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ABSTRACT

An analytical study is made of the magnetohydrodynamic effects
in a liquid-metal-lubricated slider bearing where a magnetic fié]d is .
applied perpendicularly td the bearing surfaces. The analyses are
carried out for an open circuit condition, and for the case when the
electrical power from an external source was supplied to the bearing.

For an open circuit condition, the effects of inertia and
the nonuniformly applied magnetic fields are investigated. The re-
sults indicate that the effects of inertia on load capacity decreases
with the increase of Hartmann number, M, and become almost negligible
at high M. The highest bearing load capacity is obtained at a given
Hartmann number when the film thickness ratio is optimized. The non-
Uniform magnetic fields i.e.; increasing magnetic field, give higher
load capacity than the comparable unifonm magnetic field. The influence
of surface conductivity on load capacity will depend upon the distri-
bution of the magnetic field. For uniform and increasing magnetic
fields the bearing surfaées should be insulated, while for a step-type
distribution the stator should be a conductor.

For the case of externally supplied electric power, a parallel
plate slider bearing with uniformly applied magnetic field was analyzed.

The nonuniform electric field in the bearing was created by connecting

"the segmented side electrodes to the power supply. The results suggest
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that it would be advantageous if the electrical power is applied near

the inlet portion of the bearing.
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CHAPTER I
STATEMENT OF THE PROBLEM AND
REVIEW OF RELEVANT LITERATURE

1.1 Introduction

In view of the increasing use of liquid metals in engineering
and industry, considerable attention is being paid to various magneto-
hydrodynamic machines.and devicés, inciuding MHD bearing§. The design
of bearings employing ordinary Tubricants for units where the interior:
cavities are filled with 1iquid metal presents considerable difficulty.
The major difficulties are due to thé limitations of ordinary lubri-
cants and the need for complicated seals. In such cases, the use of
the working f1uid itself as the lubricant, will introduce a significant -
simplification. From hydrodynamic and thermodynamic viewpoints, 1liquid
metals offer several advantages over conventional lubricants. An
important advantage is the possibility of operation at high femperatures.
In addition, the high therma] conductfvity of Tiquid métaTs enables the
heat generated by viscous action to be readily conducted away from the
source of generation. The resulting effect is é tendency toward uni-
formity of temperature and viscosity within the Tubricant film. .The
propertiés of liquid metals which can effect the performance of bearings
adversely are low viscosity and corrosivity.

In evaluating the possible merits of various types of bearings




for liquid-metal applications, it is necessary to consider the charac-
teristics of each type of bearing in relation to the fluid properties.
It is shown by Bisson and Anderson [1] that one important requirement
of roIling-element bearings is an absolute compatability of the race
and the ro1]ing-e1e@ent materials with the lubricant. This require-
ment for absolute material compatibility with the lubricating fluid,
makes it impractical to use the high]y corroéive iiquid metals as
lubricants in rolling-element bearings.

. However, the hydrodynamic and hydrostatic type of bearings
~can tolerate some corrosion and surface damage while still maintaining
their function. Thus, the requirements for material compatability are
not as rigorous as those for rolling-element bearings. In hydrodynamic
and hydrostatic bearings, a continuous film maintains separation of
the surfaces in relative motion, and the pressure fequired to support
the load is either supplied from an external source (hydrostatic
béaring) or is generated within the bearing itself (hydrodynamic). The
hydfostatic bearing is most suitable for supporting Toads with no
rotation or with low angular speeds. It has the advantage that for a
fixed pressure, the load capacity js independent of the lubricant
viscosity. Therefore, the performan¢e of liquid-metal lubricated
'hydrostatic bearings is neither seriously affected by the high corrosivity
nor the low viscosity of liquid metals.

‘ on the other hand, viscosity is the most important property
of a lubricant‘in hydrodynamic bearings. The load capacity of an

hydrodynamic bearing is dependent on the viscosity of the Tubricant,
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j.e.,the higher the viscosity of the lubricant, the larger the load
capacity. fhe viscosities of the proposed liquid metals are approxi-
mately one to two orders of magnitude less than those of ordinary
1ubricating.011§ at the same temperature. Therefore, the reductions
in load capacity of the same order can be expected when these metals
are used as lubricants. To overcome the problem of reduced load
capac1ty the application of magnetic fields has been proposed. This
has motivated the study of magnetohydrodynam1cs in 1ubr1cat1on.
Magnetohydrodynam1cs is the study of the motion of an

electrically conducting fluid in the presence of a magnetic field.
Electric currents induced in the fluid as a result of ifs motion -
modify the field. At the same time, the flow in the magnetic field
produces hechanica] forces which modify the motion. The currént
engineering interest in electromagnetic fluid intefactfon phenomena
has been mainly due tb the concept of MHD power generation.
Other engineering devices such as the MHD pump and meter, MHD coupler
and bearing? etc., have been the outcome of the application of the
theory. ’ | | |

In general, the bearing configurations possible in hydro-
dynamic Tubrication may also be considered for the MHD bearings. How-
ever, the combination of electromagnetic and hydrodynamic effects will
further 1ncrease the number of possible arrangements available for
study. Therefore, in the present study the analysis will be conflned

to a plane slider bearing.
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- 1.2 Review of the_Associated Literature

The magnetohydrodynamic effects were first demonstrated by
Hartmann and Lazarus [2] in their experiments in 1937. They showed
that for a typical set of data using mercury flowing in a channel,
the é]ectromagnétic pressure gradient may be as high as ten times the
hydrodynamic pressure gradient at the same flow rate. Later, Synder [3]

in his theoretical analysis showed that the effects noted by Hartmann

may be utilized to increase the load carrying capacity of a bearing

operating with an electrically conducting lubricant. This created the
interest of other authors to study the magnetic effects in the field
of lubrication. Hence, the analyses were extended toward optimizing
the design variables which will result in the maximum Toad capacity.

Osterle and Young [4] considered a step-type slider bearing
with a uniformly applied magnetic field. They concluded that for maxi-
mum load'capacity of the bearing, the film thickness should be a step-
function, while the bearing surfaces should be insulators.

Hughes [5] anélyzed an inclined slider bearing under general
electrical Toading conditions. The magnetic field was appliied normal
to the bearing surfaces which were assumed to be perfect insulators.
He found that significant'increase in.load capacity can be achieved
even at Tow Hartmann numbers if the power is supplied to the bearing
system from an external source. Hughes [6] also extended his analysis
to finite width step-type slider bearing.

Kuzma [7] considered a parallel plate slider bearing with
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stator as a'perfect conductor and slider as an insulator. He showed
that this bearing, with nonuniform applied magnetic field, has a
greatef load capacity than a step-type bearing subject to uniform mag-
netic field. Shukla [8] pointed out that the adyantages noted by
Kuzma are more dependent on the nonuniform conductivity of bearing
surfaces than_on the nonuniformly abplied magnetic field. He showed
that the unifofm'magnetic~fie]d is more advantageous provided that the
conductivity of a bearing surface is a step-type function. His results
for such a case indicate'that for a maximum loéd capacity the bearing

film thickness.should be a step-function for Hartmann number, M <5.5,

'and~para11e1 for M > 5.5.

Prakash [9] carried out the analysis of a composife slider

vbgaring in the presence of an applied magnetic field. He concluded

that an MHD composite bearing does not always give an increase in
load capacity as compared to an equivalent inclined slider bearing.

The review of Titerature further reveals that there has
been very few experimental attempts to verify the theoretical results
of MHD bearings. This may be attributed to the complications involved
in designing the apparatus and in the difficulty of measuring the
dependent variables.

Maki, Kuzmé and Donnelly [10] carried out the investigation
for a step-typé hydrodynamic thrust bearing theoretically and experi-
vmenta]1y. The magnetic field was applied normal to the bearing surfaces

and at the same time the side electrodes were connected to an external

. Ppower supply such that there was a radial flow of the current. Using
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mercury, the pressure and voltage distributions, and the torque at the

slider were measured. The authors obtained good agreement between

the theory and the experimental results. It should be pointed out,

however, that the data were obtained for low speed and’Véry Tow

Hartmann numbers. Nevertheless, the experiment revealed that the

iﬁcrease in pressure due to magnetic and electric effects is possible.
Other cited experiments have been performed for a MHD

hydrbstatic bearing [11], and a journal bearing [12].

1.3 Statement of The Problem

_ The review of literéture indicates that the MHD bearing
analyses have been primarily &onfined to bearings where the applied
magnétic field has been assumed uniform in part or full length of the
bearihg. Secondly, where the external power was also applied to the
Béaring to further improve the load capacity, it was'assumed that the
e]ectric field was uniform throughout the length of the‘bearing.

‘For the above cases where the magnetic and electric fields
were assumed uniform, the prob1em was simplified from the mathematical
viewpoint. Therefore, in most of the cases an analytical solution
was possible.

| From hydrodynamic theory of lubrication it may be recalled
that the pressure rise in the bearing is due to the change in the film
thickness. This change, in practice, is brought about by the geometry
of the bearing. Therefore a number of bearing configurations are

possible. Typical examples of bearings in use are plane tapered,

step-type, journal, and composite bearings. However, when 3. magnetic field




is applied to such a bearing, and if the lubricant is an e1ectrica1]y‘
conducting fluid, then there results an electromagnetic body force, in
addition to the hydrodynamic.forces in the fluid film. The combination
of these'effectsbi e., hydrodynamic and magnetic, changes the flow in-
the bearing,: thereby caus1ng mod1f1cat1ons in the pressure distribution.
Such effects may .be utilized to increase the 1oad capacity of the
bearing.

In genera] the magnitude and the distribution.of'the'bddy
;force proauced in a part1cu1ar qype of bear1ng depends ‘upon: N '

(i) . the app]1ed magnet1c field,
(ii) the bear1ng surface propert1es,
(iii) the external circuit conditions.

The effects of bearing shapes and the propert1es of bearing
'surfaces have been 1nvest1gated to some extent, but the effects of the
applled magnet1c, ‘and applied electric fields have been conf1ned on]y
to un1fonn1y app11ed f1e1ds. Therefore, it 1s cons1dered important to
| 1nvest1gate the effects of nonun1form1y app11ed magnet1c and ‘electric
fields.

“From the 11terature it is noted that the inertia terms in .
'the equations of motion have been neg]ected However, in the case of
a bearing operat1ng at high speeds and utilizing a 1ower v1scos1ty
v" lubricant such as 1iquid metals, the contribution of inertia terms '

‘ mey beeome'sighifieaht." ‘,.

' In’summery the present study concerns:

(i) ~Nonuniform magnetié field effects in MHD slider bearings.

. . e e g
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(ii) Inertia effects on load capacity of MHD bearings.
(iii) Nonuniform eleétr%c field effects in MHD slider bearings.
The dut]ine of the present study stated above shall be pre-
sented in the following format. |
The governing equations for'the study of MHD lubrication are
developed in Chapter II. These equations are then simplified for the.
particular case under consideration in the subsequent chapters.
In Chapter III, the effects of nonunifbrm1y_app1ied magnetic

fields and inertia effects are dgscribed. The analysis of nonuni-

"fofmly applied magnetic fields for an arbitrary bearing profile are

pfesented in Chapter IV. Chapter V is devoted to studying the effects
of step-type applied electric field. The conclusions and suggestions

for future investigations are discussed in Chapter VI.
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CHAPTER II
THE DEVELOPMENT OF GOVERNING
EQUATIONS FOR MHD LUBRICATION

2.1 The Basic Equations

The theory of magnetohydrodynamic lubrication is the same as
conventional hydrodynamic lubrication, except that the interaction be-
tween the conducting fluid and the e]ectromagnetic fields must be in-
cluded. As a result the number of equationé to be dealt with increases.
This interaction phenomena couples the electromagnetic and fluid vari-
ables, tﬁus creating additional difficulties for the soluiion of the
problem.

The basic equations for the study of magnetohydrodynamics

are fluid equations, Maxwell's equations, Ohm's law, and constitutive

equations.

2.2 Simplifying Assumptions

Prior to the formulation of the problem in MHD lubrication,
several assumptions are made in order to simplify the basic equations.
The assumptions to simplify the fluid mechanic equations are:

(1) The fluid is Newtonian.
(2) The flow is laminar.

(3) The lubricant is incompressibie.




10

 (4) The lubricant viscosity is constant.
(5) Elastic distortions are negligible.
(6) Temperature variations in the fluid film are neglected.
(7) Steady state has been reached.
In addition to the fluid mechanié assumptions other assump-
tidhs of electromagnetic nature are made. -These assumptions include:
(8) The conductivity of.the 1iquid metal is constant. |
(9) Thefe is no charge accumulation.
(10) The']iquid metal is homogeneous and non-magnetic.
(11) Displacement currents are negligible with respect to con-
duction currents. '
(12) A11 velocities are very small compared to the velocity of
Tight.
| (13) Magnetoétatic forces are negligible. This is justified
since 1liquid metals are non-magnetic. _
Cohsidering the assumptions above the equations of magneto-
hydrodynamic may be written in é general form such as:

Navier-Stokes Equations
o[(V. Wl =-wp+wV+IxB (2.1)

Continuity Equation
v.V=0 | (2.2)

Maxwell's field equation

(2.3)




BTN TR oy

11

Ohm's Law

¥
u

4a(E‘+ VxB) (2.4)

and constitutive equation

B= 1 H (?.5)

The above set of equations, in general, describe the action
of magnetohydrodynamic effects in Tiquid-metal Tubricated hydrodynamic
bearings. To analyze a given lubrication problem, equations (2.1)
through (2.4) must be solved simultaneously subjéct to a given set of
fluid mechanic‘and electromagnetic boundary conditions. In this

general form, however, these equations are not tractable and additional

'simp]ification must be made for any particular bearing configuration.

2.3 The Governing Equations

The bearing considered in present work is shown in Fig. 2.1.
The coordinate system is fixed with respect to the stationary surface
of the bearing. The magnetic field is applied perpendicularly to the
bearing surfaces, and it is assumed to have an arbitrary distribution
along the length of bearing. The slider is assumed to be made of in-
sulating material while the stator may be of insulating or perfectly
conducting material.

For the bearing under consideration it is now possible to
make further simplifying assumptions. These are as follows:

(1) Lubricating film is very thin, %—5_1.
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(2) Order of magnitude consideration may be used to simplify

the equations.
(3) The magnetic field induced by currents is assumed to be
negligible with respect to the applied magnetic field. (Rm << 1).

Under these assumptions equations (2.1) through (2.5) reduce

to:
(uddpyd,y EEJ =-2, 2y - ;B (2.6)
PlUSFVgy T VW3 ax " M2 zy |
= QE :
0 2 (2.7)
Pl ™Yoy ™ Yoz oz " HZ T Yy .
du , OV , oW _
wtytae o (29
Jy = olE,—w B)) (2.10)
JZ - O.(Ez.l. uBy) . (2.11)

The above magnetohydrodynamic equations have been simplified
to a great extent, however, the equations are difficult to solve.
In the following Chapters III through V, these equations will be
further simplified bf making additional assumptions for the particular
model under consideration. The boundary conditions shall be specified

and the solution will be presented.
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CHAPTER III
NONUNIFORM MAGNETIC FIELD EFFECTS
IN MHD SLIDER BEARINGS

3.1 Introduction

In this chapter, the effects of the nonuniformly applied

magnetic fields are investigated. In addition, the inertia effects

are also analyzed. In the analysis the bearing is assumed to be

infinitely long in z-direction.

V3.2 The Governing Equations and the Associated Boundary Conditions

For infinite bearing model, the equations (2.6) through
(2.11) are further simplified under the following assumptions:
(1) No fluid flow in z-direction.

(2) The bearing and the slider surfaces are made of perfectly

insulating material.
(3) The side electrodes to be perfect conductors.

