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Abstract  

 Broadband Wireless Communications and Multiple-Input Multiple-Output 

(MIMO) systems have been the focus of much research over the past decade. A 

variety of MIMO detection algorithms have been proposed for detecting the data 

signals from the multiple received and demodulated baseband signals. Among the 

detectors, sphere decoding algorithms are known to be near-optimal but they are 

relatively complicated and have variable detection latencies, and are therefore 

inconvenient to implement. Also, the variable latency of most sphere decoder 

algorithms makes them difficult to implement efficiently on parallel hardware. 

This thesis work evaluates several alternative MIMO detectors and 

proposes a near-optimal and efficiently parallelizable detector. The new MIMO 

detector has much lower computational complexity than a sphere decoder, and has 

a convenient parallel structure comprising multiple instances of the Vertical Bell 

Laboratories Layered Space Time (V-BLAST) MIMO detection scheme.  
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I- Introduction 
 This thesis is concerned with low-complexity and efficient detectors for 

Multiple-Input Multiple-Output (MIMO) wireless communication. Of special 

practical interest are detectors that can exploit parallel hardware and that can be 

scaled up to handle a larger number of antennas and more complex signal 

constellations. The performance of proposed new MIMO detection algorithms is 

compared to the performance characteristics of conventional detectors with 

respect to their Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) 

performance and their computational complexity. We first consider uncoded 

systems, and then extend the investigation to a Turbo-coded system model.  

 MIMO wireless technology is being used to provide both greater data 

throughput over the same radio bandwidth as well as greater robustness in the 

presence of channel noise and other impairments. However, the more information 

that we try to send (within the Shannon capacity limit for the MIMO system), the 

more complex will be the detector at the receiver side.  

The main objective of this project was to improve the relatively simple and 

well-known V-BLAST MIMO detector through the use of parallelism to achieve 

near-optimal performance. We considered a reasonable amount of pararallelism to 

be 16, since orthogonal frequency division multiplexing (OFDM) systems uses 

around 64 subcarriers. Parallel signal processing hardware has the advantages of 

potentially simplifying the chip implementation, lowering the voltage thus saving 

power and ensuring more predictable timing. A parallel implementation may 

make it easier to share hardware among multiple similar datapaths, which is a 
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likely scenario in multicarrier wireless systems. They are some challenges that 

must be overcome in parallel architectures, such as the problem of distributing 

data for parallel processing and then later gathering and possibly combining the 

results. A performance study was done to derive the computational complexity 

and to determine the Symbol Error Rate (SER) or Bit Error Rate (BER) versus 

SNR characteristics over a simulated noisy channel. The performance of 

alternative parallel MIMO detection schemes was compared with that of 

conventional detection schemes, such the minimum mean square error (MMSE) 

detector [1] and the original V-BLAST detector [2].  

 In contrast to existing near-optimal but computationally-expensive 

detection schemes, such as the sphere detector [3] or the tree-based search 

detector [4], we were able to achieve similar performance using parallel 

structures. The thesis also provides a detailed comparison of the computational 

cost for the alternative MIMO detectors. This cost is expressed in terms of the 

required number of fundamental real-valued operations (e.g., additions, 

multiplications, reciprocals) as well as the minimum possible execution time (in 

terms of single-cycle operations) assuming arbitrary parallelism. 

 The main contributions of this thesis are: 

� A first analysis of the complexity of Fouladi Fard’s parallel V-BLAST 

algorithm, which we call F-BLAST. 

� Simulation-based investigation of the performance of new restricted 

search window versions of F-BLAST. 
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� A simulation-based investigation of the performance of real-valued 

versions of F-BLAST 

� An analysis of the computational cost of the various MIMO detectors that 

were considered. 

�  Asymptotic analysis of F-BLAST, FR-BLAST and the real-valued 

versions of F-BLAST. 

� A simulation study of the performance of the new detectors used in 

combination with soft turbo decoding. 
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II- Background 

2.1 MIMO Systems 

 
Figure 1 Radio Links Based on the (a) SISO and (b) MIMO Configurations [5] 

In a conventional Single-Input Single-Output (SISO) communication 

system (see Figure 1a), there is a single transmitter and receiver at either end of 

the radio link. The transmitters and receivers contain a baseband (B.B.) processor 

as well as a radio frequency (RF) circuitry for each antenna (RADIO in Figure 1). 

We will assume that the B.B.-to-RF modulators in the transmitter and the RF-to-

B.B demodulators in the receiver function perfectly without impairing the signals. 

In an ideal unobstructed communications channel, radio signals travel through 

free space along a single path from the transmit antenna to the receive antenna. 

Unfortunately, obstructions (such as buildings and natural terrain features) and 

propagation effects in the radio channel can create multipath effects such as 
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multiple reflected, refracted and scattered propagation paths. With multipath 

propagation, multiple copies of the transmitted signal arrive and get superimposed 

at the receiver antenna. Due to the inevitable differences in path lengths, the 

phases and amplitudes of these reflected signals are typically different from each 

other and from those of the possible direct line-of-sight path. Because of this, the 

signals at the receiver can combine constructively or destructively, causing 

position-dependant fluctuations in the received signal strength. These fluctuations 

can be very large (e.g. 30 dB or more) and will also change with time if the 

antennas move or if the environment changes. These position and time-dependant 

signal attenuations are called short-term fading [6]. Excessive fading effects can 

diminish the data throughput and could cause data loss. For transmission systems 

where the propagation effects can be determined only at the receiver, and under 

the assumption that each binary digit is equiprobable, the capacity (in bits of 

information/sec) of a SISO channel is given by Shannon’s capacity theorem [7]: 

CSISO = B * log2 (1 + ρ)    bits of information/sec 

where B is the bandwidth of the channel and ρ is the average signal-to-noise-ratio. 

Shannon’s theorem gives an upper limit on possible error-free data transmission. 

However the proof does not provide constructions that can achieve the limit. 

In a conventional Multiple-Input Multiple-Output (MIMO) 

communications system (see Figure 1b), a radio link terminates at several antenna 

elements at both the transmitter and receiver. A baseband processor at the 

transmitter distributes the data over the multiple parallel tributaries and, 

optionally, inserts code bits for error control. At the receiver, the baseband 
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processor performs detection on the demodulated received signals and merges the 

recovered parallel bit streams into a single data stream. If coded bits were inserted 

at the transmitter, the receiver checks the values of the received data and code bits 

and possibly corrects errors in the data bits. MIMO technology has attracted 

attention in wireless communications since it offers significant increases in data 

throughput without requiring additional radio bandwidth or transmitted power. 

More specifically, MIMO technology provides higher spectral efficiency (more 

bits per second per hertz of bandwidth) and increased link reliability or diversity 

(greater robustness against fading).  

 

Figure 2 MIMO Channel Model [8] 

The channel matrix H comprises the complex channel gains from each 

transmitting antenna to each receiving antenna. Each element hji of H is in general 

a complex vector that represents the discrete time channel impulse response 

between the i-th transmitter antenna and the j-th receiver antenna, as illustrated in 
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Figure 2. If the channel is flat fading, i.e., different frequency components of the 

signal experience the same magnitude of fading, then each element hji is a 

complex scalar. For a deterministic channel matrix, i.e., each element hji is 

known, without exploiting channel knowledge at the transmitter, the capacity of a 

MIMO channel is [7]: 

CMIMO  = B * log2 (det [  +  * H * H H]) 

When nt is large,  *  H *  HH  , where  denotes an nr nr identity matrix.                                                

In this special case [7]: CMIMO  = m * B *  log2 (1 + ρ) = m * CSISO  bits/sec 

Here B is the bandwidth of the channel, ρ is the SNR, nt  1 and nr  1 are the 

number of transmit antennas and receive antennas respectively, and H is the nr-

by-nt channel matrix. The MIMO multiplexing gain m equals the minimum value 

of nt and nr. H
H denotes the Hermitian transpose of H, which is obtained by 

negating the imaginary part of each complex element of H and then taking the 

transpose of the resulting matrix. 
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Figure 3 Average Capacity of Ideal MIMO (22, 3 3 and 4 4) and SISO 

(Conventional Shannon Capacity) Channels 

The capacity expression implies that for a SISO system, 3 dB of extra 

signal power is needed for each extra bit per second of throughput at the 

maximum capacity limit. Also, as illustrated in Figure 3, the capacity of a MIMO 

system increases linearly with the minimum m of the number of transmit or 

receive antennas. An alternative view is that by providing multiple paths from the 

transmitter to the receiver, the effects of fading are mitigated on average and thus 

a larger effective SNR can be achieved while using a MIMO system. 

Because of its advantages, MIMO technology has been adopted by all of 

the latest wireless standards such as the wireless local area network (WLAN) 

standard IEEE 802.11, used in Wi-Fi technologies; the wireless personal area 

network (WPAN) / Bluetooth - IEEE 802.15; and the metropolitan area network 

(MAN) which is branded as WiMax - IEEE 802.16 [9]. 
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2.2 System Architecture 

 
Figure 4 System Architecture  

Figure 4 illustrates the architecture of the system that we used to model 

MIMO transmission and reception. Note that the system model is a conventional 

baseband model where the modulation step at the transmitter and the matching 

demodulation step at the receiver have both been omitted. Thus modulation and 

demodulation are assumed to occur without impairment. The serial stream of 

input data bits are encoded and then mapped to a space-time block of complex 

baseband symbols. The symbols are intermixed by convolution with the channel 

and then corrupted with additive white Gaussian noise (AWGN). The detector 

recovers complex symbols from the analog received signals and outputs blocks of 

soft data bits. Finally, the block of soft data bits is decoded and the resulting bits 

are merged into a serial stream of output data.  

This work mainly focuses on the channel detector block shown in Figure 4. 

The channel detector is responsible for recovering a sequence of estimated 
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complex baseband symbols from the sampled baseband analog signals received 

from the antennas. We will first describe the features of the new class of detector 

and then analyze its performance. Finally, using a conventional Turbo Coding 

scheme, we will compare the BER performance of several alternative soft 

detectors. We will make the following assumptions: 

� The input data or information bits or uncoded data is partitioned into 

blocks of length L  1 containing randomly generated 0s and 1s with 

equal probability. 

� If coding is used, the encoder is the parallel concatenation of two recursive 

systematic convolutional encoders of rate 1/2 [10]. The overall code rate is 

therefore 1/3 (r = 1/3), i.e., the output sequence length is tripled. The 

original information bits are interleaved with two equal-rate bits streams 

produced by the encoders. 

 

 

 

 

 

 

 

 

Figure 5 Constellation Diagram for Gray-Coded M-QAM (M=16) [11] 
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� The space-time mapper takes the block of encoded bits, and maps them 

into a block of symbols from a complex constellation containing M  2 

symbols, using Gray code, i.e., a binary numeral system where two 

successive numeral values differ in only one binary digit, improving error 

correction. The number M of available constellation symbols is typically 

4, 8, 16, 64 or 256. We will be using standard complex M-ary Quadratic 

Amplitude Modulation (or M-QAM) constellations (see Figure 5). 

Sequences of symbols are grouped into frames that are sized so that the 

duration T of a frame, i.e., the number of samples in a frame, satisfies T ≥ 

2 * m - 1 (for near-optimal diversity-multiplexing trade-off [12]). Finally 

within each frame, the constellation symbols are grouped to form sample 

vectors of length m. Typically m = 2, 3 or 4. 

� The samples are transmitted through a simulated noisy radio environment. 

To reduce the simulation workload, the channel matrix, H, is assumed to 

be invariant for the duration T of a frame (i.e., the number of symbols in a 

frame). Each element of H is regenerated from a complex Gaussian 

distribution at the frame boundaries. Each scalar element hji represents the 

gain from the i-th transmitting antenna to the j-th receiving antenna, as 

illustrated in Figure 2. Scalar gains correspond to a frequency flat channel, 

where the duration of the impulse response of the channel is less than the 

symbol interval. We assume that the transmitter has no knowledge of the 

channel, but at the receiver side the channel matrix H is perfectly 

estimated. In practice, the channel matrix H is estimated using standard 
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methods that rely on fixed training symbol sequences that are inserted 

among the data symbols, reducing the code rate and/or throughput [13]. 

� The vectors of symbols transmitted at the same sample time through the 

channel are corrupted with Additive White Gaussian Noise (AWGN). The 

received noisy signal vector is then detected separately, producing a vector 

of either hard or soft bits. Hard bit information gives unqualified estimates 

(e.g., 0 or 1) of the received binary digit. Soft bit information gives 

estimates of binary digits along with probability information for each 

binary digit. The soft bits are typically log-likelihood ratios (LLRs) given 

to some finite bit precision (e.g., 4, 5 or 6 bits). The soft bits are output in 

blocks that correspond to the blocks of symbols produced in the 

transmitter by the space-time mapper. The multidimensional detected 

block of binary digits is then converted into a one-dimensional sequence 

of (hard or soft) bits. 

� If coding was used in the transmitter, the block of received soft or hard 

bits is processed in the receiver by a decoder to recover the serial stream 

of estimated and corrected information bits. For example, in the case of a 

Turbo-coded system, the soft bits are processed iteratively using a 

standard soft decoding algorithm based on Maximum A Posteriori (MAP) 

Probability. The output of the decoder is a sequence of information bits 

with (hopefully) lowered BER. 

The BER of the detector under consideration is computed by comparing the 

recovered data bits for each detection scheme to the originally transmitted data 
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bits. The performance of the detector is measured by determining the BER vs. 

SNR characteristic over a range of SNRs. A symbol encodes a sequence of 

log2(M)  1 bits from an M-QAM constellation. Therefore at a given SNR, SER 

 BER. Thus the BER vs. SNR characteristic provides the best overall measure of 

the performance of a coded system, i.e., the average number of bits in error from a 

received data block. The SER vs. SNR characteristic provides a more accurate 

measure of the performance of a symbol detector on its own, i.e., the average 

number of received symbols that have been detected with an error, without the 

benefit of an error-correcting code. 
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2.3 Conventional MIMO Detection Schemes 

The simplified MIMO system model is illustrated in Figure 6. 

 

Figure 6 Simplified MIMO Detection Diagram  

Here, s is a transmitted symbol vector of length m, where m = nt = nr is the 

assumed equal number of antennas at each end of the channel. Following standard 

practice, H is an m-by-m channel matrix whose complex entries are normally-

distributed with zero mean and unit variance. We assume that H is constant for 

the duration of a frame, but is updated at frame boundaries in order to simulate a 

Rayleigh flat fading environment. The frame length T is adjusted empirically to 

achieve accurate simulated BER results. The noise vector n is an AWGN vector 

of length m, whose coefficients are independent, normally-distributed complex 

variables with equal variance σn
2. y is the corresponding received noisy signal 

vector, which can be expressed in the standard baseband discrete-time model as   

y = H * s + n [14]. ŝ is the detected signal vector of length m. The goal of the 

detector is to maximize the probability of the event ‘s = ŝ’. Various detectors have 

been proposed in the literature that range from the statistically-optimal (but 

prohibitively expensive) maximum likelihood (ML) detector to low-complexity 

detection schemes with relatively poor performance. We will focus on the 
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complexity, the accuracy and the delay (detection latency) to evaluate the 

different detectors. 

2.3.1 Maximum Likelihood (ML) Detector [14] 

Knowing that the transmitted symbols are drawn with equal probability 

from a known finite alphabet of size M, the ML detector selects the statistically 

most probable candidate from among the M 

m possible transmitted symbol vectors. 

Intuitively, an optimal detector should return s = ŝ, the symbol vector whose 

conditional probability Prob(s was sent | y is observed) of having been sent is the 

largest, given the observed signal vector y: 

ŝ = argmax [Prob(s was sent | y is observed)] 

  = argmax , for all 

possible s. 

This equality is known as the Maximum A Posteriori Probability (MAP). If we 

further assume that the probability Prob(s was sent) is constant for all s  M 
m, 

i.e., we assume equiprobability in the transmitted s vectors, then the MAP 

detection rule can be written as: 

ŝ = argmax [Prob(y is observed | s was sent)], for all possible s. 

A detector that returns an optimal solution satisfying this equation is called a 

Maximum Likelihood (ML) detector. Under the assumption that the additive 

channel noise is white and Gaussian-distributed (i.e., AWGN), we can express the 

ML detection problem as that of minimizing the squared Euclidean distance 

metric to a target vector y over an M 

m-dimensional finite discrete search set: 
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ŝ = argmin ||y – H * s||, for all possible s.  

The pseudo-code for an ML detector is shown in Algorithm 1. After 

computing the error metric for all possible symbol vectors (Line 6), the detected 

symbol vector is the one with the minimum error metric (Line 11). 

-------------------------------------------------------------------------------------------------- 

Algorithm 1 ML Detection Algorithm 

--------------------------------------------------------------------------------------------------- 

1. for (every received symbol vector y in a block) do 

2. for  (a1 = 1 ; a1 = a1 + 1 ; a1 < M + 1) do 

3.  for  (a2 = 1 ; a2 = a2 + 1 ; a2 < M + 1) do 

4.   for (a3 = 1 ; a3 = a3 + 1 ; a3 < M + 1) do 

    … 

5.    for (am = 1 ; am = am + 1 ; am < M + 1) do    

6.                           CandidateError(sa1,…, sam) = norm2(y – H * [sa1;…; sam]);    

7.     end for 

     … 

8.   end for 

9.  end for 

10. end for  

11. ŝML = argmin [CandidateError(s)], for all s in M 
m 

12. output ŝML; 

13. end for  

--------------------------------------------------------------------------------------------------- 
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2.3.2 Minimum Mean Square Error (MMSE) Detector 

Due to its very great computational complexity, the ML detector is not 

often used in practice. To reduce the computational cost and to simplify the 

detection process, MIMO detectors using a conditioning matrix have been 

developed. The idea is to design a conditioning matrix G such that: ŝ = Q(G * y), 

where y = H * s + n is the signal vector and Q(.) is a slicing function that returns a 

vector ŝ of estimated symbols such that, for each element of ‘G * y’ the 

corresponding element in ŝ is the nearest (in Euclidean sense) constellation point. 

The Zero Forcing (ZF) conditioning matrix GZF aims to zero-out the inter-symbol 

interference (ISI) by setting ŝZF = Q(GZF * y), for a given y, s and H. Note that ZF 

does not exploit knowledge of random additive noise n in the signal. By contrast, 

the Minimum Mean square Error (MMSE) conditioning matrix is designed so that 

the expected error between ŝ and s satisfies the Minimum Mean Square Error 

criterion given that the noise n is Gaussian-distributed. In Appendix 1 the 

following two expressions are derived 

GZF = (HH * H) -1 * HH  

GMMSE = (HH * H + (1 / SNR) * Im)-1 * HH 

where HH is the Hermitian of H, i.e., the conjugate transpose of H. The SNR that 

is required in GMMSE can be estimated using training symbols that are inserted at 

known positions among the data-carrying symbol sequence, or by using so-called 

blind noise statistics estimation techniques [16, 17]. Note that GMMSE converges 

on GZF as SNR tends to infinity. 
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 Given an accurate estimate of the SNR, MMSE detectors perform better 

than ZF detectors. Intuitively, ZF detectors tend to over-react to any additive 

channel noise, whereas MMSE detectors are optimized to minimize on average 

the effects of noise [18]. 

The pseudo-code of the MMSE detector is shown in Algorithm 2. After 

computing the MMSE output yMMSE from each receiver antenna (Line 3), the 

detector picks the closest symbol from the constellation with respect to the 

Euclidean distance (Lines 4 & 5; here 11,M denotes a row vector containing M 1s, 

1m,1 denotes a column vector containing m 1s, and ConstellationSymbolMatrix 

is the row vector containing the signal complex alphabet). yMMSE * 11,M  provides 

an m-by-M matrix whose i-th row contains a replication of the estimated position 

of the symbol transmitted on the i-th layer. 1m,1 * ConstellationSymbolMatrix 

provides an m-by-M matrix whose i-th column contains a copy of the i-th symbol 

from the signal alphabet. Therefore, Distance is a matrix whose rows contain the 

distances of the estimated position of the transmitted symbol to each constellation 

symbol, and argmin(Distance) returns the closest constellation symbol to the 

estimated position provided by the element of  yMMSE. 

---------------------------------------------------------------------------------------------------

Algorithm 2 MMSE Detection Algorithm 

--------------------------------------------------------------------------------------------------- 

1. G = (HH * H + (1 / SNR) * I m)-1 * HH; 

2. for (every received symbol vector y in a block) do 

3. yMMSE = G * y; { conditioning } 

4.         Distance = | yMMSE * 11,M  –  1m,1 * ConstellationSymbolMatrix |;   
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5. [s1;s2…;sm] = argmin(Distance); { slicing } 

6. output ŝMMSE = [s1;s2…;sm]; 

7. end for  

---------------------------------------------------------------------------------------------------------------------- 

2.3.3 Vertical Bell Laboratories Layered Space Time                    

(V-BLAST) Detector [19, 20] 

The vertical Bell Laboratories layered space-time (V-BLAST) algorithm is 

a relatively low-complexity detection algorithm for the practical implementation 

of MIMO receivers. Its BER vs. SNR performance lies between that of ML and 

MMSE (See Figure 9). 

The V-BLAST algorithm detects each symbol iteratively by using a serial 

decision feedback approach. The key idea in V-BLAST is to first detect the most 

powerful layer, i.e., the layer exhibiting the largest post-detection SNR, which is 

the layer corresponding to the column of H which has the largest norm [20]. 

Detection of the first symbol exploits a linear equalizer, such as ZF or MMSE, 

which minimizes the expected interference from the other undetected symbols. 

We will assume that MMSE, which is more accurate in the presence of AWGN 

on average than ZF, is used to detect the first symbol. V-BLAST then regenerates 

the received signals given the channel matrix H and after having subtracted away 

the additive interference produced by the first detected symbol. It then proceeds 

with the detection of the second most powerful, transmitted symbol since it has 

already removed the effects of the first symbol, and so forth. Note that the channel 
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matrix H and the corresponding MMSE conditioning matrix G must be deflated 

(reduced by one in size, in one dimension) after each detection iteration to reflect 

the disappearance of each detected symbol. The resulting vector should contain 

less interference for the yet-to-be-detected symbols. Without loss of generality, let 

s1 denote the symbol with maximum strength (i.e., the symbol transmitted through 

the layer experiencing the largest post-detection SNR). Similarly, s2 will denote 

the symbol with the second largest strength, etc. Thus the weaker symbols are 

detected only after having subtracted away the interference contributions due to 

the more powerful symbols (s1, s2, ...). Unfortunately, a weakness in V-BLAST is 

that an error in the detection of any symbol will amplify the interference noise and 

likely propagate to detection errors in subsequent symbols, and this cascade of 

errors will degrade the performance of the detector. 

After ordering the layers according to their estimated strength (i.e., estimated 

post-detection signal-to-noise ratio), the V-BLAST detection scheme proceeds in 

three steps at each iteration (except the first one, which does not require an 

interference nulling step, and the last one, which does not require a symbol 

cancellation step). For the j-th iteration: 

(Step 1) Nulling: Vector yj contains interference from the still undetected 

symbols sj+1,..., sm. However, this interference can be minimized by multiplying yj 

by the nulling vector gj, which is the j-th row of G (i.e., the MMSE conditioning 

matrix corresponding to the deflated channel matrix H corresponding to the j-th 

iteration).  
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(Step 2) Slicing: Symbol sj is detected by selecting the symbol s' that 

minimizes the complex scalar difference || gj * yj – sj || over all M possible 

symbols sj in the constellation.  

(Step 3) Cancellation: Vector yj+1 is computed by subtracting the predicted 

interference H * [s1, s2, ..., sj, 0, ..., 0] from y.  

The pseudo-code of the MMSE-V-BLAST detector is shown in Algorithm 3. 

As previously mentioned, the detector iteratively detects the layers according to 

their strength. This is equivalent to sorting the columns of H with respect to their 

norm, i.e., the column which has the largest norm corresponds to the layer with 

the largest post-detection SNR. Similarly, as shown on line 5, the layers can be 

ordered by sorting the rows of G (gj, where j = 1…(m - t), and t is the number of 

layers already detected), i.e., the layer with the largest post-detection SNR 

corresponds to the row of G which has the smallest norm.  

---------------------------------------------------------------------------------------------------

Algorithm 3 MMSE V-BLAST Detection Algorithm 

--------------------------------------------------------------------------------------------------- 

1. Ĥ = H; 

2. for (every received symbol vector y in a block) do                                                                   

3. for (i = 1 ; i = i + 1; i < m + 1) do 

4.  G = (ĤH * Ĥ + (1 / SNR) * I (m - i + 1))
-1 * ĤH; 

5.  O(i) = k = minj || gj ||²;   { Ordering } 

6.  gi = G(k,: );   { Extract nulling vector from G } 

7.  ŝk = gk * y;   { Nulling } 

8.  sk = Q(ŝk);  { Slicing }   



22 
 

9.  if (i < m) then 

10.   y = y – hk * sk; { Cancellation }   

11.  end if 

12.   Ĥ = Ĥ \ hk; { Deflation } 

13. end for 

14. output ŝVBLAST = [s1;s2…;sm]; 

15. end for   
---------------------------------------------------------------------------------------------------------------------- 
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2.4 Fouladi Fard’s Parallel Detection Scheme 
Due to its high complexity, ML detection is impractical for real systems. 

Thus, researchers have investigated many sub-optimal but much more economical 

and hence practical MIMO detectors, such as ZF, MMSE and V-BLAST. 

However, simulations readily show that the V-BLAST detector provides far from 

optimal performance although its performance exceeds that of the ZF and MMSE 

detectors. The weakness in V-BLAST is that the first symbol detected does not 

benefit from interference cancellation. Also, at the symbol cancellation step, 

detections errors can occur and these errors enhance the apparent subsequent 

interference and thus cause detection errors for the following symbols. 

Fouladi Fard’s detection scheme (which actually rediscovered the Parallel 

Detector scheme described in 2002 by Yuan Li and Zhi-Quan Luo [21]) is based 

on the insight that the performance of the V-BLAST detector is limited by the 

detection of the strongest layer [22]. Detecting the strongest layer can be made 

more reliable by applying computation to speculatively subtract away interference 

from one of the other layers. By making this one layer the weakest layer, one can 

improve the joint detection of the strongest and the weakest symbols, and 

subsequent improve the detection of all other layers. To improve the estimate of 

the strongest symbol, the new algorithm starts with the weakest layer and 

exhaustively considers all possible candidate weakest transmitted symbol values 

from the constellation. For each hypothesized first symbol for the weakest layer, 

conventional V-BLAST is then applied to detect the remaining m - 1 symbols. 

The detection of the strongest layer should then experience less interference from 
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the weakest layer for the case where the correct weakest symbol has been chosen. 

Thus the strongest and weakest symbols are detected jointly. We will refer to 

Fouladi Fard’s detection scheme as F-BLAST.  

The pseudo-code of F-BLAST is shown in Algorithm 4. The algorithm 

cancels the contribution of a tentative candidate symbol sk
j from the weakest layer 

k of the noisy received signal y, where j = 1, …, M, and M is the cardinality of the 

constellation (Line 5 to 7). The remaining layers are detected according to the 

original V-BLAST scheme (Line 8). Then, an error metric εj = ||H * sj  –  y||2 for 

the tentative symbol vector sj is computed, where sj = [s1
j ; s2

j ; . . . ; sm
j] is the 

detected symbol vector. After proceeding for all tentative weakest symbol 

candidates in the constellation, the detector picks the one symbol vector ŝ with the 

smallest error metric εj. 

In terms of complexity, V-BLAST requires m nulling steps (i.e., vector 

multiplications), m slicing steps (i.e., symbol comparisons), and m - 1 cancellation 

steps (i.e., symbol vector multiplications and vector subtractions), to detect every 

transmitted symbol vector. The computational complexity of F-BLAST is 

increased by roughly M compared to V-BLAST as each of the M sub-detectors 

requires one fewer nulling and slicing operation for the worst symbol. The 

numbers of nulling, slicing and cancellation steps used in V-BLAST are thus 

increased by M, some of which are shared (a detailed analysis is provided in 

Section IV). It is important to note that the M sub-detectors in the proposed 

scheme can operate independently and, therefore, an M-fold parallel 

implementation of sub-detectors provides the same symbol detection throughput 
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as in the V-BLAST technique. A tree-structured output circuit can rapidly select 

the symbol vector with the least error εj. For a more compact implementation, one 

could implement only one instance of a sub-detector and then time multiplex it 

among other M - 1 sub-detectors at the expense of lowering the symbol detection 

throughput. 

---------------------------------------------------------------------------------------------------

Algorithm 4 F-BLAST Detection Algorithm 

--------------------------------------------------------------------------------------------------- 

1. G = (HH * H + (1 / SNR) * I (m - i + 1))
-1 * HH; 

2. εBest = LargeNumber; 

3. for (every received symbol vector y in a block) do 

4.  O(1) = k = maxj ||gj||²;   { Ordering } 

5. for  (every symbol from the constellation) do 

6.  sk = CurrentConstellationSymbol; 

7.  y = y – hk * sk; { Cancellation } 

8.      Original V-BLAST with MMSE equalizer on the m - 1 remaining layers   

9.  CurrentCandidateSymbolVector = [s1; s2…; sm]; 

10.  εj = ||H *  CurrentCandidateSymbolVector – y||²; 

11.  if  (εj < εBest) then  

12.   BestCandidate = CurrentCandidateSymbolVector; 

13.   εBest = εj; 

14.  end if 

15. end for 
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16.  output ŝFBLAST = BestCandidate; 

17. end for 

--------------------------------------------------------------------------------------------------- 

Figure 7 shows the similarity and the parallelizable structure of F-BLAST 

compared to V-BLAST. On this figure, two successive transmitted symbol 

vectors yI and yI+1 are being detected using V-BLAST and F-BLAST. Each layer 

is represented by a shaded square, whose brightness is relative to its strength (i.e., 

its SNR).  Finally, among the M (cardinality of the constellation) candidate 

symbol vectors, the symbol vector detected by F-BLAST is highlighted. 

