University of Alberta

A Near-Optimal and Efficiently Parallelizable Detedor
for Multiple-Input Multiple-Output Wireless Systems

by

Arsene Fourier Pankeu Yomi

A thesis submitted to the Faculty of Graduate ®®idind Research
in partial fulfilment of the requirements for tdegree of

Master of Science
in
Communications

Department of Electrical and Computer Engineering

© Arsene Fourier Pankeu Yomi
Spring 2012
Edmonton, Alberta

Permission is hereby granted to the University Iifefta Libraries to reproduce single copies of thesis
and to lend or sell such copies for private, sallar scientific research purposes only. Wheretttesis is
converted to, or otherwise made available in digitam, the University of Alberta will advise potial users

of the thesis of these terms.

The author reserves all other publication and otiglats in association with the copyright in thegfs and,
except as herein before provided, neither the shemi any substantial portion thereof may be pdiote
otherwise reproduced in any material form whatsoexthout the author's prior written permission.



This thesis is dedicated to my parents, who prowewith continuous
moral and material support in every steps of ng;, ldven with the long distance
that separates us. It is also dedicated to the @ueamily, who made me a
member of their family in all regards, and witheutom this thesis would have

never been possible.



Abstract

Broadband Wireless Communications and Multipledtnidultiple-Output
(MIMO) systems have been the focus of much reseaveh the past decade. A
variety of MIMO detection algorithms have been megd for detecting the data
signals from the multiple received and demoduldt@skeband signals. Among the
detectors, sphere decoding algorithms are knowretoear-optimal but they are
relatively complicated and have variable detecti@encies, and are therefore
inconvenient to implement. Also, the variable laterof most sphere decoder
algorithms makes them difficult to implement eféictly on parallel hardware.

This thesis work evaluates several alternative MiINM@tectors and
proposes a near-optimal and efficiently paralldieadetector. The new MIMO
detector has much lower computational complexignth sphere decoder, and has
a convenient parallel structure comprising multiplstances of the Vertical Bell

Laboratories Layered Space Time (V-BLAST) MIMO dxien scheme.
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|- Introduction

This thesis is concerned with low-complexity arificeent detectors for
Multiple-Input Multiple-Output (MIMO) wireless comuamication. Of special
practical interest are detectors that can explaitlel hardware and that can be
scaled up to handle a larger number of antennasname complex signal
constellations. The performance of proposed new ®lIfetection algorithms is
compared to the performance characteristics of eotimnal detectors with
respect to their Bit Error Rate (BER) versus SigoaNoise Ratio (SNR)
performance and their computational complexity. Wet consider uncoded
systems, and then extend the investigation to BoFaoded system model.

MIMO wireless technology is being used to providethbgreater data
throughput over the same radio bandwidth as weljrasiter robustness in the
presence of channel noise and other impairmentaeMer, the more information
that we try to send (within the Shannon capacitytlfor the MIMO system), the
more complex will be the detector at the receivee.s

The main objective of this project was to improke telatively simple and
well-known V-BLAST MIMO detector through the use jdirallelism to achieve
near-optimal performance. We considered a reasergbbunt of pararallelism to
be 16, since orthogonal frequency division multiptg (OFDM) systems uses
around 64 subcarriers. Parallel signal processargware has the advantages of
potentially simplifying the chip implementationwering the voltage thus saving
power and ensuring more predictable timing. A pakamplementation may

make it easier to share hardware among multiplelasirdatapaths, which is a
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likely scenario in multicarrier wireless system$iey are some challenges that
must be overcome in parallel architectures, sucthasproblem of distributing
data for parallel processing and then later gatigeaind possibly combining the
results. A performance study was done to derivectiraputational complexity
and to determine the Symbol Error Rate (SER) orBrbr Rate (BER) versus
SNR characteristics over a simulated noisy chaniiéle performance of
alternative parallel MIMO detection schemes was parad with that of
conventional detection schemes, such the minimumannsguare error (MMSE)
detector [1] and the original V-BLAST detector [2].

In contrast to existing near-optimal but computadilly-expensive
detection schemes, such as the sphere detectoor[3he tree-based search
detector [4], we were able to achieve similar penfance using parallel
structures. The thesis also provides a detailedpaoison of the computational
cost for the alternative MIMO detectors. This cssexpressed in terms of the
required number of fundamental real-valued opematiole.g., additions,
multiplications, reciprocals) as well as the minimgpossible execution time (in
terms of single-cycle operations) assuming arhjtparallelism.

The main contributions of this thesis are:

> A first analysis of the complexity of Fouladi Fasdparallel V-BLAST
algorithm, which we call F-BLAST.
» Simulation-based investigation of the performandenew restricted

search window versions of F-BLAST.
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» A simulation-based investigation of the performange real-valued
versions of F-BLAST

» An analysis of the computational cost of the vasiMiMO detectors that
were considered.

» Asymptotic analysis of F-BLAST, FR-BLAST and theaf-valued
versions of F-BLAST.

» A simulation study of the performance of the newed®rs used in

combination with soft turbo decoding.



|I- Background

2.1 MIMO Systems
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Figlj’:lé} 1 Radio Links Based on the (a) SISO and (b) MIMO f@pmations [5]

In a conventional Single-Input Single-Output (SIS@mmunication
system (see Figure la), there is a single transmatid receiver at either end of
the radio link. The transmitters and receivers awna baseband (B.B.) processor
as well as a radio frequency (RF) circuitry forleaatenna (RADIO in Figure 1).
We will assume that the B.B.-to-RF modulators ie transmitter and the RF-to-
B.B demodulators in the receiver function perfegtithout impairing the signals.
In an ideal unobstructed communications channelioraignals travel through
free space along a single path from the transnigrama to the receive antenna.

Unfortunately, obstructions (such as buildings aadural terrain features) and

propagation effects in the radio channel can creatétipath effects such as
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multiple reflected, refracted and scattered propagapaths. With multipath
propagation, multiple copies of the transmittedhal@rrive and get superimposed
at the receiver antenna. Due to the inevitableebfices in path lengths, the
phases and amplitudes of these reflected signalsypically different from each
other and from those of the possible direct linaight path. Because of this, the
signals at the receiver can combine constructivalydestructively, causing
position-dependant fluctuations in the receiveaaigtrength. These fluctuations
can be very large (e.g. 30 dB or more) and wilbathange with time if the
antennas move or if the environment changes. Tpesiéon and time-dependant
signal attenuations are called short-term fadirfjg E&cessive fading effects can
diminish the data throughput and could cause dms IFor transmission systems
where the propagation effects can be determineg anthe receiverand under
the assumption that each binary digit is equiprtdhathe capacity (in bits of

information/sec) of a SISO channel is given by Slvar's capacity theorem [7]:
Csiso=B *l0g,(1 +p) bits of information/sec

whereB is the bandwidth of the channel gn the averagsignal-to-noise-ratio.
Shannon’s theorem gives an upper limit on pos®bler-free data transmission.
However the proof does not provide constructioas tan achieve the limit.

In a conventional Multiple-iInput  Multiple-Output  (MO)
communications system (see Figure 1b), a radioténkinates at several antenna
elements at both the transmitter and receiverbaseband processor at the
transmitter distributes the data over the multiglarallel tributaries and,

optionally, inserts code bits for error control. Ate receiver, the baseband
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processor performs detection on the demodulatezivedt signals and merges the
recovered parallel bit streams into a single dxeam. If coded bits were inserted
at the transmitter, the receiver checks the vatli¢gise received data and code bits
and possibly corrects errors in the data bits. MIM@hnology has attracted
attention in wireless communications since it affeignificant increases in data
throughput without requiring additional radio bandth or transmitted power.
More specifically, MIMO technology provides highspectral efficiency (more
bits per second per hertz of bandwidth) and ine@disk reliability or diversity

(greater robustness against fading).

Figure 2 MIMO Channel Model [8]

The channel matrid comprises the complex channel gains from each
transmitting antenna to each receiving ante&aa&h elemertt;; of H is in general
a complex vector that represents the discrete timennel impulse response

between the-th transmitter antenna and thth receiver antenna, as illustrated in
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Figure 2. If the channel is flat fading, i.e., difént frequency components of the
signal experience the same magnitude of fadingy tach elemenh; is a
complex scalarFor a deterministic channel matrix, i.e., each eleirh; is
known, without exploiting channel knowledge at trensmittey the capacity of a

MIMO channel is [7]:

Cumo =B * logz (det [I,, +£*H*H"))
Ty

. 1 . . .
Whenn is large,—* H * H" = I, , wherel, denotes an,xn, identity matrix.
My

In this special case [TCvuimo =M * B * logz (1 +p) =m * Cgiso bits/sec

HereB is the bandwidth of the channgljs the SNR = 1 andn, = 1 are the
number of transmit antennas and receive antensagctvely, andd is then,-
by-n; channel matrix. The MIMO multiplexing gam equals the minimum value
of n andn,. H™ denotes the Hermitian transpose Hof which is obtained by
negating the imaginary part of each complex elenoérii and then taking the

transpose of the resulting matrix.
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Figure 3 Average Capacity of Ideal MIMO &2, 3x3 and 4<4) and SISO
(Conventional Shannon Capacity) Channels

The capacity expression implies that for a SISQesys 3 dB of extra
signal power is needed for each extra bit per skoohthroughput at the
maximum capacity limit. Also, as illustrated in &ig 3, the capacity of a MIMO
system increases linearly with the minimum of the number of transmit or
receive antennas. An alternative view is that lmwjling multiple paths from the
transmitter to the receiver, the effects of fadamg mitigated on average and thus
a larger effective SNR can be achieved while uaingfMO system.

Because of its advantages, MIMO technology has beepted by all of
the latest wireless standards such as the wirétesd area network (WLAN)
standard IEEE 802.11, used in Wi-Fi technologié& wireless personal area
network (WPAN) / Bluetooth - IEEE 802.15; and thetropolitan area network

(MAN) which is branded as WiMax - IEEE 802.16 [9].



2.2 System Architecture

Encoder

Tuput Data

Noisy Channel

Figure 4 System Architecture
Figure 4 illustrates the architecture of the systbat we used to model

MIMO transmission and reception. Note that the esystnodel is a conventional
baseband model where the modulation step at timsrider and the matching
demodulation step at the receiver have both bedttesinThus modulation and
demodulation are assumed to occur without impaitm&he serial stream of
input data bits are encoded and then mapped taeedpne block of complex
baseband symbols. The symbols are intermixed byatotion with the channel
and then corrupted with additive white Gaussiars@qAWGN). The detector
recovers complex symbols from the analog receivgrubags and outputs blocks of
soft data bits. Finally, the block of soft datashiz decoded and the resulting bits
are merged into a serial stream of output data.

This work mainly focuses on the channel detectoclblshown in Figure 4.

The channel detector is responsible for recoveangequence of estimated
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complex baseband symbols from the sampled based@adg signals received
from the antennas. We will first describe the feaguof the new class of detector
and then analyze its performance. Finally, usingpaventional Turbo Coding
scheme, we will compare the BER performance of reg¢valternative soft
detectors. We will make the following assumptions:

» The input data or information bits or uncoded dateartitioned into
blocks of lengthL >> 1 containing randomly generated &nd & with
equal probability.

» If coding is used, the encoder is the parallel eteration of two recursive
systematic convolutional encoders of rate 1/2 [T@E overall code rate is
therefore 1/3 (= 1/3), i.e., the output sequence length is tdpl€he
original information bits are interleaved with tvegual-rate bits streams

produced by the encoders.

0
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Figure 5 Constellation Diagram for Gray-Cod&ttQAM (M=16) [11]
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» The space-time mapper takes the block of encodsd dnd maps them

into a block of symbols from a complex constellatimontainingM = 2

symbols, using Gray code, i.e., a binary numeratesy where two
successive numeral values differ in only one birtagyt, improving error
correction. The numbevl of available constellation symbols is typically
4, 8, 16, 64 or 256. We will be using standard demM-ary Quadratic
Amplitude Modulation (or M-QAM) constellations (see Figure 5).
Sequences of symbols are grouped into frames thasized so that the
durationT of a frame, i.e., the number of samples in a frasaésfiesT >

2 *m- 1 (for near-optimal diversity-multiplexing traadf [12]). Finally
within each frame, the constellation symbols a@uged to form sample
vectors of lengtm. Typicallym= 2, 3 or 4.

» The samples are transmitted through a simulatesymadio environment.
To reduce the simulation workload, the channel ahi, is assumed to
be invariant for the duration of a frame (i.e., the number of symbols in a
frame). Each element dfl is regenerated from a complex Gaussian
distribution at the frame boundaries. Each scd&menth;; represents the
gain from thei-th transmitting antenna to theh receiving antenna, as
illustrated in Figure 2. Scalar gains correspond feequency flat channel,
where the duration of the impulse response of Hangel is less than the
symbol interval. We assume that the transmitterrftagknowledge of the
channel, but at the receiver side the channel matriis perfectly

estimated. In practice, the channel matixs estimated using standard
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methods that rely on fixed training symbol sequentteat are inserted
among the data symbols, reducing the code rat@atidbughput [13].

» The vectors of symbols transmitted at the same katiipe through the
channel are corrupted with Additive White Gausdimnse (AWGN). The
received noisy signal vector is then detected se¢lyt producing a vector
of either hard or soft bits. Hard bit informatioivgs unqualified estimates
(e.g., 0 or 1) of the received binary digit. Soft mformation gives
estimates of binary digits along with probabilityfarmation for each
binary digit. The soft bits are typically log-likkbod ratios (LLRS) given
to some finite bit precision (e.g., 4, 5 or 6 bifBjie soft bits are output in
blocks that correspond to the blocks of symbolsdpeed in the
transmitter by the space-time mapper. The multidsrenal detected
block of binary digits is then converted into a aheensional sequence
of (hard or soft) bits.

> If coding was used in the transmitter, the blockrexdfeived soft or hard
bits is processed in the receiver by a decodeec¢over the serial stream
of estimated and corrected information bits. Faaregle, in the case of a
Turbo-coded system, the soft bits are processedhtiitely using a
standard soft decoding algorithm based on Maximumo&teriori (MAP)
Probability. The output of the decoder is a seqeaervicinformation bits

with (hopefully) lowered BER.

The BER of the detector under consideration is ageg by comparing the

recovered data bits for each detection schemeedamtiginally transmitted data
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bits. The performance of the detector is measuseddtermining the BER vs.
SNR characteristic over a range of SNRs. A symbuodes a sequence of
logz(M) = 1 bits from anM-QAM constellation. Therefore at a given SNR, SER
= BER. Thus the BER vs. SNR characteristic provitiesbest overall measure of
the performance of a coded system, i.e., the aearamber of bits in error from a
received data block. The SER vs. SNR charactenstwides a more accurate
measure of the performance of a symbol detectoitoown, i.e., the average
number of received symbols that have been detetittdan error, without the

benefit of an error-correcting code.
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2.3 Conventional MIMO Detection Schemes

The simplified MIMO system model is illustratedfigure 6.

5

Detector

y

Figure 6 Simplified MIMO Detection Diagram

Here, s is a transmitted symbol vector of length wherem = n; = n, is the
assumed equal number of antennas at each end dfdheel. Following standard
practice,H is anm-by-m channel matrix whose complex entries are normally-
distributed with zero mean and unit variance. Wauawe thatHd is constant for
the duration of a frame, but is updated at framenbaries in order to simulate a
Rayleigh flat fading environment. The frame lengtis adjusted empirically to
achieve accurate simulated BER results. The nas&rn is an AWGN vector
of length m, whose coefficients are independent, normallyrdhisted complex
variables with equal varianag?. y is the corresponding received noisy signal
vector, which can be expressed in the standardobadediscrete-time model as
y = H * s+ n [14]. § is the detected signal vector of length The goal of the
detector is to maximize the probability of the eiexw §'. Various detectors have
been proposed in the literature that range from dfaistically-optimal (but
prohibitively expensive) maximum likelihood (ML) @etor to low-complexity

detection schemes with relatively poor performandée will focus on the
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complexity, the accuracy and the delay (detectiatency) to evaluate the

different detectors.

2.3.1 Maximum Likelihood (ML) Detector [14]

Knowing that the transmitted symbols are drawn vétiual probability
from a known finite alphabet of si2d, the ML detector selects the statistically
most probable candidate from among M possible transmitted symbol vectors.
Intuitively, an optimal detector should retusn= §, the symbol vector whose
conditional probabilityProb(s was sent | y is observex)having been sent is the
largest, given the observed signal vegtor
§ = argmax [Prob(swas sent  is observed)]

Prob(yis observed | s was sent) * Prob(s was sent)
= AlQmax Prob (y is observed)

, for all

possibles.
This equality is known as the Maximum A PosteriBrobability (MAP). If we
further assume that the probabilRyob(s was sentjs constant for als € M ™,
i.e., we assume equiprobability in the transmitgedectors, then the MAP
detection rule can be written as:

§ = argmax [Prob(y is observed s was sent)] for all possibles.
A detector that returns an optimal solution satmgfythis equation is called a
Maximum Likelihood (ML) detector. Under the assuraptthat the additive
channel noise is white and Gaussian-distributed, AWGN), we can express the
ML detection problem as that of minimizing the sk Euclidean distance

metric to a target vectgrover anM™-dimensional finite discrete search set:



§ = argmin |ly —H * g|, for all possibles.
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The pseudo-code for an ML detector is shown in Athm 1. After

computing the error metric for all possible symbettors (Line 6), the detected

symbol vector is the one with the minimum error meefLine 11).

1. for (every received symbol vectgiin a block)do

2. for(@=1;as=ay+1;a,<M+1)do

3. for (@=1;ap=a,+1;aa<M+1)do

4. for(@=1;s=az+1;a3<M+ 1)do

5. for(@n=1;an=amn+1;an<M+1)do
6. CandidateErsai(..., Sam) = Norm(y — H* [Sa;
7. end for

8. end for

9. end for

10. end for

11.  §w. = argyn [CandidateErros)], for allsinM™
12.  output $u;

13.end for

oo} Saml);
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2.3.2 Minimum Mean Square Error (MMSE) Detector

Due to its very great computational complexity, & detector is not
often used in practice. To reduce the computatimost and to simplify the
detection process, MIMO detectors using a condiignmatrix have been
developed. The idea is to design a conditioningim& such thats = Q(G * y),
wherey = H * s+ n is the signal vector and Q(.) is a slicing functtbat returns a
vector § of estimated symbols such that, for each elemdéntG* y the
corresponding element gis the nearest (in Euclidean sense) constellgtgnt.
The Zero Forcing (ZF) conditioning mati&zr aims to zero-out the inter-symbol
interference (ISI) by settinggr = Q(Gz * y), for a givery, sandH. Note that ZF
does not exploit knowledge of random additive na@ise the signal. By contrast,
the Minimum Mean square Error (MMSE) conditioningtnix is designed so that
the expected error betwednand s satisfies the Minimum Mean Square Error
criterion given that the noisa is Gaussian-distributed. In Appendix 1 the
following two expressions are derived

Gzr=H"*H)™**H"
Gwwse = (H" *H+ (1/SNR) * ;)" * H"
whereH" is the Hermitian of, i.e., the conjugate transposetbf The SNR that
is required inGumse can be estimated using training symbols thateserted at
known positions among the data-carrying symbol seqge, or by using so-called
blind noise statistics estimation techniques [18, Note thatGuuse converges

onGzr as SNR tends to infinity.
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Given an accurate estimate of the SNR, MMSE detegterform better
than ZF detectors. Intuitively, ZF detectors tendover-react to any additive
channel noise, whereas MMSE detectors are optintizedinimize on average
the effects of noise [18].

The pseudo-code of the MMSE detector is shown igoAlhm 2. After
computing the MMSE outpuguuse from each receiver antenna (Line 3), the
detector picks the closest symbol from the corstielh with respect to the
Euclidean distance (Lines 4 & 5; helrgy denotes a row vector containiigy1s,

1m1 denotes a column vector containimgls, andConstellationSymbolMatrix

is the row vector containing the signal complexhalpet).ymvse * 1im provides

an m-by-M matrix whose-th row contains a replication of the estimated fi@si

of the symbol transmitted on theh layer. 1, * ConstellationSymbolMatrix
provides arm-by-M matrix whosé-th column contains a copy of tih symbol
from the signal alphabet. TherefoRistanceis a matrix whose rows contain the
distances of the estimated position of the trartechisymbol to each constellation
symbol, and argn(Distance returns the closest constellation symbol to the

estimated position provided by the elementygfise.

Algorithm 2 MMSE Detection Algorithm

1L.G=H"*H+(1/SNR) *Im)**H",
2. for (every received symbol vectgiin a block)do
3. ymmse = G * y; { conditioning}

4. Distance= | yumse * 11m — 1m1* ConstellationSymbolMatrix |;
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5. [S1;%2...;5m] = argnin(Distance); { slicing }
6. OUtpUt sMMSE = [S]_,Sz,sm],

7.end for

2.3.3 Vertical Bell Laboratories Layered Space Time

(V-BLAST) Detector [19, 20]

The vertical Bell Laboratories layered space-tiMeBLAST) algorithm is
a relatively low-complexity detection algorithm ftite practical implementation
of MIMO receivers. Its BER vs. SNR performance letween that of ML and
MMSE (See Figure 9).

The V-BLAST algorithm detects each symbol iterdgvby using a serial
decision feedback approach. The key idea in V-BLASTO first detect the most
powerful layer, i.e., the layer exhibiting the last) post-detection SNR, which is
the layer corresponding to the column lfwhich has the largest norm [20].
Detection of the first symbol exploits a linear atiger, such as ZF or MMSE,
which minimizes the expected interference from dfieer undetected symbols.
We will assume that MMSE, which is more accuratehie presence of AWGN
on average than ZF, is used to detect the firsbsynV-BLAST then regenerates
the received signals given the channel mattriand after having subtracted away
the additive interference produced by the firsiedetd symbol. It then proceeds
with the detection of the second most powerfulngraitted symbol since it has

already removed the effects of the first symbot| an forth. Note that the channel
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matrix H and the corresponding MMSE conditioning ma@xmust be deflated
(reduced by one in size, in one dimension) aftehaietection iteration to reflect
the disappearance of each detected symbol. Thétingsuector should contain
less interference for the yet-to-be-detected symbithout loss of generality, let
s1 denote the symbol with maximum strength (i.e.,symbol transmitted through
the layer experiencing the largest post-detectiNiR)S Similarly, s, will denote
the symbol with the second largest strength, ehusTthe weaker symbols are
detected only after having subtracted away thaference contributions due to
the more powerful symbolsy( s, ...). Unfortunately, a weakness in V-BLAST is
that an error in the detection of any symbol witidify the interference noise and
likely propagate to detection errors in subsequsmbols, and this cascade of
errors will degrade the performance of the detector

After ordering the layers according to their estiedastrength (i.e., estimated
post-detection signal-to-noise ratio), the V-BLAS8@tection scheme proceeds in
three steps at each iteration (except the first, eviich does not require an
interference nulling step, and the last one, whides not require a symbol
cancellation step). For theh iteration:

(Step 1)Nulling: Vector y; contains interference from the still undetected
symbolsss,..., Sn. However, this interference can be minimized bytiplying y;
by thenulling vectorg;, which is the-th row of G (i.e., the MMSE conditioning
matrix corresponding to the deflated channel mdttigorresponding to theth

iteration).
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(Step 2) Slicing Symbol 5 is detected by selecting the symbsl that
minimizes the complex scalar differenceg||* y; — 5 || over allM possible
symbolss in the constellation.

(Step 3)Cancellation Vector y;+1 is computed by subtracting the predicted

interferenced * [s1, &, ..., $ O, ..., O] fromy.

The pseudo-code of the MMSE-V-BLAST detector isvehan Algorithm 3.
As previously mentioned, the detector iterativedtedts the layers according to
their strength. This is equivalent to sorting tieéumns ofH with respect to their
norm, i.e., the column which has the largest noomesponds to the layer with
the largest post-detection SNR. Similarly, as shonriine 5, the layers can be
ordered by sorting the rows & (g, wherej = 1...(m - t), andt is the number of
layers already detected), i.e., the layer with thegest post-detection SNR

corresponds to the row & which has the smallest norm.

Algorithm 3 MMSE V-BLAST Detection Algorithm

1LH=H;

2. for (every received symbol vectgiin a block)do

3. for(i=1;i=i+1;i<m+ 1)do
G=@"*H+(1/SNR) *I(m.i+p)" * H";
Of) =k=min ||g |5 {Ordering }

g =G(k,;:); {Extract nulling vector front }
S«=a«*y; {Nulling}

%=Q(); {Slicing}

© N o 0 &



9. if (i <m) then

10. y =Y —hk * s¢ { Cancellation }
11. end if

12. H = H \ hy; { Deflation }

13. end for

14.  output Sygiast = [S1;%.--;Sm];
15.end for

22




23
2.4 Fouladi Fard’'s Parallel Detection Scheme

Due to its high complexity, ML detection is impriael for real systems.
Thus, researchers have investigated many sub-dgdtimanuch more economical
and hence practical MIMO detectors, such as ZF, MM&d V-BLAST.
However, simulations readily show that the V-BLAB8@&tector provides far from
optimal performance although its performance exsdldt of the ZF and MMSE
detectors. The weakness in V-BLAST is that thet fsygmbol detected does not
benefit from interference cancellation. Also, ae teymbol cancellation step,
detections errors can occur and these errors eahidngc apparent subsequent
interference and thus cause detection errors &fdlfowing symbols.

Fouladi Fard’s detection scheme (which actuallysealered the Parallel
Detector scheme described in 2002 by Yuan Li andXtan Luo [21]) is based
on the insight that the performance of the V-BLA&Atector is limited by the
detection of the strongest layer [22]. Detecting #strongest layer can be made
more reliable by applying computation to specukdtivsubtract away interference
from one of the other layers. By making this ongfathe weakest layer, one can
improve the joint detection of the strongest and theakest symbols, and
subsequent improve the detection of all other ly€o improve the estimate of
the strongest symbol, the new algorithm starts wiite weakest layer and
exhaustively considers all possible candidate wstatkkansmitted symbol values
from the constellation. For each hypothesized 8gstbol for the weakest layer,
conventional V-BLAST is then applied to detect tleenainingm - 1 symbols.

The detection of the strongest layer should thgpeeence less interference from
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the weakest layer for the case where the correakest symbol has been chosen.
Thus the strongest and weakest symbols are detgutety. We will refer to
Fouladi Fard’s detection scheme as F-BLAST.

