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ABSTRACT

Grain-size sampling of densely packed particulate materials
by customary bulk sieve analysis is sometimes very difficult. In an
attempt to find an equivalent alternative to 5u1k sieve analysis this
thesis examines ; probabalistic grain-size sampling theory proposed by
Kellerhals et et al (1975) here des1gnated as the numerical method, and
four re]ated empirical samp]1ng exper1ments |

Three of the exper1ments incorporate results found within the
literature. Data from Kellerhals' et et al (1975) and Friedman's (1962)
grid-by-number thin sectijon experiments and McGinn's (1971) grid-by-
number gravel bhar investigation all tend to confirm the applicability of
the numerical method and grid-by-number as a solution to thiS sampling
problem.

The fourth exper1ment involved the gr1d by- number investigation
of terrace gnave]s It 1s shown that a terrace gravel surface may in
‘some circumstances be treated as a thin section surface: The statistical
- results of this final‘study strongly confirm numerical method predictions.

Generally, the results of‘these experiments indicate that for
a wide variety of sampling situations the grid-by-number sampling tech-
nique in conjunction with the numerical method.can provide at least

median and mean values equivalent to those obtained by sieving.

)
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INTRODUCT ION

Ve

Grain-size sampling of .densely packed particulate materials
sucH as clastic sediments has usually depended uan customary‘bulk sieve
analysis. In a number of sampling situations thg/application of this
standard technique is difficult. For instance, the disaggregation of a
sandstone for sieve analysis or the collection of the large gravel

£
samples that are necessary for representativeness may be so laborious as

to be impractica]. What is required and whézﬁgés long been sought is an
alternative system of sampling which avoids thesé impediments and yields
grain-size distributions which are the same as those derived by bulk
sieve analysis. ’ e
Central to this thesis is the gmpirica] investigation of one
grain-size sampling theory which possib]y provides an equivalent
a]ternativéugg bulk sieve ana]ysis. The probabalistic sampling theory
proposed by Kellerhals g;_gl_(1975), here designated as the numerical
method, employs a computer program to simulate grid-by-number samp]ing
of a randem]y selected thin section obtained from an isotropic material
composed of identical ellipsoidal grains. For a given uniform mate}ial
the numerical method predicts the relationships among true axial
dimensions, squéfe mesh sieve size and k values of the constituent
equi—sizéd ellipsoidal grains. Furthermore, the probabalistic associétion
of these ellipsoidal properties and the mean values of tﬁé major and
\minor apparent axial cumulative distributions are given. J
| Mathematica1 models of- complex nétura] structurés and ﬁfbcessﬁs

are generally idealizations. The numerical method assumes that the.-

material being sampled is uniform, while virtually all clastic sedimen;s



%)

[}

are nonuniform. For the numerical méthod td be usefu]lit must be shown
that its predictions ;re confirmed for the sampling of nonuniform materials.
A number of samp]ing.éxperiménts emp]gyiﬁg nonuniform materials can be
designed to test specific numerical method relationships. Fortunately,
experimental data found within the literature can be utilized in some
instances for this purpose. The thin section experiment accompanying

the Kellerhals et al (1975) paper is veviewed and further analyzed.

Data %rom Friedman's (1962) thin section and McGinn's (1971) gravel bar

‘experiments are reexamined. In the three experiments numerical method

prediétions are tested through the comparison of grid-by-number and /
sieve distributions. .
Other possibilities remain for checking nume?ica] method pre-
dictions. This study presents the results of-a fourth experiment which
employs terrace gravels. These gravels are often exposed in cut-banks
in which the face of the deposit is almost vertical. groving that a
thin section surface aAﬁ a terrace gravel photograph are equivalent is
essential for this sampling experiment and as such is the subject of an
exténsive d%scussidn. The:terrace gravel experiment involves the grid-
by-number sémpling and subsequent measurement of true axes in the field
and apparent axes from photographs of the same clasts. ‘The numerical

method predictions based on the true and apparent axial cumulative

distributions are then examined.
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CHAPTER ONE

SURFACE SAMPLING EQUIVALENCE PROBLEMS

1.1 General Introduction

Central to this thesis is the examination of the Kellerhals

et al(1975) numerical method and four grain-size sampling experiments

which test its predictions. This introductory chapter discusses four

topics of critical importance to the numerical method and its empirical

tests:

1)

The numerical method assumes a densely packed granular
material. It is essential that properties of this material

relevant to grain-size sampling be identified and defined.

The numerical method makes grain-size predictions specifically

for thin section surfaces. While two of the experiments
utilize thin sections the other two use gravel surfaces, one
associated with the surface layer of exposed gravel bars,

the other with terrace gravels. It is-necessary to evaluate
the characteristics of these surfaces relative to that of a
thin section. |

Sampling procedures which require only the surface of a
deposit are quite different from the .standard volumetric
procedure, bulk sieve analysis. A surface sampling procedure

should be geometrically equivalent to this standard.



4) In customary bulk sieve analysis the square mesh
sieve size D> is the grain-size measure. The
relationships between DS and true or apparent axial

- grain-size meésures frequently used in surface

sampling procedures are investigated.

1.2 Properties of a Densely Packed Granular Material

1.2.0 Introduction

Granular materials may be described as being densely packed or
dilutely distributed (Kellerhals et al 1975). Earth sciences are usually
concerned with densely packed grains in contact, while dilutely distri-
buted granular materials are of greater interest to biologists. Since
only densely packed material is examined here, henceforth it is simply
termed hateria]. The following discussion defines those textural
characteristics of a material relevant to g;;in—size énalysis.

1.2.1 Sorting '

The constituent grains of an homogeneous material (Kellerhals
and Bray, 1971, p.1175) may vary in size. Sdrting is a measure »f the
degree of grain-size similarity. |

1.2.2 Fabric |

Isotropic means having the same properties in all directions.
As used here, a material possesses an isotropic fabric when the axes of
constituent grains are randomly ofiented. ‘Conversely, when there is a

definite axial orientation the fabric is anisotropic.



1.2.3 Induration
Induration is the process whereby a material is hardened into
rock by exposure to heat, pressure or a cementing agent. Once indurated

it becomes very difficult to disaggregate into constituent grains;

1.2.4 Grain Shape

Grain shape can be defined in térms of the ratio of the three
axial dimensions. Using values for the large axis A, intermediate axis B,
and the small axis C, the Zingg grain shape ratios k]=%,k2=%, can be |
obtained (Kellerhals et al 1975). Depending upon the values of k] and
k2 a grain shape falls within one of four general classes a) tabular,

‘ ob]?te or discoidal b) equant, equiaxal or spherical c¢) bladed or
triaxial d) prolate or rod-shaped (Whitten et al 1972).

A wide range of sedimentary grains may be approximated by
ellipsoids (Allen 1969; Kellerhals et al 1975). According to the latter
reference the common range of k values for these ellipsoids is 0.55-0.75.
Allen (1969) states that the shapes of these triaxial ellipsoids may be

1
discrepancy between these two sources, although this may be unimportant.

approximated by k'=0.667,‘k2= 0.50. It is acknowledged that there is some

1.3 Comparison of Gravel Bar, Terrace Gravel and Thin Section Surfaces

1.3.0 Introduction

Many textural properties of a material can be investigated by
‘observing its surface. These properties include degree of sorting and
homogeneity, presence of matrix, fabric and grain size. It is this latter

property which is of concern here.

In the following discussion, it is assumed that the material,

the constituent grains, and the surface have certain basic properties.

{



Material
The material is homogeneous, nonindurated and isotropic.
Grains
The constituent grains of this material are ellipsoidal in
shape and have common k values 0.55-0.75. The grains may
be of any size and the density of each grain mass is uniform.
Surface k
The surface befing sampled is approximately planar. The ideal
plane associated with this surface is defined as the surface
plare. If the surface is viewed from a given point on a
1ine of sight normal tovthe surface plane, it fsndefineq
as the apparent surface. Grains observed on the apparent \
surface are termed surface grains. The apparent grain
surface is defined as that part of the actual grain surface
of a surface grain which can be viewed on the apparent
surface. ‘'An appérent grain surface is bounded by its out-
line trace. ThiS'fs formed when an apparent grain surface . °
appears fo contact apparent grain surfaces of other adjacent
surface grains.
Employing these assumptions it is proposed that:
1) there are three types of surfaces; overlapping grain surface
(0GS), émbeddéd grain surface (EGS) and thin sectidn surface.
2) the surface associated with the surface layer of gravel bars
possesses an 0GS and that of -a near vertical face of a .
terrace gravel deposit possesses an EGS.
3) grain-size analysis procedqrés déve]oped for thin sections

can be used on a terrace gravel EGS.



1.3.1 Inter Grain Contact

The actual grain surface of a surface grain has one or more
point contacts with at least one other grain. It is assumed that each
contact point participates in supporting the grain in its present surface
position, In well-sorted material the number of contact po%nts tends to
be lows conversely, if there is a matrix and the surface grain is
relatively large, the number of contact points is probably much greatef.
A Surface grain may be in contact with both matrix grains and similar |
sized grains. |

‘ There are thee basic classes of contéct in which the surface
- grain may be 1nvo1ved, single point contact, two po1nt contact, and three

or more point contact In the second class a straight.line may be

P any three contact.

points can function as vertices of a triangular shapLd figure. This

envisaged to link the two points. In the third cias
figure forms a three point contact plane.
The number of three point contact p]anes wh1ch can be formed

from a set of n contact points can be determ1ned by us1ng C(n,r) which

is the number of r-subsets of a set of n elements.

C(n,r) = (n k)'r' where n,reN , r<n (1)

In this case r=3 : . C(n,3) _(n 3)

A three poikt contact pi~"2 may be extended until it is bounded
by the actual grain surface. This plane is termed the extended three
point contact plane. It divides the grain.vo1ume and the actual grain
surface ipto two parts. Every three point contact p]éne has an extended
three Doiht contact plane counterpart. Since a graih mai,have vast
numbers of contaat points, espeCTa]]y when there .is a matrix, many extended

three point contact planes which can be formed may be coplanar (Figure 1).



extended three point contact plane
a three point contact plane

contact points

N

Figure 1 E]]ipgbiebl Grain and Associated Contact Planes

For a giVen surface grain, there is one particular extended
three point contact plane (or group of coplanar planes), the minimizing
plane, which minimizes the volume of the part bearing all or the greatest
port1on of the apparent grain surface (1.3.0). This part bearing most of the

apparent grain surface is termed the top part, the other, the bottom pa{dl

1.3.2 Three Contact Modes

The center of gravity of a grain is that point through which
the resultant attraction of gravity acts regardless of the grain's'
position. If the grain coufd be suspended‘br poised from this center,.it
would be in equilibrum in any orientation.\ Empfbying the grain assumptions
in 1.3.0 the center of gravity is 1ocatgq?1n the center.of each grain.

With reference to 1.3.1 it m;y be seen that the center of gravity .
may lie in the top/pért, bottom part or on the minimizing plane. These

represent the three modes of contact a surface grain may have (Figure 2).



l]ine of sight ‘ l e

— apparent /,/—

,/" grain //,
/ top part surfa7

.g.
{m1n1m1z1ng plane

bottom
part

Contact Mode 1 Contact Mode 2 Contact Mode 3
‘Center of Gravity Center of Gravity Center of Gravity
in Top Part on Minimizing Plane in Bottom Part

Figure 2 Ellipsoidal Cross-Sections Illustrating

. f‘ﬂ%‘&ﬁtact Mbdes

The siggle point contact class may be considered a special

wcase of coei;i)fnwde 1, where the entire volume of the grain is the top

[al

part. ?o;s e two point contact class, it is conceivable that the grain

is balanced and resting on two point contacts (e.g., a spherical grain

| rest1ng in a V-shaped channel).

It 1s 11ke1y that these two special mode 1 cases are rare]y
observed in nature for such reasons as grain syrface roughness, 1nstab111ty

and presence of matrix.

1.3.3 Graphic Experiment 1 \

For an ellipsoidal grain the axial dimensions of\its outline

trace (1.3.0) and minimizing plane are dependent:basicq]ly upon its k
va]ues, orientation and contact mode. . Subsection 1. 3‘3 investigates

this complex topic w1th a number of simplifying assumptions and a small

graphic exper1ment. - - S

" | . . . ‘ \J’

v



. d .
Three grain Shapes are investigafed, a sphere\(k]=k2=]) and

two ellipsoids (k1=k2=0:?§ and k]=k2=0.55 . The spﬁeke is inqygged
because it is the simpl st case; the e]]'psoids, because their k values
arevthe upper and 1ow 11m1ts of-those commonly observed ,
In a]] cases thg,i§1;?501ds are or1ented such £hat the A axis
is Eerpend1cu1ar to the 1line of sight associated w1th the apparent
surfacg (1.3.0); This axis functions as an axis of rotation for the B
aﬁd C a;es,which it intersects in the center of the grain (center 6f
gravity). The B axis. forms angles (0°,22.5°,45°,67.5°,90°) with this
line of sight. |
The spherical and oriented ellipsoidal grains are analyzed
with respect to their behavior in each of the three cc...act modes. For
contact modeé 1 and 3 the center of gravity is arbitrarily situated
0.24 X B above and below respective]y, the minimizing plane. In all
thrée contact modes the actual grain surface associated with thg bottom
part is never visible (buried) and the minimizin&;p]ane is normal to the
line of sight.’ | |
Cakbining these different grain k va1ues, orientations and
contact modes many variations are possible. TheSe are examined by halving

each grain so that the resu]tiﬁg planes are perpendicular to the axis of

rotation. This sectioning procedure produces three distinct plane

o . ) .
minor axis i minor axis
_— =], nd two ] penS \—0— = % 07
(maJor axis 0), a "L eltt (maJor axis 5

and 0.55). For the ellipses, the major axis correspc is to B, the minor

figures, one circle

axis to C, of the parent ellipsoid. Each of these figures have two
measurable-dimensions whose values depend upon the specific characteristics

vof the parent grain:

<

1) The minimizing plane dimension (MPD) is the line resu]t{ng

k]



-

from the intersection of the minimizing plane and the plane

- produced by sectioning (Figure 3).

2) The apparent surface dimension (ASD) corresponds to the
o minor apparent axis b, of the grain's outline trace on the
apparent surface. The ASD is determ{ned Qith reference to
the line of sight_whieh passes through the center of gravity.
The length of the ASDlis’the sum of the length of those two
Tines on the plane that are perpendicular to and lie on

either side of the line of sight, are in the top part or

on the MPD, and have maximum posgible length (Figure 3).

- . k

N line’ of sight ' Figure 3 The Minimizing
ﬁ : Plane Dimension (MPD) and
Apparent Surface Dimension

ASD — Y (ASD) of Oriented Ellipse
Mimor axis _ 0.75
F.~\\;apparent grain - Major axis : :

major axis = €x1s o€
parent e lipsoid
minor axis = C axis ‘of
parent ellipsoid

- c.g. center of gravity
. Y ang]e in degrees
7, . . between the major axis
boﬁtom part "7 and the line of sight
‘ ' ' passing through ‘the
~ center of gravity.

In the smatl graphic experiment (F}gure 4) the major axes of

the circular and elliptical sectioning p]éﬁeslaze”made equal. Because.

t

"the axes of a circle are equal any change in their orientation makes

no dimensional difference. For each case the 228 percent is ca]cu]ated
(Table 1). Since a surface grain's apparent grain surface anc
minimizing plane are both elliptical figures, in each case the %EQ

percent quantitatively relates b to the correspondlng axis of its

4
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minimizing plane.
For contact mode 1 grains, the mean %%% percent decreases with

decreasing'giggg—gﬁ%é value (Tahle 1). For the ellipse (0.55) in

particular, minimum percent values are achieved when the major axis’

parallels the MPD. Brief consideration of Figure 4 suggests that as the
center of gravity - minimizing plane distance increases so the %gg-percent
values tend to decrease.

