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Abstract The dynamics of coupled populations have mostly been studied in the context of metapopulation1

viability with application to, for example, species at risk. However, when considering pests and pathogens,2

eradication, not persistence, is often the end goal. Humans may intervene to control nuisance populations, re-3

sulting in reciprocal interactions between the human and natural systems that can lead to unexpected dynamics.4

The incidence of these human-natural couplings has been increasing, hastening the need to better understand5

the emergent properties of such systems in order to predict and manage outbreaks of pests and pathogens. For6

example, the success of the growing aquaculture industry depends on our ability to manage pathogens and7

maintain a healthy environment for farmed and wild fish. We developed a model for the dynamics of con-8

nected populations subject to control, motivated by sea louse parasites that can disperse among salmon farms.9

The model includes exponential population growth with a forced decline when populations reach a thresh-10
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old, representing control interventions. Coupling two populations with equal growth rates resulted in phase11

locking or synchrony in their dynamics. Populations with different growth rates had different periods of oscil-12

lation, leading to quasiperiodic dynamics when coupled. Adding small amounts of stochasticity destabilized13

quasiperiodic cycles to chaos, while stochasticity was damped for periodic or stable dynamics. Our analysis14

suggests that strict treatment thresholds, although well intended, can complicate parasite dynamics and hinder15

control efforts. Synchronizing populations via coordinated management among farms leads to more effective16

control that is required less frequently. Our model is simple and generally applicable to other systems where17

dispersal affects the management of pests and pathogens.18

Keywords aquaculture, dispersal, ecosystem service, phase locking, population dynamics, synchrony19

1 Introduction20

As the global human population grows, there is an increasing need to understand how interactions between21

human and natural systems alter ecosystems and the services they provide (Millennium Ecosystem Assessment22

2005). Social and ecological systems have traditionally been studied separately, but their integration as coupled23

human and natural systems (CHANS) can reveal unexpected dynamics due to nonlinearities and thresholds24

in the way that humans and ecosystems interact (Liu et al 2007). CHANS can exhibit emergent properties,25

not present in isolated human or natural systems but resulting from the interactions between them. There26

is a need to integrate studies of human actions with the natural dynamics of populations and communities27

to understand relevant feedbacks and develop effective policy that reduces human degradation of essential28

ecosystems services.29

The natural dynamics of pests and pathogens have been of interest to scientists for some time, due to the30

economic importance of agricultural pests (Oerke 2006) and human cost of transmissible diseases (Keeling31

and Gilligan 2000, e.g.,). The role of dispersal among populations in hindering control efforts has long been32

recognized (Levins 1969, e.g.,). Theoretical models of coupled populations have shown that if neighbouring33

populations fluctuate out of phase, such that high abundances at one location correspond to low abundances at34
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another, dispersal can increase the probability of persistence via the rescue effect (Brown and Kodric-Brown35

1977; Kendall and Fox 1998). The rescue effect is often thought of as beneficial in the context of population36

viability of endangered species, but in the context of disease, dispersal among local populations with asyn-37

chronous dynamics may hinder efforts to eradicate disease (e.g., Bolker and Grenfell 1996). Mathematical38

models (e.g., Liebhold et al 2004; Holt and McPeek 1996; Hastings 1993) and observational data (e.g., Ranta39

et al 1995; Steen et al 1996) have suggested that dispersal will tend to synchronize local populations. Syn-40

chronized populations are more susceptible to extinction because stochastic events or human intervention can41

cause catastrophic losses when all populations are at low abundance, with little opportunity for recolonization.42

Paradoxically, dispersal could therefore help or hinder efforts to control disease in metapopulations depending43

on whether dispersal results in synchronized pathogen dynamics, or the rescue effect (Abbott 2011).44

Treatments with chemotherapeutants and wildlife culls (e.g., to reduce disease transmission) are examples45

of control efforts that result in an immediate decline in the unwanted populations, but resurgence may be swift46

if nearby populations persist. The optimal allocation of control effort among subpopulations may depend on47

the level of connectivity and relative growth rates of the populations. For example, in control of the yellow48

legged herring gull, a nuisance species in the western Mediterranean, the magnitude of the cull and life stage49

to be targeted depends on the dispersal rate (and relative growth rates) among gull populations (Brooks and50

Lebreton 2001). Tuberculosis in New Zealand possums can be controlled by culling infected individuals with51

poison baits, but the effectiveness of this control depends on the timing of application and spatial configuration52

of habitat patches (Fulford et al 2002). In general, asynchrony in the dynamics of disease among host local53

populations likely decreases the probability of successful eradication (Earn et al 1998). Indeed, it has been54

proposed that efforts to eradicate measles on a global scale were hampered after vaccination programs of the55

late-1960s inadvertently resulted in the decorrelation of measles epidemics in UK cities (Bolker and Grenfell56

1996).57

The motivation for this study came from parasite dynamics in open-net aquaculture; a coupled human and58

natural system where the eradication of pathogens has proved difficult. The rapid expansion of aquaculture59

(FAO 2014) has resulted in changes to coastal ecosystems including the emergence of disease (Walker and60
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Winton 2010) and transmission of pathogens between farmed and wild fish (Heggberget et al 1993). In regions61

where farmed and wild fish coexist, the health of the system depends on effective management of disease62

in farmed fish (Peacock et al 2013; Tompkins et al 2015). Connectivity among populations in the marine63

environment is typically higher than in terrestrial systems (McCallum et al 2003), and dispersal of pathogens64

among host populations can complicate disease control.65

In particular, parasitic copepods known as sea lice or salmon lice, predominantly Lepeophtheirus salmonis66

and Caligus spp., have been a persistent problem in salmon aquaculture, costing millions of dollars in treat-67

ment and reduced feed conversion ratios, negatively impacting fish health, and damaging public perception of68

farmed salmon (Costello 2009). Many approaches have been taken to minimize sea louse outbreaks, includ-69

ing biomass restrictions to limit host density, strategic siting of farms, the use of cleaner fish that prey on sea70

lice, and the application of chemotherapeutants (Rae 2002; Brooks 2009). Sea louse populations on salmon71

farms within a region are connected via the dispersal of free-living larvae (Adams et al 2012), and studies have72

shown that critical host density thresholds for sea lice exist at regional scales (Frazer et al 2012; Jansen et al73