The pseudo-code of F-BLAST is shown in AlgorithmThe algorithm
cancels the contribution of a tentative candidgtell « from the weakest layer
k of the noisy received signgl whergj = 1, ...,M, andM is the cardinality of the
constellation (Line 5 to 7). The remaining layers detected according to the
original V-BLAST scheme (Line 8). Then, an errortrieeg; = |[H* 5 - y|F for
the tentative symbol vectat is computed, wherd = [s/: s/ : . . . ; i is the
detected symbol vector. After proceeding for alhtétive weakest symbol
candidates in the constellation, the detector pilsksone symbol vectdrwith the
smallest error metrig;.

In terms of complexity, V-BLAST requires nulling steps (i.e., vector
multiplications),m slicing steps (i.e., symbol comparisons), and 1cancellation
steps (i.e., symbol vector multiplications and wedubtractions), to detect every
transmitted symbol vector. The computational comipe of F-BLAST is
increased by roughliM compared to V-BLAST as each of the sub-detectors
requires one fewer nulling and slicing operatiom fbe worst symbol. The
numbers of nulling, slicing and cancellation steged in V-BLAST are thus
increased byM, some of which are shared (a detailed analysigrazided in
Section V). It is important to note that tid sub-detectors in the proposed
scheme can operate independently and, therefore, Mafold parallel

implementation of sub-detectors provides the saynabel detection throughput
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as in the V-BLAST technique. A tree-structured etitpircuit can rapidly select

the symbol vector with the least erggarFor a more compact implementation, one

could implement only one instance of a sub-deteatw then time multiplex it

among otheM - 1 sub-detectors at the expense of lowering the siadtection

throughput.

Algorithm 4 F-BLAST Detection Algorithm

1L.G=H"*H+(L/SNR)*Igm.i+1)" *HY;
2. egest= LargeNumber
3. for (every received symbol vectgiin a block)do

4. O(1) =k = max ||g;||> { Ordering }

5. for (every symbol from the constellatiot

6. s = CurrentConstellationSymbol

7. y =y -hi* s { Cancellation }

8. Original V-BLAST with MMSE equalizer on the m einaining layers
9. CurrentCandidateSymbolVector = [s;; S...; Snl;

10. & = |[H* CurrentCandidateSymbolVector —V|[%

11. if (5 < éeges) then

12. BestCandidate = CurrentCandidateSymbolVector;

13. EBest= &j;

14. end if

15. end for
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16. OUtpUt gFBLAST = B%tCandldate,

17.end for

Figure 7 shows the similarity and the parallelieastructure of F-BLAST
compared to V-BLAST. On this figure, two successivansmitted symbol
vectors y and y;; are being detected using V-BLAST and F-BLAST. Ekgfer
is represented by a shaded square, whose brighthesative to its strength (i.e.,
its SNR). Finally, among thé1 (cardinality of the constellation) candidate

symbol vectors, the symbol vector detected by F-BITLAs highlighted.

V-BLAST vs. F-BLAST

| Wea kestlayer=

Figure 7 V-BLAST vs. F-BLAST [23]
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Figure 8 shows the SER performance for three MIN@figurations (44
(@), 6x6 (b) and &8 (c)). When performing the exhaustive search enwthakest
layer, the F-BLAST detector appears to achieve-npimal performance. Here
F(Wi)-BLAST designates the F-BLAST detector that rums éxhaustive search

on thei-th weakest layer.

4xd F-BLAST Detectors, M=564 Ex6 F-BLAST Detectors, M=564 Bx8 F-BLAST Detectors, M=564

o - - ¥
4 10 i3 H —=— Fis1)-BLAST \ E
s —%— F(S2)-BLAST - \
—+— F(S1)-BLAST —+— F(53)-BLAST |\
o7 o £
¥— F(S1)-BLAST g —v—F(S2HBLAST S F(S4)-BLAST
.| F152)-BLAST ] || rsareLasT || —a— Fivn-sLasT W
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&— F(W2)-BLAST)| —E—EIx;}-gtig —&— F(W3)-BLAST 'S
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Figure 8 SER vs. SNR for F-BLAST for Different Parallel-selarLayers and
Increasing Numbers of Antennas [24]

Likewise, F($)-BLAST designates the F-BLAST detector which rutise
exhaustive search on th¢h strongest layer. Note that F-BLAST tries toitithe
error propagation by reducing the interference enfiem the weakest layer, thus
increasing the confidence on the important firstislen made on the strongest
layer. Given this motivation, we also tried to pres the exhaustive search on the
layer having the greatest interference on the geshlayer designated by F(MI)-
BLAST. The performance of F(MI)-BLAST was not fourtd be as good,

however, as F(W1)-BLAST, as illustrated in Figure 8
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Figure 9 SER of Alternative Detection Schemes for #4416-QAM MIMO

System over a Rayleigh Fading Channel

Figure 9 shows the simulated SER performance ofdbedetectors that
have been reviewed in this section. Here F-BLAShotles the same thing as
F(W1)-BLAST, where the exhaustively searched lagaghe weakest layer. Note
the remarkable performance of F-BLAST when detgcli6-QAM symbols in a
4x4 MIMO system, which is equivalent to simultanegusinning 16 34 V-
BLAST detectors. The SER performance of F-BLASTyvelosely matches the
optimal performance of ML. F-BLAST can be easilypiemented for the
practical MIMO detection of signals with small syohlzonstellations. However,
for larger constellations, such as 64-QAM or 256MQAhe exhaustive search
parallelism of F-BLAST becomes increasingly impieadt and, indeed, this

drawback motivates the research reported in tieisish
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lll- Proposed Detection Scheme

3.1 Key Ideas

As stated in the previous section, the linearlgwang complexity of F-
BLAST makes it impractical to detect MIMO signalstiwlarge constellations
(i.e., greater than 16-QAM). Our goal was to keep ideas from the F-BLAST
scheme but to limit the parallelism, say, to a maxn of 16 or 32 so that large
constellations such as 256-QAM could be detectedaddition, the simple
parallelism in F-BLAST has potential advantagesQrthogonal Frequency-
Division Multiplexing (OFDM) receivers, where a poof hardware resources
could be shared among the subcarriers. With tmg bn the parallelism, it may
become practical to use the MMSE equalizer andQtaering and Successive
Interference Cancellation (OSIC) method (e.g., BIASat is being used in the
industry [25]. However, challenges remain in théropl choice of the restricted

search set and in the optimal ordering of the ksgeiring detection.

3.1.1 Definition of the Restricted Search Set

The definition of the restricted search set willficigely impact the
performance of the proposed detector. Ideally, wantwthe new detector’s
decisions to be identical to the decision that woloé produced by F-BLAST
detection. Intuitively, the larger that the seartheindow is within the full
constellation, the closer to F-BLAST should be #rwor rate performance.

Unfortunately a larger search space will requireegrmpmputation, and therefore
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more energy, which is a limited resource in batywered communication
devices. For simplicity, the search window withircanstellation is positioned
around a constellation point that is more easitymeded. We used an MMSE
equalizer to define the center of the window sed&®tause it gives better results
than the ZF equalizer with only slightly more corgiion. Using a V-BLAST
estimator to determine the search window centernsa$ound to give significant
benefits over MMSE given the additional computagiocost. At present, there is
no tractable theoretical basis for optimally comsting the search window.
Therefore an empirical method was used, which espoeds roughly to
constructing the search window of skkas the MMSE estimated symbol on the
searched layer together with té- 1 nearest symbols (in a Euclidean sense) in
that layer. The precise shape of the search winidoveach symbol positiosx
was optimized empirically by simulation experimerpecifically, we collected
histograms for the (assumed near-optimal) F-BLASTineate given that the
MMSE estimate wasy for all possible values @& For each histogram, a search
window of sizeW was constructed by selecting tMé most likely F-BLAST
decisions (that is, near-optimal decisions) forhegc TheM windows were then
stored in look-up tables (the number of tables lbarreduced significantly by
exploiting constellation symmetry). Figure 10 showi® ten unique search
windows forW = 8 and 16 foM = 64. The number of windows has been reduced
from 64 to ten in this figure by exploiting all misle symmetries (about the

diagonals, the vertical and horizontal axis).
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Figure 10 Search Windows of Si2&/= 8 (Darker Shading) and 16 (Darker and

Lighter Shading) for the 64-QAM Constellation [24]

3.1.2 Layer Ordering

As for the F-BLAST detection scheme, the proposedector first
performs a parallel search within one chosen sedrtdyer, and then the original
V-BLAST detection scheme is applied to the remagniayers. While the V-
BLAST scheme starts the detection on the stroriggst, the F-BLAST scheme
starts the detection on the weakest layer (by gugssl possible symbol values
in parallel) in an attempt to reduce the interfeeeon the strongest layer. When
the selected layer is not exhaustively searchedsimulations have shown that
the best choice of layer is not necessarily thekesta The best ordering method

will be discussed in more detail in the next sectio
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3.2 Simulations and Results

To simplify the discussion, we will usé to denote tha-th strongest
layer, i.e., the layer corresponding to the coluofird with thei-th strongest
strength (tha-th largest norm among all columns ldj. Similarly, we will use
Wi to denote the-th weakest layer, i.e., the layer correspondinthécolumn of
H with thei-th weakest strength (theh smallest norm among all columnshHby.
Finally, we will use Ml to denote the layer having the greatest expected
interference on the strongest layer, i.e., therlayth the largest coefficierfy; in
i-th column ofH corresponding to the strongest layer.

A simulation study was conducted using MATLAB irapientations for
several different MIMO system configuration® € 4, 6 or 8), while detecting
several large constellation signals (M-QAM with= 64, 128 or 256). We used a
block-based data partitioning for simulation afficty. Typically, 2 * 16 blocks
are simulated together, with each block contairfiigframes each, for accuracy
of the average number of binary digits in error.réduce the calculation effort,
the channel matrix was set to be constant for tiratthn of a frame. The frame
size was set to ensure accurate modelling of Ratylisiding. Specifically, 2 M
sample vectors were transmitted during each framensure statistical accuracy
in the error measurements, a minimum of 10,000 sysnh error were simulated.

In order to pick the best starting layer, a simalastudy of the family of
new detectors was conducted. The simulation reatdtshown in Figure 11. Here

FR(W,W)-BLAST designates the FR-BLAST detector which riffsparallel
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searches in layewi. Likewise FR($W)-BLAST designates the FR-BLAST
detector which rungV parallel

o

Performance of 4x4 MIMO Detectors on 64-QAM Performance of 4x4 MIMO Detectors on 64-QAM
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Figure 11 SER vs. SNR for FR-BLAST of Various Reduced Seakthdows

searches in layesi, and FR(MIW)-BLAST designates the FR-BLAST detector
which runs W parallel searches in layevll. We observe that the relative
performance of the various detectors depends oShie. Note that at high SNR
the best starting layer 81 whereas for intermediate SNR values b8gandMI
outperform the other layer choices. FR(@)tBLAST refers to the optimal
detector that uses a window si?é i.e., the detector which picks the one best
layer for each frame of sample vectors. This detecalgorithm produces the
best-case upper limit for FR-BLAST detectors that Bmited to searchinyv
parallel choices on a dynamically-chosen searcherlayfhe decisions of
FR(OptW)-BLAST were stored as a best-case reference fothdu study.
Observe that FR(Opt,16)-BLAST clearly outperfornme tperformance of the

other detectors for SNR values greater than 34 dB.
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One question that arises is the possibility of mptly selecting the first
layer to be detected for an improved FR-BLAST dete@nd thus hopefully
approach the performance of FR(OpY)-BLAST. To be practical, the layer
selection rule would have to be both simple andiate. In order to answer this
guestion, a statistical study was conducted. Wel tise stored decisions of the
optimal FR-BLAST detector and analysed them usimgcraminant analysis
routines from the Statistical Package for the So8@ences (SPSS) [26]. The
SPSS provides powerful routines for data clusteand discriminant analysis.
The method and the results are presented in Appeéndinfortunately, SPSS was
unable to find an effective linear rule for selagtithe parallel search layer. For
picking the best starting layer, the optimal lagelector model proposed by SPSS
only made the right decision about 25% of the tifirtés corresponds to randomly
selecting that layer from among the four candidyers.

The next phase of this work studied the performaridbe detectors in an
encoded scheme. The BER/SER performance was ggnettadied at low SNR,
therefore we decided to focus our study of the RRRBT detection scheme while
restricting the search to within only ti82 or Ml layers, i.e., the layers which
show the best performance for SNR values less 8tardB. Unfortunately,
experimental results show that thikk layer is different fromS2 more than 2/3 of
the time. Therefore, at this time, we once agaunébthat there is no simple

criterion for picking the best starting layer faQRfBLAST.
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Perfarmance of 4x4 MIMO Detectors on B4-QAM Performance of 4x4 MIMO Detectors on 128-QAM Perfarmance of 4x4 MIMO Detectars on 266-QAM
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Figure 12 SER vs. SNR for FR-BLAST for Various Reduced Seantindows
and Signal Constellations

Figure 12 summarizes the performance of the FR-BLASheme in a
4x4 MIMO configuration when detecting 64-, 128- an862AM signals. It
shows that the SER vs. SNR performance of FR-BLARTeases with the size
of the search window, i.e., increasing the sizéhefwindow search will lower the
SER. Further, the performance of FR-BLAST is stilry good for larger
constellation signals.

Figure 13 confirms that the performance charadiesi®f the new family
detectors (FR-BLAST) are better than that of MMSid &-BLAST for all SNR
values and for three different constellations (628 and 256). In addition, FR-
BLAST experiences saturation in performance atldnger SNRs. That is for the
larger SNRs, the slope of its performance charistite(i.e., the diversity order)
reduces from that of the near-optimal F-BLAST (&}hat of V-BLAST, MMSE
and ZF (-1). Thus FR-BLAST clearly has worse perfance than that of near-

optimal F-BLAST.
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Figure 13 SER vs. SNR for MMSE, V-BLAST, FR-BLAST of Variol®educed
Search Windows, and F-BLAST [24]

FR-BLAST is an interesting alternative detectiomesoe that achieves
good performance in terms of error rate, relativébww implementation
complexity, low computational complexity (derived Chapter IV) and an
attractive parallelizable structure. This couldabiactive for MIMO detectors for
small to moderate SNRs, offering performance tlest between V-BLAST and
the near-optimal (but very expensive) F-BLAST amhese-decoding-based
detectors.

The pseudo-code of FR-BLAST is shown in AlgorithmApart from the
definition of the restricted search window (Lin@&d Line 6), the pseudo-code of

FR-BLAST is very similar to that of F-BLAST.
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Algorithm 5 FR-BLAST Detection Algorithm

1.G = @"* B+ (1/SNR) " i+ 1) * B,

2. egest= LargeNumber

3. for (every received symbol vectgiin a block)do

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

O(1) =k = max||g;||>2 { Ordering }

S =ak*y; { Find center of the restricted search set }

Subset = Table(sx, W); { Constructing the search window from a look-up
table}

for (every symbol from the restricted search det)

&= CurrentConstellationSymbol

y =y —h¢* s { Cancellation }
Original V-BLAST with MMSE equalizer on the m einaining layers

return CurrentCandidateSymbolVector = [$;S,...;Sq];

& = |[H* CurrentCandidateSymbol Vector -y||%

|f (8] < 8Bes) then

BestCandidate = CurrentCandidateSymbol Vector;

end if;
EBest™= &,
end for

OUtpUt gFRBLAST = BestCandidate;

18.end for
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Real and Cornplex: 4u MIMO Detectors, M=255, E=10000may
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Figure 14 Performance of the Real-valued F-BLAST Detector

The detectors described in the previous section amaplex-valued
sampled signals, channel matrices and noise caftec In this section we will
instead study detectors in a real-valued equivalaodel. The real-valued
detectors have an improved error rate performanngared to the traditional V-
BLAST detection scheme. The improvement stems ftioengreater degrees of
freedom afforded by having twice as many symbokiaythat can be ordered
more effectively [27].

Complex-valued detection uses the following equmtio describe a
transmission over a MIMO system:= H * s + n. In contrast, the real-valued
equivalent model is based on the following equafity:

YR=HR* S +nf,

where y? = [realfy), imagf)]",
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imag(H) real(H)
st = [real@), imag@)]",

4R = [ real(H) —imag(ﬂ]],

and n®=[realfn), imagh)]’
Here the notations red)(and imagf) denote the real and the imaginary vector
components of the complex-valued ve&or
For example, witlk=[1 + .5*), 5+ 3 *|], realf) = [1, 5] and imad) = [.5, 3].
The real-valued equivalent model has effectivelycénthe number of
antennas at each side of the radio link. This léads bigger channel matrix: the
number of components in each dimension is douldfégure 14 compares the
performance of the F-BLAST scheme while using tkal-walued equivalent
model compared with the complex-valued MMSE and\YHBLAST detectors.
Note that the real-valued equivalent model useg onké dimension of the signal
constellation, i.e., while doing a real-valued d&te, the number of symbols is
VM. Thus the real-valued F-BLAST detection schemes yd-fold parallelism
instead ofM. That is a significant reduction in the amounpafallelism forM =

64 and this flexibility could be used to make tradis at a circuit design level.

An improved real-valued detector that uses /¥ fold parallelism was also
studied. This second real-valued MIMO detector $ynmerforms the real-valued
F(W1)-BLAST and the real-valued F(W2)-BLAST and ksicthe best output
vector at the end, we will refer to it as Paralli¢l(W2) Real F-BLAST. This last
detector benefits from selection diversity [28] arhs improved BER

performance.
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V- Computational Complexity Results

4.1 Assumptions

When comparing the cost of alternative algorithibsis important to
accurately count the number of elementary operat{pe., real number additions,
real number multiplications, and real number rempis) that are required to
detect each received symbol. In order to deriveetkact cost, in terms of the
number of elementary operations for the various Kdlletectors considered in
this project, let us first make some reasonabl@kiying assumptions.

We will assume that memory allocation does not iregany elementary
operations. Sufficient memory is assumed to havenbgre-allocated for the
decoder calculations. Also, initializing a matrix., defining each initial element
of a matrix, does not require any elementary opmrat In general, all variables
are assumed to be allocated statically at iniadilin and thus do not require any
further run time.

In addition, we will assume that computing the riegaof a real or
complex number, i.eg to -a, and computing the complex conjugation operation,
i.e.atoa*, do not require significant run time. In the saspé&it, we will assume
that computing the transpose of a matrix or théeétil transform of a matrix will
not require any elementary operations. Any chamgesgn can be merged into

the next arithmetic operation without extra cost.
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Also, the arithmetic divisiond/b” will be assumed to be accomplished by
multiplying ‘a’ by the reciprocal ofly’ so that the relatively expensive division
operation is replaced by a (fast) multiplicatiord am optimized reciprocal.

As noted above, we will associate computationak eagh three main
elementary operations:

» real-valuedaddition or subtraction, denoted by ‘+’

» real-valuedmultiplication, denoted by *’

» real-valuedeciprocal of an argumeit, denoted by ‘I’
All three operations are assumed to be performeberreal-valued domaifhe
vast majority of processors cannot directly hamdimplex arithmetic natively, so
our computational complexity results will be presehin terms of real-valued
operations.

Finally, we will consider the possibility of paralloperations that exploit
the possible presence of parallel arithmetic hardwanits. It can safely be
assumed that maximum parallelism is now going toalferdable using the
reconfigurable logic and arithmetic units of lafgdd-programmable gate arrays
(FPGASs). One operation cycle, which we will denbye‘c, is the time, usually
equal in the instruction set of a modern computeperform one addition or one
subtraction. Frequently, modern computers will attfbe able to compute a
multiplication in the same amount of time as anit&mid by using a combined

multiplier-accumulator in the arithmetic data-path.
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4.2 General Results for Basic Operations

The total number of elementary operations is a ulsefetric that is
roughly proportional to the energy required by tlwemputation. On the other
hand, the minimum number of required consecutiveratpons (assuming
maximum hardware parallelism) gives a measure eb#st-case (i.e., minimum)
time complexity. A real reciprocal function requreoughly four to ten cycles,
depending on the algorithm and the required bithyithus more than one parallel
real addition or multiplication can be performed pparallel with one real
reciprocal. However for simplicity we will assuntet parallel real additions, real
multiplications or real reciprocals all require poine cycle.

Let fi(x,y,2 and g(x,y,2) denote the number of real-valued operations and
operation cycles, respectively, associated withampatersx, y andz. Table 1
summarizes the number of elementary operationsogedation cycles required
for basic operations that are used in the detectfgorithms. A detailed

derivation can be found in Appendix 3.
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fi g
i. Operation Real Real Real Minimum
Additions Multiplications | Reciprocals Cycles
1. Real number addition 1 0 0 1
2. Real number 0 1 0 1
multiplication
3. Real number reciprocal 0 0 1 1
4. Square absolute value of 0 1 0 1
real number
5. m-by-n real-valued n*n 0 0 1
matrix addition
6. Addition of a set n-1 0 0 llog, nl
containing n real numbers
7. Minimum of a set n-1 0 0 llog, nl
containing n real numbers
8. Square norm of a real- n-1 n 0 1+[log, nl
valued column vector of
length n
9. Multiplication of an m- m*n*(p-1) m*n*p 0 1+[log, pl
by-p and ap-by-n real-
valued matrices
10. Inverse of am-by-n n“(n-1) n“(n-1) n° 3n
real-valued matrix
11. MMSE conditioning n[8n*-n-1] 4n*(2n+1) n°+1 6+Mh+2*
matrix from a 2n-by-2n llog, nl
real-valued channel matrix
12. MMSE conditioning m(m-1)(n+m) mf(n+m-1) me 3m+1+
matrix from a m-by-n real- [log, ml
valued deflated channel
matrix
13. Complex number 2 0 0 1
addition
14. Complex number 2 4 0 2
multiplication
15. Complex number 1 4 1 4
reciprocal
16. Square absolute value of 1 2 0 2
a complex number
17.m-by-n complex-valued 2m*n 0 0 1
matrix addition
18. Addition of a set
containing n complex 2n-2 0 0 [log, nl
numbers
19. Square norm of a 2n-1 an 0 2+log, nl
complex-valued column
vector of lengthn
20. Multiplication of an m-
by-p complex-valued matrix m* n(4p-2) Amrn*p 0 2+log, pl

by a p-by-n complex-valued

matrix
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21. Inverse of am-by-n n“(4n-3) 4n° n? 7n
complex-valued matrix

22. MMSE conditioning n[8n-n-1] 4n°(2n+1) n°+1 6+Mh+2*
matrix from an n-by-n llog, nl
complex-valued channel

matrix

23. MMSE conditioning n(4nr- 4 (m+n) mt m+2+
matrix from an m-by-n 3m+4mn-2n) [log, ml
complex-valued deflated

channel matrix
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4.3 Computational Complexity of the Detectors

4.3.1 Real-valued Detection

The real-valued equivalent model has twice as nagnnas, i.e., i@ instead
of m, and the constellation size is equa}/ along one dimension instead Mf
across two dimensions. Typical valuesmére 2, 3 and 4, while typical values of
M are 4, 16 and 64.

Complexity Result LMMSE detection onr2 real-equivalent layers requires:

(a) m*+1 ~ m? real reciprocals

(b) 8m*+8m?+2m+/M ~ 8m>+2m+/M real multiplications

(c) 8Mm*+3m*4m+2myM ~ 8m>+2myM real additions

(d) 7m+10+{log, m]+[log, VM| ~ 7m+ [log, VM| parallel cycles

Proof: The number of arithmetic operations contelby each line is as follows:
Line 1

Computing the MMSE conditioning matrix will requifg,(2m) operations and
012(2m) cycles. With {2m) representing the number of additions and
multiplications for the-th basic operation as presented in table 1; likevg2m)
represents the number of minimum cycles forittiebasic operation.

Line 3

With (m, p, n) = (2m, 2m, 1), computingG * y requires §(2m,1,2m) operations

and g(2m,1,2m) cycles.
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Line 4

Ymmse * lim — 1mi1 * ConstellationSymbolMatrix, can be seen as memory

allocation, so this calculation requires no operati With (m, n) = (2m, vM),

computingymmse* lim — Im1* ConstellationSymbolMatrix requires 4(2m, v'M)

operations and s(Pm, v M) cycles. To compute the absolute square norm of
2my/M real-valued numbers, we requirem?M * f, operations and one cycle.

Line 5

We have to compute the minimum ah2ets of real numbers of lengtiar each,
thus, In* f-(y/M) operations and,{y/M) cycles are required.

Q.E.D.

Complexity Result 2V-BLAST detection on & - 1 real-equivalent remaining
layers requires:

(a) 1/3(8n°-6m?*+m) % 8/3m° real reciprocals

(b) 1/3(28n*-32m°*+17m?-17m)+(2m-1)/M ~28/3m*+2my/M real

multiplications

(c) 1/3(28n*-28m>+17m?3-35m+4)+(4m-2)yM ~ 28/an*+4m/M real additions

(d) 6m*+13m-11+(4m-3)[log, m]+(2m-1)[log, VM +252" 1 log, d] ¥
6m>+2m|log, VM| parallel cycles

Note: Here, we assumed that the detection on tsigldiyer has already been
performed.

Proof: The number of arithmetic operations conteluby each line is as follows:
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On the 2n-1 remaining layerd is considered to be amizby-d complex
matrix, where gh-dis the number of layers already deflated.

Line 4

With (n, m) = (2m, d), the computation o& requiresf;(2m,d) operations

and g2(2m,d) cycles.

Line 5

In order to proceed with the right layer, we nee@ddmpute the minimum

of a set ofd real numbers; this requiregd) operations and-(f) cycles.

Except on the last layer to be detected, thisistemitted.

Line 7

With (m, n, p) = (1, 1, 2n), nulling will require §(1,1,2n) operations and

0o(1,1,2M) cycles.

Line 8

In order to pick the right symbol from the consagthn. First we need to

compute the distance from each constellation symibal with (, n)

=(vM, 1), (~/M,1) operations ands@/M,1) cycles are required. Then we

need to computg’M square absolute value, requiriniy * f4 operations

and g cycles. Finally, we pick the minimum of a set\&ff real numbers.

This requires#+/M) operations and;{/M) cycles.

Line 10

With (m, n, p) = (2m, 1, 1), computinghx * s requires §2m,1,1)

operations and £m,1,1) cycles. Now, computing — hy * s requires

fs(2m,1) operations ands(®m,1) cycles. However on the last layer to be
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detected, the ordering of the layers is not regugiace there is only one
layer.

Line 12

No operations nor time in cycles are required titatkethe channel matrix
H.

Q.E.D.

