

University of Alberta

A Near-Optimal and Efficiently Parallelizable Detector

for Multiple-Input Multiple-Output Wireless Systems

by

Arsene Fourier Pankeu Yomi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

in

Communications

Department of Electrical and Computer Engineering

© Arsene Fourier Pankeu Yomi

Spring 2012
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

This thesis is dedicated to my parents, who provide me with continuous

moral and material support in every steps of my life, even with the long distance

that separates us. It is also dedicated to the Guedom family, who made me a

member of their family in all regards, and without whom this thesis would have

never been possible.

Abstract

 Broadband Wireless Communications and Multiple-Input Multiple-Output

(MIMO) systems have been the focus of much research over the past decade. A

variety of MIMO detection algorithms have been proposed for detecting the data

signals from the multiple received and demodulated baseband signals. Among the

detectors, sphere decoding algorithms are known to be near-optimal but they are

relatively complicated and have variable detection latencies, and are therefore

inconvenient to implement. Also, the variable latency of most sphere decoder

algorithms makes them difficult to implement efficiently on parallel hardware.

This thesis work evaluates several alternative MIMO detectors and

proposes a near-optimal and efficiently parallelizable detector. The new MIMO

detector has much lower computational complexity than a sphere decoder, and has

a convenient parallel structure comprising multiple instances of the Vertical Bell

Laboratories Layered Space Time (V-BLAST) MIMO detection scheme.

Acknowledgements

I would like to acknowledge the guidance and tremendous corrections

work of my supervisor, Dr. Bruce Cockburn and the theoretical advice from

Saeed Fouladi Fard. I would also like to acknowledge the financial support of

iCORE and the Natural Sciences and Engineering Research Council (NSERC) of

Canada. Finally, I would like to thank my VLSI and HCDC fellows, Russell

Dodd, John Koob and all the others for their help and company from the first day.

Table of Contents

I- Introduction ………...…………………………………...1

II- Background ………………………………………...…...4

 2.1 MIMO Systems………………………………………..4

 2.2 System Architecture ...…………………………...………………9

 2.3 Conventional MIMO Detection Schemes ..…………………..14

 2.3.1 Maximum Likelihood (ML) Detector …………........……15

 2.3.2 Minimum Mean Square Error (MMSE) Detector17

 2.3.3 Vertical Bell Laboratories Layered Space Time (V-BLAST)

 Detector ...…...19

 2.4 Fouladi Fard’s Parallel Detection Scheme ...……...............…..23

III- Proposed Detection Scheme29

3.1 Key Ideas ..………………………………29

 3.1.1 Definition of the Restricted Search Set 29

3.1.2 Layer Ordering ...………….…31

3.2 Simulations and Results …………….......................……………….32

3.3 Alternative Detectors ...………….……38

IV- Computational Complexity Results ..…......……...40

 4.1 Assumptions ……………..……………40

 4.2 General Results for Basic Operations …………...................…….42

4.3 Computational Complexity of the Detectors ……...................….45

 4.3.1 Real-valued Detection…...............................………….45

 4.3.2 Complex-valued Detection ……...........……………….54

V- Asymptotic Analysis …………………..…......……..65

 5.1 Assumptions …………………...............................…………….65

 5.2 Asymptotic Performance Analysis ……........…………………66

 5.2.1 Definitions ………….………66

 5.2.2 Asymptotic Analysis of F-BLAST .………...... ………67

 5.2.3 Asymptotic Analysis of FR-BLAST .………...... ………70

 5.2.4 Asymptotic Analysis of the Real-valued F-BLAST72

 5.2.5 Simulation Study ..75

VI- Performance Study of a Turbo Decoder ..………78

 6.1 Turbo Codes ………..…………………............................……..78

6.2 Turbo Codes for MIMO Systems ..81

 6.2.1 TC Design in Asymmetric Digital Subscriber Line (ADSL)81

 6.2.2 Iterative Decoding for Wireless Communications82

 6.2.3 High-Speed MIMO Wireless Communications84

6.3 System Model ..84

6.4 Results ..91

6.4.1 16-QAM ..………..……............91

6.4.2 64-QAM ...……………….........93

6.4.3 256-QAM ..…………......97

VII- Conclusions and Future Directions ………......….99

 7.1 Conclusions ………………………………………………....…99

 7.2 Future Directions ………………………...……...................101

References …………………………………..………102

Appendices …………………………………………..108

 1. Minimum Mean Square Error Conditioning Matrix108

 2. Statistical Study of the Family of FR-BLAST First Detected layer

 ..112

 3. General Results for Basic Operations ..116

 4. Matlab Scripts for the Hard Detectors ..129

 5. Matlab Scripts and Simulink Models for the Coded System159

List of Tables

1. General Complexity Results ..43

2. Computational Complexity of Real-valued MIMO Detection Algorithms53

3. Computational Complexity of Complex-valued MIMO Detection Algorithms63

4. Experimentally Measured Tail Slope ..73

5. Corresponding EbNo for selected BERs for Various Soft Detectors in a 44

16-QAM Turbo MIMO System ..92

List of Figures

1. Radio Links Based on the (a) SISO and (b) MIMO Configurations4

2. MIMO Channel Model …...………………….6

3. Average Capacity of Ideal MIMO (22, 3 3 and 4 4) and SISO

(Conventional Shannon Capacity) Channels ..7

4. System Architecture…...…………...9

5. Constellation Diagram for Gray-Coded M-QAM (M = 16) …..............10

6. Simplified MIMO Detection Diagram ……….......................................….14

7. V-BLAST vs. F-BLAST ..26

8. SER vs. SNR for F-BLAST for Different Parallel-search Layers and Increasing

Numbers of Antennas ..27

9. SER of Alternative Detection Schemes for a 44 16-QAM MIMO System over

a Rayleigh Fading Channel ..28

10. Search Windows of Size W = 8 (Darker Shading) and 16 (Darker and Lighter

Shading) for the 64-QAM Constellation ……...….31

11. SER vs. SNR for FR-BLAST of Various Reduced Search Windows.............33

12. SER vs. SNR for FR-BLAST for Various Reduced Search Windows and

Signal Constellation……………………………………35

13. SER vs. SNR for MMSE, V-BLAST, FR-BLAST of Various Reduced Search

Windows, and F-BLAST …................................……………………………36

14. Performance of the Real-valued F-BLAST Detector ……........................37

15. Approximation of the Average Error Probability for Large SNR Values77

16. Turbo Encoder Diagram ..…78

17. Turbo Decoder Diagram ..79

18. Block Diagram of an ADSL Modem ..81

19. Iterative Multiuser Decoder with Soft Information Exchange ……83

20. Block Diagram of a MIMO System Employing ST-BICM and an Iterative

Receiver ..85

21. Block Diagram of the Turbo Decoder Model ..87

22. Partition of the 16-QAM constellation ..89

23. BER vs. EbNo of a 16-QAM Turbo MIMO Model Associated with Various

Soft Detectors, MMSE (a), Real-Valued F-BLAST (b), and F-BLAST (c)91

 24. BER vs. EbNo (dB) of a 16-QAM Turbo MIMO Model Associated with

Various Soft Detectors for: one iteration (a), four iterations (b), and twelve

iterations (c) ..92

25. BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with Various

Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c), F-BLAST

(d), FR(9,S1)-BLAST (e), FR(9,S2)-BLAST (f)…..........94

26. BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with Various

Soft Detectors, FR(9,W2)-BLAST (g), FR(9,W1)-BLAST (h), FR(16,S1)-BLAST

(i), FR(16,S2)-BLAST (j), FR(16,W2)-BLAST (k), and FR(16,W1)-BLAST

(l)..95

27. BER vs. EbNo (dB) of a 64-QAM Turbo Model Associated with Various Soft

Detectors for: one iteration (a), four iterations (b), and twelve iterations (c) 96

28. BER vs. EbNo of a 256-QAM Turbo MIMO Model Associated with Various

Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c), FR(9,S1)-

BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BLAST (f), FR(9,W1)-BLAST (g),

FR(16,S1)-BLAST (h), FR(16,S2)-BLAST (i), FR(16,W2)-BLAST (j), and

FR(16,W1)-BLAST (k) ..97

29. BER vs. EbNo (dB) of a 256-QAM Turbo MIMO Model Associated with

Various Soft Detectors for: one iteration (a), and four iterations (b) 98

List of Algorithms

1. ML Detection Algorithm ..16

2. MMSE Detection Algorithm ..18

3. MMSE V-BLAST Detection Algorithm ..21

4. F-BLAST Detection Algorithm ..25

5. FR-BLAST Detection Algorithm ..37

List of Results

Complexity Result 1 MMSE Detection on 2m Real-equivalent Layers45

Complexity Result 2 V-BLAST Detection on 2m - 1 Real-equivalent Remaining

Layers ..46

Complexity Result 3 V-BLAST Detection on 2m Real-equivalent Layers 48

Complexity Result 4 F-BLAST Detection on 2m Real-equivalent Layers 50

Complexity Result 5 ML Detection on m Layers ……………...............….…54

Complexity Result 6 MMSE Detection on m Layers55

Complexity Result 7 V-BLAST Detection on m - 1 Remaining Layers …....56

Complexity Result 8 V-BLAST Detection on m Layers …....................……57

Complexity Result 9 F-BLAST Detection on m Layers ……..........………..59

Complexity Result 10 FR-BLAST Detection on m Layers…………….61

Asymptotic Result 1 Diversity Order of F-BLAST……...……..67

Asymptotic Result 2 Diversity Order of FR-BLAST……...……..70

Asymptotic Result 3 Diversity Order of the Real-valued F-BLAST .…...72

Corollary to Asymptotic Result 3 Diversity order of the Parallel Real-valued F-

BLAST ..74

List of Abbreviations

3GPP2: Third Generation Partnership Project 2

a* : complex conjugate of the number a

A-1: Inverse of the square matrix A

ADSL: Asymmetric Digital Subscriber Line

AWGN: Additive White Gaussian Noise

B.B.: baseband

BER: Bit Error Rate

CDMA: Code-Division Multiple Access

d: diversity gain

Eb/No: Energy per bit to noise power spectral density ratio

F-BLAST: Fouladi Fard’s detection scheme based on the V-BLAST detection

scheme

FEC: Forward Error Control

FR-BLAST: family of reduced parallelism detectors based on the FBLAST

detection scheme

H: m-by-m channel matrix, with complex entry normally distributed with zero

mean and unit variance

HH: Hermitian matrix, i.e., conjugate transpose of the matrix H

Im: m-by-m identity matrix

L: number of information bits

LLR : Log-Likelihood ratio

LTE : Long Term Evolution, a standard for wireless communications

m: number of antennas at each side of the radio link

min: minimum of a set of real numbers

M: size of the constellation signal

MAP: Maximum A Posteriori

MIMO: Multiple-Input Multiple-Output

ML: Maximum Likelihood

MLD: Maximum Likelihood Detection

MMSE: Minimum Mean Square Error

n: complex noise vector

nr: number of receiver antennas

nt: number of transmitter antennas

OFDM: Orthogonal Frequency Division Multiplexing (OFDM)

Pe(SNR): average error probability of the given scheme at a given SNR

QAM: Quadrature Amplitude Modulation

QoS: Quality of Service

r: code rate of the encoder

rm: multiplexing gain

RF: radio frequency

RSC: Recursive Systematic Convolutional

Rx,i: i-th receiver antenna

ŝ: detected symbol vector of length m

s: transmitted symbol vector of length m

SER: Symbol Error Rate

SIC-MMSE: Soft-Interference Cancellation based on the MMSE criterion

SISO: Single-Input Single-Output

SNR: Signal-to-Noise-Ratio

ST-BICM: Space-Time Bit-Interleaved Coded Modulation

T: duration of a frame

TC: Turbo Codes

Tx,i: i-th transmitter antenna

|v|: absolute value of the number v

||v||: norm of the vector V

V-BLAST: Vertical Bell Laboratories Layered Space Time

W: size of the search window or restricted search space

y: received noisy symbol vector

ZF: Zero Forcing

1

I- Introduction
 This thesis is concerned with low-complexity and efficient detectors for

Multiple-Input Multiple-Output (MIMO) wireless communication. Of special

practical interest are detectors that can exploit parallel hardware and that can be

scaled up to handle a larger number of antennas and more complex signal

constellations. The performance of proposed new MIMO detection algorithms is

compared to the performance characteristics of conventional detectors with

respect to their Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR)

performance and their computational complexity. We first consider uncoded

systems, and then extend the investigation to a Turbo-coded system model.

 MIMO wireless technology is being used to provide both greater data

throughput over the same radio bandwidth as well as greater robustness in the

presence of channel noise and other impairments. However, the more information

that we try to send (within the Shannon capacity limit for the MIMO system), the

more complex will be the detector at the receiver side.

The main objective of this project was to improve the relatively simple and

well-known V-BLAST MIMO detector through the use of parallelism to achieve

near-optimal performance. We considered a reasonable amount of pararallelism to

be 16, since orthogonal frequency division multiplexing (OFDM) systems uses

around 64 subcarriers. Parallel signal processing hardware has the advantages of

potentially simplifying the chip implementation, lowering the voltage thus saving

power and ensuring more predictable timing. A parallel implementation may

make it easier to share hardware among multiple similar datapaths, which is a

2

likely scenario in multicarrier wireless systems. They are some challenges that

must be overcome in parallel architectures, such as the problem of distributing

data for parallel processing and then later gathering and possibly combining the

results. A performance study was done to derive the computational complexity

and to determine the Symbol Error Rate (SER) or Bit Error Rate (BER) versus

SNR characteristics over a simulated noisy channel. The performance of

alternative parallel MIMO detection schemes was compared with that of

conventional detection schemes, such the minimum mean square error (MMSE)

detector [1] and the original V-BLAST detector [2].

 In contrast to existing near-optimal but computationally-expensive

detection schemes, such as the sphere detector [3] or the tree-based search

detector [4], we were able to achieve similar performance using parallel

structures. The thesis also provides a detailed comparison of the computational

cost for the alternative MIMO detectors. This cost is expressed in terms of the

required number of fundamental real-valued operations (e.g., additions,

multiplications, reciprocals) as well as the minimum possible execution time (in

terms of single-cycle operations) assuming arbitrary parallelism.

 The main contributions of this thesis are:

� A first analysis of the complexity of Fouladi Fard’s parallel V-BLAST

algorithm, which we call F-BLAST.

� Simulation-based investigation of the performance of new restricted

search window versions of F-BLAST.

3

� A simulation-based investigation of the performance of real-valued

versions of F-BLAST

� An analysis of the computational cost of the various MIMO detectors that

were considered.

� Asymptotic analysis of F-BLAST, FR-BLAST and the real-valued

versions of F-BLAST.

� A simulation study of the performance of the new detectors used in

combination with soft turbo decoding.

4

II- Background

2.1 MIMO Systems

Figure 1 Radio Links Based on the (a) SISO and (b) MIMO Configurations [5]

In a conventional Single-Input Single-Output (SISO) communication

system (see Figure 1a), there is a single transmitter and receiver at either end of

the radio link. The transmitters and receivers contain a baseband (B.B.) processor

as well as a radio frequency (RF) circuitry for each antenna (RADIO in Figure 1).

We will assume that the B.B.-to-RF modulators in the transmitter and the RF-to-

B.B demodulators in the receiver function perfectly without impairing the signals.

In an ideal unobstructed communications channel, radio signals travel through

free space along a single path from the transmit antenna to the receive antenna.

Unfortunately, obstructions (such as buildings and natural terrain features) and

propagation effects in the radio channel can create multipath effects such as

5

multiple reflected, refracted and scattered propagation paths. With multipath

propagation, multiple copies of the transmitted signal arrive and get superimposed

at the receiver antenna. Due to the inevitable differences in path lengths, the

phases and amplitudes of these reflected signals are typically different from each

other and from those of the possible direct line-of-sight path. Because of this, the

signals at the receiver can combine constructively or destructively, causing

position-dependant fluctuations in the received signal strength. These fluctuations

can be very large (e.g. 30 dB or more) and will also change with time if the

antennas move or if the environment changes. These position and time-dependant

signal attenuations are called short-term fading [6]. Excessive fading effects can

diminish the data throughput and could cause data loss. For transmission systems

where the propagation effects can be determined only at the receiver, and under

the assumption that each binary digit is equiprobable, the capacity (in bits of

information/sec) of a SISO channel is given by Shannon’s capacity theorem [7]:

CSISO = B * log2 (1 + ρ) bits of information/sec

where B is the bandwidth of the channel and ρ is the average signal-to-noise-ratio.

Shannon’s theorem gives an upper limit on possible error-free data transmission.

However the proof does not provide constructions that can achieve the limit.

In a conventional Multiple-Input Multiple-Output (MIMO)

communications system (see Figure 1b), a radio link terminates at several antenna

elements at both the transmitter and receiver. A baseband processor at the

transmitter distributes the data over the multiple parallel tributaries and,

optionally, inserts code bits for error control. At the receiver, the baseband

6

processor performs detection on the demodulated received signals and merges the

recovered parallel bit streams into a single data stream. If coded bits were inserted

at the transmitter, the receiver checks the values of the received data and code bits

and possibly corrects errors in the data bits. MIMO technology has attracted

attention in wireless communications since it offers significant increases in data

throughput without requiring additional radio bandwidth or transmitted power.

More specifically, MIMO technology provides higher spectral efficiency (more

bits per second per hertz of bandwidth) and increased link reliability or diversity

(greater robustness against fading).

Figure 2 MIMO Channel Model [8]

The channel matrix H comprises the complex channel gains from each

transmitting antenna to each receiving antenna. Each element hji of H is in general

a complex vector that represents the discrete time channel impulse response

between the i-th transmitter antenna and the j-th receiver antenna, as illustrated in

7

Figure 2. If the channel is flat fading, i.e., different frequency components of the

signal experience the same magnitude of fading, then each element hji is a

complex scalar. For a deterministic channel matrix, i.e., each element hji is

known, without exploiting channel knowledge at the transmitter, the capacity of a

MIMO channel is [7]:

CMIMO = B * log2 (det [+ * H * H H])

When nt is large, * H * HH , where denotes an nr nr identity matrix.

In this special case [7]: CMIMO = m * B * log2 (1 + ρ) = m * CSISO bits/sec

Here B is the bandwidth of the channel, ρ is the SNR, nt 1 and nr 1 are the

number of transmit antennas and receive antennas respectively, and H is the nr-

by-nt channel matrix. The MIMO multiplexing gain m equals the minimum value

of nt and nr. H
H denotes the Hermitian transpose of H, which is obtained by

negating the imaginary part of each complex element of H and then taking the

transpose of the resulting matrix.

8

Figure 3 Average Capacity of Ideal MIMO (22, 3 3 and 4 4) and SISO

(Conventional Shannon Capacity) Channels

The capacity expression implies that for a SISO system, 3 dB of extra

signal power is needed for each extra bit per second of throughput at the

maximum capacity limit. Also, as illustrated in Figure 3, the capacity of a MIMO

system increases linearly with the minimum m of the number of transmit or

receive antennas. An alternative view is that by providing multiple paths from the

transmitter to the receiver, the effects of fading are mitigated on average and thus

a larger effective SNR can be achieved while using a MIMO system.

Because of its advantages, MIMO technology has been adopted by all of

the latest wireless standards such as the wireless local area network (WLAN)

standard IEEE 802.11, used in Wi-Fi technologies; the wireless personal area

network (WPAN) / Bluetooth - IEEE 802.15; and the metropolitan area network

(MAN) which is branded as WiMax - IEEE 802.16 [9].

9

2.2 System Architecture

Figure 4 System Architecture

Figure 4 illustrates the architecture of the system that we used to model

MIMO transmission and reception. Note that the system model is a conventional

baseband model where the modulation step at the transmitter and the matching

demodulation step at the receiver have both been omitted. Thus modulation and

demodulation are assumed to occur without impairment. The serial stream of

input data bits are encoded and then mapped to a space-time block of complex

baseband symbols. The symbols are intermixed by convolution with the channel

and then corrupted with additive white Gaussian noise (AWGN). The detector

recovers complex symbols from the analog received signals and outputs blocks of

soft data bits. Finally, the block of soft data bits is decoded and the resulting bits

are merged into a serial stream of output data.

This work mainly focuses on the channel detector block shown in Figure 4.

The channel detector is responsible for recovering a sequence of estimated

10

complex baseband symbols from the sampled baseband analog signals received

from the antennas. We will first describe the features of the new class of detector

and then analyze its performance. Finally, using a conventional Turbo Coding

scheme, we will compare the BER performance of several alternative soft

detectors. We will make the following assumptions:

� The input data or information bits or uncoded data is partitioned into

blocks of length L 1 containing randomly generated 0s and 1s with

equal probability.

� If coding is used, the encoder is the parallel concatenation of two recursive

systematic convolutional encoders of rate 1/2 [10]. The overall code rate is

therefore 1/3 (r = 1/3), i.e., the output sequence length is tripled. The

original information bits are interleaved with two equal-rate bits streams

produced by the encoders.

Figure 5 Constellation Diagram for Gray-Coded M-QAM (M=16) [11]

11

� The space-time mapper takes the block of encoded bits, and maps them

into a block of symbols from a complex constellation containing M 2

symbols, using Gray code, i.e., a binary numeral system where two

successive numeral values differ in only one binary digit, improving error

correction. The number M of available constellation symbols is typically

4, 8, 16, 64 or 256. We will be using standard complex M-ary Quadratic

Amplitude Modulation (or M-QAM) constellations (see Figure 5).

Sequences of symbols are grouped into frames that are sized so that the

duration T of a frame, i.e., the number of samples in a frame, satisfies T ≥

2 * m - 1 (for near-optimal diversity-multiplexing trade-off [12]). Finally

within each frame, the constellation symbols are grouped to form sample

vectors of length m. Typically m = 2, 3 or 4.

� The samples are transmitted through a simulated noisy radio environment.

To reduce the simulation workload, the channel matrix, H, is assumed to

be invariant for the duration T of a frame (i.e., the number of symbols in a

frame). Each element of H is regenerated from a complex Gaussian

distribution at the frame boundaries. Each scalar element hji represents the

gain from the i-th transmitting antenna to the j-th receiving antenna, as

illustrated in Figure 2. Scalar gains correspond to a frequency flat channel,

where the duration of the impulse response of the channel is less than the

symbol interval. We assume that the transmitter has no knowledge of the

channel, but at the receiver side the channel matrix H is perfectly

estimated. In practice, the channel matrix H is estimated using standard

12

methods that rely on fixed training symbol sequences that are inserted

among the data symbols, reducing the code rate and/or throughput [13].

� The vectors of symbols transmitted at the same sample time through the

channel are corrupted with Additive White Gaussian Noise (AWGN). The

received noisy signal vector is then detected separately, producing a vector

of either hard or soft bits. Hard bit information gives unqualified estimates

(e.g., 0 or 1) of the received binary digit. Soft bit information gives

estimates of binary digits along with probability information for each

binary digit. The soft bits are typically log-likelihood ratios (LLRs) given

to some finite bit precision (e.g., 4, 5 or 6 bits). The soft bits are output in

blocks that correspond to the blocks of symbols produced in the

transmitter by the space-time mapper. The multidimensional detected

block of binary digits is then converted into a one-dimensional sequence

of (hard or soft) bits.

� If coding was used in the transmitter, the block of received soft or hard

bits is processed in the receiver by a decoder to recover the serial stream

of estimated and corrected information bits. For example, in the case of a

Turbo-coded system, the soft bits are processed iteratively using a

standard soft decoding algorithm based on Maximum A Posteriori (MAP)

Probability. The output of the decoder is a sequence of information bits

with (hopefully) lowered BER.

The BER of the detector under consideration is computed by comparing the

recovered data bits for each detection scheme to the originally transmitted data

13

bits. The performance of the detector is measured by determining the BER vs.

SNR characteristic over a range of SNRs. A symbol encodes a sequence of

log2(M) 1 bits from an M-QAM constellation. Therefore at a given SNR, SER

 BER. Thus the BER vs. SNR characteristic provides the best overall measure of

the performance of a coded system, i.e., the average number of bits in error from a

received data block. The SER vs. SNR characteristic provides a more accurate

measure of the performance of a symbol detector on its own, i.e., the average

number of received symbols that have been detected with an error, without the

benefit of an error-correcting code.

14

2.3 Conventional MIMO Detection Schemes

The simplified MIMO system model is illustrated in Figure 6.

Figure 6 Simplified MIMO Detection Diagram

Here, s is a transmitted symbol vector of length m, where m = nt = nr is the

assumed equal number of antennas at each end of the channel. Following standard

practice, H is an m-by-m channel matrix whose complex entries are normally-

distributed with zero mean and unit variance. We assume that H is constant for

the duration of a frame, but is updated at frame boundaries in order to simulate a

Rayleigh flat fading environment. The frame length T is adjusted empirically to

achieve accurate simulated BER results. The noise vector n is an AWGN vector

of length m, whose coefficients are independent, normally-distributed complex

variables with equal variance σn
2. y is the corresponding received noisy signal

vector, which can be expressed in the standard baseband discrete-time model as

y = H * s + n [14]. ŝ is the detected signal vector of length m. The goal of the

detector is to maximize the probability of the event ‘s = ŝ’. Various detectors have

been proposed in the literature that range from the statistically-optimal (but

prohibitively expensive) maximum likelihood (ML) detector to low-complexity

detection schemes with relatively poor performance. We will focus on the

15

complexity, the accuracy and the delay (detection latency) to evaluate the

different detectors.

2.3.1 Maximum Likelihood (ML) Detector [14]

Knowing that the transmitted symbols are drawn with equal probability

from a known finite alphabet of size M, the ML detector selects the statistically

most probable candidate from among the M

m possible transmitted symbol vectors.

Intuitively, an optimal detector should return s = ŝ, the symbol vector whose

conditional probability Prob(s was sent | y is observed) of having been sent is the

largest, given the observed signal vector y:

ŝ = argmax [Prob(s was sent | y is observed)]

 = argmax , for all

possible s.

This equality is known as the Maximum A Posteriori Probability (MAP). If we

further assume that the probability Prob(s was sent) is constant for all s M
m,

i.e., we assume equiprobability in the transmitted s vectors, then the MAP

detection rule can be written as:

ŝ = argmax [Prob(y is observed | s was sent)], for all possible s.

A detector that returns an optimal solution satisfying this equation is called a

Maximum Likelihood (ML) detector. Under the assumption that the additive

channel noise is white and Gaussian-distributed (i.e., AWGN), we can express the

ML detection problem as that of minimizing the squared Euclidean distance

metric to a target vector y over an M

m-dimensional finite discrete search set:

16

ŝ = argmin ||y – H * s||, for all possible s.

The pseudo-code for an ML detector is shown in Algorithm 1. After

computing the error metric for all possible symbol vectors (Line 6), the detected

symbol vector is the one with the minimum error metric (Line 11).

--

Algorithm 1 ML Detection Algorithm

1. for (every received symbol vector y in a block) do

2. for (a1 = 1 ; a1 = a1 + 1 ; a1 < M + 1) do

3. for (a2 = 1 ; a2 = a2 + 1 ; a2 < M + 1) do

4. for (a3 = 1 ; a3 = a3 + 1 ; a3 < M + 1) do

 …

5. for (am = 1 ; am = am + 1 ; am < M + 1) do

6. CandidateError(sa1,…, sam) = norm2(y – H * [sa1;…; sam]);

7. end for

 …

8. end for

9. end for

10. end for

11. ŝML = argmin [CandidateError(s)], for all s in M
m

12. output ŝML;

13. end for

17

2.3.2 Minimum Mean Square Error (MMSE) Detector

Due to its very great computational complexity, the ML detector is not

often used in practice. To reduce the computational cost and to simplify the

detection process, MIMO detectors using a conditioning matrix have been

developed. The idea is to design a conditioning matrix G such that: ŝ = Q(G * y),

where y = H * s + n is the signal vector and Q(.) is a slicing function that returns a

vector ŝ of estimated symbols such that, for each element of ‘G * y’ the

corresponding element in ŝ is the nearest (in Euclidean sense) constellation point.

