the position of a colloidal particle
with respect to the collector surface. a, is the particle radius, z is the normal
distance of the particle center from the collector surface, s is the normal surface
to surface distance between the particle and the collector surface and h is the
dimensionless separation distance between the particle and the collector surface

(h = 5/a).
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Figure 3.2: Variation of universal hydrodynamic correction functions with
respect to dimensionless separation distance between a particle and the collector
surface.
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Figure 3.3: A schematic representation of the modelled surface charge hetero-
geneity. A collector surface consists of concentric circular bands with alternate
negative and positive surface potentials with width of w, and w,, respectively.
The total width of a negative and a positive band is pitch, p. Ny is a number
assigned to each pair of negative and positive band along the radial direction
on the collector surface.
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Figure 3.4: (a) Illustration of a step function employed to represent the vari-
ation of scaled collector surface potential with r for a heterogeneous collector
with ¥, = (—1,+1). (b) The resulting values of scaled F.4 between a negatively
charged particle with ¥, = —1 and a heterogeneous collector with surface po-

tential as shown in part (a). The values of F,y were obtained using Eq. (3.12)
for h=0.001, a, = 1 pm.
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Figure 3.5: (a) Illustration of a smoothing sigmoidal function employed to
represent the variation of scaled collector surface potential with r for a het-
erogeneous collector with ¥, = (—1,+1). (b) The resulting values of scaled
Feq between a negatively charged particle with ¥, = —1, and a heterogeneous
collector with surface potential as shown in part (a). The values of F.y were
obtained using Eq. (3.12) for h=0.001, a, =1 um.
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Chapter 4

Lagrangian Approach:
Trajectory Analysis

4.1 Introduction

In this chapter, we use particle trajectory analysis to investigate the effect of
microscopic surface charge heterogeneity on particle trajectories and particle
deposition in form of collector deposition efficiency. The charge heterogene-
ity is modelled as alternate circular stripes or bands of microscopic dimensions
bearing positive and negative charge as was described in Section 3.4.2. The
flow distribution which is obtained using finite element analysis of the gov-
erning Navier-Stokes equations in Chapter 2, is incorporated in the trajectory
equations. The particle trajectory analysis takes into consideration the hy-
drodynamic interactions, gravity, van der Waals and electrostatic double layer
interactions. Solution of the trajectory equations provides particle trajectories
over homogeneous as well as heterogeneous collectors with different surface po-
tentials. From the limiting trajectories, the particle deposition rate, in form of
collector deposition efficiency for both homogeneous and heterogeneous collec-
tors can be obtained.

The available model that evaluates the particle deposition rate over het-
erogeneous collector is called patchwise heterogeneity model. A description of

this model will also be provided in this chapter. Finally, the numerical re-
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sults obtained for collector deposition efficiency using trajectory analysis will
be compared with the values of collector deposition efficiency evaluated using

the patchwise heterogeneity model.

4.2 Trajectory Model

In this section, we will develop a trajectory model to study the effect of charge
heterogeneity of the collector on particle trajectory and particle deposition. The
charge heterogeneity is modelled as alternate concentric circular bands with
negative and positive potentials. A schematic representation of the expected
trajectory of a negatively charged colloidal particle on such a charge heteroge-
neous substrate is depicted in Figure 4.1. When the colloidal particle migrates
close to the planar substrate, it experiences attractive and repulsive colloidal
forces as it traverses the positive and negative bands on the surface, respectively.
This gives rise to an oscillatory motion of the particle, as depicted in Figure
4.1. It is our goal to show how such an oscillatory motion modifies the particle
deposition efficiencies on charge heterogeneous surfaces.

The trajectory analysis is derived by applying Newton’s second law of motion

to a suspended particle in the fluid, given by
dv -
= = F, 4.1
gy =¥ (@

where m is the particle mass and 7 (v,, v,) is the particle velocity vector. The
right hand side of Eq. (4.1) represents the sum of all the forces, F, acting on the
particle. In the present study, we consider gravity, fluid drag, van der Waals,
and electrostatic double layer forces as the pertinent forces. These forces and
their corresponding expressions were provided in Chapter 3.

Trajectory analysis is often used for the case when Brownian motion is neg-
ligible. The Brownian effects can be included in the trajectory analysis, the re-
sulting mathematical analysis is complicated [Adamczyk, 1989, Elimelech, 1995,

Masliyah, 1994]. Hence, the present analysis cannot be used for sub-micrometer
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particles where Brownian motion contributes significantly to the particle tra-
jectory. The radial and transverse hydrodynamic particle velocity components,
(vr, v,) are related to the corresponding fluid velocity components u, and u, by
Eq. (34), ie., v, = fs(h)u,,v, = f1(h) f2(h)u,.

A balance of forces acting in the radial and normal directions yields,
In r direction

dr
67rufap% = f3F.,- (42)

where dr/dt represents the rate of radial displacement (v,.) of the particle. Here
F. is the sum of radial forces acting on the particle, which, as stated in Chapter

3, is only due to the radial component of the fluid drag

Fr = Fryq, » = 6mpsapu, (4.3)
In z direction
ds
brprap— = fiFe (4.4)

where s is the surface to surface separation distance between the particle and

the substrate which is shown in Figure 3.1.
s=2z—a, (4.5)

and F, is the sum of normal forces acting on the particle, which is comprised of

the following terms
FZ=F9+FHyd,z+dew+Fedl (46)

where different terms in right hand side of Eq. (4.6) represent gravity, normal
component of hydrodynamic drag, van der Waals and electrostatic double layer
force exerted on the particles in the impinging jet system.
Equations. (4.2) and (4.4) can be nondimensionalized by using the following
scaled variables
A (4.7)

ap ap L
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Introducing these variables inside the trajectory equations, Eqs. (4.2) and (4.4)

take the following dimensionless forms

dr L1  _

— = ——f3F, 4.8
dt a, Pe fs (4.82)
dh L1 -

— = ——fF, 4.8b
dt  a,Pe h ( )

where Pe is a dimensionless number representing the ratio of convective force
to diffusive force and is defined as Pe = Uootp/Deo- F, and F, are total di-
mensionless radial and normal forces that exerted on the particles inside the

impinging jet flow geometry and can be defined as

Fr = FHyd, r (49&)

Fz=F9+FHyd,z+dew+Fedl (49b)

The expressions for right hand side of Eqs. (4.9)a and b have been provided
in Chapter 3, Eq. (3.17). It is worth noting here that, since the term f;(h)
is already incorporated inside the trajectory equations, Eq. (4.8)b, the expres-
sion for F Hyd, - that was given by Eq. (3.7)b will be changed to F Hyd, z =
(ap/Dos) fats.

Eq. (4.8) is the governing trajectory equation for the particle motion inside

the impinging jet flow geometry under the defined external forces.

4.2.1 Numerical Simulation

Equations. (4.8) are coupled non-linear ordinary differential equations which
can be solved numerically from a specified initial state. In this study, the
solution methodology was developed using a standard ODE solver (ode45) from
Matlab® (version 6.1, MathWorks Inc., USA), which is based on the optimized
form of the Runge-Kutta method.

The numerically obtained velocity field (Chapter 2) was incorporated in the
trajectory analysis using an interpolation scheme. Typically, the fluid velocity

field obtained from the finite element solution of the Navier-Stokes equations
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was represented as gridded data over the computational domain. Interpolation
of the gridded data at each location of the particle provided the local velocity
components. In order to capture the oscillatory movement of the particles near
the charge heterogeneous substrate, and to obtain the trajectory accurately,
non-dimensional time steps (t) equal to 0.001 was used. The trajectory plots
typically consist of approximately 100,000 points. The computation of each
trajectory takes approximately 3 minutes on a personal computer.

The operating and physicochemical properties of the modelled system used

in this work are listed in Table 3.1.

4.2.2 Collector Deposition Efficiency

In context of Lagrangian approach (trajectory analysis), the particle deposition
is presented in form of collector deposition efficiency, 7. Since the trajectory
analysis is fully deterministic, it is fairly straightforward to obtain the deposi-
tion efficiency for a chemically uniform collector using the limiting trajectory
[Elimelech, 1995, Masliyah, 1994]. Determination of the limiting trajectory di-
rectly leads to evaluation of the collector deposition efficiency by noting that
the efficiency is the ratio of the flux of particles within the limiting trajectory
to the total particle flux entering the flow volume over the projected area of the
collector [Rajagopalan and Tien, 1976, Yao et al., 1971].

Let us consider an arbitrary point on the collector surface with the radial
distance of R. from the stagnation point as is depicted in Figure 4.2. For
completely favorable deposition, one can determine the limiting trajectory by
initializing the integration of Eq. (4.8) at the surface of the collector corre-
sponding to R, and following the trajectory upstream to the location where
it emerges from the nozzle. Let us denote the radial position of this emergent
limiting trajectory as 7o, iim. This implies that all of the particles located at
the tip of the nozzle within a circle of radius ¢, 1, Wwill deposit on the collector
within a circular region of radius R.. In practice, the numerical integration is

initiated at a small separation distance from the collector surface. The sepa-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ration distance, 6,,, is usually taken as an arbitrary cut-off separation distance
located typically around 1-5 nm from the collector surface [Yang et al., 1998,
Elimelech, 1995]. Use of this finite value for the separation distance eliminates
the problems due to the divergence of van der Waals forces at contact. We can
now use the results of the above limiting trajectory analysis to define a sin-
gle collector efficiency. The projected area of the collector surface is a circular
cross-section of radius R.. Assuming the velocity at the nozzle to be U, and
the particle concentration to be c.,, we can define the collector efficiency as

_ (7”"3, tim) UsoCoo _ ""(2), Lim

(TR)Uscoo  R2

(4.10)

where 7 is the collector deposition efficiency, corresponding to a collector with
radius of R., obtained using the limiting trajectory analysis. This definition
applies to a homogeneous collector. The collector deposition efficiency for a
homogeneous, fully favorable collector is denoted as 7;.

For the substrate consisting of alternate positively and negatively charged
bands, since no particle deposits on the unfavorable bands, the limiting trajec-
tory of the particle can be obtained by selecting R, such that it is located inside
the favorable band. Following this, initiating the backward integration of Eq.
(4.8) from the collector surface and following the trajectory to the jet nozzle will
provide us with rg . Once g i, is found, the collector deposition efficiency

corresponding to R, can be obtained using Eq. (4.10).

4.3 Numerical Results for Particle Trajectories

In this section, we first present results from the particle trajectory analysis near
the charge heterogeneous substrate in an impinging jet flow system in order to
observe the effect of charge heterogeneity on the particle trajectories. The effect
of different parameters such as particle and collector surface potential, width of
positive and negative stripes of the collector, and ionic strength of the solution

on the particle trajectory will be presented.
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The trajectory of a charged particle in an impinging jet flow region near a
charged flat surface evolves through the interplay of hydrodynamic and colloidal
forces. Particle motion in the vicinity of the collector surface can be divided into
two elementary steps [Adamczyk, 1989]. These include; (i) particle transport
over macroscopic distances in the bulk of the suspension due to hydrodynamic
drag and gravity forces and (ii) particle transport in the immediate vicinity of
the interface (distance range of the order 10 - 100 nm) dominated by colloidal
forces generated between the particle and the collector surface. The flow distri-
bution in impinging jet cell can be characterized by the dominant role of normal
velocity near the stagnation point (r/Rje < 0.15) and a dominant role of tan-
gential (radial) velocity at radial distances further away from the stagnation
point. Hence, studying particle trajectory and collector efficiency at different
distances from the stagnation point will provide a better understanding of the
role of hydrodynamic effects, and the extent that they can affect the particle
trajectory and collector efficiency.

Typical parameters influencing the trajectories are the particle radius, par-
ticle and fluid density, fluid viscosity, flow average velocity, inlet flow Reynolds
number, the particle and substrate scaled surface potential, and the dimensions
(width and pitch) of the charge heterogeneous stripes on the substrate. It is
also worth noting here that, in this study, we consider that all of the particles
are negatively charged. This makes a positively charged surface favorable and a

negatively charged surface unfavorable for particles with respect to deposition.

4.3.1 Effect of Collector Surface Potential

The effect of substrate surface potential on particle trajectory is illustrated in
Figure 4.3. This figure depicts different particle trajectories over different collec-
tors with various surface potentials. This set of results is based on the conditions
specified in Table 3.1. The scaled particle surface potential, (¥, = zey,/kpT),
is assumed to be -1. The Reynolds number and solution ionic strength are as-

sumed to be 100 (Uxp=0.1 m/s) and 103 M, respectively. In Figure 4.3a, the
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initial position of the particle was assumed to be such that the particle deposits
near the stagnation point whereas in Figure 4.3b, the initial position of the
particle was selected such that the particle deposits far from stagnation point.

Let us first consider the particle trajectories over a completely unfavorable
surface corresponding to uniform surface potentials of -1 and -2 as shown by
the dashed lines in Figure 4.3. Initially, the particles are convected toward the
collector by the hydrodynamic and gravity forces. However, at a certain vertical
distance from a collector surface (approximately s = 0.1 um), the repulsive ef-
fects of electrostatic double layer play a dominant role in preventing the particle
from approaching closer to the surface. The repulsion is greater for the substrate
with ¥, = —2 | and hence, the particle trajectory over this substrate is further
away from the collector surface than the particle trajectory over a collector with
surface potential of ¥, = —1. In sharp contrast to the unfavorable deposition
cases, where the particles do not stick to the collector, the particle trajectories
terminate on the collector surface under favorable deposition conditions (dotted
lines in Figure 4.3). For favorable deposition, the collector surface potential was
set to ¥, = +1.

Figure 4.3 shows the strikingly different trajectories obtained over a het-
erogeneous collector consisting of alternate bands with positive and negative
surface potentials. Two particle trajectories over such a heterogeneous surface
have been shown in Figure 4.3, indicated by the legends ¥,=(-1,4+1) and ¥,=(-
2,+1). Here, the first parenthesis designates a surface consisting of alternate
bands with scaled surface potentials of, -1 and +1, while the second parenthesis
designates a surface consisting of alternate bands with surface potentials of -2
and +1. In both cases, the width of negative and positive bands, which are
represented by w, and wj, respectively, is 2 um (w, = w, = 2 um).

Comparing the particle trajectory over a heterogeneous charged surface with
the particle trajectories over a homogeneous charged surface provides consid-
erable insight regarding the influence of surface charge heterogeneity on parti-

cle deposition. When the substrate consists of alternate positive and negative
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bands, the colloidal forces start to play a dominant role in defining the particle
trajectory from a vertical distance of about 0.1 um. When the center of the
particle moves over the favorable regions, the attractive force brings the particle
closer to the surface. Following this, as the radial component of velocity carries
the center of the particle over the unfavorable (repulsive) part of the substrate,
the particle moves further away from the substrate. As a result of these alter-
nate repulsive and attractive forces, the particle trajectory becomes oscillatory.
The amplitude of the oscillation becomes larger as the particle approaches closer
to the surface.

A comparison between particle trajectories depicted in Figures 4.3a and b
reveals the role of hydrodynamic effects on the particle trajectories. For the case
of Uy = (—1, +1), near stagnation point (Figure 4.3a), the particle deposits after
fewer oscillations and the deposition point is very close to the deposition point
for the case of completely favorable substrate. In contrast, at locations far from
the stagnation point (Figure 4.3b), the particle deposits on the substrate after a
number of oscillations. This is due to the fact that the normal component of the
velocity that pushes the particle toward the collector surface, dominates in the
stagnation point region, while the radial component of fluid velocity dominates
far from the stagnation point.

