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Abstract

Let W be a real inner product space and let 7 : WP — R be an alternating
j-fold multilinear form on W. A smooth map 7 : GF (W) — R is induced from
n. The level sets of this map are examined using transformation group theory
i the cases of the restricted determinant and the symplectic forms. An intrinsic
characterization of a symplectic form with respect to the given inner product

structure is developed for this purpose.
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1 Introduction

Let 1+ be an n-dimensional real vector space. Let n be an alternating real-valued
p-fold multilinear map, henceforward referred to as a p-form. Then n provides a
definition for the oriented p-volume of a parallelepiped spanned by p vectors. Now.
on a smooth manifold X, this can be done on each tangent space in a way which
varies smoothly with points on X. Such a construction is known as a differential
p-form on X and is used in a variety of contexts: de Rham cohomology, algebraic
and differential topology, and Hodge theory, to name a few. Thus, any structural
properties of differential p-forms may have applications in one or all of these fields.
Here. one avenue for increasing such structural understanding is explored.

If W additionally has an inner product structure, it is possible to induce
from n a smooth map 7 : GF (W) — R, where G} (W) is the Grassmann space of
oriented p-dimensional subvector spaces of 1. How is this done? If V € G (1),

let {vq,...,vp} be an orthonormal basis of V such that (vy,....v,) represents a

(V) == nlve, - - - vp)- (1)

Of course, there is a little work involved to ensure that such a map is well defined
and smooth. However, it is possible to verify this and even to discover that the
original p-form 7 can be recovered from the induced map. Thus a study of real-
valued alternating p-fold multilinear maps on an inner product space is equivalent
to the study of the induced maps on the Grassmann manifold.

Now, the Grassmann space is a compact homogeneous manifold. Thus.
the smooth map 7% has maximum and minimum values. Furthermore. by Sard’s
theorem, almost all points are regular. Now, the pre-image under a smooth real-
valued function of an interval consisting entirely of regular values is made up of
diffeomorphic level sets which, under appropriate group actions, are equivariant.

Thus. the critical values of 7 demarcate possible changes in the diffeomorphism



ciazses of level sets.

Furthermore, as a compact homogeneous manifold under O(n), the Grass-
mann space admits the application of transformation group theory. Supposc
that G is a compact Lie group which acts on G} (W) and for which 7 is G-
ecuivariant. Then this group action provides symmetry information about the
level sets. Specifically, each level set of 7 is decomposed into orbits of G whose
structure can be explicitly calculated. Furthermore, the Slice Theorem provides
an explicit fiber bundle structure for a G-equivariant neighbourhood of any orbit.
Thus, a local description is provided around each orbit. Moreover, transformation
group theory guarantees the existence of a unique maximal orbit type. Orbits
of this type, known as principal orbits, come together to form an open dense
submanifold of G (W). Finally, there are G-equivariant maps between principa!
orbits and non-principal orbits. These facts combined provide a global description
of how the orbits of G come together to form G;‘(W’). Moreover, since by the in-
verse function theorem level sets associated with regular values are subm:uifolds
of G} (W), this analysis can be applied independently to almost every level set.
Thus, transformation group theory provides a local and a global description of
each regular level set.

As vet, an analysis of this type for all p-forms has not been attempted. As
a first step in this direction. this thesis provides an in depth analysis for two types
of p-forms. First, largely for illustrative purposes, the restricted determinant form

created by defining
n(v1,-- -, vp) i= detfur] .- Jvplwpia] - .- een] (2)

for some fixed wp41,---,wn € W is studied. Thereafter, the more complex task of
applying this methodology to the symplectic form, a non-degenerate bilinear form,
is completed. Symplectic forms are commonly used in fields such as mechanics
and symplectic topology. Thus, this study should be immediately applicable in

addition to serving as an example of how general p-forms may be approached.
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Summary of Major Results

First, the induced map 77 : G} (W) — R was proven to be well-defined and
smooth. (2.4). It was also shown that n could be recovered from 17 (2.5).

Next, in the study of the restricted determinant, it was discovered that
only 0 and the extremal values are critical (3.7). Thus, all non-zero and non-
extremal level sets are equivariantly diffeomorphic. A fiber bundle description of
non-extremal level sets was given (3.9) and the structure of orbits in these level sets
were determined (3.10) giving sufficient information to apply the Slice theorem
and some more global results giving a complete description of each non-critical
level set.

In the symplectic case new invariants of the symplectic form were uncov-
cred: the symplectic spectrum a; > -+ > ar > 0 and associated symplectic
eigenspaces Wi, ..., W, (4.12). It is worth noting that this spectrum is not com-
pletely unknown in the field of symplectic topology. For instance, it is provided
as an example in [4]. However, we are unaware of any application of this infor-
mation. In this study, the symplectic spectrum and eigenspaces show themselves
to be intrinsic to the form. The symplectic eigenvalues turned out to be the crit-
ical values of 7 (6.5). Furthermore, we find that the maximal subgroup of O(W)
which preserves the level sets of 1 is U (W) x...x U (1) where [’ refers to a uni-
tary group in terms of a complex structure imposed on 117(6.6). The symplectic
eigenspaces are also indispensible in the calculation of the manifold structure of
orbits under that group action (6.8). It should be noted that this calculation gave

a homogeneous structure to the extremal level sets.



- Framework

i .- 1V be an n-dimensional real vector space with positive definite inner product.
1.t WP denote the p-fold cross-product of W and let 7 : W? — R be an alternating
-iold multilinear map on W, henceforward referred to as a p-form. This scction
sruvides the framework under which the structural properties of i will be studied.

In the presence of an inner product additional properties come to light.
For ins;tance, there is 2 natural isomorphism between the space of p-forms on I’
and the space of (n — p)-forms on W. To see this, we start by showing that by
the universal mapping property of alternating multilinear maps [6, p.57] there is
2 ~utural isomorphism between the dual space of the p-fold wedge product of 11",
(/"-\[,‘(DV))" and the space of p-forms. Thus, a study of p-forms 1s equivalent to a
study of functionals on /\p(I’V).

Define * : A (W) = A,_,(W) by requiring that for any orthonormal basis.

{wy. ..., w,} representing positive orientation,
*(wy A--- ANwp) = Wpgpp A - A Wq. (1)

Since this is required for any positively oriented basis and. in particular. for anyv
orientation preserving re-ordering of a given basis. * is defined on a basis of A1)
and can be extended linearly. This function, known as the Hodge * operator,
provides a natural isomorphism between A (") and N p (W) Clearly. this
and (/\n_p(H')>

which, by the universal mapping property of alternating multilinear maps. induces

induces an isomorphism between the dual spaces (/\p(ﬂf"))

an isomorphism between the space of p-forms on W and the space of (n — p)-forms
on W. Thus, it will only be necessary to study p-forms on W for p < 3.
Another consequence of the universal mapping property of alternating
multilinear maps and the inner product structure on W~ has much more far-
reaching consequences. Any linear functional on A (W) is defined by its val-

ues on a basis of A (). Recall the Stiefel manifold of orthonormal p-frames,
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1.(W) which consists of all collectisons of p orthonormal vectors in I. Now
suppose that (vy,...,v,) € Vo(W) aand consider vy A --- A tp. Clearly. the set
{ti A---Avy | (v1,...,0p) € Va(W)} spans A (W). Thus, a p-form 1 on W in-
duces a smooth real valued function =7 on V,(W).

Further recall the Grassmann. space of oriented p-dimensional subspaces,
G} (W), a quotient space of V, (W) umder the action of SO(p). It turns out. as will
be proven in (2.4) that 7 factors through the SO(p) action. Thus. we can define
7 : GF (W) — R as follows. For any~ V € Gf (W), choose an orthonormal basis

(¢y....,v,) which represents the oriemtation on V. Then

(V) ==1n(v1,-..,vp). (2)

In fact, as shown in (2.5), given omly knowledge of the function 7 on GH(V)
induced from a p-form 7, we can recover all of the original p-form. Thus, a study
of p-forms can be meaningfully reduced to a study of particular smooth maps on
GF(W).

In general, it is only necessar-y to consider level sets of positive values a.
Suppose that V is a p-dimensional su_bspace of I1". Denote by V"* and V'~ the two
oriented copies of V' (choosing positive orientation arbitrarily). Then, since 77 is
alternating, 7(V*) = —3(V~). So, flor any given o € R, we can see that 77!(a)
and 777! (—a) will have exactly the sarme structure. It would be possible to use this
argument to justify considering |77| om G,(W'). However, in a neighborhood of the
0-level set it may be advantageous to consider 7. Specifically, on GF (W), there is

a Z, action given by orientation reversal which leaves 1~ 1(0) invariant because
A(VF) = —i(V7) =0. (3)

On the rest of G} (W), this action maps 7~ (a) to —7~(«). Thus, it may be
possible to express 77}(0) as a doulole cover of some nearby level set. Although
this possibility is not explored in thiss thesis, it is sufficient to affect a minor choice

in notation. Furthermore, there exisst instances where taking the absolute value
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involves unnecessarily losing smoothness at 0. Therefore, we continue to study 7
on G} (W) and keep orientation symmetry in mind.

Finally, since G} (W) is compact. 7 achieves a maximum A, on G} (W). It
is assumed that the A, = 1. It is always possible to apply a scaling factor to get
this unless 77 = 0 and such a trivial case is uninteresting.

Before this analysis is done however, these assertions about how the func-
tion 7 can be induced and its properties must be proven. We start with a clarifi-
cation of the meaning of orientation on a vector space. This requires a recognition
of the topological structure of the general linear group GL(V') of a vector space
|

If dim(V) = n, given a basis, GL(V) can be represented by the set of
non-degenerate nxn matrices and, so is isomorphic to a subset of R™. Thus. the
standard topology on R™ induces a topology on GL(V). It is with respect to this

topology that we discuss the connectivity of GL(V).

2.1 Definition Let V" be a vector space and define the set
B := {(v1,....va) | {v1,.--:va} is a basis of V). (4)

Define an equivalence relation on B by B ~ B, if and only if the linear transfor-
mation which takes B, to Bs is in the connected component of the identity element
in GL(V). Then, the orientation on V' defined by B € B is the equivalence class
of B under the relation ~.

This definition supports the general practice of using an ordered basis
to represent an orientation on V. However, it is also commonly accepted that
there are two choices of orientation: positive and negative. This understanding
is not implicit in (2.1) and requires a consideration of the number of connected

components in GL(V').

2.9 Lemma  Let V be a vector space and let GL(V') be the general linear group

of V. Then with the standard topology, GL(V) has two connected components.
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Proof Given a basis of V/, GL(V) can be represented by

B :={(v1,...,vn) | {v1,---.Un} is a basis of V'} (:

(1)
N

and the orthogonal group, O(V’), can be represented by
V:={B € B | B is orthonormal }. (6)

Then the Gram-Schmidt orthogonalization procedure provides a deformation re-
traction from B onto V. Thus, GL(V) has the same number of components as
O(1”) since deformation retractions preserve homotopy sets and, of course, the 0°th
heoriotopy set of a topological space counts its connected components. Therefore.
we restrict our attention to O(V') which is homeomorphic to O(n) if n = dim V.

Now, if S7 is the p-sphere, there is a fiber bundle ¢ : O(p + 1) — SP with
fiber O(p). Furthermore, any fiber bundle has a long exact sequence of homotopy

sets associated with it [1, p.453]. Thus, in particular, the sequence

71(SP) = 7o(O(p)) & mo(O(p + 1)) — ma(SP) (7)

-

is exact. Now, for p > 1, since S” is both connected and simply connected.
mi(S7) = mo(S?) = {1}. (8)

Thus. f : mo(O(p)) — 7o(O(p+1)) is a bijection. This means that O(p+1) has the
same number of connected components as O(p). Therefore, the realization that
O(1; = {£1} and that O(2) = St U(—1)S' each have two components allows an
inductive argument to complete the proof. O

This provides a rigorous definition of orientation on a vector space which
coincides with common usage. Henceforward. the term ordered basis of 1/ shall
refer to an ordered set B = (v1,...,vn) such that {vi,...,vn} forms a basis of V.

Now that orientation on a vector space is an unambiguous concept, it is

meaningful to discuss GF (W), the Grassmann space of oriented p-dimensional
P P
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subspaces of W. The next step is to prove that a p-form 77 induces a smooth map
7: GF(W) — R from which 7 can be recovered.

The first stage in this is the realization that the value of a p-form on a
<ot of orthonormal bases of a p-dimensional space V' is constant if the bases all

represent the same orientation on V.

2.3 Lemma  Let V be a p-dimensional vector space and let 7 be a real-valued
alternating p-fold multilinear map on V. Let B, = (vi;-.-.vp) and By =

(wy,...,w,) be ordered orthonormal bases of V. If B, and B, represent the

same orientation on V, then
N(V1s -2 Up) = (W1 tp)- (9)

Proof Now, let det be a determinant function on V' which maps ordered or-
thonormal bases of V' to {%1}.

By deﬁnition, n is also a determinant function on V. However. any deter-
minant function on V is a scalar multiple of det [2}[p.103]. Solet A € R be defined

by
n=A-det. (10)

Then supposing, without loss of generality, that B, and B, both represent

the orientation that det maps as positive, we have

n(vL,..-,vp) = A-det(vy, ..., vp)
=Xi-1
(11)
=\ det(wl, .. .,'lL-‘p)
=n(wy,...,Wp)-
c

This is sufficient to prove that it is possible to induce a smooth function 75

on Gf (W) from the p-form 7.

oD



2.4 Lemma A real-valued alternating p-fold multilinear function n on an n-
dimensional real inner product space W induces a smooth map 7 : G (W) —
R such that if (vy,...,v,) is an ordered orthonormal basis representing positive

orientation on a vector space V € G (W),
(V) = n(v1, ..., vp). (12)

Proof By lemma (2.3), it is clear that 7 is well-defined.
In order to show that 7 is smooth, we first confirm that n is smooth on

7. Let B := {w;,...,w,} be a basis of W and let

A= {{ws,,...,ws,} | wo, € B are distinct elements}. (13)

Then. since n is multilinear, it is a polynomial on elements of A. However. coor-
dinate directions in W? are also given by elements of A. Thus. 7 is smooth on
1#'7. Furthermore, since V;, (1), the Stiefel space of orthonormal p-fremes in W.
is an imbedded submanifold of W, 7]y, 1r) is a2 smooth function on Vo(H).

Let 7 : V(W) — G (11" be the standard quotient map. By (2.3), 7 factors

through 7. Thus the following diagram commutes:

i . nilvpue
V, (W) SRR (14)

G (W)
Since 7= is a submersion, the universal property of submersions gives that 7 is
smooth as desired. d
It has now been shown that 7 is well-defined and smooth. Structural
information of any depth about 7 will only be achieved through a study of 7 if
it can be proven that 7 encompasses all of the information inherent in 7. The

easiest way to do this is to show that one can recover n from 7.

2.5 Proposition  Given a p-form n : W? — R and inducing 7 : GHW) = R,

it is possible to calculate n using only the information provided by 7.

9



Proof Since i is multilinear, this information is encapsulated in the commuta-
tive diagram (14). More explicitly, let (v1,...,v;) € WP and let V" be an oriented
p-dimensional subspace of W containing {v1,..-,vp}. Let det be the determinant
function on V which maps an orthonormal basis of V representing positive orien-
tation to 1. Then use det to calculate the oriented p-volume A of the parallelepiped

generated by (vy,....vp). Thus

n(ve, ..., vp) = A-7(V). (15)

a

In addition, G (W) is a homogeneous space under O(W). Thus, the ac-

tion of O(W) on G} (W) provides symmetry information about G} (1¥7). These

symmetries can be used to our advantage. Specifically, any subgroup G < O(1¥7)

which preserves the level sets will provide similar symmetry information about
those level sets.

The overview of transformation group theory provided in Appendix B high-

lights the i'mportance of the stabilizer of a point under a group action. Thus. at

this point, it is reasonable to discuss the stabilizer of an oriented vector space 1~

under an O(W) action.

2.6 Lemma Let W be a real inner product space and let V" be an oriented
subspace of W. Then the orientation preserving stabilizer of V" under the action

of SO(W) on W is
O(W)y = SO(V)xO(V+) (16)
where V1 is the orthogonal complement of V" in V.

Proof First note that there is a natural inclusion of SO(V) into O(W7). Observe
that if g € SO(V'), it is possible to extend g to act on W by defining
glw) ifweV

g (w) = (17)
w ifweVt

10



and extending linearly. Therefore, by this method, it is possilile 1o uaturally
include both SO(V) and O(V?!) into O(¥). Furthermore, since Siit' fixes
1"+ and O(V1) fixes V, the two groups have trivial intersection. 1hus. it is
also meaningful to discuss the natural inclusion of SO(V') x O{1"=} 1. ONIF).
Specifically, a pair (g, h) € SO(V)xO(V*) can be used to define a trai..© .:-ation

of W by letting

glw) fweV

h(w) ifwe ¥t

and extending linearly.

Now it remains to show that this group is the orientation pre--rving sta-
bilizer of V' under the action of O(W). Clearly, SO(V') is the group of orientation
preserving transformations on V and O(V'*) fixes V. Thus SO(17) x O(1"*) cer-
tainly is orientation preserving and stabilizes V.

Furthermore, consider g € SO(WW"). By definition, g is norm-preserving so,
in particular, g|y : ¥V — I is norm-preserving. So if g stabilizes V. gii- € O(1")

and if it additionally preserves orientation on V', gli- € SO(V"). Thus.
O(W)y = SO(V)x O(V™). (19)

a

We now address the issue of the regularity of points under the map 7. As we
shall see, it suffices to consider the regularity of points under 7]y, () : V(W) — R.