The Zero Forcing (ZF) conditioning matrix GZF aims to zero-out the inter-symbol

interference (ISI) by setting ŝZF = Q(GZF * y), for a given y, s and H. Note that ZF

does not exploit knowledge of random additive noise n in the signal. By contrast,

the Minimum Mean square Error (MMSE) conditioning matrix is designed so that

the expected error between ŝ and s satisfies the Minimum Mean Square Error

criterion given that the noise n is Gaussian-distributed. In Appendix 1 the

following two expressions are derived

GZF = (HH * H) -1 * HH

GMMSE = (HH * H + (1 / SNR) * Im)-1 * HH

where HH is the Hermitian of H, i.e., the conjugate transpose of H. The SNR that

is required in GMMSE can be estimated using training symbols that are inserted at

known positions among the data-carrying symbol sequence, or by using so-called

blind noise statistics estimation techniques [16, 17]. Note that GMMSE converges

on GZF as SNR tends to infinity.

18

 Given an accurate estimate of the SNR, MMSE detectors perform better

than ZF detectors. Intuitively, ZF detectors tend to over-react to any additive

channel noise, whereas MMSE detectors are optimized to minimize on average

the effects of noise [18].

The pseudo-code of the MMSE detector is shown in Algorithm 2. After

computing the MMSE output yMMSE from each receiver antenna (Line 3), the

detector picks the closest symbol from the constellation with respect to the

Euclidean distance (Lines 4 & 5; here 11,M denotes a row vector containing M 1s,

1m,1 denotes a column vector containing m 1s, and ConstellationSymbolMatrix

is the row vector containing the signal complex alphabet). yMMSE * 11,M provides

an m-by-M matrix whose i-th row contains a replication of the estimated position

of the symbol transmitted on the i-th layer. 1m,1 * ConstellationSymbolMatrix

provides an m-by-M matrix whose i-th column contains a copy of the i-th symbol

from the signal alphabet. Therefore, Distance is a matrix whose rows contain the

distances of the estimated position of the transmitted symbol to each constellation

symbol, and argmin(Distance) returns the closest constellation symbol to the

estimated position provided by the element of yMMSE.

Algorithm 2 MMSE Detection Algorithm

1. G = (HH * H + (1 / SNR) * I m)-1 * HH;

2. for (every received symbol vector y in a block) do

3. yMMSE = G * y; { conditioning }

4. Distance = | yMMSE * 11,M – 1m,1 * ConstellationSymbolMatrix |;

19

5. [s1;s2…;sm] = argmin(Distance); { slicing }

6. output ŝMMSE = [s1;s2…;sm];

7. end for

--

2.3.3 Vertical Bell Laboratories Layered Space Time

(V-BLAST) Detector [19, 20]

The vertical Bell Laboratories layered space-time (V-BLAST) algorithm is

a relatively low-complexity detection algorithm for the practical implementation

of MIMO receivers. Its BER vs. SNR performance lies between that of ML and

MMSE (See Figure 9).

The V-BLAST algorithm detects each symbol iteratively by using a serial

decision feedback approach. The key idea in V-BLAST is to first detect the most

powerful layer, i.e., the layer exhibiting the largest post-detection SNR, which is

the layer corresponding to the column of H which has the largest norm [20].

Detection of the first symbol exploits a linear equalizer, such as ZF or MMSE,

which minimizes the expected interference from the other undetected symbols.

We will assume that MMSE, which is more accurate in the presence of AWGN

on average than ZF, is used to detect the first symbol. V-BLAST then regenerates

the received signals given the channel matrix H and after having subtracted away

the additive interference produced by the first detected symbol. It then proceeds

with the detection of the second most powerful, transmitted symbol since it has

already removed the effects of the first symbol, and so forth. Note that the channel

20

matrix H and the corresponding MMSE conditioning matrix G must be deflated

(reduced by one in size, in one dimension) after each detection iteration to reflect

the disappearance of each detected symbol. The resulting vector should contain

less interference for the yet-to-be-detected symbols. Without loss of generality, let

s1 denote the symbol with maximum strength (i.e., the symbol transmitted through

the layer experiencing the largest post-detection SNR). Similarly, s2 will denote

the symbol with the second largest strength, etc. Thus the weaker symbols are

detected only after having subtracted away the interference contributions due to

the more powerful symbols (s1, s2, ...). Unfortunately, a weakness in V-BLAST is

that an error in the detection of any symbol will amplify the interference noise and

likely propagate to detection errors in subsequent symbols, and this cascade of

errors will degrade the performance of the detector.

After ordering the layers according to their estimated strength (i.e., estimated

post-detection signal-to-noise ratio), the V-BLAST detection scheme proceeds in

three steps at each iteration (except the first one, which does not require an

interference nulling step, and the last one, which does not require a symbol

cancellation step). For the j-th iteration:

(Step 1) Nulling: Vector yj contains interference from the still undetected

symbols sj+1,..., sm. However, this interference can be minimized by multiplying yj

by the nulling vector gj, which is the j-th row of G (i.e., the MMSE conditioning

matrix corresponding to the deflated channel matrix H corresponding to the j-th

iteration).

21

(Step 2) Slicing: Symbol sj is detected by selecting the symbol s' that

minimizes the complex scalar difference || gj * yj – sj || over all M possible

symbols sj in the constellation.

(Step 3) Cancellation: Vector yj+1 is computed by subtracting the predicted

interference H * [s1, s2, ..., sj, 0, ..., 0] from y.

The pseudo-code of the MMSE-V-BLAST detector is shown in Algorithm 3.

As previously mentioned, the detector iteratively detects the layers according to

their strength. This is equivalent to sorting the columns of H with respect to their

norm, i.e., the column which has the largest norm corresponds to the layer with

the largest post-detection SNR. Similarly, as shown on line 5, the layers can be

ordered by sorting the rows of G (gj, where j = 1…(m - t), and t is the number of

layers already detected), i.e., the layer with the largest post-detection SNR

corresponds to the row of G which has the smallest norm.

Algorithm 3 MMSE V-BLAST Detection Algorithm

1. Ĥ = H;

2. for (every received symbol vector y in a block) do

3. for (i = 1 ; i = i + 1; i < m + 1) do

4. G = (ĤH * Ĥ + (1 / SNR) * I (m - i + 1))
-1 * ĤH;

5. O(i) = k = minj || gj ||²; { Ordering }

6. gi = G(k,:); { Extract nulling vector from G }

7. ŝk = gk * y; { Nulling }

8. sk = Q(ŝk); { Slicing }

22

9. if (i < m) then

10. y = y – hk * sk; { Cancellation }

11. end if

12. Ĥ = Ĥ \ hk; { Deflation }

13. end for

14. output ŝVBLAST = [s1;s2…;sm];

15. end for
--

23

2.4 Fouladi Fard’s Parallel Detection Scheme
Due to its high complexity, ML detection is impractical for real systems.

Thus, researchers have investigated many sub-optimal but much more economical

and hence practical MIMO detectors, such as ZF, MMSE and V-BLAST.

However, simulations readily show that the V-BLAST detector provides far from

optimal performance although its performance exceeds that of the ZF and MMSE

detectors. The weakness in V-BLAST is that the first symbol detected does not

benefit from interference cancellation. Also, at the symbol cancellation step,

detections errors can occur and these errors enhance the apparent subsequent

interference and thus cause detection errors for the following symbols.

Fouladi Fard’s detection scheme (which actually rediscovered the Parallel

Detector scheme described in 2002 by Yuan Li and Zhi-Quan Luo [21]) is based

on the insight that the performance of the V-BLAST detector is limited by the

detection of the strongest layer [22]. Detecting the strongest layer can be made

more reliable by applying computation to speculatively subtract away interference

from one of the other layers. By making this one layer the weakest layer, one can

improve the joint detection of the strongest and the weakest symbols, and

subsequent improve the detection of all other layers. To improve the estimate of

the strongest symbol, the new algorithm starts with the weakest layer and

exhaustively considers all possible candidate weakest transmitted symbol values

from the constellation. For each hypothesized first symbol for the weakest layer,

conventional V-BLAST is then applied to detect the remaining m - 1 symbols.

The detection of the strongest layer should then experience less interference from

24

the weakest layer for the case where the correct weakest symbol has been chosen.

Thus the strongest and weakest symbols are detected jointly. We will refer to

Fouladi Fard’s detection scheme as F-BLAST.

The pseudo-code of F-BLAST is shown in Algorithm 4. The algorithm

cancels the contribution of a tentative candidate symbol sk
j from the weakest layer

k of the noisy received signal y, where j = 1, …, M, and M is the cardinality of the

constellation (Line 5 to 7). The remaining layers are detected according to the

original V-BLAST scheme (Line 8). Then, an error metric εj = ||H * sj – y||2 for

the tentative symbol vector sj is computed, where sj = [s1
j ; s2

j ; . . . ; sm
j] is the

detected symbol vector. After proceeding for all tentative weakest symbol

candidates in the constellation, the detector picks the one symbol vector ŝ with the

smallest error metric εj.

In terms of complexity, V-BLAST requires m nulling steps (i.e., vector

multiplications), m slicing steps (i.e., symbol comparisons), and m - 1 cancellation

steps (i.e., symbol vector multiplications and vector subtractions), to detect every

transmitted symbol vector. The computational complexity of F-BLAST is

increased by roughly M compared to V-BLAST as each of the M sub-detectors

requires one fewer nulling and slicing operation for the worst symbol. The

numbers of nulling, slicing and cancellation steps used in V-BLAST are thus

increased by M, some of which are shared (a detailed analysis is provided in

Section IV). It is important to note that the M sub-detectors in the proposed

scheme can operate independently and, therefore, an M-fold parallel

implementation of sub-detectors provides the same symbol detection throughput

25

as in the V-BLAST technique. A tree-structured output circuit can rapidly select

the symbol vector with the least error εj. For a more compact implementation, one

could implement only one instance of a sub-detector and then time multiplex it

among other M - 1 sub-detectors at the expense of lowering the symbol detection

throughput.

Algorithm 4 F-BLAST Detection Algorithm

1. G = (HH * H + (1 / SNR) * I (m - i + 1))
-1 * HH;

2. εBest = LargeNumber;

3. for (every received symbol vector y in a block) do

4. O(1) = k = maxj ||gj||²; { Ordering }

5. for (every symbol from the constellation) do

6. sk = CurrentConstellationSymbol;

7. y = y – hk * sk; { Cancellation }

8. Original V-BLAST with MMSE equalizer on the m - 1 remaining layers

9. CurrentCandidateSymbolVector = [s1; s2…; sm];

10. εj = ||H * CurrentCandidateSymbolVector – y||²;

11. if (εj < εBest) then

12. BestCandidate = CurrentCandidateSymbolVector;

13. εBest = εj;

14. end if

15. end for

26

16. output ŝFBLAST = BestCandidate;

17. end for

Figure 7 shows the similarity and the parallelizable structure of F-BLAST

compared to V-BLAST. On this figure, two successive transmitted symbol

vectors yI and yI+1 are being detected using V-BLAST and F-BLAST. Each layer

is represented by a shaded square, whose brightness is relative to its strength (i.e.,

its SNR). Finally, among the M (cardinality of the constellation) candidate

symbol vectors, the symbol vector detected by F-BLAST is highlighted.

Figure 7 V-BLAST vs. F-BLAST [23]

27

Figure 8 shows the SER performance for three MIMO configurations (4 4

(a), 6 6 (b) and 8 8 (c)). When performing the exhaustive search on the weakest

layer, the F-BLAST detector appears to achieve near-optimal performance. Here

F(Wi)-BLAST designates the F-BLAST detector that runs the exhaustive search

on the i-th weakest layer.

Figure 8 SER vs. SNR for F-BLAST for Different Parallel-search Layers and

Increasing Numbers of Antennas [24]

Likewise, F(Si)-BLAST designates the F-BLAST detector which runs the

exhaustive search on the i-th strongest layer. Note that F-BLAST tries to limit the

error propagation by reducing the interference noise from the weakest layer, thus

increasing the confidence on the important first decision made on the strongest

layer. Given this motivation, we also tried to process the exhaustive search on the

layer having the greatest interference on the strongest layer designated by F(MI)-

BLAST. The performance of F(MI)-BLAST was not found to be as good,

however, as F(W1)-BLAST, as illustrated in Figure 8.

28

Figure 9 SER of Alternative Detection Schemes for a 44 16-QAM MIMO

System over a Rayleigh Fading Channel

Figure 9 shows the simulated SER performance of the four detectors that

have been reviewed in this section. Here F-BLAST denotes the same thing as

F(W1)-BLAST, where the exhaustively searched layer is the weakest layer. Note

the remarkable performance of F-BLAST when detecting 16-QAM symbols in a

4 4 MIMO system, which is equivalent to simultaneously running 16 3 4 V-

BLAST detectors. The SER performance of F-BLAST very closely matches the

optimal performance of ML. F-BLAST can be easily implemented for the

practical MIMO detection of signals with small symbol constellations. However,

for larger constellations, such as 64-QAM or 256-QAM, the exhaustive search

parallelism of F-BLAST becomes increasingly impractical and, indeed, this

drawback motivates the research reported in this thesis.

29

III- Proposed Detection Scheme

3.1 Key Ideas

 As stated in the previous section, the linearly growing complexity of F-

BLAST makes it impractical to detect MIMO signals with large constellations

(i.e., greater than 16-QAM). Our goal was to keep key ideas from the F-BLAST

scheme but to limit the parallelism, say, to a maximum of 16 or 32 so that large

constellations such as 256-QAM could be detected. In addition, the simple

parallelism in F-BLAST has potential advantages in Orthogonal Frequency-

Division Multiplexing (OFDM) receivers, where a pool of hardware resources

could be shared among the subcarriers. With this limit on the parallelism, it may

become practical to use the MMSE equalizer and the Ordering and Successive

Interference Cancellation (OSIC) method (e.g., BLAST) that is being used in the

industry [25]. However, challenges remain in the optimal choice of the restricted

search set and in the optimal ordering of the layers during detection.

3.1.1 Definition of the Restricted Search Set

The definition of the restricted search set will definitely impact the

performance of the proposed detector. Ideally, we want the new detector’s

decisions to be identical to the decision that would be produced by F-BLAST

detection. Intuitively, the larger that the searched window is within the full

constellation, the closer to F-BLAST should be the error rate performance.

Unfortunately a larger search space will require more computation, and therefore

30

more energy, which is a limited resource in battery-powered communication

devices. For simplicity, the search window within a constellation is positioned

around a constellation point that is more easily estimated. We used an MMSE

equalizer to define the center of the window search because it gives better results

than the ZF equalizer with only slightly more computation. Using a V-BLAST

estimator to determine the search window center was not found to give significant

benefits over MMSE given the additional computational cost. At present, there is

no tractable theoretical basis for optimally constructing the search window.

Therefore an empirical method was used, which corresponds roughly to

constructing the search window of size W as the MMSE estimated symbol on the

searched layer together with the W - 1 nearest symbols (in a Euclidean sense) in

that layer. The precise shape of the search window for each symbol position sX

was optimized empirically by simulation experiments. Specifically, we collected

histograms for the (assumed near-optimal) F-BLAST estimate given that the

MMSE estimate was sX for all possible values of sX. For each histogram, a search

window of size W was constructed by selecting the W most likely F-BLAST

decisions (that is, near-optimal decisions) for each sX. The M windows were then

stored in look-up tables (the number of tables can be reduced significantly by

exploiting constellation symmetry). Figure 10 shows the ten unique search

windows for W = 8 and 16 for M = 64. The number of windows has been reduced

from 64 to ten in this figure by exploiting all possible symmetries (about the

diagonals, the vertical and horizontal axis).

31

Figure 10 Search Windows of Size W = 8 (Darker Shading) and 16 (Darker and

Lighter Shading) for the 64-QAM Constellation [24]

3.1.2 Layer Ordering

As for the F-BLAST detection scheme, the proposed detector first

performs a parallel search within one chosen searched layer, and then the original

V-BLAST detection scheme is applied to the remaining layers. While the V-

BLAST scheme starts the detection on the strongest layer, the F-BLAST scheme

starts the detection on the weakest layer (by guessing all possible symbol values

in parallel) in an attempt to reduce the interference on the strongest layer. When

the selected layer is not exhaustively searched, our simulations have shown that

the best choice of layer is not necessarily the weakest. The best ordering method

will be discussed in more detail in the next section.

32

3.2 Simulations and Results

To simplify the discussion, we will use Si to denote the i-th strongest

layer, i.e., the layer corresponding to the column of H with the i-th strongest

strength (the i-th largest norm among all columns of H). Similarly, we will use

Wi to denote the i-th weakest layer, i.e., the layer corresponding to the column of

H with the i-th weakest strength (the i-th smallest norm among all columns of H).

Finally, we will use MI to denote the layer having the greatest expected

interference on the strongest layer, i.e., the layer with the largest coefficient hji in

i-th column of H corresponding to the strongest layer.
 A simulation study was conducted using MATLAB implementations for

several different MIMO system configurations (m = 4, 6 or 8), while detecting

several large constellation signals (M-QAM with M = 64, 128 or 256). We used a

block-based data partitioning for simulation afficiency. Typically, 2 * 104 blocks

are simulated together, with each block containing 10 frames each, for accuracy

of the average number of binary digits in error. To reduce the calculation effort,

the channel matrix was set to be constant for the duration of a frame. The frame

size was set to ensure accurate modelling of Rayleigh fading. Specifically, 2 * M

sample vectors were transmitted during each frame. To ensure statistical accuracy

in the error measurements, a minimum of 10,000 symbols in error were simulated.

In order to pick the best starting layer, a simulation study of the family of

new detectors was conducted. The simulation results are shown in Figure 11. Here

FR(Wi,W)-BLAST designates the FR-BLAST detector which runs W parallel

33

searches in layer Wi. Likewise FR(Si,W)-BLAST designates the FR-BLAST

detector which runs W parallel

Figure 11 SER vs. SNR for FR-BLAST of Various Reduced Search Windows

searches in layer Si, and FR(MI,W)-BLAST designates the FR-BLAST detector

which runs W parallel searches in layer MI . We observe that the relative

performance of the various detectors depends on the SNR. Note that at high SNR

the best starting layer is S1 whereas for intermediate SNR values both S2 and MI

outperform the other layer choices. FR(Opt,W)-BLAST refers to the optimal

detector that uses a window size W, i.e., the detector which picks the one best

layer for each frame of sample vectors. This detection algorithm produces the

best-case upper limit for FR-BLAST detectors that are limited to searching W

parallel choices on a dynamically-chosen search layer. The decisions of

FR(Opt,W)-BLAST were stored as a best-case reference for further study.

Observe that FR(Opt,16)-BLAST clearly outperforms the performance of the

other detectors for SNR values greater than 34 dB.

34

One question that arises is the possibility of optimally selecting the first

layer to be detected for an improved FR-BLAST detector and thus hopefully

approach the performance of FR(Opt, W)-BLAST. To be practical, the layer

selection rule would have to be both simple and accurate. In order to answer this

question, a statistical study was conducted. We used the stored decisions of the

optimal FR-BLAST detector and analysed them using discriminant analysis

routines from the Statistical Package for the Social Sciences (SPSS) [26]. The

SPSS provides powerful routines for data clustering and discriminant analysis.

The method and the results are presented in Appendix 2. Unfortunately, SPSS was

unable to find an effective linear rule for selecting the parallel search layer. For

picking the best starting layer, the optimal layer selector model proposed by SPSS

only made the right decision about 25% of the time. This corresponds to randomly

selecting that layer from among the four candidate layers.

The next phase of this work studied the performance of the detectors in an

encoded scheme. The BER/SER performance was generally studied at low SNR,

therefore we decided to focus our study of the FR-BLAST detection scheme while

restricting the search to within only the S2 or MI layers, i.e., the layers which

show the best performance for SNR values less than 30 dB. Unfortunately,

experimental results show that the MI layer is different from S2 more than 2/3 of

the time. Therefore, at this time, we once again found that there is no simple

criterion for picking the best starting layer for FR-BLAST.

35

Figure 12 SER vs. SNR for FR-BLAST for Various Reduced Search Windows

and Signal Constellations

Figure 12 summarizes the performance of the FR-BLAST scheme in a

4 4 MIMO configuration when detecting 64-, 128- and 256-QAM signals. It

shows that the SER vs. SNR performance of FR-BLAST increases with the size

of the search window, i.e., increasing the size of the window search will lower the

SER. Further, the performance of FR-BLAST is still very good for larger

constellation signals.

Figure 13 confirms that the performance characteristics of the new family

detectors (FR-BLAST) are better than that of MMSE and V-BLAST for all SNR

values and for three different constellations (64, 128 and 256). In addition, FR-

BLAST experiences saturation in performance at the larger SNRs. That is for the

larger SNRs, the slope of its performance characteristic (i.e., the diversity order)

reduces from that of the near-optimal F-BLAST (-2) to that of V-BLAST, MMSE

and ZF (-1). Thus FR-BLAST clearly has worse performance than that of near-

optimal F-BLAST.

36

Figure 13 SER vs. SNR for MMSE, V-BLAST, FR-BLAST of Various Reduced

Search Windows, and F-BLAST [24]

FR-BLAST is an interesting alternative detection scheme that achieves

good performance in terms of error rate, relatively low implementation

complexity, low computational complexity (derived in Chapter IV) and an

attractive parallelizable structure. This could be attractive for MIMO detectors for

small to moderate SNRs, offering performance that lies between V-BLAST and

the near-optimal (but very expensive) F-BLAST and sphere-decoding-based

detectors.

The pseudo-code of FR-BLAST is shown in Algorithm 5. Apart from the

definition of the restricted search window (Line 5 and Line 6), the pseudo-code of

FR-BLAST is very similar to that of F-BLAST.

37

Algorithm 5 FR-BLAST Detection Algorithm

1. G = (ĤH * Ĥ + (1 / SNR) * I (m - i + 1))
-1 * ĤH;

2. εBest = LargeNumber;

3. for (every received symbol vector y in a block) do

4. O(1) = k = maxj ||gj||²; { Ordering }

5. sX = gk * y; { Find center of the restricted search set }

6. Subset = Table(sX, W); { Constructing the search window from a look-up

table}

7. for (every symbol from the restricted search set) do

8. sk = CurrentConstellationSymbol;

9. y = y – hk * sk; { Cancellation }

9. Original V-BLAST with MMSE equalizer on the m - 1 remaining layers

10. return CurrentCandidateSymbolVector = [s1;s2…;sm];

11. εj = ||H * CurrentCandidateSymbolVector – y||²;

12. if (εj < εBest) then

13. BestCandidate = CurrentCandidateSymbolVector;

14. end if;

15. εBest = εj;

16. end for

17. output ŝFRBLAST = BestCandidate;

18. end for

38

3.3 Alternative Detectors

Figure 14 Performance of the Real-valued F-BLAST Detector

The detectors described in the previous section use complex-valued

sampled signals, channel matrices and noise coefficients. In this section we will

instead study detectors in a real-valued equivalent model. The real-valued

detectors have an improved error rate performance compared to the traditional V-

BLAST detection scheme. The improvement stems from the greater degrees of

freedom afforded by having twice as many symbol layers that can be ordered

more effectively [27].

Complex-valued detection uses the following equation to describe a

transmission over a MIMO system: y = H * s + n. In contrast, the real-valued

equivalent model is based on the following equation [27]:

yR = HR * sR + nR,

where yR = [real(y), imag(y)]T,

39

HR = ,

sR = [real(s), imag(s)]T,

and nR = [real(n), imag(n)]T

Here the notations real(z) and imag(z) denote the real and the imaginary vector

components of the complex-valued vector z.

For example, with z = [1 + .5 * j, 5 + 3 * j], real(z) = [1, 5] and imag(z) = [.5, 3].

The real-valued equivalent model has effectively twice the number of

antennas at each side of the radio link. This leads to a bigger channel matrix: the

number of components in each dimension is doubled. Figure 14 compares the

performance of the F-BLAST scheme while using the real-valued equivalent

model compared with the complex-valued MMSE and the V-BLAST detectors.

Note that the real-valued equivalent model uses only one dimension of the signal

constellation, i.e., while doing a real-valued detection, the number of symbols is

. Thus the real-valued F-BLAST detection scheme uses -fold parallelism

instead of M. That is a significant reduction in the amount of parallelism for M

64 and this flexibility could be used to make trade-offs at a circuit design level.

An improved real-valued detector that uses 2 * fold parallelism was also

studied. This second real-valued MIMO detector simply performs the real-valued

F(W1)-BLAST and the real-valued F(W2)-BLAST and picks the best output

vector at the end, we will refer to it as Parallel(W1,W2) Real F-BLAST. This last

detector benefits from selection diversity [28] and has improved BER

performance.

40

IV- Computational Complexity Results

4.1 Assumptions

When comparing the cost of alternative algorithms, it is important to

accurately count the number of elementary operations (i.e., real number additions,

real number multiplications, and real number reciprocals) that are required to

detect each received symbol. In order to derive the exact cost, in terms of the

number of elementary operations for the various MIMO detectors considered in

this project, let us first make some reasonable simplifying assumptions.

We will assume that memory allocation does not require any elementary

operations. Sufficient memory is assumed to have been pre-allocated for the

decoder calculations. Also, initializing a matrix, i.e., defining each initial element

of a matrix, does not require any elementary operations. In general, all variables

are assumed to be allocated statically at initialization and thus do not require any

further run time.

In addition, we will assume that computing the negation of a real or

complex number, i.e., a to -a, and computing the complex conjugation operation,

i.e. a to a*, do not require significant run time. In the same spirit, we will assume

that computing the transpose of a matrix or the Hilbert transform of a matrix will

not require any elementary operations. Any changes in sign can be merged into

the next arithmetic operation without extra cost.

41

Also, the arithmetic division “a/b” will be assumed to be accomplished by

multiplying ‘a’ by the reciprocal of ‘b’ so that the relatively expensive division

operation is replaced by a (fast) multiplication and an optimized reciprocal.

As noted above, we will associate computational cost with three main

elementary operations:

� real-valued addition or subtraction, denoted by ‘+’

� real-valued multiplication, denoted by ‘*’

� real-valued reciprocal of an argument N, denoted by ‘1/N’

All three operations are assumed to be performed in the real-valued domain. The

vast majority of processors cannot directly handle complex arithmetic natively, so

our computational complexity results will be presented in terms of real-valued

operations.

Finally, we will consider the possibility of parallel operations that exploit

the possible presence of parallel arithmetic hardware units. It can safely be

assumed that maximum parallelism is now going to be affordable using the

reconfigurable logic and arithmetic units of large field-programmable gate arrays

(FPGAs). One operation cycle, which we will denote by ‘c’, is the time, usually

equal in the instruction set of a modern computer, to perform one addition or one

subtraction. Frequently, modern computers will in fact be able to compute a

multiplication in the same amount of time as an addition by using a combined

multiplier-accumulator in the arithmetic data-path.

42

4.2 General Results for Basic Operations

The total number of elementary operations is a useful metric that is

roughly proportional to the energy required by the computation. On the other

hand, the minimum number of required consecutive operations (assuming

maximum hardware parallelism) gives a measure of the best-case (i.e., minimum)

time complexity. A real reciprocal function requires roughly four to ten cycles,

depending on the algorithm and the required bit width, thus more than one parallel

real addition or multiplication can be performed in parallel with one real

reciprocal. However for simplicity we will assume that parallel real additions, real

multiplications or real reciprocals all require only one cycle.

Let fi(x,y,z) and gi(x,y,z) denote the number of real-valued operations and

operation cycles, respectively, associated with parameters x, y and z. Table 1

summarizes the number of elementary operations and operation cycles required

for basic operations that are used in the detection algorithms. A detailed

derivation can be found in Appendix 3.

