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Abstract

Let N(m) denote the number of solutions of @(z) = m, where ¢ is the
Euler totient. A deep conjecture of R.D. Carmichael states that N(m) never
takes the value 1. Besides Carmichael, several later authors provided some
theoretical and numerical evidence in support of this conjecture.

We here consider an analogous problem in a more general setting provided
by Schemmel’s totient ®i, which is a multiplicative function such that for
primes p, ®x(p®) =0 or p*~1(p — k) according as p < kor p> k. Let Ni(m)
denote the number of solutions of ®4(x) = m. It is found that the analogue of
Carmichael’s conjecture fails for the functions ®x and N for any odd k> 1
and for some even values of k. This Carmichael type conjecture may hold
for some other even values of k. For example, we conjecture that Ny(m) # 1
for any m. In support of this conjecture, we show that if No(d,(z)) = 1,
then = > 10129000 Many other related results and conjectvies are contained
in Chapter 2.

The main results of Chapter 3 include the following: a) the normal nun-



ber of prime factors of p~ k(< z) is log log z; b) if Vi(z) denotes the number
of natural numbers not exceeding z which are values of ®y, then we have
Vi(z) = O(r(z) exp(cy/Toglog T))( — co) for any constant ¢ > \/W;
c) we apply the Brun-Titchmarsh theorem and Bombieri's theorem to show
that Ni(«n) > m®% for infinitely many m.

Chapter 4 is devoted to the unitary totient *, which is a multiplicative
function with ¢*(p®) = p* — 1 for any prime p. We discuss the equation
¢*(z) = m for two special types of m, namely i) m = 2", i) m = 4(2° - 1),
where p # 5, p = 1(mod4) and 2” — 1 is a prime. Case ii) provides a non-
trivial example for which the unitary analogue of the Carmichael conjecture
fails. This is connected to the complete solution of the diophantine equation
2% _ 5 = 3. and therefore a detailed discussion of this equation is included.

We also show that for almost all n, the equation *(z) = n has no solution.
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Chapter 1

Introduction and

preliminaries.

As usual, let ¢(n) denote the Euler totient (which represents the number
of natural numbers < n that are relatively prime to n). We write N(m)
for the number of solutions of ¢(z) = m. The behaviour of the function
N(m) is very erratic. For instance, N(1438) = 2, N(1440) = 72 while
N(1442) = N(1444) = 0. One of the oldest conject iies abuut N(m) is the
following:
1.1 Conjecture (Carmichael). N(m) # 1 for any m.

This assertion first appeared as a proposition in a 1906 paper by Car-
michael. Eight years later it was an exercise in his number theory book

[Car14). Eight years after that an error in the '906 proof was discovered and



the statement became a conjecture [Car22].

Several authors worked on the Carmichael conjecture, especially, in trying
to find a counter-example to it. These include V.L. Klee ([Kle47, Kle69]), H.
Donnelly [Don73], E. Grosswald [Gro73], C. Pomerance [Pom74], A. Schinzel
[Sch61], P. Erdés [Erd58], P. Masai and A. Valette [Mas82], besides of course
Carmichael himself.

Most of these authors tried to find a lower bound for a counter-example
to the Carmichael conjecture by examining the structure of the integer z for
which N(¢(z)) = 1. Klee [Kled7] showed that such an integer z must be
greater than 10°®, The best lower bound so far known is (z) > 1019000 dye
to P. Masai and A. Valette [Mas82]. The technique used to get a lower bound
for the counter-example z is to find more prime factors of z if we already
know some, and is based on the ideas of Carmichael and Klee in their papers
and may be summarized in the following theorem.

1.2 Theorem (Carmichael-Klee). Let z = Hp?‘ (A being the range of ¢) be
the intended counter-example z to the Carrr{:ichael conjecture. Find a prime
p such that p—1 = [[p¥*'(pi —1)[[p{", where B and C are disjoint, possibly
empty, subsets of A,Bsuch that ¢; Sca,' —1foriin C. Then p | z. Further, if
B is such that for any j in B any prime divisor of p; — 1 also divides z, then

p* | r. In particular, this is true when B is empty.

The proof is simple and is found in [Mas82].

«~o



Sierpinski conjectured that for every integer n > 1, there exist infinitely
many m such that N(m) = n. In 1958, Erdds [Erd58] showed that if theie
is one such m, then there are infinitely many. This is true even for n = 1, so
that if the Carmichael conjecture fails for one m, then it fails for infinitely
many m. A. Schinzel [Sch61] showed that Sierpinski’s conjecture follows
from his hypothesis H, which is quoted below. However, we do not know if
hypothesis H is useful in settling the Carmichael conjecture.

1.3 Hypothesis H. Let s be a natural number. Let fi(z),..., fs(x) be
irreducible polynomials with integral coefficients, and for each polynomial
the leading coefficient is positive, and there is no integer d > 1 that is a
divisor of each of the numbers P(z) = fi(z) « fa(z)- - fs(z), = being an
integer. Then there exist infinitely many natural values of z for which the

numbers fi(z), fa(z),..., fo(z) are all primes.

In 1act, Schinzel [Sch61] gave an equivalent statement of his hypothesis
which looks stronger than the one stated above. This apparently stronger
proposition shall be referred to as the Hypothesis H as well, and is quoted
belo~ for future use.

1.4 Hypothesis H. Let fi(z), f2(z),. - -, fs(2), 91(2)s - .- ,gi(z) be irreducible
integer-valued polynomuals of positive degree with positive leading coeffi-
cients. If there does not exist any integer > 1 dividing the product fi(z) -

folz) - fo(z) for every z, and if g;(z) # fi(z) for all 1 < s, 7 < ¢, then

J



there exist infinitely many positive integers z such that the numbers filx),
fa(2), ..., fo(x) are primes and the numbers ¢,(z), ga(z),. .., g:(x) are com-

posite.

Instead of working on numerical estimates for z for which N(p(z)) = 1,
Pomerance [PomT74] gave an interesting and elegant sufficient condition for
such an r to exist, as follows.

1.5 Theorem (Pomerance). Suppose & is a natural number such that for

every prime p, (p — 1) | ¢(2) implies p* | x. Then N(p(r)) = 1.

However, no such r is likely to exist. He showed that such an z does not
indeed exist if the following conjecture of his holds:

1.6 Conjecture (Pomerance). If p, denotes the i-th prime, then for n 2 2,

n-1
(Pn — 1) I H I’l(l‘i = 1)

[

This conjecture is very likely to be true, but it is not likely to be settled in
the near future. As Pomerance noted, his conjecture fails if there is a prime
¢ such that the smallest prime which is = 1 (mod q) is also =1 (mod ¢°).
However, there is no such prime ¢ if Schinzel's hypothesis Ho ([Schas]. p.
207) is true. 1 is quoted below for convenience.

1.7 Hypothesis Ha. If for a natural number n > 1, the numbers 1.2,



3,...,n? are arranged in ascending order in n rows, n numbers in each row,

then if (m,n) = 1, the m-th column contains at least one prime number,

There are infinitely many m, such as m = 2. 7% with a > 0, for which
N(m) = 0. One can therefore ask: how many natural numbers m < r are
there for which N(m) > 9. Let V(z) denote this number. In 1J29, S.S. Pillai

initiated the study of the function V(z); he showed [Pil29)] that
V(z) = O(x/(log r)tosd/e),
[n 1935, Erdos [Erd35] improved this to
V(z) = O(s/(logr)" ™)

for every positive e. Starting from the 1970's, Erdds, R.R. Hal’, C. Pomerance
and H. Maier ([Erd73, Erd76, Pom386, Mai88]) made further improvements
on the upper bound as well as the lower bound estimates for V(). The best
result of this kind is obtained by Maier and Pomerance [Mai88], wherein it

is proved that

exp((c + o(1))(log log log 1)2)

Vir) =

log r
for a certain explicit constant e (= O.817SHG5 .. ).
We next ask for the upper and lower bounds for N(n).

Pomerance [Pom80] gave what he believes is the best possible upper



bound, namely
N(m) < mexp(—(1 + o(1)) log 1nlog log log m/ log log m).

He has a heuristic argument that the above result is best possible in that

there are infinitely many m for which equality holds.

Regarding the lower bound for N(m), the first result is due to S.S. Pillai

[Pil29], who showed that there are infinitely many integers m for which
N(m) > (log m)s?)/e,

By using Brun's method, Erdds [Erd35] improved this by showing the exis-

tence of a constant ¢ > 0 such that
(1.8) N(m) > m® for infinitely many m.

What is the least upper bound C for the values of ¢ for which (1.8) holds?
Frdos [Erd56] conjectured that C' = 1, and this is still open. Recently there
is a succession of improvements to the value of ¢ in (1.8). In 1979, K.R.

Wooldridge [Woo79) used Selberg's upper bound sieve to show that

Pomerance [Pom80] used the new improvements on the Brun-Titchmarsh
theorem due to H. Iwaniec [Iwa80] (it is too long and complicated to quote
his results here) together with Bombie: s theorem (see section 3 of Chapter
3) to show that

C > 0.55655.



There is still a wide gap between this result and Erdos’ conjecture that
C =1

In 1869, Schemmel (sce [Dic71), p. 147) introduced a generalization of
¢, which will be denoted by &, (k being a fixed natural number). It is a
multiplicative function, with ®4(1) = 1, and for primes P, ®x(p®) = 0 or
p*=1(p — k) according as p < korp > k. ®i(n) can be interpreted as the
number of scts of k consecutive natural numbers not exceeding n cach of
which is relatively prime to n. Let Nix(m) denote the number of solutions of
di(z) = m. This is well-defined, i.c. Ni(m) is always a finite number; we
will justify this in the next chapter.

We will see in the next two chapters that the above results and conjectures
have their analogues for the functions ®x and Ni. This forms the main
subject of investigation of this thesis, such detailed investigation does not
secem to have been carried out so far. However, there is a joint paper hy
Subbarao and Yip [Sub87], which can be considered as part of this thesis.
Besides this, there is nothing in the existing literature on .his problem.

Chapter 4 is devoted to the unitary totient @, which is a multiplicative
function with *(p®) = p* — 1 for any * .ime p (and a > 0). " (n) gives the
number of natural numbers not exceeding 1 and unitarily prime to n. (An
integer m is said to be unitarily prime to n if the largest divisor of m which
is a unitary divisor of n is unity — a unitary divisor of n being defined as a

divisor d of n which is relatively prime to n/d.)



The last chapter contains some concluding remarks and open problems.

We conclude this chapter with a few words on the notation that we would
use throughout this thesis. (The following list is not intended to be complete
though, since some notations are now so well-understood in mathematics
that no further explanation in this thesis is needed.)

IN denotes the set of all natural numbers.

p denotes the set of all primes.

For a set A (usually a subet of IN), |4] denotes the cardinality of A.

PyP1y P2y -+ 19 1y 42, - - - always denote primes.

p* || n means that p* | n but p**!fn.

For cach n € IN, we write w(n) for the number of distinct prime factors of
n, Q(n) for the number of prime factors of n counted according to multiplicity,
d(n) for the number of positive divisors of n, and P(n) for the largest prime
factor of n if n > 1 (we define P(1) =1).

For integers a, b, (a,b) denotes the greatest common divisor of a and b.

For a real number r, [z} denotes the greatest integer < .

For a real number r, @ € IN and an integer b with (a,b) = 1, we write
r(r;a,b) = |{p € pN(0,r] : p = b (mod a)}|; and as usual, we write m(r)
for m(r;1,0).

For real numbers r, y > 1, and k € IN, we write

V(r,y)=|{n € N:n<r and P(n) <y} |,



9

and
nk(xvy) = Hp € Pn(k$x] : P(p— k) ..<.. y}|9

provided that in the latter case z > k.

We would adopt the O- and o- notations of Landau as well as the «-
(or >>-) notation of Vinogradov. The constants implied by the O- or «-
notation would be absolute, unless otherwise stated.

Finally, ¢, co, c1, ... stand for positive absolute constants, not necessarily
the same at each occurrence, and, for example, C(e, k) stands for positive

constant depending only on the parameters ¢ and k.



Chapter 2

The functions ¢, and N;,.

§ 2.1 The basic property of N;.

Recall that ® is a multiplicative function with ®x(1) = 1, and for arbi-

trary p € p,a € NN,

. 0 if p<k,
®u(p®) =
prip-k) i p> K
and that Ni(m) denotes the number of solutions of ®,(z) = m (m € IN),
where k is an arbitrary but fixed natural number.
We claim that Ni(m) is well-defined, i.e. the equation @,(x) = m can
have only finitely many (possibly 0) solutions for any m € IN. First of all, we

need a non-trivial lower bound estimate for ®x(n)/n whenever ®x(n) > 0.

For this purpose, we introduce the set 24, = {n € N : p| n = p > k}. Note

10



that 1 € Uy, and ®i(n) > 0 if and only if n € Ui. We have
2.1.1 Theorem. There exist positive constants c1(k), e3(k) which depend on
k only such that

(2.1.2) Be(n) , __alk)

2 =%
" (log log 3n)
(2.1.3) n < ca(k)®x(n)(log log(3®k(n)))*,

for all n € Uy.
Froof It should be pointed out that (2.1.3) is an easy consequence of (2.1.2),
and that it suffices to prove (2.1.2) for sufficiently large n € U;.

k
By considering log( H (1 = =)) and by making use of the standard fact
k<p<r

1
that Z — =loglogz +c+ O(l—g_:;) ( ¢ being some absolute constant) (see,

for example, [Apo76] Theorem 4.12), it is not difficult to obtain

kA 1
214 RIS e

where A, is a constant depending on k only and the constant implied by the

O-notation depends also on k.