For contact mode 2 grains, the mean %g% percent is nearly 100

for the three p]dﬁes, in all tested orijentations (Tab]e 1). The %g% per-

cent for the circle is 100 but decreases slightly with decreasing

MPD

Winor aX1S yayye (ellipses 0.75 and 0.55 haye mean ASp percent values of

major axis
99.36 and 96.76 respectively). The minimum %g% percent is reached for .

the ellipse (0.55) at an orientation of 45°.

. For contact mode 3 grains, the %%%—percent js uniformly 100

, /
(Table 1). - Careful examination of Figure 4 diagrams reveal that if the

center of gravity is closer to the minimizing plane, the,%%% percent
- value drops slightly for the two ellipses (particularly ellipse 0.55),
but not for the circle. For ellipses 0.75 and 0.55 noticeable reductions

in MPD percent begin when the center of gravity is 0.10 and 0.17 X 8

ASD
respectively, below the MPD.

AFigure 5 displays Table 1 data as well as a few additional
contact mode 3 data points. Tab1el2_summarizes the trends in Table 1 and
Figure 5. Table 2 is based entirely on results from ellipses whose major
and minor axes correspond to parent grain-axeé B and C. These results are
equally valid if fhe rotational axis perpendicular to the line of sight

is B or C, rather than A. While this seems to extend the range of

application for the results, the initial experimental assumptions prevent the
=~
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determination of thedmajor and minor axes for both the minimizing plane
and trace outline, except for a few special situations. The %g% percent
values (Figure 5), however, and observed trends (Table 2) not only compare
axia1‘1engths but; indirectly, shapes and areas of the minimizing plane
and fae'apparent grain surface which is bohnded by the trace outline.

This is particularly evident for the spherical grain. When in contact
mode 1 the %g%-percent is 87.6 (Table 1). Since both thé minimizing

plane and the apparent grain surface are circular the diameter of the
minimizing plane is 87.6 percent of the apparent grain surface. Thus

the ﬁinimizing plane area is also much smaller. In contact modes 2 and

3 the %g%-percent is 100 implying that for a spherical grain the minimizing
plane and apparent grain surface coincide in shap " area in contact

modes 2 and 3.
Similar reasoning can be applied to ellipsc 127 c~ains. Table
2 and Figure 5 reveal that as ellipses decrease in circu.ar’i/, the

greater the potential for orientation to have a minimizing ¢“fer -~ on the

%%% percent. Figure 5 demonstrates that even for an ellipse (0.5.) in

any orientation, the minimizing effect_is less .than 9 percent for mode 2

(%g%-percent for a circle is 100 and for an ellipse (0.55) at 45° is 91.1)

and quickly vanishes in mode 3. In contact mode 1, the effect of small

minor axis

‘ . . C o MPD .
major axis values and 9r1entat1on on minimizing the ASD percent is

greatest.

The above discussion provides evidence that ellipses, including

minor axis
major axis

similar to circles with respect to their'%%% percent behavior for a

those whose value is equivalent to common k values, are

given contact mode. In confact mode 1, for both spheres and ellipsoids.
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the apparent grain surface area.qnd axial dimensions are greater than
those of the minimizing plane.. For.;égéggzﬁggggwgt‘the apparent grain
surface - minimizing plane correspondefice is exact for spheres and very
close or exact for ellipsoids, especially with high k values.” For contact
mode 3, coincidence is always exact for spheres ang evéntua]]y fo;.any
ellipsoid (the greater the center of gravity - minimizing plane distance,
the more probably coincidence is éxact for any k value and orientation).

1.3.4 Graphic Experiment 2 and Description of Overlapping
Grain Surface (0GS) and Embedded Grain Surface (EGS)

Where a material {(1.3.0) has an approximaté]y planar surface
consisting of an assemb]ége of grains in one or more contact modes, this
material may have two distinct types of surfaces; overlapping grain
surface (0GS) and embedded grain surface (EGS). These are defined in
terms of which contact modes are associated with the surface. Graphic
experiment 2 reveals their characteristics for a material consisting of
ellipsoidal ‘grains.

An 0GS consists of an assemblage of grains belonging to all
three contact modes. - The characteristics of this surface may be |
appreciated by'first considering all grains to be spheres. Following
this discussion the more complex ellipsoidal grain situation is examined.

It is assumed that a material consists of identical sphérical
grains and the minimizing plane of each surfacé graﬁn is coplanar with
fﬁe gurface plane. Since this is an 0GS, there are surface grains

associated with all three contact modes.

Assuming that there are equal numbers of grains present at
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any center of gravity - surface plane distance (o) up to and including
one radius, then all Spheres within this 4 range tbuch the surface plane
and are represented by their respective minimizing planes. Beyond one
radius, the spheres abruptly cease to touch the surface plane and are

no longer represented on it.

Another consequence of the equal numbers assumption is that
contact modes 1 and 3 grains are equally numerous. Contact mode 2 grains
are very rare in comparison because they represent the special case
where 4 is zero. .

In the 06 spherical grain case, orientation effects are non-
existent. For ellipsoids fhis is not'so. Since the ellipsoid may have
three different axial values, grain contact with the surface plane is
dependent on both A and grain orientation.. In the following discussion,
assumptions similar to those in OGS spherical grains are émp]oyed, the
primary exception being that the material consists of equi-sized
ellipsoidal grains.

Graphic experiment. 2 demonstrates the dependence of surface
plane representation of ellipsoids on A and orientation. In this
experiment, which is analogous to the one in 1.3.3, two ellipsoids
(k]=k2=0.75 and k]=k2=0.55) are investigated. They are oriented such
that the A axis 15 perpendicular to the line of sight associated_with
the apparent surface. This axis functions as an axis of rotation for
the B and C axes which it intersects in the center of the grain (céater
of gravity). The angle y between the tine of sight and major axis haé
Five values (0°,22.5°,45,67.5%,90%). These oriented ellipsoidal
grains are examined with respect to their behavior in contact mode 3.
The grains are situated so that for a particular orjentation only one

1

point on their surface touches the surface plane.
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As in 1.3.3 each ellipsoidal graﬁn is halved forming two

gistinct - tineos (MIOLBES - p- 0,75 and 0.55).  Each type of

ellipse is dirawn (Figure 6) in its five different orientations and with
only‘one point on its boundary touching the surface plane. & is then

measured for each of these orientations (Table 3) and plotted (Figure 7).

Table 3 Results Graphic Experiment 2

AN

\

v(degrees) "~ Ellipse (0.75) E1lipse (0.55)
A=%B ‘ A=%B
90.0 37.5 28.0
67.5 40.0 31.8
45.0 43.8 40.5
22.5 48.6 47.6
0 0 50.0

Figure 7 shows that as the orientation of both elliptical
types changes from v=90° (4=0.5 x C axis) to v=0° (2=0.5 x B axis) A
increases. Closer scrutiny 6f~$he two curves in Figure 7 uncover their
nature as the limits of tota]isurfaCe plane representation for a given
e]]ipticaT shape. A1l ellipses with A and y\vélues less than or equal
to their respective curves, touch the surfacékb1ane and therefore are

“

represented on it. For combinations exceeding turve values the converse

is true.

~

If it is assumed that there are equal numbers of ellipses at
any given v, and all orientations of B about A are equi-probable, then N
Figure 7 curves correspond to éurface plane representation frequency
curves, the frequency of representation being dependent upon A and y.
Fjgufe 7 illustrates that represenfation on the §urface plane is total
up to a critical & (50 percent C), then steadilyfeclines to a point of

zero representation (50 percent B). Furthermore,| the more circular in
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form the ellipse the greater the & before orientation - induced decline
is initiated. As in 1.3.3 identical findings are produced if the axis
of rotation is B or C instead of A.

The results of this graphic experiment also hold true for the
parént ellipsoids. More generally, it is expected that similar A-orien-.
tation dependenL behav{or i; exhibited by ellipsoids in which any orien-
tthon is equi-probable. If so, the morefspherizal }he ellipsoidal form,
the greater the 4. (maximum 50 percent A axis) before orientation - surface
plane representation effects are initiated.

The above obs;rvations are based on an experiment q;ing only
contact mode 3 ellipsoids. It is clear that for‘Ech éontaef modes 1 and
3 grain representation on the surface plane is dependent upon identical
a-orientation combinations. Certain grains do not touch the surface plane
begause they are buried; identical potential contact mode 1 grains are
:not possible because they are not supported, assuming that the minimizing

plane of all grains of this surface are coplanar with the surface plane.
: Thereque,»the surface p]éne representation frequency curves for contact  f
modes f and 3 are symmetric about the surface plane.

These statements remain applicable if a material bearing an
0GS contains numeroug various sized ellip;oids. Instead of the surface
plane befng touchedfﬁy identically shaped grains in different A—orientatioh
cdhbinatioﬁs, the surface plane is shared by representative; of each size.
. Thi;‘EompfexzsitUation.c]dSely corresponds to OGS observéd in nature. A
fami]iar'éx;mple is the surface of exposed gravel bars which usually
consists oflgllipsoida] shapeq pebbles and cobbles. Contact mode 1 clasts

" rest upon and. thus overlap contact modes 2 and 3 material (Figure 8).
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An EGS consists of an assemblage of surface grains belanging
to contact modes 2 and 3. Assuming that the minimizing plane of each
surface graiq is coplanar with the surface plane and the material consists
of numerous size fractions of ellipsoidal grains, the behavior of the
contact mode 2 and 3 surface grains is identical to that for OGSg Thus
contact mode 2 grains ére rare in comparison to contact mode 3 grains and
the surface plane representation of these 1attér grains is dependent upon
-4 and orientation.

| 'Both artificial and natural mater{a1s may possess an EGS.
Usually these hatéria]s have a matrix. The surface of the matrix is
generally equatable with the surface plane of the 'EGS.

Artificial materials possessing an EGS, typiéa]]y are indurated.
A familiar example of EGS is a paved road surface of sand and gravel
mixed with asphalt. During paving the asphalt is soft and the grains
are embedded by r011ing. Subsequent to hardeniné.some grains may béto@é
contact mode 1 grains due to the disappearance of some of the §urrodnding
asphalt matrix. This creatés an ephem~ral 0GS, since these grains are
easf]y dislodged. | ’

In nature, gravels which have fine sand, si]f or clay matrixes
can m;intain near vertical faces, as is often the case with terrace
gravels. Investigation of these facgs reveals }hat they are EGS. The
explanation for this is quite sim{1ar to that for road sﬁrfaces.‘ If a
grain on a vertical face loses some of its §upporting point contactsb

(matr1x or similar sized grains) and becomes.a contact mode 1 grain, the

grain we1ght is unsupported and it tumbles out of 1ts mo]d {Figure 9).



Figure 9 An Apparent EGS
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1.3.5 Comparison of Apparent OGS, Apparent EGS and
Thin Section

[f a randomly chosen plane is extended thr&ugh a material
(1.3.0) consisting of ellipsoidal grains, the fréquency of grain repre;
sentation on this plane is the same as discussed in 1.3.4 (0GS Ellipsoidal
Grains). If the material is cut a]ong this plane, a planar surface
;esults consisting of intersected grains and matrix, if present. Referring
to 1.3.4, the cutting plane is equivalent to the surface plane, and the
intersected surfaces of the ellipsoids are equivalent to minimizing planes
coplanar with the surface plane. This planar surface can be considered
* a thin section. : . ' /-
For 0GS, the surface plane contains minimizing planes of all
_ three contact mode grains. As discussed in 1.3.3, the minimizing plane
and appagent grain surface of contact mode 1 grains do not coincide. |
Coiﬁcidence is far moré probab)e for contact mode 2 énd particularly for
contact mode 3. Since ﬁear]y‘ha]f of 0GS grain§ are in contact mode 1
(1.3.4), and they lack cbincidence, an apparent 0GS is not equivalent to
a thin section corfésponding to the surface plane. Morg generally, since
~all thin sections cut from this material sh0u1dAhave equivalent grain

representation, the apparent 0GS is not equivalent to any thin section

surface.

for EGS the surface plane contains minimizing ;%énes of only
contact modes 2 and 3 grains. Coincidence between the apparent grai;
surfaces and their minimizing planes is véry good, particularly as A
increases (1.3.3; 1.3.4). This seems to ensure apparent EGS comparability
with its associated thin sgction surface, though it may be argued that

the center of gravity of grains represented on a thin section are on
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either side, or on the cutting plane. In contrast, EGS grains have theT;
center of gravity on or to only one side of the surface plane. The
effect of this is negligible for the following reason. As discusseQ'in
1.3.4, surface plane representation frequency curves for an QGS are
symmetric about the surface plane. This also applies to thin sections.
Since contact mode 1 grains are non-existent in an EGS, the 'gaps; are
filled by contact mode 3 grains. On the basis of surface plane repre-
sentation symmetry, it is probable that the replacement contact mode 3
grains will be represented on the surface plane in a very similar
manner. Therefore, the net result is an apparent EGS which is equivalent
to any thin section cut through the material.

1.3.6 Grain-Size Measurement on Apparent OGS and EGS
and Thin Section

If the apparent surface of a material (1.3.0) is used for
grain-size analysis it is necessary to assign linear dimensions to the
trace outlines of the surface grains. There are a variety of measureép
which may be employed (Kellerhals et al 1975).

Apparent Axis Measurements

a) major apparent axis a

b) minor apparent axis b

c) some combination of a and b

Chord Length Measurements

a) chord length of a grain falling along a predetermined line
b) wmwaximum chord length in a predetermined direction

For an apparent 0GS approximately one half of the surface
grains are contact mode 1. The fabric may be aniéotropic such that true
axial values may be obtained difectly by measurement of the appareht
axes of contact mode 1 grains. At least one true axis must be paralfe]

with the surface plane.
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a) If only one true axis of the surface grain is parallel

to the surface plane and its direction on the plane is

fixed, measurement of the corresponding apparent axis,
provides the true axial value.

b) If one true axis of the.surface grain is normal to the =«
surface plane, then the other two are parallel to the
plane. Association of the two apparent axial values
with the corresponding true anes may be done on the
basis of relative size, preferential direction or both.

Particularly for contact mode 3 grains it is jmprobable that

an apparent axis corresponds with a true one. Because these grains are
the primary constituents of an apparent EGS this fact must be recognized
by all grain-size analysis procedures utilizing this apparent surface.
Thin section surfaces and the apparent EGS of a material are essentially
equivalent (1.3.5), and it is reasbnable to assume that thin section
'grain-size analysis may be applied to an apparent EGS.

1.4 Sampling Procedures

1.4.0 Introduction

Section 1.4 examines all possible sampling procedures which
can be used on thin section surfaces and the apparent EGS of terrace
gravels. When the constraint imposed by the.necéssity for geometric
gquiva]ence of a sampling technique to bulk sieve analysis is taken {ntd i
account, very few of these sampling procedures remain applicable.

Kellerhals et al (1975, p.80) state that all grain-size
analysis procedﬁres in geology may be classified according to three basic
steps and associated choices. Theée steps are:

Step I Collection of sample

Step 11 Assfgnment of linear dimensions to grdins

Step III  Allocation of frequencies
In the fol]owihg discussion this clear and comprehensive system of steps

.

and choices is adopted.
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* 1.4.1 Step 1 Collection of Sample

The basic choices associated with co]]ect%ng a sample are
fixed By the number of dimensions (i.e., zero, one, two, three) of the
total sample volume (sum qf the volumes of all grains-in a sample)
determined by the experimenter, and the number of dimensions dependent
on grain size. |
1) Volumetric (Bulk) Sample: The sample consists of a
volume of the material undef investigation. Three
dimensions are predetermined by the operator.
Standard sieve analysis uses this method.

2) Areal Sample: Every grain in a given area is examined.
Two dimensions are predetermined by the operator.

3) Transect Sample (line counting): A line is placed -
through the material. The operator predetermines one -
"dimension.