43

Table 1 General Complexity Results

i. Operation

f i gi

Real
Additions

Real

Multiplications

Real

Reciprocals

Minimum

Cycles

1. Real number addition 1 0 0 1
2. Real number
multiplication

0 1 0 1

3. Real number reciprocal 0 0 1 1
4. Square absolute value of
real number

0 1 0 1

5. m-by-n real-valued
matrix addition

m*n 0 0 1

6. Addition of a set
containing n real numbers

n-1 0 0

7. Minimum of a set
containing n real numbers

n-1 0 0

8. Square norm of a real-
valued column vector of
length n

n-1 n 0 1+

9. Multiplication of an m-
by-p and a p-by-n real-
valued matrices

m*n*(p-1) m*n*p 0 1+

10. Inverse of an n-by-n
real-valued matrix

n2(n-1) n2(n-1) n2 3n

11. MMSE conditioning
matrix from a 2n-by-2n
real-valued channel matrix

n[8n2-n-1] 4n2(2n+1) n2+1 6+7n+2*

12. MMSE conditioning
matrix from a m-by-n real-
valued deflated channel
matrix

m(m-1)(n+m) m2(n+m-1) m2 3m+1+

13. Complex number
addition

2 0 0 1

14. Complex number
multiplication

2 4 0 2

15. Complex number
reciprocal

1 4 1 4

16. Square absolute value of
a complex number

1 2 0 2

17. m-by-n complex-valued
matrix addition

2m*n 0 0 1

18. Addition of a set
containing n complex
numbers

2n-2

0

0

19. Square norm of a
complex-valued column
vector of length n

2n-1 2n 0 2+

20. Multiplication of an m-
by-p complex-valued matrix
by a p-by-n complex-valued
matrix

m*n(4p-2)

4m*n*p

0

2+

44

21. Inverse of an n-by-n
complex-valued matrix

n2(4n-3) 4n3 n2 7n

22. MMSE conditioning
matrix from an n-by-n
complex-valued channel
matrix

n[8n2-n-1] 4n2(2n+1) n2+1 6+7n+2*

23. MMSE conditioning
matrix from an m-by-n
complex-valued deflated
channel matrix

n(4m2-
3m+4mn-2n)

4m2(m+n) m2 7m+2+

45

4.3 Computational Complexity of the Detectors

4.3.1 Real-valued Detection

The real-valued equivalent model has twice as many antennas, i.e., 2m instead

of m, and the constellation size is equal to along one dimension instead of M

across two dimensions. Typical values of m are 2, 3 and 4, while typical values of

M are 4, 16 and 64.

Complexity Result 1 MMSE detection on 2m real-equivalent layers requires:

(a) m2+1 m2 real reciprocals

(b) 8m3+8m2+2m 8m3+2m real multiplications

(c) 8m3+3m2-4m+2m 8m3+2m real additions

(d) 7m+10+ + 7m+ parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 1

Computing the MMSE conditioning matrix will require f11(2m) operations and

g11(2m) cycles. With fi(2m) representing the number of additions and

multiplications for the i-th basic operation as presented in table 1; likewise gi(2m)

represents the number of minimum cycles for the i-th basic operation.

Line 3

With (m, p, n) = (2m, 2m, 1), computing G * y requires f9(2m,1,2m) operations

and g9(2m,1,2m) cycles.

46

Line 4

ymmse * 11,M – 1m,1 * ConstellationSymbolMatrix, can be seen as memory

allocation, so this calculation requires no operations. With (m, n) = (2m,),

computing ymmse * 11,M – 1m,1 * ConstellationSymbolMatrix requires f5(2m,)

operations and g5(2m,) cycles. To compute the absolute square norm of

2m real-valued numbers, we require 2m * f 4 operations and one cycle.

Line 5

We have to compute the minimum of 2m sets of real numbers of length each,

thus, 2m * f7() operations and g7() cycles are required.

Q.E.D.

Complexity Result 2 V-BLAST detection on 2m - 1 real-equivalent remaining

layers requires:

(a) 1/3(8m3-6m2+m) 8/3m3 real reciprocals

(b) 1/3(28m4-32m3+17m2-17m)+(2m-1) 28/3m4+2m real

multiplications

(c) 1/3(28m4-28m3+17m2-35m+4)+(4m-2) 28/3m4+4m real additions

(d) 6m2+13m-11+(4m-3) +(2m-1) +2

6m2+2m parallel cycles

Note: Here, we assumed that the detection on the first layer has already been

performed.

Proof: The number of arithmetic operations contributed by each line is as follows:

47

On the 2m-1 remaining layers, H is considered to be an 2m-by-d complex

matrix, where 2m-d is the number of layers already deflated.

 Line 4

With (n, m) = (2m, d), the computation of G requires f12(2m,d) operations

and g12(2m,d) cycles.

Line 5

In order to proceed with the right layer, we need to compute the minimum

of a set of d real numbers; this requires f7(d) operations and g7(d) cycles.

Except on the last layer to be detected, this step is omitted.

Line 7

With (m, n, p) = (1, 1, 2m), nulling will require f9(1,1,2m) operations and

g9(1,1,2m) cycles.

Line 8

In order to pick the right symbol from the constellation. First we need to

compute the distance from each constellation symbol, i.e., with (m, n)

=(, 1), f5(,1) operations and g5(,1) cycles are required. Then we

need to compute square absolute value, requiring, * f4 operations

and g4 cycles. Finally, we pick the minimum of a set of real numbers.

This requires f7() operations and g7() cycles.

Line 10

With (m, n, p) = (2m, 1, 1), computing hk * sk requires f9(2m,1,1)

operations and g9(2m,1,1) cycles. Now, computing y – hk * sk requires

f5(2m,1) operations and g5(2m,1) cycles. However on the last layer to be

48

detected, the ordering of the layers is not required since there is only one

layer.

Line 12

No operations nor time in cycles are required to deflate the channel matrix

H.

 Q.E.D.

Complexity Result 3 V-BLAST detection on 2m real-equivalent layers requires:

(a) 1/3(8m3-3m2+m+3) 8/3m3 real reciprocals

(b) 1/3(28m4-8m3+41m2-5m)+(2m+2) 28/3m4+2m real

multiplications

(c) 1/3(28m4-4m3+26m2-35m-5)+(4m-2) 28/3m4+4m real additions

(d) 6m2+20m+2+(4m+2) +2m +2

6m2+2m parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 5

Ordering requires the computation of 2m times 1-by-2m real-valued vector norms,

thus 2m * f8(2m) operations and g8(2m) cycles are required.

Line 3 to Line 13

On the first layer to be detected,

 Line 4

The computation of G requires f11(2m) operations and g11(2m) cycles.

49

Line 5

In order to proceed on the right layer, we need to compute the minimum of

a set of 2m real numbers. This requires f7(2m) operations and g7(2m)

cycles.

Line 7

With (m, n, p) = (1, 1, 2m), nulling will require f9(1,1,2m) operations and

g9(1,1,2m) cycles.

Line 8

In order to pick the right symbol from the constellation, first we need to

compute the distance from each constellation symbol, i.e., with (m, n) =

(, 1), f5(,1) operations and g5(,1) cycles are required. Then we

need to compute square absolute values i.e., * f4 operations and

g4 cycles. Finally, we pick the minimum of a set of real number; this

requires f7() operations and g7() cycles.

Line 10

With (m, n, p) = (2m, 1, 1), computing hk * sk requires f9(2m,1,1)

operations and g9(2m,1,1) cycles. Computing y – hk * sk requires f5(2m,1)

operations and g5(2m,1) cycles.

Finally, the detection of the first layer will require m2+1 (1/N), 8m3+8m2+

4m+ (*), 8m3+3m2+3m+2 -3 (+), and 13+7m+ + (c).

On the 2m-1 remaining layers, the complexity is given by Complexity Result 2.

Q.E.D.

50

Complexity Result 4 F-BLAST detection on 2m real-equivalent layers requires:

(a) m2+1+ /3(8m3-6m2+m) 8/3m3 real reciprocals

(b) 8m3+8m2+ /3(28m4-32m3+29m2-5m)+(2m-1)M 28/3m4 +2mM real

multiplications

(c) 8m3+3m2-3m-1+ /3(28m4-32m3+29m2-23m+1)+(4m-1)M

28/3m4 +4mM real additions

(d) 6m2+20m+4+(4m+2) +2m +2

6m2+2m parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 1

The computation of G requires f11(2m) operations and g11(2m) cycles.

Line 4

Ordering requires computing 2m times 1-by-2m real-valued vector norms, thus

2m * f 8(2m) operations and g8(2m) cycles are required. In order to identify on the

right layer, we need to compute the minimum of a set of 2m real numbers; this

requires f7(2m) operations and g7(2m) cycles.

Line 5 to Line 10

For each symbol from the constellation, the following lines can be done in

parallel.

Line 7

With (m, n, p) = (2m, 1, 1), computing hk * sk requires * f9(2m,1,1)

operations and g9(2m,1,1) cycles. Computing y – hk * sk requires *

f5(2m,1) operations and g5(2m,1) cycles.

51

Line 8

The detection of the 2m-1 remaining real-equivalent layers will require

 times the operations provided in Complexity Result 2, and the same

number of run cycles, assuming maximum parallelism.

Line 10

With (m, n, p) = (2m, 1, 2m), computing H * s requires * f9(2m,1,2m)

operations and g9(2m,2m,1) cycles. Now, computing y – H * s requires

f5(2m,1) operations and g5(2m,1) cycles. Finally, computing epsilon, i.e.,

the square norm of y – H * s, requires * f 8(2m) operations and g8(2m)

cycles.

Line 11 to 14

In order to pick the best candidate vector, we need to compute the minimum of a

set of real numbers; this will require f7() operations and g7() cycles.

 Q.E.D.

52

Table 2 shows that the real-valued V-BLAST detector requires fewer than

ten times more real-valued operations and time in cycles than the real-valued

MMSE detector, in both the 33 or a 4 4 MIMO configurations, regardless of

the modulation used (16-QAM, 64-QAM or 256-QAM). Figure 14 shows that this

increase in the number of computations leads to a reduction of a factor ten in

terms of BER compared to that of the real-valued MMSE detector, regardless of

the modulation used and for SNR greater than 35 dB. Note that, while the ratio of

the number of real-valued operations required by the real-valued V-BLAST

detector over that required by the real-valued MMSE detector is approximately

the same for the three different modulations, the number of real-valued operations

required by the real-valued F-BLAST detector is approximately doubled when M

is quadrupled, and it is approximately tripled compare to that of the real-valued

V-BLAST detector for M = 16. Also, due to its parallel structure, the real-valued

F-BLAST detector requires approximately the same amount of time, in operation

cycles, than the real-valued V-BLAST detector. However, Figure 14 shows that

the real-valued F-BLAST’s BER is at least 100 times lower than that of the real-

valued MMSE detector, for SNR greater than 35 dB, regardless of the modulation

used.

 Therefore, the real-valued F-BLAST detector achieves a better BER vs.

SNR performance than the real-valued V-BLAST detector, without increasing the

required time in cycles (assuming parallel hardware), and with only a relatively

small increase in the number of required real-valued operations (about four times

53

and ten times more operations are required for 16-QAM and 256-QAM

respectively).

Table 2 Computational Complexity of Real-valued MIMO Detection Algorithms

Note: The numbers in brackets give counts relative to the MMSE detector with

the corresponding value of m.

� m = 3 complex layers, or m = 6 for the real-valued equivalent model

Scheme

M

Real
Multiplications

Real Additions Real
Reciprocals

Time in Cycles
(Parallel

Hardware)

MMSE

16 312 255 10 45

64 336 279 10 46

256 384 327 10 47

V-BLAST

16 834 (2.7) 802 (3.1) 65 (6.5) 172 (3.8)

64 866 (2.6) 842 (3.0) 65 (6.5) 178 (3.9)

256 930 (2.4) 922 (2.8) 65 (6.5) 184 (4.0)

F-BLAST

16 2,580 (8.3) 2,539 (10.0) 230 (23.0) 174 (3.9)

64 5,020 (14.9) 5,196 (18.6) 450 (45.0) 180 (3.9)

256 10,380 (27.0) 11,566 (35.4) 890 (89.0) 186 (4.0)

� m = 4 complex layers, or m = 8 for the real-valued equivalent model

Scheme

M

Real
Multiplications

Real
Additions

Real
Reciprocals

Time in Cycles
(Parallel

Hardware)

MMSE

16 672 576 17 52

64 704 608 17 53

256 768 672 17 54

V-BLAST

16 2,471 (3.7) 2,451 (4.2) 157 (9.2) 258 (5.0)

64 2,511 (3.6) 2,507 (4.1) 157 (9.2) 266 (5.0)

256 2,591 (3.4) 2,619 (3.9) 157 (9.2) 274 (5.1)

F-BLAST

16 8,187 (12.2) 8,111 (14.1) 577 (33.9) 260 (5.0)

64 15,941 (22.6) 16,155 (26.6) 1,137 (66.9) 268 (5.0)

256 32,123 (41.8) 33,683 (50.1) 2,257

(132.8)

276 (5.1)

54

4.3.2 Complex-valued Detection

 Complex-valued arithmetic is not directly supported in most computers,

but it is implementable using custom arithmetic units, as could be synthesized in

FPGA designs. Typically the support for complex arithmetic is coordinated in

software and the real and imaginary parts are computed using multiple machine

language instructions on the hardware [28].

Complexity Result 5 ML detection on m layers requires:

(a) 0 real reciprocals

(b) Mm(4m2+2m) 4m2Mm real multiplications

(c) Mm(4m2+2m)-1 4m2Mm real additions

(d) 5+2 + parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 1 to Line 6

We have Mm iterations of candidateError to compute, which can be done in

parallel. First, with (m, p, n) = (m, m, 1), computing H * [sa1; sa2 … ; sam] for all

candidates requires Mm * f20(m,m,1) operations and g20(m,m,1) cycles. Then, with

(m, n) = (m, 1), computing y – H * [sa1; sa2 … ; sam] for all candidates requires Mm

* f 17(m,1) operations and g17(m,1) cycles. Finally, with n = m, computing ||y – H *

[sa1; sa2 … ; sam]||2 requires Mm * f 19(m) operations and g19(m) cycles.

Line 11

Computing the minimum of a set of Mm real number requires f7(M
m) operations

and g7(M
m) cycles.

 Q.E.D.

55

Complexity Result 6 MMSE detection on m layers requires:

(a) m2+1 m2 real reciprocals

(b) 8m3+8m2+2mM 8m3+2mM real multiplications

(c) 8m3+3m2-3m+3mM+M-1 8m3+3mM real additions

(d) 7m+11+3 + 7m+ parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 1

Computing the MMSE conditioning matrix will require f22(m) operations and

g22(m) cycles.

Line 3

With (m, n, p) = (m, 1, m), computing G * y requires f20(m,1,m) operations and

g20(m,1,m) cycles.

Line 4

First, ymmse * 11,M and 1m,1 * ConstellationSymbolMatrix, can be seen as

memory allocation, so they require no operations. Then with (m, n) = (m, M),

computing ymmse*11,M –1m,1* ConstellationSymbolMatrix requires f17(n,M)

operations and g17(n,M) cycles. Finally, we have to compute the absolute square

norm of mM complex-valued numbers, thus mM * f16 operations and two cycles

are required.

Line 5

We have to compute the minimum of m sets of real number of length M, thus, m *

f7(M) operations and g7(M) cycles are required.

 Q.E.D.

56

Complexity Result 7 V-BLAST detection on m - 1 remaining layers requires:

(a) 1/6(2m3-3m2+m) 1/3m3 real reciprocals

(b) 7/3m4-3m3+18m2-12m+(4m-2)M 7/3m4+4m real multiplications

(c) 7/3m4-7m3+50/3m2-17m+2+(4m-4) 7/3m4+4mM real additions

(d) 7/2m2+13/2m-13- +(m-1)(+)+2

 7/2m2+m parallel cycles

Note: Here, we assumed that the detection on the first layer has already been

accomplished.

Proof: The number of arithmetic operations contributed by each line is as follows:

On the m - 1 remaining layers, H is considered to be an m-by-d complex matrix

where m-d is the number of layers already deflated.

 Line 4

With (n, m) = (m, d), the computation of G requires f23(m,d) operations

and g23(m,d) cycles.

Line 5

In order to identify the right layer, we need to compute the minimum of a

set of m real numbers and, this requires f7(d) operations and g7(d) cycles.

Note that on the last layer to be detected, the ordering of the layers is not

required.

Line 7

With (m, n, p) = (1, 1, m), nulling will require f20(1,1,m) operations and

g20(1,1,m) cycles.

57

Line 8

We need to pick the right symbol from the constellation. First we need to

compute the distance from each constellation symbol, i.e., with (m, n) =

(M, 1), f17(M,1) operations and g17(M,1) cycles are required.

We then need to compute M complex square absolute values, i.e., M * f16

operations and g16 cycles. Finally, we pick the minimum of a set of M real

numbers; this requires f7(M) operations and g7(M) cycles.

Line 10

With (m, n, p) (m, 1, 1), computing hk * sk requires f20(m,1,1) operations

and g20(m,1,1) cycles. Now, computing y – hk * sk requires f17(m,1)

operations and g17(m,1) cycles. Except on the last layer to be detected.

Line 12

Neither operations nor time in cycles are required to deflate the channel

matrix H.

Q.E.D.

Complexity Result 8 V-BLAST detection on m layers requires:

(a) 1/6(2m3+3m2+m+6) 1/3m3 real reciprocals

(b) 7/3m4+5m3+24m2-4m+4mM 7/3m4+4mM real multiplications

(c) 7/3m4+m3+53/3m2-10m-1+4m 7/3m4+4mM real additions

(d) 21/2m2+13/2m+3-

+(m+4) +m +2

21/2m2+m parallel cycles

58

Proof: The number of arithmetic operations contributed by each line is as follows:

 Line 5

Ordering requires computing m times 1-by-m complex-valued vector norms, thus

m * f 19(m) operations and g19(m) cycles are required.

Line 3 to Line 13

On the first layer to be detected,

 Line 4

The computation of G requires f22(m) operations and g22(m) cycles.

Line 5

In order to proceed on the right layer, we need to compute the minimum of

a set of m real numbers. This requires f7(m) operations and g7(m) cycles.

Line 7

With (m, p, n) = (1, m, 1), nulling will require f20(1, m, 1) operations and

g20(1, m, 1) cycles.

Line 8

The right symbol needs to be picked from the constellation. First we need

to compute the distance from each constellation symbol, i.e., with (m, n) =

(M , 1), f17(M,1) operations and g17(M,1) cycles are required. Then, we

need to compute M complex square absolute values, i.e., M * f16

operations and g16 cycles. Finally, we need to pick the minimum of a set of

M real numbers, this requires f7(M) operations and g7(M) cycles.

59

Line 10

With (m, n, p) = (m, 1, 1), computing hk * sk requires f20(m,1,1) operations

and g20(m,1,1) cycles. Now, computing y – hk * sk requires f17(m,1)

operations and g17(m,1) cycles.

Finally, the detection on the first layer will require m2+1 (1/N), 8m3+6m2+

8m+2M (*), 8m3+m2+7m+4M-3 (+), 7m+16+ +5 (c).

On the m-1 remaining layers, the complexity is given by Complexity Result 7.

Q.E.D.

Complexity Result 9 F-BLAST detection on m layers requires:

(a) m2+1+M/6(2m3-3m2+m) 1/3m3M real reciprocals

(b) 8m3+6m2+(7/3m4-3m3+22m2-6m)M+(4m-2)M2 7/3m4M+4m 2 real

multiplications

(c) 8m3+m2-m-2+(7/3m4-7m3+62/3m2-11m+2)M+(4m-4)M2 7/3m4M+4m 2

real additions

(d) 7/2m2+27/2m+3- +(m+5) +m +2

 7/2m2+m parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

Line 1

The computation of G requires f22(m) operations and g22(m) cycles.

Line 3

Ordering requires computing m times 1-by-m complex-valued vector norms, thus

m * f 19(m) operations and g19(m) cycles are required. In order to identify the right

60

layer, we need to compute the minimum of a set of m real numbers; this requires

f7(m) operations and g7(m) cycles.

Line 5 to Line 10

For each M symbol from the constellation, this can be done in parallel.

Line 7

With (m, n, p) = (m, 1, 1), computing hk * sk requires M * f 20(m,1,1)

operations and g20(m,1,1) cycles. Now, computing y – hk * sk requires M *

f17(m,1) operations and g17(m,1) cycles.

Line 8

The detection of the m-1 remaining layers will require M times the

operations provided in Complexity Result 7, and the same number of run

cycles, assuming maximum parallelism.

Line 10

With (m, n, p) = (m, 1, m), computing H * s requires M * f20(m, 1, m)

operations and g20(m,m,1) cycles. Now, computing y – H * s requires M *

f17(m,1) operations and g17(m,1) cycles. Finally, computing epsilon, i.e.,

the square norm of y – H * s, requires M * f19(m) operations and g19(m)

cycles.

Line 11 to 14

In order to pick the best candidate vector, we need to compute the minimum of a

set of M real numbers; this will require f7(M) operations and g7(M) cycles.

 Q.E.D.

61

Complexity Result 10 FR-BLAST detection on m layers requires:

(a) m2+1+W/6(2m3-3m2+m) 1/3m3W real reciprocals

(b) 8m3+6m2+4m(7/3m4-3m3+22m2-6m)W+(4m-2)MW 7/3m4W+4m W real

multiplications

(c) 8m3+m2+3m-4+(7/3m4-7m3+62/3m2-11m+2)M+(4m-4)MW

7/3m4M+4m W real additions

(d) 7/2m2+27/2m+5- +(m+6) +m +2

 7/2m2+m parallel cycles

Proof: The number of arithmetic operations contributed by each line is as follows:

 The algorithm is very similar to Fouladi Fard’s algorithm, except the fact that

instead of searching in the entire constellation for the first symbol, a restricted

search in a subset (search space containing W symbol, see Line 5 and 6) is

performed.

Line 5

With (m, n, p) = (1, 1, m), computing gk * y requires M * f20(1,1, m) operations

and g20(1,1, m) cycles.

Line 6

No operations are required as it is equivalent to reading coefficients from a pre-

defined matrix.

Q.E.D.

62

Table 3 confirms that ML is not suitable for practical implementation, due

to the large number of real-valued operations that it requires. In addition, it shows

that V-BLAST requires about twice as many real-valued operations and time in

cycles than MMSE, for both the 33 and 4 4 MIMO configurations, regardless

of the modulation used (16-QAM, 64-QAM or 256-QAM). Figure 13 shows that

this increase in the number of computations leads to BER approximately 10 times

lower, in comparison to that of MMSE, regardless of the modulation used and for

SNR greater than 30 dB. Also, while the ratio of the number of real-valued

operations for V-BLAST over that of MMSE is approximately the same for the

three different modulations, the number of real-valued operations required by F-

BLAST is about ten times greater when M is quadrupled. Due to its parallel

structure, F-BLAST requires approximately the same number of cycles than V-

BLAST. However, Figure 13 shows that F-BLAST exhibits a BER at least 10

times lower (about 40 times lower with 16-QAM and 64-QAM, for SNR = 40

dB).

For search window sizes W = 8, 16 or 32, the gain achieved by FR-

BLAST in terms of BER vs. SNR in comparison to that of MMSE, lies between 1

dB and 2 dB. The computational complexity of FR-BLAST is about W times

greater than that of V-BLAST, and considerably smaller than that of F-BLAST.

Observe that for the special case where W = 1 and W = M, FR-BLAST is

equivalent to V-BLAST and F-BLAST respectively, thus one can predict that the

performance characteristic of FR-BLAST and its computational complexity will

lie between that of V-BLAST and F-BLAST, depending on the value of W.

63

 In conclusion, FR-BLAST achieves a better BER versus SNR

performance than V-BLAST, without increasing the required time in cycles, but

at the expense of additional computations proportional to the size of the restricted

search set. Interestingly the size of the search set, and hence the degree of

parallelism, can be adjusted to control the performance and the required power.

Table 3 Computational Complexity of Complex-valued MIMO Detection

Algorithms

Note: The numbers in brackets give counts relative to the MMSE detector with

the corresponding value of m.

� m = 3

Scheme

M

Real

Multiplications

Real

Additions

Real

Reciprocals

Time in Cycles
(Parallel

Hardware)

ML

16 172,032 172,031 0 21

64 11,010,048 11,010,047 0 27

256 704,643,072 704,643,071 0 33

MMSE

16 384 (1.0) 393 (1.0) 10 (1.0) 42 (1.0)

64 672 (1.0) 873 (1.0) 10 (1.0) 44 (1.0)

256 1,824 (1.0) 2,793 (1.0) 10 (1.0) 46 (1.0)

V-BLAST

16 720 (1.9) 536 (1.4) 15 (1.5) 144 (3.5)

64 1,296 (2.0) 1,112 (1.3) 15 (1.5) 150 (3.4)

256 3,600 (2.0) 3,416 (1.3) 15 (1.5) 156 (3.4)

F-BLAST

16 7,438 (19.4) 4,748 (15.1) 90 (9) 104 (2.5)

64 59,662 (88.8) 42,908 (49.2) 330 (33) 110 (2.5)

256 729,358 (399.9) 564,188 (202.1) 1,290 (129) 116 (2.6)

FR-BLAST

W = 8

64 7,706 (11.5) 5,566 (6.4) 58 (5.8) 114 (2.6)

256 23,066 (12.7) 17,854 (6.4) 58 (5.8) 120 (2.7)

FR-BLAST

W = 16

64 15,130 (22.6) 10,902 (12.5) 106 (10.6) 114 (2.6)

256 45,850 (25.2) 35,478 (12.8) 106 (10.6) 120 (2.7)

FR-BLAST

W = 32

64 29,978 (44.7) 21,574 (24.8) 202 (20.2) 114 (2.6)

256 91,418 (50.2) 70,726 (25.4) 202 (20.2) 120 (2.7)

64

� m = 4

Scheme

M

Real

Multiplications

Real

Additions

Real

Reciprocals

Time in Cycles
(Parallel

Hardware)

ML

16 4,718,592 4,718,591 0 25

64 1,207,959,552 1,207,959,551 0 33

256 309,237,645,31

2

309,237,645,31

1

0 41

MMSE

16 768 (1.0) 755 (1.0) 17(1.0) 49 (1.0)

64 1,152 (1.0) 1,379 (1.0) 17(1.0) 51 (1.0)

256 2,688 (1.0) 3,875 (1.0) 17(1.0) 53 (1.0)

V-BLAST

16 1,542 (2.1) 1,159 (1.6) 31 (1.9) 231 (5.7)

64 2,310 (2.1) 1,927 (1.4) 31 (1.9) 239 (4.7)

256 5,382 (2.1) 4,999 (1.3) 31 (1.9) 247 (4.7)

F-BLAST

16 15,926 (34.6) 10,602 (14.1) 241 (14.2) 149 (3.7)

64 104,886 (91.1) 77,706 (56.4) 913 (53.8) 157 (3.1)

256 1,105,846

(411.5)

899,082 (232.1) 3,601 (211.9) 165 (3.2)

FR-BLAST

W = 8

64 13,659 (11.9) 10,184 (7.4) 137 (8.1) 161 (3.4)

256 35,163 (13.1) 28,616 (7.4) 137 (8.1) 169 (3.1)

FR-BLAST

W = 16

64 26,694 (23.2) 19,832 (14.4) 257 (15.2) 161 (3.4)

256 69,702 (26.0) 56,696 (14.7) 257 (15.2) 169 (3.1)

FR-BLAST

W = 32

64 52,763 (45.9) 39,128 (28.4) 497 (29.3) 161 (3.4)

256 138,779 (51.6) 112,856 (29.2) 497 (29.3) 169 (3.2)

 Thus assuming that we can afford a detector that is three times slower than

MMSE, we recommend the use of FR-BLAST with a search window containing

16 symbols, since it only increases the number of arithmetical operations by a

factor of ten regardless of the modulation scheme, for a reduction of the BER

higher than ten. In other words, by slowing down a little bit the detection process,

and consuming ten times more power, the detector can make ten times less error.

65

V- Asymptotic Analysis

5.1 Assumptions

We assume that the channel is unknown at the transmitter side, but known

or perfectly estimated at the receiver side. Error correcting codes are not used.

Let nR and nT be the number of antennas at the receiver and transmitter

side, respectively. In this work we assume that nR = nT = m ≥ 1. As before, M

denotes the number of points in the complex symbol constellation.

The channel matrix coefficients and the components of the Additive White

Gaussian Noise are assumed to be circularly Gaussian. The channel matrix, H, is

assumed to be constant for the duration T of a frame. For this work, sequences of

symbols are grouped into frames such that the duration T of a frame, i.e., the

number of samples in a frame, satisfies T ≥ 2 * m - 1 [12]. This choice has been

shown through experience to give acceptable channel modeling accuracy with

reduced computational complexity.

66

5.2 Asymptotic Performance Analysis

5.2.1 Definitions

� The multiplexing gain is the multiplicative gain in capacity (with respect

to a SISO channel) achieved by distributing the main data streams into

multiple parallel data streams. The multiplexing gain, rm, is given by rm =

min(nR, nT). The multiplexing gain rm of all the detection schemes

presented in this work is equal to the MIMO gain, i.e., rm = m [30].