2012; Kristoffersen et al 2013). It has been estimated that 28% of infections are due to the influx of larvae74

from neighbouring farms (Aldrin et al 2013). This connectivity among farms affects the growth of sea louse75

populations on any given farm and the efficacy of treatments. Furthermore, frequent and less effective use of76

chemotherapeutants may facilitate the evolution of resistance in sea lice (Aaen et al 2015), which is a major77

challenge facing the aquaculture industry (Igboeli et al 2014). Coordination of management among farms may78

be key in effectively managing sea lice (Kristoffersen et al 2013), as well as the spread of other pathogens.79

Many studies have focused on statistical analyses of monitoring data to uncover the relationships among farms80

(e.g., Jansen et al 2012; Aldrin et al 2013; Rogers et al 2013; Revie et al 2002) but much can be learned from81

applying more general theoretical models of population and disease dynamics (e.g., Frazer et al 2012).82

In this paper, we develop a simple model for the dynamics of two populations connected by dispersal, where83

each population is subject to external control when it reaches a threshold density. The model complements84

previous work examining sea louse populations on individual salmon farms (Krkošek et al 2010; Rogers et al85

2013) and within a region (Jansen et al 2012; Aldrin et al 2013) to explicitly examine how connectivity between86
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parasite populations on adacent farms can alter the timing and frequency of treatments. This work also builds87

on our general theoretical understanding of how dispersal (Hastings 1993; Goldwyn and Hastings 2011; Dey88

et al 2015; Kendall and Fox 1998) and intervention (Chau 2000; Sah et al 2013) affect the dynamics of coupled89

populations. The model was motivated by sea lice on farmed salmon, but has general applicability to other90

systems where dispersal affects control, such as in agricultural pests of crops within a region (Ives and Settle91

1997), and transmissible diseases in wildlife (Tompkins et al 2015) and humans (e.g., Bolker and Grenfell92

1996).93

2 Methods94

2.1 A simple model for growth and control95

Analyses of sea louse population dynamics on isolated salmon farms suggest that parasite populations grow96

exponentially in the absence of treatment (Krkošek et al 2010; Rogers et al 2013). Exponential growth is not97

unique to sea lice, and has been observed in birds (Van Bael and Pruett-Jones 1996), mammals (Silva 2003), and98

insects (Birch 1948), and has been used to describe dynamics of other agricultural pests (e.g., Samways 1979).99

Although negative density dependence will regulate populations at some point, management intervention in100

the case of pests and parasites may prevent populations from reaching such high densities. Thus, although101

the following model was motivated by sea louse parasites on salmon farms, it likely has broad applicability102

and may inform management of other pests and parasites. In developing the model, we refer to populations in103

adjacent patches rather than parasites on adjacent salmon farms to maintain this generality.104

The dynamics of two populations that are continuously coupled by dispersal are described by,105

u
v


′

=

ruu ruv
rvu rvv


u
v

 , (1)

where u is the population density in patch one, v is the population density in patch two, rii is the internal growth106

rate of population i where i = u or v and rij is the connectivity probability from population j to population i.107
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We refer to the total growth rate of population i = u or v as the row sum of internal growth and connectivity:108

rii + rij . The solutions for u(t) = fu(t, u0, v0) and v(t) = fv(t, u0, v0) are given in Appendix A.109

We included control treatments by forcing a reduction in a population when it reached the threshold abun-110

dance of Nmax. Many countries, including Norway, Ireland, the United States, and Canada, require salmon111

farms to treat their fish with chemotherapeutants when a threshold sea louse abundance is reached, but this112

threshold may vary among regions (Brooks 2009). For our simulations, we chose Nmax = 3 motile lice per113

fish, based on guidelines in Pacific Canada that recommend treatment when farmed salmon have an average of114

three lice per fish (British Columbia Ministry of Agriculture and Lands 2005), but the value of the threshold is115

arbitrary for the qualitative analysis we perform here. Observations suggest that chemotherapeutants may kill116

up to 95% of motile sea lice on treated farmed salmon (Lees et al 2008), although treatment efficacy may be117

lower in many regions and is undoubtedly changing (Aaen et al 2015). We assumed that treatments were ef-118

fective, and when either u(t) or v(t) exceeded Nmax, we modelled a treatment of that population by forcing the119

dynamics to reset with the initial condition for the treated population being a 95% reduction from the threshold120

(i.e., Nmin = (1− 0.95)Nmax), and the initial condition for the untreated population being equal to the density121

prior to treatment of the other population. For example, starting with initial population densities uk and vk at122

t = 0, if u(t) reaches the threshold Nmax at time t = Tu, the system would be reset with t = 0 and initial123

conditions uk+1 = Nmin and vk+1 = fv(Tu, uk, vk). The subscript k here represents the treatment number124

counted across both populations. In the following section, we develop a discrete-time model that describes the125

population density at treatment k + 1 based on the population density at treatment k.126

2.2 Discrete-time treatment dynamics127

We aimed to understand the conditions under which the populations will become synchronized, settle into a128

regular pattern of alternating treatments, or have unpredictable treatment timing. To this end, we reduced the129

dimensionality of the system while retaining key properties (Schaffer 1985) by deriving a discrete-time map130

for the population density in a focal population when the other population is treated. This approach is related131
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to “peak to peak” dynamics of time series data in which past maxima are used to predict future peaks in time-132

series oscillations (e.g., Rinaldi et al 2001). A similar approach is also often used to reduce the dimensionality133

of a system of three or more differential equations by plotting successive points where the three-dimensional134

phase dynamics pass through a two-dimensional plane, called a Poincaré section (e.g., Hastings and Powell135