The coupled influence of the hydrodynamic and electrostatic interactions
manifests differently on the particle trajectories when the surface potentials of
the alternate bands have different magnitudes, such as ¥, = (—2, +1), in Figures
4.3a and b. Noting that in this case, the unfavorable (repulsive) interaction is
stronger than the favorable interaction, one would expect the deposition to occur
significantly downstream compared to the case when the surface potentials on
the unfavorable and favorable stripes are ¥, = (—1,+1). In the stagnation
region, the deposition of the particle occurs in the vicinity of each other for the
two cases (Figure 4.3a). In sharp contrast, the deposition of the particle does
not at all take place at larger radial distances in the case ¥, = (—2,+1) as

shown in Figure 4.3b. Therefore, with the same charge heterogeneity pattern
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on the substrate, the particle deposition can manifest itself quite differently
depending on the nature of the velocity field. On the basis of the results shown
in Figure 4.3, it can be deduced that the coupled effects of collector surface
charge heterogeneity and hydrodynamic forces result in an oscillatory motion
of the particle over a micropatterned substrate consisting of both favorable and

unfavorable stripes.

4.3.2 Effect of Band Width at Constant Favorable Area
Fraction

The influence of band width on particle trajectory was studied in a scenario in
which the pitch of the heterogeneity (p) was varied while keeping the favorable
area fraction of the collector (Apatternea) constant at 50%. Figure 4.4 shows the
dependence of oscillating particle trajectory on the width of favorable and unfa-
vorable bands for constant Apasternea- This figure is obtained with the conditions
stated in Table 3.1, for regions far from the stagnation point. The Reynolds
number and solution ionic strength are assumed to be 100 ((Ux=0.1 m/s) and
1073 M, respectively. The particle surface potential,¥,, is —2 and the collector
surface potential, ¥, is (—2,+2). The particle trajectory has been obtained for
two different pitches of p = 4 ym and p = 10 um. Figure 4.4b illustrates the
zoomed in trajectories inside the dashed box in Figure 4.4a.

It can be seen from Figure 4.4b that the wavelength of the oscillating tra-
jectory, A, is equal to the pitch (p).

Another feature of the heterogeneous deposition observed from Figure 4.4 is
that although the ratio of favorable surface area to the total collector surface
area (Apatterned = 50%) is the same for both cases of p = 4 ym and p = 10 um,
the particle deposits slightly earlier on the collector with wider stripes (i.e.
p = 10 pm). The reason for this behavior can be explained by taking a closer
look at Eq. (3.12). The first term in Eq. (3.12), DI, gives the force due
to the strength of surface potentials while the second term, Da, arises due to

asymmetry of the potentials ¥, and ¥,. Notably, the second term vanishes
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when the surface potentials of the particle and the collector are identical (both
sign and magnitude are same). Let us consider a scenario where a negatively
charged particle with ¥, = —2, is moving over a substrate consisting of alternate
negative and positive bands that have surface potentials given by ¥, = (-2, +2).
For the favorable case, when the center of the negative particle is located over
a positive band, the second term in Eq. (3.12) will have a large finite value.
On the other hand, for the unfavorable case, when the center of the particle
is located over the negative band, the second term in Eq. (3.12) will vanish.
In both cases, the first term of Eq. (3.12) will be identical. Consequently, the
attractive interaction will have a larger magnitude than the repulsive interaction
in the above scenario. Thus, for a negatively charged particle, an increase in the
width of the positive band can potentially affect the particle trajectory more

markedly than an increase in the width of the negative band.

4.3.3 Effect of Solution Ionic Strength

The ionic strength of a solution affects the Debye length of the EDL interaction,
thereby influencing the range of the colloidal forces acting on the depositing par-
ticles. Figure 4.5 depicts the extent to which the particle trajectory is affected
by changes in ionic strength of the solution. The results depicted in Figure 4.5
were obtained by computing the particle trajectories for two ionic strengths of
1073M and 10~35M. The Reynolds number is assumed to be 100 ((Us,=0.1 m/s).
All the other conditions are as stated in Table 3.1.

Two cases have been shown in this figure, one corresponds to favorable de-
position when the collector surface potential, ¥, is +1 over the entire collector
surface (dashed lines), and the other is when ¥, = (—1,+1) (solid lines). The
positive and negative band widths are equal and assumed to be 2 um. First we
compare the two favorable cases (dashed lines) with different ionic strengths.
It can be seen that at lower ionic strength (I = 10735M), the particle will de-
posit on a homogeneously favorable surface earlier since it experiences a greater

electrostatic double layer attraction. A comparison between the two particle
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trajectories with different solution ionic strengths for the case when the hetero-
geneous substrate consists of positive and negative bands with surface potential
of +1 and —1 (solid lines) indicates that the particle in the solution with lower
ionic strength will experience oscillation with larger amplitudes and deposit
earlier.

As observed in Figure 4.5, the oscillations in the particle trajectory with
greater Debye length (lower ionic strength) starts at larger normal distances
from the substrate and the amplitude of these oscillations are more pronounced.
It is also noted that for the case of the lower ionic strength, I=10"3% M, the
distance between the locations at which the particle touches the completely
favorable surface and the heterogeneous micropatterened surface is considerably
larger compared to the corresponding distance for =102 M. This implies that
the effect of surface charge heterogeneity on particle trajectory becomes more

significant as one decreases the solution ionic strength.

4.4 Particle Distribution Over heterogeneous
Substrate

In order to obtain an insight into the behaviour of particle deposition on the
micropatterned charged heterogeneous substrate, we first study how the dis-
tribution of deposited particles vary with increasing radial distances on the
collector surface as one moves away from the stagnation point. From a cursory
glance at the geometry, one might infer that the favorable bands will be uni-
formly accessible for particle deposition. This, however, is not the case, since
radially moving away from the stagnation point, the deposition process progres-
sively becomes non-uniform, and the leading regions of the favorable stripes on
the collector become inaccessible for particle deposition. The available (accessi-
ble) regions of the favorable stripes progressively diminish as the radial distance
from the stagnation region increases.

To assess what fraction of the favorable surface (the favorable stripes) re-
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mains accessible for particle deposition as one moves away radially from the
stagnation point, we conducted some simulations as described below. Each fa-
vorable stripe was discretized into N segments (generally N=20). Starting from
the end of each such segment of a favorable stripe, which we will refer to as the
landing point, we solved the trajectory equations backward (with negative time
steps, At) to determine the initial release location of the particle. The initial
release position was deemed feasible if it originated from within the impinging
jet nozzle, implying that a particle starting out from within the nozzle can de-
posit on the landing point. Termination of the trajectory at any other point
in the computational domain constituted an infeasible trajectory, implying that
the particle could not deposit at the chosen landing point (in other words, the
landing point being investigated is inaccessible). The trajectory computation
was repeated for each location of the landing point on a given favorable stripe.
This procedure is depicted in Figure 4.6. The dashed line in this figure repre-
sents the infeasible trajectory while the accepted particle trajectory is shown
by solid line and originates at the impinging jet nozzle.

For each favorable stripe, the calculation procedure delineated above pro-
vides the location of the first accessible landing point on the stripe. As one
moves radially outward from the stagnation point, the first landing point acces-
sible to particle deposition on a favorable stripe is found to move toward the
trailing edge of the stripe (the ending part of the given stripe). In other words,
the fraction of the favorable stripe surface that is accessible to particle depo-
sition gradually diminishes as one moves radially outward from the stagnation
point.

To facilitate further analysis, we define a quantity, the accessible fraction of

favorable (AFF) surface, as

w ible
AFp = 2essve 4.11
= e (411)
where Wyccessivie 1S the width of the favorable stripe accessible to particle deposi-
tion, and w, is the overall width of the favorable stripe (Figure 4.6). The width

Waccessible CaN be determined from the trajectory analysis outlined above by sim-

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ply finding the distance between the first landing point accessible for particle
deposition and the trailing edge of the stripe. The region of each favorable stripe
rendered inaccessible for particle deposition is then given by (w, — Waccessible)s

and is located at the leading edge of each favorable band.

4.4.1 Effect of Collector Favorable Area Fraction

Figure 4.7 depicts the variation of the accessible fraction of a favorable band
(AFF) as a function of the distance of that band from the stagnation point. In
this figure, the horizontal axis represents the band number in radial direction,
Np. In obtaining the results, it was also assumed that the pitch is p = 20 pm
which indicates that the end of first favorable band (N, = 1) on the collector is
located at the radial distance of 20 pum from the stagnation point, the end of
the second favorable band (N, = 2) is located at the radial distance of 40 um
from the stagnation point, and so forth. For a fixed pitch, by changing the
ratio of the width of positive and negative stripes (w, and w,), one can get
different values of collector favorable area fraction, Apaiternea- The Reynolds
number and the particle surface potential were assumed to be 100 and ¥, = —-2
respectively. The collector consisted of favorable and unfavorable bands with
surface potential of W, = (—2,42). The ionic strength of the solution was
10~3°M. Other parameters were same as those stated in Table 3.1.

In order to obtain these results, we computed the AFr for each favorable
band on the collector surface corresponding to a given Apgtterned- In this study,
we assume that the central band (at 7=0) on the collector surface is unfavorable.

It is evident from Figure 4.7 that the accessible fraction of favorable band
(AFF) decreases with increasing distance from the stagnation point. This can
be explained by considering the ratio of normal to tangential components of
fluid velocity. In the vicinity of stagnation point, since the normal component
is larger than the tangential component, almost the entire length of the favorable
band is accessible for particle deposition (the band acts as a uniform collector).

In contrast, at larger distances from the stagnation point, since the tangential
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component is dominant compared to the normal component, a significant part
of the favorable band is not accessible for particle deposition. For instance, in
the case of w, = w, = 10 um (open circles in Figure 4.7), although \jstterneq is
50%, which implies that geometrically half of the collector surface is covered by
favorable stripes, the AFr decreases with increasing distance from the stagna-
tion point. For instance, on the 20** band (the radial distance of the end of this
band from the stagnation point is 400 ym), AFF is about 0.4. Thus the overall
surface becomes progressively unfavorable as one moves radially away from the
stagnation point.

Figure 4.7 also indicates that the AFr depends on the ratio of the width
of favorable and unfavorable bands (i.e. the ratio of w, to w,). We note that
keeping the pitch fixed, altering the ratio of w, to w, results in different values
of Apatterned- It can be observed from Figure 4.7 that the AFp increases by
increasing the width of favorable band with respect to unfavorable band. For a
constant pitch, when the ratio of w, to w,, is less than unity (Apasternea < 50%),
the accessible fraction of favorable band decreases sharply with the distance
from the stagnation point. For instance, when w, = 5 pm and w, = 15 um
(open squares), AFr approaches zero for band number N, = 10 which is located
in the vicinity of the stagnation point (the radial distance of the end of this band
from the stagnation point is 200 um). In contrast, when the ratio of w, to wy,
is larger than unity (Apatternea > 50%), the accessible fraction of favorable band
decreases smoothly with respect to the distance from the stagnation point and
appears to attain a limiting value. For instance, for the case of w, = 15 yum and
Wy = 5 pm (Apatterned = 75%) (upright triangle), AFr becomes almost constant
for all of the stripes beyond the third stripe.

The results presented above imply that when less than 50% of the substrate
is favorable, we can render the collector completely unfavorable for particle
deposition by increasing the ratio of tangential to normal components of fluid

velocity while other parameters remain unchanged.
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4.4.2 Effect of Band Width at Constant Favorable Area
Fraction

Figure 4.8 depicts the effects of the width of unfavorable and favorable band on
AFp when the ratio of these widths (w, to w,) is maintained constant. This
set of results is obtained based on the same conditions used for Figure 4.7, the
only exception being that in this figure, instead of pitch, the ratio of w, to wy,
is kept constant.

Figure 4.8 shows the variation of AFr with the favorable band number for
three different values of pitch, p = 10 um, p = 20 pm, and p = 200 pym. It
is evident that for a given favorable band, the value of AFr is the same for
three different values of pitch, which indicates that the pitch does not have a
significant effect on AFp.

4.4.3 Effect of Fluid Velocity

The effect of fluid velocity on accessible fraction of favorable band has also been
studied and the results are shown in Figure 4.9. This figure depicts the vari-
ation of AFF as one proceeds radially outward from the stagnation point over
consecutive favorable bands for three different fluid velocities. The widths of
the favorable and unfavorable stripes are equal and assumed to be 5 um in these
calculations. All the other parameters are the same as Figure 4.7. It can be
seen from this figure that although the value of AFr for each favorable band
increases slightly by decreasing the fluid velocity, overall the fluid velocity does
not have a significant effect on AFp. This implies that the effect of hydrody-
namic interactions on the value of AFr manifests itself as the ratio of normal
to tangential fluid velocity, and not their absolute magnitudes. The results in
Figure 4.9 suggest that an increase in the magnitude of fluid velocity which
means both tangential and normal component of fluid velocity increase equally,
does not affect the value of AFr. However, changing the ratio of tangential to
normal component of fluid velocity (for instance by getting further away from

the stagnation point) can affect the value of AFF significantly as was shown in
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Figure 4.7.

The foregoing discussion highlights the role of coupled effects of hydrody-
namics and colloidal forces in controlling the particle deposition and distribution
of deposited particles on the collector surface. Due to the tangential compo-
nent of fluid velocity, a region near the leading edge of each favorable band
becomes inaccessible for particle deposition. In fact, for small ratios of w, to wy,
(Apatterned < 50%), in the regions far from the stagnation point where the tan-
gential velocity component is dominant, the inaccessible region can extend to
the entire width of the favorable band. This renders the favorable band unfavor-
able with respect to deposition. These observations provide considerable insight
regarding the distribution of the deposited particles on the micropatterned col-
lector. Since no particle deposits on unfavorable bands and the accessible area
for particle deposition on favorable bands decreases at larger radial distances
from the stagnation point, it can be deduced that for a collector consisting of
alternate positive and negative stripes, the number of deposited particles will

decrease with increasing distance from the stagnation point.