� The diversity order expresses how fast the average error probability

decreases with respect to increasing SNR [31]. Let d denote the diversity

order, then

d = - , where Pe(SNR) is the average error

probability of the scheme. The error probability is usually measured by the

bit error rate.

� The diversity gain expresses how the diversity order increases additively

over that of the SISO system which is one [31].

The ML detection scheme experiences full diversity order, i.e., dML

= nR = m [32]. A reduced complexity scheme, such as the MMSE detector,

experiences full multiplexing gain while reducing significantly the

computational complexity, but at the cost of severe loss in performance.

At high SNR, dMMSE = nR - nT + 1 = 1 [31]. The V-BLAST detection

scheme has a diversity gain of zero, which is independent of the strength

(i.e., the estimated post-detection SNR) of the first layer to be detected,

67

thus dVBLAST = nR - nT + 1 = 1 [33]. As, one might expect, the diversity

gain of V-BLAST is limited by the MMSE detection of the first symbol,

which does not benefit from interference cancellation from the other

symbols. Even though the fall-in Pe(SNR) is the same for both MMSE and

V-BLAST, the BER of V-BLAST is much lower than that of MMSE, as

shown in Figure 14.

5.2.2 Asymptotic Analysis of F-BLAST

Asymptotic Result 1 The diversity order dFBLAST of F-BLAST is 2.

Proof:

Let Pe,FBLAST (SNR) denote the average error probability of the F-BLAST scheme

at a given SNR. The law of total probability leads to:

Pe,FBLAST (SNR) = P(E | Ē1) * P(Ē1) + P(E | E1) * P(E1) (1)

Here, for a given SNR, P(E1) is the average error probability for the decision on

the first layer to be detected; P(Ē1) is the average probability of a correct decision

on the first layer to be detected; P(E | Ē1) is the average error probability of the F-

BLAST scheme given that a correct decision had been made on the first layer to

be detected (i.e., an error occurred after the first symbol was detected correctly, so

no error propagated from the detection of the first symbol); and P(E | E1) is the

average error probability of the F-BLAST scheme given that an erroneous

decision had been made on the first layer to be detected (i.e., an error in the

detection of the first symbol propagates to an error in the detection of the second

symbol).

Ē1 is the complementary event of E1, thus

68

P(Ē1) = 1 - P(E1) (2)

From (1) and (2), we obtain

Pe,FBLAST (SNR) = P(E | Ē1) + (P(E | E1) - P(E | Ē1)) * P(E1) (3)

When the SNR is large [32],

Pe,VBLAST(SNR) (4)

where Pe,VBLAST (SNR) is the average error probability of the V-BLAST scheme at

the given SNR, and CVBLAST is a positive constant.

 Consider a scheme that always makes an erroneous decision on the first

layer to be detected and then proceeds with the original V-BLAST detection over

the m - 1 remaining layers. Its average error probability is an upper bound on the

error probability of V-BLAST on an m-by-m system [33]. Note that a scheme that

always makes a correct decision on the first layer to be detected and then proceeds

with original V-BLAST detection over the m - 1 remaining layers has an error

probability equivalent to that of V-BLAST on an (m-1)-by-m MIMO system since

the second layer to be detected will experience one less interferer [33]. Thus with

(4) and for large SNR we obtain

P(E | Ē1) , nR = m and nT = m - 1

P(E | Ē1) (5)

and P(E | E1) , nR = nT = m

P(E | E1) (6)

69

Let s1 and ŝ1 denote the transmitted and detected symbols, respectively, on the

first layer to be detected. Let EH{} denote the expected value operator over the

channel matrix H. Then by definition [34]:

P(E1) = EH{ P(ŝ1 s1 | H) * P(s1))} (7)

For large SNR, and with CML a positive constant [31]:

EH{P(ŝ1 s1 | H)} (8)

With nR = m, and assuming equiprobable symbols P(s1) = 1 / M. Substituting (8)

into (7) for large SNR yields

P(E1) (9)

P(E1) (10)

Thus, for large SNR, (3), (5), (6) and (10) yield

Pe,FBLAST (SNR) (-) * +

By factoring, we obtain

Pe,FBLAST (SNR) * (1 + * * (1 -))

Thus, for large SNR and m > 1,

log(Pe,FBLAST (SNR)) log(CVBLAST)-2 log(SNR)+log(1+ * * (1 -))

In the limit as the SNR becomes large we obtain

 = - 2 (11)

Q.E.D.

70

5.2.3 Asymptotic Analysis of FR-BLAST

Asymptotic Result 2 The diversity order dFR(W)-BLAST of FR-BLAST is one.

Proof:

Let SW denote the restricted search set containing W M-QAM symbols, as

defined in Section 3.1.1., and let Pe,FR(W)BLAST(SNR) denote the average error

probability of the FR-BLAST scheme which runs W parallel searches, at a given

SNR. The law of total probability leads to:

Pe,FR(W)BLAST(SNR) = P(E | s1 SW)*P(s1 SW) + P(E |)*P() (12)

Here, for a given SNR, P() is the average probability of not having within

the restricted search set the symbol transmitted on the first layer; P(s1 SW) is the

average probability of having within the search set the symbol transmitted on the

first layer; P(E |) is the average error probability of FR(W)-BLAST

given that the restricted search set does not include the symbol transmitted on the

first layer; and P(E | s1 SW) is the average error probability of the FR(W)-

BLAST given that the restricted search set includes the symbol transmitted on the

first layer.

By definition:

P(s1 SW) = (13)

and from (2) and (13),

P() = (14)

If the restricted search set does not include the symbol transmitted on the

first layer to be detected, then FR(W)-BLAST will make an erroneous decision on

71

this layer and this error will propagate through to the detection of the m - 1

remaining layers. But, after the detection of ŝ1, FR(W)-BLAST runs the original

V-BLAST detection on the m - 1 remaining layers. Therefore from (6) and for

large SNR

P(E |) = P(E | E1) CVBLAST * (15)

If the restricted search set includes the symbol transmitted on the first

layer to be detected, from (3) and the law of total probability,

P(E|s1 SW) = P(E|(Ē1, s1 SW))+[P(E|(E1, s1 SW))-P(E|(Ē1, s1 SW))]*P(E1, s1 SW)

 (16)

After the decision on the first layer to be detected, both the F-BLAST and FR(W)-

BLAST detectors are identical. Therefore, from (5) and (6):

P(E | (Ē1, s1 SW)) = P(E | Ē1) (17)

P(E | (E1, s1 SW)) = P(E | E1) (18)

Similarly, to the derivation of P(E1) in Section 5.2.2., from (9) we obtain

P(E | s1 SW)

There are W - 1 symbols different from s1 in the restricted search set, therefore

P(E | s1 SW) (19)

Thus, for large SNR, (17), (18), (19) and (20) yield to

P(E | s1 SW) (-) * +

Finally, we have

P(E | s1 SW) * (1 + * * (1 -)) (20)

72

From (13), (14), (15), (16) and (20) we obtain

Pe,FR(W)BLAST * (* (1 + * * (1 -))) +

By factorization, it is straightforward to obtain for large SNR

Pe,FR(W)BLAST(SNR) *(1+ + *(1-))

Thus, for large SNR and m > 1,

log(Pe, FR(W)BLAST (SNR)) log() - log(SNR) + log(1 +

 + * (1 -))

In the limit as the SNR becomes large we obtain

 = - 1 (21)

Q.E.D.

5.2.4 Asymptotic Analysis of the Real-valued F-BLAST

Asymptotic Result 3 The diversity order of real-valued F-BLAST is

two.

Proof:

Recall that the real-valued equivalent detection scheme is based on the

following model (Section 3.3):

yR = HR * sR + nR,

where yR = [real(y), imag(y)]T, HR = , sR = [real(s),

imag(s)]]T, and nR = [real(n), imag(n)]]T.

73

The diversity order of V-BLAST is limited by the diversity achieved by

the first layer to be detected. Furthermore, this layer experiences a diversity order

similar to that of MMSE. The diversity order of V-BLAST was derived in [33]

and the average error probability of V-BLAST for large SNR is provided in (4).

Hence, in the 2m-by-2m MIMO real equivalent model (here nr = nt = 2m), the

average error probability of MMSE for large SNR can be approximated by [35]:

(SNR) (22)

An approximation of the average probability of the typical error event for large

SNR is [34]:

{P(ŝ1 s1 | H
R)} (23)

Recall, the expression of the average probability of F-BLAST derived in Section

5.2.2:

(SNR) = P(E | Ē1) + (P(E | E1) - P(E | Ē1)) * P(E1) (24)

Likewise, using the 2m-by-2m real-valued equivalent model, we obtain for large

SNR:

P(E | Ē1) , nR = 2m and nT = 2m - 1

P(E | Ē1) (25)

and P(E | E1) , nR = nT = 2m

P(E | E1) (26)

With nR = 2m, P(s1) = , (7) and (23), for large SNR, we can evaluate P(E1) as

P(E1) (27)

74

P(E1) (28)

Thus, for large SNR, (24), (25), (26) and (28) yield

(SNR) (-) * +

By factoring, it is straightforward to obtain

(SNR) * (1 + * (1 -))

Thus, for large SNR and m > 1

log((SNR)) log(CVBLAST) -2*log(SNR)+log(1+ *(1-

))

Finally, in the limit for large SNR

 = - 2 (29)

Q.E.D.

Corollary to Asymptotic Result 3 The diversity order of the

real-valued F(W1,W2)-BLAST is 2.5.

Proof:

The real-valued F(W1,W2)-BLAST is the detector that selects the best

symbol vector between (1) the real-valued detector that searches the real

component of the weakest layer, and (2) the real-valued detector that searches the

complex component of the weakest layer. Such a system should benefit from

‘selection diversity’, thus assuming reasonable independence in the two detectors,

75

the diversity gain for a two-branch selection diversity should be 1.5 [36].

Therefore, by definition, the diversity order of such detector is 2.5.

Q.E.D.

 One could extend this idea to obtain selection benefits by search on greater

than the first two real layers, to say three or four layers. However the

computational cost will rapidly become prohibitive.

5.2.5 Simulation Study

We calculated the slope of the performance characteristic of various

schemes studied in this work and illustrated in Figure 8, 9, 11, 13 and 14. The

results are summarized in Table 4. Since, each curve was drawn using the average

number of symbols in error for a given SNR, then stored for future analysis, we

basically picked two points from the tail of the performance characteristic to

compute its slope, using the following formula:

slope =

Here SERi and SNRdBi are the Y-axis and X-axis coordinate, respectively, of a

point from the tail of the performance characteristic.

Table 4 Experimentally Measured Tail Slope

� Figure 8: M = 64, SNR1 = 28 dB and SNR2 = 30 dB

Detector F-BLAST 4 4 F-BLAST 6 6 F-BLAST 8 8
slope - 3.6 - 5.1 - 5.4

76

� Figure 9: M = 16, SNR1 = 26 dB and SNR2 = 28 dB

Detector ML F-BLAST V-BLAST MMSE
slope - 5.0 - 4.8 - 1.0 - 1.0

� Figure 11: M = 64

 slope
Detector SNR1 = 28 dB and SNR2 =

30 dB
SNR1 = 28 dB and SNR2 =

30 dB
FR(OPT,9)-BLAST - 2.8 - 1.0
FR(W2,9)-BLAST - 2.0 - 1.0
FR(S1,9)-BLAST - 2.2 - 1.7

FR(OPT,16)-BLAST - 2.8 - 1.0
FR(W2,16)-BLAST - 1.9 - 1.0
FR(S1,16)-BLAST - 2.2 - 1.7

� Figure 13: SNR1 = 34 dB, SNR2 = 36 dB

 slope
Detector M = 64 M = 128 M = 256

FR-BLAST(W2,32) - 1.8 - 2.0 - 2.3
FR-BLAST(W2,16) - 1.1 - 1.2 - 1.8

F-BLAST - 4.5 - 3.5 - 3.7
V-BLAST - 0.9 - 1.2 - 1.3

MMSE - 0.8 - 0.9 - 1.0

� Figure 14: SNR1 = 34 dB, SNR2 = 36 dB

 slope
Detector M = 16 M = 64 M = 256
MMSE - 1.00 - 1.0 - 0.9

V-BLAST - 1.03 - 1.2 - 1.1
real F-BLAST - 1.66 - 1.9 - 2.1

F-BLAST - 2.13 - 3.6 - 3.0
Parallel (W1,W2) real F-

BLAST
x -2.7 -3.0

These tables show that for SNR ranging from 26 dB to 40 dB, neither FR-

BLAST (with relatively large window sizes), real F-BLAST, F-BLAST nor ML’s

77

performance characteristic has reached their theoretical asymptotic behaviour, i.e.,

the absolute value of the tail’s slope is not approximately equal to the predicted

diversity order of the scheme. This, can be explained by the fact that, the SNR

values considered here are not large enough, as illustrated in Figure 15. Also, we

can observe that the larger the constellation, the slower the absolute value of the

slope takes to reach its theoretical value, i.e., the diversity. Consistently with this

trend, the larger the window size W of FR-BLAST, the slower the absolute value

of the slope takes to reach its theoretical value.

In conclusion, as the search window’s size increases, the performance

characteristic of the proposed detector is improved for SNR values of interest, i.e.,

0 dB to 40 dB. As derived above, the diversity order for FR-BLAST does not

depend on the size of the search window.

Figure 15 Approximation of the Average Error Probability for Large SNR Values

78

VI- Performance Study of a Turbo Decoder

 In practical wireless systems, to greatly enhance the effective quality of

the channel, blocks of information data are encoded at the transmitter side of the

radio link, and decoded at the receiver side of the radio link using an error control

algorithm, such as the well-known Turbo Codes (TC) [37]. The performance of

TCs approaches the Shannon limit, and they have been adopted by the next

generation of 3GPP2 / CDMA 2000 Wireless Communication Systems [38].

6.1 Turbo Codes

 TC are based on the parallel concatenation of two Recursive Systematic

Convolutional (RSC) codes separated by an interleaver [39]. The turbo decoding

principle calls for an iterative algorithm involving two component decoders that

exchange information in order to improve the error correction performance with

increasing numbers of decoding iterations [37].

Figure 16 Turbo Encoder Diagram

79

Figure 16 illustrates the structure of a turbo encoder. The information bits

are grouped to form a block of fixed-length information data bits to be encoded.

The encoder is formed by two RSC encoders that operate in parallel. Each

encoder generates a sequence of n1 and n2 coded bits, respectively, from a

sequence of i information bits, producing an overall code rate of ‘ i / (n1 + n2 - i)’.

To enhance the performance of the decoder, the second encoder processes the

information bits in a different order, i.e., the information bits are interleaved or

scrambled to obtain a decorrelated version of the same information. The coded

bits sequence is comprised of parity bits and systematic bits (original information

bits). Finally, the encoders’ outputs are multiplexed and interleaved using a

predefined interleaver to strengthen the code.

Figure 17 Turbo Decoder Diagram

80

Figure 17 illustrates the structure of a turbo decoder. The received

sequence is comprised of soft information bits and soft parity bits. The soft bits

give estimates of bit values along with probability information for each bit. They

are typically log-likelihood ratios (LLRs) given to some finite bit precision (e.g.,

3, 4, 5 or 6 bits). Maximum Likelihood Detection (MLD) principle, i.e., the

comparison of the probability of a received soft bit being a ‘one’ or a ‘zero’, is

used to decode TC. The decoder is formed by two Maximum A-posteriori

Probability (MAP) decoders that have knowledge of the lattice structure of the

encoders. Each MAP decoder receives the original soft information bits and one

of the two streams of soft parity bits, and produces a (hopefully) more accurate

sequence of soft information and soft parity bits. After a certain number of

iterations, the outputs of the decoders are compared by addition, i.e., the LLRs

corresponding to the i-th bits from the block of soft information bits generated by

the first and the second component APP decoder, respectively, are summed to

increase or decrease the probability of the i-th information bit being a zeros or a

one. Finally, a hard decision is made to recover the original sequence of

information bits.

81

6.2 Turbo Codes for MIMO Systems [40]

 In [38], the author discusses several applications of TC. In this section, we

will briefly present three major applications that retain our attention.

6.2.1 TC Design in Asymmetric Digital Subscriber Line

(ADSL)

 Asymmetric Digital Subscriber Line (ADSL) is presently the main

technology of broadband wireline communications. This transmission model

associates a TC with a multicarrier modulation such as QAM [40]. Figure 18

illustrates the structure of an ADSL modem.

Figure 18 Block Diagram of an ADSL Modem [41]

82

 Observe that there is no direct feedback from the decoder to the encoder.

For this application, in order to reduce the effect of impulse noise that corrupts the

signal in the twisted pair channel, the original information bits sequence is

interleaved. This step tends to break up blocks of erroneous bits to create isolated

erroneous bits that can be more easily corrected. The Gray code mapping [42] is

the most common assignment of the bits to an M-QAM constellation, where the

systematic bits are assigned to the least significant bits and parity bits are assigned

to the remaining more significant bits. The turbo decoder utilizes a MAP

algorithm for soft decoding, as described in Section 6.1. Since the delay is an

important parameter in ADSL transmission, the main focus here is designing the

interleavers. Large interleavers are not affordable, consequently medium-sized

interleavers which provide sufficiently good error rate performance are of interest

[41].

6.2.2 Iterative Decoding for Wireless Communications [43]

Another application of TCs can be found in multiple antenna and Code-

Division Multiple Access (CDMA) channels. The CDMA channels are coded

independently from each others, whereas the multiple antenna channel is

synchronous and its sub-streams can be jointly coded. In many applications, the

fading channel can be modeled by the Rayleigh model [44]. For an optimal usage

of those channels in high SNR regions, large signal constellations should be used.

However, the transmitted signals are correlated by the channel and due to the

cardinality of the constellation, it is impractical to search over all possible

83

candidate signals. A solution to this problem is to create single-stream channels or

layers and use iterative demodulation and decoding.

In Iterative Decoding, a soft-output APP decoder plays the role of an outer

code and the channel plays the role of an inner code, the first decoder sending

back a posteriori probabilities of each bit iteratively to the second decoder. Figure

19 illustrates the structure of such a decoder for a CDMA system.

Figure 19 Iterative Multiuser Decoder with Soft Information Exchange [43]

84

Here FEC stands for Forward Error Control, and λ(di) represents the symbol-wise

log-likelihood ratio from the i-th layer.

The complexity of this decoder grows only linearly with the number of layers,

consequently a practical usage can be found for large constellation signals. This

technique is being applied in high-speed MIMO wireless communications [45],

which is the topic of the next section.

6.2.3 High-speed MIMO Wireless Communications [45]

 Turbo-MIMO is a class of MIMO systems based on the principle of turbo

processing. An example is the Space-Time Bit-Interleaved Coded Modulation

(ST-BICM) architecture, which provides very good performance with receivers

using iterative detection and decoding, such as the Minimum Mean-Squared

based Soft-Interference Cancellation (SIC-MMSE).

 In the ST-BICM architecture, the detector and the channel decoder use

soft data at both the inputs and outputs. Since detection and channel decoding are

processed separately, the complexity of the detectors grows linearly with the

number of receiver antennas. The more iterations in the detector/decoder loop, the

better is the error rate performance. What is more, it has been proven that the

performance of ST-BICM exceeds that of encoded non-iterative MIMO systems

such as V-BLAST [45].

85

Figure 20 Block Diagram of a MIMO System Employing ST-BICM and an

Iterative Receiver [45]

In Figure 20, d is the information bits sequence, the output of the encoder, c the

interleaved sequence of encoded bits, x the symbol vector, H the MIMO channel,

r the received signal, n the additive noise vector, Xext the extrinsic LLRs, X
A the

a priori LLRs, and X the a posteriori LLRs, with X representing I and O, i.e.,

inner decoder and outer decoder, respectively

Figure 20 illustrates the structure of the ST-BICM MIMO scheme. The

transmitted information bits sequence is first encoded, then interleaved and finally

converted into parallel substreams (i.e., one FEC block is used to encode the

original information bits). Each substream is mapped onto a sequence of

constellation symbols that is transmitted from a separate antenna [45]. The

decoding process is separated into two stages:

86

� The inner decoder, i.e., the detector, generates extrinsic LLRs for the

received coded bits sequence and makes them available as a priori

information to the outer decoder, after deinterleaving.

� The outer decoder, generally a turbo decoder such as the one described in

Section 6.1, uses the a priori information and generates extrinsic

information on both the coded bits and the information bits and feeds back

the extrinsic information on the coded bits to the inner decoder after

interleaving.

These stages are repeated until a pre-defined criterion is achieved, then hard

decisions are made to compute the decoded bits sequence.

 The iterative receiver generally improves the soft decisions after iteration.

APP decoders are optimal for the inner decoder [45], but they are impractical

due to their higher computational complexity, thus sub-optimal detectors such

as SIC-MMSE [47] are of interest.

 In SIC-MMSE, when detecting the symbol transmitted through one layer,

this layer is assumed to receive interference from the nt-1 remaining layers

and the additive noise. A priori information available as an input, is used to

estimate and cancel interference from the remaining layers, and to supress the

residual interference and noise given the MMSE criterion. In [48], a family of

detectors (B-Chase) based on the parallel decoder (PD) [21] scheme, which

was discovered at the very end of the research project, presents a comparison

study of such detection scheme in an iterative decoding architecture.

87

6.3 System Model

 The proposed Turbo is illustrated in Figure 21. We used Simulink to

model (we stringed together function blocks) and simulate all of the systems in

the transmission chain associated with various soft detectors as described below.

Figure 21 Block Diagram of the Turbo Decoder Model

The number of blocks, the encoder’s interleaver size, and the trellis structure of

the encoder have been chosen according to the parameters provided in Berou’s

original paper [37].

We modeled the transmission of a sequence of equiprobable 0s and 1s, in

128 blocks containing 65536 (256 * 256) information bits each. The turbo

88

encoder block contains a parallel concatenation of two RSC rate-1/2 encoders,

whose outputs are defined by the generator polynomials 37 and 21 in octal, with a

constraint length of 5, for an overall code rate of 1/3, as described in Section 6.1.

The modulator accepts the encoded sequence of bits and converts them into a

sequence of M-QAM signals (M = 16, 64 or 256). These constellation signals are

grouped to form sample vectors of length m (for the purposes of simulation). Each

component of a sample is associated with a different transmitter antenna. The

block of sample vectors is divided into frames of length 2*M, which are then

transmitted through a noisy environment assumed to be constant for the duration

of the frame in order to model Rayleigh fading.

At the receiver side, the transmitted signal vector is corrupted with

AWGN, and the block of received signal vectors is detected using a soft-detector.

The soft detector produces soft information bits that are fed into the turbo

decoder. Thus, an implementation of the equivalent soft-output detector is

required. A direct implementation of the soft output information is very complex.

[49] proposes a simple approach that reduces the complexity without loss of

performance. The idea is to demap the received signal into soft bits which have

the same sign as provided by a hard detector and whose absolute value indicates

the reliability of the decision [49]. All the hard detectors mentioned in this work

use a linear filter (following the MMSE criterion) in order to estimate the position

on the constellation diagram, of the symbol transmitted on the current detected

layer, then a slicer function, picks the closest symbol from the constellation,

finally hard bits are produced following the gray mapping of the constellation

89

symbols. In the case, soft-outputs are of interest, [49] proposed to use decision

regions for the real and the imaginary part of the estimated position on the

constellation diagram (b = bQ + i * bI, as illustrated in Figure 22).

Figure 22 Partition of the 16-QAM constellation [49]

(S(0)
I;k; S

(1)
I;k) for the component in phase bI, and (S(0)

Q;k; S
(1)

Q;k) for component in

quadrature bQ, in the case of the 16-QAM constellation. In practical, the soft-

outputs associated with the component in phase are defined by:

SI,1 =

SI,2 = - | bI | + 2

90

The SQ,k functions for the in quadrature component are the same, with bI replaced

by bQ.

Finally, the turbo decoder generates the output information bits as

described in Section 6.1.

This system model uses a single turbo encoder since all antenna signals

employ the same modulation. The proposed family of Turbo F-BLAST detectors

does not have an iterative processing between the soft detector and the turbo

decoder in order to reduce the processing delay. Note that the iterative processing

is being replaced by the parallel search on the first layer to be detected.

 The next section presents a fair comparison among all the corresponding

soft detectors.

91

6.4 Results

 We simulated the same sequence of information bits in a Rayleigh fading

environment through a 44 MIMO system, using different modulation schemes,

such as 16-QAM, 64-QAM and 256-QAM.

6.4.1 16-QAM

Figure 23 BER vs. EbNo of a 16-QAM Turbo MIMO Model Associated with

Various Soft Detectors: MMSE (a), Real-Valued F-BLAST (b), and F-BLAST (c)

 Figure 23 shows that after a certain number of iterations, the turbo model

associated with various soft detectors seems to exhibit the same BER performance

vs. the bit energy to noise ratio (EbNo). This performance limit on the BER vs.

EbNo characteristic is known as the turbo cliff and is represented by a sudden

drop of the BER [50]. Also, observe that for a small number of iterations (three or

four), the soft F-BLAST and the soft real-valued F-BLAST detectors have BER

performance which exceeds that of MMSE. But, if a system can afford up to 12

iterations, a soft MMSE detector provides good performance, as shown in Figure

24.

92

Figure 24 BER vs. EbNo (dB) of a 16-QAM Turbo MIMO Model Associated

with Various Soft Detectors for: one iteration (a), four iterations (b), and twelve

iterations (c)

 These observations are highlighted in Table 5.

 One iteration Four iterations 12 iterations

BER mmse vb real fb fb mmse vb real fb fb mmse vb real fb fb

10-2 18 17 16 17 12 12 12 13 10 10 10 11

10-4 30 30 23 22 14 15 14 15 11 11 11 12

10-6 / / 34 30 17 18 16 / 14 13 12.5 14

Table 5 Corresponding EbNo (dB) for Selected BERs for Various Soft Detectors

in a 4 4 16-QAM Turbo MIMO System

Here ‘vb’, ‘real fb’ and ‘fb’ stand for V-BLAST, real-valued F-BLAST and F-

BLAST, respectively.

93

The soft F-BLAST detector uses a search window containing only 16

constellation signals (i.e., the entire constellation), thus it is very encouraging for

further research involving a better design of the interleaver, and extensions to

iterative decoding between the turbo decoder and the soft detector. While

transmitting and detecting 16-QAM signals, the real-valued detector, which has a

lower computational complexity, exhibits approximately the same performance

compared to that of the complex-valued detection, thus real-valued detection

should be of interest for transmission over a turbo MIMO system.

6.4.2 64-QAM

 The top chart of Figure 25, i.e., (a), (b), (c) and (d), showing BER plots for

64-QAM signals leads to the same conclusions as for 16-QAM signals. The soft

detectors used for the turbo MIMO model exhibits approximately the same

performance after a certain number of iterations (eg. four or more). But the soft F-

BLAST and the soft real-valued F-BLAST detectors show better performance for

fewer than four iterations of the turbo decoder. Further, Figure 25 & 26 show that

the family of soft FR-BLAST detectors have very close performance with either a

search window of nine or 16 constellation symbols. However, when starting with

the second weakest layer, the BER performance is for some reason worse, as

shown in Figure 27. Figure 27 also shows that the family of soft FR-BLAST

detectors provides good performance with either a search window size of 9 or 16,

starting with any layers, but the second weakest one in term of strength. Note that

the performance of the family of soft FR-BLAST detectors is a little better than

that of the soft real-valued F-BLAST detector. Thus, in order to reduce the

94

computational complexity of the receiver, and for turbo MIMO systems that

require fewer iterations in order to reduce the power consumption and/or the

recovery time, the family of soft FR-BLAST detectors may be of interest for the

detection scheme.

Figure 25 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with

Various Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c),

FR(9,S1)-BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BLAST (f)

95

Figure 26 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with

Various Soft Detectors, FR(16,S1)-BLAST (g), FR(16,S2)-BLAST (h),

FR(16,W2)-BLAST (i), F-BLAST (j), FR(9,W1)-BLAST (k), and FR(16,W1)-

BLAST (l)

96

Figure 27 BER vs. EbNo (dB) of a 64-QAM Turbo MIMO Model Associated

with Various Soft Detectors for: one iteration (a), four iterations (b), and twelve

iterations (c)

97

6.4.3 256-QAM

Figure 28 BER vs. EbNo of a 256-QAM Turbo MIMO Model Associated with

Various Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c),

FR(9,S1)-BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BLAST (f), FR(9,W1)-

BLAST (g), FR(16,S1)-BLAST (h), FR(16,S2)-BLAST (i), FR(16,W2)-BLAST

(j), and FR(16,W1)-BLAST (k)

98

 Figure 28 shows that the soft detectors presented here have approximately

the same performance with respect to BER. After four iterations, their BER

performance characteristics seem to have reached the turbo cliff limit. Figure 29

shows that for EbNo values less than 30 dB, the soft detectors provide very

similar results, but above 30 dB it is not clear which one is better since

insufficient error statistics led to eratic and hence unreliable behaviour of the BER

performance characteristic. Simulation times were unfortunately become very

long (e.g. many days).

