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Abstract

Various analytical methods are available to analyze repeated measures da-

ta for both continuous and discrete data. In the case of discrete data, most

methods are based on the assumption of asymptotic normality, requiring large

samples. Naturally, their small sample performance may not match the expec-

tation satisfactorily. Two main methods, the non-linear mixed effects (NLME)

model and the generalized estimating equations (GEE) method, are investigat-

ed for their small sample performance on repeated binary data. We generated

binary data, considering two levels of correlation at ρ=0.3 and 0.7, with three

cases of repeated measures with T=2, 4, or 6 and sample sizes ranging from 40

to 200.The two analysis methods are applied to each data set in 5000 simula-

tions, and the resulting empirical size and power are compared. We conclude

that the GEE performs quite well in small samples with satisfactory empirical

size and statistical power and is therefore recommended.
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Chapter 1

Introduction

Variables can be classified into two categories, i.e. continuous variable and

discrete variable, based on their values. Continuous data, such as temperature,

height of a child and blood pressure, can take any value possible within the

range. Discrete data, such as age group and gender, however, can take only

on a countable number of values or categories (Hogg et al., 2005). The main

difference between these two kinds of variables leads to different models that

can be applied to deal with each of them. In simple linear regression

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi (1.1)

where i = 1, 2, . . . , n, {yi} are continuous data and for given(x1, . . . , xp) follow

a normal distribution because the error term εi follows a normal distribution.

Therefore this model can only be applied to continuous response variables.
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Models such as logistic and poisson regressions have been well established for

discrete data now.

Repeated measures data is collected from subjects repeatedly under same

or different conditions (Lindstrom and Bates, 1990). Such data occurs com-

monly in health-related research, especially in longitudinal study, which is

usually used to study trends over time. For example, the Framingham Heart

Study starting from 1948 is one of the famous longitudinal studies. A total

of 5,209 people living in the town of Framingham, Massachusetts were includ-

ed in the study in 1948 and their sons and daughters were also included in

the following study. The results of this study revealed those well-known risk

factors concerning heart disease (O’Donnell and Elosua, 2008).

Because of the special way the data are collected, observations from one

subject may be more alike than observations from other subjects, i.e. are

correlated. It means that the independence assumption in some models may

be violated due to the significant correlation among the data. It would be

inappropriate to ignore such facts. To analyze such data, some particular

approaches have been developed. Among those approaches, this thesis will

focus on two common ones, which are the Generalized Estimating Equations

(GEE) method and the Non-linear Mixed Effects (NLME) model.

The two methods have different targets of inference and should be selected

based on the objective of a study. The GEE approach is referred to as a
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marginal model, which focuses on measuring the effect of covariates on the

whole population. Therefore, when the question to be addressed in a study

is to assess the factors’ influence on the population level, the GEE method

would be an appropriate choice. However, if the focus of a study is on an

individual’s response or a cluster’s response, the mixed effects models should

be used because the random terms in the model will capture the variability

among individuals or clusters (Davis, 2002).

Besides model selection, which requires much attention, sample size is an-

other important aspect in applied research. Statistical methods perform quite

well in large samples because of the large amount of information they can

obtain. But large samples may not be always possible in many situations be-

cause of a lack of subjects or limited funding. In these cases, small samples

that will simplify the data collection process and decrease the cost of a study

will be preferred. The weak point of choosing small samples is that it will “rob

a study of power to detect significant effects when they truly exist”(Rochon,

1998). Hence when designing experiments, one should choose the most appro-

priate sample size to reduce the cost and also guarantee the desired power.

When the sample size is limited in a study, one should select the method that

gives the most power and make the most use of information.

The related issue with repeated measures data has not been fully resolved.

The object of this thesis is to investigate this issue by comparing performance
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of the two methods mentioned above, i.e. the GEE and the NLME model, in

small samples and arriving at appropriate recommendations on the choice of

methods in small samples.
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Chapter 2

Literature Review

2.1 Overview

Many methods can be used to analyze repeated measurement data. In this

chapter, we mainly focus on the Generalized Estimating Equations method

and the Non-linear Mixed Effects model.

2.2 Generalized Linear Model

2.2.1 Three Components of GLM

Generalized linear models (GLM), formulated by John Nelder and Robert

Wedderburn in 1972, are extensions of ordinary regression models. They have

proven to be a valuable methodology and has been widely used by statisticians
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(McCullagh and Nelder 1989). A generalized linear model consists of three

key components: a random component, a systematic component and a link

function (Agresti, 2002).

Considering the model as proposed by Agresti(2002), a random compo-

nent refers to the response variables {yi} and their distributions. In GLM,

Y = (Y1, Y2, . . . , Yn)′. Y ′i s are independent variables and belong to a natural

exponential family such as Poisson distribution and binomial distribution.

A systematic component refers to a linear predictor

ηi =
∑
j

βjxij = X ′iβ, i = 1, 2, . . . , n (2.1)

where xij, j = 1, 2, . . . , ni,denotes the value of the jth explanatory variable

on the ith subject. So the linear predictor is in fact a linear combination of

explanatory variables.

A link function is a differentiable function that connects the random and

systematic components. Suppose the mean of the response variable Yi is

E(Yi) = µi. Then µ′is are linked to the linear predictor ηi = X ′iβ by a known

one-to-one function h(·).

µi = h(ηi) = h(X ′iβ) (2.2)
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ηi = X ′iβ = g(µi) (2.3)

where g(·) = h−1(·) is called the link function. In other words, a link

function transforms the mean of a response variable.

To specify a link function, one can use an identical link or a canonical link.

A link function g(µi) = µi is called an identical link. g(µi) = Q(µi) = X ′iβ is

called a canonical link.

2.2.2 GLM for Binary Data

Binary responses, for instance the diagnosis of a certain disease (present

or absent) or the status of smoking (smoker or nonsmoker), can be expressed

with binary variables, denoted by 0 and 1. Then E(Yi) = P (Yi = 1)

2.3 Non-linear Mixed Effects Model

Mixed effects models, which contain both fixed effects and random effects,

have been widely used in applied sciences such as epidemiology and biology.

This method is particularly useful in repeated measures data in longitudinal

studies. Widely accepted, the linear mixed effects model is a powerful tool to

analyze repeated measures data. But in some cases, nonlinear patterns inher-

ently exist in the relationship between independent variables and dependent
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variables and, therefore, the use of a linear model is no longer appropriate (Lee

and Xu, 2004). Then the nonlinear mixed effects model proposed in recent

years would be a better way to deal with such situations. Much work has

been done on the form of the model, the estimation of the parameters and

also the application in different areas. Lindstrom and Bates (1990) introduced

the nonlinear mixed effects model as well as the parameter estimators. Vonesh

and Carter (1992) considered a “generalized mixed effects nonlinear regression

model” that can be used for “incomplete or unbalanced data”. Davidian and

Gallant (1993) specified a “general nonlinear mixed effects model, which makes

no parametric assumption about the form of the random effects distribution”.

And Walker (1996) also introduced an EM algorithm for fitting the nonlinear

random effects model.

Considering the nonlinear mixed effects model as proposed by Lindstrom

and Bates (1990), the jth observation on the ith individual is modeled as

Yij = f(φi, xij) + eij (2.4)

where Yij is the response j from individual i, xij is the explanatory variable

vector for response j from individual i, f(·) is a nonlinear function and eij ∼

N (0, σ2) is an random error term with Cov(eij, eik) = 0, 1 ≤ j 6= k ≤ ni.

Responses from different individuals are independent from each other. In this
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model, φi is a r × 1 parameter vector with the following form:

φi = Aiβ +Bibi, bi ∼ N (0, σ2
bD)

where β = (β1, β2, . . . , βp)
T is a p×1 vector of fixed parameters that is common

to all individuals, bi = (bi1, bi2, . . . , biq)
T is a q × 1 vector of random effects

that varies among individuals, Ai, Bi are r× p and r× q design matrices and

σ2
bD is a covariance matrix of random effects.

With highly developed computer science, parameter estimation can be ef-

ficiently done by softwares. For instance, the package PROC NLMIXED in

SAS is an efficient tool to complete this task. It is capable of analyzing data

from different distributions such as normal, binomial or Poisson and performs

the maximum likelihood estimation (SAS/STAT R© 9.22 User’s Guide, 2010).

For non-normal responses Yij, the non-linear mixed effects model becomes

µij = E(yij|bi) = f(φi, xij). A special case of the non-linear mixed effects

model, the generalized linear mixed effects model has the form

µij = E(yij|bi) = h(ηij) = h(X ′
ijβ + ωijbi), bi ∼ N (0, σ2

bD) (2.5)
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Consider the special case with a univariate random effect and ωij = 1.