Hence the governing equations may be reduced to the following

form:

2
du duy _ _dp au _
o(u T 3y) ax T u ayz c(Ez+uBy)By (3.1)

*
A portion of this chapter was presented in the ASLE/ASME Lubrication
Conference, Pittsburgh, Pennsylvania, October 5-7, 1971. Later
published in Journal of Lubrication Technology, Trans. ASME, Series
F, Vol. 94, No. 1, Jan. 1972.
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ou , oV _ .
_8_x+-37- 0 (3.2)
J, = o(Ez +u By) (3.3)

with the following boundary conditions

u(x,0) = U
u(x,h) = v(x,0) = v(x;h) =0 | (3:4)
p(0) = p(L) =0

As the electrodes are assumed to be very good7conductors compared to
the fluid, we have from, V X E = 0, that E, is a constant (as the vari-

ation in z direction has been neglected) which will be determined

later.
Now since V X T = 0, a terminal potential can be defined
as:
. Zo |
9y = - f Ezdz (3.5)
0

3.3 Equations in Dimensionless Form

The governing equations may be written in dimensionless

form by introducing the following dimensionless quantities.
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Equation (3.1) and (3.2) then become
—3u , — AU &5 , 3% 2——2-
,RE(U-—_-*V:—)"'-—‘E*'Q--M uB
: ax oy dx 9y y

i—a:-]-.al-: 0

3x dy
The boundary conditions:

u(x,0) =1

WKF,) = VTy,) = W(K0) = 0

p(0) =p(1) =0

(3.6)

(3.7)

(3.8)

(3.9)

16
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. Defining the stream function such that

‘Equation (3.7) becomes

— 22— — 2— — 3—-
* — — o—
RER2 WY . B, 3T 2E28_yFE  (3.10)
oy 9Xoy  9X oy dx 3y y

The stream function may be expanded, after Synder [13]

f,,(.n) &" | (3.1

where n = hi}7h s 6 = h/hi. Substituting (3.11) into (3.10) with
K= hi/Lh' and h' = dh/dx = constant, the equation (3.10) may be

written

REL( 3, Tae") ( I (n-Deh)-( Rnfpe")( 1) £yt

© 2 )
h ¢ 2 52 n
= fFros o (D) MSB f's
nzo n h; y ngo n
031 B, ug E
- /) x [d_+ M B, E)) (3.12)
1 X ‘

Inspection of last term in Eq. (3.12) and in view of [14] it seems ap-

- propriate to express it as

corn sty
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3 —

<%y%[ +M§E;=n;uﬁ" | (3.13)

(@) BI= 7 co" (3.14)
; .
Substituting (3.13) and (3.14) into (3;12) we obtain

Re .[(ngd f;,_s")(ngo (n-l)f;,a")-(ngo nf,,a")(ngo fi's")]
= e (T e e (T e
n=0 " n=0 " n=0 "

- D_s" (3.15)
ngo n ’

On expansion of (3.15) the following set of differential equations are

obtained
o. 101 * ] I' 2 2! -
s : fo + Re fofo - M (Cofb) = Do (3.16)

]_'ul *ll et 221 1y =
7 R * Re(fy'fy+fofy) - MO(Cof#2CCiF)) = 0y (3.17)

2. 1 * ' 2¢4 '
6% 3!t + Re(2f) f,4F,11') - ME(CErpeaC C, F

(3.18)

2c 'y =
+ C1fo + 2C0C2f6) = 02
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3. RN * 1 11 11 tet [
"2 2 1 [ v 2 ‘ [} 1 [} -

n, fFroe +R* 0 f£10f 1) f£'f°
& Ty € m§n mfpinfn - (-m-1) Fofy ot

2 N k ' ,
| -\M kgo (pgo Cp ck-p) fn-k = Dn (3.20)

From the boundary conditions (3.9) and the equation (3.11) the following

set of conditions for function f are obtained.

- (3.21)

| f,(0) = fé(o) = f(')('l) =0, f,(1) =%
£0) = £(1) = (1) =0, £(0) = ¢ (3.22
and
£ (0) = fnm = £1(0) = £4(1) = 0 (3.23)

where n = 2,3,...
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External Circuit Conditions:
The unknown E; in equation (3.13) may be obtained by considering

the external circuit conditions of the bearing. If the bearing surfaces
are insulators the total current flowing out of the bearing may be

expressed as '
L h

I= J J, dxdy = o £ E, dxdy + ¢ f f u By dydx | (3.24)
A ' oo

In terms of nondimensional parameters it gives

1

T=-1 '=E‘zfd§d“+rﬁf
.LQVMU A 5

Co . 1 —
(1;-+ C1+C26 +...) dx (3.25)

For the open circuit case T = 0 and equation (3.25) reduces to

] co 1 —
(?T'+ C1+026 + ...) dx (3.26)

-E, [ &y = |
A

O

Load Capacity:
The bearing load capacity is found by integrating the pressure

distribution. In terms of dimensionless variables the load capacity

per unit width of the bearing is

g
W=— =[ pd (3.27)
L ul o

< et K aid ]
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3.4 Method of Solution

The equations (3.16) through (3.20) are ordinary differential
equations of third order and linear except equation (3.16). These
equations and the boundary conditions (3.21) through (3.23) are similar
to the set of equations solved by Rodkiewicz and Anwar [14], except
there are additional terms due to the magnetic effects. However,
the same numerical methods can be successfully adopted.

In order to obtain the solution to the problem, the dis-
tribution of the applied magnetic field has to be assumed. In the
present analysis, we shall consider three Cases, Fig. 3.1, namely:

(A) uniform field,

(B) linearly increasing field, and

(C) field proportional to (1 - %9'] .
Knewing the distribution of the magnetic field we can find the C's from

equation (3.14), (see Appendix A) which are then substituted in

‘equations (3.16) through (3.20) and (3.26). The solution of these

equations give the constants D's. The pressure distribution is then
obtained from expression (3.13). The load capacity of the bearing is

given by equation (3.27).

3.5 Discussion and Conclusions

The pressure distribution curves for uniform and linearly
increasing field are shown in Fig. 3.2. The M=0 curve, the case of no
magnetic field, is also shown for comparison. It is noted that the

position of maximum pressure changes slightly due to the presence of
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magnetic field. It is evident from the figure that there is an in-

crease'in pressure distribution when the constant magnetic field is
applied. -Further increase is obtained when the applied fie]d is made
nonuniform. Consequently, the integration of the various pressure
distribution curves results in the functional dependence of the load
capacity on the magnetic field distribution and the Hartmann number.
These results are presented in Figs. 3.3 and 3.4.

Figure 3.3 presents the relationship between the load
capacity and the Hartmann number for neglected and included inertia
terms. It is noted that the increase in load capacity due to the
inertia effects decreases with the increase of Hartmann number. The
no inertia terms results compare favourably with the low Hartmann
number solution of Prakash [9], which extends only up to M= 1.2. The
solutiQn of the present work covers the range 0 < M < 5.

In Fig. 3.4 the functional dependence of the ratio of MHD
load capacity to the ordinary hydrodynamic load capacity is given. It
is evident that the load capacity ratio for the nonuniform field is
higher than for thé uniform field for a given inlet Hartmann number.
This increase depends upon the distribution function and the outlet

Hartmann number.

To show that the nonuniform field is more advantageous than

the uniform field, we consider the case of uniformly increasing field

of Hartmann number M. For such an applied field the average Hartmann
number ratio M:/M, which will be different than one, may be estimated.

It is found that the load capacity ratio for this averaged Hartmann
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number, applied throughout the bearing, is smaller than the load capa-
city ratio for the original linearly increasing.field.

For case C the distribution function is given by Co(l - éb-]
In the preéent analysis, CO was made equal to 1 giving Moutlet = 2M.
The corresponding load capacity curve is also shown in Fig. 3.4.

From the load capacity curves it is noted that the curves
for case B were ierminated at lower Hartmann numbers than for the
other cases. This was due to the convergence difficulties.

The confergence of the power series (3.11), without the
magnetic effects, was discussed by Rodkiewicz and Anwar [14]. It is
noted that when the magnetic effects are included the convergence de-
peﬁds upon Hartmann number and distribution of the magnetic field.

For case A and C, it was found that for Hartmann number up
to 5, the series can be approximated by the first eight terms of
(3;11). The contribution of the 9th and the higher terms were found
negligible.

It was noted that the convergencé for case B, depended upon
the gradient of the applied field and the Hartmann number. With the
increase of these quantities it was found that more terms had to be
taken into consideration in order to obtain the required convergence.
For example, for MR =2 and M = 1.5, it was necessary to include up
to fifteen terms to obtain reasonab1y accurate solution.

Since the inertia effects on load capacity are noted to
be small it is proposed that the inertia terms may be neglected. In

Chapter IV the analysis will be considered without the inertia terms.

23
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INERTIA CONSIDERED
——-——— INERTIA NEGLECTED

h, =20

Re=1.0
CASE A

o PRAKASH [9]

(LOW HARTMANN
NUMBER SOLUTION)

Mﬂ
FIG; 3.3 INERTIA EFFECTS ON LOAD CAPACITY

(Open Circuit Condition)
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—-—===- CASE A

CASE B he =2.0
....... CASEC : Re = 1.0
‘ M utl
;At et 'MR

FIG. 3.4 LOAD- CAPAGITY FOR CASE A, B AND C

(Open- €ircuit Condition)
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CHAPTER IV
EFFECTS OF MAGNETIC FIELDS IN SLIDER
BEARINGS OF ARBITRARY PROFILE*

4.1 Introduction

In the previous chapter, the solution of an MHD bearing with
nonuniformly applied magnetic fields was presented. In the analysis
the inertia térms were retained and the resulting nonlinear partial
differential equation was solved by a power series method. The solu-
tion was limited to Tow Hartmann numbers due to the slow convergence
~ of the proposed power series for the stream function.. In the present

.chapter the inertia terms are neglected and the solution for the re-

sulting equations are presented.

4.2 The Governing Equations and the Associated Boundary Conditions

Since the inertia terms are neglected the governing equations

(3.1) through (3.3) yield

2 .
0=- g%+ u(z—y;) - o(E, + uB,) B (4.1)

*A portion of this Chapter has been accepted for publication and will
appear in the Journal of Lubrication Technology, ASME. July, 1972.

And another portion has been accepted. for publication in Wear, an:
International Journal on the Science and Technology of Friction,
Lubrication and Wear. (Forthcoming)
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L (4.2)
3, = o(E, +uB) (4.3)

with the following associated boundary conditions:

u(x,0) = U
u(x,h) = v(x,0) = v(x,h) = 0 (4.4)
p(0) =p(L) =0

4.3 Equations in Dimensionless Form

The above equations may be nondimensionalized by letting:

E_h
x=X 7=Y4 F -(20,y 0
x=g. usgs B= /g
B
—=-‘L ——L -——_L_
.Y H v = ’ B -
h Uhyg y ?y,reference
. (4.5)
"Ry P Lw - U
0 0
L
= o = _1
M= (hO ‘/E) By,reference » ST
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The nondimensionalization will transfer the original fluid field into
the square field as shown in Fig. 4.1. Equation (4.1) and (4.2)
become:
U RWE2 T-FRNBE -FB®2-0 (4.6)
e y Y2 dx
W, _H-o (a.7)
ax hay
The boundary conditions:
u(x,0) =1
wx,1) = v(x,0) = v(x,1) =0 (4.8)
p(0) =p(1) =0
Defining the stream function such that
=2, v--F& (4.9)
oy ax
Equation (4.6) becomes
3— - —
S RWE2E.RuEE-FL-0 (4.10)
ay3 Y 3 y ¢ dx

e e el A “
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With the following boundary conditions on y:

y=0, v=0,
(4.11)

y=1, 9=, ¥
h 3y

External circuit conditions:
To determine the unknown E; in equation (4.10) it will be
necessary to consider the external circuit of the bearing system. It

is noted that when one of the bearing surfaces is a conductor it is a

short circuited case which gives

E =0 (4.12)

when the bearing surfaces are insulated and the end plates are perfect

conductors we have from equation (4.3)
1= £ o(E, + u B,) dx dy (4.13)

or interms of dimensionless parameters

1 1 1
T-—L g [ | MMEG+W| 5 & 49
LU v uo o o 5 y

31
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For the open circuit case T = 0 and equation (4.14) reduces to
1 1 1
-5 [ [ Ao &= 5 & (4.15)
o o 0
Load Capacity:

The load capacity may be found by integrating the pressure
over the length of the slider. In terms of dimensionless variables,
the load éapacity per unit width of the bearing is

_ oWt
W= - =Ipd (4.16)
ul p .
Frictional force:
The fric;ional force at the slider is given by
L
F= -[ ul  ax (4.17)
A y=0
)
In terms of dimensionless variables the frictional force per unit
width of bearing is
1
Fh -
= 0 f 1 ,3u -
Fe——=a = (—_)__ dx (4°]8)
u UL o h 3y y=0
The friction factor Cf is given by
c,= & (4.19)
W
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4.4 Method of Solution

The equation (4.10) is a linear differential equation of third
order in which the coefficients are function of X. The equation is.
difficult to integrate directly in its present form. However, the
solution to the probiem can be obtained by considering the differential
equation (4.10) at each section along the length of the bearing. At

any particuTar section the general solution may be written as

Yoy oy

F=C +Cye  +Cge -8y (4.20)
where é
a(®)= i W B2 (4.21)
and J
8(x)= 72 M B, E,+ e (4.22)
il |

using the boundary conditions (4.11) in (4.20) and eliminating the

integration constants we obtain

_a3/2 (]_82/(1) _ Fa(li-ez’/a _ Ze’/al

(4.23)
h(2+2e2ﬁu - 4e“d - ﬁerﬁu + /o)

The foregoing values of B(X) may be calculated if we know h(x) and TQ.
The values of h(x) are prescribed by the bearing profile while the

value of Q is assumed in order to start the computations. Rearranging

equation (4.22) we have
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_BX) _mw F
=5z MBy E, (4.24)

a lo
1ol

This equation (4.24) may be integrated numerically as the right-hand
side is known at each point of the grid shown in Fig. 4.1. The nu-
merically obtained value of pressure at the outlet is compared with
the boundary condition (4.8) and if these two values agree within the
specified 1imit then we have obtained the solution to the problem. In
case of disagreement, a new assumption of Q is made and the above

procedure. is repeated.

Once the pressure distribution in the bearing is obtained,

| the bearing load capacity and ffictiona1 force are obtained by nu-

merical integration of equations (4.16) and (4.18) repsectively.

4.5 Results and Conclusions

The foregoing analysis and the method of solution may be

applied to obtain the load capacity of a slider bearing of an arbitrary

‘geOmetny where the distribution of transversely applied magnetic field

may take any form of distribution along the lengtﬁ of bearing. How-
ever, in this presentation a plane tappered type slider bearing is
considered in_the presence of an applied magnetic field which may
have the following distribution (See Fig. 4.2):

(A) uniform

(B) Tinearly increasing

(c) step-type.

The results of these three cases are summarized below.
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(A) Uniformly Applied Magnetic Field

As pointed out in [3,4], for uniformly applied magnetic fields,
the greatest increase in load capacity occurs if the bearing surfaces
are perfect electrical insulators. Thus, the same properties are as-
sumed here. For any Hartmann number the load capacity may be obtained
by fixing the ratio of film thickness at inlet to outlet hr‘ However,
it is noted that for a given Hartmann number there is an optimum value
of hr for which the load capacity obtained is the greatest. Hence,
the calculations were carried out using various values of hr’ for aﬁy
Hartmann number, until the optimum hr was found. The values of the
Toad capacity and the optimum hr are plotted against M in Fig. 4.3. The
corresponding plot of the flow rate through the bearing Q vs Mis
shown in Fig. 4.4. It can be seen that the optimum hr increases with
the increase of M at low Hartmann numbers and reaches its maximum
at M = 3. Any further increase in M results in the decrease of optimum
hr' The optimized load capacity increases with tke increase of M.

In order to show the influerce of optimum hr and conductivity
of the bearing surfaces the results of Shukla [8] are also shown in
Figs. 4.3 and 4.4. It is noted that the load capacity obtained in the
present analysis is slightly less than obtained by Shukla at low M,
but are higher for large Hartmann numbers. Therefore Shukla's arrange-
ment may be considered siightly advantageous. At higher Hartmann
numbers, however, the present configuration with insulated surfaces
gives better results when the film thickness is optimized. Thus the
stator surface need not possess variable conductivity (which might

be difficult to achieve from the practical point of view) in order to
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obtain the greatest increase in load capacity. Figure 4.4 shows that
for M > 2,Q decreases with the increase of M in both analyses. However,
there is a considerable difference between the two values at any Hart-
mann number although the minimum film thickness is the same. This
difference may be explained by observing that both bearings form two
different systems for the induced currents. As a result the effects
of body force on flow are different for each of the cases. For Shukla's
arrangement the effects of this force is to retard the flow near the
outlet of the bearing. In the present system an accelerating force
is generated near the inlet. and retarding force near the outlet. This
arrangement reduces Q, but the overall effects are not as dominant
as in Shukla's analysis.

In Fig. 4.5 the relation of the frictional force and the
friction factor, to the Hartmann numbers is indicated for the same
optimum conditions as Fig. 4.4. It can be seen that the frictional
force increases with the increase of M while the friction factor de-
creases.

. (B) Linearly Increasing Applied Magnetic Field

Increasing applied magnetic field, along the length of the
bearing, may take any'fornli.e., Tinearly increasing, parabolic dis-
tribution etc. In the present analysis the calculations are presented
for the linearly increasing field in order to show the application of
the present method to nonuniform magnetic fields. The slider bearing
considered is assumed to have insulated surfaces. The distribution of
the linearly applied magnetic field is assumed such that the intensity

of the magnetic field at outlet is twice that at the inlet of the

R e VT PR |
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bearing. This gives the ratio of Mout1et/Min1et = MR = 2. In obtain-
ing the solution for any .Hartmann number the ratio hr is optimized,
as described in Case A, in order to obtain the greatest load capacity.
A plot of the optimized hr and the load capacity versus M is presented
in Fig. 4.6. It is observed that hr decreases with the.increase of
M(M>1) while the load capacity increases. The load capacity obtained
for the uniformly applied field, Case A, is also shown in the same
figure. From Chapter III and the present results, it is noted that
nonuniform applied magnetic fields give higher load capacity than
comparable uniform magnetic fields.

A plot of frictional force and friction factor against M
is shown in Fig. 4.7. It can be seen that the trends of these curves
are similar to these noted for Case A.

