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Introduction: Vowel Overlap

● Quantitative measures of vowel overlap useful 
in various fields
○ Sociophonetics
○ Dialectology
○ Second-language speech learning

● Ideally, such a metric would be
○ Accurate: gives desired results
○ Precise: gives similar results on similar data



Introduction: Spectral overlap assessment 
metric
● Proposed by Wassink (2006)
● Represents data as ellipses or ellipsoids

Ω = 0.28
Ω = 0.13



Introduction: A posteriori probability-based 
metric
● Proposed by Morrison (2008)
● Quadratic discriminant analysis on data points
● Then uses posteriors to determine overlap

Ω = 0.21

Ω = 0.19



Introduction: Vowel overlap assessment 
with convex hulls metric
● Proposed by Haynes & Taylor (2014)
● Represents categories and overlap with 

convex hulls

Ω = 0.16Ω = 0.34



Introduction: Pillai score

● Introduced by Hay et al. (2006)
● Uses Pillai score from running a MANOVA 

analysis
● Isn’t designed for visualization



Introduction: Research Question

● Nycz and Hall-Lew (2015) claim that the 
Spectral Overlap Assessment Metric is better 
for measuring overlap than Euclidean Distance, 
linear mixed-effects regression, and Pillai score
○ But what about a posteriori and convex 

hulls? How do they compare to SOAM and 
Pillai?

● In terms of accuracy and precision, which 
proposed measure fares the best?



Methodology

● Metrics implemented in R
● Monte Carlo simulation run to compare metrics 

along accuracy and precision
● Data generated randomly using mrnorm() from 

MASS (Ripley et al., 2016)
● Seeded with mean, std. dev., and covariance 

for all [i] and [ɪ] tokens from Hillenbrand et al. 
(1995), normalized with Lobanov technique 
from phonTools (Barreda, 2015)

● Use 1,000 generated samples for a posteriori



Methodology: Accuracy Simulations

● Calculate metrics 1000 times on three different 
kinds of data sets
○ 1. We want overlap of 0

■ Separate data points by pushing means 
apart and other points accordingly

○ 2. We want overlap of 0.5
■ Move categories on top of each other 

until Jenson-Shannon divergence was 
approximately 0.5



Methodology: Accuracy Simulations (cont)

● Calculate metrics 1000 times on three different 
kinds of data sets
○ 3. We want overlap of 1

■ Using same information as seeds for [i] 
and [ɪ]



Results: 2D accuracy (mean absolute error)

Measure Mean for 0 overlap
Mean for 0.5 

overlap
Mean for desired 1 

overlap

SOAM 0 0.14 0.09

A posteriori 4e-62 0.09 0.07

Convex Hulls 0 0.12 0.29

Pillai 0.005 0.11 0.04



Results: 2D precision (mean absolute 
deviance from the median)

Measure Mean for 0 overlap
Mean for 0.5 

overlap
Mean for desired 1 

overlap

SOAM 0 0.09 0.06

A posteriori 0 0.08 0.03

Convex Hulls 0 0.11 0.08

Pillai 0 0.07 0.02



Results: 3D accuracy (mean absolute error)

Measure Mean for 0 overlap
Mean for 0.5 

overlap
Mean for desired 1 

overlap

SOAM 0 0.11 0.26

A posteriori 5e-73 0.08 0.13

Convex Hulls 0 0.33 0.65

Pillai 0.004 0.11 0.05



Results: 3D precision (mean absolute 
deviance from the median)

Measure Mean for 0 overlap
Mean for 0.5 

overlap
Mean for desired 1 

overlap

SOAM 0 0.11 0.13

A posteriori 0 0.08 0.04

Convex Hulls 0 0.07 0.06

Pillai 0 0.07 0.03



Discussion: Accuracy

● A posteriori performed the best overall
○ Output a value that was effectively 0 in 0 

overlap cases
○ Most accurate in middle range where it 

matters most
○ Didn’t perform the best when we wanted 1

■ Still consistently high values, so less 
important that it reaches 1



Discussion: Precision

● Pillai score performed the best
● A posteriori was competitive, though
● Spectral overlap assessment metric likely 

suffered in 3D due to the way the ellipsoid 
axes are calculated, since duration is on a 
different scale than normalized F1 and F2



Discussion: Recommendation

● Use the a posteriori probability-based metric
○ It performs the best in accuracy, and its 

near-best performance in precision make it 
the all-round winner

○ Additionally, since a classifier is learned, 
more things can be done with it



Conclusion: Future Research Avenues

● Can Pillai score be visualized meaningfully?
● 2D projections of 3D plots
● Explore ways to improve metrics

○ E.g., better figure fitting for spectral overlap 
assessment metric

● Explore ways to improve a posteriori plots
● Examine the measures’ performance on real 

data sets
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