Now let n € Uy be large. We have

(2.1.5) @krgn) =H(1—f)= [T« -5) II (1—5).
pin pﬁg;n p p;m;n 12

By (2.1.4), the first product > (1 + o(1)) A/ (log log n)*. Suppose that

there are r factors in the second product. Then n > (log n)’, that is, r <

11



logn/ log log n, and so

k kT PR
H(l—;))(l—w))(l—rgg—';) .
p>logn

It is easy to show that the function (1 — k/z)*/'*" defined for z > k is
strictly increasing on (k, co) and is approaching 1 as £ — oo. It follows from

(2.1.5) that

Bufn) , (L+o(1)) Ay
n = (loglogn)*

This completes the proof.

As a corollary, we get
2.1.6 Theorem. or all m € IN, Ni(m) < cy(k)m(loglog 3m)¥, where cy(k)
is the same constant as in (2.1.3).
Proof Let m € IN be given. Consider the equation ®x(z) = m.

Suppose that this equation has at least one solution (otherwise Ni(m) =
0), say zo. Then ®x(z,) = m > 0, and hence by (2.1.3), zo < c2(k) -
m(loglog 3m)*. This means that the equation can have only finitely many

solutions, and that Ni(m) < ca(k)m(log log 3m)*.

We will give a discussion on the lower bound estimate of Ni(m) in the

next chapter.



§ 2.2 The case k=2

Let
(2.2.1) q1,42:43, 345+ - -

be a sequence of primes defined inductively by

(22.2) @1 =3,and forn 21, gns1 is the smallest prime > g, for which

(g1 — 2) | (0192~ qn)-

The first few terms of the sequence (2.2.1) of primes are
3,5, 7, 17,19, 23, 37, 53, 59, 61, 71, 73, 97, 107, 109, 113, 163, ...

In fact the first 10000 terms of this sequence are calculated. We have
J10000 = 4873801,

this being the 340256-th prime in the sequence of all primes 2,3,5,7,11,.... A
complete list of the first 1000 terms of the sequence can be found in Appendix
I. (The complete list of the first 10000 terms is available upon request.)

We make the following

2.2.2 Tonjecture . The sequence {¢n defined by (2.2.2) is ir“nite.
q n>1 y

As P. Erdds mentioned in a letter to us, this conjecture is undoubtedlv

true, but a proof of this is heyond the present resources of number theory.

2.2.4 Remark. The corresponding sequence of primes in the case of v would



be

LSTR A TRATRA TREER)

where r; = 2, and rny; is the smallest prime > r, for which (Fagr = 1) |
(rira---ra)(n 2 1). However this sequence has only four terms: 2,3 =
2+1,7=2-3+1and43=2-3.7+1. Note that the possible candidates
for the next term are 87 = 2-43+1,259 =2-3-43+1,603 =2-7-43+1
and 1807 = 2.3 -7-43 + 1, and all these are composite.

We next make the following

2.2.5 Conjecture. There is no integer m for which Nz(m) = 1.

Equivalently, this conjecture says that the equation ®,(z) = m, for any
given m, has either no solution or at least two solutions. For example,
Ny(15) = T, Ny(51) = No(8T) = 5, Np(22499) = Np(35) = N3(9) = 4,
Ny(321) = Na(123) = No(33) = N,(3) = 3, Ny(209) = N(161) = No(57) =
N,(55) = Na(11) = No(5) = 2, No(91) = Np(7) = Nz(m) = 0 for any even
m € IN.

This is analogous to the Carmichael conjecture (1.1). In attempting to
prove or disprove this conjecture, the importance of the sequence (2.2.1)
arises, as shown in the following:

2.2.6 Theorem. If there is a natural number = for which Np(®2(z)) = 1,

then ¢2 | z for each n.

14



This is just a special case of a morc general theorem, namely, Theorem
2.4.7, where the details of proof are given.

Now in +iew of Theorem 2.2.6 we can see that Conjecture 2.2.3 implies
Conjecture 2.2.5, because Theorem 2.2.6 and Conjecture 2.2.3 imply that
there is no finite integer m for which Ny(m) = 1.

In support of Conjecture 2.2.5, we have
9.9.7 Theorem. If N3(®(z)) = 1, then z > 101209,

Proof By taking the first 10000 terms of the sequence (2.2.1), we get (@

@2+ quoo00)? | . Our conclusion follows from the fact that

log,0(0192 * * * q10000) = 60341.9....

Analogous to the Pomerance’s results for the Carmichael conjecture stated
in the introductory chapter, we have the following theorem which gives a suf-
ficient condition for Conjecture 2.2.5 to hold.

2.9.8 Theorem. If there is a natural number z such that for every odd prime
p, (p ~2) | ®5(z) implies p* | z, then Ny(®o(z)) = L.

Proof For every n € IN, denote by S(n) the set of primes dividing n. For
every prime p, denote by v,(n) the exponent (possibly 0) on p in the prime

factorization of n. Then for odd n and odd prime p,



Suppose that z satisfies the condition in the theorem, and let y be such
that ®3(y) = ®5(z). If p € S(y), then (p ~2) | @2(y) = Ps(2), so by
assumption, p € S(z). That is, S(y) C S(z). Now let p € S(z). Then
(p—2) | §s(z), s0 p* | 2. If p & S(y), then

vp(z) =1+ Z vl(g —2) =vp(P(z)) = vp(®2(y))

9€S(z)
=Y w@-2)< Y »lg-2),

9€S(y) q€S(7)

contradicting p® | z. Hence S(z) = S(y). Now if p € S(z) = S(y), then

vp(z) = vp(02(2))+1= T 1p(g=2) = vp(@2())+1— D vp(9—2) = (y)-
9€S(<) q€S(v)

This proves ¢ = y, and hence establishes the theorem.

2.2.9 Remark. In the above proof, we follow exactly the same argument
as given by Pomerance [Pom74]. We reproduce this argument here (but not
just refer to [Pom74]) because it is nnt long and we want to make this thesis
as self-contained as possible. There is no such integer z described in the
theorem if the following conjecture holds.

2.2.10 Conjecture. Let p; denote the i-th odd prime. Then for n 2> 2,

(rn =2 T] plpi = 2)

2.2.11 Remark. As Pomerance stated about his conjecture (1.6) in [Pom74],

we wish to note ti.at Conjecture 2.2.10 fails if there is a prime p such that

16



the smallest prime which is = 2 (mod p) is also = 2 (mod p*). However, if
Schinzel’s hypothesis H; (1.7) holds, then there is no such p.
One might be tempted to make a more general conjecture, namely, that

for the sequence of primes py =2,p2 =3,...,

(pas1 = k) | TT pilpi = B).
ign
pi>k
H.wever, this can be false in general. For instance, it is false for k = 3 (take

Pny1 = 7) and k =4 (take Pn+1 = 7)

§ 2.3 The case k > 2.

We first prove the following:
2.3.1 Theorem. For any odd integer k > 1, there are infinitely many integers
m for which Ni(m) = 1.

Proof. Take any odd prime p > k which satisfies

1 (mod 4) if k =3 (mod 4),

~
i

3 (mod 4) if k=1 (mod 4),
as well as
p=k+1(mod (2k +1)).
We note that there are infinitely many such p, in view of (k+1,2k+1) =1
on utilizing Dirichlet’s theorem for primes in an arithmetic progression ana

the Chinese remainder theorem.

17



Let m = p* — kp. Then the equation ®x(x) = m has at least one solution,
viz. £ = pi. We claim that this is the only solution.

Suppese , is a solution to ¢i(x) =m = p(p - k).

By our choice of p, 2 || p(p — k) = ®i(xo). Thus z, is divisible by only
one prime, say r, = ¢*, ¢ being an ndd prime. It remains to show that ¢ = p
(note that this implies a = 2 immediately).

If ¢ # p, then p | (g = &), and so ¢ > p. Furthermore, if a 2 2, then
"y
q

(=) = Oi(xo) g = pp — k)4,

which implies g | p(p = k), but this is impossible since ¢ > p > p -~ k and ¢
is a pri.ne. Hence a = 1, and consequently ¢ -k = & (x,) = p(p - k), and
this impl s

g=pp-ky+ k=0 (mod 2k +1)
by our choice f p. This is possible only if ¢ = 2k 2 1. But then k+1 =
g —k=p(p-k, > 2k+ 1), a contradiction. Thu: ¢ = p, and the theorem

is proved.

We may have Nign) = 1 for certain even values of & also, as seen {rom
the f()”()\\'illg
232 Theorem. Let pog be odd primes withi p > g p # 2q = 1 such that
(2.3.3) p = ¢t 1 1saprine,

(2.3.1) 29 — 1 1s composite,

18
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(2.3.5) ¢(p— g+ 1) + ¢ — 1 is composite.
Then N,-1(g(p — q + 1)) = 1, the unique solution being *p.
Proof Firstly, we assume all the given conditions except (2.3.4) and (2.3.5).

Under this assumption, consider the equation
(2.3.6) bgr(2) = q(p—q+1)

Let 2 = py® -+ p,° be a solution of (2.3.6), where g Spy <pa <+ <pr
are primes, ¢; > 1,1 < < r,r > 1. Suppose py > q. Then p; —q+1 2 3 for

all i, and ¢ | (p; — ¢ + 1) for some 1 < j £ r. Writing (2.3.6) in th~ form
(23.7)  pr = (pr=q+1)p; " T (R =q+1)/a)-pe" T (Pr-g 1) =p—qt 1,

we sce that r < 2 (since the right-hand side is prime by (2.3.3)), i.e. we have
)z =p™, orii) z=p*p™.

i) The case z = p*'. Here /2.3.6) becomes p;* ' (p1—a+1) = ¢(p—-q+1).
Since the right-hand side of this last equality is square-free, we infer that
a; = lor?2 Ifa, =1, then py~—q+1 = q(p—q+1),and qg(p—q+1)+q-1 = p
is a prime, and so in this case z = p,* = g(p—q+1) +¢ — 1, provided (2.3.5)
is not true. If @y = 2, then py(py —q+1) = q(p — ¢+1), and since p; > g, we
have ¢ | (py —gq+1), and from py((py — ¢+ 1)/q) = p—g+1, we conclude that
(—g+1)g=1le.p=2q-1=p-—q+1,andsozr=p* = (2~ 12,
provided p = 3¢ ~ 2 and (2.3.4) is not true.

i) The case ¢ = p;® p;2. We may write (2.3.7) as

T T g+ Dl — g g =gt L



Note that (m - ¢ )(p: -« «1)/g 2 3. It follows that a1 = a3 = 1, and
hence that {py - 7+1,p3 —q+1} = {g,p— ¢ +1}. This implies that 2¢ — 1
is priine and z = (2¢ — 1)p.

Next suppose that p; = q. Then (2.3.6) becomes
(238) ¢ ' p N pa—g 4 1) e g+ ) =qlp—gt1).

Similar to the above, we have a; = 1 or 2 and r > 2. If a; = 1, from the
above argument, we get
x = q(q(p—q+1)+q—1) provided (2.3.5) is not true,
or x = q(2q — 1)? provided p = 3¢ — 2 and (2.3.4) is not true,
or r = ¢p(2q — 1) provided (2.3.4) is nct true.
If a; =2, then it is easy to see from (2.3.8) that r =2 and z = a*p.
Summing up, all the pessible solutions of (2.3.6) are given by
c=qp-g+ D) +qg=1 or qlelp—q+1)+q¢-1)
provided (2.3.5) is false |
re= (29 = 1) or q(29 1)
provided p = 3¢ — 2 and (2.3.4) is false ,

xr=p(2q-1) or qp(2¢-1)
provided (2.3.4) is false ,

| = q*p.
Now it is clear that r = ¢%p is the only solution under the given conditions

of the theorem.
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2.3.9 Example. The only solution of Gu(z) =47 . 7T=320is z = 47% . 53,

2.3.10 Remark. The case in which p = 2¢ — 1 will be considered in the last

part of the next section.

We are now going to prove that for any given k 2 2, there exist infinitely
many non-trivial integers m such that Ni(m) = 0 (it is trivial that Ni(m) =0
whenever k, m are of same parity). More precisely, we have
9.3.11 Theorem. Let n € IN be arbitrary, and let dy, dy, ..., d, be all the
positive factors of n. Suppose p is a prime such that p = 1 (imod (di + k))
for all 1 < ¢ < 5. Then the cquation dx(z) = p'n has no solutions for any
¢>0.

(Remark. This theorem holds also for k = 1. This is due to A. Schinzel
[Sch56a).)

Proof We note that Dirichlet’s theorem implics the existence of infinitely
many such primes.

Suppose to the contrary that z, satisfies the equation ®y(z) = p'n(€ > 0).

If p | 2o, then (p—k) | Di(z,), ie. (p=k) | p'n, and so (p— k) | n, (since
(p—k,p) = 1). This implies that p— k < n,orp<n+k, whichis impossible
since p = 1 (mod (n + k)).

Thus (p,z,) = 1. Let 2o = 1" q2™ -+ 2™ be the prime factorization of
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T,. We have
Mg - k)@ g = k) = pin.
Since (pywo) = 1, there exists 1 < i, < v such that p | (¢i, = k), and so
¢, — k = p™d;, for soonem 21 and 1 < j, < s. It follows tfrom the choice of

p that
gi.=p"dj,+k=1-d;,+ k=0 (mod (dj, + k)).

But i, = p™d;, + k > d;, + k and g, is prime. This contradiction proves

the theorem.

2.3.12 Corollary. For every n € IN, there exist infinitely many multiples m
of n such that the equation ®;(z) = m has no solutions.

2.3.13 Exampies. a) The equation &;(z) = 7° has no solutions unless £ = 0
(in which case z = 1 or 3). b) The equation ®,(z) =3 31¢ has no solutions

uniess ¢ = 0 (in which case z = 5, 9 or 15).