4.5 Particle Deposition in Context of Trajec-
tory Analysis

In this section, the patchwise heterogeneity model {Song et al., 1994}, which
has been extensively used to predict particle deposition rate in the presence of
charge heterogeneity will be described first. Following this, particle deposition
rate in form of collector deposition efficiency will be calculated over both ho-
mogeneous and heterogeneous collectors using trajectory analysis. The numer-
ically obtained results of particle deposition rate over heterogeneous collectors
will then be compared to those calculated by analytical expressions based on

the patchwise heterogeneity model.
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4.5.1 Available Model Predicting Particle Deposition Rate:
Patchwise Heterogeneity Model

The method that has been used in literature to evaluate the particle depo-
sition rate over charge heterogeneous substrates is called two-site patchwise
heterogeneity model [Song et al., 1994]. In this method, surfaces with charge
heterogeneity have been modelled as a patchwork mosaic with individual patches
treated as isolated homogeneous regions having uniform surface charge [Elimelech
et al., 2003]. These patches are considered large enough compared to particle
size, whereby the interactions between patch boundaries have negligible effects
on particle deposition behaviour. According to patchwise heterogeneity model,
the overall particle deposition rate over a charge heterogeneous surface is the
linear combination of deposition rates over various surface patches. The pre-
dicted overall particle deposition rate over heterogeneous substrates using the

patchwise heterogeneity model is [Song et al., 1994]

Tpatch = Z )\i i (412)
=1

where 7; is the particle deposition rate onto patches of type ¢, and A; is the
surface fraction of patches of type i.
When only one type of favorable and one type of unfavorable patch exists

on the substrate, the above equation simplifies to

Mpatch = )‘patterned nr + (]- - )\patterned) MNu (413)

where 7mpatcn is the overall deposition efficiency, and 7y and 7, are the depo-
sition efficiencies for completely favorable and completely unfavorable regions,
respectively. Here, Apsiterneq is the surface area fraction of the collector that is
favorable. A common way of calculating 9pascn using Eq. (4.13) is to first as-
sume that the substrate is a homogeneous surface bearing the surface potential
corresponding to the favorable case. The particle deposition over such a surface
(nf) can be obtained by various theoretical or experimental methods. In the
next step, it is assumed that the same substrate is a homogeneous surface bear-

ing the surface potential corresponding to the unfavorable case. The particle
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deposition over such a surface (7,) can be obtained as well. Evaluating n; and
nu leads to the overall particle deposition rate by using Eq. (4.13).

In this study, considering all of the operating and physicochemical proper-
ties of the modelled system, the particle deposition rate over the unfavorable
substrate is zero, as was shown in Figure 4.3 for the unfavorable collectors, i.e.,
U, = —2 and ¥, = —2 depicted by dashed lines. As a result, Eq. (4.13) can be

written in a simplified form as

TMpatch = Apatterned ny (414)

This equation indicates a linear relation between overall particle deposition
over a heterogeneous collector and particle deposition over a homogeneous fully
favorable collector. According to the patchwise heterogeneity model, the ratio
of particle deposition over a heterogeneous substrate to the particle deposition
over a homogeneous fully favorable substrate (1patcn/ny) is directly proportioned
to the fraction of the substrate surface that is covered with favorable charge
(Apatterned)- This means that for a collector with favorable area fraction of
Apatterned = 90%, the overall particle deposition rate, npqtcn is half of the overall
particle deposition over a homogeneous fully favorable collector.

The patchwise heterogeneity model provides a remarkably accurate predic-
tion of the particle deposition over surfaces with macroscopic charge hetero-
geneity [Koopal and Dukhin, 1993, Song et al., 1994, Tien, 1989]. However,
it has been observed that when the size of the heterogeneous bands becomes
comparable to the size of the approaching particles, the patchwise heterogeneity
model breaks down [Elimelech et al., 2003]. According to Eq. (4.12), the fail-
ure of the patchwise heterogeneity model in predicting the deposition efficiency
for micro-scale charge heterogeneity can either stem from using the erroneous
values of Apgtterned, Or it can stem from the fact that the assumption of linear
relationship between (npaten/1f) and Apasterned is not valid for micro-scale charge
heterogeneity. This means that in the presence of micro-scale charge hetero-

geneity, the concept of finding particle deposition by using a simple averaging
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process as depicted in Eq. (4.12) may result in erroneous results for particle
deposition.

In order to find out which of the two stated assumptions (the linear relation
between 7pqscn /7y Or the erroneous values of Apaiterned) is the reason behind the
failure of patchwise heterogeneity model, we first modify the patchwise hetero-
geneity model expression by replacing the nominal value of collector favorable
area fraction Apgiterned Dy its actual value inside the patchwise heterogeneity
model equation, Eq. (4.17). Furthermore, using the trajectory analysis, we can
obtain the particle deposition over collectors with different favorable area frac-
tions. Comparing these results with those predicted by original and modified
patchwise heterogeneity model, one can clarify the reason behind the failure of
patchwise heterogeneity model. If the numerical values of particle deposition
(obtained by trajectory analysis) are in good agreement with those predicted
by modified patchwise heterogeneity model (which accounts for actual values
of collector favorable area fraction), it can be deduced that the concept of lin-
ear relation between 7patcn /My and Apgtterned 1S valid and the failure of original
patchwise heterogeneity model in predicting particle deposition is due to the
fact that Apgtrerneq is not the true representative of actual favorable fraction of
the collector and one has to consider the existence of inaccessible part of fa-
vorable stripes as well. However, if the numerical values of particle deposition
deviate from those predicted by both original and modified patchwise hetero-
geneity model, it can be deduced that the concept of linear relation between
Npatch/Tf and Apatternea is not valid for the case of particle deposition over micro-
scale charge heterogeneous substrate. This implies that the simple averaging
procedures such as the one proposed by patchwise heterogeneity model are not
comprehensive enough to capture the behaviour of particle deposition in the
presence of micro-size charge heterogeneity.

The foregoing results in Section 4.4, particularly Figure 4.7 suggests that
due to the presence of the inaccessible part at the leading edge of each favorable

band, the actual favorable area fraction of the collector is less than its nominal
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(geometrical) favorable area fraction (Apatterned). To account for the effects of
both nominal collector favorable area fraction (Apqtterned) and the inaccessible
part of the favorable regions, we modify the patchwise heterogeneity expres-
sion by replacing Acffective Dy the actual favorable area fraction of the collector
defined as

Aef fective = TFF X Apatterned (4-15)

where A.ffective iS the actual favorable area fraction of the collector, and AFF is

the average accessible fraction of favorable band, defined as

Be AFp(r)dr

Afy = J = (4.16)

where AFy is the average accessible fraction of favorable bands up to the dis-
tance R, from the stagnation point. Utilizing Eq. (4.15), the patchwise hetero-
geneity model expression for deposition efficiency, Eq. (4.14), can be modified
as:

Npatch = (AFF X )\patterned) Ny (417)

It is evident from the above expression that in calculating the overall particle
deposition over the heterogeneous substrates, Eq. (4.17) accounts for both
the nominal favorable area fraction of the collector (Apgiterned) and accessible
fraction of each favorable band (AFFr). From Eq. (4.17), it can be deduced that
when AFy takes the value of unity, the modified patchwise heterogeneity model
expression, Eq. (4.17) becomes identical to original patchwise heterogeneity
model equation, Eq. (4.14).

The variation of the scaled overall deposition efficiency (7patcn/my) obtained
using the modified patchwise heterogeneity model (symbol-solid lines), Eq.
(4.17), with respect to Apgtterned s shown in Figure 4.10 for the values of pitch
comparable to the particle size. The results are shown corresponding to two dif-
ferent distances from the stagnation point, R, = 60 um and R, = 800 um. All
the other parameters are the same as in Figure 4.7. In Figure 4.10, the dashed
diagonal line represents the 7pq:cn/7y predicted by the original patchwise het-

erogeneity model, Eq. (4.14), whereas the line-symbol combination denote the
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values of 7pqatch/ny Obtained using the modified patchwise heterogeneity model
expression, Eq. (4.17), for R, = 60 pum (squares) and R, = 800 um (circles). In
order to obtain these results, we calculated AFy corresponding to each value of
Apatterned USINg the radial variations of AFr shown in Figure 4.7 and numerically
integrating Eq. (4.16).

Figure 4.10 indicates that in the vicinity of the stagnation point (R, =
60 um), since the normal component of velocity is dominant, the value of AFx
is close to un{ty, which renders the value of 7pq¢cn /7y to be nearly identical to the
prediction of the original patchwise heterogeneity model over the entire range
of Apgtterned- In contrast, in the regions far from the stagnation point (R, =
800 pum), due to the dominant role of tangential velocity, 7patcn/ny deviates
from the results predicted by the patchwise heterogeneity model. The deviation
is more pronounced for smaller values of Apgtierned-

To summarize, the coupled influence of the collector surface charge het-
erogeneity and the hydrodynamic forces on the particle distribution over the
collector surface in impinging jet flow manifests differently at different radial
distances from the stagnation point. Due to the dominant role of the normal
velocity in the vicinity of the stagnation point, the nominal collector favorable
area fraction (Apatterned) is identical to the actual collector favorable area fraction
(Aeffective)- This implies that the values of particle deposition over micropat-
terend substrates predicted by modified and original patchwise heterogeneity
model are identical in this region as well. In contrast, far from stagnation point,
owing to the greater influence of tangential velocity, the nominal collector fa-
vorable area fraction (Apatterned) 1S greater than the actual collector favorable
area, fraction (Aeffective). This implies that for a specified value of Apasterned, the
extent of particle deposition over micropatterend substrates predicted by the
modified patchwise heterogeneity model is smaller than that predicted by the
original patchwise heterogeneity model far from the stagnation point.

In the next section, the numerically obtained collector deposition efficien-

cies over collectors with different favorable area fractions will be compared to
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those predicted by both the original and the modified patchwise heterogeneity
models to clarify the reason behind the failure of the patchwise heterogeneity
model in predicting particle deposition in the presence of micro-scale charge

heterogeneity.

4.5.2 Numerical Results for Collector Deposition Effi-
ciency

To this point, we have developed a trajectory model that can be used to ob-
tain particle trajectories over both homogeneous and heterogeneous substrates.
Incorporating this model and evaluating the limiting trajectory corresponding
each point on the substrate surface, one can calculate the extent of particle
deposition corresponding each point on the collector surface in form of collector
deposition efficiency () by employing Eq. (4.10).

In order to determine the extent to which the particle deposition behaviour
is affected by charge heterogeneity, we first obtain particle deposition rate in
form of collector deposition efficiency (7) for a homogeneous favorable collector.
We denote this deposition efficiency as ny. Following this, using the method-
ology discussed in Section 4.2.2, we obtain the collector efficiency for the case
when the heterogeneous substrate consists of alternate favorable and unfavor-
able bands. Comparing these two sets of results highlights the effect of surface
charge heterogeneity on the collector deposition efficiency.

Figure 4.11 shows the collector efficiency corresponding to different scaled
radial positions, R./Rje:, on the collector surface. In this figure, the solid line
denotes the collector efficiency for a homogeneous favorable collector, 7y, while
the other lines represent the collector efficiencies for heterogeneous substrates
for different values of favorable area fraction of the collector (Apgtternea). These
results are obtained based on the same conditions as in Figure 4.7. For the
case of homogeneous favorable collector, it can be seen that in the vicinity of
the stagnation point (R./Rj.: < 0.15), uniform deposition conditions prevail,

whereas further away from stagnation point, the deposition efficiency decreases
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and the collector is not uniform [Adamczyk et al., 2001]. For the case of het-
erogeneous collector, we defined R, as the distance of the end of each favorable
band from the stagnation point. For instance, since we assumed the central
band is always unfavorable, and the pitch is p = 20 ym, the R, corresponding
to the first favorable band is 20 pm. Similarly, R, corresponds to the second
favorable band is 40 um.

It can be seen from Figure 4.11 that the collector efficiency on the hetero-
geneous micropatterend substrate decreases by decreasing the favorable area
fraction (Apatterned). It is also evident that the presence of charge heterogene-
ity on the collector surface makes the collector more non-uniform at larger
distances from stagnation point. For all values of Apgiterned, the deposition effi-
ciency decreases by increasing the distance from the stagnation point. For small
values of Apgtterned (1-€. Apatterned < 50%), the deposition efficiency drops sharply
with respect to distance from stagnation point. For larger values of Apsiterned
(i.e. Apatternea > 50%), on the other hand, the deposition efficiency drops more
smoothly with respect to radial distance from stagnation point. This behavoiur
is similar to what we observed earlier in Figure 4.7. Comparing these two fig-
ures indicates that by decreasing the favorable area fraction of the collector,
Apatterned, DOth collector efficiency and accessible fraction of the favorable band
decrease sharply with increasing radial distance from stagnation point, while
for larger values of Apatterned (1-€. Apatternea > 50%), both collector efficiency and
accessible fraction of the favorable band decrease more slowly.

Figure 4.12 depicts the variation of scaled collector deposition efficiency
(n/mg) with respect to Apstterned fOr a heterogeneous collector with radius of
R. = 300 pm. The square-legend line represents the particle deposition rate
obtained numerically using the trajectory analysis. The triangle-legend line
represents the particle deposition rate predicted by the original patchwise het-
erogeneity model, Eq. (4.14) whereas the circle-legend line represents the par-
ticle deposition rate predicted by the modified patchwise heterogeneity model,
Eq. (4.17). These results correspond to the flow Reynolds number of 180

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Us = 0.18 m/s), solution ionic strength of 1073M, and particle surface poten-
tial, ¥,, of -2. The collector scaled surface potential, ¥, is (-2,42). The pitch is
constant and equal to 10 um. The numerically obtained particle deposition effi-
ciencies (square-legend line) are calculated by first ﬁnding the limiting trajectory
corresponding to R, = 300 um, using the procedure described in Section 4.2.2,
for different values of Apgtterned, i-€., from Apgsterned = 0 t0 Apatternea = 100%.
Finding the limiting trajectory provides the value of 7¢, ;, which can be incor-
porated in Eq. (4.10) to calculate the particle deposition rate in form of collector
deposition efficiency, n. Typically, for this pitch (p = 10 um), Apatternea = 10%
will correspond to w, = 9 um and w, = 1 pm, while A\jasternea = 100% will
correspond to w, = 0 pm and w, = 10 um. The latter case represents the
completely favorable collector (n=7;). The collector deposition efficiencies pre-
dicted by the original patchwise heterogeneity model (triangle-legend line) were
obtained employing Eq. (4.14) whereas the collector deposition efficiencies pre-
dicted by the modified patchwise heterogeneity model (circle-legend line) were
obtained employing Eq. (4.17).

It can be seen from Figure 4.12 that the numerically obtained values of col-
lector deposition efficiency deviate significantly from those predicted by both the
original and modified patchwise heterogeneity models. This deviation is more
pronounced for larger values of Apgtternea- According to our numerical simula-
tions (square-legend line in Figure 4.12), the collector deposition efficiency over
a heterogeneous collector, 7, increases by increasing the collector favorable area
fraction, Apgiterned- However, the interesting feature of Figure 4.12 is that this
increase is not uniform as was predicted by the patchwise heterogeneity model.
When Apgiternea is less than 40%, increasing the value of Apgtrerneq slightly by in-
creasing the width of positive band (keeping the pitch unchanged) will increase
the particle deposition significantly, whereas when half of the surface is covered
with favorable bands, Apasternea > 50%, increasing the width of favorable band
will not cause a considerable increase in deposition efficiency. Consequently, a

surface with Apgtterned = 50% has an almost comparable deposition efficiency as
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a fully favorable surface with Apstterned = 100% (1 =~ n5). This means that when
a surface is initially unfavorably charged, the presence of charge heterogeneity
in form of a small fraction of favorable charged regions leads to an enormous
increase in the particle deposition rate. This has been extensively reported in
literature [Adamczyk et al., 2003, Song et al., 1994]. On the other hand, if the
surface is initially favorably charged, the presence of heterogeneity in form of
unfavorably charged regions will not change the particle deposition rate signifi-
cantly.