A simple soft MMSE detector seems to provide a BER performance very

close if not better than that of more complicated soft detectors, such as the family

of soft FR-BLAST detectors. We think that MMSE with the current parameters

will benefit more from the effects of turbo decoding. Nevertheless, a simulation

study with more information bits might be required to accurately access the

performance of the different soft detectors for large Eb/No values.

Figure 29 BER vs. EbNo (dB) of a 256-QAM Turbo MIMO Model Associated

with Various Soft Detectors for: one iteration (a), and four iterations (b)

99

VII- Conclusions and Future Directions

7.1 Conclusions

 New standards, such as LTE, require high-speed, small and power-

efficient devices at both ends of a radio communication link. This thesis presents

a new family of detectors that tries to meet this demand.

 We first reviewed a detection scheme, F-BLAST, which has been proven

to give optimal performance for SNR values ranging from 0 dB to 40 dB, in an

uncoded MIMO system. But due to its higher computational complexity, we

proposed and investigated a new family of detectors (FR-BLAST) and a detection

scheme based on real-valued decomposition (real-valued F-BLAST) that are

computationally efficient, near-optimal in term of BER performance, and should

be of great interest for larger constellations. The main idea being the use of

limited parallelism to improve the error rate performance, and to reduce the

recovering time, for a device using such technique.

 A study of the computational complexity of the proposed detectors (FR-

BLAST and real-valued F-BLAST) and those found in the literature (MMSE, V-

BLAST, F-BLAST and ML), confirms that the real-valued F-BLAST scheme

requires fewer arithmetical operations (multiplications and additions), but many

more reciprocals. Thanks to its parallelizable structure, FR-BLAST does not

require many cycles even when using the target number of 16 parallel

computational threads. Besides, theoretical analysis shows that the diversity order

of the new schemes is identical to that of MMSE and V-BLAST, although the

100

BER performance characteristic does not indicate such behaviour at a relatively

high SNR region (up to 40 dB) when detecting large constellation signals such as

16-QAM, 64-QAM, 128-QAM and 256-QAM. Motivated by these results, we

investigated the combination of the novel detection schemes with a simple turbo

MIMO system without iterative exchange of information between the soft

detector and the turbo decoder.

 Unfortunately, the results obtained are not as promising for the new

detectors as for the transmission of uncoded information. We observed

remarkable performance for our soft detectors for fewer than four iterations of the

turbo decoder when detecting 16-QAM and 64-QAM constellation signals. But

for 256-QAM constellation signals, and in general for more than four iterations, a

simple MMSE soft detector seems to be good enough, for the proposed turbo

MIMO model. The effect of the Turbo Code dominates the performance of the

detectors.

 At this point, further modifications and implementations are to be

investigated to have a fair comparison of the various schemes presented for the

purpose of this work.

101

7.2 Future Directions

 Further investigation should focus on the turbo coded scheme and Low-

Density Parity Check (LDPC) since TCs and LDPC codes are widely used in the

industry, and since they provide so much coding gain error for MMSE detectors.

The design of the interleavers and turbo encoders, that are suitable for Successive

Interference Cancellation (SIC) systems, is of great interest. Also, since iterative

decoding has proven to have excellent performance for detectors using the MMSE

criterion, one might consider investigating such a system architecture. In addition,

in order to reduce the simulation time and to present results that are suitable for

practical usage, an implementation on hardware and the use of an industrial

fading model with a simulated Gaussian noise generator should be considered.

102

References

[1] B. C. Levy, Principles of Signal Detection and Parameter Estimation,

Springer, 2008, ch. 4, pp. 113-130.

[2] Wolniansky P.W., Foschini G.J., Golden G.D., Valenzuela R.A., “V-BLAST:

An architecture for realizing very high data rates over the rich-scattering wireless

channel,” International Symposium on Signals, Systems and Electronics

(ISSSE’98), 1998, pp. 295-300.

[3] Hassibi B. and Vikalo H., On the Expected Complexity of Sphere Decoding,

Conference Record of the 35th Asilomar Conference on Signals, Systems and

Computers, 2001, vol. 2, pp. 1051-1055.

[4] Wenjie Jiang, Yusuke Asai, and Shuji Kubota, Tree Search Based

Approximate Maximum Likelihood Detector for Spatial Multiplexing Systems,

The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications (IMRC'07), 2007, pp. 1-5.

[5] Ron Rausch and Mark Buffo, Developing Strategies for MIMO Testing,

Microwave journal, March 2009, vol. 52, no. 3, pp. 94.

[6] Benny Bing, Broadband Wireless Access, Kluwer Academic Publishers, ch. 1,

pp. 9-10.

[7] Mohinder Jankiraman, Space-Time Codes and MIMO Systems, Artech House

Publishers, 1st ed., August 2004, pp. 23-32.

[8] Benjamin Baumgartner, MIMO, Wikimedia Commons, November 2005.

103

[9] Bob O’Hara, IEEE 802 Working Group & Executive Committee Study Group

Home Pages, IEEE 802 Working Group, July 2009.

[10] S. Benedetto and G. Montorsi, Design of Parallel Concatenated

Convolutional Codes, IEEE Transactions on Communications, 1996, vol. 44, no.

5, pp. 591-600.

[11] Splash, Constellation diagram for Gray coded 16-QAM, Wikimedia

Commons, October 2006.

[12] Lizhong Zheng and David N. C. Tse, Diversity and Multiplexing: A

Fundamental Tradeoff in Multiple-Antenna Channels, IEEE Transactions on

Information Theory, May 2003, vol. 49, no. 5, pp. 1073-1096.

[13] J. H. Kotecha and A. M. Sayeed, Training Signal Design for Optimal

Estimation of Correlated MIMO Channels, IEEE Transactions on Signal

Processing, 2004, vol. 55, no. 2, pp. 546-557.

[14] J.G. Proakis, Digital Communications, New York: McGraw-Hill, 4th edition,

2001, ch. 7.

[15] B. C. Levy, Principles of Signal Detection and Parameter Estimation,

Springer, 2008, ch. 4, pp. 113-130.

[16] Manzoor, Rana Shahid Gani, Regina Jeoti, Varun Kamel, Nidal Asif,

Muhammad, Implementation of FFT Using Discrete Wavelet Packet Transform

(DWPT) and Its Application to SNR Estimation in OFDM Systems, International

Symposium on Information technology (ITSim’08), 2008, vol. 4, pp. 1-6.

104

[17] Norman C. Beaulieu, Andrew S. Toms and David R. Pauluzzi, Comparison

of Four SNR Estimators for QPSK Modulation, IEEE Communications Letters,

February 2000, vol. 4, no. 2, pp. 43-45.

[18] Cheng Wang, Edward K. S. Au, Ross D. Murch, Wai Ho Mow, Roger S.

Cheng and Vincent Lau, On the Performance of the MIMO Zero-Forcing

Receiver in the Presence of Channel Estimation Error, IEEE Transactions on

Wireless Communications, March 2007, vol. 6, no. 3.

[19] Wolniansky P.W., Foschini G.J., Golden G.D., Valenzuela R.A., “V-BLAST:

An architecture for realizing very high data rates over the rich-scattering wireless

channel,” International Symposium on Signals, Systems and Electronics

(ISSSE’98), 1998, pp. 295-300.

[20] G. D. Golden, J. G. Foschini, R. A. Valenzuela, and P. W. Wolniansky,

Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time

Communication Architecture, Electronics Letters, January 1999, vol. 35, no. 1,

pp. 14-15.

[21] Yaun Li and Zhi-Quan Lo, Parallel Detection for V-BLAST System,

International Conference on Communications, 2002, vol. 1, pp. 340-344.

[22] S. Fouladi Fard, A. Alimohammad, and B. F. Cockburn, Improved MIMO

Detection Algorithm with Near-Optimal Performance, IET Electronics Letters,

18th June 2009, vol. 45, no. 13, pp. 675-677.

[23] Arsene Pankeu Yomi, Bruce Cockburn, Near-Optimal and Efficient

Multiple-Input Multiple-Output Detectors for Large Constellations, Banff

105

Summer School 2010 on Communication and Information Theory, Presentations

Report, 2010.

[24] Arsene Pankeu Yomi, Bruce Cockburn, Enhanced MIMO Detection with

Parallel V-BLAST, IEEE Pacific Rim Conference on Communications, Computers

and Signal Processing (PACRIM’11), 2011, pp. 702-707.

[25] Jeffrey G. Andrews, Interference Cancellation for Cellular Systems: A

Contemporary Overview, The University of Texas Austin, IEEE Wireless

Communications, April 2005, vol. 2, no. 2, pp. 1284-1536.

[26] Allan Agresti, An Introduction to Categorical Data analysis, John Wiley and

Sons, 1996, ch. 25.

[27] R.F.H. Fischer and C. Windpassinger, Real versus Complex-Valued

Equalization in V-BLAST Systems, IEEE Electronic Letters, 6th March 2003, vol.

39, no. 5, pp. 470-471.

[28] H. H. Beverage and H. O. Peterson, Diversity Receiving System of R.C.A.

Communications, Inc., for Radiotelegraphy, Proceedings of the IRE, April 1931,

vol. 19, no. 4, pp. 531-561.

[29] Georges B. Arfken and Hans J. Weber, Mathematical Methods for Physicists,

sixth edition, 2005, Elsevier Academic Press, p. 179 & 186.

[30] Andrea Goldsmith, Wireless Communications, Cambridge University Press,

ch. 10.5, pp. 335-337.

[31] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea

Goldsmith, Arogyaswami Paulraj, H. Vincent Poor, MIMO Wireless

Communications, Cambridge University Press, ch. 4.2.3, pp. 145-146.

106

[32] John R. Barry, Edward A. Lee, David G. Messerschmitt, Digital

Communication, Springer, ch. 11.5, pp. 545-548.

[33] Yi Jiang, Xiayu Zheng and Jian Li, Asymptotic Performance Analysis of V-

BLAST, IEEE GLOBECOM, 2005, pp. 3882-3996.

[34] W. J. Choi, R. Negi, and J. M. Cioffi, Combined ML and DFE Decoding for

the V-BLAST System, IEEE International Conference on Communications

(ICCC’00), June 2000, vol. 3, pp. 25-29.

[35] G. Kalyana Krishnan and V. Umapathi Reddy, High Performance Low

Complexity Receiver for V-BLAST, IEEE workshop 8th on Signal Processing

Advances in Wireless Communications, 2007, pp. 1-5.

[36] D. G. Brennan, Linear Diversity Combining Techniques, Procedings of the

IRE, vol. 47, pp. 1075-1102.

[37] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes, Proc. ICC’93, Geneva, May

1993, pp. 1064–1070.

[38] Third Generation Partnership Project 2 (3GPP2), Physical Layer Standard

for CDMA2000 Spread Spectrum Systems, Release D, 3GPP2 C.S0002-D,

Version 1.0, February 2004.

[39] Claude Berrou, Codes and Turbo Codes, Springer, ch. 5.2.

[40] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a

Paper to Realization, Springer, 2005.

[41] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a

Paper to Realization, Springer, 2005, ch. 4, pp. 67-79.

107

[42] K Meena, Principles of Digital Electronics, PHI Learning Pvt. Ltd., 2009,

pp. 34-37.

[43] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a

Paper to Realization, Springer, 2005, ch. 6, pp. 123-124 & 127-139.

[44] David Tse, Pramod Viswanath, Fundamentals of Wireless Communication,

Cambridge University Press, 2005, ch 2.4, pp 34-37.

[45] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a

Paper to Realization, Springer, 2005, ch. 9, pp. 223-228 & 233-234.

[46] G. D. Golden, J. G. Foschini, R. A. Valenzuela, and P. W. Wolniansky,

Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time

Communication Architecture, Electronics Letters, 1999, vol. 35, pp. 14–15.

[47] M. Sellathurai and S. Haykin, Turbo-BLAST for Wireless Communications:

Theory and Experiments, IEEE Trans. Signal Processing, October 2002, vol. 50,

no. 20, pp. 2538–2546.

[48] Deric W. Waters and John R. Barry, The Chase Family of Detection

Algorithms for Multiple-Input Multiple-Output Channels, IEEE Transactions On

Signal Processing, February 2008, vol. 56, no. 2, pp. 739-747.

[49] Filippo Tosato, Paola Bisaglia, Simplified Soft-Output Demapper for Binary

Interleaved COFDM with Application to HIPERLAN/2, Imaging Systems

Laboratory, HP Laboratories Bristol, HPL-2001-246, October 2001.

[50] Christian B. Schlegel, Lance C. Perez, Trellis and Turbo Coding, John Wiley

& Sons, 2004, ch. 10.1.

108

Appendices

1. Minimum Mean Square Error (MMSE) Conditioning Matrix [14]

System model:

yT = sT * H + n T Or y = HT * s + n Or yH = sH * H* + n H (1)

Where:

- y is the received noisy signal vector

- s is the transmitted signal vector

- n is an AWGN vector of length m

- ŝ is the detected signal vector of length m

- H is the m-by-m channel matrix

The goal is to find a linear approximation ŝ, of the transmitted symbol vector s

given the received symbol vector y, such that:

ŝ = GT * y + b (2)

Where GT and b are constants to be determined. The channel matrix H is assumed

to be known or perfectly estimated.

Let e = s - ŝ the error vector, A = GT, and E{.} the expected value operator.

me = ms - mŝ (3)

and from (2) and the linearity of the mean:

mŝ = A * my + b (4)

y H
+

Linear Detector s

n
ŝ

109

thus,

b = mŝ - A * my (5)

Minimizing the error vector is equivalent to minimizing its mean, i.e., me = 0, thus

ms - mŝ = 0, and ms = mŝ. But by definition ms = my = 0, therefore

b = 0 - A * 0 = 0 (6)

Consider the following equations:

e - me = (s - ŝ) – (ms - A * my + b)

 = (s - ms) – A (y - my)

 e - me = [-A] * (7)

Ke = E{(e - me) (e - me)
H} (8)

From (7) and (8) we obtain:

Ke = E{([-A] *)*([-A] *)H} (9)

 Define K as:

K = E{ H} (10)

K = (11)

Where , and can be defined as:

K sy = = E{(s - ms) * (y - my)
H} (12)

K y = E{(y - my)
 * (y - my)

 H} (13)

Thus from (9), (10) and (11):

110

Ke = [-A] * * [-A] H

 = [(K s - A * K ys) (K sy - A * K y)] * [I m -A]H

 = K s - A * K ys - Ksy * AH + A * K y * A
H

Ke = (A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H + K s - K sy * K y

-1 * K ys (14)

Because K s - K sy * K y
-1 * K ys is constant, Minimizing Ke is equivalent to

minimizing (A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H, thus from (12) we obtain

the following equation:

(A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H = 0

A = K sy * K y
-1 or A = (K y

-1 * K ys)
H) (15)

 From (4), (12) and E{s * nH} = 0 (the signal vector is independent from

the distributed noise)

 Ksy = E{(s - ms) * (y - my)
H}

 = E{s * (HT * s + n)H }

 = E{s * sH * (HT)H} + E{ s * nH},

 = E{s * sH} * (HT)H

 = K s * (H
T)H, K s = σ2

s * I m

K sy = σ2
s * (H

T)H (16)

 K y = E{(y - my)
 * (y - my)

 H}

 = E{(HT * s + n) * (sH * H + n)H}

 = HT * E{ s * sH} * H* + E{n * nH} , E{ n * nH} = σ2
n * Im

K y = σ2
s * H

T * H* + σ2
n * I m (17)

Finally, from (15), (16) and (17) we get :

A = σ2
s * (H

T)H * (σ2
s * H

T * H* + σ2
n * Im)-1 (18)

111

With SNR = σ2
s / σ

2
n, (18) yield to

G = AT = ((HT * H*)T + (1 / SNR) * I m)-1 * ((HT)H)T (19)

Given that (A * B)T = BT * AT, (A*)T = AH and ((HT)H)T = HH, from (19), we

derivate the expression the MMSE conditioning matrix G as:

G = (HH * H + (1 / SNR) * I m)-1 * HH

112

2. Statistical Study of the Family of FR-BLAST First Detected

layer [26]

Figure 11 shows that a significant improvement can be achieved if the

detection starts on the right layer. The performance achieved by FR(Opt)-BLAST,

i.e., the optimal proposed detector which picks the best layer for each frame of

sample vectors, are clearly better than that of the family of detectors. However

this decision is not trivial, thus we ran a statistical study to define a decision

model.

The goal of this study was to build a statistical model to determine the best

starting layer for an FR-BLAST detector, based on the size of the window search

W (9 or 16 are a typical values), the MIMO gain m (typically 4 for this work), the

constellation size M (64-QAM constellation signal here), the norms of each

column of the channel matrix H, and the gains in the column of H with the largest

strength.

Several models (linear, quadratic, cubic, logarithmic and exponential)

were studied, unfortunately the best model derivated by the statistical analysis

tool (SPSS 18) was accurate only 25 % of the time, which can be seen as a

random decision for practical implementation.

The results are presented below:

113

� e.g. 1: result for the linear model, W = 9

Classification Resultsb,c

 v1

0
Predicted Predicted starting layer

Total

1 2 3 4

Original Count 1 12805 20759 26498 31733 91795

2 12809 21333 26501 31791 92434

3 12597 21170 26647 32020 92434

4 12742 21132 26469 32043 92386

% 1 13.9 22.6 28.9 34.6 100.0

2 13.9 23.1 28.7 34.4 100.0

3 13.6 22.9 28.8 34.6 100.0

4 13.8 22.9 28.7 34.7 100.0

Cross-validateda Count 1 12658 20808 26538 31791 91795

2 12839 21123 26599 31873 92434

3 12631 21272 26444 32087 92434

4 12817 21222 26537 31810 92386

% 1 13.8 22.7 28.9 34.6 100.0

2 13.9 22.9 28.8 34.5 100.0

3 13.7 23.0 28.6 34.7 100.0

4 13.9 23.0 28.7 34.4 100.0

b. 25.2% of original grouped cases correctly classified.

c. 24.9% of cross-validated grouped cases correctly classified.

114

� e.g. 2 : Result for the combined linear and quadratic model, W = 9

Classification Resultsb,c

 v10 Predicted starting layer

Total

1 2 3 4

Original Count 1 9824 22078 23623 36270 91795

2 9814 22589 23837 36194 92434

3 9723 22333 24059 36319 92434

4 9871 22200 23793 36522 92386

% 1 10.7 24.1 25.7 39.5 100.0

2 10.6 24.4 25.8 39.2 100.0

3 10.5 24.2 26.0 39.3 100.0

4 10.7 24.0 25.8 39.5 100.0

Cross-validateda Count 1 9691 22122 23643 36339 91795

2 9837 22385 23946 36266 92434

3 9737 22441 23862 36394 92434

4 9933 22260 23858 36335 92386

% 1 10.6 24.1 25.8 39.6 100.0

2 10.6 24.2 25.9 39.2 100.0

3 10.5 24.3 25.8 39.4 100.0

4 10.8 24.1 25.8 39.3 100.0

b. 25.2% of original grouped cases correctly classified.
c. 25.0% of cross-validated grouped cases correctly classified.

115

e.g. 3 : Result for the combined linear, quadratic and logarithmic model, W = 16

Classification Resultsb,c

 v

1

0

Predicted Group Membership

Total

1 2 3 4

Original Count 1 20236 43728 31797 23211 118972

2 20219 44170 31407 22785 118581

3 20152 43845 31743 23166 118906

4 19939 43447 31707 23258 118351

% 1 17.0 36.8 26.7 19.5 100.0

2 17.1 37.2 26.5 19.2 100.0

3 16.9 36.9 26.7 19.5 100.0

4 16.8 36.7 26.8 19.7 100.0

Cross-validateda Count 1 19768 43835 32051 23318 118972

2 20331 43960 31474 22816 118581

3 20395 43933 31351 23227 118906

4 20037 43489 31765 23060 118351

% 1 16.6 36.8 26.9 19.6 100.0

2 17.1 37.1 26.5 19.2 100.0

3 17.2 36.9 26.4 19.5 100.0

4 16.9 36.7 26.8 19.5 100.0

b. 25.1% of original grouped cases correctly classified.

c. 24.9% of cross-validated grouped cases correctly classified.

116

3. General Results for Basic Operations

1. Real-valued Operations

 Let a1 and a2 denote two real numbers.

� Real number addition - f1, g1:

a1 + a2 requires one real addition and one cycle, so f1 = 1 (+) and g1 = 1 (c),

i.e., one real-valued addition and one operation cycle, respectively.

� Real number multiplication - f2, g2:

a1 * a2 requires one real multiplication and one cycle, so f2 = 1 (*) and g2 = 1 (c

).

� Real number reciprocal - f3, g3:

1 / a1 requires one real reciprocal and one cycle, so f3 = 1 (1/N) and g3 = 1 (c).

� Square absolute value of a real number - f4, g4:

|a1|² = a1* a1 requires one real multiplication and one cycle, so f4 = 1 (*)

and g4 = 1 (c).

� m-by-n real-valued matrix addition - f5(m,n), g5(m,n):

Consider two m-by-n real-valued matrices A = [aij] and B = [bij] with 0 < i <

m + 1 and 0 < j < n + 1. Adding each element at the i-th row and the j-th column

of A, i.e., aij , for i = 1…m and j = 1…n, to the corresponding element

from B will require n * m real-valued additions, which could be performed in one

cycle on parallel hardware. Thus the real-valued matrix addition will require m *

n * f1 operations and one g1 cycle. Therefore, f5(m,n) = mn (+) and g5(m,n) =

1 (c).

117

� Addition of a set containing n real numbers - f6(n), g6(n):

Considering two real numbers a1 and a2, computing the sum of these numbers

will require one real addition and one cycle. Now, if we have a set of three

numbers, we could first find the result from the addition of two of them, add1, and

then the result of the addition of add1, and the remaining number. Basically, such

a linear addition of a set of n real numbers will require n - 1 real additions and n -

1 cycles.

However there are more complicated, but faster, tree-based element summing

algorithms for large sets of numbers. These algorithms are of no benefit for small

sets.

Figure 1 illustrates the tree-based element summing procedure for n = 8.

Consider a set containing n real numbers a1…an. Observe that the height of a

binary tree containing n elements in the leaves is . Note also that the

number of non-leaf nodes, which is the number of additions, is n - 1 for a binary

tree with n leaf nodes. Therefore, f6(n) = n - 1 (+) and g6(n) =

(c).

118

Figure 1 Tree-based Summing Algorithm to Add All elements in a Set of Size n

� Minimum of a set containing n real numbers - f7(n), g7(n):

To find the minimum of two numbers a1 and a2, we first compute the

difference diff = a1 - a2. If diff > 0 then the minimum is a2; otherwise, the

minimum is a1. Now, if we have a set {a1, a2, a3} containing three numbers, we

will first find the minimum of the first two of them, min(a1, a2), and then the

minimum of min(a1, a2), and the remaining third number a3. It is straightforward

to determine that computing the minimum of a set containing n real numbers is

equivalent in computational complexity to adding together all the elements in a

set of n real numbers. Therefore, f7(n) = f6(n) and g7(n) = g6(n). So,

f7(n) = n - 1 (+) and g7(n) = (c).

119

� Square norm of a real-valued column vector of length n - f8(n), g8(n):

Considering a vector column of n elements v = (v1, v2…, vn),

||v||² = ||(v1, v2…, vn)||² = |v1|² + |v2|² + . . . + |vn|²

Computing |vi|² requires f4 operations and g4 cycles for each element vi.

But these independent operations can be performed in parallel. Thus, for all n

components n * f4 operations and g4 cycles will be needed. Computing the sum of

n squared absolute values will require f6(n) operations and g6(n) cycles.

Therefore, computing the square norm of an n-element column vector requires n *

f4 + f6(n) operations and g4 + g6(n) cycles. So,

f8(n) = n (*) and n - 1 (+), and g8(n) = 1 + (c).

� Multiplication of an m-by-p real-valued and a p-by-n real-valued matrices

- f9(m,n,p), g9(m,n,p): [29]

Considering an m-by-p and an p-by-n real-valued matrices A = [aik] and B =

[bkj], with 0 < i < m + 1, 0 < j < m + 1 and 0 < k < p + 1.

Let, C = A * B = [cij], with 0 < i < m + 1 and 0 < j < n + 1

cij =

Computing aik * bkj will require f2 operations and g2 cycles. Thus for the p terms in

the sum, there will be p * f2 operations and g2 cycles. The computation for all m *

n product matrix coefficients will thus require m * n * p * f2 operations and g2

cycles.

120

We also need to compute the sum of a set of p real numbers for each

coefficient, which will require f6(p) operations and g6(p) cycles, for all m * n

matrix coefficients, so m * n * f6(p) operations and g6(p) cycles are required.

Therefore, computing the product of an m-by-p real-valued matrix and a p-

by-n real-valued matrix will require m * n * p * f2 + m * n * f 6(p) operations and

g2 + g6(p) cycles.

 f9(m,n,p) = mnp (*) and mn(p - 1) (+), and g9(m,n,p) = 1 + (c).

� Inverse of an n-by-n real-valued matrix - f10(n), g10(n):

Considering A = [aij] for 0 < i < n + 1 and 0 < j < n + 1.

Let B = A-1. To derive B, we will consider the Gauss-Jordan Matrix Inversion

Method, which has the advantage of requiring fewer operations for large matrices

than LU decomposition [29].

Consider the augmented matrix [A|I], with matrix A in the left side and the

identity matrix of size n in the right side. By performing basic operations (one

row multiplied by a scalar, or one row replaced by the original row minus a

multiple of another row [29]) between the rows of A and the identity matrix, we

will transform [A|I] to [I |B], where the identity matrix I is on the left side and

matrix B on the right side.

Thus, on one side of the augmented matrix, the transformation will lead to

the identity matrix. So, we will only consider operations on the other side, i.e., on

n coefficients rather than the 2 * n coefficients of the augmented matrix.

Consider the operations on the i-th row, i.e., Ri:

121

• First, we replace Ri by Ri / Rii, where Rii is the i-th coefficient on the i-

th row. This will require f3 operations and g3 cycles per element.

Considering maximum possible parallelism and n candidates, n * f3

operations and g3 cycles will be required.

• Next, we replace all the remaining rows (n - 1 in total) by -Rji * Ri +

Rj. Here we are transforming the j-th row; this will require f2

operations and g2 cycles, then f1 operations and g1 cycles per

candidate. Thus considering full parallelism, n candidates and n - 1

rows, n * (n - 1) * (f1 + f2) operations and (g1 + g2) cycles will be

required.

Therefore, for 0 < i < n + 1,

f10(n) = n2 (1/N), n2(n -1) (*) and n2(n - 1) (+), and g10(n) = 3n (c).

� Minimum Mean Square Error conditioning (MMSE) matrix from a 2n-by-

2n real-valued channel matrix - f11(n,n), g11(n,n) : [Appendix 1]

Note: For the purpose of this work, we are only interested in the equivalent real-

valued matrices built from complex-valued matrices. Given an n-by-n complex-

valued matrix C, the real-valued equivalent matrix is C(R) =

.

Thus, considering an n-by-n complex-valued conditioning matrix, G, the

corresponding real-valued MMSE conditioning matrix, G(R) is defined as follows:

G(R) = , where G = (CH * C + (1 / SNR) * I n)
-1 *

CH

122

Computing HH from H will require no operations and no cycles.

It can be shown that the matrix product CH * C is a symmetrical matrix.

So instead of computing all n2 coefficients, we do not need to compute the n (n +

1) / 2 coefficients above the main diagonal. Thus this computation will require n

(n + 1) (2n - 1) real additions, 2n2 (n + 1) real multiplications and 2 +

run cycles.

Computing 1 / SNR will require f3 operations and g3 cycles.