Complexity Result 3V-BLAST detection on &) real-equivalent layers requires:
(a) 1/3(8n°-3m*+m+3) & 8/3m° real reciprocals
(b) 1/3(28n*-8m>*+41m?-5m)+(2m+2)yM ~ 28/3m*+2my/M real
multiplications
(c) 1/3(28n*4m>*+26m?-35m-5)+(4m-2)y'M ~ 28/3n*+4m/M real additions
(d) 6m*+20m+2+(4m+2)[log, m1+2m[log, VM 2527 [log, d] &
6m>+2m|log, VM| parallel cycles
Proof: The number of arithmetic operations conteluby each line is as follows:
Line 5
Ordering requires the computation oh #mes 1-by-2n real-valued vector norms,
thus 2n* fg(2m) operations andg{Pm) cycles are required.
Line 3 to Line 13
On the first layer to be detected,

Line 4

The computation of requiresf11(2m) operations and;g2m) cycles.
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Line 5
In order to proceed on the right layer, we neecbimpute the minimum of
a set of Pn real numbers. This requireg(dm) operations and ,(m)
cycles.
Line 7
With (m, n, p) = (1, 1, 2n), nulling will require §(1,1,2n) operations and
0o(1,1,2m) cycles.
Line 8
In order to pick the right symbol from the constgbn, first we need to
compute the distance from each constellation symieo] with (M, n) =
(v'M, 1), &(v'M,1) operations ands/M,1) cycles are required. Then we
need to compute’M square absolute values i.§3 * f4 operations and
o cycles. Finally, we pick the minimum of a set\Xf real number; this
requires §(~/M) operations and-{/M) cycles.
Line 10
With (m, n, p) = (2m, 1, 1), computinghx * s requires §2m,1,1)
operations andyg(m,1,1) cycles. Computing — hy * s requires §(2m,1)
operations ands(2m,1) cycles.
Finally, the detection of the first layer will reigel m?+1 ( 1N ), 8m*+8nf+
Anr/M (*), 8n+3nT+3m2yM-3 ( +), and 13+ [log, ml+[log, VM| (c).
On the 2n-1 remaining layers, the complexity is given®@ymplexity Result 2

Q.E.D.
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Complexity Result 4F-BLAST detection on 12 real-equivalent layers requires:
(a) m*+1+/M/3(8m%-6m*+m) * 8/3n°y'M real reciprocals
(b) 8m*+8m?+y/M/3(28m*-32m*+29m>-5m)+(2m-1)M % 28/an*y/M+2mM real
multiplications
(c) 8M*+3m?-3m-1+yM/3(28m*-32m>*+29m?-23m+1)+(dm-1)M =
28/3n*\/mM+4mM real additions
(d) 6m*+20m+4+(4m+2)[log, m]+2m[log, VM 2527 *[log, d] &
6m>+2m|log, VM| parallel cycles
Proof: The number of arithmetic operations conteluby each line is as follows:
Line 1
The computation o6 requiresf;1(2m) operations and;g2m) cycles.
Line 4
Ordering requires computingr2times 1-by-2n real-valued vector norms, thus
2m* fg(2m) operations andgPm) cycles are required. In order to identify on the
right layer, we need to compute the minimum of aa$e€2m real numbers; this
requires §(2m) operations and,(2m) cycles.
Line 5 to Line 10
For eachw/M symbol from the constellation, the following linean be done in
parallel.
Line 7
With (m, n, p) = (2m, 1, 1), computind * s, requiresyM * fgo(2m,1,1)
operations and¢m,1,1) cycles. Computing — hyx * s requiresy/'m *

fs(2m,1) operations ands(fm,1) cycles.
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Line 8
The detection of ther&1 remaining real-equivalent layers will require
v/M times the operations provided @Gomplexity Result 2 and the same
number of run cycles, assuming maximum parallelism.
Line 10
With (m, n, p) = (2m, 1, am), computingH * srequiresy’M * fg(2m,1,2m)
operations andgm,2m,1) cycles. Now, computing—H * srequires
fs(2m,1) operations ands(Zm,1) cycles. Finally, computing epsilon, i.e.,
the square norm of—H * s, requiresy’M * fg(2m) operations andg{Pm)
cycles.
Line 11 to 14
In order to pick the best candidate vector, we neetbmpute the minimum of a
set ofy'M real numbers; this will require(f/ M) operations and-{y/M) cycles.

Q.E.D.
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Table 2 shows that the real-valued V-BLAST detectguires fewer than
ten times more real-valued operations and timeyeles than the real-valued
MMSE detector, in both the*3 or a 4¢4 MIMO configurations, regardless of
the modulation used (16-QAM, 64-QAM or 256-QAM)gkre 14 shows that this
increase in the number of computations leads tedaation of a factor ten in
terms of BER compared to that of the real-valued $#vdetector, regardless of
the modulation used and for SNR greater than 35\ii8e that, while the ratio of
the number of real-valued operations required by teal-valued V-BLAST
detector over that required by the real-valued MMfector is approximately
the same for the three different modulations, thwlmer of real-valued operations
required by the real-valued F-BLAST detector isragpnately doubled wheW
is quadrupled, and it is approximately tripled camgpto that of the real-valued
V-BLAST detector forM = 16. Also, due to its parallel structure, thel-wedued
F-BLAST detector requires approximately the sameuwrh of time, in operation
cycles, than the real-valued V-BLAST detector. Heere Figure 14 shows that
the real-valued F-BLAST's BER is at least 100 tin@ser than that of the real-
valued MMSE detector, for SNR greater than 35 @Bardless of the modulation
used.

Therefore, the real-valued F-BLAST detector achsewa better BER vs.
SNR performance than the real-valued V-BLAST deteatithout increasing the
required time in cycles (assuming parallel hardyyamad with only a relatively

small increase in the number of required real-v@logerations (about four times
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and ten times more operations are required for AB4Qand 256-QAM

respectively).

Table 2 Computational Complexity of Real-valued MIMO DeteatAlgorithms

Note: The numbers in brackets give counts relaivéhe MMSE detector with

the corresponding value of

» m= 3 complex layers, an = 6 for the real-valued equivalent model

Real Real Additions Real Time in Cycles
Multiplications Reciprocals (Parallel
Scheme M Hardware)
16 312 255 10 45
MMSE 64 336 279 10 46
256 384 327 10 47
16 834 (2.7) 802 (3.1) 65 (6.5) 172 (3.8)
V-BLAST 64 866 (2.6) 842 (3.0) 65 (6.5) 178 (3.9)
256 930 (2.4) 922 (2.8) 65 (6.5) 184 (4.0)
16 2,580 (8.3) 2,539 (10.0) 230 (23.0) 174 (3.9)
F-BLAST 64 5,020 (14.9) 5,196 (18.6) 450 (45.0) 180 (3.9)
256 10,380 (27.0) 11,566 (35.4 890 (89.0) 186 (4.0)

» m=4 complex layers, an = 8 for the real-valued equivalent model

Real Real Real Time in Cycles
Multiplications Additions Reciprocals (Parallel
Scheme M Hardware)
16 672 576 17 52
MMSE 64 704 608 17 53
256 768 672 17 54
16 2,471 (3.7) 2,451 (4.2) 157 (9.2) 258 (5.0)
V-BLAST 64 2,511 (3.6) 2,507 (4.1) 157 (9.2) 266 (5.0)
256 2,591 (3.4) 2,619 (3.9) 157 (9.2) 274 (5.1)
16 8,187 (12.2) 8,111 (14.1) 577 (33.9 260 (5.0
F-BLAST 64 15,941 (22.6) 16,155 (26.6) 1,137 (66.9) 268 (5.0
256 32,123 (41.8) 33,683 (50.1) 2,257 276 (5.1)
(132.8)
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4.3.2 Complex-valued Detection

Complex-valued arithmetic is not directly suppdriea most computers,
but it is implementable using custom arithmetictsinas could be synthesized in
FPGA designs. Typically the support for complexthametic is coordinated in
software and the real and imaginary parts are ctedpusing multiple machine
language instructions on the hardware [28].
Complexity Result 5ML detection onm layers requires:
(a) O real reciprocals
(b) M™(4m?+2m) & 4m?M™ real multiplications
(c) M™(4m?+2m)-1 # 4m*M™ real additions
(d) 5+2[log, m1+[log, M™] % [log, M™] parallel cycles
Proof: The number of arithmetic operations conteluby each line is as follows:
Line 1 toLine 6
We haveM" iterations ofcandidateError to compute, which can be done in
parallel. First, withif, p, n) = (m, m, 1), computindd * [ Sa1; Sa2 ... ; San for all
candidates requirdd™ * f,o(mm,1) operations andxgm,m,1) cycles. Then, with
(m, n) = (m, 1), computing/ — H * [Sa1; S ... ; San] fOr all candidates required™
* f174(m,1) operations and;gm,1) cycles. Finally, witm =m, computing|ly — H *
[Sa; S ... ; San]|fP requiresM™ * 14(m) operations and.g(m) cycles.
Line 11
Computing the minimum of a set M™ real number requires(M™) operations
and g(M™ cycles.

Q.E.D.
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Complexity Result 6MMSE detection om layers requires:

(a) m*+1 ~ m? real reciprocals

(b) 8m*+8m?+2mM % 8m>+2mM real multiplications

(c) 8Mm*+3m?-3m+3mM+M-1 % 8m*+3mM real additions

(d) 7m+11+3log, ml+[log, M| ~ 7Tm+[log , M| parallel cycles

Proof: The number of arithmetic operations conteluby each line is as follows:
Line 1

Computing the MMSE conditioning matrix will requifig,(m) operations and
022(m) cycles.

Line 3

With (m, n, p) = (m, 1, m), computingG * y requires f(m,1,m) operations and
O20(m,1,m) cycles.

Line 4

First, Ymmse * 11m and 15, * ConstellationSymbolMatrix, can be seen as

memory allocation, so they require no operationsentwith M, n) = (m, M),

computing Ymmse*lim —1m1* ConstellationSymbolMatrix requires {#n,M)

operations andg(n,M) cycles. Finally, we have to compute the absohapeare
norm of MM complex-valued numbers, thaosM * f,5 operations and two cycles
are required.

Line 5

We have to compute the minimumrnafsets of real number of lengih, thus,m*
fz(M) operations and-{M) cycles are required.

Q.E.D.
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Complexity Result 7V-BLAST detection oim - 1 remaining layers requires:
(a) 1/6(2m*-3m*+m) & 1/3m° real reciprocals
(b) 7/3m*-3m>*+18m*12m+(4m-2)M % 7/3m*+4mM real multiplications
() 7/3n*7m>+50/3an*-17m+2+(4m-4)M # 7/3m*+4mM real additions
(d) 7/2m*+13/2m-13-[leg, m — 11+(m-1)([log, m]+[log, M1)+2X ™"~ 1[log, d]
~ 7/2m*+mllog, M| parallel cycles
Note: Here, we assumed that the detection on tbieldiyer has already been
accomplished.
Proof: The number of arithmetic operations conteluby each line is as follows:
On them - 1 remaining layerdd is considered to be an-by-d complex matrix
wherem-dis the number of layers already deflated.
Line 4
With (n, m) = (m, d), the computation o6 requiresf,3(m,d) operations
and gs(m,d) cycles.
Line 5
In order to identify the right layer, we need torquute the minimum of a
set ofm real numbers and, this require&j operations and-{d) cycles.
Note that on the last layer to be detected, therord of the layers is not
required.
Line 7
With (m, n, p) = (1, 1,m), nulling will require $¢(1,1m) operations and

O20(1,1m) cycles.
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Line 8

We need to pick the right symbol from the constmlia First we need to
compute the distance from each constellation sypite| with (n, n) =
(M, 1), h«(M,1) operations andigM,1) cycles are required.

We then need to compute M complex square absoaltes, i.e.M * f15
operations and,gcycles. Finally, we pick the minimum of a set\dfreal
numbers; this requireg(M) operations and,gV) cycles.

Line 10

With (m, n, p) (m, 1, 1), computindk * s« requires f(m,1,1) operations
and go(m1,1) cycles. Now, computing — hx * s requires f/(m,1)
operations and;g(m,1) cycles. Except on the last layer to be detected
Line 12

Neither operations nor time in cycles are requi@dleflate the channel
matrix H.

Q.E.D.

Complexity Result 8V-BLAST detection orm layers requires:

(a) 1/6(an*+3m*+m+6) & 1/3m° real reciprocals

(b) 7/3m*+5m*+24m>-4m+4mM # 7/3m*+4mM real multiplications
(c) 7/an*+m3+53/3n*-10m-1+4mM = 7/3n*+4mM real additions
(d) 21/2m*+13/2m+3-

[log, m — 1]+(m+4)[log, m]+m[log, M1+2Y™ ![log., d]

21/2m*+mllog, M1 parallel cycles



58

Proof: The number of arithmetic operations conteluby each line is as follows:

Line 5

Ordering requires computing times 1-bym complex-valued vector norms, thus

m * f19(m) operations andig(m) cycles are required.

Line 3 to Line 13

On the first layer to be detected,

Line 4

The computation o requiresf22(m) operations and,g(m) cycles.

Line 5

In order to proceed on the right layer, we neecotmpute the minimum of
a set ofimreal numbers. This requiregrf) operations and,{m) cycles.
Line 7

With (m, p, n) = (1, m, 1), nulling will require $,(1, m, 1) operations and
O20(1, m, 1) cycles.

Line 8

The right symbol needs to be picked from the cdlasien. First we need
to compute the distance from each constellationbgyn.e., with (, n) =
(M, 1), #(M,1) operations and;gM,1) cycles are required. Then, we
need to computeM complex square absolute values, i.Bl, * fi;g
operations andigcycles. Finally, we need to pick the minimum cfed of

M real numbers, this requiregNl) operations and,{M) cycles.
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Line 10
With (m, n, p) = (M, 1, 1), computindpk * S requires f3(m,1,1) operations
and go(m,1,1) cycles. Now, computing — hx * S requires f(m,1)
operations and;g(m,1) cycles.
Finally, the detection on the first layer will réeim?+1 ( 1IN ), 8r’+6mi+
8m+2M (*), 8m+mP+7m+4M-3 ( + ), In+16+log, MT+5[log, m] (c).
On them-1 remaining layers, the complexity is given®@ymplexity Result 7.

Q.E.D.

Complexity Result 9F-BLAST detection om layers requires:

(a) m*+1+M/6(2m>-3m?+m) & 1/3m°M real reciprocals

(b) 8m>*+6m?+(7/3m*-3m>*+22m*-6m)M+(4m-2)M? & 7/3m*M+4mM? real
multiplications

(c) 8M*+mP-m-2+(7/3n*-7Tm>+62/3n*11m+2)M +(4m-4)M? & 7/3m*M+4mM?

real additions

(d) 7/2m*+27/2m+3-[log, m — 1]+(m+5)[log, m]+m[log, M|+25""1[log, d|

~ 7/2m?+mllog, M1 parallel cycles

Proof: The number of arithmetic operations conteluby each line is as follows:
Line 1

The computation o requiresf2(m) operations andg(m) cycles.

Line 3

Ordering requires computing times 1-bym complex-valued vector norms, thus

m* f19(m) operations and;g(m) cycles are required. In order to identify thehtig
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layer, we need to compute the minimum of a sehoéal numbers; this requires
f-(m) operations and-{m) cycles.
Line 5 to Line 10
For eachM symbol from the constellation, this can be donparallel.
Line 7
With (m, n, p) = (m, 1, 1), computinghx * s« requiresM * f,o(m,1,1)
operations and,g(m,1,1) cycles. Now, computing— hx* s requiresM *
f17(m,1) operations and;gm,1) cycles.
Line 8
The detection of then-1l remaining layers will requiréV times the
operations provided i€omplexity Result 7, and the same number of run
cycles, assuming maximum parallelism.

Line 10
With (m, n, p) = (m, 1, m), computingH * S requiresM * fyo(m, 1, M)
operations and,g(mm,1) cycles. Now, computing—H * SrequiresM *
f17(m,1) operations and;gm,1) cycles. Finally, computing epsilon, i.e.,
the square norm of — H * S, requiresM * f;o(m) operations and;g(m)
cycles.

Line 11 to 14

In order to pick the best candidate vector, we rneetbmpute the minimum of a

set ofM real numbers; this will require(M) operations and,g\V) cycles.

Q.E.D.
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Complexity Result 10FR-BLAST detection om layers requires:

(a) m*+1+W/6(2m>-3m?+m) = 1/3n°W real reciprocals

(b) 8m>*+6m?+4m(7/3m*-3m>+22m?-6m)W+(4m-2)MW # 7/3m*W+4mMW real

multiplications

(c) 8M*+m*+3m-4+(7/3n*-7m3+62/3n*-11m+2)M+(4m-4) MW =

7/3m*M+4mMW real additions

(d) 7/2m*+27/2m+5-[log, m — 1]+(m+6)[log, mI+mllog, M1+2X7= [log, d]

= 7/2m*+mllog, M1 parallel cycles

Proof: The number of arithmetic operations conteluby each line is as follows:
The algorithm is very similar to Fouladi Fard’s @alighm, except the fact that

instead of searching in the entire constellatiartlie first symbol, a restricted

search in a subset (search space contaifisgmbol, see Line 5 and 6) is

performed.

Line 5

With (m, n, p) = (1, 1,m), computinggk * y requiresM * f,o(1,1, m) operations

and go(1,1, m) cycles.

Line 6

No operations are required as it is equivalentetaling coefficients from a pre-

defined matrix.

Q.E.D.
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Table 3 confirms that ML is not suitable for praetiimplementation, due
to the large number of real-valued operations ith@quires. In addition, it shows
that V-BLAST requires about twice as many real-edlwperations and time in
cycles than MMSE, for both thex3 and 4<4 MIMO configurations, regardless
of the modulation used (16-QAM, 64-QAM or 256-QANRigure 13 shows that
this increase in the number of computations lead38R approximately 10 times
lower, in comparison to that of MMSE, regardlessh&f modulation used and for
SNR greater than 30 dB. Also, while the ratio o#¢ thumber of real-valued
operations for V-BLAST over that of MMSE is approwtely the same for the
three different modulations, the number of realiedl operations required by F-
BLAST is about ten times greater whéh is quadrupled. Due to its parallel
structure, F-BLAST requires approximately the samelber of cycles than V-
BLAST. However, Figure 13 shows that F-BLAST extsba BER at least 10
times lower (about 40 times lower with 16-QAM and-@AM, for SNR = 40
dB).

For search window size®/ = 8, 16 or 32, the gain achieved by FR-
BLAST in terms of BER vs. SNR in comparison to tbBMMSE, lies between 1
dB and 2 dB. The computational complexity of FR-B®RA is aboutW times
greater than that of V-BLAST, and considerably demahan that of F-BLAST.
Observe that for the special case whéve= 1 andW = M, FR-BLAST is
equivalent to V-BLAST and F-BLAST respectively, thane can predict that the
performance characteristic of FR-BLAST and its catafional complexity will

lie between that of V-BLAST and F-BLAST, dependomgthe value ofV.
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In conclusion, FR-BLAST achieves a better BER wsrsSNR

performance than V-BLAST, without increasing thguieed time in cycles, but
at the expense of additional computations propoalito the size of the restricted
search set. Interestingly the size of the seart¢h as®l hence the degree of

parallelism, can be adjusted to control the pertorce and the required power.

Table 3 Computational Complexity of Complex-valued MIMO [Betion

Algorithms

Note: The numbers in brackets give counts relativehe MMSE detector with

the corresponding value of

> m=3
Time in Cycles
Real Real Real (Parallel
Scheme M Multiplications Additions Reciprocals Hardware)
16 172,032 172,031 0 21
ML 64 11,010,048 11,010,047 0 27
256 704,643,072 704,643,071 0 33
16 384 (1.0) 393 (1.0) 10 (1.0) 42 (1.0)
MMSE 64 672 (1.0) 873 (1.0) 10 (1.0) 44 (1.0)
256 1,824 (1.0) 2,793 (1.0) 10 (1.0) 46 (1.0)
16 720 (1.9) 536 (1.4) 15 (1.5) 144 (3.5)
V-BLAST 64 1,296 (2.0) 1,112 (1.3) 15 (1.5) 150 (3.4)
25¢€ 3,600 (2.0) 3,416 (1.3) 15 (1.5) 156 (3.4)
16 7,438 (19.4) 4,748 (15.1) 90 (9) 104 (2.5)
F-BLAST 64 59,662 (88.8) 42,908 (49.2) 330(33) 110 (2.5)
256 | 729,358 (399.9) 564,188 (202.1) 1,290 (129) 116)(2.
FR-BLAST | 64 7,706 (11.5) 5,566 (6.4) 58 (5.8) 114 (2.6)
w=38 256 | 23,066 (12.7) 17,854 (6.4) 58 (5.8) 120 (2.7)
FR-BLAST 64 15,130 (22.6) 10,902 (12.5) 106 (10.6 114 (2.6)
W=16 256 | 45,850 (25.2) 35,478 (12.8) 106 (10.6 120 (2.7)
FR-BLAST | 64 29,978 (44.7) 21,574 (24.8) 202 (20.2 114 (2.6)
W=32 256 | 91,418 (50.2) 70,726 (25.4) 202 (20.2 120 (2.7)
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> m=4
Time in Cycles
Real Real Real (Parallel
Scheme M Multiplications Additions Reciprocals Hardware)
16 4,718,592 4,718,591 0 25
ML 64 1,207,959,552 1,207,959,551 0 33
256 | 309,237,645,31| 309,237,645,31 0 41
2 1
16 768 (1.0) 755 (1.0) 17(1.0) 49 (1.0)
MMSE 64 1,152 (1.0) 1,379 (1.0) 17(1.0) 51 (1.0)
256 2,688 (1.0) 3,875 (1.0) 17(1.0) 53 (1.0)
16 1,542 (2.1) 1,159 (1.6) 31 (1.9) 231 (5.7)
V-BLAST 64 2,310 (2.1) 1,927 (1.4) 31(1.9) 239 (4.7)
256 5,382 (2.1) 4,999 (1.3) 31 (1.9) 247 (4.7)
16 15,926 (34.6) 10,602 (14.1) 241 (14.2 149 (3.7)
F-BLAST 64 104,886 (91.1) 77,706 (56.4) 913 (53.8 157 (3.1)
256 1,105,846 899,082 (232.1)] 3,601 (211.9) 165 (3.2)
(411.5)
FR-BLAST 64 13,659 (11.9) 10,184 (7.4) 137 (8.1) 161 (3.4)
w=38 25€ 35,163 (13.1) 28,616 (7.4) 137 (8.1) 169 (3.1)
FR-BLAST 64 26,694 (23.2) 19,832 (14.4) 257 (15.2 161 (3.4)
W=16 256 69,702 (26.0) 56,696 (14.7) 257 (15.2 169 (3.1)
FR-BLAST 64 52,763 (45.9) 39,128 (28.4) 497 (29.3 161 (3.4)
W =32 256 | 138,779 (51.6) 112,856 (29.2 497 (29.3 169 (3.2)

Thus assuming that we can afford a detector ththiree times slower than
MMSE, we recommend the use of FR-BLAST with a seavmdow containing
16 symbols, since it only increases the numberitfraetical operations by a
factor of ten regardless of the modulation schdorea reduction of the BER
higher than ten. In other words, by slowing dowlittke bit the detection process,

and consuming ten times more power, the detectonke ten times less error.
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V- Asymptotic Analysis

5.1 Assumptions

We assume that the channel is unknown at the tiftesside, but known
or perfectly estimated at the receiver side. Ecmrecting codes are not used.

Let ng andnr be the number of antennas at the receiver andrigter
side, respectively. In this work we assume that nt = m> 1. As beforeM
denotes the number of points in the complex symbostellation.

The channel matrix coefficients and the componehtee Additive White
Gaussian Noise are assumed to be circularly GausEe channel matrid, is
assumed to be constant for the duraficof a frame. For this work, sequences of
symbols are grouped into frames such that the idardt of a frame, i.e., the
number of samples in a frame, satisfles 2 * m - 1 [12]. This choice has been
shown through experience to give acceptable chamoeleling accuracy with

reduced computational complexity.
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5.2 Asymptotic Performance Analysis

5.2.1 Definitions

» The multiplexing gainis the multiplicative gain in capacity (with regpe
to a SISO channel) achieved by distributing themuata streams into
multiple parallel data streams. The multiplexingngam, is given byr,, =
min(ng, ny). The multiplexing gainr, of all the detection schemes
presented in this work is equal to the MIMO gaia,,n = m [30].

» The diversity order expresses how fast the average error probability
decreases with respect to increasing SNR [31].dLé¢note the diversity

order, then

d=-lim,,_.

1DEPE(SNij10g snp Where R(SNR) is the average error

probability of the scheme. The error probabilitygially measured by the
bit error rate.

» Thediversity gainexpresses how the diversity order increases adtiti
over that of the SISO system which is one [31].

The ML detection scheme experiences full diversiger, i.e.du.
=nr=m|[32]. A reduced complexity scheme, such as the EMS8tector,
experiences full multiplexing gain while reducinggrsficantly the
computational complexity, but at the cost of sevess in performance.
At high SNR, duwse = hgr - nr + 1 = 1 [31]. The V-BLAST detection
scheme has a diversity gain of zero, which is iedeent of the strength

(i.e., the estimated post-detection SNR) of thst fiayer to be detected,
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thusdygLast = Nr - Nt + 1 = 1 [33]. As, one might expect, the diversity
gain of V-BLAST is limited by the MMSE detection dfe first symbol,
which does not benefit from interference cancalatirom the other
symbols. Even though the fall-in(BNR) is the same for both MMSE and
V-BLAST, the BER of V-BLAST is much lower than that MMSE, as

shown in Figure 14.
5.2.2 Asymptotic Analysis of F-BLAST

Asymptotic Result 1 The diversity ordedrg astof F-BLAST is 2.

Proof:

Let P, reLast (SNR) denote the average error probability offHBRLAST scheme

at a given SNR. Thiaw of total probabilityleads to:

PeraLasT (SNR) = P(E E1) * P(E1) + P(E | &) * P(Ey) 1)
Here, for a given SNR, P(Eis the average error probability for the decisam
the first layer to be detected;iR) is the average probability of a correct decision
on the first layer to be detected; P(&) is the average error probability of the F-
BLAST scheme given that a correct decision had lmeade on the first layer to
be detected (i.e., an error occurred after thé symbol was detected correctly, so
no error propagated from the detection of the fgghbol); and P(E | £ is the
average error probability of the F-BLAST schemeegivthat an erroneous
decision had been made on the first layer to bectled (i.e., an error in the
detection of the first symbol propagates to anramdhe detection of the second
symbol).