Recall the submersion 7 : V(W) — G (W) given by
7(V1,...,0p) = V :=span{vi,...,vp} (20)

with the orientation defined by (v1,...,v,). Thus, we have the following commu-

11



tative diagram of derivative maps:

. d5
T vy Vo (W) = Tyey

,,,,,

dr
lr di

Ty G} (W)

.....

Since 7 factors through = (2.3), dfj(ker(d=)) = 0. Given this and the fact
that dr is surjective, we get that V' is a critical point of 7 if and only if (v, ....vp)
is a critical point of 7.

As just noted, the tangent vectors encompassed in ker(dw) have no impact
on the criticality of (vi,...,v,) under /. Geometrically, this is seen through
the action of SO(V) on W. There is an orbit through = := (vy,....%;). Since
SO(V) is a compact Lie group, SO(V).z is a submanifold of V,(W)(B.7). Thus,
T-(SO(V).z) is a subvector space of T.(V,(¥)). Using an O(W)-equivariant

Riemann structure on V, (W),
To(Vo(W)) = Te(SO(V).x) & (Te(SO(V).2))" . (22)

As just observed, the regularity of VV under 7 is entirely dependent on the
value of dii on (To(SO(V).z)t. The next lemma provides a convenient method

for picking a basis on this space.
2.7 Lemma  (The Normal Basis Picking Lemma) Let " be an n-dimensional
basis {v1,...,Vp, Wpt1,- - -, Wn} of W. Then the space orthogonal to T.(SO(V).x)
in T-(V,(W)) has a basis given by

A={d; |1<i<pp+1<j<n} (23)

where d;; is the tangent vector given by varying the 7’th coordinate of z in the

direction wj; i.e.

dij = —(v1s...,costv; +sintwj,...,vp)| - (24)
dt t=0

12



Proof These tangent vectors are clearly linearly independent and . .:ly or-
thogonal to T(SO(V).z). Thus, it remains to show that they spau t: - ormal
space. For this, a dimension count is sufficient.

dimV, (W) = dim O(n)/O(n — p)

= én(n—l) —%(n—p)(n —p—1)

&
4

1 (25)
=np— 5(1)2 +p)
1
=(n—plp+ §p(p - 1).
Now,
#A = p(n — p). (26)
and
dim SO(V).x = dim SO(V")
1 (27)
= §P(P —1).
a

This lemma allows a corollary which makes identifying critical points of a

p-torm fairly easy.

2.8 Corollary  Let ¥ be an inner product space and let  be a p-form on H".

Let V € G (W) and let B := {v1,....vp} be an orthonormal basis of \". Then 1/
is a regular point of 7 if and only if there is a2 v; € B and a w € 1"+ such that
d .
St (span({vVI = Por + tw} U (B\ {w}))) | #0. (28)
t=0

Proof If V satisfies such a condition, then its regularity is apparent. So suppose
that V does not satisfy this condition, then define =z = (v1,....vp) € V,(I¥).
Then, by the normal basis picking lemma (2.7), a basis A of vectors normal to
T.(SO(V).z) can be picked such that since V' does not satisfy (28). di(A) = {0}.

Since 77 is constant under an SO(V') action (2.3). dlr,(so(vy.cy = 0. Thus,

i = 0 (29)



on Tp(V,(W)). Since 7 : V(W) — GF (W) is a submersion,
dip =0. (30)
a

2.9 Corollary  Let W be an inner product space and let  be a p-form on I¥.
Then, = := (v1,...,v,) € Vo(W) is a critical point of the restriction i = 0l if
all smooth paths through z which vary one component of z in isolation lie in the

level set of z.

Proof This is a consequence of (2.8) O

Given these two corollaries, it should prove relatively straight-forward to
determine which points are critical points of a given p-form n. This is important
since, as will be shown next, any two level sets between adjacent critical points
are diffeomorphic. Furthermore, in the presence of a group action which preserves

level sets, this diffeomorphism is equivariant.

2.10 Proposition  Let W be an inner product space and let n be a p-form on
1~ which induces a smooth map 7 : G (W) — R. Further. let a,b € R be two

consecutive critical values of 7. Then. for a.3 € ]a.b[, there is a diffeomorphism

i

77 a) =a7H(3). (31)

Furthermore, if G is any group acting on G} (1) which preserves the level sets of
7. then this diffeomorphism is equivariant with respect to that group action.
Proof Let z € f=!(a). Then, by the straightening out lemma, there is a chart
about z such that the local representation of the gradient field of 77 on this chart
is constant.

In fact, there is such a chart around each point in the level set of c.
Since GF (W) is compact, 7i~'(a) is compact and so 77" '(a) can be covered by a
finite number of such charts. Thus, within the union of these charts, a tubular

neighborhood of diffeomorphic level sets can be found around 7~ Ha).
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Finally, an application of Zorn’s lemma will extend this tubulam neigithor-

hood to 77 %(]a,b[). So construct a set of open subintervals of Ja. bi:
A= {D | Vo € D, en) = 77_1(0')} (32)

Of course, A is partially ordered by inclusion. Furthermore, itf {1} is a

chain in A, consider
D = yD;. (33)

Then D is an open subinterval of Ja,b[. If a; € D then there is an ¢ i the index
set such that a; € D;. So, by definition, 7~ (ay) = 7~ '{aj. Thus. D € A. So. by
7orn’s lemma, A contains a maximal element, call it Ja,.by[.

Suppose that Ja;, b;[# ]a. b[. Without loss of generality. supposee that by #
b. Then, by the above argument, a tubular neighborhood around 77! {b1) can be
chosen containing diffeomorphic level sets of levels both greater and le=ss than b;.

Suppose that ¢ < b; < d are such levels. Then
77 (d) =i e) =77 a). (34)

So la,,d[€ A and Ja;.d[ D]ai, by[. Since Ja;. by [ was supposed to be ma:.ximal in A,
this provides a contradiction.

This proves that level sets between adjacent critical points are= diffeomor-
phic. So now, consider the situation when the action of a group G pre=serves level
sets. Then, since 7 is equivariant, so is its gradient field. This is ssufficient to
guarantee the equivariance of the diffeomorphism. a

It is worth noting that since 7 is alternating, there is also a diffecomorphism
between level sets associated with positive and negative values of the same mag-
nitude. This diffeomorphism is not equivariant under any of the grooup actions
considered in this thesis as they are chosen specifically to maintairm level sets.
However, if we define an action of Z, on G; (W) by orientation reversal and on R

as usual, we see that 7 is also Zy-equivariant. Thus. if H is a group extension of
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Z, over a level-set preserving group, then 7 is also H-equivariant. With respect to
this group action, we get an equivariant diffeomorphism of all level sets associated
with values in |—a, —b[ U ]b,a[ if a and b are consecutive critical points of 7.

We now have a viable framework to work in. We can use n to induce a
smooth map 7 : G (W) — R from which 7 can be recovered. There is a formidable
arsenal of theory which can be applied to such smooth maps including calculus
on manifolds which finds diffeomorphisms between level sets associated to neigh-
boring regular values and transformation group theory which, using symmetry

information, provides explicit descriptions of each level set.
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3 Restricted Determinants

In the previous section, a framework in which p-forms can be zualyzed woo de-
veloped. In this section, this type of analysis will be applied 1+ « specific t: 10 of
p-form: one known as the restricted determinant. This analy~is wili be i —inmry
use as an illustration since the restricted determinant is sin:pic enouzt. to el

itself easily to study.

3.1 Definition  Let W be an n-dimensional real vector space and let det be a
determinant function on W. For 1 < p < n, fix vectors wy4y. .. -- w, € W. The

p-form given by

In the presence of an inner product structure, a determinant function is

normally expected to give a unit volume for a unit Euclidean cube.

3.2 Definition Let W be an inner product space. A determinant function det

on I} is consistent with the inner product structure on W’ if for each orthonormal

basis B of I,

detB = £1. (:

| O]
—_

This notion allows an unambiguous definition of a p-dimensional unori-
ented volume function. Specficially, if {vy,....v,} C W, choose a p-dimensional

subspace V' C W such that
{‘U]_,...,'Up} cV. (.)))

Then < -, > |vxv is an inner product on V". Let dety be a determinant

function on V consistent with this inner product. Then define

voly(vy, ..., up) 1= |dety(vr, ..., vp)|- (4)
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Since, up to scalar multiplication, there is only one determinant on any

given space and since

V = span {v1,...,Vp} (3)

uniess the vectors are linearly dependant, this is well-defined and corresponds with
the customary understanding of a p-volume.

The natural first question is whether all p-forms can be expressed as re-
stricted determinants. As will be shown in (3.5), for 1 < p < n — 1, the space
of p-forms and the space of restricted determinants are of different dimensions
confirming that there are many more p-forms than restricted determinants.

A determinant simply measures the oriented volume of the n-parallelepiped
spanned by the vectors (v, ....vUp: Wpt1:---; wy,). However, in this case, the last
n — p vectors determine a constant n —p dimensional face of that n-parallelepiped.

The value of n(vy,...,v,) is thus dependent entirely on the p-dimensional face

generated by the vectors v through v,. In the presence of an inner product, this

Z = span{epi1-.--- Wy} (6)
and get an orthogonal decomposition of 11"

W=Mz=Z (

=1
~—

If {wps1,---,wn} are linearly dependant, n = 0. In a non-trivial case,

dimZ =n—p
(8)
and dimM = p.
Then the value of |n(v1,...,vp)| Will represent the p-volume of the paral-

lelepiped created by taking the orthogomnal projection of {v1,...,vp} into M. The
sign of (vy,-...vp) is determined by the orientation represented by

(V1 -+« 3 Ups Wpt1, .-+, Wa) in W. This will be explicitly demonstrated in (3.3).
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This characterization of the function of the form leads to a few Gi-ur-
vations. First, considering the induced function 7 on G} (W), it becomes clear
that since, outside of M, the orthogonal projection function ontv M is strictiy
norm-decreasing, the maximal level set of 7} is a single vector space: M with ax
appropriate choice of orientation. Second, as will be seen in (3.%). the largest
subgroup of O(W) which preserves the value of the form is the direct product
SO(M)xO(Z). Third, f Ve Gf (W) has VN Z # {0} then (V) = 0.

This is the point at which transformation group theory caun be applied.
One need only describe which orbits lie in each level set and calculate the orbit
tvpe of each by means of calculating stabilizers. Then there will be sufficient
information to directly apply the theory outlined in Appendix B rto describe what
the level sets of the function 7 look like and how they are giued together to form
GF(W). These calculations will be carried out in (3.9) and (3.10) respectively.

We begin our investigation of restricted determinants by explicitly eluci-
dating which characteristic of a given vector space V' € GF (1) will determine
which level set V' belongs in. This will provide an understanding of the meaning

of n(v,...,vp) and will also facilitate later work.

3.3 Proposition Let W be a real n-dimensional oriented inner product space

with determinant function consistent with the inner product and let 1 be the

:= span (Wp41----; Wn) (9

and let M be the choice of oriented orthogonal complement of Z such that W =2
has positive orientation in W. Let mar : W — M be the orthogonal projection
function. For V € GF (W), let {vi1,...,vp} be an orthonormal basis of 1" and

define
F(V) := evoly(mar(vy), - - -, mar(tp)) (10}
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where € is the sign of the orientation represented by (m(v1),....7(tp)) in the

oriented space M. This function is well-defined and if

Ay = volp—p(wWpt1,- .-, Wn) (L1)

ﬁz)\n'f- (

[
(fV]
~—

Proof Let (vi,...,v,) be an orthonormal basis of V' representing positive ori-

entation. Then for each i, v; can be decomposed into
vi =zt yi (13)

where z; € M, y; € Z. Then
(V) = det [v] - [vp|wpsr] . - - |en]

= det [z; + y1|- - - |2p + Yplwps1] - . - |wn]

(14)
=det [z,]...|Tp|wpt1] - - - fwn] since y; € Z
= evolp(z1.. ... Tp) - vOln_p(Wpiys- - Wn)
Let
A, = det|z[wpgr] - - - [wn]. (15)
|
It should be noted that. as a consequence of this proposition. any two sets
of vectors {wpyi,.--,wn} and {Zpt1,...,Zn} which span the same space induce

restricted determinant p-forms which only differ by a scalar multiple. As noted

before, it shall be assumed that
A, =1 (16)

A consequence of this observation is that it is possible to calculate the

dimension of the space of restricted determinants. Except whenp =1orp =n—1,
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thi~ dimension turns out to be smaller than the dimension of p-forius in general.
Thus, not all p-forms can be represented as restricted determinanis<. The prool

will depend on the following, purely numerical, lemma.

3.4 Lemma Letn > 3. Then, foralll<p<n—1. (;)> p(n—p)+1

Proof First note that by symmetry, we need only prove this for p < 5 since
(3) = (x2p). The proof is by induction on p.
Case p = 2:

n!
(3)=2!(n—-2—)! ;-
n(n —1) |

2

4

%n(n —1) > 2n — 3, for all n > 3, which concludes the base casc.

Inductive case: assume that () > p(n—p)+1 forall p < k wherr k+1 <

(TR
f

We wish to prove (2, ) > (k+1)(n —k—1)+1.

noy n!
(1) = i k= 1)
n!
(k4 1)Kok
nok 18]
> Z_-{_ l; (k(n —k)+1) by the inductive hypothesis
k ) n—=k
SErie TR T e
We wish to check whether
k 2 n—k
—k : —k— 1. 19
k+1(n kY + k+1>(k+l)(n k—1) + (19)

Multiply both sides by k£ + 1 to check whether
k(n —k)?+(n—k)>Ek+1)>*n—k—1)+(k+1). (20)
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We know, by hypothesis, that £ < Z and, therefore, that n — k> k+ 1. Thus, it

remains to check whether

k(n —k)? > (k+1)*(n—k—1). (21)
But since the function f(z) = 5z Is decreasing on [l,oc]. and k£ <
n — k — 1, we have
k n—k—1
22
Fr1)2Z - (n—k2 (22)
4

We are now in a position to prove that the dimension of the space of p-forms

is larger than the dimension of the space of restricted determinants.

3.5 Proposition  Let W~ be a real n-dimensional inner product space and let
1 < p < n — 1. Then, the dimension of the space of p-forms on W is greater than

the dimension of the space of restricted determinants on .

Proof Consider first the space of p-forms. By the universal mapping property
of multilinear maps [6, p. 57], there is a natural isomorphism between the dual
space of the p-fold wedge product of W', (A(¥17))" and the space of p-forms. Now.

since this is finite dimensional space,
Ap(W) = (Ap (W) (23)

so we're looking for dim /\p(H['). Let {w,...,wn} be a basis for I Then. a basis
for A,(}) is given by {wiy A Aw 1 <4 <o <1 < n} [6, p. 57]. So to count
the basis of A (W), all one needs to do is count how many different collections

of p distinct basis vectors one can get. Basic combinatorics tells us that this is

t
(;) = pg(:;p)g-
Now, consider the space of restricted determinants. As was shown in (3.3),
each restricted determinant 7 is determined by a scalar, A,. and an (n — p)-

dimensional vector space, Z := span{wpt1,-..,wn}. Thus, the dimension of the
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space of restricted determinants equals dim (Gnp(W)) + 1 = p(r —p) + 1 [6.
p-130].

Applying lemma (3.4), the dimension of the space of p-forms is bigger than
the dimension of the space of restricted determinants. O

Thus, although restricted determinants will be a good platform on which
to demonstrate methods which can be used on all p-forms, they are certainly only
a subset of the set of all p-forms.

Another consequence of (3.3) is that the extremal level sets each consist
of a single vector space, M with positive and negative orientations distinguishing

...t -een the extrema.

3.6 Theorem Let W be an n-dimensional oriented real inner product space
with determinant function and let 1 be a restricted determinant p-form on I’
determined by (wpt1,-..,ws). Let Z and M be as before. Then the maximal
and minimal level sets of n each contain only one element, M with positive and

negative orientations respectively.

Proof As proven in (3.3),

F’(‘/) = /\TI ) VOIP (7'_;\'1(U1)? seee W:\[(L‘P)) (24)
where (vi,...,v,) determines an oriented unit p-cube in V.
The vectors (war(v1),...,mar(vp)) form a parallelepiped in M. Observe

that the volume of a parallelepiped is bounded by the product of the norms

of the vectors which define it. How is this calculated? Well, the volume of a

parallelepiped formed by (uy,...,up—1). Then
vol,(X,) = |lup|| - cos @ - vol,—1 (Xp-1) (25)

23



where 8 is the minimum angle between u, and the space spanned by (uy.. .., up-1)-
Thus, an inductive argument gives, as desired, that the volume of a parallelepiped

is at most the product of the norms of the vectors which define it.

The projection function is strictly norm-decreasing on any vector not already in
M so, the p-volume is strictly less that 1 if even one vector v; ¢ M. Furthermore.

this p-volume, of course, achieves 1 on the positively oriented unit cube of M.
|
Another consequence of the characterization of n (3.3) is that all the non-
extremnal and non-zero level sets of a given restricted determinant form 7 on
GF (1) are diffeomorphic. In fact, as was shown in (2.10), with respect to the
action of a subgroup of O(W) which preserves 7, these level sets are equivariantly
diffeomorphic. At this point, however. we apply calculus methods to determine

critical points of 7.

