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Abstract

This thesis is devoted to several problems in Random Matrix Theory and Convex

Geometry. Its content is based on four papers.

In the first part, we establish an upper estimate for the smallest singular value sn(A)

of a square n × n random matrix A with i.i.d. zero mean and unit variance entries.

The smallest singular value controls the invertibility of the matrix and estimating it is

a delicate task. Under additional assumption on the finiteness of the fourth moment

of entries, Rudelson and Vershynin showed that sn(A) is of order 1/
√
n. We remove

the assumption on the boundedness of the fourth moment, and show an upper bound

requiring only two finite moments.

We also study geometric properties of random polytopes generated by rectangular

random matrices with entries that are independent symmetric random variables with

unit variance satisfying small ball probability condition. In particular, we obtain sharp

asymptotic bounds on volume and mean width of such polytopes and their polars. One

of the main results shows that with high probability such random polytope contains an

intersection of two `p balls.

The second part of the thesis is concerned with two geometric problems: extensions

of the classical Steiner formula and a reverse isoperimetric problem. The classical

Steiner formula expresses the volume of the parallel set of a convex body K at distance

t as a polynomial in t. Many geometric quantities have found their analogues in Lp

Brunn-Minkowski theory which was initiated by Lutwak, but Lp extension of Steiner

formula was missing. We establish a tube formula for the Lp affine surface area of the

Minkowski outer parallel body for any real parameter p, which provides an extension of

the classical Steiner formula to Lp Brunn Minkowki theory. Moreover, a local version

of the Lp Steiner formula is also proved, leading to new types of Lp curvature measures.

We address a problem of reversing classical isoperimetric inequality. In particular,

we consider convex λ-concave bodies in Rn (for some λ > 0), that is, bodies for which

at each point at the boundary there is locally an inner supporting ball of radius 1/λ.

For such class of bodies we obtain a reverse isoperimetric inequality. We also show that

the equality is attained for a sausage body, that is for Minkowski sum of a line segment

(or a point) and a ball of radius 1/λ.
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Preface

This thesis is based on four published papers: two of them consider problems in

Random Matrix Theory and other two answer questions in Convex Geometry.

In particular, Chapter 2 and 3 consist of two papers: K. Tatarko, “An upper bound

on the smallest singular value of a square random matrix” which was published in

Journal of Complexity 48 (2018), pp. 119–128 and O. Guédon, A. E. Litvak and K.

Tatarko, “Random polytopes obtained by matrices with heavy tailed entries” which

will appear in Communications in Contemporary Mathematics.

Chapter 4 is a joint work with E. Werner “A Steiner formula in the Lp Brunn

Minkowski theory” which was published in Advances in Mathematics 355 (2019), 106772.

The joint work with R. Chernov and K. Drach constitutes Chapter 5 and was pub-

lished under the title “A sausage body is a unique solution for a reverse isoperimetric

problem” in Advances in Mathematics 353 (2019), pp. 431–445.
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Chapter 1

Introduction

In this thesis, we consider several problems in Random Matrix Theory and Convex

Geometry.

The central objects of study in Random Matrix Theory are random matrices, that

is matrix-valued random variables on the set of all matrices. There are many classical

asymptotic results (limit laws) when the dimension of matrices grows to infinity which

are concerned with behavior of a spectrum of such matrices. For instance, among others

are celebrated Wigner’s semicircle law, the Marchenko-Pastur law, Tracy-Widom law,

etc. However, the limiting behavior may be of little help for many applications in

statistics, computer science, geometric functional analysis that deal with large but fixed

dimensions. Questions involving estimates for a high fixed dimensions arise in the non-

limit theory (also called non-asymptotic) of random matrices and are concerned with

quantitative estimates of some spectral characteristics such as eigenvalues or singular

values holding with large probability of success. Many tools used in this theory, such

as covering numbers, volumetric bounds, and random projections, are of a geometric

nature, which provides a bridge between random matrix theory and geometric functional

analysis.

The Brunn-Minkowski theory is at the core of the high-dimensional geometry of

convex bodies (compact, convex sets with non-empty interior) that studies properties
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of convex bodies and geometric invariants associated with them. One of the well-known

questions in the theory is isoperimetric problem which long history began in ancient

Greece and since then seen tremendous developments and various generalizations. The

classical isoperimetric inequality asserts that among all domains with a given surface

area, the Euclidean ball has the largest possible volume. In contrast with the classical

version, the reverse isoperimetric problem concerns with finding a body of least volume

for a given constraint, for example, the surface area. We consider such a problem in

Chapter 5.

The classical Steiner formula is one of the most influential results of the Brunn-

Minkowski theory. The coefficients in it define so-called intrinsic volumes or quermass-

integrals which carry a lot of information about the geometry of convex bodies. For

example, volume and surface area are some of them. The notion of affine surface area

has been a rich source of fruitful investigations and found its applications in different ar-

eas of mathematics. Lp extensions of affine surface area in Lp Brunn-Minkowski theory

is not of less importance. They contributed to results on valuations, the affine Plateau

problem, approximation of convex bodies by polytopes, solutions of partial differential

equations, and many others. In Chapter 4 we present an Lp extension of a classical

Steiner formula.

In the following subsections, we introduce main topics of this thesis and discuss

them in more details.

1.1 Common Notation and Preliminaries

By e1, . . . , en we denote the canonical basis of Rn equipped with the canonical inner

product 〈·, ·〉 . For 1 ≤ p ≤ ∞, the `np -norm is defined for any x ∈ Rn by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p <∞ and ‖x‖∞ = sup
i=1,...,n

|xi|.
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As usual, `np = (Rn, ‖ ·‖p), and the unit ball of `np is denoted by Bn
p . The unit sphere

of `n2 is denoted by Sn−1. The Euclidean ball in Rn with radius r and center at x ∈ Rn

is denoted by Bn
2 (x, r). We also use Bn

2 (r) := Bn
2 (0, r) for the Euclidean ball in Rn of

radius r and center at the origin and Bn
2 := Bn

2 (0, 1) for the unit Euclidean ball in Rn.

Given a real number a, we denote by bac the largest integer not exceeding a and by

dae the smallest integer larger than or equal to a. Given a finite set E we denote its

cardinality by |E|. We also use voln(K) for the volume of a body K ⊂ Rn (and, more

generally, for the n-dimensional Lebesgue measure of a measurable subset of Rn).

For a given probability space (Ω,A,P), we denote by P(·) and E the probability

and the expectation, respectively. A random variable ξ is a measurable function from

a probability space (Ω,A,P) to R, i.e., ξ : Ω → R. The independent and identically

distributed random variables are usually abbreviated as i.i.d random variables.

We will also need the notion of the so-called Lévy concentration function Q(ξ, ·) of

a (real) random variable ξ which is defined on (0,∞) as

Q(ξ, t) := sup
λ∈R

P
(
|ξ − λ| ≤ t

)
.

In other words, the Lévy concentration function measures how likely a random variable

ξ enters a small neighborhood. Note that for any centered random variable ξ (i.e.,

Eξ = 0) with unit variance, there exist u, v ∈ (0, 1) such that

Q(ξ, u) ≤ v. (1.1)

A convex body K ⊂ Rn is compact, convex set with non-empty interior.

Given a set L ⊂ Rn, a convex body K ⊂ Rn, and ε > 0 we say that a subset N ⊂ Rn

is an ε-net of L with respect to K if

N ⊂ L ⊂
⋃
x∈N

(x+ εK).
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The cardinality of the smallest ε-net of L with respect to K we denote by N(L, εK).

The support function hK(u) of a convex body K is defined as

hK(u) = sup
x∈K
〈x, u〉 for u ∈ Rn,

and represents the distance from the origin to the support hyperplane Hu of K orthog-

onal to u if origin is inside K (see Figure 1.1).

Figure 1.1: The support function hk(u).

The Minkowski functional || · ||K of K is defined by

||x||K = inf{λ ≥ 0 : x ∈ λK} for x ∈ Rn.

The polar of K is

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for every x ∈ K} .

Note that hK(·) = ‖ · ‖K◦ when origin is contained in K (see [132, p. 53]).

4



1.2 The smallest singular value

Let n ≤ N and A be N × n real-valued matrix. Then singular values sj(A) of A are

arranged in the non-increasing order s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0 and defined as

square roots of eigenvalues of the symmetric n × n positive-semidefinite matrix A∗A

where A∗ is the adjoint matrix. The matrix A acts as a linear operator from `n2 to `N2 .

Its operator norm, or spectral norm, is defined as

‖A‖ = ‖A : `n2 → `N2 ‖ = sup
x∈Sn−1

‖Ax‖2.

In particular, the largest and the smallest singular values s1(A) and sn(A) can be

expressed in terms of the operator norm of A as

s1(A) = ‖A‖ and sn(A) =
1

‖A−1‖
,

where A−1 is the inverse from the image of A (if rankA < n, then sn = 0).

In Chapter 2 we restrict our attention to symmetric n×n matrices with real entries.

The extremal singular values have been attracting the attention of scientists over many

years. A lot is known about the largest singular value, but the smallest singular value

is more difficult to analyze. From now on, we focus on the behavior of the smallest

singular value.

In 1950s, von Neumann and his collaborators conjectured [111] that the smallest

singular value of an n×n random matrix is of order 1/
√
n with probability close to one.

For the case of Gaussian matrices (with independent identically distributed standard

normal entries), the conjecture was proven by Edelman [48] and Szarek [143]. Edelman

also obtained the limiting distribution of the smallest singular value of a Gaussian

matrix. Afterwards, various bounds for the smallest singular value of square matrices

have been found under different assumptions. We refer to [39, 85, 90, 120, 128, 147] and

references therein. For estimates on the smallest singular value of rectangular matrices,
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see [85, 129, 149].