1991; Schaffer 1985).136

Given the initial population densities in the two patches, we solved Eq. (1) for the time, Tu, until population137

u reaches the treatment threshold (Appendix A) and the time, Tv , until population v reaches the treatment138

threshold. We calculated T̃ = Tu − Tv , where T̃ < 0 indicates that the treatment of u will happen next, and139

T̃ > 0 indicates that the treatment of v will happen next. The population densities after the next treatment k+1140

are therefore141 u
v


k+1

=
(
1−H(T̃ )

) Nmin

fv

(
Tu, uk, vk

)


︸ ︷︷ ︸
u is treated

+H(T̃ )

fu
(
Tv, uk, vk

)
Nmin


︸ ︷︷ ︸

v is treated

, (2)

where H(T̃ ) is the Heaviside step function that equals zero when T̃ < 0 and one otherwise. We used the142

dynamical system described by (2) to construct a return map that takes the u when v is initially treated, u∗,143

and returns u the next time v is treated, φ(u∗). We refer to φ(u∗) as the population density (in patch one) at144

re-treatment (of patch two). We show in Appendix B that the general equation for this return map is145

φ(u∗) = H(T̃0) fu
(
Tv0, u

∗, Nmin

)
︸ ︷︷ ︸

m=0

+

[ ∞∑
m=1

H(T̃m)
m−1∏
n=0

[1−H(T̃n)]

]
fu

(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

, (3)

where treatment of u occurs m times before v is treated again. The time between treatment m− 1 and the next146

treatment of v is denoted Tvm, and T̃m = Tum − Tvm. The value of m depends on the relative growth rates147

of the two populations and the magnitude of connectivity. The values of Tum and Tvm cannot be solved for148

explicitly (Appendix A), therefore we simulated the dynamics using a recursive algorithm to obtain the shape149

of φ(u∗) (Appendix C).150
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Table 1 Summary of scenarios for how increasing connectivity affects dynamics.

Scenario
Growth rates

u internal v internal from u to v from v to u
ruu rvv rvu ruv

A 1.00 1.00 0.01→ 1.00∗ 0.01→ 1.00∗

B 1.00 1.00 0.01→ 1.00 0.01
C 1.00 0.50 0.01→ 1.00 0.01→ 1.00
D 1.00 0.50 0.01→ 1.00 0.01

*Under scenario A, we considered connectivity increasing to 2.00 when assessing the frequency of treatments.

2.3 Parameter sensitivity151

We investigated the dynamics of the return map for a limited number of parameter combinations with each152

growth rate constrained between zero and two. A comprehensive description of the dynamics of the return153

map under all parameter combinations was impossible because the return map had to be simulated, so we154

focused on results from four scenarios that describe parameter changes that might occur in networks of salmon155

farms (Table 1). First, we considered a scenario where the internal growth rates were constant and equal at156

ruu = rvv = 1.00 and connectivity increased from 0.01 to 1.00 in increments of 0.01 (ruv = rvu = rij ,157

scenario A). This scenario could represent two salmon farms being brought closer together, increasing exchange158

of parasites between them. Second, we considered increasing rvu from 0.01 to 1.00, but connectivity in the159

other direction constant at ruv = 0.01 (scenario B). This scenario could represent an increase in the advection160

of larvae from one farm to another. The third scenario had connectivity equal and increasing as in scenario A,161

but u had twice the internal growth rate as v (ruu = 1.00, rvv = 0.50, scenario C). Similarly, in scenario D,162

u had twice the internal growth rate as v, but rvu increasing from 0.01 to 1.00. Different internal growth rates163

could represent different host population sizes or environmental conditions affecting growth on the two farms.164

In each scenario, for each value of the appropriate control parameters (i.e., rvu, and ruv in scenarios A &165

C; Table 1), we simulated the return map over 2000 iterations starting at u∗0 = 2.7. We constructed a bifurcation166

diagram by plotting the values of φ(u∗) for the last 500 iterations, over the value of the control parameter. We167

present the results for u∗0 = 2.7, but we examined the bifurcation diagrams starting from several values of u∗0168

to check that the long-term dynamics were not dependent on the initial conditions (Online Resource, Fig. S1).169
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We also considered the long-term frequency of treatments over increasing connectivity between popula-170

tions. To calculate the frequency of treatments, we first iterated the return map 500 times starting at u∗ = 2.7171

to remove transient dynamics and then simulated the dynamical system given by Eq. 2 for 100 treatments,172

where treatments were counted across both populations. If the two populations were treated at the same time,173

we considered it two treatments. The frequency of treatments was then calculated as 100 divided by the time174

taken to reach 100 treatments. To examine how connectivity affects the frequency of treatments independent175

of overall increases in the growth rates, we also considered a variation on scenario A in which the internal176

growth rate declined as connectivity increased such that rii = 1− rij and the total growth rates to populations177

remained constant (Online Resource).178

2.4 Testing for chaos179

Under certain parameter values, the numerically-calculated return map given by Eq. (3) had a discontinuity at180

the point where u was treated m times or m + 1 times, depending on the population density u∗ at the first181

treatment of v (see Results). This discontinuity resulted in cyclic behaviour that was difficult to classify by182

numerical simulations as periodic or chaotic (Galvanetto 2000). Chaos is extreme sensitivity to initial condi-183

tions, and can be classified by calculating the rate of divergence between two trajectories that are initially close184