3.7 Theorem Let W be an inner product space with determinant consistent
with the inner product. Let 1 be a restricted determinant p-form with A, =1

given by vectors (wpt1,...,wn). Let
Z :=span{wps1,--..Wn}- (26)
Then V' € Gf (W) is a critical point of 7} if and only if either
V=M=2" (27)
or
dim(Vn2Z)>2. (28)

Consequently, the only critical values of 7j are {+1,0}.

Proof By (3.6), if V = M then V is extremal and is clearly critical. Now. if

dim(V N Z) > 2, then changing any one vector in V' in isolation will clearly leave
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a vector space with non-trivial intersection with Z. By (3.3} then. =1ou a chauge
remains in the 0-level set. Thus, by a corollary to the normal basi~ pickl. 2 lemma.
(2.9). V is a critical point of 7.

On the other hand, suppose that V # M and dimV'NZ < 1. Let oy Up)
be an ordered orthonormal basis of V such that if dim}"'NZ =1. v, = Z and. in
all cases, v; ¢ M.

Then Jw € W such that |jw]] = l,w ¢ Z. and w L }". Detine a path
v:1-1,1[ = GF (W) by

~(t) :== span{V1 — t?v; + {w, va,.... vp }. (29)
Then
Ar(1)) = det [(VI = 8oy + tw)lesl .- [t 50
SU)
=1 = 2det [v1]va] - . . [vp] + t det [wfva]...[vy]-
So
d - _t 1 ] 5
7 (n(~(8)) = \/—1=—=t-; det [vy|va] . .. Jvp] + det [wlva| . .. jvp]- (31)
Thus
L1 () = detfeleal - o]
dt|,_, 2 (32)
£0.
Therefore V' is a regular point of 7. O

Since the only critical values are {—1,0,1} the straightening out lemma
(2.10) provides that all of the level sets between 0 and 1 are diffeomorphic. Recall
that #(V*) = —7(V~) where V'* and V'~ are two copies of the same vector space
with opposing orientations. Thus the o and —a level sets are also diffeomorphic.
Thus we conclude that all non-zero and non-extremal level sets are diffeomorphic.
Additional information about the level sets of 77 can be obtained by an-

alyzing their symmetries. Since GF (W) is a homogeneous space under O(17),
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there is a natural action of O(W) in G} (W). Thus, any subgroup of O(W") for
which 77 is equivariant provides symmetry information about the level sets of 7.
Furthermore, the largest such subgroup of O(W) provides the most information.

It turns out that there is such a maximal subgroup and that it is unique.

3.8 Proposition Let W be an oriented n-dimensional real inner product space
with a determinant function consistent with the inner product. Let n be a re-
stricted determinant p-form on W defined by (wp+1,...,w,) with A; =1 and let
a € [-1,1]. Then G = SO(M) xO(Z) is the largest subgroup of O(W") whose

artion on GF (W) can be restricted to an action on 77! (a).

Proof First, as shown in (3.3) the value of (V') is dependent on the p-volume
of the projection of the unit cube of V" onto M. Now, SO(M)xO(Z) has M as
an invariant subspace and is volume preserving on M. Thus, the p-volume of any
projection onto M is preserved by SO(M)xO(Z). Thus, we have confirmed that
the action of G on G/ (W) does keep 7~ !(a) as an invariant subspace. We now
need to prove that it is the largest subgroup to do so.

First, suppose that a = +1. Then, by (3.6), 77 !(a) = {M}. We know
that the orientation preserving stabilizer of A/ within O(W) is SO(M) x O(Z)
(2.6). Thus, for the extremal level sets, we have confirmed that G is the largest
level-set preserving subgroup of O(W).

Now suppose that a € ]—1.1[ and suppose that H 2 G is a maximal sub-
group of O(W) whose action preserves 77~!(a) as an invariant subspace. Let h € H
and let (vy,...,v,) be an orthonormal basis of M such that (vi,..., v wpyy, ..., wn)

represents the positive orientation on W.

Then, for every w € Z with ||w]| = 1, the a level set contains the vector
space
V1 :=span(av; + V1 — a?w,ve, ..., Vp). (33)
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Su. by assumption,
(kW) =1(V1) =« (31)

So. by the multilinearity of 7,

a=17(h.(a-v1+\/l—a2-w,vg,...,vp))

= an(hvy,...,hvy) + V1 = a?n(hw, hv,, . . ., hvy) e
But
Vy := span(av; — V1 — 2w, ve, ..., Up) {3
aiso belongs to the a-level set. Thus,
a=an(hv1,...,hvp)—\/1_—_&517(w,hv2,....lnp) (37)
Therefore, for every w € Z,
n(w, hea, ... huy) =0 (381
Furthermore, from (37),
n(hvy, ... htp) = 1. (39
Thus, since the maximal level set has only one element, (hvy,....ht,) forms an
orthonormal basis for M and orients M positively. Thus, by (2.6).
h e SO(M)x0(Z). (40
a

This result is quite convenient because it means that studying one group
action will provide maximal symmetry information both overall and for each inde-
pendent level set. We now focus attention on an individual level set and calculate
how many different kinds of orbits it contains. Since we already know that the

extremal level sets are points, we concentrate on non-extremal level sets. Suppose
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that @ € ]—1,1[. We know from (3.3) that if j(V) = « then the projection of
the unit cube in V onto M is a p-parallelepiped with oriented p-volume a. The
action of SO(M) x O(Z) preserves not only the p-volume of the projection but
also the lengths and relative angles of the projected vectors. Hence, for every
different combination of lengths and internal angles which makes a parallelepiped
of oriented p-volume a, there is at least one orbit. In fact, in each level set,
there is exactly one orbit for each configuration. This is because S O(M)x0(Z)
acts transitively on the set of all vector spaces whose unit cube projections have a
given configuration of lengths and angles and which make up a parallelepiped of p-
volume . The difficulty lies in elucidating exactly how many such configurations

tliere are.

[}
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To explain this we use the decomposition of 15,(¥7) into an iterated fiber
bundle to describe the a-level set of 7} : V(W) — R as a restricted subbundle of

1...1¥) with singularities. More explicitly, we get

P —A SN 5 Lp(@) = {(v1, - %) | 721, -oer0p) = @)
Sr-r=2—V,_ (W) D Ly—i(a) = {(va,...,vp) | @ < volp_1(7ar(ra.....1p)) < 1}
2
Sk = 1—— Vi (W) D Li(a) := {(vp=ks1,---,p) | @ < vole(mar(vp—rsi..--. ) < 1}
gn=2— VA(W) D La(a) :={(vp-1,vp) | < vola(mas(vp—1.vp)) < 1}
gn—1C——— Vi (I1) D Li(e) = {{rp) | o < lmar(wp)ll £ 1}
*

(41)
where the fiber of m4_1|L,(a) : Lk(a) = Li_i(a) is generally the pre-image of either
an (p—k+1)-annulus or a (p—k)-sphere in Srk=lif volp_1(Tar(Cpkt2. -1 Up)) =

a. Formally stated, this gives the following theorem.

3.9 Theorem Let W be a real oriented n-dimensional inner product space
with determinant consistent with the inner product. Let 7 be a restricted deter-

minant p-form on W defined by (wp41,-..,wa) such that
voln_p(wp+1,...,wn) = 1. (42)
Recall the orthogonal decomposition

W=Mz2Z (43)
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derived from 7. Let # : V,(W) = R and 7 : G/ (W) — R be the smooth functions
inuiiced from 7.
Now, for @ € |—1,1[ and 1 < k < p define Li(a) C Vi(W) as in (41). For

a civen £ = (Vp—gs1,-.-,Vp) € Li(c) define

Zu(z) = span{vp-ts1, - - -+ 5} "
o 14
Belz) = vole(mar(Vp—kt1)-- - -, Tar(vp))
an:l
"y {ve Zr(x)x Z* | |v]| € [Bula).1]} k<p-—-1
Ty =
{fve Z,_\(z) & Z* | ||v|l = B3p-1(z), orientation constrained}k =p —1
(43)

arl. finally, if Pra; : W — M is the orthogonal projection function, S(X) is the

unit sphere in X and if o # 0
Fi(x) := Pryf (Ax(z)) N S(Zk(2) ") (46)
orifa=0fork<p-—1let
Fi(z) == S5(Zi(x)") (47)
and for £ = p — 1 define

r4 *

Fyooi(z) == (48)
S(Zp—1(z)- N (Z — Z,_1(7)) otherwise.

S(Zp_1(x)*t) if volp_i(Prar(va.---. vp—1)) =0

Then, the a-level set of 7j is given by the singular iterated fiber bundle

Tp—1

——= Lp—1(a) Lo(a) —=Ly(a) (49)

Ly(a)

with fibers given by Fi(z).
Furthermore, the level set 7!(a) on the Grassmannian is the image of

L,(c) under the standard quotient map

q: V(W) = GH(W) (50)
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which has fiber SO(p).

Proof Proof by induction on p.
Base Case: Suppose that p = 1.

Let V € Gy (W) and let u € V be a unit vector representing positive
orientation on V. Then, by (3.3), we know that 7(1") is completely determined by
the oriented length of the projection of u onto M. But, in this case, M is a one
dirnensional space. Thus, there is a single vector v € M which has the appropriate

oriented length a. Therefore,
7~ Ha) = {u € S Hmu(u) = v} (51)

That is, 7-!(a) is the pre-image of a single vector under the projection function
Pr, : St M.

Inductive Case: Now suppose that all non-extremal level sets of restricted deter-
minant (p — 1)-forms can be described as in the statement of the theorem and let
n be a restricted determinant p-form.

First note that by (3.3) if ¥} € 77!(«) then Vv € Vi, if [[v|| = 1 then

Ot
o
~—

mar(v)l] = e (:

Thus, certainly no elements of the a-level set contain unit vectors which are not
elements of L;(a).

Suppose that u, € L,(a), then, if we can find
(u,-..,up—1) C spanfup}* (53)
an orthonormal set such that
detfuy] ... fup—1|up|lwpsil. - [wn] = @ (54)

then



But of course, we can define a new restricted determinant (p — 1)-form x,, using
vectors (Up, Wpet, - - -, Wn). Re-normalizing, we define

1
Nyt 1= Ky,
P Near(up)ll °

A quick check confirms that this is a restricted determinant of norm 1. Then,

1 =
np—l(ulv"'vup—l) ” \/[( )” (ul""7uP—1‘vuP)' (Dl)

(56)

So we would like the -level set of n,—1. Since a < {[mar(u,p)|l, such a level

( up)l
set exists and is non—empty. By the inductive hypothesis, it can be described
using a tower of (p — 2) fiber bundles which clearly intersects (span(u,))*t. an
(n — 1)-dimensional space, non-trivially. d

Now that we have elucidated exactly which orbits belong in each level set.
it only remains to calculate exactly what each orbit looks like. This is done. as
is described in (B.7), by choosing a point on any given orbit and calculating its
stabilizer under the action of G = SO(M) x O(Z). The first order of business is
to determine which subspaces of M and Z can be related within themselves and
still stabilize V.

Let W be an inner product space and let A/ and V" be vector subspaces of
W of equal dimension. Let myr := W — M be the orthogonal projection func-
tion. This can be used to define a decomposition of 17 into mutually orthogonal

subspaces. Let

By := max{||mar(v)|| | llofl = 1.v € V} (38)
and let
Vi :=span{v € V | |[o]| = 1 and |[mar(v)|| = 81} (59)
Now, inductively, if mutually orthogonal subspaces Vi,...,V; have been chosen,
define
Bipr i= max{|mar )|l | ol = Lve (i@ - W) NV} (60)
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Then let
Vi s=spanfv e Vi@ ---a Vi) NV | flvfl =1 and [[mar(v)]| = B} (61)
This gives a decomposition
V=Uo V. (62)

3.10 Theorem Let W be a real oriented n-dimensional inner product space
with determinant and let n be a restricted determinant p-form on W determined

by the orthonormal vectors (wpy1,...,wn)- Let

Z :=span{wpt1,...,Wn}- (63)

Let M be the orthogonal complement of Z in W. Let V € Gf(W) have the

decomposition
V=Wa& gl (64

defined above. Further, define
Mg :=V+ N M.
Zo =Vt n Z
Then

H = (SO(V}) x...xSO(V;)) x (O(Ma) x O(Zq)) (66)

can be naturally imbedded into G := SO(M) x O(Z) as a subgroup and this
imbedding is the stabilizer of V' under the action of G on G (1¥). Thus, the orbit

structure is given by
GV=G/H (67)

Proof By construction, A has a natural imbedding in O(W"). Thus, it must be

shown that this imbedded subgroup of O(W) is also a subgroup of G.
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First consider SO(V;) for some 1 < 7 < r. Any vector v € V; can be

decomposed into
V=2Ty+ Yy (68)

where £ € M and y € Z. Furthermore, by construction, for any unit vector
v €V, ||zl = B and |lyu]] = /1 — (B:)2. This makes it clear that SO(V}) is
naturally imbedded as a subgroup of G. Since Mg and Zg are subspaces of M
and Z respectively and are orthogonal to V', it should be easy to see that their
orthogonal groups are subgroups of G. Therefore, since all of these spaces are
mutually orthogonal, the natural imbedding of H into O(1¥) makes H a subgroup
ot G.

It remains to prove that H is the stabilizer of V under the action of G.
or, by (2.6) that H = (SO(V)xO(V*+)) NG. Clearly, H is a subgroup of this
intersection. Now suppose that ¢ € G — H and consider the effect of g on V.
First, suppose that for some 2. g fails to maintain V; as an invariant subspace.
Then, there exists some unit vector v; € V; such that g.v; ¢ V;. But, since

g € G =S0(M)xO(Z), it preserves norms on M and Z, and
Imaelg-e)] = B (69)

By construction, V; contains the set of all unit vectors in 1" whose projection onto
Al have norm 3;. Therfore. g.v; ¢ V. Thus, the stabilizer of 17 must maintain
each V; as an invariant subspace. Finally, suppose that g fails to maintain either
Mg or Zg as invariant subspaces. Well then. since ¢ is a non-degenerate linear
transformation, and it stabilizes both Z and M, it must affect one of the ¥;’s. This.
as proven above, is inconsistent with the behaviour of the stabilizer of V. Thus,
H is the stabilizer of V under the action of G on GJ(W). The final statement is
an application of (B.7). a

With this final theorem, we now have sufficient information to completely

describe the level sets of any given restricted determinant p-form. We know from
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(3.7) that all the non-extremal level sets but 0 are diffeomorphic. We know from
(3.9) which orbits exist within any given level set. Finally, from (3.10), we know
the stabilizer of a point in each orbit. This information, together with that in
Appendix B, gives us complete information on the structure of each orbit and

Low they’re glued together to form each level set.



4 Symplectic Algebra

At this point a general theory giving structural information about level sets of
the functions induced from any p-form 7 on an inner product space W would
e appropriate. However, at this time, results of this generality seem difficult to
attain and have not been seriously attempted. Instead. we now specialize to the
symplectic form. This form is sufficiently similar to the restricted determinant to
allow accessibility and yet non-trivial enough to present a hopefully representative
richness of results. Furthermore, symplectic forms are used extensively in multiple
‘elds such as mechanics and symplectic topology. Thus. structural results about

this form may have immediate application.

4.1 Definition A bilinear alternating map 7 : Wx1¥ — R is called symplec-

tic if the map ¢ : W — W= given by (&(v1))(v2) = n(vi,v2) is an isomorphism.

4.2 Example  The standard determinant on R2. det, is a symplectic form.

In fact, by definition, all symplectic forms on a 2-dimensional space are
determinant functions. A standard theorem in Symplectic Algebra generalizes
this observation. It states that for every symplectic form 7, it is possible to

choose a basis B, called here a standard basis, such that
n = &det,. (1)

In most of the work to date on symplectic forms, one simply chooses a
standard basis and works with the standard form. However, there is no guarantee
that a given symplectic form has an orthonormal standard basis. Since we are
working in an environment with an inner product structure and we intend to
make use of the natural action of O(W) on GF (W), an orthonormal basis is a
great convenience. Thus, we present in (4.12) a modification of this theorem
which provides for orthonormality. In essence, it is proven that it is possible to

find an orthonormal basis with respect to which 7 is broken into scaled standard
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chunks. Explicitly,

n= & ai(Sdet,). (2)
=1 d,
The constants a; > --- > a, > 0 and the orthogonal decomposition
W=We---0W (3)
such that
nlw; =ai§9_det2 (4)

are invariants of 7.

4.3 Definition For a givén symplectic form n on an inner product space i,
the numbers a;, .. ., a, given in (4.12) will be referred to as the symplectic eigen-
values of 1. The set of such eigenvalues will be known as the symplectic spec-
trum of 1. The spaces W, ..., W, also given in (4.12) will be called the sym-
plectic eigenspaces of 7.

As will be shown in a later section, this symplectic spectrum is not simply
a computational convenience. The eigenspaces associated with it provide a means
to characterize orbits within level sets and the symplectic eigenvalues constitute
the critical values of 7.

Once all the assertions in this development are proven, analysis of the
svmplectic form will proceed in two steps. First, we will consider symplectic
forms whose standard basis happens to be orthonormal. Second, we will consider
the more general case in which 7 is a scaled sum of standard chunks.

We now start proving the above assertions by formalizing the bijective re-

lationship between skew-symmetric matrices and alternating bilinear forms. This

is a useful tool in later analysis.

4.4 Lemma [3, p.361] Let ¥ be an n-dimensional real vector space and let

B = {w,...,w,} be a basis of W. Then there is a bijective relationship between
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the set of real skew-symmetric n x n matrices, M,(R), and the set of real-valued

alternating bilinear 2-forms on W.