. The difficulty in obtaining the solution for high Hartmann
numbers which was reported in Chapter III has been eliminated with
the present method by ignoring the inertia terms.
(C) Step-type Applied Magnetic Field

For a step-type case the magnetic field of uniform strength
is applied in the downstream part of the bearing. The stator of the
bearing is assumed of conducting material while the bearing is an in-
sulator. It is noted [7] that a bearing of such an arrangement
generates load carrying capacity even when the two surfaces are parallel.
The load capacity depends upon the Hartmann number, applied magnetic

field step location S, and the ratio of the film thickness at inlet

to outlet, hr' However, it is noted that for a given Hartmann number

TR PPy RSP ST S
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.there is an optimum value of hr and S for which the load capacity is the.
highest. Hence the calculations were carried out using various values
of hr and S, for any Hartmann number, until the optimum hr and S were
found. The optimized hr and the corresponding load capacity are
plotted against M in Fig. 4.8. It can be seen that the optimum hr
decreases with the increase of M. It becomes equal to one when M = 4.
This is the case of the parallel slider bearing. When M > 4 the bear-
ing film becomes divergent. The optimum step location is fairly con-
stant (S = .65) when M < 3. Further increase in M decreases the step .
location until M = 5, and éhereafter it becomes practically constant
again (S = 0.55). The results of Kuzma [7] are also shown in the
same.figure. It can be seen that when the ratio'hf is optimized the
maximum load capacity is higher than for the parallel slider bearing.
This difference becomes quite significant at large M. It is interesting
to note that when M = 4 and S = 0.6, the parallel slider bearing gives
the highest load capacity.

Figure 4.9 shows a plot of the frictional force and the
friction factor, for maximum load conditions, as function of M. It
can be seen that the frictional force increases with the increase of
Hartmann number while the friction factor decreases. For comparison
the plot indicates the results of Kuzma [7]. It is noted that the
values of frictional force obtained, for M > 5, are higher than those
of a parallel slider bearing. However; the friction factor values

are reasonably in agreement.
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Conclusions:

A simple method of ca1cu1atihg the load capacity for an MHD
slider bearing has been described in this chapter. The transversely
applied magnetic field may have any form of distribution along the
Tength of the bearing. The method may be conveniently applied to
slider bearings of a general profile where the bearing surfaces may
be insulators, conductors, or possess variable conductivity in.x-
direction. Foom the results the following conclusions are drawn:

(1) For uniformly applied magnetic fields the load capacity
obtained is the highest if the ratio of film thickness at the inlet

 to that at the outlet is optimized and the bearing surfaces are insu-

lated.

(2) For step-type applied magnetic fields one obtains an increase
in load capacity if the stator is a conductor. However, to obtain
the maximum increase the ratio of film thickness at the inlet to
that at the outlet has to be optimized.

(3) For linearly increasing applied magnetic fields the highest
load capacity is obtained if the ratio of film thickness at the inlet
to that at the outlet is optimized and the bearing surfaces are insu-
lated. The results indicate that the nonuniform magnetic fields give

higher load capacity than the comparable uniform magnetic fields.
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CHAPTER V
NONUNIFORM ELECTRIC FIELD EFFECTS
IN MHD SLIDER BEARINGS

5.1 Introduction

The review of Titerature and the results presented in the
previous chapters indicate that at small Hartmann numbers only a'SIight
increase in load capacity is obtained under open circuit condition.
However, a significant increase may be obtained when Hartmann numbers
are very large. Thus, to substantially increase the load capacity a
very high sfrength magnetic field would be required. Consequent]y,.this
would necessitate a very large magnet which woﬁld be impractical.

In order to improveAthe load capacity at Tow M the supply of
electrical power to the bearing, by connecting the side electrodes to
the external source, has been proposed [5,6,9,10]. This arrangement
has substantially improved the bearing load capacity even at very low
Hartmann numbers.

However, in these analyses it was assumed that since the
electrodes were perfect conductors, and the bearings were assumed
infiﬁite1y wide, then from equations (2.3) Ez was essentially a constant.
Therefore, any variation of EZ in the bearing and nea? the edges was
neglected. '

It was concluded in Chapters III and IV, that the nonuniformly
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applied magnetic fields improve the average load bearing capacity. This
intuitively suggeéts that if the applied electric field from 2 certain
part of the bear%ng is removed, then further improvement in the load
capacity can be expected. This may be achieved by segmenting the side
.plates into the conductor and insulated parts. The external power is
then only supplied to the conductor part. ’ %
The purpose of this Chapter is to investigate the effects ' :

on load capacity of such a bearing configuration.

5.2 The Bearing Configuration

The finite width parallel plate bearing with a uniform mag-
netic field app]igd perpendicularly to the bearing surfaces is shown
in Fig. 5.1. The bearing surfaces are made of insulating material.
Each of the side p]ates is segmented into two parts; the electrode, and
‘the insu]ated.' The electrode part is a perfect conductor, ﬁhi]e the
latter part is an insulator. The electrode part may be connected to

the external generator such that the current can be supplied to the

bearing.

5.3 The Governing Equations and the Associated Boundary Conditions

The general equations developed and simplified in Chapter II,
remain valid for the present model. However, when the external potential
js applied to the bearing system shown in Fig. 5.1, it becomes necessary
to consider the Maxwell's curl equationé as well. Thus, to obtain the
solution all these equations have to be solved simultaneously subject

to the appropriate boundary conditions on the fluid and electric fields.
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This indeed, is a difficult task and at this stage we make some further
assumptions to put the problem in a manageable form. These assumptions

are:
(1) It may be recalled that the coupling of the fluid equations
and Maxwell's equations are through Ohm's Law, stated in Chapter II

as:
J=0E+VxB : (2.4)

In the present analysis considération is essentially on the MHD where
the applied magnetic field is‘not high, and the velocity of the slider
is not large. Therefore, it would be reasonable to assume that the
induced vo]tage, V x B is much smaller than the applied voltage. Hence,
for §uch a case the second term may be neglected compared to the first
term in equation (2.4), and the equation may be written in the following

form:
3 = o(E) (5.1)

By making the above assumptions, the fluid equations have been uncoupled
from Maxwell's equations. Therefore, each set of equations can be
| solved independently with the appropriate boundary conditions.
(2) For the bearing under consideration E and J may be assumed
to be functions of x and z.

(3) As indicated in the results of Chapter III, the inertia terms

are neglected.

PRIV ey RIS S
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From assumptions (1) and (2) and equation (2.3) the follow-

ing results:
v.E=0 | (5.2)

Defining E = - V¢, and combining this definition with the above equation,

the Laplace's equation for the two dimensional domain (x,z) is obtained.

N

52

axX

(-3
"
o

+ (5.3)

Qo
N

The solution of this equation with the appropriate boundary
conditions will give the ¢ distribution, and hence the electric field
in the bearing.

In order to solve equation (5.3) it is necessary to specify
the boundary conditions on the four sides of the domain xz. From
Fig. 5.1, it is apparent that the electric potential is applied to

the electrode parts of the side plates, while the remaining parts

'of the side plates are insulators. The boundary conditions, however,

at inlet and outlet of the bearing are difficult to prescribe due to the
continuous flow of the lubricant. Since the slider bearing essentially
represents a portion of the thrust bearing arrangement, it may be noted
that at the end of each thrust pad the groves of small width for entry
and discharge of the lubricant are provided. It may be pointed out

that this arrangement can be modified so “nat near the inlet and the

outlet the insulated walls may be provided. However, in the present
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analysis, the arrangement is approximated by assuming that the insulated

walls are located at the inlet and outlet of the bearing. The boundary

conditions for such an arrangement may be written as
L} = 29 =
o (0,2) = 57 (L,2) = 0
—g—% (x, i-g-) =0 when x>L4 (5.4)
o(x, :%) =+ ¢, when x <L,

Under the assumptions (1) through (3), the governing equations

(2..6) through (2.11) now take the following form

: 2
= .3 3 Uy _
0 3X + u(-a?-) » JZ By (5.5)
0=-L4 (3-2-!’-)+J B (5.6)
3z  H oyl x Py .
Yy
ou , 9v oW _
-é-x—'l' -374' a—z' =0 (5.7)
Jx = O'(Ex) (5.8)
J. = ofE,) (5.9)
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The boundary conditions are

u=U,v=w=0 at y=20

(5.10)

p=0 for x=0,1L

(5.11)
= =+ D
p=0 for z=1%3>

From equations (5.5), (5.6) and (5.7) when combined with
the boundary conditions (5.10), the magnetohydrodynamic form of
Reynold's equation may be obtained by employing the following procedure.

Since Jx and Jz are assumed to be functions of x and z only,

equations (5.5) and (5.6) may be integrated directly to yield

=1 (3 2
u= o (ax +4, Ey) Y+ y+e (5.12)
w=a (R +J B)y#Cy+C (5.13)
2u ‘a3z Xy y M 4 :

where C's are constantsof integration. When these are evaluated with

the use of boundary conditions (5.10) then

u=gr BB+ 3, B)yPyh) +u(1- P (5.14)

= . (32 2
W=z (57 - Iy B (Y -yh) (5.15)
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The x-component of the fluid flow rate per unit width, Q,
can now be expressed as
h
0= | udy (5.16)
0
Combining (5.14) and (5.16), the following is obtained
Q=-t @y gy | (5.17)
X Top ‘ox Yz %y T T .

Similarly, the z-component of fluid flow rate per unit

length is expressed as

h

Q, =f wdy | (5.18)
! |

which, when combined with equation (5.15) yields
Q=-ﬂ3—(39-a B,) (5.19)
4 12p ‘3z Xy :
At this stage the continuity equation (5.7), may be inte-

grated ﬁith respect to y. Using boundary conditions (5.10), the follow-

ing is obtained.

x

9 3 _
'a"J udy+a—z-f wdy = 0 (5.20)
0

From equations (5.16) and (5.18) the above equation becomes

56
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aQ aQ
X Z _
& Tz o0 (5.21)

Substituting equations (5.17) and (5.19) into equation (5.21) yields
3—[“3 R+ B)Jrl—’ﬂhi[h3 @R -4g B)l=0 (5.22)
ox T2y ‘ax ~ Yz °y 2 9z “T2u ‘5z ~ “x Py’- .

When h is not a function of x as is the present case, the above equation

reduces to

2 2 ad ad

9 ap _ X Z ;
_.g. + =B (_ - _) (5_23)
ax 822 y ‘oz X

It is interesting to note that the above pressure equation

is independent of the viscosity of the lubricant. At this point it

is convenient to put the governing equations into dimensionless form -
by using the characteristics quantities usually employed in MHD Tubri-

cation. These are:

B
B
y By ,applied

_ — 2
y:%’p=&’n=(h/%) By

ulL ,applied
J_h
-_Z = _ ;X 1 - _ 12 1
z=5 Jx—(-U—)VOT’JZ—(T)H | (5.24)
h E_h
T o= (X3 9 23,9 T _(¢hy, o
B = (WS E = (FwE, 5= (@hye




In dimensionless form the potential equation (5.3) becomes

[+%)]
ad
Q
e |
0
o

+ (%)

[+
2
Qo
N

With the following boundary conditions

Bo,n=-20,2-
9x oX

2— 2 2= 3' )
B4 (p) Y W e
9X 3z 3z  oX
with the following boundary conditions
p=0, x=0,1

o|
o
N|
f
I+
roj—
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(5.25)

(5.26)

(5.27)

(5.28)
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Load Capacity:

The integration of the pressure over the bearing area yields

the load capacity. In terms of dimensionless variables it may be

written as
72 1 .
Whﬂ;=f fE&J‘ (5.29)
uUDL
-2 0

Frictional Force:

The frictional force on the siider is given by

D/2 L
ou
F=- [ u@h dxdz (5.30)
-D/2 0

From equation (5.15) the above equation becomes

D/2
e[ (@ Weaa o
-D/2 O

which when simplified gives

—_ Fh _ M _
F = SUOC - 1+ 5 J, dx dz (5.32)
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5.4 Solution to the Governing Equations

5.4.1 General Approach

The problem formulated in section 5.2, regquires the solution
of equations (5.25) and (5.27) with the corresponding boundary condi-
tions (5.26) and (5.28) respectively. These egquations are difficult
to solve analytically and hence a numerical approach is adopted.

In the present study, the method of finite-difference will
be used [12,15-17]. The resulting equations will be solved using the

point successive-overrelaxation method [17].

5.4.2 Finite-Difference Approximation

Considering a 5-point molecule shown in Fig. 5.2, the partial
differential equation (5.25) is transformed into a finite-difference
form (see Appendix B). After rearranging, the equation for any point
(i,j) in the grid may be written for Ax = Ay, in the following form

31,5 = 21 1,5 * % $i-1,5 T 23 4,54 T 2 P (5.33)

where
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Similarly using the 5-point molecule shown in Fig. 5.3,

equation (5.27) for Ax = Ay = Ah, becomes (see Appendix C)

By 5 = DPia1,g * PoPi-1,5 ¥ PaPign T PP Y by E; 5 (5-34)

where
_ _1 1
by = by =g (—2
1+
D
1.
by = by =73 (;--529
. +
'
2
_ 1 _t%h
bs"'z( L)
‘ 1+ EZ'
and
_ 3d, ou.
E; 5= M(%i't:- - =
»J 9z X

5.4.3 Method of Solution

The finite-difference approximation at each of the grid points
has essentially reduced the problem to solving a set of ordinary linear

equations.
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From Fig. 5.2, it is clear that due to symmetry about the

~middle 1ine only one half of the domain may be considered for computations.

(a) Solution for Electric Potential Equation

Since the equation is uncoupled, the solution to this equation
(5.25) with boundary conditions (5.26) is obtained first.

Due to unusual boundary conditions on ¢ the half domain was
further divided into two regions; close to the electrode and far away
from it. In region I, close to the electrode it was divided into a
finer mesh as compared to the far away regipn. This was primarily to

overcome the difficulties in computations due to the steep gradient

' of ¢ near.the electrode plate and especially the corner.

The application of equation (5.25) at each of the grid points

~ gives a set of linear equations. These equations are then solved by

the successive-overrelaxation procedure [17] by a digital computer,

IBM 360/67.
If the number of iterations performed is denoted by K, the

procedure can be defined with:

(k) _(k-1) _(Kk-1) _(K) _ (k-1)
i, " %, T olay g 5t ey % a3 b oy

o

K) _(K-1)

*ag 95,51 5,3 (5.35)

where w is a parameter known as a relaxation factor, the choice of which
determines the rate of convergence. The iteration procedure is terminated

when'the following convergence condition is satisfied.
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(k) _(k-1)
I¢- : = P55 |

max —bd il — < 107 (5.36)

%,

Once the potential distributing jn the bearing is obtained,

E.»> E;» 3;, J,, 3d,/02 and aﬁéléi'may be approximated at each of the
grid points by the finite-difference formulas given in Appendix D. The
total current through the bearing for the applied potential 3; is then |
obtained by carrying out the numerical integration of 3; distribution
at the center line. The area to be considered for the total current
will be in the Xy plane.
(b) Solution for Pressure Equation

Knowing the electric field and the current distribution in
the bearing, the pressure equation (5.27) may be solved. A uniform
grid size shown in Fig. 5.3, is used in caléulations. The procedure

of solving the finite-difference equations is the same as described

above. Equations (5.35) and (5.36) may be written in terms of pressure

as
P S I G G IR CU I
By g = Pi,g + 0(bqPiay 5*02Pio1,5*03P 1 PaPi 51
- _(k-1)
+beE; 5 - Py ; (5.37)
and (k) _(k-1)
‘Pi i~ Pij | -5 (5.38)
max > (KS <10

Pi,j
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Once the solution to the pressure equation is obtained, the
1oad capacity and the frictional force on the slider are found by inte-
grating the equations (5.29) and (5.32) respectively. The method
employed for integration was Simpson's Integration Rule.

~ The optimum values of relaxation factor w, and the mesh
size employed in the computations is given in Appendix E. The error

jnvolved in the numerical solution is also briefly discussed in this

Appendix.

5.5 Results and Conclusions

As shown in Fig. 5.1, the electrical power is supplied to the

bearing by connecting the side electrodes to the external source. For |
an applied potential to the electrodes, 6;, the electrical current
flowing through the beariﬁg system will depend on the electrode length
S. In order to study the effects of nonuniform electric field on the
bearing load capacity, the current fiowing through the bearing is kept
constant,bwhile the electrode length S is varied. The constant flow

of current can be achieved by adjusting the value of the applied
potential E;. The results of such a bearing arrangement with L/C = 1.0
are discussed below for M = 0.1 to 1.0.

The solution of equation (5.25) gives the potential distribu-
tion in the bearing. The current density in the bearing is then ob~
tained by using the formulas given in Appendix D. Knowing the current
density distribution, the current streamlines are obtained by inte-
grating the current density distribution. The potential lines for

3; = 2.02 and S = 0.4 are shown in Fig. 5.4. For the same conditions,
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Fig. 5.5 shows the current streamlines in the bearing. The tendency of
concentration of electric currents near the corner of the electrode is
exhibited in this figure. It was hoted that with the increase of the
electrode length, this concentration of current decreased.
The solution of the pressure equation (5.27) presented in

Fig. 5.6 indicates that there is a pressure buildup in the bearing

when an electric potential is applied to the electrode parts of the

side plates. The results further reveal that for a given hydrodynamic
condition and for a fixed current flow through the bearing, the pressure
distribution depends upon the electrode length S, and the Hartmann
number. The pressure buildup in the paraliel plate bearing with seg-
mented side electrodes may be explained as follows.