Contrary to Theorem 2.3.11, we have the following result: “For any n €
IN, there exist infinitely many m € IN such that Ng(m) > n.” The proof of
this needs more sophisticated technique, We postpone it to section 3 of the
next chapter. A sitaple proof of this in the case when & =1 can be found in

[S(‘])S(il)].
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§ 2.4 The case in which k is a natural
number of special type.

We start with the following:
2.4.1 Theorem. Let k > 3, k + 2 = p,°, where p, is an odd prime and
a € IN. Then Hypothesis H implies that for any given integer n > 1, there
exist infinitely many intcgers m such that ®x(z) = m has exactly n solutions
(i.e. Ni(m)=n).
Proof: Let g, denote the smallest prime factor of k + 4 (which is odd), and
let r = (po — 1)(go — 1)/2. Observe that r 2 (3 - 1)(5-1)/2=4

Set A = {a € IN:(p,~1)fa} = {ay,as,a3,...}, where 1 = a1 < az <
a3 < --- (note that a; < 21 for all i since A contains all odd numbers).

For any given n > 1, consider the irreducible polynomials defined by
fie) = 2% + Ky fur(®) = 287 4 kyi = 1,200 fanna(8) = .

The irreducibility of 2z* + k follows from Eisenstein’s criterion.  Note
that (r — a,) — an = ™~ 2a, 2 4n —2q, = 2(2n ~ an) > 0, so that

fagi(2)(1 <1 < n) is distinct from fi(x), -, fu(z).
an+1
We have [ fi(1) = (k+ 2)" = p,2°™. Let ¢ be a primitive root modulo
=1

po. Observe that 2¢° + k = 0 (mod p,) iff 2¢* -2 = 0 (mod p,) iff ¢* =

1 (mod p,) iff (po — 1) | a. Since, by the definition of A, (p, = 1)fa, and
2n4l
(po=1)f(rn—a;)forall 1 < i < n, we conclude that p,f H fi(g). Therefore,

1=1

2
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the condition of Hypothesis H is satisfied.

Define by < by < -+ < b(y_3)n in such a way that

{blyb% con )b{r—2)n} = {1,2,- o ,7‘71} \ U{ai)rn = ai})

1=1

and define
g;(2) = 22% 4+ k5 = 1,2,...,(r = 2)0i gr-gpnia () = 42" + k.

By Hypothesis H (1.4), there exist infinitely many integers z, such that all
the fi(z,)(1 < i < 2n+ 1) are prime and all the g;(z,)(1 < j £ (r—2)n+1)
are composite (in particular, 2z, + k and 4z,™ + k are composite).

Consider, for such an z, with z, > k + 4, the equation
(2.4.2) O(y) = 4z,™.

If y is a solution of (2.4.2), then obviously y can have at most two distinct
prime factors, i.e. y is of the form p® or p°¢b. If a > 1, then p(p — F) | 4z,™",
so p = 2, and (z,— k) | 42,™, which is impossible since z, > k+4. Similarly
we must have b = 1 in the latter case. If y = p, then p — &k = 4z,"", l.e.
p = 4z," + &, which is impossible since 4z, + k is composite. Now we

conclude that y = pq for some distinct primes p, g, and we may write (2.4.2)

(7)) -

Both factors on the left-hand side are greater than 1, for if (p— k)/2 =1

as

\ s ¥ [ . .
(say), then (¢ — &)/2 — £,™, and 50 ¢ = 2z, + £, contradicting the fact,



that 2z,™ + k is composite. It follows that {p,q} = {fio(zo), fatio(2o)} for
somel <i,<n,iey= f-‘o(mo)fnﬁo(?’o)-
Obviously, for any i € {1,2,...,n}, fi(2o) fatio() is a solution of (2.4.2).

Thus (2.4.2) has exactly n solutions.

2.4.3 Remark. In a certain sense, the above theorem is a generalization of
Schinzel’s work on the Sierpinski conjecture (see p.3 or [Sch61]). We would
expect that this theorem holds for any odd k (or cven any k € IN). But it

seems to be extremely difficult to settle this problem.

In the rest of this section, our consideration is devoted to a special type
of even numbers k, namely that k + 1 and 2k + 1 are both primes. (The
density of the set of all such k’s is zero, as we can casily see from the prime
number theorem.)

It is easy to prove that if k > 4 and k + 1,2k + 1 are prime, then 6 | k
and k = 0,6,0r,8 (mod 10). For instance, all the k’s satisfying the above
conditions with 4 < k < 100 are 6, 18, 30, 36, 78, and 96.

Just like (2.2.1) we introduce the sequence

(2.4.4) G,y Gr2y Gh3ye oo
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which is defined by

qei =k+1, 2 =2k+1,and
(2.4.5) qrnsr = smallest prime > qin such that

(Gensr = k) | (qk1s- -1 qhn) forn 2 2.

Furthermore, we define £k = |{gkn},5: |-

The number ¢, could be finite, for example

¢, = 2 for k = 18,30,78,96, 138, 228,438, 498;
¢, = 3 for k = 156,270, 366, 726, 828, 936;
¢, = 4 for k = 378,600, 618,810,

With the help of a computer, the sequences {gk,n},>, for 2 < & < 1000
are examined. Within this interval, there are 33 values of & for which & + 1
and 2k + 1 arc both prime, and that ¢ = 2 for 15 values of k, £, = 3 for 6
values, €, = 4 for 4 values, & = 5 only for k = 576, € = 6 only for k = 336,
and €, > 8 for all the remairing values of k. For miore details, see Appendices
IT and 111

From the above data, it is natural to make the following:

2.4.6 Conjecture. For any given integer m > 2, there exist infinitely many
integers & for which ¢, = m.

In fact, this conjecture follows from Hypothesis H. The proof goes as

follows. In Hypothesis H (1.4), take s = m,t = 2™ —m. Let fi(z) =

iz + 1,1 < i < s. Clearly, these f;’s satisfy the condition of the hypothe-



sis. We define the polynomials g1(z),g2(2),-.., () in the following man-
ner. Let ¢i(z) = (m+ 1)z + 1 and let A denote the family of all sub-
sets of {1,2,...,m} each of which contains at leist two elements. Then
A =2"-m—-1=1t-1 Write A = {A1, A;,..., A1} (in any arbi-
trary but fixed order). For 2 < j < t, define gj(z) =z + [T fa(z). Note
that except for the irreducibility, the polynomials g,-(:c)‘(lfl"’_{l j < t) also
satisfy the condition of the hypothesis. But we should point out that in
(1.4), the irreducibilities of the polynomials gi(z), ga(x), ..., ;(x) are not
essential, that is, the conclusion of the hypothesis still holds even if these
polynomials are reducible. Thus there exist infinitely many z € IN such
that fi(z), fa(z),..., fs(z) are prime and g1(z), g2(2), - .., ge(z) are compo-
site. Let k be any such natural number. It follows immediately from the
definition of {gk,n},»; (see (2.4.5)) that gin = fa(k) forn =1,2,...,m. The
possible candidate for the next term gk,m+1 (if it exists) is g1 (k) = qem+k or
of the form qe, ++ qii, + & = fiy (k) -+ fi, (k) + k = g;(k) for some 2 <j<t,
where 1 < 4y < -+ < i, < m,r > 2. Since a1(k), g2(k), . . ., gu(k) are all
composite, such a term cannot exist, and so & = m.

Now we go back to the very basic property of the sequence {q“-"}nZI'
2.4.7 Theorem. If Ni(®x(z)) =1, then (qkn)? | z for each n.
Proojf Here, we write ¢y for gk, for the sake of convenience.

Firstly, we have q; | z, for if qifz, then ®x(q1z) = Oi(qrz)di(z) =
(@1 — k)®(z) = Pi(z), contradicting Ni(®i(z)) = 1.
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We also have q,? | z, otherwise ®i(z/q1) = Bu(q)®u(z/q1) = Pulqr
z/q1) = ®i(z), a contradiction.

Now suppose ¢;? | z for 1 < & < n. Let gnyy = ¢r,>*+¢r, + k, where
1<m<rp< - <rp,<n.

If gn41/z, then

] (an ' (——?—)) = B (gns1)Ds _q___\'t___

ar, qr, r o dr,
= Gry o G, Bk | ——— | = ®u(2),

ry Y,
which is a contradiction (the last equality can be seen by using the prime
factorization of ).

If gu41 || z, then

n ¢ L
In+1 — k(.’llq 1 q".) — ‘Fk(m),
Gry ="+ 4r, qry "4,

T ves
Dy (_iq___‘lg_) Oi(gn+1)
by (:I:q,, ”.q"> =
In+1
again a contradiction.

Thus we have shown that g,41? | z, and the induction iv therefore com-

plete.

An immediate consequence of this theorem is the following:

2.4.8 Corollary. If ¢ is not finite, then Ni(m) # 1 for any m € IN.

In other words, when ¢, is not finite, the conjecture of the Carmichael



29

type for the function ®; is indeed a theorem. Is the converse also true? That
is, when £; < 0o, does there exist a natural number m such that Ny(m) =17
For instance, let us consider the simplest case, viz. & = 2. If, in that case,
Ni(®i(z)) = 1, then p*q*|e by Theorem 2.4.7, where p = k+1and q = 2k+1.
For the sake of simplicity, consider ®x(p*q?) = p(p — k)q(g — k) = plq. Is
z = pq? the only solution of ®;(z) = p*q if we assume ¢, = 27 This leads
us to
9.4.9 Theorem. If p = k+1,¢ = 2k+1 are prime, and if g +k, pg+ k,p*q+k
are composite, then Ni(p*q) =1 (the unique solution being p®¢?).
Proof. From the above, we see that it suffices to prove the uniqueness.

Let z = p® - -+ p,°" be a solution of ®i(z) = pq, where py < pp < +++ <
proa; 2 1,1<i <.

That is, we have

(2.4.10) p 7 (py = k) pe N (pe — ) = PG

We want to show z = p?¢*.

Firstly, observe that p; > k,ie. p; 2 k+1=p, forall1 <i<r. In
particular, p; > p. We distinguish two cases.
Case I. p1 > p.

In this case, p # p; for all , and so from (2.4.10) we have p | (ps, — k) for

some 1 < i, < r. We may write (2.4.10) as

(2.4.11) pla’—l(m - k) . "Pioai°~l((}7io - k)/P) . 'Prar_l(Pr — k) =pq.
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Since the right-hand side of (2.4.11) is a product of two distinct primes,
we infer that r < 3,i.e. r =1,2,0r 3.
a)r=1.

Equation (2.4.10) becomes

(2.4.12) n 7 p - k) =pq.

The assumption p # p; implies p* | (p — k), and from py™~Y((p1 -
k)/p?) = q, we get ay =1 or 2.

If a; = 1, then (2.4.12) becomes p; — k = p’q, or p’q + k = p, which
contradicts the fact that p*q + k is composite.

If oy = 2, then py(py — ¥) = p*q, and this implies p, = g and py — k = p.
But if p; = ¢, then py — k = ¢ — k = p, a contradiction.
b)r=2.

We may write (2.4.11) as

(2.4.13) M p " ((py ~ k) (p2 - k)/p) = pyq.-

This implies a7 < 2,07 < 2, and a1, ¢, cannot be 2 at the same time
(because py > p; > p). Thus, there are two subcases: i) a1 = a2 = 1, ii)
{a1, a2} = {1,2}.

If i) holds, then (p; — k)(pz — k) = pq, and so {p; — k,p2 — k} = {q, 9%}
or {p,pq}. In the former case, we have p; — k = ¢, i.e. ¢+ k = p;, which
contradicts the fact that ¢ + k is composite. In the latter case, pg + k = py,

which contradicts the fact that pg + k is composite.



If ii) holds, without loss of generality, assume oy = 1,03 = 2. Then we
have ps(p1 — k)(p2 — k) = p*q, this implies p; = ¢, and hence pz(p2 — k) =
q(q — k) = gp. Putting this back into the equation, we obtain py — k = p, i.e.
p1 =p+k = g =py, which is impossible.
c)r=3.

Here (2.4.11) may be written as

(2.414)  p 7 s 7 (py — k) (p2 — K)(ps — K)/P) = P

By the same reasoning as in b), we conclude that ; < 2 for all 7, and
o = 2. for at most one 1.

If a;, = 2 for some 1 < i, < 3, then (2.4.14) implies p;, = ¢, and so
pi, — k = p. Consequently, (2.4.14) becomes q(ps — k)(p2 = k)(ps — k)/p = pq,
ie. (p1 —k)(p2— k)(ps—k)/p =p, which is impossible since the left-hand
side contains two factors greater than 1 (because p3 > ps > pr > p > k)
while the right-hand side is a prime.

Next consider the case a; = & = o = 1. (2.4.14) becomes (p1 — k)(p2 —
k)(ps — k) = p’q. Note that each factor on the left-hand side is at least 2,
and that the only way to express p?q as a product of three numbers each of
which is greater than 1is p-p- ¢. Hence this last equation actually does not
hold.

Summing up, we have shown that (2.4.10) has no solutions for whi~h

pi # pfovalli ™
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Case L p1 =p.

Here (2.4.10) becomes (note that py —k =p—k =1)
(2.4.15) P (g = kY o p T (b — k) = plg

It is casy to see that oy <3, i.e. on =1,20r 3, and that r > 2.
a) If g =1, then we are back to Case I, and we know already that (2.4.15)
has no solutions.

b) Next suppose a = 2, and write (2.4.15) as
(2.1.16) po T pp = k) p,."’""(p, - k)y=pq.

This implies r < 3, he. 7 =2o0r 3.

When r = 2, (2.4.16) becomes p,®2~Y(py — k) = pg. Clearly ay < 2. If
ay = 1, then we have py —k = qp, i.e. pg+k = py, contradicting the fact that
pg + k is composite. Henee we must have ay = 2, and o pa(p2 — k) = pg.
Since py > po we have py = g, Thus in this case, r = piip? = Pt

It remains to show that all the other cases Load to contradictions.