E.is the complementary event of, Ehus
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PE)=1-P(R) 2)(
From (1) and (2), we obtain
PeraLasT (SNR) = P(E Fq) + (P(E | B) - P(E [E4)) * P(Ey) (3)
When the SNR is large [32],

PeveLasT(SNR) & _VEL&ST 4)

p———
where Rysiast (SNR) is the average error probability of the VART scheme at
the given SNR, an@yg asTiS @ positive constant.

Consider a scheme that always makes an erronesmisiah on the first
layer to be detected and then proceeds with tiggnatiV-BLAST detection over
them- 1 remaining layers. Its average error probabiitgn upper bound on the
error probability of V-BLAST on am-by-m system [33]. Note that a scheme that
always makes a correct decision on the first lagdre detected and then proceeds
with original V-BLAST detection over then - 1 remaining layers has an error
probability equivalent to that of V-BLAST on am{1)-by-m MIMO system since
the second layer to be detected will experienceleseinterferer [33]. Thus with

(4) and for large SNR we obtain

» a £ — —
P(E |Ey) :wﬁ% , R=mandnr=m-1

P(E [E,) 2 CyBLAST (5)

SMR?

- =
andP(E | P =28 ,nr=nr=m

P(E | ) & “LBLeST (6)

SNR*
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Let 51 ands; denote the transmitted and detected symbols, ctgely, on the
first layer to be detected. Le§ denote the expected value operator over the
channel matribd. Then by definition [34]:

P(E) = B2, »,, (PE1# 5 |H) * P())} ()
For large SNR, and wity_ a positive constant [31]:

En{P(51 # 1 |H)} = SML_ (8)

SNRTR

With ng = m, and assuming equiprobable symbols)P€ 1 /M. Substituting (8)

into (7) for large SNR yields

PE) =3, -, s ®)
PE) =T 10

Thus, for large SNR, (3), (5), (6) and (10) yield

e ; (M—-1) = C ;
P SNR) & VELAST _ “FBLAIT) % - ML 4 =VBLAIT
e’FBLAST( ) ( SNR* SNR2 ) M = SNR™ SNR?

By factoring, we obtain

Pe poLast (SNR) & BT * (1 + =2 % ML (1- o)

Thus, for large SNR anah > 1,

log(P: reLast (SNR)) 2 l0g(CvaLasd-2 I0g(SNR)+log(1+—+* ML * (1 - 1))

SNR™—2 SNR

In the limit as the SNR becomes large we obtain

, logP, SNR
thNR—Mx ,FBLAST( j/ng SNR =-2 (11)

Q.E.D.
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5.2.3 Asymptotic Analysis of FR-BLAST

Asymptotic Result 2The diversity ordedrrw)-sLastOf FR-BLAST is one.
Proof:

Let Sy denote the restricted search set contaitihgl-QAM symbols, as
defined in Section 3.1.1., and let BweLast(SNR) denote the average error
probability of the FR-BLAST scheme which rusparallel searches, at a given

SNR. Thdaw of total probabilityleads to:

Pe rrivBLAST(SNR)=P(E| 51 € Sw)*P(s1 € Sw) + P(E| 5, € 54)*P(s, € Sy) (12)
Here, for a given SNR, B[ € §,,/) is the average probability of not having within
the restricted search set the symbol transmittethefirst layer; P € Sy) is the
average probability of having within the searchteetsymbol transmitted on the
first layer; P(E |s; € §) is the average error probability of RRCBLAST
given that the restricted search set does notdectbhe symbol transmitted on the
first layer; and P(E £ € Sw) is the average error probability of the FB{
BLAST given that the restricted search set incluttessymbol transmitted on the
first layer.

By definition:

P& ESY) =7 13]

i

and from (2) and (13),

PG:E Sw) =" (14)
If the restricted search set does not include yebs| transmitted on the

first layer to be detected, then MR(BLAST will make an erroneous decision on
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this layer and this error will propagate throughtbe detection of then - 1
remaining layers. But, after the detectionsgf FR(V)-BLAST runs the original
V-BLAST detection on the m- 1 remaining layers. Therefore from (6) and for

large SNR

P(E |51 € Sw) = P(E [ B) = CypLasT® (15)

SNR*

If the restricted search set includes the symbamamitted on the first

layer to be detected, from (3) and the of total probability
P(EE:€Sw) = P(E|E1, $15w)+[ P(EI(B. 51€50))-P(E| €1, 1€50))]*P(Ex S1€50)

(16)
After the decision on the first layer to be detd¢ctaoth the F-BLAST and FR\)-

BLAST detectors are identical. Therefore, fromd&by (6):

P(E | €1, 5 € Sw)) = P(E |Ey) 2 Sretast (17)

SNR2

P(E | (B, s € Sw)) = P(E | B) = BT (18)

SNR*

Similarly, to the derivation of P(fEin Section 5.2.2., from (9) we obtain

PEISES) 2T, ., ok

5.1 5, a5 . sNR™

There areV - 1 symbols different frors; in the restricted search set, therefore

P(E |si € Sw) = T2 (19)

Thus, for large SNR, (17), (18), (19) and (20) ¢itd

e (G G (W—1) = C G
P(E |s, € Sy) = (FBLAST _ TVBLAST) * 1)« Cyp | CypLasT

SNR* SMR? M= SNR™ SNR2
Finally, we have
rv CPBLAST * Wi, Sy xq¢q_ 1
P(E |5 € Sw) = FELT « (1 + 22+ DML _x (1. 1)) (20)
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From (13), (14), (15), (16) and (20) we obtain

CVBLAST * 1+ W-1s_ Oan _* (1 - 1 ))) 4 r-w) * CVBLAST
SNR® M SNR™-! SNR Mz SNR*

Wy
Pe FrivBLAST = (

By factorization, it is straightforward to obtaiorflarge SNR

(M — W =0 W W (W —1) = Oy 1
P SNR)= CRRASTH(1+- + (L —
e'FRWBLAST( ) M « SNR* ( (M — W) «SNR* (M- W) « SNE™ ( ENR))

Thus, for large SNR anah > 1,

I0g(P., FrupsLasT (SNR)) = log(“1="2_ VELAT) - |og(SNR) + log(1 +

? W ‘+L1:fs=l:W—1:'*l'-_,1fL*(1_ 1))
(M-—W)«5NR* [(M-W) :«SNR™ SNER

In the limit as the SNR becomes large we obtain

logP. on/ SNR
limgy g og e,FRLW}BLAST( j/log SNR= - 1 (21)
Q.E.D.

5.2.4 Asymptotic Analysis of the Real-valued F-BLAS

Asymptotic Result 3 The diversity ordetl,; 4.8 Of real-valued F-BLAST is
two.
Proof:
Recall that the real-valued equivalent detectiomeste is based on the
following model (Section 3.3):
yi=H¥* 4R,

real(H) —imag(H)

imag(H) real(H) | s = [real®),

where y? = [realfy), imag§)]’, HF = [

imag@®)]]", andn® = [realf), imagh)]] "
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The diversity order of V-BLAST is limited by thewdirsity achieved by
the first layer to be detected. Furthermore, thy®t experiences a diversity order
similar to that of MMSE. The diversity order of M-BST was derived in [33]
and the average error probability of V-BLAST forda SNR is provided in (4).
Hence, in the @-by-2m MIMO real equivalent model (hemg = n; = 2m), the

average error probability of MMSE for large SNR d&@napproximated by [35]:

P, vsrasr® (SNR)= _UBLAST_ (22)

syr TR -AT+1
An approximation of the average probability of tlypical error event for large

SNR is [34]:

Eqr{P(s1 # s |HF)} = 2L (23)

SNE 2
Recall, the expression of the average probabilitF-BLAST derived in Section

5.2.2:
P, rerast® (SNR) = P(E Ey) + (P(E | B) - P(E |Ey)) * P(Ey) (24)

Likewise, using the &-by-2m real-valued equivalent model, we obtain for large

SNR:

P(E |Ey) & —FBLAST o= 2mandny=2m- 1

SRR -THL

P(E |By) 22 (25)

SNR*

n O — =
and P(E | B = 24 ,nr=nr=2m

P(E | ) & “LBLesT (26)

SNR*

With ng = 2m, Psy) = % (7) and (23), for large SNR, we can evaluate P4&

PE) 2Ty .y — 27)

M = SHNR =
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P(El) . I._'\."H—ljl & EL (28)

M +SNR 2

Thus, for large SNR, (24), (25), (26) and (28) ¢iel

e (CvBLAST _ CrBLAST (VF-1) « Gy Cv BLAST

P, rorast® (SNR) = ( SNRE SNRZ )* AT . I * SNR!
By factoring, it is straightforward to obtain
P, ropasrt (SNR) 2 ST+ (1 + D00 g 1)

SNR™ VM +SNR 2
Thus, for large SNR anah > 1
l0g(P, r5r457% (SNR)) 2 log(CveLas) -2*Iog(SNR)+Iog(1+w*(l-

M +SNR =
1

s.NR‘—))
Finally, in the limit for large SNR
I logP, rprasr® (SNRJ/ =.2 29
M ce log SNR =~ (29)

Q.E.D.

Corollary to Asymptotic Result 3 The diversity ordefdy 4 y2y5.457% Of the

real-valued R(V1,W2)-BLAST is 2.5.
Proof:

The real-valued My1,W2)-BLAST is the detector that selects the best
symbol vector between (1) the real-valued detdttairsearches the real
component of the weakest layer, and (2) the relaiedadetector that searches the
complex component of the weakest layer. Such &syshould benefit from

‘selection diversity’, thus assuming reasonablep&hdence in the two detectors,
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the diversity gain for a two-branch selection dsigrshould be 1.5 [36].
Therefore, by definition, the diversity order othuletector is 2.5.
Q.E.D.

One could extend this idea to obtain selectiorebenby search on greater
than the first two real layers, to say three orfayers. However the

computational cost will rapidly become prohibitive.

5.2.5 Simulation Study

We calculated the slope of the performance chaiatte of various
schemes studied in this work and illustrated inuFég8, 9, 11, 13 and 14. The
results are summarized in Table 4. Since, eacleonas drawn using the average
number of symbols in error for a given SNR, thesredd for future analysis, we
basically picked two points from the tail of therfeemance characteristic to
compute its slope, using the following formula:

logy (SER; ) — log, 5 (SERz)

slope= SNRgp; SNRgpg
1d 1d

Here SERand SNRg; are the Y-axis and X-axis coordinate, respectivefya
point from the tail of the performance charactarist
Table 4 Experimentally Measured Tail Slope

> Figure 8:M = 64, SNR = 28 dB and SNR= 30 dB

Detector F-BLAST 4x4 | F-BLAST 6x6 | F-BLAST 8x8

slope -3.6 -5.1 -54
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» Figure 9:M = 16, SNR = 26 dB and SNR= 28 dB

Detector ML F-BLAST V-BLAST MMSE

slope -5.0 -4.8 -1.0 -1.0

» Figure 11:M = 64

slope
Detector SNR= 28 dB and SNR= | SNR, = 28 dB and SNR=
30 dB 30 dB
FR(OPT,9)-BLAST -2.8 -1.0
FR(W2,9)-BLAST -2.0 -1.0
FR(S1,9)-BLAST -2.2 -1.7
FR(OPT,16)-BLAST -2.8 -1.0
FR(W2,16)-BLAST -1.9 -1.0
FR(S1,16)-BLAST -2.2 -1.7
» Figure 13: SNR= 34 dB, SNR=36 dB
slope
Detector M =64 M = 128 M = 256
FR-BLAST(W2,32) -1.8 -20 -23
FR-BLAST(W2,16) -1.1 -1.2 -1.8
F-BLAST -4.5 -35 -3.7
V-BLAST -0.9 -1.2 -1.3
MMSE -0.8 -0.9 -1.0
» Figure 14: SNR= 34 dB, SNR= 36 dB
slope
Detector M=16 M = 64 M = 256
MMSE -1.00 -1.0 -0.9
V-BLAST -1.03 -1.2 -1.1
real F-BLAST -1.66 -1.9 -2.1
F-BLAST -2.13 -3.6 -3.0
Parallel (W1,W2) real F- X -2.7 -3.0
BLAST

These tables show that for SNR ranging from 26@BQ dB, neither FR-

BLAST (with relatively large window sizes), realBt-AST, F-BLAST nor ML’s
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performance characteristic has reached their theal@asymptotic behaviour, i.e.,
the absolute value of the tail's slope is not agpnately equal to the predicted
diversity order of the scheme. This, can be expthihy the fact that, the SNR
values considered here are not large enough,ussrdted in Figure 15. Also, we
can observe that the larger the constellationstoeer the absolute value of the
slope takes to reach its theoretical value, ite,diversity. Consistently with this
trend, the larger the window si¥¥ of FR-BLAST, the slower the absolute value
of the slope takes to reach its theoretical value.

In conclusion, as the search window’s size incregafiee performance
characteristic of the proposed detector is imprdee®NR values of interest, i.e.,
0 dB to 40 dB. As derived above, the diversity orftg FR-BLAST does not

depend on the size of the search window.

———Pe(VBLAST)
—+—Pe(FR(W=16)-BLAST)
—+— Pe(FR(W=32)-BLAST)
——Pelreal F-BLAST)
—— Pe(F-BLAST)

Pe(SMNR)

1
4
SNR, dB

1
I 1 T il
SNR, dB

Figure 15 Approximation of the Average Error Probability foarge SNR Values
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VI- Performance Study of a Turbo Decoder

In practical wireless systems, to greatly enhatheeeffective quality of
the channel, blocks of information data are encaatethe transmitter side of the
radio link, and decoded at the receiver side ofr#luio link using an error control
algorithm, such as the well-known Turbo Codes (J&7). The performance of
TCs approaches the Shannon limit, and they have beéepted by the next

generation of 3GPP2 / CDMA 2000 Wireless CommuiocaSystems [38].
6.1 Turbo Codes

TC are based on the parallel concatenation of twouRsive Systematic
Convolutional (RSC) codes separated by an inteelef89]. The turbo decoding
principle calls for an iterative algorithm involgriwo component decoders that
exchange information in order to improve the eworrection performance with

increasing numbers of decoding iterations [37].

RSC1 Systematic Bits

Parity Bits 1

A

P E

o -
Information Bits 'i —i Interleaver Encoded Bits

—— ]

)

=]

5]

Parity Bits 2

Figure 16 Turbo Encoder Diagram
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Figure 16 illustrates the structure of a turbo @ecoThe information bits
are grouped to form a block of fixed-length infotioa data bits to be encoded.
The encoder is formed by two RSC encoders thatatpein parallel. Each
encoder generates a sequencenpfand n, coded bits, respectively, from a
sequence of information bits, producing an overall code ratéid (ny + ny - i)’.

To enhance the performance of the decoder, thendeencoder processes the
information bits in a different order, i.e., thdarmation bits are interleaved or
scrambled to obtain a decorrelated version of #mesinformation. The coded
bits sequence is comprised of parity bits and syatie bits (original information

bits). Finally, the encoders’ outputs are multigldxand interleaved using a

predefined interleaver to strengthen the code.

H Parity Bits 1 and Information Bits :

Received Sequence

* Parity Bits 2 and Interleaved Information Bits H

Suxardpnumag

Decoder 1

Interleaver

ﬂ

Deinterleaver

-

Hard Decision %I Decoded Sequence

Figure 17 Turbo Decoder Diagram
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Figure 17 illustrates the structure of a turbo deco The received
sequence is comprised of soft information bits soff parity bits. The soft bits
give estimates of bit values along with probabiirtjormation for each bit. They
are typically log-likelihood ratios (LLRsS) given &ome finite bit precision (e.g.,
3, 4, 5 or 6 bits). Maximum Likelihood Detection (i) principle, i.e., the
comparison of the probability of a received softli®ing a ‘one’ or a ‘zero’, is
used to decode TC. The decoder is formed by two ifliam A-posteriori
Probability (MAP) decoders that have knowledge h# tattice structure of the
encoders. Each MAP decoder receives the origirfalisormation bits and one
of the two streams of soft parity bits, and produae(hopefully) more accurate
sequence of soft information and soft parity bidter a certain number of
iterations, the outputs of the decoders are condphyeaddition, i.e., the LLRs
corresponding to thieth bits from the block of soft information bitsrggrated by
the first and the second component APP decodepectisely, are summed to
increase or decrease the probability of ithie information bit being a zeros or a
one. Finally, a hard decision is made to recover dmiginal sequence of

information bits.



6.2 Turbo Codes for MIMO Systems [40]

In [38], the author discusses several applicatanBC. In this section, we

will briefly present three major applications tihetain our attention.

6.2.1 TC Design in Asymmetric Digital SubscribeLine

(ADSL)

Asymmetric Digital Subscriber Line (ADSL) is presgnthe main
technology of broadband wireline communicationsisTtransmission model

associates a TC with a multicarrier modulation sashQAM [40]. Figure 18

illustrates the structure of an ADSL modem.

DATAINPUTP|  Encoder (| PSKOrQAM 5l ppr | Add
Mapping Prefix 1
. D/IA
Transmitter
Y
Channel
] ‘r
Receiver ,
Synch. Correlation Phase-lock loop AD
A A
Freq. Remove
DATA , , . .
our ¢ Decoder € Domain @«  FFT &= Cycli | Time Dispersion f¢
Equal. Prefix Equalizer

Figure 18 Block Diagram of an ADSL Modem [41]
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Observe that there is no direct feedback fromdéneoder to the encoder.
For this application, in order to reduce the eff@dmpulse noise that corrupts the
signal in the twisted pair channel, the originalormation bits sequence is
interleaved. This step tends to break up blocksrafneous bits to create isolated
erroneous bits that can be more easily corrected.Gray code mapping [42] is
the most common assignment of the bits to an M-Q&dvistellation, where the
systematic bits are assigned to the least significiis and parity bits are assigned
to the remaining more significant bits. The turbecader utilizes a MAP
algorithm for soft decoding, as described in Sec#ol. Since the delay is an
important parameter in ADSL transmission, the nfatus here is designing the
interleavers. Large interleavers are not affordabtensequently medium-sized
interleavers which provide sufficiently good errate performance are of interest
[41].

6.2.2 Iterative Decoding for Wireles€ommunications[43]

Another application of TCs can be found in multipletenna and Code-
Division Multiple Access (CDMA) channels. The CDMéhannels are coded
independently from each others, whereas the malti@htenna channel is
synchronous and its sub-streams can be jointly ccolemany applications, the
fading channel can be modeled by the Rayleigh mi@ddél For an optimal usage
of those channels in high SNR regions, large sigoattellations should be used.
However, the transmitted signals are correlatedhey channel and due to the

cardinality of the constellation, it is impracticad search over all possible
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candidate signals. A solution to this problem isreate single-stream channels or
layers and use iterative demodulation and decoding.

In Iterative Decoding, a soft-output APP decodaryplthe role of an outer
code and the channel plays the role of an innee,ctite first decoder sending
backa posterioriprobabilities of each bit iteratively to the sedatecoder. Figure

19 illustrates the structure of such a decodeafGDMA system.

Iy . .
Filter Deinterleaver Soft Out Interleaver
> put
1 FEC Decoder —> 1
1
CDMA Iy . .
Filter Deinterleaver Soft Output Interleaver
Interference 9 2 FEC Decoder 2
r —
Resolution
Function
g
Filter Deinterleaver Soft Ou Interleaver
> > put
FEC Decoder .
K K K
A A
Mdk)
tanh() g
Ada)
tanh() |t
A(dy)
tanh() |

Figure 19lterative Multiuser Decoder with Soft Informatiox&hange [43]
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Here FEC stands for Forward Error Control, a(d) represents the symbol-wise
log-likelihood ratio from the-th layer.

The complexity of this decoder grows only lineasligh the number of layers,
consequently a practical usage can be found fgelaonstellation signals. This
technique is being applied in high-speed MIMO véssl communications [45],

which is the topic of the next section.

6.2.3High-speed MIMO Wireless Communicationg[45]

Turbo-MIMO is a class of MIMO systems based onghaciple of turbo
processing. An example is the Space-Time Bit-letréd Coded Modulation
(ST-BICM) architecture, which provides very goodfpemance with receivers
using iterative detection and decoding, such as Mm@mum Mean-Squared
based Soft-Interference Cancellation (SIC-MMSE).

In the ST-BICM architecture, the detector and thannel decoder use
soft data at both the inputs and outputs. Sincectieh and channel decoding are
processed separately, the complexity of the deteajoows linearly with the
number of receiver antennas. The more iteratiorisardetector/decoder loop, the
better is the error rate performance. What is miirbas been proven that the
performance of ST-BICM exceeds that of encoded itevative MIMO systems

such as V-BLAST [45].
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Figure 20 Block Diagram of a MIMO System Employing ST-BICMhdch an
Iterative Receiver [45]
In Figure 20d is the information bits sequendazthe output of the encoderthe
interleaved sequence of encoded bitthe symbol vectord the MIMO channel,
r the received signah the additive noise vectail”ex the extrinsic LLRs1*s the
a priori LLRs, andA” the a posteriori LLRs, with * representing | and O, i.e.,
inner decoder and outer decoder, respectively

Figure 20 illustrates the structure of the ST-BIGMMO scheme. The
transmitted information bits sequence is first efezh then interleaved and finally
converted into parallel substreams (i.e., one FHgCkbis used to encode the
original information bits). Each substream is mappento a sequence of
constellation symbols that is transmitted from gpasate antenna [45]. The

decoding process is separated into two stages:
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» The inner decoder, i.e., the detector, generatésnsix LLRs for the
received coded bits sequence and makes them deaidsa priori
information to the outer decoder, after deinteriegv

» The outer decoder, generally a turbo decoder ssitheaone described in
Section 6.1, uses tha priori information and generates extrinsic
information on both the coded bits and the infororabits and feeds back
the extrinsic information on the coded bits to theer decoder after
interleaving.

These stages are repeated until a pre-definediontes achieved, then hard

decisions are made to compute the decoded bitesegu

The iterative receiver generally improves the geftisions after iteration.
APP decoders are optimal for the inner decoder, [d% they are impractical
due to their higher computational complexity, tlsub-optimal detectors such
as SIC-MMSE [47] are of interest.

In SIC-MMSE, when detecting the symbol transmittiesbugh one layer,
this layer is assumed to receive interference ftben-1 remaining layers
and the additive nois@ priori information available as an input, is used to
estimate and cancel interference from the remailaipgrs, and to supress the
residual interference and noise given the MMSEedah. In [48], a family of
detectors (B-Chase) based on the parallel decdt®y [21] scheme, which
was discovered at the very end of the researcleqrgyresents a comparison

study of such detection scheme in an iterative diegoarchitecture.
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The proposed Turbo is illustrated in Figure 21. Wsed Simulink to

model (we stringed together function blocks) andutate all of the systems in

the transmission chain associated with variousdstfctors as described below.

Information Sink

I

Turbo Decoder

I

Deinterleaver

T

Demodulator

1

BER Computation

Information Source

|

Turbo encoder

|

Space-Time Demmaper and Detector

AWGN . & o

Interleaver

&

Modulator

L

Space-Time Mapper

Txje o o o ofTx

Rayleigh Channel

Figure 21 Block Diagram of the Turbo Decoder Model

7

The number of blocks, the encoder’s interleavee,sind the trellis structure of

the encoder have been chosen according to the paeTprovided in Berou’s

original paper [37].

We modeled the transmission of a sequence of ezpapie 8@ and X, in

128 blocks containing 65536 (256 * 256) informatibits each. The turbo
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encoder block contains a parallel concatenatiomwof RSC rate-1/2 encoders,
whose outputs are defined by the generator polyalsr3i7 and 21 in octal, with a
constraint length of 5, for an overall code ratel&d, as described in Section 6.1.
The modulator accepts the encoded sequence ofaidsconverts them into a
sequence oM-QAM signals M = 16, 64 or 256). These constellation signals are
grouped to form sample vectors of lengilifor the purposes of simulation). Each
component of a sample is associated with a diffeb@msmitter antenna. The
block of sample vectors is divided into frames efdth 2M, which are then
transmitted through a noisy environment assumdaktoonstant for the duration
of the frame in order to model Rayleigh fading.

At the receiver side, the transmitted signal vedsrcorrupted with
AWGN, and the block of received signal vectorsesedted using a soft-detector.
The soft detector produces soft information bitattlare fed into the turbo
decoder. Thus, an implementation of the equivalewit-output detector is
required. A direct implementation of the soft outpdormation is very complex.
[49] proposes a simple approach that reduces thaplexity without loss of
performance. The idea is to demap the receivedakigio soft bits which have
the same sign as provided by a hard detector amdevabsolute value indicates
the reliability of the decision [49]. All the hadktectors mentioned in this work
use a linear filter (following the MMSE criteriom) order to estimate the position
on the constellation diagram, of the symbol tramt@dion the current detected
layer, then a slicer function, picks the closesnisgl from the constellation,

finally hard bits are produced following the grayapping of the constellation
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symbols. In the case, soft-outputs are of interld€X] proposed to use decision
regions for the real and the imaginary part of @stimated position on the

constellation diagranb(=bg + i * by, as illustrated in Figure 22).
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Figure 22 Partition of the 16-QAM constellation [49]
(SO Sy for the component in phasg and ($q.; SMox) for component in
quadraturdy, in the case of the 16-QAM constellation. In pi@adf the soft-

outputs associated with the component in phasdedieed by:

by
S1={2* (b - 1)
2x(by+ 1)

S2=-|b|+2
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The & functions for the in quadrature component arestivae, witho, replaced
by bg.

Finally, the turbo decoder generates the outpubrmétion bits as
described in Section 6.1.

This system model uses a single turbo encoder siha@ntenna signals
employ the same modulation. The proposed familyuwbo F-BLAST detectors
does not have an iterative processing between dfiedstector and the turbo
decoder in order to reduce the processing delate Mat the iterative processing
is being replaced by the parallel search on tls¢ ffwyer to be detected.

The next section presents a fair comparison anatingpe corresponding

soft detectors.
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6.4 Results

We simulated the same sequence of informationititgs Rayleigh fading
environment through a# MIMO system, using different modulation schemes,

such as 16-QAM, 64-QAM and 256-QAM.