Computing 1 / SNR * I n will require no operations and no cycles as it is

equivalent to replacing the diagonal elements of I n by 1 / SNR.

Computing CH * C + 1 / SNR * I n will require n real additions and one

cycle as it is equivalent to an addition by a real constant on all diagonal

coefficient of CH * C.

Computing (CH * C + (1 / SNR) * I n)
-1 will require f21(n) operations and

g21(n) cycles.

Again, due to the symmetrical product, computing (CH * C + (1 / SNR) *

I n)
-1 * CH’ will require n (n + 1) (2n - 1) real additions, 2n2 (n + 1) real

multiplications and 2 + run cycles.

Given the complex-valued conditioning matrix, G, we can build the real-

valued conditioning matrix, G(R), without further operations.

Therefore, f11(2n) = n2 + 1 (1/N), 4n2(2n + 1) (*) and n[8n2 - n - 1] (+),

and g11(2n) = 6 + 7n + 2 (c).

123

� Minimum Mean Square Error (MMSE) conditioning matrix from an m-by-

n real-valued deflated channel matrix- f12(m,n), g12(m,n):

We will share computations from the calculation of the initial MMSE

conditioning matrix.

Considering D, the n-by-m deflated version of the n-by-n channel matrix

H (m < n),

temp1 = HH * H is the matrix whose coefficient on the i-th row and j-th column is

hi
H * hj, where hi is the i-th column of H. Thus, with temp1 = HH * H + 1 / SNR

* In and temp2 = DH * D + 1 / SNR * Im. Here temp2 is a deflated version of

temp1, and its computation requires no run time.

temp2 is an m-by-m matrix, thus temp2
-1 will require f10(m) operations and g10(m)

cycles

G = temp2
-1 * DH, with (m, p, n) = (m, m, n). Computing G requires f9(m,m,n)

operations and g9(m,m,n) cycles.

Therefore f12(m,n) = m2 (1/N) and m2(n + m - 1) (*) and m(m - 1)(m + n) (+),

and g12(m,n) = 3m + 1 + (c).

124

2. Complex-valued Operations

Let c1 and c2 denote two complex numbers such that c1 = a1+ j * b1 and c2 = a2 + j

* b2.

� Complex number addition - f13, g13:

c1 + c2 = a1 + a2+ j * (b1 + b2) requires two real additions and one cycle. So, f13 = 2

(+) and g13 = 1 (c).

� Complex number multiplication - f14, g14:

c1 * c2 = a1 * a2 - b1 * b2 + j * (a1 * b2 + b1 * a2) requires two real additions, four

real multiplications and two cycles. So, f14 = 2 (+) and 4 (*), and g14 = 2 (c).

� Complex number reciprocal - f15, g15:

1 / c1 = (a1 - j * b1) / (a1
2 + b1

2) = a1 / (a1
2 + b1

2) - j * b1 / (a1
2 + b1

2) requires one

real addition, four real multiplications, one real reciprocal and four cycles. So, f15

= 1 (1/N), 1 (+) and 4 (*), and g15 = 4 (c).

� Square absolute value of a complex number - f16, g16:

|c1|
2 = a1

2 + b1
2 requires one real addition, two real multiplications and two cycles.

So, f16 = 2 (*), 1 (+), and g16 = 2 (c).

� m-by-n complex-valued matrix addition - f17(m,n), g17(m,n):

Considering two m-by-n complex-valued matrices A = [aij] and B = [bij] with

0 < i < m + 1 and 0 < j < n + 1, adding the term in the i-th row and j-th column of

A, i.e., aij, for i = 1…m and j = 1…n, to the one from B will require one complex-

valued addition. Because there are n * m elements in each matrix, the complex

matrix addition will require m * n * f 14 operations and g14 cycles.

Therefore, f17(m,n) = 2mn (+) and g17(m,n) = 1 (c).

125

� Addition of a set containing n complex numbers - f18(n), g18(n):

In this case, the only difference with the real-valued computation is that we

are doing a group of complex additions, and thus the number of real additions will

be doubled.

Therefore, f18(n) = 2n - 2 (+) and g18(n) = (c).

� Square norm of a complex-valued column vector of length n - f19(n),

g19(n):

Considering a vector column of n elements v = (v1, v2…, vn),

||v||² = ||(v1, v2…, vn)||² = |v1|² + |v2|² + . . . + |vn|²

Computing |vi|² requires f16 operations and g16 cycles. Thus, for all

dimensions n * f16 operations and g16 cycles will be required.

Computing the sum of n squared absolute value will require f6(n)

operations and g6(n) cycles.

Therefore, computing the square norm of a n-elements column vector require

n * f16 + f6(n) operations and g16 + g6(n) cycles.

f19(n) = 2n (*) and 2n -1 (+), and g19(n) = 2 + (c).

� Multiplication of an m-by-p complex-valued matrix by a p-by-n complex-

valued matrix - f20(m,n,p), g20(m,n,p): [29]

Consider an m-by-p complex-valued matrix and a p-by-n complex-valued

matrix A = [aik] and B = [bkj], with 0 < i < m + 1, 0 < j < m + 1 and 0 < k < p +

1.

Let C = A * B = [cij], with 0 < i < m + 1 and 0 < j < n + 1

cij = .

126

Computing aik * bkj will require f14 operations and g14 cycles. Thus for the

p-th terms in the sum, there will be p * f14 operations and g14 cycles. The

computation for all m * n matrix coefficients will require m * n * p * f14

operations and g14 cycles.

We also need to compute the sum of a set of p complex numbers for each

coefficient, which will require f18(p) operations and g18(p) cycles. Thus for all m *

n matrix coefficients, m * n * f18(p) operations and g18(p) cycles are required.

Therefore, computing the product of an m-by-p and a p-by-n matrices will require

m * n * p * f 14 + m * n * f18(p) operations and g14 + f14(p) cycles.

 f20(m,n,p) = 4mnp (*) and mn(4p - 2) (+), and g20(m,n,p) = 2 + (c

).

� Inverse of an n-by-n complex-valued matrix - f21(n), g21(n): [29]

Consider A = [aij] for 0 < i < n + 1 and 0 < j < n + 1.

Let B = A-1. To derive B, we will once again consider the Gauss-Jordan Matrix

Inversion Method.

Let put A in the left side and the identity matrix of size n in the right side

of the augmented matrix [A|I]. By operating basic operations (one multiplied by a

scalar or one row replaced by the original row minus a multiple of another row

[29]) between the rows of A and the identity matrix, we will obtain the augmented

matrix [I |B] which has the identity matrix on the left side and matrix B on the

right side.

127

Thus, on one side of the augmented matrix, the transformation will lead to

the identity matrix. So, we will only consider operations on the other side, i.e., on

n coefficients rather than the 2 * n coefficients of the augmented matrix.

Consider the operations on the i-th row, i.e., Ri:

• First, we replace Ri by Ri / Rii, where Rii is the i-th coefficient on the i-

th row. This will require f15 operations and g15 cycles per candidate.

Considering maximum possible parallelism and n candidates, n * f15

operations and g15 cycles will be required.

• Next, we replace all the remaining rows (n - 1 in total) by - Rji * Ri+

Rj. Here we are transforming the j-th row; this will require f14

operations and g14 cycles, then f13 operations and g13 cycles per

candidate. Thus considering full parallelism, n candidates and n - 1

rows, n * (n - 1) * (f14 + f13) operations and (g14 + g13) cycles will be

required.

Therefore, 0 < i < n + 1,

f21(n) = n2 (1/N), 4n3 (*) and n2 (4n - 3) (+), and g21(n) = 7n (c).

� Minimum Mean Square Error conditioning matrix from an n-by-n

complex-valued channel matrix- f22(n), g22(n): [Appendix 1]

Refering to the computation of a real-valued MMSE conditioning matrix,

f22(n) = n2 + 1 (1/N), 4n2(2n + 1) (*) and n(8n2 - n - 1) (+),

and g22(n) = 6 + 7 * n + 2 * (c).

128

� Minimum Mean Square Error conditioning matrix from an m-by-n

complex-valued deflated channel matrix- f23(m,n), g23(m,n):

 We will share computations from the calculation of the initial MMSE

conditioning matrix.

Considering D, the m-by-n deflated version of the m-by-m channel matrix H (n <

m),

temp1 = HH * H is the matrix whose coefficient on the i-th row and j-th column is

hi
H * hj, where hi is the i-th column of H. Thus, temp1 = HH * H + 1 / SNR * I n

and temp2 = DH * D + 1 / SNR * Im.

It can be shown that temp2 is a deflated version of temp1, thus it will require no

run time.

temp2 is an m-by-m matrix, thus temp2
-1 will require f21(m) operations and g21(m)

cycles

G = temp2
-1 * DH, with (m, p, n) = (m, m, n), so computing G requires f20(m,m,n)

operations and g20(m,m,n) cycles.

Therefore f23(m,n) = m2 (1/N), 4m2(n + m) (*) and n[4m2 - 3m + 4mn - 2n] (

+),

and g23(m,n) =7m + 2 + (c).

129

4. Matlab Scripts for the Hard Detectors

1- Main Function (Complex-Valued Detection)

%== ===============
========
% This program was written by Arsene Pankeu Yomi, U niversity of
Alberta
% It was designed in order to evaluate the SER of d ifferent MIMO
detectors
% in a typical Rayleigh channel; with the help of A mir Alimohammad
% and Fouladi Fard in the begining.
%== ===============
========

clear;clc;close all;
%%%% attention 'save' and 'change' the name of the saved data
%%%% FR-BLAST will work only for 64Q 128Q and 256Q
% the search set for constellation greater than 256Q is not
provided
%%%% QAM from modulation is not valid for 128-QAM

% main parameters
NumbBlock = 10^4; % each block contains 2 * Cons tellationSize
 % * NUmb er of frame in
a block
 % samples
CalcSc = 0; % 1-> SER 0-> BER
ModSc = 2; % 1->16-qam 2->64-qam 3->128- qam
 % 4->256-qam 5->512-qam 6->1024 -qam
N = 4; % number of antennas; n_t = n_r = N
NumFrameInABlock = 10;
MaxSnr = 40;
MinSnr = 0;
StepSnr = 2; % 1 or 2 e.g: stepSnr=2 --[MinSnr , MinSnr+1,
MinSnr+2...]

SnrDb = MinSnr:StepSnr:MaxSnr;
SNR = 10.^(SnrDb/10);
LSnr = length(SNR);

% The minimum # of error is the same for all or dec reases as SNR
increases
% MatOfErrs = 100 * [1 .5 .5 .4 .4 .3 .3 .2 .2 .15 .15 .1 .1 .09
.09 .08 .08 .07 .07 .06 .06 .05 .05 .04 .04 .03 .03 .02 0.02 0.01
0.01];
 MatOfErrs = 100000 * ones(1,MaxSnr + 1);

% Launch detection
% '1' In order to launch detection scheme otherwise '0'
DoMlDetect = 0; % Maximum Likelihood detec tor
DoMmseDetect = 1; % MMSE detector
DoVBlastDetect = 1; % V-BLAST detector

130

DoFBlastDetect = 0; % F-BLAST detector; starti ng layer
indicated below
DoFRBlastDetect = 0; % FR-BLAST; starting layer indicated
below
SizeOfSphere = 9; % number of symbol in the search space

% Initialization of SER
if (DoMlDetect == 1)
 if (CalcSc == 1)
 SerMl = zeros(1,LSnr);
 else
 BerMl = zeros(1,LSnr);
 end
end

if (DoMmseDetect == 1)
 if (CalcSc == 1)
 SerMmse = zeros(1,LSnr);
 else
 BerMmse = zeros(1,LSnr);
 end
end

if (DoVBlastDetect == 1)
 if (CalcSc == 1)
 SerVBlast = zeros(1,LSnr);
 else
 BerVBlast = zeros(1,LSnr);
 end
end

if (DoFBlastDetect == 1)
 if (CalcSc == 1)
 SerFBlast = zeros(1,LSnr);
 else
 BerFBlast = zeros(1,LSnr);
 end
end

if (DoFRBlastDetect == 1)
 if (CalcSc == 1)
 SerFRBlast = zeros(1,LSnr);
 else
 BerFRBlast = zeros(1,LSnr);
 end
end

131

%%%
% Symbol Matrix, Constant and sample generation %
%%%
[SymbMat SignalVar ConstSize NumbBitPerPt StatMat] =
Modulation(NumFrameInABlock,NumbBlock,N,ModSc);

[TotNumOfSampleInABlock FrameSize SentSymb] =
SampGen(NumFrameInABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa
t);

%%%
% Computation of SER for various detector %
%%%
for snr = 1:LSnr
 MinNoErrs = MatOfErrs(SnrDb(snr) + 1);
 NoiseVar = (N * SignalVar) / SNR(snr) ;

 if (DoMlDetect == 1)
 NumbErrMl = 0;
 end

 if (DoMmseDetect == 1)
 NumbErrMmse = 0;
 end

 if (DoVBlastDetect == 1)
 NumbErrVBlast = 0;
 end

 if (DoFBlastDetect == 1)
 NumbErrFBlast = 0;
 end

 if (DoFRBlastDetect == 1)
 NumbErrFRBlast = 0;
 end

 Continue = 1;
 BlockCntr = 0;
 % the following line counts the number of block used for the
current snr and verifies that MinNoErrs had been re ached
 while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))
 Continue = 0;

 ContinueMl = 0;
 ContinueMmse = 0;
 ContinueVBlast = 0;
 ContinueFBlast = 0;
 ContinueFRBlast = 0;

 BlockCntr = BlockCntr + 1;

 % channel generation
 MIMOchResponse = zeros(N,N,TotNumOfSam pleInABlock);

132

 for ii = 1:NumFrameInABlock
 % generating CHANNEL
 H = (randn(N) + i*randn(N)) * sqrt(0 .5);
 for ii1 = 1:N
 for ii2 = 1:N
 MIMOchResponse(ii1, ii2, (1+(ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response
per frame
 end
 end
 end

 % block of frames
 Block = SentSymb(:,(1+TotNumOfSampleInABl ock*(BlockCntr-
1)):(BlockCntr*TotNumOfSampleInABlock));

 for frameCntr = 1:NumFrameInABlock

 %%%%%%%%%%%
 % Channel %
 %%%%%%%%%%%

 H = MIMOchResponse(:, :, 1+(frame Cntr-
1)*FrameSize);
 N_ =
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;
 W = N_*sqrt(NoiseVar);
 % S is the current frame
 S = Block(:,1+FrameSize*(frameCnt r-
1):frameCntr*FrameSize);
 Y = zeros(N, FrameSize);
 for ii = 1:FrameSize
 % Y=H*S+W
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) +
W(:,ii);
 end

 %%%%%%%%%%%%%%%%%%%%%
 % Detection process %
 %%%%%%%%%%%%%%%%%%%%%

 % MMSE matrix
 G = inv(H' * H + (1 / SNR(snr)) * eye (N)) * H';
 [SortedLayer IndMI] = SortCol(H,N);

 %%%% ML detection %%%%
 if (DoMlDetect == 1)
 for vectorCntr = 1:FrameSize
 [YMl] =
Ml(H,ConstSize,N,Y(:,vectorCntr),SymbMat);
 % error calculation
 if (CalcSc == 1)
 [YMlDetect] = Ser(YMl,S(:,v ectorCntr));
 else

133

 [YMlDetect] =
Ber(ConstSize,N,YMl,SymbMat,S(:,vectorCntr));
 end
 % counts the number of symbol in error in
the block
 NumbErrMl = NumbErrMl + Y MlDetect;
 end
 if (NumbErrMl < MinNoErrs)
 ContinueMl = 1;
 else
 ContinueMl = 0;
 end
 end

 %%%% MMSE detection %%%%
 if (DoMmseDetect == 1)
 for vectorCntr = 1:FrameSize
 [YMmse] =
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);
 % error calculation
 if (CalcSc == 1)
 [MmseDetect] = Ser(YMmse,S(:,vectorCntr));
 else
 [MmseDetect] =
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));
 end
 % counts the number of symbo l in error in
the block
 NumbErrMmse = NumbErrMmse + MmseDetect;
 end
 if (NumbErrMmse < MinNoErrs)
 ContinueMmse = 1;
 else
 ContinueMmse = 0;
 end
 end

 %%%% V-BLAST detection %%%%
 if (DoVBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 % initialize position of the undetected
symbols
 Pos = 1:N;
 % initialize detected symbol vector
 YVB = zeros(N,1);

 [YVBlast] =
VBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Pos,YV B,SNR,snr);
 % error calculation
 if (CalcSc == 1)
 [VBlastDetect] =
Ser(YVBlast,S(:,vectorCntr));
 else
 [VBlastDetect] =
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));
 end

134

 % Counts the number of symbol in error in
the block
 NumbErrVBlast = NumbErrVBl ast +
VBlastDetect;
 end
 if (NumbErrVBlast < MinNoErrs)
 ContinueVBlast = 1;
 else
 ContinueVBlast = 0;
 end
 end

 %%%% F-BLAST detection %%%%
 if (DoFBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 [YFBlast] =
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted Layer(1),SNR,sn
r);
 % error calculation
 if (CalcSc == 1)
 [FBlastDetect] =
Ser(YFBlast,S(:,vectorCntr));
 else
 [FBlastDetect] =
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbol in error in
the block
 NumbErrFBlast = NumbErrFBl ast +
FBlastDetect;
 end
 if (NumbErrFBlast < MinNoErrs)
 ContinueFBlast = 1;
 else
 ContinueFBlast = 0;
 end
 end

 %%%% FR-BLAST detection %%%%
 if (DoFRBlastDetect == 1)
 for vectorCntr = 1:FrameSize
[YFRBlast] =
FRBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,G,Sor tedLayer(1),SNR
,snr,SizeOfSphere,StatMat);
 % error calculation
 if (CalcSc == 1)
 [FRBlastDetect] =
Ser(YFRBlast,S(:,vectorCntr));
 else
 [FRBlastDetect] =
Ber(ConstSize,N,YFRBlast,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbo l in error in
the block
 NumbErrFRBlast = NumbErrFR Blast +
FRBlastDetect;

135

 end
 if (NumbErrFRBlast < MinNoErrs)
 ContinueFRBlast = 1;
 else
 ContinueFRBlast = 0;
 end
 end

 end % end frameCntr

 Intermediate = ContinueMl + ContinueMmse +
ContinueVBlast + ContinueFBlast + ContinueFRBlast;
 if (Intermediate == 0)
 Continue = 0;
 else
 Continue = 1;
 end

 end % while continue

 %%%
 % SER computation for the current snr value %
 % to be print on the screen %
 %%%

 clc;
 if DoMlDetect,
 if (CalcSc == 1)
 SerMl(snr) = NumbErrMl / BlockCntr / Fram eSize /
NumFrameInABlock / N
 else
 BerMl(snr) = NumbErrMl / BlockCntr / Fram eSize /
NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoMmseDetect,
 if (CalcSc == 1)
 SerMmse(snr) = NumbErrMmse / BlockCntr / FrameSize /
NumFrameInABlock / N
 else
 BerMmse(snr) = NumbErrMmse / BlockCntr / FrameSize /
NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoVBlastDetect,
 if (CalcSc == 1)
 SerVBlast(snr) = NumbErrVBlast / BlockCnt r / FrameSize /
NumFrameInABlock / N
 else
 BerVBlast(snr) = NumbErrVBlast / BlockCnt r / FrameSize /
NumFrameInABlock / N / NumbBitPerPt
 end
 end

136

 if DoFBlastDetect,
 if (CalcSc == 1)
 SerFBlast(snr) = NumbErrFBlast / BlockCnt r / FrameSize /
NumFrameInABlock / N
 else
 BerFBlast(snr) = NumbErrFBlast / BlockCnt r / FrameSize /
NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoFRBlastDetect,
 if (CalcSc == 1)
 SerFRBlast(snr) = NumbErrFRBlast / BlockC ntr / FrameSize
/ NumFrameInABlock / N
 else
 BerFRBlast(snr) = NumbErrFRBlast / BlockC ntr / FrameSize
/ NumFrameInABlock / N / NumbBitPerPt
 end
 end

% change the name of the saved data in order to avo id confusion

%%Ser
%save('SavedData','SerMl','SerMmse','SerVBlast','Se rFBlast','SerFR
Blast')

%Ber
save('SavedData_MMSE_VB_B10000_E50000','BerMmse','B erVBlast')

end % end for snr

%%%%%%%%%%%%%%%%%%%%%
% SER semilogy Plot %
%%%%%%%%%%%%%%%%%%%%%

%%%% remove unlaunched detection !!!
if (CalcSc == 1)
 figure(1)
 semilogy(SnrDb,SerMmse,'--',SnrDb,SerVBlast,'*-
',SnrDb,SerFRBlast,'o-',SnrDb,SerFBlast,'+-');
 % enter proper constellation size
 title('SER For Various Detectors M=64');
 % enter proper search space size and starting l ayer
 legend('MMSE','V-BLAST','FR-BLAST W=9 L=1','F-B LAST L=1');
 xlabel('SNR, dB');
 ylabel('SER');
else
 figure(1)
 semilogy(SnrDb,BerMmse,'--',SnrDb,BerVBlast,'*-
',SnrDb,BerFRBlast,'o-',SnrDb,BerFBlast,'+-');
 % enter proper constellation size
 title('BER For Various Detectors M=64');
 % enter proper search space size and starting l ayer
 legend('MMSE','V-BLAST','FR-BLAST W=9 L=1','F-B LAST L=1');

137

 xlabel('SNR, dB');
 ylabel('BER');
end

2- Main Function (Real-Valued) Detection

%== ===============
========
% This program was written by Arsene Pankeu Yomi, U niversity of
Alberta
% It was designed in order to evaluate the SER of d ifferent MIMO
detectors
% in a typical Rayleigh channel; with the help of A mir Alimohammad
% and Fouladi Fard in the begining.
%== ===============
========

clear;clc;close all;
%%%% attention 'save' and 'change' the name of the saved data
%%%% will work only for 16Q 64Q 128Q and 256Q

% main parameters
NumbBlock = 10^4; % each block contains 2 * Co nstellationSize
 % * NUmb er of frame in
a block
 % samples
CalcSc = 0; % 1-> SER 0-> BER
ModSc = 1; % 1->16-qam 2->64-qam 3->25 6-qam 4->1024-
qam
N = 4; % number of antennas; n_t = n_r = N
NumFrameInABlock = 10;
MaxSnr = 40;
MinSnr = 0;
StepSnr = 2; % 1 or 2 e.g: stepSnr=2 --[MinSnr , MinSnr+1,
MinSnr+2...]

SnrDb = MinSnr:StepSnr:MaxSnr;
SNR = 10.^(SnrDb/10);
LSnr = length(SNR);

% The minimum # of error is the same for all or dec reases as SNR
increases
% MatOfErrs = 100 * [1 .5 .5 .4 .4 .3 .3 .2 .2 .15 .15 .1 .1 .09
.09 .08 .08 .07 .07 .06 .06 .05 .05 .04 .04 .03 .03 .02 0.02 0.01
0.01];
 MatOfErrs = 25000 * ones(1,MaxSnr + 1);

% Launch detection
% '1' In order to launch detection scheme otherwise '0'

% Complex detection
DoMmseDetect = 1; % MMSE detector
DoVBlastDetect = 1; % V-BLAST detector

138

DoFBlastDetect = 1; % F-BLAST detector; st arting layer to
be indicated below

% Real detection
DoRealMmseDetect = 1; % MMSE detector
DoRealVBlastDetect = 1; % V-BLAST detector
DoRealFBlastDetect = 1; % F-BLAST detector; st arting layer to
be indicated below

% Initialization of SER

if (DoMmseDetect == 1)
 if (CalcSc == 1)
 SerMmse = zeros(1,LSnr);
 else
 BerMmse = zeros(1,LSnr);
 end
end

if (DoVBlastDetect == 1)
 if (CalcSc == 1)
 SerVBlast = zeros(1,LSnr);
 else
 BerVBlast = zeros(1,LSnr);
 end
end

if (DoFBlastDetect == 1)
 if (CalcSc == 1)
 SerFBlast = zeros(1,LSnr);
 else
 BerFBlast = zeros(1,LSnr);
 end
end

if (DoRealMmseDetect == 1)
 if (CalcSc == 1)
 SerRealMmse = zeros(1,LSnr);
 else
 BerRealMmse = zeros(1,LSnr);
 end
end

if (DoRealVBlastDetect == 1)
 if (CalcSc == 1)
 SerRealVBlast = zeros(1,LSnr);
 else
 BerRealVBlast = zeros(1,LSnr);
 end
end

if (DoRealFBlastDetect == 1)
 if (CalcSc == 1)
 SerRealFBlast = zeros(1,LSnr);
 else

139

 BerRealFBlast = zeros(1,LSnr);
 end
end

%%%
% Symbol Matrix, Constant and sample generation %
%%%
[SymbMat SignalVar ConstSize NumbBitPerPt Motif Rea lConstSize] =
Modulation(NumFrameInABlock,NumbBlock,N,ModSc);

[TotNumOfSampleInABlock FrameSize SentSymb] =
SampGen(NumFrameInABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa
t);

%%%
% Computation of SER for various detector %
%%%
for snr = 1:LSnr
 MinNoErrs = MatOfErrs(SnrDb(snr) + 1);
 NoiseVar = (N * SignalVar) / SNR(snr) ;

 if (DoMmseDetect == 1)
 NumbErrMmse = 0;
 end

 if (DoVBlastDetect == 1)
 NumbErrVBlast = 0;
 end

 if (DoFBlastDetect == 1)
 NumbErrFBlast = 0;
 end

 if (DoRealMmseDetect == 1)
 NumbErrRealMmse = 0;
 end

 if (DoRealVBlastDetect == 1)
 NumbErrRealVBlast = 0;
 end

 if (DoRealFBlastDetect == 1)
 NumbErrRealFBlast = 0;
 end

 Continue = 1;
 BlockCntr = 0;
 % the following line counts the number of block used for the
current snr and verifies that MinNoErrs had been re ached
 while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))
 Continue = 0;

 ContinueMmse = 0;
 ContinueVBlast = 0;

140

 ContinueFBlast = 0;
 ContinueRealMmse = 0;
 ContinueRealVBlast = 0;
 ContinueRealFBlast = 0;

 BlockCntr = BlockCntr + 1;

 % channel generation
 MIMOchResponse = zeros(N,N,TotNumOfSam pleInABlock);
 for ii = 1:NumFrameInABlock
 % generating CHANNEL
 H = (randn(N) + i*randn(N)) * sqrt(0 .5);
 for ii1 = 1:N
 for ii2 = 1:N
 MIMOchResponse(ii1, ii2, (1+(ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response
per frame
 end
 end
 end

 % block of frames
 Block = SentSymb(:,(1+TotNumOfSampleInABl ock*(BlockCntr-
1)):(BlockCntr*TotNumOfSampleInABlock));

 for frameCntr = 1:NumFrameInABlock

 %%%%%%%%%%%
 % Channel %
 %%%%%%%%%%%

 % complex value
 H = MIMOchResponse(:, :, 1+(frameCn tr-
1)*FrameSize);
 N_ =
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;
 W = N_*sqrt(NoiseVar);
 % S is the current frame
 S = Block(:,1+FrameSize*(frameCntr-
1):frameCntr*FrameSize);
 Y = zeros(N, FrameSize);
 for ii = 1:FrameSize
 % Y=H*S+W
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) +
W(:,ii);
 end

 % real value
 RealH = [real(H) -imag(H);im ag(H) real(H)];

 RealY = zeros(2*N, FrameSize);
 RealS = zeros(2*N, FrameSize);
 RealW = zeros(2*N, FrameSize);
 for ii = 1:FrameSize
 TempRealY = zeros(N, FrameSize);

141

 TempImagY = zeros(N, FrameSize);
 TempRealS = zeros(N, FrameSize);
 TempImagS = zeros(N, FrameSize);
 TempRealW = zeros(N, FrameSize);
 TempImagW = zeros(N, FrameSize);
 for hh = 1:N
 TempRealY(hh,ii) = real(Y(hh, ii));
 TempImagY(hh,ii) = imag(Y(hh, ii));
 TempRealS(hh,ii) = real(S(hh, ii));
 TempImagS(hh,ii) = imag(S(hh, ii));
 TempRealW(hh,ii) = real(W(hh, ii));
 TempImagW(hh,ii) = imag(W(hh, ii));
 end