When r o= 3, (21,16} becomes pyt=tpy = py — k)(pa — k) = pg. Since
py =k~ py ok > 20 weinfer that ay = az = 1. In that case pz — k= pand
pv- A g The last equality contradicts the fact that ¢ + & is composite.
) Finally, suppose a; = 3. Then (2.1.15) becomes @~ (py—=k) - - p o ™ (pr—
k) ¢, It follows that r = 2, i.e. we have py™ =Y (py— k) = ¢. and this implies

that ay == 1 and p; — k .- ¢. which is again a contradiction.
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This completes the proof.

2.4.17 Remark. Taking a closer look at the above proof, we see that if p =
k+1,q = 2k+1 are primes, and if £, = 2, then Ni(ptq) = 1 or 3 according as
p*q+k is composite or not. In the latter case, the solutions of ®(z) = p*qare
x = pq?, p*q + k,p(p*q + k). For example, N1s(13357) = Neeo(577172641) =
Noog(1981059937) = 1, and Nis(327035437) = Nogs(1807527037) = 3.
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Chapter 3

Further study of ®, and Ng.

Throughout this chapter, k denotes an arbitrary but fixed natural num-

ber.

§ 3.1 The normal number of prime factors
of p— k.

Firstly, we have to explain what the title of this section actually means.
Recall that for n € IN,w(n) denotes the number of distinct prime factors of

n.
3.1.1 Definition. Let A e an infinite subset of IN, and let A(x) = [.AN(0, x]},

where ris an arbitrary positive real number (i.e. A(r) counts the numbers
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in .4 not exceeding z). Let f(z) be an increasing function of z (for large
z). By saying that the normal number of prime factors of a € A is f(z), we

mean that for every (small) ¢ > 0, we have

l{a € AN (D, 2] : [w(a) = f(2)] 2 ef(2)}] = o(A(x)) (2 — 00).

In other words, the normal number of prime factors of a € Ais f(x)if
and only if for any small € > 0, the number of prime factors of a lies between
(1~ €)f(z) and (1 + €)f(z) for almost every a € A.

The purpose of this section is to prove that the normal number of prime
factors of p— k (k < p < z) is loglog z (i.c. here we take A = {(p—k:pe€
o,p > k}). (For k =1, Erdés|Erd35) already proved this.) In fact, we are
going to prove a result more precise than this. Before we give a statement of
this result, we state and prove a couple of lemmas.

First of all, we quote a result from [Hal74] (Corollary 2.4.1, p. 80):

3.1.2 Theorem. Let a € IN and let b be a non-zero integer. Then for any

r> 1,

-1
1 I
I{pEpﬂ(O,.r]:ap-i-bEp}|<<H(l——) m

plab

We want to mention once again (as we already did in the introductory
chapter) that the constants implied by the <~ symbol (or O-symbol) would

be absolute, unless otherwise stated.
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Now we deduce from Theorem 3.1.2 that

1.1.3 Lemma. For each real z > k, and for @ € IN, let g(z,a) = |{p €

2 ; s € p}i. Then

p N (k2]

o(z,0) < log log(3ka) . 23? .
a log (;)

-k
Proof It i straightforward to verify that g(z,8) = |{p € p N (0, —a—-] :

ap+ k € p}|. It follows from Theorem 3.1.2 that

ka < < log log(3ka) =z

T
< N(0, =1: k€ —_— . ,
g(r,a) < |{PE pN( va] ap+k € P}' < (p(ka) logif a 10g2§

-1
in which we have applied the well-known facts that H (1--) = (p(n ] and
pin n

-—Tn—-)- < ¢, log log(3n) for every n € IN (the last inequality is in fact a special
w(n

case of (2.1.2), see Theorem 2.1.1).

Next we prove

2.1.4 Lemma. For all sufficiently large r,

4r

log®z

{ne NN (0,r]: P(n) rTTREE or P(n)?n}] <

(Recall that P(n) denotes the largest prime factorof nifn > land P(1) = 1.)
Proof For simplicity, write y = logr, = = loglog r.

We divide the natural numbers under consideration into three classes:

S;={neNn(U.r]: Pn) < 77 and w(n) < 62},
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= {n e NN (0,2]: P(n) < zth and w(n) > 6z},

and Sy = {ne NN (0,2): P(n) >zt and P(n)*|n}.
For each n € Sy, writen = p;® -+ p,® . Then for each t, o < 7= logn < Y
log2 = log*

and p; < £ and hence there are at most iy / log 2 choices for p;™. Since

r < 6z, we infer that for large z,

63 6z
si< (et =2 <X
511 < (x log 2) * log2) ~ ¥

In order to estimate |Sa|, we need the fact that z d(n) € 2zlog r when
n<r
z > e, where d(n) denotes the number of divisors of n. This can be proved

as follows:

T 1 z dt .
Ed E[m]gx ng(/‘-z--}-l)szrlogr

n<r
if £ > e. Now write @ = |S2| and 2 = {n1,na,...,n4}. Since d(n) 2 Quin)

for each i = 1,2,...,a, we have d(n;) > 2+(m) > 26 It follows that

26:18,] < d(m) +d(n2) +--- + d(n,) Z d(n) < 2zy,

n(r
and so
2ry 2r 2r
IS?I— )hz:: el S T3¢
y)ng — y

. . 1
For each n € Sy, n is divisible by a square greater than £77, and therefore

ol < r 2r o _ ¥
53] < Z m? < s =P
m7>rg‘7 e y

<

2
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when z is large enough (it is easily seen that E 'r'lf < 72? for any t > 1).
mint [
Thus our lemma is proved.

We require one more lemma.

3.1.5 Lemma. Let 0 < ¢ < 1/4 and let ¢ be a fixed positive constant. Then

there exists an z, = z,(€) such that for any = 2 z,,

[(l—c)'r] xﬂ (1 }i)
J.1.6 -_ T
(3.1.6) 2:,0 = < el
n~-1
(3.1.7) y B -9
> (110) (n-1)!
Proof It is easy to show by induction that
v+ 1\V
(3.1.8) Nt> (’ : ) for all N € IN.
and
N " J?N
(3.1.9) 71—'<N--1\7'- for all N 22,z > max{N,3} .
n=0 (X2 .
Combining (3.1.8) and (3.1.9), we have
N .n N
T :
Y - < N(N€: l> for all N > 1,z > max{N,3} .
n=0 ""°

By choosing N = [(1 —¢)] in the above inequality (with z > 3), we obtain

((1-e)s] g ’ ex (1-¢)r
Y — <{l-e) —
n! (1 —e€)r

n=0

log x 4 log(1 — C))x} .

:exp{((l—e)(l——]og(l—c))+ " .
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3 3
Taylor series expansion gives (1 —€)(1—log(1- €))=1- Lt

2
<1l- -Cé- Therefore, (3.1.6) is established if we choose z so large that

2

logz + log(l —¢€) <&
T T 4
To prove (3.1.7), let m = [(1 + €)z]. Then
5 (z+¢)"" _ (x+ )" N (z + o)™ 4.
(n-=1)! m! (m+1)!

n>(1+4¢)z

(z+c)™ (. z+c (z +¢)?
m! (A+m+l+(m+1)(m+2)+'“)'

Observe that for i > 1,m +i > m +1 > (1 +€)z, and so £& < (f-&iz‘;r <

‘11{75 provided z > (2 + €)c/e. Hence, for such z,

D

n>(14¢)x

(z + c)"_1 (z+c)" ( 1 )\ 24€ (x+e)”
< 1 + s+ ] = . .
(n—1)! m! + 1+5 (1+ %)2 € m!

By applying (3.1.8) again, we get

€ ((:1: + c)e)m - 2+¢ ((m + c)e)““)r

(z+¢)"" < 2+
(n—1)! €
+

)

> (T2e)z m+1 e \(l+¢€r

exp (1+e)x(1+log(1+§)—log(1+c))}

€
2+ ¢ ¢ €
< ) 1+ —-- —
——exp (1 + ¢)z( +a: e+ 2)}

1-8)z

_2+c e1=%
¢ exp{(§ - - (14}

S e(l-s‘z)r

if z > z, for some z, = r,(c). This completes the proof.



3.1.10 Remark. There are much better inequalities than (3.1.6) and (3.1.7),

namely that for 2> 0,0 <a <1< g,

1-
o1 ldene AP B_a-ains

T
E;!-<1-0¢ vaz ngﬁz"! -1V 2z

n<ar
where Q(A) := Aog A = A+ 1(= Ql‘—;ﬁ—h\ﬁ-ﬁ{- if ]A =1| < 1). A proof
of these inequalities can be found in [Nor76], pp. 692-694. For our purpose,

Lemma 3.1.5 is already good enough.

Now we are ready to state and prove the main theorem of this section.

3.1.11 Theorem. For every 0 < € < 1/4, we have

{p € pN(k, z] : |w(p—k)=loglogz| > eloglogz}| = O (—-—x——;) (z — 0).

(log z)'*®

Proof Suppose z is large, and write y = log z, z = loglog z.

For each n € IN, let A, = {a € N : w(a) = n} and f(z,n) = Hp €
wN (k) (p—k) € A}l

What we want to show is the same as
where § = ¢?/8.

By Lemma 3.1.4, f(x,n) = [B(z,n)| + O(x/y*), where B(z,n) = {p €
oN(k,x]: (p=*k) € A, Plp—-k)> +77 and P(p-Fk) | (p - k)}. For

4u
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each p € B(z,n),p—k = aq for some a € A,y and ¢ € p with ¢ >z
(this implies a < z'~ ™). Thus, in the notation of Lemma 3.1.3, we get

|B(z,n)| < Z g(z,a), where (and in what follows) Z denotes a sum

1_
a
restricted to elements of A,_,. On utilizing Lemma 3.1.3, we find an absolute

constant ¢; such that

. loglog(3ka) T T
f(z,n) <c - +0(=3)
1o<§5¢ o gm0
'z 2 T
<cg Y, =5 +0(3)
a(z"ﬁ' e v y
1 T
T )

where c; is some absolute constant.

From the definition of A,_1, we clearly have

E (Ep(:c Za-lp )""1 < (Z + C:;)"--l

aqa" (n-1)! -~ (n-1)!
since }: —_—= Z + 0(1) < log log x + c3 for some absolute constant cs.
p<z p<x

Summmg up, we have shown that

22 (=4 )" T
P i S N =
f((E,Tl)__C2 y? (Tl-—l)! +O(y3)

It follows from (3.1.6) that

zz.'} [(1_()21 (z+cs)n-l Iz
flz,n) <c—y YIS 4 0(=)
“<(§;e)z 3123 ,gl (n—1)! y3
Iz 2 Tz
215 )z 4es) i<
<C'~’yze ‘ J+O(y3)

3 T2

I
< C“y1+26 + O(?) < Jl+5



For the other sum Y f(z,n), we observe that f (z,n) = 0 whenever
n>(1+¢)z
n > log z/ log 2. Therefore, by (3.1.7), we have

z23 (z+ca)™! Ty
flz,n) <= ————+0(=3)
n>(IZ+¢)x y2 n>(lz+¢)z (n - 1)!

~3 2
I (1-%£)2 i
<age ¥ +o(y2)

rz®

y1+25
I

3
yH'

T
+0(=
(y,

This ends the proof.

3.1.12 Remark. Take A = {p — k : p € p and p > k}. Then, by the prime
number theo. :m, A(z) = n(z + k) — n(k) ~ z/log z, and so Theorem 3.1.11
says that for 0 < € < 1/4,

fa € An(0,2]: fula) - loglogz| 2 elogloga}] = O(E52) (¢ = <o),
og’ T

where & = ¢?/8. Trivially, O(A(z)/ log® ) = o(A(z)). Thus Theorem 3.1.11
is much stronger than just saying that the normal number of prime factors
of p— k is loglog z. In the ahove proof, we follow the same line of thought
as given by P. Erdés [Erd35). Theorem 3.1.11 will serve as a foundation for

the next section.
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§ 8.2 Distinct values of ;.

For each ¢ > 1, define Vi(z) = |{n € NN (0,z] : n = ®i(m) for some
m € IN}|. That is, Vi(z) denotes the number of distinct values of @ not
exceeding ¢. Note also that Vi(z) = |[{n € NN (0,z] : Nk(n) > 0}, so
that V; is a generalization of the function V mentioned in the introductory
chapter (with ¥} = V).

Since p—k = ®;(p) for any prime p > k, we have Vi(z) 2 m(z+k)—m(k) =
(14 o(1))(z). Our main object here is to give an upper bound estimate for
Vi(z). Again, in order to make the idea in the proof of the main result more
transparent, we first state and prove some lemmas.

. 1
3.2.1 Lemma. For any real number y > 0, the series Z - converges.

p>k
w(p-k)<y

Moreover, for any 0 < € < 1, there exists a constant C(¢€) which depends on
¢ only (in fact, if we consider k as a variable as well, then we should write
C(e€) = C(e, k), but since k is considered as fixed, we put the emphasis on

the dependence on ¢ only) such that

1
T —<Z 10
ooe D 1 —e¢
w{p—k)<y

Proof Firstly, suppose 0 < ¢ < 1 and y is so large that € > log k.

)
1—¢/

Consider the sum Y 1, wh ret > z. We have (1 —€)loglogt >y 2

Set z = expexp (

k<pt
w(p-k)<y

w(p — k), and so |w(p — k) — loglogt| > eloglogt. By Theorem 3.1.11, this
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sum is O(t(logt)™'%), where & = €?/8. It follows that the improper integral

]
/,t—2' Y 1fat

k<pgt
w(p-k)<y

is convergent, and

Z__Z/ —dt/ (Zl)dt (/ ogt )501(6)

p>z P>z k<p<t

/!
for some constant Cy(¢) depending on € only, where E denotes a sum over

primes p satisfying the condition w(p — k) < y.