 

Figure 7 V-BLAST vs. F-BLAST [23] 
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Figure 8 shows the SER performance for three MIMO configurations (4 4 

(a), 6 6 (b) and 8 8 (c)). When performing the exhaustive search on the weakest 

layer, the F-BLAST detector appears to achieve near-optimal performance. Here 

F(Wi)-BLAST designates the F-BLAST detector that runs the exhaustive search 

on the i-th weakest layer. 

   

     

 

 

 

 

 

 

Figure 8 SER vs. SNR for F-BLAST for Different Parallel-search Layers and 

Increasing Numbers of Antennas [24] 

Likewise, F(Si)-BLAST designates the F-BLAST detector which runs the 

exhaustive search on the i-th strongest layer. Note that F-BLAST tries to limit the 

error propagation by reducing the interference noise from the weakest layer, thus 

increasing the confidence on the important first decision made on the strongest 

layer. Given this motivation, we also tried to process the exhaustive search on the 

layer having the greatest interference on the strongest layer designated by F(MI)-

BLAST. The performance of F(MI)-BLAST was not found to be as good, 

however, as F(W1)-BLAST, as illustrated in Figure 8. 
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Figure 9 SER of Alternative Detection Schemes for a 44 16-QAM MIMO 

System over a Rayleigh Fading Channel 

Figure 9 shows the simulated SER performance of the four detectors that 

have been reviewed in this section. Here F-BLAST denotes the same thing as 

F(W1)-BLAST, where the exhaustively searched layer is the weakest layer. Note 

the remarkable performance of F-BLAST when detecting 16-QAM symbols in a 

4 4 MIMO system, which is equivalent to simultaneously running 16 3 4 V-

BLAST detectors. The SER performance of F-BLAST very closely matches the 

optimal performance of ML. F-BLAST can be easily implemented for the 

practical MIMO detection of signals with small symbol constellations. However, 

for larger constellations, such as 64-QAM or 256-QAM, the exhaustive search 

parallelism of F-BLAST becomes increasingly impractical and, indeed, this 

drawback motivates the research reported in this thesis.  
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III- Proposed Detection Scheme 

3.1 Key Ideas 

 As stated in the previous section, the linearly growing complexity of F-

BLAST makes it impractical to detect MIMO signals with large constellations 

(i.e., greater than 16-QAM). Our goal was to keep key ideas from the F-BLAST 

scheme but to limit the parallelism, say, to a maximum of 16 or 32 so that large 

constellations such as 256-QAM could be detected. In addition, the simple 

parallelism in F-BLAST has potential advantages in Orthogonal Frequency-

Division Multiplexing (OFDM) receivers, where a pool of hardware resources 

could be shared among the subcarriers. With this limit on the parallelism, it may 

become practical to use the MMSE equalizer and the Ordering and Successive 

Interference Cancellation (OSIC) method (e.g., BLAST) that is being used in the 

industry [25]. However, challenges remain in the optimal choice of the restricted 

search set and in the optimal ordering of the layers during detection.  

3.1.1 Definition of the Restricted Search Set 

The definition of the restricted search set will definitely impact the 

performance of the proposed detector. Ideally, we want the new detector’s 

decisions to be identical to the decision that would be produced by F-BLAST 

detection. Intuitively, the larger that the searched window is within the full 

constellation, the closer to F-BLAST should be the error rate performance. 

Unfortunately a larger search space will require more computation, and therefore 
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more energy, which is a limited resource in battery-powered communication 

devices. For simplicity, the search window within a constellation is positioned 

around a constellation point that is more easily estimated. We used an MMSE 

equalizer to define the center of the window search because it gives better results 

than the ZF equalizer with only slightly more computation. Using a V-BLAST 

estimator to determine the search window center was not found to give significant 

benefits over MMSE given the additional computational cost. At present, there is 

no tractable theoretical basis for optimally constructing the search window. 

Therefore an empirical method was used, which corresponds roughly to 

constructing the search window of size W as the MMSE estimated symbol on the 

searched layer together with the W - 1 nearest symbols (in a Euclidean sense) in 

that layer. The precise shape of the search window for each symbol position sX 

was optimized empirically by simulation experiments. Specifically, we collected 

histograms for the (assumed near-optimal) F-BLAST estimate given that the 

MMSE estimate was sX for all possible values of sX. For each histogram, a search 

window of size W was constructed by selecting the W most likely F-BLAST 

decisions (that is, near-optimal decisions) for each sX. The M windows were then 

stored in look-up tables (the number of tables can be reduced significantly by 

exploiting constellation symmetry). Figure 10 shows the ten unique search 

windows for W = 8 and 16 for M = 64. The number of windows has been reduced 

from 64 to ten in this figure by exploiting all possible symmetries (about the 

diagonals, the vertical and horizontal axis). 
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Figure 10 Search Windows of Size W = 8 (Darker Shading) and 16 (Darker and  

Lighter Shading) for the 64-QAM Constellation [24] 

3.1.2 Layer Ordering 

As for the F-BLAST detection scheme, the proposed detector first 

performs a parallel search within one chosen searched layer, and then the original 

V-BLAST detection scheme is applied to the remaining layers. While the V-

BLAST scheme starts the detection on the strongest layer, the F-BLAST scheme 

starts the detection on the weakest layer (by guessing all possible symbol values 

in parallel) in an attempt to reduce the interference on the strongest layer. When 

the selected layer is not exhaustively searched, our simulations have shown that 

the best choice of layer is not necessarily the weakest. The best ordering method 

will be discussed in more detail in the next section. 
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3.2 Simulations and Results 

To simplify the discussion, we will use Si to denote the i-th strongest 

layer, i.e., the layer corresponding to the column of H with the i-th strongest 

strength (the i-th largest norm among all columns of H). Similarly, we will use 

Wi to denote the i-th weakest layer, i.e., the layer corresponding to the column of 

H with the i-th weakest strength (the i-th smallest norm among all columns of H). 

Finally, we will use MI  to denote the layer having the greatest expected 

interference on the strongest layer, i.e., the layer with the largest coefficient hji in 

i-th column of H corresponding to the strongest layer.   
 A simulation study was conducted using MATLAB implementations for 

several different MIMO system configurations (m = 4, 6 or 8), while detecting 

several large constellation signals (M-QAM with M = 64, 128 or 256). We used a 

block-based data partitioning for simulation afficiency. Typically, 2 * 104 blocks 

are simulated together, with each block containing 10 frames each, for accuracy 

of the average number of binary digits in error. To reduce the calculation effort, 

the channel matrix was set to be constant for the duration of a frame. The frame 

size was set to ensure accurate modelling of Rayleigh fading. Specifically, 2 * M 

sample vectors were transmitted during each frame. To ensure statistical accuracy 

in the error measurements, a minimum of 10,000 symbols in error were simulated.   

In order to pick the best starting layer, a simulation study of the family of 

new detectors was conducted. The simulation results are shown in Figure 11. Here 

FR(Wi,W)-BLAST designates the FR-BLAST detector which runs W parallel 
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searches in layer Wi. Likewise FR(Si,W)-BLAST designates the FR-BLAST 

detector which runs W parallel 

 

Figure 11 SER vs. SNR for FR-BLAST of Various Reduced Search Windows  

searches in layer Si, and FR(MI,W)-BLAST designates the FR-BLAST detector 

which runs W parallel searches in layer MI . We observe that the relative 

performance of the various detectors depends on the SNR. Note that at high SNR 

the best starting layer is S1 whereas for intermediate SNR values both S2 and MI 

outperform the other layer choices. FR(Opt,W)-BLAST refers to the optimal 

detector that uses a window size W, i.e., the detector which picks the one best 

layer for each frame of sample vectors. This detection algorithm produces the 

best-case upper limit for FR-BLAST detectors that are limited to searching W 

parallel choices on a dynamically-chosen search layer. The decisions of 

FR(Opt,W)-BLAST were stored as a best-case reference for further study. 

Observe that FR(Opt,16)-BLAST clearly outperforms the performance of the 

other detectors for SNR values greater than 34 dB. 
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One question that arises is the possibility of optimally selecting the first 

layer to be detected for an improved FR-BLAST detector and thus hopefully 

approach the performance of FR(Opt, W)-BLAST. To be practical, the layer 

selection rule would have to be both simple and accurate. In order to answer this 

question, a statistical study was conducted. We used the stored decisions of the 

optimal FR-BLAST detector and analysed them using discriminant analysis 

routines from the Statistical Package for the Social Sciences (SPSS) [26]. The 

SPSS provides powerful routines for data clustering and discriminant analysis. 

The method and the results are presented in Appendix 2. Unfortunately, SPSS was 

unable to find an effective linear rule for selecting the parallel search layer. For 

picking the best starting layer, the optimal layer selector model proposed by SPSS 

only made the right decision about 25% of the time. This corresponds to randomly 

selecting that layer from among the four candidate layers.  

The next phase of this work studied the performance of the detectors in an 

encoded scheme. The BER/SER performance was generally studied at low SNR, 

therefore we decided to focus our study of the FR-BLAST detection scheme while 

restricting the search to within only the S2 or MI layers, i.e., the layers which 

show the best performance for SNR values less than 30 dB. Unfortunately, 

experimental results show that the MI layer is different from S2 more than 2/3 of 

the time. Therefore, at this time, we once again found that there is no simple 

criterion for picking the best starting layer for FR-BLAST.  
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Figure 12 SER vs. SNR for FR-BLAST for Various Reduced Search Windows 

and Signal Constellations 

Figure 12 summarizes the performance of the FR-BLAST scheme in a 

4 4 MIMO configuration when detecting 64-, 128- and 256-QAM signals. It 

shows that the SER vs. SNR performance of FR-BLAST increases with the size 

of the search window, i.e., increasing the size of the window search will lower the 

SER. Further, the performance of FR-BLAST is still very good for larger 

constellation signals.  

Figure 13 confirms that the performance characteristics of the new family 

detectors (FR-BLAST) are better than that of MMSE and V-BLAST for all SNR 

values and for three different constellations (64, 128 and 256). In addition, FR-

BLAST experiences saturation in performance at the larger SNRs. That is for the 

larger SNRs, the slope of its performance characteristic (i.e., the diversity order) 

reduces from that of the near-optimal F-BLAST (-2) to that of V-BLAST, MMSE 

and ZF (-1). Thus FR-BLAST clearly has worse performance than that of near-

optimal F-BLAST. 



36 
 

 

Figure 13 SER vs. SNR for MMSE, V-BLAST, FR-BLAST of Various Reduced 

Search Windows, and F-BLAST [24] 

FR-BLAST is an interesting alternative detection scheme that achieves 

good performance in terms of error rate, relatively low implementation 

complexity, low computational complexity (derived in Chapter IV) and an 

attractive parallelizable structure. This could be attractive for MIMO detectors for 

small to moderate SNRs, offering performance that lies between V-BLAST and 

the near-optimal (but very expensive) F-BLAST and sphere-decoding-based 

detectors. 

The pseudo-code of FR-BLAST is shown in Algorithm 5. Apart from the 

definition of the restricted search window (Line 5 and Line 6), the pseudo-code of 

FR-BLAST is very similar to that of F-BLAST. 
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---------------------------------------------------------------------------------------------------

Algorithm 5 FR-BLAST Detection Algorithm 

--------------------------------------------------------------------------------------------------- 

1. G = (ĤH * Ĥ + (1 / SNR) * I (m - i + 1))
-1 * ĤH; 

2. εBest = LargeNumber; 

3. for (every received symbol vector y in a block) do 

4.  O(1) = k = maxj ||gj||²;   { Ordering } 

5.  sX = gk * y; { Find center of the restricted search set } 

6. Subset = Table(sX, W); { Constructing the search window from a look-up 

table} 

7. for  (every symbol from the restricted search set) do 

8.  sk = CurrentConstellationSymbol; 

9.  y = y – hk * sk; { Cancellation } 

9. Original V-BLAST with MMSE equalizer on the m - 1 remaining layers   

10.  return CurrentCandidateSymbolVector = [s1;s2…;sm]; 

11.  εj = ||H *  CurrentCandidateSymbolVector – y||²; 

12.  if  (εj < εBest) then  

13.   BestCandidate = CurrentCandidateSymbolVector; 

14.  end if; 

15.  εBest = εj; 

16. end for 

17.  output ŝFRBLAST = BestCandidate; 

18. end for 

--------------------------------------------------------------------------------------------------- 
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3.3 Alternative Detectors 

 

Figure 14 Performance of the Real-valued F-BLAST Detector 

The detectors described in the previous section use complex-valued 

sampled signals, channel matrices and noise coefficients. In this section we will 

instead study detectors in a real-valued equivalent model. The real-valued 

detectors have an improved error rate performance compared to the traditional V-

BLAST detection scheme. The improvement stems from the greater degrees of 

freedom afforded by having twice as many symbol layers that can be ordered 

more effectively [27]. 

Complex-valued detection uses the following equation to describe a 

transmission over a MIMO system: y = H * s + n. In contrast, the real-valued 

equivalent model is based on the following equation [27]:  

yR = HR * sR + nR, 

where yR = [real(y), imag(y)]T,  
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HR = ,  

sR = [real(s), imag(s)]T,  

and  nR = [real(n), imag(n)]T 

Here the notations real(z) and imag(z) denote the real and the imaginary vector 

components of the complex-valued vector z.  

For example, with z = [1 + .5 * j, 5 + 3 * j], real(z) = [1, 5] and imag(z) = [.5, 3]. 

The real-valued equivalent model has effectively twice the number of 

antennas at each side of the radio link. This leads to a bigger channel matrix: the 

number of components in each dimension is doubled. Figure 14 compares the 

performance of the F-BLAST scheme while using the real-valued equivalent 

model compared with the complex-valued MMSE and the V-BLAST detectors. 

Note that the real-valued equivalent model uses only one dimension of the signal 

constellation, i.e., while doing a real-valued detection, the number of symbols is 

. Thus the real-valued F-BLAST detection scheme uses -fold parallelism 

instead of M. That is a significant reduction in the amount of parallelism for M  

64 and this flexibility could be used to make trade-offs at a circuit design level. 

An improved real-valued detector that uses 2 *  fold parallelism was also 

studied. This second real-valued MIMO detector simply performs the real-valued 

F(W1)-BLAST and the real-valued F(W2)-BLAST and picks the best output 

vector at the end, we will refer to it as Parallel(W1,W2) Real F-BLAST. This last 

detector benefits from selection diversity [28] and has improved BER 

performance. 
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IV- Computational Complexity Results 

4.1 Assumptions 

When comparing the cost of alternative algorithms, it is important to 

accurately count the number of elementary operations (i.e., real number additions, 

real number multiplications, and real number reciprocals) that are required to 

detect each received symbol. In order to derive the exact cost, in terms of the 

number of elementary operations for the various MIMO detectors considered in 

this project, let us first make some reasonable simplifying assumptions. 

We will assume that memory allocation does not require any elementary 

operations. Sufficient memory is assumed to have been pre-allocated for the 

decoder calculations. Also, initializing a matrix, i.e., defining each initial element 

of a matrix, does not require any elementary operations. In general, all variables 

are assumed to be allocated statically at initialization and thus do not require any 

further run time. 

In addition, we will assume that computing the negation of a real or 

complex number, i.e., a to -a, and computing the complex conjugation operation, 

i.e. a to a*, do not require significant run time. In the same spirit, we will assume 

that computing the transpose of a matrix or the Hilbert transform of a matrix will 

not require any elementary operations. Any changes in sign can be merged into 

the next arithmetic operation without extra cost. 
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Also, the arithmetic division “a/b” will be assumed to be accomplished by 

multiplying ‘a’ by the reciprocal of ‘b’ so that the relatively expensive division 

operation is replaced by a (fast) multiplication and an optimized reciprocal. 

As noted above, we will associate computational cost with three main 

elementary operations:  

� real-valued addition or subtraction, denoted by ‘+’ 

� real-valued multiplication, denoted by ‘*’ 

� real-valued reciprocal of an argument N, denoted by ‘1/N’ 

All three operations are assumed to be performed in the real-valued domain. The 

vast majority of processors cannot directly handle complex arithmetic natively, so 

our computational complexity results will be presented in terms of real-valued 

operations.  

Finally, we will consider the possibility of parallel operations that exploit 

the possible presence of parallel arithmetic hardware units. It can safely be 

assumed that maximum parallelism is now going to be affordable using the 

reconfigurable logic and arithmetic units of large field-programmable gate arrays 

(FPGAs). One operation cycle, which we will denote by ‘c’, is the time, usually 

equal in the instruction set of a modern computer, to perform one addition or one 

subtraction. Frequently, modern computers will in fact be able to compute a 

multiplication in the same amount of time as an addition by using a combined 

multiplier-accumulator in the arithmetic data-path. 

 

 



42 
 

4.2 General Results for Basic Operations 

The total number of elementary operations is a useful metric that is 

roughly proportional to the energy required by the computation. On the other 

hand, the minimum number of required consecutive operations (assuming 

maximum hardware parallelism) gives a measure of the best-case (i.e., minimum) 

time complexity. A real reciprocal function requires roughly four to ten cycles, 

depending on the algorithm and the required bit width, thus more than one parallel 

real addition or multiplication can be performed in parallel with one real 

reciprocal. However for simplicity we will assume that parallel real additions, real 

multiplications or real reciprocals all require only one cycle.  

Let fi(x,y,z) and gi(x,y,z) denote the number of real-valued operations and 

operation cycles, respectively, associated with parameters x, y and z. Table 1 

summarizes the number of elementary operations and operation cycles required 

for basic operations that are used in the detection algorithms. A detailed 

derivation can be found in Appendix 3. 
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Table 1 General Complexity Results 

 
 

i. Operation  

f i gi 
 

Real 
Additions 

 

 
Real 

Multiplications 
 

 
Real 

Reciprocals 
 

 
Minimum 

Cycles 

1. Real number addition  1 0 0 1 
2. Real number 
multiplication 

0 1 0 1 

3. Real number reciprocal  0 0 1 1 
4. Square absolute value of 
real number 

0 1 0 1 

5. m-by-n real-valued 
matrix addition  

m*n 0 0 1 

6. Addition of a set 
containing n real numbers  

n-1 0 0  

7. Minimum of a set 
containing n real numbers  

n-1 0 0  

8. Square norm of a real-
valued column vector of 
length n  

n-1 n 0 1+  

9. Multiplication of an m-
by-p and a p-by-n real-
valued matrices  

m*n*(p-1) m*n*p 0 1+  

10. Inverse of an n-by-n 
real-valued matrix  

n2(n-1) n2(n-1) n2 3n 

11. MMSE conditioning 
matrix from a 2n-by-2n 
real-valued channel matrix  

n[8n2-n-1] 4n2(2n+1) n2+1 6+7n+2*
 

12. MMSE conditioning 
matrix from a m-by-n real-
valued deflated channel 
matrix  

m(m-1)(n+m) m2(n+m-1) m2 3m+1+
 

13. Complex number 
addition  

2 0 0 1 

14. Complex number 
multiplication  

2 4 0 2 

15. Complex number 
reciprocal  

1 4 1 4 

16. Square absolute value of 
a complex number  

1 2 0 2 

17. m-by-n complex-valued 
matrix addition  

2m*n 0 0 1 

18. Addition of a set 
containing n complex 
numbers 

 
2n-2 

 
0 

 
0 

 

 

19. Square norm of a 
complex-valued column 
vector of length n 

2n-1 2n 0 2+  

20. Multiplication of an m-
by-p complex-valued matrix 
by a p-by-n complex-valued 
matrix 

                              
m*n(4p-2) 

                             
4m*n*p 

                              
0 

                    
2+  
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21. Inverse of an n-by-n 
complex-valued matrix 

n2(4n-3) 4n3 n2 7n 

22. MMSE conditioning 
matrix from an n-by-n 
complex-valued channel 
matrix 

n[8n2-n-1] 4n2(2n+1) n2+1 6+7n+2*
 

23. MMSE conditioning 
matrix from an m-by-n 
complex-valued deflated 
channel matrix 

n(4m2-
3m+4mn-2n) 

4m2(m+n) m2 7m+2+
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4.3 Computational Complexity of the Detectors 

4.3.1 Real-valued Detection 

The real-valued equivalent model has twice as many antennas, i.e., 2m instead 

of m, and the constellation size is equal to along one dimension instead of M 

across two dimensions. Typical values of m are 2, 3 and 4, while typical values of 

M are 4, 16 and 64.   

Complexity Result 1 MMSE detection on 2m real-equivalent layers requires: 

(a) m2+1  m2 real reciprocals 

(b) 8m3+8m2+2m  8m3+2m  real multiplications 

(c) 8m3+3m2-4m+2m  8m3+2m  real additions 

(d) 7m+10+ +  7m+  parallel cycles      

Proof: The number of arithmetic operations contributed by each line is as follows:        

Line 1 

Computing the MMSE conditioning matrix will require f11(2m) operations and 

g11(2m) cycles. With fi(2m) representing the number of additions and 

multiplications for the i-th basic operation as presented in table 1; likewise gi(2m) 

represents the number of minimum cycles for the i-th basic operation. 

Line 3 

With (m, p, n) = (2m, 2m, 1), computing G * y requires f9(2m,1,2m) operations 

and g9(2m,1,2m) cycles. 
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Line 4 

ymmse *  11,M – 1m,1 *  ConstellationSymbolMatrix, can be seen as memory 

allocation, so this calculation requires no operations. With (m, n) = (2m, ), 

computing ymmse *  11,M – 1m,1 *  ConstellationSymbolMatrix requires f5(2m, ) 

operations and g5(2m, ) cycles. To compute the absolute square norm of 

2m  real-valued numbers, we require    2m  * f 4 operations and one cycle. 

Line 5 

We have to compute the minimum of 2m sets of real numbers of length  each, 

thus, 2m * f7( ) operations and g7( ) cycles are required. 

Q.E.D. 

Complexity Result 2 V-BLAST detection on 2m - 1 real-equivalent remaining 

layers requires: 

(a) 1/3(8m3-6m2+m)  8/3m3 real reciprocals 

(b) 1/3(28m4-32m3+17m2-17m)+(2m-1) 28/3m4+2m  real 

multiplications 

(c) 1/3(28m4-28m3+17m2-35m+4)+(4m-2)  28/3m4+4m real additions 

(d) 6m2+13m-11+(4m-3) +(2m-1) +2   

6m2+2m  parallel cycles     

Note: Here, we assumed that the detection on the first layer has already been 

performed.  

Proof: The number of arithmetic operations contributed by each line is as follows:        
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On the 2m-1 remaining layers, H is considered to be an 2m-by-d complex 

matrix, where 2m-d is the number of layers already deflated. 

 Line 4 

With (n, m) = (2m, d), the computation of G requires f12(2m,d)  operations 

and g12(2m,d) cycles. 

Line 5 

In order to proceed with the right layer, we need to compute the minimum 

of a set of d real numbers; this requires f7(d) operations and g7(d) cycles. 

Except on the last layer to be detected, this step is omitted. 

Line 7 

With (m, n, p) = (1, 1, 2m), nulling will require f9(1,1,2m) operations and 

g9(1,1,2m) cycles. 

Line 8 

In order to pick the right symbol from the constellation. First we need to 

compute the distance from each constellation symbol, i.e., with (m, n) 

=( , 1), f5( ,1) operations and g5( ,1) cycles are required. Then we 

need to compute  square absolute value, requiring,  * f4 operations 

and g4 cycles. Finally, we pick the minimum of a set of  real numbers. 

This requires f7( ) operations and g7( ) cycles. 

Line 10 

With (m, n, p) = (2m, 1, 1), computing hk * sk requires f9(2m,1,1) 

operations and g9(2m,1,1) cycles. Now, computing y – hk * sk requires 

f5(2m,1) operations and g5(2m,1) cycles. However on the last layer to be 



48 
 

detected, the ordering of the layers is not required since there is only one 

layer. 

Line 12 

No operations nor time in cycles are required to deflate the channel matrix 

H. 

     Q.E.D. 

Complexity Result 3 V-BLAST detection on 2m real-equivalent layers requires: 

(a) 1/3(8m3-3m2+m+3)  8/3m3 real reciprocals 

(b) 1/3(28m4-8m3+41m2-5m)+(2m+2)  28/3m4+2m  real 

multiplications 

(c) 1/3(28m4-4m3+26m2-35m-5)+(4m-2)  28/3m4+4m real additions 

(d) 6m2+20m+2+(4m+2) +2m +2   

6m2+2m  parallel cycles     

Proof: The number of arithmetic operations contributed by each line is as follows:        

Line 5 

Ordering requires the computation of 2m times 1-by-2m real-valued vector norms, 

thus 2m * f8(2m) operations and g8(2m) cycles are required. 

Line 3 to Line 13 

On the first layer to be detected,  

 Line 4 

The computation of G requires f11(2m)  operations and g11(2m) cycles. 
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Line 5 

In order to proceed on the right layer, we need to compute the minimum of 

a set of 2m real numbers. This requires f7(2m) operations and g7(2m) 

cycles. 

Line 7 

With (m, n, p) = (1, 1, 2m), nulling will require f9(1,1,2m) operations and 

g9(1,1,2m) cycles. 

Line 8 

In order to pick the right symbol from the constellation, first we need to 

compute the distance from each constellation symbol, i.e., with   (m, n) = 

( , 1), f5( ,1) operations and g5( ,1) cycles are required. Then we 

need to compute  square absolute values i.e.,  * f4 operations and 

g4 cycles. Finally, we pick the minimum of a set of  real number; this 

requires f7( ) operations and g7( ) cycles. 

Line 10 

With (m, n, p) = (2m, 1, 1), computing hk * sk requires f9(2m,1,1) 

operations and g9(2m,1,1) cycles. Computing y – hk * sk requires f5(2m,1) 

operations and g5(2m,1) cycles. 

Finally, the detection of the first layer will require  m2+1 ( 1/N ), 8m3+8m2+ 

4m+  ( * ), 8m3+3m2+3m+2 -3 ( + ), and 13+7m+ +  ( c ). 

On the 2m-1 remaining layers, the complexity is given by Complexity Result 2. 

Q.E.D. 
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Complexity Result 4 F-BLAST detection on 2m real-equivalent layers requires: 

(a) m2+1+ /3(8m3-6m2+m)  8/3m3  real reciprocals 

(b) 8m3+8m2+ /3(28m4-32m3+29m2-5m)+(2m-1)M  28/3m4 +2mM real 

multiplications 

(c) 8m3+3m2-3m-1+ /3(28m4-32m3+29m2-23m+1)+(4m-1)M  

28/3m4 +4mM real additions 

(d) 6m2+20m+4+(4m+2) +2m +2   

6m2+2m  parallel cycles             

Proof: The number of arithmetic operations contributed by each line is as follows:        

Line 1 

The computation of G requires f11(2m)  operations and g11(2m) cycles. 

Line 4 

Ordering requires computing 2m times 1-by-2m real-valued vector norms, thus 

2m * f 8(2m) operations and g8(2m) cycles are required. In order to identify on the 

right layer, we need to compute the minimum of a set of 2m real numbers; this 

requires f7(2m) operations and g7(2m) cycles. 

Line 5 to Line 10 

For each  symbol from the constellation, the following lines can be done in 

parallel. 

Line 7 

With (m, n, p) = (2m, 1, 1), computing hk * sk requires  * f9(2m,1,1) 

operations and g9(2m,1,1) cycles. Computing y – hk * sk requires  * 

f5(2m,1) operations and g5(2m,1) cycles. 
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Line 8 

The detection of the 2m-1 remaining real-equivalent layers will require 

 times the operations provided in Complexity Result 2, and the same 

number of run cycles, assuming maximum parallelism.  

Line 10 

With (m, n, p) = (2m, 1, 2m), computing H * s requires  * f9(2m,1,2m) 

operations and g9(2m,2m,1) cycles. Now, computing y – H *  s requires 

f5(2m,1) operations and g5(2m,1) cycles. Finally, computing epsilon, i.e., 

the square norm of y – H * s, requires  * f 8(2m) operations and g8(2m) 

cycles. 

Line 11 to 14 

In order to pick the best candidate vector, we need to compute the minimum of a 

set of  real numbers; this will require f7( ) operations and g7( ) cycles.  

 Q.E.D. 
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Table 2 shows that the real-valued V-BLAST detector requires fewer than 

ten times more real-valued operations and time in cycles than the real-valued 

MMSE detector, in both the 33 or a 4 4 MIMO configurations, regardless of 

the modulation used (16-QAM, 64-QAM or 256-QAM). Figure 14 shows that this 

increase in the number of computations leads to a reduction of a factor ten in 

terms of BER compared to that of the real-valued MMSE detector, regardless of 

the modulation used and for SNR greater than 35 dB. Note that, while the ratio of 

the number of real-valued operations required by the real-valued V-BLAST 

detector over that required by the real-valued MMSE detector is approximately 

the same for the three different modulations, the number of real-valued operations 

required by the real-valued F-BLAST detector is approximately doubled when M 

is quadrupled, and it is approximately tripled compare to that of the real-valued 

V-BLAST detector for M = 16. Also, due to its parallel structure, the real-valued 

F-BLAST detector requires approximately the same amount of time, in operation 

cycles, than the real-valued V-BLAST detector. However, Figure 14 shows that 

the real-valued F-BLAST’s BER is at least 100 times lower than that of the real-

valued MMSE detector, for SNR greater than 35 dB, regardless of the modulation 

used. 