As can be clearly seen in Figure 4.12, the numerically obtained values of col-
lector deposition efficiency deviate significantly from those predicted by both the
original and modified patchwise heterogeneity models. This means that modify-
ing the original patchwise heterogeneity equation by merely replacing Apatterned
by Acffective does not improve the predictions of the patchwise heterogeneity
model for particle deposition efficiency. Figure 4.12 shows that the variation
of scaled collector deposition efficiency 7/ns with respect to Apatternea does not
follow a linear relationship in contrast to what is suggested by the patchwise
heterogeneity model. This implies that the failure of the patchwise heterogene-
ity model in predicting the particle deposition in the presence of micro-scale
heterogeneity originates from the fact that the assumption of a simple linear re-
lationship between particle deposition () and collector favorable area fraction
(Apatterned) is not valid for the case of micro-scale heterogeneity when the size of
charge heterogeneity is comparable to particle size.

The numerical simulation results for particle deposition over the heteroge-
neous substrate in Figure 4.12 illustrate that although there is a part at the
leading edge of the favorable stripes all over the collector surface that is in-
accessible for particle deposition and acts as unfavorable region, the overall
particle deposition rate over the heterogeneous substrate is larger than that
predicted by both the original and the modified patchwise heterogeneity mod-
els. For instance, in case of a substrate with nominal favorable area fraction of

50%, although more than 50% of the collector surface can be assumed unfavor-
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able (due to the presence of inaccessible part at the leading edge of favorable
stripes) the particle deposition rate over such a surface inside the impinging
jet system is very close to the particle deposition rate over a fully favorable
surface. This indicates that although the particle deposition rate is zero over
unfavorable regions, the particle deposition rate over the accessible part of fa-
vorable bands is large enough so that the overall particle deposition rate over
the entire surface of heterogeneous substrate approaches a value comparable to
the particle deposition rate over a fully favorable surface. This behaviour can
be attributed to the coupled effects of hydrodynamic and colloidal interactions
inside the impinging jet system in the vicinity of the heterogeneous substrate

which will be discussed in more detail in next chapter.

4.6 Summary

A trajectory model has been developed to investigate the effect of surface charge
heterogeneity on particle deposition rate and particle trajectory in the vicinity of
the heterogeneous substrate inside the impinging jet flow geometry. The surface
charge heterogeneity was modelled as concentric circular bands with different
negative and positive surface potentials. This model takes into account the ef-
fects of external forces acting on the particles that were discussed in Chapter 3.
The trajectory equations were solved numerically. The simulations performed in
this study reveal that the trajectory of a charged particle near a micropatterned
charged collector consisting of alternate positive and negative bands becomes
oscillatory due to the alternating attractive and repulsive particle-substrate col-
loidal forces. The wavelength and amplitude of this oscillating trajectory can
be controlled by changing the width of the favorable and the unfavorable bands,
the particle and substrate surface potentials, and solution ionic strength. The
particle trajectories in the vicinity of the heterogeneous substrate indicate that
it is possible to render a partly favorable collector to behave as a completely un-

favorable collector by simply increasing the ratio of the tangential to the normal
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fluid velocity over the substrate.

It was also observed that due to the interplay of hydrodynamic and colloidal
interactions, there exists a part at the beginning of favorable stripes that is
inaccessible for particle deposition and acts as unfavorable region, implying
that the actual favorable area fraction of the collector is less than its nominal
value.

Furthermore, the patchwise heterogeneity model normally used to predict
the particle deposition rate over heterogeneous surfaces was shown to be inade-
quate for micropatterned charge heterogeneous substrates. This model provides
a linear relationship between the particle deposition rate over a heterogeneous
collector and the particle deposition over a fully favorable collector where the co-
efficient of this linear equation is the collector favorable area fraction, Apatterned-
It has been increasingly stated in literature that patchwise heterogeneity model
fails to predict the particle deposition rate in case of micro-size heterogeneity
when the size of heterogeneity is comparable to the particle size. By taking
into account the actual collector favorable area fraction, the expression for the
patchwise heterogeneity model has been modified.

Finally, using the trajectory analysis, the particle deposition rate over het-
erogeneous collectors consisting of alternate unfavorable and favorable bands
was calculated for different values of collector favorable area fraction. The nu-
merical results for particle deposition rate depict a significant deviation from
those predicted by both the modified and the original patchwise heterogeneity
models. The deviation of numerically obtained values of particle deposition rate
from those predicted by both the modified and the original patchwise hetero-
geneity models indicates that the failure of the patchwise heterogeneity model
does not stem from the erroneous values of collector favorable area fraction since
modifying these values did not improve the patchwise heterogeneity model pre-
dictions for particle deposition. Consequently, it was clarified that the failure
of the patchwise heterogeneity model originates from the concept of linear rela-

tionship between the particle deposition rate over heterogeneous collector and
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the particle deposition rate over fully favorable collector based on averaging
process which is not comprehensive enough to capture all the physics behind
the particle motion in the vicinity of heterogeneous substrate.

According to the numerical simulation results, when half of the collector
surface is covered with favorable charge, the particle deposition rate is almost
identical to the particle deposition rate over a fully favorable surface. It was
observed that similar to what has been reported in literature, the particle depo-
sition rate increases significantly by an slight increase in the collector favorable
fraction when the surface is initially unfavorable. These results were attributed
to the coupled effects of hydrodynamic and colloidal interactions between the
particles and heterogeneous collector. A more detailed discussion will be pro-
vided in next section by conducting simulations based on Eulerian methods to
determine particle deposition behaviour in the presence of micro-scale charge

heterogeneity.
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Figure 4.1: A schematic illustration of the trajectory of a negatively charged
particle over a micropatterned substrate consisting of alternate negative and
positive bands. Plain stripes represent negatively charged regions and shaded
stripes represent positively charged regions.
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Figure 4.2: A schematic representation of limiting trajectory. Dashed lines
represent two particle trajectories. The limiting trajectory corresponding to
the distance R, from the stagnation point on the collector starts from the jet
tip at the radial distance of rg, ;. All the other trajectories start at the jet tip
with the radial position less than rq 1, will terminate on the collector inside
the circle with radius R,.
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Figure 4.3: Illustration of particle trajectories obtained by numerically solving
of Eq. (4.8) for different values of collector surface potentials. Dashed lines
represent the particle trajectories over an unfavorable surface. Dotted lines
denote particle trajectories over a favorable surface. Solid lines represent the
particle trajectories over a heterogeneous charged surface with w, = w, = 2 um.
The simulations were obtained for two different regions (a) Near Stagnation
point and (b) Far from stagnation point.
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Figure 4.4: (a) Illustration of particle trajectories over a heterogeneous charged
surface consists of alternate negative and positive bands with scaled surface
potentials of -2 and +2, respectively. (b) Zoomed in trajectories inside the

dashed box in Figure 4.4a. A represents the wavelength of the oscillating particle
trajectory.
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Figure 4.5: Illustration of particle trajectories in impinging jet flow field over
a charged substrate for two different values of solution ionic strength i.e. 1073M
and 10735M. Dashed lines denote the particle trajectories over a homogeneous,
fully favorable substrate ¥, = +1. Solid lines denote particle trajectories over

a micropatterned substrate consisting of alternate negative and positive bands,
Wy = wp =2 pm, and ¥, = (-1, +1).
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Figure 4.6: A schematic depiction of procedure used to evaluate the inac-
cessible part at the beginning of favorable stripes. Each favorable stripe was
discretized into N segments. Starting from the end of each such segment, the
trajectory equations were solved backward to determine the initial release lo-
cation of the particle. The initial release position was deemed feasible if it
originated from within the impinging jet nozzle (solid line). Termination of
the trajectory at any other point in the computational domain constituted an
infeasible trajectory (dashed line).
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Figure 4.7: Accessible fraction of a favorable band (AFF) presented for all of
the favorable bands on the collector surface. The horizontal axis represents the
band number along the radial direction on the collector surface. The results
correspond to different values of positive and negative band width while the
pitch is maintained constant and equal to 20 um. ¥, = (-2,42), a, = 1 pm,
I =1073M.
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Figure 4.8: Accessible fraction of a favorable band (AFF) presented for all of
the favorable bands on the collector surface for three different values of pitch.
The horizontal axis denotes the band number along the radial direction on the
collector surface. The favorable area fraction of the collector is maintained
constant and equal to 50%. All the other parameters are the same as in Figure
4.7
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Figure 4.9: Accessible fraction of a favorable band (AFFr) presented for all of
the favorable bands on the collector surface for different values of fluid velocity
corresponding to Re=>50, 100 and 200. The collector surface consists of alternate
favorable and unfavorable bands with the width of 5 um. The favorable are
fraction of the collector is 50%. All the other parameters are the same as in
Figure 4.7
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Figure 4.10: The dependence of reduced deposition efficiency (n/7y) on favor-
able area fraction of the collector (Apatterned). Dashed line denoted the effective
deposition efficiency obtained using the original patchwise heterogeneity model,
Eq. (4.14). Symbol-lines represent the effective deposition efficiency obtained
using the modified patchwise heterogeneity model, Eq. (4.17) for two differ-
ent distances from the stagnation point, R, = 60 wm (square-legend line) and
R. = 800 um (circle-legend line). All parameters are the same as in Figure 4.7.
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Figure 4.11: The dependence of the collector deposition efficiency (n) on the
radial distance from the stagnation point. R, represents the distance of the end
of each favorable band from the stagnation point. Solid line denotes the deposi-
tion efficiency for a homogeneous fully favorable collector (n¢), while other lines
denote the collector deposition efficiency for a heterogeneous micropatterned
collector. All the other parameters are the same as in Figure 4.7.
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Figure 4.12: The dependence of the scaled collector deposition efficiency
(n/ny) on the collector favorable area fraction. The collector radius, R, is as-
sumed to be 300 um. Triangle-legend line denotes the deposition efficiency for a
heterogeneous collector predicted by the original patchwise heterogeneity model
while circle-legend line denotes the deposition efficiency for a heterogeneous col-
lector predicted by the modified patchwise heterogeneity model. Square-legend
line denotes the deposition efficiency for a heterogeneous collector calculated
using trajectory model.
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Chapter 5

Eulerian Approach: Particle
Transport Equation

5.1 Introduction

In this chapter, we will focus on particle transport modelling from the impinging
jet flow onto the solid substrate, using the Eulerian approach. In this model,
the effects of convection, diffusion, and migration due to the external forces
such as gravity, van der Waals and electrostatic double layer interactions will
be included. Using finite element analysis, the convection-diffusion-migration
equation with appropriate boundary conditions will be solved numerically for
the case of homogeneous and heterogeneous collectors. Utilizing the numeri-
cal results for particle concentration, the normal particle flux at the collector
surface will be calculated in form of Sherwood number, which represents the
dimensionless rate of particle deposition on the collector surface. In order to
validate the finite element analysis, the numerical results will be compared with
available results in literature for homogeneous collectors. Furthermore, a para-
metric study are conducted to elucidate the effects of charge heterogeneity on
particle deposition on collectors with different favorable area fractions. Finally,
the particle deposition rate over heterogeneous collectors obtained by solving the
convection-diffusion-migration equation will be compared with that predicted

by the patchwise heterogeneity model.
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5.2 Convection-Diffusion-Migration Equation

The transfer of particles from a flowing suspension toward a collector surface in
an impinging jet system is governed by the general mass conservation equation

which has the following form [van de Ven, 1989, Masliyah, 1994]

—=+V-7=Q (5.1)

where ¢ is the particle concentration, j is the particle flux and Q is the source
term. In this study, it was assumed that the process reaches steady-state condi-
tion after a short time, so the time dependent term is set to zero. Furthermore,
since there is no mass source or sink in the system (e.g., aggregation of particles)
@ takes the value of zero . As a result, the mass conservation equation, Eq.
(5.1), simplifies to

—

V-j=0 (5.2)

The particle flux, 7, is obtained by considering contributions from fluid convec-
tion, diffusion, and migration due to the external forces exerted on the particle.
Considering all of the above contributions, the particle flux can be defined as
[van de Ven, 1989, Masliyah, 1994]

j:ac—g-ﬁchE:’—Tg-ﬁ (5.3)
where ¥ is the particle velocity, D is the diffusion coefficient tensor, ks is the
Boltzmann constant, T is the absolute temperature and F is the total force
exerted on the particle. In order to solve the convection-diffusion-migration
equation, Eq. (5.2), particle velocity, diffusion tensor, and the total external
forces should be defined.

The fluid velocity field inside the impinging jet system was obtained in chap-
ter 2 from a solution of Navier-Stokes and continuity equations. In the vicinity
of the collector surface, the velocity of the particle induced by fluid motion is
different from that of the fluid due to the effect of hydrodynamic interactions.
Following Spielman and Fitzpatrick [Spielman and Fitzpatrick, 1973], the rela-
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tionship between the fluid and particle velocities is given by
v = uyr f3(h) (5.4a)

v, = u, f1(h) f2(h) (5.4b)

where fi(h) to f3(h) are the universal hydrodynamic correction functions and
h is the dimensionless surface to surface distance between the particle and the
substrate.

The expressions for total external forces acting on the particle were provided
in Chapter 3. In the next subsection, we define the particle diffusion tensor.
It is worth noting here that due to the geometry of the impinging jet flow
system used in this study, the mass transfer equation can be solved based on an
axisymmetric two-dimensional cylindrical coordinate system which is identical

to the one used for solving the fluid flow equations in Chapter 2.

5.2.1 Particle Diffusion Coefficient

It can be seen from Eq.(5.3) that we employed the diffusion coeflicient ten-
sor instead of simple scalar diffusion coefficient given by the Stokes-Einstein
equation, i.e., Do, = kT /6mpsa,. The reason for introducing this tensor is as
follows; near the collector surface, the particle diffusion coefficient is affected
by hydrodynamic interactions and becomes dependent on the position of the
particle relative to the collector surface [van de Ven, 1989, Honig et al., 1971].
Assuming a dilute suspension of spherical, non-interacting particles, the particle

diffusion coeflicient can be formulated as
_ dlf 0

where D, is the particle diffusion coefficient in the bulk solution given by the
Stokes-Einstein equation. d || and d L are the correction factors due to the finite
gap between the particle and the collector surface. Considering the geometry

of the system, we can define Dyd || and Dyd L as being D,, and D,, which
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can be formulated by incorporating the effects of hydrodynamic interactions as

:[DTT 0 Jz Dm{h(h) 0 ] (5.6)

follows

IS

0 D, 0 fi(h)

where f and f, are the universal hydrodynamic correction functions [Goldman
et al., 1967b], and h is the dimensionless surface to surface distance between the
particle and the substrate (s/a,). The expressions for the universal hydrody-

namic correction functions were taken from Masliyah (1994).