µij = E(yij|bi) = h(ηij) = h(X ′
ijβ + bi), bi ∼ N (0, σ2

b ) (2.6)

It has the form of an ordinary GLM with a random intercept.

2.4 Generalized Estimating Equations Method

2.4.1 Quasi-likelihood

Quasi-likelihood estimation is an alternative approach to maximum likeli-

hood estimation because of the similar properties they have (Agresti, 2002).

It was proposed by Wedderburn in 1974. Unlike likelihood estimation, quasi-

likelihood estimation only assumes the mean-variance relationship

Var(Yi) = v(µi)

instead of assuming the specific distribution of Yi, i.e. we only specify a vari-

ance function v(·). Quasi-likelihood estimates are solutions of an equation

called the quasi-score function, which has the same form as the score function

in likelihood estimation except that the variance part is replaced by v(µi) here

(Agresti, 2002).
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2.4.2 Generalized Estimating Equations

With repeated responses, the correlation among observations for a given

subject must be taken into consideration. Liang and Zeger (1986 and 1988)

proposed an extension of GLM to analyze longitudinal data, i.e. the General-

ized Estimating Estimations approach, based on quasi-likelihood.

Let Yi = (yi1, yi2, . . . , yini
)T , i = 1, 2, . . . , N be the ni× 1 vector of outcome

values representing the measurement j on the subject i. The corresponding

mean vector is µi = (µi1, µi2, . . . , µini
)T and the covariance matrix is Vi. Let

Xi = (xi1, xi2, . . . , xini
)T be the ni × p matrix of covariates for the subject i.

g(µi) = XT
i β, where g(·) is the link function as defined in GLM.

The generalized estimating equations method for estimating parameters

can be applied to correlated data and has the following form:

S(β) =
N∑
i=1

DT
i V
−1
i (Yi − µi(β)) = 0

where

DT
i =

∂µTi
∂β

=


xi11

g(µi1)T
. . .

xini1

g(µini
)T

...
. . .

...

xi1p
g(µi1)T

. . .
xinip

g(µini
)T



Vi = φA
1
2
i W

− 1
2

i R(α)W
− 1

2
i A

1
2
i
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Let R(α) be a n × n symmetric matrix with the feature of a correlation

matrix. We refer to R(α) as a working correlation matrix. Ai is a ni × ni

diagonal matrix and Wi is a ni × ni diagonal weight matrix. Vi will be the

true covariance matrix of Yi if R(α) is correctly specified (SAS/STAT R© 9.22

User’s Guide, 2010).

Usually unknown, the working correlation matrix must be estimated in the

iterative fitting process. Structures of the working correlation include indepen-

dent, exchangeable, unstructured and autoregressive, and can be specified in

the SAS procedure.

Table 2.1 is a summary of all the common choices of working correlation

matrix. The independent working correlation matrix is, in fact, the identity

matrix:

Corr(Yij, Yik) =


1 if j = k,

0 if j 6= k,

However, this may not be realistic in repeated measures data. The ex-

changeable working correlation matrix assumes that Corr(Yij, Yik) remains

the same for all pairs of (j, k). It may be even more realistic to allow the cor-

relation between each pair of (Yij, Yik) to be different. But the drawback is that

it may need too many parameters especially when there are a large number of

repeated measurements. Researchers can choose an appropriate working cor-

relation matrix based on their experience. When the correlations are modest,
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using different forms of a working correlation matrix would produce similar

results (Agresti, 2002).

Table 2.1: Working Correlation Matrix

Structure Working Correlation Matrix

Fixed Corr(Yij, Yik) = rjk, where rjk is the jkth element of the
correlation matrix specified by the user

Independent Corr(Yij, Yik) =

{
1 if j = k,
0 if j 6= k,

m-Independent Corr(Yi,j, Yi,j+t) =


1 if t = 0,
αt if t = 1, 2, . . . ,m
0 if t > m,

Exchangeable Corr(Yij, Yik) =

{
1 if j = k,
α if j 6= k,

Unstructured Corr(Yij, Yik) =

{
1 if j = k,

αjk if j 6= k,
Autoregressive AR(1) Corr(Yi,j, Yi,j+t) = αt, for t = 0, 1, . . . , ni − j

After specifying all the key elements in the model, the fitting algorithm in

PROC GENMOD is as follows1.

1. Compute an initial estimate of β with an ordinary generalized

linear model assuming independence.

2. Compute the working correlations R based on the standardized

residuals, the current β and the assumed structure R.

3. Compute an estimate of the covariance: Vi = φA
1
2
i W

− 1
2

i
ˆR(α)W

− 1
2

i A
1
2
i

4. Update β: βr+1 = βr +[
∑K

i=1
∂µ′i
∂β
V −1i

∂µi
∂β

]−1
∑K

i=1
∂µi

′

∂β
V −1i (Yi−µi)

1The fitting algorithm is from SAS/STAT R© 9.22 User’s Guide, 2010
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5. Repeat step 2-4 until convergence (SAS/STAT R© 9.22 User’s

Guide, 2010).

2.4.3 Sample Size Calculation in the GEE Approach

Designing an experiment with an adequate sample size is important in the

study planning stage in applied research. Rochon(1998) introduced a method

of calculating sample size for the GEE method in repeated measures experi-

ments. A WLS estimation was conducted and the covariance matrix of estima-

tors was provided. Once the significance level α and the power were specified,

the minimum sample size was calculated based on a non-central version of the

Wald χ2 test statistic. This method can provide guidance in obtaining the

minimum sample size. However, a drawback of this method is that it may be

not valid if the sample size derived from this method is too small because the

method is based on an asymptotic theory that requires a large sample in the

first place.

2.5 The Monte Carlo Method

In this section, the generation of data from a specific distribution will be

discussed. This is called a Monte Carlo method. The Monte Carlo technique

was introduced in the 1940s by John von Neumann and Stanislaw Ulam who

were working on a secret nuclear fission weapon project (Eckhardt, 1987). It
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allows researchers to solve complicated problems that they cannot solve an-

alytically. Since developed, Monte Carlo techniques have become increasing-

ly popular in such disciplines as business, finance and science(Thomopoulos,

2013).

A random number generator is a device that can generate a stream of ran-

dom numbers, i.e. numbers that have no patterns. Some well-known physical

methods, such as rolling dice and flipping coins, have been used for years but

it is not practical to generate a large steam of random numbers. This problem

has been solved by the highly developed computer technology. Mathematical

algorithms have been efficient tools that allow users to generate random num-

bers based on their needs. Except for the early popular computer languages

such as C++ and JAVA, a number of computer languages have emerged re-

cently such as SAS, SPSS, R and Splus (Thomopoulos, 2013). To construct

the random number generators and to test their accuracy, great work has been

done in this area (Hogg et al., 2005).

In a Monte Carlo process, a generator of random uniform observations

is the key step and can be easily realized by the algorithms developed by

mathematicians. For instance, the command runif(n) in R software can be

used to generate n random numbers from the uniform distribution U(0, 1)

(Hogg et al., 2005).

In most cases, generation of variables can be conducted based on random
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uniform variables no matter whether continuous or discrete. To generate num-

bers from a discrete distribution F (xi), i = 1, . . . , n, one can first generate a

random uniform variable u and then obtain the value of x by comparing u

with the cumulative distribution F (xi). For example, to generate a random

number from a Bernoulli distribution with p(X = 1) = 0.80, we can

1.Generate a random variable u ∼ U(0, 1).

2.If u < 0.80, then x=1; Otherwise, x=0 (Thomopoulos, 2013).

For continuous data, the Inverse Transform Method can be used to generate

realizations (Zio, 2013). “Suppose the random variable u has a uniform U(0, 1)

distribution. Let F be a continuous distribution function. Then the random

variable X = F−1(u) has distribution function F” (Hogg et al., 2005).

The Monte Carlo method is a powerful way to emulate the real system.

By generating a series of random numbers as input variables and transforming

these random numbers through a certain model, the resulting observations or

samples will simulate the real data with respect to its characteristics such as

the distribution. The better the simulation model simulates the real system,

the more reliable the sample is (Thomopoulos, 2013).

2.6 Normality Test methods

Normal distribution assumption is of extreme importance in statistics.

Many statistical procedures such as t-tests and regression are based on an

16



underlying assumption of normality. When the normality assumption is vio-

lated, the analysis results may not be reliable and cannot be used for further

interpretation. Graphical methods, such as Q-Q plot, are the most straight-

forward and effective tools for checking the normality of data. However, they

are not able to provide objective evidence that normality assumption holds.

To support graphic methods, formal normality tests should be performed to

make a more reasonable decision.