4) Grid Sample (point’counting): Only dimension]éss

points are predefermined within the material..
Only methods 2), 3), and 4) are apflicable to thin section ana]ysis.‘

1.4.2 Step II Grain-Size Measurement and Step IT1
Frequencies

In 1.3.6 various,methods are presented for assigning linear
dimensions to trace outlines of surface grains on apparent surféces.
These methods are also applicable to trace outlines on thin sections.
These grain-size measures, as well as other methods of assigning linear
dimensions to grains, constitute Step II (see Kellerhals gj;gl) 1975,
p.80). This step is neéessaryvfor computing freq&enc%es; Step III, since
frequency determination requires that, each grain be a member of a size

interval.
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1) Frequency by Area: The frequency of each size interval
is expressed aé the percentége by area of the original
sample falling into the interval.

'2) Frequency by Length: The frequency of each size interval
is expressed as the percentage by length of the original
sample falling ihto the interval. |

3) Frequency by Number: The fréquency of each size interval
is expressed as the percentage by number of the total
number of grains in the original sample that fall into
the interval (Kellerhals and Bray, 1971, p.1169).

4) Frequency by Weight: The frequency of each size interval
is expressed as the percentage by weight of the original
samp]e falling into the interval (Kellerhals and Bray,
1971, p.1169).

Freqpency methods 1), 2), and 3) are applicable to the analysis of
apparent OGS and EGS and thin sections. o

1.4.3 The Concept of Geometric Equivalence .
Its Importance

A number of different sampling procedures arise because of the
alternative methods which exist in Steps I and III. It is necessary to
determine whether.these sampling procedures are geometrically eaaivalent.
"Equivalent sampling procedures, qpp]ied to a'homogeneous and isotropic
deposit result, on average, in 1deltica1 size distributions" (Kellerhals
and Bray, 1971, p.1166).

There are several important issues associated with the concept

of geometric equivalence.

1) Although many sampling procedures have been used, questions
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dealing with their geometric equivalence are rarely
adequately explored. This has resu]tea in the comparison
of non equiva]ent/data'and in other cases the omission

of important resyéts because diffe}ences in procedures
could not be evaluated (Kellerhals and Bray,'197], p.1166);

2) Customary bulk sieve analysis (volume-by-weight sampling
procedure) is central to the problem of equivalence
because most grain-size analyses employ this procedufe.

As such, most accepted theories of sedimentation are
based on data derived from bulk sieVe‘ana]yses. Thus,
it is critical that other sampling procedures, such as
those applicable fo thin section grain-size analysis,
yield comparable grain-size distributions to those that
would be achieved by this standard sampling technique.

3) Recognition of the prbb]ems associated with geometric
equivalence have lead to geometric formulations of this
concept and its implications. Ensuing geometric arguments
reveal that some sampling procedures are directly equiva-
Tent while others must undergo conversion to achieve
comparability.

1.4.4 Determination of Conversion Factors for Steps I and III

The following discussion presents conversion factors for Steps
I and II1. Because of the importance of bulk sieve analysis, conversion
factoré-are determined relative to volume (Step I) and weight (Step III).
Since many ba§ic assumptions used fo derive these f&ctors are essentially
those found in Kellerhals and Bray (1971) the derived factofs are

~identical to those used by them.
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Assumptions

A) A homogeneous, isotropic specimen material (1.3.0)
consists of densely packed cubes of constant specific
weight. These cubes may be referred to as grains
(Figure 10).

B) There are n different size fractions each consisting of
one or more cubic grains of linear sizes D], DZ’ D3, ..
Dn’

C) The specimen volume V can be divided into constituent
volumes V], V2, V3, ve Vn’ each representing the total
volume of the“cubes of thé'correspoﬁding size fraction.
These volumes form a ratio V1:Vé:V3: . Vn'

D) In a volumetric (bulk) sample all three dimensions are
predetermined by the operator (Kellerhals et al 1975).
Thus, none of the sample dimensions are dependent on

- grain size. If V is sameled vo]umetrica]iy the ratio
of the vo]umeékassociated with each sizg fracfion is
expected to be equal on average to the ratio V]:VZ:V3: cee
Vn.

E) A cut parallel to a side of the cube produces a
smooth planar specimen surface S, of area A, in which the
exposed area of each surface gi.in is proportional to the
square of its linear size :

- Employing these assuhptions Six conVersion‘factors.are deter-
mined. |

1) Areal Sample to Volumetric Sample

It is assumed that the grains of each size fraction cover a

total area (a) on S, such that these arz-: form a ratio ajiayiag: ... 2



‘ Total No. Total "No.
Linear Weight in Sample in Sample
Grain ‘Size D W Volume Surface
P 1 1 4610 192
2 8 576 48
4 64 72 12

—_—

Figure 10

Sample of Densely Packed Cubes of Three Sizes
(from Kellerhals and Bray 1971, p.1170)

32
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which is equal to the ratio of the corresponding volumes Vl:VZ:VB: .
v, (see Kellerhals and Bray, 1971, p.1175).

~ Areal collection involves the measurement of every grain on

A

S. Volume values may be derived from this areal sample if the volume of
every surface grain is calculated.
The volume of each size fraction is ap X D], a, X 02,4a3 X DB’

. A X Dn' But the volumes of size fractions collected areally will

not'neéessari1y form a ratio equal to V]:V23V3: e Vn' 'Equivalence

1

is achieved by multiplying each size fraction by %n

1. 1 . 1
P, X 02 X ﬁé : a3 X D3 X D. - an X Dn X D

1
Thus a; x Dy x w
1 17D 3 n

=a]:é2:a;: PR
=V]:V2:V3: .. Vn
2) Tranééct Sample to Volumetric Sample
It is assumed that for any transect which is placed on S,
the ratio forﬁéd by'the combinéd lengths of those grains in each size

fraction which the transect touches, 1],12,13, e 1n,xis 1]:12:]3: -

]n and is equal on average to V]: V2:V3: A |

n:
Transect collection involves the measurement of every grain
which it touches. Volume values may be derived from a transect sample

if the volumes of collected grains are calculated.

' B . . 2 2 n3
The volume of each size fraction is 1] X D], 12 X Dz,,x 13 X DZ’
. ]n X Dg . But the volumes of size fractions collected by transect
will not necessarily form a ratio equal to V]:V2:V3: ces Vn' Equivalence
is achieved by multiplying each size fraction by %2. ‘
2 1, . 2 1, . ; 2 1, . 2 1,
Thus 1] X p] X 5? : 12 X D2 X ﬁ% : 13 X D3 X 5§ e ]n X Dn X ﬁﬁ
-
=11:12:13: ces ]n
=V]:V2:V3: Vn . -
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3) Grid Sample to Volumetric Sample

It is assumed that for any origin point and orientation of a
grid on S, the ratio formed by the number of those grains in ~ach size
frgction falling under grid intersections, 915995935 ++r G S
91195193 ... gnkand is equal on average to V]:V?:VB... Vn.

Grid collection involves the measurem: of each grain falling
under each grid intersection. Volume values may be derived from a grid

sample if the volumes of the collected grains are calculated.

The volume of each size fraction is g9 x D?, 9, X D2 93 X Dg,
- g, X Dg. But the volumes of size fractions co]]ected_by grid will
not necessarily form a ratio equal to V]:VZ:V3: . Vn' Equiva]ence is

achieved by multiplying each size fraction by %3.,

' 3.1 3.1 31 31
Thus g, x D7 x=3 : g, xD) x=3 :9,xD) x%3: ...9 xD x=3
1 1 D] 2 2 02 3 3 03 n n Dn
=97:9p:93 ... G
=V]:V2:V3: eus Vn

In frequency by weight the frequency of each siié interval is
expressed as the percentage by weight of the original sample fa]]ind_into
the‘interval'(1.4.2)ﬁ If the grains have a constant specific_weight,’
weight frequencies are identical to volume frequencies (Kellerhals et al,
1975, p.80). Thus for size fractionsﬁin the specimen material:

V]:VZ:V3: . Vn = w]:w2:w3: ... wn where W is the weight of the volume
of a given size fraction. | |

4) Frequency by Area to Frequency by Weight

_To convert fréquency by area to frequency by wéight the calcu- -
lated area of each size fraction must be converted to a vo]umé. This is
performed by mu]%ip]ying the area of each f}action by its corresponding

linear size, D. The resulting volumes aré'propOrtional to weights.
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5) Frequency by Length to Frequency by Weight

To conver{ frequency by length to frequency by weight the
starved grain numbers of each size‘fraction must be converted to a
Yolufe,  This is performed by rultiplying the length of each fraction

hy 1£5 corresponding area, pZ.

The resulting -volumes are proportional
Yo weignts.

6)" Frequency.by Number to Frequency by Weight

To convert frequency by number to frequency by weight the
—~-ﬂb%afVed grain numbers of each size fractlon must be converted to a
.”wlumﬁ. Th1s is performed by multiplying the number of each fract1on

Py ifsxﬁorreSponding volume, p3.

The resulting volumes are proportional
by felgpts .

1.4.5 Combined Conversion Factors for Nine Sampling Procedures

Nine samp11ng procedures emerge when methods app11cab]e to thin
ﬁ¢t10n analysis, within Steps I and 111, a[e combined. For each . Q
pnvtedUhé, the conversion factors derived for densely packed cubes in
rAudP® 3 rrangement (1.4.4) may also be combined. These combined conver-
s fom factors e.q., 1, D, % can be used to adjust the va]ue of each size
Ff%Qt1Qn as determ1ned by any of the nine sampling procedures, to 1ts
vV hmé\hf weight equ1va]ent - More generally, the results of any procedure
c?ﬁ pe tyﬂnsformed S0 as to be equivalent to any other (Table 4).

Three sampling procedures, area-by-area, transect-by-}ength and
g/ \Q"U¥-rumber have combined conversion factors of one with respect to
v afe~by-weight, and thus are geometrically equivalent to this <tandard
afy 9 egch other. Identical conc]usions»were reached by Ke]lerhais

ehal Qgrs).

;e
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Table 4
Thin Section Sampling Procedures
and Combined Conversion Factors

Combined Conversion Factor:

Steps and Sampling " Conversion to
Methods. Procedure Volume-by-Weight
1(2) - 111{1) area-by-area -% x D=1
| o ‘ ] 1
I1(3) - 11I(1) transect-by-area — X D ol
N " . 3 D e
. 1 .4 _1
I(4) - T11I(1) grid-by-area . — X D= —
‘ 4 D D
, " ‘ 1.2 ‘
T72)y - 111(2) area-by-length o X D" =D
‘ |
| 1 2
I(3) - 111(2) transect-by-length —y X D 1 \
. . ¥ ;
) . ' 1- 2 _ 1 '
I(4) - 111(2) grid-by-length - xD o) _ \
1(2) - 111(3) area-by-number flxod=0?
? 1 3 _
I(3) - I11(3) transect-by-number a —p X D =D
: D
_ . ] 3 _
1(4) - TI1I(3) grid-by-number =3 X D 1
D
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1.4.6 Geometric Equivalence and Equivalent Gra® Size Measures

‘Most investigators agree that for commonly occurring graih
shapes, the square mesh sieve size DS, and the intermediate axis B (1.2.4)
are bbth\acceptab]e and almos?t 1den£icai measures of actual grain size
(Leopold, 1970; Kellerhals and Bray,=1971). Thus, for the three sampling
procedures in 1.4.5 which are geometrically equivalent to bulk sieve
analysis, measurement of the B axis of the collected grains should yield
a grain-size dfstribution c]ose]} similar to the one produced by sieving
the specimen.

Under certain conditions, there may'be direct axial correspond-
ence between an épﬁérent,and true axis for grains on an OGS (1.3.6).

If the true axis is B and the corresponding apparent axis is measured,

it seems likely that any of the three geometrically equivalent sampling
procedures (1.4.5)_may be used to deri?é a grain-size distributiZjehhdqh_N\\
is nearly identical to the one achieved by siéving.. .

For thin section and terrace gravel surfaces it is probable
that the apparent axes of samp]ed,grains’do not co}respond with true
axial -alues (1.3.6). While samp]ihg procedures geometrically equivalent
to sieve analysis can be employed on these‘surfaces, some technique must
be devised to obtain "the distribution of actual grain size (A,B,C,D, ...)
from the corresponding distribution of observed sizes"‘(a,b, fgq)
(Kellerhals et al 1975, p.82). These "observed sizes" refer to the linear
aimensions assigned to trace outlines of graiﬁs on either an apﬁarent
surface or a thin section. |

1.5 Grid-by-Number Sampling of the Surface Layer of Exposéd Gravel Bars

1.5.0 Introduction

Three surface-oriented sampling procedures, area-by-area,
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transect-by-length and grid-by-number were shown to be geometrically
“equivalent to volume-by-weight (1.4.5). It is necessary to determine
whether this theorized equivalence can be confirmed by sampling actual
deposits.

Much work of this kind has been performed using the surface
layer of exposed gravel bars. In these studies of this 0GS (1.3.4)
most research has compared the grain—sizevdistributions arising from
grid-by-number and bulk sieve analysis. The problems associated with
collecting a grid-by-number ,sample of this surface 1ayer (éépecia]]y when
only the apparent surface is examined) and the equivalence of this
technique to bulk sieve analysis ha e many implications tb\similar
terrace gravel grain-size investigations.

1.5.1 Comparison of Bulk Sieve and Grid-by-Numbef (Bt)
Distributions

Kellerhals and Bray (1971) list four grid samp]inglmethodsb

which may be used on the surfaces of exposed gravel bars.

1) A grid is established over the gravel surface aqd the
grains immediately beheatﬁ the grid points constftute
the sample (see Thornes and Hewitt, 1967; Kellerhals -
and Bray, 1971; McGinn, 1971).

2) A survey tape is stretched across the area to be
sampled using a set ofxregular1y spaced points (e.g.,
footmarks) as grid poircs (Yoi-an, 1954).

3) A grid system is formec by trz.ersing the sample
area collecting the 'stone immediately beneath the
toe after one or more steps (Wolman, 1954).

4) The operator/walks along several parallel lines
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stopping after each stride, aVerés his gaze and reaches
" down over his toe with a finger and the first rock
touched is picked up for measurement (Leopold, 1970).
Once a grain was selected by one of the above grid collection
techniques, usually one or more of the true axes were measured in the
field (henceforth: subscript t signifies that the term's value depends
upon the measurement of surface grain true or apparent axes; At’ Bt’ and
Ct are terms denoting the field measurement of a grain's true A, B, and
C axes; ABt’ ABCt, BCt are terms of denoting different arithmetic means
derived from a grain's At’ Bt’ and Ct; ABCt is the triaxial mean of a grain).
Wolman (1954), and Kellerhals and Bray (1971) took B, as being comparable to
the square mesh sieve size Ds’ and used 50 to 100 axial values to compare
bulk sieve and grid-by—number grain size distributions. McGinn (1971),
as well as testing Bt’ examined the consequehces of using grain-size
measures Aét, and ABC, .
~ Generally, the results from these comparisons indicated that
grid-by-number, using Bt’ or ABCt as a measure-of grain size, yields
grain-size distributions coarser than those generated by bulk sieve
analysis procedures (henceforth: AtSO’ ABtSO’ BtSO’ ABCtSO’ BCtSO’ and

ct50’ are terms denoting various medians of'grid-by-number distributions

based on field measurements of true axes; Aps AB., By, ABC,, BC,, and‘Ctﬁ

are terms denoting various means* of grid-by-number distributions baség
\

on field measurements of true axes; subscript sieve signifies that the\\\
term's value depends upon square mesh grain-size measurement; DsieveSO- \\\\

is the term denoting the median of a grain-size distribution produced by-
sieving; Egieve is the term denoting the mean of a grain-size distribu- \

tion produced by _ieving). While Wolman (i954) found that Bt50 was

*means used in this thesis are Folk and Ward unless otherwise specified
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substantially greater than D Kellerhals and Bray (1971) concluded

sieve50’
on the basis of 15 samp]es, Bt50 was only slightly greater than DsieveSO
(grains > 8mm). McGinn (1971, Table 4) found that grid-by-number (Bt)
and bulk sieve distributions (grains > 8mm) were significantly close in only
43.1 percent of the 30 test samples. McGinn also utilized the Wilcoxon
Test (Wilcoxon'Matched Pairs Signed Ranks Test) to compare the statistical
parameters (median, mean, standard deviation, skewness and kurtosis) of
each grain-size distribution. The Wilcoxon Test indiéated that grid-by-.
number (Bt) and bulk sieve distributions were not statistically similar
except for skewness. As well, the Wilcoxon Test (one-tailed) revealed
that B Ds1eve

Most researchers agree that there is one major problem with
using the surface layer of exposed gravel bars to test the equivalence
between grid-by-number and bulk sieve sampling procedures. As Kellerhals
and Bray (1971, p.1166) explain:

“At Tow to intermediate stages virtually all sand ‘and

sometimes the finer gravel fractions are removed from

the bed surface of a gravel-bed river. This results in

a distinct pavement of the bed with a gravel layer one

grain thick ... gravel beds commonly consist of two

separate populations, the surface layer and the under-

lying deposit."
Kellerhals and Bray argued that while the surface layer is very important
to hydraulic friction or initiation of bed movement studies, it theoreti-
cally cannot be sampled volumetrically. This is because the.gravel layer
is only one grain thick, thus the thickness dimension of an intended
volumetric sample (all three dimensions are predetermined by the operator)
cannot be predetermined. This argument justifies the use of a surface
oriented technique like grid-by-number but suggests it may be difficult

\. . B
to confirm the equivalence between this technique and customary bulk
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sieve analysis. If population differences are ignored completely the
grid-by-number (Bt) distribution is substantially coarser than that
produced by sieving (WOTman, 1954). Both Kellerhals and Bray (1971) and
McGinn (1971) eliminated material less thén 8 mm from their bulk sieve
ana]yses‘in what the former said was, " ... an attempt to compensate for
the population differences between the surface layer and the underlying
volume.". However, as discussed, both still found grid-by-number (Bt)

distributions to be coarser than those of bulk sieve.