_ From the current streamlines diagram (Fig. 5.5) it can be

seen that when the electric potential is applied to the side electrodes,
there is a net current flow in the negative direction of z-axis. The
interaction between the current passing through the fluid and the
applied magnetic field results in an electromagnetic body force in

the fluid film. In the present analysis, the important components of
the electromagnetic force as shown in equation (5.5) and (5.6) are:
J, X By in x-direction, aﬁd Jx X By in z-direction. The distribution f
of the body force in the bearing for uniformly applied magnetic field
therefore will depend on the distribution of the current density.

In order to illustrate the role of the electromagnetic body force on
the flow more clearly, let us consider the situation at the center of

the bearing. As the bearing is symmetrical about the middle Tine, JX ;




e s mn ATy w A

68

will be zero at the center. Therefore, the only component of the body
force at the center will be the x-component. If one visua]izés the
directibn of this body force, it can be seen that the efTécts of the
electromagnetic force is to accelerate the fluid between the bearing
surfaces in the same.direction as the motion of the slider, thus re-
suiting in'ah increase in pressure. waever, if the electromagnetic
force is distributed uniformly, then there is no pressure buildup in
thevparallel;plate bearing. Mathematically, this can be easily séen
fromlgquation (5.27) and the boundary conditions (5.28). For a uniform
electric field, the right hand side of the equation is zero, so that’
p=0 thrdughout the bearing. However, for a nonuniform electric
field, the right hand side is nonzero resulting in a nonzero pressure
distribution. |

The physical reasoning of the pressure rise in the bearing

may be explained if the MHD paraliel plate bearing is visualized as

_consisting of two parts. For simplicity, let us assume that the re-

. sulting electric field is uniform and is only confined to the electrode

part of the bearing. Then, the bearing may be divided into two distinct
parts; the upper part where the fluid is being pumped by the electro-
magnetic body force, and the lower part which essent1a11y represents

an ordinarily couette flow superimposed by a forced flow. In order

that the couette part sustains the extra fluid which is being pumped
through the béaring, a définite pressure drop will be required. There-
fore, a positive pressure gradient develops in the pumping part of the

bearing. However, this increase in pressure will depend on the con-
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ditions in the lower part. The situation may be viewed as somewhat
similar to a step-type hydrodynamic bearing. A§ will be seen later,'
that the pressure de?eloped %n the bearing becomes smaller, if the
couette part is made smaller by increasing the length of the side
electrodes. Finally, the pressure reduces to zero when the side
electrodes are extended to the full length of the bearing. Then, the
bearing configuration simply represents an MHD couette arrangement.

' Figure 5.6 shows the pressure distribution along the length
pf the béaring forT=2.5,8= 0.1, and M = 1.0. The curves are
plotted for the center of the bearing (z = 0), and z = 0725 and 0.375.
It is noted that the maximum pressure distribution occurs at the center
of the bearing indicating the location of the maximum electromagnetic
body force in x-directiqn in the bearing.- The curves further show

that the position.of maximum pressure moves towards the inlet of the

.bearing as Z increases from the centerline. The reason for this shjft

may be attributed to the concentration of current near the electrode. -
| The load.capacity of the bearing against M for various values

of S is shown in Fig. 5.7. It is noted that for a fixed S, the load
capacity increases with the increase of M. The effect of electrode
length S on load capacity is c]eariy indicated in this figure. It
can be seen that as S is increased, the pressure developed in the
bearing becomes smaller. Finally, for S = 1.0; the pressure reduces
to Zero, and the bearing has no load carrying capacity.

| Figure 5.8 shows a plot of frictional force on the s]iQer

against M. It is noted that the frictional force increases with the

-
«
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increase of M. However, it may be pointed out that the frictional force
is independent of the electrode length S. Finally, the frictional

force as shown in equation (5.32), depends on the total current through

- the bearing for a given Hartmann number.

The foregoing results of MHD parallel plate slider bearing
suggest that if the electrical power is supplied to the bearing to
improve the load carrying capacity, it would be advantageous to apply

this power near the inlet portion of the bearing.
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CHAPTER VI
CONCLUSIONS AND SUGGESTIONS FOR FUTURE INVESTIGATION

6.1 Genera] Results. and Conclusions

A theoretical study was made of the effects of electromagnetic
interactions on the fluid film of a 11qu1d—meta1-1ubr1cated slider
bear1ng where the magnetic field was applied perpendicularily to the

bearing surfaces. The analyses were carried out for an open circuit

-condition, and for the case where the electrical power from an external

source was supplied to the bearing. The main results are summarized

below.

For an open circuit condition the applied magnetic fields

were assumed to have uniform, increasing, and step-type distribution.

The effeéts of inertfa on load capacity were analysed. The results
indicate that the contribution of inertia terms - decreases with the
increase of Hartmann numbers, and it becomes negligible at high M.
Therefore, the inertia terms were neglected and the solution was pre-
sented for uniform, linearly increasing and step-type applied magnetic
fields. It is noted that for each type of magnetic fields, the maxi-
mum load capacity of bearings is obtained when the ratio of film
thickness at the inlet to that at the outlet is optimized. The bear-
ing surfaces have to be insulators for uniform and increasing magnetic

erlds while the stator have to be a conductor for a step-type magnetic
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field. The results also indicate that nonuniform magnetic fields i.e.,
increasing type, give higher load capacity than the comparable uniform '
magnetic field. However, the improvement obtained in load capacity by
applying a nonuniform magnetic field is only moderate. For step-type

applied magnetic field the load capacity obtained is less as compared

- to the uniformly applied magnetic field. It is interesting to note

that for such a case, when M > 4 the maximum load capacity is obtained

when the fluid film is divergent. The method of solution developed é

in Chapter IV may be employed in analyzing bearings having complicated é

profiles, e.g., multistepped and composite bearings. |
For the case of externally supplied electric current, a

parallel plate slider bearing was analyzed. The magnetic field was

applied perpendicularly to the Bearing surfaces. The segmented side

electrodes were connected to the electrical power source, thus giving

a nonuniform electric field distribution in the bearing. The results

indicate that a parallel plate bearing with such an arrangement have

load carrying capacity. The results suggest that if the electrical

power is supplied to the bearing to improve the load capacity, it

woyld be advantageous to apply the power near the inlet portion of

the bearing.

6.2 Suggestions for Future Investigation

In the present work the effects of nonuniformly applied magnetic
and electric fields were analyzed for a simple slider bearing. The

analyses may be extended for bearings with complicated profiles.
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For nonuniformly applied electric fields considered in
Chapter V, the fluid equations were uncoupled from Maxwell's equations
by making certain assumptions. It is suggested that these equations
may be solved in the codp]ed form and the results compared with those
prgsented here.

| Another possible aspect of further investigation in magneto-

hydrodynamic lubrication is attempting to design a bearing having
automatic electrical adjustments in order to compensate for transient
loads. ‘ |

The present investigation and the results of other authors
as discussed in review of literature, have shown the possibility of MHD
slider bearing. In order to develop it into a practical device, it is

suggested that a series of experiments should be carried out.
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APPENDIX A
MAGNETIC FIELD DISTRIBUTION
The expression for the magnetic field, equation (3.14) , may
be written
§=-C—°-+c £ 0,8+ Cat2 # (A.1)
y 6 1 2 3 °° :
For Case A
C1 =1, CO = C2 = C3 eee. =0 (A.2)
For Case B
C]=]+ZS.’CZ=-ZS‘
(A.3)
CO = c3 = C4 ee e = 0
dB,
where st ==L
and for Case C
=0

¥

- s s s KA SRR
: It
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(A.4)

(A.5)
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APPENDIX B
ELECTRIC POTENTIAL EQUATION IN
" FINITE-DIFFERENCE FORM

The potential equation (5.25) may be written for convenience

as

2% -9 (5.25)

2—
a_i.i. (l_-.
X% D

Considering the five-point molecule shown in Fig. 5.2, the following

may be written [19]

2 2p; )

15 . titl,] i, 7 %1, 4 g (a%2) (B.1)
ax Ax

— 20. . + 0. -

o5 g T3 TG L o () (8.2)
3z AZ '

Substituting (B.1) and (B.2) into equation (5.25), the follow-

ing is obtained

- 1 DZAzz
$i,5 = i'(B_Z§§:[72520(¢1+1,3 i-1 J)
B.3
2 D2A52+L2A§2 > >



SNEE——pTT L

When Ax = Az = Ah, the above equation becomes

where

5,5 T %41, T 32%i-1,5 F 234,50 F 04,501

(B.4)

85
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APPENDIX C
. PRESSURE EQUATION IN FINITE-DIFFERENCE FORM

Rewriting the pressure equation (5.27) from Chapter V as

2— 2 22— ad, o

) L\" 3 L °“z X _ :
+(3) B oME=2-=0 (5.27)

ox N D 3% 92 - ’

Using the five-point molecule shown in Fig. 5.2, we may write [19]

2= Piyq :72P: HPiq s
=A%) T,J =1,
: AL L M P M Y I q(A;Z) (C.1)
X AX
2= Pi s172Ps DL s
a_g = J5J ]A?)Z’J 1,J 1 + O(A.)_(Z) (C.Z)

Substituﬁng (C.1) and (C.2) into equation (5.27) yields

- 1, pazz | — 1, Dz |, —
=L ) Piay s * k(A B
Pid T2 ARG T T T 22y B3P il
RIS S L -
2 "2y 22 Tisd1 7 2 sz a 13t
-7 ¢ gz—f g{—z) E; (c.3)
DAZE+LEAX »J




For AX = AZ = Ah, the above equation may be written as

1,3

where

and

= biPisq,5 * PoPi-1, * P3Py j+1 * PaPi 51 * Ps By 5

[}

o
N

i
X

T s Nas T
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: APPENDIX D
FINITE-DIFFERENCE FORMULAS TO OBTAIN ELECTRIC FIELD
AND CURRENT DENSITY DISTRIBUTION IN THE BEARING
Using the 5-point molecule shown in Fig. D.1 the following
finite-difference formulas may be written:
Bar,4) = %1,g) = = (6%, 5+3%8y 57283 5-96F, ;-508; ;)/(244%)

: o (D.1)
ER(2,5) ™ TR(2,4) T - (95,5760, 5¥1805 57180, -3 5)/(128%)  (D.2)
Ex(iLd) = Ox(i.3)"" (Pie2,78%541,57805,5%94.2,5)/(128)  (D.3)

EXM-1,9) = Tx(u-1,9) = (-30w,5-108y.1 54180y 5

- 6¢M-3,j+¢M-4,j)/(]2A§) (D-4)
EX(M,3) = Yx(M,5) = (500y,;-960y_q +720y.5 ;
- 32y_3 ;+68y_y 3)/(-245%) (p.5)
E2(4,1) = 9z(i-1) = - (-60; 5+326; ,-726; 1
= 9631 ,2-503,- =1 )/(24AE) (D._G)
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=2 i=1 i i+l i+2

j+2
j+?

i=-1
ji-2

-

M-I M

FIG. D.1 S5-POINT MULECULE

B(1,2) = Tli,2) T~ (84,5769 4¥180; 37108 5-39;,4)/1242) (D.7)

-E—_Z_('i 9j) = .J-Z('i,j) = - (-?Ei ,j+24'8-6i ,j+-‘-8$i,j_]+$1.’j_2)/(12A3)

(D.8)
EZ(iN-1) = g N1y T (739 100
+ 184, ’N_2-6761. ’N_3+$1. ’N_4)/(12AE) (D.9)
EZ(iN) = 20 n) (509 960 n_1+72%; y o
328, y.5+% g/ (-2400) (D.10)
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Knowing ﬁ; and 3; distribution in the bearing, (aﬁ;/az)
and (33;/3x) may be approximated at each of the grid point by usfng
the same five-point molecule. The formulas may be easily written
from the above expressions by replacing ¢'s with appropriate values

of current densities.
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APPENDIX E
CONVERGENCE PARAMETER, MESH SIZE AND
ERROR INVOLVED IN COMPUTATIONS

E.1 Relaxation Factor For Point Successive-Overrelaxation Method -

| For point successive overrelaxation method, the optimum
values of relaxation factor w, are discussed in [17,18]. The important
relation for 1inear elliptic type partial differential equations given

in [17] are

. 2 '
— A
"’optimum =1+ [m] (E.])
where ' A= %— (coS -"aﬂ + cos 1?) s

a/2 = Mh, b = Nh and h = mesh size. M and N are the number of divisions
in x-direction and in z-direction respectively.

In solving the potential equation (5.25) and the pressure

equation (5.27), the optimum w for the grid size employed in computa-

tions, was ca]cu]ated from the above relation.

‘E.2 Error and Mesh Size

The error is inherent in the numerical solution. The errors
due to finite difference approximations of equations (5.25) and (5.27)

are of O(Azh). These errors can be reduced by increasing the number
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of divisions. However, the computing time increases considerably as
the mesh'§ize used is further reduced. In the'present work, the follow-
ing mesh size was employed which was in consistence wifh the tolerance .
specified in equations (5.36) and (5.38). |

For potential equation the mesh size for Region I and II

was .0125 and 0.025 respectively, while for pressure equation it was

.025.
Since the computations were carried out using the double

precision numbers, the round off errors should be insignificant.
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APPENDIX F
NUMERICAL EXAMPLE FOR EXTERNALLY
SUPPLIED ELECTRIC POWER

The results of nonuniformly applied electric field are pre-
sented for parallel plate slider bearing in Chapter V. To help visua-
lize the load that can be obtained and the electrical power required to
maintain this load, a numerical example will be considered. Typical

numerical values of the parameter used are (RMKS units):

h = 107

L =0.Im
D=0.1m

U = 10 m/sec

Using mercury as the lubricant, the following properties of

mercury are taken from reference [20].

=
i

= 1.55 x 10'3 Newton sec/m2

g =1.07 x 106 mho/m

For S = 0.1, M= 0.5, and T = 2.5, the bearing load capacity

W as obtained from Fig. 5.7, is 0.215. From these dimensionless numbers,

the important physical quantities are calculated. These are:

i i d (1 vl psra e wead

Diendsaa

. "‘"“"‘“--«\u7
.



0.19 Weber/m®

B.y =
1 = 100 amp
W = 334 Newton

(= 75 1bs.)
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COMPUTER PROGRAMS
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c MHD BEARING
C¥+3%* IN THE ANLYSIS THE INERTIA TERMS ARE RETAINEDeTHE
c SOLUTION IS OBTAINED BY SOLVING A SERIES OF 3RD ORDER
c DIFF. EQUATICONS.IN THIS PROGRAM ONLY SEVEN EQUATIONS
c ARE SOLVED
Cx*%x* SUBROUTINES FROM IBM—SYSTEM/360 SCIENTIFIC SUBROUTINE
c PACKAGE ARE USED IN THIS PROGRAM
DOUBLE PRECISION FO(SS)+F01(55),F02(55)»F03(SS)sF1(SS) .
* $F11(SS)e
1F12(55) e F13(S5) s REs HARTC05C1eC2s C3+ALPHA(S)sBO(S) . »G
* AMA(S)+CB,
2PRMT{S) ¢« Y{3) +DERY (32 + AUX(8+4) s A(S55) 3B(55)sC(S55) +D(55)»
* E(S5)s
3 ZZ(55) sR{55)+ CC(55)sAF1(5)+CF(S5)>Z{55)+81(S)+BBsB2(S)
* oF2(SS),
4F21(SS)+F22({55)sF23(55)+21(55)+211(55)+212(55)+213(55)
% +B3(S)e
SE3(SS)+F31{55)+F32(SS)+F33(S5)sDEL{21)sPGRAD(21)+S,ZP{ .
x  21) +B4(S),
. 6BS5(S) +F4(55)eFA1(S5)+F42(55)sF43£55)s FS(S55)sFS1(SS)F
* S2(SS). ) o
TFS3(S55)+sCUR +EE(21) +B6(5)+87(S)eB8(S)sF6(55)+F61(5512,
* F62(55),
8F63(55)
EXTERNAL FCT.0UTP
COMMON FOsFO01»F02+F03sREsHART»CBsCOSIC
COMMON /FIRST/IL -
C**%% CALCULATION FOR 3RD ORDER DIFF. EQNSe
Cc
C#%** SOLUTION FOR EQe NO. 1 IS OBTAINED USING FOURTH ORDER
Cc RUNGE KUTTA METHOD
C ** CALCULATION FOR EQe NOe1
C**x* FILM THICKENESS RATIO = 2.0

e > s s e = = & S S St et et e s s b Bh e Sl s Sl S e e T et

b

Rtttk b it b i i il

* IN THE SIXTH COLUMN INDICATES
CONTINUATIGN FROM PREVIOUS LINE

EE 2222232222222 2222222 22 22 2 o2 s 2]

FORTRAN PROGRAM FOR CHAPTER 3
THIS PROGRAM CALCULATES PRESSURE DISTRIBUTION IN

t
!
1
i
1

[
]

i
|

B et IEIP PRI PR PR S DATFED-YE

LA EITETIN T L sl

2|

—

s NPT ok A e
LR GRS L 6 B iR A e A

A0t
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25

‘Cxxex

C¥xkk

Cxx

31

45
32

33

DO 23 MM=1,2

READ(5+25) ALPHA(NN)BO(MM),

FORMAT(3F15.9)
RE=140

—— . et e e et A e, o e 8 . .+l i e o . s ot e ot

OF C0sC13C29sC3vee
WHEN CO0=10 AND C1=C2=C3=0.0 »THE APPLIED MAGNETIC

FIELD IS PROPORTIONAL TO

C0=1.0
Ci=0.0

C2=04.0

C3=0.0
CB=BO(MNM) .
BETA=ALOHALMM)
HART= GAMA(MM)

WRITE(6+27) CBsBETALHART
27 FORMAT(® 0% 35Xs 'CB=19 45159

* 0e6) .
PRMT(1)=0.000
PRNT (2)=1.0
PRMT(3)=,02S

 PRMT(4)=0+0001

Y(1)=0.0DO
Y{2)=0.0D0
Y{3)= BETA
DERY(1)=.2SD0
DERY(2)=.25D0
DERY{(3)=05D0
NDIM=3

ic=0

GAMA(MM) .