Therefore
! 1 ] 1 ] 1 1
o= -2 < loglog z+c+Ci(e) = I—L-*-Cz(f),
>k p k<p<s P p>: P p<z P —€

where ¢ is some absolute constant and Cy(e) = Cy(€) + c. This is what we
want to prove for y > y,, where y, is any non-negative real number satisfying
e¥> > log k (so that y, depends only on k).

The required result follows for all y > 0 if we choose C(¢) = T +Cy(e)
(with 0 < e < 1).

Now, the case in which § < € < 1 becomes trivial.

9o (p=k)

3.2.2 Lemma. Let 0 < 0 < 1. Then the series ) converges (recall
ok P

that Q(n) denotes the number of prime factors of n counted according to

multiplicity), and for any 0 < € < 1. .here is a constant C,(€) depending on
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¢ only (again, we may write C,(€) = Col, k)) such that

E O (p-F) <
Sip-0" (1-¢)(1-06)

+ C,(€).

Proof By Lemma 3.2.1, we have

gwir—k) 0
. = E o E L
>k p m=0 P>k P
w&g—k):m )
=(1- 6) Z o 2 -
n=0 P>k p
- w(p-k)<n
<a-0Y (= +0@)r
n=0 ‘*
=gman-g

Since ! > w, we obtain

Qp-k
0(’,_1 Szoﬂ(p—k)<_1_+ L )
S p—0 T - p plp-—1)
geir- 1
<Y — ) =
,; P \‘;:p(p-—l)

< T=90=0 + Co(e).

3.2.3 Lemma. |{n € NN (0,z] : Q(n) > 2loglogz/log2 or P(n) <
st }| = O(n(z) log log z).

Proof This is in fact a combination of Leminas 1 and 2in |Erd73). Since the
proof is quite long, and we would give nothing new in our preo., we refer the

proof to that of the above mentioned lemmas (sce [Erd73], pp. 20 :3).



We may now state and prove our main result,

1.2.4 Theorem. For every ¢ > 2,/2/ log 2(= 3.397...), we have
Vi(z) = O(n(x) exp(cy/log log r)).

Proof Recall that i, = {neN:p|n=p>k}={ne¢ N : &i(n) > 0}.

Using the notation of Lemma 2.1.1. we have that if 0 < $i(m) < r, then
m < ¢y(k)r(loglog 30y,

For simplicity, write £, = ¢.(&)(log log 30y 6, =6loglogr, B =2/ log 2=
2.885...), and £3 = gloglog r.

Suppose that n € IN is a value of & not exceeding r. Then cither

Q(n) > €y, or n = & (m) for some m € U N (0, r¢y] with Q(de(m)) < (5.

I'herefore, by Lemma 3.2.3,

Ve(r) € Z I 4+ O(r(r)loglogr),
mest
ﬂ(th(m)‘)((\

’
where L represents a sum restricted to elements of Ui
%, Ob.

We further restrict the above sum to those m for which P(m) > ¢

1 e :
serve that ré < (rf))easn if rois large enough.  Hence, by Lemma
123 again, the number of mo« oy ignored is O((xf) loglog(rfi)) =

k C : ,
Ot og log )Y, where the constant implied by the second O-notation

16



depends on k. Thus

!
Vi(z) € Y 1 4 O(n(x)(log log 2)**).
m53(|,P(m)>;‘/’7
Ada(m))<ly
Let us call the last sum ¥;. By writing m = pn in this sum, where p is

a prime > r'/% (and so n < £,z and i(n) | x(m)), we see that

i < }: r(ie—')

!

"<ll‘\—l/f2 !

Q(dx(n))<ts
)

rl/n
< X log(xéy/n)

nctyst-1
e (n)i<ty

!
. 1
& n(z)(loglog J)Hl Z =
erm<t

in which the constant implied by the last «- symbol depends on k, and we
do not restrict the size of the very last sum because the series is convergent,

as we are now going to show. So for we have shown that

'
(3.2.5) Vi(r) < r(r)(loglog £t Y % .
N Pa(nrd<h
Let 0 < 0 < 1. Define gg : IN = IR by go(n) = P or 0 according,
as n € Uy or not. Since &g is multiplicative and 2 is completely additive,
it is straightforward to verify that ¢, isa multiplicative arithmetic funetion.
Next, define

.‘/u‘(”)

——

e

f10) =

n

i

n
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Since gg is multiplicative, f(0) is well-defined (i.e. the series is convergent)

if and only if its Euler product is convergent, and in that case

(0) =H(l+§@%’,’"—m—))

? m;} 0m—l
(3.2.6) =1 (1 + 2 0““’""-7,‘)
p>k m=1 p
9 p=k)
=[1 (1 + -—-———)
p>k p=90

By Lemma 3.2.2, the last product is convergent, and so [ is indeed well-
! P (n))

defined. From the definition of go, we have f(0) = Z —, and therefore
- n

(3.2.7) Y: 2 < f(0)0-Powione,
Q(du(m)<ts "
In particular, (3.2.7) shows that the series on the left-hand side converges.
Suppose 0 < ¢ < 1 1s given.
Since 1 + ¢ < ¢ for all ¢ > 0, it follows from (3.2.5), (3.2.7), (3.2.6) and

Lemima 3.2.2 that

1 0

(3.2.8) Vi(r) <€ m(r)(loglog )t exp {m — J(loglog.r)log 0} ,

where the - constant depends on & and ¢ only.

Now we choose 0 optimally that

0\’
7 = (1 = ¢)3loglog r.
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For this value of 8, we have

0 1 1
3.2.9) — = /(1 —¢)floglogz and log = < .
( 1-90 0 ;;(l - ¢)3loglog ¢

Our theorem follows immediately from (3.2.8) and (3.2.9).

3.2.10 Corollary. Vi(z) = o(z), i.e. for almost all n the equation du(y) =n

has no solutions.

3.2.11 Remark. Theorem 3.2.4 generalizes the result due to Erdds and Hall
[Er73]. We suspect that a result similar to the one obtained by Maier and

Pomerance [Mai88] holds for Vi, namely

Vi(z) = exp((c + o(1))(log log logx)g)

log z
for some constant ¢ (it may depend on k). Maier and Pomerance pointed out
that “the same estimate can be obtained for the number of distinct integers
which are products of the members of {p+a : pis prime, a € S}, where §'is
any finite set of non-zero integers.” ([Mai88], p. 275) However, their method

is too technically involved to be cor tained in this thesis.
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§ 3.3 Values taken many times by &;.

Recall that W(z,y) = |[{n € N:n < zand P(n) < y}| (z,y 2 1) and
(z,y) = |{p€ pN (kz]: Pl(p— k) Sy}l (2> Ky 21).
We first give an estimate for ¥(z,logz).
3.3.1 Lemma. For any € > 0, ¥(z,logz) = o(z*) (z — 00).
Proof Write y = log z. Let n be a natural number < r with P(n) Ly.
Let m be an integer > 2. We can always write n = a™b, where a,b
are natural numbers with b m-free (i.e. b is free from m-th power divisors
1). Then a < z=, and since P(n) < y, b is a term in the expansion of
H(l +p4---+p™"). Obviously, there are m™¥) terms in this expansion.

p<y
It follows that

log s 1 m P
U(z,y) < rmm™ = amOerhes) = P c o5 ) <zr?

if we choose m > 4/e and if r is large. A fortiori, ¥(z,logz) = o(z*).

We need the Brun-Titchmarsh Theorem in later argument. We quote the
following version from [Hal74] (Theorem 3.8, p.110):
3.3.2 Theorem (Brun-Titchmarsh). If 1 < a < r and (a,b) = 1, then

3r

ﬁ(l‘; a, b) < m.

We apply this to prove
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3.3.3 Lemma. Suppose there exist 0 < 0o,¢, < 1 such that M(z,z%) >
¢,z log z for all large z. Then there exists 0 < 6, < 0, such that 11,(z,2%) >
-c§°-"c/ log z for all large .

Proof Let 0 < 0 < 0,. Brun-Titchmarsh Theorem yiclds
Mi(z,z%) — Mi(z,2°) ={p€pn(kz]: 2 < P(p - k) < z%}|
<| U {pepnikz):p=k(modg)}|

19<q<xf

< X w(za.k)
r¥¢q<abo
Jz
< e
,o<§:oo v(q)log(z/q)
3z 1

S__.________._ ——

{
- oo) log T rfq<r® q—1
in which ¢ denotes a variable prime.

1
From the standard result Z = =loglogz + ¢ + O(1/log x), we have
p<zr

1 l ]
— lor(og1>+()(———> (z <y).
epey p—1 log z log z

My (z, 2%) — Hi(z,2%) <

Thus

3 0, 1 T Co T
log(~2 - <2
1-0, (Og(()) ((Ologz)> logr = 2logr

if 0 is sufficiently close to 0, and if z is sufficicntly large. This implies imme-

diately what we want to prove.

We are now in a position to prove

3.3.4 Theorem. Suppose there exist 0 < 0,,¢, < 1 such that (2, z%) >



coz/ log z for all large z. Then Ni(m) > m'=% for infinitely many m.

Proof By Lemma 3.3.3, there is a positive number 0, < 0, such that
(3.3.5) Mi(z,2") 2 az/logz

for all large z, where ¢, = ¢,/2.
Let t be large, and let y = (log ;t)”ll'

Consider the following sets:

F={pepn(ky]: P(p-k)<logz},
A={neINN(0,z]:n is square-frec and p | n = p € F},
B = {®i(a):a € A}.
Obviously, |F| = Ii(y,logz) = Mi(y,4”) and B C {n € NN (0,2] :
P(n) < logz} (so that |B| < ¥(z,log z)).
Let r = [logz/logy]. Then the product of any r distinct primes in F
does not exceed y" < y'°6%/1°8¥ = z and hence this product is in A. By

(3.3.5),

|F| > cqy/logy = c,(lOg.r)éf/logy > logz/logy 2.

IF

r

F 1\ 1o\ 7 —o, \ T
IE (' ,') > ('—’3-') > (allogn ) > (atiopn) )™

4 r

Therefore, 4 contains at least elements, and so
)

—_ Il—-gl +O(l).
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On the other hand, it is evident from the definition of B that

|A] < 3 Ni(b).

beB

Thus we obtain

1-0; +0(1)
(3.3.6) z < E%Nk(b) < 1Bl max Ni(b).

Now suppose to the contrary that Ni(m) > m'-% for only finitely many
m. Then there exists a constant c; such that Ni(m) £ com!'=% for allm € IN.

Since |B| < ¥(z,logz), and since ¥(z,log ) = o(z*) for any € > 0 by
Lemma 3.3.1, we deduce from (3.3.6) (by choosing € = (0, — 01)/2) that

0,40

[P}
x1—01+o(1) S m—&,—— 1-

T . czx"o" = CoT

But this is impossible since 1 — 0, > 1 = (o + 0,)/2. The theorem is thus

proved.

It remains to show that the constants 0,,¢, in Theorem 3.3.4 do exist.
To this end, we quote two more results from {Gol69] and [HooT3):
3.3.7 Theorem (Goldfeld-liooley). Let Ve < r¥ <y < z. Define

To(y)= Y, ~(zigk)logy,

x‘n(qsy

where ¢ denotes a variable prime. Then we have

(3.3.8) To(z) = = + O(zloglog z/ log x),
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(3.3.9) T.(y) < (4 +0(1))z log(yz~#)/ log =

for all large z.

We may now prove
3.3.10 Theorem. Ii(z, zt) > cz/log x for all large z, where ¢ is any positive
constant less than 1 — 4log(2)(= 0.1074...).
Proof We clearly have
n(2) - (k) - Mz, 2¥) = 37 7(3ig ),
s¥eogs
ard hence by partial summation and by using the notation in the Goldfeld-

Hooley Theorem, we obtain

o ¥ T-"—'
(3.3.11) r(z) — (k) - Mi(z,z) = 71;;:1;) + /J ;ro(glz')'!;dy'

Forr} < y < zt, we use (3.3.9), and for 2% <y < z, we use Ty(y) <

Te(z) ~ £. Thus

r(z) — n(k) - iz, x%)

4+o(1))z =" log(yz~?)
< (3 - ( —_—
- (2 + 0(1)) log z * log x /,~,1/2 ylogly d

:d
o) e[,
= (41og (2) +o(1)

log x’

and our result follows since 7(z) = w(k) ~ z/logz ( — 0).



A combination of Theorems 3.3.4 and 3.3.10 yields

3.3.12 Theorem. Ni(m) > m? for infinitely many m.

As a consequence, we get the following result which is already stated at
the end of section 2.3:
3.3.13 Corollary. For any n € IN, there exist infinitely many m € N such

that Ni(m) > n.

Theorem 3.3.12 shows the existence of a positive constant c for which
(3.3.14) Ni(m) > m* for infinitely many m.

Let C, denote the least upper bound for the values of ¢ for which (3.3.14)
holds. Analogous to the Erdés conjecture stated in the introductory chapter,
we make the following:

3.3.15 Conjecture. C; = 1 for all natural numbers k.

It is readily seen from Theorem 2.1.6 that Cx < 1. Thus, in order to
settle Conjecture 3.3.15, it remains to show Ci 2 1. What we have shown in
Theorem 3.3.12 implies that Cx > % (for all k € IN). This estimate can be
improved by using the Brun-Titchmarsh Theorem (3.3.2) and the well-known
theorem of Bombieri, which is stated below (see also Lemma 3.3 of [Hal74],

p. 111).



3.3.16 Theorem (Bombieri). For each real z > 2, and a € IN, let

a) = . (y)
E(z;a) = max ({23;*5‘ |7 (y; a,b) (P(a)l-
a3)=

Then, given any positive constant B, there exists a positive constant C such

that
z
cq) =0
)]
a<r?/log€ ¢

where the implied O-constant depends on B.