2.6.1 Graphical Methods

Q-Q plot The normal quantile-quantile plot (Q-Q plot) is the most com-

monly used graphical method. As we know, a Q-Q plot compares the quantiles

of two distributions. When it is used in normality tests, the Q-Q plot com-

pares the empirical distribution of a data set to the normal distribution. If

the data follows the normal distribution, the points on the plot would fall

approximately on a straight line.

Histogram A histogram is also a useful tool to show the distribution of data.

It displays the frequency of data with vertical bars. The area represented by

each bar is proportional to the frequency of data in the corresponding interval.

If the data follows the normal distribution, the histogram of the data would

be symmetric and bell-shaped.
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2.6.2 Statistical Test for Normality

Normality tests are classified by Dufour et al.(1998) as empirical distri-

bution function tests, correlation tests and moment tests. In this section,

we mainly focus on empirical distribution function tests and correlation test-

s. Empirical distribution function (EDF) tests test normality of the data by

comparing the empirical distributions with the hypothetical distributions, i.e.

the normal distribution. The most well-known tests such as the Kolmogorov-

Smirnov test, the Lilliefors test and the Anderson-Darling test are all EDF

tests. In correlation tests, the ratio of the WLS estimate under normality

assuption and the sample variance is calculated. The most famous correlation

test is the Shapiro-Wilk test (Dufour et al., 1998). Razali and Wah (2011)

provided a comprehensive summary of these normality tests and compared

the power of them.

Kolmogorov-Smirnov Test and Lilliefors test The Kolmogorov-Smirnov

test is based on the “largest vertical distance” between the empirical distri-

bution and the normal distribution (Razali and Wah, 2011). It is defined by

Conover (1999) as T = supx|F ∗(x)− Fn(x)|.

The Lilliefors test is an extension of the Kolmogorov-Smirnov Test and

it is the most popular EDF normality test. The test statistic is computed

asD = maxx|F ∗(X)− SnX| (Lilliefors, 1967).
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In R, command ”lillie.test(·)” will perform the Lilliefors test.

Anderson-Darling Test “The Anderson-Darling test is a modification of

the Cramer-von Mises test”(Razali and Wah, 2011). We will not present the

details of Cramer-von Mises test here. For sample size n, Anderson and Dar-

ling (1954) gave the definition of this test statistic as W 2
n = n

∫∞
−∞[Fn(x) −

F ∗(x)]2ψ(F ∗(x)) dF ∗(x), where F ∗(x) is the cumulative probability function

of a normal distribution and ψ(F ∗(x)) is the nonnegative weight function.

Usually, ψ(F ∗(x)) = [F ∗(x)(1− F ∗(x))]−1.

In R, ad.test(·) can be used to perform the Anderson-Darling test.

Shapiro-Wilk Test The Shapiro-Wilk test, formulated by Shapiro and

Wilk (1965), is one of the most famous normality tests. Let y(1) ≤ y(2) ≤

. . . ≤ y(n) be an ordered random sample. The Shapiro-Wilk test statistic has

the following form:

W =
(
∑k

i=1 an−i+1(y(n−i+1) − y(i)))2∑n
i=1(yi − y)2

Small values of W indicate that the normality assumption is violated

(Shapiro and Wilk, 1965). Originally, the Shapiro-Wilk test was only valid

when the sample size is less than 50. After new algorithms was developed, the

restriction of sample size has been greatly relaxed to 5000 (Razali and Wah,

2011). In R, command ”shapiro.test(·)” performs the Shapiro-Wilk test.
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Pearson Chi-square Test The Pearson Chi-square test is usually used as

goodness-of-fit test, which evaluates whether the observed frequency distribu-

tion differs from a hypothetical distribution. As a special case, normality then

can be assessed using the Pearson Chi-square test. The Pearson Chi-square

test statistic has the following form: P =
∑ (Ci−Ei)

2

Ei
, where Ci is the observed

value and Ei is the expected value. The test statistic follows the Chi-square

distribution. In R, ”pearson.test(·)” is the command to perform the Pearson

Chi-square test.

2.6.3 Comments

Even though a graphical display is a straight-forward way to illustrate

empirical distributions, it is highly recommended that graphic methods be

supported by formal normality tests in order to provide conclusive evidence of

whether or not the normality assumption is valid. Also, formal normality test

may not be reliable either under a small sample size or when the sample size

is too large. In other words, the formal normality tests may perform poorly in

small samples because of limited information extracted from the data and may

not perform as well as we expect when the sample size is too large because

the slight deviation from the normal distribution may mislead researchers into

rejecting the normality assumption. Careful interpretation of the results of

normality tests is important.
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Chapter 3

Simulation Analysis

3.1 Data Generation

In our study, the Monte Carlo method was used to evaluate the perfor-

mance of the non-linear mixed effects model and the GEE method in small

samples. Simulated data sets of clinical trial data comparing two treatments

for a respiratory disorder are created with sample size n =40, 60, 80, 100

and 200. Half of the subjects in each data set are assigned to the active

treatment group(treatment=1) and the other half are assigned to the place-

bo group(treatment=0). The selection process is randomized. The binary

response yij represents the respiratory status (coded as 0=poor, 1=good) of

subject i at the jth visit, i = 1, 2, . . . , n; j = 1, 2, . . . , T . T =2, 4 and 6 repeat

measurements are generated for each subject based on πij = P (Yij = 1). The
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underlying model is

logit(πi) = log(
πi

1− πi
) = β0 + β1 ∗ treatmenti, i = 1, 2, . . . , n

For the subjects in the placebo group, we assume that treatment = 0 and

πi = P (Yi = 1) = 0.5, i.e. the chance of having good respiratory status is

0.5. Thus β0 = logit(πi) = 0. It is also assumed that the active treatment

is actually effective and it increases the probability of having good responses,

i.e. πi = P (Yi = 1) > 0.5. So for the subjects in the active treatment

group(treatment = 1), we assume that πi = P (Yi = 1)) =0.6, 0.7, 0.8 and

0.9. Since β0 = 0 and treatment = 1, β0 + β1 ∗ 1 = logit(πi) = log( πi
1−πi )

then β1 =0.41, 0.85, 1.39 and 2.20, respectively. As we will see, the power of

the two methods are quite high already when β1 =1.39. Therefore, power for

β1 =0.41, 0.85, 1.39 will be observed for our study.

The R package ”bindata” and command ”rmvbin” were used to generate

correlated binary responses. Command ”rmvbin” creates correlated multi-

variate binary variables by “thresholding a normal distribution”(Leisch et al.,

1998). When generating correlated binary variables, one can specify the joint

probability, the correlations matrix of the binary distribution or the covariance

matrix of the normal distribution that it uses to generate outcomes (Leisch

et al., 1998). Exchangeable correlation matrix were generated with correla-

tion coefficient ρ =0.3 and 0.7 representing low and high correlation among
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responses.

3.2 Analysis of Simulation

3.2.1 Software Package Introduction

In this section, the analysis of the simulated data is conducted using SAS

software (Version 9.2, SAS Institute Inc. Cary, NC, USA). PROC NLMIXED

and PROC GENMOD procedures are performed to fit the non-linear mixed

effects model and the generalized estimating equations method, respectively.

PROC NLMIXED enables us to fit non-linear mixed models where the

conditional distribution of the data is the normal, gamma, binary, Poisson

distribution or a general function we code. Two major approximation methods,

the daptive Gaussian quadrature and a first-order Taylor series approximation,

are available in this procedure to provide the integral approximation to the

likelihood. By maximizing the approximation to the likelihood, the estimates,

standard errors and their p-values can be obtained (SAS 9.22 Users’ Guide,

2010).
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3.2.2 Non-linear Mixed Effects Model

As discussed in Chapter 2 and previous sections, the underlying model is

given by

logit(π̃ij) = log(
π̃ij

1− π̃ij
) = β0+β1∗treatmenti+ei, i = 1, 2, . . . , n; j = 1, 2, . . . , T

The corresponding code is as following.

proc nlmixed data=simdata update=dfp;

parms beta0=0 beta1=0;

eta=beta0+beta1*treatment+z;

expeta=exp(eta);

p=expeta/(1+expeta);

model outcome binomial(1,p);

random z normal(0,sd*sd) subject=id;

predict eta out=eta;

ods output ParameterEstimates=NLMIXED;

run;

The PROC NLMIXED statement “invokes” the procedure and inputs the

data set. The PARMS statement identifies the unknown parameters and their

starting values. After specifying the form of the model, the MODEL statement

specifies the distribution of the response variable(i.e. binomial distribution
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here). Here z is a random term that follows the normal distribution. The

SUBJECT statement indicates the cluster variable (i.e. individuals in our

study)(SAS 9.22 Users’ Guide, 2010).