THE APPLIED MAGNETIC FIELD IS SPECIFIED BY THE VALUES

(1-X/72)%%-]

"BETA=®,F15.9s *HART=*,F1

CALL DRKGS(PRMTsYysDERYsNDIMe IHLFsFCT,QUTP, AUX)
EQUATIONS NOe 2 THROUGH 7 ARE PUT IN FINITE DIFF .FORM
AND THE RESULTING RECURRANCE RELATION IS THEN SOLVED
'CALCULATION FOR EQ. NO. 2

I1=41"
I11=1I1I-1
H=0402S

READ(S»31) B1i(MM)

FORMAT(F10.6)
BB=B1(MM)

KK=0

It=1
WRITE{6+32) BB
FORMAT(*0%+5X, .
KK=KK+1
WRITE(6+33)
FORMAT(*0°? ,9X,
DO 34 N=3,11I

'Bl=%y F10e6}

*A*,20Xs B,

1SXs *C? 315X e "D 5 15Xs *E® )

97
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34

47

44

43
53
48
49

' s0

S4
46

. Cxkx

75
s2

A(NI= (1e+0S5F(HXE2) F(REFF 01 (NI—-(HART*%2)%(C0*%x2)))

BIN)= ((H**3)}%XFO02(N)*RE-3.) :

CINI= (3e—0eS*(H*X2) ¥ {REFFOLINI-(HART*E2)%(-CO*%x2))) .

D(N)=fl-°

EI{N)= (H%%x3)=*BSB

CONT INUE

CALL SOLU{A+BsCsDeEeZZ)
DO 47 N=2,11
F1{N)=Z2Z(N)

CONT INUE

AF1({(KK)=F1(11)

CF(KK)= B8
IF{DABSI{FTi{i1)je LTe ieE—6}) GG 7O 43
IF(KK«EQel) GO TO 44

IF(KKoEQe3) GO TQ 23

DXX= AF1{(2)-AF1(1l)"

DYY=CF(2)-CF(1)
BB=CF(1)—AF1 (1 )%DYY/DXX

GO TO A4S

BB=BB+.055

GO TO 4S5

WRITE(6-,53 )

FORMAT( 0% +9Xs*F1"315Xs"F11%15Xe *F12%,

81(MM)=8B
NDM=41 :
CALL DDETS (HeF1l +ZsNDMsIER)

DO 48 N=1,11

F11(N)=Z(N)

CALL DDETS (HsF11:Zs:NDMsIER) .
DO 49 N=1,11 ’

F12(N)= Z(N)

CALL DDETS (HeF12+Z+NDMsIER)

DO S0 N=1,11I
F13(NI=Z(N)

DO 46 N=1,.11
WRITE(69S4IFI{N)sF11(N)sF12(N)F13(N)

‘FORMAT(® 0% 95SXe4F1546)

CONT INUE

CALCULATION FOR E0. NOo 3

IL=IL+1
READ(S+31) B2(MM)

BB=8B2(MM)

KK=0

WRITE(6,62) BB
FORMAT(%0% ¢5X, 'B2=', F10.6)
KK=KK+1 '
WRITE(6533)

10X»*F13°*)




.
PRYST

64

67

74

72
73

78
79
80

76
C***

- e e S e i s S s S e e i et S ot e S Bt e S s B et

DO 64 N=3,111

AINI={1 e— o SELHTE2) X (HART*¥2) ¥(CO%x*2))
BINY)= (H**3)F2EREFFO2(NI-3.0

CINI=(3e +0.S5S¥{HEX2) *(HART*¥2) x(CO*%¥2))
D(N)==1.0

E(N)= (H**3)*{3B-RE*F1(N)I)*F12(N))
CONTINUE ’

CALL SOLU(A+B+sCesD2E2Z2Z)

DO 67 N=2,11

F2(N)= ZZ(N) _ L

CONT INUE
F2(1)=0.0

AF1{KK)= F2(Il)

CF{KXK?)= 8B

IF(DABS(F2(II))e LTe 1.E-6). GO TO 72
IF(KK.EQ.1) GO TO 74
IF{KKeEQe3) GO TO 23
DXX= AF1(2)—-AF1(1)}
DYY=CF{2)-=CF(1)
BB=CF(1)—AF1{1)*DYY/DXX
GO TO 75

EB=BB+.005

GO TO 75

WRITE(6+73)
FORMAT(*0% »9Xs *F2%5,15X» *F21%515Xs *F22°%,
B2{MM)=B8B

CALL DDETS (H+F2 +Z+NDMsIER) .

DO 78 N=1,1I1

F21 (NI=Z(N)

CALL DDETS (H+F21,2,NDMs IER)

DO 79 N=1.11

F22(N)}=Z(N) .

CALL DDETS (HesF22+Z+NDMe IER) .

DO _80 N=1.1I1 '
T F23(N)=ZIN)
DO 76 N=1,.11
WRITE(6+54)F2(N)+F21C(N)sF22(N)sF23(N) .
CONTINUE ‘

CALCULATION FOR EOe. NO. 4

. READ(S,31) B3{MM)

95
82

B8B8=B3(MN)
KK=0

WRITE(6.82) BB

FORMAT(*0%® +5Xs °*B3=%, F10.6)
KK=KK+1 a
WRITE(6233)

DO 84 N=3,I11I

ACNIT (1e=0S*k{H**2)F(REXF01 (NI+(HART**2)¥{(C0%**2)))

10X+ *F23°*)

99



BIN)= ((H**3)%x3*RE*F02(N)—3e)
CENI= (3e+0S*(HF*E2)X(REXFO1(N)+(HART*22) %(CO**2)))

D(N)=-1.0
E(N)= (H¥33) ${BB—REX(F1(N)$F22(N) +2¥F2(N) #F12(N)-F11(N)

& *F21(N)))

84

87

94

92
93

.98

99

100

96
Cx¥¥ .

IF(KKeEQ.3) GO TGO 23

F33¢(N)=Z(N)

CONTINUE

CALL SOLU(A+BeCeDeESZ2Z)

DO 87 N=2,I1

F3(NI=ZZ{(N)

CONTINVE

F3(1)=0.0

~NF1(KK)= F3(11)

CF{(KK)}= BB

IF(DABS{F3€I1))e LTe 1.E-6) GO TO 92
IF{KK<EQel) GO TO 93

DXX= AF1(2)—-AF1(1) .
DYY=CF(2)-CF(1)
BB=CF{13)—-AF1 (1 }*¥DYY/DXX
GO TO 9S

EB=BB++005

GO TO 95

WRITE(6+93)

FORMAT (20° s 9Xs *F3%,15Xs *F31°515Xs *F32%, 10X»*F33°)
B83({MM)=BB

CALL DDETS (HsF3 »ZsNOMs IER)

DO 98 N=1,1I1

F31I(NY= Z(N) .

CALL DDETS (HsF31+Z+NDM,sIER)

DO 99 N=1.1I1

F32(N)=Z(N)

CALL DDETS (HeF32sZ.NDM, IER) .

DO 100 N=1,II

DO 96 N=1e11 T
WRITE{6s54)IF3(N) »F31 (NI +F32IN)+F33(N)
CONTINUE

CALCULATION FOR £Qe NOe S

READ(S»31) B4(NM)

 BB=BA(MM) .

115
102

KK=0

WRITE(6,102) BS

FORMAT (% 0% 3 5Xe *84=?3F10.6)

KK=KK+1

WRITE(6+33)

DO 104 N=3,11I

AINI= (1e—0S*(HX*X2)F{2FREFFO1 {NI+{ HARTFX2)X(CO%323))
BINJI= (4*{H*%3 )XREFXF02(N)-3.0)

I00



I0I

C(N)= (3.#0.5*(H**Z)*(2*RE#F0!(N)+(HART#*2)*(CO**Z)))

O(N)= —1.0 -
E(N)= (H**Z’*(QB—RE*(FI(N)*F32(N,#2*F2(N)*F22(N)*3*F3(

% N)SF12(N)-2 L e

104

107

1*F11(N)*F31(N)-FZ!(N)*FZI(N)))
CONT INUE

CALL SOLU{A$B+CeDesEeZZ)

DO 107 N=2,11I

FA(NI= ZZI(N)

_ F4(1)=0+0 _

114

112
116

117
118
119

120
Cx%x%¥

135S
122

AF1(KK)= F4(II)

CF(KK)=B8

IF(DABS(FA(II))e LTe 1.E-6) GO FO 112
IF(KKeEQel) GO TO 114

IF(KKeEQe3) GO TO 23

DXX= AF1(2)—AF1(1) o o ) L

DYY=CF{2)-CF(1)
8B=CF (1)—-AF1(1)*DYY/DXX
GO TO 11S
BB=BB8+.00S
GO TO 115

WRITE(6+116) . S . G

FonnAt(-o-.gx.'F4-,1sx.-F41'.15x.°F¢2-. 10Xs *F43°)
‘BA(MM)= BB .

CALL DDETS (HeF4 +ZsNDMs IER)

DO 117 N=1,.IT

F4a1(N)= Z(N)

CALL DDETS (HsF41l2Z+NOMsIER) o )
DO 118 N=1.1I

F42(N)= Z(N)

CALL DDETS (HsF424+Z+NDMs IER)

DO 119 N=1,1I

F43(NI= Z2(N)'

DO 120 N=1,1I

WRITE(6+54) F4(N).F41(N)0F42(N).F43(N)
CALCULATION FOR EQe NOe 6

READ(S+31) BS{(MM)

8B=BS(MM)

KK=0

WRITE(6.122) BB )
FORMAT(®0?,5Xs °B5=?+F10.6)

KK=KK+1

WRITE(6+33) .

D0 124 N=3.1I
A(N)Y= (1—0.5*(H**2)*(3*RE#F01(N}*(HART**Z)*(CO**Z))),

BINY)=( (H*%3) *SERE*F02(N3)—3.)
C(N)-(3.+.5*(H**2)*(3*RE*FO1(N)+(HART**2)*(CO**2)))

D(N)}=—1.0
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E(N)= (H*%3)*(B8B— RES(F1(N)IFF42(N) +25F2(N)*F32{N)+3*F3

* (NIXF22(N)+

1 33F4(NISFLI2(N)—3*F11{(N)*F 41 (N)—-3*F21(NI*F31(N)))
124 CONTINUE '

CALL SOLU(AsBsCesDeEs2Z)
DO 127 N=2,I1

127 FSIN)= ZZ{(N)

FS(1)=0e0
AF1(KK)= FS(II)
CF(KK)=BB

IF(DABSI(FS(II))e LTe 1.E-6) . GO TO 132

IF(KK+EQel1) . GO TGO 134
IF{KK«EQe3) GO TC 23
DXX= AF1(2)—-AF1(1)
DYY=CF(2)-CF(1)

__BB=CF(1)=AF1(1)¥DYY/DXX

- 134

132
136

137

138

139

140
Crks

201
202

GO TO 13S
"BB=BB+.00S
GO TO 13S
WRITE(6+136)

FORMAT(*0°® s9Xs*FS?515Xs*F51%,15Xs*F52°,

BS(MM)=BB -
CALL DDETS (HeFS +ZNDM»sIER)
D0 137 N=1,II

FS1{N)=Z(N)

CALL DDETS (HsFS1eZsNDM, IER)
DO 138 N=1,1I

£s52(N=z¢nd
CALL DDETS (HsFS2+ZsNDM, IER)
DO 139 N=1,.II

- FS3(N)= Z(N)

DO 140 N=1,1II

WRITE(6+54) FSIN)»FS1(N)FS2(N) +FS3(N) °

CALCULATION FOR ECONe NOe 7
READ(5.,31) B6(NMN) o
BB=B6(MM)

KK=0

WRITE(6,202) BB
FORMAT(%0%+5SXs '86=*,F10.6) .
KK=KK+1

WRITE(6+33)

DO 204 N=3,11I

AINIZT{1e~0S5SHF(HE¥X2) ¥ (SFREFFOL1(NI+(HARTXX2) X (CO*%x2)) )

BIN)= (6 *(H**3)FREXFO02(NI—30)

CINI= (340.SE(H¥*¥2)*(4*RE*FO1EN)+(HART®*2)%x(CO%%2)))

DI(N)=—1,

-

10X, *FS53°*)

E(N)= (H*x*3)*(BB—RE*(F1(N)*FS2(N)+2%¥F2(N)*Fa2{N)+3*F3(

* N)SF32(N)



207

214

215
216

213

219

220

l+4*F4(N)#FZZ(N)%S*FS(N}*FlZ(N)—4tFl1(N)*F51[N)—4*F2!(N

%* DJ)EF41{NI-2%
2F31(N)XF31(N)))
204 CONTINUE

CALL SOLU(A+BeCeDeEeZZ)
DO 207 N=2,11
FO(NI=ZZ{(N)

F6(13=0.0
AFL(KKI=F6(II)

CF(KK =88
IF(DABS{F6(1I1I))e LTe 1leE-6) GO TO 21S
IF(KKeEQel) GO TC 214
IF{KK.EQe3) GO TO 23
OXX= AF1{2)-AF1(1l)
DYY=CF(2)—-CF(1)
8B=CF{1)—AF1(1)*DYY/DXX
GO TO 201

-8B=BB+005

222

CExEx

GO TO 201
WRITE(6+216)
FORMAT( 0% 39X+ *F6° s 15Xe *F61%515Xs *F62°s 10X»*F63%)

86(MM) =8B L

CALL DDETS (HsF6 »Z+NDMs IER) .
DO 218 N=1l.+IFf

F61(N)=Z(N)

CALL DDETS (HsF61+Z+NDMy IER)
DO 219 N=1,I1

F62(N)=Z(N) S
CALL DDETS (HeF62eZsNDMs IER)
DO 220 N=1,1I

F63(N)=Z{N)

DO 222 N=1.II

WRITE(6+54) F6IN)sF61({N)FE2(N)sFE63I(N}

CALCULATION FOR PRESSURE DISTRIBUTION

MRITE(6+97) BO{MM)sB1{MMI+B2(MM) ¢ B3(MM) +BALMM),BSIMM)
* ,B6(MM)
97 .FORMAT(20? 35X+ ¥B0="°3F10.6/ *B1=*3F10.6/ *B2=*,F10.6/
%. B3='3F10.6/ .

| 15Xe *B4=%,F10e6/ *BS5=%3F10.6/'86=*+F10+6)

CUR=0.0
DO 800 J=1,21
DEL(J)= (1.0-0.025%(I-1)) .

EE(J)= {4e/3e)*¥HART*(CO/{DEL{J)I+C1+C2*{DEL(I)I+C3*((D

* EL(JII*%2))
- 1%(CUR+2¥HART#{CO/(DEL(J) }+C1+C2*(DEL{J) }+C3*((DEL(JI)I¥

*

201 %

2 FO{41)*%(C0*1.3863))

e e e e e e e e e e it @ A aud)
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810 FORMAT("0'512Xs *DEL®+20Xs*PGRAD®+20Xs*PRESS*)

PGRAD(J)I=(—2+/(RE*(DEL(J)) *33) )% (BO(MM)I+B1(MM)*DEL (J)
*  +B2(MM)*

1C(DEL {J) ) #%2) +B3IMMI*((DEL (J) }**3) +BALMMI*({DEL(J) ) **
* 4)+ BS(MMIE

2((DEL(J) )*%5) +B6{MNI*( (DEL(J) )*%6) I-(EECII/RE) .

800 CONTINUE
S=0.05
ND=21 -
CALL DQSF{S»PGRADsZsND) .
WRITE(6,810)
DO 840 J=1,21
WRITE(6+820) DELI{J)+PGRAD(JIZ{J)
820 FORMAT(®0':SXcF210o6:51SXsF1046525XsF10e52
840 CONTINUE"
CALL DGSF(S»Z+ZPsNC) .
WRITE(6+830) .ZP(21)
830 FORMAT(%0%:5Xs *LOAD=*3F10.6)
23 CONTINUE
sTOP
END

SUBROUTINE FCT (XeYsDERY)
© DOUBLE PRECISION XsY(3)+DERY(3) sCB+FO{SS)eFO1(55),F02
* (5S5)s
1 FO3(SS)sREsHART.CE,CO ==
COMMON FO0sF01+F02+sF03+sRE+HARTsCB2CO+IC
DERY(1)=Y(2)
DERY(2)=Y(3)
DERY(3)= CB—Y(2)**(2)*RE+(HART**Z’*(CO**Z)*Y(Z)
RETURN

JEND

SUBROUTINE OUTP{X»YsDERY +IHLF+NOIM,PRMT )
DOUBLE PRECISION Xs+Y(4)+DERY{3)s PRMT(5)+REsHART +CBsCO
_DOUBLE PRECISION ETAINT(SS ).F0(S55)+F01(55)+F02(SS)sFO

* 3(S5)

.COMMON FOsF01sF02,F03sREsHART»CBsCO0+1IC
IC=IC+1

ETAINT (IC) =X

FO(IC)=Y(1)
FO1(IC)HI=Y(2)
FO2C(ICI=Y(3) .
FO3(IC)= DERY(3)

104

PRSTIAE DOIFORWS SE LR

23,



105

WRITE(6+23) ICETAINTCIC)IeFO(ICISFO1(IC)FO2(IC)FO03(I
® 'C)
23 FORMAT(?0? ¢SX3I22XeS5F156)
RETURN L e
END

SUBROUTINE SOLU(A+BeCsDsEsZ22).