1.5.2 Comparison of Grid-by-Number (Bt) and (bt)
Distributions ' '

In some of the above studies, the apparent surface. of exposed
gravel bars (an example of an apparent 0GS, refer 1.3.4) was samp]ed with
grid-by-number.

| The surface layer of the exposed gravel bars was photographed
so that the line of sight was approximately normal to the surface plane.
A grid was superimposed either in the field or on the photograph (slide
or print). In either case, the photograph always contained some means
(rulers at right angles or the grid) whereby the surface plane could be
more precisely normalized. With this done and the'grid in place the
trace outlines of the surface grains falling beneath the grid intersection
,poigts were measured.  Generally, only those grains which were > 8mm
were uséd (Thornes and Hewitt, 1967; Kellerhals and Bray, 1971; McGinn,
1971).

| The problem remains as to how the trace outlines of the grid

selected surface grains éhouid be measured. Pﬁshinsky (1964, p.279) and

Leopold (1970, p.1358) observed that the C axis of the surface layer

gravels were normal to the surface plane. Although this is an approximation

in cases where there is imbrication (Johanson, 1963), baéica]]y the surface. .
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layer can be treated as an example of a situation discussed in 1,3.6,
case b)_and‘1.4.6, namely, there is a direct axial correspondence between
major and minor apparent axes a and b and true axial values A and B
respectively, for contact mode 1 grains of the apparent 0GS. .Genera1]y,
contact mode 1‘grains can be recognized on the apparent surface beéause
they tend not to be overlapped. Therefore, it can be expected that
measurements of the b axis of tﬁe érave] bar contact mode 1 surface grains
selected by a g}id, would produce a grid-by-number distribution very
similar to that of grid-by-rnumber (Bt) (henceforth: 2y and bt are termé
denoting the major and minor ;pparent axes respectively, of a surface
grain associated with eitHer an apparent or thin section surface; abt

is the term denoting the arithmetic mea; derived from ay and bt; 450>
.athO’ bt50 are/terms denvting various medians of grid—by—number
distributions based on measurements of surface grain apbarent axes; a,,
55;, Bi are terms denoting various means of grid-by-number distributions
based on measurements of surface grain apparent axes).

Kellerhals and Bray (1971) and McGinn (1971) compared the grid?t
by-number distributions based on the measurement of‘Bt and bt' The
former advanced the tentative correction formula, bt50=0'888t50 based
on 14 sample points. McGinn's resu]ts revealed that for 30 samples
compared in thié manner, the grain-size distributions were statistically
equivalent in 93.3 pe:ent of the cases. The Wilcoxon Test.(McGinn,
Table 5) disclosed that grid-by-nuﬁber (Bt) and grid-by-number (bt) were
significantly close for median, skewness and kurtosis parameters.

Kellerhals and Bray recognized that there was some disagreement
between the two sampling procedpres, but concluded that the results were
closely equivalent. McGinn stated that these grid-by-number procedures

produce significantly close results for median and mean values.
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1.5.3 Comparison of Bulk Sieve and Grid-by—Number<(bt)
Distributions

Both Kellerhals and Bray (1971) and McGinn (1971) examined the
relationship between grid-by-number (bt) and bulk sieve grain-size |
distributions. Based on 11 sample points, Kellerhals and Bray advance
Dsieve50 (grains greater than 8mm) = 1.0bt50‘+ 5mm as a tentative |
correction formula. McGinn found that these two grain-size distributions
were equivalent in 66.7 percent of his 30 samples. The Wilcoxon Test
(two-tailed) indicated that the two distributions were significantly
similar only for standard deviation and skewness parameters and the

Wilcoxon Test (one-tailed) confirmed that BE was greater than Bgieve'

The above results seem to conflict, since'Kellerha]s and.Bray

found DsieveSO was greater than bt50 and McGinn showed that bt was

greater than Bgiéve' ‘Examination of 1.5.1 and 1.5.2 reveals that these

results are consistent with their respective studies. Since Kellerhals

and Bray found Btso slightly greater than D in 1.5.1, and Btso

sieve50
greater than btSO in 1.5.2, it is quite possible that one should find

DsieveSO greater than bt50 (1.5.3). McGinn observed-Bt was greater
than ﬁgieve in 1.5.1 but he found in contrast to Kellerhals and Bray
Bt50 was equfva]ent to bygy (1.5.2)." Therefore, McGinn's finding that

b, was greater than D_

sieve (1-5:3), is reasonable. Perhaps the C axis

of the surface layer gravels McGinn examined were more strongly oriented

normal to the surface plane.

1.5.4 Relative Coarseness of Grid-by-Number (Bt) Distributions
[

The gravel bar experiments reviewed in this section indicate
that grid-by-number (Bt) distributions tend to be coarser. than their bulk

sieve counterparts. This may arise for two reasons:
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1) Geometric Non—equiva]enée
As discussed in 1.5.1 gravel beds often possess two
separate popu]atf%ns due to surface paving, a surface
pavement one grain thick and a finer underlying deposit.
Given these conditions, the geometric equivalence between
bu]k“sievé analysis and gfid—by—number would breakdown,
since the latter employs exclusively the coarser surface
layer. Although these population differences have been
recognized and compensated for by only sieving material
greater than 8 mm, thi compensation may not be
sufficient to overcome population differences.

'2) Non-equivalence of Graiﬁ—size Measures
Discrepancies may arise due to the assignment of linear

dimensions to grains. It has generally been assumed that

the B axis is comparable to Ds’ as a measure of grain-size.

If population differences have been compensated for

adequately, then the relative coarseness of grid—By—number

(Bt) distributjons may stem from the B axis having a

greater value than their Ds'
> |



CHAPTER TWO
THE NUMERICAL METHOD AND THREE EMPIRICAL TESTS

2.1 General Introductioh

This chapter presents Ke]iérha]s et al (1975) numerical me thod
and three empirical experiments which test its predictions for nonuniform
materials.

The numerical method, thch was explicitly developed for the
grain-fize sampling of thin sections, incorporates solutions to geometric

and gra1n -size measure equivalence prob]ems discussed in Chapter One.

Their equat1ons (3a), (3b), and (3c) embody the

: \L

Ké]lerha1s et al (1975) argue that other attempts at determining
grain size from thin sections of densely packed granular materials have
run into difficulties for the following reasons:
| 1) The sampling procedures employed have not been geometrically

equivalent to bulk sieve analysis.

2) Many theéreticai approaches employ spherical shaped grains
or ellipsoids of rotation. Ihstead; élTipsoids thse k

~ values are within the common range should be observed.

3) Theoreticafﬁ;oidfions assume that the grain centers are
distributed in spacé according to the Poisson protess.
This is reasonable for dilutely distributed phases but
not for densely packed granular materials/ found in

" sediments. The procedures involved in sampling this

L5
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material have resisted analytical study because there is
no mathematical definition of a random distribution of
grain centers, given a closely packed granular phase of

nonoverlapping grains.

2.2 The Numerical Method

2.2.0 Introduction

The comprehensiveness of the numerical method contrasts Qith
the simpficity of the experiments in 1.3. Other. than this, any difference
depends so]eiy upon which is fixed in positioh, the plane'or ellipsoid.
In 1.3 ellipsoids were moved relative to a fixea plane, whereas, in the
thin section experiment the fixed plane was trangformed into a cutting
plane operating on a fiked ellipsoid.

2.é.1 Computation

In, the numerical method, distfibutions of apparent axes a and
p were coﬁﬁuiédibQAEaEting e]]ipsoids with a large numbgr of planes and
determining the lengths of the major and minor axes of the e11iptica1
intercepts between the planes and the ellipsoid. Cutting planes were
defined by Tati tude a, longitude 8, and the length r; of the normal ffom
the center of the ellipsoid (origin of.the spherical coordinate system)
to the cutting plane (Figure 11). A1l ellipsoids were assumed to haQ;\a
square pesh diameter Ds=1.0. With Zingg diégram coordinates k]=%3 kz-c,
the relationships between Ds and the three axes were gfven as:

A=%] 201 + kg)] B, (2)

B=2 201+ k5)] T, (3)

c=2k,[201 + K5)] T, (4)



Figure }I

Qutline orollipsoid .

—---- Intersection between ellipsoid
and coordinate planes

O Apparent-ellipse (intersection between eifipsoid
T and plane)

<——» Axes of ellipsoid

Axonometric Pictorial of an Ellipsoid
Intersected by a Plane (The true axes
are A=2C 8nd B=1.5Cd A line of sight
with a=60" and B=60" is used. The
plane of intersection is located a
distanc# of 0.5C from the center of
the Sllipsojd 81ong a line with o

=45 and B8=30",) (from Kellerhals
et al 1975, p.83)

a7
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The procedure produced approximately 8000 to 12000 sample
ellipses per ellipsoid. The resulting a and b va]yes were arranged in
20 size classes and plotted as hietograms, and as cumu]ative frequency
distributions. A total of 49 e]]ipsoidg‘here sampled using k] and k2
values 0.15, 0.3, 0.5, 0.67, 0.75, 0. 85, and 1.0 (see Ke]lerha]s et al,
1975, p. 83 for further details on: numer1ca1 method)

2.2.2 Relationship among DS B and k2

;Interpretatiens of equétions‘(Z), (3), and (4) requires the
. consideration of the following th}ee points:

1) ds refers to the side iength of a square ho]e,‘énd not
the maximum hole si;e.~ The maximum dimension of the
square hole is ateng its two diagonaTs whose 1ength‘

'Ldéyéiz— (McGlnn, ]97] p. 36) > |
2) For an e111pso1d the critical dimensions which determine
whether it can possibly pass thrdugh a square hole of a
hi@' , given side length D » are its B and C axes. These axes
. form an elliptical plane with %%ggg—gﬁ%g-—7%-= k2 of the
I parent ellipsoid.

3) If the e11iptica1 plane formed in 2) ts coplanar hith the plane
formed by the sides of the square ho]e, and the center of
the square is also that of the e]]lpse, and the B axis
of the e1]1pse falls a]ong one of the d1agonals,~then three
cases arise: ‘

a) -The boundary of the e]hps!m part or. comb]ete]y
falls outside the square, thus the parent ellipsoid.

is retained by the square ho1e (Figure 12a).

. b) The boundary of the ellipse touches the square at
‘ four points but never falls outside, thus the parent
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Figure 12

The Relationship of an
Ellipse to a Square Hole:
Three -Cases

a) The boundary of the
ellipse in part or
completely falls outside
the square

b' The bdtindu.y of the
ellipse touches the
square at four points
but never falls outside

3.

“¢) The boundary >f the
ellipse falls completely"
within that of the

square
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ellipsoid is at the threshold o: be 1g either retained
or passed by the square hole (/. . 12b).

c) The boundary of the ellipse falls completely within
that of the square, thus the parent ellipsoid passes
through the square hole (Figure 12c).

The relationships among Ds’<k2’ A, B. and C in (2), (3), and
(4) are determined for case b). For illustration, B is calculated using
(3); where DS is held constant at 1.0 and k, variedwfrom 0.001 to 1.0.
As k2 increases, the B axis of the e]finﬂ« decreaseé (TabYe 5 and Figure
‘13)'. At k2 =0.001, B=1.4142 which equals Ly for D.=1.0. For common k,
. values O 55 0. 75 B: D ranges: }rom 1.24:1 to 1.13:1 respectivcly. When

h@kz reaches 1.0, B=DS=1.0. This is the special case where the ellipse is

-~

;in fact a circle which touches the square at the midpoints of the four
sides.

2.2.3 Apparent Axial D1str1but1ons a and b

The h1stnqrams and cumulative frequency distributions generated
by the numerical method reveal relationships among ellipsoidal. k va]ues,
true axial values and apparent axial distributions awand b. Spheres and

ellipsoids of rotation, which have received.much attention in the liter-

b

ature  -ve very unusual histograms relative to ellipsoids (k] less than

less than 1) (Kellerhals et al, 1975). By medns of equations (2),

o

2
(3), and (4) and Figures 14 a and b which summarize the relationships

1, k

betweeh true axial‘values, k va]ués and thegmeans cf the appareﬁt axial

d1str1but1ons, 1nequa71t1es can be canstructed. For;ellipsoids with k

va]ues w1th1n the common range, 0.55- 0.75, five pairs of k va]ues were

se]ected and the 1nequa11t1es formed for A, B, C, D , a, b, and ab

(mean of a and b) In each case Dsﬁwasuass1gned a value of 1.0. The

inequalities and their numerical values (Table 6)  lead to the fo]16wing
P - .

observations.



Table 5

B Values Calculated by Equation (3),

DS=1.O, k2 range, 0.001 to 1.0

1.0 oM 1.4182 1.0 o
1.0 : 1.414] Y Rl te
1.0 .0c 1.4139 " ey
1.0 .03 114136 o 99T N A
1.0 .04 1.413] ",
1.0 .05 1.4124 P \
1.0 .06 1.4117 : . \
1.0 .07 1.4108 3 S G
1.0 .08 ].4097 0.7 b .¢. Q‘::‘_,w et ke
1.0 109 1.4085 ' ey e
1.0 .10 1.4072 % -
1.0 .20 1.3868 06 b . TF
1.0 .30 1.3546  .°- 3
1.0 .40 1.3131 k, * ’,
1.0 .50 1.2649 0.5 b N,
1.0 .60 1.2127 - o i
1P .70 1.1586 K =
1.0 .80 1.1043 04 k Y }
1.0 .90 1.0512 . LN
1.0 1.00 1.0000 R

0.3 | Y

0.1 T . :

) S S
1.0 1.1 1.2 1.3 1.4 1.5
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Graph of Table 5 Data

B axis length

Figure 13
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Table 6
Axial Inequalities for Ellipsoids

with Common k Values 0.55-0.75
L

53

D ky k, {\\{nequality
1.0 .55 55 A > 7 > B > D, > a > C > b
2.25 1.25 1.24 1.0 0.94 0.68 0.63
1.0 65 .65 A > B > 3 ,»> D, > ab > ¢ > b
1.82 1.19 1.15 1.0 0.92 0.77 0.69
1.0 5 .75 A>B>§>Ds>£>c>5
) Cdwe 51 113 1.03 0 1.0 0.88  0.85 0.73
1.0 .55 .75 A> a> B >0 >a>¢C> F
2.06 1.18 - 1.13- 1.0 " 0.96 0.85 0.73
1.0 .75 .55 A > B> 3 >0 >ab >C> b
. 1.65 1.24 1.12 1.0 0.88 0.68 0.63

Y
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1) Two inequality patterns emerge:
A>a>B> D, >ab>C>b and
A>B>a-pb >ab>C>b
These inequalities are the same except a and B are reversed
in position. The reason for this is discernab]e fn Figure
14a. It reveals that a > B when k] < 0.52 (for all kZ)
‘and B > a when k; > 0.667 (for all ky). For 0.52 < k; <
0.667, a > B for lower k, and higher k, values, for B > a .
the converse is true. Thus for the five pairs éxamined
it is reasonable to expect k], k2 pairs 0.55, 0.55 and
0;55, 0.75 will exhibit the inequality @ > B.
2) For the five pairs and more generally for any k], k2 pair
with va]ue; Qﬁthin the cdmmon range, B and a, and C and

b are closely associated. Within this range
4.4 > {2BIO0 . 16 5 (Figure 14a) and

~

B
-8.0 3_(b-g 100 > -13.8 (Figure 14b). This latter figure

shows the#§?gqua1jty C > b is true for all pairs of k
R o

\
Y-
values. .