3.2.3 The GEE Method

The following is the statements of PROC GENMOD:

proc genmod data=resp descend;

class id treatment(ref=”0”) / param=ref;

model outcome=treatment / dist=bin;

repeated subject=id / corr=exch corrw;

ods output GEEEmpPEst=GEE;

run;

By specifying the REPEATED statement, PROC GENMOD applies the GEE

method. The DESCEND option means that outcome=1 will be modeled.

Otherwise, outcome =0 will be modeled. The CLASS statement defines the

categorical variables and their reference group as well. The MODEL statement

specifies the form of the model and also the distribution of the response vari-

able. Similar to PROC NLMIXED, the SUBJECT statement indicates that

a cluster is defined by ID variable. The CORR option allows us to specify

the structure of the working correlation matrix. For example, “EXCH” means

that a exchangeable working correlation structure is used (SAS 9.22 Users’
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Guide, 2010).

3.2.4 Testing the Normality Assumption

Normality assumption is crucial in statistical procedures. Unlike the asymp-

totic properties in large samples, the normality assumption may not be valid in

the data sets of a small sample size and therefore the test of normality is nec-

essary. In this section, we use Quantile-Quantile (Q-Q) plots and histograms

to test the normality of parameter estimates. Also formal normality tests are

performed to implement the graphical methods.

Histograms and Q-Q plots are created for β̂1 obtained from the non-linear

mixed effects model and the GEE method when sample size is 40, 60, 80, 100

and 200, repeated measurement T=2, 4 and 6, ρ=0.3 and 0.7, and β1 is 0, 0.41,

0.85 and 1.39. From the graphs, histograms are all approximately symmetric

and bell-shaped. In all the Q-Q plots, most of the dots are placed on or near

the straight line. For example, the following Figure 3.1 and Figure 3.2 are the

histograms and Q-Q plots for β̂1 from the two methods when sample size is

40, T=6, ρ = 0.3 and β1 = 0. The shape of the histograms approximates the

normal distribution. Most of the dots are falling on or near the straight line

except some outliers in the tail end. Based on the graphical methods, we can

say that the normality assumption is not seriously violated.

As we mentioned previously, graphical methods are not strong enough to
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provide conclusive evidence. Then formal normal tests are conducted. The

following Table 3.1 is the formal normality test conducted when sample size

is 40, T=4, ρ = 0.3 and β1 = 0. In contrast to the graphic methods, the s-

mall p-values obtained from formal normality tests showed that the normality

assumption of GEE method was seriously violated under 0.05 level. One ex-

planation for this contradiction is that formal tests are extremely sensitive to

slight deviations from the normal distribution such as outliers when the sam-

ple size is too large(here the sample size is 5000). Then we may conclude that

the normal assumption is not valid as the histogram and Q-Q plot indicate

but the deviation may not be as serious as we observed from the p-values.

Figure 3.1: Histogram of β̂1 when β1 = 0, T=6, ρ = 0.3 and n=40 (Left:

NLME; Right: GEE)
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Figure 3.2: Q-Q plot of β̂1 when β1 = 0, T=6, ρ = 0.3 and n=40 (Left: NLME;

Right: GEE)

Table 3.1: Results of Normality Test for β̂1 when n=40, β1 = 0, T=4, ρ = 0.3

Method Tests of normality P-value
NLMIXED Shapiro-Wilk test 0.0021

Anderson-Darling test 0.0535
Pearson Chi-square test < 0.0001
Lilliefors test 0.2801

GEE Shapiro-Wilk test < 0.0001
Anderson-Darling test < 0.0001
Pearson Chi-square test < 0.0001
Lilliefors test < 0.0001
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3.2.5 Empirical Size and Power Comparison

Size and Power

In hypothesis testing, two types of error can occur. A Type I error occurs

if H0 is rejected when H0 is true. A Type II error occurs if H0 is accepted

when H1 is true. Usually the Type I error is considered as the worse kind of

the two types of error. Therefore we desire to minimize the Type I error by

selecting a critical region that bounds the Type I error (Hogg et al., 2005).

We say a critical region C is of size α if

α = maxθ∈ω0 Pθ[(X1, X2, . . . , Xn) ∈ C]

Thus, α=P(reject H0 | H0 is true).

For all the critical regions of size α, we also desire to minimize Type II

Error=P(do not reject H0 | H1 is true), or equivalently maximizing 1-Type

II Error=P(do not reject H1 | H1 is true) which is the probability of making

the right decision. The right side of the equation is called the power of a test.

The greater the power is, the more powerful the test is and the better the

procedure is.
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Empirical Size and Power

In this section, we compare the empirical size and power of the two methods

for different sample size. The empirical size of a test, an estimate of the size, is

calculated as the ratio of the number of rejected tests and the total number of

tests when the null hypothesis is true. Empirical power is, however, calculated

as the ratio of number of rejected tests and the total number of tests under the

condition that the alternative hypothesis is true (Lin, 2003). In our simulation,

the denominator is 5000.

In large samples, the empirical size, the estimate of size α0, follows the

normal distribution N (α0, σ
2), where σ =

√
α0(1−α0)

5000
. Therefore the value

of empirical size is expected to fall into the interval (α0 ± 1.96σ). The cor-

responding intervals are (0.007, 0.013), (0.044, 0.056) and (0.092, 0.108) for

α = 0.01, 0.05, 0.10 respectively. Empirical Size of the two models under the

level of 0.01, 0.05 and 0.10 are listed in Table 3.2, Table 3.3 and Table 3.4

In general, the non-linear mixed effects model is too conservative and

the empirical size increases as the sample size increases. However, the GEE

method is liberal and the empirical size decreases as the sample size increases.

Under the level of 0.01, the GEE method is acceptable when n is larger than

60 while the non-linear mixed effects model can only be used after n=100.

Under the level of 0.05, the GEE method can be used when n is larger than 40

while the non-linear mixed effects model can be used when n is larger than 80.
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Table 3.2: Empirical Size for the GEE method and the NLME model in 5000
simulations under the level of 0.01

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE 0.0114 0.0154 0.0108 0.0108 0.0126

NLMIXED 0.0034 0.0072 0.0064 0.0060 0.0096

T=4 GEE 0.0174 0.0100 0.0112 0.0098 0.0110

NLMIXED 0.0098 0.0082 0.0092 0.0080 0.0102

T=6 GEE 0.0164 0.0152 0.0118 0.0086 0.0090

NLMIXED 0.0100 0.0128 0.0096 0.0076 0.0080

ρ =0.7 T=2 GEE 0.0110 0.0102 0.0114 0.0106 0.0100

NLMIXED 0.0396 0.0418 0.0330 0.0292 0.0100

T=4 GEE 0.0118 0.0136 0.0098 0.0130 0.1020

NLMIXED 0.0050 0.0070 0.0052 0.0070 0.0078

T=6 GEE 0.0122 0.0124 0.0120 0.0106 0.0118

NLMIXED 0.0052 0.0064 0.0076 0.0068 0.0112

Note: the entries are the proportion of rejections out of 5000 simulations.
For Type I Error=0.01, the 95% CI is (0.007, 0.013).

Under the level of 0.10, the GEE method is good when n is 60 or larger while

the non-linear mixed effects model is good when n is larger than 100. In sum-

mary, the GEE method has better empirical size than the non-linear mixed

effects model and thus is recommended. When sample size is 60 or lower, GEE

is too liberal and the non-linear mixed effects model is too conservative and

therefore are not recommended to use. When sample size is 100 or up, both

of the methods will have satisfactory empirical size.

The power of the non-linear mixed effects model and GEE method are

listed in Table 3.5, Table 3.6 and Table 3.7.

The results above show that the GEE method always has a higher or at
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Table 3.3: Empirical Size for the GEE method and the NLME model in 5000
simulations under the level of 0.05

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE 0.0562 0.0552 0.0554 0.0520 0.0542

NLMIXED 0.0366 0.0438 0.0474 0.0454 0.0512

T=4 GEE 0.0602 0.046 0.0536 0.0598 0.0566

NLMIXED 0.0500 0.0402 0.0488 0.0548 0.0546

T=6 GEE 0.0598 0.0550 0.0524 0.0470 0.0544

NLMIXED 0.0496 0.0490 0.0488 0.0446 0.0522

ρ =0.7 T=2 GEE 0.0636 0.0520 0.0536 0.0506 0.0536

NLMIXED 0.0784 0.0688 0.0594 0.0492 0.0424

T=4 GEE 0.0520 0.0598 0.0560 0.0532 0.0516

NLMIXED 0.0338 0.0392 0.0378 0.0444 0.0474

T=6 GEE 0.0572 0.0524 0.0552 0.0500 0.0512

NLMIXED 0.0396 0.0380 0.0432 0.0434 0.0538

Note: the entries are the proportion of rejections out of 5000 simulations.
For Type I Error=0.05, the 95% CI is (0.044, 0.056).

least equal power compared to the non-linear mixed effects model. However,

the power of a test is only comparable when the empirical size is accurate. For

example, the GEE method may seem to be more powerful because it tends to

reject more and the non-linear mixed effects model may have lower power due

to its conservativeness. Therefore, based on the empirical size we obtained,

the power of the two methods should be adjusted accordingly.