... DOUBLE PRECISION _A(55)¢B(SS5)sC(SS)sDISSI+E(55)»27{55)

* +80T(SS). )
1TOP(SS)s RISS )+ CCI55) s ANUME s ADEN

_COMMON /FIRST/IL

I1=42

IIT=11-1
_ IUPPER=11-2 . . . e
R€1)=0.

R(2)=0.25

CC( 1)3=0.

IF{IL+.EQe1) GO TO 20

CC{2)=0.0 '

G0.TO 30 o el

20 CC(2)= ~0.025/4¢
30 DO 300 N=3,III
BOT(N)= B(N)+CINI*R(N-1)+DINI*R{N—1I*R(N-2) -

R{NI=<A({NI/BOT(N)
. TOP{N)= —{C(NI*CC{N-1)+D{NI¥REN-2)*CC(N-1) +D{N)I*CC(N-2
¥ ))4E(N) - o

CCIN)= TOP(N)/BGT(N)
300 CONTEINUE
WRITE(6+36)

36 FORMAT( 0 312X+*RN®515Xe *CCN')
ANUME=CC(EI-1)—CCLII-2)/(4—R(LE-2) } .
ADEN=3+/{4+—RCII-2))-R(II-1)
ZZ(III}=ANUMEZADEN
DO 39 N=1,IUPPER
I=II-N~
ZZ{I)=R{I)I*ZZ(I+1)+CC 1)

39 CONTINUE
RETURN
END



**f’#t’#****##*tt*ft##*f**??*#*

+ IN THE SIXTH COLUMN INDICATES
CONTINUATIGN FROM PREVIGUS LINE

B e s s 2

Cx%x%x. FORTRAN: PROGRAM FOR CHAPTER 4
Cukaeick- THE PROGRAM CTALCULATES PRESSURE OISTRIBUTIONCLOAD

CAPACITYSVELOCITY DISTRIBUTION.FRECTION FACTOR FOR
NHD SLIDER. BEARING

C*#*; SUBROUT INES FROM' IBN—SYSTEM/360 SCIENTIFIC SUBROUTINE

Chexx

PACKAGE ARE USED IN THIS PROGRAM
THE APPLIED MAGNETIC FIELD. MAY BE UNIFORM OR

LINEARLY INCREASING TYPE
DOUBLE PRECISION HART(S)oFLOU(S);FLD(S)gSYB(Zl),HBAR(

%*. 213%s

1pcaao(21).pRssxzx.2(21).zptzx).oELx.DELv.oFLow.A(zl).8“

E  +2CeDPs .
2ALPHAL21).BY.. tRAT(?)aDT(7} +BBsDD(S) - 'PL(21)0°Y9C1(210
® . C2(21), '

.3 csezlx.utzn.211.ouv(21.21).SY(21,21).010(21).21(21)

. C****

C****

Cexx*
C

12

(et 2 2 T B

Ceexx

_FOR :UNIFORM MAGNETIC FIELD LLL<GTel. B
"FOR LINEARLY INCREASING MAGNETIC FIELD LLL=1

LLL=

READ HARTHANN NUMBER » MASS "FLOW AND FILM THICKNESS
RATIO AT INLET OF BEARING .

DO 10 L=1,3

READ{Ss11) HART(L)+FLO(L)+DDIL)

FORMAT (3F10.6) -

WRITE(6512) HART(L)

FORMAT (20%35Xs *HARTMANN NUMBER=* +F10¢6)
FLOW(1)=FLO(L) '

MESH SIZE

CALCULATE HBAR ALONG THE LENGTH OF BEARING
DELX=.0S

DELY=4+0S

DFLOW=0.02

DO 31 1IK=1.4

RAT(IK)=DD(L)+0.010%(IK—-1) .

DT IK)= (RAT(IK)-1.0)/2040

WRITE(6+32) RAT(IK)+DT(IK) .

]
]
|
i
|
1
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32 FORMAT(*0%,5Xs °*HBAR ATvlﬂLET='-F1006o'O',5Xo DT=*sF1

* 06} .

Cext+ CALCULATION ARE CARRIED GUT USING THE ASSUMED MASS
Cases FLOWSLATER REPEATED WITH THE IMPROVED MASS ALOW .

KK=0

100 KK=KK+1

DO 33 1I=1,2
. WRITE(6+15) FLOW(II) .

- 15 FORMAT(®0%35Xs *MASS FLOW="3F10+6) .

iF (g&;-iﬁolnl'ﬁﬂvtﬂ_lol

C#*#& CALCULATION IF ‘THE APPLIED MAGNETIC FEELD IS UNIFORM

DO 20 I=1,21 .
HBARCE)= (RAT(IK)-DT(IK)IZ(I-1)) .
Q;PaAc;y=(¢ﬂeAR(t1)tta)tt(HART(Lj)wtz)
SYB8(I)= FLOW(II)/HBAR(I)
_P=CALPHA(LI})}*%0.5 == [ L N
PLCI)= C(ALPHA(I)}#%0.S
8= (DEXP{—=P)+DEXP(P)—2.0)
C= (—SYB(I)*P*( .DEXP{—P)—DEXP(P}}/B. —1.0) .
o=.1.ofosxp(ép)+(nexp(r9)fpexpcp;;*(i.—osxptp)+p#oexpt
® PIV/ALDEXP(P) .
1#8) L
ACLI=(C/DY*ALPHA(I)
C3(I)= (DEXP{PI/L P+ (DEXP(~P)-DEXP(P3))} *(1<+(ACII/(P

*  *%2))—CALI)/

20

LCCP#¥2)SDEXP(PY)))
.c2¢ry= (1./(atnexptprr)*(cstt)*Ptosxpe—9)+(A(1}/(pstz).
D b 2 . . .
S C1{I)¥= —C2¢1)-C3(1)
8B= (HSAR(1)+1.0)
PGRAD{.I)=(2+/BB)*HBAR(I)}* (CHART(L) I#x2)*SYB(1 ) +A(I)
*x 7/ (CHBAR(I)D . D .
1%%2)
CONT INUE
GO TO 102 .

CHEE¥ CALCULATION IF&IQE APPLIED MAGNETIC FIELD IS LINEARLY

c

C

101

INCRASING A

C#;t*oFaR-LINEARLY,INCREAS!NG CASE.THE MAGNETIC FIELD AT

OUTLET IS TWICE THAT OF INLET
00 30 I=1.21 .
BY=(1++<05%(I-1)) '
HBAR(I}= (RAT(IK)-DT(IKY®(I-1))"
ALPHA (1) = (HBARCI) )#42) #( (HART(L ) J*+2) #(BY*¥2)
SYB(I)= FLOW(II)/HBAR(I) . 4
P=(ALPHA(1) )#%0.5
8= (DEXP(—P)+DEXP(P)~2.0%
. PLELYI= (ALPHA(I))**0.S
. C= (—SYB(I)*P%( DEXP(—P)—DEXP(P))/B —1.0)

)



108

D= loO—DEXP(-PIG(DEXPt—P}-DEXPGPIJ¥(1.-DEXP(PE+P*DEXP(

* P)I/IDEXPLP) - ..
1¥B) :
ACI)= (C/D)#ALPHA(I’

. C3(I)= (DEXP(P)/( PE{DEXP(—P)—DEXP{P)))) X(1e+(ACII/(P

* x%2))-C(A(I)/
1 ({P*%2)XDEXP(P)1))

C2(13= (!./(P*DEXP(P}))*(C3(I)*P*DEXP(—P)+(A(I)/(P**Z).

x. )}
Ci1(I)= -C2(I)-C3(1)
88= (HBAR(11+1.0} o .

© PGRAD(E)= (2./BB)®HBAR(II*(CHART(L) ) +€2)%SYBCL)*BY*15
* +ALI}/{(HBAR e .
1(I})EE2) .
30 CONTINUE
. CE**® CALCU FOR PRESSURE DISTRIBUTION AND LOAD CAPCITY
102 ND =21 .
CALL DGSF(DELX+PGRADsZsND}
PRES(11)=2(21)
WRITE(6+40) . :

‘40 FORMAT(®0°+10Xe °*PGRAD * ,18Xe*PRESS®*} .

CALL DQSF {(DELX+ZsZPsND) - L o
WRITE(6+43) :ZP(21) .

43 FORMAT(®0%,SXs *LOAD=® ,F1046)
IF(DABS{Z(21.)) 4L T+ +0005) . GO TO 39
FLOWCIE+1)= FLOW(II)+DFLOW

33 CONTINUE

_ IF-(KKeEQe4) GO TO 39
C*x** BETTER APPROXIMATION ON FLOW
DX=PRES(2)-PRES(1)
DY=FLOW(2)-FLOW(1) -
YL=FLOW{1)-(PRES(1)*DY/DX)
FLOW(1)= YL
. GO TO 100

39 DO &1 I=1,21
WRITE(6+42) :PGRAD(I)+Z(I) +HBARCI) :

42 Foanart-o-.5x,F10.5,1sx.F1o.s.zox.Fxo.e)

41 CONTINUE

31 CONTINUE

_ C**¥x CALCULATE STREAM FUNCTION DISTRIBUTION
NP=21
DO 152 I=1,21
SY{Is1)=0.0
SY(I+21)=SYB(I)
DO 1S4 J=2,20
" OY=DELY*{J-1)

SY(IsJ)= ClCI)+C2(I)¥DEXP(PL (I)%0Y)+C3(II*DEXP(~PL(I)%*

¥ DY)} —(ACI)x



1DY)/ (CPLET ) I#%2)

1S54 CONTINUE
152 CONTINUE

WRITE(65157) .

157. -FORMAT (/75X + *STREAM FUNCTION DISTRIBUTION IN THE BEARI -

* NG *)
B0 160 I=I,21
WRITE(6+167) .CSY({12J)s3=1.21)

167 FORMAT('0%52X921F6.33 .
160 CONTINUE .
CExsxe CALCULATE,VELOCITY DISTRIBUTION IN THE BEARING

N=20

C*¥x¥¥x CALCULATE 'U' AND 'DUV' ATAEACH SECTIUON OFEIﬂE.EEARING

DO 170 I=l-.21
U{Tell=1le0
U€I22)= (SY{I+S)—6¥SY(I+4)+18%SY(I:3)-10%SY(12)-3%SY( .

% I.1}M/(12%

10ELY) -

UCIoN)= (SYCIsN-3)—6¥SY(TsN-2)4182SY(EsN-1)=10%SY(IsN) -

* —3%kSY(I.N+1
1) 3/(—12%DELY)
UCIsN+1)=0.0

- DUY(Ield= (1l*SY(I’SJ-SG#SY(I¢4)*114*$Y(I.3)—104*SY(I{

%* 2)+3S%SY(I

1 1))/ C12%(DELY¥+2))
DUY(I+2)=(=SY(I+S)+3%SY (I8 J+6¥SY([+3)-20%SY(1,2)+11%S

* Y(Is13Y/ e

1€12%(DELY*%2)) , .
DUY( EeNY= (11¥SY(I+N+1)~20%SY(I+N)+6¥SY(TsN-1)+4%SY(I>
* N—-2)-SY{I.

IN-3))/{12%(DELY*22))

DUY( I+ N+1)=(3S*SY{IsN+1)—104FSY(IeNI+114%kSY{IsN-1)-56%
*¥ SY(I.N—-2)+ en

1 11*5Y(I-N—3)l/(12*(DELY*t2))

DO 172 J=3,19
UCIe J)= (SY(I;J-Z)—8*SY(!'J—1)+8¥$Y¢I1J*IJ-SY(IgJ*2))/

*. (12#pELYY

. DUYCTed)= (-SY!IvJ+2)+16*SY(IoJ+l)-30*SY(IoJ)+16*SY(Io

*. J-I)-SY(I,

b -2))/(12%(DELY#%2))

172

170

177

179
178

CONT INUE
CONTINUE .

WRITE(65177) .

FORMAT(//5X+*U DISTRBUTION IN THE BEARING® ¥
00 178 I=1.21

WRITE(6+179) .(UCIsJ)sd=1421)
FORMAT (%07 3 2X221F643) .

CONTINUE



e e e e et e e i i e e e =)

WRITE(6+180)
180 FORMAT(//5X.*DUY DISTRIBUTION IN THE_ BEARING®)
DO 182 I=1.21
 WRITE(65185) (DUY(I»J)sJ=1,21) _ , L
185 FORMAT(*0"32Xs21F643)
182 CONTINUE
DO 200 I=1,21
OTO(I) =DUY(I51)#*{1./HBAR(I))
200 CONTINUE
Ck*x* CALCULATE SHEAR FORCE = = .. .. S
DO 202 I=1,.,21
WRITE(6,203) DTO(I)
203 FORMAT(®0°®5X+F6.3)
202 CONTINUE’
CALL DQSF(DELX+DTOsZIsNP)
. WRITE(65201) ZI(NP) T e
201 FORMAT(®0®+5Xs ®SHEAR FORCE =°+F6e3)
10 CONTINUE
sToP
END

o |
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CEXEXX
CEx5%
C

c .
fat 2223
C
CEEXE

II1

**#3*#********#****#*****#*t*#*

% IN THE SIXTH COLUMN INDICATES
CONTINUATION FROM PREVIOUS LINE

AKX EESREXXSEREREE XK E XX EXETEXEKE

FORTRAN PROGRAM FOR CHAPTER 4
THE PRCOGRAM CALCUMLATES PRESSURE DISTRIBUTIONSLOAD
CAPACITYSVELGCITY DISTRIBUTIONSFRICTION FACTOR FOR
MHD SLIDER BEARING o S L
SUBROUTINES FROM IBM—-SYSTEM/360 SCIENTIFIC SUBROUTINE
PACKAGE ARE USED IN THIS PROGRAM
THE APPLIED MAGNETIC FIELD IS STEP TYPE
DOUBLE PRECISION HART(S).FLOV(S)’FLO(S).SYB(41).HBAR(
x 41)
IPGRAP(QI)yPRES(Z)92(41)029(41)9Q§LXQDELY¢_A(41’OB'Cpr"
x P
2ALPHA{41) .BY OBB’BETAQDFLDW(S)’PGR(41)sZZ(4l’9RAT(7)oD
* T(7),0B(S)s )
3 DH(S)vpL(4l)oC1(4l)9C2(4l)0C3(41)QDY¢SY(41’21)QU(41,2

x 1).0UY(41,21

CEE%%
CHExx

11

12

Ckekk

CHEE*

4),0T0(41)-ZI(41) . A .
READ HARTMANN NUMBER,MASS FLOW » INCREANT  IN MASS FLOW
STEP LOCATION AND FILM THICKNESS RATIO AT THE INLET
DO 10 J=1ls1 _

READ(S+11) HART(J)+FLC(J) sDFLOW(J) +DB(JI)»DH(JI)
FORMAT(SF1047)

WRITE{6+12) HART(J) , _ S -
FORMAT('O® s5X, °*HARTMANN NUMBER=®' +F10+6)
FLOW(1)=FLO(J)

NP=41

MESH SIZE

DELX=0.025

DELY=.05 _ , ,
8ETA DIMENSION IS STEP LOCATION OF APPLIED MAGNECTIC
FIELD

DO 21 I[J=1,3

BETA=DB(J)+0.025%(1J-1)

NI=BETA%*40.5

NN=NI+1

WRITE(6517) BETASNN

i
i
B R T L RNy
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I12

17 FORMAT(®0%®+5Xs *BETA=?3F106+5Xs *NN=*,12)
Cx*¥¥ CALCULATE HBAR ALONG THE LENGTH OF BEARING
D0 31 IK=le1

RAT(IK)=DH(J)—=00S5*(IK-1) o . . —

DT(IK)= (DABS(RAT{IK)—1.0))/40.0
WRITE(6+32) RAT(IK),OT(IK)
32 FORMAT(®0'sS5Xe*HBAR AT INLET=®sF1066+°0°+5X,*'DT='s F10

*  «6)
C#*%* CALCULATION ARE CARRIED GUT USING THE ASSUMED MASS
c FLOW.,LATER REPEATED WITH THE IMPROVED MASS FLOW
K=0

100 KK=KK+1
DO 33 II=1,2
WRITE(651S) FLOW(CII)
1S FORMAT(®0* 3SXs *MASS FLOW='5F10.6)
C*+** CALCULATION FOR NO MAGNETIC FIELD PART _
DO 13 N=1,NN
HBAR(N)= (RAT(IK)-DT(IK)*(N-1))
SYB{N)= FLOW(II)/HBAR(N)
PGR (N)= (6+—12.%SYB(N))/((HBAR(N) )**2)
13 CONTINUE
8B=0 90
ND=NN
CALL DQSF{ DELXsPGRsZsND)
C*k*%x CALCULATION FOR MAGNETIC FIELD PART
L=0
DO 20 I=NNsNP
HBAR(I)= (RATC(IK)I-DT(IKI*(I-1))
ALPHA(I)=((HBAR(I))I*%2)*((HART(J))*%x2)
SYB(I)= FLOW(II)/HBAR(I)
P=(ALPHA(I) )*%0.5
PLII)= (ALPHA(I))*%¥0.5S
B= (DEXP(—P)4+DEXP{P)—240)
C= (=SYB(I)*P*( DEXP(—P)—-DEXP{P))/B —10)
D= 10-DEXP({—P )+ (DEXP(—PI)-DEXP{P) I *(1.~DEXP (P )+P*DEXP(
* P)I/(DEXP(P)
1*8)
ACI)=(C/D)*ALPHA(I)
C3(I)= (DEXP(P)/{ PX(DEXP(—P)-DEXP(P))})) *(1.+{A(II/(P
* . *¥2))-CAC(I)/
1((PX%2)EDEXP(P))))
C2€I)= (1+/(PEDEXP(P))IF(C3(1)*P*DEXP(—PI+(ALII/(P*%2)
* 1))
C1{1I)= —C2(1I)—~C3(I)
PGR (T1)=(2.*BB)*HBAR(IJI* ((HART(J) I**2)*SYB(I ) +A(I)
* /7 {(HBAR(I)) )
1%%2)
L=L+1

e .......o..-anunu.u.l]
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20

2s

33

(o 2 2 2

39
37

43

31

‘21
10
CEEx¥

52

S0

I13

PGRAD(L)I=PGR(I)
WRITE(6+45) A(I).c3(x).c2(11.c1(l)
FORMAT{*0% ¢4SX34F10e6)
CONTINUE = _ L . e
ND=NP+1—-NN . ‘
CALL DQSF (DELXsFGRADsZZsND)
MM=NP—NN
DO 25 IP=1,MM
ZINN+IP)= ZINN) +ZZ(IP+1)
CONT INUE
PRES(II)=Z(NP)
ND=NP
CALL DQSF (DELXsZsZPsND)
IF{DABS{ZI{NPJ} ) e Te+00005S3GC TC 32
FLOW{II+1)= FLOW(II)+DFLOW(J) .