 Therefore, the real-valued F-BLAST detector achieves a better BER vs. 

SNR performance than the real-valued V-BLAST detector, without increasing the 

required time in cycles (assuming parallel hardware), and with only a relatively 

small increase in the number of required real-valued operations (about four times 
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and ten times more operations are required for 16-QAM and 256-QAM 

respectively). 

Table 2 Computational Complexity of Real-valued MIMO Detection Algorithms  

Note: The numbers in brackets give counts relative to the MMSE detector with 

the corresponding value of m. 

� m = 3 complex layers, or m = 6 for the real-valued equivalent model 
 

 

Scheme 

 

M 

Real 
Multiplications 

Real Additions Real 
Reciprocals 

Time in Cycles 
(Parallel 

Hardware) 

 

MMSE 

16 312 255 10 45 

64 336 279 10 46 

256 384 327 10 47 

 

V-BLAST 

16 834 (2.7) 802 (3.1) 65 (6.5) 172 (3.8) 

64 866 (2.6) 842 (3.0) 65 (6.5) 178 (3.9) 

256 930 (2.4) 922 (2.8) 65 (6.5) 184 (4.0) 

 

F-BLAST 

16 2,580 (8.3) 2,539 (10.0) 230 (23.0) 174 (3.9) 

64 5,020 (14.9) 5,196 (18.6) 450 (45.0) 180 (3.9) 

256 10,380 (27.0) 11,566 (35.4) 890 (89.0) 186 (4.0) 

 

� m = 4 complex layers, or m = 8 for the real-valued equivalent model  
 

 

Scheme 

 

M 

Real 
Multiplications 

Real 
Additions 

Real 
Reciprocals 

Time in Cycles 
(Parallel 

Hardware) 

 

MMSE 

16 672 576 17 52 

64 704 608 17 53 

256 768 672 17 54 

 

V-BLAST 

16 2,471 (3.7) 2,451 (4.2) 157 (9.2) 258 (5.0) 

64 2,511 (3.6) 2,507 (4.1) 157 (9.2) 266 (5.0) 

256 2,591 (3.4) 2,619 (3.9) 157 (9.2) 274 (5.1) 

 

F-BLAST 

16 8,187 (12.2) 8,111 (14.1) 577 (33.9) 260 (5.0) 

64 15,941 (22.6) 16,155 (26.6) 1,137 (66.9) 268 (5.0) 

256 32,123 (41.8) 33,683 (50.1) 2,257 

(132.8) 

276 (5.1) 
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4.3.2 Complex-valued Detection 

 Complex-valued arithmetic is not directly supported in most computers, 

but it is implementable using custom arithmetic units, as could be synthesized in 

FPGA designs. Typically the support for complex arithmetic is coordinated in 

software and the real and imaginary parts are computed using multiple machine 

language instructions on the hardware [28]. 

Complexity Result 5 ML detection on m layers requires: 

(a) 0 real reciprocals 

(b) Mm(4m2+2m)  4m2Mm real multiplications 

(c) Mm(4m2+2m)-1  4m2Mm real additions 

(d) 5+2 +   parallel cycles         

Proof: The number of arithmetic operations contributed by each line is as follows:        

Line 1 to Line 6 

We have Mm iterations of candidateError  to compute, which can be done in 

parallel. First, with (m, p, n) = (m, m, 1), computing H * [ sa1; sa2 … ; sam] for all 

candidates requires Mm * f20(m,m,1) operations and g20(m,m,1) cycles. Then, with 

(m, n) = (m, 1), computing y – H * [sa1; sa2 … ; sam] for all candidates requires Mm 

* f 17(m,1) operations and g17(m,1) cycles. Finally, with n = m, computing ||y – H * 

[sa1; sa2 … ; sam]||2 requires Mm * f 19(m) operations and g19(m) cycles. 

Line 11 

Computing the minimum of a set of Mm real number requires f7(M
m) operations 

and g7(M
m) cycles. 

 Q.E.D. 
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Complexity Result 6 MMSE detection on m layers requires: 

(a) m2+1  m2 real reciprocals 

(b) 8m3+8m2+2mM  8m3+2mM real multiplications 

(c) 8m3+3m2-3m+3mM+M-1  8m3+3mM real additions 

(d) 7m+11+3 +  7m+  parallel cycles       

Proof: The number of arithmetic operations contributed by each line is as follows:          

Line 1 

Computing the MMSE conditioning matrix will require f22(m) operations and 

g22(m) cycles. 

Line 3 

With (m, n, p) = (m, 1, m), computing G * y requires f20(m,1,m) operations and 

g20(m,1,m) cycles. 

Line 4 

First, ymmse *  11,M  and 1m,1 * ConstellationSymbolMatrix, can be seen as 

memory allocation, so they require no operations. Then with (m, n) = (m, M), 

computing ymmse*11,M –1m,1*  ConstellationSymbolMatrix requires f17(n,M) 

operations and g17(n,M) cycles. Finally, we have to compute the absolute square 

norm of mM complex-valued numbers, thus mM * f16 operations and two cycles 

are required. 

Line 5 

We have to compute the minimum of m sets of real number of length M, thus, m * 

f7(M) operations and g7(M) cycles are required. 

 Q.E.D. 



56 
 

Complexity Result 7 V-BLAST detection on m - 1 remaining layers requires: 

(a) 1/6(2m3-3m2+m)  1/3m3 real reciprocals 

(b) 7/3m4-3m3+18m2-12m+(4m-2)M  7/3m4+4m  real multiplications 

(c) 7/3m4-7m3+50/3m2-17m+2+(4m-4)  7/3m4+4mM real additions 

(d) 7/2m2+13/2m-13- +(m-1)( + )+2  

 7/2m2+m  parallel cycles       

Note: Here, we assumed that the detection on the first layer has already been 

accomplished.       

Proof: The number of arithmetic operations contributed by each line is as follows:        

On the m - 1 remaining layers, H is considered to be an m-by-d complex matrix 

where m-d is the number of layers already deflated. 

 Line 4 

With (n, m) = (m, d), the computation of G requires f23(m,d)  operations 

and g23(m,d) cycles. 

Line 5 

In order to identify the right layer, we need to compute the minimum of a 

set of m real numbers and, this requires f7(d) operations and g7(d) cycles. 

Note that on the last layer to be detected, the ordering of the layers is not 

required. 

Line 7 

With (m, n, p) = (1, 1, m), nulling will require f20(1,1,m) operations and 

g20(1,1,m) cycles. 
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Line 8 

We need to pick the right symbol from the constellation. First we need to 

compute the distance from each constellation symbol, i.e., with (m, n) = 

(M, 1), f17(M,1) operations and g17(M,1) cycles are required. 

We then need to compute M complex square absolute values, i.e., M * f16 

operations and g16 cycles. Finally, we pick the minimum of a set of M real 

numbers; this requires f7(M) operations and g7(M) cycles. 

Line 10 

With (m, n, p) (m, 1, 1), computing hk * sk requires f20(m,1,1) operations 

and g20(m,1,1) cycles. Now, computing y – hk * sk requires f17(m,1) 

operations and g17(m,1) cycles. Except on the last layer to be detected. 

Line 12 

Neither operations nor time in cycles are required to deflate the channel 

matrix H. 

Q.E.D. 

Complexity Result 8 V-BLAST detection on m layers requires: 

(a) 1/6(2m3+3m2+m+6)  1/3m3 real reciprocals 

(b) 7/3m4+5m3+24m2-4m+4mM  7/3m4+4mM real multiplications 

(c) 7/3m4+m3+53/3m2-10m-1+4m  7/3m4+4mM real additions 

(d) 21/2m2+13/2m+3-

+(m+4) +m +2   

21/2m2+m  parallel cycles           
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Proof: The number of arithmetic operations contributed by each line is as follows:          

 Line 5 

Ordering requires computing m times 1-by-m complex-valued vector norms, thus            

m * f 19(m) operations and g19(m) cycles are required. 

Line 3 to Line 13 

On the first layer to be detected,  

 Line 4 

The computation of G requires f22(m) operations and g22(m) cycles. 

Line 5 

In order to proceed on the right layer, we need to compute the minimum of 

a set of m real numbers. This requires f7(m) operations and g7(m) cycles. 

Line 7 

With (m, p, n) = (1, m, 1), nulling will require f20(1, m, 1) operations and        

g20(1, m, 1) cycles. 

Line 8 

The right symbol needs to be picked from the constellation. First we need 

to compute the distance from each constellation symbol, i.e., with (m, n) = 

(M , 1), f17(M,1) operations and g17(M,1) cycles are required. Then, we 

need to compute M complex square absolute values, i.e., M * f16 

operations and g16 cycles. Finally, we need to pick the minimum of a set of 

M real numbers, this requires f7(M) operations and g7(M) cycles. 
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Line 10 

With (m, n, p) = (m, 1, 1), computing hk *  sk requires f20(m,1,1) operations 

and g20(m,1,1) cycles. Now, computing y – hk * sk requires f17(m,1) 

operations and g17(m,1) cycles. 

Finally, the detection on the first layer will require m2+1 ( 1/N ), 8m3+6m2+ 

8m+2M ( * ), 8m3+m2+7m+4M-3 ( + ), 7m+16+ +5  ( c ). 

On the m-1 remaining layers, the complexity is given by Complexity Result 7. 

Q.E.D. 

Complexity Result 9 F-BLAST detection on m layers requires: 

(a) m2+1+M/6(2m3-3m2+m)  1/3m3M real reciprocals 

(b) 8m3+6m2+(7/3m4-3m3+22m2-6m)M+(4m-2)M2  7/3m4M+4m 2 real 

multiplications 

(c) 8m3+m2-m-2+(7/3m4-7m3+62/3m2-11m+2)M+(4m-4)M2  7/3m4M+4m 2 

real additions 

(d) 7/2m2+27/2m+3- +(m+5) +m +2  

 7/2m2+m  parallel cycles            

Proof: The number of arithmetic operations contributed by each line is as follows:          

Line 1 

The computation of G requires f22(m)  operations and g22(m) cycles. 

Line 3 

Ordering requires computing m times 1-by-m complex-valued vector norms, thus 

m * f 19(m) operations and g19(m) cycles are required. In order to identify the right 
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layer, we need to compute the minimum of a set of m real numbers; this requires 

f7(m) operations and g7(m) cycles. 

Line 5 to Line 10 

For each M symbol from the constellation, this can be done in parallel. 

Line 7 

With (m, n, p) = (m, 1, 1), computing hk * sk requires M * f 20(m,1,1) 

operations and g20(m,1,1) cycles. Now, computing y – hk * sk requires M * 

f17(m,1) operations and g17(m,1) cycles. 

Line 8 

The detection of the m-1 remaining layers will require M times the 

operations provided in Complexity Result 7, and the same number of run 

cycles, assuming maximum parallelism.  

Line 10 

With (m, n, p) = (m, 1, m), computing H * s requires M * f20(m, 1, m) 

operations and g20(m,m,1) cycles. Now, computing y – H * s requires M * 

f17(m,1) operations and g17(m,1) cycles. Finally, computing epsilon, i.e., 

the square norm of y – H * s, requires M * f19(m) operations and g19(m) 

cycles. 

Line 11 to 14 

In order to pick the best candidate vector, we need to compute the minimum of a 

set of M real numbers; this will require f7(M) operations and g7(M) cycles. 

 Q.E.D. 
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Complexity Result 10 FR-BLAST detection on m layers requires: 

(a) m2+1+W/6(2m3-3m2+m)  1/3m3W real reciprocals 

(b) 8m3+6m2+4m(7/3m4-3m3+22m2-6m)W+(4m-2)MW  7/3m4W+4m W real 

multiplications 

(c) 8m3+m2+3m-4+(7/3m4-7m3+62/3m2-11m+2)M+(4m-4)MW  

7/3m4M+4m W real additions 

(d) 7/2m2+27/2m+5- +(m+6) +m +2  

 7/2m2+m  parallel cycles      

Proof: The number of arithmetic operations contributed by each line is as follows:          

       The algorithm is very similar to Fouladi Fard’s algorithm, except the fact that 

instead of searching in the entire constellation for the first symbol, a restricted 

search in a subset (search space containing W symbol, see Line 5 and 6) is 

performed.   

Line 5 

With (m, n, p) = (1, 1, m), computing gk * y requires M * f20(1,1, m) operations 

and g20(1,1, m) cycles. 

Line 6 

No operations are required as it is equivalent to reading coefficients from a pre-

defined matrix. 

Q.E.D. 
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Table 3 confirms that ML is not suitable for practical implementation, due 

to the large number of real-valued operations that it requires. In addition, it shows 

that V-BLAST requires about twice as many real-valued operations and time in 

cycles than MMSE, for both the 33 and 4 4 MIMO configurations, regardless 

of the modulation used (16-QAM, 64-QAM or 256-QAM). Figure 13 shows that 

this increase in the number of computations leads to BER approximately 10 times 

lower, in comparison to that of MMSE, regardless of the modulation used and for 

SNR greater than 30 dB. Also, while the ratio of the number of real-valued 

operations for V-BLAST over that of MMSE is approximately the same for the 

three different modulations, the number of real-valued operations required by F-

BLAST is about ten times greater when M is quadrupled. Due to its parallel 

structure, F-BLAST requires approximately the same number of cycles than V-

BLAST. However, Figure 13 shows that F-BLAST exhibits a BER at least 10 

times lower (about 40 times lower with 16-QAM and 64-QAM, for SNR = 40 

dB).  

For search window sizes W = 8, 16 or 32, the gain achieved by FR-

BLAST in terms of BER vs. SNR in comparison to that of MMSE, lies between 1 

dB and 2 dB. The computational complexity of FR-BLAST is about W times 

greater than that of V-BLAST, and considerably smaller than that of F-BLAST. 

Observe that for the special case where W = 1 and W = M, FR-BLAST is 

equivalent to V-BLAST and F-BLAST respectively, thus one can predict that the 

performance characteristic of FR-BLAST and its computational complexity will 

lie between that of V-BLAST and F-BLAST, depending on the value of W. 
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 In conclusion, FR-BLAST achieves a better BER versus SNR 

performance than V-BLAST, without increasing the required time in cycles, but 

at the expense of additional computations proportional to the size of the restricted 

search set. Interestingly the size of the search set, and hence the degree of 

parallelism, can be adjusted to control the performance and the required power. 

Table 3 Computational Complexity of Complex-valued MIMO Detection 

Algorithms 

Note: The numbers in brackets give counts relative to the MMSE detector with 

the corresponding value of m. 

� m = 3  
 

 
 

Scheme 

 
 

M 

 
Real 

Multiplications 

 
Real 

Additions 

 
Real 

Reciprocals 

Time in Cycles 
(Parallel 

Hardware) 
 

ML 

16 172,032 172,031 0 21 

64 11,010,048 11,010,047 0 27 

256 704,643,072 704,643,071 0 33 

 

MMSE 

16 384 (1.0) 393 (1.0) 10 (1.0) 42 (1.0) 

64 672 (1.0) 873 (1.0) 10 (1.0) 44 (1.0) 

256 1,824 (1.0) 2,793 (1.0) 10 (1.0) 46 (1.0) 

 

V-BLAST 

16 720 (1.9) 536 (1.4) 15 (1.5) 144 (3.5) 

64 1,296 (2.0) 1,112 (1.3) 15 (1.5) 150 (3.4) 

256 3,600 (2.0) 3,416 (1.3) 15 (1.5) 156 (3.4) 

 

F-BLAST 

16 7,438 (19.4) 4,748 (15.1) 90 (9) 104 (2.5) 

64 59,662 (88.8) 42,908 (49.2) 330 (33) 110 (2.5) 

256 729,358 (399.9) 564,188 (202.1) 1,290 (129) 116 (2.6) 

FR-BLAST 

W = 8 

64 7,706 (11.5) 5,566 (6.4) 58 (5.8) 114 (2.6) 

256 23,066 (12.7) 17,854 (6.4) 58 (5.8) 120 (2.7) 

FR-BLAST 

W = 16 

64 15,130 (22.6) 10,902 (12.5) 106 (10.6) 114 (2.6) 

256 45,850 (25.2) 35,478 (12.8) 106 (10.6) 120 (2.7) 

FR-BLAST 

W = 32 

64 29,978 (44.7) 21,574 (24.8) 202 (20.2) 114 (2.6) 

256 91,418 (50.2) 70,726 (25.4) 202 (20.2) 120 (2.7) 
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� m = 4  
 

 
 

Scheme 

 
 

M 

 
Real 

Multiplications 

 
Real 

Additions 

 
Real 

Reciprocals 

Time in Cycles 
(Parallel 

Hardware) 
 

ML 

16 4,718,592 4,718,591 0 25 

64 1,207,959,552 1,207,959,551 0 33 

256 309,237,645,31

2 

309,237,645,31

1 

0 41 

 

MMSE 

16 768 (1.0) 755 (1.0) 17(1.0) 49 (1.0) 

64 1,152 (1.0)  1,379 (1.0) 17(1.0) 51 (1.0) 

256 2,688 (1.0) 3,875 (1.0) 17(1.0) 53 (1.0) 

 

V-BLAST 

16 1,542 (2.1) 1,159 (1.6) 31 (1.9) 231 (5.7) 

64 2,310 (2.1) 1,927 (1.4) 31 (1.9) 239 (4.7) 

256 5,382 (2.1) 4,999 (1.3) 31 (1.9) 247 (4.7) 

 

F-BLAST 

16 15,926 (34.6) 10,602 (14.1) 241 (14.2) 149 (3.7) 

64 104,886 (91.1) 77,706 (56.4) 913 (53.8) 157 (3.1) 

256 1,105,846 

(411.5) 

899,082 (232.1) 3,601 (211.9) 165 (3.2) 

FR-BLAST 

W = 8 

64 13,659 (11.9) 10,184 (7.4) 137 (8.1) 161 (3.4) 

256 35,163 (13.1) 28,616 (7.4) 137 (8.1) 169 (3.1) 

FR-BLAST 

W = 16 

64 26,694 (23.2) 19,832 (14.4) 257 (15.2) 161 (3.4) 

256 69,702 (26.0) 56,696 (14.7) 257 (15.2) 169 (3.1) 

FR-BLAST 

W = 32 

64 52,763 (45.9) 39,128 (28.4) 497 (29.3) 161 (3.4) 

256 138,779 (51.6) 112,856 (29.2) 497 (29.3) 169 (3.2) 

 

 Thus assuming that we can afford a detector that is three times slower than 

MMSE, we recommend the use of FR-BLAST with a search window containing 

16 symbols, since it only increases the number of arithmetical operations by a 

factor of ten regardless of the modulation scheme, for a reduction of the BER 

higher than ten. In other words, by slowing down a little bit the detection process, 

and consuming ten times more power, the detector can make ten times less error. 
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V- Asymptotic Analysis  

5.1 Assumptions 

We assume that the channel is unknown at the transmitter side, but known 

or perfectly estimated at the receiver side. Error correcting codes are not used. 

Let nR and nT be the number of antennas at the receiver and transmitter 

side, respectively. In this work we assume that nR = nT = m ≥ 1. As before, M 

denotes the number of points in the complex symbol constellation. 

The channel matrix coefficients and the components of the Additive White 

Gaussian Noise are assumed to be circularly Gaussian. The channel matrix, H, is 

assumed to be constant for the duration T of a frame. For this work, sequences of 

symbols are grouped into frames such that the duration T of a frame, i.e., the 

number of samples in a frame, satisfies T ≥ 2 * m - 1 [12]. This choice has been 

shown through experience to give acceptable channel modeling accuracy with 

reduced computational complexity. 
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5.2 Asymptotic Performance Analysis 

5.2.1 Definitions  

� The multiplexing gain is the multiplicative gain in capacity (with respect 

to a SISO channel) achieved by distributing the main data streams into 

multiple parallel data streams. The multiplexing gain, rm, is given by rm = 

min(nR, nT). The multiplexing gain rm of all the detection schemes 

presented in this work is equal to the MIMO gain, i.e., rm = m [30]. 

� The diversity order expresses how fast the average error probability 

decreases with respect to increasing SNR [31]. Let d denote the diversity 

order, then 

d = - , where Pe(SNR) is the average error 

probability of the scheme. The error probability is usually measured by the 

bit error rate. 

� The diversity gain expresses how the diversity order increases additively 

over that of the SISO system which is one [31].   

The ML detection scheme experiences full diversity order, i.e., dML 

= nR = m [32]. A reduced complexity scheme, such as the MMSE detector, 

experiences full multiplexing gain while reducing significantly the 

computational complexity, but at the cost of severe loss in performance. 

At high SNR,   dMMSE = nR - nT + 1 = 1 [31]. The V-BLAST detection 

scheme has a diversity gain of zero, which is independent of the strength 

(i.e., the estimated post-detection SNR) of the first layer to be detected, 
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thus dVBLAST = nR - nT + 1 = 1 [33]. As, one might expect, the diversity 

gain of V-BLAST is limited by the MMSE detection of the first symbol, 

which does not benefit from interference cancellation from the other 

symbols. Even though the fall-in Pe(SNR) is the same for both MMSE and 

V-BLAST, the BER of V-BLAST is much lower than that of MMSE, as 

shown in Figure 14. 

5.2.2 Asymptotic Analysis of F-BLAST 

Asymptotic Result 1 The diversity order dFBLAST of F-BLAST is 2. 

Proof: 

Let Pe,FBLAST (SNR) denote the average error probability of the F-BLAST scheme 

at a given SNR. The law of total probability leads to: 

Pe,FBLAST (SNR) = P(E | Ē1) * P(Ē1) + P(E | E1) * P(E1)                                        (1) 

Here, for a given SNR, P(E1) is the average error probability for the decision on 

the first layer to be detected; P(Ē1) is the average probability of a correct decision 

on the first layer to be detected;  P(E | Ē1) is the average error probability of the F-

BLAST scheme given that a correct decision had been made on the first layer to 

be detected (i.e., an error occurred after the first symbol was detected correctly, so 

no error propagated from the detection of the first symbol); and P(E | E1) is the 

average error probability of the F-BLAST scheme given that an erroneous 

decision had been made on the first layer to be detected (i.e., an error in the 

detection of the first symbol propagates to an error in the detection of the second 

symbol). 

Ē1 is the complementary event of E1, thus 
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P(Ē1) = 1 - P(E1)                                                                                                    (2) 

From (1) and (2), we obtain 

Pe,FBLAST (SNR) = P(E | Ē1) + (P(E | E1) - P(E | Ē1)) * P(E1)                                (3) 

When the SNR is large [32],  

Pe,VBLAST(SNR)                                                                                 (4) 

where Pe,VBLAST (SNR) is the average error probability of the V-BLAST scheme at 

the given SNR, and CVBLAST is a positive constant. 

 Consider a scheme that always makes an erroneous decision on the first 

layer to be detected and then proceeds with the original V-BLAST detection over 

the m - 1 remaining layers. Its average error probability is an upper bound on the 

error probability of V-BLAST on an m-by-m system [33]. Note that a scheme that 

always makes a correct decision on the first layer to be detected and then proceeds 

with original V-BLAST detection over the m - 1 remaining layers has an error 

probability equivalent to that of V-BLAST on an (m-1)-by-m MIMO system since 

the second layer to be detected will experience one less interferer [33]. Thus with 

(4) and for large SNR we obtain 

P(E | Ē1)     ,  nR = m and nT = m - 1 

P(E | Ē1)                                                                                                  (5) 

and P(E | E1)     , nR = nT = m 

P(E | E1)                                                                                                  (6) 
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Let s1 and ŝ1 denote the transmitted and detected symbols, respectively, on the 

first layer to be detected. Let EH{} denote the expected value operator over the 

channel matrix H. Then by definition [34]: 

P(E1) = EH{ P(ŝ1  s1 | H) * P(s1))}                                                         (7) 

For large SNR, and with CML a positive constant [31]: 

EH{P(ŝ1  s1 | H)}                                                                                    (8) 

With nR = m, and assuming equiprobable symbols P(s1) = 1 / M. Substituting (8) 

into (7) for large SNR yields 

P(E1)                                                                                        (9) 

P(E1)                                                                                               (10) 

Thus, for large SNR, (3), (5), (6) and (10) yield 

Pe,FBLAST (SNR)  (  - ) *  +  

By factoring, we obtain 

Pe,FBLAST (SNR)   * (1 +  *  * (1 - )) 

Thus, for large SNR and m  > 1, 

log(Pe,FBLAST (SNR))  log(CVBLAST)-2 log(SNR)+log(1+ *  * (1 -  ))             

In the limit as the SNR becomes large we obtain 

 = - 2                                                      (11) 

Q.E.D. 

 



70 
 

5.2.3 Asymptotic Analysis of FR-BLAST 

Asymptotic Result 2 The diversity order dFR(W)-BLAST of FR-BLAST is one. 

Proof: 

Let SW denote the restricted search set containing W M-QAM symbols, as 

defined in Section 3.1.1., and let Pe,FR(W)BLAST(SNR) denote the average error 

probability of the FR-BLAST scheme which runs W parallel searches, at a given 

SNR. The law of total probability leads to:  

Pe,FR(W)BLAST(SNR) = P(E | s1  SW)*P(s1  SW) + P(E | )*P( ) (12) 

Here, for a given SNR, P( ) is the average probability of not having within 

the restricted search set the symbol transmitted on the first layer; P(s1  SW) is the 

average probability of having within the search set the symbol transmitted on the 

first layer;  P(E | ) is the average error probability of FR(W)-BLAST 

given that the restricted search set does not include the symbol transmitted on the 

first layer; and P(E | s1  SW) is the average error probability of the FR(W)-

BLAST given that the restricted search set includes the symbol transmitted on the 

first layer. 

By definition: 

P(s1  SW) =                                                                                                      (13) 

and from (2) and (13), 

P( ) =                                                                                               (14) 

If the restricted search set does not include the symbol transmitted on the 

first layer to be detected, then FR(W)-BLAST will make an erroneous decision on 
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this layer and this error will propagate through to the detection of the m - 1 

remaining layers. But, after the detection of ŝ1, FR(W)-BLAST runs the original 

V-BLAST detection on the      m - 1 remaining layers. Therefore from (6) and for 

large SNR 

P(E | ) = P(E | E1)  CVBLAST *                                                        (15) 

If the restricted search set includes the symbol transmitted on the first 

layer to be detected, from (3) and the law of total probability,  

P(E|s1 SW) = P(E|(Ē1, s1 SW))+[P(E|(E1, s1 SW))-P(E|(Ē1, s1 SW))]*P(E1, s1 SW)                         

                                                                                                                             (16) 

After the decision on the first layer to be detected, both the F-BLAST and FR(W)-

BLAST detectors are identical. Therefore, from (5) and (6): 

P(E | (Ē1, s1  SW)) = P(E | Ē1)                                                              (17) 

P(E | (E1, s1  SW)) = P(E | E1)                                                              (18) 

Similarly, to the derivation of P(E1) in Section 5.2.2., from (9) we obtain 

P(E | s1  SW)   

There are W - 1 symbols different from s1 in the restricted search set, therefore 

P(E | s1  SW)                                                                                   (19) 

Thus, for large SNR, (17), (18), (19) and (20) yield to 

P(E | s1  SW)   (  - ) *  +  

Finally, we have 

P(E | s1  SW)    * (1 +  *  * (1 - ))                                 (20) 
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From (13), (14), (15), (16) and (20) we obtain 

Pe,FR(W)BLAST   * (  * (1 +  *  * (1 - ))) +  

By factorization, it is straightforward to obtain for large SNR 

Pe,FR(W)BLAST(SNR)  *(1+  + *(1- )) 

Thus, for large SNR and m  > 1, 

log(Pe, FR(W)BLAST (SNR))  log( ) - log(SNR) + log(1 + 

 +  * (1 - )) 

In the limit as the SNR becomes large we obtain 

 = - 1                                               (21) 

Q.E.D. 

5.2.4 Asymptotic Analysis of the Real-valued F-BLAST  

Asymptotic Result 3 The diversity order  of real-valued F-BLAST is 

two. 

Proof: 

Recall that the real-valued equivalent detection scheme is based on the 

following model (Section 3.3): 

yR = HR * sR + nR, 

where yR = [real(y), imag(y)]T, HR = , sR = [real(s), 

imag(s)]]T, and nR = [real(n), imag(n)]]T. 
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The diversity order of V-BLAST is limited by the diversity achieved by 

the first layer to be detected. Furthermore, this layer experiences a diversity order 

similar to that of MMSE. The diversity order of V-BLAST was derived in [33] 

and the average error probability of V-BLAST for large SNR is provided in (4). 