3.2.6 Adjusted Size and Power Comparison

The original critical values, which are calculated based on the asymptotic

theory, may not be valid in this case because the sample size is small and the
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Table 3.4: Empirical Size for the GEE method and the NLME model in 5000
simulations under the level of 0.10

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE 0.1088 0.1022 0.1058 0.1040 0.1014

NLMIXED 0.0894 0.0906 0.0968 0.0942 0.0970

T=4 GEE 0.1128 0.0968 0.1066 0.1078 0.1090

NLMIXED 0.1000 0.0888 0.1002 0.1052 0.1070

T=6 GEE 0.1096 0.1078 0.1036 0.0934 0.1002

NLMIXED 0.1014 0.1026 0.0982 0.0910 0.0968

ρ =0.7 T=2 GEE 0.1142 0.1054 0.0994 0.0998 0.1010

NLMIXED 0.1154 0.1034 0.0932 0.0904 0.0876

T=4 GEE 0.1092 0.1116 0.1092 0.0992 0.1064

NLMIXED 0.0760 0.0850 0.0910 0.0918 0.1064

T=6 GEE 0.1096 0.1048 0.1074 0.1026 0.1078

NLMIXED 0.0820 0.0864 0.0982 0.0994 0.1126

Note: the entries are the proportion of rejections out of 5000 simulations.
For Type I Error=0.10, the 95% CI is (0.092, 0.108).

normality assumption is violated. Then to ensure that we can obtain the true

power of the models, adjusted critical values should be calculated to make the

empirical size to be exactly 0.01, 0.05 and 0.10. Then adjusted power will

be calculated to reflect the true power of the tests. In PROC NLMIXED, a

t-test is performed to evaluate the significance of factor effects and in PROC

GENMOD, a Z-test is performed. Then the original and adjusted critical

values can be obtained. For example, the original and adjusted critical values

for α=0.01, 0.05 and 0.10 when ρ=0.3, T=2, 4, 6, n=40, 60, 80, 100 and

200 are displayed in Table 3.8, Table 3.9 and Table 3.10. The corresponding

adjusted power values are displayed in Table 3.11, Table 3.12 and Table 3.13,
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Table 3.5: Power for the GEE method and the NLME model in 5000 simula-
tions under the level of 0.01

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.0228 0.0316 0.0380 0.0448 0.0790

NLMIXED 0.0106 0.0160 0.0236 0.0324 0.0692

0.85 GEE 0.0628 0.1088 0.1580 0.1832 0.4144

NLMIXED 0.0324 0.0606 0.1068 0.1410 0.3942

1.39 GEE 0.1362 0.2660 0.3864 0.4982 0.8442

NLMIXED 0.0898 0.1836 0.3036 0.4346 0.8188

T=4 0.41 GEE 0.0236 0.0252 0.0266 0.0380 0.0554

NLMIXED 0.0170 0.0188 0.0206 0.0328 0.0518

0.85 GEE 0.0532 0.0846 0.1076 0.1322 0.3040

NLMIXED 0.0522 0.0674 0.0890 0.1162 0.2884

1.39 GEE 0.1114 0.1864 0.2890 0.3618 0.6926

NLMIXED 0.1202 0.1734 0.2600 0.3402 0.6772

T=6 0.41 GEE 0.0204 0.0226 0.0314 0.0358 0.0548

NLMIXED 0.0192 0.0176 0.0262 0.0304 0.0516

0.85 GEE 0.0464 0.0656 0.0934 0.1106 0.2466

NLMIXED 0.0524 0.0560 0.0858 0.1012 0.2368

1.39 GEE 0.0906 0.1756 0.2366 0.3052 0.6254

NLMIXED 0.1162 0.1680 0.2224 0.2862 0.6130

ρ =0.7 T=2 0.41 GEE 0.0072 0.0342 0.0446 0.0568 0.1092

NLMIXED 0.0072 0.0264 0.0338 0.0384 0.0834

0.85 GEE 0.0334 0.1504 0.1968 0.2456 0.5320

NLMIXED 0.0170 0.0584 0.1210 0.1694 0.4512

1.39 GEE 0.1784 0.3468 0.4958 0.5940 0.9282

NLMIXED 0.0662 0.1218 0.3282 0.4526 0.8768

T=4 0.41 GEE 0.0272 0.0322 0.0416 0.0514 0.0926

NLMIXED 0.0092 0.0172 0.0208 0.0302 0.0780

0.85 GEE 0.0806 0.1270 0.1796 0.2358 0.4978

NLMIXED 0.0432 0.0734 0.1194 0.1602 0.4338

1.39 GEE 0.1812 0.3370 0.4642 0.5740 0.9042

NLMIXED 0.1020 0.2216 0.3378 0.4570 0.8600

T=6 0.41 GEE 0.0308 0.0342 0.0446 0.0460 0.0924

NLMIXED 0.0162 0.0196 0.0252 0.0314 0.0856

0.85 GEE 0.0692 0.1184 0.1754 0.2242 0.4648

NLMIXED 0.0370 0.0740 0.1248 0.1620 0.4256

1.39 GEE 0.1756 0.3220 0.4428 0.5612 0.8848

NLMIXED 0.1094 0.2256 0.3444 0.4648 0.8590
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Table 3.6: Power for the GEE method and the NLME model in 5000 simula-
tions under the level of 0.05

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.0868 0.1040 0.1196 0.1376 0.2086

NLMIXED 0.0586 0.0818 0.1046 0.1232 0.2008

0.85 GEE 0.1828 0.2642 0.3238 0.3866 0.6398

NLMIXED 0.1418 0.2252 0.2884 0.3586 0.6242

1.39 GEE 0.3398 0.4860 0.6182 0.7224 0.9428

NLMIXED 0.2938 0.4526 0.5846 0.6984 0.9412

T=4 0.41 GEE 0.0854 0.0936 0.0940 0.1148 0.1698

NLMIXED 0.0758 0.0824 0.0878 0.1094 0.1676

0.85 GEE 0.1558 0.2124 0.2628 0.2976 0.5212

NLMIXED 0.1494 0.2000 0.2498 0.2834 0.5138

1.39 GEE 0.2772 0.3918 0.5056 0.5856 0.8686

NLMIXED 0.2868 0.3800 0.4940 0.5760 0.8640

T=6 0.41 GEE 0.0822 0.0860 0.0996 0.1064 0.1598

NLMIXED 0.0742 0.0782 0.0942 0.1016 0.1554

0.85 GEE 0.1422 0.1782 0.2302 0.2644 0.4650

NLMIXED 0.1400 0.1666 0.2220 0.2550 0.4580

1.39 GEE 0.2478 0.3640 0.4534 0.5214 0.8150

NLMIXED 0.2550 0.3590 0.4416 0.5116 0.8086

ρ =0.7 T=2 0.41 GEE 0.0206 0.1164 0.1414 0.1544 0.2640

NLMIXED 0.0226 0.1022 0.1134 0.1256 0.2410

0.85 GEE 0.0900 0.3254 0.3978 0.4564 0.7590

NLMIXED 0.0618 0.2504 0.3154 0.3668 0.7172

1.39 GEE 0.3994 0.5858 0.7198 0.8018 0.9804

NLMIXED 0.2402 0.4628 0.6072 0.7010 0.9638

T=4 0.41 GEE 0.0994 0.1170 0.1372 0.1436 0.2390

NLMIXED 0.0604 0.0814 0.1024 0.1182 0.2284

0.85 GEE 0.2208 0.2976 0.3682 0.4486 0.7196

NLMIXED 0.1562 0.2230 0.3026 0.3920 0.6986

1.39 GEE 0.3936 0.5644 0.6864 0.7836 0.9718

NLMIXED 0.2994 0.4834 0.6140 0.7260 0.9654

T=6 0.41 GEE 0.0934 0.1126 0.1298 0.1404 0.2326

NLMIXED 0.0660 0.0836 0.1072 0.1178 0.2300

0.85 GEE 0.2022 0.2830 0.3674 0.4312 0.6952

NLMIXED 0.1432 0.2278 0.3182 0.3924 0.6828

1.39 GEE 0.3900 0.5560 0.6708 0.7656 0.9664

NLMIXED 0.3176 0.4910 0.6176 0.7312 0.9618
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Table 3.7: Power for the GEE method and the NLME model in 5000 simula-
tions under the level of 0.10