3) For the five pairs B > DS > C. Idspection of equations
i (2), (3) and (4) demonstrates that B > DS > C whenever
ellipsoidal k'va1ue§ are less than 1.0 (see.also 2.2.2).
| The preceding results were based on grains of a Particu]ar
shape charactérized by one point on the Zingg diagram. The sensitivity
of a distribution to variability in shape was tested by fonninéia
combined a-distribution for grains with vé]ués clustered around a point‘
on the Zingg diagram. This was compared with the distribution of a, for

grains with the central shape characteristic. Kellerhals et al (1975)

FroAe
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found the curves to be'very similar and thus concluded that an average
shape value was justified,

2.3 Three Empirical Experiments

2.3.0 Introduction

The numerical method simulates the gf%d—by—number sampling of
a randomly selected thin section obtained from an isotropic material
composed of identical ellipsoidal grains. GiVeﬁ the axial dimensions
of the constituent grains of this uniform material; equations (2), (3),
and (4) (2.2.1) and Figures 14a and b (2.2.3) predict the%DS and mean
values of apparent axié] distributions a and b which would be obtaihed
if this material was actually sampled. While results can be extended.
for a material in which grains vary in shape (2.2.3), both grain shape
and size vary in most clastic sediments. For the numerical method to .
have practical value it must be shown that it is app]icaéTe to the
sampling of”thg§g nOngniform materials,

2:3.1 Experiment 1

Kellerhals gj;gl_(i975, p.85) compare thé median sieve diameter
predicted by their numerical method with that obtained by sieving, DsieveSO’
for seven sandstone samples. For all samples, grid-by-number (at) and
grid-by-number (bt) distribufions were obtained from thin sections.
Simultaneous grid-by~numbér and bulk sieve Qistributions for five of
these samples were obtained from Friedman'(f958, Figure 7). The two
remaﬁning samples, Y] and Y2 were acquired from two artificial sandstone
blocks made by cementing mixtg{es of flavjog]aciaj'sénd. These blocks
were then cut to produce thin sections, \

For Friedman's data, bt50 was converted tOkaSO’ a numerical

method prediction of C (henceforth: subscript p signifies that the \

term's value depends both on experimental data and numerical method
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A A .
preﬁictions). The conversion of bt50 into Cp50 is as follows: Using
! b —
v _th0 . . (b-C)100 - -
average kz—d;g5-1n Figure 14b, T =Y, Cp50— (I.O-Y)(btso), (method
used by Kellerhals et al, 1975, p.85) Eﬁ, the mean counterpart of Cp50

can be calculated in the same way except 5£‘énd 3& are used. A similar
]OObtso

but more precise formula for Cp50 is V#7007 -

Using‘Cp50 and (4) the predicted median sieve diameter d5p50=

C
§E§Q_[?(]+k§)]% was calculated. The mean counterpart of d
2

sp50° dsp

can be calculated in the same way except Bi, 5{, and Eﬁ are used. The
dsp50 of samples Y] and Yé were calculated in}a similar manper -except
that (3) was emp]qyedn This was made possible because k], which is
necessary to the determination of B from Fiqdre 14a), had been estimated

through microscopic measurement of At and Bt axes of 100 constituent

grains of Y] and Y2.

‘The results (Table 7) for the seven samples may be summarized

as follows.
1) The k2 values of these samples range from 0.59 to 0.69.
This is within the common range of k Vé]ues.

2) agsg > dgpsg > bygg

50 > Dsieve§0-> bt50 except.-“ror Cardium Sandstone where

Dsieve50 g atgn

3) Dgp50 > abyg,

DsieveSO g athO for YZ’ Dsieve50 =

4) DsieveSO and d§p50

seven samples. This may be observed either directly or

abygy

values compare reasonably well for the

by comparing the ratios atSO:dépso and atSO:DsieveSO for
~each sample. The mean va]ue of the former is 1.09:1 and

the Tatter ratio is 1.10:1.
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In general dsp50 and D appgar to be comparable. Both

) sieveb0
participate analogously in inequalities, form similar ratios and are
close in actual value. Since dSp50 was based on the numerical method

which assumes a uniform material, and D was produced by sieving

sieveb0
a nonuniform material, their high degree of correspondence supports the
hypothesis that the numerical method can be employed effectively in
sampling ‘thin section surfaces of nonuﬁiform materials.

2.3.2 Experiment 2 ’

Friedman (1958, 1962) discussed the results of thin section
grid-by-number (ét) and bulk sieve analyses of his 38 sandstone samples.

Table 8 (adapted from Friedman, 1962, Table 2a) displays Ei, E;ieve and

a,:D_.
t  "sieve

f = frequency of the different girain-size grades present, and m¢ = mid-

for these samples (for Friedman Mean 25 = T%a-z fm where

point of each grain-size grade in phi values).

For all samples a, > D *, This conforms with both predicted

t sieve
and actual inequalities in Tables 6 and 7 (sole exception being Cardium
Sandstone‘where atSO:Dsieve50;0‘96:])' In order to further clarify the
extent. to which the numerical method predicts this inequality to ‘arise,
at least for uniform materials, and partfcu]ar]y for k],‘k2 pairs within
‘the common range, three pdssib]e cases (a > Ds,.a=DS and D > a) were
investigate@fT‘Resu1ts (Table 9 and Figure 15a)vindicate that the k], k2
pairs region whrre DS > a, is very small relative to the a > DS region,
‘and is confinea co k]; k, pairs of high value. As well, k;, k, pairs
'“:within the common range fall completely within the latter region.
‘Assuming that most of Friedman's sandstone samples héve mean k values
within the commoﬁ;?ange, thege results confirm the predictive power of

r

»*fh 2.3.2 the values of mean terms are in mm.

N



Table 8

Thé/Pat1o a ﬁt}kf“ Based on Thin Seftion Grid- by- Nlﬂber
Ana]ys1s and Bulk Sieve Analysis

(adapted from Friedman, 1962, Table 2a)

59

at psieve' i sieve —B?%IO
Sample (P units) (P units) (mm) (mm) t*sieve
1 2.55 2.68 A7 .156 1.10:1
2 2.70 2.92 .154 132 1.17:1
3 2.58 2.73 167 151 1.11:1
4 2.39 2.60 191 165 1.16:1
5 2.56 2.83 170 141 1.21:1
6 2.77 2.99 .147 126 1.17:1
7 2.65 2.81 .159 .143 1.11:1
8 2.70 2.98 .154 127 1.21:1
9 2.72 2.84 152 .140 1.09:1
10 2.82 2.98 142 27 1.12:1
11 0.90 1.03 .536 .490 " 09:1
12 0.93 1.34 .525 .395 ..33:1
13 0.81 1.24 .570 - .423 1.35:]
14 0.74 1.13 .599 © 457 1.31:]
15 0.75 1.7 .595 444 1.34:1
16 2.50 2.7° 177 g!lgg;» 1.16:1
17 3.64 3.76 .080 e [ 1.08:1
18 3.18 3.44 110 +.092 1.20:1
19 3.02 3.36 123 .097 1.27:1
20 2.85 2.88 .139 .136 1.02:1
21 2.22 2.33 .215 .199 1.08:1
22 2.09 2.17 .235 .222 1.06:1
23 2.30 2.4 .203 .188 1.08:1
24 2.65" 2.74 .159 .150 1.06:1
25 2.05. . 2.14 .241 .227 1.06:1
26 1.70 1.93 .308 .262 1.18:1
27 3.51 / 3.78 .088 .073 1.21:1
28 3.78 3.87 .073 . 068 1.07:1
29 3.97 4.18 .064 . 055 1.16:1
30 3.74 3.86 .075 %069 1.09:1
31 3.80 3.94 .072 .065 - J.11:0
32 3.57 3.52 .088 .087 1.01:1
33 3.15 3.42 113 .093 1.22:1
34 2.74 13.03 150 122 1.23:1
35 2.18 2.49. 221 178 1.24:1
36 2.05 2.48 .24 179 1.35:1
37 2.21 2.39 .216 191 1.13:1
38 1 2.20 .272 .218 1.25:1

Standard Deviation 0.09

‘Mean Ratio 1.16:1
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Some kj, k2 Pairs for which EEDS=1:1 or 1.16:1

B from From Fiqure 14a)
-k k D equation (3) (a-B)100 _ a=B( X . 4)
e s ~ B T00 !
0.667 1.00 1.00 1.00 0 1.00
0.75 0.82 1.00 ‘\1.09 - 8.5 _ 1.00
0.85 0.66 1.00 1.18 -14.9 1.00
1.00 0.49 1.00 . 1.27 -21.6 1.00
0.48 1.00 1.00 ~1.00 +16.0 1.16
0.667 0.57 1.00 1.23 - 5.6 1.16
0.75 0.43 1.00 1.30 -10.6 1.16
0.85 0.25 1.00 1.37 -15.4 1.6
o0 ,/’/////// N .
T LSS v
10.00 { v
/
8 F> > ‘.-“}’
gpow ://*T
| 2l
_—._—-—————FKSQ' "
1000 — /{m-ru“"
R B
N k2
Figure 15a_ |
Regions where_a > Ds‘ Figure 15b
and Dg > a a:Dg Values for ki, kp Pairs

(adapted from Kellerhals et al 1975,
Figure 5a) :

Within the Common Range
(refer Table 6)

i e et
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the numerica] method for nonuniform materials.

Table 8 indicates that the average at =1. 16 1 (standard

sieve
~deviation 0.09) for the 38 sample ratios. For the purpdSé of evaluating
this ratio with respect to numerical method pred?%tions, the line
corresponding to EEDS=1.]6:] was drawn (Figures 15a and b). "As well, in
Figure 15b, additional EEDS ratios for common k], k2 pairs found :in |
Table 6 were plotted. Figure 15b shows that for the EEDS equal width
"bands" exist which decrease in value ‘.. \ . ,ue decreases) as the ky and
k2 values of a pair approach 1.0. For :l' Ko pairs with common values,
EEDS ranges from 1.25;1 (k}=k2=0.b,, to 1.03:1 (k]=k2=0.75). The EEDS=
1.16:1 line falls centrally within the subregion formed by the common
range k]3 k2 pairs. Significantly, the ratios 1.25:1 and 1.07:1, which
correspond to the at DS1eve vatios which are one standard deviation on
either side of the 38 sample mean, also fall withjn this subregion.

- Assuming that the mean k va]pes of most of Friedman's samples fell within
the common range, these results strongly suppoff the hypothesis that the -
a: D ratios of the numerical method predict- the behavior of at Ds1eve

for nonuniform materials.

2.3.3 Experiment 3

In section 1.5 distributions provided by grid-by-number (B{)
and bulk sieve ana1ysis of exposed gravel bars, were examined. It was
obse}ved that grid-by-number (Bt) distributions were coarser than their
Dsieve counterparts (1.5.1). It was concluded (1.5.4) that there were
two reasons for this.inéquality arising; geometric nbn-equiva]ence due
to surface paving and fhe non-equivalence of'grain-siZe measurés B and Ds'

These possible causes of non-equivalence can be investigated in detail

since McGinn's (1971) sampling pfqgram.different%ates between surface and

2
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subsurface deposits and the Kellerhals et al (1975) humeric§1‘method‘
makes quantitative predictions concerning the re1at¥onshipﬁamong B, Ds,

and k, (2.2.2).

2 .
McGinn sampled the surface layer with ESsentiallyfeight different

proéedures, including grid-by-number (Bt) and quadrant (area)-by-weight
(henceforth: Q is the term denoting the quadrant (ar- '.y-weight sampling .
procedure whereby all surfacé-grains > 8 mm, within,a :cified area

‘are removed aﬁd sieved; Q is the term denbting the mean of the grain-

size distributidn obtained 7 -om Q). Thé>sdbsurface deposit was a]so'

sampled usinqﬂbulk sieve analysis (henceforth: D is the term

sieve?
denoting the bulk sieve analysis of the coarse (> 8 mm) portion of the

1
U

subsurface sample; D ave2 15 the term denoting the mean of the jrain-

size distribution opta1ned froh D .The weights of Q and D

siéveZ)' sieve?2

were then added to provide the D distribution for each sample.

sieve
The advantage of'cdﬁbaring grid-by-number (Bt) and Q is that
only surface grains afe being sampled, thus population differences due
to surface‘paving are avoided. However, as discussed by Kellerhals and
~Bray (1971) and McGinn (]97]) Q is not geometr1ca11y equ%iélent to

either gr1d by-number or volume-by-weight and requires the we1ght1ng ' \

’ - factor 53(refer to Ke]]erha]s and Bray, 1971, p.1173, 1175 for more

detail on this procedure Qs1eve is 2 term denoting the mean of the
Qieve gra1n—s1ze d1str1but10n), . o -~
> - %
The values Q, QS1eve DS_]eve apd Ds1eve2 can be compared for

both paved and non-paved depos1ts "If the depos1t is.paved, it is expected

that Qs1eve i’ Dsieve g Ds1eve2’ whereas 1f non-paved Qs1eve steve Ds1eye2

In both types of depos1ts Q> Q

1
sieve - s1nce the we1ght1ng factor ] applied

to Q a]ways produces a finer Qsieve d1s¥r1but1on.

4

*in 2.3.3 the values of mean terms are in_mm. ' éf;
R , ‘ R



Although Q and gridiby-number (Bt) are geometriéa11y _ Qgﬁ

sieve

equivalent, the numeriEal method suggests that Ei > 6sieve ~M0re

specificaiiy,'it predicts that for a uniform material composed of vf
eHipsoids the B:D, range is 1.4142:1 to 1:1, where B:D_=1.4142:1 as |
k2 approaches O and B:D =1: 1 for k,=1.0. The B:D, range for common'kz'
values is 1.24:1 to 1.13:1, where B: D =1.24:1 for k 0 55 and B D wT 13:1.
for k2=0‘75(2 2.2) Since the numerical methodﬁhas beenehppiied quite
successfu]]y to non- uniform materials in 2. 3 1 and 2. 3 2 and the grain—

M_size measures ' of and grid by- number (B t)-a.re Ds and B respectively,

S1eV€

it is expected ‘that the B Q range for surface layer gravels will

Sieve
be from 1.24:1.to 1.13:1, assuming a common range of k, values.

The results of McGinn's (1971, Tab]es 5 and 8) Wilcoxon Tests

for his 30 samp]es tend to conforr expectation It was found

" (TB ) Sieve~

similar for median, skewnEss and ku.,usis parameters) and Q

(grid by- number { d distributions were a]v

S1€V

i [
¢ o

(QSIEVE=051e¥e) 'Th?