(Hastings et al 1993). This rate is known as the Lyapunov exponent λ where εn = ε0 e
λn, ε0 << 1, and εn185

is the difference between a perturbed and fiducial trajectory after n iterations of the return map. Positive expo-186

nents indicate that two trajectories will diverge and therefore the dynamics are sensitive to the initial condition,187

characteristic of chaos (Sprott 2003; Hastings et al 1993).188

To determine if the return map lead to chaotic dynamics under the scenarios we considered, we numerically189

calculated the Lyapunov exponent for all parameter combinations (Table 1) as,190

λ =
104∑
n=1

log
(
|εn|
ε0

)
. (4)
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For discontinuous return maps such as ours, Eq. (4) is not valid if the fiducial and perturbed trajectories project191

onto different pieces of the return map (Galvanetto 2000). To avoid this problem, we chose a small initial192

difference between the trajectories of ε0 = 10−8. At each iteration of the return map, we readjusted the two193

trajectories bringing them back together along the line of separation such that the difference between them was194

ε0, with the sign of the difference equal to the sign of εn−1 (Sprott 2003, p. 116-117):195

εn = φ

(
φn−1(u∗) +

εn−1

|εn−1|
ε0

)
− φn(u∗) (5)

where φn(u∗) represents the nth iteration of the fiducial trajectory (i.e., φ2(u∗) = φ(φ(u∗))). This correction196

made it very unlikely that the two trajectories would project onto different pieces of the return map, as the197

difference between them remained relatively small. In all our simulations, we verified that εn << 1, suggesting198

that the two trajectories had projected on to the pieces of the return map.199

In the numerical calculation, the value of the Lyapunov exponent may depend on the choice of u∗0 (Earn-200

shaw 1993), so we repeated the calculation of Eq. (4) for three randomly-chosen values between Nmin and201

Nmax. For each starting value, we iterated the map 200 times to remove transient dynamics and then used the202

subsequent 10 000 iterations in the calculation of λ (Sprott 2003). We report the mean value of λ over the three203

values of u∗0 for each value of connectivity described in section 2.3.204

2.5 Stochasticity205

Environmental stochasticity may influence the growth of populations, as is the case for sea louse populations on206

salmon farms (Aldrin et al 2013; Rogers et al 2013). We added stochasticity to the return map and evaluated its207

influence on the long-term dynamics. At each iteration, we multiplied φ(u∗) by a log-normal distribution with208

mean one and standard deviation on the log scale of s = 10−2 (Hilborn and Mangel 1997). We compared the209

stochastic dynamics for parameters that corresponded to a quasiperiodic cycle with a Lyapunov exponent close210

to zero in the deterministic model versus those that produced periodic dynamics or had a single equilibrium211

with a Lyapunov exponent that was relatively large and negative in the deterministic model. We examined212
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200 iterations of the return map for two trajectories: one fiducial trajectory starting at u∗0 = 2.7 and a second213

perturbed trajectory initially separated by a small distance ε0 = 10−8 from the fiducial trajectory. We compared214

the difference between these trajectories over increasing iterations and also calculated the Lyapunov exponent,215

with and without stochasticity in the model. In calculating the Lyapunov exponent for the stochastic return216

map, we used an independent sequence of log-normal values for the fiducial and perturbed trajectories. To217

ensure the value of λ in the stochastic model was not sensitive to the particular log-normal random values in218

the simulation, we repeated the calculation 50 times and report the mean and range.219

3 Results220

3.1 Simulations of simple model221

Simulations of the model predicted that for two isolated populations (i.e., rij = 0 ∀ i 6= j), each population will222

oscillate with treatments occurring at regular intervals. The frequency of treatments was dictated by the internal223

population growth rate rii, with higher growth rates resulting in more rapid resurgence of the population after224

treatment and therefore a higher frequency of treatments.225

When we coupled the two populations, the dynamics were more complex. Simulations displayed a range226

of behaviour including alternating treatments (i.e., phase locking; Fig. 1a), synchrony between the populations227

(Fig. 1b), or seemingly chaotic dynamics (Fig. 1c; Table 2). To better understand this complex behaviour, we228

considered a one-dimensional discrete-time return map describing the change in u in between treatments of v.229

3.2 Discrete-time treatment dynamics230

For two populations that have identical growth rates but low connectivity, the return map had a stable equi-231

librium in the open interval (Nmin, Nmax) (the exact value depended on the level of connectivity) and unstable232

equilibria at Nmin and at Nmax. This dynamical behaviour is termed phase locking because the two populations233

had the same period but their dynamics were shifted out of phase by a fixed amount (Becks and Arndt 2013).234

The consequence was alternating treatments of u and v, with a stable equilibrium for the population density235



12 Stephanie J. Peacock et al.

u whenever v was treated (Fig.1a & 2a). If both populations were treated at the same time, u was exactly at236

the unstable equilibrium. In this case, the two populations remained synchronized because the period of their237

oscillations was identical.238

If the stable equilibrium was at the treatment threshold Nmin or Nmax, then the dynamics of the two popu-239

lations tended towards synchrony. From our limited investigation of parameter space, this was observed when240

connectivity between the populations was equal and greater than the internal growth rates of the populations241

(i.e., rij = rji > rii = rjj ; Table 2). Synchrony also occurred if the internal growth rates were unequal, but242

the total growth rates of the two populations were equal (i.e., ruu + ruv = rvv + rvu) and one population had243

a lower growth rate and higher connectivity to the other population. In this case, the population with higher244

connectivity became entrained by the dynamics of the “source” population.245

A third type of behaviour occurred when the total growth rates of the populations were not equal. In this246

case, the two populations oscillated with different periods. There was a discontinuity in the return map where247

u went from being treated once to twice (or two to three times, depending on the relative growth rates) before248

v was treated (Fig. 2c). This discontinuity resulted in periodic or seemingly chaotic behaviour. Unlike in phase249

locking or synchrony, the population density u was not the same each time v was treated (Fig. 1c).250

Table 2 Summary of parameter values under which different dynamics were observed.