3.3.17 Theorem. Suppose ¢, is a positive constant such that Mi(z,z}) >

(co + o(1))z/ log z for all large z. Then for any lee < 0 <}, Mi(z,2°) >

z/logz. Hence, Cy 2 1 -e—;;—. In particular, we have Cy > 1 —625/512¢(=

4

0.5509...) and Ni(m) > m®® for infinitely many m (for all k € IN).

Proof As in the proof of Lemma 3.3.3, we have

M(z,ct) = Mi(z,2°) < 3 nlzi,k) =1,
r“(qfl&

-Co

: N 1 : . :
in which ru << 5 and ¢ denotes a variable prime. We are now going to

4

estimate ¥°, by using Bombieri’s theorem and the Brun-Titchmarsh Theo-

rem.
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From Bombieri’s theorem, there exists a positive constant C such that

Y r(z;q,k) =7(z) Y -‘-I-i—-l— +0 (l—%—)

s‘<q$z§/logcz t°<q<x§/logcz | 8 2
_ 1 Cloglogz z
=(z)leg (ar Tioge )*0 (1?“)

_ 1 z zloglogz
—108(20)'m+0( log® )

From the Brun-Titchmarsh Theorem (3.3.2), we have

6z 1 rlogl
Y rlngh) s > —-—;-0(——"—5—-"—)

~logz - 1
:§/103c3<q53§ °8 z*/logcz<q5x§ 1 o8z

Thus we have shown that

_ 1 T rloglogz
Ty =log (20) logz +0 ( log® z ) '

and hence

Mi(z,2°) > Mi(z,2¥) - T,

T 1 loglogz T
logz (log <-‘2_0.) +O( logz )) logz

> (co +0(1))

T

>
log z

since § > Ze~%.
The remaining conclusion of the theorem follows from Theorem 3.3.4 and

Theorem 3.3.10 (in which ¢, = 1 — 4log(3)).

3.3.18 Remark. The above theorem shows that an improvement of the con-

stant c, implies that of Ci. For instance, Pomerance stated without proof

2



in [Pom74] that he used the results of Iwaniec [Iwa80] to obtain My(z,z%) >
0.1200257(z) for all large z. That iv, in the case of k = 1, we may take
¢, = 0.120025, and so C; 21 — E;—o = 0.55655. .., as mentioned in the in-
troductery chapter. This is the latest published estimate on C;. We want
to point out that Theorem 3.3.17 is not strong enough to prove Conjecture
3.3.15 even if we have the best possible value for the constant c.. For if ¢, is
the constant in Theorem 3.3.17, then we infer from (3.3.11) and (3.3.8) that
co < %, i.e. the best possible value of c, does not exceed -;-, and hence the best

possible estimate of C, by Theorem 3.3.17 is that C, 21— # = 0.6967....

In a private communication to M.V. Subbarao, C. Pomerance claimed that

C, 2 0.68.
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Chapter 4

Carmichael’s problem for the

unitary totient.

Let a,b € IN. We recall that b is called a unitary divisor ofaifbia
and (b,a/b) = 1, and that b is said to be unitarily prime to a if the largest
djvisor of b which is a unitary divisor of a is unity. The unitary totient *(a)
may be defined as the number of natural numbers not exceeding a which are
unitarily prime to a. This unitary analogue of the Euler ¢-function is due
to E. Cohen [Coh60]. It is shown (see, for example, [Coh60]) that ¢* is a
multiplicative function with ¢*(p*) = p* — 1 for any prime p and a € IN.

The analogue of Carmichael’s conjecture for the unitary totient ©* is false,
because it is easy to see that for any a € IN, the equation @*(z) =2 -1 has

a unique solution, viz. z = 2°%



The principal aim of this chapter is to discuss the equation @*(z) = m
for two special types of m, namely i) m = 2"(n € N), and i) m = 4(2% - 1),
where p # 5, p = 1(imod4) and 2P — 1 is a prime (so that p itself is a prine).
Case 1) is already cousidered in a paper i M. Ismail and M.V. Subbarao
[Ism76]. However, in this paper, there ace mnistakes in the statement of the
related theorem (Theorein £ p. 51) as well as in the proof of a lemma
(Lemma 2.3, p. 50) vpon which the theorem depends. We will make the
corrections in section 4.1, As for case i), C. Pomerance noted in a private
communication to M.V. Subbarao that the equation *(r) = m has a unique
solution (viz. » = 5.27), so that this provides a non-trivial example for
which the unitar analogue of the Carmichael conjecture fails (Subbarao had
conjectured that if n is even, then @*(r) = n never has a unique solution.
Case i) is thus also a counter-example to this conjecture) No proof of
this as been published so far. We will give a proof of this in section +.3.
This proof depends on the complete solution of the diophantine equation
o v = 3 therefore, we insert a detailed discussion of this diophantine
equation in section 4.2

We conclude this chapter by giving a brief discussion of the solvability of

the cquation 27(r) - in general.
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§ 4.1 The equation p*(z)=2".

It is an clementary fact that if 2° + 1(a € IN) is prime, then a = 2% for
some non-negative integer b. A number of the form Fn = 23" 4+ 1(n 2 0)
is called a Fermat number (of course, it is called a Fermat prime when it
is a prime). Up to now, only five Fermat primes are known (viz. when
0 < n < 4). Recently, with the help of supercomputers, Fy is proved to be
composite by J. Young and D.A. Buell [Yous8]. From this together with the
work of carlier writers, we now know that Iy, for n equal to 5 y through 21,
are all composite. I s the smallest Fermat number of unknown character.

With the above up-to-date information about the Fermat numbers, we
may now give a corrected and iodified version of Theorem 4.1 of [lsm76]:

4.1.1 Theorem (Ismail Subbarao). The equation

has no solution for 32 < n < 2% 1f n < 31, then the Hnly solutions of (4.1.2)

are
4
H ')7"’: +1) " and 2 H ’>‘)“J + l if 1 3(modd),
=0

or

4 4

4
n(32,u’ + 1) .QH(” RIS " and 3 n Wy l if e 3 (moddy),

1=0 =0
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where n = ag + 2a; + -+ + 2"a,,a; € {0,1}, and
A . 1 if b=0,
(2°+1) =
241 ifb#0.

As remarked in [Ism76], the number 222 may be replaced by 2™ where
.. is the smallest Fermat prime greater than Fy (however no such prime
is known so far). The proof of this theorem depends on the following two
lemmas. The first one is quoted from [Utz61). The proof of the second
one in [Ism76] contains many minor mistakes. We conclude this section by

providing a corrected proof of this second lemma.

4.1.3 Lemma (Utz). The only solutions of the diophantine equation
2041 =3

are

and

(1.1.5) il=p

has no solution unless pis a Fermat prime and y = 1.

Proof Since pis odd. we can always write p = 2"n + 1 with n odd.
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Suppose (4.1.5) is satisfied for some z,y € N,

Then n | (p¥ = 1) = 2% since n | (p—1) and (p—- 1) | (p¥ = 1). Therefore,
n =1 and pis a Fermat prime.

Next suppose y > 1. From the above, p = 2™ 4+ 1. Clearly, ] <m < r.

Hence {4.1.5) implies

r-m __ - y a(y=1m _ gm 4 y a{)-m
(4.1.6) =Y i) =y+2") j 2 \

=1 =2

so that 2 | y- Now suppose 2° | y for some a € IN. We assert thae 204!

divides each term in the above sum. This is seen as follows. The j-th term,

j > 2, of the sum can be written as

yy=1(y=J+ 1, -nm
J! i '
Write j = a, + 2a1 + -+ + 2"a,, a; € {0, 1}(a, # 0). Then the highest power

(4.1.7)

of 2in jlis ay +(22 -Dag+---+(2"=1)a, =J—(ap+a+- - +ay) Since
the highest power of 2 in y-20-1™ is at least a +(j ~ 1)m, the highest power

of 2 in (4.1.7) is at least
a+(j—1)m—j+(ao+~---}-a,)2a+'.’(j—l)——j+lZa+l.

Therefore 22+ < 25=™ 5o that 2%} | 2°=™, and hence 2°*! | y by (1.1.6).

This is obviously impossible, thus completing the proof.

§ 4.2 The diophantine equation 2° —5 =3

Throughout this scetion, 7.y denote positive integers.



Many diophantine equations have only finitc.y many solutions. The equa-
tion
(4.2.1) ¥ -5V =3
is one such example, as we are going to show in Temma 4.2.5 (see also
Theorem 4.2.26). In order to solve equations of this kind completely, one
needs explicit upper bounds for the size of all the solutions of these equations.
The first useful result in this direction is the following well-known theorem
of A. Baker [Bak68].
4.2.2 Theorem (A. Baker). Let ay,...,as(n 2 ?) be ncn-zero algebraic
numbers with heights and degrees not exceeding integers A, d respectively,
where A > 4,d > 4. Suppose 0 < § < 1. If rational integers by,. .., b, exist,

with absolute values at mcst H, such that
0< |bloga, + -+ bylogas| < e=H.

where “log™ means the principal logarithm, then

n 2
H < (176 d log )

However we are not going to use this theorem, because for our purpose
it can be replaced by a recent result of P. Philippon and M. Waldschmidt
[Phis8]. We quote Baker's theorem only for comparison (see Remarks 4.2.8

and 4.2.25 below).
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4.2.3 Theorem (Philippon-Waldschmidt). Let ay,...,an be non-zero alge-
sic numbers and G, ... , Bx be algebraic numbers. For 1 <j < n, let log a;

be any determination of the logarithm of a;. Assume that the number
A= ﬂo+ﬂll°gal +-- 4 /’nlogan

does not vanish. For an algebraic number a, we denote by H(a) the height
of a.

Let D be a positive integer and Ay, ..., Ay, 4, B be positive real numbers

satisfying

D > [Q(er. @ Bore.r Ba) 1 Q)

A; > max {H(a;),exp|loga;|,e"} 1 S j < m,

A = max{A},...,4n, €},
and B = max{H(B;):0<j <n}.
Then

Al > e ",
where
U = C(n)D"**log A, - - log An(log B + loglog A)

and C(n) € 287453 . n?,

Before applying the above theorem, we prove a little lemma,
124 Lemma. If 0 < t < &, then [log(1 = t)] < 2t. Moreover, if u 2 570,

then 6274 < =059,



Proof Consider the function f(t) = |log(1 —t)| ~2t = log (1 — t)' —2t. We
have f'(t) = Tl_f -2= 2: —tl <0for0<t <}, andso f(t)is decreasing

on [0,3). Therefore, f(t) < f(0) = 0for 0 <t < 1. This proves the first

statement.

log 6
For the second statement, we note that l o8 = 569.322... < 570.

og 2 - 0.69

Thus if u > 570, then u > log6/(log 2 — 0.69), and hence
e(log2—0.69)u > elogG =6 ,

le. QU . g~06% 5 6

or 6.27% < e 00,

We may now apply the Philippon-Waldschmidt Theorem to prove
4.2.5 Lemma. If 2* — 5¥ = 3, then = < 10%,
Proof We may suppose ¢ > 570 (otherwise, there is nothing to prove). It

{. lows from Lemma 4.2.4 that

a)r

(1.2.6) |rlog2 — ylog5| =|log (;—y) | = |log(l =3-277)]
< 2.3. 2~x =6-2"FT < 6—0'691:-
Clearly |zlog?2 — ylog5| > 0. Therefore, the Philippon-Waldschmidt
Theorem is applicable with n =2, ay =2, a2 =5, 3, = 0, By =z, b2 = —y,
D=1 4 =45 =¢* A =¢ and B = r. Using the notation of the theorem.

we have

[7< 218453 94 190 (logr + loglog ) = 27 (log £ + 1),
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and so |z log2 — ylog5| 2 e~3"*(logz+1)  This together with (4.2.6) implies
(4.2.7) e~0807 5 -*(logrHl),

It is straightforward to verify that 0.69z > 2"(logz + 1) whenever z 2

10%%. Thus our conclusion follows immediately from (4.2.7).

4.2.8 Remark. If we apply Baker’s theorem to equation (4.2.1), we can get
only that z < (4*-0.697".4%.log5)*® = 4.0516... - 10'%® < 10" Thus
Lemma 4.2.5 gives a much better upper bound, and this would save us a lot

of computer time.

Now we know that equation (4.2.1) has finitely many solutions with z <

1025, Tt is easy to see that this equation has at least two solutions, namely

After determining the upper bound for the size of the solutions of a diophan-
tine equation, in order to solve the equation completely, one has to make
use of the special property of the equation. The remaining discussion of this
section is devoted to showing that equation (4.2.1) has no solutions for which
z > 8. This will be accomplished in a series of lemmas. Firstly we prove

1.2.9 Lemma. Let j € IN be given, and let a, be determined by the congru-
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ence 2¢¥~" = q;5' +1 (mod 5%) together with 0 < a; < 5/, Then
945" = ¢;5" + 1(mod 5"*) for all n 2.

(Remark. By the Euler-Fermat Theorem, 2¢¥~" = m5/ 4 1 for some

AL

integer m. Dividing m by & and taking modulo 5%, we get

a;5 4 1 (mod 5%) for some 0 < a; < 5. It is easy to see that this a;

is uniq-~ ly determined.)

Proof. Denote by S(n) the statement * 245" = ;5" 4+ 1 (mod 5"*7)".
The definition of a; implies that S(j) is true.

Suppose S(n) is true for some n > j. Then 25" = b 5" 4 a5 + 1
for some integer b. It follows that
5™ (b5 4 a;)5" +1)°

5(b 5j + aj)sn +1= aj5n+l +1 (mod 5n+l+j).

That is, S(n + 1) is also true. Therefore, S(n) is true for all n 2 ;.

4.2.10 Corollary. We have

(4.2.11) 247" = 3.5"+1 (mod 5"*') foralln 21,

(4.2.12) 2+%"7" = 621018-5" + 1 (mod 5™"'%) for all n > 10.