Proof Let n be an alternating bilinear form on W. Define the matrix A, by

(An)i; = n(wi, wj). (3)
Then
(Aq)i; = n(wi, wj)
= —n(w;,w;) since 7 is alternating (6)
= —(Ay);i-
Thi:s.
A, =—(A)T (7)

so A is skew-symmetric.
Now, suppose that A is a skew-symmetric n X n matrix. Create an alter-

nating bilinear form 7,4 by defining

—_
(v4]
-~

na(w; wj) == Ajj.

Since a bilinear form is determined by its behaviour on a basis. this is sufficient
to define n4. A quick check confirms that since A is skew-symmetric, 174 is alter-
nating. g

The matrix A, is referred to as the matrix representing n with respect
to the basis B. The next step is to investigate what characterizes the matrices

representing symplectic forms.

4.5 Lemma [3, p.365] Let  be an R-valued alternating bilinear form on a
real inner product space W. Then, for any given basis B = (wi,... ,wn), the
matrix A, representing n with respect to B is non-degenerate if and only if n is

svmplectic.



Proof Suppose that 7 is symplectic. Then, by definition, the map ¢ : W~ — ™~

given by

(6(v1)) (ve) := n(v1, v2) (9)

is an isomorphism. We will prove that the matrix which represents this isomor-
phism with respect to the basis B of W and its dual basis, B~ of W, is —.,.
Once this has been established, since ¢ is an isomorphism, it will be clear that A,
is non-degenerate.

Now,
(¢(21)) (v2) = v - Ay - va. (10)
Bur &(v;) € W= is a functional and so it makes sense to say that
(&))" =1 - Ay (11)
which, becguse A, is skew-symmetric, gives that
o(v1) = —A, - 1. (12)

Thus, since ¢ is an isomorphism, A, is non-singular.

Now suppose that A is a skew-symmetric non-degenerate n X n matrix.
Then there is the alternating bilinear form 74 derived from A as in (4.4). Since
n4 is an alternating bilinear form, it induces a map ¢ : 1" — "™ and. as shown
above, this map has a matrix representation, —A. Since —4 is non-degenerate, &
is an isomorphism, and thus, 74 is symplectic. O

It is now established that symplectic forms can be represented by skew-
symmetric non-degenerate matrices. This has a couple of consequences. First,
examining the matrices involved shows that the direct sum of symplectic forms
is a symplectic form. This will be immediately used in proving that there are
symplectic forms which cannot be expressed as restricted determinants. A second

consequence is that the dimension of ¥ is even.
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4.6 Corollary Let W; and W, be real vector spaces of dimensions m and n
respectively. Let 7 : (W)? — R and € : (W2)? — R be symplectic forms. Then
ne £ (W @ W,)2 — R given by
in& €) ((a1uy + byvy), (azua + bava)) := n(aiuy, azuz) + &(bivy. bova) (13}
is. again, a symplectic form.
Proof Let B, and B, be, respectively, bases for W, and W;. Then, with respect
to these bases, n and € can be represented by matrices A, and Be. (4.5). Now,
the concatenation of B; and B, is a basis B for W; & W,. Consider the matrix
C := A, & Be. This matrix is clearly skew-symmetric and non-degenerate. Thus.
by . :.5), with respect to the basis B, this represents a symplectic form on 11, =110
Clearly, this symplectic form is the same as that defined above as & §. O
This result can be directly applied to prove that the set of symplectic forms
is not simply a subset of the set of restricted determinants. This will ensure that
the work in the next two sections is not simply a well disguised repetition of the

work done in the previous section.

4.7 Corollary  There are symplectic forms which cannot be expressed as re-

stricted determinants.

Proof

First. consider the determinant function on R2, det : R> — R given by
deta(u, v) := det[ufe]. (14)
As shown in example (4.2), det; is a symplectic form on R2. Thus. by (4.6),
n:i= c’:;detg | (13)

is a symplectic form on R?™.
Now, let V; := span{e;, ez} with the orientation represented by (e.é€2),

and let V; := span{es, e4} with the orientation represented by (es, e4). Clearly,

(V1) =7(l2) = 1. (16)
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Furthermore, the matrix representing n with respect to the standard basis.
Js,. is the direct sum of orthogonal matrices and, as such, is orthogonal and

therefore norm-preserving. Thus, for any pair of orthonormal vectors, (u.v),
In(u, v)| = [ulJonv] < 1. (17)

Thus, 1 achieves 2 maximum of 1 and V; and V; are two distinct elements
of the maximal level set of 7. As was shown in (3.6), the maximal level set of a
restricted determinant is a single point on the Grassmannian.

Thus, n cannot be expressed as a restricted determinant. O

Next, in the final corollary to (4.5), an application of [3, p.162] gives that
symplectic forms only occur on even dimensional spaces. This is important be-

cause, as part of our analysis, we intend to impose a complex structure on 2%

which is only possible if W is even-dimensional.

4.8 Corollary Let n be a symplectic form on W, an n-dimensional vector
space. Then n is even.

Proof As shown in (4.4) and in (4.5), if B = {wi.....wn} is a basis of 1,
then there is a n x n skew-symmetric non-degenerate matrix A, representing 7.

Suppose that n is odd.

det(A4,) = det((A,)T)

= det(—A,) (since A, is skew-syrmmetric) (18)
8
= (—1)"det(4,)
= —det(A,) (n is odd).
Therefore,
det(A4,) = 0. (19)
But A, is non-degenerate. Therefore, n must be even. O
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A more important consequence of the fact that forms can be represented
i» matrices follows. Simple algebra will show that any group G for which a
bilinear form 7 is G-equivariant must be part of the centralizer of the matrix Ay
representing n with respect to some basis. Therefore. a matrix which represents
.. -=mplectic form gives criteria which helps specify the maximal subgroup G of
O{ V") for which that symplectic form is G-equivariant. It is then possible to use

the action of that group to elicit symmetry information from the level sets.

4.9 Proposition [3, p-380] Let 7 be a bilinear form on the real 2n-dimensional
inrer product space W. Let B = (wy,....ws,) be a basis for W and let A, be
the matrix representing 7 with respect to B. Let G be a subgroup of O(W) which
acts diagonally on W? and trivially on R such that 7 is G-equivariant. Then G is

a subgroup of the centralizer of A,.

Proof Let g € G. Then for every u and v € W,

n(u,v) = n(g.u, g.v). (20)
But, by (4.4),
n(u,v) = u’ Ay (21)
and
n(g-u, g-v) = (g-u)T Ag(g.v). (22)
Thus, for each u and v € W,
uTAgv = (g-u)T Aq(g-v)- (23)

Therefore, this is specifically true for the basis vectors of W. So
(An)ij = wi Aqw;
= (g-w:i)" Ay(g-w;)
= w! (g7 A,9) w;

= (gTAng)ij'

42



thus, for each g € G,
A, =g A,g. (25)

a

This proposition puts a comparitively easily measured restriction on which

group actions will preserve a given bilinear form. The imposition of an inner
product structure on W allows the natural action of O(W) on GF(W). Thus,
this proposition gives a characterization of the subgroups of O(W") which will
preserve a given symplectic form. However, as matters stand. the task is still
unmanageably large: each different symplectic form is represented with respect
to a standard basis by a different matrix which has a different centralizer. Even
the information that symplectic forms are only represented by skew-symmetric
no:-degenerate matrices does not sufficiently reduce the number of centralizers
that would have to be studied. Suppose, however, that under a suitable choice of
basis, the matrix representing n could be of a standard form. Then, centralizers
would also be of a standard form and some general theory could be presented. In
order to achieve such a goal, first we must investigate the effect of changing basis

on the representative matrix.

4.10 Lemma  [3, p.363] Let A = (v1,...,v3,) and B = (w;..... wsr,) be two
oriented bases for V. Let A, and B, be the matrices representing a binlinear
form n with respect to these bases. Let S be the linear transformation mapping

basis A to B. Then,

A, =STB,S. (26)

Proof  Recall that for any vectors u;,u, € W expressed with respect to basis

327
n(uy, uz) = u{B,,ug. (27)
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Let [¢]4 and [v]g denote the column matrices of a vector « € |7 in terius of the

bases A and B respectively. Then clearly,
[vls = S[v]a. (28)
Then, for any v;,v; € A,

(An)ij = [vdRAn[vsla

= n(vi, vj)
= [vi]3Balvils (29)
= (S[vila)T By(S[r,]a)
= [vilA(ST By S)[v)la
= (57B,S);;.
|

Thus, matrices representing a symplectic form transform by transpose con-
jugation by the change of basis matrix. With this information, it is now possible
to continue on to prove that with an appropriate choice of basis. any symplectic

form can be represented by a direct sum of determinants.

4.11 Theorem (Cannonical Symplectic Form) [3. p.377]  Let 1" be a
real 2n-dimensional vector space. Then, for any symplectic form n on 11", there is

a choice of basis B of W with respect to which
n = Gdet,. (30)

Proof Proof by induction on the dimension of 11",

Case 1: dim(W) =2

By definition 7 is a determinant function on W and up to scalar multiplication.
there is only one determinant function on a given vector space {2, p. 103]. So let

{u,v} be a basis of V such that

n(u,v) = 1. (31)
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Then, with respect to this basis
n = det,. (32)

Case 2: Inductive Case

Assume that for every symplectic form n,, on a space of dimension 2m < 2n, there
is a basis with respect to which n, = Ergdetg. Now, choose a non-zero w; € W'
Recall that by definition, associated to 7 there is an isomorphism o: W — W=

such that

(&(v1))(v2) := n(vi.v2) (33)

for all vy, v € W. So ¢(w,) # 0 € W=. Therefore, there exists a w> such that

(¢(w1))(w2) = n(ws, wa) = +1. (34)
Now, define
W, := span(w;. w2) (35)
and
W, := ker (6(w1)) N ker (3(w2)) (36)
Now
w; € ker(¢(w)) but w; ¢ ker(¢é(w.)) (37)
and
wo € ker(o(w,)) but wy ¢ ker(o(w))- (38)
Thus,
dimI¥, = 2n — 2. (39)
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Therefore it can be seen that
W =W, e W, (4u)
This decomposition naturally induces a decomposition of the dual space
W-=Woe W;. (41)
Now, ¢ is non-degenerate on W and, by construction,
(W) = Wr. (42)
Alsu. by construction
d(W,) = Wi (43)

Therefore, ¢

w, is non-degenerate and so, by (4.5), nlw, is a symplectic form
on W5. By the inductive hypothesis, there is a basis {ws,-.. ,want of W with
respect to which n|w, = @ldetg. Thus, since the decomposition of W was direct,
B, = {wy,wr, ws, ... ,wgnn} is a basis of W. Finally, it is easily seen that with
respect to this basis 7 = -&:;detz. O

For our purposes, this representation of a symplectic form is not sufficient.
This is because a standard basis is not necessarily orthonormal and the repre-
sentation of groups such as O(W') with respect to a non-orthonormal basis is
difficult. Therefore, although the cannonical symplectic form is ubiquitous in the
study of symplectic forms, for our purposes a similar theorem with more restric-
tive conditions has been developed. In addition to facilitating the application of
tranformation group theory to the level sets of symplectic forms, this theorem
also highlights some invariants of symplectic forms in relation to an inner product

structure.

4.12 Theorem (Orthonormal Cannonical Symplectic Form) Given a

symplectic form 1 on a 2n-dimensional real inner product space W', there exists an
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orthiugonal decomposition of W into W,&---& W, with a composite orthonormal

basis (W11, ..., Widys- - - Wrl, - - - Wrd, ) With respect to which

n= Sa; (Sﬁdetg) (44)

1

I'eP -

for some real numbers a; > a3 > --- > a, > 0. Furthermore, these numbers and

the vector space decomposition are uniquely determined by 7.

Proof Let B; be an orthonormal basis of W and let B; be the matrix repre-
senting n with respect to B;. Then if A, is a different orthonormal basis of W
with matrix A; representing n with respect to A, and S is a matrix representing
the change of basis we have
A =STB,S
(45)
=S'B,S since S is orthogonal.

Thus, B; transforms to A; under a change of orthonormal basis identically
when viewed as representing a linear transformation or as representing a sym-
plectic form. With this in mind, we apply linear algebra to achieve the desired
result.

Outline of Proof

Step 1. Prove B, represents a normal operator. This will provide two distinct
results. First, it will give an intrinsic orthogonal decomposition of 1" =
W, & --- @ W,.. Second, it will allow the decomposition of the minimal

polynomial of B; into distinct irreducible factors.

Step 2. Show that each irreducible factor of the minimal polynomial of B; is of

the form p; = t% + a?.

,
Step 3. Observe that & a;(Sdet,) is represented by a matrix which represents a
i=1 d,

normal operator with the same characteristic polynomial as Bi.
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Then, since normal operators with the same characteristic polynomial are orthog-

onaily equivalent [3, p. 357], the proof will be complete.

Step 1: We start by proving that B, commutes with its adjoint By and

thus represents a normal operator.

Let v and w be any vectors in W. Then

< Byv,w > =< w,Bv >
= n(w,v)
= —n(v,w) (46)
= —-<v,Buw>

=< v,—Byw>.

So B} = —B; which, of course, commutes with B;. Thus, B; is a normal operator.

Now, by the primary decomposition theorem for normal operators [3, p-348].
the decomposition of the minimal polynomial of B; into distinct irreducible monic

factors is of the form

with a corresponding decomposition of W given by
W=W&---gW, (48)

where W; := ker (pi(B;)) and W; and W; are mutually orthogonal. Furthermore,
p; is the minimal polynomial of Bilu:,.
Step 2: Now, consider the factors of the minimal polynomial of B;. We

first prove that each of these factors is quadratic. Suppose otherwise. Choose

i such that p; = t — ¢; for some ¢; € R and choose a unit eigenvector v € W
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associated with ¢;. Then

0 = n(v,v)
= vTBv
=< v, Biv > (49)
=< v,V >
= ¢;.
But B, is non-singular and thus has no 0 eigenvalues. Thus, each irreducible

factor of the minimal polynomial must be quadratic. Next, we check that each

factor is of the form
p; =t + a>. (50)

To understand this, consider (B;)%. Since B, is skew-symmetric, (B;)? is sym-

metric. Thus, (B)? is self-adjoint and has an orthonormal basis of eigenvectors

is the characteristic polynomial for (B;)?. Thus.
hi= (2 —c1) -+ (t* = can) (52)

annihilates B;. So the minimal polynomial of B; divides A. Furthermore, since
p has no linear terms in its factorization, each ¢; < 0. So, to summarize. the

minimal polynomial p of B, has a decomposition given by
p=(t*+a?)----- (2 + d?). (33)

Step 3: Now that the composition of the minimal polynomial of B; has been

confirmed, return to the decomposition of W into mutually orthogonal factors:

WwW=w&-.--¢WW, (54)
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where p; is the minimal polynomial for Bilw, for each /. Since B, is normal.
so is Bi|w.. Now, two normal matrices with the same characteristic polynomial

are orthonormally equivalent [3, p. 357]. Thus, let us consider the characteristic

polvnomial of B;|w,. Since the minimal polynomial of Bifw, is pi = t2 + a?, the
dimH"
characteristic polynomial is p; ¢ . Another normal matrix on W7 with this same
characteristic polynomial is the (dimW;) x (dimW;} matrix
0 a; W
—da; 0
a;Joa, = ' (55)
0 a;
—a; O
which represents the symplectic form
n; := a; & det,. (56)
d,
So. for each ¢, there is an orthonormal basis for 1¥; with respect to which
T]ln/l = q; ‘;fz det,. (37)

Since the spaces W; are mutually orthogonal, concatenate these bases to form a

basis of W with respect to which

n= & a(Sdety). (;

=1 d,

(3]
[0}
e

g

Thus, for each symplectic form 7 there is an orthonormal basis with respect

to which 7 is represented by a matrix in standard form, A,,. Furthermore. as shown
in (4.9), any group G acting on G (W) such that 7 is equivariant will belong to the
centralizer of A,. Thus, this representing matrix provides information which will

help in the analysis of the symmetry of the level sets. Furthermore, the symplectic

50



spectrum characterizes the form. 2Such a characterization will certainly be helpful
in determining which level sets c-ontain certain orbits and, as it turns out. the
svmplectic eigenvalues are the cr-itical values of 7. These invariants may even
generalize to give some sort of chiaracterization of a differential symplectic form

on a manifold equipped with a Ri.emann structure.



5 Standard Symplectic Form

In the previous section, all preliminary work toward analysing symplectic forms
was completed. In particular, it was shown in (4.11) that for each sympleeiic form

n. there is a basis referred to as a standard basis with respect to which
n= @detz. (l)
n

Unfortunately, not all standard bases are orthonormal and, as discussed in the
previous section, without an orthonormal reference basis it is difficult to represent
the special orthogonal group. Therefore, the analysis of the symplectic form will
be hroken into two sections: this one in which there is an orthonorma! standard
basic and the next one in which the more general case is considered.

Recall that symplectic forms only arise on even dimensional spaces (4.8).
Thus, throughout this section, assume that W is a 2n-dimensiona! real inner
product space. Thus, we are able to impose a complex structure on W' We will
show in (5.1) that with the existence of an orthonormal standard basis there is an
intrinsic way of intertwining the symplectic form n and the inner product on ¥ to
achieve a complex structure on . Full details of the resulting complexification of
W and its implications to the classical Lie groups of W are discussed in Appendix
C.