Hence, in the 2m-by-2m MIMO real equivalent model (here nr = nt = 2m), the 

average error probability of MMSE for large SNR can be approximated by [35]: 

(SNR)                                                                             (22) 

An approximation of the average probability of the typical error event for large 

SNR is [34]: 

{P(ŝ1  s1 | H
R)}                                                                              (23) 

Recall, the expression of the average probability of F-BLAST derived in Section 

5.2.2: 

(SNR) = P(E | Ē1) + (P(E | E1) - P(E | Ē1)) * P(E1)                            (24) 

Likewise, using the 2m-by-2m real-valued equivalent model, we obtain for large 

SNR:  

P(E | Ē1)     ,  nR = 2m and nT = 2m - 1 

P(E | Ē1)                                                                                                (25) 

and P(E | E1)     , nR = nT = 2m 

P(E | E1)                                                                                                (26) 

With nR = 2m, P(s1) = , (7) and (23), for large SNR, we can evaluate P(E1) as 

P(E1)                                                                                  (27) 
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P(E1)                                                                                             (28) 

Thus, for large SNR, (24), (25), (26) and (28) yield 

(SNR)  (  - ) *  +  

By factoring, it is straightforward to obtain 

(SNR)   * (1 +   * (1 - )) 

Thus, for large SNR and m > 1 

log( (SNR))  log(CVBLAST) -2*log(SNR)+log(1+ *(1- 

)) 

Finally, in the limit for large SNR 

 = - 2                                                     (29) 

Q.E.D. 

Corollary to Asymptotic Result 3 The diversity order  of the 

real-valued F(W1,W2)-BLAST is 2.5. 

Proof: 

The real-valued F(W1,W2)-BLAST is the detector that selects the best 

symbol vector between (1) the real-valued detector that searches the real 

component of the weakest layer, and (2) the real-valued detector that searches the 

complex component of the weakest layer. Such a system should benefit from 

‘selection diversity’, thus assuming reasonable independence in the two detectors, 
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the diversity gain for a two-branch selection diversity should be 1.5 [36]. 

Therefore, by definition, the diversity order of such detector is 2.5. 

Q.E.D. 

 One could extend this idea to obtain selection benefits by search on greater 

than the first two real layers, to say three or four layers. However the 

computational cost will rapidly become prohibitive. 

5.2.5 Simulation Study 

We calculated the slope of the performance characteristic of various 

schemes studied in this work and illustrated in Figure 8, 9, 11, 13 and 14. The 

results are summarized in Table 4. Since, each curve was drawn using the average 

number of symbols in error for a given SNR, then stored for future analysis, we 

basically picked two points from the tail of the performance characteristic to 

compute its slope, using the following formula:  

slope =  

Here SERi and SNRdBi are the Y-axis and X-axis coordinate, respectively, of a 

point from the tail of the performance characteristic. 

Table 4 Experimentally Measured Tail Slope 

� Figure 8: M = 64, SNR1 = 28 dB and SNR2 = 30 dB 

Detector F-BLAST 4 4 F-BLAST 6 6 F-BLAST 8 8 
slope - 3.6 - 5.1 - 5.4 
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� Figure 9: M = 16, SNR1 = 26 dB and SNR2 = 28 dB 

Detector ML F-BLAST V-BLAST MMSE 
slope - 5.0 - 4.8 - 1.0 - 1.0 
 
 

� Figure 11: M = 64 

 slope 
Detector SNR1 = 28 dB and SNR2 = 

30 dB 
SNR1 = 28 dB and SNR2 = 

30 dB 
FR(OPT,9)-BLAST  - 2.8 - 1.0 
FR(W2,9)-BLAST  - 2.0 - 1.0 
FR(S1,9)-BLAST - 2.2 - 1.7 

FR(OPT,16)-BLAST - 2.8 - 1.0 
FR(W2,16)-BLAST  - 1.9 - 1.0 
FR(S1,16)-BLAST  - 2.2 - 1.7 

 

� Figure 13: SNR1 = 34 dB, SNR2 = 36 dB 

 slope 
Detector M = 64 M = 128 M = 256 

FR-BLAST(W2,32) - 1.8 - 2.0 - 2.3 
FR-BLAST(W2,16) - 1.1 - 1.2 - 1.8 

F-BLAST - 4.5 - 3.5 - 3.7 
V-BLAST - 0.9 - 1.2 - 1.3 

MMSE - 0.8 - 0.9 - 1.0 
 

� Figure 14: SNR1 = 34 dB, SNR2 = 36 dB 

 slope 
Detector M = 16 M = 64 M = 256 
MMSE - 1.00 - 1.0 - 0.9 

V-BLAST - 1.03 - 1.2 - 1.1 
real F-BLAST - 1.66 - 1.9 - 2.1 

F-BLAST - 2.13 - 3.6 - 3.0 
Parallel (W1,W2) real F-

BLAST 
x -2.7 -3.0 

 

These tables show that for SNR ranging from 26 dB to 40 dB, neither FR-

BLAST (with relatively large window sizes), real F-BLAST, F-BLAST nor ML’s 
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performance characteristic has reached their theoretical asymptotic behaviour, i.e., 

the absolute value of the tail’s slope is not approximately equal to the predicted 

diversity order of the scheme. This, can be explained by the fact that, the SNR 

values considered here are not large enough, as illustrated in Figure 15. Also, we 

can observe that the larger the constellation, the slower the absolute value of the 

slope takes to reach its theoretical value, i.e., the diversity. Consistently with this 

trend, the larger the window size W of FR-BLAST, the slower the absolute value 

of the slope takes to reach its theoretical value.  

In conclusion, as the search window’s size increases, the performance 

characteristic of the proposed detector is improved for SNR values of interest, i.e., 

0 dB to 40 dB. As derived above, the diversity order for FR-BLAST does not 

depend on the size of the search window. 

 

Figure 15 Approximation of the Average Error Probability for Large SNR Values  
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VI- Performance Study of a Turbo Decoder 

 In practical wireless systems, to greatly enhance the effective quality of 

the channel, blocks of information data are encoded at the transmitter side of the 

radio link, and decoded at the receiver side of the radio link using an error control 

algorithm, such as the well-known Turbo Codes (TC) [37]. The performance of 

TCs approaches the Shannon limit, and they have been adopted by the next 

generation of 3GPP2 / CDMA 2000 Wireless Communication Systems [38].  

6.1 Turbo Codes 

 TC are based on the parallel concatenation of two Recursive Systematic 

Convolutional (RSC) codes separated by an interleaver [39]. The turbo decoding 

principle calls for an iterative algorithm involving two component decoders that 

exchange information in order to improve the error correction performance with 

increasing numbers of decoding iterations [37].  

 
Figure 16 Turbo Encoder Diagram 
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Figure 16 illustrates the structure of a turbo encoder. The information bits 

are grouped to form a block of fixed-length information data bits to be encoded. 

The encoder is formed by two RSC encoders that operate in parallel. Each 

encoder generates a sequence of n1 and n2 coded bits, respectively, from a 

sequence of i information bits, producing an overall code rate of ‘ i / (n1 + n2 - i)’. 

To enhance the performance of the decoder, the second encoder processes the 

information bits in a different order, i.e., the information bits are interleaved or 

scrambled to obtain a decorrelated version of the same information. The coded 

bits sequence is comprised of parity bits and systematic bits (original information 

bits). Finally, the encoders’ outputs are multiplexed and interleaved using a 

predefined interleaver to strengthen the code. 

 
Figure 17 Turbo Decoder Diagram 
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Figure 17 illustrates the structure of a turbo decoder. The received 

sequence is comprised of soft information bits and soft parity bits. The soft bits 

give estimates of bit values along with probability information for each bit. They 

are typically log-likelihood ratios (LLRs) given to some finite bit precision (e.g., 

3, 4, 5 or 6 bits). Maximum Likelihood Detection (MLD) principle, i.e., the 

comparison of the probability of a received soft bit being a ‘one’ or a ‘zero’, is 

used to decode TC. The decoder is formed by two Maximum A-posteriori 

Probability (MAP) decoders that have knowledge of the lattice structure of the 

encoders. Each MAP decoder receives the original soft information bits and one 

of the two streams of soft parity bits, and produces a (hopefully) more accurate 

sequence of soft information and soft parity bits. After a certain number of 

iterations, the outputs of the decoders are compared by addition, i.e., the LLRs 

corresponding to the i-th bits from the block of soft information bits generated by 

the first and the second component APP decoder, respectively, are summed to 

increase or decrease the probability of the i-th information bit being a zeros or a 

one. Finally, a hard decision is made to recover the original sequence of 

information bits. 
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6.2 Turbo Codes for MIMO Systems [40] 

 In [38], the author discusses several applications of TC. In this section, we 

will briefly present three major applications that retain our attention. 

6.2.1 TC Design in Asymmetric Digital Subscriber Line  

(ADSL) 

 Asymmetric Digital Subscriber Line (ADSL) is presently the main 

technology of broadband wireline communications. This transmission model 

associates a TC with a multicarrier modulation such as QAM [40]. Figure 18 

illustrates the structure of an ADSL modem. 

 

Figure 18 Block Diagram of an ADSL Modem [41] 
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 Observe that there is no direct feedback from the decoder to the encoder. 

For this application, in order to reduce the effect of impulse noise that corrupts the 

signal in the twisted pair channel, the original information bits sequence is 

interleaved. This step tends to break up blocks of erroneous bits to create isolated 

erroneous bits that can be more easily corrected. The Gray code mapping [42] is 

the most common assignment of the bits to an M-QAM constellation, where the 

systematic bits are assigned to the least significant bits and parity bits are assigned 

to the remaining more significant bits. The turbo decoder utilizes a MAP 

algorithm for soft decoding, as described in Section 6.1. Since the delay is an 

important parameter in ADSL transmission, the main focus here is designing the 

interleavers. Large interleavers are not affordable, consequently medium-sized 

interleavers which provide sufficiently good error rate performance are of interest 

[41]. 

6.2.2 Iterative Decoding for Wireless Communications [43] 

Another application of TCs can be found in multiple antenna and Code-

Division Multiple Access (CDMA) channels. The CDMA channels are coded 

independently from each others, whereas the multiple antenna channel is 

synchronous and its sub-streams can be jointly coded. In many applications, the 

fading channel can be modeled by the Rayleigh model [44]. For an optimal usage 

of those channels in high SNR regions, large signal constellations should be used. 

However, the transmitted signals are correlated by the channel and due to the 

cardinality of the constellation, it is impractical to search over all possible 
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candidate signals. A solution to this problem is to create single-stream channels or 

layers and use iterative demodulation and decoding. 

In Iterative Decoding, a soft-output APP decoder plays the role of an outer 

code and the channel plays the role of an inner code, the first decoder sending 

back a posteriori probabilities of each bit iteratively to the second decoder. Figure 

19 illustrates the structure of such a decoder for a CDMA system. 

 

 

Figure 19 Iterative Multiuser Decoder with Soft Information Exchange [43] 
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Here FEC stands for Forward Error Control, and λ(di) represents the symbol-wise 

log-likelihood ratio from the i-th layer. 

The complexity of this decoder grows only linearly with the number of layers, 

consequently a practical usage can be found for large constellation signals. This 

technique is being applied in high-speed MIMO wireless communications [45], 

which is the topic of the next section. 

6.2.3 High-speed MIMO Wireless Communications [45] 

 Turbo-MIMO is a class of MIMO systems based on the principle of turbo 

processing. An example is the Space-Time Bit-Interleaved Coded Modulation 

(ST-BICM) architecture, which provides very good performance with receivers 

using iterative detection and decoding, such as the Minimum Mean-Squared 

based Soft-Interference Cancellation (SIC-MMSE). 

 In the ST-BICM architecture, the detector and the channel decoder use 

soft data at both the inputs and outputs. Since detection and channel decoding are 

processed separately, the complexity of the detectors grows linearly with the 

number of receiver antennas. The more iterations in the detector/decoder loop, the 

better is the error rate performance. What is more, it has been proven that the 

performance of ST-BICM exceeds that of encoded non-iterative MIMO systems 

such as V-BLAST [45].  
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Figure 20 Block Diagram of a MIMO System Employing ST-BICM and an 

Iterative Receiver [45]  

In Figure 20, d is the information bits sequence,  the output of the encoder, c the 

interleaved sequence of encoded bits, x the symbol vector, H the MIMO channel, 

r the received signal, n the additive noise vector, Xext the extrinsic LLRs, X
A the 

a priori LLRs, and X the a posteriori LLRs, with X representing I and O, i.e., 

inner decoder and outer decoder, respectively 

Figure 20 illustrates the structure of the ST-BICM MIMO scheme. The 

transmitted information bits sequence is first encoded, then interleaved and finally 

converted into parallel substreams (i.e., one FEC block is used to encode the 

original information bits). Each substream is mapped onto a sequence of 

constellation symbols that is transmitted from a separate antenna [45]. The 

decoding process is separated into two stages: 
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� The inner decoder, i.e., the detector, generates extrinsic LLRs for the 

received coded bits sequence and makes them available as a priori 

information to the outer decoder, after deinterleaving. 

� The outer decoder, generally a turbo decoder such as the one described in 

Section 6.1, uses the a priori information and generates extrinsic 

information on both the coded bits and the information bits and feeds back 

the extrinsic information on the coded bits to the inner decoder after 

interleaving. 

These stages are repeated until a pre-defined criterion is achieved, then hard 

decisions are made to compute the decoded bits sequence. 

 The iterative receiver generally improves the soft decisions after iteration. 

APP decoders are optimal for the inner decoder [45], but they are impractical 

due to their higher computational complexity, thus sub-optimal detectors such 

as SIC-MMSE [47] are of interest. 

 In SIC-MMSE, when detecting the symbol transmitted through one layer, 

this layer is assumed to receive interference from the nt-1 remaining layers 

and the additive noise. A priori information available as an input, is used to 

estimate and cancel interference from the remaining layers, and to supress the 

residual interference and noise given the MMSE criterion. In [48], a family of 

detectors (B-Chase) based on the parallel decoder (PD) [21] scheme, which 

was discovered at the very end of the research project, presents a comparison 

study of such detection scheme in an iterative decoding architecture. 
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6.3 System Model 

 The proposed Turbo is illustrated in Figure 21. We used Simulink to 

model (we stringed together function blocks) and simulate all of the systems in 

the transmission chain associated with various soft detectors as described below. 

 

Figure 21 Block Diagram of the Turbo Decoder Model 

The number of blocks, the encoder’s interleaver size, and the trellis structure of 

the encoder have been chosen according to the parameters provided in Berou’s 

original paper [37].  

We modeled the transmission of a sequence of equiprobable 0s and 1s, in 

128 blocks containing 65536 (256 * 256) information bits each. The turbo 
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encoder block contains a parallel concatenation of two RSC rate-1/2 encoders, 

whose outputs are defined by the generator polynomials 37 and 21 in octal, with a 

constraint length of 5, for an overall code rate of 1/3, as described in Section 6.1. 

The modulator accepts the encoded sequence of bits and converts them into a 

sequence of M-QAM signals (M = 16, 64 or 256). These constellation signals are 

grouped to form sample vectors of length m (for the purposes of simulation). Each 

component of a sample is associated with a different transmitter antenna. The 

block of sample vectors is divided into frames of length 2*M, which are then 

transmitted through a noisy environment assumed to be constant for the duration 

of the frame in order to model Rayleigh fading.  

At the receiver side, the transmitted signal vector is corrupted with 

AWGN, and the block of received signal vectors is detected using a soft-detector. 

The soft detector produces soft information bits that are fed into the turbo 

decoder. Thus, an implementation of the equivalent soft-output detector is 

required. A direct implementation of the soft output information is very complex. 

[49] proposes a simple approach that reduces the complexity without loss of 

performance. The idea is to demap the received signal into soft bits which have 

the same sign as provided by a hard detector and whose absolute value indicates 

the reliability of the decision [49]. All the hard detectors mentioned in this work 

use a linear filter (following the MMSE criterion) in order to estimate the position 

on the constellation diagram, of the symbol transmitted on the current detected 

layer, then a slicer function, picks the closest symbol from the constellation, 

finally hard bits are produced following the gray mapping of the constellation 
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symbols. In the case, soft-outputs are of interest, [49] proposed to use decision 

regions for the real and the imaginary part of the estimated position on the 

constellation diagram (b = bQ + i * bI, as illustrated in Figure 22). 

 

Figure 22 Partition of the 16-QAM constellation [49] 

(S(0)
I;k; S

(1)
I;k) for the component in phase bI, and (S(0)

Q;k; S
(1)

Q;k) for component in 

quadrature bQ, in the case of the 16-QAM constellation. In practical, the soft-

outputs associated with the component in phase are defined by: 

SI,1 =  

SI,2 = - | bI | + 2 
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The SQ,k functions for the in quadrature component are the same, with bI replaced 

by bQ. 

Finally, the turbo decoder generates the output information bits as 

described in Section 6.1. 

This system model uses a single turbo encoder since all antenna signals 

employ the same modulation. The proposed family of Turbo F-BLAST detectors 

does not have an iterative processing between the soft detector and the turbo 

decoder in order to reduce the processing delay. Note that the iterative processing 

is being replaced by the parallel search on the first layer to be detected. 

 The next section presents a fair comparison among all the corresponding 

soft detectors. 
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6.4 Results 

 We simulated the same sequence of information bits in a Rayleigh fading 

environment through a 44 MIMO system, using different modulation schemes, 

such as 16-QAM, 64-QAM and 256-QAM. 

6.4.1 16-QAM 

 
Figure 23 BER vs. EbNo of a 16-QAM Turbo MIMO Model Associated with 

Various Soft Detectors: MMSE (a), Real-Valued F-BLAST (b), and F-BLAST (c) 

 Figure 23 shows that after a certain number of iterations, the turbo model 

associated with various soft detectors seems to exhibit the same BER performance 

vs. the bit energy to noise ratio (EbNo). This performance limit on the BER vs. 

EbNo characteristic is known as the turbo cliff and is represented by a sudden 

drop of the BER [50]. Also, observe that for a small number of iterations (three or 

four), the soft F-BLAST and the soft real-valued F-BLAST detectors have BER 

performance which exceeds that of MMSE. But, if a system can afford up to 12 

iterations, a soft MMSE detector provides good performance, as shown in Figure 

24. 
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Figure 24 BER vs. EbNo (dB) of a 16-QAM Turbo MIMO Model Associated 

with Various Soft Detectors for: one iteration (a), four iterations (b), and twelve 

iterations (c) 

 These observations are highlighted in Table 5. 

 One iteration Four iterations 12 iterations 

BER mmse vb real fb fb mmse vb real fb fb mmse vb real fb fb 

10-2 18 17 16 17 12 12 12 13 10 10 10 11 

10-4 30 30 23 22 14 15 14 15 11 11 11 12 

10-6 / / 34 30 17 18 16 / 14 13 12.5 14 

 

Table 5 Corresponding EbNo (dB) for Selected BERs for Various Soft Detectors 

in a 4 4 16-QAM Turbo MIMO System 

Here ‘vb’, ‘real fb’ and ‘fb’ stand for V-BLAST, real-valued F-BLAST and F-

BLAST, respectively. 



93 
 

The soft F-BLAST detector uses a search window containing only 16 

constellation signals (i.e., the entire constellation), thus it is very encouraging for 

further research involving a better design of the interleaver, and extensions to 

iterative decoding between the turbo decoder and the soft detector. While 

transmitting and detecting 16-QAM signals, the real-valued detector, which has a 

lower computational complexity, exhibits approximately the same performance 

compared to that of the complex-valued detection, thus real-valued detection 

should  be of interest for transmission over a turbo MIMO system. 

6.4.2 64-QAM 

 The top chart of Figure 25, i.e., (a), (b), (c) and (d), showing BER plots for 

64-QAM signals leads to the same conclusions as for 16-QAM signals. The soft 

detectors used for the turbo MIMO model exhibits approximately the same 

performance after a certain number of iterations (eg. four or more). But the soft F-

BLAST and the soft real-valued F-BLAST detectors show better performance for 

fewer than four iterations of the turbo decoder. Further, Figure 25 & 26 show that 

the family of soft FR-BLAST detectors have very close performance with either a 

search window of nine or 16 constellation symbols. However, when starting with 

the second weakest layer, the BER performance is for some reason worse, as 

shown in Figure 27. Figure 27 also shows that the family of soft FR-BLAST 

detectors provides good performance with either a search window size of 9 or 16, 

starting with any layers, but the second weakest one in term of strength. Note that 

the performance of the family of soft FR-BLAST detectors is a little better than 

that of the soft real-valued F-BLAST detector. Thus, in order to reduce the 
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computational complexity of the receiver, and for turbo MIMO systems that 

require fewer iterations in order to reduce the power consumption and/or the 

recovery time, the family of soft FR-BLAST detectors may be of interest for the 

detection scheme. 

 

 
Figure 25 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with 

Various Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c), 

FR(9,S1)-BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BLAST (f) 
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Figure 26 BER vs. EbNo of a 64-QAM Turbo MIMO Model Associated with 

Various Soft Detectors, FR(16,S1)-BLAST (g), FR(16,S2)-BLAST (h), 

FR(16,W2)-BLAST (i), F-BLAST (j), FR(9,W1)-BLAST (k), and FR(16,W1)-

BLAST (l) 
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Figure 27 BER vs. EbNo (dB) of a 64-QAM Turbo MIMO Model Associated 

with Various Soft Detectors for: one iteration (a), four iterations (b), and twelve 

iterations (c) 
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6.4.3 256-QAM 

 

 

 

Figure 28 BER vs. EbNo of a 256-QAM Turbo MIMO Model Associated with 

Various Soft Detectors, MMSE (a), V-BLAST (b), Real-Valued F-BLAST (c), 

FR(9,S1)-BLAST (d), FR(9,S2)-BLAST (e), FR(9,W2)-BLAST (f), FR(9,W1)-

BLAST (g), FR(16,S1)-BLAST (h), FR(16,S2)-BLAST (i), FR(16,W2)-BLAST 

(j), and FR(16,W1)-BLAST (k) 
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 Figure 28 shows that the soft detectors presented here have approximately 

the same performance with respect to BER. After four iterations, their BER 

performance characteristics seem to have reached the turbo cliff limit. Figure 29 

shows that for EbNo values less than 30 dB, the soft detectors provide very 

similar results, but above 30 dB it is not clear which one is better since 

insufficient error statistics led to eratic and hence unreliable behaviour of the BER 

performance characteristic. Simulation times were unfortunately become very 

long (e.g. many days). 

A simple soft MMSE detector seems to provide a BER performance very 

close if not better than that of more complicated soft detectors, such as the family 

of soft FR-BLAST detectors. We think that MMSE with the current parameters 

will benefit more from the effects of turbo decoding. Nevertheless, a simulation 

study with more information bits might be required to accurately access the 

performance of the different soft detectors for large Eb/No values.  

 

Figure 29 BER vs. EbNo (dB) of a 256-QAM Turbo MIMO Model Associated 

with Various Soft Detectors for: one iteration (a), and four iterations (b) 



99 
 

VII- Conclusions and Future Directions  

7.1 Conclusions  

 New standards, such as LTE, require high-speed, small and power-

efficient devices at both ends of a radio communication link. This thesis presents 

a new family of detectors that tries to meet this demand. 

 We first reviewed a detection scheme, F-BLAST, which has been proven 

to give optimal performance for SNR values ranging from 0 dB to 40 dB, in an 

uncoded MIMO system. But due to its higher computational complexity, we 

proposed and investigated a new family of detectors (FR-BLAST) and a detection 

scheme based on real-valued decomposition (real-valued F-BLAST) that are 

computationally efficient, near-optimal in term of BER performance, and should 

be of great interest for larger constellations. The main idea being the use of 

limited parallelism to improve the error rate performance, and to reduce the 

recovering time, for a device using such technique.  

 A study of the computational complexity of the proposed detectors (FR-

BLAST and real-valued F-BLAST) and those found in the literature (MMSE, V-

BLAST, F-BLAST and ML), confirms that the real-valued F-BLAST scheme 

requires fewer arithmetical operations (multiplications and additions), but many 

more reciprocals. Thanks to its parallelizable structure, FR-BLAST does not 

require many cycles even when using the target number of 16 parallel 

computational threads. Besides, theoretical analysis shows that the diversity order 

of the new schemes is identical to that of MMSE and V-BLAST, although the 
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BER performance characteristic does not indicate such behaviour at a relatively 

high SNR region (up to 40 dB) when detecting large constellation signals such as 

16-QAM, 64-QAM, 128-QAM and 256-QAM. Motivated by these results, we 

investigated the combination of the novel detection schemes with a simple turbo 

MIMO system without iterative exchange of information between the soft 

detector and the turbo decoder. 

 Unfortunately, the results obtained are not as promising for the new 

detectors as for the transmission of uncoded information. We observed 

remarkable performance for our soft detectors for fewer than four iterations of the 

turbo decoder when detecting 16-QAM and 64-QAM constellation signals. But 

for 256-QAM constellation signals, and in general for more than four iterations, a 

simple MMSE soft detector seems to be good enough, for the proposed turbo 

MIMO model. The effect of the Turbo Code dominates the performance of the 

detectors. 

 At this point, further modifications and implementations are to be 

investigated to have a fair comparison of the various schemes presented for the 

purpose of this work. 
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7.2 Future Directions 

 Further investigation should focus on the turbo coded scheme and Low-

Density Parity Check (LDPC) since TCs and LDPC codes are widely used in the 

industry, and since they provide so much coding gain error for MMSE detectors. 

The design of the interleavers and turbo encoders, that are suitable for Successive 

Interference Cancellation (SIC) systems, is of great interest. Also, since iterative 

decoding has proven to have excellent performance for detectors using the MMSE 

criterion, one might consider investigating such a system architecture. In addition, 

in order to reduce the simulation time and to present results that are suitable for 

practical usage, an implementation on hardware and the use of an industrial 

fading model with a simulated Gaussian noise generator should be considered. 

 

 

 

 

 

 

 

 



102 
 

References 

[1] B. C. Levy, Principles of Signal Detection and Parameter Estimation, 

Springer, 2008, ch. 4, pp. 113-130. 

[2] Wolniansky P.W., Foschini G.J., Golden G.D., Valenzuela R.A., “V-BLAST: 

An architecture for realizing very high data rates over the rich-scattering wireless 

channel,” International Symposium on Signals, Systems and Electronics 

(ISSSE’98), 1998, pp. 295-300. 

[3] Hassibi B. and Vikalo H., On the Expected Complexity of Sphere Decoding, 

Conference Record of the 35th Asilomar Conference on Signals, Systems and 

Computers, 2001, vol. 2, pp. 1051-1055. 

[4] Wenjie Jiang, Yusuke Asai, and Shuji Kubota, Tree Search Based 

Approximate Maximum Likelihood Detector for Spatial Multiplexing Systems, 

The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile 

Radio Communications (IMRC'07), 2007, pp. 1-5. 

[5] Ron Rausch and Mark Buffo, Developing Strategies for MIMO Testing, 

Microwave journal, March 2009, vol. 52, no. 3, pp. 94. 

[6] Benny Bing, Broadband Wireless Access, Kluwer Academic Publishers, ch. 1, 

pp. 9-10. 

[7] Mohinder Jankiraman, Space-Time Codes and MIMO Systems, Artech House 

Publishers, 1st ed., August 2004, pp. 23-32. 

[8] Benjamin Baumgartner, MIMO, Wikimedia Commons, November  2005. 



103 
 

[9] Bob O’Hara, IEEE 802 Working Group & Executive Committee Study Group 

Home Pages, IEEE 802 Working Group, July 2009. 

[10] S. Benedetto and G. Montorsi, Design of Parallel Concatenated 

Convolutional Codes, IEEE Transactions on Communications, 1996, vol. 44, no. 

5, pp. 591-600. 

[11] Splash, Constellation diagram for Gray coded 16-QAM, Wikimedia 

Commons, October  2006. 

[12] Lizhong Zheng and David N. C. Tse, Diversity and Multiplexing: A 

Fundamental Tradeoff in Multiple-Antenna Channels, IEEE Transactions on 

Information Theory, May 2003, vol. 49, no. 5, pp. 1073-1096.  

[13] J. H. Kotecha and A. M. Sayeed, Training Signal Design for Optimal 

Estimation of Correlated MIMO Channels, IEEE Transactions on Signal 

Processing, 2004, vol. 55, no. 2, pp. 546-557. 

[14] J.G. Proakis, Digital Communications, New York: McGraw-Hill, 4th edition, 

2001, ch. 7. 

[15] B. C. Levy, Principles of Signal Detection and Parameter Estimation, 

Springer, 2008, ch. 4, pp. 113-130. 

[16] Manzoor, Rana Shahid  Gani, Regina  Jeoti, Varun  Kamel, Nidal  Asif, 

Muhammad, Implementation of FFT Using Discrete Wavelet Packet Transform 

(DWPT) and Its Application to SNR Estimation in OFDM Systems, International 

Symposium on Information technology (ITSim’08), 2008, vol. 4, pp. 1-6. 



104 
 

[17] Norman C. Beaulieu, Andrew S. Toms and David R. Pauluzzi, Comparison 

of Four SNR Estimators for QPSK Modulation, IEEE Communications Letters, 

February 2000, vol. 4, no. 2, pp. 43-45. 

[18] Cheng Wang, Edward K. S. Au, Ross D. Murch, Wai Ho Mow, Roger S. 

Cheng and Vincent Lau, On the Performance of the MIMO Zero-Forcing 

Receiver in the Presence of Channel Estimation Error, IEEE Transactions on 

Wireless Communications, March 2007, vol. 6, no. 3. 

[19] Wolniansky P.W., Foschini G.J., Golden G.D., Valenzuela R.A., “V-BLAST: 

An architecture for realizing very high data rates over the rich-scattering wireless 

channel,” International Symposium on Signals, Systems and Electronics 

(ISSSE’98), 1998, pp. 295-300.  

[20] G. D. Golden, J. G. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 

Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time 

Communication Architecture, Electronics Letters, January 1999, vol. 35, no. 1, 

pp. 14-15. 