Internal growth rate Connectivity Behaviour Figure

ruu = rvv

(ruv = rvu) ≤ (ruu = rvv) Phase locking Fig. 2a

(ruv = rvu) > (ruu = rvv) Synchrony Fig. 2b & 4a

ruv 6= rvu Cycles

ruu 6= rvv

ruv = rvu; incl. ruv = rvu = 0 Cycles Fig. 2c

(ruu + ruv) = (rvu + rvv) Synchrony or phase locking Fig. 4b & S8

Else Phase locking or cycles Fig. 2c

3.3 Parameter sensitivity251

Increasing the connectivity between two patches resulted in changes to the long-term values of φ(u∗), the252

population density at re-treatment (Fig. 3 and Fig. S1). Some of these changes happened abruptly when the253
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connectivity crossed a threshold (Fig. 3c,d) while others happened gradually (Fig. 3a). When the two popu-254

lations had equal internal growth rates and equal connectivity, increasing the connectivity lead to increasing255

population density at re-treatment, until connectivity equalled the internal growth rates (scenario A in Table 1;256

Fig. 3a). At that point, the dynamics were phase-locked such that the population density at re-treatment was257

always the initial population density (i.e., (φ(u∗) = u∗) ∀ u∗; see Online Resource Figs S2-S5 for illustrative258

animations).259

When connectivity was increased from u to v only (e.g., scenario B in Table 1), the return map had a260

discontinuity because the total growth rate of v was higher than that of u. In that case, we observed periodic261

dynamics, the simplest being a two-point cycle that occurred near rvu = 0.8 (Fig. 3b). In these two point262

cycles, after the initial treatment of v, u will be treated once, then after the next treatment of v, u will be treated263

twice. This cycle repeats itself resulting in a pattern of treatments v, u, v, u, u, v, u, v, u, u, etc., with u having264

a lower population density at the treatment of v if u has been treated twice since the previous treatment of v.265

When the internal growth rates of the populations were not equal (i.e., scenarios C and D in Table 1),266

the dynamics tended to be cyclic (Fig. 3c,d). However, abrupt changes from cyclic dynamics to stable points267

occurred as connectivity was increased to the point where the return map touched or crossed the 1:1 line.268

For example, in scenario D, when rvu neared 0.51, the dynamics tended towards phase locking (Fig. S5). As269

connectivity increased from rvu = 0.35 to rvu = 0.51, the stable point approached Nmin and the magnitude of270

the rescue effect decreased because u had a lower population density on treatment of v. When the total growth271

rates were exactly equal (i.e., rvu = 0.51 such that (ruu + ruv) = (rvu + rvv)), the two populations became272

synchronized (Fig. 3d; Table 2).273

Increasing the connectivity between the patches did not necessarily result in a monotonic increase in the274

frequency of treatments (Fig. S6). For illustration, we focus on the frequency of treatments under scenario A,275

but with connectivity increasing to ruv = rvu = 2.00, and on scenario D with connectivity between rvu =276

0.35 and 0.52. In these scenarios, the internal growth rates were held constant (Table 1). Thus, we expected that277

the frequency of treatments would increase with increasing connectivity because the the total growth rate to the278

populations was increasing. However, we observed a sharp decline in the frequency of treatments in scenario279
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A when connectivity exceeded the internal growth rate (Fig. 4a). In scenario D, the frequency of treatments280

declined over the region of phase locking (see Fig. 3d) as the stable point appraochedNmin, reducing the impact281

of the rescue-effect. The minimum frequency of treatments occurred where populations became synchronized282

at rvu+rvv = ruv+ruu (i.e, rvu = 0.51, Fig. 4b). In the Online Resrouce, we also considered a decline in the283

internal growth rate as connectivity increased such that rii = 1− rij and the total growth rates to populations284

remained constant in order to examine how connectivity affects the frequency of treatments independent of285

overall increases in the growth rates. These simulations also showed a decrease in the frequency of treatments286

when populations became synchronized, and frequency of treatments remained low as connectivity increased287

further (Fig. S7).288

3.4 Testing for chaos289

The time series of population density appeared chaotic when the period of the population cycles in the two290

patches was different (Fig. 1c). The bifurcation diagrams showed large regions of parameter space that had291

potentially chaotic dynamics (Fig. 1c and Fig. 3c-d). However, the Lyapunov exponent was not greater than292

zero in any of the scenarios (Fig. 3c-d), indicating the dynamics were not chaotic. Instead, the dynamics of two293

populations with different internal periods of oscillations appeared quasiperiodic. For periodic cycles, after294

iterating the return map a finite number of times, we returned to the exact value at which we started (e.g., Fig.295

5b). Quasiperiodic cycles are differentiated from periodic cycles by cobwebbing the return map; over several296

treatments of v, φ(u∗) returned to the original branch of the return map very near to the starting point but297

not exactly at the starting point, such that the dynamics were shifted slightly (e.g., Fig. 5d). We note that a298

precise distinction between quasiperiodic and periodic dynamics is limited by the the number of times we299

could numerically iterate the return map.300
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3.5 Stochasticity301

Small amounts of stochasticity added to the return map tended to shift quasiperiodic dynamics towards chaos302

such that two population initially close had very different population densities after 200 iterations. However,303

when the dynamics were periodic, the stochasticity was damped such that the fiducial trajectory and the per-304

turbed trajectory remained relatively close over 200 iterations of the return map (Fig. 5a). A small change in305

rvu from 0.72 to 0.71 in scenario C caused a transition from periodic to quasiperiodic dynamics (Fig. 5b,d).306