Recall that a random variable ξ is called subgaussian if there exists a number K > 0

such that P (|ξ| > t) ≤ 2exp(−t2/(2K2)) for all t > 0. Classical examples of subgaussian

random variables are Bernoulli, Gaussian and all bounded random variables. Rudelson

and Vershynin in [127, 128] confirmed von Neumann’s conjecture for the case of square

subgaussian matrices. Although in the same papers the authors confirmed conjecture

for matrices under fourth moment assumptions on entries, the statements themselves

are much weaker than in the subgaussian case. In [128], Rudelson and Vershynin

established a lower estimate of the smallest singular value of an n× n random matrix

A with centered subgaussian entries. Namely, they proved that for every t > 0

P
(
sn(A) ≥ tn−

1
2

)
≥ 1− Ct− un

for some constants C > 0 and u ∈ (0, 1). The corresponding upper estimate in [127]

says that for a given t ≥ 2 there are constants C > 0 and u ∈ (0, 1) depending only on

the subgaussian moment of entries such that

P
(
sn(A) ≤ tn−

1
2

)
≥ 1− C log t

t
− un.

Rebrova and Tikhomirov [120] have found a way to bound the smallest singular value

from below under only the second moment assumption on the entries of the matrix.

They used a special net refinement on the image of the Euclidean unit ball under action

of A. Complementing this line of research, I proved in [144] an upper bound on the

smallest singular value sn(A) for a square matrix A with the same assumptions as in

[120], this way relaxing assumptions in [127]. More precisely,

Theorem 1.1 (Theorem 1.1 in [144]) Let A = (aij) be an n× n matrix whose en-

tries are i.i.d. random variables with Eaij = 0 and Ea2
ij = 1. Then there exist an

6



absolute constant C > 0 such that

P
(
sn(A) ≤ 1

t2
n−

1
2

)
≥ 1− Ct− C√

n
, ∀t > 0.

Note that together with a lower estimate for sn(A), this gives a complete answer to

the long-standing von Neumann conjecture for distributions with no assumptions on

moments higher than 2.

1.3 Random polytopes

Let n ≤ N . We consider a rectangular N × n matrix A = (aij) which entries are

independent symmetric random variables with Eaij = 0 and Ea2
ij = 1 such that in each

row the entries are identically distributed satisfying small ball probability estimate.

That is, there exist numbers u, v ∈ (0, 1) such that

sup
λ∈R

P (|aij − λ| ≤ u) ≤ v for all i, j. (1.2)

In Chapter 3 we study the geometry of random polytopes that are determined by A.

The random polytope KN = A∗BN
1 where BN

1 is a cross-polytope, is the absolute convex

hull of N rows of A. Such random polytopes have been widely studied, for example, in

the Gaussian [61, 101], Bernoulli [60, 85], and heavy-tailed [80] cases. For instance, in

[85] it was shown that a random polytope generated by a subgaussian matrix contains an

intersection of two `p balls, while in [62, 78] the inclusion of a multiple of the Euclidean

unit ball into a random polytope generated by a Gaussian matrix was found. Hence,

the natural question is whether we can find a set associated with row’s distribution

such that it is contained in a random polytope with high probability.

Yet another motivation is that the theory of compressed sensing studies recovering

of sparse vectors from a series of incomplete measurements. It appeared that such
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problems of recovering sparse vectors are closely connected to results about polytope

inclusions as in [78, 80, 85]. It was shown that such quotient properties (inclusions)

are responsible for ”robustness” in `1-minimizations — certain efficient methods in

compressed sensing. Our goal is to provide such inclusions under weaker moment as-

sumptions on the distribution of entries than Gaussian or subgaussian.

Together with Guédon and Litvak in [70] we showed that KN contains a large

regular body with high probability under assumptions only on the boundedness of

second moments of entries.

Theorem 1.2 (Theorem 4.1 in [70]) There exist positive constants b,M depending

only on u and v, and an absolute constant c > 0 such that the following holds. Let

N ≥ Mn and assume that the entries of an N × n random matrix A are independent

symmetric random variables with unit variances satisfying condition (1.2) and such that

in each row the entries are i.i.d. Then the inclusion

A∗BN
1 ⊃

1

b

(
Bn
∞ ∩

√
ln
N

n
Bn

2

)

holds with probability at least 1− exp(−cn).

In the same paper, we also obtained sharp asymptotic bounds for the volumes and the

mean widths of KN and its polar K◦N .

In order to show Theorem 1.2, we need to avoid bounding operator norm of A

since our distribution assumptions on the entries of A do not guarantee a good upper

bound for it. Indeed, as was shown in [138] (see [88] for quantitative estimates), for

operator norm to be bounded one needs to have bounded fourth moment. To this end,

we extend the net construction of Rebrova and Tikhomirov in [120]. Namely, we work

with rectangular matrices instead of square matrices and find a new net refinement

for the image of a given convex body under action of A (not only the image of the

Euclidean unit ball). We would like to mention that our paper [70] led to further

investigations, see [68].
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1.4 Steiner formula

In Chapters 4 and 5 we work with convex bodies in Rn. For a convex body K ⊂ Rn and

parameter t > 0, we define the outer parallel body K+tBn
2 = {x+ty : x ∈ K, y ∈ Bn

2 },

where Bn
2 is unit n-dimensional Euclidean ball and “+” denotes the Minkowski addition.

The Steiner formula gives an expansion of volume voln(K + tBn
2 ) as a polynomial of

Figure 1.2: An outer parallel body K + tB2
2 .

degree at most n in the parameter t :

voln(K + tBn
2 ) =

n∑
i=0

(
n

i

)
Wi(K)ti, (1.3)

where coefficients Wi(K) are called quermassintegrals, important quantities in Brunn-

Minkowski theory, which include the volume, the surface area, and the mean width (see

Section 4.3.1 for more details). Different generalizations of the Steiner formula were

obtained in a number of papers, for example, [159] (smooth manifolds), [50] (sets of

positive reach), [116] (Minkowski valuations) and more. We refer readers to [66, 132]

for detailed overview of the topic.

Firey in [51] and later Lutwak in [96] initiated an Lp extension of the classical
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Brunn-Minkowski theory where many quantities from the classical theory found their

Lp analogues. In particular, Lp affine surface area, which is an Lp extension of classical

affine surface area, became the focus of investigations of many mathematicians in the

areas of convex and differential geometry. It is defined as

asp(K) =

∫
∂K

Hn−1(x)
p

n+p

〈x, ν(x)〉
n(p−1)
n+p

dHn−1(x),

where ∂K denotes the boundary of K, ν(x) is the outer unit normal vector at x ∈ ∂K,

Hn−1(x) is the Gauss curvature at x and Hn−1 is the standard surface area measure

on ∂K (see Section 4.3.2 for more details). In the case when p = 0, as0(K) is just

the volume of the body K, and when p = ∞, we get the volume of a polar body of

K. In both cases, Steiner formulas are known. Thus, the question is whether we can

find all Steiner formulas “in between” of these special cases of p, thus obtaining an Lp

extension of Steiner formula via Lp affine surface area. The content of Chapter 4 comes

from my work with Werner [145] which provides such generalization.

We recall that the curvature function fK(u) : Sn−1 → R+ is the reciprocal of the

Gauss curvature Hn−1(x) at the point x ∈ ∂K that has u as an outer normal. The

body K is of class C2
+ if K is of class C2 and the Gauss curvature is nonzero.

Theorem 1.3 (Theorem A in [145]) Let K be a convex body in Rn that is C2
+ and

let t ∈ R be such that 0 ≤ t < min
u∈Sn−1

hK(u). For all p ∈ R, p 6= −n,

asp(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

( n(1−p)
n+p

k −m

)
Wm,k t

k

]
,

where

Wm,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u)

are called Lp Steiner coefficients.

The coefficients Amp (see (4.19)) represent a sum of mixed products of the elementary
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symmetric functions of the principal curvatures Hi = Hi

(
ξ̄K(u)

)
(see Section 4.3.1),

with corresponding multinomial coefficients. To our best knowledge, the coefficients in

this formula have not appeared before in the literature.

1.5 Isoperimetry

As already mentioned above, the classical isoperimetric inequality states that if K is

an arbitrary domain (connected, open set) in Rn with volume voln(K) and surface area

voln−1(∂K), then

voln(K) 6
voln−1(∂K)

n
n−1

n
n
n−1 voln(Bn

2 )
1

n−1

. (1.4)

It is known that equality in (1.4) holds if and only if K is a ball. In other words, the

classical isoperimetric inequality asserts that among all domains of given surface area,

the ball has the largest possible volume. It also can be restated in the dual way: among

all domains of given volume, the ball has the least surface area.

Although convex bodies of a given volume may have arbitrarily large surface area

if they are very flat, classical inequalities admit reverse forms. Good examples are the

reverse Santalo [27] and the reverse Brunn-Minkowski [105] inequalities. In [5, 6] Ball

showed that classical isoperimetric inequality can be reversed. In particular, he proved

that for any convex body in Rn there is always an affine transformation such that even

though the body originally might be flat, volume of its affine image is no smaller than

that of the standard simplex under the surface area constraint.

Instead of considering affine equivalence classes of convex bodies, another natural

approach towards reversing the classical isoperimetric inequality is by assuming some

curvature constraints on the boundary. This idea was used in [75], where the authors

solved an extremal problem for plane curves of not big length and with bounded cur-

vature k ≤ 1. Various results of the same flavour were obtained over the past years

(see [20, 55, 114, 162] and references therein), but most of them regard two- or three-

11



dimensional cases.

With Chernov and Drach in [38], we considered a reverse isoperimetric problem in

the class of λ-concave bodies. For a given λ > 0, a convex body K ⊂ Rn is called λ-

concave if each of its boundary points supports a tangent ball of radius 1/λ that locally

lies inside the body. Equivalently, for smooth bodies this condition can be reformulated

as follows: all principal curvatures ki(p) are non-negative and uniformly bounded from

above by λ, i.e. 0 ≤ ki ≤ λ for all i ∈ {0, . . . , n− 1} and p ∈ ∂K.

We obtained a family of reverse quermassintegral inequalities which contains the

reverse isoperimetric inequality for λ-concave bodies as a particular case.

Theorem 1.4 (Theorem A in [38]) Let K ⊂ Rn be a convex body. If K is λ-concave

for some λ > 0, then

(k − j)Wi(K)

λi
+ (i− k)

Wj(K)

λj
+ (j − i)Wk(K)

λk
> 0

for every triple (i, j, k) with 0 6 i < j < k 6 n. Moreover, the equality holds if and

only if K is a λ-sausage body (the convex hull of two balls of radius 1/λ).