Proof 1t is computed (with the help of a computer) that
a, = 3, ap;=4az = 18, a4y = 393, as = 2268, ag = 11643,

4 = 74143, ag = 230393, ay = ay0 = 621018.
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4.2.13 Remark. Clearly, 2 is a primitive root modulo 5. From (4.2.11) we see
that 2 is also a primitive root modulo 5" for any n 2> 2 (of course, this follows

also from standard results). (4.2.12) will be needed for further computation,

We prove the following property of the a;’s for future use.
4.2.14 Lemma. a; = a; (mod 5%) for all j 2 ¢ In particular, a; =3 (mod
5) forall j 2 1.
Proof 1t is sufficient to prove aj41 = a; (mod 5) for all j 2 1.

By the definition of the a;’s, we have a;,,5+ +1 = 2% (mod 59+17)
and 2¢%7" = b.5% 4 ¢;5 + 1 for some integer b.

Now taking this modulo 5¥*!, we obtain
aj¥t +1=((b- 5 +a;)5 + 1)5 =5b-5 +a,)7 +1= ;5 + 1.

This implies immediately that a;41 = a; (mod5?).

Next we introduce the following definition which is legitimate since 2 is
a primitive root modulo 5" for all n 2 1.
4.2.15 Definition. For each n € IN, denote by r, the smallest positive integer
for which 2™ =3 (mod 5").

We give some basic properties of the r,’s in the following
4.2.16 Lemma. For any n € IN,
) re < 4501,

") rn+1 _>_ LT



i) Fng1 = 45" 19, + 1y for some 0 S 8n <5
Proof i) and ii) follow immediately from the definition and the fact that
p(5") =4- 5=t

Consider 2 (2M+1="n — 1) = 2"+ = 2™ =3 —3 = 0 (mod 5"). This
means that 5|27 (2"+ =" —1). Since (5",2™) = 1, we have 5h|(2mm+r =T — 1),
i.e. 2m+1="m = 1 (mod 5"). Since 2 is a primitive root modulo 5", we get
45" |(Pagr = o)y €. Tagy =4+ 5"V, + ra for some non-negative integer

sn. Infact, 8, < 5, for if s,, > 5, then ray1 2 4.5"1.5 = 4.5, contradicting

).

Suppose n and r, are known. Then r, can be calculated from formula
iii) of Lemma 4.2.16 if s, is computable from the known value of r,. Since
rns1 is determined by the congruence 2™+ =3 (mod 5™t1), it is natural to
consider the least non-negative residue of 2 modulo 5™+!. It follows from

Definition 4.2.15 that
(4.2.17) o™ = 5%, +3 (mod 5"*)

for some integer 0 < t, < 5. Note that the number ¢, is computable. We are

now going to derive a relationship between s, and t,. Taking modulo 5"*!



and utilizing (4.2.11) and (4.2.17), we have
0 =2t — 3= 285" ebrn _ 3 o (2487 g 3
= (3.5 +1)"(5"a +3) =3 = (3. 5" + 1)(5"tn +3) = 3
= 0. 5% + 5™ +3 =3 = (950 + n)5".
This implies that 93, + tn = 0 (mod 5), and so s, = t, (mod 5), i.e.
sn = t, since both numbers lie in the interval (0,5).
Summing up, we obtain

4.2.18 Lemma. For any n € N,
el = 4. 5""t,, + T'ny
where ¢, is uniquely determined by

2™ = 5", + 3 (mod5™*') and 0 <ty <5

Using this lemma, we found that
r==3, rp=r3="1,14=107, 15 =607, 76 = 8107,
ry = rg = 45607, ro = 358107 and rio = 1920607.

Our purpose is to compute r, for n large (say n = 40) (see Lemma 4.2.24,
where this is needed). Note that we do not need to know every intermediate
value of the r;’s. From this point of view, Lemma 4.2.18 is not effective
enough. However, the idea involved in proving this lemma is still useful. In

order to make the idea more transparent, we put our discussion in a more

general setting.



Let j be a given integer > 2, and let r, be given for some n 2 j. We
would like to calculate ro4; from ra. Firsily, consider 2™ modulo 5"t (this
is computable). From Definition 4.2.15, we know that 2™ = m - 5" +3 for
some integer m, but we can always write m = m'- 5 + t, with 0 < 2, < 59,
and so

(4.2.19) o™ =5, +3 (mod 5"7), 0<¢t, <.

Similar to iii) in Lemma 4.2.16, we have rp4; = 4+ 5n-1g. + r, for some

0 < sy < 5. Taking modulo 5"+ and utilizing (4.2.19) and Lemma 4.2.9,

we have .
0 =2 —3=(2"")" .2 —3
= (a;5" +1)"(5"tn +3) =3
= (a;5"sn + 1)(5™t, +3) =3
= (3a;sn + ta)5™.
Consequently,
(4.2.20) 30,8, +ta =0 (mod 5).

Let k; be defined by 3a;k; + 1 =0 (mod ) with 0 < k; < 57, Then by

multiplying both sides of (4.2.20) by k;, we get
$n = kjt,  (mod b7).

When j is large (say j 2> 5), the congruence 3a;z +1 =0 (mod 5%) is
not easy to solve directly. However, there is an inductive way to calculate

k; if k;_; and a; are known. Consider 3k;_ja; + 1. From Lemma 4.2.14,



|

this number is congruent to 3k;j-1aj_1 + 1 modulo 5/=1, but in turn the last
number is congruent to 0 moduio 57! by the definition of kj. Thus we
may write 3kj_ja; +1 = 57 (mod5) for some 0 < ¢; < 5. Note that

this £; is computable. Next, consider

3(4;5! + kjy)a; +1 = 3a;45 7" +3kjqa+1
= 3a;0;57" + £;5°! (mod 57)
= (3a; + 1);5 !
=(3-3+1)5 1 = (mod &) ,
in which we have applied the last statement of Lemma 4.2.14.

Observe that 0 < £;5~! + kj_; < 457 + 5-1 = 57, Tt follows from
the definition of k; that k; = ;5! + kj_;. Summing up, we proved the
following: suppose k;_; and a; are known, compute ¢; such that 3kj_1ai+1 =
£;5~1 (mod 57) with 0 < ¢; < 5, then k; = 2571 + kj_y (equivalently,
k; = (3a; + 1)kj_1 + 1 (mod &) with 0 < kj < 5/). In this way, we found
that

k=1, ky=6, ks=81, ky=ks=58l, ks=13081,
k= T5581, ks = 231831, ko= 1794331, ko = 7653706.
In pariicular, we obtain a method to calculate Tpy10 from 7, which is the

following:

4.2.21 Lemma. For any n 2> 10,

n-1
Tn4l10 = 4.5 Sp + Tny



where s, is (uniquely) determined by
0 < sy < 9765625(= 51,
s = T653706L,  (mod 9765625),

(5" =2 =3 (mod ")

Sinee rg = 1920607, by using Lemma 1221, the values of 104 Mo, Mo are
caleulated (on a computer). We have
Fag = 20922 TH3TS A8107,
Py = 0 19917 guTTO STSIL TO60T,
rw = L6l H3TSTY KO529 58550 17519 20507,
In particular, note that

(14.2.22) Fao ™ M0
We are now ready to solve equation (1.2.1) completely. Before duing so,
we prove two more lemmas,
223 Lemmas e hand 29 =572 30then y > 0.
Proof Consider the function fuf) RN A1
We have £(0) — (o 2)20 (0 o 50 s 0 for all £ > 0 (note that

WOV pauden ) Thus o) s incieasie Qioughout (0, x0), and o
fory i S W o3 o allbt o0

Henee ot o0 0 5 and oo 04 then Y N R frog > 3.

contradionom
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4.2.24 Lemma. If £ > 8 and 25 = 5¥ = 3, then x> 10%,

Y

Proof Clearly y 2 4. By rewriting the equation in the form 29 - 3 = 5%,

we see that 2¢ = 3 (mod 5%). It follows that r 2 ry = 107. Now Lemma
4.2.23 implies that y > 0.4(107) > 0, and this in turn implies that 27 =

3 (mod 5'°). Hence, by (4.2.22), 1 2 140 > 103,

1.2.95 Remark. If we know only that r < 10™ (as Baker’s theorem gives),

then we need to know the values of ry, for n up to 200.

Combining Lemmas 42,5 and 4.2.24, we conclude that

1.2.96 Theorem. The diophantine equation 27 = 5Y = 3 has exactly two

solutions, namely

J = 3 I ==
and

y =1 y=3.

1297 Remazk. Atter the above method was detived, we found a paper by
R.J. Strocker and 1 Uidenan [Sev2], which contains the following result:
Theorem (Strocker-Tijdeman). The only sclutions to the inequality O -
Ip* = ¢¥| < P an primes pogowith 1oepoogo 20 ae (P04

(2.8 0.1), (2.3.2.0), (2382, (2353) 007, PN 2o (20.008) 12

(2.011.7.2) (2l 2nn s e i (358 (32 ) e



(313,7,3), (5,7,1,1), (5,11,3,2), (7,19,3,2), (11,13,1,1), and (17,19,1,1).
Theorem 4.2.26 follows casily from this theorem. However, the method

given in the above needs only the basic tool from transcendental number

theory (and the help of a computer, of course). Because of the originality of

the above method, it is worthwhile giving complete details.

§ 4.3 The equation ¢*(z) = 4(2" - 1).

With the help of Theorem 4.2.26, we are able to show
1.3.1 Theorem. Suppose p # 5, p= i (mod 4) and 2P — 1 is a prime.
Then @*(r) = 4(2" — 1) has a unique solution, viz. z =5 2"
Iroof Assume o (x) = 4(2" - 1).
Clearly r has at least one odd prime factor and not more than two.

If gyt || o ane @ | o for some odd primes ¢ £ qa(ay, a2 € IN), then
(1.3.2) (@™ = D)(g2™ = 1) 42" - 1)

Sinee g = 1(1 == 1,2) are both even, and since ¢ # 2%, it follows

from (1.3.2) that
gt =2 and gt - 1= 2(20 = 1)

{or the other way round; here we have made use of the primality of 2P - 1)

e, @' =3 and gt o2t 1

6



But it is obvious that 3 | (2P*) — 1), and so the last two cquations imply
@1 = q2 = 3, which is impossible.

Thus we have shown that z has exactly one odd prime factor, That is,
z = 29¢* for some odd prime ¢, and a 2 0,b 2 1.

Suppose @ =0, i.c. ¢ = ¢ Then ¢® — 1 =4(2¥ - 1), i,
(4.3.3) ¢ =2 -3

Since p = 1 (mod 4), p = dn + 1 for some n € IN, and since 16 = 1

(mod 5), we have
gp+l 3ol _3=1.22-3=8-3=0 (mod}?)
It follows from (4.3.3) that ¢ = 5, and (4.3.3) becomes
(4.3.4) ointd _ gt = 3,

By Theorem 4.2.26, b = 1 or 3. It is casy to see that & = 1 cannot happen,
and so b = 3. Putting this into (4.3.3), we get 27*? — 3 = 125, e po= D,
contradicting the hypothesis of the theorem.

Thus a # 0.

Next if a = 1, then ¢*(2°¢%) = ¢"(¢%), and from this we will obtain (1.3.3)
again, which is proved to be impossible.

Hence a > 1, and from (2° - )¢ = 1) = p7(r) = 42" — 1), we conclnde

dhat 20— 1= 2" — 1 and ¢" = 1 =4 (note that 20 - 1> 1y odd and ¢" 1

-3
-1



. . . . b .
is even, and also that 2° — 1 is prime), i.e. a = p,y" =35, le. 7 = 5.2°, as

desired.

4.3.5 Remark. When p = 5, the equation ¢*(z) = 4(2” — 1) has three
solutions, viz. ¢ = 5-2%,5% and 2. 5% The condition p =1 (mod 4) is also
necessary. For instance, the equation ¢*(z) = 4(27 — 1) has three solutions,

viz. £ = 527, 509 and 1018.

§ 4.4 The solvability of ¢*(z) =n.

Let V*(z) = |[{n € NN (0,1] : n = p*(m) for some m € IN}| (z 2 1).

It is casy to see that ©*(n) > p(n) for all n € IN. Thus, there is an
absolute constant ¢, such that n < cop®(n)log log(3p"(n)) for all n € IN (to
see this, we may take k =1 in (2.1.3)).

Now we may apply the same technique as in section 3.2 to obtain

1.1.1 Theorem. For every ¢ > 2,/2/log 2, we have

V*(.) = O(r(x)exp(cy/loglog ;))

Proof By using exactly the came argument as given in the first part of the

proof of Theorem 3.2.4, we get

V() < 7(r)(log log x)* 07288 £ (9)

oo gR(e*(n))

for any 0 < # < 1 and large . where 3 = 2/log 2 and f°(0) =
n

n=1



The required conclusion follows from Lemma 3.2.1 and the fact that

o f(p™-1) ghilp-1) gRr=1)
o= £ 55 <145 son (557
m=1 | 4 - P -

P P

4.4.2 Corollary. For almost all n, the equation ¢*(x) = n has no solutions.



Chapter 5

Concluding remarks and open

problems.

In the introductory chapter, we mentioned the following results:
(5.1) Erdés [Erd58] showed that if n is a natural number with the property
that N(m,) = n for scme m, € IN, then N(m) = n for infinitely many
m € IN.

(5.2) Pomerance [Pom80] showed that fer all large m,
N(m) < mexp(—(1 + o(1))log m log log log m/ log logm) .
(5.3) Maier and Pomerance [Mai88) showed that

Vir) = 102 —cxp((¢ + o(1))(log og log =)?)

for some explicitly determined constant ¢ (= 0.8173...).