 RealY(:,ii) = [TempRealY(:,ii);Te mpImagY(:,ii)];
 RealS(:,ii) = [TempRealS(:,ii);Te mpImagS(:,ii)];
 RealW(:,ii) = [TempRealW(:,ii);Te mpImagW(:,ii)];
 end

 %%%%%%%%%%%%%%%%%%%%%
 % Detection process %
 %%%%%%%%%%%%%%%%%%%%%

 % MMSE matrix

 % complex value
 G = inv(H' * H + (1 / SNR(snr)) * eye (N)) * H';
 [SortedLayer IndMI] = SortCol(H,N);

 % real value
 RealG = inv(RealH' * RealH + (1 / SNR(snr)) * eye(2*N))
* RealH';
 [RealSortedLayer RealIndMI] = SortCol (RealH,2*N);

 %%%% MMSE detection %%%%
 if (DoMmseDetect == 1)
 for vectorCntr = 1:FrameSize
 [YMmse] =
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);
 % error calculation
 if (CalcSc == 1)
 [MmseDetect] = Ser(YMmse,S(:,vectorCntr));
 else
 [MmseDetect] =
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));
 end
 % counts the number of symbo l in error in
the block
 NumbErrMmse = NumbErrMmse + MmseDetect;
 end
 if (NumbErrMmse < MinNoErrs)
 ContinueMmse = 1;
 else

142

 ContinueMmse = 0;
 end
 end

 %%%% V-BLAST detection %%%%
 if (DoVBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 % initialize position of the undetected
symbols
 Pos = 1:N;
 % initialize detected symbol vector
 YVB = zeros(N,1);

 [YVBlast] =
VBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Pos,YV B,SNR,snr);
 % error calculation
 if (CalcSc == 1)
 [VBlastDetect] =
Ser(YVBlast,S(:,vectorCntr));
 else
 [VBlastDetect] =
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbol in error in
the block
 NumbErrVBlast = NumbErrVBl ast +
VBlastDetect;
 end
 if (NumbErrVBlast < MinNoErrs)
 ContinueVBlast = 1;
 else
 ContinueVBlast = 0;
 end
 end

 %%%% F-BLAST detection %%%%
 if (DoFBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 [YFBlast] =
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted Layer(1),SNR,sn
r);
 % error calculation
 if (CalcSc == 1)
 [FBlastDetect] =
Ser(YFBlast,S(:,vectorCntr));
 else
 [FBlastDetect] =
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbol in error in
the block
 NumbErrFBlast = NumbErrFBl ast +
FBlastDetect;
 end
 if (NumbErrFBlast < MinNoErrs)
 ContinueFBlast = 1;

143

 else
 ContinueFBlast = 0;
 end
 end

 %%%% REAL MMSE detection %%%%
 if (DoRealMmseDetect == 1)
 for vectorCntr = 1:FrameSize
 [RealYMmse] =
Mmse(RealConstSize,2*N,RealY(:,vectorCntr),Motif,Re alG);

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N
 YReal(ii) = RealYMmse(ii)+ i *
RealYMmse(N+ii);
 end

 % error calculation
 if (CalcSc == 1)
 [RealMmseDetect] =
Ser(YReal,S(:,vectorCntr));
 else
 [RealMmseDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));
 end
 % counts the number of symbo l in error in
the block
 NumbErrRealMmse = NumbErrRe alMmse +
RealMmseDetect;
 end
 if (NumbErrRealMmse < MinNoErrs)
 ContinueRealMmse = 1;
 else
 ContinueRealMmse = 0;
 end
 end

 %%%% REAL V-BLAST detection %%%%
 if (DoRealVBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 % initialize position of the undetected
symbols
 Pos = 1:2*N;
 % initialize detected symbol vector
 YVB = zeros(2*N,1);

 [RealYVBlast] =
VBlast(RealH,RealConstSize,2*N,RealY(:,vectorCntr), Motif,Pos,YVB,S
NR,snr);

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N

144

 YReal(ii) = RealYVBlast(ii) + i *
RealYVBlast(N+ii);
 end

 % error calculation
 if (CalcSc == 1)
 [RealVBlastDetect] =
Ser(YReal,S(:,vectorCntr));
 else
 [RealVBlastDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbol in error in
the block
 NumbErrRealVBlast = NumbErrRealVB last +
RealVBlastDetect;
 end
 if (NumbErrRealVBlast < MinNoErrs)
 ContinueRealVBlast = 1;
 else
 ContinueRealVBlast = 0;
 end
 end

 %%%% REAL F-BLAST detection %%%%
 if (DoRealFBlastDetect == 1)
 for vectorCntr = 1:FrameSize
 [RealYFBlast] =
FBlast(RealH,RealConstSize,2*N,RealY(:,vectorCntr), Motif,RealSorte
dLayer(1),SNR,snr);

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N
 YReal(ii) = RealYFBlast(ii) + i *
RealYFBlast(N+ii);
 end

 % error calculation
 if (CalcSc == 1)
 [RealFBlastDetect] =
Ser(YReal,S(:,vectorCntr));
 else
 [RealFBlastDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));
 end
 % Counts the number of symbol in error in
the block
 NumbErrRealFBlast = NumbErrRealFB last +
RealFBlastDetect;
 end
 if (NumbErrRealFBlast < MinNoErrs)
 ContinueRealFBlast = 1;
 else
 ContinueRealFBlast = 0;

145

 end
 end

 end % end frameCntr

 Intermediate = ContinueMmse + ContinueVBl ast +
ContinueFBlast + ContinueRealVBlast + ContinueRealF Blast +
ContinueRealMmse;
 if (Intermediate == 0)
 Continue = 0;
 else
 Continue = 1;
 end

 end % while continue

 %%%
 % SER computation for the current snr value %
 % to be print on the screen %
 %%%

 clc;
 if DoMmseDetect,
 if (CalcSc == 1)
 SerMmse(snr) = NumbErrMmse / BlockC ntr / FrameSize
/ NumFrameInABlock / N
 else
 BerMmse(snr) = NumbErrMmse / BlockC ntr / FrameSize
/ NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoVBlastDetect,
 if (CalcSc == 1)
 SerVBlast(snr) = NumbErrVBlast / Bloc kCntr /
FrameSize / NumFrameInABlock / N
 else
 BerVBlast(snr) = NumbErrVBlast / Bloc kCntr /
FrameSize / NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoFBlastDetect,
 if (CalcSc == 1)
 SerFBlast(snr) = NumbErrFBlast / Bloc kCntr /
FrameSize / NumFrameInABlock / N
 else
 BerFBlast(snr) = NumbErrFBlast / Bloc kCntr /
FrameSize / NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoRealMmseDetect,

146

 if (CalcSc == 1)
 SerRealMmse(snr) = NumbErrRealMmse / Bl ockCntr /
FrameSize / NumFrameInABlock / N
 else
 BerRealMmse(snr) = NumbErrRealMmse / Bl ockCntr /
FrameSize / NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoRealVBlastDetect,
 if (CalcSc == 1)
 SerRealVBlast(snr) = NumbErrRealVBlast / BlockCntr /
FrameSize / NumFrameInABlock / N
 else
 BerRealVBlast(snr) = NumbErrRealVBlast / BlockCntr /
FrameSize / NumFrameInABlock / N / NumbBitPerPt
 end
 end

 if DoRealFBlastDetect,
 if (CalcSc == 1)
 SerRealFBlast(snr) = NumbErrRealFBlast / BlockCntr /
FrameSize / NumFrameInABlock / N
 else
 BerRealFBlast(snr) = NumbErrRealFBlast / BlockCntr /
FrameSize / NumFrameInABlock / N / NumbBitPerPt
 end
 end

% change the name of the saved data in order to avo id confusion

%%Ser
%save('SavedData','SerMmse','SerVBlast','SerFBlast' ,'SerRealMmse',
'SerRealVBlast','SerRealFBlast')

%Ber
save('SavedData','BerMmse','BerVBlast','BerFBlast', 'BerRealMmse','
BerRealVBlast','BerRealFBlast')

end % end for snr

%%%%%%%%%%%%%%%%%%%%%
% SER semilogy Plot %
%%%%%%%%%%%%%%%%%%%%%

%%%% remove unlaunched detection !!!
if (CalcSc == 1)
 figure(1)
 semilogy(SnrDb,SerMmse,'--',SnrDb,SerRealMmse,' .-
',SnrDb,SerRealVBlast,'o-',SnrDb,SerVBlast,'+-
',SnrDb,SerRealFBlast,'s-',SnrDb,SerFBlast,'*-');
 % enter proper constellation size
 title('SER For Various Detectors M=64');
 legend('MMSE','REAL MMSE','REAL V-BLAST','V-BLA ST','REAL F-
BLAST','F-BLAST');

147

 xlabel('SNR, dB');
 ylabel('SER');
else
 figure(1)
 semilogy(SnrDb,BerMmse,'--',SnrDb,BerRealMmse,' .-
',SnrDb,BerRealVBlast,'o-',SnrDb,BerVBlast,'+-
',SnrDb,BerRealFBlast,'s-',SnrDb,BerFBlast,'*-');
 % enter proper constellation size
 title('BER For Various Detectors M=64');
 legend('MMSE','REAL MMSE','REAL V-BLAST','V-BLA ST','REAL F-
BLAST','F-BLAST');
 xlabel('SNR, dB');
 ylabel('BER');
end

3- SER

function [Error] = Ser(E,Q)
% This function returns number of Symbol in error i n detected
symbol vector
% Usage:
% [YMmse] = Ser(E,F,G)
% Input:
% E = noisy transmitted vector Y
% Q = transmitted vector S
% Output:
% Error : number of symbol in error

Error = nnz(E - Q);

end

4- BER

function [Er] = Ber(b,c,E,F,Q)
% This function returns number of bit in error in d etected symbol
vector
% Usage:
% [Er] = Ber(b,c,E,F,Q)
% Input:
% c = number of receiver antennas (same as
transmitter)
% b = constellation size
% E = noisy transmitted vector Y
% F = matrice of symbol from the conste llation
% Q = transmitted vector S
% Output:
% Er : number of bit in error

% Initialization
PosNoisyTrans = zeros(1,c);

148

PosTrans = zeros(1,c);

for i = 1:c
 % position of the noisy transmitted vector
 [val PosNoisyTrans(i)] = min(E(i) * ones(b,1) - F);

 % position of the transmitted vector
 [val PosTrans(i)] = min(Q(i) * ones(b,1) - F);
end
Er = nnz(dec2bin(PosNoisyTrans - 1,log2(b))-dec2bin (PosTrans -
1,log2(b)));

end

5- Modulation

function [SymbMat SignalVar ConstSize NumbBitPerPt StatMat] =
Modulation(a,b,c,d)
% This function returns uncorellated Modulated symb ols.
% Usage:
% [SymbMat SignalVar ConstSize NumbBitPerPt StatMat] =
Modulation(a,b,c,d)
% Input:
%
% a = number of frame in a block
% b = number of blocks
% c = number of transmitter antennas
% d = Modulation scheme : 1 ->16qam 2 ->64qam 3 -
>128qam
% 4 ->256qam 5 ->512qam 6 -
>1024qam
% Output:
%
% SignalVar : Average Symbol energy (E {x[i]^2})
% SymbMat : Constellation matrice
% ConstSize : Number of point in the c onstellation
% NumbBitPerPt : Number of bits per point
% StatMat : Subset for the restricte d search

 if (d==1)
 M = 16;
 NumbBitPerPt = 4 ;
 SignalVar = 10;

 elseif (d==2)
 M = 64;
 NumbBitPerPt = 6 ;
 SignalVar = 42;
 load SymetricalSearchSpace64Q.mat;

149

 elseif (d==3)
 M = 128;
 NumbBitPerPt = 7 ;
 SignalVar = 82;
 load SymetricalSearchSpace128Q.mat;

 elseif (d==4)
 M = 256;
 NumbBitPerPt = 8 ;
 SignalVar = 170;
 load SymetricalSearchSpace256Q.mat;

 elseif (d==5)
 M = 512;
 NumbBitPerPt = 9 ;
 SignalVar = 330;

 elseif (d==6)
 M = 1024;
 NumbBitPerPt = 10 ;
 SignalVar = 682;
 end

 x = [0:M-1];
 %matlab function for gray mapping with QAM constellation
 SymbMat =
modulate(modem.qammod('M',M,'SymbolOrder','Gray'),x);
 SymbMat = SymbMat.';
 ConstSize = M;
 %SignalVar = SymbMat' * SymbMat / ConstSi ze

 %FrameSize = 2*ConstSize;

 % a sample is a received vector, i.e a set of N symbols
 NSymbol = b * 2 * ConstSize * a * c;

 %generate bits
 SentBits = randint(1,NSymbol*NumbBitPerP t);

 %generate symbols gray mapping
 Symb = zeros(1,NSymbol);
 for r = 1:NSymbol
 t = 0;
 for zz = 1:NumbBitPerPt
 t = t+2^(zz-1)*SentBits(zz+(r-1)* NumbBitPerPt);
 end
 Symb(r) = SymbMat(t+1);
 end
end

150

6- FixedSearSet

function [Subset] = FixedSearchSet(A,b,c,d)
% This function returns searchset for the noisiest layer, 64QAM
% Usage:
% [Subset] = FixedSearchSet(a,b,c,d)
% Input:
% A = Matrix of statistic
% b = Mmse noisiest estimate
% c = size of the fixed search set
% d = ConstSize
%
%
% Output:
% Subset : set of candidate symbol

 [symb indx] = min(abs(b * ones(1, d) - A(1,:)));
 A(indx+1,indx) = 0;
 Subset = [b];
 for kk = 1:c-1
 [value position] = max(A(indx+1,:));
 A(indx+1,position) = 0;
 Subset = [Subset,A(1,position)];
 end
end

7- SampGen

function [TotNumOfSampleInABlock FrameSize SentSymb] =
SampGen(a,b,c,d,e,F)
% This function returns uncorellated Modulated symb ols.
% Usage:
% [SymbMat SignalVar ConstSize Symb StatMat] =
Modulation(a,b,c,d)
% Input:
%
% a = number of frame in a block
% b = number of blocks
% c = number of transmitter antennas
% d = Constsize
% e = Number of bits per constellation point
% F = Matrix of constelaltion symbol
% Output:
%
% TotNumOfSampleInABlock : Number of sample in a bl ock
% Frame Size : Size of a frame of sampl e vector
% SentSymb : matrix of sample vector

FrameSize = 2 * d;
TotNumOfSampleInABlock = FrameSize * a;

% generate samples - SentSymb - vector of N symbols
NSymbol = b * TotNumOfSampleInABlock * c;

151

%generate bits
SentBits = randint(1,NSymbol*e);

%generate symbols gray mapping
Symb = zeros(1,NSymbol);
for r = 1:NSymbol
 t = 0;
 for zz = 1:e
 t = t+2^(zz-1)*SentBits(zz+(r- 1)*e);
 end
 Symb(r) = F(t+1);
end

% zeros(N,NSymbol/N)
SentSymb = zeros(c,TotNumOfSampleInAB lock*b);
 for NSymb = 1:c:NSymbol-c+1
 SentSymb(:,(NSymb+(c-1))*(1/c)) =
transpose(Symb(NSymb:NSymb+c-1));
 end

end

8- SortCol

function [SortedLayer IndMI] = SortCol(A,c)
% This function returns index of layers from the we akest to the
strongest
% Usage:
% function [SortedLayer IndMI] = Sortcol(A)
% Input:
% A = H matrix
% c = number of receiver antennas (same as transmitter)
% Output:
% SortedLayer = Matrix of the index
% 1-weakest layer 2-second weakest l ayer ...
% ...(c-1)-second strongest layer c -strongest
layer
% IndMI = Index of the layer which has maxim um interference
on the
% Strongest Layer

 % Initialization
 SortedLayer = zeros(1,c);
 n = 1;

 AmpColH = [];
 for ii = 1:c
 AmpColH = [AmpColH,norm(A(:,i i))];
 end
 while (n < c + 1)
 [Val Ind] = min(AmpColH);
 SortedLayer(n) = Ind;

152

 AmpColH(Ind) = 10000;
 n = n + 1;
 end

 AmpH = [];
 for ii2 = 1:c
 AmpH = [AmpH, norm(SortedL ayer(c),ii2)];
 end
 AmpH(SortedLayer(c)) = 0;
 [val1 IndMI] = max(AmpH);

end

9- MMSE

function [YMmse] = Mmse(b,c,E,F,G)
% This function returns symbol vector from the MMSE detection
process
% Usage:
% [YMmse] = Mmse(b,c,E,F,G)
% Input:
% b = constellation size
% c = number of receiver antennas (same as
transmitter)
% E = noisy transmitted vector Y
% F = matrice of symbol from the conste llation
% G = MMSE matrix
% Output:
% YMmse : output of the Mmse detection

 o = ones(1, b);
 op = ones(c, 1);
 % MMSE output vector
 TempVec = G * E;
 % slicing
 [temp IndMmse] = min(abs(TempVec * o - op *
F.')');
 YMmse = F(IndMmse);
end

153

10- V-BLAST

function [YVBlast] = VBlast(A,b,c,E,F,K,L,M,n)
% This function returns symbol vector from the V-BL AST detection
process
% Usage:
% [YVBlast] = VBlast(A,b,c,E,F,K,L,M,n)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (same as
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the constel lation
% K = indice(s) of the symbol(s) to be detected
% L = YVBlast, initial value
% M = SNR
% n = snr
% Output:
% YVBlast : output of the VBLAST detection

 YVBlast = L;
 H_ = A;
 Y_ = E;
 for IndSymb = 1:c
 % MMSE matrix
 G_ = inv(H_' * H_ + (1 / M(n)) * eye(c - (IndSymb -
1))) * H_';

 % ordering: detection goes from stronge st to weakest
layer
 % detection starts with the row of G_ w hich has
minimum norm

 % norm of G_'s row
 AmpG_ = [];
 for ii = 1:c-(IndSymb-1)
 AmpG_ = [AmpG_, norm(G_(i i, :))^2];
 end
 [val1 GRowInd] = min(AmpG_);

 % nulling: MMSE is used to detect symbo l from each
layer
 CurDtdSymb = G_(GRowInd, :) * Y_;

 % slicing
 Dist = abs(F - ones(b,1) *
CurDtdSymb).^2;
 [val2, IndVBlast] = min(Dist);
 YVBlast(K(GRowInd)) = F(IndVBlast);

 % cancellation : produces deflation in columns of H_
 % removes interference f rom detected
symbol
 Y_ = Y_ - H_(:, GRowInd) * YVBlast(K(GRowInd));

154

 HTemp = [];
 Temp = [];
 for ii = 1:c-(IndSymb-1),
 if (ii ~= GRowInd)
 HTemp = [HTemp, H_(:, ii)];
 Temp = [Temp, K(ii)];
 end
 end
 H_ = HTemp;
 K = Temp;
 end

end

11- FR-BLAST

function [YFRBlast] = FRBlast(A,b,c,E,F,G,i,M,n,k,S)
% This function returns symbol vector from the FR-B LAST detection
process
% Usage:
% [YFRBlast] = FRBlast(A,b,c,E,F,G,M,n,k,S)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (sa me as
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the const ellation
% G = MMSE matrix
% i = Index of the first layer to be detected
% 1-weakest layer 2-second weakes t layer ...
% ...(c-1)-second strongest layer c-strongest
layer
% M = SNR
% n = snr
% k = size of the fixed search space
% S = Matrix of statistic to build th e subset
% Output:
% YFRBlast : output of the FRBLAST detection

 YFRBlastTest = zeros(c,k);
 Epsilon = zeros(c,k);
 % a search inside a search space is performed on the first
layer to be
 % detected, i.e. detection starts with the 'i' -th layer
 % conventional VBLAST for the N-1 remaining la yers
 % norm of G's row

 % original MMSE is run to estimate the positio n of the first
symbol
 [YMmse] = Mmse(b,c,E,F,G);

 % now we build a set of k closest symbol inclu ding this one
 [Subset] = FixedSearchSet(S,YMmse(i),k,b) ;

155

 % search inside the subset for the first symbo l,
 for ii = 1:k
 H_ = A ;
 UnDtdSymb = 1 :c;
 Y_ = E ;
 YFRBlastTest(UnDtdSymb(i),ii) = S ubset(ii);

 % cancellation : produces deflation in col umns of H_
 % removes interference from temptative
symbol
 Y_ = Y_ - H_(:,i) * YFRBlastTest(Un DtdSymb(i),ii);
 HTemp1 = [];
 Temp1 = [];
 for ii1 = 1:c
 if (ii1 ~= i)
 HTemp1 = [HTemp1,H_(:,ii1)];
 Temp1 = [Temp1, UnDtdSymb(ii1)];
 end
 end
 H_ = HTemp1;
 UnDtdSymb = Temp1;

 % Original V-BLAST detection over the N-1 remaining
layers
 [YVBlast] = VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBlastTest(:,ii),M,n);
 YFRBlastTest(:,ii) = YVBlast;

 % Compute noise for all candidate
 Epsilon(:,ii) = A * YFRBlastTest(:,ii) - E ;
 end

 % Find the best candidate
 AmpEps = [];
 for ii1 = 1:k
 AmpEps = [AmpEps, norm(Epsilon(:,ii1))];
 end
 [val4 MinEpsInd] = min(AmpEps);
 YFRBlast = YFRBlastTest(:,MinEpsInd);
end

156

12- F-BLAST

function [YFBlast] = FBlast(A,b,c,E,F,i,M,n)
% This function returns symbol vector from the F-BL AST detection
process
% Usage:
% [YFBlast] = FBlast(A,b,c,E,F,i,M,n)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (sa me as
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the const ellation
% i = Index of the first layer to be detected
% 1-weakest layer 2-second weakes t layer ...
% ...(c-1)-second strongest layer c-strongest
layer
% M = SNR
% n = snr
% Output:
% YFBlast : output of the FBLAST detection

 YFBlastTest = zeros(c,b);
 Epsilon = zeros(c,b);
 % an exhaustive search is performed on the fir st layer to be
detected
 % i.e detection starts with the 'i'_th layer
 % conventional VBLAST for the N-1 remaining sy mbols

 % Exhaustive search on the first layer
 for ii = 1:b
 H_ = A;
 UnDtdSymb = 1:c;
 Y_ = E;
 YFBlastTest(UnDtdSymb(i),ii) = F(ii);
 % cancellation : produces deflation in col umns of H_
 % removes interference from temptative
symbol
 Y_ = Y_ - H_(:,i) *
YFBlastTest(UnDtdSymb(i),ii);
 HTemp1 = [];
 Temp1 = [];
 for ii1 = 1:c
 if (ii1 ~= i)
 HTemp1 = [HTemp1,H_(:,ii1)];
 Temp1 = [Temp1, UnDtdSymb(ii1)];
 end
 end
 H_ = HTemp1;
 UnDtdSymb = Temp1;

 % Original V-BLAST detection over the N-1 remaining
layers

157

 [YVBlast] = VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(:,ii),M,n);
 YFBlastTest(:,ii) = YVBlast;
 % Compute noise for all candidate
 Epsilon(:,ii) = A * YFBlastTest(:,ii) - E;
 end
 % Find the best candidate
 AmpEps =[];
 for ii1 = 1:b
 AmpEps = [AmpEps, norm(Epsilon(:,ii1))];
 end
 [val4 MinEpsInd] = min(AmpEps);
 YFBlast = YFBlastTest(:,MinEpsInd);
end

13- ML

function [YMl] = Ml(A,b,c,E,F)
% This function returns symbol vector from the ML d etection
process
% Usage:
% [YMl] = Ml(A,b,c,E,F)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (same as
transmitter)
% E = noisy received vector Y
% F = matrix of symbols from the conste llation
% Output:
% YMl : output of the Ml detection

 % Initialization
 ErrMl = zeros(1,b^c);
 TempVec = zeros(c,b^c);
 n = 1;

 if (c == 2) % 2 antennas
 for ii1 = 1:b
 for ii2 = 1:b
 TempVec(:,n) = [F(ii1);F(i i2)];
 ErrMl(n) = (norm(E - A *
TempVec(:,n)))^2;
 n = n + 1;
 end
 end
 elseif (c == 3) % 3 antennas
 for ii1 = 1:b
 for ii2 = 1:b
 for ii3 = 1:b
 TempVec(:,n) =
[F(ii1);F(ii2);F(ii3)];

158

 ErrMl(n) = (norm(E - A *
TempVec(:,n)))^2;
 n = n + 1;
 end
 end
 end
 elseif (c == 4) % 4 antennas
 for ii1 = 1:b
 for ii2 = 1:b
 for ii3 = 1:b
 for ii4 = 1:b
 TempVec(:,n) =
[F(ii1);F(ii2);F(ii3);F(ii4)];
 ErrMl(n) = (norm(E - A *
TempVec(:,n)))^2;
 n = n + 1;
 end
 end
 end
 end
 elseif (c == 5) % 5 antennas
 for ii1 = 1:b
 for ii2 = 1:b
 for ii3 = 1:b
 for ii4 = 1:b
 for ii5 = 1:b
 TempVec(:,n) = [F(ii1);F(ii2);F(ii3);F(ii4);F(ii5)];
 ErrMl(n) = (norm(E - A * TempVec(:,n)))^2;
 n = n + 1;
 end
 end
 end
 end
 end
 elseif (c == 6) % 6 antennas
 for ii1 = 1:b
 for ii2 = 1:b
 for ii3 = 1:b
 for ii4 = 1:b
 for ii5 = 1:b
 for ii6 = 1 :b
 TempVec(:,n) =
[F(ii1);F(ii2);F(ii3);F(ii4);F(ii5);F(ii6)];
 ErrMl(n) = (norm(E - A * TempVec(:,n)))^2;
 n = n + 1;
 end
 end
 end
 end
 end
 end
 end

 [C,IndMl] = min(ErrMl);
 YMl = TempVec(:,IndMl);
end

159

5. Matlab Scripts and Simulink Models for the Coded System

1- Simulink Model

160

2- Simulink Turbo Encoder

3- Simulink Turbo Decoder

161

4- Simulink Turbo Decoder with 12 Iterations

162

5- Space-Time Mapper Matlab - Embedded Function
function Outinfo = TransmissionBlock(EncBits, MATRI X)

% NoiseVar=(2*CodeRate * #bit/pt * EbNo linear)^-1 =
N*SignalVariance/SNR

% parameters
SCCC_R = MATRIX(1); SCCC_len = MATRIX(2); N = MATRI X(3); ModSc =
MATRIX(4);
DoNoDetector = MATRIX(5); DoMmseDetect = MATRIX(6);
DoVBlastDetect = MATRIX(7); DoFBlastDetect = MATRIX (8);
DoFRBlastDetect = MATRIX(9); DoRealMmseDetect = MAT RIX(10);
DoRealVBlastDetect = MATRIX(11); DoRealFBlastDetect = MATRIX(12);
SizeOfSphere = MATRIX(13); FBStartLayer = MATRIX(14);
FRBStartLayer = MATRIX(15); SNR =MATRIX(16);

% initialization of the call of external function
eml.extrinsic('Modulation','SampleNChannel','Detect ion');

% initialization of complex computation
i = sqrt(complex(-1));
j = sqrt(complex(-1));

%%%
% Symbol Matrix, Constant and sample generation %
%%%

[SymbMat SignalVar ConstSize NumbBitPerPt StatMat M otif] =
Modulation(ModSc);

FrameSize = 2 * ConstSize; % number of samples in a
frame

NumFrameInABlock = SCCC_len / (SCCC_R * NumbB itPerPt * N *
FrameSize); % number of frames in a block

TotNumOfSampleInABlock = FrameSize * NumFrameInABlo ck; % number of
samples in a block

% 1- sample block generation
NSymbol = length(EncBits) / NumbBitPerPt;
NoiseVar = (N * SignalVar) / SNR;

[SampleBlock MIMOchResponse] =
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat ,N,TotNumOfSamp
leInABlock,NumFrameInABlock,FrameSize);

%%
%%
% Computation of output sequence of soft bits for v arious detector
%
%%
%%
Outinfo = zeros(size(EncBits));

163

[Outinfo] = Detection(NumFrameInABlock, N, FrameSiz e, NoiseVar,
SNR, SampleBlock, MIMOchResponse, DoNoDetector,ModS c,
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB lastDetect,
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD etect,
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F BStartLayer,
FRBStartLayer);

end

6- Number Error Computation - Embedded Function
function ERROR_Per_Iter = BerComp(out1, out2, out3, out4, out5,
out6, out7, out8, out9, out10, out11, out12, InfoBi ts)