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.1568 0.1724 0.1934 0.2270 0.3176

NLMIXED 0.1314 0.1562 0.1794 0.2140 0.3132

0.85 GEE 0.2758 0.3690 0.4452 0.5074 0.7538

NLMIXED 0.2462 0.3444 0.4234 0.4892 0.7460

1.39 GEE 0.4678 0.6074 0.7288 0.8214 0.9704

NLMIXED 0.4398 0.5906 0.7150 0.8092 0.9684

T=4 0.41 GEE 0.1452 0.1548 0.1640 0.1942 0.2642

NLMIXED 0.1376 0.1460 0.1592 0.1838 0.2614

0.85 GEE 0.2408 0.3088 0.3724 0.4116 0.6384

NLMIXED 0.2390 0.2990 0.3612 0.4054 0.6348

1.39 GEE 0.3820 0.5134 0.6240 0.6964 0.9252

NLMIXED 0.3938 0.5086 0.6158 0.6930 0.9248

T=6 0.41 GEE 0.1368 0.1516 0.1654 0.1772 0.2502

NLMIXED 0.1342 0.1448 0.1600 0.1712 0.2498

0.85 GEE 0.2270 0.2712 0.3332 0.3762 0.5830

NLMIXED 0.2278 0.2628 0.3228 0.3690 0.5860

1.39 GEE 0.3596 0.4872 0.5744 0.6416 0.8858

NLMIXED 0.3738 0.4786 0.5728 0.6382 0.8834

ρ =0.7 T=2 0.41 GEE 0.0438 0.1938 0.2310 0.2488 0.3850

NLMIXED 0.0414 0.1666 0.1952 0.2162 0.3642

0.85 GEE 0.1418 0.4450 0.5302 0.5808 0.8476

NLMIXED 0.1128 0.3702 0.4456 0.5050 0.8276

1.39 GEE 0.5496 0.7070 0.8176 0.8762 0.9914

NLMIXED 0.4000 0.6032 0.7210 0.8030 0.9822

T=4 0.41 GEE 0.1648 0.1918 0.2176 0.2334 0.3416

NLMIXED 0.1220 0.1544 0.1886 0.2080 0.3406

0.85 GEE 0.3170 0.4076 0.4896 0.5724 0.8116

NLMIXED 0.2568 0.3468 0.4366 0.5352 0.8018

1.39 GEE 0.5192 0.6776 0.7818 0.8582 0.9856

NLMIXED 0.4440 0.6218 0.7428 0.8264 0.9852

T=6 0.41 GEE 0.1572 0.1904 0.2100 0.2256 0.3430

NLMIXED 0.1282 0.1656 0.1932 0.2092 0.3468

0.85 GEE 0.2994 0.3964 0.4826 0.5476 0.7990

NLMIXED 0.2488 0.3602 0.4544 0.5256 0.7902

1.39 GEE 0.5162 0.6686 0.7742 0.8442 0.9832

NLMIXED 0.4644 0.6338 0.7514 0.8340 0.9832

36



respectively.

Table 3.8: Adjusted critical values for the GEE method and the NLME model
in 5000 simulations under the level of 0.01

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE Original 2.5758 2.5758 2.5758 2.5758 2.5758

Adjusted 2.6184 2.7729 2.5916 2.5854 2.6194

NLMIXED Original 2.7079 2.6618 2.6395 2.6264 2.6008

Adjusted 2.4120 2.5606 2.4868 2.4940 2.5872

T=4 GEE Original 2.5758 2.5758 2.5758 2.5758 2.5758

Adjusted 2.7569 2.5737 2.6017 2.5538 2.6119

NLMIXED Original 2.7079 2.6618 2.6395 2.6264 2.6008

Adjusted 2.6987 2.5638 2.5797 2.5689 2.6015

T=6 GEE Original 2.5758 2.5758 2.5758 2.5758 2.5758

Adjusted 2.7527 2.7542 2.6697 2.5152 2.5135

NLMIXED Original 2.7079 2.6618 2.6395 2.6264 2.6008

Adjusted 2.7036 2.7218 2.6033 2.5119 2.5083

From the tables above, the adjusted critical values are relatively smaller

than the original critical value for the non-linear mixed effects model since it is

conservative in small samples. For the GEE method, the adjusted critical value

will become larger than the original ones because the GEE method is liberal

and tends to reject more. They are consistent with the tables of empirical size.

Based on the adjusted critical value, we can obtain the adjusted power.

The tables above show that the power of the two methods after adjustment

are much more closer than before, which means that the two methods are

equally powerful after adjustment.

We should note that even though the two methods are equally powerful

after adjustment, researchers may not be able to adjust for the power as we do
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Table 3.9: Adjusted critical values for the GEE method and the NLME model
in 5000 simulations under the level of 0.05

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE Original 1.9600 1.9600 1.9600 1.9600 1.9600

Adjusted 2.0042 2.0073 2.0198 1.9711 2.0029

NLMIXED Original 2.0227 2.0010 1.9905 1.9842 1.9720

Adjusted 1.8977 1.9361 1.9618 1.9285 1.9927

T=4 GEE Original 1.9600 1.9600 1.9600 1.9600 1.9600

Adjusted 2.0523 1.9382 1.9990 2.0336 2.0122

NLMIXED Original 2.0227 2.0010 1.9905 1.9842 1.9720

Adjusted 2.0211 1.9266 1.9751 2.0204 2.0102

T=6 GEE Original 1.9600 1.9600 1.9600 1.9600 1.9600

Adjusted 2.0412 1.9965 1.9751 1.9424 1.9995

NLMIXED Original 2.0227 2.0010 1.9905 1.9842 1.9720

Adjusted 2.0172 1.9946 1.9762 1.9323 1.9887

Table 3.10: Adjusted critical values for the GEE method and the NLME model
in 5000 simulations under the level of 0.10

ρ T Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 GEE Original 1.6449 1.6449 1.6449 1.6449 1.6449

Adjusted 1.7168 1.6535 1.6734 1.6576 1.6488

NLMIXED Original 1.6849 1.6711 1.6644 1.6604 1.6525

Adjusted 1.6413 1.6120 1.6494 1.6365 1.6442

T=4 GEE Original 1.6449 1.6449 1.6449 1.6449 1.6449

Adjusted 1.7089 1.6278 1.6712 1.6910 1.6822

NLMIXED Original 1.6849 1.6711 1.6644 1.6604 1.6525

Adjusted 1.6841 1.6159 1.6642 1.6805 1.6842

T=6 GEE Original 1.6449 1.6449 1.6449 1.6449 1.6449

Adjusted 1.6903 1.6907 1.6688 1.6086 1.6447

NLMIXED Original 1.6849 1.6711 1.6644 1.6604 1.6525

Adjusted 1.6915 1.6818 1.6568 1.6195 1.6314
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Table 3.11: Adjusted power for the GEE method and the NLME model in
5000 simulations under the level of 0.01

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.0204 0.0210 0.0366 0.0434 0.0724

NLMIXED 0.0204 0.0226 0.0362 0.0343 0.0708

0.85 GEE 0.0592 0.0756 0.1524 0.1804 0.3972

NLMIXED 0.0618 0.0772 0.1434 0.1706 0.3872

1.39 GEE 0.1298 0.2044 0.3800 0.4948 0.8304

NLMIXED 0.1494 0.2162 0.3748 0.4862 0.8224

T=4 0.41 GEE 0.0136 0.0252 0.0250 0.0396 0.0520

NLMIXED 0.0174 0.0236 0.0240 0.0374 0.0518

0.85 GEE 0.0388 0.0846 0.1020 0.1354 0.2912

NLMIXED 0.0524 0.0808 0.0994 0.1264 0.2876

1.39 GEE 0.0776 0.1866 0.2798 0.3688 0.6766

NLMIXED 0.1206 0.1952 0.2802 0.3574 0.6768

T=6 0.41 GEE 0.0150 0.0148 0.0250 0.0404 0.0632

NLMIXED 0.0192 0.0146 0.0284 0.0390 0.0620

0.85 GEE 0.0294 0.0470 0.0830 0.1220 0.2678

NLMIXED 0.0524 0.0492 0.0894 0.1220 0.2632

1.39 GEE 0.0690 0.1314 0.2068 0.3252 0.6452

NLMIXED 0.1164 0.1548 0.2324 0.3184 0.6402
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Table 3.12: Adjusted power for the GEE method and the NLME model in
5000 simulations under the level of 0.05