[21] Yaun Li and Zhi-Quan Lo, Parallel Detection for V-BLAST System, 

International Conference on Communications, 2002, vol. 1, pp. 340-344. 

[22] S. Fouladi Fard, A. Alimohammad, and B. F. Cockburn, Improved MIMO 

Detection Algorithm with Near-Optimal Performance, IET Electronics Letters, 

18th June 2009, vol. 45, no. 13, pp. 675-677. 

[23] Arsene Pankeu Yomi, Bruce Cockburn, Near-Optimal and Efficient 

Multiple-Input Multiple-Output Detectors for Large Constellations, Banff 



105 
 

Summer School 2010 on Communication and Information Theory, Presentations 

Report, 2010. 

[24] Arsene Pankeu Yomi, Bruce Cockburn, Enhanced MIMO Detection with 

Parallel V-BLAST, IEEE Pacific Rim Conference on Communications, Computers 

and Signal Processing (PACRIM’11), 2011, pp. 702-707. 

[25] Jeffrey G. Andrews, Interference Cancellation for Cellular Systems: A 

Contemporary Overview, The University of Texas Austin, IEEE Wireless 

Communications, April 2005, vol. 2, no. 2, pp. 1284-1536. 

[26] Allan Agresti, An Introduction to Categorical Data analysis, John Wiley and 

Sons, 1996, ch. 25. 

[27] R.F.H. Fischer and C. Windpassinger, Real versus Complex-Valued 

Equalization in V-BLAST Systems, IEEE Electronic Letters, 6th March 2003, vol. 

39, no. 5, pp. 470-471. 

[28] H. H. Beverage and H. O. Peterson, Diversity Receiving System of R.C.A. 

Communications, Inc., for Radiotelegraphy, Proceedings of the IRE, April 1931, 

vol. 19, no. 4, pp. 531-561. 

[29] Georges B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 

sixth edition, 2005, Elsevier Academic Press, p. 179 & 186. 

[30] Andrea Goldsmith, Wireless Communications, Cambridge University Press, 

ch. 10.5, pp. 335-337. 

[31] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea 

Goldsmith, Arogyaswami Paulraj, H. Vincent Poor, MIMO Wireless 

Communications, Cambridge University Press, ch. 4.2.3, pp. 145-146. 



106 
 

[32] John R. Barry, Edward A. Lee, David G. Messerschmitt, Digital 

Communication, Springer, ch. 11.5, pp. 545-548. 

[33] Yi Jiang, Xiayu Zheng and Jian Li, Asymptotic Performance Analysis of V-

BLAST, IEEE GLOBECOM, 2005, pp. 3882-3996. 

[34] W. J. Choi, R. Negi, and J. M. Cioffi, Combined ML and DFE Decoding for 

the V-BLAST System, IEEE International Conference on Communications 

(ICCC’00), June 2000, vol. 3, pp. 25-29. 

[35] G. Kalyana Krishnan and V. Umapathi Reddy, High Performance Low 

Complexity Receiver for V-BLAST, IEEE workshop 8th on Signal Processing 

Advances in Wireless Communications, 2007, pp. 1-5.  

[36] D. G. Brennan, Linear Diversity Combining Techniques, Procedings of the 

IRE, vol. 47, pp. 1075-1102. 

[37] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes, Proc. ICC’93, Geneva, May 

1993, pp. 1064–1070. 

[38] Third Generation Partnership Project 2 (3GPP2), Physical Layer Standard 

for CDMA2000 Spread Spectrum Systems, Release D, 3GPP2 C.S0002-D, 

Version 1.0, February 2004. 

[39] Claude Berrou, Codes and Turbo Codes, Springer, ch. 5.2.  

[40] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a 

Paper to Realization, Springer, 2005. 

[41] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a 

Paper to Realization, Springer, 2005, ch. 4, pp. 67-79. 



107 
 

[42] K Meena, Principles of Digital Electronics, PHI Learning Pvt. Ltd., 2009, 

pp. 34-37. 

[43] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a 

Paper to Realization, Springer, 2005, ch. 6, pp. 123-124 & 127-139. 

[44] David Tse, Pramod Viswanath, Fundamentals of Wireless Communication, 

Cambridge University Press, 2005, ch 2.4, pp 34-37. 

[45] Keattisak Spripimanwat, TURBO CODE APPLICATIONS: A Journey from a 

Paper to Realization, Springer, 2005, ch. 9, pp. 223-228 & 233-234. 

[46] G. D. Golden, J. G. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 

Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time 

Communication Architecture, Electronics Letters, 1999, vol. 35, pp. 14–15. 

[47] M. Sellathurai and S. Haykin, Turbo-BLAST for Wireless Communications: 

Theory and Experiments, IEEE Trans. Signal Processing, October 2002, vol. 50, 

no. 20, pp. 2538–2546. 

[48] Deric W. Waters and John R. Barry, The Chase Family of Detection 

Algorithms for Multiple-Input Multiple-Output Channels, IEEE Transactions On 

Signal Processing, February 2008, vol. 56, no. 2, pp. 739-747. 

[49] Filippo Tosato, Paola Bisaglia, Simplified Soft-Output Demapper for Binary 

Interleaved COFDM with Application to HIPERLAN/2, Imaging Systems 

Laboratory, HP Laboratories Bristol, HPL-2001-246, October 2001. 

[50] Christian B. Schlegel, Lance C. Perez, Trellis and Turbo Coding, John Wiley 

& Sons, 2004, ch. 10.1. 

 



108 
 

Appendices 

1. Minimum  Mean Square Error  (MMSE)  Conditioning Matrix [14] 

System model: 
 
 
 
 
 

 

yT = sT * H + n T      Or   y = HT * s + n   Or   yH = sH * H* + n H   (1) 

Where: 

- y is the received noisy signal vector 

- s is the transmitted signal vector 

- n is an AWGN vector of length m 

- ŝ is the detected signal vector of length m 

- H is the m-by-m channel matrix 

The goal is to find a linear approximation ŝ, of the transmitted symbol vector s 

given the received symbol vector y, such that:  

ŝ = GT * y + b   (2) 

Where GT and b are constants to be determined. The channel matrix H is assumed 

to be known or perfectly estimated. 

Let e = s - ŝ   the error vector, A = GT, and E{.} the expected value operator. 

me = ms - mŝ   (3) 

and from (2) and the linearity of the mean: 

mŝ = A *  my + b   (4) 

y H 
+ 

Linear Detector s 

n 
ŝ 
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thus, 

b = mŝ - A *  my   (5) 

Minimizing the error vector is equivalent to minimizing its mean, i.e., me = 0, thus 

ms - mŝ = 0, and ms = mŝ. But by definition ms = my = 0, therefore  

b = 0 - A *  0 = 0   (6)  

Consider the following equations:             

e - me = (s - ŝ) – (ms - A *  my + b) 

                                     = (s - ms) – A (y - my) 

          e - me = [     -A] *    (7)  

Ke = E{(e - me) (e - me)
H}   (8) 

From (7) and (8) we obtain: 

Ke = E{([     -A] *  )*( [     -A] *  )H}   (9) 

 Define K  as: 

K = E{ H}   (10) 

K  =  (11) 

Where ,  and  can be defined as: 

K sy =  = E{(s - ms) * (y - my)
H}   (12) 

K y = E{(y - my)
 * (y - my)

 H}   (13) 

 

 

Thus from (9), (10) and (11): 
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Ke = [     -A] *  * [     -A] H 

           = [(K s - A * K ys)     (K sy - A * K y)] * [ I m     -A]H  

           = K s - A * K ys - Ksy *  AH + A * K y * A
H 

Ke = (A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H + K s - K sy * K y

-1 * K ys (14) 

Because K s - K sy * K y
-1 * K ys is constant, Minimizing Ke is equivalent to 

minimizing (A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H, thus from (12) we obtain 

the following equation: 

(A - K sy * K y
-1) * K y * (A (K y

-1 * K ys)
H)H = 0 

A = K sy * K y
-1 or A = (K y

-1 * K ys)
H)   (15) 

 From (4), (12) and E{s  *  nH} = 0 (the signal vector is independent from 

the distributed noise) 

              Ksy  = E{(s - ms) * (y - my)
H} 

         = E{s * (HT * s + n)H } 

               = E{s * sH * (HT)H} + E{ s  *  nH},   

   = E{s * sH} * ( HT)H 

   = K s * (H
T)H, K s = σ2

s * I m 

K sy = σ2
s * (H

T)H   (16) 

              K y  = E{(y - my)
 * (y - my)

 H} 

   = E{(HT * s + n) * (sH * H + n)H} 

   = HT * E{ s * sH} * H* + E{n * nH} , E{ n * nH} = σ2
n * Im 

K y = σ2
s * H

T * H* + σ2
n * I m   (17) 

Finally, from (15), (16) and (17) we get : 

A = σ2
s * (H

T)H * (σ2
s * H

T * H*  + σ2
n * Im)-1   (18) 
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With SNR = σ2
s / σ

2
n, (18) yield to 

G = AT = ((HT * H*)T + (1 / SNR) * I m)-1 * ((HT)H)T   (19) 

Given that (A * B)T = BT * AT, (A* )T = AH and ((HT)H)T = HH, from (19), we 

derivate the expression the MMSE conditioning matrix G as: 

G = (HH * H + (1 / SNR) * I m)-1 * HH 
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2. Statistical Study of the Family of FR-BLAST First Detected 

layer [26] 

Figure 11 shows that a significant improvement can be achieved if the 

detection starts on the right layer. The performance achieved by FR(Opt)-BLAST, 

i.e., the optimal proposed detector which picks the best layer for each frame of 

sample vectors, are clearly better than that of the family of detectors. However 

this decision is not trivial, thus we ran a statistical study to define a decision 

model. 

The goal of this study was to build a statistical model to determine the best 

starting layer for an FR-BLAST detector, based on the size of the window search 

W (9 or 16 are a typical values), the MIMO gain m (typically 4 for this work), the 

constellation size M (64-QAM constellation signal here), the norms of each 

column of the channel matrix H, and the gains in the column of H with the largest 

strength. 

Several models (linear, quadratic, cubic, logarithmic and exponential) 

were studied, unfortunately the best model derivated by the statistical analysis 

tool (SPSS 18) was accurate only 25 % of the time, which can be seen as a 

random decision for practical implementation. 

The results are presented below: 
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� e.g. 1: result for the linear model, W = 9 

Classification Resultsb,c 

  v1

0 
Predicted Predicted starting layer 

Total 
  

1 2 3 4 

Original Count 1 12805 20759 26498 31733 91795 

2 12809 21333 26501 31791 92434 

3 12597 21170 26647 32020 92434 

4 12742 21132 26469 32043 92386 

% 1 13.9 22.6 28.9 34.6 100.0 

2 13.9 23.1 28.7 34.4 100.0 

3 13.6 22.9 28.8 34.6 100.0 

4 13.8 22.9 28.7 34.7 100.0 

Cross-validateda Count 1 12658 20808 26538 31791 91795 

2 12839 21123 26599 31873 92434 

3 12631 21272 26444 32087 92434 

4 12817 21222 26537 31810 92386 

% 1 13.8 22.7 28.9 34.6 100.0 

2 13.9 22.9 28.8 34.5 100.0 

3 13.7 23.0 28.6 34.7 100.0 

4 13.9 23.0 28.7 34.4 100.0 

 

b. 25.2% of original grouped cases correctly classified. 

c. 24.9% of cross-validated grouped cases correctly classified. 
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� e.g. 2 : Result for the combined linear and quadratic model, W = 9 

Classification Resultsb,c 

  v10 Predicted starting layer 

Total 

  

1 2 3 4 

Original Count 1 9824 22078 23623 36270 91795 

2 9814 22589 23837 36194 92434 

3 9723 22333 24059 36319 92434 

4 9871 22200 23793 36522 92386 

% 1 10.7 24.1 25.7 39.5 100.0 

2 10.6 24.4 25.8 39.2 100.0 

3 10.5 24.2 26.0 39.3 100.0 

4 10.7 24.0 25.8 39.5 100.0 

Cross-validateda Count 1 9691 22122 23643 36339 91795 

2 9837 22385 23946 36266 92434 

3 9737 22441 23862 36394 92434 

4 9933 22260 23858 36335 92386 

% 1 10.6 24.1 25.8 39.6 100.0 

2 10.6 24.2 25.9 39.2 100.0 

3 10.5 24.3 25.8 39.4 100.0 

4 10.8 24.1 25.8 39.3 100.0 

 

b. 25.2% of original grouped cases correctly classified. 
c. 25.0% of cross-validated grouped cases correctly classified. 
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e.g. 3 : Result for the combined linear, quadratic and logarithmic model, W = 16 

Classification Resultsb,c 

  v

1

0 

Predicted Group Membership 

Total 
  

1 2 3 4 

Original Count 1 20236 43728 31797 23211 118972 

2 20219 44170 31407 22785 118581 

3 20152 43845 31743 23166 118906 

4 19939 43447 31707 23258 118351 

% 1 17.0 36.8 26.7 19.5 100.0 

2 17.1 37.2 26.5 19.2 100.0 

3 16.9 36.9 26.7 19.5 100.0 

4 16.8 36.7 26.8 19.7 100.0 

Cross-validateda Count 1 19768 43835 32051 23318 118972 

2 20331 43960 31474 22816 118581 

3 20395 43933 31351 23227 118906 

4 20037 43489 31765 23060 118351 

% 1 16.6 36.8 26.9 19.6 100.0 

2 17.1 37.1 26.5 19.2 100.0 

3 17.2 36.9 26.4 19.5 100.0 

4 16.9 36.7 26.8 19.5 100.0 

 

b. 25.1% of original grouped cases correctly classified. 

c. 24.9% of cross-validated grouped cases correctly classified. 
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3. General Results for Basic Operations  

1. Real-valued Operations 

 Let a1 and a2 denote two real numbers.  

� Real number addition - f1, g1: 

a1 + a2 requires one real addition and one cycle, so f1 = 1  ( + ) and g1 = 1  ( c ), 

i.e., one real-valued addition and one operation cycle, respectively. 

� Real number multiplication - f2, g2:  

a1 *  a2 requires one real multiplication and one cycle, so f2 = 1  ( * ) and g2 = 1  ( c 

). 

� Real number reciprocal - f3, g3:  

1 / a1 requires one real reciprocal and one cycle, so f3 = 1  ( 1/N ) and g3 = 1  ( c ). 

� Square absolute value of a real number - f4, g4:  

|a1|² = a1* a1 requires one real multiplication and one cycle, so f4 = 1  ( * )  

and g4 = 1  ( c ). 

� m-by-n real-valued matrix addition - f5(m,n), g5(m,n): 

Consider two m-by-n real-valued matrices A = [aij] and B = [bij] with 0 < i < 

m + 1 and   0 < j < n + 1. Adding each element at the i-th row and the j-th column 

of A, i.e., aij ,                        for i = 1…m and j = 1…n, to the corresponding element 

from B will require n * m real-valued additions, which could be performed in one 

cycle on parallel hardware. Thus the real-valued matrix addition will require m * 

n * f1 operations and one g1 cycle. Therefore, f5(m,n)  = mn  ( + ) and g5(m,n)  = 

1  ( c ). 
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� Addition of a set containing n real numbers - f6(n), g6(n): 

Considering two real numbers a1 and a2, computing the sum of these numbers 

will require one real addition and one cycle. Now, if we have a set of three 

numbers, we could first find the result from the addition of two of them, add1, and 

then the result of the addition of add1, and the remaining number. Basically, such 

a linear addition of a set of n real numbers will require n - 1 real additions and n - 

1 cycles.  

However there are more complicated, but faster, tree-based element summing 

algorithms for large sets of numbers. These algorithms are of no benefit for small 

sets.  

Figure 1 illustrates the tree-based element summing procedure for n = 8. 

Consider a set containing n real numbers a1…an. Observe that the height of a 

binary tree containing n elements in the leaves is . Note also that the 

number of non-leaf nodes, which is the number of additions, is n - 1 for a binary 

tree with n leaf nodes. Therefore,             f6(n)  = n - 1  ( + ) and g6(n)  =   

( c ). 
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Figure 1 Tree-based Summing Algorithm to Add All elements in a Set of Size n  

� Minimum of a set containing n real numbers - f7(n), g7(n):  

To find the minimum of two numbers a1 and a2, we first compute the 

difference diff = a1 - a2. If diff > 0 then the minimum is a2; otherwise, the 

minimum is a1. Now, if we have a set {a1, a2, a3} containing three numbers, we 

will first find the minimum of the first two of them, min(a1, a2), and then the 

minimum of min(a1, a2), and the remaining third number a3. It is straightforward 

to determine that computing the minimum of a set containing n real numbers is 

equivalent in computational complexity to adding together all the elements in a 

set of n real numbers. Therefore, f7(n) = f6(n) and g7(n) = g6(n). So, 

f7(n) = n - 1  ( + ) and g7(n) =   ( c ). 
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� Square norm of a real-valued column vector of length n - f8(n), g8(n): 

Considering a vector column of n elements v = (v1, v2…, vn), 

||v||² = ||(v1, v2…, vn)||² = |v1|² + |v2|² + . . . + |vn|² 

Computing |vi|² requires f4 operations and g4 cycles for each element vi. 

But these independent operations can be performed in parallel. Thus, for all n 

components n * f4 operations and g4 cycles will be needed. Computing the sum of 

n squared absolute values will require f6(n) operations and g6(n) cycles. 

Therefore, computing the square norm of an n-element column vector requires n * 

f4 + f6(n)  operations and g4 + g6(n)  cycles. So, 

f8(n) = n  ( * ) and n - 1  ( + ), and g8(n) = 1 +   ( c ). 

� Multiplication of an m-by-p real-valued and a p-by-n real-valued matrices 

- f9(m,n,p), g9(m,n,p):  [29] 

Considering an m-by-p and an p-by-n real-valued matrices A = [aik] and B = 

[bkj],                with 0 < i < m + 1, 0 < j < m + 1 and 0 < k < p + 1.  

Let, C = A *  B = [cij], with 0 < i < m + 1 and 0 < j < n + 1 

cij =  

Computing aik * bkj will require f2 operations and g2 cycles. Thus for the p terms in 

the sum, there will be p * f2 operations and g2 cycles. The computation for all m * 

n product matrix coefficients will thus require m * n * p * f2 operations and g2 

cycles. 
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We also need to compute the sum of a set of p real numbers for each 

coefficient, which will require f6(p) operations and g6(p) cycles, for all m * n 

matrix coefficients, so m * n * f6(p) operations and g6(p) cycles are required. 

Therefore, computing the product of an m-by-p real-valued matrix and a p-

by-n real-valued matrix will require m * n * p * f2 + m * n * f 6(p) operations and 

g2 + g6(p) cycles. 

 f9(m,n,p) = mnp  ( * ) and mn(p - 1)  ( + ), and g9(m,n,p) = 1 +   ( c ). 

� Inverse of an n-by-n real-valued matrix - f10(n), g10(n):   

Considering A = [aij] for 0 < i < n + 1 and 0 < j < n + 1. 

Let B = A-1. To derive B, we will consider the Gauss-Jordan Matrix Inversion 

Method, which has the advantage of requiring fewer operations for large matrices 

than LU decomposition [29]. 

Consider the augmented matrix [A|I ], with matrix A in the left side and the 

identity matrix of size n in the right side. By performing basic operations (one 

row multiplied by a scalar, or one row replaced by the original row minus a 

multiple of another row [29]) between the rows of A and the identity matrix, we 

will transform [A|I ] to [I |B], where the identity matrix I  is on the left side and 

matrix B on the right side. 

Thus, on one side of the augmented matrix, the transformation will lead to 

the identity matrix. So, we will only consider operations on the other side, i.e., on 

n coefficients rather than the 2 * n coefficients of the augmented matrix. 

Consider the operations on the i-th row, i.e., Ri: 
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• First, we replace Ri by Ri / Rii, where Rii is the i-th coefficient on the i-

th row. This will require f3 operations and g3 cycles per element. 

Considering maximum possible parallelism and n candidates, n * f3 

operations and g3 cycles will be required. 

• Next, we replace all the remaining rows (n - 1 in total) by -Rji *  Ri + 

Rj. Here we are transforming the j-th row; this will require f2 

operations and g2 cycles, then f1 operations and g1 cycles per 

candidate. Thus considering full parallelism, n candidates and n - 1 

rows, n * (n - 1) * (f1 + f2) operations and (g1 + g2) cycles will be 

required. 

Therefore, for 0 < i < n + 1,               

f10(n) = n2 ( 1/N ), n2(n -1) ( * ) and n2(n - 1) ( + ), and g10(n) = 3n ( c ). 

� Minimum Mean Square Error conditioning (MMSE) matrix from a 2n-by-

2n real-valued channel matrix - f11(n,n), g11(n,n) :  [Appendix 1] 

Note: For the purpose of this work, we are only interested in the equivalent real-

valued matrices built from complex-valued matrices. Given an n-by-n complex-

valued matrix C, the real-valued equivalent matrix is C(R) = 

. 

Thus, considering an n-by-n complex-valued conditioning matrix, G, the 

corresponding real-valued MMSE conditioning matrix, G(R) is defined as follows:  

G(R) = , where G = (CH * C + (1 / SNR) * I n)
-1 * 

CH 
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Computing HH from H will require no operations and no cycles. 

It can be shown that the matrix product CH * C is a symmetrical matrix. 

So instead of computing all n2 coefficients, we do not need to compute the n (n + 

1) / 2 coefficients above the main diagonal. Thus this computation will require n 

(n + 1) (2n - 1) real additions,   2n2 (n + 1) real multiplications and 2 +  

run cycles. 

Computing 1 / SNR will require f3 operations and g3 cycles. 

Computing 1 / SNR *  I n will require no operations and no cycles as it is 

equivalent to replacing the diagonal elements of I n by 1 / SNR. 

Computing CH * C + 1 / SNR * I n will require n real additions and one 

cycle as it is equivalent to an addition by a real constant on all diagonal 

coefficient of CH * C. 

Computing (CH * C + (1 / SNR) * I n)
-1 will require f21(n)  operations and 

g21(n) cycles. 

Again, due to the symmetrical product, computing (CH * C + (1 / SNR) * 

I n)
-1 * CH’ will require n (n + 1) (2n - 1) real additions,   2n2 (n + 1) real 

multiplications and 2 +  run cycles. 

Given the complex-valued conditioning matrix, G, we can build the real-

valued conditioning matrix, G(R), without further operations. 

Therefore, f11(2n) = n2 + 1  ( 1/N ), 4n2(2n + 1)  ( * ) and n[8n2 - n - 1] ( + ),                

and g11(2n) = 6 + 7n + 2  ( c ). 
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� Minimum Mean Square Error (MMSE) conditioning matrix from an m-by-

n real-valued deflated channel matrix- f12(m,n), g12(m,n):   

We will share computations from the calculation of the initial MMSE 

conditioning matrix. 

Considering D, the n-by-m deflated version of the n-by-n channel matrix 

H (m < n), 

temp1 = HH *  H is the matrix whose coefficient on the i-th row and j-th column is          

hi
H * hj, where hi is the i-th column of H. Thus, with temp1 = HH *  H + 1 / SNR 

*  In and temp2 = DH *  D + 1 / SNR * Im. Here temp2 is a deflated version of 

temp1, and its computation requires no run time. 

temp2 is an m-by-m matrix, thus temp2
-1 will require f10(m) operations and g10(m) 

cycles 

G = temp2
-1 * DH, with (m, p, n) = (m, m, n). Computing G requires f9(m,m,n) 

operations and g9(m,m,n) cycles.  

Therefore f12(m,n) = m2 ( 1/N ) and m2(n + m - 1) ( * ) and m(m - 1)(m + n) ( + ),  

and g12(m,n) = 3m + 1 +  ( c ). 
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2. Complex-valued Operations  

Let c1 and c2 denote two complex numbers such that c1 = a1+ j * b1 and c2 = a2 + j 

* b2. 

� Complex number addition - f13, g13: 

c1 + c2 = a1 + a2+ j * (b1 + b2) requires two real additions and one cycle. So, f13 = 2  

( + ) and g13 = 1  ( c ). 

� Complex number multiplication - f14, g14:  

c1 * c2 = a1 * a2 - b1 * b2 + j * (a1 * b2 + b1 * a2) requires two real additions, four 

real multiplications and two cycles. So, f14 = 2 ( + ) and 4  ( * ), and g14 = 2  ( c ). 

� Complex number reciprocal - f15, g15:   

1 / c1 = (a1 - j *  b1) / (a1
2 + b1

2) = a1 / (a1
2 + b1

2) - j * b1 / (a1
2 + b1

2) requires one 

real addition, four real multiplications, one real reciprocal and four cycles. So, f15 

= 1 ( 1/N ), 1 ( + ) and 4  ( * ), and g15 = 4  ( c ). 

� Square absolute value of a complex number - f16, g16:   

|c1|
2 = a1

2 + b1
2 requires one real addition, two real multiplications and two cycles. 

So,            f16 = 2 ( * ), 1 ( + ), and g16 = 2  ( c ). 

� m-by-n complex-valued matrix addition - f17(m,n), g17(m,n):  

Considering two m-by-n complex-valued matrices A = [aij] and B = [bij] with                  

0 < i < m + 1 and 0 < j < n + 1, adding the term in the i-th row and j-th column of 

A, i.e., aij, for i = 1…m and j = 1…n, to the one from B will require one complex-

valued addition. Because there are n * m elements in each matrix, the complex 

matrix addition will require m * n * f 14 operations and g14 cycles. 

Therefore, f17(m,n)  = 2mn  ( + ) and g17(m,n)  = 1  ( c ). 
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� Addition of a set containing n complex numbers - f18(n), g18(n): 

In this case, the only difference with the real-valued computation is that we 

are doing a group of complex additions, and thus the number of real additions will 

be doubled. 

Therefore, f18(n)  = 2n - 2  ( + ) and g18(n)  =   ( c ). 

� Square norm of a complex-valued column vector of length n - f19(n), 

g19(n):  

Considering a vector column of n elements v = (v1, v2…, vn), 

||v||² = ||(v1, v2…, vn)||² = |v1|² + |v2|² + . . . + |vn|² 

Computing |vi|² requires f16 operations and g16 cycles. Thus, for all 

dimensions n * f16 operations and g16 cycles will be required. 

Computing the sum of n squared absolute value will require f6(n) 

operations and g6(n) cycles. 

Therefore, computing the square norm of a n-elements column vector require                        

n * f16 + f6(n)  operations and g16 + g6(n) cycles. 

f19(n) = 2n  ( * ) and 2n -1  ( + ), and g19(n) = 2 +   ( c ). 

� Multiplication of an m-by-p complex-valued matrix by a p-by-n complex-

valued matrix - f20(m,n,p), g20(m,n,p):  [29]   

Consider an m-by-p complex-valued matrix and a p-by-n complex-valued 

matrix       A = [aik] and B = [bkj], with 0 < i < m + 1, 0 < j < m + 1 and 0 < k < p + 

1. 

Let C = A *  B = [cij], with 0 < i < m + 1 and 0 < j < n + 1 

cij = . 
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Computing aik *  bkj will require f14 operations and g14 cycles. Thus for the 

p-th terms in the sum, there will be p * f14 operations and g14 cycles. The 

computation for all m * n matrix coefficients will require m * n * p * f14 

operations and g14 cycles. 

We also need to compute the sum of a set of p complex numbers for each 

coefficient, which will require f18(p) operations and g18(p) cycles. Thus for all m * 

n matrix coefficients, m * n * f18(p) operations and g18(p) cycles are required. 

Therefore, computing the product of an m-by-p and a p-by-n matrices will require 

m * n * p * f 14 + m * n * f18(p) operations and g14 + f14(p) cycles.  

 f20(m,n,p) = 4mnp  ( * ) and mn(4p - 2)  ( + ), and g20(m,n,p) = 2 +   ( c 

). 

� Inverse of an n-by-n complex-valued matrix - f21(n), g21(n):  [29]     

Consider A = [aij] for 0 < i < n + 1 and 0 < j < n + 1. 

Let B = A-1. To derive B, we will once again consider the Gauss-Jordan Matrix 

Inversion Method. 

Let put A in the left side and the identity matrix of size n in the right side 

of the augmented matrix [A|I ]. By operating basic operations (one multiplied by a 

scalar or one row replaced by the original row minus a multiple of another row 

[29]) between the rows of A and the identity matrix, we will obtain the augmented 

matrix [I |B] which has the identity matrix on the left side and matrix B on the 

right side. 
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Thus, on one side of the augmented matrix, the transformation will lead to 

the identity matrix. So, we will only consider operations on the other side, i.e., on 

n coefficients rather than the 2 * n coefficients of the augmented matrix. 

Consider the operations on the i-th row, i.e., Ri: 

• First, we replace Ri by Ri / Rii, where Rii is the i-th coefficient on the i-

th row. This will require f15 operations and g15 cycles per candidate. 

Considering maximum possible parallelism and n candidates, n * f15 

operations and g15 cycles will be required. 

• Next, we replace all the remaining rows (n - 1 in total) by - Rji * Ri+ 

Rj. Here we are transforming the j-th row; this will require f14 

operations and g14 cycles, then f13 operations and g13 cycles per 

candidate. Thus considering full parallelism, n candidates and n - 1 

rows, n * (n - 1) * (f14 + f13) operations and (g14 + g13) cycles will be 

required. 

Therefore, 0 < i < n + 1,  

f21(n) = n2  ( 1/N ), 4n3  ( * ) and n2 (4n - 3)  ( + ), and g21(n) = 7n  ( c ). 