6.4.1 16-QAM

— literation
—F— Ziterafion
—F— Jiteration
—5 Kiteration
— Giterafion
12 fteration

! ! ! ! I | i : ! ! i ! I ! ! !
§ 10 15 il & kUl i 10 15 a0 Kl i 10 15 Kl

DEbl\'o Eﬁl\o
Figure 23 BER vs. EbNo of a 16-QAM Turbo MIMO Model Associdtavith

2|u E)
EbNo

Various Soft Detectors: MMSE (a), Real-Valued F-B2A(b), and F-BLAST (c)
Figure 23 shows that after a certain number ohitens, the turbo model
associated with various soft detectors seems tibkxhe same BER performance
vs. the bit energy to noise ratio (EbNo). This perfance limit on the BER vs.
EbNo characteristic is known as the turbo cliff aadepresented by a sudden
drop of the BER [50]. Also, observe that for a dmaimber of iterations (three or
four), the soft F-BLAST and the soft real-valuedEAST detectors have BER
performance which exceeds that of MMSE. But, ifyatem can afford up to 12
iterations, a soft MMSE detector provides good genfance, as shown in Figure

24.
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Figure 24 BER vs. EbNo (dB) of a 16-QAM Turbo MIMO Model Assated
with Various Soft Detectors for: one iteration (Bjur iterations (b), and twelve
iterations (c)

These observations are highlighted in Table 5.

One iteration Four iterations 12 iterations

BER mmse vb real fb fb mmse vb real fh ib mmse vyb eal fb fb

10° 18 17 16 17 12 12 12 13 10 1p 14 11

10" 30 30 23 22 14 15 14 15 11 1t 11 12

10° / / 34 30 17 18 16 / 14 13 125 14

Table 5 Corresponding EbNo (dB) for Selected BERs for Viasi&oft Detectors

in a 4<4 16-QAM Turbo MIMO System

Here ‘vb’, ‘real fb’ and ‘fb’ stand for V-BLAST, r@a-valued F-BLAST and F-

BLAST, respectively.
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The soft F-BLAST detector uses a search window aioirtg only 16
constellation signals (i.e., the entire constedia)j thus it is very encouraging for
further research involving a better design of thterieaver, and extensions to
iterative decoding between the turbo decoder arel dbft detector. While
transmitting and detecting 16-QAM signals, the fedled detector, which has a
lower computational complexity, exhibits approxiglgtthe same performance
compared to that of the complex-valued detectitwis treal-valued detection

should be of interest for transmission over adufMO system.

6.4.2 64-QAM

The top chart of Figure 25, i.e., (a), (b), (c) &y showing BER plots for
64-QAM signals leads to the same conclusions ad6eQAM signals. The soft
detectors used for the turbo MIMO model exhibitpragimately the same
performance after a certain number of iteratiogs f@ur or more). But the soft F-
BLAST and the soft real-valued F-BLAST detectorswgtbetter performance for
fewer than four iterations of the turbo decodertlier, Figure 25 & 26 show that
the family of soft FR-BLAST detectors have verysggerformance with either a
search window of nine or 16 constellation symbblswever, when starting with
the second weakest layer, the BER performancerisdme reason worse, as
shown in Figure 27. Figure 27 also shows that #milly of soft FR-BLAST
detectors provides good performance with eithezaach window size of 9 or 16,
starting with any layers, but the second weakestiorierm of strength. Note that
the performance of the family of soft FR-BLAST dwtes is a little better than

that of the soft real-valued F-BLAST detector. Thus order to reduce the
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computational complexity of the receiver, and farbb MIMO systems that
require fewer iterations in order to reduce the @owonsumption and/or the
recovery time, the family of soft FR-BLAST detecanay be of interest for the

detection scheme.

©
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Figure 25 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associdtavith
Various Soft Detectors, MMSE (a), V-BLAST (b), Ra&lued F-BLAST (c),
FR(9,S1)-BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BET (f)
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Figure 26 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associdt&ith

Various Soft Detectors, FR(16,51)-BLAST (g), FRE@®:BLAST (h),
FR(16,W2)-BLAST (i), F-BLAST (j), FR(9,W1)-BLAST (k and FR(16,W1)-

BLAST (I)
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6.4.3 256-QAM
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Figure 28 BER vs. EbNo of a 256-QAM Turbo MIMO Model Asso@dtwith
Various Soft Detectors, MMSE (a), V-BLAST (b), Ra&lued F-BLAST (c),
FR(9,S1)-BLAST (d), FR(9,52)-BLAST (e), FR(9,W2)-BST (f), FR(9,W1)-
BLAST (g), FR(16,51)-BLAST (h), FR(16,S2)-BLAST (iFR(16,W2)-BLAST

(i), and FR(16,W1)-BLAST (K)
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Figure 28 shows that the soft detectors presdmtesl have approximately
the same performance with respect to BER. Afterr fiverations, their BER
performance characteristics seem to have reacleetutho cliff limit. Figure 29
shows that for EbNo values less than 30 dB, thé¢ defectors provide very
similar results, but above 30 dB it is not clearickhone is better since
insufficient error statistics led to eratic and teminreliable behaviour of the BER
performance characteristic. Simulation times wendodunately become very
long (e.g. many days).

A simple soft MMSE detector seems to provide a BigiRormance very
close if not better than that of more complicatefl detectors, such as the family
of soft FR-BLAST detectors. We think that MMSE wittie current parameters
will benefit more from the effects of turbo decaogliiNevertheless, a simulation
study with more information bits might be requirtml accurately access the

performance of the different soft detectors fogéaEb/No values.
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2 —F—-ELAST

o jo°L | reabvalued FBLAST
a1 —&— FR(9,51 FBLAST
=] —+— FR(3,52) BLAST
=a]
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—— FR(3, W2} BLAST
*+ FR(16,51FBLAST
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E | ——FR{15W1 +BLAST
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f E
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EbNo EbNo
Figure 29 BER vs. EbNo (dB) of a 256-QAM Turbo MIMO Model A=sated

with Various Soft Detectors for: one iteration (@)d four iterations (b)



99

VII- Conclusions and Future Directions

7.1 Conclusions

New standards, such as LTE, require high-speedll samd power-
efficient devices at both ends of a radio commuioadink. This thesis presents
a new family of detectors that tries to meet tl@mend.

We first reviewed a detection scheme, F-BLAST,aibihas been proven
to give optimal performance for SNR values rangmagn O dB to 40 dB, in an
uncoded MIMO system. But due to its higher comportatl complexity, we
proposed and investigated a new family of deteqeRsBLAST) and a detection
scheme based on real-valued decomposition (reakdlaF-BLAST) that are
computationally efficient, near-optimal in term BER performance, and should
be of great interest for larger constellations. Thain idea being the use of
limited parallelism to improve the error rate penfance, and to reduce the
recovering time, for a device using such technique.

A study of the computational complexity of the posed detectors (FR-
BLAST and real-valued F-BLAST) and those foundhe titerature (MMSE, V-
BLAST, F-BLAST and ML), confirms that the real-veld F-BLAST scheme
requires fewer arithmetical operations (multiplioas and additions), but many
more reciprocals. Thanks to its parallelizable atrre, FR-BLAST does not
require many cycles even when using the target eandf 16 parallel
computational threads. Besides, theoretical armbfsows that the diversity order

of the new schemes is identical to that of MMSE &RBLAST, although the
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BER performance characteristic does not indicatd faehaviour at a relatively
high SNR region (up to 40 dB) when detecting lazgastellation signals such as
16-QAM, 64-QAM, 128-QAM and 256-QAM. Motivated bydse results, we
investigated the combination of the novel detecdohemes with a simple turbo
MIMO system without iterative exchange of infornoati between the soft
detector and the turbo decoder.

Unfortunately, the results obtained are not asmmimg for the new
detectors as for the transmission of uncoded indtion. We observed
remarkable performance for our soft detectorsdarelr than four iterations of the
turbo decoder when detecting 16-QAM and 64-QAM telietion signals. But
for 256-QAM constellation signals, and in genemlrore than four iterations, a
simple MMSE soft detector seems to be good enotajhthe proposed turbo
MIMO model. The effect of the Turbo Code dominaties performance of the
detectors.

At this point, further modifications and implematibns are to be
investigated to have a fair comparison of the warischemes presented for the

purpose of this work.
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7.2 Future Directions

Further investigation should focus on the turbdezbscheme and Low-
Density Parity Check (LDPC) since TCs and LDPC sagl® widely used in the
industry, and since they provide so much coding gaior for MMSE detectors.
The design of the interleavers and turbo encodeas are suitable for Successive
Interference Cancellation (SIC) systems, is of gmgarest. Also, since iterative
decoding has proven to have excellent performamicddtectors using the MMSE
criterion, one might consider investigating sudystem architecture. In addition,
in order to reduce the simulation time and to pmesesults that are suitable for
practical usage, an implementation on hardwareladse of an industrial

fading model with a simulated Gaussian noise geneshould be considered.
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Appendices

1.Minimum Mean SquareError (MMSE) Conditioning Matrix [14]

System model:

i

n
HG_){% Linear Detector |——s——>

=<
I
1
|
+
1>

T Or y=H"*s+n Or y'=g"*H +n" (1)

- yis the received noisy signal vector
- sis the transmitted signal vector
- nis an AWGN vector of lengtm

- §is the detected signal vector of length

H is the m-by-m channel matrix
The goal is to find a linear approximati§nof the transmitted symbol vectsr
given the received symbol vectgrsuch that:
§=G'*y+b (2
WhereG' andb are constants to be determined. The channel ntatisxassumed
to be known or perfectly estimated.

Py

Lete=s-§ the error vectod =G', and E{.} the expected value operator.
Me =ms-ms (3)
and from (2) and the linearity of the mean:

m=A*my+b (4)
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thus,

b=m;-A*my, (5)

Minimizing the error vector is equivalent to minimmg its mean, i.eme = 0, thus
ms- m; = 0, andms= m;. But by definitionms = my = 0, therefore
b=0-A*0=0 (6)
Consider the following equations:
€-Me =(s-§)— (Ms-A* my+Db)

s{msy) —A (y-my)

s —m,

e-m=ln A* [} | O
Ke=E{(e- m) (e-m)} (8)

From (7) and (8) we obtain:

Ke= Bl A" [5 o p(e -A [y— )3 @

DefineK as:
K=E §— m.]rs— m.y 10
- {b_ E}'] b_ E}'] b (10)

Sy 4
WhereK, ., K., andK, can be defined as:
Ky =K,. = E{(s-my * (y-m)"} (12)

Ky=E{(y-my* (y-m)"} (13)

Thus from (9), (10) and (11):
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K K
—_ _ * | —*% —5¥
ﬁe - [Im A_\-l |:K K .

[ . A"
K, K,
=[Ks-A*Ky) Kgy-A*Ky]*[Im ﬂH
TKe-A* Kys- Ky * A"+ A* Ky * AT
Ke=(A- Ko™ Ky * Ky * (A - (Ky " K)™)" + Ko - Koy ¥ Ky * Kis (14)
Becaus&Ks - K, * ﬁy'l * Kys is constant, MinimizindKe is equivalent to
minimizing A - Ks,* Ky * Ky * (A - (K, * Ky)™)", thus from (12) we obtain
the following equation:
(A-Ky* ﬁy-l) *Ky*(A- (ﬁy-l * ﬁyS)H)H =0
A=Kg* Kyt orA= Ky ¥ Ky)") (15)
From (4), (12) and E{ * n"} = 0 (the signal vector is independent from
the distributed noise)
K& =E{E-m*(y-my)")
=EE*(H *s+n"}
=Eg*s'*(H") +E{s * n"},
= Efs* ¢} * (H)"
=Ks* (HD" Ke= % I
Ky=0’s*(H)" (16)
Ky =E{(y-m)*(y-m)"
=E{H"*s+n)* (" *H+n)"}
=H"*E{s*&}* H +E{n*n"}, E{n*n"} = ¢’ * Im
Ky=o%*H *H +c%* 1, (17)
Finally, from (15), (16) and (17) we get :

A=c*HN)"* (% *H *H +6%* Im™* (18)
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With SNR =%/ 6%, (18) yield to
G=AT=(H"*H)"+(@/SNR) *Im)™*(H)")" (19
GiventhatA *B) =B"* A", (A*)" = A" and (H")")" =H", from (19), we
derivate the expression the MMSE conditioning magias:

G=@H"*H+(1/SNR)*Im)"*H"
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2. Statistical Study of the Family of FR-BLAST Firg Detected
layer [26]

Figure 11 shows that a significant improvement banachieved if the
detection starts on the right layer. The perforneaachieved by FR(Opt)-BLAST,
i.e., the optimal proposed detector which picks likst layer for each frame of
sample vectors, are clearly better than that offéineily of detectors. However
this decision is not trivial, thus we ran a statat study to define a decision
model.

The goal of this study was to build a statisticald@l to determine the best
starting layer for an FR-BLAST detector, basedlmn gize of the window search
W (9 or 16 are a typical values), the MIMO gain(typically 4 for this work), the
constellation sizeM (64-QAM constellation signal here), the norms othea
column of the channel matrk{, and the gains in the column ldfwith the largest
strength.

Several models (linear, quadratic, cubic, logarithrmnd exponential)
were studied, unfortunately the best model dertvdig the statistical analysis
tool (SPSS 18) was accurate only 25 % of the timieich can be seen as a
random decision for practical implementation.

The results are presented below:



> e.g. 1: result for the linear mod&= 9

Classification Result§*
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vi Predicted Predicted starting layg
’ 1 2 3 4 Total
Original Count 1 12805 20759 26498 31733 91795
2 12809 21333 26501 31791 92434
3 12597 21170 26647 32020f 92434
4 12742 21132 26469 32043 92386
% 1 13.9] 22.6/ 28.9 34.6) 100.0
2 13.9] 23.1] 28.7 34.4) 100.0
3 13.6| 229 288 34.6] 100.0
4 13.8] 229 28.7 34.7) 100.0
Cross-validatetl Count 1 12658 20808 26538 31791 91795
2 12839 21123 26599 31873 92434
3 12631 21272 26444 32087 92434
4 12817 21222 26537 31810 92386
% 1 13.8] 22.7] 28.9 34.6] 100.0
2 13.9] 229 28.8 34.5] 100.0
3 13.7 23.0] 28.6 34.7) 100.0
4 13.9] 23.0] 28.7 34.4) 100.0

b. 25.2% of original grouped cases correctly cfassi

c. 24.9% of cross-validated grouped cases correlzbsified.



» e.g. 2 : Result for the combined linear and quadrabdel,W=9

Classification Resultg*®

v10

Predicted starting layer

Total

Original Count 1

9824
9814
9723
9871

22078
22589
22333
22200

23623
23837
24059
23793

36270
36194
36319
36522

91795
92434
92434
92386

%

10.7
10.6
10.5
10.7

24.1
24.4
24.2
24.0

25.7
25.8
26.0
25.8

39.5
39.2
39.3
39.5

100.0
100.0
100.0
100.0

Cross-validatetd Count

9691
9837
9737
9933

22122
22385
22441
22260

23643
23946
23862
23858

36339
36266
36394
36335

91795
92434
92434
92386

%

A W ON PP WODN P PP O DN PPN

10.6
10.6
10.5
10.8

24.1
24.2
24.3
24.1

25.8
25.9
25.8
25.8

39.6
39.2
39.4
39.3

100.0
100.0
100.0
100.0

b. 25.2% of original grouped cases correctly cfaeski
c. 25.0% of cross-validated grouped cases correlzbsified.

114
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e.g. 3 : Result for the combined linear, quadratid logarithmic modelV = 16

Classification Resulté®

\1/ Predicted Group Membership
0 1 2 3 4 Total
Original Count 1 20236 43728 31797 23211 118972
2 20219 441701 31407 22785 118581
3 20152 43845 31743 23166 118904
4 19939 43447 31707 23258 118351
% 1 17.0 36.8 26.7) 195 100.0
2 17.1 37.2 26.5| 19.2 100.0
3 16.9 36.9 26.7) 195 100.0
4 16.8 36.7 26.8] 19.7 100.0
Cross-validatet Count 1 19768 43835 32051 23318 118972
2 20331 43960, 31474 22816 118581
3 20395 43933 31351 23227 118906
4 20037 43489 31765 23060 118351
% 1 16.6 36.8 269 19.6 100.0
2 17.1 37.1 26.5( 19.2 100.0
3 17.2 36.9 26.4f 195 100.0
4 16.9 36.7 26.8[ 19.5 100.0

b. 25.1% of original grouped cases correctly cfassi

c. 24.9% of cross-validated grouped cases correlzbsified.
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3. General Results for Basic Operations

1. Real-valued Operations

Leta; anda, denote two real numbers.

» Real number addition 1,fg:

a, + a requires one real addition and one cyclef;sel1 (+)andg, =1 (c),
i.e., one real-valued addition and one operatiamecyespectively.

» Real number multiplication »fg:
a1 * ap requires one real multiplication and one cyclef,sol (*)andg, =1 (c
).

» Real number reciprocal 3 6s:

1 /a;requires one real reciprocal and one cycldgsol (1N )andgs=1 (c).

» Square absolute value of a real number gf
[a1]? =a1* a; requires one real multiplication and one cyclefssol (*)
andg: =1 (c).

» mby-nreal-valued matrix addition s({n,n), gs(m,n):

Consider twom-by-n real-valued matriced = [g;] andB = [b;] with 0 <i <
m+ 1and 04 <n+ 1. Adding each element at théh row and thg-th column
of A, i.e., g fori = 1..mandj = 1...n, to the corresponding element
from B will requiren * mreal-valued additions, which could be performedrie
cycle on parallel hardware. Thus the real-valuedrimnaddition will requirem *
n* f1 operations and ong gycle. Thereforefs(m,n) =mn ( +)andgs(m,n) =

1 (c).
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» Addition of a set containing real numbers -n), gs(n):

Considering two real numbesas anda,, computing the sum of these numbers
will require one real addition and one cycle. Nafvwe have a set of three
numbers, we could first find the result from theli#dn of two of themadd;, and
then the result of the addition afld;, and the remaining number. Basically, such
a linear addition of a set ofreal numbers will requira - 1 real additions and -

1 cycles.

However there are more complicated, but fastee-i@sed element summing
algorithms for large sets of numbers. These algmstare of no benefit for small
sets.

Figure 1 illustrates the tree-based element summinogedure fom = 8.
Consider a set containing real numbersy...a,. Observe that the height of a
binary tree containingn elements in the leaves[lsg,n]. Note also that the
number of non-leaf nodes, which is the number dlitawhs, isn - 1 for a binary
tree withn leaf nodes. Therefore, fs(n) =n-1 (+)andgs(n) = [log, n]

(c).
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a; &g iy g

ar L] az ]

add(a; o) =add, addia,0)=add, addig:0)=add:  add(a..q)=odd,

N/

add(add .add;) = add; add(add;.add,) =add,

\

add(edd;.add;) = RESULT

S~

AN

n=_§
number of cvcles =3=|log, n|

number of real additions =7=n-1
Figure 1 Tree-based Summing Algorithm to Add All elementsiiBet of Siza

» Minimum of a set containing real numbers <{n), g:(n):

To find the minimum of two numbera; and a,, we first compute the
difference diff = a; - a. If diff > 0 then the minimum isy; otherwise, the
minimum is a. Now, if we have a seta{, a,, ag} containing three numbers, we
will first find the minimum of the first two of thre, min@, a;), and then the
minimum of mingy, a), and the remaining third numbay. It is straightforward
to determine that computing the minimum of a setta@mingn real numbers is
equivalent in computational complexity to addingether all the elements in a
set ofn real numbers. Therefore(r) = fg(n) and g(n) = gs(n). So,

fz(n)=n-1 (+)andgs(n) = [leg,n] (c).
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» Square norm of a real-valued column vector of lemgtfg(n), gs(n):

Considering a vector column pfelementd/ = (v4, Va..., Vn),

IMIIZ =102, Vouoo, V)IPP = Vaf? + W22 + .+
Computing \i|? requires 4§ operations andgcycles for each element
But these independent operations can be performgghiallel. Thus, for alh
components * f4 operations andsgycles will be needed. Computing the sum of
n squared absolute values will requirg(nf operations and ¢{n) cycles.
Therefore, computing the square norm ohaglement column vector requiras
f4+ fg(n) operations and,g gs(n) cycles. So,
fg(n) =n (*)andn-1 (+),andgs(n) =1 +[lag,n] (c).
» Multiplication of anm-by-p real-valued and p-by-n real-valued matrices
- fo(mn,p), G(mn,p): [29]
Considering amm-by-p and anp-by-n real-valued matrice = [ax] andB =
(b, with0<<m+1,0<j<m+land0<k<p+1.
Let, C=A*B=[¢gj],withO<i<m+land0g§<n+1
Cj = Xi=y @by,
Computingaik * by will require £ operations andxgycles. Thus for thp terms in
the sum, there will bp * f, operations and,gycles. The computation for at *
n product matrix coefficients will thus require * n * p * f, operations and,g

cycles.
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We also need to compute the sum of a sep ofal numbers for each
coefficient, which will require g(p) operations andep) cycles, for allm * n
matrix coefficients, s * n * fg(p) operations ande{p) cycles are required.

Therefore, computing the product of mrby-p real-valued matrix and @
by-n real-valued matrix will requiren* n* p * f,+ m* n * f4(p) operations and
%+ 06(p) cycles.
fo(m,n,p) =mnp (*)andmn(p-1) (+), and g(m,n,p) =1 +[leg,pl (c).

> Inverse of am-by-n real-valued matrix -1§(n), gio(n):
ConsideringA = [gj] forO<i<n+land0g<n+1.
Let B = A™. To deriveB, we will consider the Gauss-Jordan Matrix Invemsio
Method, which has the advantage of requiring fesyerations for large matrices
than LU decomposition [29].

Consider the augmented matri|[], with matrix A in the left side and the
identity matrix of sizen in the right side. By performing basic operatignse
row multiplied by a scalar, or one row replacedtbg original row minus a
multiple of another row [29]) between the rowsAofand the identity matrix, we
will transform [A|l] to [I|B], where the identity matrix is on the left side and
matrix B on the right side.

Thus, on one side of the augmented matrix, thestoamation will lead to
the identity matrix. So, we will only consider opgons on the other side, i.e., on
n coefficients rather than the 2h*coefficients of the augmented matrix.

Consider the operations on tiath row, i.e. R;:
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* First, we replac®; by R/ R, whereR; is thei-th coefficient on the-
th row. This will require § operations and sgcycles per element.
Considering maximum possible parallelism andandidatesn * f3
operations andsgcycles will be required.
* Next, we replace all the remaining rows-(1 in total) by R; * R +
R;. Here we are transforming theth row; this will require £
operations and .gcycles, then if operations and ;gcycles per
candidate. Thus considering full parallelismcandidates and - 1
rows,n * (n - 1) * (f; + fy) operations and (g+ @) cycles will be
required.
Therefore, forO € <n+ 1,
f1o(n) =n? (1N ), n®(n -1) (* ) andn?(n - 1) ( + ),andgio(n) = 3n ().
» Minimum Mean Square Error conditioning (MMSE) matiiom a Z-by-
2n real-valued channel matrix r;n,n), gi1(n,n) : [Appendix 1]
Note: For the purpose of this work, we are onlgiested in the equivalent real-
valued matrices built from complex-valued matricBs/en ann-by-n complex-

valued matrix C, the real-valued equivalent matrix isC® =

[real[g —imag[@}
imag(C) real(C) [

Thus, considering an-by-n complex-valued conditioning matrig, the
corresponding real-valued MMSE conditioning mat@{? is defined as follows:

® _ [real(G) —imag(G) _H L
© imag(G) real(G) , whereG = (C™ * C + (1/SNR) *I,))

CH
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ComputingH" from H will require no operations and no cycles.

It can be shown that the matrix prod@ * C is a symmetrical matrix.
So instead of computing aif coefficients, we do not need to compute th@ +
1) / 2 coefficients above the main diagonal. Thus tomputation will require
(n + 1) (1 - 1) real additions, r# (n + 1) real multiplications and 2 fog, ]
run cycles.

Computing ¥ SNR will require § operations andsgycles.

Computing 1 / SNR I, will require no operations and no cycles as it is
equivalent to replacing the diagonal elements, &y 1 / SNR.

ComputingC™ * C + 1 / SNR *1, will require n real additions and one
cycle as it is equivalent to an addition by a reahstant on all diagonal
coefficient ofC™ * C.

Computing C™ * C + (1 / SNR) *I,,)™* will require 1(n) operations and
021(n) cycles.

Again, due to the symmetrical product, computi@§ ¢ C + (1 / SNR) *
Iyt * C™ will require n (n + 1) (2 - 1) real additions, r# (n + 1) real
multiplications and 2 +log, n] run cycles.

Given the complex-valued conditioning matr®, we can build the real-
valued conditioning matrixg®, without further operations
Thereforef12(2n) =n*+ 1 (1N ), 4n*2n + 1) (*)andn[8n®-n - 1]( +),

andgii(2n) = 6 + h + 2[log,nl (c).
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» Minimum Mean Square Error (MMSE) conditioning matiiom anm-by-
n real-valued deflated channel matrixy(ifn,n), cio(m,n):
We will share computations from the calculation tbe initial MMSE
conditioning matrix.
ConsideringD, the n-by-m deflated version of thae-by-n channel matrix
H (m<n),
temp, = H" * H is the matrix whose coefficient on théh row and-th column is
hi" * h;, whereh; is thei-th column ofH. Thus, withtemp; = H" * H + 1/ SNR
* |,andtemp, = D" * D + 1 / SNR *I,,. Heretemp, is a deflated version of
temp,, and its computation requires no run time.
temp, is anm-by-m matrix, thustemp,* will require f,o(m) operations andig(m)
cycles
G = temp,* * D", with (m, p, n) = (M, m, n). ComputingG requires §(mm,n)
operations andg¢m,m,n) cycles.
Thereforef1(m,n) =m? (1N ) andm?(n + m- 1) (* )andm(m - 1)(m +n) (+),

andgio(m,n) = 3m + 1 +[log, n] (c).
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2. Complex-valued Operations
Let ¢c; andc, denote two complex numbers such that a;+ | * by andc, =a, + |
* by,

» Complex number addition 1£ g3
G +C=a+at|* (b +Dby)requires two real additions and one cycle.fgos 2
(+)andgis=1 (c).

» Complex number multiplication 14 g4
GQ*C=ar* a-bh*b+j*(ar* bo+ by * &) requires two real additions, four
real multiplications and two cycles. S, =2 (+)and4 (*),andgis=2 (c).

» Complex number reciprocal rsfgss:
1/ci=(a-j*b)/ (@’+bd) =a/(@’+b? -j* b/ (@a®+ b requires one
real addition, four real multiplications, one reatiprocal and four cycles. Sk
=1(IN),1(+)and4 (*),andgis=4 (c).