The outline of this section is fairly typical of each analysis section in this
thesis. First, a characterization of the properties of a vector space V" which affect
the value of (V) will be developed. This will require, as discussed, a well-defined
complex structure on W. The next step is to discover which points of the image
of 77 are regular values. Since any interval which contains no critical values has a
pre-image in which the level sets are diffeomorphic and, in fact, are equivariantly
diffeomorphic under any group action which preserves level sets, explicit knowl-
edge of the critical values gives the maximum number of different diffeomorphism

classes of level sets. Next, using information about the form, the maximal sub-
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erup G of O(W) for which 77 is G-equivariant is calculated. This group acts on
(;;{1¥) and transformation group theory, as outlined in Appendix B. is applied.
i3~ this theory, the only two pieces of information remaining to completely under-
stand the structure of the level sets are the number of different orbits in a level set
and their structure. This last is given by the stabilizer of any point on an orbit.
Thus, the first order of business is to define a complex structure on W.

Any non-degenerate bilinear form ¥ on W determines a linear isomorphism ¢ :

W — W= by

(2 (v))(w) = ¢(v,w).

Famn Y
V]
e

This was shown explicitly in the case of symplectic forms in (4.5). Thus, if nis
a symplectic form, and o is the inner product on W, we get two distinct isomor-
phisms of W and W=, 7 and 6. When n admits an orthonormal standard basis,

these two intertwine to produce the complex structure 5~ o7 : W — ¥

5.1 Lemma Let W be a vector space with inner product & and let n be a

symplectic form on W which admits an orthonormal standard basis. Then the

map

Flong: W W (3)
is a complex structure on W.
Proof Suppose B = {w,..., w2} is an orthonormal standard basis on 4%

with dual basis B* := {w],...,ws,} of W=. Then with respect to these bases, 17
is represented by Js, and by (4.5) 7: W — W= is represented by —Ja,.

Also since B is orthonormal, o is represented with respect to B by Idsn
and so with respect to B and B~, & is also represented by Idan.

Thus -1 o 77 is represented by
(Idz—rz)("‘]h) = —Jon. (4)
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Of course,

(_J2n)2 = _Id'zn (_

g
S—

and so

(5’—1 c 77)2 = —Idy-. (6)

This complex structure on W will be known as the complex structure
induced from 7 and o and, unless otherwise stated, will be the complex structurc

in use for the remainder of this section.

We now present a characterization of which properties of a given plane

V € W determine 7j(V).

5.2 Lemma  Let W be a 2n-dimensional real inner product space and let 1; be
a symplectic form on W which admits an orthonormal standard basis. Impose on
¥ the complex structure map J induced from n and the inner product and let 5
be the smooth map on GF (W) induced from 5. Let V € G3 (1¥') have an ordered
orthonormal basis (u, v) representing positive orientation on V" and let Cu be the
complex span of u. Then the value —7j(V’) is given by the oriented area of the

orthogonal projection of the unit square in V" spanned by (u,v) onto Cu.

Proof Let B := {w;,..., w2} be an orthonormal standard basis for 7. Now,
observe that J maps each basis vector to another (positive or negative) basis

vector. Thus, since the basis is orthonormal, J maps each « € W to a vector per-

pendicular to u. Therefore, since J is orthogonal, (er® IIJ—:IT

real basis for the complex line Cu and assigns it an orientation.

) forms an orthonormal

The orthogonal projection of the unit square spanned by (u.v) onto Cu
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will Le a rectangle. So we get

area = base - height
= [Imeu ()l - e (¥)i
= |lu|l- < v, Ju >

= ‘UTj‘LI. (

-’

= 7n(v,u)
= —n(u,v)
= —7i(V).
O

Note that although (5.2) is stated in terms of a specific basis of V', n(V) is
independent of basis (2.3). Thus, the oriented area of the orthogonal projection
of a unit square in V onto a complex line generated from one of the basis vectors
is independent of the choice of unit square.

There is an equivalent way to express this. One could define an angle 6y
to be the oriented angle between a space V" and any complex line generated from
some u € V. The same argument as above shows that such an angle is well-
defined and that 7(V) = — cosfy. Although intuitively appealing. the approach

using angles does not generalize to other situations as well as projected area does.
5.3 Corollary  Under the conditions stated in (5.2).

max (V) = 1. (8)
VeGT (W)

Furthermore, this occurs when V is a negatively oriented complex line.

Proof Following the proof of (5.2), it is clear that for V' € G (W) and an

ordered orthonormal basis (u,v) representing positive orientation,

V)= —<v,Ju>. (9)

[$)]
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Since J is orthogonal, both v and Ju are unit vectors. Thus,
V)< 1 (10)

and achieves 1 when v = —Ju.

This last statement is equivalent to stating that V' is a negatively oriented
complex line. 0

Thus, pointwise, the maximal level set is equivalent to complex pro jective
space. It is natural to inquire whether it also has the manifold structure. This
question will be answered affirmatively in (5.6).

At this point, the information is available to check which points on G (W)
are regular. This will, as shown in (2.10), provide a set of diffeomorphism classes
of level sets. Furthermore, once we have a group whose action preserves level
sets, this diffecomorphism will be equivariant. First, observe that since {£1} are
extremal values of 7 on G (W), they cannot possibly be regular values. So. it is

only necessary to investigate points in |—1,1[.

5.4 Theorem Let ¥ be a 2n-dimensional real inner product space and let n
be a symplectic form on W which admits an orthonormal standard basis. Then,

all the points in the interval ]—1,1[ are regular values of the induced map 7 on

GH(W).

Proof Letae]—1,1[andletV €7 '(a). Let (u,v)bean ordered orthonormal
basis of V which represents the given orientation on V. Now, by (5.2), v can be

decomposed into
—a (ju) +V1—-aw (11)
for some w € (span{u,Ju})*. Now construct a curve on G3 (W) by
v(t) := span(u, —t (ju) + V1 — t2w) (12)
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for + € ]-1,1[. Then,

v(a) =V (13)
and
7 (7(t)) = n(u, —t(Ju) + V1 — t?w)
= —-tr](u,ju) + V1 —t2n(u,w)
(14)
=—t(-1)+0
=t
SO
dijo~y _ -
p7 o 1. (15)

Clearly, ‘2—’2 is rank 1 for all t € ]—1,1[ and, in particular, is rank 1 at V. Thus, all
the points in ]—1,1[ are regular values and all of the non-extremal level sets are
diffeomorphic. a

Now that it has been demonstrated that all non-extremal level sets are
diffeomorphic, the next step is to find the maximal subgroup of O(¥W") which
leaves all level sets invariant. As explained in the first section, only subgroups of
the orthogonal group of W, O(1¥), are considered because the action of O(H")

preserves the definition of 7 as a function on G ().

5.5 Proposition  Let W be a 2n-dimensional real inner product space and let
n be a symplectic form on W which has an orthonormal standard basis B. Then.
defining a trivial action on R, the largest subgroup G of O(W¥") for which 7 is
G-equivariant is the unitary group on W, U(W).
Proof  First, recall that the unitary group is an embedded subgroup of the
orthogonal group (C.3).

As proven in (4.9), G must be a subgroup of the commutator of the matrix

Jon which represents n with respect to B; ie. G < GL(W:C).
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Now, recall that the complex structure on W induced from n and the inner
preduct is represented by J2, with respect to any orthonormal standard basis.
By definition, the set of linear transformations on W which commute with the
complex scalar 7 is GL(W, C).

As shown in (C.3), GL(W,C) N O(W) = U(W) and so G < U(I¥). Con-
versely, if A € U(W) then A commutes with J and

n(Au, Av) = (Au)TJ(Av)

=uT(ATJA)v

=uT (A7 A since A is orthogonal (16)
=uTJv since A commutes with J

= n(u,v).

Thus, every element of U(W) preserves the value of 7. Therefore, the
largest subgroup of O(W) which preserves 1 is the unitary group, U(W). a
Next use the action of U/(1¥) on the level sets of 7 to tell us about the
structure of these level sets. First, since the extremal level sets are associated
with critical points, they need not be diffeomorphic to non-extremal level sets.
Therefore, they are treated separately. As observed in (5.3) these level sets are in

bijective correspondence with complex projective manifolds. In order to define an

embedding of CP™~! into G (W) we define

~

CP~(W) := {complex lines in 1" with a preferred orientation opposite to (u,Ju)}

(17)
and give it the conventional complex projective manifold structure.
5.6 Theorem Let W be a real 2n-dimensional inner product space. Let

be a symplectic form on W which has an orthonormal standard basis and let

7 : GF (W) — R be the smooth map induced from 7. Then the inclusion U (1) C
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O(1V) induces an imbedding of homogeneous spaces
CP~(W) <= G (W). (13)

The image of this imbedding is the maximal level set.

Proof By (5.3) the set of all negatively oriented complex lines is the maximal
level set. Thus, we must confirm the manifold and submanifold structure of this
set. First, consider the action of U(W) on G (W'). It was shown in (5.5) that
7 is U(W)-equivariant. Now, by definition, U(W') acts transitively on CP—(1¥).
Therefore, the maximal level set is a single orbit of the action of I7(¥7) on G35 (1¥').
Now, as shown in (B.7), any orbit of a compact group action on a manifold X is
a submanifold of X. Finally, that same theorem provides the tools to explicitly
determine the structure of that orbit given only the stabilizer of a single point on
the orbit.

Let V be a negatively oriented complex line. Then, (5.3) gives that V)=
1. We wish to calculate the stabilizer of ¥V under the action of /(117). Now. a

consequence of (2.6) is that
U(W)y = (SO(V) x O(V*1)) N T(1). (19)
But SO(V) x O(V't) C O(W') and, as shown in Appendix C.
U(W) = GL(IW,C) N O(1¥). (20)
Therefore,
U(W)y = (SO(V) xO(V*+)) N GL(W, C). (21)

Now, by definition, the complex general linear group is the group of linear
transformations which commutes with the complex structure map J. Since Vis a

complex line, J fixes V and, therefore, J fixes V+. Thus, we can consider

—
[SV]
(}V)

p—

j - j'v ejl‘.!_
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This means that for a transformation g = (k,k) € SO(V) x O(V'1) to commute

with J, then A must commute with J|y and k& must commute with Jly-x. Thus,
U(W)v = (SO(V) N GL(V,C)) x (O(V*) N GL(V*,C)) . (23)
Finally, as seen in Appendix C,
SO(VYNGL(V,C) =U(V) (24)
and
O(VY)NGL(VE,C) = U(V™H). (25)
So, it is possible to conclude that
UW), =UWV)xU(V*). (26)
By theorem (B.7), this means that

77H(1) = U(W) JU(V) < U (V)

IR

CP™! since V" is a complex line.

The fact that the maximal level set is homogeneous and the next result
which states that all other level sets are also homogeneous simplifies matters.
This way each level set is simply an orbit and thus gets its submanifold structure
directly from the orbit structure. It is worth noting that, as shown in (5.4). non-
extremal values are regular. Therefore, the implicit function theorem applies and
guarantees that non-extremal level sets are submanifolds of G (W) regardless of

whether or not they are homogeneous.

Prior to the next theorem, a few constructions are needed. For 8 € [0, 2x].
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let

cos 8 asin g —V/1 = a?siné 0
—asind cos 8 0 —V1 — aZsiné
V1= a?sind 0 cos @ asiné
0 V1 —a?sinf —asinf cos 8§

.11(9) =

Now, let B € U(C*"?) and define
A(8) O
Ay(8) == { +(9) } (29)
0 B

Note that with respect to an orthonormal basis, this represents an embedding of
{A2(0)] 6 € [0,27]} = U(CY)xT(C?) (30)

into U(W). The next proposition will show that each non-extremal level set has

the structure of this embedding.

5.7 Remark A dimension check verifies the plausibility of this claim as these

level sets are expected to be of co-dimension 1 in G (1¥):

dimGH(W) — 1 =2(2n - 2) — 1
(31)

dimU (W) /U(C)x U(C*"?) =n® =1 — (n — 2)?

=4n — 35

when viewed as a real manifold.

5.8 Theorem Let W be a 2n-dimensional real inner product space. Let n be
a symplectic form on W which has an orthonormal standard basis and let 7} be the

map on G (W) induced from n. Then each non-extremal level set is homogeneous

and is U(W )-equivariantly diffeomorphic to U(11") JU(CY) xU(C2).
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Proof Recall from (5.3) that the extremal values are 1. Thus, let a € |—1.1{.
The assertion is proven by choosing a vector space V' in the a-level set and
considering the orbit U(W).V. First, to prove homogeneity, we will show that
[i1V).V = /(). Then, as shown in (B.7), calculating the stabilizer of V/ will
give the homogeneous structure of the level set. Note, calculation of the stabilizer
of V" is very intensive. A more geometric version of this proof is provided for the
general case in the next section.

Since it is irrelevant to the theory which V € 7~'(a) is chosen, choose V'
to he most convenient for calculations. Specifically, for the orthonormal standard

basis B := {wy,..., w2}, let

v = awp + V1 — a®ws (33}
and give
V :=span{w;, v} (34)

the orientation represented by (w;, v).

Now. since B is a standard basis, it is clear that
n(wi, w2) =1 (35)
and that
n(w,ws) = 0. (36)
Thus. by linearity,

(V) = n(w:, v)
= o - n(wy, w2) + V1—a?- n(w;, ws3) (37)
= a.
The next step is to prove that the level set is homogeneous. Thus. we must

confirm that U(W).V =7~ (a). Let V/ € n7}(e) and let (u. v') bean orthonormal
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ba<i- of V' representing the given orientation. Consider the projection of tiic unit
square spanned by (u,v) of V' onto the complex line Cu. By (5.2), the oriented

arca of this projection is a. So

v = —aJu+ V1 - 2w (38)

for some unit vector w € (Cu)*. Since U(W) = O(W) N GL(11, C), the action of
[/(14") can map V onto any such V’. Thus, U(I¥) acts transitively on the level

set and the entire level set is a single orbit.

Finally, calculate the structure of the orbit U(117).}". For this, as shown
in (B.7), we need the stabilizer of V' under the action of U(). By (2.6). this
stabilizer is (SO(V) x O(V*)) N U(W). Suppose that g € U(H')y. Then we
first intend to prove that, g € U(C?) x U(C""2). For ease of notation, define the

subspace

CV = W, := span(wy,..., wy) (39)

Thus, since ¢ is unitary and stabilizes V', g must stabilize I’ and (W)+. As seen
in the proof of (5.6), this is sufficient to conclude that g € U(¥5) x U(W) as

desired.

Now, of course, U(W,) x U(W}) acts diagonally on Wy & Wi Since
V C Wi, this means that the entire group U(Wj) is part of the stabilizer of
V. Therefore, it remains to discover the conditions on h € U(IV;) for it to be an

element of the stabilizer of V.

Suppose that h stabilizes V. At this point, it is more convenient to do
certain calculations in a matrix setting than with linear transformations so let A

be the matrix representing £ € U(W);) with respect to the basis {w;, ws.ws, wy; .
p g p

63



It is clear from matrix multiplication that

Aawy = (40)

Since A.w; € V,

1

.4.1131 = .4.11101 + ﬁ

-4311’ (41)
Note that |a] £ 1. Thus,
‘4,41 =0
d A4 o A ()
an - = e—"r .
21 \/1—_;2' 31

Now, A € U(W;) C O(R*) so the norms of all of the rows and columns are

all 1. Specifically, the norm of the first column is 1. So

1 - 2(.431)2 + (Aay)?
- (43)

1
= (-‘111)2 + Tag‘(-‘lm)z

1= (-‘111)2 +

So. for notational convenience, let A;; = cos @ for some 6 € [0.2x]. Then A3 =
V1 = a2sinf. Note that as 6 moves through [0.2x]. all possible combinations of
positive and negative terms occur.

Now since A represents a unitary transformation, the first column of 4

determines the second column (C.1). To recap. thus far we have

[ cos @ —asiné

asinf cos 6 A~
A= (44)
V1 —a?sinf 0

0 V1 —a?sind
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for some as yet unknown two column A*. Now calculate A.v:

a?sinf + A;3V1 — a2

acosf + A1 —a?
AzsV/T — a?

Lcr\/mﬁsin + AVl —a?

Since A.v € V, quickly conclude that
Av = (asinf + A;3V1 — a?)w; + Asv (46)
Thus, examining the fourth coordinate,
a1 — a?sinf + AVl —a? = 0. (47)
Since V1 — o2 # 0, then
A4z = —asinf. (48)
Now, the norm of the fourth row is 1 so

1 =0+ (1l —a?)sin?8 + a? sin? @ + (A4)?
(49)

= Sinz 0 + (‘444)2

Thus,
A4y = £cosb (50)

Furthermore, by the symmetry of the matrices representing [7(Wy) imposed

by the imbedding of U(W,) into O(Wjy),
Azz = Ayqy = T cosb. (31)
Now consider the second entry in A.v.
o cosf + AVl — a? = adss (52)
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So.

Agz = = (— cos 8 = cos 6). (:
1 —a?

it
e

We claim that A3 = 0. Suppose otherwise. Then a # 0 and A33 = Ay =
—cos @ # 0. Since the norm of the third column must be I,

2

1=(A13)*+ 2 cos® 0 + cos? 8 + a®sin’ g (54)
1—¢?
So.
1+ 3a2 . .
A13=:§:\/1 - 1+_:2 cos2 @ — a?sin® 4. (35)

One final condition on the rows and columns of A is that they must be

mutually orthogonal. Specifically, columns 1 and 3 must be orthogonal. So.

0 = (A1) - (A-3)

=cosf | £ l—l+3a'c0529—a""sin29 (56)
l1—a?

cosf) + 1 — a?sinf(—cosf) + 0

2a
—(asin ) ———
(asin )(m

Since cos 8 # 0 by assumption.