� Minimum Mean Square Error conditioning matrix from an n-by-n 

complex-valued channel matrix- f22(n), g22(n):  [Appendix 1]   

Refering to the computation of a real-valued MMSE conditioning matrix,  

f22(n) = n2 + 1  ( 1/N ), 4n2(2n + 1)  ( * ) and n(8n2 - n - 1)  ( + ),  

and g22(n) = 6 + 7 * n + 2 *   ( c ). 
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� Minimum Mean Square Error conditioning matrix from an m-by-n 

complex-valued deflated channel matrix- f23(m,n), g23(m,n):  

  We will share computations from the calculation of the initial MMSE 

conditioning matrix. 

Considering D, the m-by-n deflated version of the m-by-m channel matrix H (n < 

m), 

temp1 = HH *  H is the matrix whose coefficient on the i-th row and j-th column is         

hi
H *  hj, where hi is the i-th column of H. Thus, temp1 = HH *  H + 1 / SNR * I n 

and temp2 = DH *  D + 1 / SNR * Im. 

It can be shown that temp2 is a deflated version of temp1, thus it will require no 

run time. 

temp2 is an m-by-m matrix, thus temp2
-1 will require f21(m) operations and g21(m) 

cycles 

G = temp2
-1 * DH, with (m, p, n) = (m, m, n), so computing G requires f20(m,m,n) 

operations and g20(m,m,n) cycles.         

Therefore f23(m,n) = m2 ( 1/N ), 4m2(n + m)  ( * ) and n[4m2 - 3m + 4mn - 2n]  ( 

+ ),  

and g23(m,n) =7m + 2 +   ( c ). 
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4. Matlab Scripts for the Hard Detectors  

1- Main Function (Complex-Valued Detection) 

%================================================== ===============
========  
% This program was written by Arsene Pankeu Yomi, U niversity of 
Alberta  
% It was designed in order to evaluate the SER of d ifferent MIMO 
detectors  
% in a typical Rayleigh channel; with the help of A mir Alimohammad  
% and Fouladi Fard in the begining.  
%================================================== ===============
========  
  
clear;clc;close all;  
%%%% attention 'save' and 'change' the name of the saved data  
%%%% FR-BLAST will work only for 64Q 128Q and 256Q  
%    the search set for constellation greater than 256Q is not 
provided  
%%%% QAM from modulation is not valid for 128-QAM  
  
% main parameters  
NumbBlock = 10^4; % each block contains    2 * Cons tellationSize  
                  %                          * NUmb er of frame in 
a block  
                  %                        samples  
CalcSc    = 0;    % 1-> SER     0-> BER                  
ModSc     = 2;    % 1->16-qam   2->64-qam   3->128- qam                                
                  % 4->256-qam  5->512-qam  6->1024 -qam  
N         = 4;    % number of antennas; n_t = n_r =  N  
NumFrameInABlock   = 10;  
MaxSnr    = 40;  
MinSnr    = 0;  
StepSnr   = 2;    % 1 or 2 e.g: stepSnr=2 --[MinSnr , MinSnr+1, 
MinSnr+2...]  
  
SnrDb     = MinSnr:StepSnr:MaxSnr;  
SNR       = 10.^(SnrDb/10);  
LSnr      = length(SNR);  
  
% The minimum # of error is the same for all or dec reases as SNR 
increases  
%  MatOfErrs = 100 * [1 .5 .5 .4 .4 .3 .3 .2 .2 .15  .15 .1 .1 .09 
.09 .08 .08 .07 .07 .06 .06 .05 .05 .04 .04 .03 .03  .02 0.02 0.01 
0.01];  
 MatOfErrs = 100000 * ones(1,MaxSnr + 1);  
  
% Launch detection   
% '1' In order to launch detection scheme otherwise  '0'  
DoMlDetect        = 0;   % Maximum Likelihood detec tor  
DoMmseDetect      = 1;   % MMSE detector  
DoVBlastDetect    = 1;   % V-BLAST detector  
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DoFBlastDetect    = 0;   % F-BLAST detector; starti ng layer 
indicated below  
DoFRBlastDetect   = 0;   % FR-BLAST; starting layer  indicated 
below  
SizeOfSphere      = 9;   % number of symbol in the search space  
  
% Initialization of SER  
if (DoMlDetect == 1)  
    if (CalcSc == 1)  
        SerMl     = zeros(1,LSnr);  
    else  
        BerMl     = zeros(1,LSnr);  
    end  
end  
  
if (DoMmseDetect == 1)  
    if (CalcSc == 1)  
        SerMmse   = zeros(1,LSnr);  
    else  
        BerMmse   = zeros(1,LSnr);  
    end  
end  
  
if (DoVBlastDetect == 1)  
    if (CalcSc == 1)  
        SerVBlast = zeros(1,LSnr);  
    else  
        BerVBlast = zeros(1,LSnr);  
    end  
end  
  
if (DoFBlastDetect == 1)  
    if (CalcSc == 1)  
        SerFBlast = zeros(1,LSnr);  
    else  
        BerFBlast = zeros(1,LSnr);  
    end  
end  
  
if (DoFRBlastDetect == 1)  
    if (CalcSc == 1)  
       SerFRBlast = zeros(1,LSnr);  
    else  
       BerFRBlast = zeros(1,LSnr);  
    end  
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Symbol Matrix, Constant and sample generation %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[SymbMat SignalVar ConstSize NumbBitPerPt StatMat] = 
Modulation(NumFrameInABlock,NumbBlock,N,ModSc);     
  
[TotNumOfSampleInABlock FrameSize SentSymb] = 
SampGen(NumFrameInABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa
t);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computation of SER for various detector %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for snr = 1:LSnr  
    MinNoErrs          = MatOfErrs(SnrDb(snr) + 1);  
    NoiseVar           = (N * SignalVar) / SNR(snr) ;  
     
    if (DoMlDetect == 1)  
        NumbErrMl      = 0;  
    end  
  
    if (DoMmseDetect == 1)  
        NumbErrMmse    = 0;  
    end  
  
    if (DoVBlastDetect == 1)  
        NumbErrVBlast  = 0;  
    end  
  
    if (DoFBlastDetect == 1)  
        NumbErrFBlast  = 0;  
    end  
  
    if (DoFRBlastDetect == 1)  
        NumbErrFRBlast = 0;  
    end  
  
    Continue           = 1;  
    BlockCntr          = 0;  
    % the following line counts the number of block  used for the 
current snr and verifies that MinNoErrs had been re ached  
    while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))  
          Continue          = 0;  
           
          ContinueMl        = 0;  
          ContinueMmse      = 0;  
          ContinueVBlast    = 0;  
          ContinueFBlast    = 0;  
          ContinueFRBlast   = 0;  
  
          BlockCntr         = BlockCntr + 1;  
  
          % channel generation  
          MIMOchResponse    = zeros(N,N,TotNumOfSam pleInABlock);  
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          for ii = 1:NumFrameInABlock  
              % generating CHANNEL  
              H  = (randn(N) + i*randn(N)) * sqrt(0 .5);  
              for ii1 = 1:N  
                  for ii2 = 1:N      
                      MIMOchResponse(ii1, ii2, (1+( ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response 
per frame  
                  end  
              end  
          end  
           
          % block of frames  
          Block = SentSymb(:,(1+TotNumOfSampleInABl ock*(BlockCntr-
1)):(BlockCntr*TotNumOfSampleInABlock));  
           
          for frameCntr = 1:NumFrameInABlock  
               
              %%%%%%%%%%%  
              % Channel %  
              %%%%%%%%%%%  
               
              H     = MIMOchResponse(:, :, 1+(frame Cntr-
1)*FrameSize);  
              N_    = 
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;     
              W     = N_*sqrt(NoiseVar);  
              % S is the current frame  
              S     = Block(:,1+FrameSize*(frameCnt r-
1):frameCntr*FrameSize);                 
              Y     = zeros(N, FrameSize);  
              for ii = 1:FrameSize  
                  % Y=H*S+W  
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) + 
W(:,ii);  
              end         
               
              %%%%%%%%%%%%%%%%%%%%% 
              % Detection process %  
              %%%%%%%%%%%%%%%%%%%%%             
               
              % MMSE matrix  
              G = inv(H' * H + (1 / SNR(snr)) * eye (N)) * H';  
              [SortedLayer IndMI] = SortCol(H,N);  
                             
              %%%% ML detection %%%%  
              if (DoMlDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                      [YMl] = 
Ml(H,ConstSize,N,Y(:,vectorCntr),SymbMat);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [YMlDetect] = Ser(YMl,S(:,v ectorCntr));  
                      else  
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                        [YMlDetect] = 
Ber(ConstSize,N,YMl,SymbMat,S(:,vectorCntr));  
                      end  
                      % counts the number of symbol  in error in 
the block  
                      NumbErrMl     = NumbErrMl + Y MlDetect;  
                  end               
                  if (NumbErrMl < MinNoErrs)  
                     ContinueMl = 1;  
                  else  
                     ContinueMl = 0;  
                  end  
              end  
               
              %%%% MMSE detection %%%%  
              if (DoMmseDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                     [YMmse] = 
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [MmseDetect] = Ser(YMmse,S( :,vectorCntr));  
                      else  
                        [MmseDetect] = 
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));  
                      end  
                       % counts the number of symbo l in error in 
the block  
                       NumbErrMmse   = NumbErrMmse + MmseDetect;  
                  end  
                  if (NumbErrMmse < MinNoErrs)  
                     ContinueMmse = 1;  
                  else  
                     ContinueMmse = 0;  
                  end  
              end  
  
              %%%% V-BLAST detection %%%%  
              if (DoVBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                      % initialize position of the undetected 
symbols  
                      Pos = 1:N;  
                      % initialize detected symbol vector  
                      YVB = zeros(N,1);  
                       
 [YVBlast] = 
VBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Pos,YV B,SNR,snr);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [VBlastDetect] = 
Ser(YVBlast,S(:,vectorCntr));  
                      else  
                        [VBlastDetect] = 
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));  
                      end  
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                      % Counts the number of symbol  in error in 
the block  
                      NumbErrVBlast    = NumbErrVBl ast + 
VBlastDetect;  
                  end  
                  if (NumbErrVBlast < MinNoErrs)  
                     ContinueVBlast = 1;  
                  else  
                     ContinueVBlast = 0;  
                  end  
              end  
               
              %%%% F-BLAST detection %%%%  
              if (DoFBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
       [YFBlast] = 
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted Layer(1),SNR,sn
r);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [FBlastDetect] = 
Ser(YFBlast,S(:,vectorCntr));  
                      else  
                        [FBlastDetect] = 
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));  
                      end  
                      % Counts the number of symbol  in error in 
the block  
                      NumbErrFBlast    = NumbErrFBl ast + 
FBlastDetect;  
                  end  
                  if (NumbErrFBlast < MinNoErrs)  
                     ContinueFBlast = 1;  
                  else  
                     ContinueFBlast = 0;  
                  end     
              end               
               
              %%%% FR-BLAST detection %%%%  
              if (DoFRBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
[YFRBlast] = 
FRBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,G,Sor tedLayer(1),SNR
,snr,SizeOfSphere,StatMat);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [FRBlastDetect] = 
Ser(YFRBlast,S(:,vectorCntr));  
                      else  
                        [FRBlastDetect] = 
Ber(ConstSize,N,YFRBlast,SymbMat,S(:,vectorCntr));  
                      end  
                       % Counts the number of symbo l in error in 
the block  
                       NumbErrFRBlast   = NumbErrFR Blast + 
FRBlastDetect;  
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                  end  
                  if (NumbErrFRBlast   < MinNoErrs)   
                     ContinueFRBlast   = 1;  
                  else  
                     ContinueFRBlast   = 0;  
                  end  
              end  
                            
          end % end frameCntr  
  
          Intermediate = ContinueMl + ContinueMmse + 
ContinueVBlast + ContinueFBlast + ContinueFRBlast;  
          if (Intermediate == 0)  
              Continue = 0;  
          else  
              Continue = 1;  
          end  
           
    end % while continue  
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % SER computation for the current snr value %  
    %         to be print on the screen         %  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 clc;  
 if DoMlDetect,  
    if (CalcSc == 1)  
        SerMl(snr)   = NumbErrMl / BlockCntr / Fram eSize / 
NumFrameInABlock / N  
    else  
        BerMl(snr)   = NumbErrMl / BlockCntr / Fram eSize / 
NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoMmseDetect,  
    if (CalcSc == 1)  
        SerMmse(snr)   = NumbErrMmse / BlockCntr / FrameSize / 
NumFrameInABlock / N  
    else  
        BerMmse(snr)   = NumbErrMmse / BlockCntr / FrameSize / 
NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoVBlastDetect,  
    if (CalcSc == 1)  
        SerVBlast(snr)   = NumbErrVBlast / BlockCnt r / FrameSize / 
NumFrameInABlock / N  
    else  
        BerVBlast(snr)   = NumbErrVBlast / BlockCnt r / FrameSize / 
NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
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 if DoFBlastDetect,  
    if (CalcSc == 1)  
        SerFBlast(snr)   = NumbErrFBlast / BlockCnt r / FrameSize / 
NumFrameInABlock / N  
    else  
        BerFBlast(snr)   = NumbErrFBlast / BlockCnt r / FrameSize / 
NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
   
 if DoFRBlastDetect,  
    if (CalcSc == 1)  
        SerFRBlast(snr)   = NumbErrFRBlast / BlockC ntr / FrameSize 
/ NumFrameInABlock / N  
    else  
        BerFRBlast(snr)   = NumbErrFRBlast / BlockC ntr / FrameSize 
/ NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
  
% change the name of the saved data in order to avo id confusion  
  
%%Ser 
%save('SavedData','SerMl','SerMmse','SerVBlast','Se rFBlast','SerFR
Blast')  
  
%Ber 
save('SavedData_MMSE_VB_B10000_E50000','BerMmse','B erVBlast')  
  
end % end for snr  
  
%%%%%%%%%%%%%%%%%%%%% 
% SER semilogy Plot %  
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%    remove unlaunched detection !!!  
if (CalcSc == 1)  
    figure(1)  
    semilogy(SnrDb,SerMmse,'--',SnrDb,SerVBlast,'*-
',SnrDb,SerFRBlast,'o-',SnrDb,SerFBlast,'+-');  
    % enter proper constellation size  
    title('SER For Various Detectors M=64');  
    % enter proper search space size and starting l ayer  
    legend('MMSE','V-BLAST','FR-BLAST W=9 L=1','F-B LAST L=1');  
    xlabel('SNR, dB');  
    ylabel('SER');  
else  
    figure(1)  
    semilogy(SnrDb,BerMmse,'--',SnrDb,BerVBlast,'*-
',SnrDb,BerFRBlast,'o-',SnrDb,BerFBlast,'+-');  
    % enter proper constellation size  
    title('BER For Various Detectors M=64');  
    % enter proper search space size and starting l ayer  
    legend('MMSE','V-BLAST','FR-BLAST W=9 L=1','F-B LAST L=1');  
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    xlabel('SNR, dB');  
    ylabel('BER');  
end  
 

2- Main Function (Real-Valued) Detection 

%================================================== ===============
========  
% This program was written by Arsene Pankeu Yomi, U niversity of 
Alberta  
% It was designed in order to evaluate the SER of d ifferent MIMO 
detectors  
% in a typical Rayleigh channel; with the help of A mir Alimohammad  
% and Fouladi Fard in the begining.  
%================================================== ===============
========  
  
clear;clc;close all;  
%%%% attention 'save' and 'change' the name of the saved data  
%%%% will work only for 16Q 64Q 128Q and 256Q  
  
% main parameters  
NumbBlock   = 10^4; % each block contains    2 * Co nstellationSize  
                  %                          * NUmb er of frame in 
a block  
                  %                        samples  
CalcSc      = 0;    % 1-> SER     0-> BER                  
ModSc       = 1;    % 1->16-qam   2->64-qam   3->25 6-qam 4->1024-
qam                                        
N           = 4;    % number of antennas; n_t = n_r  = N  
NumFrameInABlock   = 10;  
MaxSnr      = 40;  
MinSnr      = 0;  
StepSnr     = 2;  % 1 or 2 e.g: stepSnr=2 --[MinSnr , MinSnr+1, 
MinSnr+2...]  
  
SnrDb       = MinSnr:StepSnr:MaxSnr;  
SNR         = 10.^(SnrDb/10);  
LSnr        = length(SNR);  
  
% The minimum # of error is the same for all or dec reases as SNR 
increases  
%  MatOfErrs = 100 * [1 .5 .5 .4 .4 .3 .3 .2 .2 .15  .15 .1 .1 .09 
.09 .08 .08 .07 .07 .06 .06 .05 .05 .04 .04 .03 .03  .02 0.02 0.01 
0.01];  
 MatOfErrs  = 25000 * ones(1,MaxSnr + 1);  
  
% Launch detection   
% '1' In order to launch detection scheme otherwise  '0'  
  
% Complex detection  
DoMmseDetect          = 1;   % MMSE detector  
DoVBlastDetect        = 1;   % V-BLAST detector  
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DoFBlastDetect        = 1;   % F-BLAST detector; st arting layer to 
be indicated below  
  
% Real detection  
DoRealMmseDetect      = 1;   % MMSE detector  
DoRealVBlastDetect    = 1;   % V-BLAST detector  
DoRealFBlastDetect    = 1;   % F-BLAST detector; st arting layer to 
be indicated below  
  
% Initialization of SER  
  
if (DoMmseDetect == 1)  
    if (CalcSc == 1)  
        SerMmse   = zeros(1,LSnr);  
    else  
        BerMmse   = zeros(1,LSnr);  
    end  
end  
  
if (DoVBlastDetect == 1)  
    if (CalcSc == 1)  
        SerVBlast = zeros(1,LSnr);  
    else  
        BerVBlast = zeros(1,LSnr);  
    end  
end  
  
if (DoFBlastDetect == 1)  
    if (CalcSc == 1)  
        SerFBlast = zeros(1,LSnr);  
    else  
        BerFBlast = zeros(1,LSnr);  
    end  
end  
  
if (DoRealMmseDetect == 1)  
    if (CalcSc == 1)  
        SerRealMmse   = zeros(1,LSnr);  
    else  
        BerRealMmse   = zeros(1,LSnr);  
    end  
end  
  
if (DoRealVBlastDetect == 1)  
    if (CalcSc == 1)  
        SerRealVBlast = zeros(1,LSnr);  
    else  
        BerRealVBlast = zeros(1,LSnr);  
    end  
end  
  
if (DoRealFBlastDetect == 1)  
    if (CalcSc == 1)  
        SerRealFBlast = zeros(1,LSnr);  
    else  
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        BerRealFBlast = zeros(1,LSnr);  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Symbol Matrix, Constant and sample generation %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[SymbMat SignalVar ConstSize NumbBitPerPt Motif Rea lConstSize] = 
Modulation(NumFrameInABlock,NumbBlock,N,ModSc);     
  
[TotNumOfSampleInABlock FrameSize SentSymb] = 
SampGen(NumFrameInABlock,NumbBlock,N,ConstSize,Numb BitPerPt,SymbMa
t);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computation of SER for various detector %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for snr = 1:LSnr  
    MinNoErrs          = MatOfErrs(SnrDb(snr) + 1);  
    NoiseVar           = (N * SignalVar) / SNR(snr) ;  
  
    if (DoMmseDetect == 1)  
        NumbErrMmse        = 0;  
    end  
  
    if (DoVBlastDetect == 1)  
        NumbErrVBlast      = 0;  
    end  
  
    if (DoFBlastDetect == 1)  
        NumbErrFBlast      = 0;  
    end  
     
    if (DoRealMmseDetect == 1)  
        NumbErrRealMmse    = 0;  
    end  
  
    if (DoRealVBlastDetect == 1)  
        NumbErrRealVBlast  = 0;  
    end  
  
    if (DoRealFBlastDetect == 1)  
        NumbErrRealFBlast  = 0;  
    end     
  
    Continue           = 1;  
    BlockCntr          = 0;  
    % the following line counts the number of block  used for the 
current snr and verifies that MinNoErrs had been re ached  
    while ((Continue == 1) && ((BlockCntr < NumbBlo ck)))  
          Continue              = 0;  
           
          ContinueMmse          = 0;  
          ContinueVBlast        = 0;  
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          ContinueFBlast        = 0;  
          ContinueRealMmse      = 0;  
          ContinueRealVBlast    = 0;  
          ContinueRealFBlast    = 0;  
  
          BlockCntr         = BlockCntr + 1;  
  
          % channel generation  
          MIMOchResponse    = zeros(N,N,TotNumOfSam pleInABlock);  
          for ii = 1:NumFrameInABlock  
              % generating CHANNEL  
              H  = (randn(N) + i*randn(N)) * sqrt(0 .5);  
              for ii1 = 1:N  
                  for ii2 = 1:N      
                      MIMOchResponse(ii1, ii2, (1+( ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response 
per frame  
                  end  
              end  
          end  
           
          % block of frames  
          Block = SentSymb(:,(1+TotNumOfSampleInABl ock*(BlockCntr-
1)):(BlockCntr*TotNumOfSampleInABlock));  
           
          for frameCntr = 1:NumFrameInABlock  
               
              %%%%%%%%%%%  
              % Channel %  
              %%%%%%%%%%%  
               
              % complex value  
              H   = MIMOchResponse(:, :, 1+(frameCn tr-
1)*FrameSize);  
              N_  = 
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;     
              W   = N_*sqrt(NoiseVar);  
              % S is the current frame  
              S   = Block(:,1+FrameSize*(frameCntr-
1):frameCntr*FrameSize);                 
              Y   = zeros(N, FrameSize);  
              for ii = 1:FrameSize  
                  % Y=H*S+W  
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) + 
W(:,ii);  
              end  
               
              % real value  
              RealH          = [real(H) -imag(H);im ag(H) real(H)];  
               
              RealY          = zeros(2*N, FrameSize );  
              RealS          = zeros(2*N, FrameSize );  
              RealW          = zeros(2*N, FrameSize );  
              for ii = 1:FrameSize  
                  TempRealY  = zeros(N, FrameSize);  
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                  TempImagY  = zeros(N, FrameSize);  
                  TempRealS  = zeros(N, FrameSize);  
                  TempImagS  = zeros(N, FrameSize);  
                  TempRealW  = zeros(N, FrameSize);   
                  TempImagW  = zeros(N, FrameSize);  
                  for hh = 1:N  
                      TempRealY(hh,ii) = real(Y(hh, ii));  
                      TempImagY(hh,ii) = imag(Y(hh, ii));  
                      TempRealS(hh,ii) = real(S(hh, ii));  
                      TempImagS(hh,ii) = imag(S(hh, ii));  
                      TempRealW(hh,ii) = real(W(hh, ii));  
                      TempImagW(hh,ii) = imag(W(hh, ii));  
                  end               
               
               
               
                  RealY(:,ii) = [TempRealY(:,ii);Te mpImagY(:,ii)];  
                  RealS(:,ii) = [TempRealS(:,ii);Te mpImagS(:,ii)];  
                  RealW(:,ii) = [TempRealW(:,ii);Te mpImagW(:,ii)];                   
              end  
               
              %%%%%%%%%%%%%%%%%%%%% 
              % Detection process %  
              %%%%%%%%%%%%%%%%%%%%%             
               
              % MMSE matrix  
               
              % complex value  
              G = inv(H' * H + (1 / SNR(snr)) * eye (N)) * H';  
              [SortedLayer IndMI] = SortCol(H,N);  
               
              % real value  
          RealG = inv(RealH' * RealH + (1 / SNR(snr )) * eye(2*N)) 
* RealH';  
              [RealSortedLayer RealIndMI] = SortCol (RealH,2*N);  
               
              %%%% MMSE detection %%%%  
              if (DoMmseDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                     [YMmse] = 
Mmse(ConstSize,N,Y(:,vectorCntr),SymbMat,G);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [MmseDetect] = Ser(YMmse,S( :,vectorCntr));  
                      else  
             [MmseDetect] = 
Ber(ConstSize,N,YMmse,SymbMat,S(:,vectorCntr));  
                      end  
                       % counts the number of symbo l in error in 
the block  
                       NumbErrMmse   = NumbErrMmse + MmseDetect;  
                  end  
                  if (NumbErrMmse < MinNoErrs)  
                     ContinueMmse = 1;  
                  else  
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                     ContinueMmse = 0;  
                  end  
              end  
  
              %%%% V-BLAST detection %%%%  
              if (DoVBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                      % initialize position of the undetected 
symbols  
                      Pos = 1:N;  
                      % initialize detected symbol vector  
                      YVB = zeros(N,1);  
                       
 [YVBlast] = 
VBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Pos,YV B,SNR,snr);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [VBlastDetect] = 
Ser(YVBlast,S(:,vectorCntr));  
                      else  
         [VBlastDetect] = 
Ber(ConstSize,N,YVBlast,SymbMat,S(:,vectorCntr));  
                      end  
                      % Counts the number of symbol  in error in 
the block  
                      NumbErrVBlast    = NumbErrVBl ast + 
VBlastDetect;  
                  end  
                  if (NumbErrVBlast < MinNoErrs)  
                     ContinueVBlast = 1;  
                  else  
                     ContinueVBlast = 0;  
                  end  
              end  
               
              %%%% F-BLAST detection %%%%  
              if (DoFBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
       [YFBlast] = 
FBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Sorted Layer(1),SNR,sn
r);  
                      % error calculation  
                      if (CalcSc == 1)  
                        [FBlastDetect] = 
Ser(YFBlast,S(:,vectorCntr));  
                      else  
         [FBlastDetect] = 
Ber(ConstSize,N,YFBlast,SymbMat,S(:,vectorCntr));  
                      end  
                      % Counts the number of symbol  in error in 
the block  
                      NumbErrFBlast    = NumbErrFBl ast + 
FBlastDetect;  
                  end  
                  if (NumbErrFBlast < MinNoErrs)  
                     ContinueFBlast = 1;  
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                  else  
                     ContinueFBlast = 0;  
                  end     
              end  
               
              %%%% REAL MMSE detection %%%%  
              if (DoRealMmseDetect == 1)  
                  for vectorCntr = 1:FrameSize  
     [RealYMmse] = 
Mmse(RealConstSize,2*N,RealY(:,vectorCntr),Motif,Re alG);  
      
                      % complex transformation  
                      YReal = zeros(N,1);  
                      for ii = 1:N  
                        YReal(ii) = RealYMmse(ii)+ i * 
RealYMmse(N+ii);  
                      end  
      
                      % error calculation  
                      if (CalcSc == 1)  
                        [RealMmseDetect] = 
Ser(YReal,S(:,vectorCntr));  
                      else  
         [RealMmseDetect] = 
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));  
                      end  
                       % counts the number of symbo l in error in 
the block  
                      NumbErrRealMmse   = NumbErrRe alMmse + 
RealMmseDetect;  
                  end  
                  if (NumbErrRealMmse < MinNoErrs)  
                     ContinueRealMmse = 1;  
                  else  
                     ContinueRealMmse = 0;  
                  end  
              end  
  
              %%%% REAL V-BLAST detection %%%%  
              if (DoRealVBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
                      % initialize position of the undetected 
symbols  
                      Pos = 1:2*N;  
                      % initialize detected symbol vector  
                      YVB = zeros(2*N,1);  
                       
 [RealYVBlast] = 
VBlast(RealH,RealConstSize,2*N,RealY(:,vectorCntr), Motif,Pos,YVB,S
NR,snr);  
  
                       % complex transformation  
                      YReal = zeros(N,1);  
                      for ii = 1:N  
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                       YReal(ii) = RealYVBlast(ii) + i * 
RealYVBlast(N+ii);  
                      end  
                       
                      % error calculation  
                      if (CalcSc == 1)  
                     [RealVBlastDetect] = 
Ser(YReal,S(:,vectorCntr));  
                      else  
 [RealVBlastDetect] = 
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));  
                      end  
                      % Counts the number of symbol  in error in 
the block  
               NumbErrRealVBlast    = NumbErrRealVB last + 
RealVBlastDetect;  
                  end  
                  if (NumbErrRealVBlast < MinNoErrs )  
                     ContinueRealVBlast = 1;  
                  else  
                     ContinueRealVBlast = 0;  
                  end  
              end  
               
              %%%% REAL F-BLAST detection %%%%  
              if (DoRealFBlastDetect == 1)  
                  for vectorCntr = 1:FrameSize  
       [RealYFBlast] = 
FBlast(RealH,RealConstSize,2*N,RealY(:,vectorCntr), Motif,RealSorte
dLayer(1),SNR,snr);  
        
                      % complex transformation  
                      YReal = zeros(N,1);  
                      for ii = 1:N  
                        YReal(ii) = RealYFBlast(ii) + i * 
RealYFBlast(N+ii);  
                      end        
        
                      % error calculation  
                      if (CalcSc == 1)  
                     [RealFBlastDetect] = 
Ser(YReal,S(:,vectorCntr));  
                      else  
 [RealFBlastDetect] = 
Ber(ConstSize,N,YReal,SymbMat,S(:,vectorCntr));  
                      end  
                      % Counts the number of symbol  in error in 
the block  
               NumbErrRealFBlast    = NumbErrRealFB last + 
RealFBlastDetect;  
                  end  
                  if (NumbErrRealFBlast < MinNoErrs )  
                     ContinueRealFBlast = 1;  
                  else  
                     ContinueRealFBlast = 0;  
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                  end     
              end  
  