» Square absolute value of a complex numbey, ofs:
lcif? = a® + by? requires one real addition, two real multiplicaiand two cycles.
So, fie=2(*),1(+)andgis=2 (c).

» mby-n complex-valued matrix addition r-{m,n), g.-(m,n):

Considering twan-by-n complex-valued matrice& = [g;] andB = [b;] with
O0<i<m+ 1andO04g<n+1, adding the term in theh row and-th column of
A, i.e. g fori =1..mandj = 1..n, to the one fronB will require one complex-
valued addition. Because there ar& m elements in each matrix, the complex
matrix addition will requiren* n * f,, operations and;gcycles.

Thereforefi7(m,n) =2mn (+)andgiA(m,n) =1 (c).
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» Addition of a set containing complex numbers 14(n), gis(n):

In this case, the only difference with the realeeal computation is that we
are doing a group of complex additions, and thesiilmber of real additions will
be doubled.

Thereforefig(n) = 2n -2 (+)andgig(n) = [log,n] (c).
» Square norm of a complex-valued column vector iogtlen - f19(n),
Gue(n):

Considering a vector column ofelementd/ = (vi, V..., Vi),

VI =102, Vo, )[[P= Vaf + o2 + .o+
Computing |vi|? requires fs operations and ;g cycles. Thus, for all
dimensions * f15 operations and,;gcycles will be required.
Computing the sum omh squared absolute value will requirg(n)
operations anden) cycles.
Therefore, computing the square norm oh-alements column vector require
n*fi6+ fg(n) operations andig+ gs(n) cycles.
fio(n) =2n (*)and2n -1 (+),andgie(n) =2 +[leg,n] (c).
» Multiplication of anm-by-p complex-valued matrix by by-n complex-
valued matrix - f,(m,n,p), eo(m,n,p): [29]
Consider anm-by-p complex-valued matrix and p-by-n complex-valued
matrix A =[aw] andB =[by], withO<i<m+1,0<j<m+1land 0 k<p+
1.

LetC=A*B=[gj],withO<i<m+landO0g<n+1

P
Gj = Ek:j_ﬂikékj'
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Computingai * by will require 4 operations and,gcycles. Thus for the
p-th terms in the sum, there will be * f,4 operations and g cycles. The
computation for allm * n matrix coefficients will requirem * n * p * fi4
operations andigcycles.

We also need to compute the sum of a sep @omplex numbers for each
coefficient, which will requiresi(p) operations andig(p) cycles. Thus for aiin *
n matrix coefficientsm * n * f15(p) operations andg(p) cycles are required.
Therefore, computing the product of mrby-p and ap-by-n matrices will require
m* n* p*fiu+ m*n*fig(p) operations andig+ f14(p) cycles.
foo(m,n,p) = dmnp (*) andmn(4p - 2) (+ ) andgzo(m,n,p) = 2 +[leg,pl (C
).

> Inverse of am-by-n complex-valued matrix -f(n), gi(n): [29]

ConsiderA =[gj] forO<i<n+land 094 <n+1.
Let B = A™. To deriveB, we will once again consider the Gauss-Jordan iMatr
Inversion Method.

Let putA in the left side and the identity matrix of sizén the right side
of the augmented matriA[l]. By operating basic operations (one multipliedaby
scalar or one row replaced by the original row maiaumultiple of another row
[29]) between the rows & and the identity matrix, we will obtain the augrtesh
matrix [I|B] which has the identity matrix on the left sidedamatrix B on the

right side.
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Thus, on one side of the augmented matrix, thestoamation will lead to
the identity matrix. So, we will only consider opgons on the other side, i.e., on
n coefficients rather than the 2n*coefficients of the augmented matrix.

Consider the operations on tiath row, i.e. R;:

* First, we replac® by Ri/ Ri, whereR; is thei-th coefficient on the-
th row. This will require {5 operations andig cycles per candidate.
Considering maximum possible parallelism andandidatesn * fis
operations andigcycles will be required.

* Next, we replace all the remaining rows-(1 in total) by -R; * R+
R. Here we are transforming theth row; this will require {,
operations and g cycles, then ;& operations and 1g cycles per
candidate. Thus considering full parallelismcandidates and - 1
rows,n * (n - 1) * (fi4 + f13) operations and (g+ ti3) cycles will be
required.

Therefore,0 4 <n+1,
fa(n) =n? (IN), 4n® (*)andn?® (4n - 3) (+)andgzi(n) = 7n (c).
» Minimum Mean Square Error conditioning matrix fr@amn-by-n

complex-valued channel matrix»fh), g2(n): [Appendix 1]

Refering to the computation of a real-valued MM®MEditioning matrix,
fao(n) =N+ 1 (1N), 4n*2n +1) (*)andn(@n®-n-1) (+)

andgx(n) =6+ 7 *n+ 2 * [log,n] (c).
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» Minimum Mean Square Error conditioning matrix framm-by-n

complex-valued deflated channel matrix(rn,n), gs(m,n):

We will share computations from the calculationtiee initial MMSE
conditioning matrix.
ConsiderindD, them-by-n deflated version of thexby-m channel matriXd (n <
m),
temp; = ﬂH * H is the matrix whose coefficient on théh row and-th column is
hi" * h;, whereh; is thei-th column ofH. Thus,temp; = H" * H + 1/ SNR *I,,
andtemp, = D™"* D+ 1/ SNR *I .
It can be shown thdaemp, is a deflated version démp;, thus it will require no
run time.
temp, is anm-by-m matrix, thustemp,™* will require f1(m) operations and,g(m)
cycles
G = temp* * D", with (m, p, n) = (m, m, n), so computinds requires f(m,m,n)
operations and,g(m,m,n) cycles.
Thereforefo3(m,n) = m? (AN ), 4m*(n + m) (*) andn[4m?- 3m + 4mn - 2n] (
+),

andga(m,n) =7m + 2 +[log,m| (c).



4. Matlab Scripts for the Hard Detectors

1- Main Function (Complex-Valued Detection)
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% This program was written by Arsene Pankeu Yomi, U
Alberta

% It was designed in order to evaluate the SER of d
detectors

% in a typical Rayleigh channel; with the help of A

% and Fouladi Fard in the begining.

niversity of
ifferent MIMO

mir Alimohammad

% === —=====

clear;clc;close all;
%%%% attention 'save' and ‘change' the name of the

%%%% FR-BLAST will work only for 64Q 128Q and 256Q

% the search set for constellation greater than
provided
%%%% QAM from modulation is not valid for 128-QAM

% main parameters

NumbBlock = 10"4; % each block contains 2 * Cons
% * NUmb

a block
% samples

Calcsc =0; %1->SER 0->BER

ModSc =2; % 1->16-gam 2->64-gam 3->128-
% 4->256-qam 5->512-gam 6->1024

N =4; % number of antennas; n_t=n_r=
NumFramelnABlock = 10;

MaxSnr =40;

MinSnr  =0;

StepSnr =2; % 1 or 2 e.g: stepSnr=2 --[MinSnr
MinSnr+2...]

SnrDb = MinSnr:StepSnr:MaxSnr;
SNR =10.M(SnrDb/10);
LSnr  =length(SNR);

% The minimum # of error is the same for all or dec
increases

% MatOfErrs=100*[1.5.5.4.4.3.3
.09 .08 .08 .07 .07 .06 .06 .05 .05.04 .0
0.01];

MatOfErrs = 100000 * ones(1,MaxSnr + 1);

.2.2.15
4 .03 .03

% Launch detection

% '1' In order to launch detection scheme otherwise
DoMIDetect =0; % Maximum Likelihood detec
DoMmseDetect =1; % MMSE detector
DoVBlastDetect =1; % V-BLAST detector

saved data

256Q is not

tellationSize
er of frame in

gam
-gam

, MinSnr+1,

reases as SNR

.15.1.1.09
.02 0.02 0.01

tor



DoFBlastDetect =0; % F-BLAST detector; starti
indicated below

DoFRBlastDetect =0; % FR-BLAST,; starting layer
below

SizeOfSphere =9; % number of symbol in the

% Initialization of SER
if (DoMIDetect == 1)

if (CalcSc == 1)
SerMl = zeros(1,LSnr);
else
BerMl = zeros(1,LSnr);
end
end

if (DoMmseDetect == 1)

if (CalcSc ==1)
SerMmse = zeros(1,LSnr);
else
BerMmse = zeros(1,LSnr);
end
end

if (DoVBlastDetect == 1)

if (CalcSc == 1)
SerVBlast = zeros(1,LSnr);
else
BerVBlast = zeros(1,LSnr);
end
end

if (DoFBlastDetect == 1)

if (CalcSc ==1)
SerFBlast = zeros(1,LSnr);
else
BerFBlast = zeros(1,LSnr);
end
end

if (DoFRBlastDetect == 1)

if (CalcSc == 1)

SerFRBlast = zeros(1,LSnr);
else

BerFRBlast = zeros(1,LSnr);
end

end

ng layer
indicated

search space
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%%%% %% %% %% %% %% % % %% % %% %% % %% %% %% % %% %0 %% %% %% %% % %0 % % %% %
% Symbol Matrix, Constant and sample generation %

%%%% %% %% %% %% %% % % %% % %% %% %0 % %% % %% % %% %0 %% %% %% %% % %0 % % %% %
[SymbMat SignalVar ConstSize NumbBitPerPt StatMat] =
Modulation(NumFramelnABlock,NumbBlock,N,ModSc);

[TotNumOfSamplelnABlock FrameSize SentSymb] =
SampGen(NumFramelnABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa

t);

%6%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %%
% Computation of SER for various detector %

%6%%%%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %%
for snr = 1:LSnr

MinNoErrs = MatOfErrs(SnrDb(snr) + 1);
NoiseVar = (N * SignalVar) / SNR(snr) ;
if (DoMIDetect == 1)
NumbErrMI = 0;
end

if (DoMmseDetect == 1)
NumbErrMmse =0;
end

if (DoVBlastDetect == 1)
NumbErrVBlast = 0;
end

if (DoFBlastDetect == 1)
NumbErrFBlast = 0;
end

if (DoFRBlastDetect == 1)
NumbErrFRBIlast = 0;

end

Continue =1,

BlockCntr =0;

% the following line counts the number of block used for the

current snr and verifies that MinNoErrs had been re ached

while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))
Continue =0;
ContinueMI =0;
ContinueMmse =0;

ContinueVBlast =0;
ContinueFBlast =0;
ContinueFRBlast =0;

BlockCntr = BlockCntr + 1;

% channel generation
MIMOchResponse = zeros(N,N,TotNumOfSam pleInABlock);



for ii = 1:NumFramelnABlock
% generating CHANNEL
H = (randn(N) + i*randn(N)) * sqrt(0
foriil = 1:N
forii2 = 1:N
MIMOchResponse(iil, ii2, (1+(
1)*FrameSize:ii*FrameSize)) = H(iil, ii2); % one ch
per frame
end
end
end

% block of frames
Block = SentSymb(:,(1+TotNumOfSamplelnABI
1)):(BlockCntr*TotNumOfSamplelnABlock));

for frameCntr = 1:NumFramelnABlock

%0%%%%%%% %% %
% Channel %
%%%%%% %% %% %

H = MIMOchResponse(;, :, 1+(frame
1)*FrameSize);
N =

sqrt(0.5)*(r_andn(N ,FrameSize)+i*randn(N,FrameSize))

W = N_*sqgrt(NoiseVar);

% S is the current frame

S = Block(:;,1+FrameSize*(frameCnt
1):frameCntr*FrameSize);

Y = zeros(N, FrameSize);

for ii = 1:FrameSize

% Y=H*S+W

Y(;,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi
W(,ii);

end

%%%%%%%% %% % %% % %% %% %% %
% Detection process %
%%%%%%%% %% % %% % %% %% %% %

% MMSE matrix
G =inv(H' *H + (1 / SNR(snr)) * eye
[SortedLayer IndMI] = SortCol(H,N);

%%%% ML detection %%%%
if (DoMIDetect == 1)
for vectorCntr = 1:FrameSize
[YMI] =
MI(H,ConstSize,N,Y (:,vectorCntr),SymbMat);
% error calculation
if (CalcSc ==1)
[YMIDetect] = Ser(YMI,S(:,v

else
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5);

ii-
annel response

ock*(BlockCntr-

Cntr-

ze) * S(;,ii) +

(N)) * H5

ectorCntr));



[YMIDetect] =
Ber(ConstSize,N,YMI,SymbMat,S(:,vectorCntr));
end
% counts the number of symbol
the block
NumbErrMI = NumbErMI +Y
end
if (NumbErrMI < MinNoErrs)
ContinueMI = 1;
else
ContinueMI = 0;
end
end

2%%%% MMSE detection %%%%
if (DoMmseDetect == 1)
for vectorCntr = 1:FrameSize
[YMmse] =
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);
% error calculation

if (CalcSc == 1)
[MmseDetect] = Ser(YMmse,S(
else
[MmseDetect] =
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));
end
% counts the number of symbo
the block
NumbErrMmse = NumbErrMmse
end
if (NumbErrMmse < MinNoErrs)
ContinueMmse = 1;
else
ContinueMmse = 0;
end
end

%%%% V-BLAST detection %%%%
if (DoVBlastDetect == 1)
for vectorCntr = 1:FrameSize
% initialize position of the

symbols
Pos = 1:N;
% initialize detected symbol
YVB = zeros(N,1);
[YVBlast] =

VBIlast(H,ConstSize,N,Y(;,vectorCntr),SymbMat,Pos,YV
% error calculation
if (CalcSc == 1)
[VBlastDetect] =
Ser(YVBlast,S(;,vectorCntr));
else
[VBlastDetect] =
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));
end
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undetected

vector

B,SNR,snr);



% Counts the number of symbol
the block
NumbErrVBlast = NumbErrVBI
VBlastDetect;
end
if (NumbErrVBlast < MinNoErrs)
ContinueVBlast = 1;
else
ContinueVBlast = 0;
end
end

%%%% F-BLAST detection %%%%
if (DoFBlastDetect == 1)
for vectorCntr = 1:FrameSize
[YFBlast] =
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted
r;
% error calculation
if (CalcSc == 1)
[FBlastDetect] =
Ser(YFBlast,S(;,vectorCntr));
else
[FBlastDetect] =
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));
end
% Counts the number of symbol
the block
NumbErrFBlast = NumbErrFBlI
FBlastDetect;
end
if (NumbErrFBlast < MinNoErrs)
ContinueFBlast = 1;
else
ContinueFBlast = 0;
end
end

%%%% FR-BLAST detection %%%%
if (DoFRBlastDetect == 1)
for vectorCntr = 1:FrameSize
[YFRBIlast] =
FRBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,G,Sor
,snr,SizeOfSphere,StatMat);
% error calculation
if (CalcSc == 1)
[FRBlastDetect] =
Ser(YFRBIlast,S(:,vectorCntr));
else
[FRBlastDetect] =
Ber(ConstSize,N,YFRBIlast,SymbMat,S(:,vectorCntr));
end
% Counts the number of symbo
the block
NumbErrFRBIlast = NumbErrFR
FRBlastDetect;
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end
if (NumbErrFRBIlast < MIinNoErrs)
ContinueFRBlast =1;
else
ContinueFRBlast = 0;
end
end

end % end frameCntr

Intermediate = ContinueMI| + ContinueMmse +
ContinueVBlast + ContinueFBlast + ContinueFRBlast;
if (Intermediate == 0)

Continue = 0;
else

Continue = 1;
end

end % while continue

%6%%%6%% %% % %% % %% % %% % %69 % %% % %% % %% % %% % %% % %% % %% % %% %
% SER computation for the current snr value %

% to be print on the screen %

%6%%%6%% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% %

clc;
if DoMIDetect,
if (CalcSc == 1)
SerMl(snr) = NumbErrMI / BlockCntr / Fram eSize /
NumFramelnABlock / N
else
BerMl(snr) = NumbErrMI / BlockCntr / Fram eSize /
NumFramelnABlock / N / NumbBitPerPt
end
end

if DoMmseDetect,

if (CalcSc == 1)
SerMmse(snr) = NumbErrMmse / BlockCntr / FrameSize /
NumFramelnABlock / N
else
BerMmse(snr) = NumbErrMmse / BlockCntr / FrameSize /
NumFramelnABlock / N / NumbBitPerPt
end
end

if DoVBlastDetect,
if (CalcSc == 1)
SerVBlast(snr) = NumbErrVBlast / BlockCnt r / FrameSize /
NumFramelnABlock / N
else
BerVBlast(snr) = NumbErrVBlast / BlockCnt r / FrameSize /
NumFramelnABlock / N / NumbBitPerPt
end
end



if DoFBlastDetect,
if (CalcSc ==1)
SerFBlast(snr) = NumbErrFBlast / BlockCnt
NumFramelnABlock / N
else
BerFBlast(snr) = NumbErrFBlast / BlockCnt
NumFramelnABlock / N / NumbBitPerPt
end
end

if DoFRBIlastDetect,
if (CalcSc == 1)
SerFRBIlast(snr) = NumbErrFRBIlast / BlockC
/ NumFramelnABlock / N
else
BerFRBlast(snr) = NumbErrFRBIast / BlockC
/ NumFramelnABlock / N / NumbBitPerPt
end
end

% change the name of the saved data in order to avo

%%Ser
%save('SavedData','SerMI','SerMmse','SerVBlast','Se
Blast’)

%Ber

save('SavedData_ MMSE_VB_B10000_E50000','BerMmse’,'B

end % end for snr

%%%%%% %% %% %% %% %% %% % %%
% SER semilogy Plot %
%%%%%% %% %% %% %% %% %% % %%

%%%% remove unlaunched detection !!!
if (CalcSc ==1)
figure(1)
semilogy(SnrDb,SerMmse,'--,.SnrDb,SerVBlast, -
",SnrDb,SerFRBIlast,'0-',SnrDb,SerFBlast,'+-");
% enter proper constellation size
title('SER For Various Detectors M=64";
% enter proper search space size and starting |
legend(MMSE','V-BLAST','FR-BLAST W=9 L=1",'F-B
xlabel('SNR, dB");
ylabel('SER");
else
figure(1)
semilogy(SnrDb,BerMmse,'--',SnrDb,BerVBIlast, *-
",SnrDb,BerFRBlast,'o-',SnrDb,BerFBlast,'+-");
% enter proper constellation size
title('BER For Various Detectors M=64');
% enter proper search space size and starting |
legend(MMSE','V-BLAST','FR-BLAST W=9 L=1",'F-B
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r / FrameSize /

r / FrameSize /

ntr / FrameSize

ntr / FrameSize

id confusion

rFBlast’,'SerFR

erVBlast')

ayer
LAST L=1";

ayer
LAST L=1');



xlabel('SNR, dB");
ylabel('BER");
end

2- Main Function (Real-Valued) Detection
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% This program was written by Arsene Pankeu Yomi, U

Alberta

% It was designed in order to evaluate the SER of d
detectors

% in a typical Rayleigh channel; with the help of A
% and Fouladi Fard in the begining.

niversity of
ifferent MIMO

mir Alimohammad

% === ======

clear;clc;close all;
%%%% attention 'save' and 'change' the name of the
%%%% will work only for 16Q 64Q 128Q and 256Q

% main parameters
NumbBlock = 10"4; % each block contains 2 * Co

% * NUmb
a block
% samples
CalcSc =0; %1->SER 0->BER
ModSc =1; % 1->16-gam 2->64-qam 3->25
gam
N =4; % number of antennas; n_t=n_r

NumFramelnABlock = 10;

MaxSnr  =40;

MinSnr  =0;

StepSnr  =2; % 1 or 2 e.g: stepSnr=2 --[MinSnr
MinSnr+2...]

SnrDb = MinSnr:StepSnr:MaxSnr;
SNR =10.~(SnrDb/10);
LSnr = length(SNR);

% The minimum # of error is the same for all or dec
increases

% MatOfErrs=100*[1.5.5.4.4.3.3
.09 .08 .08 .07 .07 .06 .06 .05 .05 .04 .0
0.01];

MatOfErrs = 25000 * ones(1,MaxSnr + 1);

.2.2.15
4 .03 .03

% Launch detection
% '1' In order to launch detection scheme otherwise

% Complex detection
DoMmseDetect =1; % MMSE detector
DoVBlastDetect =1; % V-BLAST detector

saved data

nstellationSize
er of frame in

6-gam 4->1024-

=N

, MinSnr+1,

reases as SNR

.15.1.1.09
.02 0.02 0.01



DoFBlastDetect =1; % F-BLAST detector; st
be indicated below

% Real detection

DoRealMmseDetect =1; % MMSE detector
DoRealVBlastDetect =1; % V-BLAST detector
DoRealFBlastDetect =1; % F-BLAST detector; st
be indicated below

% Initialization of SER

if (DoMmseDetect == 1)

if (CalcSc == 1)
SerMmse = zeros(1,LSnr);
else
BerMmse = zeros(1,LSnr);
end
end

if (DoVBlastDetect == 1)

if (CalcSc == 1)
SerVBlast = zeros(1,LSnr);
else
BerVBlast = zeros(1,LSnr);
end
end

if (DoFBlastDetect == 1)

if (CalcSc == 1)
SerFBlast = zeros(1,LSnr);
else
BerFBlast = zeros(1,LSnr);
end
end

if (DoRealMmseDetect == 1)

if (CalcSc == 1)
SerRealMmse = zeros(1,LSnr);
else
BerRealMmse = zeros(1,LSnr);
end
end

if (DoRealVBlastDetect == 1)

if (CalcSc == 1)
SerRealVBlast = zeros(1,LSnr);
else
BerRealVBlast = zeros(1,LSnr);
end
end

if (DoRealFBlastDetect == 1)
if (CalcSc == 1)
SerRealFBlast = zeros(1,LSnr);
else

arting layer to

arting layer to
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BerRealFBlast = zeros(1,LSnr);
end
end

%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %%
% Symbol Matrix, Constant and sample generation %
%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
[SymbMat SignalVar ConstSize NumbBitPerPt Motif Rea IConstSize] =
Modulation(NumFramelnABlock,NumbBlock,N,ModSc);

[TotNumOfSamplelnABlock FrameSize SentSymb] =
SampGen(NumFramelnABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa

t);

%6%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
% Computation of SER for various detector %
%6%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %
for snr = 1:LSnr

MinNoErrs = MatOfErrs(SnrDb(snr) + 1);

NoiseVar = (N * SignalVar) / SNR(snr) ;

if (DoMmseDetect == 1)
NumbErrMmse =0;
end

if (DoVBlastDetect == 1)
NumbErrVBlast =0;
end

if (DoFBlastDetect == 1)
NumbErrFBlast =0;
end

if (DoRealMmseDetect == 1)
NumbErrRealMmse =0;
end

if (DoRealVBlastDetect == 1)
NumbErrRealVBlast = 0;
end

if (DoRealFBlastDetect == 1)
NumbErrRealFBlast = 0;

end

Continue =1,

BlockCntr =0;

% the following line counts the number of block used for the

current snr and verifies that MinNoErrs had been re ached

while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))
Continue =0;
ContinueMmse =0;

ContinueVBlast =0;



ContinueFBlast =0;
ContinueRealMmse =0;
ContinueRealVBlast =0;
ContinueRealFBlast = 0;

BlockCntr = BlockCntr + 1;

% channel generation
MIMOchResponse = zeros(N,N,TotNumOfSam
for ii = 1:NumFramelnABlock
% generating CHANNEL
H = (randn(N) + i*randn(N)) * sqrt(0
foriil = 1:N
forii2 = 1:N
MIMOchResponse(iil, ii2, (1+(
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch
per frame
end
end
end

% block of frames
Block = SentSymb(:,(1+TotNumOfSamplelnABI
1)):(BlockCntr*TotNumOfSamplelnABlock));

for frameCntr = 1:NumFramelnABlock

%0%%%%%%% %% %
% Channel %
%%%%%% %% %% %

% complex value

H = MIMOchResponse(;, :, 1+(frameCn
1)*FrameSize);

N =
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize))

W = N_*sqrt(NoiseVar);

% S is the current frame

S = Block(:,1+FrameSize*(frameCntr-
1):frameCntr*FrameSize);

Y =zeros(N, FrameSize);

for ii = 1:FrameSize

% Y=H*S+W

Y (;,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi
W(,ii);

end

% real value

RealH = [real(H) -imag(H);im

RealY = zeros(2*N, FrameSize
RealS = zeros(2*N, FrameSize
RealwW = zeros(2*N, FrameSize

for ii = 1:FrameSize
TempRealY = zeros(N, FrameSize);

pleInABlock);

5);

ii-
annel response

ock*(BlockCntr-

tr-

ze) * S(;,ii) +

ag(H) real(H)];
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TemplmagY = zeros(N, FrameSize);
TempRealS = zeros(N, FrameSize);
TemplmagS = zeros(N, FrameSize);
TempRealW = zeros(N, FrameSize);
TemplmagW = zeros(N, FrameSize);

for hh = 1:N
TempRealY (hh,ii) = real(Y(hh, i));
Templmagy (hh,ii) = imag(Y(hh, i));
TempRealS(hh,ii) = real(S(hh, i));
TemplmagS(hh,ii) = imag(S(hh, i));
TempRealW(hh,ii) = real(W(hh, i));
TemplmagW/(hh,ii) = imag(W(hh, i));

end

RealY(:,ii) = [TempRealY(.,ii);Te mplmagy (.,ii)];

RealS(:,ii) = [TempRealS(.,ii);Te mplmagS(;,ii)];

RealW(:,ii) = [TempRealW(:,ii);Te mplmagW(:,ii)];

end

%%%6%%%%6% %% % %% % %% % %% %%
% Detection process %
%%%6%%%%6% %% % %% % %% % %% %%

% MMSE matrix

% complex value
G =inv(H' *H + (1 / SNR(snr)) * eye (N)) * HY
[SortedLayer IndMI] = SortCol(H,N);

% real value
RealG = inv(RealH' * RealH + (1 / SNR(snr )) * eye(2*N))
* RealH";
[RealSortedLayer ReallndMI] = SortCol (RealH,2*N);