1 + 3a? . 2a? )
:i:\/l—li_c%-coﬁH—a?sm'G: (vl—a2+ﬁ> sin @

32 1+a?\?
1—1—+£c0529—azsin29= <__+_a_> sin2 6

T~ a2 Voot

1 —a?—(1+3a®)cos?d —a?(l —a?)sin?f = (1 +2a° +a')sin?4

(57)
0=1—0a?—(1+3a%)cos?f — (1 + 3a?)sin? 6
=1—a?—(1+3a%) (58)
= —4a?
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But the assumption was that a # 0 leading to a contradiction. Thus.
.423 = 0 “':’”}

Thus either @ = 0 or Asz = Ay = cosf. Again, the norm of the tiitred

column must be 1 giving
1 = A%, + 0+ cos? 0 + o? sin? 6 (GU)

Thus, A;3 = £v/1 —a?siné.
To determine the sign of Az, check the orthogonality of the first and ti..vd
culumns.

Case 1: Az3 = —cosf and a = 0.

0= (‘4—1) : (-4:3)

(61)
= cos (V1 —a?sinf) + 0+ V1 —a?sinf(—cosf) +0
So, A3 = +V1 —a?siné.
In this case
_cosﬁ 0 sin 6 0 |
0 cosf 0 sin 8 ,
4(0) = (62)
sin 8 0 —cosf 0
0 sin 8 0 —cos @

But when applied to V/, this is an orientation reversing map. Thus. con-

sidering V" as an oriented vector space, transformations of the above form are not
elements of the stabilizer.
Therefore, regardless of whether o = 0, Asz = cosf. Using the same

orthogonality argument as above, calculate that
Az =—V1 —a?sinf. (63)

67



This gives, as desired,

cos & —asiné —vV1—a?siné 0

asin @ cos 8 0 —+v1 —a?siné
A(0) = . (64)
vV1—a?sinf 0 cos —asinf

0 V1 —a?sinf asin 8 cos

L -

Therefore, the stabilizer of V is the embedding of U(C') x U(C*7?) as

desired. As shown in (B.7), the manifold structure of 7~ !(a) is given by
i) = UW) [/ U(C') x U(Cc?). (65)

O

Therefore, if 7 is a symplectic form on W which admits an orthonormal
standard basis and 7 is the map on G5 (W) induced from 7, it is possible to
completely describe each level set of 7. We know that 77 maps onto [—1,1] and
that all non-extremal values are regular which implies that all non-extremal level
sets are U/(W)-equivariantly diffeomorphic and submanifolds of GT (). We also
know that all of the level sets are homogeneous spaces under the action of U(1})
on ¥ (W) and their exact structure. Finally, as described in Appendix B. we can
give a complete description of how these different level sets are glued together to

form the Grassmann manifold.



6 Symplectic Forms: The General Case

In the previous section, symplectic forms which in the presence of a given inner
product have orthonormal standard bases were examined. Although (4.11) duoes
guarantee that for each symplectic form, 7, there is a standard basis with res; -ct

to which
n = $det, (1)

it does not guarantee that such a basis is orthonormal. This poses problems
because groups such as O(1') and U(W') are very difficult to characterize with re-
spect to non-orthonormal bases. Rather than attempt this, an orthogonal cannoni-

cal symplectic form was developed. Specifically, in (4.12) it was discovercd rhat for

each symplectic form there is a unique collection of real numbersa; > --- >« >0
and muliplicities d,,....d, and an orthonormal basis with respect to which

r Y

1= Dai(adets). (2)

The collection of numbers and multiplicities is called the symplectic spectrum
of n and any basis satisfying these conditions is called a symplectic basis of
n. This basis also incorporates an intrinsic decomposition of I’ into mutually

orthonormal subspaces
W=Ws&- -3 W, (3)

in that the first 2d; vectors form an orthonormal basis for 117, the next 2d, vectors
form an orthonormal basis for W5, and so on. Therefore, this basis is often denoted
by (Wi s Wi2dys---: Writs - - -« Wr2d, )-

This discovery allows the extension of the results found in the last section
relating to symplectic forms which admit an orthonormal standard basis (standard
symplectic forms) to all symplectic forms. Thus, this study will follow the same

format as the last section. First, a characterization of the behaviour of (V") will

69



be given. Although a complex structure on W can still be induced from 7 and the
inter product structure, it’s behaviour is a little less well intertwined with that of
7. Thus (V) is not determined by the projection of V" onto its complex span as
in the general case. Rather, it is determined by those sorts of measurements on
each of the projections of V into the various symplectic eigenspaces.

Next, critical points will be identified. In the standard case, these points
were the complex lines of W. Analogously, the critical points of a general sym-
plectic form are the complex lines of W which happen to be contained entirely
vithin a single eigenspace. This gives the positive and negative symplectic eigen-
values as the critical values of the function. Since the standard symplectic case has
only one symplectic eigenvalue and one symplectic eigenspace, this is a completely
analogous result.

Next, the maximal group of O(W) for which 7 is equivariant with respect
to a trivial action on R is determined to be U(W;) x ... x U(W,). Again, as
the standard symplectic case only involves one symplectic eigenspace, this is a
consistent result. As in the standard case. this gives the extremal level sets a ho-
mogeneous manifold structure equivariantly diffeomorphic to complex projective
space. However, in the standard case, non-extremal level sets were also homo-
geneous manifolds. In the more general situation. this result doesn’t carry over:
non-extremal level sets are made up of multiple orbits. The dissection of the non-
extremal level sets will thus be in two phases: first, it will be determined which
orbits belong to which level sets and, second, the structure of these orbits will be
calculated.

Essentially, an arbritrary symplectic form in the presence of an inner prod-
uct is the direct sum of scaled orthonormal cannonical chunks. In order to make
this understanding meaningful. it is necessary to be able to intrinsically define
a cannonical symplectic form given an arbitrary symplectic form and an inner

product structure.
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6.1 Lemma  Let W be an inner product space and let 77 be a syvimpiecitc furm
on W. For a given symplectic basis of W, define the cannonical sympiectic form

S:WxW — Rby
S = @detg (-“

Then the form S is independent of the symplectic basis used to define it.
Proof Suppose B; and B, are two symplectic bases for 11", Define cannonical
symplectic forms S; and S in relation to B, and B, respectively. Then to check
whether S; = S,, it is sufficient to consider a basis of H’, say B;.

Note that, by construction, B; takes only values of 1. 0. or. brenuse It is
alternating, —1, on pairs of basis vectors from B;.

Suppose that v,w € B, and, without loss of generality,

Si(v,w)=1 (:

N
~—

Then, since B, is a symplectic basis, v, w € W; for some 1,

n(v,w) = a;. (6)
Since B, is also a symplectic basis and v, w € ¥, and nlw, = ¢; S det, = a;Salw,.
52(U’ LU) =1. (T)

Similarly, if S;(v,w) = 0 and v, w both belong to some 7.

n(v,w) =0 (8)
and so

Sa(v,w) = 0. (9)
Clearly, if v € W;,w € W;,7 # j then

Sl(v,w) =0= Sg(’b‘,'w). (10)
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Thus an arbitrary symplectic form in the presence of an inner product
int rinsically defines a standard symplectic form on W. Of course, this construction
can he restricted to individual symplectic eigenspaces giving S; : W; x; — R.
Fuithermore, as seen in (5.1) the cannonical symplectic form S together with the
inzer product structure on W intrinsically define a complex structure map J on
11". This complex structure will be extensively used through this section.

With these constructions in place, it is possible to characterize the be-

haviour of 7.

6.2 Lemma Let W be a real 2n-dimensional inner product space. Let i be a
sviiplectic form on W with a symplectic spectrum a; > --- > ar and symplectic
eigenspaces Wi, ..., W, with orthogonal projection functions 7 : W — Wi Let
7 : G3 (W) — R be the smooth map induced from 7. For each 1 <7< rletS; be
the cannonical symplectic form on W; induced from 7 and the inner product.

For a V' € GF (W), let (u,v) be an ordered orthonormal basis for V" repre-
senting the given orientation. Then

r

(V) =Zas'5i(7?i(u)=77i(‘v)) (11)

=1

Proof By definition,
n(u,v) = Y _ nlw.(7i(u), mi(v))
=1

= Zai ?detz(ﬁ;(u),ﬁi('v)) (12)
=1 *

= Zaisi(m(u),n(v))

=1

-~
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6.3 Corollary Let W be an inner product space and let n be a symplectic
form on W with symplectic spectrum a; > --- > a, > 0. Then
max #(V)=a1 (13)
VeGH(w)
and 7 attains this maximum on complex lines in W} which have the orientation

opposite to that given by the complex structure on V.

Proof Let V € G (W) and let (u,v) be an ordered orthonormal basis of V

representing the given orientation. Then

r

(V) = D a:Si(mi(u), m(v)) 6.2
=1
< ;alsi(m(u),m(u)) a1 > a; (14)
= a,5(V)
S ai 5.3

Furt-hermc;re, it is clear that equality is achieved precisely when
(V) = {0} Vi>1 (15)
and
S(vy=1. (16)

Of course, S achieves its maximum if and only if V" is a negatively oriented complex
line (5.3). o

The next step is to calculate the critical values of 7. As shown in 2.10, this
will confirm that level sets between adjacent symplectic eigenvalues are equivari-

antly diffeomorphic.

6.4 Theorem Let W be an inner product space with a complex structure map

induced from 1 and the inner product. Let n be a symplectic form on I+ with
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svmplectic spectrum a; > --- > a, > 0 and associated symplectic eigenspaces
Wi, ..., W.. Let 7 : GF (W) — R be the smooth map induced from 7. Then 7(V")

is critical if and only if
V=CV CW,; for some 1. (17)

Proof First we check the critical points. So suppose that
V=CVCW, (18)

for some 1 < i < r. Now, from the corollary to the normal basis picking lemma
(2.9). we know that if it is not possible to vary only one basis vector and get a
path along which the derivative of 77 is not zero, then it is not possible to find
such a path at all.

However, the combination of (5.6) and (6.2) guarantee that 7(1") is locally
extremal with respect to varying a single vector in isolation. Explicitly, suppose
that (u,Ju) is an orthonormal basis of V' and, without loss of generality. assume
that V has the conventional orientation of a complex line. Now suppose that

(u.v) € Vo(W). Then
v = aju+ fuw (19)
for some @, 3 such that a? + 8° =1 and w € ¥+ with |j«|| = 1. So
n(u,v) = n(u, edu + Bw)

= cxn(u,ju) + B(u,v)

= —aa; +0 (20)

> —a; since o € [—1,1]

= 17(u,ju)

Thus, varying a single vector of V in isolation will produce a local minimum.

Thus, V is critical.



Next we consider all other points. This breaks down into two possinilities:
either V is not a complex line or V is a complex line but is not contained i any
svmplectic eigenspace.

("ase 1: Suppose V # CV.
Let (u,v) be an ordered orthonormal basis of V' which represents j,u-itive

orientation on V. Then define a path v :] — 1,1[— G5 (W) by
~(t) := span{u, V1 — v + tJu} (21)
with orientation given by (u, V1 —t%v + tju). Then

(1)) = n(w, V1 — v + thu)

A (22)
= V1 —t2n(u,v) + tn(u, Ju)
So
La(1)) = — (a0 + (. Ju) (23)
dtﬂ ! \/1—_—§77 : . =)
and
4 ai((1)) = (. Tu)
dt t=0TI\" =Tnu.Ju (24)

# 0.
Thus, all planes which are not complex lines are regular points of 7.
Case 2: Suppose V = CV but V' € I¥; for any 1.
Without loss of generality, assume that V" is oriented by the pair (u.ju)
for some arbitrary unit vector u € V.

Define m; : W — W; to be the orthogonal projections function. Now.
choose 7 such that
mi(u) # 0. (23)
Let u; := =) Then define a path v :] — 1,1[— GF (W) by

RO

~(t) := span {u, V1= 2Ju + tju,-} (26)
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with orientation given by (u, VI—2Ju + t]) . So
7(v(t)) =n (u, V1= 12Ju+ tJu,-) (27)
ard. as before,

2 Jemori(y(2)) = (u, Ju)
£0.

Thus, all complex lines not contained in any single symplectic eigenspace

are regular points of 7. O

6.5 Corollary  Let n be a symplectic form with symplectic spectrum a; >
... > a, > 0. Then the critical values of the induced map 7 are {a; | 1 <i < r}.
Proof Thisis an immediate consequence of (6.4) and (6.2). a

Another consequence of (6.2) is an understanding of what a neighbour-
hood about these critical points looks like. Of course, if V' = CV C W,. then
A(V) = +a, is extremal (5.3). Thus, these particular planes are local max-
ima or minima. But what about the complex lines in intermediate symplectic
eigenspaces? Suppose V' = CV C I¥; for some ¢ > 1. For any j # 17, choose

w; € W, |lw;]l =1, and define a path
~v(t) := span (\/1 — t?2u + tw;, V1 — t2Ju + tjwj) . (29)
So

A1) = (1 — 2)n(u, Ju) + 2n(w;, Ju;)

= —a; + tz(a,- - aj).

(30)

Depending on the relative values of a; and aj, this traces a path on G+ (W)
on which the value of 7 is always non-decreasing or non-increasing. Thus. the
complex lines contained in intermediate symplectic eigenspaces are saddle points.

Moreover, the number of directions in which the saddle increases and the number
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of directions the saddle decreases are given by the collective dimension of all the
cigenspaces with symplectic eigenvalues greater or smaller than a; respectively.
We now begin the study of transformation group symmetries on level scts of

7} by determining the maximal subgroup of O(W) which leaves level sets invariant.

6.6 Proposition Let W be a 2n-dimensional inner product space. Let 77 be
a symplectic form on W with a symplectic spectrum a; > --- > a, > 0 and
symplectic eigenspaces W1, . .., W, respectively. Then U(W;)x...x U(W,) is the
largest subgroup of O(W) for which 7 is equivariant with respect to a trivial action

on R.
Proof Asshown in (6.2), if for each 1 <7 < r, S; is the standard symplectic

form on W; induced from n]w, and the inner product, then

r

(V) =D ai- Si(mi(u,v))- (31)

i=1
Furthermore, as shown in (5.5), for any given i, U(W?;) is the largest subgroup of
O(W;) for which S is equivariant. Thus, the action of group U'(I1¥1)x...x (W)
on G} (W) does preserve the value of 7. It remains to show that this is the largest
group to do so. This is done by induction on the number of symplectic eigenspaccs.
r.
Base Case: Supposer =1
This reduces to the standard case in which the calculation has already been com-
pleted (5.5).
Inductive Case: Suppose the result holds for all symplectic forms with 7 — 1
symplectic eigenspaces.
Consider the maximal level set of 77, the negatively oriented complex lines in 1¥)

(6.3). Since G keeps this level set invariant,
Uw,) c G. (32)
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Furthermore, since any map involving interchanges between W, and Wit will map
at least part of some complex line in W} out of W, such a map will fail to stabilize

the maximal level set. Thus we have
UWy) x...xUW;)cGcCU(W;)x O(WH). (33)
Thus, G is of the form
UW,)xH (34)

for some group H contained in SO(Wi) and containing U (W) x...x U(W,).
“herefore, it is reasonable to restrict attention to nly-.- It should be noted that
this 2-form is symplectic on Wi with sympléctic spectrum a; > --- > a, and

symplectic eigenspaces Wa, ..., W,. Thus, by the inductive hypothesis.
H=UW;)x...xU(W,). (35)

a

Now that there is a group acting on G§ (W) for which 7 is equivariant, it

is possible to consider the structure of orbits and the types of orbits which belong

in a given level set. We now present a characterization of vector spaces which is

equivariant and so characterizes orbits. It turns out that there are some conditions

on the possible characterizations of orbits in any given level set. Furthermore. this

characterization almost completely determines the manifold structure of the orbit.
Define € : GF (W) — {0,1,2,3}" by

,

0 if dimm;(V) =0

1 ifdimm(V)=1
&i(V) = o - (36)
2 if dimmy(V) = 2 and 7(V) = Cx;V

|3 if dim=;(V) = 2 and =, (V) # Cm:V

If an action of the group G = U(W1)x...xU(W,) on {0.1,2, 3}" is defined trivially

(so that multiplication by any element is the identity map), then we can see that
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€ is a G-equivariant function. This means that each orbit of the action of G oon
GT (W) will consist of vector spaces with the same characterization. Thus. it is
appropriate to discuss the characterization of an orbit.

Now, the characterization of a vector space, in most cases, does not in-
dicate which level set it falls in. In fact, many characterizations are present in
all level sets. Consider an example. In the standard symplectic case, r = 1 and
a; = 1. In this case, if n > 2, (5.6) showed that the extremal level sets were of
type £(V) = (2) while all the rest were of type £(V) = (3): a direct relationship
between vector space characterization and orbit type but very little relation be-
tween characterization and level set. The following gives the relationship between

level set and possible characterizations of vector spaces in that level set.

6.7 Proposition Let W be a real 2n-dimensional inner product space. If 5
is a symplectic form on W with symplectic eigenvalues a; > --- > a, > 0 and
associated symplectic eigenspaces W), ..., W, then the following restrictions on

vector space characterizations exist for V € G§ (W):

1) £&(V) =(2,0,...,0) if and only if [}(V)]| = a1

2) Vi, if &(V) =26;,V5. then [7(V)] = «;

3) If 3k < r such that &(V) <1 Vi <k, then [7(V)| < ak+1 where ar4;:=0

4) If 3k < r such that &(V) = 0 Vi > k, and Vy < k.£(V) = 2or 0 then
(V) 2 ax

Furthermore, for each value a € [—a;, a)] and each characterization satisfying the
above conditions, there is at least one orbit contained in 7~ '(a) which has that

characterization.