CONTINUE , L e

IF (KKeEQ.3) .GO TGO 39

BETTER APPROXIMATION ON FLOW

DX=PRES {2)—-PRES(1)

ODY=FLOW(2)-FLOW(1)

YL=FLOW(1)-{PRES(1)*DY/DX)

FLOW(1)= YL o . - L e
GO TO 100

WRITE{6+37) HBAR(NP)sZ{INP)

FORMAT(?0% sSXsF10e6310X2F1067

WRITE(6+43) ZP{NPF)

FORMAT(?0%,5Xs *LOAD=' sF10.6)

CONT INUE o , .
CONTINUE '

CONT INUE

CALCULATE STREAM FUNCTION DISTRIBUTION

DO SO I=1,NN

SY(I+1)=0e0
SY(1+21)=SYB(I)
DO 52 J=2,20
DY=DELY*(J-1)

SY(TI+J)=(1e=2%SYB(I))*DY*$3 —{2.—3*SYB(I)I*DY**2 +DY
CONTINUE

CONTINUE

DO 152 I=NN,41

SY(I+1)=0.0

SY(1,21)=SY8B(I)

DO 154 J=2.,20

DY=DELY*(J—1)

SY(IsJ)= Cl(l)fCZ(I)*DEXP(PL(I)*DY)+C3(I)*DEXP(—PL(I)*

* DY) —(A(I)*® ) -

1DYI/Z((PL{I))*%2)

ST ey

PORTIPRITIRPR O Rl b i



114

154 CONTINUE
152 CONTINUE
WRITE(62157)
157 FORMAT(//5X+*STREAM FUNCTION DISTRIBUTION IN THE BEARI
* NG %)
DO 160 I=1541+2
WRITE(6+167) (SY(I+J)sJ=1521)
167 FORMAT('0% 52X321F6e3)
160 CONTINUE
Cxs$%x CALCULATE VELOCITY DISTRIBUTION 1IN THE BEARING
N=20
C+s¥+¥ CALCULATE °*U®* AND *DUY® AT EACH SECTION OF THE BEARING
DO 170 I=1.,41
UCI»1)=1.0
UlI+23= {SYL{I.S}—6%SY(Ec4)+18%SY(I53)-10*SY(I.2)-3*SY(
* Is12)/(12% . e
1DELY) '
UCIoN)= (SY(I+N-3)—6%SY(IsN—2)+18%SY(IsN-1)—10%SY(IsN) .
* —3%SY(I.N+1
1))/(—-12%DELY)
UCIsN+1)=0.0
DUY(I,I)-v(11*5?(1,5)156¥$X(I.4Q+114*SY(123)-;94§SY(1,H
* 2)+35%SY(1, ‘ '
1 1))/7(12%(DELY*%2))
DUY(I+2)={—-SY(Zs5)+4*SY{I:4)+6%SY(I+3)—20%SY(I1,2)+11%S
* Y(I.1))/ :
1 (12%(DELY*%2))
DUY( I+N)= (11#5Y(IoN+1)—20*SY(IoN)+6*SY(IoN—1)+4*SY(I.
* N—Z)—SY(I,
IN-3))/7{ 12%(DELY*%*2))
DUY(IsN+#1)=(3S*SY(IsN+1)~ 104*$Y(IoN)+114*SY(;,N—1)—56*
* SY(IN-2)+
1 11+¥SY(I,N=3))/7C12%(DELY*¥2))
DO 172 J=3,19
UCIeJ)= (SYCToJ—2)—B8%SY(I+J—1)+8¢SY(LJ+1)—SY(I:3+2))/
* (12%DELY)
DUY(I»J)= (—SY(I+J+2)+16%SY(1+J41)—=30%SY(I»J)+163SY(I,
x. J=1)=-SY(Is :
1 J-2)3/{12%(DELY%*%2))
172 CONTINUE ‘
170 CONTINUE
WRITE(65177)
177 FORMAT(//SX»*U DISTRBUTION IN THE BEARING®)
DO 178 I=14+4142
WRITE(6+179) (U(I5J)sJ=1+21)
179 FORMAT('0"52X321F643)
178 CONTINUE
WRITE(6+180)

cim emm e e e e e e e em e e e e m e e me e — —



180

185
182
CEXEX

200

203
202

201

II5

FORMAT(//SXs *DUY DISTRIBUTION IN THE BEARING®)

DO 182 I=1s41.2
WRITE(6+18S5) (DUY(1sJ)eJ=1e21)

FORMAT(*0°®+2Xe21F6e3) ) o - o e

CONTINUE
CALCULATE SHEAR FORCE

DO 200 I=1,41 ,

DTO(I) =DUY(I+1)*(1./HBAR(I))
CONTINUE

DO 202 I=1,41,2

WRITE(6+203) DTOL(I)
FORMAT (0%, SX+sF6+3)

CONT INUE

CALL DQSF(DELX.DTO.,ZI,NP) .
WRITE(6,201) ZI(NP)
FORMAT (" 0% 4SXs ®SHEAR FORCE ='+F6.3)
sToP

END



*****t*#***#*t*#***f*ff*#f*?fff

* IN THE SIXTH COLUMN INDICATES
CONTINUATICN FROM PREVIOQOUS LINE

FEEER KAk FIXFFEXEEK X EFE XX EEEKTEEEKE

C**x* FORTRAN PROGRAM FOR CHAPTER S
C***%x THIS PROGRAM CALCULATES POTENTIAL DISTRIBUTION FOR

C FINITE w2

OTH PARALLEL PLATE BEARING.FRGM POTENTIAL

. C DISTRIBUTIGN ELECRRIC FIELD+CURRENT DENSITY»CURRENT
C DENSITY GRADIENTS ARE CALCULATED
Cx*+* THE POTENTIAL EQUATION IN FINTE DIFFERENCE FORM IS

C SOLVED US

ING POINT SUCCESSIVE-OVERRELAXATION METHOD

C**** SUBROUTINES FROM IBM-~SYSTEM/360 SCIENTIFIC SUBROGUTINE

c PACKAGE A
 DOUBLE PR
' OME,ERR

1SY(1015101)+EX(1015101)5EZ(101+101)+sDX1+0Y15A11sA22,A3

* 3sA44,5A
2 S(101),S
* 1)

C**%*%x DATA FOR CALCULATION

M=65
N=41
Mi=M—1
N1=N-1
DX=0.0125
DY=0.0125
OME=1.7
1T=350
ERR=0,000
LL=33
LP=LL+1
LK=49
LO=LK+1
LKK=LK~—1
LM=LK+1
NL=21
NLL=NL—~1
NP=NL-1
Cx%%x%k SY SYMBOL

RE USED IN THIS PRUOGRAM

116

ECISION AlsA25A35A45A55DXsDYs SYYsSYNsDIFeDI,

SSe

J{101)sCU{101)5ZZ(101) »CX(101+101)+CZ(101,10

03

-INDICATES POTENTIAL IN THIS PROGRAM



Crexx
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20
10

14
13
CExx%

ot = 2P

70
Ckxxkx

Cxrkst

E 3

a8
*

STARTING VALUES OF SY AT GRID POINTS

DO 10 I=1,LK
SY(I+N)=0.0
DO 20 J=1,N1
SY(I+J3=0.3
CONTINUE

CONT INUE

DO 13 I=LO.M
SY(INLI=0.0
DO 14 JU=1.NLL
SY(Is+J)=0e.1
CONT INUE

CONT INUE
CALCULATE COEFFICIENTS OF

FINTIE DIFFERENCE FORM OF

POTENTIAL EQUATION FOR SMALL STEP sIZE

Al=1./(DX*%2)
A2=1./(DX*%2)
A3=1./(DY*%2)
A3=1./(DY*£2)

AS= ((DX*DY)**Z)/(2*(DX**2+DY**2))

O0X1=0.025
DY1=0.025 N
CALCULATE COEFFICIENTS OF

FINTIE DIFFERENCE FORM OF

POTENTIAL EQUATION FOR LARGE STEP SIZE

Al1=]1./7(DX1%%x2)
A22=1./7(DX1%%x2)
A33=1./ (DY1%%2)
A44=1./(DY1%%2)

ASS={(DX1*¥DY1)*%2)/ (2*(DX1**2*DY1**2))

KK=0
DI=0.0

STARTING FROM INLET OF BEARING AND MARCHING TOWARDS

RIGHT SIDE

CALCULATION CONTINUES UP TG THE END OF SIDE ELECTRODE

USING SNALL STEP SIZE

D0 4S5 I=1,.LL

SY{I+13)=2.,02

II=I+1

I1T1¥I=I-1

DO 47 J?aoN;

JI=J+1

JIdJd=J-1

IF(I.EQel) GO TO 48

SYyvY= (AI*SY(IIQJ)+A2*SY(II
) )%AS

GO TO 49

SYY= (AI*SY(IIQJ)*AZ*SY(II
) I%AS

IoJ)+A3*SY(I,JJ)+A4*SY(I;JJJ

’.J)+A3*sv(r.JJ)+A¢*sv(I,JJJ

e s s e
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49

a7
45
CExx%

CAI=1+41

I18

SYN=OME*(SYY—SY( I1+J))+SY(I,J)
DIF=DABS(SYN-SY(I.,J))/SYN
DI=DMAX1 (DI.DIF)
SY(IsJ)=SYN

CONTINUE

CONT INUE

CALCULATION FROM END OF ELECTRODE ONWARDS FOR
INSULATED SIDE PLATE USING SMALL STEP SIZE

DO 35 I=LP.LKK

IfTI=3%-1

DO 40 J=1,N1

JI=J+1

JII=J-1

IF(JeGTel) GO TO 33
SYY=(A1¥SY( I+ J)+A2¥SY(ITT»J)+ABESY(T0JI)+AGKSY(1230))

* *AS

33

GO TO 34
SYY= (A1#SY(II+J)+A24SY(II1+J)+A3ESY(I5JJ)I+AGHSY(IsIIJ

* ))*AS

34

SYN=0OMEX(SYY-SY{(I,J))+SY(IsJ)

DIF=DABS(SYN-SY(I+J))/SYN

40
35
CE¥x®

* P SIZE

80

8S

87

44
a2
*

DI=DMAX1l (DISDIF) .
SY(I+J)=SYN
CONT INUE
CONT INUE
CALLCULATION AT .THE JUNCTION LK OF SMALL AND LARGE STE
DO 80 J=19Ne2 - T T
JK=1+(J-1)/2
S(J)= SY(LO»JIK)
CONT INUE
DO 85 J=2,N1,2
S(J)= (S(I+1)+S(J-1))/2.
CONT INUE
DO 87 J=1,N1
SJICII=(SY(LKJ)+S(JI))/2.
CONT INUE

SJ{N)=0.0
DO 43 J=1,N1
JI=J+1
IF(JeEQel) GO TO 44
JJJI=J—-1
GO TO a2
JII=JJ i
SYY ={A1%SJ(JIH+A2%SY(LK—1+J)+ABESY(LKsJJIIH+ALGXESY(LK»JJIJ

Y3 A5 : ot b v
SYN=OME¥*{(SYY-SY{(LKsJ)I+SY(LKJ) .
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. .43
CE®xx

37
38

21
22

17

E 3

18
*

. .19

16
1S

61

~II9

ODIF=DABS{SYN-SY({LKeJ))/SYN

DI=DMAX1{(DI+DIF)

SY(LKs J)=SYN

CONTINUE , —_— e -

CALCULATION FOR INSULATED SIDE PLATE USING LARGE STEP

SIZE

DO 15 I=LG.M

111=1-1

IF(I.EQeN) GO TO 37

II=I+} ol . e

GO TO 38

II=111

DO 16 J=1,NP

JI=J+1

IF(J.EQel) GO TO 21

JJI=J=-1 . ) L e L

GO TO 22 .

JII=JJ

IF(I.EQeLO) GO TO 17

J1=9

GO TO 18

J1=1+2%{ J-1) T, e L

SYY=({A11%SY(II.J J+A22%SY(IIL+31)+A33%SY(I+JJ)+A84%SY(
I15J3J)) %ASS

GO TO 19

SYY=(A11%SY(II.J Y+A22*SY(II1+J1)+A33%SY(I,JJ)+A84%SY(
IsJJJ)) *ASS

SYN=O"E*S§YY'$Y(I*JJ’f§Y§¥34)

DIF=DABS(SYN-SY{(I.+J))/SYN

DI=DMAX1 (DI+DIF)

SY(1+J)=SYN

CONTINUE'

CONTINUE

IF(PI:&ﬁoERﬂpﬂﬂoquGE-IT! GO Ta 60 . o L .