%%%% MMSE detection %%%%
if (DoMmseDetect == 1)
for vectorCntr = 1:FrameSize
[YMmse] =
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);
% error calculation

if (CalcSc == 1)
[MmseDetect] = Ser(YMmse,S( ;,vectorCntr));
else
[MmseDetect] =
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));
end
% counts the number of symbo [in errorin
the block
NumbErrMmse = NumbErrMmse + MmseDetect;
end

if (NumbErrMmse < MinNoErrs)
ContinueMmse = 1;
else



ContinueMmse = 0;
end
end

%%%% V-BLAST detection %%%%
if (DoVBlastDetect == 1)
for vectorCntr = 1:FrameSize
% initialize position of the

symbols
Pos = 1:N;
% initialize detected symbol
YVB = zeros(N,1);
[YVBlast] =

VBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Pos,YV
% error calculation

if (CalcSc ==1)
[VBlastDetect] =
Ser(YVBlast,S(;,vectorCntr));
else
[VBlastDetect] =
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));
end

% Counts the number of symbol
the block
NumbErrVBlast = NumbErrVBI
VBlastDetect;
end
if (NumbErrVBlast < MinNoErrs)
ContinueVBlast = 1;
else
ContinueVBlast = 0;
end
end

%%%% F-BLAST detection %%%%
if (DoFBlastDetect == 1)
for vectorCntr = 1:FrameSize
[YFBlast] =
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted
;

% error calculation

if (CalcSc ==1)
[FBlastDetect] =
Ser(YFBlast,S(;,vectorCntr));
else
[FBlastDetect] =
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));
end

% Counts the number of symbol
the block
NumbErrFBlast = NumbErrFBI
FBlastDetect;
end
if (NumbErrFBlast < MinNoETrrs)
ContinueFBlast = 1;
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else
ContinueFBlast = 0;
end
end

%%%% REAL MMSE detection %%%%
if (DoRealMmseDetect == 1)
for vectorCntr = 1:FrameSize
[RealYMmse] =

Mmse(RealConstSize,2*N,Real Y (:,vectorCntr),Motif,Re

% complex transformation
YReal = zeros(N,1);
forii= 1:N
YReal(ii) = RealYMmse(ii)+
RealYMmse(N+ii);
end

% error calculation
if (CalcSc ==1)
[RealMmseDetect] =
Ser(YReal,S(:,vectorCntr));
else
[RealMmseDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));
end
% counts the number of symbo
the block
NumbErrRealMmse = NumbErrRe
RealMmseDetect;
end
if (NumbErrRealMmse < MinNoOErTs)
ContinueRealMmse = 1,
else
ContinueRealMmse = 0;
end
end

%%%% REAL V-BLAST detection %%%%
if (DoRealVBlastDetect == 1)
for vectorCntr = 1:FrameSize
% initialize position of the

symbols
Pos = 1:2*N;
% initialize detected symbol
YVB = zeros(2*N,1);
[RealYVBlast] =

VBlast(RealH,RealConstSize,2*N,RealY(;,vectorCntr),
NR,snr);

% complex transformation
YReal = zeros(N,1);
forii= 1:N
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YReal(ii) = RealYVBIlast(ii)
RealYVBIlast(N+ii);
end

% error calculation
if (CalcSc ==1)
[RealVBlastDetect] =
Ser(YReal,S(:,vectorCntr));
else
[RealVBlastDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(;,vectorCntr));
end
% Counts the number of symbol
the block
NumbErrRealVBlast = NumbErrRealVB
RealVBlastDetect;
end
if (NumbErrRealVBlast < MinNoErrs
ContinueRealVBlast = 1;
else
ContinueRealVBlast = 0;
end
end

%%%% REAL F-BLAST detection %%%%
if (DoRealFBlastDetect == 1)
for vectorCntr = 1:FrameSize
[RealYFBlast] =

FBlast(RealH,RealConstSize,2*N,RealY (;,vectorCntr),

dLayer(1),SNR,snr);

% complex transformation
YReal = zeros(N,1);
forii= 1:N
YReal(ii) = Real YFBlast(ii)
RealYFBlast(N+ii);
end

% error calculation
if (CalcSc ==1)
[RealFBlastDetect] =
Ser(YReal,S(:,vectorCntr));
else
[RealFBlastDetect] =
Ber(ConstSize,N,YReal,SymbMat,S(;,vectorCntr));
end
% Counts the number of symbol
the block
NumbErrRealFBlast = NumbErrRealFB
RealFBlastDetect;
end
if (NumbErrRealFBlast < MinNoErrs
ContinueRealFBlast = 1;
else
ContinueRealFBlast = 0;
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end
end

end % end frameCntr

Intermediate = ContinueMmse + ContinueVBI
ContinueFBlast + ContinueRealVBlast + ContinueRealF
ContinueRealMmse;

if (Intermediate == 0)

Continue = 0;
else

Continue = 1;
end

end % while continue
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%%%%% %% % %%%% % %% %% % %% %% % %% %% % %% %% % %% % %% %% % %% %%

% SER computation for the current snr value %
% to be print on the screen %

%% %%%%%%% %% %% %% %% % %% %% %% % %% %% % %% %% % %% %% % %% %% %

clc;
if DoMmseDetect,
if (CalcSc == 1)
SerMmse(snr) = NumbErrMmse / BlockC
/ NumFramelnABlock / N
else
BerMmse(snr) = NumbErrMmse / BlockC
/ NumFramelnABlock / N / NumbBitPerPt
end
end

if DoVBlastDetect,

if (CalcSc ==1)
SerVBlast(snr) = NumbErrVBIlast / Bloc
FrameSize / NumFramelnABlock / N
else
BerVBlast(snr) = NumbErrVBIlast / Bloc
FrameSize / NumFramelnABlock / N / NumbBitPerPt
end
end

if DoFBlastDetect,

if (CalcSc == 1)
SerFBlast(snr) = NumbErrFBlast / Bloc
FrameSize / NumFramelnABlock / N
else
BerFBlast(snr) = NumbErrFBlast / Bloc
FrameSize / NumFramelnABlock / N / NumbBitPerPt
end
end

if DoRealMmseDetect,

ntr / FrameSize

ntr / FrameSize

kCntr /

kCntr /

kCntr /

kCntr /



if (CalcSc == 1)
SerRealMmse(snr) = NumbErrRealMmse / B
FrameSize / NumFramelnABlock / N
else
BerRealMmse(snr) = NumbErrRealMmse / Bl
FrameSize / NumFramelnABlock / N / NumbBitPerPt
end
end

if DoRealVBlastDetect,
if (CalcSc == 1)
SerRealVBlast(snr) = NumbErrRealVBlast /
FrameSize / NumFramelnABlock / N
else
BerRealVBlast(snr) = NumbErrRealVBlast /
FrameSize / NumFramelnABlock / N / NumbBitPerPt
end
end

if DoRealFBlastDetect,
if (CalcSc == 1)
SerRealFBlast(snr) = NumbErrRealFBlast /
FrameSize / NumFramelnABlock / N
else
BerRealFBlast(snr) = NumbErrRealFBlast /
FrameSize / NumFramelnABlock / N / NumbBitPerPt
end
end

% change the name of the saved data in order to avo

%%Ser
%save('SavedData','SerMmse','SerVBIlast','SerFBlast'
'SerRealVBlast','SerRealFBlast')

%Ber
save('SavedData','BerMmse’,'BerVBlast','BerFBlast’,
BerRealVBlast','BerRealFBlast’)

end % end for snr

%%%% %% %% %% %% %% %% %% % %%
% SER semilogy Plot %
%%%% %% %% %% %% %% %% %% % %%

%%%% remove unlaunched detection !!!
if (CalcSc == 1)
figure(1)
semilogy(SnrDb,SerMmse,'--,SnrDb,SerRealMmse,’
",SnrDb,SerRealVBlast,'o-',SnrDb,SerVBlast,'+-
',SnrDb,SerRealFBlast,'s-',SnrDb,SerFBlast,*-";
% enter proper constellation size
title('SER For Various Detectors M=64');

legend(MMSE','REAL MMSE','/REAL V-BLAST','V-BLA

BLAST','F-BLAST");
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xlabel('SNR, dB");

ylabel('SER");
else

figure(1)

semilogy(SnrDb,BerMmse,'--',.SnrDb,BerRealMmse,’ -
",SnrDb,BerRealVBlast,'o-',SnrDb,BerVBlast,'+-
',SnrDb,BerRealFBlast,'s-',SnrDb,BerFBlast,*-";

% enter proper constellation size

title('BER For Various Detectors M=64');

legend(MMSE','REAL MMSE','/REAL V-BLAST','V-BLA ST''REAL F-
BLAST','F-BLAST");

xlabel('SNR, dB");

ylabel('BER");
end
3- SER
function [Error] = Ser(E,Q)
% This function returns number of Symbol in error i n detected
symbol vector
% Usage:
% [YMmse] = Ser(E,F,G)
% Input:
% E = noisy transmitted vector Y
% Q = transmitted vector S
% Output:
% Error : number of symbol in error

Error = nnz(E - Q);

end

4- BER

function [Er] = Ber(b,c,E,F,Q)

% This function returns number of bit in error in d etected symbol
vector

% Usage:

% [Er] = Ber(b,c,E,F,Q)

% Input:

% ¢ = number of receiver antennas (same as
transmitter)

% b = constellation size

% E = noisy transmitted vector Y

% F = matrice of symbol from the conste llation
% Q = transmitted vector S

% Output:

% Er : number of bit in error

% Initialization
PosNoisyTrans = zeros(1,c);
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PosTrans = zeros(1,c);

fori=1:c
% position of the noisy transmitted vector
[val PosNoisyTrans(i)] = min(E(i) * ones(b,1) -

% position of the transmitted vector

[val PosTrans(i)] = min(Q(i) * ones(b,1) -
end
Er = nnz(dec2bin(PosNoisyTrans - 1,log2(b))-dec2bin
1,log2(b)));

end

5- Modulation

function [SymbMat SignalVar ConstSize NumbBitPerPt

Modulation(a,b,c,d)

% This function returns uncorellated Modulated symb
% Usage:

% [SymbMat SignalVar ConstSize NumbBitPerPt
Modulation(a,b,c,d)

% Input:
%
% a = number of frame in a block
% b = number of blocks
% ¢ = number of transmitter antennas
% d = Modulation scheme : 1 ->16gam
>128gam
% 4 ->256gam
>1024gam
% Output:
%
% Signalvar : Average Symbol energy (E
% SymbMat : Constellation matrice
% ConstSize : Number of point in the c
% NumbBitPerPt : Number of bits per point
% StatMat : Subset for the restricte
if (d==1)

M = 16;

NumbBitPerPt =4 ;

Signalvar  =10;

elseif (d==2)

M = 64;

NumbBitPerPt =6 ;

Signalvar  =42;

load SymetricalSearchSpace64Q.mat;

F);

F);

(PosTrans -

StatMat] =
ols.

StatMat] =

2 ->64gam 3 -

5->512gam 6 -

{x(i"2})
onstellation

d search
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elseif (d==3)
M =128;
NumbBitPerPt =7 ;
Signalvar =82,
load SymetricalSearchSpacel128Q.mat;

elseif (d==4)
M = 256;
NumbBitPerPt =8 ;
Signalvar =170;
load SymetricalSearchSpace256Q.mat;

elseif (d==5)
M =512;
NumbBitPerPt =9 ;
Signalvar = 330;

elseif (d==6)
M = 1024;
NumbBitPerPt =10;
Signalvar  =682;
end

X =[0:M-1];
%matlab function for gray mapping with QAM
SymbMat =

modulate(modem.gammod(‘M',M,'SymbolOrder','Gray"),x

SymbMat = SymbMat.";
ConstSize = M;

%SignalvVar = SymbMat' * SymbMat / ConstSi

%FrameSize = 2*ConstSize;

% a sample is a received vector, i.e a set
NSymbol =b*2* ConstSize *a * c;

%generate bits
SentBits = randint(1,NSymbol*NumbBitPerP

%generate symbols gray mapping
Symb = zeros(1,NSymbol);
for r = 1:NSymbol
t=0;
for zz = 1:NumbBitPerPt
t = t+27(zz-1)*SentBits(zz+(r-1)*
end
Symb(r) = SymbMat(t+1);
end
end
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6- FixedSearSet

function [Subset] = FixedSearchSet(A,b,c,d)
% This function returns searchset for the noisiest

% Usage:

% [Subset] = FixedSearchSet(a,b,c,d)

% Input:

% A = Matrix of statistic

% b = Mmse noisiest estimate

% ¢ = size of the fixed search set

% d = ConstSize

%

%

% Output:

% Subset : set of candidate symbol
[symb indx] = min(abs(b * ones(1, d
A(indx+1,indx) =0;

Subset = [b];
for kk = 1:c-1

[value position] = max(A(indx+1,:));
A(indx+1,position) = 0;
Subset = [Subset,A(1,position)
end
end

7- SampGen

function [TotNumOfSamplelnABlock FrameSize SentSymb

SampGen(a,b,c,d,e,F)

% This function returns uncorellated Modulated symb
% Usage:

% [SymbMat SignalVar ConstSize Symb StatMat]
Modulation(a,b,c,d)

% Input:

%

% a = number of frame in a block

% b = number of blocks

% ¢ = number of transmitter antennas
% d = Constsize

% e = Number of bits per constellation
% F = Matrix of constelaltion symbol
% Output:

%

% TotNumOfSamplelnABlock : Number of sample in a bl
% Frame Size : Size of a frame of sampl

% SentSymb : matrix of sample vector

FrameSize =2*d,
TotNumOfSamplelnABlock = FrameSize * a;

% generate samples - SentSymb - vector of N symbols
NSymbol = b * TotNumOfSamplelnABlock
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%generate bits

SentBits = randint(1,NSymbol*e);
%generate symbols gray mapping
Symb = zeros(1,NSymbol);
for r = 1:NSymbol
t =0;
forzz =1
t = t+27(zz-1)*SentBits(zz+(r-
end
Symb(r) = F(t+1);
end

% zeros(N,NSymbol/N)
SentSymb = zeros(c, TotNumOfSamplelInAB
for NSymb = 1:c:NSymbol-c+1
SentSymb(:,(NSymb+(c-1))*(1/c)) =
transpose(Symb(NSymb:NSymb+c-1));
end

end

8- SortCol

function [SortedLayer IndMI] = SortCol(A,c)
% This function returns index of layers from the we

strongest

% Usage:

% function [SortedLayer IndMI] = Sortcol(A)
% Input:

% A = H matrix

% ¢ = number of receiver antennas (same
% Output:

% SortedLayer = Matrix of the index

% 1-weakest layer 2-second weakest |
% ...(c-1)-second strongest layer ¢
layer

% IndMI = Index of the layer which has maxim
on the

% Strongest Layer

% Initialization

SortedLayer = zeros(1,c);
n =1;
AmpColH =1
forii =1:c
AmpColH = [AmpColH,norm(A(:,i
end
while(n<c+1)
[Val Ind] = min(AmpColH);

SortedLayer(n) =Ind;
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AmpColH(Ind) =10000;
n =n+1;
end
AmpH =
for ii2 =1l:c
AmpH = [AmpH, norm(SortedL
end
AmpH(SortedLayer(c)) =0;
[vall IndMI] = max(AmpH);
end
9- MMSE

function [YMmse] = Mmse(b,c,E,F,G)
% This function returns symbol vector from the MMSE

process
% Usage:
% [YMmse] = Mmse(b,c,E,F,G)
% Input:
% b = constellation size
% ¢ = number of receiver antennas (same
transmitter)
% E = noisy transmitted vector Y
% F = matrice of symbol from the conste
% G = MMSE matrix
% Output:
% YMmse : output of the Mmse detection
o =ones(1, b);
op = ones(c, 1);
% MMSE output vector
TempVec =G *E;
% slicing
[temp IndMmse] = min(abs(TempVec
F.));

YMmse = F(IndMmse);
end
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10- V-BLAST

function [YVBlast] = VBlast(A,b,c,E,F,K,L,M,n)

% This function returns symbol vector from the V-BL

process
% Usage:
% [YVBIlast] = VBlast(A,b,c,E,F,K,L,M,n)
% Input:
% A = H matrix
% b = constellation size
% ¢ = number of receiver antennas (same
transmitter)
% E = noisy transmitted vector Y
% F = matrix of symbol from the constel
% K = indice(s) of the symbol(s) to be
% L = YVBIast, initial value
% M = SNR
% n =snr
% Output:
% YVBlast : output of the VBLAST detection
YVBlast =1L,
H_ =A;
Y =E;

for IndSymb = 1:c
% MMSE matrix
G_=inv(H_'*H_+ (1/M(n)) * eye(c
1)) *H_,

% ordering: detection goes from stronge
layer

% detection starts with the row of G_ w
minimum norm

% norm of G_'s row

AmpG_ =

forii = 1:c-(IndSymb-1)
AmpG_ =[AmpG_, norm(G_(i

end

[vall GRowInd] = min(AmpG_);

% nulling: MMSE is used to detect symbo
layer

CurDtdSymb = G_(GRowiInd, :) *
% slicing
Dist = abs(F - ones(b,1)

CurDtdSymb).~2;
[val2, IndVBIlast] = min(Dist);
YVBIlast(K(GRowiInd)) = F(IndVBlast);

% cancellation : produces deflation in

% removes interference f
symbol

Y_  =Y_-H_(, GRowlnd) * YVBIast(

AST detection
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HTemp =[];
Temp =[];
for ii = 1:c-(IndSymb-1),
if (i ~= GRowInd)
HTemp =[HTemp, H_(;, ii)];
Temp =[Temp, K(ii)];
end
end
H_  =HTemp;
K  =Temp;
end

end

11- FR-BLAST

function [YFRBIlast] = FRBIlast(A,b,c,E,F,G,i,M,n,k,S
% This function returns symbol vector from the FR-B

process

% Usage:

% [YFRBIlast] = FRBIlast(A,b,c,E,F,G,M,n k,S)
% Input:

% A =H matrix

% b = constellation size

% ¢ = number of receiver antennas (sa
transmitter)

% E = noisy transmitted vector Y

% F = matrix of symbol from the const
% G = MMSE matrix

% i = Index of the first layer to be

% 1-weakest layer 2-second weakes
% ...(c-1)-second strongest layer
layer

% M =SNR

% n =snr

% k = size of the fixed search space

% S = Matrix of statistic to build th

% Output:

%  YFRBIlast : output of the FRBLAST detection

YFRBlastTest = zeros(c,k);

Epsilon = zeros(c,k);
% a search inside a search space is performed
layer to be

% detected, i.e. detection starts with the 'i'
% conventional VBLAST for the N-1 remaining la
% norm of G's row

% original MMSE is run to estimate the positio
symbol
[YMmse] = Mmse(b,c,E,F,G);

% now we build a set of k closest symbol inclu
[Subset] = FixedSearchSet(S,YMmse(i),k,b)

)
LAST detection

me as

ellation
detected

t layer ...
c-strongest

e subset

on the first

-th layer
yers

n of the first

ding this one
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% search inside the subset for the first symbo
forii=1:k

H_ =A
UnDtdSymb =1
Y_ =E
YFRBlastTest(UnDtdSymb(i),ii) =S
% cancellation : produces deflation in col
% removes interference from
symbol

Y_ =Y_-H_(,i) * YFRBIlastTest(Un
HTempl =]
Templ =[];
foriil =1:c

if (il ~=1)

HTempl =[HTempl,H_(:iil)];
Templ =[Templ, UnDtdSymb(iil)];
end
end
H_ =HTemp1l,
UnDtdSymb = Temp1;

% Original V-BLAST detection over the N-1
layers

[YVBlast] = VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBIastTest(:,ii),M,n);

YFRBIlastTest(,ii) = YVBIlast;

% Compute noise for all candidate
Epsilon(:,ii) = A * YFRBlastTest(:,ii) - E
end

% Find the best candidate
AmpEps = [];
foriil = 1:k
AmpEps = [AmpEps, norm(Epsilon(:,iil))];
end
[val4 MinEpsind] = min(AmpEps);
YFRBlast = YFRBIlastTest(:,MinEpsind);
end

.C;
ubset(ii);

umns of H_
temptative

DtdSymb(i),ii);

remaining
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12- F-BLAST

function [YFBIlast] = FBlast(A,b,c,E,F,i,M,n)
% This function returns symbol vector from the F-BL

process

% Usage:

% [YFBlast] = FBlast(A,b,c,E,F,i,M,n)

% Input:

% A =H matrix

% b = constellation size

% ¢ =number of receiver antennas (sa
transmitter)

% E = noisy transmitted vector Y

% F = matrix of symbol from the const
% i = Index of the first layer to be

% 1-weakest layer 2-second weakes
% ...(c-1)-second strongest layer
layer

% M =SNR

% n =snr

% Output:

% YFBIlast : output of the FBLAST detection

YFBlastTest = zeros(c,b);

Epsilon = zeros(c,b);

% an exhaustive search is performed on the fir
detected

% i.e detection starts with the 'i'_th layer

% conventional VBLAST for the N-1 remaining sy

% Exhaustive search on the first layer
forii=1:b

H_ = A

UnDtdSymb =1:c;

Y_ =E;

YFBlastTest(UnDtdSymb(i),ii) = F(ii

% cancellation : produces deflation in col

% removes interference from
symbol

Y_ =Y_-H_(,i)*
YFBlastTest(UnDtdSymb(i),ii);

HTempl =1

Templ =1l

foriil =1

if il ~=1)

HTempl =[HTempl,H_(,iil)];
Templ =[Templ, UnDtdSymb(iil)];

end
end
H_ =HTemp1;
UnDtdSymb = Templ,

% Original V-BLAST detection over the N-1
layers
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[YVBlast] =VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(;,ii),M,n);
YFBlastTest(:,ii) = YVBIlast;
% Compute noise for all candidate
Epsilon(;,ii) = A * YFBlastTest(:,ii)
end
% Find the best candidate

AmpEps =[l;
foriil =1b
AmpEps = [AmpEps, norm(Epsilon(:,iil

end

[val4 MinEpsind] = min(AmpEps);

YFBlast = YFBlastTest(:,MinEpsInd);
end
13- ML

function [YMI] = MI(A,b,c,E,F)
% This function returns symbol vector from the ML d

process
% Usage:

% [YMI] = MI(A,b,c,E,F)

% Input:

% A = H matrix

% b = constellation size

% ¢ = number of receiver antennas (same
transmitter)

% E = noisy received vector Y

% F = matrix of symbols from the conste
% Output:

% YMI : output of the MI detection

% Initialization
ErrMI = zeros(1,b”c);
TempVec = zeros(c,b”c);
n =1;

if (c==2) % 2 antennas
foriil =1:b
forii2 =1:b
TempVec(:,n) = [F(iil);F(
ErrMI(n) = (norm(E - A
TempVec(;,n)"2;
n =n+1,
end
end
elseif (¢ == 3) % 3 antennas
foriil = 1:b
forii2 = 1:b
forii3 =1:b
TempVec(:,n) =
[F(ii1);F(ii2);F(ii3)];
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ErrMI(n) = (norm(E
TempVec(;,n)"2;
n =n+1;
end
end
end
elseif (¢ ==4) % 4 antennas
foriil =1:b
foriia =1:b
forii3 =1:b
foriida =1:b
TempVec(:,n) =
[F(ii1);F(ii2);F(ii3);F(iid)];
ErrMI(n) = (norm(E - A
TempVec(;,n)"2;
n =n+1;
end
end
end
end
elseif (c ==5) % 5 antennas
foriil =1:b
forii2 =1:b
forii3 =1:b
foriida = 1:b
forii5=1:b
TempVec(;,n) = [F(iil);F(ii2);F(ii3);F(ii4
ErrMI(n) = (norm(E - A * TempVec(:,n))
n =n+1;
end
end
end
end
end
elseif (¢ ==6) % 6 antennas
foriil =1:b
foriiz=1:b
forii3 =1:b
foriida = 1:b
forii5=1:b
foriie =1
TempVec(;,n) =
[F(ii1);F(ii2);F(ii3);F(ii4);F(ii5);F(ii6)];
ErrMI(n) = (norm(E - A * TempVec(:,n))
n =n+1;
end
end
end
end
end
end
end

[C,IndMI] = min(ErrMI);
YMI = TempVec(;,IndMl);
end

158

)iF(iiS)];
)"2;

)2,



5. Matlab Scripts and Simulink Models for the CodedSystem

1- Simulink Model

Y

Matiz|  Matrix
Deinterleaver Deinterleaver
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2- Simulink Turbo Encoder

Int

In3
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3- Simulink Turbo Decoder
Random
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4- Simulink Turbo Decoder with 12 lterations
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5- Space-Time Mapper Matlab - Embedded Function
function Outinfo = TransmissionBlock(EncBits, MATRI X)

% NoiseVar=(2*CodeRate * #bit/pt * EbNo linear)*-1 =
N*SignalVariance/SNR

% parameters

SCCC_R = MATRIX(1); SCCC_len = MATRIX(2); N = MATRI X(3); ModSc =
MATRIX(4);

DoNoDetector = MATRIX(5); DoMmseDetect = MATRIX(6);

DoVBlastDetect = MATRIX(7); DoFBlastDetect = MATRIX (8);
DoFRBlastDetect = MATRIX(9); DoRealMmseDetect = MAT RIX(10);
DoRealVBlastDetect = MATRIX(11); DoRealFBlastDetect = MATRIX(12);
SizeOfSphere = MATRIX(13); FBStartLayer = MATRIX(14 );
FRBStartLayer = MATRIX(15); SNR =MATRIX(16);

% initialization of the call of external function
eml.extrinsic('Modulation','SampleNChannel','Detect ion";

% initialization of complex computation
i = sqrt(complex(-1));
j = sqrt(complex(-1));

%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %%
% Symbol Matrix, Constant and sample generation %
%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %%

[SymbMat SignalVar ConstSize NumbBitPerPt StatMat M otif] =
Modulation(ModSc);

FrameSize = 2 * ConstSize; % number of samples in a
frame

NumFramelnABlock = SCCC_len/ (SCCC_R * NumbB itPerPt* N *

FrameSize); % number of frames in a block

TotNumOfSamplelnABlock = FrameSize * NumFramelnABlo ck; % number of
samples in a block

% 1- sample block generation
NSymbol = length(EncBits) / NumbBitPerPt;
NoiseVar = (N * SignalVvar) / SNR;

[SampleBlock MIMOchResponse] =
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat ,N, TotNumOfSamp
lelnABlock,NumFramelnABlock,FrameSize);

%6%%%%%%%%%%%% %% % %% % %% %% %% %% %% %% %% %%
040,

zﬁéomputation of output sequence of soft bits for v arious detector
22g/o%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0
(/)Ou/toinfo = zeros(size(EncBits));
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[Outinfo] = Detection(NumFramelnABlock, N, FrameSiz e, NoiseVar,
SNR, SampleBlock, MIMOchResponse, DoNoDetector,ModS c,
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB lastDetect,
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD etect,
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F BStartLayer,
FRBStartLayer);

end

6- Number Error Computation - Embedded Function

function ERROR_Per_lter = BerComp(outl, out2, out3, out4, out5,
out6, out7, out8, out9, outl0, outll, outl2, InfoBi ts)

% initialization of the call of external function

eml.extrinsic('nnz');

ERROR_Per_lter = zeros(double(12),1);

ERROR_Per_lter(1) = nnz(outl - InfoBits);

ERROR_Per_lter(2) = nnz(out2 - InfoBits);

ERROR_Per_lter(3) = nnz(out3 - InfoBits);

ERROR_Per_lter(4) = nnz(out4 - InfoBits);

ERROR_Per_lter(5) = nnz(out5 - InfoBits);

ERROR_Per_lter(6) = nnz(out6 - InfoBits);

ERROR_Per_lter(7) = nnz(out7 - InfoBits);

ERROR_Per_lter(8) = nnz(out8 - InfoBits);

ERROR_Per_lter(9) = nnz(out9 - InfoBits);

ERROR_Per_lter(10) = nnz(outl0 - InfoBits);

ERROR_Per_lter(11) = nnz(outll - InfoBits);

ERROR_Per_lter(12) = nnz(outl?2 - InfoBits);

end

7- MainTurbo

% —-== —=—=—=—==

% This program was designed with the help of the "i terative

decoding of a

% serially concatenated convolutional code" which ¢
the help

% menu of matlab and some tips on signal processing
%

% The convolutional encoder reset every frame

% No puncturation ; code rate = 1/3

% the model works for a fixed number of 12 iteratio
%

% note  : design based on my course project on
encoding

%

% student : Arsene Pankeu Yomi

% University of Alberta, dept. of electrical and Co
Engineering

an be found in

from mathworks

ns

convolutional

mputer




clear;clc;close all;

% plotting preference
k1=1;k2=2;k3=3;kd=6;k5=8; k6 =12; %
BER will be plot

% main parameters

NumBlock =1;
SCCC R = 1/3; % code rate
SCCC _len = 65536; % # information bits

SCCC _trellisl = poly2trellis(5, [37 21],37); %
Sytematic Convolutional Encoder

SCCC trellis2 = SCCC_trellis1; % Recursive Syte
Convolutional Encoder

SCCC_seed =54123; % to have identical de/i
SCCC_SNR_Max  =30;

SCCC_SNR_Min  =10;

SCCC_SNR_Step =2;

SCCC_SNRdB = SCCC_SNR_Min:SCCC_SNR_Step:SCCC
EbNo in dB
SCCC_SNR =10.~(SCCC_SNRdB/10);

SCCC_SNR_Lgth = length(SCCC_SNR);

% detection parameters
% "' FR-BLAST will work only for 64Q and 256Q !!!