Picking the appropriate indices above, we get

Corollary 1.5 (Theorem B in [38]) Let K ⊂ Rn be a convex body. If K is λ-

concave for some λ > 0, then

voln(K) >
voln−1(∂K)

(n− 1)λ
− voln(Bn

2 )

(n− 1)λn
.

Moreover, the equality holds if and only if K is a λ-sausage body.

12



Chapter 2

An Upper Bound on the Smallest

Singular Value of a Square Random

Matrix 1

2.1 Introduction

The extremal singular values have been attracting the attention of scientists in different

disciplines such as mathematical physics or geometric functional analysis. In particular,

they play an important role in numerical analysis as the condition number, which is

the ratio of the largest to the smallest singular value, is a measure for the worst-case

loss of precision in a computational problem. Much is known about the behavior of the

largest singular value and we refer the reader to [4, 165]. The study of the behavior of

the smallest singular value goes back to von Neumann and his collaborators concerning

numerical inversion of large matrices, where they conjectured (see [110, 111]) that the

smallest singular value of an n × n matrix A is of order n−
1
2 with probability close to

one. Estimates of similar type for the case of Gaussian matrices (i.e., matrices with i.i.d.

1A version of this chapter was published: K. Tatarko “An upper bound on the smallest singular
value of a square random matrix”, J. Complexity 48 (2018), pp. 119-128.
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standard normal entries) were obtained by Edelman in [48] and Szarek in [139]. For

estimates on extremal singular values which were acquired while studying the problem of

the approximation of covariance matrices, we refer to [1, 69, 107, 150]. Various bounds

for the smallest singular value have been obtained under rather weak assumptions on

the rows of the matrix in [79, 113, 163, 164]. For lower bounds on the smallest singular

value of random matrices with independent but not identically distributed entries see

a recent result by Cook [39].

Rudelson and Vershynin in [127, 128, 129] studied the behavior of the smallest

singular value of matrices with i.i.d. subgaussian entries. They showed (see [127, 128])

that the smallest singular value of a square random matrix A with i.i.d. subgaussian

entries is of order n−
1
2 . A lower bound for rectangular subgaussian matrices was obtained

in [129]. A recent result of Wei (see [153]) provides upper bounds on intermediate

singular values of rectangular matrices with subgaussian entries. The corresponding

lower bounds were obtained in [125].

Recently, in [120] a new technique was developed, which allowed Rebrova and

Tikhomirov to prove a lower bound for sn(A) of square matrices of order n−
1
2 un-

der the assumption that the Lévy concentration function of entries of A is bounded.

Namely, they showed the small ball probability estimate

∀ε > 0 : P
(
sn(A) ≤ εn−

1
2

)
≤ Cε+ un,

where C > 0 and u ∈ (0, 1) depend only on the law of a11. Notice that any random

variable ξ with Eξ = 0 and Eξ2 = 1 has a bounded Lévy concentration function,

therefore the above statement is valid for matrices with assumptions only on the second

moment of entries.

The goal of this chapter is to show that the upper bound on the smallest singu-

lar value holds for square matrices with heavy-tailed entries. We prove the following

theorem.
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Theorem 2.1 Let A = (aij) be an n × n matrix whose entries are i.i.d. random

variables with Eaij = 0 and Ea2
ij = 1. Then there exists an absolute constant C > 0

such that for every ε > 0

P
(
sn(A) >

1

ε2
n−

1
2

)
≤ Cε+

C√
n
.

We expect that the dependence on ε can be improved to ε−1, but our proof gives

only ε−2.

We now briefly describe the ideas of proof of Theorem 2.1.

To estimate the smallest singular value of a random matrix A we will use the fol-

lowing equivalence, which holds for every λ ≥ 0,

sn(A) ≤ λ ⇐⇒ ∃x ∈ Sn−1 : ‖Ax‖2 ≤ λ.

We will show that there exists x ∈ Rn such that ‖x‖2 ≤ τ and ‖A−1x‖2 ≥ η
√
n for

some τ, η > 0, which implies sn(A) ≤ τ
η
√
n
. Let us describe the main difficulty in our

proof. It is well-known that A−1x behaves differently depending on the structure of x.

We follow [85, 86] and roughly speaking split the unit sphere into two parts consisting

of vectors of small dimensions and vectors with bounded `∞ norm. To deal with vectors

of the second type, we use ideas introduced in [128], namely we use the essential least

common denominator (see the definition below). Denote by B the transpose of the first

n − 2 columns of matrix A. To show that the essential least common denominator of

vectors in the null space of a matrix B has exponential decay with high probability,

in [127] the authors used a standard ε-net argument, namely, for a given ε-net N on a

subset S ⊂ Sn−1 one has

inf
y∈S
‖By‖2 ≥ inf

y′∈N

(
‖By′‖2 − ‖B‖‖y − y′‖2

)
.

This procedure relies on an upper bound for the operator norm ‖B‖, which is of order n
1
2

15



with exponentially high probability under the subgaussian moment assumption on the

entries of B. Moreover, as can be seen in [59, 165], one has that ‖B‖ ≤ C
√
n under the

assumption of bounded fourth moments (see [81, 82] for independent but not identically

distributed entries). However, in the settings of Theorem 2.1, it is not guaranteed that

the operator norm ‖B‖ has a good upper bound. Moreover, if the fourth moment

is unbounded, it is known that ‖B‖√
n
→ ∞

(
[4, 138, 165], see also [88] for quantitative

estimates
)
. To overcome this difficulty, we use a recent technique developed by Rebrova

and Tikhomirov in [120]. Starting with a standard ε-net on S ⊂ Sn−1 we construct a

new net on S which is a (Cε
√
n)-net with respect to the pseudometric ‖B(x−y)‖2 with

probability close to one. This allows us to circumvent the use of the operator norm

‖B‖.

2.2 Preliminaries

Recall that for a given metric space X, an ε-net N in X is a subset of X such that any

point of X is within distance at most ε from points of N .

A system (Ek, Fk)
n
k=1 of vectors (Ek)

n
k=1 and (Fk)

n
k=1 in an n-dimensional Hilbert

space H is called a biorthogonal system if 〈Ek, Fs〉 = δk,s for all k, s ∈ {1, . . . , n},

where δk,s = 0 for k 6= s and δk,s = 1 for k = s. The system is called complete if it

spans the entire space H. The next proposition contains some well-known properties of

biorthogonal systems (see [127], Proposition 2.1).

Proposition 2.2

(i) Let (Ek)
n
k=1 be a linearly independent system of vectors in an n-dimensional

Hilbert space H. Then there exist unique vectors (Fk)
n
k=1 such that (Ek, Fk)

n
k=1

is a complete biorthogonal system in H.
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(ii) If (Ek, Fk)
n
k=1 is a complete biorthogonal system in H, then

‖Fk‖2 =
1

dist(Ek, Hk)
for k = 1, . . . , n,

where Hk = span(Ei)i6=k.

(iii) If A is an n×n invertible matrix, then
(
Aek, (A

−1)
t
ek

)n
k=1

is a complete biorthog-

onal system.

Any random variable ξ with Eξ = 0 and Eξ2 = 1 satisfies the condition

L(ξ, v) ≤ u

for some constants u ∈ (0, 1) and v > 0 determined by the law of ξ. Therefore, we

don’t add this constraint to the formulation of our main result Theorem 2.1, but state

it only in terms of finiteness of the second moment of entries.

In order to find an upper bound for the smallest singular value sn(A), we will

consider a partition of the sphere into sets of compressible and incompressible vectors.

Such an idea to split the sphere into two parts and to use an estimate involving the

norm of a matrix, in order to bound the smallest singular value first appeared in [85]

and was formalized later (see [128]) in the following definition.

Definition 2.3 Let δ, ρ ∈ (0, 1). A vector x ∈ Rn is called (δn)-sparse if

|supp(x)| < δn.

A vector x ∈ Sn−1 is called compressible if x is within Euclidean distance ρ from the

set of all δn-sparse vectors. Otherwise, a vector x ∈ Sn−1 is called incompressible.

The sets of compressible and incompressible vectors will be denoted by

Comp = Compn(δ, ρ) and Incomp = Incompn(δ, ρ),
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respectively.

Since the set of compressible vectors is essentially of the smaller dimension, the

following simple result shows that one can find an ε-net on the set of compressible

vectors Comp with small cardinality.

Lemma 2.4 For any δ, ρ ∈ (0, 1] a set of compressible unit vectors Compn(δ, ρ) admits

a (2ρ)-net N of Compn(δ, ρ) of cardinality

|N | ≤
(e
δ

)δn (5

ρ

)δn
.

Proof. By definition, for every x ∈ Compn(δ, ρ) there exist x′ ∈ Sn−1 such that

|supp(x′)| ≤ δn and ‖x − x′‖2 ≤ ρ. Thus, to find a (2ρ)-net on a set of compress-

ible vectors, it is enough to find a Euclidean ρ-net on the set of sparse vectors. For

a fixed coordinate subspace of dimension δn, the standard volumetric estimate gives a

ρ-net of a cardinality at most (1+ 2
ρ
)δn. Applying a union bound over all coordinate sub-

spaces, we have that the set of compressible vectors Compn(δ, ρ) admits an Euclidean

(2ρ)-net of cardinality

|N | ≤
(
n

δn

)(
1 +

2

ρ

)δn
≤
(e
δ

)δn(5

ρ

)δn
.

�

We will need a couple of results from [120]. The following theorem allows us to

refine a given ε-net N on a subset of the unit sphere to an
(
εC
δ

√
n
)
-net Ñ on the same

subset of the sphere with respect to pseudometric ‖A(x− y)‖2 with high probability.

Theorem 2.5 ([120], Theorem A?) Let δ ∈ (0, 1
4
], ε ∈ (0, 1

2
], n ≥ 1

4δ
, S ⊂ Sn−1 be a

subset of the sphere, and N ⊂ S be an ε-net on S in the Euclidean metric. Then there

exists a deterministic subset Ñ ⊂ S with

|Ñ | ≤ exp

(
13δn ln

2e

δ

)
|N |
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such that for an n×n random matrix A with i.i.d. zero mean and unit variance entries,

with probability at least 1− 4exp(− δn
8

), the set Ñ is an
(
εC
δ

√
n
)
-net on S with respect

to the pseudometric d(x, y) = ‖A(x− y)‖2, where x, y ∈ Sn−1.