5.3 Particle Transport Equation

In the absence of the source term in the mass conservation equation and by
assuming the steady-state process, the transport of the particles inside the im-
pinging jet system can be formulated using Eq. (5.2), where the particle flux
given by Eq. (5.3) can be written explicitly in an axisymmetric two dimensional
cylindrical coordinate system as

c Oc c
r = UpC — D rz T DrrFr rzd'z .
Jr = vrc — ( +D 82)+kT( + D, F,) (5.7a)
Oc

9c
Tr ar
dc

Je =06 = (Dpp— + Dy —— (D, F, + D,,F,) (5.7b)

"or 0z )+ ky T
where j, and j, are the particle flux in radial and normal directions. F, and
F, are the total external forces acting on the particle in radial and normal
directions, respectively. The above equations can be further modified by using
the equation for particle velocity, Eq. (5.4), and the expression for particle

diffusion coefficient, Eq. (5.6).

jr = urf3c oof4 oof4 (58&)

kT

. C C
Jz = uzflfzc - Doofl& -+ k:b_TDoolez (58b)

As described earlier in Chapter 3, in this study we consider gravity, van der
Waals, and electrostatic double layer interaction the forces exerted on the par-

ticle in an impinging jet system. As a result, F. and F, can be defined as
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F.=0 (5.9a)
F, = Fg + Fogw + Fear (59b)

It is worth noting here that the only radial force exerted on the particle is due
to the hydrodynamic drag force. However, since we already take this force into
account as convection term in the expression for particle flux, Eq. (5.3), there
are no other radial forces exerted on the particle implying that F) takes the
value of zero in Eq.(5.9).

The particle transport equation can be nondimensionalized by multiplying

Egs. (5.2) and (5.8) with a,/DsoCoo, Which results in

= = 10, - 83z
= ——(7j = 1
Vij=co (i) + 52 =0 (5.10a)
= _ . 0c
o = foPe e = fi5 (5.10b)
= _ oc _
Jz = Uz f1f2Pe c_f1£+f1cm (5.10c)
where
— _ Up = _. T ) . an ~ _ _C
T U =4 F= %7 C= e

Eq. (5.10) is the nondimesionalized convection-diffusion-migration equation
that governs the particle transport inside the impinging jet system or any other
axisymmetric configuration in the presence of external forces. Eq. (5.10) is a
second order, parabolic differential equation that can be solved numerically. The
boundary conditions related to the convection-diffusion equation are described

in the next section.
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5.4 Computational Domain and Boundary Con-
ditions

In order to solve the convection-diffusion equation, Eq. (5.10), in the impinging
jet flow system, the appropriate boundary conditions should be defined first.
The computational geometry is depicted in Figure 5.1. As described earlier
in Chapter 2, a colloidal suspension containing particles impinges vertically
on the collector surface (OG, hatched line). The simulation is based on the
axisymmetric cylindrical coordinate system where the center of the coordinate
system is located at the stagnation point, O. The computational domain used
in numerical simulation is depicted by the rectangular region in dashed lines
in Figure 5.1a. Figure 5.1b shows this domain in more details. Here, O is the
stagnation point and represents the center of cylindrical coordinate system. OG
represents the collector surface. The radius of the collector is assumed to be
1 mm and equal to the radius of the impinging jet nozzle. All the lengths are
nondimensionalized with respect to the particle radius, a,.

It is extensively stated in the literature [Prieve and Ruckenst.E, 1974, Spielman
and Fitzpatrick, 1973, Adamczyk, 1989, Elimelech, 1995, Masliyah, 1994], that
the particle deposition over a surface occurs when the center of the particle
reaches a certain distance, z = a, + d,, from the substrate (where z is the nor-
mal distance between the particle center and collector surface). The separation
distance, d,,, is usually taken as an arbitrary cut-off separation distance located
typically around 1-5 nm from the collector surface. Use of this finite value for
the separation distance eliminates the problems due to the divergence of van
der Waals forces at contact. In our computational domain, we define a line, HJ,
at the distance of z = a, + ¢, from the collector surface. This line, forming
one of the computational boundaries, represents the location where the particle
deposition can occur. The boundary condition along this line is the well-known
“perfect sink” boundary condition. This condition implies that when the center

of the particle reaches this line, the particle will be irreversibly captured by the
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collector surface. The captured particle is no longer part of the dispersed phase
implying that the particle concentration is zero along HJ.

The other computational boundary depicted in Figure 5.1b is EH. This line
is located along the z axis and represents the symmetry line. It was assumed
that the value of radial particle flux is zero which means that the particle flux
vector consists of just normal component along this line. The length of EH is
assumed to be 50 um.

EF is parallel to the collector surface and located at the distance from the
collector where the assumption of bulk concentration is valid. This assumption
implies that at large distances from the collector surface, the particle concen-
tration is equal to the particle concentration in bulk phase. As suggested in
literature [Adamczyk, 1989, for micron-sized particles, the diffusion boundary
layer thickness is of order of 1 to 10 pm. This means that the distance of
50 pum from the collector surface is sufficiently large for the assumption of bulk
concentration to be valid along EF.

FJ is parallel to 2z axis and represents the outlet part of the computational
domain. It is assumed that in the vicinity of the collector surface, the parti-
cle concentration gradient in radial direction is significantly smaller than the
particle concentration gradient in normal direction [Adamczyk et al, 1986,
Masliyah, 1994]. This allows one to neglect the variation of particle concentra-
tion with respect to r compared to the variation of particle concentration with
respect to z along FG. Consequently, since the diffusion term in the convection-
diffusion equation is directly proportional to the concentration gradient, the
dominant mechanisms of particle transport across FG are convection and mi-
gration. This means that any mass flux due to diffusion across this boundary
is approximately zero. This condition is useful for convection dominated mass
balances where the outlet concentration is unknown.

Overall, inside the computational domain of EFJH, we can summarize the

above boundary conditions that the convection-diffusion equation, Eq. (5.10),
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is subjected to as

E=0 0N e HJ (5.11a)
7-j=0 o0 € EH (5.11b)
i=1 80 € EF (5.11c)
i-Ve=0 o0 e FJ (5.11d)

where 77 represents the unit vector, normal to the surface.

5.5 Particle Deposition Rate

Transport equations such as Eq. (5.10) provide the particle concentration dis-
tribution everywhere inside the domain of interest. The particle concentration
distribution can be employed to obtain the particle deposition rate on the col-
lector surface. The particle deposition rate in context of Eulerian approach be

represented by the Sherwood number, which is defined as

ap T

Sh = (1) emaptom = (2)may 1o (5.12)

DooCoo
here, (]_z) is the dimensionless normal particle flux on the collector surface,
evaluated at z = ap, + 0,,, where J,,, is an arbitrary cut-off distance typically
located around 1-5 nm from the collector surface. Once the convection-diffusion
equation is solved, (j,) on the collector surface can be calculated using Eq. (5.8).
The Sherwood number given by Eq. (5.12) is the local Sherwood number at a
given radial position on the collector surface. The average Sherwood number

over the whole collector surface can be expressed as
1
Shape = — / Shds (5.13)
S Js

where § is the collector surface area. Considering the geometry of the impinging
jet system, the above equation can be further simplified in cylindrical coordinate

system as

Shave

- w(r3

1 T2 9 r2
- ) / 1 Sh(r)(2mr) dr = CETE) / 1 rSh(r)dr  (5.14)
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where Shg,. represents the overall particle deposition over the collector with the
surface area of w(r2 — r?). Here, r; and rq are the radia of the circular segment

on the collector surface.

5.6 Numerical Method

5.6.1 Numerical Simulation Using FEMLAB®

The numerical solution of convection-diffusion equation, Eq. (5.10) along with
boundary conditions, Eq. (5.11) is obtained using finite element analysis. The
solution methodology in this study was implemented using the commercially
available software FEMLAB® 3.1 (COMSOL, Inc., USA). FEMLAB® pro-
vides a number of application modes or modules that consist of predefined
templates and user interfaces already set up with equations and variables for
different areas of physics such as electromagnetics, structural mechanics, chem-
ical engineering, and so forth. The chemical engineering module is a package
optimized for the analysis of transport phenomena. The predefined convection-
diffusion equation in chemical engineering module of FEMLAB® has the fol-
lowing format
Oc

E+6-(ﬁc—£-ﬁc)=@ (5.15)

As can be seen from Eq. (5.15), in modelling the particle transport, the
convection and diffusion application mode of FEMLAB® considers only the
effects of convection and diffusion whereas in our model, due to the presence
of external forces acting on the particle, the migration term also contributes
significantly in particle transport phenomena. In order to use the predefined
mass transfer expression of FEMLAB® for our study, we rewrite the equation
for particle flux, Eq. (5.3), such that the convection and migration term are
lumped together yielding

- 1 B .
' — (74 —D - F)e—D.- :
J (v-l—ka: Je—D-Ve (5.16)
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Here, the first parenthesis represents the coupled effects of convection and mi-
gration due to the hydrodynamic effects and external forces. The second term
inside the parenthesis also has the dimension of velocity, which allows one to
consider the entire term in parenthesis as the total particle velocity that has
contributions from the hydrodynamic effects, v, and external forces, ,%LTQ . F.
In this manner, we change the convection-diffusion-migration equation to the
convection-diffusion form by preserving the effects of migration inside the con-
vection term, which allows us to use the predefined expressions of FEMLAB®
for solving the particle transport equation.

In modelling mass balances in the convection and diffusion application mode
of the Chemical Engineering Module of FEMLAB®, there are two mass balance
formulations available; a conservative and non-conservative formulation. The
conservative or general formulation is given by Eq. (5.15). The non-conservative
formulation removes the convective term from the divergence operator by taking
into account the continuity equation, (i.e., V - (pv) = 0). Although this format
imparts greater stability to the system, is not applicable in our model since the
convection term consists of both the hydrodynamic velocity and the velocity
induced by external forces. Consequently, in our model we select the general or
conservative equation form.

The available boundary conditions in the convection-diffusion application
mode of FEMLAB® support all of the boundary conditions in Eq. (5.11)
which allows the implementation of the exact boundary conditions without any

modifications.

5.6.2 Mesh Generation

So far, the equations governing the particle transport phenomena along with
the appropriate boundary conditions inside the computational geometry have
been defined. The appropriate application mode for solving this equation is
selected from those available in FEMLAB software. The next step in solving the

convection-diffusion equation using finite element analysis is mesh generation.
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The computational domain is descretized using quadrilateral mesh. La-
grangian elements of second order are employed that accelerate the numerical
convergence. The scope of using triangular mesh with same type of mesh dis-
tribution has also been explored. It was observed that a higher accuracy can
be obtained by employing the quadrilateral mesh rather than triangular mesh.
Quadrilateral elements divided the domain to a series of smaller rectangular
regions where rows and columns of elements can be generated. By manually
choosing the number of subdivisions on the boundaries of computational do-
main, one can have an absolute control over the mesh density every where
inside the computational domain. By taking advantage of this flexibility, the
mesh density is increased in the vicinity of the collector surface to account for
high concentration gradients in these regions.

In a finite element analysis, a small mesh size is necessary for the regions of
high concentration gradients, i.e. regions where large variation of concentration
with respect to small distances occurs. Since colloidal interactions are short
range forces, in the vicinity of the collector surface a significant particle con-
centration gradient has been observed [Ruckenstein and Prieve, 1973, Spielman
and Fitzpatrick, 1973]. This gradient is even larger for the case of particles over
unfavorable collectors since a large number of particles accumulates in a narrow
region at the secondary minimum, forming a sharp concentration peak there.
This behaviour necessitates the use of significantly small elements with length
scales even smaller than Debye length close to the surface [Song et al., 1994].
Having the same element size far from collector surface will be redundant be-
cause the concentration gradient is small in those regions and is less affected by
the choice of element size.

In order to obtain the necessary number of elements that is required to solve
the convection-diffusion equation for the case of homogeneous, fully favorable
collector, several simulations with different numbers of elements were conducted.
It was observed that increasing the element number above 20,000 does not af-

fect the particle concentration in the computational domain. However, in case
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of homogeneous unfavorable collector, using this number of elements results in
negative concentration value in the vicinity of the collector which is obviously
erroneous. It turns out that in order to minimize the value of this negative
concentration and obtain a smooth solution, the number of element should be
increased significantly. This high value of mesh density increases the computa-
tional load.

For the case of heterogeneous collectors consisting of alternate favorable and
unfavorable bands, the sufficient number of elements is even higher than the
unfavorable collector. For a heterogeneous collector, the electrostatic double
layer force changes its sign over the consecutive bands. This will cause large
variations of concentration with respect to r near the edges of each band. This
means that for heterogeneous collectors, in addition to small element size near
the collector surface, the high mesh density is also required for the regions where
the surface potential changes its sign. This increases the computational loads
significantly. In order to overcome this problem, the following procedure in

solution methodology was adopted.

5.6.3 Numerical procedure: Multi-Geometry Method

The convection-diffusion equation, Eq. (5.10), along with the appropriate bound-
ary conditions, Eq. (5.11), inside the computational domain depicted in Figure
5.1b has been solved using finite element analysis and FEMLAB® software
according to the procedure explained in Section 5.6.1. The computational do-
main is descretized into 20,000 elements with increasing mesh density near the
collector surface. Once the particle concentration is computed inside the do-
main EFJH, we define another computational domain within EFJH represented
by HJKL in Figure 5.1b. In Figure 5.1b, KL is a line parallel to the collector
surface inside the domain EFJH with the distance of 2z = 3 um from the col-
lector surface. Solving the convection-diffusion equation inside EFJH provides
the particle concentration along the line KL. Now the same convection-diffusion

equation can be solved inside the smaller domain HJKL, where the boundary
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condition along the line KL is defined as a Dirichlet condition using the results
for particle concentration computed for EFJH, while all the other boundary
conditions are the same as those defined in Eq. (5.11). Shrinking the com-
putational domain from EFJH to HJKL allows redefining the resolution of the
geometry near the collector surface.

In choosing the second computational domain, we have to optimize the dis-
tance of KL from the collector surface. Since the element size near the collector
in the first domain, EFJH is not sufficiently small, the numerical solution of
particle concentration in this region has some error and provides negative val-
ues for particle concentration, which is erroneous. As a result, KL should be far
enough from the collector (i.e., where the concentration gradient is still small)
that the concentration along this line is not affected by the choice of element
size close to the collector surface. On the other hand, since the whole purpose
of creating the second computational domain is to reduce the computational
load by decreasing the size of the computational geometry, the distance of KL
from the collector surface should be reasonably small. To find this optimized
distance, the simulation was carried out for different values of element number
ranging from 20,000 to 30,000 inside the domain EFJH. For each simulation,
the particle concentration is recorded along four different lines with distances
of 0.5, 1, 2, 3 and 4 um from the collector surface. It was observed that the line
with the distance of 3 pwm from the collector is the closest line to the collector
that the particle concentration along this line is not affected by the choice of
element number. The particle concentration along other lines, with distances of
0.5, 1, and 2 um from the collector surface, is sensitive to the element number
inside the larger computational domain.

The process of solving the same set of equations inside two different geome-
tries employed in our simulation can be categorized as a part of the general
"Multi-grid Methods” in numerical simulations. The multi-geometry environ-
ment of FEMLAB® allows us to create two geometries. Once the convection-

diffusion equation is solved inside the larger geometry (EFJH), using the "ex-

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



trusion coupling variables”, we can transfer the obtained concentration, ¢, along
the line KL to the smaller geometry (KLJH) as the Dirichlet boundary condition
for its upper boundary. Using this method, we could minimize memory con-
sumption and accelerate the solution time significantly. Further details about
using extrusion coupling variables can be found in FEMLAB® user’s guide.
In solving the convection-diffusion equation using finite element analysis, for
both geometries, the non-linear stationary solver was selected. Initial solution
of the assembled matrix equation is achieved using Gauss elimination. The
relative tolerance and maximum number of iteration are set to 107¢ and 25,
respectively. The relative tolerance gives the criterion for convergence. Once
the relative error is less than the relative tolerance, the software stops iterating

and the solution is complete.