N = 4; % # receiver antennas = # tr
antennas
ModSc =1;%1->16gam 2->64qgam 4

% Launch !!! ONE DETECTION AT THE TIME !!!

% "1' In order to launch detection scheme otherwise

% LAUNCH ONE DETECTOR AT THE TIME
DoNoDetector =0; % No detector; simple BPSK
DoMmseDetect =0; % MMSE detector
DoVBlastDetect =0; % V-BLAST detector
DoFBlastDetect =0; % F-BLAST detector; starti
indicated below

DoFRBlastDetect =0; % FR-BLAST,; starting layer
below

DoRealMmseDetect =0; % real-valued MMSE detecto
DoRealVBlastDetect= 0; 9% real-valued V-BLAST dete
layer indicated below

DoRealFBlastDetect=1; % real-valued F-BLAST dete
layer indicated below

SizeOfSphere =9; % number of symbol in the

% starting layer 1 for the weakest 2 for second wea
strongest

FBStartLayer =1; % starting layer of the F-
FRBStartLayer =2; % starting layer of the FR

% initialisation,

% on the i-th row and j-th column, BER from the i-t
j-th EbNo value

ber = zeros(12,SCCC_SNR_Lgth);

% on the i-th row simulation time for the i-th EbNo
Time = zeros(SCCC_SNR_Lgth,1);

'k_'iterations

Recursive
matic

nterleaver

_SNR_Max; %

ansmitter
->256gam
0

transmission

ng layer
indicated

r
ctor; starting

ctor; starting

search space
kest ....N for

BLAST scheme
-BLAST scheme

h iteration and

value
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for snr = 1:SCCC_SNR_Lgth % multiple EbNo run
BlockCounter =0;
BlockError = zeros(12,NumBlock); % # in the
% matrix of parameters !!! ORDER !!!

MATRIX = [SCCC_R SCCC_len N ModSc DoNoDetector D

DoVBlastDetect DoFBlastDetect DoFRBlastDetect DoRea
DoRealVBlastDetect DoRealFBlastDetect SizeOfSphere
FRBStartLayer SCCC_SNR(snn)];
tic;
while (BlockCounter < NumBlock)
BernouilliSeed = 12343 * (BlockCounter + 1);
sim(‘turbo’) % launch simulink model
% bit-error-rate from SIMULINK
% BER of the given SNR
BlockCounter = BlockCounter + 1;
BlockError(:,BlockCounter) = BER.signals.val
end
for kk = 1:NumBlock
ber(:,snr) = ber(:,snr) + BlockError(:,kk);

end

ber(:,snr) = ber(:,snr) / NumBlock;
toc;

Time(snr) =toc;

% save data (.MAT file) in directory folder

% rename it ACCORDINGLY, in order to save data f
simulations

save('TurboData_16Qtestreal’,'ber','SCCC_SNRdB',
end

%%%%%% %% %% %% %% %% %% % %%

% BER semilogy Plot %
%%%%%% %% %% %% %% %% %% % %%

figure(1)
semilogy(SCCC_SNRdB,ber(k1,:),'+-,SCCC_SNRdB,ber(
', SCCC_SNRdB,ber(k3,:),*-',SCCC_SNRdB,ber(k4,:),'o
', SCCC_SNRdB,ber(k5,:),".-',SCCC_SNRdB,ber(k6,:),'-
title('BER For Various Iterations of Turbo Code");
legend('1 iteration','2 iteration’,'3 iteration’,’

iteration','12 iteration'); % according to k1 k2 k3
xlabel('SNR, dB");

ylabel('BERY);
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8- Detection

function [SoftBit] = Detection(NumFramelnABIlock, N,
NoiseVar, SNR, SampleBlock, MIMOchResponse, DoNoDet
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F
FRBStartLayer)

SoftBit = [];
i = sqrt(complex(-1));
j = sqrt(complex(-1));

for frameCntr = 1:NumFramelnABlock

%%%%%%%% %% %

% Channel %

%%%%%%%% %% %

H = MIMOchResponse(;, :, 1+(frame
1)*FrameSize);

N =
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize))

W = N_*sqrt(NoiseVar);

% S is the current frame

S = SampleBlock(:,1+FrameSize*(fr
1):frameCntr*FrameSize);

Y =zeros(N, FrameSize);
for ii = 1:FrameSize
% Y=H*S+W

Y(:,ii)=MIMOchResponse(;,:,ii+(frameCntr-1)*FrameSi
W(,ii);
end

%%%6%% %% % %% % %% % %% % %% %%
% Detection process %
%%%6%%%%% %% % %% % %% % %% %%

%%%% No detector used %%%%
if (DoNoDetector == 1)
SoftOutputs = [];
for vectorCntr = 1:FrameSize
for kk = 1:N
SoftOutputs = [SoftOutputs,
lIr(Y (kk),ModSc)];
end
end
end

%%%% MMSE detection %%%%
if (DoMmseDetect == 1)
G =inv(H' *H + (1/ SNR) * eye(
SoftOutputs = [];
for vectorCntr = 1:FrameSize
[Soft] = SoftMmse(N,Y(:,vec
SoftOut =11
forii=1:N
SoftOut = [SoftOut, lIr(So
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end
SoftOutputs = [SoftOutputs,
end
end

%%%% V-BLAST detection %%%%
if (DoVBlastDetect == 1)
SoftOutputs = [];
for vectorCntr = 1:FrameSize
% initialize position of the
symbols
Pos = 1:N;
% initialize detected symbol
YVB = zeros(N,1);
SVB = zeros(N,1);
[Soft YVBIlast] =
SoftVBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Po
for kk = 1:N
SoftOutputs = [SoftOutputs,
lIr(Soft(kk),ModSc)];
end
end
end

%%%% F-BLAST detection %%%%
if (DoFBlastDetect == 1)
SoftOutputs = [];
[SortedLayer IndMI] = SortCol(H,N
for vectorCntr = 1:FrameSize
[Soft] =
SoftFBlast(H,ConstSize,N, Y (:,vectorCntr),SymbMat,So
rtLayer),SNR);
SoftOut =1
forii=1:N
SoftOut = [SoftOut, lIr(So
end
SoftOutputs = [SoftOutputs,
end
end

%%%% FR-BLAST detection %%%%
if (DoFRBlastDetect == 1)
SoftOutputs = [];

G =inv(H' *H + (1 / SNR) * eye(N))
[SortedLayer IndMI] = SortCol(H,N);
for vectorCntr = 1:FrameSize
[Soft] =
SoftFRBIast(H,ConstSize,N,Y(;,vectorCntr),SymbMat,G
BStartLayer),SNR,SizeOfSphere,StatMat,ModSc);
SoftOutputs = [SoftOutputs, Sof
end
end

%% % setup for real-valued detection %
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if (DoRealMmseDetect + DoRealVBlastDetect + DoReal
0)

RealH = [real(H) -imag(H
real(H)];
RealY = zeros(2*N, Frame
RealS = zeros(2*N, Frame
RealWw = zeros(2*N, Frame
for ii = 1:FrameSize
TempRealY = zeros(N, FrameSi
TemplmagY = zeros(N, FrameSi
TempRealS = zeros(N, FrameSi
TemplmagS = zeros(N, FrameSi
TempRealW = zeros(N, FrameSi
TemplmagW = zeros(N, FrameSi
for hh = 1:N
TempRealY(hh,ii) = real(Y
Templmagy (hh,ii) = imag(Y
TempRealS(hh,ii) = real(S
TemplmagS(hh,ii) = imag(S
TempRealW(hh,ii) = real(W
TemplmagW(hh,ii) = imag(W
end
RealY(:,ii) =
[TempRealY(,ii); TemplmagY(:,i)];
RealS(:,ii) =
[TempRealS(:,ii); TemplmagS(:,ii)];
RealW(:,ii) =
[TempRealW(:,ii); TemplmagW(:,ii)];
end
end

%%%% Real-valued MMSE detection %%%%
if (DoRealMmseDetect == 1)
RealG = inv(RealH' * RealH + (1 / SNR) * eye(2
SoftOutputs = [];
for vectorCntr = 1:FrameSize
[SoftR] =
SoftMmse(2*N,RealY(;,vectorCntr),RealG);

% complex transformation
YReal = zeros(N,1);
forii=1:N

YReal(ii) = SoftR(ii) +

SoftR(N+ii);
end
SoftOut =1
forii=1:N

SoftOut = [SoftOut,
lIr(YReal(ii),ModSc)];
end

FBlastDetect) >

)iimag(H)

Size);
Size);
Size);

ze);
ze);
ze);
ze);
ze);
ze);

(hh,i);
(hh,ii));
(hh,i);
(hh,i);
(hh,ii));
(hh,ii));

*N)) * RealH";
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SoftOutputs = [SoftOutputs,
end

end
%%%% Real-valued VBlast detection %%%
if (DoRealVBlastDetect == 1)
RealConstSize = (ConstSize)*.5;
SoftOutputs = [];
for vectorCntr = 1:FrameSize
% initialize position of the
symbols
Pos = 1:2*N;
% initialize detected symbol
YVB = zeros(2*N,1);
SVB = zeros(2*N,1);
[Soft, YVBIlast] =
SoftVBlast(RealH,RealConstSize,2*N,Real Y (:,vectorCn
VB,SVB,SNR);

% complex transformation
YReal = zeros(N,1);
forii = 1:N
YReal(ii) = Soft(ii) +
end
for kk = 1:N
SoftOutputs = [SoftOutputs
lIr(YReal(kk),ModSc)];
end
end
end

%%%% Real-valued FBlast detection %%%
if (DoRealFBlastDetect == 1)
SoftOutputs =11
[RealSortedLayer ReallndMI] =
SortCol(RealH,2*N);

RealConstSize =(Co
for vectorCntr = 1:FrameSize
[Soft] =

SoftFBlast(RealH,RealConstSize,2*N,Real Y (;,vectorCn
ortedLayer(FBStartLayer),SNR);
SoftOut =11

% complex transformation
YReal = zeros(N,1);

forii=1:N

YReal(ii) = Soft(ii) +
end
SoftOut =1
forii=1:N

SoftOut = [SoftOut,
lIr(YReal(ii),ModSc)];
end

SoftOutputs = [SoftOutputs, SoftOut];
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end
end

SoftBit = [SoftBit, SoftOutputs];

end % end frameCntr

9- FixedSearchSet
function [Subset] = FixedSearchSet(A,b,c,d)

% This function returns searchset for the noisiest

% Usage:

% [Subset] = FixedSearchSet(a,b,c,d)
% Input:

% A = Matrix of statistic

% b = Mmse noisiest estimate

% ¢ = size of the fixed search set
% d = ConstSize

%

%

% Output:

% Subset : set of candidate symbol

[symb indx] = min(abs(b * ones(1, d
A(indx+1,indx) =0;
Subset = [b];
for kk = 1:c-1
[value position] = max(A(indx+1,’));
A(indx+1,position) = 0;
Subset = [Subset,A(1,position)
end
end

10- lIr

function [LLR] = lIr(Pt,d)

% This function returns LLR
% Usage:

% [LLR] = lir(Pt,d)

% Input:

%

% Pt = Point in the constellation / unsliced symbol
% d = Modulation scheme : 1 ->16gam 2 ->64gam

%

% Output:

%

% LLR: Log-Likelihood-Ratio

%  [LLR(bO) LLR(b1) LLR(b2) ... LLR(bn)] for n-

constellation signal

if (d==1)
LLR = zeros(1,4);
LLR(1) = - abs(imag(Pt)) + 2;
LLR(2) = - imag(Pt);
LLR(3) = - abs(real(Pt)) + 2;

170

layer, 64QAM

) - AL)));

4 ->256gam

bit



171

LLR(4) = real(Pt);

elseif (d == 2)
LLR =zeros(1,6);
LLR(1) = - abs(abs(imag(Pt)) - 4) + 2;

LLR(2) = - abs(imag(Pt)) + 4;

LLR(3) = - imag(Pt);

LLR(4) = - abs(abs(real(Pt)) - 4) + 2;
LLR(5) = - abs(real(Pt)) + 4;

LLR(6) = real(Pt);

elseif (d == 4)
LLR = zeros(1,8);
if (abs(imag(Pt)) < 8)

LLR(1) = - abs(abs(imag(Pt)) - 1) +2;
else

LLR(1) = - abs(abs(imag(Pt)) - 12) + 2;
end
LLR(2) = - abs(abs(imag(Pt)) - 8) + 4;

LLR(3) = - abs(imag(Pt)) + 8;
LLR(4) = - imag(Pt);
if (abs(real(Pt)) < 8)

LLR(5) = - abs(abs(real(Pt)) - 4) +2;
else

LLR(5) = - abs(abs(real(Pt)) - 12) + 2;
end
LLR(6) = - abs(abs(real(Pt)) - 8) + 4;

LLR(7) = - abs(real(Pt)) + 8;
LLR(8) = real(Pt);

end
end



11- Modulation

function [SymbMat SignalVar ConstSize NumbBitPerPt
= Modulation(d)

% This function returns uncorellated Modulated symb
% Usage:

% [SymbMat SignalVar ConstSize NumbBitPerPt
= Modulation(d)

% Input:
%
% d = Modulation scheme : 1 ->16gam
>2560am
% Output:
%
% SymbMat : Constellation matrice
% NumbBitPerPt : Number of bits per point
% StatMat : Subset for the restricte
% Signalvar : Variance of signal from
constellation
% ConstSize : number of point in the ¢
if (d==1)
M = 16;
NumbBitPerPt =4 ;
Motif =[-3-113];
load SymetricalSearchSpacel6Q.mat;
elseif (d==2)
M = 64;
NumbBitPerPt =6 ;
Motif =[-7-5-3-1135
load SymetricalSearchSpace64Q.mat;
elseif (d==4)
M = 256;
NumbBitPerPt =8 ;
Motif =[-15-13-11-9 -7
7911 13 15];
load SymetricalSearchSpace256Q.mat;
end
X = [0:M-1];
%matlab function for gray mapping with QAM
SymbMat =

modulate(modem.gammod('M',M,'SymbolOrder','Gray"),x

SymbMat = SymbMat.";

ConstSize = M;
SignalVar = SymbMat' * SymbMat / M;
end
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12- SampleNChannel

function [SampleBlock MIMOchResponse] =
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat
lelnABlock,NumFramelnABlock,FrameSize)

% 1- generate symbols from encoded bits
SymbolBlock = zeros(1,NSymbol);
for pp = 1:NSymbol

tt=0;

for zz = 1:NumbBitPerPt

tt =tt + 27(zz - 1) * EncBits(zz + (p
NumbBitPerPt);

end

SymbolBlock(pp) = SymbMat(tt + 1);
end

% 2- generate sample from symbols
SampleBlock = zeros(N,NSymbol / N);
for NSymb = 1:N:NSymbol - N + 1
SampleBlock(:,(NSymb + (N - 1)) / N) =
transpose(SymbolBlock(NSymb:NSymb + N - 1));
end

% channel generation
MIMOchResponse = zeros(N,N,TotNumOfSampleln
for ii = 1:NumFramelnABlock
% generating CHANNEL
H = (randn(N) + i*randn(N)) * sqrt(0.5);
foriil = 1:N
forii2 = 1:N
MIMOchResponse(iil, ii2, (1+(ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch
per frame
end
end
end
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13- SortCol
function [SortedLayer IndMI] = SortCol(A,c)
% This function returns index of layers from the we

strongest

% Usage:

% function [SortedLayer IndMI] = Sortcol(A)
% Input:

% A = H matrix

% ¢ = number of receiver antennas (same
% Output:

% SortedLayer = Matrix of the index

% 1-weakest layer 2-second weakest |
% ...(c-1)-second strongest layer ¢
layer

% IndMI = Index of the layer which has maxim
on the

% Strongest Layer

% Initialization
SortedLayer
n =1;

zeros(1,c);

AmpColH =1
forii =1:c
AmpColH = [AmpColH,norm(A(:,i
end
while(n<c+1)
[Val Ind] = min(AmpColH);
SortedLayer(n) =Ind;
AmpColH(Ind) =10000;
n =n+1,
end

AmpH =
for ii2 =1l:c
AmpH = [AmpH, norm(SortedL
end
AmpH(SortedLayer(c)) =0;
[vall IndMI] = max(AmpH);

end
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14- Mmse

function [YMmse] = Mmse(b,c,E,F,G)

% This function returns symbol vector from the MMSE

process
% Usage:
% [YMmse] = Mmse(b,c,E,F,G)
% Input:
% b = constellation size
% ¢ = number of receiver antennas (same
transmitter)
% E = noisy transmitted vector Y
% F = matrice of symbol from the conste
% G = MMSE matrix
% Output:
% YMmse : output of the Mmse detection
o =ones(1, b);
op = ones(c, 1);
% MMSE output vector
TempVec =G *E;
% slicing
[temp IndMmse] = min(abs(TempVec
F));
YMmse = F(IndMmse);
end
15- SoftvB

function [SoftOut YVBlast] = SoftVBlast(A,b,c,E,F,K
% This function returns soft output from the V-BLAS

process
% Usage:

% [SoftOut YVBIlast] = SoftVBlast(A,b,c,E,F,K
% Input:

% A = H matrix

% b = constellation size

% ¢ = number of receiver antennas (same
transmitter)

% E = noisy transmitted vector Y

% F = matrix of symbol from the constel

% K = indice(s) of the symboil(s) to be

% L = YVBIlast, initial value

% L_ = soft info initial value

% n =SNR

% Output:

% SoftOut : unsliced symbol vector from the V
% YVBlast : hard output of the VBLAST detecti

SoftOut =L_;

YVBlast =L,

H_ =A;

Y_ =E;

for IndSymb = 1:c
% MMSE matrix
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G_=inv(H_'*H_+(1/n)*eye(c-(
* H ';

% ordering: detection goes from stronge
layer

% detection starts with the row of G_ w
minimum norm

% norm of G_'s row

AmpG_ =

forii = 1:c-(IndSymb-1)
AmpG_ =[AmpG_, norm(G_{(i

end

[vall GRowInd] = min(AmpG_);

% nulling: MMSE is used to detect symbo

layer
CurDtdSymb = G_(GRowiInd, :) *
% slicing
Dist = abs(F - ones(b,1)

CurDtdSymb).~2;
[val2, IndVBIlast] = min(Dist);
YVBlast(K(GRowlnd)) = F(IndVBlast);

% soft decision
SoftOut(K(GRowlInd)) = CurDtdSymb;

% cancellation : produces deflation in

% removes interference f
symbol

Y_  =Y_-H_(;, GRowlInd) * YVBlast(

HTemp =];

Temp =[];

for ii = 1:c-(IndSymb-1),
if (i ~= GRowInd)
HTemp =[HTemp, H_(;, i))];
Temp =[Temp, K(ii)];

end
end
H_  =HTemp;
K  =Temp;
end

end
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16- SoftMmse
function [Out] = SoftMmse(c,E,G)
% This function returns soft output from the MMSE d

process

% Usage:

% [Out] = SoftMmse(c,E,G)

% Input:

% ¢ = number of receiver antennas (same

transmitter)

% E = noisy transmitted vector Y

% G = MMSE matrix

% Output:

% Out : soft output of the Mmse detection
% MMSE output vector
Out =G *E;

end

17- SoftFBlast
function [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)
% This function returns soft output from the F-BLAS

process

% Usage:

% [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)

% Input:

% A = H matrix

% b = constellation size

% ¢ = number of receiver antennas (sa
transmitter)

% E = noisy transmitted vector Y

% F = matrix of symbol from the const
% i = Index of the first layer to be

% 1-weakest layer 2-second weakes
% ...(c-1)-second strongest layer
layer

% n =SNR

% Output:

% SoftOut : soft output of the FBLAST detecti

SoftTest = zeros(c,b);

YFBlastTest = zeros(c,b);

Epsilon = zeros(c,b);

% an exhaustive search is performed on the fir
detected

% i.e detection starts with the 'i'_th layer

% conventional VBLAST for the N-1 remaining sy

% Exhaustive search on the first layer
forii=1:b

H_ = A
UnDtdSymb =1:c;

Y_ =E;
YFBlastTest(UnDtdSymb(i),ii) =F(ii

SoftTest(UnDtdSymb(i), i) = F(i
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% cancellation : produces deflation in col

% removes interference from
symbol

Y_ =Y_-H_(i)*
YFBlastTest(UnDtdSymb(i),ii);

HTempl =1

Templ =1

for il =1.c

if il ~=1)

HTempl =[HTempl,H_(,iil)];
Templ =[Templ, UnDtdSymb(iil)];

end
end
H_ =HTemp1;
UnDtdSymb = Templ,;

% Original V-BLAST detection over the N-1
layers
[Soft YVBIlast] = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(:,ii),SoftTest(:,ii),n
YFBlastTest(:,ii) = YVBlast;
SoftTest(:,ii) = Soft;
% Compute noise for all candidate
Epsilon(:,ii) = A* YFBlastTest(;,ii)
end
% Find the best candidate

AmpEps =[l;
for iil =1b

AmpEps = [AmpEps, norm(Epsilon(:,iil
end

[val4 MinEpsInd] = min(AmpEps);
SoftOut = SoftTest(;,MinEpsInd);

end

18- SoftFRBIlast

function [SoftOut] = SoftFRBIast(A,b,c,E,F,G,i,n kK,
% This function returns symbol vector from the FR-B
process

% Usage:

% [SoftOut] = SoftFRBIlast(A,b,c,E,F,G,nk,S,
% Input:

% A =H matrix

% b = constellation size

% ¢ =number of receiver antennas (sa
transmitter)

% d = mode scheme

% E = noisy transmitted vector Y

% F = matrix of symbol from the const
% G = MMSE matrix

% i = Index of the first layer to be

% 1-weakest layer 2-second weakes
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% ...(c-1)-second strongest layer
layer

% n =SNR

% k = size of the fixed search space
% S = Matrix of statistic to build th
% Output:

%  SoftOut : output of the FRBLAST detection

SoftOut =1
SoftTest = zeros(c,k);
YFRBIlastTest = zeros(c,k);

Epsilon = zeros(c,k);
% a search inside a search space is performed
layer to be

% detected, i.e. detection starts with the i’
% conventional VBLAST for the N-1 remaining la
% norm of G's row

% original MMSE is run to estimate the positio
symbol
[YMmse] = Mmse(b,c,E,F,G);

% now we build a set of k closest symbol inclu
[Subset] = FixedSearchSet(S,YMmse(i),k,b)

% search inside the subset for the first symbo
forii=1:k

H_ =A
UnDtdSymb =1
Y_ =E
YFRBlastTest(UnDtdSymb(i),ii) =S
SoftTest(UnDtdSymb(i),ii) =S
% cancellation : produces deflation in col
% removes interference from
symbol

Y_ =Y_-H_(:i) * YFRBIlastTest(Un
HTempl =]
Templ =[];
foriil =1:c

if (il ~=1)

HTempl =[HTempl,H_(.iil)];
Templ =[Templ, UnDtdSymb(iil)];
end
end
H_ =HTemp1,;
UnDtdSymb = Temp1;

% Original V-BLAST detection over the N-1
layers
[Soft YVBIlast] = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBlastTest(;,ii),SoftTest(,ii),
YFRBIlastTest(,ii) = YVBIlast;
SoftTest(:,ii) = Soft;
% Compute noise for all candidate
Epsilon(;,ii) = A * YFRBIastTest(:,ii) - E
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:C;
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end

% Find the best candidate
AmpEps = [];
foriil = 1:k
AmpEps = [AmpEps, norm(Epsilon(:,iil))];
end
[val4 MinEpsInd] = min(AmpEps);
for kk = 1:c
SoftOut = [SoftOut, lIr(SoftTest(kk,MinEpsl nd),d)];
end
end