In the quasiperiodic case, the two trajectories drifted apart as the stochasticity accumulated (Fig. 5c). For307

scenario D, when rvu was increased from 0.31 to 0.32, the deterministic dynamics went from quasiperiodic308

to phase locking (Fig. 3d). In this case, as in scenario C, stochasticity caused the trajectories to diverge for309

rvu = 0.31 corresponding to the quasiperiodic dynamics, but stochasticity was damped when the deterministic310

dynamics exhibited phase locking (Fig. S9). This shows that small amounts of stochasticity can accumulate,311

when dynamics are not stable or periodic, and result in sensitivity to initial conditions that is characteristic312

of chaotic dynamics. Indeed, the Lyapunov exponents for the stochastic version of the model shown in Fig. 5313

were λ = 14.19 (range 14.16 to 14.21) for rvu = 0.71, compared to λ = −0.001 for the deterministic model.314

The Lyapunov exponent was also positive but smaller for the periodic dynamics corresponding to rvu = 0.72,315

which showed damped oscillations (Fig. 5a).316

4 Discussion317

The current magnitude and extent of coupled human and natural systems is unprecedented and there is an318

urgent need to better understand the consequences of accelerating human impacts on natural ecosystems and319

the services that they provide (Millennium Ecosystem Assessment 2005). In this study, we considered the320

reciprocal interactions between the natural dynamics of parasite populations and human intervention in the321

form of parasite control. The resulting dynamics were surprisingly complex, and demonstrate the potential for322

unexpected behaviour to result in policies that are well-meaning but have unintended and potentially perverse323

consequences for the health of ecosystems.324
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4.1 Implications for sea louse management325

In Pacific Canada, salmon farms must treat with chemotherapeutants when sea louse populations exceed three326

motile sea lice per fish, a guideline that is meant to protect juvenile wild salmon from sea louse infestations327

during a vulnerable period of their migration (British Columbia Ministry of Agriculture and Lands 2005;328

Brooks 2009). However, our model showed that strict threshold control of parasites according to this policy329

may lead to asynchronous or even chaotic dynamics on adjacent farms connected by dispersal. In practice,330

whether dynamics are truly chaotic may not matter; given the timeframe of observations and management de-331

cisions, periodic dynamics may be just as challenging to predict and control. Increasing connectivity between332

populations tended to increase the frequency of treatments, unless populations were synchronized. Frequent,333

uncoordinated treatments are a problem because they may hasten the evolution of sea louse resistance to current334

chemotherapeutants by allowing sea lice that are resistant to treatment to disperse and find mates on nearby,335

untreated farms (Aaen et al 2015). Further, asynchronous parasite dynamics among farms make it difficult336

to ensure low parasite abundance during the wild juvenile salmon migration. Paradoxically, because thresh-337

old treatments tend to decouple parasite populations when not coordinated, this well-intended policy could338

mean high sea louse abundances on salmon farms along the migration route, transmission to juvenile salmon339

(Krkošek et al 2006; Marty et al 2010) and adverse impacts on wild salmon populations (Krkošek et al 2011;340

Peacock et al 2013).341

The current treatment threshold policy does reduce louse abundance on farms, but more coordinated efforts342

to synchronize the parasite dynamics among farms may reduce reliance on chemotherapeutants. We found that343

at low levels of dispersal, the frequency of treatments increased with increasing connectivity, suggesting that344

dispersal among farms hinders control efforts. However, the frequency of treatments declined substantially345

when connectivity was high enough that parasite dynamics were synchronized between farms (Fig. 4a). In re-346

ality, dispersal of sea lice among farms is likely too low to synchronize parasite dynamics on adjacent farms by347

itself (Adams et al 2012; Foreman et al 2015, although shared environmental effects may help, see below). But348

for populations that were weakly coupled but had similar internal growth rates (e.g., have a similar number/age349
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of hosts and are exposed to similar environmental conditions), synchrony could be induced by either treating350

populations at the same time (even if one population had not reached the threshold) or coordinating stocking351

and harvest among adjacent farms so that they start with the same initial conditions. Such strategies may reduce352

the potential for the rescue effect in louse populations on adjacent farms and therefore lower the frequency of353

treatments, but require coordinated effort among multiple stakeholders (e.g., different levels of government and354

industry). Pest management plans that require this kind of cooperation have been recommended (e.g., Brooks355

2009; Peacock et al 2013), but are still not implemented in many areas, including Pacific Canada.356

4.2 Model limitations357

Our simple model did not consider exogenous forces on the population dynamics such as variability in growth358

rates due to shared environmental conditions. Such forces are likely, due to the effect of temperature and359

salinity on settlement success (Bricknell et al 2006), developmental rates (Groner et al 2014; Stien et al 2005)360

and survival (Johnson and Albright 1991a) of sea lice. Environmental conditions have been proposed to result361

in synchrony of local population dynamics over wide geographic scales (i.e., Moran effects; Moran 1953).362

Indeed, such an effect has been shown in a variety of systems (e.g., Cheal et al 2007; Grenfell et al 1998).363

Sea louse populations on farmed salmon show annual cycles (Marty et al 2010) that may be driven, in part, by364

changes in salinity and/or temperature (Johnson and Albright 1991b). The relative contributions of dispersal365

versus environment in driving synchrony of local populations is an ongoing question in ecology (Lande et al366

1999), and sea lice in networks of salmon farms may provide an ideal model system due to the extensive367

monitoring of louse populations and environmental conditions on salmon farms. These data have been used in368

statistical analyses aimed at management applications (e.g., Rogers et al 2013; Revie et al 2003), but could also369

be useful in answering questions of general interest in ecology.370
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4.3 Dynamics of coupled populations371

There has been considerable theoretical interest in how dispersal affects the dynamics of coupled populations372