Proof This is a simple consequence of propositions (6.2) and (5.6). a
This last proposition gives complete information about which orbits belong

to any given level set. Therefore, all that remains is to calculate explicit orbit
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structures. Recall that, as shown in (B.7), if a compact Lie group G acts on a
differentiable manifold X, then for each z € X, the orbit G.z is diffeomorphic to
G /G, where G is the stabilizer of = under the action of G. Therefore, to calculate
these orbit structures, it is only necessary to calculate stabilizers. It turns out. as
shown in the remainder of this section, that these stabilizers are almost entirely
dependent on the characterizations of the orbits.

First, a few simple constructions are needed. As always in this section,
let  be a symplectic form on a real 2n-dimensional inner product space W with
a svmplectic spectrum a; > --- > a, > 0, associated symplectic eigenspaces
Wi....,W,, orthogonal projection functions =; : W — W;. Let J be the complex

structure map on W induced by n and the inner product. Then for each VV €

G5 (W) and for each 1 < ¢ < r define subspaces of W by
Xi(V) := Cmi(V)). (37)
Note that since each W; is also a complex subspace of 1.
X(V) C W; (38)

for each 7. Also, the dimension of X;(V') is entirely dependent on the characteri-
zation £;(V') defined earlier. Explicitly,

4

0 f&(V)=0
dimg X:(V) = {2 if&(V) e {1,2} - (39)
4 if&(V)=3

L
6.8 Theorem  Let W be a real 2n-dimensional inner product space and let 77 be
a symplectic form on W with symplectic eigenspaces V1, ..., W, and orthogonal
projection functions w; : W — W;. Let J be the complex structure map on W
induced by n and the inner product and let < -,- >¢ be the hermitian inner

product induced from the real inner product on W and J. With respect to this
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hermitian inner product, let
G :=U(W)x...xU(W,). (40)

Let V € G} (W) have characterization £(V') = (&(V)): and for each 1 <
i < rlet X(V) := C(m:(V)) as defined in (37). Let {u,v} be an orthonormal
basis of V such that (u,v) represents the given orientation on V.

Then if foreach 1 <:<r,

< mi(u), mi(v) > =0,

&(V) # 1, (41)
and  |[mi(u)]f = [[7(2)ll;
then the orbit G.V can be written
GV = G/SO(V) < [JUX:(v)+) (42)

Should one of the conditions (41) not hold, then
e G/ Cox [T U(Xa(V)) (43)

where C is the cyclic group on two elements embedded naturally as a subgroup
of SO(V), and X;(V)*+ C Wi

Proof First, define some notation: if w € ¥ then V1 < 1 < r,
w; = mi(w). (44)

Since SO(V) can be imbedded in U(CV), SO(17) x HU(X;(V)J“) is indeed a
subgroup of G. From (B.7), it is clear that

GV =G/Gy (45)
where Gv is the stabilizer of ¥ in G. Thus, it is necessary to calculate

Gy = (So(V)xovH) nJJUumi).  (26) (46)
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Now let Y(V) := CV. Then any unitary transformation which stabilizes

V" also stabilizes Y (V). Thus,
Gy CUXY)xUYH)n[] UMW)

and in particular

ovhn[Juwy) cuwt)nITvmw).

But
vicpt
and all unitary transformations are orthogonal (C.3). Thus,
U(Yt) c o(vh).

Therefore,

ov+)n H U(W;) = Uysyn H U(W)

= H U(X:(V)?).
Thus, it remains to calculate
SO(V)n H U{(W5).
Now, by (C.4)
SO(V) Cc U(Y)

SO

so(v)n[JU) = sov)n(@(y)n | BRELA)

= so(V)n [ U(xX«(V))
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Now suppose that ¢ € SO(V). Then g € [JU(X:(V7)) if and only if g <
[1SO(m(V)). By definition, this occurs if and only if it comrutes with the
orthogonal projection functions #; : W — W;. Thus, since V" is a plane, g is &

rotation by some 6 € [0,27] and g € [[ U(X:(V)) if and only if

g(wi) = wi(g(u))

<
Ut
~

= 7;(cosfu + sinfv) (-
= cosf(u;) + siné(v;)

and

g(vi) = wi(g(v))
= —sinf(u;) + cosf(v;).

Now, clearly, if § € {0,7}, then sinf = 0 and cosf = *£1. So, in such a circum-

stance, it is easy to see that g stabilizes V. Therefore,
Cyx [JUX:(V)t nW;) C Gy (57)

for any V € G (W).
Now suppose that V' € Gj(W) satisfies the conditions (41). For each

6 € [0,2x], let g : mi(V') = #:i(V) be defined by

gei (u;) = cosf(u;) + sinf(v;)

goi (vi) = —sinf(u;) + cosf(v;)

Since V satisfies (41), go: € SO(m:(V')) thus, g;; € U(Xi(V7)). Therefore
g:= (gu)i € [JUX(V). (59)
Clearly, g € SO(V). Thus, when V € G (W) satisfies the conditions given in (3).

so(v) c [Jux:(v)). (60)
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Therefore, in this case
Gv = SO(V)x [T U(X:(V)* nW3). (61)

Thus, it remains to shc;w that the conditions given in (3) are necessary. So suppose
that g € SO(V) N [[; U(Xi(V)) is a rotation by 6.
First suppose that 31 < i < r such that &(V) = 1. Without loss of

generality, assume that m;(u) # 0. Now,
SO(‘:’T{(‘/)) =, (62)

Now, by assumption, g € [[SO(7{(V)). Thus since 7; is linear.

g(u;) = cos u; + sinbv; = eu;
(63)
and g(vi) = —sin fu; + cos fv; = ev;
for € € {£1}. Now, by assumption, u; and v; are linearly dependent. Thus it is

necessary to perform the mechanical check that the only possible values for 6 are

0 and =. So

sin®fv; = sinfeu; — sinfcosfu;
(64)
and sinfcosfu; = cos?fv; — cosber;
Thus,
sin’fv; = sinfeu; — cos?fv; + cosfev;
(65)
and so (1 — cosfe)v; = sinfeu;
But, from (63), multiplying by €
esinfu; = (ecosf — 1)v; (66)
Thus,
sinf = 0. (67)



Therefore, g is a rotation through either 0 or = and so g € (5.

Now suppose that m;(V) is either 0 or 2-dimensional for all 1 <z < r.
Then, as a rotation, g is orientation preserving on each of the projections w;(V').
Therefore, it only remains to discover the conditions under which g is norm-
preserving on w;(V).

Suppose that for some 1 < ¢ < r, m(V) is 2-dimensional and gl=(v) is norm
preserving, Now {u;, v;} forms a basis of m;(V) but u; and v; are not necessarily

orthogonal. However, by assumption,

g(u;) = cos fu; + sin Bv;
(68)
and g(v;) = —sin Bu; + cos fv;.
It is a simple matter to check that unless u; and v; are mutally orthogonal and
have the same norm, such a transformation is only norm-preserving for the trivial
rotations of § = 0 and § = w. This concludes our proof. O
It is worth noting, in particular, that if V" = CV C W, for some ¢. then by
(6.8),
G.V =UWy) x...xU(W,) /SO(V) x U(m:i(V)*) x H U(W;)
i (69)
~ CP4!
where 2d; = dim¥:. Furthermore, G acts transitively on the set of complex lines
of a given orientation in each eigenspace. This confirms that each critical level set
contains a single homogeneous orbit diffeomorphic to complex projective space.
It is worth noting that the criteria in (41) are G-equivariant since G pre-
serves inner products on each W;. Thus, these criteria can be applied as easily
to orbits as to vector spaces. It is now possible to tie in all the information in
this section together with information from transformation group theory giving
explicit structural information about level sets. The most important such con-
clusion giving maximal orbit types follows. It should be noted that according to

(6.7), an orbit of this type occurs in each non-extremal level set.
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6.9 Theorem  Using the same assumptions as (6.8), let 77 be the smooth map
on: GF(W) induced from 7. Then each non-critical level set of 77 has a dense open
submanifold consisting of points V' which do not satisfy the conditions (41) and
which have characterizations

3 where dim(1V;) > 2

&(V) = (70)

1or2 where dim(W;) =2

Proof By the implicit value theorem, all non-critical level sets are submanifolds
of GF(W). Since the action of G := [],; U(W;) preserves level sets, it is reasonable
to consider the action of G on an individual level set 77!(a).

Now, a consequence of (B.7) is that orbits of a transformation group action
on a manifold X are classified by the conjugacy class of the stabilizer of any point
in the orbit: the smaller the stabilizer, the larger the orbit. Further, as noted in
(B.12), there is a unique maximal orbit type and orbits of this type come together
to form on open dense submanifold of X.

Therefore, it remains to show that the stabilizer of a vector space with
characterization given by (70) is smaller than the stabilizer of any other vector
space.

Now, first note that by (6.2) and (5.3), vector spaces with that characteri-
zation do, indeed, belong to each level set. Finally. by theorem (6.8), the stabilizer

of such a vector space V under the action of G is
Gv = Coax [ JU(Xi(V)*) (71)

where X;(1/) is the complex span of 7;(1’).

Now, the characterization of V is such that X;(V) is as large as possible
for each i. Thus, U(X:(V)') is as small as possible for each 7. Thus. principal
orbits are formed from vector spaces with characterizations given by (70). The

result follow from (B.12) O
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Thus, for each V € GF (W), information about tthe structure of G.V" and
by (B.12) a G-equivariant map from a principal orbit to G.V follows entirely from
the characterization £(V) and a small amount of extr=a symmetry information.
This, together with the slice theorem (B.10), is sufficiemt to completely describe
all non-critical level sets of the map 7 induced from a swmplectic form n on W.

The information presented thus far gives complette and cohesive struct ural
information about the level sets of 7. In the case of crittical orbits, however, it is
possible to customize the group action to provide additiional symmetry informa-

tion.

6.10 Proposition Let W be an inner product spacse and let n be a symplec-
tic form on W with symplectic eigenspaces Wi,...,W™.. Let J be the complex

structure on W induced from n. For 1 < i < r define
C;:={V e GF(W)|V =CV,V C W;}. (72)

Then the maximal subgroup of O(1¥") which le:aves C; invariant in H =
U(W;) x O(WH).
Furthermore, if V' € C;,
H.V = U(W,)xO(WH)/U(C) x U(CH—1) xO(WH) (73
~ CP%~ . )
Proof Recall that for a given i. if ¥ € C; then the chaaracterization of V" is given
by &(V) =2 and &(V) = 0 for all j # ¢. Thus, from (6.7),
[7(V)] = a:. (74)

Let H be the largest subgroup of O(W) which acts o C;. Thus, the canonical
embedding of U(W;) into O(W) must be a subgroup of H. Similarly, since if
Ve,

(V) = {0} Vi#i, (75)
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any map which only affects Wi will actually fix C;. Finally, any map involving
interchanges between W; and Wi will map at least a part of some complex line
in W; out of W; and thus fail to stabilize the C;. Thus, we conclude that H =
U (W3 x O(W) as desired.

It should be noted that 7 is not H-equivariant. However, as it does act
on the critical orbit associated with a;, it provides extra symmetry information
about that orbit. In particular, since the extremal level sets are among these
orbits, extra symmetry information has been provided for these level sets.

Now, if V € C;, the structure of the orbit H.V is determined by the
st=bilizer of V under the action of H. Since SO(W;) fixes every plane in (i,
only the stabilizer of the action of U(W;) need be calculated. However, this has
already been done in the standard symplectic case (5.5). Thus,

HV = UW;)xO(W#+) [/ (U(V)xU(V+nW)) x O(WH) (6)

~ CP%-!
if we recall that 2d; is the dimension of ;. O
This provides a small amount of extra symmetry information about the

extremal level sets and the critical sets at each symplectic eigenvalue.
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A Symplectic Results Summary

Let W be a real 2n-dimensional inner product space and let 7 : W? — R be a

svinplectic form on W.

A.1 Theorem (Orthonormal Cannonical Symplectic Form (4.12)) Given
a symplectic form 7 on a 2n-dimensional real inner product space IV, there exists
an orthogonal decomposition of Winto W, &--- & W. of dimensions 2d;.,...,2d.
and an orthonormal basis with respect to which

n=Sa (gadet2> (1)

=1

for some real numbers a; > az > --- > a, > 0. Furthermore. these numbers and

the vector space decomposition are uniquely determined by 7.

A.2 Definition  The numbers ay,...,a, will be referred to as the symplec-
tic eigenValues of n. The set of such eigenvalues will be known as the sym-
plectic spectrum of . The spaces Wi...., W, will be called the symplectic

eigenspaces of 7.

A.3 Lemma (Calculation of 1) (6.2)

Let W be a real 2n-dimensional inner product space. Let 7 be a symplectic
form on W with a symplectic spectrum a; > --- > a, and symplectic eigenspaces
Wi,..., W, with orthogonal projection functions 7; : W — Wi Let i : GI (W) —
R be the smooth map induced from 7. Foreach 1 <7 <rlet S; be the cannonical
symplectic form on W; induced from 7 and the inner product.

For a V € GF (W), let (u,v) be an ordered orthonormal basis for V' repre-

senting the given orientation. Then

r

(V) = Z a; - Si (wi(u), mi(v)) (2)

i=1

[SV]
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A.4 Theorem (Regular and Critical Points) (6.4)

Let W be an inner product space with a complex structure map induced
from n and the inner product. Let 7 be a symplectic form on W with symplectic
spectrum a; > --- > a, > 0 and associated symplectic eigenspaces 7, ... .
Let 7 : Gf (W) — R be the smooth map induced from 7. Then (V') is critical if
and only if

V=CVcW, for some 1. (3)

A.5 Corollary  (Critical Values) (6;5) The critical values of the map 7,

induced from a symplectic form are the symplectic eigenvalues: {£a;|1<i<r}.

A.6 Proposition (Maximal Group (6.6)) Let n be a symplectic form on W
with a symplectic spectrum a; > --- > a, > 0, multiplicities d; and symplectic
eigenspaces Wy, ..., W, respectively. Then U(W;) x...X U(W,) is the largest
subgroup of SO(W) for which 7 is G-equivariant.

A.7 Definition (Characterization of Vector Spaces and Orbits) Define
£:GH (W) — {0,1,2,3} by

-

0 ifdimmi(V)=20

1 if dimm(V) =1
£(V) = 1 (4)
2 if dimr(V) = 2 and m(V) = Cm:(V)

|3 if dimm(V) = 2 and m(V) # Cri(V).

A .8 Proposition (Possible Orbit Types in each Level Set) (6.7)

Let W be a real 2n-dimensional inner product space. If 7 is a symplec-
tic form on W with symplectic eigenvalues a; > --- > a, > 0 and associated
symplectic eigenspaces W7,. .., W, then the following restrictions on vector space

characterizations exist for V' € G§ (W):
1) V) =(2,0,...,0) if and only if 7(V)| = a4
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2) i, if &(V) = 26;;,Vj, then [7(V)| = a;
3) If 3k < r such that &(V) <1 Vi <k, then |[7(V)| £ ars1 where arpy =10

4> If 3k < r such that &(V) = 0Vi > k, and Vj < k. &(V) = 2or 6 then
(V) 2 ax

Furthermore, for each value a € [—a;,a;] and each characterization satisfyving the
above conditions, there is at least one orbit contained in 7~ Y(a) which has that

characterization.

A.9 Theorem (Structure of Orbits) (6.8) Let W be a real 2n-dimensional
inner product space and let 77 be a symplectic form on W with symplectic cigenspaces
¥7,..., W, and orthogonal projection functions w; : W — W}.ﬁ Let J be the com-
plex structure map on W induced by n and the inner product and let < -,- >¢
be the hermitian inner product induced from the real inner product on 11" and J.

With respect to this hermitian inner product, let

)

Qi

G = U(Wi) x...x U{W,). (

Let V € GF (W) have characterization £(V') = (&(V')): and for each 1 <
i < rlet X;(V) := C(#:(V)) as defined in (37). Let {u.v} be an orthonormal
basis of V such that (u,v) represents the given orientation on V.
Then if foreach 1 <: <7,
< mwi(u), mi(v) > =0,
&(V) # 1, (6)
and  [im(@)] = = (o)l

then the orbit G.V can be written

GV G/SO(V)XHU(X,-(V)L) (7)
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Should one of the conditions (6) not hold, then

G.V = G/szHU(X,-(V)L) (3)

where C, is the cyclic group on two elements embedded naturally as a subgroup

of SO(V), and X:(V)*+ C Wi

A.10 Theorem (Maximal Orbit Type)(6.9) Each non-critical level set of
7 has a dense open submanifold consisting of points V' which do not satisfy the
conditions given in the previous theorem and which have characterizations

3 where dim(W;) > 2

&(V) = (9)

lor2 where dim(W;) = 2
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B Transformation Group Theory

Transformation group theory studies the symmetries on a manifold swhich is equipped
with a group action. Consider, for example, the set of rotations of a sphere about

a given axis: the circle action on the sphere. The circle, S' can be viewed as the
topological quotient space [0.27] /0 ~ 27. Then for each g € 5!, there is 2 map
fo : S — 5% which consists of rotating the sphere by g radians about the given
axis.

Now let z € S? be fixed and consider the set of all points that r can be
rotated to by this action. This is known as the orbit of z. Simple visualization
shows that, unless = is on the axis of rotation, this orbit is a circle perpendicular
to the axis of rotation. So a sphere can be viewed as a collection of parallel circles
shrinking down to degenerate circles (points) at the poles.