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.0802 0.0944 0.1084 0.1348 0.1958

NLMIXED 0.0814 0.0932 0.1106 0.1366 0.1948

0.85 GEE 0.1726 0.2496 0.3016 0.3826 0.6234

NLMIXED 0.1736 0.2464 0.2984 0.3818 0.6178

1.39 GEE 0.3244 0.4666 0.5946 0.7188 0.9388

NLMIXED 0.3436 0.4754 0.5980 0.7184 0.9376

T=4 0.41 GEE 0.0708 0.0978 0.0878 0.1024 0.1572

NLMIXED 0.0758 0.0948 0.0898 0.1022 0.1588

0.85 GEE 0.1362 0.2172 0.2512 0.2706 0.4990

NLMIXED 0.1498 0.2194 0.2548 0.2704 0.5000

1.39 GEE 0.2478 0.3978 0.4908 0.5592 0.8554

NLMIXED 0.2868 0.4082 0.5016 0.5636 0.8568

T=6 0.41 GEE 0.0694 0.0794 0.0978 0.1108 0.1504

NLMIXED 0.075 0.0804 0.0968 0.1104 0.1524

0.85 GEE 0.1234 0.1670 0.2262 0.2688 0.4484

NLMIXED 0.1414 0.1680 0.2250 0.2714 0.4504

1.39 GEE 0.2174 0.3492 0.4454 0.5292 0.8036

NLMIXED 0.2564 0.3610 0.4478 0.5310 0.8056
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Table 3.13: Adjusted power for the GEE method and the NLME model in
5000 simulations under the level of 0.10

ρ T β1 Method n = 40 n = 60 n = 80 n = 100 n = 200

ρ =0.3 T=2 0.41 GEE 0.1392 0.17000 0.1838 0.2220 0.3160

NLMIXED 0.1396 0.1716 0.1842 0.2240 0.3166

0.85 GEE 0.2520 0.3662 0.4360 0.5026 0.7528

NLMIXED 0.2612 0.3660 0.4294 0.5010 0.7492

1.39 GEE 0.4368 0.6058 0.7176 0.8174 0.9700

NLMIXED 0.4594 0.6126 0.7206 0.8168 0.9694

T=4 0.41 GEE 0.1326 0.1604 0.1570 0.1746 0.2538

NLMIXED 0.1376 0.1580 0.1592 0.1774 0.2518

0.85 GEE 0.2242 0.3128 0.3620 0.3958 0.6238

NLMIXED 0.2390 0.3188 0.3612 0.3972 0.6232

1.39 GEE 0.3592 0.5202 0.6134 0.6810 0.9192

NLMIXED 0.3940 0.5316 0.6158 0.6872 0.9184

T=6 0.41 GEE 0.1298 0.1410 0.1602 0.1884 0.2504

NLMIXED 0.1324 0.1418 0.1622 0.1818 0.2586

0.85 GEE 0.2136 0.2544 0.3228 0.3906 0.5830

NLMIXED 0.2260 0.2584 0.3254 0.3832 0.5882

1.39 GEE 0.3424 0.4682 0.5666 0.6544 0.8858

NLMIXED 0.3712 0.4768 0.5754 0.6526 0.8890
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in this project. Although at n=40 NLME is actually more powerful, the sample

size of 40 is not sufficiently large enough to apply these methods. Therefore,

it is important to keep in mind that there is no real power advantage between

the two analysis methods.
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Chapter 4

Data Analysis

In this chapter, a data set of clinical trial data comparing two treatments for

a respiratory disorder from Stokes et al. (2000) is used. A total of 56 patients

came from center1 and 55 patients came from center2. Patients in each of the

two centers are randomly assigned to groups that receive the active treatment

or a placebo. The response is the respiratory status. It is a binary variable

(0=poor, 1=good) and is recorded for each of the four visits. Variables such as

center, treatment, gender and baseline status are also binary and variable age

is a continuous variable. According to our simulation study, either approach

would satisfy the nominal levels with equivalent powers on a data set with

N=111, and T=4. Therefore, we apply both methods on this data set.

The Yij is the respiratory status of patient i at the jth visit, j = 1, 2, 3, 4.

The partial data set is listed below.
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Table 4.1: Respiratory disorder clinical trial: Partial dataset including first 5
subjects

Center ID Trt Sex Age Baseline Visit1 Visit2 Visit3 Visit4
1 1 P M 46 0 0 0 0 0
1 2 P M 28 0 0 0 0 0
1 3 A M 23 1 1 1 1 1
1 4 P M 44 1 1 1 1 0
1 5 P F 13 1 1 1 1 1

Suppose that xij1 is the intercept, xij2 is the treatment allocation(0=placebo,

1=active treatment), xij3 is the center that patients came from (0=center1,

1=center2), xij4 is the gender(0=male, 1=female), xij5 is the age and xij6 is

the baseline status(0=poor, 1=good). Then the GEE model will be

logit(µij) = x′ijβ

where µij = E(Yi) is the mean of the respiratory status. The non-linear mixed

effects model will have the same form except that the intercept will be random.

The output of the GEE method is shown in Table 4.2 and the output of the

non-linear mixed effects model is shown in Table 4.4. Based on the output of

the GEE method, only treatment and baseline status are significant with the

p-value of 0.003 and <0.0001, respectively. The same result can be observed

in the output of the non-linear mixed effects model. In the GEE method,

β̂1 = 1.2442, which means that the odds of a good respiratory status are 3.4702

(exp(1.2442), 95% CI=(1.7628, 6.8305)) times as high for the treatment group
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as for the placebo group.

In the non-linear mixed effects model, β̂1 = 2.0059, which means that the

estimated odds of a good respiratory status for a subject in the treatment

group is 7.4328(exp(2.0059), 95% CI=(2.5847, 21.3767)) times of a subject

with similar random effect values in the placebo group. We note that NLME

offers additional information about the individual’s heterogeneity, which has

a variance of 1.93 and was highly significant even at the level of .0001.

Table 4.2: Respiratory disorder clinical trial: Parameter estimate from the
GEE approach, N=111 subjects, T=4 repeated measurements

GEE Parameter Estimates
Parameter Estimate SE 95% LCL 95 % UCL Z Pr> |Z|
Intercept -0.8882 0.4568 -1.7835 0.0071 -1.94 0.0519
Treatment 1 1.2442 0.3455 0.5669 1.9214 3.60 0.0003
Center 1 0.6558 0.3512 -0.0326 1.3442 1.87 0.0619
Sex 1 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981
Age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728
Baseline 1 1.8981 0.3441 1.2237 2.5725 5.52 < .0001

Note: SE:Standard Error, LCL: Lower Confidence Limit, UCL: Upper Confi-
dence Limit

Table 4.3: Respiratory disorder clinical trial: The estimated working correla-
tion matrix in the GEE approach, N=111 subjects, T=4 repeated measure-
ments

1.0000 0.3351 0.2140 0.2953
0.3351 1.0000 0.4429 0.3581
0.2140 0.4429 1.0000 0.3964
0.2953 0.3581 0.3964 1.0000
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Table 4.4: Respiratory disorder clinical trial: Parameter estimate from the
NLME method, N=111 subjects, T=4 repeated measurements

NLMIXED Parameter Estimates
Parameter Estimate SE 95% LCL 95 % UCL t value Pr> |t|
Intercept -1.4661 0.7591 -2.9704 0.03815 -1.93 0.0560
Treatment 2.0059 0.5330 0.9496 3.0623 3.76 0.0003
Center 0.9701 0.5350 -0.09013 2.0303 1.81 0.0725
Sex 0.2399 0.6660 -1.0682 1.5479 0.36 0.7170
Age -0.02659 0.01982 -0.06586 0.01268 -1.34 0.1824
Baseline 2.8849 0.5660 1.7632 4.0066 5.10 < .0001
sd 1.9348 0.3060 1.3283 2.5412 6.32 < .0001

Note: SE: Standard Error, LCL: Lower Confidence Limit, UCL: Upper Confi-
dence Limit

On the other hand, the computational time of the GEE method is much

shorter than that of the non-linear mixed effects model.