% initialization of the call of external function
eml.extrinsic('nnz');
ERROR_Per_Iter = zeros(double(12),1);

ERROR_Per_Iter(1) = nnz(out1 - InfoBits);
ERROR_Per_Iter(2) = nnz(out2 - InfoBits);
ERROR_Per_Iter(3) = nnz(out3 - InfoBits);
ERROR_Per_Iter(4) = nnz(out4 - InfoBits);
ERROR_Per_Iter(5) = nnz(out5 - InfoBits);
ERROR_Per_Iter(6) = nnz(out6 - InfoBits);
ERROR_Per_Iter(7) = nnz(out7 - InfoBits);
ERROR_Per_Iter(8) = nnz(out8 - InfoBits);
ERROR_Per_Iter(9) = nnz(out9 - InfoBits);
ERROR_Per_Iter(10) = nnz(out10 - InfoBits);
ERROR_Per_Iter(11) = nnz(out11 - InfoBits);
ERROR_Per_Iter(12) = nnz(out12 - InfoBits);

end

7- MainTurbo
%== ===============
========
% This program was designed with the help of the "i terative
decoding of a
% serially concatenated convolutional code" which c an be found in
the help
% menu of matlab and some tips on signal processing from mathworks
%
% The convolutional encoder reset every frame
% No puncturation ; code rate = 1/3
% the model works for a fixed number of 12 iteratio ns
%
% note : design based on my course project on convolutional
encoding
%
% student : Arsene Pankeu Yomi
% University of Alberta, dept. of electrical and Co mputer
Engineering
%== ===============
========

164

clear;clc;close all;
% plotting preference
k1 = 1; k2 = 2; k3 = 3; k4 = 6; k5 = 8; k6 = 12; % 'k_' iterations
BER will be plot

% main parameters
NumBlock = 1;
SCCC_R = 1/3; % code rate
SCCC_len = 65536; % # information bits
SCCC_trellis1 = poly2trellis(5, [37 21],37); % Recursive
Sytematic Convolutional Encoder
SCCC_trellis2 = SCCC_trellis1; % Recursive Syte matic
Convolutional Encoder
SCCC_seed = 54123; % to have identical de/i nterleaver
SCCC_SNR_Max = 30;
SCCC_SNR_Min = 10;
SCCC_SNR_Step = 2;
SCCC_SNRdB = SCCC_SNR_Min:SCCC_SNR_Step:SCCC _SNR_Max; %
EbNo in dB
SCCC_SNR = 10.^(SCCC_SNRdB/10);
SCCC_SNR_Lgth = length(SCCC_SNR);

% detection parameters
% !!! FR-BLAST will work only for 64Q and 256Q !!!
N = 4; % # receiver antennas = # tr ansmitter
antennas
ModSc = 1; % 1 ->16qam 2 ->64qam 4 ->256qam
% Launch !!! ONE DETECTION AT THE TIME !!!
% '1' In order to launch detection scheme otherwise '0'
% LAUNCH ONE DETECTOR AT THE TIME
DoNoDetector = 0; % No detector; simple BPSK transmission
DoMmseDetect = 0; % MMSE detector
DoVBlastDetect = 0; % V-BLAST detector
DoFBlastDetect = 0; % F-BLAST detector; starti ng layer
indicated below
DoFRBlastDetect = 0; % FR-BLAST; starting layer indicated
below
DoRealMmseDetect = 0; % real-valued MMSE detecto r
DoRealVBlastDetect= 0; % real-valued V-BLAST dete ctor; starting
layer indicated below
DoRealFBlastDetect= 1; % real-valued F-BLAST dete ctor; starting
layer indicated below
SizeOfSphere = 9; % number of symbol in the search space
% starting layer 1 for the weakest 2 for second wea kestN for
strongest
FBStartLayer = 1; % starting layer of the F- BLAST scheme
FRBStartLayer = 2; % starting layer of the FR -BLAST scheme

% initialisation,

% on the i-th row and j-th column, BER from the i-t h iteration and
j-th EbNo value
ber = zeros(12,SCCC_SNR_Lgth);
% on the i-th row simulation time for the i-th EbNo value
Time = zeros(SCCC_SNR_Lgth,1);

165

for snr = 1:SCCC_SNR_Lgth % multiple EbNo run
 BlockCounter = 0;
 BlockError = zeros(12,NumBlock); % # in the decoded block
 % matrix of parameters !!! ORDER !!!
 MATRIX = [SCCC_R SCCC_len N ModSc DoNoDetector D oMmseDetect
DoVBlastDetect DoFBlastDetect DoFRBlastDetect DoRea lMmseDetect
DoRealVBlastDetect DoRealFBlastDetect SizeOfSphere FBStartLayer
FRBStartLayer SCCC_SNR(snr)];
 tic;
 while (BlockCounter < NumBlock)
 BernouilliSeed = 12343 * (BlockCounter + 1);
 sim('turbo') % launch simulink model
 % bit-error-rate from SIMULINK
 % BER of the given SNR
 BlockCounter = BlockCounter + 1;
 BlockError(:,BlockCounter) = BER.signals.val ues / SCCC_len;
 end
 for kk = 1:NumBlock
 ber(:,snr) = ber(:,snr) + BlockError(:,kk);
 end
 ber(:,snr) = ber(:,snr) / NumBlock;
 toc;
 Time(snr) = toc;

 % save data (.MAT file) in directory folder
 % rename it ACCORDINGLY, in order to save data f rom multiple
simulations
 save('TurboData_16Qtestreal','ber','SCCC_SNRdB', 'Time')
end

%%%%%%%%%%%%%%%%%%%%%
% BER semilogy Plot %
%%%%%%%%%%%%%%%%%%%%%
 figure(1)
 semilogy(SCCC_SNRdB,ber(k1,:),'+-',SCCC_SNRdB,ber(k2,:),'v-
',SCCC_SNRdB,ber(k3,:),'*-',SCCC_SNRdB,ber(k4,:),'o -
',SCCC_SNRdB,ber(k5,:),'.-',SCCC_SNRdB,ber(k6,:),'- -');
 title('BER For Various Iterations of Turbo Code');
 legend('1 iteration','2 iteration','3 iteration',' 6 iteration','8
iteration','12 iteration'); % according to k1 k2 k3 k4 k5 k6
 xlabel('SNR, dB');
 ylabel('BER');

166

8- Detection
function [SoftBit] = Detection(NumFrameInABlock, N, FrameSize,
NoiseVar, SNR, SampleBlock, MIMOchResponse, DoNoDet ector,ModSc,
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB lastDetect,
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD etect,
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F BStartLayer,
FRBStartLayer)

SoftBit = [];
i = sqrt(complex(-1));
j = sqrt(complex(-1));

for frameCntr = 1:NumFrameInABlock
 %%%%%%%%%%%
 % Channel %
 %%%%%%%%%%%
 H = MIMOchResponse(:, :, 1+(frame Cntr-
1)*FrameSize);
 N_ =
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;
 W = N_*sqrt(NoiseVar);
 % S is the current frame
 S = SampleBlock(:,1+FrameSize*(fr ameCntr-
1):frameCntr*FrameSize);
 Y = zeros(N, FrameSize);
 for ii = 1:FrameSize
 % Y=H*S+W
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) +
W(:,ii);
 end

 %%%%%%%%%%%%%%%%%%%%%
 % Detection process %
 %%%%%%%%%%%%%%%%%%%%%

 %%%% No detector used %%%%
 if (DoNoDetector == 1)
 SoftOutputs = [];
 for vectorCntr = 1:FrameSize
 for kk = 1:N
 SoftOutputs = [SoftOutputs,
llr(Y(kk),ModSc)];
 end
 end
 end

 %%%% MMSE detection %%%%
 if (DoMmseDetect == 1)
 G = inv(H' * H + (1 / SNR) * eye(N)) * H';
 SoftOutputs = [];
 for vectorCntr = 1:FrameSize
 [Soft] = SoftMmse(N,Y(:,vec torCntr),G);
 SoftOut = [];
 for ii = 1:N
 SoftOut = [SoftOut, llr(So ft(ii),ModSc)];

167

 end
 SoftOutputs = [SoftOutputs, SoftOut];
 end
 end

 %%%% V-BLAST detection %%%%
 if (DoVBlastDetect == 1)
 SoftOutputs = [];
 for vectorCntr = 1:FrameSize
 % initialize position of the undetected
symbols
 Pos = 1:N;
 % initialize detected symbol vector
 YVB = zeros(N,1);
 SVB = zeros(N,1);
 [Soft YVBlast] =
SoftVBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Po s,YVB,SVB,SNR);
 for kk = 1:N
 SoftOutputs = [SoftOutputs,
llr(Soft(kk),ModSc)];
 end
 end
 end

 %%%% F-BLAST detection %%%%
 if (DoFBlastDetect == 1)
 SoftOutputs = [];
 [SortedLayer IndMI] = SortCol(H,N);
 for vectorCntr = 1:FrameSize
 [Soft] =
SoftFBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,So rtedLayer(FBSta
rtLayer),SNR);
 SoftOut = [];
 for ii = 1:N
 SoftOut = [SoftOut, llr(So ft(ii),ModSc)];
 end
 SoftOutputs = [SoftOutputs, SoftOut];
 end
 end

 %%%% FR-BLAST detection %%%%
 if (DoFRBlastDetect == 1)
 SoftOutputs = [];

 G = inv(H' * H + (1 / SNR) * eye(N)) * H';
 [SortedLayer IndMI] = SortCol(H,N);
 for vectorCntr = 1:FrameSize
 [Soft] =
SoftFRBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,G ,SortedLayer(FR
BStartLayer),SNR,SizeOfSphere,StatMat,ModSc);
 SoftOutputs = [SoftOutputs, Sof t];
 end
 end

 %%% setup for real-valued detection % %%

168

if ((DoRealMmseDetect + DoRealVBlastDetect + DoReal FBlastDetect) >
0)
 RealH = [real(H) -imag(H);imag(H)
real(H)];

 RealY = zeros(2*N, Frame Size);
 RealS = zeros(2*N, Frame Size);
 RealW = zeros(2*N, Frame Size);
 for ii = 1:FrameSize
 TempRealY = zeros(N, FrameSi ze);
 TempImagY = zeros(N, FrameSi ze);
 TempRealS = zeros(N, FrameSi ze);
 TempImagS = zeros(N, FrameSi ze);
 TempRealW = zeros(N, FrameSi ze);
 TempImagW = zeros(N, FrameSi ze);
 for hh = 1:N
 TempRealY(hh,ii) = real(Y (hh,ii));
 TempImagY(hh,ii) = imag(Y (hh,ii));
 TempRealS(hh,ii) = real(S (hh,ii));
 TempImagS(hh,ii) = imag(S (hh,ii));
 TempRealW(hh,ii) = real(W (hh,ii));
 TempImagW(hh,ii) = imag(W (hh,ii));
 end

 RealY(:,ii) =
[TempRealY(:,ii);TempImagY(:,ii)];
 RealS(:,ii) =
[TempRealS(:,ii);TempImagS(:,ii)];
 RealW(:,ii) =
[TempRealW(:,ii);TempImagW(:,ii)];
 end
end

 %%%% Real-valued MMSE detection %%%%
 if (DoRealMmseDetect == 1)
 RealG = inv(RealH' * RealH + (1 / SNR) * eye(2 *N)) * RealH';
 SoftOutputs = [];
 for vectorCntr = 1:FrameSize
 [SoftR] =
SoftMmse(2*N,RealY(:,vectorCntr),RealG);

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N
 YReal(ii) = SoftR(ii) + i *
SoftR(N+ii);
 end

 SoftOut = [];
 for ii = 1:N
 SoftOut = [SoftOut,
llr(YReal(ii),ModSc)];
 end

169

 SoftOutputs = [SoftOutputs, SoftOut];
 end

 end
 %%%% Real-valued VBlast detection %%% %
 if (DoRealVBlastDetect == 1)
 RealConstSize = (ConstSize)^.5;
 SoftOutputs = [];
 for vectorCntr = 1:FrameSize
 % initialize position of the undetected
symbols
 Pos = 1:2*N;
 % initialize detected symbol vector
 YVB = zeros(2*N,1);
 SVB = zeros(2*N,1);
 [Soft, YVBlast] =
SoftVBlast(RealH,RealConstSize,2*N,RealY(:,vectorCn tr),Motif,Pos,Y
VB,SVB,SNR);

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N
 YReal(ii) = Soft(ii) + i * Soft(N+ii);
 end
 for kk = 1:N
 SoftOutputs = [SoftOutputs ,
llr(YReal(kk),ModSc)];
 end
 end
 end

 %%%% Real-valued FBlast detection %%% % %%%%
 if (DoRealFBlastDetect == 1)
 SoftOutputs = [];
 [RealSortedLayer RealIndMI] =
SortCol(RealH,2*N);
 RealConstSize = (Co nstSize)^.5;
 for vectorCntr = 1:FrameSize
 [Soft] =
SoftFBlast(RealH,RealConstSize,2*N,RealY(:,vectorCn tr),Motif,RealS
ortedLayer(FBStartLayer),SNR);
 SoftOut = [];

 % complex transformation
 YReal = zeros(N,1);
 for ii = 1:N
 YReal(ii) = Soft(ii) + i * Soft(N+ii);
 end

 SoftOut = [];
 for ii = 1:N
 SoftOut = [SoftOut,
llr(YReal(ii),ModSc)];
 end
 SoftOutputs = [SoftOutputs, SoftOut];

170

 end
 end

 SoftBit = [SoftBit, SoftOutputs];

end % end frameCntr

9- FixedSearchSet
function [Subset] = FixedSearchSet(A,b,c,d)
% This function returns searchset for the noisiest layer, 64QAM
% Usage:
% [Subset] = FixedSearchSet(a,b,c,d)
% Input:
% A = Matrix of statistic
% b = Mmse noisiest estimate
% c = size of the fixed search set
% d = ConstSize
%
%
% Output:
% Subset : set of candidate symbol

 [symb indx] = min(abs(b * ones(1, d) - A(1,:)));
 A(indx+1,indx) = 0;
 Subset = [b];
 for kk = 1:c-1
 [value position] = max(A(indx+1,:));
 A(indx+1,position) = 0;
 Subset = [Subset,A(1,position)];
 end
end

10- llr
function [LLR] = llr(Pt,d)
% This function returns LLR
% Usage:
% [LLR] = llr(Pt,d)
% Input:
%
% Pt = Point in the constellation / unsliced symbol
% d = Modulation scheme : 1 ->16qam 2 ->64qam 4 ->256qam
%
% Output:
%
% LLR: Log-Likelihood-Ratio
% [LLR(b0) LLR(b1) LLR(b2) ... LLR(bn)] for n- bit
constellation signal

 if (d == 1)
 LLR = zeros(1,4);
 LLR(1) = - abs(imag(Pt)) + 2;
 LLR(2) = - imag(Pt);
 LLR(3) = - abs(real(Pt)) + 2;

171

 LLR(4) = real(Pt);

 elseif (d == 2)
 LLR = zeros(1,6);
 LLR(1) = - abs(abs(imag(Pt)) - 4) + 2;
 LLR(2) = - abs(imag(Pt)) + 4;
 LLR(3) = - imag(Pt);
 LLR(4) = - abs(abs(real(Pt)) - 4) + 2;
 LLR(5) = - abs(real(Pt)) + 4;
 LLR(6) = real(Pt);

 elseif (d == 4)
 LLR = zeros(1,8);
 if (abs(imag(Pt)) < 8)
 LLR(1) = - abs(abs(imag(Pt)) - 4) + 2;
 else
 LLR(1) = - abs(abs(imag(Pt)) - 12) + 2;
 end
 LLR(2) = - abs(abs(imag(Pt)) - 8) + 4;
 LLR(3) = - abs(imag(Pt)) + 8;
 LLR(4) = - imag(Pt);
 if (abs(real(Pt)) < 8)
 LLR(5) = - abs(abs(real(Pt)) - 4) + 2;
 else
 LLR(5) = - abs(abs(real(Pt)) - 12) + 2;
 end
 LLR(6) = - abs(abs(real(Pt)) - 8) + 4;
 LLR(7) = - abs(real(Pt)) + 8;
 LLR(8) = real(Pt);

 end
end

172

11- Modulation

function [SymbMat SignalVar ConstSize NumbBitPerPt StatMat Motif]
= Modulation(d)
% This function returns uncorellated Modulated symb ols.
% Usage:
% [SymbMat SignalVar ConstSize NumbBitPerPt StatMat Motif]
= Modulation(d)
% Input:
%
% d = Modulation scheme : 1 ->16qam 2 ->64qam 4 -
>256qam
% Output:
%
% SymbMat : Constellation matrice
% NumbBitPerPt : Number of bits per point
% StatMat : Subset for the restricte d search
% SignalVar : Variance of signal from the given
constellation
% ConstSize : number of point in the c onstellation

 if (d==1)
 M = 16;
 NumbBitPerPt = 4 ;
 Motif = [-3 -1 1 3]';
 load SymetricalSearchSpace16Q.mat;

 elseif (d==2)
 M = 64;
 NumbBitPerPt = 6 ;
 Motif = [-7 -5 -3 -1 1 3 5 7]';
 load SymetricalSearchSpace64Q.mat;

 elseif (d==4)
 M = 256;
 NumbBitPerPt = 8 ;
 Motif = [-15 -13 -11 -9 -7 -5 -3 -1 1 3 5
7 9 11 13 15]';
 load SymetricalSearchSpace256Q.mat;

 end

 x = [0:M-1];
 %matlab function for gray mapping with QAM constellation
 SymbMat =
modulate(modem.qammod('M',M,'SymbolOrder','Gray'),x);
 SymbMat = SymbMat.';

 ConstSize = M;
 SignalVar = SymbMat' * SymbMat / M;
end

173

12- SampleNChannel
function [SampleBlock MIMOchResponse] =
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat ,N,TotNumOfSamp
leInABlock,NumFrameInABlock,FrameSize)

 % 1- generate symbols from encoded bits
 SymbolBlock = zeros(1,NSymbol);
 for pp = 1:NSymbol
 tt = 0;
 for zz = 1:NumbBitPerPt
 tt = tt + 2^(zz - 1) * EncBits(zz + (p p - 1) *
NumbBitPerPt);
 end
 SymbolBlock(pp) = SymbMat(tt + 1);
 end

 % 2- generate sample from symbols
 SampleBlock = zeros(N,NSymbol / N);
 for NSymb = 1:N:NSymbol - N + 1
 SampleBlock(:,(NSymb + (N - 1)) / N) =
transpose(SymbolBlock(NSymb:NSymb + N - 1));
 end

 % channel generation
 MIMOchResponse = zeros(N,N,TotNumOfSampleIn ABlock);
 for ii = 1:NumFrameInABlock
 % generating CHANNEL
 H = (randn(N) + i*randn(N)) * sqrt(0.5);
 for ii1 = 1:N
 for ii2 = 1:N
 MIMOchResponse(ii1, ii2, (1+(ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response
per frame
 end
 end
 end

174

13- SortCol
function [SortedLayer IndMI] = SortCol(A,c)
% This function returns index of layers from the we akest to the
strongest
% Usage:
% function [SortedLayer IndMI] = Sortcol(A)
% Input:
% A = H matrix
% c = number of receiver antennas (same as transmitter)
% Output:
% SortedLayer = Matrix of the index
% 1-weakest layer 2-second weakest l ayer ...
% ...(c-1)-second strongest layer c -strongest
layer
% IndMI = Index of the layer which has maxim um interference
on the
% Strongest Layer

 % Initialization
 SortedLayer = zeros(1,c);
 n = 1;

 AmpColH = [];
 for ii = 1:c
 AmpColH = [AmpColH,norm(A(:,i i))];
 end
 while (n < c + 1)
 [Val Ind] = min(AmpColH);
 SortedLayer(n) = Ind;
 AmpColH(Ind) = 10000;
 n = n + 1;
 end

 AmpH = [];
 for ii2 = 1:c
 AmpH = [AmpH, norm(SortedL ayer(c),ii2)];
 end
 AmpH(SortedLayer(c)) = 0;
 [val1 IndMI] = max(AmpH);

end

175

14- Mmse

function [YMmse] = Mmse(b,c,E,F,G)
% This function returns symbol vector from the MMSE detection
process
% Usage:
% [YMmse] = Mmse(b,c,E,F,G)
% Input:
% b = constellation size
% c = number of receiver antennas (same as
transmitter)
% E = noisy transmitted vector Y
% F = matrice of symbol from the conste llation
% G = MMSE matrix
% Output:
% YMmse : output of the Mmse detection

 o = ones(1, b);
 op = ones(c, 1);
 % MMSE output vector
 TempVec = G * E;
 % slicing
 [temp IndMmse] = min(abs(TempVec * o - op *
F.')');
 YMmse = F(IndMmse);
end

15- SoftVB
function [SoftOut YVBlast] = SoftVBlast(A,b,c,E,F,K ,L,L_,n)
% This function returns soft output from the V-BLAS T detection
process
% Usage:
% [SoftOut YVBlast] = SoftVBlast(A,b,c,E,F,K ,L,L_,n)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (same as
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the constel lation
% K = indice(s) of the symbol(s) to be detected
% L = YVBlast, initial value
% L_ = soft info initial value
% n = SNR
% Output:
% SoftOut : unsliced symbol vector from the V BLAST detection
% YVBlast : hard output of the VBLAST detecti on

 SoftOut = L_;
 YVBlast = L;
 H_ = A;
 Y_ = E;
 for IndSymb = 1:c
 % MMSE matrix

176

 G_ = inv(H_' * H_ + (1 / n) * eye(c - (IndSymb - 1)))
* H_';

 % ordering: detection goes from stronge st to weakest
layer
 % detection starts with the row of G_ w hich has
minimum norm

 % norm of G_'s row
 AmpG_ = [];
 for ii = 1:c-(IndSymb-1)
 AmpG_ = [AmpG_, norm(G_(i i, :))^2];
 end
 [val1 GRowInd] = min(AmpG_);

 % nulling: MMSE is used to detect symbo l from each
layer
 CurDtdSymb = G_(GRowInd, :) * Y_;

 % slicing
 Dist = abs(F - ones(b,1) *
CurDtdSymb).^2;
 [val2, IndVBlast] = min(Dist);
 YVBlast(K(GRowInd)) = F(IndVBlast);

 % soft decision
 SoftOut(K(GRowInd)) = CurDtdSymb;

 % cancellation : produces deflation in columns of H_
 % removes interference f rom detected
symbol
 Y_ = Y_ - H_(:, GRowInd) * YVBlast(K(GRowInd));
 HTemp = [];
 Temp = [];
 for ii = 1:c-(IndSymb-1),
 if (ii ~= GRowInd)
 HTemp = [HTemp, H_(:, ii)];
 Temp = [Temp, K(ii)];
 end
 end
 H_ = HTemp;
 K = Temp;
 end
end

177

16- SoftMmse
function [Out] = SoftMmse(c,E,G)
% This function returns soft output from the MMSE d etection
process
% Usage:
% [Out] = SoftMmse(c,E,G)
% Input:
% c = number of receiver antennas (same as
transmitter)
% E = noisy transmitted vector Y
% G = MMSE matrix
% Output:
% Out : soft output of the Mmse detection

 % MMSE output vector
 Out = G * E;
end

17- SoftFBlast
function [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)
% This function returns soft output from the F-BLAS T detection
process
% Usage:
% [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (sa me as
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the const ellation
% i = Index of the first layer to be detected
% 1-weakest layer 2-second weakes t layer ...
% ...(c-1)-second strongest layer c-strongest
layer
% n = SNR
% Output:
% SoftOut : soft output of the FBLAST detecti on

 SoftTest = zeros(c,b);
 YFBlastTest = zeros(c,b);
 Epsilon = zeros(c,b);
 % an exhaustive search is performed on the fir st layer to be
detected
 % i.e detection starts with the 'i'_th layer
 % conventional VBLAST for the N-1 remaining sy mbols

 % Exhaustive search on the first layer
 for ii = 1:b
 H_ = A;
 UnDtdSymb = 1:c;
 Y_ = E;
 YFBlastTest(UnDtdSymb(i),ii) = F(ii);
 SoftTest(UnDtdSymb(i),ii) = F(ii);

178

 % cancellation : produces deflation in col umns of H_
 % removes interference from temptative
symbol
 Y_ = Y_ - H_(:,i) *
YFBlastTest(UnDtdSymb(i),ii);
 HTemp1 = [];
 Temp1 = [];
 for ii1 = 1:c
 if (ii1 ~= i)
 HTemp1 = [HTemp1,H_(:,ii1)];
 Temp1 = [Temp1, UnDtdSymb(ii1)];
 end
 end
 H_ = HTemp1;
 UnDtdSymb = Temp1;

 % Original V-BLAST detection over the N-1 remaining
layers
[Soft YVBlast] = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(:,ii),SoftTest(:,ii),n);
 YFBlastTest(:,ii) = YVBlast;
 SoftTest(:,ii) = Soft;
 % Compute noise for all candidate
 Epsilon(:,ii) = A * YFBlastTest(:,ii) - E;
 end
 % Find the best candidate
 AmpEps =[];
 for ii1 = 1:b
 AmpEps = [AmpEps, norm(Epsilon(:,ii1))];
 end
 [val4 MinEpsInd] = min(AmpEps);

 SoftOut = SoftTest(:,MinEpsInd);

end

18- SoftFRBlast
function [SoftOut] = SoftFRBlast(A,b,c,E,F,G,i,n,k, S,d)
% This function returns symbol vector from the FR-B LAST detection
process
% Usage:
% [SoftOut] = SoftFRBlast(A,b,c,E,F,G,n,k,S, d)
% Input:
% A = H matrix
% b = constellation size
% c = number of receiver antennas (sa me as
transmitter)
% d = mode scheme
% E = noisy transmitted vector Y
% F = matrix of symbol from the const ellation
% G = MMSE matrix
% i = Index of the first layer to be detected
% 1-weakest layer 2-second weakes t layer ...

179

% ...(c-1)-second strongest layer c-strongest
layer
% n = SNR
% k = size of the fixed search space
% S = Matrix of statistic to build th e subset
% Output:
% SoftOut : output of the FRBLAST detection

 SoftOut = [];
 SoftTest = zeros(c,k);
 YFRBlastTest = zeros(c,k);
 Epsilon = zeros(c,k);
 % a search inside a search space is performed on the first
layer to be
 % detected, i.e. detection starts with the 'i' -th layer
 % conventional VBLAST for the N-1 remaining la yers
 % norm of G's row

 % original MMSE is run to estimate the positio n of the first
symbol
 [YMmse] = Mmse(b,c,E,F,G);

 % now we build a set of k closest symbol inclu ding this one
 [Subset] = FixedSearchSet(S,YMmse(i),k,b) ;

 % search inside the subset for the first symbo l,
 for ii = 1:k
 H_ = A ;
 UnDtdSymb = 1 :c;
 Y_ = E ;
 YFRBlastTest(UnDtdSymb(i),ii) = S ubset(ii);
 SoftTest(UnDtdSymb(i),ii) = S ubset(ii);
 % cancellation : produces deflation in col umns of H_
 % removes interference from temptative
symbol
 Y_ = Y_ - H_(:,i) * YFRBlastTest(Un DtdSymb(i),ii);
 HTemp1 = [];
 Temp1 = [];
 for ii1 = 1:c
 if (ii1 ~= i)
 HTemp1 = [HTemp1,H_(:,ii1)];
 Temp1 = [Temp1, UnDtdSymb(ii1)];
 end
 end
 H_ = HTemp1;
 UnDtdSymb = Temp1;

 % Original V-BLAST detection over the N-1 remaining
layers
[Soft YVBlast] = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBlastTest(:,ii),SoftTest(:,ii), n);
 YFRBlastTest(:,ii) = YVBlast;
 SoftTest(:,ii) = Soft;
 % Compute noise for all candidate
 Epsilon(:,ii) = A * YFRBlastTest(:,ii) - E ;

180

 end

 % Find the best candidate
 AmpEps = [];
 for ii1 = 1:k
 AmpEps = [AmpEps, norm(Epsilon(:,ii1))];
 end
 [val4 MinEpsInd] = min(AmpEps);
 for kk = 1:c
 SoftOut = [SoftOut, llr(SoftTest(kk,MinEpsI nd),d)];
 end
end