5.7 Validation of Numerical Results

In order to investigate the accuracy of finite element calculations, the numerical
results are compared with those available in literature. In this section we make

use of three available studies in literature to validate our numerical results.

5.7.1 Diffusion Dominant Deposition (Levich Equation)

Available studies in literature mainly deal with the problem of convection-
diffusion equation inside the stagnation point region where the analytical ex-
pression for fluid velocity, Eq. (2.6), is valid. Incorporating these expressions

in the convection-diffusion-migration equation, one can simplify Eq. (5.10) to

== 10 - 33, .
V.j= %§(7‘]7-) + 2 = 0 (5.17a)
- 1 __ oe
Jr = §f3Pes FZE — f4§ (5.17b)
_'—-—lffP —2_—f@+fﬁ‘_ 5.17
Jz = 2126320 182_5 14'2C ( C)
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where Pe, = is the stagnation flow Peclet number defined as

20,03
Pey = —"
e D

(5.18)

where «; is defined in Eq. (2.7).

Under certain assumptions, there are few limiting analytical solutions for
convection-diffusion-migration equation, Eq. (5.17), in the stagnation point
region. These solutions can be used as criteria to examine the validity of the
numerical results. One of these limiting cases where the analytical solution
for convection-diffusion equation is available for stagnation point region, was
given by Levich [Levich, 1962]. Several assumptions were made to obtain the
analytical solutions, which are; (a) the energy barrier (unfavorable deposition) is
absent. (b) neither hydrodynamic interactions nor colloidal surface interactions
are involved, i.e., fi(h) = fa(h) = f3(h) = 1 and Fog, = F.yq = 0 which in
practice may correspond to the situation where the hydrodynamic resistance
interactions are counterbalanced by attractive colloidal interactions. (c) all the
radial derivatives in Eq. (5.17) are several orders of magnitude smaller than
the normal derivatives inside the stagnation point region and therefore, are
negligible. Considering all of the assumptions and assuming the stagnation point
flow equations are valid, the convection-diffusion equation inside the stagnation

point region, Eq. (5.17), can be simplified to

d¢ 1., _ dc
o -z P S_ — .
o T o7 Peso 0 (5.19)

which is a second order ordinary differential equation. The boundary conditions

for this equation are

Z=1+0p (5.20a)

Ql
fl
o

)]

=1 Z — 00 (5.20b)

Integrating Eq. (5.19) twice and making use of the boundary conditions,
Eq. (5.20), one can obtain an analytical expression for particle concentration

from which the Sherwood number can be calculated according to Eq. (5.12).
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For diffusion controlled deposition i.e., Pe; << 1, the analytical expression for

Sherwood number takes the form of [Levich, 1962]
Sh = 0.616Pel/3 (5.21)

It follows that in diffusion dominated regime and in the absence of energy bar-
riers and force fields, the dimensionless particle deposition rate is governed by
the Levich formula given by Eq. (5.21).

The numerical model is first tested by computing Sh in the stagnation point
region in absence of energy barriers where all the other parameters are as stated
in Table 3.1. The dependence of the Sherwood number, Sh, on stagnation Peclet
number, Pe;, Eq. (5.21) is depicted in Figure 5.2. In this figure, symbols
represent the Sh obtained using the numerical solution of convection-diffusion-
migration equation. For each value of Pe;, the convection-diffusion-migration
equation, Eq. (5.17) along with the boundary conditions Eq. (5.20) was solved
using finite element analysis and methodology described in Section 5.6.1. Once
the particle concentration profile was obtained, the local Sherwood number was
calculated using Eq. (5.12). The average particle deposition rate, represented
by Shgve inside stagnation region can be calculated by setting the limits of
integration in Eq. (5.13), r1 and r», such that they represent the regions inside
the stagnation point area. As mentioned in Chapter 2, in this study, we assume
that the stagnation point region is located in the domain represented radially
by 0 < r < 100 um. Using the values of r; = 0 and r; = 100 um, the overall
particle deposition in stagnation point region can be obtained in the form of
Shave-

The solid line in Figure 5.2 represents the Sherwood number obtained using
Levich equation, Eq. (5.21). As shown in this figure, in the diffusion dominated
regime, Pe; < 1, there is an excellent agreement between the Shg,. obtained
using numerical method (symbols) and Sh,,. predicted by Levich equation (solid
line) implying the finite element method used in the present study accurately
calculates the particle deposition rate. At larger values of Pe, > 1, the Shgye

obtained using the numerical method deviates from that predicted by Levich.
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5.7.2 Unfavorable Deposition

Calculating rate of particle deposition by numerically solving the convection-
diffusion equation is particularly difficult when repulsive colloidal interactions
are involved [Song et al., 1994]. In the presence of repulsive interaction, the
particles accumulate in a narrow region located at a finite distance from the
collector surface, around the secondary minimum and form a sharp concen-
tration peak that changes the nature of convection-diffusion equation into stiff
equations with turning points. Solving this type of equation smoothly requires
special precautions in mesh generation. Thus, if the finite element analysis
employed in this study manages to produce reasonable results for particle depo-
sition over unfavorable collectors, it implies the validity of the present numerical
method.

Dabros and van de Ven [Dabros and van de Ven, 1983| presented numerous
results for particle deposition under different conditions. One of these results is
for numerically calculated particle deposition rate over an unfavorable collector.
In the second test for the finite element solution, we compare our numerical
results with those reported by Dabros and van de Ven for the case of unfavorable
deposition. The comparison is presented in Figure 5.3.

Figure 5.3 shows the variation of particle deposition rate, presented as Shgye
with respect to flow Reynolds number, Re for different values of DI inside the
stagnation point region. Solid lines in this graph show the Sh,,. reported by
Dabros and van de Ven. Dashed lines represent the Sh,,. obtained by finite
element analysis. For each value of double layer parameter, DI, numerical cal-
culation was performed for different values of Re. Once the particle concentra-
tion profile was obtained, the overall Shg,, for the stagnation point region was
obtained using the procedure described in Section 5.7.1. All the parameters are
exactly the same as those used in the calculations of Dabros and van de Ven
[Dabros and van de Ven, 1983]. Figure 5.3 depicts an excellent agreement be-
tween Shg,e obtained using finite element analysis and those reported by Dabros

and van de Ven which implies the validity of the present numerical model.
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5.7.3 Variation of Particle Deposition with Particle Size

In computing the particle deposition rate, one of the advantages of using Eu-
lerian approach (convection-diffusion equation) over Lagrangian approach (tra-
jectory analysis) is that, Eulerian approach applies to all particle sizes whereas
Lagrangian approach can be used for non-Brownian particles due to the math-
ematical complexities of incorporating diffusion effects in trajectory analysis
[Adamczyk, 1989, Elimelech, 1995]. Taking advantage of this property of Eule-
rian approach, we calculate particle deposition rate as Shg,. for different values
of particle radius, a,, ranging from 0.01 to 2 um.

In Figure 5.4, the vertical axis represents particle deposition efficiency, n. It
is worth noting here that Shg, and 1 both represent particle deposition rate.
Shaye is normally used to represent particle deposition rate in Eulerian approach
while 7 is normally used to represent particle deposition rate in Lagrangian
approach. Using the definitions of Shgwe, Eq. (5.13), and 5, Eq. (4.10), one can
relate Shy, and n as [Masliyah, 1994]

Shave =n Pe (5.22)

U,
where Pe = =22

Do

The solid line with circular symbols in Figure 5.4 denotes the 7 obtained by
finite element analysis. These results are obtained by solving the convection-
diffusion equation numerically for different particle radii. Once the particle
concentration profile is obtained, one can calculate Shg,. using Eq. (5.13). Fol-
lowing this, by making use of Eq. (5.22), the n corresponding to each Sh,,. was
calculated. Figure 5.4 depicts the variation of particle deposition efficiency, 7,
with particle radius, a,, for a homogeneous, fully favorable collector with scaled
surface potential ¥y = +1. The particle scaled surface potential is assumed to
be —1. The flow Reynolds number and solution ionic strength are 100 and 1073,
respectively. All the other parameters are stated in Table 3.1.

The numerically calculated values of particle deposition efficiency, 7, in Fig-

ure 5.4 shows the same qualitative behaviour with respect to particle size as
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reported in literature [Rajagopalan and Kim, 1981, Tufenkji et al., 2004, Nelson
and Ginn, 2005]. Moreover, using Levich equation, Eq. (5.21), and the relation
between Shg,. and 7, Eq. (5.22), we calculate the particle deposition rate, 7,
predicted by Levich equation for different values of particle radius. The re-
sults have been shown in Figure 5.4 as a dashed line. It can be seen that for
smaller particle size, which corresponds to smaller values of Pe, the numerically
calculated 7 is in excellent agreement with the n predicted by Levich equation.

Overall, it was observed that the numerical technique used to obtain the so-
lution of convection-diffusion equation provides accurate results for particle con-
centration distribution and particle deposition rate. Hence, it can be employed
to predict the particle deposition rate over different collectors with different

surface potentials.

5.8 Numerical Results for Particle Deposition:
Homogeneous Collectors

Although the goal of this study is to investigate the role of charge heterogeneity
on particle deposition, we first present some results concerning particle depo-
sition over homogeneous collectors. This will give us an insight regarding the
physics governing the development of the particle concentration profile and the
particle deposition behaviour over different collectors in the presence of external
forces.

Particle deposition over homogeneously charged collectors in the impinging
jet system has received enormous attention in literature. The effects of differ-
ent parameters such as solution ionic strength, particle size, fluid velocity, etc.,
on particle deposition have been extensively studied [Adamczyk, 1989, van de
Ven, 1989, Masliyah, 1994]. In order to study to what extent the charge hetero-
geneity affects the deposition rate, we need to first calculate particle deposition
rates over homogeneous collectors. Moreover, solving the convection-diffusion

equation for the case of particle transport over homogeneous collectors enables
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us to observe the particle concentration profile (particle distribution) in the
vicinity of the collector surface. Figure 5.5 depicts the variation of dimension-
less particle concentration with the vertical distance from the collector surface,
z, at the stagnation point. The particle radius is 1 gm and the flow Reynolds
number is 100. The solution ionic strength is 1073M. All the other parameters
are stated in Table 3.1. This set of results is obtained by solving the convection-
diffusion equation, Eq. (5.10) along with the boundary conditions, Eq. (5.11)
using the finite element analysis and procedure explained in Section 5.6.

The solid line in Figure 5.5 depicts the concentration profile with respect to
z for a homogeneous, fully favorable collector where the particle and collector
scaled surface potentials are assumed to be -1 and +1 respectively. The dashed
line represents the particle concentration profile with respect to z for a homoge-
neous, fully unfavorable collector where the particle and collector scaled surface
potentials are both equal to —1. A comparison between these two profiles re-
veals that far from the collector surface, the particle concentration approaches
the bulk concentration for both favorable and unfavorable collectors. However,
from a certain vertical distance from the collector surface, s =~ 100 nm, particles
start to experience colloidal forces and the concentration profile over favorable
and unfavorable collectors show different behaviours.

In the case of favorable collector, due to the hydrodynamic retardation ef-
fects (wall effects) which slow down particle velocity toward the collector, par-
ticle concentration increases initially as the particle-collector vertical distance
is reduced. By further decreasing the particle-collector vertical distance, due to
attractive electrostatic double layer force, the particle velocity toward the col-
lector surface increases. This decreases the particle concentration. Due to the
attractive double layer force, particles get closer to the collector and eventually
deposit on the collector surface. Since deposited particles are no longer part of
dispersed phase, the particle concentration takes the value of zero at the cut-off
distance from the collector surface (perfect sink boundary condition). In the

case of unfavorable collector, particles accumulate at the distance of secondary

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



minimum from the collector surface (i.e., s = 72 nm for the present case), form-
ing a sharp peak in the concentration profile. At closer separation, due to the
repulsive electrostatic double layer force, the particle concentration reaches the
value of zero. This implies that no particle can get closer than the distance of
secondary minimum to the collector surface and the particle deposition rate on
such a collector is zero.

Figure 5.6 shows variation of particle deposition rate in form of local Sher-
wood number, Sh, with respect to radial distance from the stagnation point,
r for two cases of favorable and unfavorable collectors. All the conditions are
the same as those of Figure 5.5. In the case of favorable collector, particle de-
position rate, Sh (solid line), is normally constant and independent of r up to
the radial distance of 100 um from the stagnation point implying that stag-
nation point flow system is a uniform collector with respect to deposition. By
increasing the radial distance from the stagnation point, the Sh decreases. This
significant decrease in the local Sherwood number at larger distances from the
stagnation point is solely due to the flow distribution in the impinging jet sys-
tem, characterized by the decrease in the normal velocity component at larger
r [Adamczyk et al., 2001]. In contrast, for the case of unfavorable collector,
due to the repulsive electrostatic double layer interactions between the particles
and the collector, the Sh is zero all over the collector surface as predicted by

concentration profile in Figure 5.5.

5.9 Numerical Results for Particle Deposition:
Heterogeneous Collectors

In this section, we focus on particle deposition rate over heterogeneous collec-
tors with different values of favorable area fraction, Apgtterned- Furthermore, the
effects of different parameters on particle deposition over heterogeneous collec-
tors are studied. The results for particle deposition rate are then compared with

those predicted by the patchwise heterogeneity model.
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Particle concentration profile over a charge heterogeneous collector can be
obtained by solving the convection-diffusion equation using finite element anal-
ysis and FEMLAB® software according to the procedure explained in Section
5.6. Making use of these results and Egs. (5.12) and (5.14), one can calculate
particle deposition rate represented by Sh,,. over a heterogeneous collector.
Comparing the Shg,. with those obtained for homogeneous collectors reveals
to what extent the charge heterogeneity can affect the particle deposition be-
haviour in the impinging jet system.

The collector charge heterogeneity is modelled as concentric circular bands
with specified width and pitch bearing different surface potentials. The surface
potential of the collector, ¥, changes periodically with respect to r, as described

in Chapter 3.

5.9.1 Particle Concentration Profile

Solving the convection-diffusion-migration equation provides the particle con-
centration profile over a micropatterned collector and reveals the distribution
of particles in the vicinity of each favorable and unfavorable band. Figure 5.7
shows the variation of particle concentration in the vicinity of the collector
surface with r at two different vertical distances from the collector surface. Fig-
ure 5.7a shows the particle concentration close to the collector surface around
the cut-off distance, s = 5 nm. The region between 500um < r < 600um
in Figure 5.7a is enlarged and shown in Figure 5.7b. Figure 5.7c depicts the
particle concentration around the secondary minimum distance from the collec-
tor, s = 72 nm. From this point on, for the sake of simplicity, we call these
two distances as close and far from the collector surface, respectively. These
results are obtained by solving the convection-diffusion numerically for a collec-
tor consisting of alternate negative and positive bands with surface potential of
—1 and +1, respectively. The widths of negative and positive bands are equal
(Apatterneda = 50%) and assumed to be 10 ym. Throughout this study, the first

band on the collector surface is assumed to be negatively charged. The parti-
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cle radius and the particle surface potential are assumed to be 1 ym and —1
respectively. The solution ionic strength and flow Reynolds number are 1073M
and 100, respectively.