(e.g., Dey et al 2014, 2015; Hastings et al 1993; Kendall and Fox 1998; Goldwyn and Hastings 2011; Franco373

and Ruis-Herrera 2015). Our analysis expands on previous theoretical work in several ways. First, we consid-374

ered control of populations when a threshold abundance was reached. Previous work has considered density375

dependence as part of the intrinsic dynamics of local populations (e.g., the Ricker model, Dey et al 2015;376

Hastings et al 1993) or periodic interventions such as feeding and harvest (e.g., Chau 2000). We consider a377

nonlinear reciprocal interaction between parasite populations and control intervention that had not yet been378

explored, although our approach shares similarities with work on Adaptive Limiter Control, discussed below379

(e.g., Sah et al 2013). Second, we analyzed a continuous-time population model that may be more represen-380

tative for some species, but were able to simplify our analysis by considering a discrete time return map for381

the population density in one patch at the time of treatment in the other. This dynamical-systems approach has382

gained attention recently in the context of peak to peak dynamics (Rinaldi et al 2001) and statistical methods383

for analyzing time series data (Sugihara et al 2012), but also has broader applications for simplifying analyses384

of continuous-time models for interacting populations (Schaffer 1985). Finally, we varied both the internal385

growth rates and connectivities in our populations to explore scenarios where growth rates of the two pop-386

ulations differed and connectivity was not necessarily reciprocal. Many studies of coupled populations only387

consider equal connectivity (although see Dey et al 2014; Franco and Ruis-Herrera 2015).388

Increasing connectivity between two populations subject to control was expected to increase the frequency389

of treatments, but the simple model we developed displayed much more complex dynamics. Our results were390

consistent with other population models that show high connectivity leads to synchrony of populations while391

lower levels of connectivity lead to out-of-phase dynamics (Dey et al 2015, 2014). If the two populations had392

different periods due to unequal growth rates, the dynamics underwent periodic or quasiperiodic cycles. When393

dynamics were periodic, added stochasticity was damped such that the difference between nearby trajectories394

remained small. Hastings (Hastings 1993) analyzed a coupled discrete logistic model and also found that the395
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addition of stochasticity resulted in chaos for parameter values corresponding to a four-point cycle in the396

deterministic model, but stable population densities for parameter values corresponding to a two-point cycle397

in the deterministic model. This result highlights the fine line between predictable deterministic dynamics and398

chaos (Hastings 1993).399

Previous work on threshold interventions in population dynamics have incorporated Adaptive Limiter Con-400

trol (ALC; e.g., Sah et al 2013). ALC involves a threshold intervention as in our model, but works to the oppo-401

site effect: where we consider control of a population when it goes above a threshold, ALC avoids population402

crashes by forcing immigration when the population drops below a threshold. Despite this difference, high403

thresholds for ALC tend to decouple subpopulations in a similar manner to our strict treatment threshold (Sah404

et al 2013). This decoupling has opposite effects on fluctuations of the metapopulation depending on the migra-405

tion rate between subpopulations. At high migration rates, subpopulations tend to be positively correlated, such406

that decoupling due to ALC is effective at increasing stability of the overall metapopulation. However, at low407

migration rates, subpopulations are more likely to be fluctuating out of phase and therefore ALC exacerbates408

this negative synchrony and decreases metapopulation stability. Sah et al (2013) found both theoretical and409

empirical evidence that these effects of ALC generally act to increase persistence of populations and metapop-410

ulations. Considering populations of pests and pathogens, persistence is not the desired outcome, providing an411

intriguing possibility that by decoupling populations, threshold effects may actually hinder eradication unless412

coordinated.413

4.4 Conclusion414

The complexity of coupled human and natural systems has gained attention as we recognize and attempt to415

understand our impact on natural ecosystems. For aquaculture, the interaction between farm management and416

natural pathogen dynamics, including dispersal among farms, may lead to unpredictable dynamics that under-417

mine our ability to maintain a healthy environment for both farmed and wild salmon. The successful manage-418

ment of disease in coastal ecosystems likely requires cooperation among different companies to synchronize419
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and stabilize pathogen dynamics. This example emphasizes that human-natural couplings cross the boundaries420

of policy and governance, and cooperation among stakeholders at different levels is required to achieve the421

common goal of healthy and sustainable ecosystems that can support adaptive human populations.422
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A Solution to ODE649

The solutions to Eq. (1) are:650

u(t) = fu(t, u0, v0)

= c1 exp
[
ruu + rvv + α

2
t

]
+ c2 exp

[
ruu + rvv − α

2
t

]
(A.1)

v(t) = fv(t, u0, v0)

= c1

(
rvv − ruu + α

2ruv

)
exp
[
ruu + rvv + α

2
t

]
+ c2

(
rvv − ruu − α

2ruv

)
exp
[
ruu + rvv − α

2
t

]
, (A.2)

where

c1 =
2ruvv0 − u0(rvv − ruu − α)

2α
(A.3)

c2 =
u0(α+ rvv − ruu)− 2ruvv0

2α
(A.4)

α =
√

(ruu − rvv)2 + 4ruvrvu. (A.5)

To get the time of the next treatment given the growth rates and initial conditions, we first rearrange Eqs (A.1-A.2). We denote651

the time of the next treatment of u and v as Tu and Tv , respectively. The equations for Tu and Tv are:652

2αNmax = exp

(
ruu + rvv

2
Tu

)[(
exp

(α
2
Tu
)
− exp

(
−α
2
Tu

))
(2ruvv0 + u0(ruu − rvv))

+u0 α

(
exp

(α
2
Tu
)
+ exp

(
−α
2
Tu

))]
(A.6)

4αruvNmax = exp

(
ruu + rvv

2
Tv

)
[(2ruvv0 (rvv − ruu) + 4u0 rvuruv)(

exp
(α
2
Tv
)
− exp

(
−α
2
Tv

))
+ 2ruvv0α

(
exp

(α
2
Tv
)
+ exp

(
−α
2
Tv

))]
. (A.7)