Sieve 1ends support to the hypotheSis that B is. a -

-

(these distributions were a]so Similar for@ian, skewness and’ kurtOSis
parameters) It may be inierred that Q= B )

‘inference that B > Q.
Coe . ﬁ;%kw
,'coarser grain- Size\heasure than D The reiative coarseness of Q and

B comparedﬁio QSieve nd DSieve distributions has been predicted above,: _
however their apparent eqUiva] nce ‘s not a neeessary outcome of any of.

these Predictions. The equ1va1ence between Qsi ve and DsiévefdiStrib”t{O"S

inmiies that the samb]es may not have been paved

Geometric and grain size measure non equ1va1ence were further

T )

Sieve and QSieve va]ues for McGinn's

samp]es (raw data from McGinn, 1971, iAppendix I) and then combiping ‘them

examined %y ca]cu]ating the Bt’ D

to form ratios Bt DSieveZ’ QEieve i 4{and B QS1eve (Table 10). As

. -~

~
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1.53:1 1.25:1

1.83:1

R

‘Ratio 0.98:]

Standard

Deviation 0.40

s
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.wé11 the sample weight ratio Q:D
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sieve2
show that the surface and subsurface populations were different, even

vthough these suspected differences had been compensated for by using “;

I

' only gra1ns > 8 mm, then: 1t 1s c]ear that D was a m1xture of two

| d1st1nct popu]at1ons and the value of'D.

sieve

sieve

grain-~size characterlst1cs and proportions. As such the comparison of a

Dsieve distribution with surface samp11ng procedyre d1str1but10ns grid-

by number (B ) or Qs1eve’ cannot be expected to yield equivalent results,

even if D andVB were equ1va]ent gra1n size measures.
_ o
The ratio data in Table 10 clear]y indicates that most of

K =4

f McGinn s samples wen& pavedaand fhus D was actual]y a m1xture of
LAY s1eve

. of tHe ratio Q

o8
avera@é va]ues of the rat1os B D

:populatwon d1fference»‘

T

twoy d1st1nct popu]g%?ﬂﬁgw* fhg surface and subsurface depos1ts were

comb1ngd in approx1mate1y equa] proport ons sinte the qverage value of

the samp]e we1ght*rat§o Q:D =0.98:1, standard dev1at1qn = 0 40. .

s1eve2
The relative coarseness of the. surface is conf)rmed by the average value

ﬂ

sieve Ds1eve2 1.53: lm\&tandard deviation = 0. 48. The‘“

sieve2 =1.83:1: §Tandard dev1at1on 0: 40

-and E' RO 25 1, 'standard dev1at1on ° 0.25 furtHér»emphaswze the

s1eye

o .b
:ﬁ»d by number (B e and Qs1eve’ which are

geometr%ca]]y equ1va1ent surface 1ayer methods, were much c]oser 1n‘:

X 8
-va]ue than gr1d-by number (B ) and Ds1eve2’ wh}ch were derived from -

surface and subsurface depos1ts respect1ve1y TheQWU]cOxon Test

!

result, Q , which 1n1t1a11y suggested that‘thersamples were

s1eve5 sieve
not paved apparently was a consequence of applying the we1ght1ng factor

s

l-to Q and’ comb1n1ng Q w1th D values, respect1ve1y At least for

D
McGinn's data these two distinct value- reduc1ng operat1ons performed

“sieve?2

on Q, both produced stat1st1ca1]y similar grain- size values.

was calculated. If these ratios

was dependent upon the1rv“»_



to which B "> Q
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The outcome of the investigation of the ratio E\ Q-1eve for

McGinn's 30 samples bears heavily on the question of\the non-equivalence
of grain-size measures B and DS since both'orid-by—number (Bt) and
Qsieve are énrface layer sampling procedures and are geometrically

equ1va1ent but employ d1fferent gra1n size measures B and Ds. The'

'\"c lp
average value ofxtng@j,~_ B :Q, —1 25: 1* 11e§ just outside the common

> sieve
k2 value B:DS range, 1.24:1 to 1.13:1 estab11shed by the numer]calxmethod,l

and corresponds to k2=0.53. "1t is notable that 11 out of the 30 ratio

‘values fall within.this relatively narrow range, 10 of these being 1.23:1:

The range of the B, Qs1eve values determined by using the standard

devlat1on 0.25, 1.50: 1 to 1:1, corresponds quite closely with the pre-
dicted BiDS'range, 1.4142 to 1.1. These ratio resu]ts uphold the infer-
implying that®®“is a

ence based on the Wilcoxon Tests fﬁat B, > Ugieve

1 - »
‘coarser grainﬂsize measUfeg%ﬁan D Furthermore, assum1ng that the -

:s{'?
mean k values of most of McG1nn s samp]es fell within the cormmon range,'

£:Q

sieve

resu]ts compare qu1te well with numer1ca1 method pred1ct1ons, o

N

The preced1ng discussion examines why samp]1ng procedure

Y\ o

exper1ments which attempted to show the equ1va1ence between bulk-sieve

W

ana]ys1s and grid-by- -number ut111z1ng exposed gravel bars, genera]]y

found gr1d:2¥;gymber (Bt) dtstributions to be c¢parser than those of

Dsieve; This effect was probably caused By geometric non-equivalence
3 . < ’ -
assoctated with surfac§~paving and the non-equivalence of grain-size

measures B ahd Ds' By comparing only geometrically, equivalent surface
layer §ampliﬁg methods and emptoying the numerical method, fhggoegree

sieve "@s predicted with reasonable Success. This out-

come conf1rms "the value of the weighting factors assoc1ace¢ ﬁo&hAth%~

"".

L

theory of‘geometr1c equivalence (gr1d by number is geometr1ca11y ’
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equivalent to Q

. ) and the predictive value of the numerical method's
. H{,‘.Lv‘.‘.- . S 1 eve . ]

'&@ﬁua&ion (3)‘for nonuni form materials.
2.3.4 Conclusion
Each of the three samp]iﬁg experiménts test a different facet
of the numerical Pethod‘s predictions for nonuni form materials. The
success of these prédictions‘stroﬁg]y supports the conclusiom that the
rumérica] method has bfoad‘appiicabi]ity to the solution of problems

associated with nonuniform material sampling procedure equivalence.

~
k]
”



CHAPTER THREE '
TERRACE GRAVEL EXPERIMENT METHODOLOGY

3.1' General Introduction

The apparent EGS of a terrace gravel exposure can be treated

as a thin section surface (1.3,5). However, this surface is different

.x"

,. :"4‘

from that of a thin section in that both apparent and true ax1a1 x@lues
of grid selected surface grains .can be measured easily. Thus terrace |

gravels provide a unique opportunity to test certain numerical method
predictions not cons1dered in the prev1ous three. exper1ments:v

G

This chapter presents methods associated w1th the fourth

T

experiment; the grid-by- number samp11ng of terrace grave]s It#h

Y

.descr1bes the study krea, the fleld procedures emp]oyed in the collec- :
L e

tion of the»terrace gravel grld samp]es, and the methods used to analyze

the re5u1t1ng data

3“12“ ‘Th‘ ) ‘ -.' | - ' : ‘ S

'vh1temud and Wee¢ Creeks are north f]ow1ng tr1butar1es of the

a \N*i was
. North Saskatchewan R1ve: These two nelghbour1ng stream systems which
are found in the vi. nity ‘of’Edmonton, Alberta (F1guré 16), have been
the subject of geomorphic inyestigation by Rains (1969) and Shelford

. (1§74). Their terrace maps as well as Rains: numerous Whitemud terrace
stratigraphies, greatly simplified the searCh'for terrace gravels su%t;
able for testing. | | .

A diben

sion of the surficial geology of both basins assists

¢

in clarifying the character of the terrace deposits. In particular,

their 1itho]og’!§ﬂ variability is a direct outcome of a.complex regional”

surficial geo]ogy The present summary fo]]ows westgate s (1969)
B
comprehens1ve paper od the Quaternary geology of the Edmonton area.

s Y . " 68
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Bedrock in the Wh1temud and Weed Creek dra1nage basins is
predominantly Upper Cretaceous in age, and’ consists of interbedded
bentonitic sha{es and’ sandstones, with some coal segms and bentonite
beds.q Lying unconformably upon the bedrocEL and assocjated with pre-
g]aci@h valleys, fluviatile preglacial Saskatchewan Sands and Gravels .

are found as terrace and va]ﬁeyfiil deposits. The lithology of this

material is pr1mar11y quartzqgg sandstone and ‘chert but also 1nc1udes

arkosic sandstone Jjasper ané bedrock. This composition provides

~

strong evidence of Cordilleran oridi ~Averlying the Saskatchewan Sands
and Gravels or sitting directly on the bedrock-is»a lower graytshﬂhrown
ti1l. This and another Laurentide ti]] (upper till) are commonly
separated by stratified sediments known as Tofie]d_Sand. ‘Both tills

bear a sizeah]e proportion of Canadian Shield igneous and metamorphic |
rocks. The northern sections of both basins are veneered with 1acustr1ne

y\-
depos1t@ ?r'

" the former prog]ac1a1 Lake Edmonton
5-‘[

frtly after the draining of Lake Edmonton,kthe Nonth

Saskatchewan began to cut its valley. Within this postglacial river
. ' . . % S )
valley four distinct terrace levels can now be observed indicating that

| the river has shown variable rates of degradation. The terrace maps

o

of Rains‘and Shelford revealed %gafogous terracing patterns in both

their tributary va]]eys 4] The presence of what-are termed the “Tower,

“5:% .;

m1dd1e, upper and h1gher” cyc11c terraces convinced them that’ periods L

<
of aggradat1on and degradat1on within these tributaries dﬁbended upon
g base ]eVel changes of the North Saskatchewan.

- \

~The terrace gravels found. w1th1n the Whitemud and Weed Creek v (ﬁ
bas1ns are lithologically highly variable. The compos1t1on is related /}

to the local abundance and ava11ab111ty of the Horshoe Canyon Format1on, /
" . - A
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Saskatchewan Sands and Gravels and till-derived materials. Typically,
the terrace stratigraphy consists of bedrock overlain by a thin stratum
of alluvial, occasionally imbricated gravel grading upwards into fine
grained sediments. . .

3.3 Field Methods

_3.3.0 Introduction

This section discusses the factors involved in site sel ‘Ngg
and methods of grid.pTi@%ment, grain selection and measurement. S’b

3.3.1 Site Selection

The terrace exposures examined were thoseuof the lower and
m1dd1e terraces of both Whitemud and weed Creeks ngxfo]1ow1ng criteria
were used to determ1ne the site selection. ’

1) Site Access1b111ty - Some prom1sfng exbosures were
'fnaccess1b1e because they were found on quite sheer
(cut-banks.

2) Dimensions of Gravel Stratum - The exposed terrace
grave] stratum had to”be large enough to accept the
- 0.5m square grid, so the exposure's minimum dimension .
had to be at least 0.5M. ,

3) Material - Terrace gravel deposits which appeared
quite'isotropic and homogeneous were preferred. In
most gravel strata anistropy due . imbrication'was .

Tow. - Deposits which consisted of substantial |
quaﬁt{t}es of shales and sandstones were avoided "
becauee they were in sreét;'éng were usua]ly;hjéhly

oA

fractured and difficult to extract.

. Q‘
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4) Surface - The gravel surfaces selected were near
vertical and approximately flat. If it was not flat
1n1t1a1]y 1t was modified S0 as to decrease photo-

graph1c sca?e distortion due to distance variations.

3.3.2 Grid P}gpg@ent Gra1n Se]ect1on and Measurement

In order to standard1ze site 1nvest1gat1on, a five step pro-
cedure was adopted:

Step 1) A 0.5m grid with 100 intersection points was

0

staked firmly in place at the chosen site. FEach

grid was labelled for purposes of photographic”
: ’*\.

‘identifdcation (Figure 17a) e.qg., WMM3é%”Whitemud'
Creek, middle terrace, s1te 3, grid G.

Step 2) The grid was ob%erved from a fixed frame of
'reference located approx1mate]y 1.0m d1rect]y in

front of the grid center (F]gure 17b).. From this

"

, vanta&omt a number of grains were selected
[ A N
>‘ ;‘-‘4 .\-)‘
tgz, ,(us1ng the" gr1d intersection pq1nts The approx-
e

imate size, shape ‘and ]ocat1oﬁ of the selected .
surface grains were recorded on a grid map
These systematically gathered grains served as

the grain popu]at1on for this grid.

‘o el

v ‘ Two sng%tTy Gﬁ?%érént methods‘were used to

select .grains.. The f1rst method tends to pro- ~
N
duce Tower n values (number of gra1ns selected

per grid) than the second method. It is hypothe-

e ‘sized that these variations fh n make no difference. -

-
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v Method 1)

> 8&m (see 1.5.2) and ay under a grid

J

iricersection point mﬁé se]ected;

Method 2) This method requiréd that the grid
intersection points Bé examinéd in a
specific order. The grid was divided
into 10 columns each consisfing-of 10
grid intersection points. The columns
were sampled from left to right o ch ~
column was examined from the taﬁ‘tq the

. bottom. In all cases, if a grain-had a.
. . minor apparent axis > 8mm and ]ay‘benééth
a grid interse@tion, it was chosen. If

-the grain's minar apparent axis was <

i , :
8pm, the point was considered barren,

ﬁ%bﬂand»ahother‘éTést_wastought by moving

~ either Qp, right, down or to the left
- : C e
Fati & . L8
along one of the two grid lines; composing
' o } N 13 ‘, N ) '
the intersection. The search conti%ued :

- as far as the next intersection. Oﬁly
one grain search was a1ﬁowed'péf‘bar}en'

point;fthe direction of search being .

l

§2§ve

barren point encountered.’ If a §uitébfef

.;varied by 90°vcloékwi§éif6?-each sudke

_grain was discovered along .the grid line
“and it was not under the adjacent inter-

section, it was collected asia representative
: v : ‘

j‘ ' . ‘_’ . ’ . _A\‘v,
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t v

of that intersection. In this latter
case, as well as when no suitable grain
was found at all, the barren point was

left without representation.

Steod3) Where usefui for clarity purposes the surface was

Step 4)

sprayed white (spnay paint) and the grid was photo-
graphed from the frame of reference (Figures 18a and
b). B |
By constant refehence to the map the selected grains

were earefu11y removed to prevent face collapse and

" subsequent loss. In a number of cases where’ there

")

was a part1a1 face co]lapse a se]ected stone cou]d

be 1dent1f1ed and recovered from the debr1s because.

1ts~s1ze and shape (ass1stance from the gr1d map)

were known and it was part1a]]y wh1te due to spraylng

The At’ Bt and C axes of these se]ected gratns

-~ were then measured by calipers ‘and recorded.

Sten 5)

Prints of the grid were later examined. - Those

'ﬂg'tlasts'extnacted in the“fie]d were located'by means

of the grid map and the maJor and minor apparent

axes a, and b were measured. The wh1te pa1nt

often made dhe trace out11nes of the surface grains

more ev1dent

~

Since on the prints (approximately 11:5.x 8m), the

"

2

B m1111meter divisions could be d1scerned on the grid

frame metrlc ru]ers, 1t can be 1nferred that the

&

e

.
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- Figure 185 Grv'i‘d and §pr"ayé'diTerr;ace 'Gré\gell Suyface .
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photographic resolution was ]LOmm. - Although the
grids were generally 1/7 life size on the prints,
and therefore the millimeter divisions.approximate-
ly 0.14mm on these prints, the,cg]ipers could
measure down to 0.02mm\and thus could accurately
measure the divisions on the millimeter rule.

3.4 Data Analysis

3.4.0 Introduction . G

The objective of this Qiperiment is‘to'observe the effgét
variations in assigning linegr‘qimensions to selected grqins have on
their respective grain-size distfibutions, and to compare these results
with‘those predicted by the numerical method. Because identical grains
of the surface layer population are employed in a given grid-by-numben
. experiment, differences in a graiﬁ-size distribution must be a conse-
quence of treatment (grain-size mea§urement).

| The remainder of this section discusses the test procedures
whereby specific predictions of tﬁe numerical method are comparéd with
the empirical data. Also, a method for examining the effect of sample
number on the results is described.