According to Figure 5.7, the particle concentration profile shows a periodic
behaviour over a collector consisting of alternate negative and positive bands.
It can be seen in Figure 5.7a that close to the collector surface, the particle con-
centration is zero over the unfavorable bands throughout the collector surface
due to presence of energy barrier and repulsive colloidal interactions between the
particles and unfavorable bands. In contrast, inside each favorable band, there is
a sharp increase in the particle concentration at the beginning of accessible part
of each favorable bands. The particle concentration reaches to an almost con-
stant value by approaching to the trailing edge of each favorable band. Figure
5.7b presents the concentration profile in Figure 5.7a for 500 um < r < 600 um.
It can be seen from Figure 5.7b that by increasing the radial distance from the
stagnation point, the regions of zero particle concentration over the unfavorable
bands are extending to the beginning part of favorable bands. This implies the
presence of inaccessible part at the leading edge of favorable stripes that was
explained in detail in Section 4.4.

Figure 5.7c shows the variation of particle concentration with r far from the
collector surface (i.e., s = 72 nm). This vertical distance is around the distance
of secondary minimum corresponding to DLVO interactions between the par-
ticles and unfavorable bands. A comparison between Figure 5.7a and Figure
5.7c reveals that the concentration profile shows a different behaviour at these
two different distances from the collector surface. According to Figure 5.7c¢, far
from the collector surface, the particle concentration reaches its maximum value
over the unfavorable band and then decreases as we proceed toward the next
favorable band. The different particle concentration behaviour at two different
vertical distances from the collector, s = 5 nm (Figure 5.7a) and s = 72 nm
(Figure 5.7c) can be explained by considering the particle concentration profiles

over favorable and unfavorable surfaces as was shown in Figure 5.5.
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According to Figure 5.5, at the distance of secondary minimum (s = 72 nm),
the particle concentration over the favorable surface (solid line) is significantly
smaller than the particle concentration over an unfavorable surface (dashed
line). This behaviour is exactly similar to what is seen in Figure 5.7c. Figure
5.7c shows that far from the collector surface, the particle concentration reaches
its maximum value over the unfavorable band and then decreases as we proceed
toward the next favorable band. Considering the particle concentration profile
far from the collector surface (Figure 5.7¢), and the flow regime, the presence
of concentration peak at the beginning of accessible part of each favorable band
close to the collector surface (Figure 5.7a), can be explained.

At the distance of secondary minimum from the collector surface, s = 72 nm,
particles accumulate over the unfavorable bands at this distance and can not get
closer to the collector surface due to the presence of the energy barrier. These
particles can be transferred radially towards the next favorable band by means
of two mass transfer mechanisms, convection and diffusion. The convection
flux in radial direction is a result of the presence of tangential component of
fluid velocity. The particles that could not deposit on the unfavorable band can
thus be swept toward the next accessible favorable region. The diffusion flux
in radial direction is a result of the presence of concentration gradient in radial
direction between negative and positive bands. As shown in Figure 5.7¢c, far
from the collector surface, there is a local concentration gradient at the edge
of two patches results in radial flux of particles toward the low concentration
regions (favorable bands) due to the diffusion effects.

For large particle sizes (a, > 1 pm) which corresponds to large values of
Pe, the convective flux is the dominant mechanism in pushing the particles
radially toward the next available favorable band. For small particle sizes (a, <
1 um) which corresponds to small values of Pe, the diffusive flux along with
convective flux are the mechanisms that push the particles radially toward the
next favorable band. The variation of radial diffusive and convective flux with

respect to r at the distance of secondary minimum from the collector surface,
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s = 72 nm, have been shown in Figure 5.8 and Figure 5.9 respectively. All the
parameters are the same as those of Figure 5.7.

Figure 5.8 depicts the variation of radial (a) convective and (b) diffusive flux
with respect to r for a particle with a, = 1 um whereas Figure 5.9 depicts the
variation of radial (a) convective and (b) diffusive flux with respect to r for a
particle with the radius of 0.1 ym. According to Eq. (5.10), the dimensionless
radial convective and diffusive flux are given as 4, f3Pe ¢ and f4%, respec-
tively. Once the particle concentration is obtained, these expressions can be
calculated at any point within the computational domain. Postprocessing rou-
tines of FEMLAB® calculate these expressions automatically once the solution
is completed.

As shown in these two figures, the values of both radial convective and diffu-
sive flux will increase at the end of each unfavorable band. The only difference is
that for the 1 um particle, the radial convective flux is significantly higher than
radial diffusive flux while for 0.1 um particle, the radial diffusive and convective
flux are from the same order of magnitude.

The radial particle flux from unfavorable bands toward the consecutive favor-
able bands will cause an increase in the particle concentration at the beginning
of each favorable band as was shown in Figure 5.7b. The particle concentration
decreases by moving radially further towards the end of each favorable band.
The particle concentration then reaches the value of zero over the next unfa-

vorable stripe. This periodic behaviour is repeated over the collector surface.

5.9.2 Local Particle Deposition Rate

So far, the particle concentration profile over a heterogeneous collector consist-
ing of alternate negative and positive bands has been obtained. Using these
results along with Eq. (5.12), one can calculate local particle deposition rate
over such a collector in an impinging jet flow system in form of Sh. Figure 5.10

depicts the variation of local Sherwood number with respect to r over a hetero-
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geneous collector corresponding to the concentration distribution described in
Figure 5.7. All the parameters are the same as those of Figure 5.7.

It can be seen from Figure 5.10a that the local Sherwood number shows
a periodic behaviour with r similar to what was observed in Figure 5.7a for
particle concentration profile close to the collector surface. The regions of 0 <
r < 100 pm and 500 < r < 600 pm in Figure 5.10a are enlarged and depicted
in Figure 5.10b and Figure 5.10c for clarity. It can be seen from Figure 5.10
that the particle deposition rate is zero over the unfavorable bands throughout
the collector surface. At the beginning of each favorable band, the particle
deposition rate increases drastically and forms the deposition peaks as can be
seen in Figure 5.10b. At larger radial distances from the stagnation point, the
region of zero deposition rate extends to the leading part of favorable bands due
to the presence of inaccessible area at these regions (Figure 5.10c) as discussed
in Section 4.4. This behaviour can be explained by considering the variation
of particle concentration profile with 7 close to the collector surface (Figure
5.7a). A comparison between Figure 5.7a and Figure 5.10a clearly shows that
the particle deposition rate is zero where the particle concentration is zero, and
the particle deposition rate reaches its maximum exactly at the same radial
position where the particle concentration reaches its maximum.

A comparison between the local Sherwood number over a homogeneous col-
lector, Figure 5.6, and the local Sherwood number over a heterogeneous collector
consisting of negative and positive bands, Figure 5.10, shows a significant differ-
ence in the behaviour of particle deposition rate over such surfaces. Although,
they both show that the particle deposition rate decreases with increasing the
distance from the stagnation point, the dependence of local Sherwood number
on radial distance from the stagnation point shows different behaviour over ho-
mogeneous and heterogeneous collectors. This difference originates from the
difference between the particle distributions over homogeneous and heteroge-

neous collectors.
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5.9.3 Averaged Particle Deposition Rate

The overall particle deposition rate over a substrate is an averaged quantity
which is characterized by the ratio of number of particles deposited on a surface
to the total surface area of the substrate. In most of deposition applications, it
is the total or overall particle deposition rate over a substrate that is important
and not the local values of particle deposition rate. Overall particle deposition
rate defines on average how many particles deposit on a unit area of a sub-
strate. The overall particle deposition rate is represented by Shgsye in Eulerian
approach. Once the local Sh is obtained, the overall particle deposition rate
can be calculated using Eq. (5.13) over a surface s in general, or Eq. (5.14)
over a region designated by r; < 7 < 73 in the impinging jet system. In order
to understand how much the presence of alternate negative and positive bands
on a heterogeneous collector surface can change the overall particle deposition
rate relative to the overall deposition rate on a homogeneous surface, the Shgq.
is calculated for both heterogeneous and homogeneous collectors.

Figure 5.11 shows a comparison between the Sh,,. obtained for a hetero-
geneous collector and for a homogeneous collector for different segments on
the collector surface, N, (i.e., band number in radial direction, Section 3.4.2).
The results are obtained for four different particle sizes; (a) a, = 1 pm, (b)
ap = 0.5 pm, (c) a, = 0.25 pm, (d) a, = 0.1 um. The scaled surface potential
corresponding to the heterogeneous collector is ¥, = (—1,+1) and the scaled
surface potential corresponding to the homogeneous collector is ¥, = +1. All
the other parameters are as stated in the Figure 5.7.

The horizontal axis in this figure represents the band number (XV,) in radial
direction on the collector surface. The Sh,,. corresponding to the first negative
and positive bands (N, = 1) is obtained using Eq. (5.14) by defining r; and
r9 as r; = 0 and 7, = p. The Shy,. corresponding to the second negative and
positive bands (N, = 2) is obtained using Eq. (5.14) by defining r; and r,
as p and 2p, respectively. For each of these segments, using the results of Sh

corresponding to homogeneous fully favorable collector, the Shg,. is obtained

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as well.

The Shgye corresponding to each band number predicted by the patchwise
heterogeneity model is also presented in Figure 5.11. These results are obtained
by using Eq. (4.14) and the Sh,,. corresponding to each segment on a homoge-
neous fully favorable collector. According to the patchwise heterogeneity model,
Eq. (4.14), the overall deposition rate over a heterogeneous collector consisting
of unfavorable and favorable bands can be given in context of Eulerian approach

as

Shaye = /\patterned Shavef (523)

where Shg.., is the averaged particle deposition rate over the homogeneous,
fully favorable collector.

In spite of the significant difference between the values of local Sh over the
homogeneous and heterogeneous collectors shown in Figure 5.10 and Figure 5.6,
it can be seen in Figure 5.11 that for each segment on the collector surface, the
values of averaged particle deposition rate, Shqye;, over a homogeneous fully
favorable collector and the values of Sh,,e over a heterogeneous collector with
favorable area fraction of 50% are not significantly different. It can also be seen
that the values of averaged deposition rate corresponding to each segment on
the heterogeneous collector are significantly larger than those predicted by the
patchwise heterogeneity model for all of the particle sizes.

According to the patchwise heterogeneity model, since the widths of fa-
vorable and unfavorable bands inside each segment on the surface of the het-
erogeneous collector are equal (Apsiterned = 50%), the overall particle deposi-
tion rate on the heterogeneous collector inside each segment should be half of
the overall particle deposition rate on a homogeneous fully favorable collector
(Shave = Shaye ;/2). Initially, this may sound intuitive. The particle deposition
rate is zero over the unfavorable bands. If the deposition rate over the favorable
band was equal to the deposition rate over the homogeneous collector, then
the averaged deposition rate over the heterogeneous collector would be half of

the averaged deposition rate of the homogeneous collector. However, a com-
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parison between values of local Sh in Figures 5.6 and 5.10 shows that at the
same radial distances from the stagnation point, the local deposition rate over
each favorable band on the heterogeneous collector is significantly larger than
the corresponding local deposition rate over the homogeneous collector. These
relatively higher values of local deposition rate over favorable bands apparently
overcome the zero values of deposition rate over unfavorable bands in the aver-
aging process inside each segment. This brings the overall deposition rate over
the heterogeneous collector significantly closer to the deposition rate over the
homogeneous collector i.e., Shewe > Shaye,/2-

It can be seen from Figure 5.11, that the particle deposition rate over a
homogeneous collector is quite close to that over a heterogeneous collector with
50% favorable area fraction regardless of particle size. For all of the cases
shown in Figure 5.11, the particle deposition rate inside each segment over the
heterogeneous collector is significantly larger than the deposition rate predicted
by the patchwise heterogeneity model, Eq. (5.23).

So far, for all of the cases that have been studied, the width of favorable and
unfavorable bands were equal implying that half of the heterogeneous collector
surface was covered with favorable charge. Using the convection-diffusion model,
the overall deposition rate can also be calculated for heterogeneous collectors
with different favorable area fractions, Ap,tterned-

Figure 5.12 shows the variation of scaled overall deposition rate (Shgype/Shave f)
with respect to collector favorable area fraction (Apatterned)- For a hetero-
geneous collector with a constant pitch, different values of Ajsiterned can be
achieved by changing the ratio of the width of negative band to the width
of positive band, w,/w,. In Figure 5.12, the solid line with square symbols
denotes the Shaye/Shave ; obtained by numerical simulation of the convection-
diffusion-migration equation. The solid line with triangular symbols denotes the
Shave/Shave ; bredicted by the original patchwise heterogeneity model whereas
the solid line with circular symbols depicts the Shgye/Shave , predicted by the

modified patchwise heterogeneity model.
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The results in Figure 5.12 were obtained for a heterogeneous collector con-
sisting of alternate unfavorable and favorable bands with scaled surface poten-
tials of —1 and +1 respectively. The pitch is constant and equal to 20 um. The
solution ionic strength and flow Reynolds number are 1073M and 100 respec-
tively. The particle radius and scaled surface potential are assumed to be 1 ym
and —1. All other parameters are the same as those of Figure 5.7.

According to Figure 5.12, the overall deposition rate obtained numerically
by solving the convection-diffusion equation deviates significantly from those
predicted by both the original and modified patchwise heterogeneity models.
The numerical simulations in Figure 5.12 (square-legend line) show that inside
the impinging jet system, the Shg,. is zero for a homogeneous, fully unfavorable
collector (Apasternea = 0). However, for the values of Apiterneq less than 50%, a
slight increase in the Apsiterneq Will result in a significant increase in the Shgy..
This has been reported in literature before [Adamczyk et al., 2003]. Further-
more, it can be observed that when Apgtrerneq is around 50%, further increase in
Apatterned does not affect the Shg,. significantly. For the values of Apgtierneq larger
than 50%, Shg. is very close to the Shgye ; for a homogeneous fully favorable
collector (Apatternea = 100%). This was also evident in Figure 5.11 where the
overall deposition rate over a heterogeneous collector with Apgtternea 0f 50% was
very close to the Shyy.; over a homogeneous fully favorable collector.

Overall, it can be seen from Figure 5.12 that the particle deposition rate
based on the convection-diffusion-migration is larger than that predicted by the
original and modified patchwise heterogeneity models for all Aputterned- Similar
to the results shown in Section 4.5.2, once again it has been observed that the
modification of the original patch model by replacing Apstternea by its actual
value does not improve the predictions of the patchwise heterogeneity model for
the particle deposition rate. Consequently, it can be deduced that the failure
of the patchwise heterogeneity model in predicting particle deposition in pres-
ence of micro-scale heterogeneity does not stem from the erroneous values of

Apatterned- Lhis failure stems from the inadequate averaging process that this
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model proposes for calculating particle deposition rate in case of micro-scale
charge heterogeneity.