Remark 2.6 One can check that Theorem 2.5 holds for a (n− 2)× n matrix A.

The next lemma gives a strong probability estimate for a fixed unit vector.

Lemma 2.7 ([120], Lemma 4.9) Let ξ be a random variable with L(ξ, ṽ) ≤ ũ for

some ṽ > 0 and ũ ∈ (0, 1). Then there are v > 0 and u ∈ (0, 1) depending only on ũ, ṽ

such that for an (n− 2)× n random matrix A with i.i.d. entries equidistributed with ξ

and for any y ∈ Sn−1 one has

P
(
‖Ay‖2 ≤ v

√
n
)
≤ un−2.

In order to obtain the small ball probability estimate for a random sum, we need

the notion of the essential least common denominator. It measures the closeness of the

scaled vector x ∈ Rn to Zn. This notion was introduced in [128, 129] (see also [146])

and for more detailed description see [126].

Definition 2.8 For parameters α > 0 and r ∈ (0, 1), the essential least common de-

nominator of a vector x ∈ Rn is defined as

LCDα,r(x) = inf {t > 0 : dist(tx,Zn) < min (r‖tx‖2, α)} .

Then the essential least common denominator of a subspace H ⊂ Rn is defined as

LCDα,r(H) = inf {LCDα,r(x) : x ∈ H, ‖x‖2 = 1} .

Later we will use this definition with a small constant r, and a small multiple α of
√
n.

The next result gives a small ball probability estimate of a random sum. It is

essentially Theorem 3.4 in [127].
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Theorem 2.9 Let u ∈ (0, 1). Let ξ1, . . . , ξn be i.i.d. zero mean random variables such

that L(ξ1, 1) ≤ u and x = (x1, . . . , xn) ∈ Sn−1. Then, for every α > 0, r ∈ (0, 1) and

for every ε > 0 one has

L

(
n∑
i=1

xiξi, ε

)
≤ C

r
√

1− u

(
ε+

1

LCDα,r(x)

)
+ Ce−2α2(1−u),

where C > 0 is an absolute constant.

In words, the theorem provides useful upper bounds on the small ball probability

which depend on the additive structure of the coefficients x1, . . . , xn. The less structure

the coefficients carry, the more spread the distribution of a random sum is, and the less

the small ball probability is.

2.3 Proof of the Theorem 2.1

To prove the boundedness of the smallest singular value of the type

sn(A) ≤ Ln−
1
2 ,

where L > 0 is an absolute constant, it is enough to show that there exists x ∈ Rn such

that ‖x‖2 ≤ τ and ‖A−1x‖2 ≥ ηn−
1
2 for some τ, η > 0.

We follow the ideas of Rudelson and Vershynin in [127]. Consider the columns

Xi = Aei of a matrix A and the rows X̃i = (A−1)
t
ei of an inverse matrix A−1. Let Hi

denote the span of all column vectors except the i-th, i.e.

Hi = span (X1, . . . , Xi−1, Xi+1, . . . , Xn) ,

and Hi,j denote the span of all column vectors except the i-th and j-th (i < j), i.e.

Hi,j = span (X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn) .
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Let P1 denote the orthogonal projection in Rn onto the subspace H1 and let

x = X1 − P1X1.

Then x is orthogonal to H1. Since our matrix A is invertible and dim kerP1 = 1, then

we also have that ‖x‖2 = dist (X1, H1) .

Note that by Markov’s inequality, we have

P (‖x‖2 > τ) ≤ E‖x‖2
2

τ 2
, τ > 0. (2.1)

Let fn be a normal vector of the (n− 1)-dimensional subspace H1. Then, the vector

x can be represented as x = 〈X1, fn〉 fn, and the norm of x is

‖x‖2 = |〈X1, fn〉| =

∣∣∣∣∣
n∑
i=1

ai1f
i
n

∣∣∣∣∣ .
Hence,

E

∣∣∣∣∣
n∑
i=1

ai1f
i
n

∣∣∣∣∣
2

= E

(
n∑
i=1

a2
i1

(
f in
)2

+
∑
i6=j

ai1aj1f
i
nf

j
n

)
=

n∑
i=1

(
f in
)2 Ea2

i1 = 1 (2.2)

(this fact also follows from the fact that vector X1 is isotropic, i.e., E(Xk
1X

s
1) = 0 and

E(Xk
1 )2 = 1). Then by (2.1),

P (‖x‖2 > τ) ≤ 1

τ 2
, τ > 0.

Now we estimate ‖A−1x‖2. Note that

‖A−1x‖2 = ‖A−1X1 − A−1P1X1‖2 = ‖e1 − A−1P1Ae1‖2.

Since the vector P1Ae1 belongs to span {Ae2, . . . , Aen}, then A−1P1Ae1 is orthogonal
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to e1. Therefore, using P1X̃1 = 0 and denoting Yk = P1X̃k, k ∈ {2, . . . , n}, we obtain

‖A−1x‖2
2 = ‖e1‖2

2 + ‖A−1P1X1‖2
2 > ‖A−1P1X1‖2

2 =
n∑
k=1

〈
A−1P1X1, ek

〉2

=
n∑
k=1

〈
X1, P1X̃k

〉2

=
n∑
k=2

〈X1, Yk〉2 . (2.3)

The following lemma provides the relation between families of vectors (Xk)
n
k=2 and

(Yk)
n
k=2.

Lemma 2.10 ([127], Lemma 2.1) If (Xk, Yk)
n
k=2 is defined as above, then it is a

complete biorthogonal system in H1.

The following is a consequence of the uniqueness in Proposition 2.2 (i).

Corollary 2.11 The system of vectors (Yk)
n
k=2 is uniquely determined by the system

(Xk)
n
k=2. In particular, the system (Yk)

n
k=2 and the vector X1 are independent.

By Proposition 2.2 (ii), we have ‖Yk‖2 = 1

dist(Xk,H1,k)
. Therefore, we can rewrite (2.3)

as

‖A−1x‖2
2 ≥

n∑
k=2

1

1/‖Yk‖2
2

〈 Yk
‖Yk‖2

, X1

〉2
=

n∑
k=2

(
ak
bk

)2

, (2.4)

where

ak =

∣∣∣∣〈 Yk
‖Yk‖2

, X1

〉∣∣∣∣ and bk =
1

‖Yk‖2

= dist (Xk, H1,k) . (2.5)

This reduces our problem to bounding ak from above and bk from below. Without

loss of generality, we can do it for k = 2, since the same argument carries over to any

k ∈ {2, . . . , n}

We split the unit sphere into sets of compressible and incompressible vectors. Our

next goal is to show that the orthogonal complement H⊥1,2 consists of incompressible

vectors with high probability. Consider an (n − 2) × n matrix B with columns

X3, . . . , Xn. Since the subspace H1,2 is the span of the independent random vectors
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X3, . . . , Xn, we have H⊥1,2 ⊂ ker(B). We want to show:

∀x ∈ Comp : ‖Bx‖2 ≥ λ
√
n, (2.6)

that is, with high probability compressible vectors do not belong to the kernel of matrix

B (the parameter λ will be determined later).

To deal with compressible vectors, we need the following proposition, which is es-

sentially Proposition 5.2 from [120], where it was proved for n × n matrices. For the

sake of completeness, we provide the proof for (n− 2)× n matrices.

Proposition 2.12 Let ξ be a centered random variable with unit variance such that

L(ξ, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1). Let n ∈ N and let Γ be an (n−2)×n random

matrix with i.i.d. entries equidistributed with ξ. Then there are numbers θ, v > 0 and

u ∈ (0, 1) depending only on ũ, ṽ such that for Comp = Compn(ρ, ρ) we have

P
(

inf
x∈Comp

‖Γy‖2 < v
√
n

)
≤ 5un−2.

Proof. The main idea of the proof is to apply the union bound over the set of com-

pressible vectors Comp. In Theorem 2.5 take δ ∈ (0, 1
4
] such that

e13nδ ln 2e
δ ≤ u−

n−2
3 .

Then define the parameter ρ ∈ (0, 1
6
] in such a way that

(
5e

ρ2

)ρn
≤ u−

n−2
3 and

3ρC

δ
≤ v

2
,

where C > 0 is a universal constant taken from Theorem 2.5.

By Lemma 2.4, there is a Euclidean (2ρ)-net N ⊂ Comp of cardinality

|N | ≤
(

5e

ρ2

)ρn
≤ u−

n−2
3 .
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Now we refine this net using Theorem 2.5, and as a result with probability at least

1− 4exp
(
− δn

8

)
we obtain a

(
2ρC
δ

√
n
)
-net Ñ ⊂ Comp with respect to the pseudometric

‖Γ(x−y)‖2 which has cardinality |Ñ | ≤ u−2(n−2)/3. In other words, for every x ∈ Comp

there exists x′ = x′(x) ∈ Comp such that

‖Γ(x− x′)‖2 ≤
2ρC

δ

√
n ≤ v

2

√
n.

Applying the union bound over Ñ to the relation from Lemma 2.7, we get

P
(
‖Γx′‖2 < v

√
n for some x′ ∈ Ñ

)
≤ |Ñ |un−2 ≤ u

n−2
3 .

On the other hand, the construction of Ñ implies that

P
(

inf
x∈Comp

‖Γx‖2 < inf
x′∈Ñ
‖Γx′‖2 −

v

2

√
n

)
≤ 4exp

(
−δn

8

)
.

Therefore,

P
(
‖Γx‖2 <

v

2

√
n for some x ∈ Comp

)
≤ u

n−2
3 + 4exp

(
−δ(n− 2)

8

)
.

Taking the maximum of u
1
3 and e−

δ
8 gives the desired result. �

The next proposition states that the least common denominator of any incompress-

ible vector in Rn is of order at least
√
n. This proposition is Lemma 6.1 from [126] (note

that the proof does not depend on the parameter α).