Thus, the sort of group actions that a manifold supports and the orbits
which result say something about the types of symmetry that manifold exhibits.
These sorts of symmetries, with various types of groups have proven useful in
many fields including crystallography and mathematical physics.

This section will explicitly define group actions on a manifold X and will
explain the structure of individual orbits and how they come together to form X.
An excellent reference for this material is the first chapter of tom Dieck’s book

Transformation Groups [5].

B.1 Definition A Topological Group G is a Hausdorff topological space

together with the continuous functions

multiplication: g : GxG — G 0
1

and inverse: inv: G — G

such that (G, ) forms a group.
This combination of topological and algebraic structure is, in and of it-

self, quite powerful. However, even more results are obtained if one insists on a
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differentiable structure.

B.2 Definition A Lie group is a C* differentiable manifold together with a

group structure on that manifold such that the group operations are smooth.
Common examples of Lie groups include R and, more generally, all vector

spaces. Also, the classical groups of transformations on a vector space are Lie

groups.

B.3 Definition A smooth action of the Lie group G on a smooth manifold

X is a smooth map

A:GExX =2 X (2)
written A(g,z) = ¢.z such that
e.r ==z Ve X (3)
and
g.(h.z) =(gh).x Vg.heG,zeX. (4)

To be completely accurate, the above definition actually refers to a smo oth
left action of G on X. Of course, it is possible to similarly define a smooth right
action of G on X. This distinction, however, is insignificant since from any action
it is possible to derive an action of the other "side”. For instance, if A : GxX — X

is a left action, define A : X xG — X by A(z,g) = Mg~',x). Since
(gh)™t =h"'g7 (3)

) satisfies the conditions for a group action. Now, of course, one can observe that
if a left action, A, is by this means transformed into a right action and the resulting
action is by similar means transformed into a left action, then the resulting action
is the original A. Thus, we shall suppress the "side” of any action unless it aids

in exposition.



B.4 Definition Let a topological group G act continuously on a m=nifold X

and fix z € X. The orbit of z under the action of G is
G.z :={y € X |y = g.z for some g € G} @)

The orbits of an action provide the entry point for any anaiysis using trans-
formation group theory. They are disjoint, as will be proven next and so divide

the manifold X up into separate parts which may be independently analyzed.

B.5 Theorem Let G be a topological group which acts continuously on a

manifold X. Then the orbits of the action are disjoint.

Proof Let z,y € X and assume that 3=z € X such that
zeGznGy {7)

So, there exist g, h € G such that

z=g.z
(8)
and z=h.y
Then
-1
=g hy
(9)
and y = hlgz.
Thus,
GrxCGy
(10)
and G.yCG.z.
Therefore,
G.z = G.y. (11)
So it has been shown that if two orbits have a non-trivial intersection, then
they are identical. O
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We now know what a group action is and that it breaks a manifold up into
disjoint orbits. We now need to know two things: first, what these orbits look
like, and second, how they are glued togethesr to form the manifold.

In general, the answers to these questiions are not entirely known. However,
with some compactness and connectedness csonditions, it turns out that the orbits
are diffeomorphic to quotient groups of G :and that they are glued together by
G-equivariant maps.

First, however, consider whether a q:uotient group of a Lie group has the
differentiable manifold structure necessary to be a Lie group in its own right.
Let G be a Lie group and let H be a subggroup of G. Then consider G/H. If
H is a normal subgroup of G then G/H is a group. We can certainly put the
quotient topology on G/H to give it a topological structure. However, giving it

the manifold structure necessary for it to be a Lie group is less easy.

B.6 Theorem Let H be a closed normas! subgroup of the Lie group . Then
the quotient group G/H together with the equotient topology has a differentiable
manifold structure such that G/H is a Liie group and the quotient map is a

submersion.

Proof See [6, p.120]

Now turn to the structure of the orboits of a G action. Let a Lie group G
act smoothly on a manifold X and fix z € X. Let G :={g € Glg.x = z} be the
stabilizer of  under the action of G. Then G, is a normal subgroup of G. Also.
it is closed since it is the pre-image of a simngle point under the smooth function
z:G — X given by z(g) := g.z. Therefore G/G: is a Lie group. Since z factors
through the quotient map g : G = G/G., tkne universal property of quotient maps
gives a continuous bijection f between G/(=; and G.z.

Now if G is compact then since the continuous image of a compact space
is compact, G/G.z is compact. Further, a. bijective map from a compact space

to a Hausdorff space is a homeomorphism. Thus, the orbit G.z of a compact Lie
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group acting on a manifold X is diffeomorphic to the quotient Lic group G/G-.

So each orbit is a2 homogeneous space.

B.7 Theoremm Let G be a compact Lie group which acts smoothly on the
ditferentiable manifold X. Then, for each z € X, the orbit G.z is a submanituid
of X and is diffeomorphic to the Lie group G/G. where G is the stabili - » of x
under G.

Proof See [5, p.39]

There is now an explicit relationship between orbits and stabilizer groups.
Suppose two orbits have stabilizers H and K which are conjugate to each other.
It is reasonable to inquire what effect this has on the relative shapes of the orbits.
A little thought produces a G-equivariant diffeomorphism G/H = G/A in thi-
situation. Thus, orbits with conjugate stabilizers are diffeomorphic: it is said that
they are of the same orbit type.

Now, of course, there is a partial ordering of conjugacy classes of subgroups
of G. This induces a partial ordering of orbit types. After some work, we shall
see that if X/G is connected, there is a unique maximal orbit type and that the
set of all points on orbits of that type form a dense open submanifold of X.

First, however, we investigate how orbits are glued together. The Slice
Theorem will give a precise description of a neighborhood around any given orbir.
It turns out that if G.z is the orbit of some z € X there is an open set U C X
such that U is a locally trivial fiber bundle with base space G.z = G/G (B.7).

To get this result, a few constructions are needed. Suppose G is a com-
pact Lie group. From (B.7), G.z is a submanifold of X. Thus, the tangent
space To(G.z) is a subvector space of the tangent space T:X. As such, under
a G-equivariant Riemann structure [1, p.304], it has an orthogonal complement
denoted by v-(G.z C X). This vector space serves as the fiber of the fiber bundle
describing our open neighborhood U.

A construction to explicitly describe this fiber bundle is given next.
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8.8 Definition Let G be a Lie group and let X and Y be right and left

G-spaces respectively. Then the Borel construction of X with ¥ over G is
XxgY :=XxY [ (zg,y) ~ (z.9Y) (12)

In certain circumstances, this construction is actually a locally trivial fiber

bundle.

B.9 Theorem Ifp: E — Bisa G-principal bundle and F is a left G-manifold.
then

7:ExgF = B (13)

given by 7[s, z] := p(s) is a locally trivial fiber bundle with fiber F and structure
group G.
Proof See [1, p.74]

Now, of course, when G is a Lie group. G- is a Lie subgroup and we can
express G as a (G;)-principal bundle. Thus, we will be able to apply (B.9) to

better understand the Slice Theorem.

B.10 Theorem (The Slice Theorem) Let G, a compact Lie group, act
smoothly on a differentiable manifold X. Let z € X and let 4 := G.z. Finally,

let
ve(A C X) = (T A=Y (14)

Then A has a G-equivariant open neighbourhood U and a G-equivariant diffeo-

morphism
Gxpgve(ACX)= U (15)

Proof See [1, p.306]
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This result describes explicitly how orbits of a smooth Lic group action
come together to form neighbourhoods on the manifold X. We arc now in a
position to consider the relationships between various orbit types.

First, using the Slice theorem and induction on the dimension of .\, w¢

can conclude that a closed manifold has only finitely many different orbit types.

B.11 Theorem Let G, a compact Lie group, act smoothly on a compact dif-

ferentiable manifold X. Then X has only finitely many distinct orbit types.

Proof See [5, p-42].
This result simplifies any study of orbits of a compact Lie 2roup action
since it guarantees that there is only a finite number of calculations required.
Finally, since we have a partial ordering on the orbit types. it is reasonalsiv
to ask whether there is a maximal orbit type (ie. an orbit type whose stabilizer 1s
conjugate to a subgroup of every other stabilizer). As shown next. this is indeed

the case when X/G is connected.

B.12 Theorem Let G be a compact Lie group acting smoothly on a differ-
entiable manifold X. Suppose X/G is connected. Then thereis a Lie group of &
associated with an orbit of G on X such that Xz := {z € X | G; is conjugate to H}
is an open dense submanifold of X and such that every other subgroup A" associ-
ated to an orbit G of X has H as a conjugate subgroup.
Proof See [3, p.42].

Orbits of this unique maximal type are known as principal orbits. A
consequence of (B.12) is that there is a G-equivariant map from a principal orbit

to any non-principal orbit.

B.13 Corollary  Let G be a compact Lie group acting smoothly on a differ-
entiable manifold X and suppose X/G is connected. Let G.x be a principal orbit
and let G.y be a non-principal orbit. Then there is a unique G-equivariant map

from G.z to G.y.
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Proof Let H = G, and let K = G, be stabilizers. Then, by (B.7),
G.z=G/H, (16)
and
Gy = G/K. (17)

Now, by (B.12), H is conjugate to a subgroup of K. Then basic group theory gives
a unique G-equivariant map between G/H and G/K by mapping the equivalence
class [H] to [K] and extending G-equivariantly. O

Thus, transformation group theory gives a method of decomposing a man-
ifold, X, into distinct orbits. Under appropriate conditions, the structure of these
orbits is known. Furthermore, for any orbit, the Slice theorem provides an ex-
plicit description of a neighborhood around that orbit. Also, these orbits are put
in correspondance with subgroups of the structure group G. This correspondance
provides a definition and a partial ordering of orbit types. Finally, this partial
ordering has a unique maximal element and orbits of this type come together to
form an open dense submanifold of X. Thus, transformation group theory forms

a fairly potent method for describing symmetries on manifolds.
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C A Complex Structure on R?"

It i+ well known that any n-dimensional complex vector space can be viewed as
a 7r:-dimensional real vector space. Thus, it is reasonable that there are ways of
viewing 2n-dimensional real vector spaces as n-dimensional complex ones. This
appendix briefly explores one way of doing this and touches on the implications
of this dual vision to some of the classical Lie groups.

Let W be a real 2n-dimensional inner product space with an orthonormal

basis B := {wy,...,ws.} and let J be the 2n x 2n matrix:
0 -1 ]
1 0
Ji= . (1)
0 -1
L ~1 0]

Note that with respect to the basis B, J represents an automorphism J on W and
that J2 = —Id. Thus, J can serve as a complex structure map on W. This
means that it is consistent to define J as "multiplication by the complex scalar ¢.”

Note that with this particular construction,
LWagoy i= J(Waks1) = —Wak (2)

an.! so a basis for W as a complex vector space is {wi, ws. .- -, Wyn—1}- Lhis is one
of the two most commonly used methods of putting a complex structure on a real
vector space.

Now consider the general linear group GL(W, C) on the complex vector
space Wc. Since these transformations are complex-linear, they are also real-
linear. Thus, GL(W,C) C GL(W,R), the group of linear transformations of
W as a real vector space. Now, given the basis {wi, ... ,Wan}t, GL(W,R) can be
represented by the set of real 2nx2n non-degenerate matrices. We now characterize

the elements of that matrix group which represent elements of GL(W,C).
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C.1 Proposition Let W be a real (2n)-dimensional real vector space with
basis {wy,...,wsn} and let J as defined by (1) be a complex structure map on
W. Then if A € My,(R) then A represents a complex linear transformation if and

only if
A@i-1),2j-1) = A(2i).(2j) (3)

and

Agiy (2i-1) = —A(2i-1),(2j) (4)

foralll <1z,7 <n.

Proof By definition, a real linear transformation is also a complex linear trans-
formation if and only if it commutes with multiplication by 7. Thus, if a matrix A
represents T € GL(W,R), with respect to the basis B, then T is a complex linear

transformation if and only if
Al =JA. (3)
Suppose that A commutes with J. Then for any 1 < 1,7 <n,
(AJ)(21'—1).(2J'—1) = (3‘4)(25—1)‘(21‘—1)

2n 2n

Z A@i-n)k - Ik (2i-1) = Z Ji—ng - Ar2i-1) (6)

k=1 =1

Ai-1),2i) = —A@i2i-1)

since J is non-zero in only one position per row or column.

An identical argument gives the other condition on A. Similarly, the same
argument presented in the reverse order proves the converse: that any matrix
satisfying the above conditions will commute with J and thus represent a complex-
linear transformation. U

In other words, the transformation represented by a 2n x2n real matrix A

is complex linear exactly when it has a decomposition into 2x 2 blocks of the form
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a3k —byk

boe an ). Conceptually, this block corresponds to the complex number aj; +7-6,x

which is entered in the (7, k£)’th position of the complex n xn matrix representing
that linear transformation in the group of complex n xn matrices.

Now suppose that as a real vector space, W has an inner product structure,
< -,- >. Then the orthogonal group on W, O(W), is defined as the groun of
transformations on W which preserve the inner product. If B := {w;..... wy, } s

an orthonormal basis of W, then with respect to B, O(W) is represented by
O(2n) :={A € My, | ATA = Id}. (7)

Now, some elements of this group satisfy the conditions given in (C.1} and. thus,
represent complex linear transformations. We now define a hermitian inner prod-
uct structure on W¢ such that it is consistent to refer to these particular tri is-

formations as unitary.

C.2 Definition Let W be a real 2n-dimensional inner product space. Let
{wi,...,wa,} be an orthonormal basis for . Let J be the complex structure
ﬁlap on W defined above. Then, recall that B; = {w;,ws,...,wo,—1} forms a
complex basis for W¢ as a complex vector space. The induced hermitian inner
product on W¢ is the unique hermitian inner product on W for which B; is an
orthonormal basis of We.

Since an inner product is a bilinear form, it can be defined by its effect
on a basis. Therefore, the hermitian inner product is well-defined. *~ote that
this choice of hermitian inner product is dependent on the initial basis B chosen.
However, as shall be shown in (C.3), any change of basis T which is orthonormal

and for which the resulting basis still satisfies the condition that
J(Twaiy) = Towa;, (8)

preserves the hermitian inner product. Therefore, this definition of a hermitian
inner product is not, in reality, dependent on a given basis. The real and induced

hermitian inner products will be denoted < -, >z and < -, >¢ respectively.
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Now, since J is, by construction, orthogonal, the complex inner product
gives the same vector norms that the real inner product does. That is. for each

u € W,
<u,u Sr=< U, u >C (9)

This observation leads to a characterization of the group of complex linear trans-
formations preserving the hermitian inner product on W¢, the unitary group de-

noted by U(W).

C.3 Proposition  Let I be a 2n-dimensional real inner product space anu let
B := {wy,...,Wsn} be an orthonormal basis on W. Let J be a complex structure
map on W as defined above and let {wy,ws, ..., Wwsn—1} be a basis on W induced

from B and J. Then,
UW) = GL(W,C) nO(W) (10)

Proof Suppose that T is a transformation in U(W). Then, clearly, T is complex
linear so T € GL(W,C). Furthermore, since T is unitary, it preserves complex
inner products and thus complex norms. But, as previously observed. complex

norms and real norms are equal. Thus, T is orthogonal. Therefore.
UW) C GL(W,C) nO(WW) (11)

Now suppose that T € GL(W,C) N O(1V). Then T preserves real norms and
so T preserves complex norms. However, a linear transformation which preserves
norms is inner-product preserving {3, p.300]. Thus, T’ preserves hermitian inner

products. Therefore, since T is complex linear, T is unitary. Thus,

U(W) 2 GL(W,C) 0 O(W) (12)

Finally, we note that elements of GL(W,C) are orientation preserving.
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C.4 Proposition Let W be a real 2n-dimensional inner product space and
let B := {wy,..., w2} be an orthogonal basis on W. Let (wy,...,w2,) represent
a choice of positive orientation on W. Now, let J be the real 2n x 2n matrix
defined in (1) and let J be the complex structure map on W represented by .J
with respect to the basis B. Then each transformation in the u:nitary group U(H")

is orientation preserving and
UW)=GL(W,C) N SO(W). (13)

Proof First, note that the unitary gréup of a vector space is a connected Lie
group [6, p. 130]. Consider the determinant function on linear transformations.
With respect to a given basis, it can be expressed as a polynomial of the coordinar-
functions of GL(W, R). Thus, it is a continuous function on GL(W,R). Now. the
continuous image of a connected set is connected. Thus, det(U(W)) is connected.

However, since U(W) C O(W) (C.3),
det(U(W)) c {—1,1}, (14)

and, of course, {—1,1} is disconnected, the determinant function must map U(¥)

onto either 1 or —1. Now,

Id € U(W) (15)

and
det(Id) = 1 (16)
therefore,
det(U(W)) = {1}. (17)

Thus, the unitary group is orientation preserving as desired. The final conclusion

is a direct result of (C.3). a
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Thus, to summarize, given a real 2n-dimensional inner product space, W,
aid a complex structure map J, it is possible to express W as an n-dimensional
coinplex vector space W¢. This induces an embedding of the complex general
linear group GL(W,C) into the real general linear GL(W,R). Furthermore, the
real inner product structure < -,- >g on W together with the complex structure
map J induce a hermitian inner product < -, - >¢ on W¢ for which the imbedding

of the unitary group into GL(W, R) satisfies
Uw = GL(W,C) N Ow. (18)

Firally, the unitary group is not only orthogonal but also orientation preserving. .