Comparing the results of overall deposition rate obtained by finite element
analysis with those predicted by the patchwise heterogeneity model implies that,
in the impinging jet system, the variation of scaled overall deposition rate, Shgye,
with Apgiterned 1S Dot linear as was predicted by the patchwise heterogeneity
model. The reason can be better explained by incorporating some mathematical
expressions. Let us imagine a scenario similar to Figure 5.11 where we compared
the overall deposition rate inside a segment on a heterogeneous collector with
the overall deposition rate inside the same segment on a homogeneous collector.
First we consider one segment on the heterogeneous collector with favorable
area fraction of Aputrerned- This segment consists of one unfavorable and one
favorable band with surface areas of S, and Sy implying that the total surface
area of the segment is Sist = Sy, + S5. The width of this segment is equal to p.
According to the definition of Apstterned, We also know that S¢/Siotar = Apatterned-

The local Sh on unfavorable and favorable bands are assumed to be Sh, and
Shyq,. Next, we consider the same segment on the homogeneous fully favorable
collector with surface area of S;,:q;. The local deposition rate over this segment
is considered to be Shy. The ratio of overall deposition rate inside this segment
on the heterogeneous collector to the overall deposition rate inside the same
segment on the homogeneous collector can be written according to Eq. (5.13)

as

Shave - (fSu Sh” ds + fo Shfav dS)

Stotal
= (5.24)
Shave, — [5, . ShydS

It can be assumed that the Shy on the homogeneous collector is constant inside

Stotal

the segment (due to the small width of the segment p) and thus can be removed
from the integral. Knowing that Sh, = 0, the above equation can then be

simplified to

Sh 1 1 1 Sh
ave — . Sh av dS — / fll‘U
Shavef Stotal Shf Sy ! Sy Shf

dsS 5.25
Stotal ( )

where Shy,, is the local deposition rate over the favorable band on the hetero-
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geneous collector whereas Shy is the local deposition rate inside the segment
on the homogeneous collector. If the value of Shy,, is equal to Shy, Eq. (5.25)

simplifies to
Shave _ Sf

Shavef Stotal

which is identical to the patchwise heterogeneity model expression, Eq. (5.23).

= /\patterned (526)

However, as was shown in Figure 5.10, the local deposition rate over favorable
bands on the heterogeneous collector, Shy,,, is significantly larger than the
local deposition over homogeneous collector, Shy, due to the radial flux of non-
deposited particles from the unfavorable bands towards the favorable bands.
According to Eq. (5.25), when the ratio of Shg,,/Shy > 1, it indicates that
Shave/ Shave; > S§/Siotar- Knowing that Sy /Stotal = Apatterned, one can deduce
that Shave/Shave; > Apatternea- This indicates that the ratio of Shyye over Shave,
is not equal to Apatterned s suggested by the patchwise heterogeneity model.
The non-linear relation between overall deposition rate and favorable area
fraction of the collector has been observed once before in Figure 4.12. There,
the trajectory analysis was used to calculate the particle deposition rate as n
corresponding each value of Apgiterned- The results in Figures 4.12 and 5.12
show an identical qualitative behaviour of overall deposition rate with respect
to Apatterned- They both depict that the variation of Shepe With Apstternea does
not follow a linear relationship in an impinging jet system in the presence of

micro-size heterogeneity.

5.10 Summary

In this chapter, the particle deposition rate was obtained in context of Eule-
rian approach. The convection-diffusion equation with appropriate boundary
conditions was solved numerically using finite element method inside the im-
pinging jet flow system. Using the values of particle concentration, the local and
overall particle deposition rates were calculated for both homogeneous and het-

erogeneous collectors. It was observed that the particle concentration and local
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particle deposition rate increase significantly at the beginning of each favorable
band on the surface of the heterogeneous collector. The presence of these spikes
at the beginning of each favorable band was justified by considering the numer-
ical results for radial convective and diffusive flux. These results revealed that
the particles that did not deposit on the unfavorable bands due to the presence
of the energy barrier were swept toward the next available favorable bands due
to the tangential component of fluid velocity and lateral diffusion.

The averaged (overall) particle deposition rate was calculated for the hetero-
geneous collector with different values of favorable area fraction and the results
were compared with those predicted by the patchwise heterogeneity model. It
was seen that the overall particle deposition rate obtained by finite element anal-
ysis deviates significantly from those predicted by both the original and modified
patchwise heterogeneity models. No linear relation was seen between the overall
particle deposition and the collector favorable area fraction as was suggested by
the patchwise heterogeneity model. The variation of overall deposition rate with
favorable area fraction that was obtained by solving convection-diffusion equa-
tion shows the same qualitative behavoiur as was seen before through trajectory
analysis. The result of overall deposition rate based on Eulerian approach was

in agreement with that found previously based on Lagrangian approach.
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Figure 5.1: (a) A schematic presentation of impinging jet system geometry.
The dashed rectangular depicts the computational domain shown in detail in

part(b). (b) Computational domain used in solving convection-diffusion equa-
tion by finite element method.
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Figure 5.2: Variation of overall deposition rate with respect to Peclet number
for a homogeneous fully favorable collector in the absence of energy barrier,
inside the stagnation point region. Solid line denotes the values of Shg,e, cal-
culated by Levich equation whereas symbols represents the Shg,., obtained by
solving convection-diffusion equation numerically.
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Figure 5.3: Variation of overall deposition rate with respect to flow Reynolds
number for a homogeneous unfavorable collector in the presence of energy bar-
rier, inside the stagnation point region. Solid line denotes the values of Shg.
caculated numerically by Dabros and van de Ven for three different values of
double layer parameter, D! . Dashed line represents the Shg,. obtained by
solving convection-diffusion equation numerically.
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Figure 5.4: Variation of overall deposition efficiency, 1y, with respect to parti-
cle radius for a homogeneous fully favorable collector inside the stagnation point
flow domain. Solid line with circular symbols denotes the values of 7 calcu-
lated by solving convection-diffusion equation numerically (¥, = +1, ¥, = -1,
Re = 100, I = 107® M). Dashed line denoted the 7; obtained using Levich

equation.
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Figure 5.5: Variation of particle concentration with the vertical distance from
the collector surface, z, at the stagnation point, » = 0. The results are obtained
by solving convection-diffusion numerically inside the impinging get flow geom-
etry. Solid line depicts the particle concentration profile over a homogeneous
fully favorable collector with ¥, = +1. Dashed line denotes the particle con-
centration profile over a homogeneous fully unfavorable collector with ¥, = —1.
All the other parameters are the same as in Figure 5.4.
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Figure 5.6: Variation of local particle deposition rate, Sh with the radial dis-
tance from the collector surface, . Solid line depicts the particle concentration
profile over a homogeneous fully favorable collector with ¥, = +1. Dashed line
denotes the particle concentration profile over a homogeneous fully unfavorable
collector with ¥, = —1. All the other parameters are the same as in Figure 5.4.
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Figure 5.7: Variation of scaled particle concentration with the radial distance
from the stagnation point, r, at two different vertical distances from the collector
surface, (a) s = 5 nm where the regions between 500 um < r < 600 um is
enlarged in (b).(c)s = 72 nm.
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collector surface around the secondary minimum. Particle radius is assumed to
be 1 wm. All the other parameters are the same as in Figure 5.7
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600 um of this figure is enlarged in part (c).
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Figure 5.11: Variation of Shy,e with band number, N, for four particle sizes
ie., (a) ap =1 pm, (b) ap = 0.5 um, (c) ap, = 0.25 um, (d) a, = 0.1 pm. Square-
legend line denotes Shg,e over a heterogeneous collector with s = (—1,+1)
obtained by numerical simulation. Triangle-legend line denotes Shg,. pre-
dicted by the patchwise heterogeneity model over a heterogeneous collector with
s = (—1,4+1) and circle-legend line denotes Shgy, ; over a homogeneous fully
favorable collector with ¢, = +1.All the other parameters are the same as in
Figure 5.7.
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Figure 5.12: Variation of scaled overall particle deposition rate, Shspe/Shave .
with favorable area fraction of the collector, Apasterned- The square-legend line de-
notes the overall deposition rate obtained by solving convection-diffusion equa-
tion. The triangle-legend line denotes values of overall deposition rate obtained
by the original patchwise heterogeneity model. The circle-legend line denotes
values of overall deposition rate obtained by the modified patchwise heterogene-
ity model. All the other parameters are the same as in Figure 5.7.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

The simulations performed in this study reveal the effects of micro-scale charge
heterogeneity on particle deposition onto the smooth substrates inside the ra-
dial impinging jet flow geometry. In addition to particle deposition, the particle
trajectory and particle distribution in the vicinity of the heterogeneous collec-
tor in the presence of external forces were studied. Based on the literature
review, a number of publications have been found that focus on the study of
particle deposition inside the radial impinging jet geometry onto the homoge-
neous surfaces using various numerical and experimental techniques. However,
there was a lack of systematic studies on particle deposition in the presence
of microscopic surface charge heterogeneity. One method that has been used
frequently to calculate particle deposition rate over heterogeneous surfaces is
based on a spatial averaging process and is called the patchwise heterogeneity
model. It has been shown in this study that although this model works well for
macroscopic heterogeneity, it fails to predict the particle deposition rate in the
presence of micro-scale charge heterogeneity.

The major conclusions that can be drawn from this study of particle depo-

sition onto micropatterned charge heterogeneous substrates are

1. The fluid flow field of the impinging jet flow is characterized by two dif-

ferent velocity profiles close and far from the stagnation point. In the

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vicinity of the stagnation point, the normal component of fluid velocity
is dominant compared to radial component of fluid velocity whereas far
from the stagnation point, the radial component of the fluid velocity plays
dominant role. This has been considered as an advantage for impinging
jet system since it allows for the study of the effects of hydrodynamic
interactions on particle deposition behaviour by comparing the particle

deposition process close and far from the stagnation point.

2. The presence of periodic charge heterogeneity gives rise to an oscillating
particle trajectory in the vicinity of the collector surface consisting of al-
ternate positive and negative bands due to the alternating attractive and
repulsive particle-substrate colloidal forces. The wavelength and ampli-
tude of this oscillating trajectory can be controlled by changing the width
of the favorable and the unfavorable bands, the particle and substrate

surface potentials, and solution ionic strength.

3. Due to the hydrodynamic interaction effects, one can render a partially
favorable surface to act as a fully unfavorable surface with respect to
deposition at different ratios of normal to tangential fluid velocity when

all of the other parameters are maintained constant.

4. As a result of the coupled influence of hydrodynamic and colloidal forces,
there exists a region near the leading edge of each favorable band on the
collector surface that is not accessible to particle deposition, implying that
the actual favorable area fraction of the collector is less than its nominal
value. The inaccessible area increases further away from stagnation point

owing to the dominant role of the tangential fluid velocity.

5. The particle deposition results based on the trajectory analysis method
deviate significantly from the particle deposition results based on averag-
ing process proposed by the patchwise heterogeneity model. According to
the results obtained by trajectory model, the variation of particle deposi-

tion over a heterogeneous substrate with respect to favorable area fraction
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of the surface is not linear as was predicted by the patchwise heterogeneity

model.

6. Based on trajectory analysis, when the substrate is initially fully unfavor-
able, the particle deposition rate increases significantly by the presence of
the charge heterogeneity in form of a slight fraction of favorable charge
on the substrate surface. In contrast, when the surface is initially fully
favorable, the particle deposition rate remains almost unaffected by the
presence of charge heterogeneity in form of unfavorable charge on the

substrate surface.

7. Solution of convection-diffusion-migration equation numerically provides
the particle deposition rates over both homogeneous and heterogeneous
collectors. Using this model, it was observed that due to the tangential
component of fluid velocity and Brownian motion of the particles, there
is a radial flux at the boundary between unfavorable and favorable bands
that pushes the particles accumulating over the unfavorable stripes due
to the energy barrier, toward the next accessible favorable region. This
causes a sharp increase in the particle concentration as well as particle
deposition at the accessible part of favorable bands over the heterogeneous
collector. The high value of particle deposition rate at the favorable bands
was considered as the reason for high values of overall particle deposition
over heterogeneous collectors inside the impinging jet region compared
to the particle deposition rate predicted by the patchwise heterogeneity

model for such surfaces.

6.2 Future Works

The study presented in this work is an initial step toward a general systematic
investigation on the role of micro-scale charge heterogeneity on particle depo-

sition process. During this study, some simplifications have been made which
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may not be suitable for a more general investigation. Based on the results that
were obtained during this study, the following recommendations can be made to
achieve a more rigorous model for predicting particle deposition in the vicinity

of the micro-scale charge heterogeneity.

1. In this study, the charge heterogeneity was modelled as concentric cir-
cular bands bearing different surface potentials. This allows a systematic
investigation on the role of heterogeneity in particle deposition since if the
distribution of the heterogeneous patches is known a priori, their influence
on particle deposition becomes more tractable. On the other hand, the
simulation of charge heterogeneity as circular bands allows the use of two-
dimensional cylindrical coordinate system for modelling the particle depo-
sition inside the radial impinging jet geometry. However, natural surfaces
contain surface charge heterogeneity that are randomly distributed, of ar-
bitrary geometrical shapes, and having widely varying chemical properties.
Therefore, a more rigorous model can be developed by simulating charge
heterogeneity as randomly distributed patches over the surface bearing
different surface charges. This requires that the numerical simulation be

conducted in a three dimensional coordinate system.

2. The electrostatic double layer interaction force between the charged par-
ticle and the heterogeneous collector was calculated using the well-known
Hogg, Healy, and Fuerstenau (HHF') expression. In order to justify the use
of this equation in our study, some simplifications and assumptions were
made. It was assumed when the particle center passes over a positive
band, the electrostatic interaction is solely that between the negatively
charged particle and an infinite planar surface bearing a positive surface
potential. Similarly, as long as the particle is directly facing a negative
band on the surface, the electrostatic interaction is calculated assuming
the entire surface to have a negative surface potential. This assumption
is clearly a gross simplification of the actual electrostatic double layer in-

teraction between a charge heterogeneous substrate and the particle. It
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also imposed a limitation on the range of the band width that can be
selected in this study since this assumption is valid as long as the individ-
ual band width is larger than the particle size, the particle is sufficiently
close to the substrate, and the electrostatic double layer interactions are
sufficiently screened (large ka,). A more rigorous approach of calculating
the force between the particle and the charged stripes can be achieved
by solving the Poisson-Boltzmann equation numerically and calculating
the electrostatic interaction force between the particle and the substrate.
Calculating F.4 numerically allows selecting a wide range of band width

with respect to particle size.

3. The lateral (tangential) force between the particle and the substrate is
assumed to be negligible in this study. This assumption is only valid for
values of ka, equal or greater than 100 (which is the range used in the
present work). Evaluating the electrostatic double layer force between
the particle and the heterogeneous substrate numerically by solving the
Poisson-Boltzmann equation may enable us to obtain the value of lateral
force exerted on particles due to the presence of alternate bands on the

collector surface.

4. In this study, the particle deposition process is considered to be at the
initial stages when the collector surface is clean and not blocked by the
already deposited particles. A more realistic model can be achieved by
considering deposition when the blocking effects play a significant role
in defining the particle deposition rate on the collector surface. The de-
posited particles on the collector surface often substantially reduce depo-
sition rates because they create a blocked surface area, that can be greater
than the size of a particle itself. The surface charge heterogeneity may
manifest itself differently in the presence of blocking effects. In order to
take into account the surface blocking effects in the present study, one

has to implement the convection-diffusion equation in form of time vari-

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ant problem. There are various functions available in literature that can
be employed to model the surface blocking process inside the convection-

diffusion equation.

5. Finally, using the micropatterning techniques and the impinging jet ap-
paratus, an experimental investigation can be performed to explore the
role of charge heterogeneity on particle deposition inside the impinging jet

flow regime.
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