Proposition 2.13 For any parameters θ, ρ ∈ (0, 1) there are parameters r, γ > 0 such

that for every α > 0 any vector x ∈ Incompn(θ, ρ) satisfies LCDα,r(x) ≥ γ
√
n.

Recall that B is a (n−2)×n matrix with columns X3, . . . , Xn. Since H⊥1,2 ⊂ ker(B),
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for the set Comp the following implication holds:

if inf
y∈Comp

‖By‖2 > 0 then H⊥1,2 ∩ Comp = ∅.

Applying Proposition 2.12 to the matrix B, we get

P
(

inf
y∈Comp

‖By‖2 ≥ v
√
n

)
≥ 1− 5un−2.

Therefore, H⊥1,2 ∩ Comp = ∅ with probability at least 1− 5un−2, or in other words,

P
(
H⊥1,2 ∩ Sn−1 ⊆ Incomp

)
≥ 1− 5un−2,

which means that the subspace H⊥1,2 consist of incompressible vectors with probability

close to one. By Proposition 2.13, we obtain that for some u ∈ (0, 1)

P
(
LCDα,r

(
H⊥1,2

)
≥ γ
√
n
)
≥ 1− 5un−2, (2.7)

where α is a small multiple of
√
n.

Recall that the coefficients ak and bk were introduced in (2.5). To ensure that the

lower bound for b2 is satisfied with high probability, we condition on H1,2 and use

Markov’s inequality and the fact that X2 is isotropic (see (2.2)). More precisely, we

obtain

P (b2 = dist (X2, H1,2) ≥ t |H1,2) ≤ E dist (X2, H1,2)2

t2
≤ 2

t2
, t > 0. (2.8)

Let E =
{

LCDα,r

(
H⊥1,2

)
≥ γ
√
n and b2 < t |H1,2

}
. Combining the two estimates (2.7)

and (2.8), we get that

P (E) ≥ 1− 2

t2
− 5un−2. (2.9)

Since we conditioned on the subspace H1,2, we may fix a realization of vectors
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(Xj)
n
j=2 for which the statement (2.9) holds. Thus by the uniqueness in Corollary 2.11

the vector Y2 is also fixed. For convenience, we further consider the normalized vector

Y = Y2
‖Y2‖2 . By Lemma 2.10 we know that (Xj)

n
j=2 and (Yj)

n
j=2 form a biorthogonal

system, in particular Y is orthogonal to (Xj)
n
j=3 . Thus, Y ∈ H⊥1,2. Since the event E

in (2.9) holds, we know that

LCDα,r(Y ) ≥ γ
√
n.

Now we proceed to bound the coefficient a2. Recall that

a2 = | 〈Y,X1〉 | = |
n∑
k=1

Y kXk
1 |

and Y k are coefficients such that
∑n

k=1

(
Y k
)2

= 1 and Xk
1 are i.i.d. random variables

with zero mean and L
(
Xk

1 , 1
)
< u for some u ∈ (0, 1). Applying Theorem 2.9 with

α = c
√
n for some small absolute constant c > 0, we obtain for ε > 0, u ∈ (0, 1) and

r ∈ (0, 1)

PX1 (a2 ≤ ε |X2, . . . , Xn) ≤ C̃

(
1

r
√

1− u

[
ε+

1

LCDc
√
n,r(Y )

]
+ e−2c2(1−u)n

)
≤ C

(
ε+

1√
n

+ e−c1n
)
, (2.10)

where c1, C, C̃ > 0 are absolute constants. Note that in the above expression all (Xj)
n
j=2

are fixed and the probability is taken with respect to the random vector X1.

Now we unfix all random vectors X2, . . . , Xn. Then,

P (a2 ≤ ε or b2 ≥ t) = EX2,...,XnPX1 (a2 ≤ ε or b2 ≥ t)

= EX2,...,Xn
χEPX1(a2 ≤ ε or b2 ≥ t) + EX2,...,Xn

χEcPX1(a2 ≤ ε or b2 ≥ t)

≤ P(a2 ≤ ε |X2, . . . , Xn) + P(Ec).
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Combining the probability estimates in (2.9) and (2.10), we get

P (a2 ≤ ε or b2 ≥ t) ≤ C

(
ε+

1√
n

+ e−c1n
)

+

(
2

t2
+ 5un−2

)
.

Repeating this argument for ak and bk for k = 3, . . . , n, we obtain for any ε, t > 0 and

u ∈ (0, 1)

P
(
ak
bk
≤ ε

t

)
≤ C

(
ε+

1√
n

+ e−c1n +
2

t2
+ 5un−2

)
≤ C1

(
ε+

1√
n

+
1

t2

)
(2.11)

where C,C1, c1 > 0 are absolute constants.

Now we proceed to estimate the sum of
(
ak
bk

)2

in (2.4):

P
(
‖A−1x‖ ≤ ε

t

√
n
)
≤ P

(
1

n

n∑
k=2

(
ak
bk

)2

≤ ε2

t2

)
≤ P

(
∃ k1, . . . , kbn2 c ∈ {2, . . . , n} such that(
aki
bki

)2

≤ 2
ε2

t2
for all i ≤

⌊n
2

⌋)
= P

(
n∑
k=2

χ
k ≥

⌊n
2

⌋)
≤ 2

n

n∑
k=2

P

((
ak
bk

)2

≤ 2
ε2

t2

)
,

where we denoted by χk the indicator function of the event Ek =

{(
ak
bk

)2

≤ 2 ε
2

t2

}
and

in the last step used Markov’s inequality. Using the bound in (2.11), we finally obtain

P
(
‖A−1x‖2 ≤

ε

t

√
n
)
≤ 2C1

(
2ε+

1√
n

+
1

t2

)
.

Together with an estimate in (2.1), we have

P
(
sn(A) ≤ τt

ε
n−

1
2

)
≥ P

(
‖x‖2 ≤ τ, ‖A−1x‖2 ≥

ε

t

√
n
)

≥ 1− C2

(
ε+

1√
n

+
1

t2
+

1

τ 2

)
.
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Since the above statement holds for arbitrary ε, t, τ > 0, the choice t = τ = 1√
ε

gives

the desired quantitative estimate in Theorem 2.1. �
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Chapter 3

Random Polytopes Obtained by

Matrices with Heavy Tailed

Entries 2

3.1 Introduction

In this section, we deal with rectangular N × n, (n ≤ N) random matrices Γ =

{ξij}1≤i≤N,1≤j≤n, where ξij are independent symmetric random variables with unit vari-

ance satisfying uniform small ball probabilistic estimate. More precisely, in the main

theorem we assume that there exist u, v ∈ (0, 1) such that

∀i, j sup
λ∈R

P
(
|ξij − λ| ≤ u

)
≤ v. (3.1)

Of course, if variables have a bounded moment r > 2, we will have better estimates.

We are interested in geometric parameters of the random polytope generated by Γ, that

is, the absolute convex hull of rows of Γ. In other words, the random polytope under

consideration is Γ∗BN
1 , where BN

1 is the N -dimensional octahedron (cross-polytope).

2A version of this chapter was published: O. Guédon, A. E. Litvak and K. Tatarko, “Random
polytopes obtained by matrices with heavy tailed entries”, Commun. Contemp. Math.
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The Gaussian random polytopes in the case when N is proportional to n have many

applications in the Asymptotic Geometric Analysis (see e.g., [61] and [141], and the

survey [101]). The Bernoulli case corresponds to 0/1 random polytopes. For their

combinatorial properties we refer the reader to [47, 8] (see also the survey [166]). Their

geometric parameters have been studied in [60, 85]. In the compressed sensing it was

shown that the so-called `1-quotient property is responsible for robustness in certain `1-

minimizations (see [80] and references therein). More precisely, an n×N (with N ≥ n)

matrix A satisfies the `1-quotient property with a constant b relative to a norm ‖ · ‖ if

for every y ∈ Rn there exists x ∈ RN such that Ax = y and ‖x‖1 ≤ b
√
n/ ln(eN/n) ‖y‖,

where ‖ · ‖1 denotes the `1-norm. It is easy to see that geometrically this means

B‖·‖ ⊂ b
√
n/ ln(eN/n)ABN

1 ,

where B‖·‖ is the unit ball of ‖ · ‖. To prove robustness of noise-blind compressed

sensing, the authors of [80] dealt with the norm

‖ · ‖ = max{‖ · ‖2,
√

ln(eN/n)‖ · ‖∞},

where ‖ · ‖2 is the standard Euclidean norm and ‖ · ‖∞ is the `∞-norm. Theorem 5 in

[80] states that assuming that entries of A are symmetric i.i.d. random variables with

unit variances, and that they have regular behaviour of all moments till the moment

of order lnn, the matrix A/
√
n has the `1-quotient property with high probability.

Geometrically this means

ABN
1 ⊃ b−1

(
Bn
∞ ∩

√
ln(N/n)Bn

2

)
. (3.2)

The work [80] complements results of [85], where this inclusion was proved for random

matrices with symmetric i.i.d. entries having at least third bounded moment and such

that the operator norm of the matrix is bounded with high probability.
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The main purpose of this chapter is to prove such an inclusion with much weaker

assumptions on the distribution of the entries. In fact, we require only boundedness

of second moments. Thus “robustness” Theorem 8 in [80] holds under much weaker

assumptions on the random matrix. Our main result is the following theorem (see

Theorem 3.11 for slightly better probability estimates).

Theorem 3.1 There exist positive constants b,M depending only on u and v and an

absolute constant c > 0 such that the following holds. Let N ≥ Mn and assume that

the entries of an N × n random matrix Γ are independent symmetric random variables

with unit variances satisfying condition (3.1) and such that in each row the entries are

i.i.d. Then with probability at least 1−exp(−cn) the inclusion (3.2) holds for the matrix

A = Γ∗.

We use this theorem to study geometric properties of random polytopes KN = Γ∗BN
1

and K◦N , such as behavior of their volumes and mean widths. Our “volume” theorem

states the following (see Theorems 3.20 and 3.21 for more precise statements).

Theorem 3.2 There exist positive constants C1, C2 depending only on u and v and

absolute positive constants C, c such that for C1n ≤ N ≤ en with probability at least

1− exp(−cn) one has

voln(KN)1/n ≥ C2

√
ln(N/n)

n
and voln(K◦N)1/n ≤ C

C2

√
n ln(N/n)

,

where KN = Γ∗BN
1 and the matrix Γ is as in Theorem 3.1. Moreover, the bounds on

the volumes are sharp, provided that the Euclidean lengths of the rows of Γ are of order

of
√
n at most.