In Eqs (A.6-A.7), Tu and Tv cannot be solved for explicitly, so we used a numerical root finding algorithm to determine Tu and653

Tv .654

B Development of return map655

We used the dynamical system described in Eq. (2) to construct a return map that takes the population density u when v is treated656

and returns u the next time v is treated. We first consider the scenario where u is not treated in between consecutive treatments of657

v. We denote the time to the next treatment of v as Tv0. In this case, the resulting population density u at the next treatment of v is658

φ(u∗) = fu
(
Tv0, u

∗, Nmin
)
, (B.1)

where fu is the solutions to Eq. (1), given in Appendix A. Next, we consider the case where u is treated once in between treatments659

of v. This leads to a return map of the form,660

φ(u∗) = fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)
, (B.2)

where Tu0 is the time from the initial treatment of v to the treatment of u and Tv1 is the subsequent time from the treatment of u661

to the next treatment of v. These two cases can be combined into a single equation as,662
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φ(u∗) = H(T̃0) fu
(
Tv0, u

∗, Nmin
)︸ ︷︷ ︸

u not treated

+H(T̃1)
[
1−H(T̃0)

]
fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

. (B.3)

We can continue in this way to get the equation that includes the possibility for u being treated twice in between treatments of663

v,664

φ(u∗) = H(T̃0) fu
(
Tv0, u

∗, Nmin
)︸ ︷︷ ︸

u not treated

+H(T̃1)
[
1−H(T̃0)

]
fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

(B.4)

+H(T̃2) [1−H(T̃1)] fu
(
Tv2, Nmin, fv(Tu1, Nmin, fv(Tu0, u

∗, Nmin))
)︸ ︷︷ ︸

u treated twice

.

By induction, we arrive at the general equation for the return map, given in (3):665

φ(u∗) =
[
H(T̃0)

]
fu
(
Tv0, u

∗, Nmin

)
︸ ︷︷ ︸

m=0

+

[ ∞∑
m=1

H(T̃m)

m−1∏
n=0

[1−H(T̃n)]

]
fu
(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

. (B.5)

C Algorithm describing return map666

Because Eqs (A.6-A.7) can not be solved for Tu and Tv , model analysis by the return map involved simulating successive treatments667

until v was treated next. The recursive algorithm we applied to calculate the population density u when v was treated next is:668

function u_next(u, v, R)
evaluate T_u(u, v, R) = Tu Calculate the time to the next treatment of u
evaluate T_v(u, v, R) = Tv and the time to the next treatment of v
if (T_u>T_v) then If the time to treatment of v is less,

return f_u(T_v, u, v) return u when v is treated.
else Otherwise, u is treated.

v_new = f_v(T_u, u v) Calculate v when u is treated and
return u_next(Nmin, v_new, R) repeat function with new initial values.

end if
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Fig. 1 Three types of behaviour observed were observed for connected populations subject to control: (a) alternating treatments
of populations for equal growth rates of the two populations and connectivity less than the internal growth rates (rij/rii = 0.1),
(b) synchrony in the population dynamics between patches for equal growth rates of the two populations and connectivity greater
than the internal growth rates (rij/rii = 10) and (c) apparently chaotic dynamics where the treatment timing was unpredictable
for unequal growth rates of the two populations. Initial conditions were u0 = 2.7 (black line) and v0 = Nmin (grey line). The
upper and lower horizontal dashed lines indicate the treatment threshold and abundance of parasite immediately after treatment,
respectively.
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Fig. 2 Return maps for the population density u at re-treatment of v (φ(u∗)) over increasing initial population density, u∗. (a)
For low connectivity, there was a stable equilibrium in (Nmin, Nmax) (black point) and unstable equilibria at Nmin and Nmax (white
points). (b) When connectivity was higher than internal growth, there was an unstable equilibrium in (Nmin, Nmax) and stable
equilibria at Nmin and Nmax, and the two populations synchronized. (c) For unequal connectivity, u was treated m or m+ 1 times
before v was treated, yielding a discontinuity in the return map that resulted in cycles. The relative growth rates in each panel
correspond to those in Fig. 1. The grey lines show 30 iterations of the return map (i.e., cobwebbing) from u∗ = 2.7, ending at the
grey point.).
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Fig. 3 Long-term values of φ(u∗) and the Lyapunov exponents λ under four different scenarios for changing connectivity (a-d;
scenarios A-D in Table 1). In calculating long-term values, for each value of connectivity we plotted the last 500 of 2000 iterations
starting at u∗0 = 2.7 (see Fig. S1 for results with other starting values). Red and blue points in (c) indicate the parameter values for
stochastic simulations in Fig. 5. Online version in colour.
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Fig. 4 The frequency of treatments over increasing connectivity. (a) In scenario A, the frequency of treatments drops when the
connectivity exceeds internal growth rates (dotted line) and populations become synchronized (Table 2), but rises again as connec-
tivity increases further due to increasing total growth rate. (b) In scenario D, the frequency of treatments declines over the region of
phase locking (see Fig. 3d) as the stable point approaches Nmin, reducing the impact of the rescue-effect. The minimum frequency
of treatments occurs where populations are synchronized at rvu + rvv = ruv + ruu (i.e, rvu = 0.51, dotted line; Table 2).
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Fig. 5 The effect of stochasticity differed with small changes in parameters. The difference between two trajectories initially
separated by ε0 remained small for parameters under which the deterministic model showed periodic dynamics (a), but increased
for parameters under which the deterministic model showed quasiperiodic dynamics (c). The corresponding deterministic return
maps of the fiducial trajectory for scenario B with rvu = 0.72 (b) and rvu = 0.71 (d) (see Fig. 3b). Online version in colour.