KK=KK+1

IF(KK.EQe200) GO TO 61

GO Ta 70

DO €3 I=1,LK

WRITE(6567) (SY(IeJ)s J=1eNe2)

63 CONTINUE

64
60

62
*

DO 64 I=LO.M

WRITE(6467) (SY(IsJ)esJ=1sNL)

CONTINUE

GO TC 70

WRITE(6562) KKoDI

FORMAT(*0*,5X,*NC OF ITERATION='+ I3//5X» *MAX DIF =9%,F1
" 0e6) o ' '
WRITE(6552)



52
67
68
Crees

* Is1))/(-12%

107
105

103

112
110

158

FORMAT(®0® ¢30Xs °*POTENTIAL DISTR IBUTIONS®)

D0 65 I=1,LK

WRITE(6:67) (SY(13J)sJ=1eNs2)

CONT INUE ) . o o o
DO 68 I=LO.M ' '

WRITE(6+67) (SY(I.J”J—I’NL)

FORMAT(®0°®* 42X s26F6.3)

CONTINUE

NZ2=N-2

_CALCULATE EZ FROM SY VALUES USING S—POINT MOLECULE

DO 105 I=1.iK
EZ(I191)=(~6%SY(I+5)+32%SY(I+4)—72%SY(L,3)4968SY(I+2)—5
* O0¥SY(I.1))/

1(-24*DY)
EZ(I52)=(SY(1+5)—6%SY(154)+18%SY(L+3)~10%SY(I,+2)—-3%SY(

1DY)

EZ(IsN1)I=(SY(I+N1=3)=6%kSY{IsN1-2)+18%SY(I,N1-1)—10%SY(
¥ I4N1)-3%SY(I ‘
1eN1+1)3/C 12%DY)

EZ(IsN)==(50%SY{IsN)—96%SY(I+N1)4+72 *SY(I,N1—1)—32%SY
* (I’N1-2)+
16*SY{I.N1-3))/( 24%¥DY)

DO 107 J=3,N2

EZ(IeJ)= —(SY(1+4J=2)=8%SY(I+J—1)48%SY(IJ+1)-SY{I.J+2)
* )/7(12*DY)

CONTINUE

CONTINUE

WRITE(6,103)

FORMAT(*0®330Xs *EZ DISTRIBUTION®)

DO 110 I=1,LK

WRITE(6+112) (EZ(IeJ)sJ=1sNs2)

FORMAT(*0? , 2X21F8¢3)

CONTINUE L I

DO 158 I=1+LKs2

PUNCH' 257, (EZ(IsJ)9J3=1sNs2)

CONT INUE '

NM=NL-2

DO 108 I=LG+M

EZ(I.I)-(—G*SY(I.S)+32*SY(I,4)-72*SY(Ig3)+96*SY(I.2)—S
* 0%SY(I»1))/

1{-2a3%2Y1)

EZ{I+2)=(SY(I+5)-6%SY(I:4)+18%*SY(I,3)—10%SY(I+2)—3%SY(
* I51))/(-12%
10Y1)

EZ(IsNP)-(SY(I.NF-3)—6*SY(I.NP—2)+18*$Y(I,NP—Ii—lO*SY(

*  IJNP)-3%SY(I

1sNP+1.})/¢C 12%DY1)



X

121

EZCISNL)= —(SO¥*SY(IsNL)—96%XSY(IsNP)I+72%xSY(IsNP-1)-32%S

*¥ Y(I.NP-2)+
16%xSY(I+NP-3)3/( 24%0Y1)

- DO 109 J=3sNM

109
108

116

EZ(I+J)= -(SY(IoJ—Z)—E#SY(I’J—l)+8*$Y(I’J+1)-SY(I¢J+2)~~

*  )/(12%DY1)
CONTINUE

CONTINUE

DO 11S I=LOsM

WRITE(6+116) (EZ(I,J)s J=1-NL)
FORMAT(* 0 ,2X+21F843)

11S CONTINUE

159
CE**x

DO 159 I=LO.MN

PUNCH 257 »({EZ{I»33s =1.NL3

CONT INUE '

CALCULATE EX FROM SY VALUES USING S—POINT MOLECULE
M2=M-2

LT=LK~-2

DO 120 J=1.N

EXCleJd)= (—6%SY(SsJ)+32%SY{4:J)=72%SY(3J3+96*SY(25J)—

* ‘S50%¥SY(1sJ)

 1)/(—24%DX)

EX(223)=(SY(SsI)=6%SY (49 J)+18%SY (32 J)—10%SY(2,J)—3%SY(
* 1,4))/(—12%

 1#DX)

125
120

EX(LKKs J)= (SY(LK—=43J)—6%SY(LK=3,J)+18*¥SY(LK—2,J3)-10%S
£ Y(LK—14J)
1-3%SY(LKsJ3) ) /€ 12%¥DX)
EX(LKeJ)=—(SOESY (LKs JI—96%SY(LK—13J ) +724SY(LK—2+ J)-32%
* SY{LK=3:J)+
1 6%SY(LK—4,J))/(24%DX)
DO 125 I=3,LT
EXL{L2J)=—(SY(I=2,50)—8%SY(I-1+J)+8¥SY{I+1,J)-SY(I%2,3)) .
*  /(12%DX)
CONTINUE
CONT INUE
WRITE(6+113)
EX(891)=0e0
EX(991)=0.0

EX(11s1)= —(SY(9+1)—8%SY(10+1)+8¥SY{12,1)-SY{13,1))/(1

% 2%DX) .

113

114
130

EX(1091)= —({SY(8+1)—8%SY (9, 1)+8%SY(11,1)-SY(12,1))/(12
* *DX)

FORMAT (20 ,30Xs *EX DISTRIBUTIN®)

DO 130 I=1,LK

WRITE(6+114) (EX(IsJ)eJ=1sN »2)

FORMAT (20° 32X+ 21F843)

CONTINUE

"

1
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LO =LK+1
L2=L0+1
L3=L2+1

D0 150 J=1sNL

122

EX({LO»J)={—6%SY{LO+4+J I+32%SY(LO+3J)=72%SY(LO+2+:J)+96

* *SY(LO+1.J)
1-S0%SY{(LCsJ} )/ (—24%DX1)

EX(L29J3)= (SY(L2+3¢J)—6¥SY(L2+2+J)+18%SY(L2+1,J)-10%SY

* (L26J4)-3%

J1SY(L2-15J)3/(—12%CX1) A
EX(M13)=(SY(M1 —3,J)—6%SY{M1—2,5)+18%SY{M1—1,J)~10%SY

182
150

155
154
(ot 2 2 2 3

191

163

168
160

192

169

* (M1lsJ)-3%SY
1(MsJ)3/7(12%DX1)

EX(MsJ)= —(SOESY{MsJ)=~96%SYIM—=1,J)+7T2%SY(M —25J)-32%SY
* (M=3,33¢

1 6%¥SY(M—4&5J3))/(24%DX1)
DO 152 I=L3.M2 ‘
EXC(I 2J)=—(SY(I=26J)—8%SY(I=15J)+8%kSY(I4+1+J)-SY(I+25J))
x /(12%DX1)

CONT INUE

CONT INUE

DO 154 I=LOsM i

!RITE(&-ISS) (EXCIsJ)sJ=1sNL)
FORMAT(® 0® s2Xe21F8e3)

CONT INUE

CALCULATE CURRENT FLOW AT THE CENTER
WRITE(6+191) '

FORMAT(*0%+5Xs *CUR IN SMALL STEP SIZE AREA')
DO 160 J=1+N.2 '

DO 163 I=1,.LK

CUCII=EZ(I+J)

CONT INUE

CALL DGSF (DXsCU»ZZsLK)
WRITE(64168) (ZZ(I)sI=1+1K»2)
FORMAT( //25F1046)

CONTINUE

'ND=17

WRITE(6+192)

FORMAT(*0® sS5Xs *CUR IN LARGE STEP SIZE AREA?)
JJ=1 _

DO 167 J=1.NL

I=LK

CU(1)= EZ(LKeJIJ)

DO 169 I=LO.M

J1=I-1L0+2

CU(J1)= EZ(I+J)

CONTINUE

CALL DOSF (DX1sCUsZZsND)}



123

s e e e -n‘.su-'
N

WRITE(6+199) (ZZ(I}esI=1sND)
199 FORMAT(//17F10.6)
JI=JI+2
167 CONTINUE L o S o
C**%x% CALCULATE GRADIENT OF JX IN Z-DIRECTION)
00 205 I=1sLK
CXCIe1)=(=6FEX(I+5)I+32%EX(T+4)=T2#EX(T+3)+96*EX(+2)-5
£ O%EX(I=13)/
1( 24%DY)
_Mcx(l,a):(ex(1.5)-etex(1.q)+;etEX(1,3)e1ptex;t,gz:;§;§(
* Ie1))/(¢ 12%
10Y)
CX{TeN1I=CEX( T sN1-3)—6FEX(T sN1—2)+18%EX{LsN1—1)—10FEX(
* IsN1)-3%EX(I :
1.N1+#1))/(—12%DY)
CX{I+N)= (SO*EX({I+N)—O6¥EX(IsN1)+72 *EX(I,N1-1)-32%EX _ _ _
£ (IN1-2)+
16%¥EX{IsN1=3))/( 24%DY)
DO 207 J=3,N2 ' :
CXCIedd= (EX(IsJ—2)—8FEX(I+J=1)+S¥EX(LoJ+1)=EX(I+J+2)
% )/7(12%DY)
207 CONTINUE , o il
20S CONTINUE - , ;
CX(8+2)= (=6FEX(83s6)+32%¥EX{B+5)—72%EX(8+4)+I6*EX(8+3)— :
* SO¥EX(8+2))
17(24%DY)
CX(9+2)= (—6FEX(9¢6)+I2%EX(9sSI-T2%¥EX(94)+I6FEX(9,3)= 3
*  SO¥EX(9+2)) o o I
1/(24%DY) ' C s
WRITE(6,203) .
203 FORMAT(®0°+30Xs °"GRAD OF JX IN Z DIRECTION?®)
DO 210 I=1.LK :
WRITE(6+112) (CXCIsJ)esJ=1aNe2)
210 CONTINUE
D0 256 I=1,LKs2
PUNCH 257+ (CX{(I2J)eJ=1sNs2)
257 FORMAT(3(8F10.5/))
256 CONTINUE
DO 208 I=LO,M
7,_CX(E,;!:ﬁ—Q#EXﬁIoS)+32*EX£§.4)—72*EX(Ip3)+96tEX(1’2):§“A
* O%EX{(I,1))/
1{ 24%DY1)
CX{I+2)=(EX(T+S)—6XEX{T+4)+18*¥EX(I+3)—10%EX(I,2)-3*EX{
£ TI.1))/( 12%
10Y1)
V_CX(IoNP)=(EX(I,NPf3)f6*EXﬁI.NPéZ)blS*EX(IgNP—l)—IO*EX(
x  IsNPI=-3FEX(I
1+NP+1))/(~12%DY1)
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CXCIsNLDI= (SO*EX( I+ NL)—96%EX( IsNP)+72%EXCI +NP—1)-32%E
x X{INP-2)+
16%EX{I+NP—-3))/( 24%DY1)
DO_209 J=3+NM I e
CX(I+J)= (Ex(IoJ—a)—B*EXCI.J—1)+8*EX(I.J+1)—EX(I,J+2)
* )/(12%DY1)
209 CONTINUE
208 CONT INUE
DO 215 I=LO.M
_'9175(6’115?,‘Cx(i-é)'m4=¥zNF).
215 CONTINUE
00 260 I=LOsM
PUNCH 258+, (CX(1 oJdds J=1‘0NL)
258 FORMAT(3(8F105/)) )
260 CONTINUE
 C¥*x% CALCULATE GRADIENT OF JZ IN X —DIRECTION) .
DO 220 J=1sN
CZ(1+3)= (—G*EZ(S-J)+32*EZ(4,J)—72*EZ(3cJ}+96*EZ(2.J)—
% SOXEZ(1+J9)
1)/7C 24%DX)
CZ(2,J3=(EZ(5'J3—6*EZ(4oJ)§18*&2(3gJ)-10*EZ(2,J)—3*EZ(
® 1.9))/7( 12% - B
1*¥DX) )
_cthKK.J)=—(Ethx—c.J)—sth(LK-s.J)+1a*sthK—2,J)-1o*E
& ZILK—1+J)
1—-3*EZ(LK+J) 3/112%DX)
CZILKs J)= (SOFEZ (LKsJ)—O6EEZILK—19J) +72¥EZ(LK—25J)—32¥

* EZ(LK—=3,J4)+ o o o

1  6%EZ(LK—8+J))/(24%DX)
DO 225 I=3,LT :
CZ(I o J)= (EZ(I~2+J)—B%EZ(I—1+J) +8¥EZ(I+1+J)=EZ(1425J))
* /(12%¥DX)
225 CONTINUE
220 CONTINUE o . T e
WRITE(6+213)
213 FORMAT(®*0'>30Xs- *GRAD OF JZ IN X DIRECTION')
D0 230 I=1,LK
WRITE(6+114) (CZ{I+J)s J=1sN»2)
230 CONTINUE
DO 270 I=1sLKs2 L
PUNCH 257s (CZ{IsJ)sJ=1sNe2)
270 CONVINUE
DO 250 J=1sNL
CZ(L0,4)=(—stEZ(Ln+4.J)+3a*EZ(Lo+3.J)—7ztsztuo+a,4)+96
£ =EZL102353Y) '
1—-S0%XEZ(LO+J) )/ 24%DX1)
CZ(L2.Jd)= (EZ(L2+3.J)—6”51(L2+a.3)+13#E2(L241,4)—10:52
x (L2:J4)-3%



1EZ(L2-1+J))/( 12%DX1)
CZIM1, 3)=(EZ(M1 —3+J)—6%EZ(M1—-2,+J) +18¥EZ(M1

* (M15J)-3%SY

1{MsJ))/7{—12%DX1) .
CZ(MsJ)= ( SOXEZ( Ms J)=96FEZ(M—19J)+T2FEZ(M

x (M—3.,J)+

1 6%EZ(M—4+J))/7(24%DX1)
DO 252 I=L3,M2
CZ(1+3)= (EZ(I—ZoJ)—B#EZ(I—loJ)+8*EZ(I+loJ)

* /{12%DX1)

252
250

254

265

CONTINUE

CONTINUE

DO 254 I=L0OsM

WRITE(6+155) (CZ( I:J)9J=1sNL)
CONTINUE

DO 26S I=LO»M

PUNCH 2589 (CZ(I+J)eJ=1sNL)D
CONTINUE

sSTOP
END

125

~1+J)-10%EZ

Z2,9)-32%EZ

—EZ(I42+J))
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* IN THE SIXTH COLUMN INDICATES
CONTINUATION FROM PREVIOUS LINE

**#.****"#_* uu*:*xm#*ﬁ:ﬁm

C*+k* FORTRAN PROGRAX FOR CHAPTER S

C++k+ THIS PROGRAME CALCULATE PRESSURE DISTRIBUTION FOR

c: FINITE WIDTH PARALLEL PLATE SLIDER BEARING

Cssxx THE PRESSURE EQUATION IN FINITE DIFFERENCE FORM IS

c SOUVED USING POINT SUCCESSIVE OVERRELAXTION METHOD
Ck#%% SUBROUTINES FROM IBM—-SYSTEM/360 SCIENTIFIC SUBROUTINE
c PACKAGE ARE USED IN THIS PROGRAM ‘

DOUBLE PRECISIGN AO(41+41)5A15A25A435A49ASsHART(S)+DXsD
€ Z,SLOP»
IP64;;&;}%9?;9“50@&;&88501yQIFgZ(Q@),22(411.21(41),Cx(@
* 14413
2CZE81s41Y .eEZ{41+81),QX1(41)+0X2(41) >PGR(41,41F

Cxe«¥ DATA FOR CALCULATION
=41
=41

NN=21 _ : .

Mi=M—1

N1=N-1

DX=0+025

DZ=0.025

OME=1.S5
. ERR=0+00005

1T=300

Cxx¥% STARTING VALUES OF PRESSURE AT GRID POINTS

DO 22 I=1.M

DO 32 J=13NN

P(IsJ)=0e0

32 CONTINUE
22 CONTINUE
C*x%x% READ HARTMANN NUMBER
. DO 15 L=1%1
. READ{5s11) HART(L)
11 FORMAT( F10.6)
. WRITE(6512) HART(L)
12 FORMAT{20°+5Xs *HARTMANN NUMBER='*+F10.6)

-



CEEEx

110
10

20

118

120

122

CEEx%

27
2s

| CEEEE

45

JI27

READ CURRENT DENSITY GRADIENTS AS OBTAINED FROM THE
SOLUTION OF POTENTIAL EGUATICN

0O 10 I=1,41

REAB{S5+110)  (CX(Is:J)sJ=1e21)

FORMAT(3( 8F10.5/))

CONT INVE

DO 20 I=1.41

READ(S+110) (CZ{IsJ)eJ=1421)

CONTINUE

DO 120 I=1,41 ,

YRITE(65118) (CX{IsJ)sJ=1:21F

FORMATY (2X/21F10.5)

CONTINUE

DO 122 1I=1,41

WRITE(Se2218) £CZLTe22si=1,212)

CONTINUE , i oL .
CALCULATE COEFFICIENTS OF FINITE DIFFERENCEFORM EQe
Al=1 ./ (DX%¥2) '
A2=1./(DXE%X2)

A3=1./(DZ**2) .

A4=1./(DZ*%2)

AS= ((DX¥DZ)*%23/(2*(DX*%2+DZ**2)) .

DO 25 I=2,M1

DO 27 J=2»NN

A0 CI»J)=—HART(LIE(CXCI»J)+CZ{(I+J))

CONT INUE

CONTINUE

_START ITERATING

KK=0

‘DI=0e0

DO 35 I=2,M1
II=I+1

IFI=I-1 .

DO 40 J=2¢NN

JI=J+1

JdI=J-1

IF{J+EQ.21) .GO. TO &7
PP={AO(T+J)+A1SP( IF» 3 IHA2FPCII 1+ J I+ABKP T+ JII+ALFPCI I

C % JJ)IEAS
GO TG 49

a7

PP=(AO(IsJ ) +AI¥P(I1+J)+A24PCIIE+JI+ASEP (Lo JUII+ALXP{T,

* JJJI) %AS
" 49 PN=CMEX(PP—P{IsJ)) +P(IsJ).

40
35

DIF= DABS{PN-P{(I+J}3}/PN
DI=DMAX1 (DI+DIF)}
P(I+J)=PN

'CONTINUE

IF (DILE+ERReORKKSGESIT) .GO TO 50



SO
SS

56

s8
60

CxExx

75

80

85:
1S

KK=KK+1
GO TO 45
WRITE(6+55)

128

FORMAT{®0°®+25Xe °*PRESSURE DISTRIBUTION®)

WRITE(6+56) KKsDI

FORMAT(®*0"s5Xs *NO OF ITERATION=%,1I3//5Xs*MAX DIFF®.F1

* O0e6)

DO 60 J=1.NN

WRITE(6+58) (PlI+J)sI=1sMs2)

FORMAT{*0° +2X+21F10,.3)
CONTINUE

CALCULATE LOAD: CAPACITY
ND=41

DO 70 J=2,NN

DO 75 I=1,M

ZCI¥=P(I+J).

CONTINUE
CALL DQASF(DX+Z+ZZ+ND)

MRITE(6+80) (ZZ{I)oI=1sMe2)

FORMAT (//2Xe21F6e3)
ZYCII=ZZND)
CONTINUE

21¢1)=0.0

CALL DGOSF (DZs2Z1+ZZsNNY

WRITE(6+85) ZZINN)

FORMAT(//5Xe *LOAD=%*+F10.6)-.

CONTEINUE
sTae.
END
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