Our proof of Theorem 3.1 follows the general scheme of [85] with a very delicate

change – in [85] there was an assumption that the operator norm of Γ is bounded by

C
√
N with high probability. However it is known that such a bound does not hold
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in general unless fourth moments are bounded ([137], see also [88] for quantitative

bounds). To avoid using the norm of Γ, we use ideas appearing in [120], where the

authors constructed a certain deterministic ε-net (in `2-metric) N such that AN is a

good net for ABn
2 for most realizations of a square random matrix A. We extend their

construction in three directions. First, we work with rectangular random matrices, not

only square matrices. Second, we need a net for the image of a given convex body (not

only for the image of the unit Euclidean ball). Finally, instead of approximation in the

Euclidean norm only, we use approximation in the following norm

‖a‖k,2 =

(
k∑
i=1

(a∗i )
2

)1/2

, (3.3)

where 1 ≤ k ≤ N and a∗1 ≥ a∗2 ≥ . . . ≥ a∗N is the decreasing rearrangement of the

sequence of numbers |a1|, . . . , |aN |. This norm appears naturally and plays a crucial

role in our proof of inclusion (3.2). The generalization of the net from [120] is a new

key ingredient, see Theorem 3.3. We would like to emphasize, that norms ‖ · ‖k,2 played

an important role in proofs of many results of Asymptotic Geometric Analysis, see e.g.

[63, 65, 67]. For the systematic studies of norms ‖ · ‖k,2 and their unit balls we refer to

[64]. We believe that the new approximation in ‖·‖k,2 norms will find other applications

in the theory. In the last section, we present one more application of Theorem 3.3 –

we show that it can be used to estimate the smallest singular value of a tall random

matrix – see the discussion at the beginning of Section 3.5.

3.2 Notations

Given an integer k ∈ {1, . . . , N}, we denote by Xk,2 the normed space RN equipped

with the norm ‖ · ‖k,2 defined by (3.3). The unit ball of Xk,2 is denoted by Bk,2. Note
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that for k = N we have ‖a‖k,2 = ‖a‖2 and that for any k ≤ N and any a ∈ RN ,

‖a‖k,2 ≤ ‖a‖2 ≤
√
N

k
‖a‖k,2 or, equivalentely, BN

2 ⊂ Bk,2 ⊂
√
N

k
BN

2 .

Given integers ` ≥ k ≥ 1, we denote [k] = {1, 2, . . . , k} and [k, `] = {k, k+ 1, . . . , `}.

Given points x1, . . . , xk in Rm we denote their convex hull by conv {xi}i≤k and their

absolute convex hull by abs conv {xi}i≤k = conv {±xi}i≤k. Given σ ⊂ [m] by Pσ we

denote the coordinate projection onto Rσ = {x ∈ Rm |xi = 0 for i /∈ σ}.

A ±1 random variable taking values 1 and −1 with probability 1/2 is called a

Rademacher random variable.

In this chapter we are interested in rectangular N×n matrices Γ = {ξij}1≤i≤N
1≤j≤n

, with

N ≥ n, where the entries are real-valued random variables on some probability space

(Ω,A,P). We will mainly consider the following model of matrix Γ:

 ∀i, j ξij are independent, symmetric and Eξ2
ij = 1,

in each row the entries are identically distributed.
(3.4)

At the beginning of Section 3.4, we will also assume that the entries of Γ satisfy a

uniform small ball estimate. If ξij ∼ N (0, 1) are independent Gaussian random variables

we say that Γ is a Gaussian random matrix.

3.3 Construction of a good deterministic net

In this section we present a key result. Let T be a subset of Rn, we aim at constructing

a deterministic net such that for every general random operator Γ : Rn → RN , with

overwhelming probability, the image of the net by the random operator Γ is a good

approximation of ΓT . We show that we can quantify this approximation by almost any
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norm ‖ · ‖k,2 defined in (3.3). For integers 1 ≤ n ≤ N and for 0 ≤ δ ≤ 1, set

F (δ, n,N) =

 (32δN/n)n if δ ≥ n/(2N),

(en/(δN))4δN if δ ≤ n/(2N).
(3.5)

Theorem 3.3 Let n ∈ [N ], 0 ≤ δ ≤ 1, 0 < ε ≤ 1. Let k ∈ [N ] such that k ln(eN/k) ≥

n. Let T be a non-empty subset of Rn and denote M := N(T, εBn
∞). Then there exists

a set N ⊂ T and a collection of parallelepipeds P in Rn such that

max{|N |, |P|} ≤M F (δ, n,N) eδN .

Moreover, for any random matrix Γ satisfying assumption (3.4), with probability at least

1− e−k ln(eN/k) − e−δN/4, one has


∀x ∈ T ∃y ∈ N such that ‖Γ(x− y)‖k,2 ≤ Cε

√
kn

δ
ln

(
eN

k

)
,

∀x ∈ T ∃P ∈ P such that x ∈ P and ΓP ⊂ Γx+ Cε

√
kn

δ
ln

(
eN

k

)
Bk,2,

where C ≥ 1 is an absolute constant.

Remark 3.4 This result extends Theorem A and Corollary A from [120], where the

authors considered the case of square matrices, T = Sn−1 and k = N , which corresponds

to the approximation of Γx in the Euclidean norm.

3.3.1 Basic facts about covering numbers and operator norms

of random matrices

We begin by recalling some classical estimates for covering numbers that will be used

later. It is well known that for any two centrally symmetric bodies K and L in Rm and
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any ε > 0 there exists an ε-net N of L with respect to K with cardinality

|N | ≤ volm((2/ε)L+K)/volm(K) (3.6)

(see e.g. Lemma 4.16 in [117]). In particular, if K = L are centrally symmetric bodies

in Rm (or if L is the boundary of a centrally symmetric body K) then |N | ≤ (1+2/ε)m.

Lemma 3.5

a) For every ε ∈ (0, 1/
√
m]

N(Bm
2 , εB

m
∞) ≤

(
7/(ε
√
m)
)m

and for every ε ∈ (1/
√
m, 1]

N(Bm
2 , εB

m
∞) ≤

(
17ε2m

)1/ε2
.

b) For J ⊂ [m], let SJ = {x ∈ RJ | ‖x‖2 = 1}. For every ε ∈ (0, 1) and every integer

k ≤ m, there exists a finite set N ⊂ ∪|J |=k SJ such that


|N | ≤ exp (k ln(3/ε) + k ln(em/k)),

∀J ⊂ [m] with |J | = k ∀y ∈ SJ ∃z ∈ N ∩ SJ such that ‖y − z‖2 ≤ ε.

(3.7)

Proof. a) Note that for every m ≥ 1 one has (1/
√
m)Bm

∞ ⊂ Bm
2 and volm(Bm

2 ) ≤

(2πe/m)m/2. Therefore, by (3.6), we obtain for every ε ≤ 1/
√
m

N(Bm
2 , εB

m
∞) ≤

volm
(

2
ε
Bm

2 +Bm
∞
)

volm(Bm
∞)

≤
(

3

ε

)m
volm(Bm

2 )

volm(Bm
∞)
≤
(

3
√
πe

ε
√

2m

)m
.

This implies the first bound. For the second bound note that for every x ∈ Bn
2 the

number of coordinates of x larger than ε is at most 1/ε2. Thus every x ∈ Bn
2 can be
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presented as x = y+ z, where the cardinality of support of y is at most 1/ε2, z ∈ εBn
∞,

and supports of y and z are mutually disjoint. Therefore, it is enough to cover Bσ
2 by

εBσ
∞ for all σ ⊂ [n] with |σ| = m := b1/ε2c. Using the above bound we obtain

N(Bn
2 , εB

n
∞) ≤

(
n

m

)(
3
√
πe

ε
√

2m

)m
≤
(

3en
√
πe

εm
√

2m

)m
,

which implies the desired result as m ≤ 1/ε2.

b) Fix ε ∈ (0, 1). For any fixed J ⊂ [m] of cardinality k, we cover SJ by an ε-net

(of points in SJ) of cardinality at most (1 + 2/ε)k ≤ (3/ε)k and we take the union of

these nets over all sets J of cardinality k. We conclude using that
(
m
k

)
≤ (em/k)k. �

The next lemma is a classical consequence of estimates for covering numbers for

evaluating operator norms of random matrices.

Lemma 3.6 Let B = {bij}1≤i≤N
1≤j≤n

be a fixed N × n matrix. Let k ∈ [N ] be such that

k ln eN
k
≥ n. Let εij be i.i.d. Rademacher random variables. Denote Bε = {εijbij}1≤i≤N

1≤j≤n
.

Then for every t ≥ 1 one has

P

(
‖Bε : `n∞ → Xk,2‖ ≥ 6 t

√
k ln

(
eN

k

)
max
i≤N
‖Ri(B)‖2

)
≤ e−t

2k ln (eN/k),

where Ri(B), i ≤ N , are the rows of B.

Proof. Observe that for any a ∈ RN , we have

‖a‖k,2 = sup
J⊂[N ]

|J |=k

sup
b∈SJ

N∑
i=1

aibi.

Given x ∈ {±1}n, y ∈ SN−1, consider the following random variable,

ξx,y =
n∑
j=1

N∑
i=1

εijbijxjyi.
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Since ex + e−x ≤ 2 exp(x2/2) for every real x, we observe for λ > 0,

E exp

(
λ

n∑
j=1

N∑
i=1

εijbijxjyi

)
=

n∏
j=1

N∏
i=1

E exp (λεijbijxjyi) ≤ exp

(
λ2

2

N∑
i=1

y2
i ‖Ri(B)‖2

2

)

≤ exp

(
λ2

2
max
i≤N
‖Ri(B)‖2

2

)
.

Therefore, using the Laplace transform of ξx,y, we deduce that for any u > 0,

P
(
ξx,y > umax

i≤N
‖Ri(B)‖2

)
≤ e−u

2/2.