3.4.1 Primary Data Analysis

. The true and apparent axes (Ai, By > Ct, at’~bt) of each grid-
selected grain were measured (3.3.2).' Four additional grair size
measures (ABt, ABCt, BCt, abt) (1.5.1) were also computed for each
grain. The frequency of *+he data associated with each 6f these nine
grain-size measures was Je _rmined by number Qsing 0.25 @ class intervals.
From this grid-by-number data the values for nine cunu}ative size-

frequency distributions were calculated for each grid.
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The distributions associated with each grid were plotted on
arithmetic probability paper. For each of these curves, @ values were

determined which permitted the computation of the median, mean, standard
/
Jdeviation, skewness and kurtosis parametric values by Folk and Ward

statistics (King, 19&¢).

3.4.2 The Wilcoxon Matched Pairs Signed Ranks Test

The Wilcoxon Test utilizes both diréct{Oh and magnitude
differences within matqhed pairs to test whethew wo treciments are
different. This paired non-paraﬁetric test wa. - se it does
not requirez{he assumption that the populations sire - amined are nor-
mally distributed. ) '

In thé\wiacoxon Test, differences are initially ranked without
regard to sign. Subséquent]y, both positive and negative values are
totalled and the smallest value noted. This value is compared with the
Wi]cdxon Table and ‘its significance determined for the sejected probabil-
ity level (in this experiment o = 0.05 for two-tailed tests; a = 0.025
for one-tailed tests).. The ratibna1e~of the test is that if two treat-
ments are equ’ '‘alent, then the sums ofxtgé positive and negative ranks
should be aboutjédua1. .If‘the"sums aré\tonsiderably different then the
null hypothesis,-Ho, th&f the treatment; do not differ is rejected and
H], the alternative hypothesis accegted (see §iege1, 1956, p.75-8§ for
more details).’ i

' JIn this study 20 matched pairs were used in each test, each

pair being dériyed from a differentkgrid experiment. For a given test
of two treatment types, all values tested were for the same parameter,

e.g., the P values of 20 Btso-at50 matched pairs. The method of analysis

is similar to that of McGinn (1971, p.17-20); see also 1.5 and 2.3.3.

~ .
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3.4.3 " Testing Procedures A to F

Test Procedure A |

The Wilcoxon Test (two-tailed) was used to test all possible
combinations of median and mean matched pairs consisting of both true
axial and apparent values. The ABC t50 and KEC values were matched with
each of the other five true axial medians and means respectively, and |
tested. As we]] the standard deviation, skewness and kurtosis parametric
" t,ABCt at,BC ab Ct bt) were tested..
This initial testlng procedure serves to detect general

values of five pairs (Bt-ABC ,B,-

relationships between true and apparent’axial distributions. ‘Special
emphasis was given to the f%ve pairs because of McGinn's (1971) finding
that grid-by-number (B ) and (ABC ) d1str1but1ons were stat1st1ca]1y
equivalent (1.5.1) and Kellerhals et al (1975, p.84) statement that
“Even in the case of nonuniform materials, the observed
distribution of a can be expected to resemble the true
distribution of B in first approximation, and similarly
the observed b- distribution will resemb]e the true C-
distribution.”
Test Procedure B
. This testing procedure utilized the Nilcox&n Test to examine
- specific numerical method predictions for grid-by-number (Bt) and (at)
distributions, and grid-by-number (Ct) and (Bt) distributions. Btso and
§£ were converted by means of Figure 14a) to obtain 3550 and Eb values
respectively; similarly Ctso and fi were converted by means of Figure 14b)
to obtain bp50 and Eﬁ values respectively (henceforth: apSOf ap, bp50
and Bb are terms denoting predicted median and mean apparent axial values

calculated as follows:



Example of conversion of Bt50 nto aﬁSO

B g C
250 o _ ‘5
average k, =-y—— , average k2 B

“ t50 t50
‘using this average k, and k, in Figure 14a) a-8)100 ,

, .
ap50= £50 (Tﬁﬁ t 1), ap is formed in the same way except Ki, E} and fi

are used.

Example of conversion of‘Ct50 into bp50
C

t50 '
average k B .
¢ Bso 5-C)100 :
using this average k2 in Figure 14b), = Y

= __Y__ 5 i : . 5 =
bp50 ct50(100 +1), bp is formed in the same ' .y except Bt and Ct are

used.
The four sets of 20 matched pairs (at,g-\0 p50° at n’ thO-bpSO‘

t b ) ware then compared using the N11coson Test (two-tailed).

Test Pnocedure C

This fesfjng procedure utilized the Wilcoxon Test to examine
the relationship between grid—by-ﬁumber (Ct) and (btzfgistributions. In
contrast to testing procedure B which had similar objectives, btso and'bt :

were converted by means of Figure 14b) to obtain C 5o and fp (see 2.3.1

P
for more details on conversion). The two sets of 20 matched pairs

(CtSO'CpSO’ Ct-Cp) were then compared using the Wilcoxon Te%t (two-tailed).

Test Procedure D

This testing procedure employed the Wilcoxon Test to investigate

the relationship.among the four methods of estimating the average kz
(Eisﬂ, t, :—t—sﬂ %),

t50 Bt t50 a, )
six average k2 estimate combinations, each consisting of 20 matched pairs

The Wilcoxon Test (two-tailed) was applied to all

(50 %t Ceso Ptso Ctso Pr "t Peso Tt Pe Pesg _53)
B = ° B a,rn’ B, == a0 T =4 =
0 B tes0 %0 Pso 3B, w0 By @ Y50 3
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As well, the arithmetic and weighted mean were calculated for

each of these average k2 methods.

Test Procedure E

This testing procedure used the Wilcoxon Test (two-tailed) to
-examine the realtionship between predieted sieve median and mean values

bESed on either true or apparent axial values. Thus two sets of 20

matched pairs (DSpso dspSO’ ﬁ p " ) were: compared (henceforth
DspSO and B;p are terms denot1ng pred1cted med1an and mean sieve values
calculated as follows:

Ciso Ty
average k2 g or—

t50 B ,
D Cz,(—rt5° 2(1#42)] % equation (4); T, = S (4] ¥ equation (4)
sp50° 2 q > Usp T - 2 quat
- 2
Ca]cu]at1ons required to obtain predicted sieve values ds 50 and d
. b
were_described in 2.3.1. These required average k2 est1mates tSO
: t50

b - -
and :;- respectively.: .? '
a ) .
t, Test Procedure F &
The purpose of this testing procedure is to determine if the

degree of d1fference between matched pairs which the numerical method
,J

predicts are of equal value, is dependent upon either grid sample sfze

n, or the use of median-versus mean values. -
These particular matched pairs were employed because their
predicted relationship is one of equivalence (no difference). In"
‘contrast, the numerical method predicts that differences between matched
pairs Bt - a, or BCt50 - btso for example, are‘dependent upon the average

' k values of each grid experiment. In this latter case, differences
3 \ ] ,
caused by factors such as sample size may be obscured.

o ) _ ,
The testing procedure utilized eight sets of 20 matched pairs



d

350 ~ 2p50° Pso ~ Ppsor Ctso - Cpsor Dspso ™ dspsor 2t T % by - By
Ei - fb and ﬁ;p - H;p. The matched pairs were grouped according to the

size of the sample and by parameter (median or mean)'(Table I1).

&

Table I1 Matched Pair Groups

n ‘ : Median : - Mean
20 to 29 group 1 median group 1 mean N
30 to 39 group 2 median. ~group 2 mean
40 to 49 group 3 median grouo 3 mean
50 to 59 group 4 median group 4 mean
60 to 69 group 5 median . group 5 mean

Groups were compared with respéct to their minimum and maximum
differences, range of differences and the weighted mean of their

di fferences.



| CHAPTER FOUR
TERRACE GRAVEL EXPERIMENT RESULTS AND: DISCUSSION

4.1 General Introduction

Chapter Four presents the results of the terrace gravel grid-
by-number experiment described in Chapter Three. The degree to which the

testing procedures confirm numerical method predictions for this non-

k]

uniform material is discussed.

4.2 The Data Used in the Wilcoxon Tests

The 95, @16, @25, @50, @75, @84, and @95 values of all true and
apparent axial distributions are located in Appeﬁdix I. With these @
values the médian, mean, standard deviations, skewness and kurtosis para-
meters of each distribution canbe calculated.* The median and mean "]
values of all true axial distributions are presented in Append1x I1. The
mediin and mean P values of a; and’ b apparent axial d1str1butions and
numerical method predxct1ons can be found in Table 16, Chapter Four.

4.3 Experimental Results and Discussion

4 3.0 Introduction

The results of testing procedures A ;o\F\gSi§r1bed in 3.4.3

“ar\‘

are presented and examined.

4.3.1 Testing Procedure A

The Wilcoxon Test results (Table 12) indicate that only three
of the true and apparent axial matched pairs tested (Bt-ABCt, ABCt a
Ect-abt) have significantly similar median or mean values. For the five

matched pairs which were tested using all five parameters it is observed:

*(Folk and Ward, 1957)

83



Wilcoxon Test Co

Table 12° i .
arison of True and Apparent
~ Axial Distyibution Parameters

84

el
Median Mean
. ABCiso tgn  abisg byey ABC, ap &by by
Mo M H R A I B T M
Mrso M B H K Be M KWW
Stso Mo W t B¢ o M H W
ABC 5 Hy Hy K AEC, Ho B W
Bso M My Hy T BC, Hy W WK
Ct50 Hy H o Hy K Ct H H H H
] 1 ] 1
Axial - Standard "
Measures Deviation . Skewness Kurtosis
B, -ABC, Hy Hy Hy
By-ay Ho Ho H
2

ABC,-a, Hy Hy Hy

BC,-ab, Hy Hy Hy

Ci-be Ho Ho Ho

8
} S

Null Hypothesis. HO:

Reject Null Hypothesis.

the compared axial distributions do not differ
with respect to the tested grain-size parameter

at level of significance @=0.05

H,:
1 with respect to the tested grain-size
parameter at level of significance

a=0,05

the compared axial distributions do differ °
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B,-ABC, matched pair

The null hypothesis is accepted for all five parameters, thus the two
distributipns are statistically equiya]ent. These findings are identical
to‘those of McGinn (1971}).

B matched pair

t 2t
The null hypothesis is accepted for the standard deviation and kurtosis
parameters. This indicates that while distributions have similar

" characteristics ona of the grain-size measures produces coarser results.
ABCt-at matched pair |

The null hypothesis is accepted for all parameters except that of the
median. While this indicates that the distributions based on these two
meas ures are statiética]]y similar the results are slightly confusing
since Bt'ABCt distributions are equivalent. Thks sugges ts Bt—at distri-
' butjons are only slightly different with respect to median and mean
values.

BC,-ab matched pair

t @ .
o - ¢

The null hypothesis is accepted for all parameters except that of the
mean. Thus the distributions based on these two different measures are
quite similar.
Ct'bt matched pair

¢
The null hypothesis is accepted for standard deviation, skewness and

kurtosis parameters. Like the Bt—at matched pairs the distributions have

similar characteristics but one of these measures produces coarser

?

results.

~ Considering that the Bt—at'distribution median and mean values
are only slightly different and that the BCt—abt distributions are quite

similar, it is probabie that the Ct-bt distributions have only slightly ;}Q
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different median and mean ya]ues.

4.3.2 Testing Procedure B

The Wilcoxon Tests indicate that matched pairs atSO?épSO'

at-ap, btsofbp50 and bt'bp are statistically equivalent. Th1sﬁgtrongly

confirms the numerical method's predictive capability. ~;534

As discussed in 3.4.3 predicted median and Qéan apparent axfal
values are derived from median.and mean truevax1a1;:M ueJ\by using
Figures 14a) and b). In all caseg these f1ggref%bred1c ed that B > a
and C > b for the average ky and k, va%fes usedw(ﬁQ?Qes 13a and b). Table

14 whlch is based on Tables 13a and b, provides’information on the ranges
of X and Y.

Since‘thése‘matched pairs are statistically equivalent it may
be inferred that the gfid-by—number (Bt) and (Ct) distributions in Testing
Procedure A are coarser than the grid-by-number (at) and (bt) distribu-
tions, respectively. It appears in approximate terms that the Bt and

Ct distributions are 10 percent coarser (Table 14). Wilcoxon Tests (one-

. . B - T %
tailed) confirm that B ., > atso’,Bt > 2, Cygq >'bt50’ and Ct > bt'
. 4.3.3 Tes ting Procedure C

The Wilcoxon Tests reveal that ctso.is equivalent to Cp50
but that the null hypothesis must be rejected for E; and Eﬁ.

4 3.4 TJesting Procedure D

The Wilcoxon Tests show that of the four average k, estimate

C n .
methods all except :;-provide statistically equivalent values. The

arithmetic and weiéhted means support these findings and demonstrate -

I‘rfﬂ

derived k2 values are brobab]y slightly greater than the other three

[we]

tostimates (Table 15). Wilcoxon Tests (one-tailed) uphold this conclusion.

* » here signifies "is coarser than".



Table 13a

cpSO' .pSO' bpSO' Dspso and d:pSO Yaluas in mm for the
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) _ Table 14 ' *
Ranges of ig;pgjgp = X and £§££%499-= Y in Tables 13a and b
Predicted : :

Term X " Y Table

ap50 -4.9 to. -16.0 13a

Eb -5.3 to -12.5 - ) _ 13d

bp50 —677 to —14.1’ ) j3a )

by . ‘ o -7.7 to -14.1 13
. Table 15

Wilcoxon Tests (two-tailed) and Arithmetic and Weighted
Mean Results- for Four Average kz Estimate Methods '

Method of estimating T c b 5, - .
average k2 and Wilcoxon ":;- # BtSQ = at50, =‘J_J; N
- Test. results B, ~ "t50 50 T d p
Arithmetic mean of : . ’ '
.20 kz.va10es . 0.6?1 0.59 | 0.58 .0.58
Weighted mean of ‘ o ' A v
20 k2 values 0.63 0.59 . 0.57. | 0(58 o

4.3.5 Testing Procedure E

: Wilcogpn Tests indicate that matched pairS'DSpSO'dspSO and

sp'dsp are statistical]y equivalent. As disgussed in ;.4.3, DSpSO and
ﬁ;p values are dependent upon Humerical method predictions associated

[
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& :
with true axial median and mean values, while dSDSO and d sp are derived
from apparent axial median and mean values by the numerical method The -
equivalence of these two sets of matched pairs supports numerical method
predictive capability for nonuniform ma;efja]s. | '

T

That D is eqhiva]ent to dSp50 is consistent with testing

sp50 C b
t50 50
procedures B (C js ‘equivalent to C_..) and C ( and. ‘are
t50 p50 Btso 3450
equivalent estimates of the average k2).
C C
t50 L t50
Since Dgoeq = (1 +«k )] where kz-——Btso (4)
: C b , '
gso i _2t50 o
and_dSpso 2k2 [2(1 + kz)] where k, - (4), it is reasonable that
DspSO is equivalent to dSpso

That Dsp and dSp are statistically equivalent is also consis-

tent-with testing procedures B (EE is not equivalent to E') and

C b.
C (——-> :}- as an estimate of the average k ) but in a more complex
a, )
manngr
: Us1ng the arithmetic and weighted mean results (testing procedure C) in
C
(4); D —1 33 (C ), where the average kz-——L =Pai? -~
E t
vdsp=]'4] (Cp), where the average k2=§71f0.58.
t S
Since DSp and H;r -~ statistically equivalent then;
- T.33 (Cf)—1.4] (;p) .