                            
          end % end frameCntr  
  
          Intermediate = ContinueMmse + ContinueVBl ast + 
ContinueFBlast + ContinueRealVBlast + ContinueRealF Blast + 
ContinueRealMmse;  
          if (Intermediate == 0)  
              Continue = 0;  
          else  
              Continue = 1;  
          end  
           
    end % while continue  
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % SER computation for the current snr value %  
    %         to be print on the screen         %  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 clc;    
 if DoMmseDetect,  
    if (CalcSc == 1)  
        SerMmse(snr)         = NumbErrMmse / BlockC ntr / FrameSize 
/ NumFrameInABlock / N  
    else  
        BerMmse(snr)         = NumbErrMmse / BlockC ntr / FrameSize 
/ NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoVBlastDetect,  
    if (CalcSc == 1)  
        SerVBlast(snr)       = NumbErrVBlast / Bloc kCntr / 
FrameSize / NumFrameInABlock / N  
    else  
        BerVBlast(snr)       = NumbErrVBlast / Bloc kCntr / 
FrameSize / NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoFBlastDetect,  
    if (CalcSc == 1)  
        SerFBlast(snr)       = NumbErrFBlast / Bloc kCntr / 
FrameSize / NumFrameInABlock / N  
    else  
        BerFBlast(snr)       = NumbErrFBlast / Bloc kCntr / 
FrameSize / NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
   
 if DoRealMmseDetect,  
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    if (CalcSc == 1)  
        SerRealMmse(snr)     = NumbErrRealMmse / Bl ockCntr / 
FrameSize / NumFrameInABlock / N  
    else  
        BerRealMmse(snr)     = NumbErrRealMmse / Bl ockCntr / 
FrameSize / NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoRealVBlastDetect,  
    if (CalcSc == 1)  
        SerRealVBlast(snr)   = NumbErrRealVBlast / BlockCntr / 
FrameSize / NumFrameInABlock / N  
    else  
        BerRealVBlast(snr)   = NumbErrRealVBlast / BlockCntr / 
FrameSize / NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
     
 if DoRealFBlastDetect,  
    if (CalcSc == 1)  
        SerRealFBlast(snr)   = NumbErrRealFBlast / BlockCntr / 
FrameSize / NumFrameInABlock / N  
    else  
        BerRealFBlast(snr)   = NumbErrRealFBlast / BlockCntr / 
FrameSize / NumFrameInABlock / N / NumbBitPerPt  
    end  
 end  
  
% change the name of the saved data in order to avo id confusion  
  
%%Ser 
%save('SavedData','SerMmse','SerVBlast','SerFBlast' ,'SerRealMmse',
'SerRealVBlast','SerRealFBlast')  
  
%Ber 
save('SavedData','BerMmse','BerVBlast','BerFBlast', 'BerRealMmse','
BerRealVBlast','BerRealFBlast')  
  
end % end for snr  
  
%%%%%%%%%%%%%%%%%%%%% 
% SER semilogy Plot %  
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%    remove unlaunched detection !!!  
if (CalcSc == 1)  
    figure(1)  
    semilogy(SnrDb,SerMmse,'--',SnrDb,SerRealMmse,' .-
',SnrDb,SerRealVBlast,'o-',SnrDb,SerVBlast,'+-
',SnrDb,SerRealFBlast,'s-',SnrDb,SerFBlast,'*-');  
    % enter proper constellation size  
    title('SER For Various Detectors M=64');  
    legend('MMSE','REAL MMSE','REAL V-BLAST','V-BLA ST','REAL F-
BLAST','F-BLAST');  
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    xlabel('SNR, dB');  
    ylabel('SER');  
else  
    figure(1)  
    semilogy(SnrDb,BerMmse,'--',SnrDb,BerRealMmse,' .-
',SnrDb,BerRealVBlast,'o-',SnrDb,BerVBlast,'+-
',SnrDb,BerRealFBlast,'s-',SnrDb,BerFBlast,'*-');  
    % enter proper constellation size  
    title('BER For Various Detectors M=64');  
    legend('MMSE','REAL MMSE','REAL V-BLAST','V-BLA ST','REAL F-
BLAST','F-BLAST');  
    xlabel('SNR, dB');  
    ylabel('BER');  
end  
 

3- SER 

function [Error] = Ser(E,Q)  
% This function returns number of Symbol in error i n detected 
symbol vector  
% Usage:  
%        [YMmse] = Ser(E,F,G)  
% Input:  
%             E = noisy transmitted vector Y  
%             Q = transmitted vector S  
% Output:  
%         Error : number of symbol in error  
  
Error  = nnz(E - Q);  
  
end    
 

4- BER 

function [Er] = Ber(b,c,E,F,Q)  
% This function returns number of bit in error in d etected symbol 
vector  
% Usage:  
%        [Er] = Ber(b,c,E,F,Q)  
% Input:  
%             c = number of receiver antennas (same  as 
transmitter)  
%             b = constellation size  
%             E = noisy transmitted vector Y  
%             F = matrice of symbol from the conste llation  
%             Q = transmitted vector S  
% Output:  
%         Er : number of bit in error  
  
% Initialization  
PosNoisyTrans       = zeros(1,c);  
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PosTrans            = zeros(1,c);  
  
for i = 1:c  
    % position of the noisy transmitted vector  
    [val PosNoisyTrans(i)] = min(E(i) * ones(b,1) -  F);  
  
    % position of the transmitted vector  
    [val PosTrans(i)]      = min(Q(i) * ones(b,1) -  F);  
end  
Er = nnz(dec2bin(PosNoisyTrans - 1,log2(b))-dec2bin (PosTrans - 
1,log2(b)));  
  
end  
 

5- Modulation 

 
function [SymbMat SignalVar ConstSize NumbBitPerPt StatMat] = 
Modulation(a,b,c,d)  
% This function returns uncorellated Modulated symb ols.  
% Usage:  
%        [SymbMat SignalVar ConstSize NumbBitPerPt StatMat] = 
Modulation(a,b,c,d)  
% Input:  
% 
%             a = number of frame in a block  
%             b = number of blocks   
%             c = number of transmitter antennas  
%             d = Modulation scheme : 1 ->16qam    2 ->64qam   3 -
>128qam 
%                                     4 ->256qam   5 ->512qam  6 -
>1024qam 
% Output:  
% 
% SignalVar              : Average Symbol energy (E {x[i]^2})  
% SymbMat                : Constellation matrice  
% ConstSize              : Number of point in the c onstellation  
% NumbBitPerPt           : Number of bits per point  
% StatMat                : Subset for the restricte d search  
  
  
         if     (d==1)  
                M              = 16;  
                NumbBitPerPt   = 4 ;  
                SignalVar      = 10;  
                 
         elseif (d==2)  
                M              = 64;  
                NumbBitPerPt   = 6 ;  
                SignalVar      = 42;  
                load SymetricalSearchSpace64Q.mat;  
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         elseif (d==3)  
                M              = 128;  
                NumbBitPerPt   = 7 ;  
                SignalVar      = 82;  
                load SymetricalSearchSpace128Q.mat;  
                 
         elseif (d==4)  
                M              = 256;  
                NumbBitPerPt   = 8 ;  
                SignalVar      = 170;  
                load SymetricalSearchSpace256Q.mat;  
      
        elseif (d==5)  
                M              = 512;  
                NumbBitPerPt   = 9 ;  
                SignalVar      = 330;  
                 
        elseif (d==6)  
                M              = 1024;  
                NumbBitPerPt   = 10 ;  
                SignalVar      = 682;       
         end              
          
         x          = [0:M-1];  
         %matlab function for gray mapping with QAM  constellation  
         SymbMat    = 
modulate(modem.qammod('M',M,'SymbolOrder','Gray'),x );  
         SymbMat    = SymbMat.';  
         ConstSize  = M;  
         %SignalVar  = SymbMat' * SymbMat / ConstSi ze  
          
         %FrameSize  = 2*ConstSize;  
          
         % a sample is a received vector, i.e a set  of N symbols  
         NSymbol    = b * 2 * ConstSize * a * c;  
          
         %generate bits  
         SentBits   = randint(1,NSymbol*NumbBitPerP t);  
          
         %generate symbols gray mapping   
         Symb       = zeros(1,NSymbol);  
         for r = 1:NSymbol  
             t = 0;  
             for zz = 1:NumbBitPerPt  
                 t  = t+2^(zz-1)*SentBits(zz+(r-1)* NumbBitPerPt);  
             end  
             Symb(r) = SymbMat(t+1);  
         end     
end    
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6- FixedSearSet 

function [Subset] = FixedSearchSet(A,b,c,d)  
% This function returns searchset for the noisiest layer, 64QAM  
% Usage:  
%        [Subset] = FixedSearchSet(a,b,c,d)  
% Input:  
%             A = Matrix of statistic  
%             b = Mmse noisiest estimate  
%             c = size of the fixed search set   
%             d = ConstSize  
%              
%             
% Output:  
%    Subset          : set of candidate symbol  
  
    [symb indx]             = min(abs(b * ones(1, d ) - A(1,:)));  
    A(indx+1,indx)          = 0;  
    Subset                  = [b];  
    for kk = 1:c-1  
        [value position]    = max(A(indx+1,:));  
        A(indx+1,position)  = 0;  
        Subset              = [Subset,A(1,position) ];  
    end  
end    
 

7- SampGen 

function [TotNumOfSampleInABlock FrameSize SentSymb ] = 
SampGen(a,b,c,d,e,F)  
% This function returns uncorellated Modulated symb ols.  
% Usage:  
%        [SymbMat SignalVar ConstSize Symb StatMat]  = 
Modulation(a,b,c,d)  
% Input:  
% 
%             a = number of frame in a block  
%             b = number of blocks   
%             c = number of transmitter antennas  
%             d = Constsize  
%             e = Number of bits per constellation point  
%             F = Matrix of constelaltion symbol  
% Output:  
% 
% TotNumOfSampleInABlock : Number of sample in a bl ock  
% Frame Size             : Size of a frame of sampl e vector  
% SentSymb               : matrix of sample vector  
  
FrameSize              = 2 * d;  
TotNumOfSampleInABlock = FrameSize * a;  
  
% generate samples - SentSymb - vector of N symbols  
NSymbol                = b * TotNumOfSampleInABlock  * c;  
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%generate bits  
SentBits               = randint(1,NSymbol*e);  
  
%generate symbols gray mapping   
Symb                   = zeros(1,NSymbol);  
for r = 1:NSymbol  
        t              = 0;  
    for zz = 1:e  
        t              = t+2^(zz-1)*SentBits(zz+(r- 1)*e);  
    end  
    Symb(r)            = F(t+1);  
end   
  
% zeros(N,NSymbol/N)  
SentSymb               = zeros(c,TotNumOfSampleInAB lock*b);  
    for NSymb = 1:c:NSymbol-c+1  
        SentSymb(:,(NSymb+(c-1))*(1/c)) = 
transpose(Symb(NSymb:NSymb+c-1));   
    end  
     
end  
 

8- SortCol 

function [SortedLayer IndMI] = SortCol(A,c)  
% This function returns index of layers from the we akest to the 
strongest  
% Usage:  
%       function [SortedLayer IndMI] = Sortcol(A)  
% Input:  
%            A = H matrix  
%            c = number of receiver antennas (same as transmitter)  
% Output:  
%  SortedLayer = Matrix of the index  
%                1-weakest layer 2-second weakest l ayer ...  
%                ...(c-1)-second strongest layer  c -strongest 
layer  
%        IndMI = Index of the layer which has maxim um interference 
on the  
%                Strongest Layer  
  
     % Initialization  
     SortedLayer              = zeros(1,c);  
     n                        = 1;  
      
     AmpColH                  = [];  
     for ii                   = 1:c  
        AmpColH               = [AmpColH,norm(A(:,i i))];  
     end  
     while ( n < c + 1 )  
        [Val Ind]             = min(AmpColH);  
        SortedLayer(n)        = Ind;  
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        AmpColH(Ind)          = 10000;  
        n                     = n + 1;  
     end  
  
     AmpH                     = [];  
     for ii2                  = 1:c  
         AmpH                 = [AmpH, norm(SortedL ayer(c),ii2)];   
     end  
     AmpH(SortedLayer(c))     = 0;  
     [val1 IndMI]             = max(AmpH);  
      
end  
 

9- MMSE 

 
function [YMmse] = Mmse(b,c,E,F,G)  
% This function returns symbol vector from the MMSE  detection 
process  
% Usage:  
%        [YMmse] = Mmse(b,c,E,F,G)  
% Input:  
%             b = constellation size   
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy transmitted vector Y  
%             F = matrice of symbol from the conste llation  
%             G = MMSE matrix  
% Output:  
%         YMmse : output of the Mmse detection  
  
                 o  = ones(1, b);  
                 op = ones(c, 1);  
                 % MMSE output vector  
                 TempVec         = G * E;  
                 % slicing  
                 [temp IndMmse]  = min(abs(TempVec * o - op * 
F.')');     
                 YMmse           = F(IndMmse);     
end    
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10- V-BLAST 

function [YVBlast] = VBlast(A,b,c,E,F,K,L,M,n)  
% This function returns symbol vector from the V-BL AST detection 
process  
% Usage:  
%        [YVBlast] = VBlast(A,b,c,E,F,K,L,M,n)  
% Input:  
%             A = H matrix  
%             b = constellation size   
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy transmitted vector Y  
%             F = matrix of symbol from the constel lation  
%             K = indice(s) of the symbol(s) to be detected  
%             L = YVBlast, initial value  
%             M = SNR  
%             n = snr  
% Output:  
%       YVBlast : output of the VBLAST detection  
  
        YVBlast   = L;       
        H_        = A;  
        Y_        = E;  
        for IndSymb = 1:c  
            % MMSE matrix  
            G_ = inv(H_' * H_ + (1 / M(n)) * eye(c - (IndSymb - 
1))) * H_';  
  
            % ordering: detection goes from stronge st to weakest 
layer  
            % detection starts with the row of G_ w hich has 
minimum norm  
             
            % norm of G_'s row  
            AmpG_               = [];            
            for ii              = 1:c-(IndSymb-1)  
                AmpG_           = [AmpG_, norm(G_(i i, :))^2];  
            end  
            [val1 GRowInd]      = min(AmpG_);  
             
            % nulling: MMSE is used to detect symbo l from each 
layer  
            CurDtdSymb          = G_(GRowInd, :) * Y_;  
    
            % slicing  
            Dist                = abs(F - ones(b,1)  * 
CurDtdSymb).^2;  
            [val2, IndVBlast]   = min(Dist);  
            YVBlast(K(GRowInd)) = F(IndVBlast);  
            
            % cancellation : produces deflation in columns of H_  
            %                removes interference f rom detected 
symbol  
            Y_     = Y_ - H_(:, GRowInd) * YVBlast( K(GRowInd));  
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            HTemp  = [];  
            Temp   = [];  
            for ii = 1:c-(IndSymb-1),  
                if (ii  ~= GRowInd)  
                   HTemp = [HTemp, H_(:, ii)];  
                   Temp  = [Temp, K(ii)];  
                end  
            end  
            H_     = HTemp;  
            K      = Temp;  
        end   
     
end    
  
                                
11- FR-BLAST 

function [YFRBlast] = FRBlast(A,b,c,E,F,G,i,M,n,k,S )  
% This function returns symbol vector from the FR-B LAST detection 
process  
% Usage:  
%        [YFRBlast] = FRBlast(A,b,c,E,F,G,M,n,k,S)  
% Input:  
%             A   = H matrix  
%             b   = constellation size   
%             c   = number of receiver antennas (sa me as 
transmitter)  
%             E   = noisy transmitted vector Y  
%             F   = matrix of symbol from the const ellation  
%             G   = MMSE matrix  
%             i   = Index of the first layer to be detected  
%                   1-weakest layer 2-second weakes t layer ...  
%                   ...(c-1)-second strongest layer   c-strongest 
layer  
%             M   = SNR  
%             n   = snr  
%             k   = size of the fixed search space  
%             S   = Matrix of statistic to build th e subset  
% Output:  
%      YFRBlast : output of the FRBLAST detection  
          
     YFRBlastTest  = zeros(c,k);  
     Epsilon       = zeros(c,k);  
     % a search inside a search space is performed on the first 
layer to be  
     % detected, i.e. detection starts with the 'i' -th layer  
     % conventional VBLAST for the N-1 remaining la yers  
     % norm of G's row  
      
     % original MMSE is run to estimate the positio n of the first 
symbol  
     [YMmse]       = Mmse(b,c,E,F,G);  
      
     % now we build a set of k closest symbol inclu ding this one  
     [Subset]      = FixedSearchSet(S,YMmse(i),k,b) ;  
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     % search inside the subset for the first symbo l,  
     for ii = 1:k    
         H_                                     = A ;  
         UnDtdSymb                              = 1 :c;  
         Y_                                     = E ;  
         YFRBlastTest(UnDtdSymb(i),ii)          = S ubset(ii);  
          
         % cancellation : produces deflation in col umns of H_  
         %                removes interference from  temptative 
symbol  
         Y_        = Y_ - H_(:,i) * YFRBlastTest(Un DtdSymb(i),ii);  
         HTemp1    = [];  
         Temp1     = [];  
         for ii1   = 1:c  
             if (ii1 ~= i)  
                HTemp1   = [HTemp1,H_(:,ii1)];  
                Temp1    = [Temp1, UnDtdSymb(ii1)];  
             end  
         end  
         H_        = HTemp1;  
         UnDtdSymb = Temp1;             
          
         % Original V-BLAST detection over the N-1 remaining 
layers  
        [YVBlast] = VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBlastTest(:,ii),M,n);  
         YFRBlastTest(:,ii) = YVBlast;  
          
         % Compute noise for all candidate  
         Epsilon(:,ii) = A * YFRBlastTest(:,ii) - E ;   
     end  
  
     % Find the best candidate  
     AmpEps  = [];                
     for ii1 = 1:k  
         AmpEps = [AmpEps, norm(Epsilon(:,ii1))];  
     end  
     [val4 MinEpsInd] = min(AmpEps);  
     YFRBlast         = YFRBlastTest(:,MinEpsInd);   
end    
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12- F-BLAST 

function [YFBlast] = FBlast(A,b,c,E,F,i,M,n)  
% This function returns symbol vector from the F-BL AST detection 
process  
% Usage:  
%        [YFBlast] = FBlast(A,b,c,E,F,i,M,n)  
% Input:  
%             A   = H matrix  
%             b   = constellation size   
%             c   = number of receiver antennas (sa me as 
transmitter)  
%             E   = noisy transmitted vector Y  
%             F   = matrix of symbol from the const ellation  
%             i   = Index of the first layer to be detected  
%                   1-weakest layer 2-second weakes t layer ...  
%                   ...(c-1)-second strongest layer   c-strongest 
layer                                      
%             M   = SNR  
%             n   = snr  
% Output:  
%       YFBlast : output of the FBLAST detection  
               
     YFBlastTest = zeros(c,b);  
     Epsilon     = zeros(c,b);  
     % an exhaustive search is performed on the fir st layer to be 
detected  
     % i.e detection starts with the 'i'_th layer  
     % conventional VBLAST for the N-1 remaining sy mbols  
  
     % Exhaustive search on the first layer  
     for ii = 1:b    
         H_                                  = A;  
         UnDtdSymb                           = 1:c;  
         Y_                                  = E;  
         YFBlastTest(UnDtdSymb(i),ii)        = F(ii );  
         % cancellation : produces deflation in col umns of H_  
         %                removes interference from  temptative 
symbol  
         Y_              = Y_ - H_(:,i) * 
YFBlastTest(UnDtdSymb(i),ii);  
         HTemp1          = [];  
         Temp1           = [];  
         for ii1         = 1:c  
             if (ii1    ~= i)  
                HTemp1   = [HTemp1,H_(:,ii1)];  
                Temp1    = [Temp1, UnDtdSymb(ii1)];  
             end  
         end  
         H_              = HTemp1;  
         UnDtdSymb       = Temp1;  
          
         % Original V-BLAST detection over the N-1 remaining 
layers          
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       [YVBlast]   = VBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(:,ii),M,n);  
         YFBlastTest(:,ii) = YVBlast;  
         % Compute noise for all candidate  
         Epsilon(:,ii)     = A * YFBlastTest(:,ii) - E;   
     end  
     % Find the best candidate   
     AmpEps           =[];                
     for ii1          = 1:b  
         AmpEps       = [AmpEps, norm(Epsilon(:,ii1 ))];  
     end  
     [val4 MinEpsInd] = min(AmpEps);  
     YFBlast          = YFBlastTest(:,MinEpsInd);      
end  
 

13- ML 

 
function [YMl] = Ml(A,b,c,E,F)  
% This function returns symbol vector from the ML d etection 
process  
% Usage:  
%        [YMl] = Ml(A,b,c,E,F)  
% Input:  
%             A = H matrix  
%             b = constellation size   
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy received vector Y  
%             F = matrix of symbols from the conste llation  
% Output:  
%           YMl : output of the Ml detection  
  
    % Initialization  
             ErrMl    = zeros(1,b^c);  
             TempVec  = zeros(c,b^c);  
             n        = 1;  
  
             if ( c == 2 ) % 2 antennas  
                 for ii1 = 1:b  
                     for ii2 = 1:b  
                         TempVec(:,n) = [F(ii1);F(i i2)];  
                         ErrMl(n)     = (norm(E - A  * 
TempVec(:,n)))^2;  
                         n            = n + 1;  
                     end  
                 end  
             elseif ( c == 3 ) % 3 antennas  
                  for ii1 = 1:b  
                     for ii2 = 1:b  
                         for ii3 = 1:b  
                             TempVec(:,n) = 
[F(ii1);F(ii2);F(ii3)];  
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                             ErrMl(n)     = (norm(E  - A * 
TempVec(:,n)))^2;  
                             n            = n + 1;  
                         end  
                     end  
                  end  
             elseif ( c == 4 ) % 4 antennas  
                  for ii1 = 1:b  
                     for ii2 = 1:b  
                         for ii3 = 1:b  
                             for ii4 = 1:b  
                         TempVec(:,n) = 
[F(ii1);F(ii2);F(ii3);F(ii4)];  
                         ErrMl(n)     = (norm(E - A  * 
TempVec(:,n)))^2;  
                         n            = n + 1;  
                             end  
                         end  
                     end  
                  end  
             elseif ( c == 5 ) % 5 antennas  
                    for ii1 = 1:b  
                        for ii2 = 1:b  
                            for ii3 = 1:b  
                                for ii4 = 1:b  
                                    for ii5 = 1:b  
         TempVec(:,n) = [F(ii1);F(ii2);F(ii3);F(ii4 );F(ii5)];  
         ErrMl(n)     = (norm(E - A * TempVec(:,n)) )^2;  
         n            = n + 1;  
                                    end  
                                end  
                            end  
                        end  
                    end    
             elseif ( c == 6 ) % 6 antennas  
                    for ii1 = 1:b  
                        for ii2 = 1:b  
                            for ii3 = 1:b  
                                for ii4 = 1:b  
                                    for ii5 = 1:b  
                                        for ii6 = 1 :b  
         TempVec(:,n) = 
[F(ii1);F(ii2);F(ii3);F(ii4);F(ii5);F(ii6)];  
         ErrMl(n)     = (norm(E - A * TempVec(:,n)) )^2;  
         n            = n + 1;  
                                        end  
                                    end  
                                end  
                            end  
                        end  
                    end  
             end  
  
            [C,IndMl] = min(ErrMl);  
            YMl       = TempVec(:,IndMl);            
end    
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5. Matlab Scripts and Simulink Models for the Coded System  

1- Simulink Model 
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2- Simulink Turbo Encoder 

 

3- Simulink Turbo Decoder 
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4- Simulink Turbo Decoder with 12 Iterations 
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5- Space-Time Mapper Matlab - Embedded Function 
function Outinfo = TransmissionBlock(EncBits, MATRI X)  
  
% NoiseVar=(2*CodeRate * #bit/pt * EbNo linear)^-1 = 
N*SignalVariance/SNR  
  
% parameters  
SCCC_R = MATRIX(1); SCCC_len = MATRIX(2); N = MATRI X(3); ModSc = 
MATRIX(4);  
DoNoDetector = MATRIX(5); DoMmseDetect = MATRIX(6);   
DoVBlastDetect = MATRIX(7); DoFBlastDetect = MATRIX (8);  
DoFRBlastDetect = MATRIX(9); DoRealMmseDetect = MAT RIX(10);  
DoRealVBlastDetect = MATRIX(11); DoRealFBlastDetect  = MATRIX(12);  
SizeOfSphere = MATRIX(13); FBStartLayer = MATRIX(14 );  
FRBStartLayer = MATRIX(15); SNR =MATRIX(16);  
  
% initialization of the call of external function  
eml.extrinsic('Modulation','SampleNChannel','Detect ion');  
  
% initialization of complex computation  
i = sqrt(complex(-1));  
j = sqrt(complex(-1));  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Symbol Matrix, Constant and sample generation %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
[SymbMat SignalVar ConstSize NumbBitPerPt StatMat M otif] = 
Modulation(ModSc);  
  
FrameSize              = 2 * ConstSize; % number of  samples in a 
frame  
  
NumFrameInABlock       = SCCC_len / (SCCC_R * NumbB itPerPt * N * 
FrameSize); % number of frames in a block  
  
TotNumOfSampleInABlock = FrameSize * NumFrameInABlo ck; % number of 
samples in a block  
  
% 1- sample block generation  
NSymbol     = length(EncBits) / NumbBitPerPt;  
NoiseVar    = (N * SignalVar) / SNR;  
  
[SampleBlock MIMOchResponse] = 
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat ,N,TotNumOfSamp
leInABlock,NumFrameInABlock,FrameSize);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% Computation of output sequence of soft bits for v arious detector 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
Outinfo   = zeros(size(EncBits));  
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[Outinfo] = Detection(NumFrameInABlock, N, FrameSiz e, NoiseVar, 
SNR, SampleBlock, MIMOchResponse, DoNoDetector,ModS c, 
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB lastDetect, 
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD etect, 
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F BStartLayer, 
FRBStartLayer);  
  
end  
 
6- Number Error Computation - Embedded Function 
function ERROR_Per_Iter = BerComp(out1, out2, out3,  out4, out5, 
out6, out7, out8, out9, out10, out11, out12, InfoBi ts)  
  
% initialization of the call of external function  
eml.extrinsic('nnz');  
ERROR_Per_Iter = zeros(double(12),1);  
  
ERROR_Per_Iter(1)  = nnz(out1 - InfoBits);  
ERROR_Per_Iter(2)  = nnz(out2 - InfoBits);  
ERROR_Per_Iter(3)  = nnz(out3 - InfoBits);  
ERROR_Per_Iter(4)  = nnz(out4 - InfoBits);  
ERROR_Per_Iter(5)  = nnz(out5 - InfoBits);  
ERROR_Per_Iter(6)  = nnz(out6 - InfoBits);  
ERROR_Per_Iter(7)  = nnz(out7 - InfoBits);  
ERROR_Per_Iter(8)  = nnz(out8 - InfoBits);  
ERROR_Per_Iter(9)  = nnz(out9 - InfoBits);  
ERROR_Per_Iter(10) = nnz(out10 - InfoBits);  
ERROR_Per_Iter(11) = nnz(out11 - InfoBits);  
ERROR_Per_Iter(12) = nnz(out12 - InfoBits);  
  
end  
 
7- MainTurbo 
%================================================== ===============
========  
% This program was designed with the help of the "i terative 
decoding of a  
% serially concatenated convolutional code" which c an be found in 
the help  
% menu of matlab and some tips on signal processing  from mathworks  
%   
% The convolutional encoder reset every frame  
% No puncturation ; code rate = 1/3  
% the model works for a fixed number of 12 iteratio ns  
% 
% note      : design based on my course project on convolutional 
encoding  
% 
% student   : Arsene Pankeu Yomi  
% University of Alberta, dept. of electrical and Co mputer 
Engineering  
%================================================== ===============
========  
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clear;clc;close all;  
% plotting preference  
k1 = 1; k2 = 2; k3 = 3; k4 = 6; k5 = 8; k6 = 12; % 'k_' iterations 
BER will be plot  
  
% main parameters  
NumBlock          = 1;  
SCCC_R            = 1/3; % code rate  
SCCC_len          = 65536; % # information bits  
SCCC_trellis1     = poly2trellis(5, [37 21],37); % Recursive 
Sytematic Convolutional Encoder  
SCCC_trellis2     = SCCC_trellis1; % Recursive Syte matic 
Convolutional Encoder  
SCCC_seed         = 54123; % to have identical de/i nterleaver  
SCCC_SNR_Max      = 30;  
SCCC_SNR_Min      = 10;  
SCCC_SNR_Step     = 2;  
SCCC_SNRdB        = SCCC_SNR_Min:SCCC_SNR_Step:SCCC _SNR_Max; % 
EbNo in dB  
SCCC_SNR          = 10.^(SCCC_SNRdB/10);  
SCCC_SNR_Lgth     = length(SCCC_SNR);  
  