Note that

‖Bε : `n∞ → Xk,2‖ = sup
x∈{±1}n

sup
J⊂[N ]

|J |=k

sup
y∈SJ

ξx,y. (3.8)

Now we apply the classical net argument. Let N be the net defined by (3.7) with

ε = 1/2. Then

P

(
sup

x∈{±1}n
sup
z∈N

ξx,z ≥ umax
i≤N
‖Ri(B)‖2

)
≤ 2n|N |e−u2/2

≤ 2n exp

(
−u

2

2
+ k ln 6 + k ln(eN/k)

)
.

Taking u = 3t
√
k ln(eN/k) and using k ln(eN/k) ≥ n, we get for every t ≥ 1,

P

(
sup

x∈{±1}n
sup
z∈N

ξx,z ≥ 3t
√
k ln(eN/k) max

i≤N
‖Ri(B)‖2

)
≤ e−t

2k ln (eN/k).

By definition of N , for any J ⊂ [N ] of cardinality k and y ∈ SJ , there exists z ∈ N ∩SJ

such that ‖z − y‖2 ≤ 1/2, hence, by the triangle inequality,

sup
x∈{±1}n

sup
J⊂[N ]

|J |=k

sup
y∈SJ

ξx,y ≤ 2 sup
x∈{±1}n

sup
z∈N

ξx,z.

This completes the proof of the lemma. �

37



3.3.2 Auxiliary statements

By Dn we denote the set of all n × n diagonal matrices whose diagonal entries belong

to the set {1} ∪ {2−2k}k≥0. The following theorem was proved in [120] in the square

case. However the proof works as well in the rectangular case. One just needs to repeat

the proof of Proposition 2.7 there for N × n matrices, to combine it with Remark 2.8

following the proposition, and to substitute the upper bound on the expectation with

a probability bound using Markov’s inequality.

Theorem 3.7 Let Γ = {ξij}1≤i≤N,1≤j≤n be an N × n random matrix on a probability

space Ω. Assume that entries of Γ are independent centered random variables with unit

variances and that in each row the entries are identically distributed. Let δ ∈ (0, 1].

Then there exists a random matrix DΓ on Ω taking values in Dn such that

(i) for every ω ∈ Ω, DΓ(ω) depends only on the realization {|ξij(ω)|}1≤i≤N,1≤j≤n,

(ii) for every ω ∈ Ω one has

‖Ri(Γ(ω)DΓ(ω))‖2 ≤ C
√
n/δ,

(iii)

P
(
det DΓ ≤ e−4δN

)
≤ e−δN ,

where C is an absolute positive constant.

As in [120], Theorem 3.7 has important consequences. It allows us to construct,

with high probability, a diagonal matrix D such that the volume of DBn
∞ remains big

enough and such that, according to Lemma 3.6, we have a good control of the operator

norm of ΓD from `n∞ to Xk,2. Comparing to [120], Lemma 3.6 simplifies significantly the

proof and allows to extend Theorem 3.1 from [120] to the case of rectangular matrices

and to approximations with respect to ‖ · ‖k,2 norms.
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Theorem 3.8 Let 1 ≤ n ≤ N be integers, δ ∈ (0, 1]. Let k ∈ [N ] such that k ln eN
k
≥ n.

Let Γ be an N × n random matrix satisfying the hypothesis (3.4). Then

P

(
∃D ∈ Dn : det D ≥ e−δN and ‖ΓD : `n∞ → Xk,2‖ ≤ C

√
kn

δ
ln

(
eN

k

))

≥ 1− e−δN/4 − e−k ln(eN/k),

where C is a positive absolute constant.

Proof. Let DΓ be the matrix given by Theorem 3.7. By property (iii) of DΓ it is enough

to prove that

P

(
‖ΓD : `n∞ → Xk,2‖ ≤ C

√
kn

δ
ln

(
eN

k

))
≥ 1− e−k ln(eN/k).

Consider two probability spaces – the original one (Ω,Pω), where the matrix Γ

is defined, and the auxiliary space (E,Pε), where E := {−1, 1}N×n and Pε is the

uniform probability on E. Given a matrix A = {aij}1≤i≤N,1≤j≤n and ε ∈ E, denote

Aε = {εijaij}1≤i≤N,1≤j≤n. Since entries of Γ are symmetric, for every fixed ε ∈ E

the matrix Γε has the same distribution on Ω as Γ. By property (i) of DΓ, we have

DΓ = DΓε for every fixed ε ∈ E. Therefore, since DΓ is diagonal, we have for every

ε ∈ E

(ΓDΓ)ε = ΓεDΓ = ΓεDΓε .

Then, by property (ii) of DΓ from Theorem 3.7, there exists an absolute positive con-

stant C1 such that for every i ≤ N and every (ω, ε) ∈ Ω× E,

‖Ri ((Γ(ω)DΓ(ω))ε) ‖2 ≤ C1

√
n/δ.

Fixing ω ∈ Ω and applying Lemma 3.6 to the matrix B = Γ(ω)DΓ(ω), we obtain that
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for every fixed ω ∈ Ω one has

Pε

(
‖Γε(ω)DΓ(ω) : `n∞ → Xk,2‖ > 6C1

√
kn

δ
ln

(
eN

k

))
≤ e−k ln (eN/k).

Using that Γε has the same distribution as Γ and the Fubini theorem, we obtain

Pω

(
‖ΓDΓ : `n∞ → Xk,2‖ > 6C1

√
kn

δ
ln

(
eN

k

))
=

= PεPω

(
‖Γε(ω)DΓ(ω) : `n∞ → Xk,2‖ > 6C1

√
kn

δ
ln

(
eN

k

))

≤ e−k ln (eN/k).

�

As in Lemma 3.11 from [120], we need to estimate the cardinality of the set of

diagonal matrices in Dn with not so small determinant.

Lemma 3.9 Let n,N ≥ 1 be integers, δ ∈ (0, 1] and

Q := {D ∈ Dn : det D ≥ exp(−δN)}.

Then |Q| ≤ F (δ, n,N), where F (δ, n,N) is defined by formula (3.5).

Proof. Note that if D ∈ Dn and d1, ..., dn its diagonal elements then for every k ≥ 0

the set

QD(k) =
{
i ≤ n | di = 2−2k

}
has cardinality at most mk := min{n, b2−k2δNc}. Thus there are at most

mk∑
`=0

(
n

`

)
≤
(
en

mk

)mk

choices of σk ⊂ [n], where matrices from Dn may have such coordinates. Note also
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that the trivial bound for the number of subsets is 2n. Denote a := 4δN/n. Note that

mk ≤ n/2 if and only if 2k ≥ a.

Case 1. a ≥ 2. Set m := blog2 ac ≥ 1. By above we have

|Q| ≤
∏
k<m

2n
∏
k≥m

(
en

mk

)mk
≤ 2nm

∏
k≥m

( en

2δN

)2δN/2k ∏
k≥m

22kδN/2k

≤ an
(

2e

a

)4δN/a

22δN(2m+1)/2m ≤ (2e)n a4δN/2m 24δN/2m ≤ (8a)n.

Case 2. a ≤ 2. Similarly we have

|Q| ≤
∏
k≥0

(
en

mk

)mk
≤
∏
k≥0

( en

2δN

)2δN/2k ∏
k≥0

22kδN/2k ≤
( en

2δN

)4δN

23δN ,

which implies the desired result. �

3.3.3 Proof of Theorem 3.3

Let Q be as in Lemma 3.9. Note that every D ∈ Q is diagonal with reciprocal of

integers on the diagonal. Therefore, there exists a set ND ⊂ T of cardinality

|ND| ≤ N(T, εDBn
∞) ≤ N(T, εBn

∞)N(Bn
∞, DB

n
∞) ≤M detD−1 ≤MeδN

which satisfies that for any x ∈ T there exists y ∈ ND such that x− y ∈ εDBn
∞. Let

P = {y + εDBn
∞ : D ∈ Q, y ∈ ND} .

Then, by Lemma 3.9, |P| ≤ MeδNF (δ, n,N) and for any x ∈ T and for any D ∈ Q

there exists P = yx,D + εDBn
∞ ∈ P such that x ∈ P .

Theorem 3.8 implies that with probability at least 1 − e−k ln(eN/k) − e−δN/4 there
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exists D ∈ Q such that

Γ(εDBn
∞) ⊂ C ε

√
kn

δ
ln

(
eN

k

)
Bk,2.

Therefore, for such D,

Γ(x− yx,D) ∈ Γ(εDBn
∞) ⊂ C ε

√
kn

δ
ln

(
eN

k

)
Bk,2,

hence,

Γ(P ) ⊂ Γx+ Γ(yx,D − x) + Γ(εDBn
∞) ⊂ Γx+ 2C ε

√
kn

δ
ln

(
eN

k

)
Bk,2.

This proves the existence of a “good” collection P .

Finally, let P ′ be the set of all P ∈ P such that P ∩T 6= ∅. For every P ∈ P ′ choose

an arbitrary zP ∈ P ∩ T and let N = {zP}P∈P ′ . By above, for every x ∈ T there exists

D ∈ Q and P = yx,D + εDBn
∞ ∈ P such that x ∈ P , in particular P ∈ P ′, and

Γ(P ) ⊂ Γx+ 2C ε

√
kn

δ
ln

(
eN

k

)
Bk,2.

Thus, ΓzP ∈ Γx+ 2C ε
√

kn
δ

ln
(
eN
k

)
Bk,2. This implies the desired result. 2

Remark 3.10 We apply Theorem 3.3 for T ⊂ tBn
2 , t ≥ 1, ε ≤ 1/

√
n, and δ ≥ n/(2N)

so that, F (δ, n,N) = (32δN/n)n. Then Theorem 3.3 combined with Lemma 3.5 implies

that there exists N ⊂ T with cardinality at most

(
224δtN

εn3/2

)n
eδN
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such that with probability at least 1− e−k ln(eN/k) − e−δN/4 one has

∀x ∈ T ∃y ∈ N such that Γ(x− y) ∈ C ε

√
kn

δ
ln

(
eN

k

)
Bk,2.