Thus, fofJequiva]en .9 occur between ng_and 3;p it is probable that

E£ is approximately 6 percent greater than Eb. A Wilcoxon Test (one-tailed)
supports this conclusion by demonstrating that Ei is significahtly greater

an C_.
vth n p
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4.3.6 Testing Procedure F

The humericq] method predicts that the 8 sets of matched pairs
tested in 4.3 should be equivalent. The Wilcoxon Tests show that
differgnce in magnitdde and direction for these ﬁatched pa{rs are not
§igniFi§ant except for fi—fb. Table 16 pressnté testing procedure F's
n group déta apdvTab1e 17, an aﬁa]ysis of each group's minimum and
maximum range, and weighted mean matched pair differences. It is
observea that: — ‘

1) The maximum difference between matched pairs geclines‘
from group 1 to group 5. The minimﬁm difference bétwéen‘l
the matched pairs is 0 for all groups. Only for grbup
2 mean is the maximum difference greater than that for
the median based matched pairs. In gene;al, the rangej‘
of differences between matched pairs declines frgm group ‘
1 t6 group 5. . |

2) The weighted means of small (.1, .2, .3) and 1a}ge (.4,

..5,‘.6) di fferences respectively are fairly similar.

In fhe case of group S the median and mean weightgd'
mean differences are less than the others,_however;

this may not be significant since they are based on
the‘r;;u1ts of only one grid. The weighted meansqof
all difference values (O‘tqg,é) decrease from §roup 1

to groupIS. Except for gr;;§_1, thé median difference
weightgd means are greatef.ghén their mean counterparts.

3) Large matched pair differences are 1imjted to a minority

of grids (Table 18). A1l groups except groups ﬁ)mean,

- 5 median and mean possess at least one grid experimer :
o ) ) )
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Table 16.
P Values for 8 Sets of Matched Pairs

which are Predicted to be Equivalent
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group 4

Y
{
Table 18
Grids with Large Differences (.4,.5,.6)
‘ in Table 17
Grid Grou Large
P . Differences
WMM10B group 1 median .4 5
WMM108 group 1 - mean .4 5
waioc £ group 1 median 5
WMM10C group 1 mean .4 5
WCM6B group 2 median .4
- WCM6C' group 2 median 4
WCM5C group 2 median .4
WCM5C group 2 mean 3
WCM5B group 3 median .4 5
‘ o <=
WMM3B group 4 median -4
WMM3B mean | .4

94
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with large differences.

Observation 3) helps to clarify observations 1)”and62)
concerning maximum differences, maximum range and weighted means (0 to
.6); Lower n groups haQe the largest differences, raﬁges and weighted -
means (0 to .6) because thé} have a greatér proportion of grids with
large differences and thesg.have the greatest value (i.e., .G)l

In general these results indicaté that while small sample
_size grid tests can be performed such that differences between matched
pairs p?edicted to be equivalent are §Ma11, there is a tendency for a
relati?e]y high proportion of these tests to exhibit very large matched
pair differences. In contrast, a relatively low proportién of the
larger sahp]e tests tend to display 5§fy large matched pair differences.
These results may be due to a décrease of chance yariation; with increased
sémp]e size. |

~ Observation 2) furnishes evidence thaf matched pairs derived
from meﬁn data possess smaller differences. In this case, chanfe
variations associated with mean values may be less than éediéns because
the égéhs utilize more.d{stribution information.

4.3.7 Conclusion - “ |
Testing‘Brocedures B and C (summarized Table 19) demonstrate
that the numerical method can be successfullyremploygd to predict
apparent axial measure values from true axial measure values. .The‘.
converse is also true. Sfmi]arly, median and mean sieve'qiameter
numerical method predictidns based 6n actﬁa] true and apparent grain-

‘size values are significantly similar (testing procedure E , Table 19).

Testing proceduré D reveals three averagé k2 estimates



i

. Table 19

Summary of Testing Procedures B, Cand E

96

Testing o "Based on o\  ‘Statist1ca1
procedure true axial _apparent axial relation
o measures:  measures/
.- . \\
Wilcoxon Test (two-tailed) -
B ap50 350 no difference
a Cay no difference
bp50 begg no difference
Bb b, no difference
C ctSO Cp50 no difference
Ct Eb difference
E 5p50 CdspSO no d1fferencg
sp dsp‘ qo d1fference
Wilcoxon Test (one-tailed)
B Bis0 3¢50 Biso > 3ts0
Bt a, Bt > a
Cts50 bisg Cts0 > Peso
Ct bt Ct > bt
E Ct\_ Cp C.t > C.-
'. . v
N\
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c b. b, ' C
Ezégy 53593 and :E are statistically equivalent. -:; provides slightly
t50 t50 a, Bt _
larger k2 values. This latter observation combined with the Wilcoxo
Test result E} > Eﬁ is shown to be consistent with the finding that
ﬁ;p and a;p are statistically similar (testing procedure E, Table 19).

Generally these results powerfully confirm the usefulness of
the numerical method ‘as it is applied here to‘the nonuniform terrace
gravel deposits. For a given grid experiment the findings of testing
procedure F indicate that large sample size and the use of mean va]ges
" tends to yield smaller differgnces between estimates of equivalent

. 1}
é?a;n-size measure values.



CHAPTER FIVE
SUMMARY AND CONCLUSIONS

5.1 General Introduction

| This conc]udin§ chapfer discusses the numerical method with
respect to the four empirica} experiments examined in this thesis. M
Specific‘attention‘is given to the techniques, limitations and advan-
tages of sampling gravels using only photographs of their apparent

surfaces.

5.2 The Four Empirical Experiments and the Numerical Method

fhe four empirical experiments, which test numerical method
.predictions for nonuniform materials, vary with respect to material,
~ sampling situation and sampling procedure (Table 20). These variations
pérmit different aspects of the numerical method to be tested. As
observed, the results of each of the four experiments confirm numerical
method predictions.

The numerical method like any other method, model or theory
will only achieve popular acceptance as its basic capabilities and
| limitations are C]ear]y defined and thoroughly tested. The four experi-
ments provide a clear indication of the numerical method's broad pfedictive
powers. Duplication or modification of any or all of these exper{ments
Qou]d further assist in determining the reliability of the numérical

method predictions.

Experiments slightly different from the oﬁes described are also
necessary. Kellerhals et al (1975]) prédfct that if chord.1ength meas ure-
ments; such‘as the maximum ch&rd length in a predetermined direction are
used instead of apparent axial measurements "...the resulting distribution

‘should give directly a close apprOxfmation of the DS distribution.".

98
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Also kel]erha]s et al (1975, p.89) discuss the fact that their
numerical method predictions have been geherated.assumin; a‘materia1 i®
isotroaic. Since clastic sediments are often anisotropic, the numerical
method results presented in their paeer may not be useful for samples
with preferred orientation. They propose that this can be corrected for
‘ by'changing the basic mathematical sampling process fundamental ‘to the
numerical method predictions so as to take into account "...the strength'
of the preferred orientation and the a]ignment.of the thin section(s).".

This can be tested.

5.3 Photographic Sampling of Gravel Surfaces

5.3.0 Introduction

Empirical experiments 3 and 4 show that .the numerical method
can be employed successfully in the photographic grain-size sampling of
both apparent 0GS and EGS. This final section reviewé the eyidence |
subporting this cencluéion.and discusses the techniques, iimitation;
and advantages of Samp1i69 each type of surface photographica]]y.

5.3.1 Photograph1c Samp11ng of an Apparent 06S

McGinn (1971) showed 1n his expoSed gravel bar samp11gg experi-
ments (examp]e of an apparent OGS) that gr1d by-number (B t) and (bt)
distributions wé?epqu1te similar (1.5.2). In Experiment 3 (2.3.3) using
his data, the numerica] methodlpredictéd with reasonable success the

degree by wh1ch B was greater than Q. It may be inferred from

sieve’
these results that equal success may be ébtained if EE was replaced by

b, (i.e., by > Qsieve)' However, as discussed in 1.5.2, the equivalence

of grid-by-number (Bt) and (bt) does depend on the Ct'axis of most gravel

bar grains being perpendicular to the surface plane.

hl -{:v

5
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The numerical method conversion of bysg OF B; to a predicted
median or mean sieve diameter would be facilitated if an ave}age k2
value could be derived from the actual measurement of the true axes of
50 to 100 grains within the general area where photogrdphic samp!ing

is taking place. Using equat1on (3) the predicted median and mean

b b
50 -3 t 2v1 %
~sieve diameters would equal (1 + kz 17 and — 200 + k3]
respectively. It must be remembered that these median and mean sieve
values only apply to surface 1ayer gravels. -

-5.3. 2 Photograph1c Sampling of an Apparent EGS

In Exper1ment 4 (Chapters Three and Four) the terrace gravel
apparent EGS was treated as a thin sect1on surface (equ1va]ence d1scussed
in 1.3). In a]mgst every case the med1an and mean values of grain-size

measures which were predicted to be equivalent by the numerical method

-

were statistically simi]ér'(4.3; Table 19). The predicted median and
mean sieve diameters, dspSO and dSp can be calculated in the manner
described in Experiment 1 (2.3.1). Because average ko estimates. based

on either true or apparent axes tend to be comparable (4.3.4, testing

procedure D) true axes of grains need not be measured in the field.
5 ,

Several prob]ems‘ugique to the photographic sampling of terraceé

grave] apparent EGS may be éncountered.
BN

1) The clasts compos1ng the gravel deposit must be
approximéte]y e]]ipsoida] in shape. Fluviatile

quartzite gravel found within the’Edmonton area

is ideal. T
< 2) The terrace gravel deposit may have a-pronounced
fabric.. As discussed in 5.2 numerfcai methquprQQ ' 7_;&,vz¥g;;;

dfgf?ons may have to be adjusted to tqgéﬂinidlf ifi.,f>”
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account preferred orientation.
3) The area within the grid frame may include more than

‘ one bed. This should not prove much of a problem as
long as it is recoonized and grain-size distributions

determined for each bed.

4) Since much work is done in a cut-bank setting, 1# {s
often impossible to posjtioﬁ oneseif properly to tako
the grid photograph. Usoaliy, tﬁ§ photograph is taken

* from apprc mately one meter %r0m~grid(center and the

& , 11ne;of sight_passes through this'éenter and is per-

pendicular to the surface plane. A so]ution to thio

problem 1nv01ves placing the ¢amera on a bracket

. attached to the grid frame (Append1x f&I)

St
&

For terrace grave]s, the f1e]d aoa‘data'analys1s procedures

necessary for the determ1nat1on of the predicted median” and mean sieve

\) diameters, déoSO and d 'sp respect1ve1y, are provided in “Appendix IV.
5.3.3 General Features of Apparent Surface Photographlc
Sampling . 1 .
s

There are severa] points wh1ch must be taken into account
when sampling grave] apparent OGS and'appanent EGS. The number of grains
collected per sample shou.d be quite '~.-ge, approximately 50 and the >
_minor apparent axis of a selected clast should be.no smaller than 8mm.
There may be‘problems if the graVe] is oarticularly coarse since the
_frame and grid requ1re a relatively flat surfpce In this case, a frame

ﬂrbear1ng ru]ers but no grid may be. used The gr1d «an be superimposed

Y ‘E Tater on mhe photograph and scale determined using the rulers. If grid-

by-number resu]ts are to be d1rect]y comparab]e to those of bulk sieve




103

analysis, the axial values of a clast should be counted as many times
as it falls under grid intersection points (seé ke]]erhals'and Bray, -
1971, p.1168 and conversion factor theory 1.4.4).

* . 5.3.4 Advantages of Photographic Sampfigg

The gr&in—size sampling of river bar and terrac? gravel
deposits by photography has a number of advantages. Time savings may
ghnab1e more comp?ehensive'sampling programs to be considered. Beéause
of its speed, ephemgra] features associated with river channels or
beaches ma} be more easily studied. Field work time-savings could be
_paral)e]ed by the automated analysis of the photographs.‘ Final]y, it

may be the only reasonable sampling technfdue to employ in certain

undersea or extraterrestial environments.- "

\ ) ' ' . ’lp .
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. Important @ Values
of all True and Apparent Axial Distributions

WCM3A

 WCM3B

" WCM3C
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Important @ Values
of all True and Apparent Axial Distributions
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{';»i BRI .
R Grid Cﬁméra BrTcket -

, The'bracket cons1sts of a shaft whf&h is. attached by means of -
a h1nge midway along the bottom of . the grld*frame when the o{1d frame
is in‘a near vertical position, the shaft 1s}skung by means of two
equi-length wires connected to tﬁ’{top corners of the frame such that
the end of the shaft is 1ocated approx1mate1y over the" center of the
_ grid “A sma]] camera is placed in a holder wh1ch is bo]ted to the shaft:
near the end. The ho]der—camera arrangement is approx1mate1y one meter
from grid center and a]1gned so that the 11ne of’s1ght passes through
the centerhand 1s.perpendicu1ar to the surface plane. By-means of a

cable shutter re]ease or timer,'this grid frame-camera system may be

held over terrace gravel deposits, and consistently centered, in- focus,

photographs taken (Figures 17b, 19)

N

Figure 19 Grid Photograph Taken b& means of Grid
Camera Bracket and Cab1e Shutter Re]ease

| -

] -
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Field and Data Analysis Procedures
Used to Obtain the Predicted Median and Mean
Sieve Diameters, dSp50 and dS

p
1) Site Se]ectiop

d) The clasts associated with the terraﬁé gravel deposit
should be approximately ellipsoidal in shape.

b) Because numerical method predictions are for an
isotropic material, terrace gravel deposits which
appear quite fsotropic and homogeneous are preferable.

c) .Grain-size analysis should be performed for only one
bed. .‘

2) Terrace Gravel Grid Placemeht and Photography
a) The gravel surfacetshould pe modified so as to be
. \_\w{/
approximately flat in order to decrease photographic
scale distortion due to distance variations.

b) For ease of photography use the grid camera bracket
described in Appendix III. | |

c) For clarity purposes tﬁé gravel surface may be
sprayed white or colour film used.

d) If the terréce gravels are extremely coarse the
frame with rulers but no grid may be used. The
grid pattern may be superimposed on the print.

e) Each grid should be labelled in some wéy. ) .

3) Grain Selection on the Prints ' .

a) 50 to 100 grains should be selected. This may }eqqire N

- more than one grid photograph. A
) i

’ N
2 ok
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b) Select grains > 8mm. found under t' - grid intersection
points. - If a clast Ties under two intersection points
it must be counted twice (Kellerhals and Bray,']971).'

‘4) Grain Measurement from tﬁé Prints - '

a) Méasure the apparent major axis a,» and apparent
minor axis bt’ of eacp ;e]ected grain with calipers.

b) Determine thé scale factor from the grid fu]ers and
apply -to the Apparent axes values.

5) Primary Data Analysis 3

g) The frequency of the apparent major and minq;iaxis
data respectively is determined by number using
0.25 P or 0.50 @ class intervals.

b) The_cumu]ative size-frequency distribufibn is'plotted.
on arithmefic probability paper. -

);) The.ﬂ 16, P 15 and P 84 values of the distribptions
in b) are doted. The @ 50 Qalués of the apparent

major and minor distributions are the values of

/atSO and thO’ respectively. The Folk and Ward
.16 + P15 + P 84
3

mean of the apparent major and

m?ﬁbr distributions yields the mean values E; and
: Bf’
6)* The Numerical Method Median and. Mean Sieve Values

respectively.

The following presents the'method}of computing the predicted
median sieve dlameter,‘dspso.

a) Convert 450 and‘bt50 values fr?m P un1ts to mm. .

/ ” <
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p50:

‘b) Calculate C
 bygg (b - C)]O
Using k2 T in Figure 14b,
t50
p50=(1-0-Y)(bygy)

lp 's calculated in the same way except 5; and E£ are

used.
c) Ca];u]ate aspSO:
d;pso gkso [20+5)] - § o i\\\ »
where kz—zzgg o _ l’f-’ " g
FSO

dSp is calculated in the same gxcept bt’ a, and Cp

are used.

\w.

<L