It is expected that all these results can be generalized to the functions Ny
and V; (see sections 2.1 and 3.2 for their definitions), i.e. (5.1) and (5.2) are
still true if N(m) is simply replaced by Ni(m), and (5.3) is still true if V()
is replaced by Vi(z) and c is replaced by some suitably determined constant
(which may depend on k). However, we do not know how t> determine ¢ in
the general case. Moreover, we are not sure if the exponent 2 in (5.3) still
holds for Vi (should it be k +17).

We hope that these problems can be settled in a near future.

Finally we would like to raise the following questions and conjectures
{some of them have been mentioned in previous chapters).

(5.4) Does Hypothesis H imply the Carmichael conjecture?

(5.5) (Conjecture) Let k be an arbitrary patural number. Then for any
integer n > 1, there exist infinitely many m such that N, m) = n. (This is
a generalization of the Sierpinski conjecture mentioned in Chapter 1.)

(5.6) Does Conjecture 5.5 follow from Hypothesis H?

(5.7) (Conjecture) Let p; denote the i-th odd prime. Then for n 2 2,

n-1
(pn—2) | H pi(pi — 2).

(5.8) Let k € IN be such that k +1 and 2k + 1 are both prime. Define the
sequence{qun},s, @ i (2.4.5), and define £ = {din}, 5,1 We conjecture

that
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(5.8.1) { = lg =00 .
(5.8.2) ¢ = oo for infinitely many k (satisfying the above condition).

(5.8.3) For any integer m > 2, there exist infinitely many k for which
¢, = m. (We know already that this follows from Hypothesis H,

see section 2.4.)

(5.8.4) If & < oo, then Ni(m) = 1 for some m € IN. (Thus Ny(m) # 1
for all m € IN if ard only if ; = co. See Theorem 2.4.7 .)

(5.9) (Conjecture) Let k € IN be arbitrary, and let 0 < ¢ < 1. Then
Ni(m) > m!=¢ for infinitely many m. (This is equivalent to Conjecture
3.3.15.).

(5.10) (Conjecture) Let r, be defined as in Defiaition 4.2.15. Then

lim n
,;lzr%;>0.

(5.11) Determine all m € IN for which ¢*(z) = m has a unique solution.
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Appendix I. The sequence {g2,n},<nc1000°

1

10

11

3

23
71
113
293
367
491
751
883
1039
1123
1495
1697
1801
2039
2393
2663
3061
3373
3803

4073

5
37

7

53
97
179
347
401
547
797
907
1051
1297
1607
1747
1889
2111
2437
2689
3119
3623
3853

4397

17
59
107
181
349
439
557
853
971
1097
1319
1609
1787
1997
2113
2447
3011
3121

3659

448}

19
61
109
257
359
487
631
881
1009
1103
1321
1637
1789
1999

2137
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Appendix I(cont'd).

12

13

15

16

17

18

19

20

4507
5237
5531
aou7

6199

9511
10357
10799
11447
11701
12491
12853

13216

7741
8443
9007
9337
9619
10453
10979
11489

11867

12923

131451

5099

5399

9437
10099
10567
11251
11491
11953
12569
12973

113523

5101
5413
5669
6101
6343
6553
7309
1487
1673
8069
861
9239
9439
10267
10687
11287
11597
12101
12583
13109

13687

6449
6607
7331
7489
7681
8167
R689
9241
9467
10313
10729
11411
11699
12149
12841
13217

13729
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Appendix I(cont’d).

22

23

24

25

26

27

30

31

32

14503
15137
15551
15739
16703
17333
17551
18311
18617
19267
20219
20611
20921
21169

21821

23873
24109

24907

14779
15139
15607
15767
16741
17387
17609
18313
18719
19457
20357
20663
20947
21191
21929

22397

23209
23899
24137

25319

15013
18217
15619
15773
16921
17389
18169
18451
18797
19583
20359
20681
20959
21193
22031

22469

15031
15299
15679
16273
17047
17443
18287
18503
19013
19661
20393
20807
21149

15107
15307
15737
16547
17117
17467
18289
18593
19031
19949
20593
20809

21163

23041
23599
24107
24781

25603
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Appendix I(cont'd).

33

34

35

36

37

38

39

25903
26987
27647
28319
28499
29129
29347
30187
30781
31183
31687
32057
32191
32939
33749
34183
34721
35437
3596S
37573

38371

25919
27017
27701
28403
28513
20131
29443
30293
30803
31333
31721

32059

37607

38561

26209
27067
27743
28409
28603
29167
29587
30319
30941
31481
31723
32063
32257
33037
33791
34471
35107
35897
37447
37087

38707

26449
27239
27763
28411
28817
29179
29833
30497
31139
31567
31741
32183
32401
33247
33857
34631
35317
35899
37529
38201

38839

26959
27241
27847
28463
28859
29269
29947
30517
31181
31667
J1751
32189
32647
33487
33863
34693
35407
35923
37571
38303

38921

o



Appendix I(cont'd).

43

44

46

47

18

53

38923
39439
40343
41149
41893
42709
43541
45413
46153
46591

50111
50773
51787
52673
53323
51059
54679

55259

38971
39659
40591
41183
41981

42821

52757
53437
54347
51369

55511

39079
39671
40739
41189
41983
429413
43711
45691
46237
46817
47407
48619
48823
30333
51151
52163
52807
53179
34503
34941

55949

53699

54581

54583
55243

56237
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Appendix I(cont’d).

54

59

56

57

58

59

60

61

63

56239
56467
57803
59387
60497
61757
62171
62873
64399
65393
65701
66067
67153
67273
68437
69991

71347

56393
57041
58193
59467
60659
61781
62423
63667
64567
65537
65707
66221
67217
67409
68743
70793

71693

56417
57047
58963
59497
60661
61813
62473
63761
64661
65539
65789
66271
67219
67411
69119
70979
71699
72337
73897
74887

76537

56431
57173
59233
59791
60719
61991
62617
64013
64663
65543
65957
66797
67247
67607
69623
70981
72221
72383
74623
15223

76579

56437
57457
59263
60457
60737
62011
62791
64283
65053
65699
66047
66919
67271
68261
69809
71233
12223
73133
4717
75703

77351
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Appendix I(cont’d).

64

65

66

67

68

69

77489
77747
78857
80341
81199
83071
83719
85297
86453
87541
88469
88997
89567
91141
91957
92761
93419
94649
95063
96179

96737

77491
78173
78901
80963
81203
83231
85037
85597
86579
87803
88471
89123
39959
91151
92317
92957
93637
94651
95219
96181

96739

77647
78583
79349
81013
81689
83233
85103
85847
86719
88007
88667
89371
90793
91153
92507
92959
94117
94819
95287
96289

96321

7711
78623
79451
81181
82499
83537
85229
86137
87337
88037
88873
89131
90847
91237
92593
92987
94321
94933
95813
96337

96823

7713
78697
79973
81197
82549
83717
85237
86201
87539
88069
88897
89501
91139
91493
92717
93083
94483
95003
95857
96731

97943
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Appendix I(cont’d).

75

76

77

78

79

80

81

82

83

84

98297

98897

99581
100591
101957
102811
103993
105323
105967
106411
107137
108739
109141
111779
112339
113341
113957
115831
117167
117811

118249

98299

98899

99859
101197
102259
102967
104047
105751
106217
106531
107323
108887
109741
111781
112459
113381
113963
116047
117203
117917

118297

98459

98953
100103
101561
102317
103307
104471
105817
106219
106957
107693
108991
110161
111857
112589
113383
114343
116663
117239
117973

118543

98479

99347
100391
101573
102367
103409
104473
105907
106261
106993
107699
109097
111409
112031
112951
113783
1156331
116923
117241
118057

119503

98533

99349
100393
101797
102551
103991
104597
105953
106307
107123
107713
109139
111667
112337
3117
113899
115807
117023
117809
118247

119533
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Appendix I(cont’d).

85

86

87

88

89

90

91

93

94

120011
122219
123449
124433
125117
126001
127859
128831
130211
130411
131129
132929
134161
135431
136393
138191
138617
139291

140453

120163
122533
123551
124471
125119
126653
127873
128833
130307
130579
131293
133169
134639
135433
136403
138461
138797
139397
140639
141931

142357

121333
123209
123553
124669
125207
127247
127997
129517
130337
130631
131581
133979
134857
135571
137573
138497
138799
139487
141157
142007

142501

121697
123217
123737
124799
125497
127249
128629
129587
130343
130633
131707
133981
134989
136093
137771
138563
138841
140009
141461
142057

142567

121711
123269
124133
125113
125617
127447
128717
129589
130409
130969
132247
134053
135271
136207
137933
138587
138937
140057
141587
142217

142939
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Appendix I(cont’d).

96

97

98

99

143159
144259
145207
145879
146563
147607
148531
150721
151687
152857

153953

143243
144583
145637
145897
146617
147937
148537
150989
151729
153313

155137

143281
144629
145661
145903
146701
148171
148829
150991
151799
153343

155741

144139
144847
145753
146347
147517
148339
149269
151573
151897
153449

155809

144247
145063
145799
146449
147547
148411
150169
151597
152197
153563

156011
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Appendix II. The sequence {ggn}, ., 300

1

5

-]

8

10

7
109

769
9613
12907
18583
74017
80557
101527
130087
189493
213319
483499
554707
970297
1021663
1090333
1278819
1416457

1837249

13

139
1423
9619
13933
25447
74887
96697
101533
178093
189949
240883
522157
676927
970303
1029697
1094293
1319779
1493197

1904167

19

727
1429
9967
14323
25453
76123
96703
125053

182653

638813
973459
1030933
1094299
1325617
1530589

1913437

97

733
2647
9973
14503
27043
76129
98407
129457
182659
197803
288529
541693
875377
973537
1047247
1226959
1335379
1561213

1920013

103

739
5179
10009
18493
67339
79903
100267
129499
189307
198637
352057
541699
907549
981493
1089679
1256989
1389589
1797319

1935859

97



Appendix IL.(cont’d)
11 2015089
2025553
12 2460487
2575549
13 3537979
3774109
14 4590007
6796117
15 7042093
7305817
16 7392403
7636873
17 7813459
8954497
18 9460513
9738763
19 10292173
10584703
20 11148199
12568399

2016397
2035549
2460919
2773153
3544339
3791899
4590013
6814219
7211119
7330693
7392409
7660057
8297413
8955043
9460837
98475423
10409299
10584709
11837923

12617863

2016403
2315683
2467783
2796559
3611203
3978043
6285493
6926653
7216537
7339303
7396657
7660099
8298067
9186487
9538279
9847549
10457287
10622203
11837929

13386067

2016409
2376013
2575537
3383773
3750883
4053067
6767599
6934687
7216543
7339309
7396663
775059
8588719
9238459
9544903
9959797
10539979
10713289
12560827

1339423

2019709
2460373
2575543
3537973
3755263
4576669
6771673
6934693
7263463
7339957
7627717
77813453
8950339
9347659
9727129
10292059
10581937
10714129
12568393

13441723

R



Appendix Il.(cont’d)

21

22

23

24

25

27

30

13551019
13732843
14174263
16275733
17295739
18075427
18380827
18648373
19412149
19587619
19909837
20716873

23312227

24765859
25176937
26402083
26543299
28855249
33416869

36179863

13616947
14110819
14183047
17223373
17561953
18280723
18435649
18802387
19419523
19738783
19910263
20724793
23319679
24810337
25389607
26402197
27610549
32036689
33481909

36210583

13621627
14114869
14216509
17223379
17717929
18358129
18495613
18803947
19419529
19743067
20550757
20796073
23433169
24874687
26307847
26417929
27878563
32130013
33482143

36261259

13692937
14115397
15976027
17232949
18021217
18362203
18497209
19178503
19568749
19897663
20634469
21651439
23884243
24882643
26322853
26435077
28382377
33416857
34087393

36355273

13728409
14174257
16043389
17243437
18064663
18369187
18504337
19412143
19575877
19897699
20704447
21920359
24293653
25078657
26322859
26446183
28382383
33416863
34149067

36480253

99



100

Appendix IIL. The sequences {q""‘}nZI’G < k < 1000.

k lk {Qk.n}n>1
181 2 19, 37.
30| 2 |a1,6l.
36 | > 11 | 37, 73, 109, 7993, 295777, 21589129, 32239729,
798797809, 798893713, 798893749, 2353215097
8| 2 79, 157.
96| 2 |97, 193.
1381 2 }139,277.
156 | 3 | 157, 313, 49297,
198 | > 8 | 199,397,79201,79399,15761197,1245181846789,
495576117748207,496815942399589
910 | > 13 | 211, 421, 631, 89041, 133351, 265861, 56052571,
56185081, 111927691, 111927901, 11827092691,
17754485701, 35369172511.
228 2 | 229, 457.
270 | 3 | 271, 541, 811.
306 | >8 | 307, 613, 919, 282439, 86709079, 159111163639,
13796333769739905253, 12678830734390972927813.
330 | > 8 | 331, 661, 991, 1321, 865322701, 865323031,
571978523821, 189324819074821.
336 6 337, 673, 1009, 340369, 231129952369,

18669470757884497.



Appendix III(cont'd).
k& | {aen) s,
366 | 3 [ 367, 733, 269377.
378 | 4 | 379, 757, 287281, 82421781121.
438 | 2 | 439, 877.
198 [ 2 | 499, 997.
546 | 2 547, 1093.
576 | 5 | 577, 1153, 665857, 666433, 295217830414806337.
600 [ 4 601, 1201, 1801, 1299964201,
606 | 2 | 607, 1213
618 | 4 619, 1237, 766321, 766939.
660 | 2 661, 1321.
690 | 2 | 691, 1381,
T 3 TAT, 1453, 2179,
Ri0O{ 4 811, 1621, 1315441, 1316251,
S281 3 829, 1657, 1374181,
R76 | 2 87T, 1753,
936 1 3 937, 1873, 17554937,
966 | 2 967, 1933.
996 | 2 997, 1993.
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