% detection parameters  
% !!! FR-BLAST will work only for 64Q and 256Q !!!  
N                 = 4; % # receiver antennas = # tr ansmitter 
antennas  
ModSc             = 1; % 1 ->16qam    2 ->64qam   4  ->256qam  
% Launch !!! ONE DETECTION AT THE TIME !!!  
% '1' In order to launch detection scheme otherwise  '0'  
% LAUNCH ONE DETECTOR AT THE TIME 
DoNoDetector      = 0;   % No detector; simple BPSK  transmission  
DoMmseDetect      = 0;   % MMSE detector  
DoVBlastDetect    = 0;   % V-BLAST detector  
DoFBlastDetect    = 0;   % F-BLAST detector; starti ng layer 
indicated below  
DoFRBlastDetect   = 0;   % FR-BLAST; starting layer  indicated 
below  
DoRealMmseDetect  = 0;   % real-valued MMSE detecto r  
DoRealVBlastDetect= 0;   % real-valued V-BLAST dete ctor; starting 
layer indicated below  
DoRealFBlastDetect= 1;   % real-valued F-BLAST dete ctor; starting 
layer indicated below  
SizeOfSphere      = 9;   % number of symbol in the search space  
% starting layer 1 for the weakest 2 for second wea kest ....N for 
strongest  
FBStartLayer      = 1;   % starting layer of the F- BLAST scheme  
FRBStartLayer     = 2;   % starting layer of the FR -BLAST scheme  
  
% initialisation,  
  
% on the i-th row and j-th column, BER from the i-t h iteration and 
j-th EbNo value  
ber               = zeros(12,SCCC_SNR_Lgth);  
% on the i-th row simulation time for the i-th EbNo  value  
Time              = zeros(SCCC_SNR_Lgth,1);  
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for snr = 1:SCCC_SNR_Lgth % multiple EbNo run  
   BlockCounter   = 0;  
   BlockError     = zeros(12,NumBlock); % # in the decoded block  
   % matrix of parameters !!! ORDER !!!  
   MATRIX = [SCCC_R SCCC_len N ModSc DoNoDetector D oMmseDetect 
DoVBlastDetect DoFBlastDetect DoFRBlastDetect DoRea lMmseDetect 
DoRealVBlastDetect DoRealFBlastDetect SizeOfSphere FBStartLayer 
FRBStartLayer SCCC_SNR(snr)];  
   tic;  
   while (BlockCounter < NumBlock)  
       BernouilliSeed = 12343 * (BlockCounter + 1);  
       sim('turbo') % launch simulink model        
       % bit-error-rate from SIMULINK  
       % BER of the given SNR  
       BlockCounter   = BlockCounter + 1;  
       BlockError(:,BlockCounter) = BER.signals.val ues / SCCC_len;  
   end  
   for kk = 1:NumBlock  
    ber(:,snr)    = ber(:,snr) + BlockError(:,kk);  
   end  
   ber(:,snr) = ber(:,snr) / NumBlock;  
   toc;  
   Time(snr)     = toc;  
  
   % save data (.MAT file) in directory folder  
   % rename it ACCORDINGLY, in order to save data f rom multiple 
simulations  
   save('TurboData_16Qtestreal','ber','SCCC_SNRdB', 'Time')  
end  
  
%%%%%%%%%%%%%%%%%%%%% 
% BER semilogy Plot %  
%%%%%%%%%%%%%%%%%%%%% 
 figure(1)  
 semilogy(SCCC_SNRdB,ber(k1,:),'+-',SCCC_SNRdB,ber( k2,:),'v-
',SCCC_SNRdB,ber(k3,:),'*-',SCCC_SNRdB,ber(k4,:),'o -
',SCCC_SNRdB,ber(k5,:),'.-',SCCC_SNRdB,ber(k6,:),'- -');  
 title('BER For Various Iterations of Turbo Code');   
 legend('1 iteration','2 iteration','3 iteration',' 6 iteration','8 
iteration','12 iteration'); % according to k1 k2 k3  k4 k5 k6  
 xlabel('SNR, dB');  
 ylabel('BER');  
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8- Detection 
function [SoftBit] = Detection(NumFrameInABlock, N,  FrameSize, 
NoiseVar, SNR, SampleBlock, MIMOchResponse, DoNoDet ector,ModSc, 
DoMmseDetect, DoVBlastDetect, DoFRBlastDetect, DoFB lastDetect, 
DoRealMmseDetect, DoRealVBlastDetect, DoRealFBlastD etect, 
ConstSize, SymbMat, StatMat, SizeOfSphere, Motif, F BStartLayer, 
FRBStartLayer)           
  
SoftBit = [];  
i = sqrt(complex(-1));  
j = sqrt(complex(-1));  
  
for frameCntr = 1:NumFrameInABlock               
              %%%%%%%%%%%  
              % Channel %  
              %%%%%%%%%%%  
              H     = MIMOchResponse(:, :, 1+(frame Cntr-
1)*FrameSize);  
              N_    = 
sqrt(0.5)*(randn(N,FrameSize)+i*randn(N,FrameSize)) ;     
              W     = N_*sqrt(NoiseVar);  
              % S is the current frame  
              S     = SampleBlock(:,1+FrameSize*(fr ameCntr-
1):frameCntr*FrameSize);                 
              Y     = zeros(N, FrameSize);  
              for ii = 1:FrameSize  
                  % Y=H*S+W  
Y(:,ii)=MIMOchResponse(:,:,ii+(frameCntr-1)*FrameSi ze) * S(:,ii) + 
W(:,ii);  
              end         
               
              %%%%%%%%%%%%%%%%%%%%% 
              % Detection process %  
              %%%%%%%%%%%%%%%%%%%%%             
  
              %%%% No detector used %%%%  
              if (DoNoDetector == 1)  
                  SoftOutputs = [];  
                  for vectorCntr = 1:FrameSize                  
                    for kk = 1:N  
                        SoftOutputs = [SoftOutputs,  
llr(Y(kk),ModSc)];  
                    end  
                  end  
              end  
                             
              %%%% MMSE detection %%%%  
              if (DoMmseDetect == 1)  
                  G = inv(H' * H + (1 / SNR) * eye( N)) * H';  
                  SoftOutputs = [];  
                  for vectorCntr = 1:FrameSize  
                        [Soft] = SoftMmse(N,Y(:,vec torCntr),G);  
                        SoftOut         = [];  
                        for ii = 1:N  
                        SoftOut  = [SoftOut, llr(So ft(ii),ModSc)];  



167 
 

                        end  
                        SoftOutputs = [SoftOutputs,  SoftOut];  
                  end  
              end  
  
              %%%% V-BLAST detection %%%%  
              if (DoVBlastDetect == 1)  
                  SoftOutputs = [];                   
                  for vectorCntr = 1:FrameSize  
                      % initialize position of the undetected 
symbols  
                      Pos = 1:N;  
                      % initialize detected symbol vector  
                      YVB = zeros(N,1);  
                      SVB = zeros(N,1);  
                    [Soft YVBlast] = 
SoftVBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,Po s,YVB,SVB,SNR);  
                    for kk = 1:N  
                        SoftOutputs = [SoftOutputs,  
llr(Soft(kk),ModSc)];  
                    end  
                  end  
              end  
               
              %%%% F-BLAST detection %%%%  
              if (DoFBlastDetect == 1)  
                  SoftOutputs = [];    
                  [SortedLayer IndMI] = SortCol(H,N );                   
                  for vectorCntr = 1:FrameSize  
                    [Soft] = 
SoftFBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,So rtedLayer(FBSta
rtLayer),SNR);  
                        SoftOut         = [];  
                        for ii = 1:N  
                        SoftOut  = [SoftOut, llr(So ft(ii),ModSc)];  
                        end  
                        SoftOutputs = [SoftOutputs,  SoftOut];              
                  end  
              end               
               
              %%%% FR-BLAST detection %%%%  
              if (DoFRBlastDetect == 1)  
                  SoftOutputs = [];  
                  
              G = inv(H' * H + (1 / SNR) * eye(N)) * H';  
              [SortedLayer IndMI] = SortCol(H,N);                   
                  for vectorCntr = 1:FrameSize  
                    [Soft] = 
SoftFRBlast(H,ConstSize,N,Y(:,vectorCntr),SymbMat,G ,SortedLayer(FR
BStartLayer),SNR,SizeOfSphere,StatMat,ModSc);  
                    SoftOutputs = [SoftOutputs, Sof t];  
                  end  
              end  
               
              %%% setup for real-valued detection % %% 
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if ((DoRealMmseDetect + DoRealVBlastDetect + DoReal FBlastDetect) > 
0)  
                  RealH          = [real(H) -imag(H );imag(H) 
real(H)];  
  
                  RealY          = zeros(2*N, Frame Size);  
                  RealS          = zeros(2*N, Frame Size);  
                  RealW          = zeros(2*N, Frame Size);  
                  for ii = 1:FrameSize  
                      TempRealY  = zeros(N, FrameSi ze);  
                      TempImagY  = zeros(N, FrameSi ze);  
                      TempRealS  = zeros(N, FrameSi ze);  
                      TempImagS  = zeros(N, FrameSi ze);  
                      TempRealW  = zeros(N, FrameSi ze);  
                      TempImagW  = zeros(N, FrameSi ze);  
                      for hh = 1:N  
                          TempRealY(hh,ii) = real(Y (hh,ii));  
                          TempImagY(hh,ii) = imag(Y (hh,ii));  
                          TempRealS(hh,ii) = real(S (hh,ii));  
                          TempImagS(hh,ii) = imag(S (hh,ii));  
                          TempRealW(hh,ii) = real(W (hh,ii));  
                          TempImagW(hh,ii) = imag(W (hh,ii));  
                      end               
  
  
  
                      RealY(:,ii) = 
[TempRealY(:,ii);TempImagY(:,ii)];  
                      RealS(:,ii) = 
[TempRealS(:,ii);TempImagS(:,ii)];  
                      RealW(:,ii) = 
[TempRealW(:,ii);TempImagW(:,ii)];                   
                  end                  
end  
            
              %%%% Real-valued MMSE detection %%%%  
              if (DoRealMmseDetect == 1)  
     RealG = inv(RealH' * RealH + (1 / SNR) * eye(2 *N)) * RealH';  
                  SoftOutputs = [];  
                  for vectorCntr = 1:FrameSize  
                        [SoftR] = 
SoftMmse(2*N,RealY(:,vectorCntr),RealG);  
                         
                        % complex transformation  
                        YReal = zeros(N,1);  
                        for ii = 1:N  
                            YReal(ii) = SoftR(ii) +  i * 
SoftR(N+ii);  
                        end  
                         
                        SoftOut         = [];  
                        for ii = 1:N  
                            SoftOut  = [SoftOut, 
llr(YReal(ii),ModSc)];  
                        end  
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                        SoftOutputs = [SoftOutputs,  SoftOut];  
                  end  
                   
              end  
              %%%% Real-valued VBlast detection %%% % 
              if (DoRealVBlastDetect == 1)  
                  RealConstSize = (ConstSize)^.5;  
                  SoftOutputs = [];                   
                  for vectorCntr = 1:FrameSize  
                      % initialize position of the undetected 
symbols  
                      Pos = 1:2*N;  
                      % initialize detected symbol vector  
                      YVB = zeros(2*N,1);  
                      SVB = zeros(2*N,1);  
                    [Soft, YVBlast] = 
SoftVBlast(RealH,RealConstSize,2*N,RealY(:,vectorCn tr),Motif,Pos,Y
VB,SVB,SNR);  
                     
                      % complex transformation  
                      YReal = zeros(N,1);  
                      for ii = 1:N  
                            YReal(ii) = Soft(ii) + i * Soft(N+ii);  
                      end                     
                      for kk = 1:N  
                         SoftOutputs = [SoftOutputs , 
llr(YReal(kk),ModSc)];  
                      end  
                  end                        
              end  
               
              %%%% Real-valued FBlast detection %%% % %%%% 
              if (DoRealFBlastDetect == 1)  
                  SoftOutputs                 = [];     
                  [RealSortedLayer RealIndMI] = 
SortCol(RealH,2*N);  
                  RealConstSize               = (Co nstSize)^.5;  
                  for vectorCntr = 1:FrameSize  
                    [Soft] = 
SoftFBlast(RealH,RealConstSize,2*N,RealY(:,vectorCn tr),Motif,RealS
ortedLayer(FBStartLayer),SNR);  
                        SoftOut         = [];  
                         
                      % complex transformation  
                      YReal = zeros(N,1);  
                      for ii = 1:N  
                            YReal(ii) = Soft(ii) + i * Soft(N+ii);  
                      end                          
                         
                      SoftOut         = [];  
                      for ii = 1:N  
                        SoftOut  = [SoftOut, 
llr(YReal(ii),ModSc)];  
                      end  
                      SoftOutputs = [SoftOutputs, SoftOut];                          
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                  end     
              end  
               
              SoftBit = [SoftBit, SoftOutputs];  
                            
end % end frameCntr  
 
9- FixedSearchSet 
function [Subset] = FixedSearchSet(A,b,c,d)  
% This function returns searchset for the noisiest layer, 64QAM  
% Usage:  
%        [Subset] = FixedSearchSet(a,b,c,d)  
% Input:  
%             A = Matrix of statistic  
%             b = Mmse noisiest estimate  
%             c = size of the fixed search set   
%             d = ConstSize  
%              
%             
% Output:  
%    Subset          : set of candidate symbol  
  
    [symb indx]             = min(abs(b * ones(1, d ) - A(1,:)));  
    A(indx+1,indx)          = 0;  
    Subset                  = [b];  
    for kk = 1:c-1  
        [value position]    = max(A(indx+1,:));  
        A(indx+1,position)  = 0;  
        Subset              = [Subset,A(1,position) ];  
    end  
end    
 
10- llr 
function [LLR] = llr(Pt,d)  
% This function returns LLR  
% Usage:  
%        [LLR] = llr(Pt,d)  
% Input:  
% 
% Pt = Point in the constellation / unsliced symbol  
% d  = Modulation scheme : 1 ->16qam    2 ->64qam    4 ->256qam  
%                                        
% Output:  
% 
% LLR: Log-Likelihood-Ratio  
%      [LLR(b0) LLR(b1) LLR(b2) ... LLR(bn)] for n- bit 
constellation signal  
  
         if     (d == 1)  
                LLR    = zeros(1,4);  
                LLR(1) = - abs(imag(Pt)) + 2;  
                LLR(2) = - imag(Pt);  
                LLR(3) = - abs(real(Pt)) + 2;  



171 
 

                LLR(4) = real(Pt);  
                 
         elseif (d == 2)  
                LLR    = zeros(1,6);  
                LLR(1) = - abs(abs(imag(Pt)) - 4) +  2;  
                LLR(2) = - abs(imag(Pt)) + 4;  
                LLR(3) = - imag(Pt);  
                LLR(4) = - abs(abs(real(Pt)) - 4) +  2;  
                LLR(5) = - abs(real(Pt)) + 4;  
                LLR(6) = real(Pt);  
                 
         elseif (d == 4)  
                LLR    = zeros(1,8);  
                if (abs(imag(Pt)) < 8)  
                    LLR(1) = - abs(abs(imag(Pt)) - 4) + 2;  
                else  
                    LLR(1) = - abs(abs(imag(Pt)) - 12) + 2;  
                end  
                LLR(2) = - abs(abs(imag(Pt)) - 8) +  4;  
                LLR(3) = - abs(imag(Pt)) + 8;  
                LLR(4) = - imag(Pt);  
                if (abs(real(Pt)) < 8)  
                    LLR(5) = - abs(abs(real(Pt)) - 4) + 2;  
                else  
                    LLR(5) = - abs(abs(real(Pt)) - 12) + 2;  
                end  
                LLR(6) = - abs(abs(real(Pt)) - 8) +  4;  
                LLR(7) = - abs(real(Pt)) + 8;  
                LLR(8) = real(Pt);  
      
         end              
end    
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11- Modulation 
 
function [SymbMat SignalVar ConstSize NumbBitPerPt StatMat Motif] 
= Modulation(d)  
% This function returns uncorellated Modulated symb ols.  
% Usage:  
%        [SymbMat SignalVar ConstSize NumbBitPerPt StatMat Motif] 
= Modulation(d)  
% Input:  
% 
%             d = Modulation scheme : 1 ->16qam    2 ->64qam   4 -
>256qam  
% Output:  
% 
% SymbMat                : Constellation matrice  
% NumbBitPerPt           : Number of bits per point  
% StatMat                : Subset for the restricte d search  
% SignalVar              : Variance of signal from the given 
constellation  
% ConstSize              : number of point in the c onstellation  
  
  
         if     (d==1)  
                M              = 16;  
                NumbBitPerPt   = 4 ;  
                Motif          = [-3 -1 1 3]';                 
                load SymetricalSearchSpace16Q.mat;  
                 
         elseif (d==2)  
                M              = 64;  
                NumbBitPerPt   = 6 ;  
                Motif          = [-7 -5 -3 -1 1 3 5  7]';  
                load SymetricalSearchSpace64Q.mat;  
                 
         elseif (d==4)  
                M              = 256;  
                NumbBitPerPt   = 8 ;  
                Motif          = [-15 -13 -11 -9 -7  -5 -3 -1 1 3 5 
7 9 11 13 15]';  
                load SymetricalSearchSpace256Q.mat;  
          
         end              
          
         x          = [0:M-1];  
         %matlab function for gray mapping with QAM  constellation  
         SymbMat    = 
modulate(modem.qammod('M',M,'SymbolOrder','Gray'),x );  
         SymbMat    = SymbMat.';  
          
         ConstSize  = M;  
         SignalVar  = SymbMat' * SymbMat / M;  
end    
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12- SampleNChannel 
function [SampleBlock MIMOchResponse] = 
SampleNChannel(NSymbol,NumbBitPerPt,EncBits,SymbMat ,N,TotNumOfSamp
leInABlock,NumFrameInABlock,FrameSize)  
  
     % 1- generate symbols from encoded bits  
     SymbolBlock = zeros(1,NSymbol);  
     for pp = 1:NSymbol  
         tt = 0;  
         for zz = 1:NumbBitPerPt  
             tt = tt + 2^(zz - 1) * EncBits(zz + (p p - 1) * 
NumbBitPerPt);  
         end  
         SymbolBlock(pp) = SymbMat(tt + 1);  
     end  
      
     % 2- generate sample from symbols  
     SampleBlock = zeros(N,NSymbol / N);  
     for NSymb = 1:N:NSymbol - N + 1  
         SampleBlock(:,(NSymb + (N - 1)) / N) = 
transpose(SymbolBlock(NSymb:NSymb + N - 1));         
     end  
      
     % channel generation  
     MIMOchResponse    = zeros(N,N,TotNumOfSampleIn ABlock);  
     for ii = 1:NumFrameInABlock  
         % generating CHANNEL  
         H  = (randn(N) + i*randn(N)) * sqrt(0.5);  
          for ii1 = 1:N  
             for ii2 = 1:N      
                 MIMOchResponse(ii1, ii2, (1+(ii-
1)*FrameSize:ii*FrameSize)) = H(ii1, ii2); % one ch annel response 
per frame  
             end  
          end  
     end    
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13- SortCol 
function [SortedLayer IndMI] = SortCol(A,c)  
% This function returns index of layers from the we akest to the 
strongest  
% Usage:  
%       function [SortedLayer IndMI] = Sortcol(A)  
% Input:  
%            A = H matrix  
%            c = number of receiver antennas (same as transmitter)  
% Output:  
%  SortedLayer = Matrix of the index  
%                1-weakest layer 2-second weakest l ayer ...  
%                ...(c-1)-second strongest layer  c -strongest 
layer  
%        IndMI = Index of the layer which has maxim um interference 
on the  
%                Strongest Layer  
  
     % Initialization  
     SortedLayer              = zeros(1,c);  
     n                        = 1;  
      
     AmpColH                  = [];  
     for ii                   = 1:c  
        AmpColH               = [AmpColH,norm(A(:,i i))];  
     end  
     while ( n < c + 1 )  
        [Val Ind]             = min(AmpColH);  
        SortedLayer(n)        = Ind;  
        AmpColH(Ind)          = 10000;  
        n                     = n + 1;  
     end  
  
     AmpH                     = [];  
     for ii2                  = 1:c  
         AmpH                 = [AmpH, norm(SortedL ayer(c),ii2)];   
     end  
     AmpH(SortedLayer(c))     = 0;  
     [val1 IndMI]             = max(AmpH);  
      
end  
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14- Mmse 
 
function [YMmse] = Mmse(b,c,E,F,G)  
% This function returns symbol vector from the MMSE  detection 
process  
% Usage:  
%        [YMmse] = Mmse(b,c,E,F,G)  
% Input:  
%             b = constellation size   
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy transmitted vector Y  
%             F = matrice of symbol from the conste llation  
%             G = MMSE matrix  
% Output:  
%         YMmse : output of the Mmse detection  
  
                 o  = ones(1, b);  
                 op = ones(c, 1);  
                 % MMSE output vector  
                 TempVec         = G * E;  
                 % slicing  
                 [temp IndMmse]  = min(abs(TempVec * o - op * 
F.')');     
                 YMmse           = F(IndMmse);     
end    
            
                 
15- SoftVB 
function [SoftOut YVBlast] = SoftVBlast(A,b,c,E,F,K ,L,L_,n)  
% This function returns soft output from the V-BLAS T detection 
process  
% Usage:  
%        [SoftOut YVBlast] = SoftVBlast(A,b,c,E,F,K ,L,L_,n)  
% Input:  
%             A = H matrix  
%             b = constellation size   
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy transmitted vector Y  
%             F = matrix of symbol from the constel lation  
%             K = indice(s) of the symbol(s) to be detected  
%             L = YVBlast, initial value  
%            L_ = soft info initial value  
%             n = SNR  
% Output:  
%       SoftOut : unsliced symbol vector from the V BLAST detection  
%       YVBlast : hard output of the VBLAST detecti on 
  
        SoftOut   = L_;  
        YVBlast   = L;       
        H_        = A;  
        Y_        = E;  
        for IndSymb = 1:c  
            % MMSE matrix  



176 
 

            G_ = inv(H_' * H_ + (1 / n) * eye(c - ( IndSymb - 1))) 
* H_';  
  
            % ordering: detection goes from stronge st to weakest 
layer  
            % detection starts with the row of G_ w hich has 
minimum norm  
             
            % norm of G_'s row  
            AmpG_               = [];            
            for ii              = 1:c-(IndSymb-1)  
                AmpG_           = [AmpG_, norm(G_(i i, :))^2];  
            end  
            [val1 GRowInd]      = min(AmpG_);  
             
            % nulling: MMSE is used to detect symbo l from each 
layer  
            CurDtdSymb          = G_(GRowInd, :) * Y_;  
    
            % slicing  
            Dist                = abs(F - ones(b,1)  * 
CurDtdSymb).^2;  
            [val2, IndVBlast]   = min(Dist);  
            YVBlast(K(GRowInd)) = F(IndVBlast);  
             
            % soft decision  
            SoftOut(K(GRowInd)) = CurDtdSymb;  
            
            % cancellation : produces deflation in columns of H_  
            %                removes interference f rom detected 
symbol  
            Y_     = Y_ - H_(:, GRowInd) * YVBlast( K(GRowInd));  
            HTemp  = [];  
            Temp   = [];  
            for ii = 1:c-(IndSymb-1),  
                if (ii  ~= GRowInd)  
                   HTemp = [HTemp, H_(:, ii)];  
                   Temp  = [Temp, K(ii)];  
                end  
            end  
            H_     = HTemp;  
            K      = Temp;  
        end   
end    
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16- SoftMmse 
function [Out] = SoftMmse(c,E,G)  
% This function returns soft output from the MMSE d etection 
process  
% Usage:  
%        [Out] = SoftMmse(c,E,G)  
% Input:  
%             c = number of receiver antennas (same  as 
transmitter)  
%             E = noisy transmitted vector Y  
%             G = MMSE matrix  
% Output:  
%         Out : soft output of the Mmse detection  
  
                  
                 % MMSE output vector  
                 Out             = G * E;  
end  
 
17- SoftFBlast 
function [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)  
% This function returns soft output from the F-BLAS T detection 
process  
% Usage:  
%        [SoftOut] = SoftFBlast(A,b,c,E,F,i,n)  
% Input:  
%             A   = H matrix  
%             b   = constellation size      
%             c   = number of receiver antennas (sa me as 
transmitter)  
%             E   = noisy transmitted vector Y  
%             F   = matrix of symbol from the const ellation  
%             i   = Index of the first layer to be detected  
%                   1-weakest layer 2-second weakes t layer ...  
%                   ...(c-1)-second strongest layer   c-strongest 
layer                                      
%             n   = SNR  
% Output:  
%       SoftOut : soft output of the FBLAST detecti on 
  
     SoftTest    = zeros(c,b);  
     YFBlastTest = zeros(c,b);  
     Epsilon     = zeros(c,b);  
     % an exhaustive search is performed on the fir st layer to be 
detected  
     % i.e detection starts with the 'i'_th layer  
     % conventional VBLAST for the N-1 remaining sy mbols  
  
     % Exhaustive search on the first layer  
     for ii = 1:b    
         H_                                  = A;  
         UnDtdSymb                           = 1:c;  
         Y_                                  = E;  
         YFBlastTest(UnDtdSymb(i),ii)        = F(ii );  
         SoftTest(UnDtdSymb(i),ii)           = F(ii );  
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         % cancellation : produces deflation in col umns of H_  
         %                removes interference from  temptative 
symbol  
         Y_              = Y_ - H_(:,i) * 
YFBlastTest(UnDtdSymb(i),ii);  
         HTemp1          = [];  
         Temp1           = [];  
         for ii1         = 1:c  
             if (ii1    ~= i)  
                HTemp1   = [HTemp1,H_(:,ii1)];  
                Temp1    = [Temp1, UnDtdSymb(ii1)];  
             end  
         end  
         H_              = HTemp1;  
         UnDtdSymb       = Temp1;  
          
         % Original V-BLAST detection over the N-1 remaining 
layers          
[Soft YVBlast]   = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFBlastTest(:,ii),SoftTest(:,ii),n );  
         YFBlastTest(:,ii) = YVBlast;  
         SoftTest(:,ii)    = Soft;  
         % Compute noise for all candidate  
         Epsilon(:,ii)     = A * YFBlastTest(:,ii) - E;   
     end  
     % Find the best candidate   
     AmpEps           =[];                
     for ii1          = 1:b  
         AmpEps       = [AmpEps, norm(Epsilon(:,ii1 ))];  
     end  
     [val4 MinEpsInd] = min(AmpEps);  
  
        SoftOut = SoftTest(:,MinEpsInd);  
     
end  
 
 
18- SoftFRBlast  
function [SoftOut] = SoftFRBlast(A,b,c,E,F,G,i,n,k, S,d)  
% This function returns symbol vector from the FR-B LAST detection 
process  
% Usage:  
%        [SoftOut] = SoftFRBlast(A,b,c,E,F,G,n,k,S, d)  
% Input:  
%             A   = H matrix  
%             b   = constellation size   
%             c   = number of receiver antennas (sa me as 
transmitter)  
%             d   = mode scheme  
%             E   = noisy transmitted vector Y  
%             F   = matrix of symbol from the const ellation  
%             G   = MMSE matrix  
%             i   = Index of the first layer to be detected  
%                   1-weakest layer 2-second weakes t layer ...  
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%                   ...(c-1)-second strongest layer   c-strongest 
layer  
%             n   = SNR  
%             k   = size of the fixed search space  
%             S   = Matrix of statistic to build th e subset  
% Output:  
%      SoftOut : output of the FRBLAST detection  
      
     SoftOut       = [];  
     SoftTest      = zeros(c,k);  
     YFRBlastTest  = zeros(c,k);  
     Epsilon       = zeros(c,k);  
     % a search inside a search space is performed on the first 
layer to be  
     % detected, i.e. detection starts with the 'i' -th layer  
     % conventional VBLAST for the N-1 remaining la yers  
     % norm of G's row  
      
     % original MMSE is run to estimate the positio n of the first 
symbol  
     [YMmse]       = Mmse(b,c,E,F,G);  
  
     % now we build a set of k closest symbol inclu ding this one  
     [Subset]      = FixedSearchSet(S,YMmse(i),k,b) ;  
           
     % search inside the subset for the first symbo l,  
     for ii = 1:k    
         H_                                     = A ;  
         UnDtdSymb                              = 1 :c;  
         Y_                                     = E ;  
         YFRBlastTest(UnDtdSymb(i),ii)          = S ubset(ii);  
         SoftTest(UnDtdSymb(i),ii)              = S ubset(ii);  
         % cancellation : produces deflation in col umns of H_  
         %                removes interference from  temptative 
symbol  
         Y_        = Y_ - H_(:,i) * YFRBlastTest(Un DtdSymb(i),ii);  
         HTemp1    = [];  
         Temp1     = [];  
         for ii1   = 1:c  
             if (ii1 ~= i)  
                HTemp1   = [HTemp1,H_(:,ii1)];  
                Temp1    = [Temp1, UnDtdSymb(ii1)];  
             end  
         end  
         H_        = HTemp1;  
         UnDtdSymb = Temp1;             
          
         % Original V-BLAST detection over the N-1 remaining 
layers  
[Soft YVBlast] = SoftVBlast(H_,b,c-
1,Y_,F,UnDtdSymb,YFRBlastTest(:,ii),SoftTest(:,ii), n);  
         YFRBlastTest(:,ii) = YVBlast;  
         SoftTest(:,ii)     = Soft;  
         % Compute noise for all candidate  
         Epsilon(:,ii) = A * YFRBlastTest(:,ii) - E ;   
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     end  
  
     % Find the best candidate  
     AmpEps  = [];                
     for ii1 = 1:k  
         AmpEps = [AmpEps, norm(Epsilon(:,ii1))];  
     end  
     [val4 MinEpsInd] = min(AmpEps);  
     for kk = 1:c  
        SoftOut = [SoftOut, llr(SoftTest(kk,MinEpsI nd),d)];  
     end  
end    
 

 