Based on the results of the full models, the nonsignificant terms can be

omitted from the model. The fitting information of reduced models are shown

in Table 4.5 and Table 4.7. The QIC is 512.3416 for the GEE full model and

510.2242 for the reduced model. However, the QICu for the GEE full model

was 499.6081 and increased to 503.9955 for the reduced model. The AIC was

446.6 for the NLMIXED full model and 445.0 for the reduced model. According

to p-values, there was a strong association between the baseline status and

respiratory status. And treatment had a significant effect on the respiratory

status of patients. In the GEE model, β̂1 = 1.2394, which means that the

odds of a good respiratory status are 3.4535 (exp(1.2394), 95% CI=(1.8116,

6.5837)) times as high for the treatment group as for the placebo group.
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In the non-linear mixed effects model, β̂1 = 2.0058, which means that

estimated odds of a good respiratory status for a subject in the treatment

group is 7.4320(exp(2.0058), 95% CI=(2.6000, 21.2467)) times of a subject

with similar random effect values in the placebo group. We note that NLME

offers additional information about the individual’s heterogeneity, which has

a variance of 2.00 and was highly significant even at the level of .0001.

Table 4.5: Respiratory disorder clinical trial: Parameter estimate from the
GEE approach in the reduced model, N=111 subjects, T=4 repeated mea-
surements

GEE Parameter Estimates (reduced)
Parameter Estimate SE 95% LCL 95 % UCL Z Pr> |Z|
Intercept -1.1823 0.3010 -1.7723 -0.5923 -3.93 < .0001
Treatment 1 1.2394 0.3292 0.5942 1.8846 3.77 0.0002
Baseline 1 2.0590 0.3212 1.4295 2.6884 6.41 < .0001

Note: SE: Standard Error, LCL: Lower Confidence Limit, UCL: Upper Confi-
dence Limit

Table 4.6: Respiratory disorder clinical trial: The estimated working correla-
tion matrix in the GEE approach in the reduced model, N=111 subjects, T=4
repeated measurements

1.0000 0.3314 0.2217 0.3255
0.3314 1.0000 0.4552 0.4197
0.2217 0.4552 1.0000 0.4124
0.3255 0.4197 0.4124 1.0000

We then performed diagnostic tests to assess the goodness-of-fit of the

GEE approach and the non-linear mixed effects model. Classification tables

are listed below to compare the predicted values and the observed values of
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Table 4.7: Respiratory disorder clinical trial: Parameter estimate from the
NLME method in the reduced model, N=111 subjects, T=4 repeated mea-
surements

NLMIXED Parameter Estimates (Reduced)
Parameter Estimate SE 95% LCL 95 % UCL t value Pr> |t|
Intercept -1.9418 0.4529 -2.8394 -1.0442 -4.29 < .0001
Treatment 2.0058 0.5300 0.9555 3.0562 3.78 0.0003
Baseline 3.2018 0.5709 2.0704 4.3331 5.61 < .0001
sd 2.0020 0.3101 1.3874 2.6166 6.46 < .0001

Note: SE: Standard Error, LCL: Lower Confidence Limit, UCL: Upper Confi-
dence Limit

the two models. Under the cutting point of 0.5, the predicted response is

1 if the predicted probability π̂ij > 0.5. Table 4.8 is the classification table

of GEE model. Table 4.9 is the classification table of the non-linear mixed

effects model where the predicted values were generated with only the fixed

effect and Table 4.10 is the classification table of the non-linear mixed effects

model where the predicted values were generated with both the fixed effect

and the random intercept. Two principle statistics are used to assess the

accuracy of a test: sensitivity and specificity. Sensitivity is the probability

of a test giving positive diagnosis given that the true responses are positive.

Specificity is the probability of a test giving negative diagnosis when the true

responses are negative. In a perfect model, there will not be any false positive

diagnosis nor false negative diagnosis. All cases will be on the diagonal of

the classification table and the sensitivity and specificity will be 100% (Liang,

2002). After obtaining the sensitivity and specificity of a test, we can calculate
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the misclassification rate.

Table 4.8: Respiratory disorder clinical trial: Classification table of the GEE
approach in the reduced model,, N=111 subjects, T=4 repeated measurements

Truth + Truth - Total
Predict+ 217 103 320
Predict- 31 93 124
Total 248 196 444

Table 4.9: Respiratory disorder clinical trial: Classification Table of the NLME
Method in the reduced model with Only Fixed Effect, N=111 subjects, T=4
repeated measurements

Truth + Truth - Total
Predict+ 217 103 320
Predict- 31 93 124
Total 248 196 444

Table 4.10: Respiratory disorder clinical trial: Classification table of the
NLME method in the reduced model with both Fixed Effect and Random
Effect, N=111 subjects, T=4 repeated measurements

Truth + Truth - Total
Predict+ 226 38 264
Predict- 22 158 180
Total 248 196 444

Then the sensitivity of the GEE approach was 0.8750 and the specificity

was 0.4745, which was rather low. The misclassification rate for the GEE

approach was 0.3018. The same results were obtained for the non-linear mixed

effects model predicted with only the fixed effect term as expected, because
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the calculation only accounted for the marginal effects. The sensitivity of the

non-linear mixed effects model predicted with both fixed and random effects

was 0.9113 and the specificity was 0.8061. And the misclassification rate was

0.1351. The non-linear mixed effects model offered a better fit in terms of

classification rates. It was also the method of choice for this data set, as the

data exhibited a high level of heterogeneity.
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Chapter 5

Conclusion and

Recommendation

This thesis investigated the performance of the two most popular tech-

niques for analyzing discrete repeated measures data. The two techniques we

focus on are the GEE method and a non-linear mixed effects model. Using

a simulation study, we compared the two methods with respect to their s-

mall sample performance, such as the empirical size, statistical power, in an

attempt to draw guidelines for the analysts.

Our study revealed that the non-linear mixed effects model is rather too

conservative, while the GEE method tended to be too liberal. As the sample

size and the number of repeated measures increase, the empirical size of the

non-linear mixed effects model generally increases, while that of the GEE
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method decreases, both approaches eventually reaching the nominal level. For

example, at the nominal level of .05, the GEE method can be used with n is

larger than 40, while the non-linear mixed effects model requires n to be at

least larger than 100, especially when the correlation is high.

In terms of the level of correlation, the GEE method is not largely affected

by it, and the empirical size remains stable and close to the nominal level

as long as the sample size is 60 or larger. For the non-linear mixed effects

model, the sample size should be larger than 60, but as the correlation rises,

the sample size needs to be larger than 100.

In terms of the number of repeated measures per subject, there did not seem

any discernable differences between the two approaches and the empirical sizes

were not affected by how many repeated measures per subject there were.

We also examined their statistical power. Given that the empirical sizes

are satisfactory, the GEE method was observed to have much higher power.

However, since the empirical levels were in general higher for the GEE method,

we considered adjusting the power by selecting a critical value at an exact

nominal level so that the comparison was made on an equal footing. This

investigation indicated that the higher statistical power of the GEE method

was indeed due to inflated empirical level. In fact, when we compared them

on an equal footing, the non-linear mixed effects model was more powerful.

Overall, the GEE approach appears to keep the empirical size at a rea-
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sonable level when the sample size is larger than 40. The non-linear mixed

effects model requires a larger sample size and we found that sample size larger

than 100 appears to suffice the nominal level. In general, the GEE method

appears to be more powerful, but the adjusted power indicates that both of

the approaches are equally powerful. In practice, researchers may not be able

to adjust the power for every analysis. Our study suggests that researchers

are to be reminded that the power advantage of the GEE method should be

taken with caution.

In the last few years, the Monte Carlo procedures have been widely used

in statistical inference. Bootstrap is one of those procedures. Bootstrap pro-

cedures are computationally simple resampling methods that can be used to

evaluate the accuracy of an estimator. Instead of assuming specific distribu-

tions of the estimator (e.g. the asymptotic normal distribution), they only

depend on the empirical distributions. By Monte Carlo sampling, we can nu-

merically evaluate the standard deviation of an estimator and obtained the

bootstrap estimate of standard error as well as the bootstrap confidence inter-

val. The algorithm has the following steps: (1) randomly draw a large number

(in most of situations, a total number of 50-200 is adequate) of bootstrap

samples from the data. These bootstrap samples are drawn with replacement

and should have the same sample size with the original dataset; (2) calculate

the estimate { θ̂1, . . . ,θ̂B } for each bootstrap sample. B is the total number
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of bootstrap samples; (3) evaluate the standard deviation and the confidence

intervals of the estimator based on those estimates { θ̂1, . . . ,θ̂B } (Efron and

Tibshirani, 1986).

Besides the GEE approach and the non-linear mixed effects model, the

penalized quasi-likelihood (PQL) estimation is another option to perform the

analysis. The PQL is a computationally simple technique that “uses a Laplace

approximation to the integrated mixed model likelihood” (Dean et al., 2004)

and has been commonly used in the fitting process of the generalized mixed

effects model (GLMM). It is helpful when the number of the random effects

is relatively large (Fitzmaurice et al., 2011). PQL method is implemented in

software packages such as SAS, Splus and R.
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