3.4 Geometry of Random Polytopes

In this section, we study some classical geometric parameters associated to random

polytopes of the form KN := Γ∗BN
1 , where Γ = {ξij}1≤i≤N,1≤j≤n is an N × n random

matrix. In other words, KN is the absolute convex hull of the rows of Γ. We provide

estimates on the asymptotic behavior of the volume and the mean widths of KN and

its polar. In this section, the random operator Γ satisfies the hypothesis (3.4): the

random variables ξij are independent symmetric with unit variances such that in each

row of Γ the entries are identically distributed. Moreover, we assume that the random

variables ξij satisfy a uniform small ball probability condition which means that we can

fix u, v ∈ (0, 1) such that

∀i, j sup
λ∈R

P
(
|ξij − λ| ≤ u

)
≤ v.

3.4.1 Inclusion Theorem

We start by showing that for an N×n random matrix Γ satisfying conditions described

above, the body KN = Γ∗BN
1 contains a large “regular” body with high probability.

Theorem 3.11 Let β ∈ (0, 1). There are two positive constants M = M(u, v, β) and

C(u, v, β) which depend only on u, v, β and an absolute constant c > 0, such that the

following holds. For every positive integers n,N satisfying N ≥Mn one has

P
(
KN ⊃ C(u, v, β)

(
Bn
∞ ∩

√
ln(N/n)Bn

2

))
≥ 1− 4 exp

(
−cnβN1−β) .
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Remark 3.12 It is known that for a Gaussian random matrix one has

P
(
KN ⊃ C

√
β ln(N/n) Bn

2

)
≥ 1− 3 exp

(
−cnβN1−β) ,

where C, c are absolute positive constants (see e.g. [62]). Moreover, the probability

estimate cannot be improved. Indeed, for a Gaussian random matrix and β ∈ (0, c′′)

one has

P
(
KN ⊃ C ′

√
β ln(N/n)Bn

2

)
≤ 1− exp

(
−c′nβN1−β) ,

where C ′, c′ > 0 and 0 < c′′ ≤ 1 are absolute constants.

Since Bn
∞ ⊂

√
nBn

2 , Theorem 3.11 has the following consequence.

Corollary 3.13 Under the assumptions and notations of Theorem 3.11, for Mn <

N ≤ en one has

P

(
KN ⊃ C(u, v, β)

√
ln(N/n)

n
Bn
∞

)
≥ 1− 4 exp

(
−cnβN1−β) .

In fact, our proof of Theorem 3.11 gives that if

N ≥ nmax

{
exp(4Cv/β),

(
C ln(e/(1− β)

cuv (1− β)

)1/(1−β)
}
,

where C > 1 is an absolute positive constant, cuv = cuv
√

1− v is the constant from

Lemma 3.14 below, and Cv = 5 ln(2/(1− v)), then

P
(
KN ⊃

cuv

2
√

2
(Bn
∞ ∩RBn

2 )

)
≥ 1− 4 exp

(
−n

βN1−β

40

)
(3.9)

with R =
√
β ln(N/n)/Cv. Note that KN = abs conv{xj}j≤N , where xj = Γ∗ej are the

columns of Γ∗. Hence for every z ∈ Rn,

hKN (z) = sup
j≤N
| 〈z, xj〉 | = ‖Γz‖∞.
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Let L = cuv(B
n
∞ ∩RBn

2 ). To prove (3.9), we show that

P
(
∃z ∈ ∂L◦ : ‖Γz‖∞ <

1

4

)
≤ 4 exp

(
−n

βN1−β

40

)
. (3.10)

The proof of this statement will be divided into two steps. First, we will show an

individual estimate for a fixed z ∈ ∂L◦. Then we use the net introduced in Theorem 3.3

to get a global estimate for any point of this net, using that this net is a subset of ∂L◦.

A crucial point is that this net is a good covering of Γ(∂L◦) in ‖ · ‖k,2-metric.

3.4.1.1 Basic facts about small ball probabilities

The following lemma is a consequence of Rogozin’s theorem [123] that was used for

example in [120] (see Lemma 4.7 there).

Lemma 3.14 Let ξ1, ..., ξm be independent random variables satisfying (1.1) with the

same u, v ∈ (0, 1). Then for every x ∈ Sm−1 one has

Q
( m∑
i=1

xiξi, cuv
)
≤ v,

where cuv = cuv
√

1− v and c ∈ (0, 1] is an absolute constant.

Remark 3.15 If we have a bounded moment of order larger than 2, then we could use

a consequence of the Paley-Zygmund inequality, which also provides a lower bound on

the small ball probability of a random sum. The following statement was proved in [87,

Lemma 3.1] following the lines of [85, Lemma 3.6] with appropriate modifications to

deal with centered random variables (rather than symmetric):

Let 2 < r ≤ 3 and µ ≥ 1. Suppose ξ1, . . . , ξm are independent centered random

variables such that E|ξi|2 ≥ 1 and E|ξi|r ≤ µr for every i ≤ m. Let x = (xi) ∈ `2 be

such that ‖x‖2 = 1. Then for every λ ≥ 0

P

(∣∣∣ m∑
i=1

ξixi

∣∣∣ > λ

)
≥
(

1− λ2

8µ2

)r/(r−2)

. (3.11)
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Proof of Lemma 3.14. Fix x ∈ Sm−1. We clearly have Q(xiξi, |xi|u
)
≤ v for every

xi 6= 0. Applying Theorem 1 of [123] to random variables xiξi, i ≤ m, we observe there

exists and absolute constant C ≥ 1 such that for every w ≥ u‖x‖∞/2,

Q
( m∑
i=1

xiξi, w
)
≤ Cw√∑m

i=1 |xi|2u2
(
1−Q(xiξi, |xi|u)

) ≤ Cw

u
√

1− v
.

Take w = uv
√

1− v/C. If ‖x‖∞ ≤ 2v
√

1− v/C then w ≥ u‖x‖∞/2. Therefore for

such x we have

Q
( m∑

i=1

xiξi, w

)
≤ v.

If there exists ` ≤ m such that |x`| > 2v
√

1− v/C, then we have

Q
( m∑

i=1

xiξi, w

)
≤ Q

(
x`ξ`, w

)
= Q

(
ξ`, w/|x`|

)
≤ Q

(
ξ`, u

)
≤ v,

which completes the proof. �

3.4.1.2 The individual small ball estimate

To prove Theorem 3.11 we need to extend a result by Montgomery-Smith [108], which

originally was proved for Rademacher random variables. Note that this lemma does

not require any conditions on the moments of random variables.

Lemma 3.16 Let ξi, i ≤ n, be independent symmetric random variables satisfying

condition (1.1). Let α ≥ 1 and L = cuv(B
n
∞ ∩ αBn

2 ), where cuv is the constant from

Lemma 3.14. Then for every non-zero z ∈ Rn one has

P

(
n∑
i=1

ξizi > hL(z)

)
> ((1− v)/2)5α2

.

We postpone the proof of this lemma to the end of this section. Note that if our

variables satisfy 1 ≤ Eξ2
i ≤ E|ξi|r ≤ µr for some r > 2 then using (3.11) and repeating

the proof of Lemma 4.3 from [85] we could consider L = (1−δ)(Bn
∞∩αBn

2 ) and estimate
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the corresponding probability from below by exp (−Cµ,δ,rα2), where Cµ,δ,r depends only

on µ, δ, r.

Lemma 3.16 has the following consequence.

Lemma 3.17 Under assumptions of Lemma 3.16 for every z ∈ Rn and every σ ⊂ [N ]

one has

P (‖PσΓz‖∞ < hL(z)) < exp
(
−|σ| exp(−Cvα2)

)
,

where Pσ : RN → Rσ is the coordinate projection and Cv = 5 ln(2/(1− v))).

Proof. Applying Lemma 3.16 to the |σ| × n random matrix PσΓ = (ξij)i∈σ,j≤n we have

for every z = {zj}nj=1 ∈ Rn and every i ∈ σ

P

(
n∑
j=1

zjξij < hL(z)

)
≤ 1− exp(−Cvα2) ≤ exp

(
− exp(−Cvα2)

)
.

Thus

P (‖PσΓz‖∞ < hL(z)) = P

(
sup
i∈σ

∣∣∣∣∣
n∑
j=1

zjξij

∣∣∣∣∣ < hL(z)

)

=
∏
i∈σ

P

(∣∣∣∣∣
n∑
j=1

zjξij

∣∣∣∣∣ < hL(z)

)
< exp

(
−|σ| exp(−Cvα2)

)
.

�

We can now state the main individual small ball estimate.

Lemma 3.18 Let β ∈ (0, 1) and define m = 8d(N/n)βe (if the latter number is larger

than or equal to N/4 we take m = N) and k = bN/mc. Let L = cuv(B
n
∞∩RBn

2 ), where

R =
√
β ln(N/n)/Cv. Then for any z ∈ ∂Lo one has

P
(

1√
k
‖Γz‖k,2 <

1

2

)
≤ exp(−0.3 nβ N1−β).

Proof. Below we assume m < N/4 (then k ≥ 4, hence km > 4N/5); the proof in the

case m = N , k = 1 repeats the same lines with simpler calculations. Let σ1, . . . , σk be
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a partition of [N ] such that m ≤ |σi| for every i ≤ k. Then, for any a ∈ RN

1√
k
‖a‖k,2 ≥

1√
k

(
k∑
i=1

‖Pia‖2
∞

)1/2

≥ 1

k

k∑
i=1

‖Piz‖∞,

where Pi = Pσi : RN → Rσi is the coordinate projection. Define ||| · ||| on RN by

|||z||| = 1

k

k∑
i=1

‖Piz‖∞

for every z ∈ RN . Note that if for some z ∈ Rn we have |||Γz||| < hL(z)/2 then

there exists I ⊂ [k] of cardinality at least k/2 such that for every i ∈ I one has

‖PiΓz‖∞ < hL(z). Applying Lemma 3.17 with α = R (note that α ≥ 2, by the

condition on n and N), we obtain for every z = {zi}ni=1 ∈ Rn,

P (|||Γz||| < hL(z)/2) ≤
∑

|I|=[(k+1)/2]

P (‖PiΓz‖∞ < hL(z) for every i ∈ I)

≤
∑

|I|=[(k+1)/2]

∏
i∈I

P (‖PiΓz‖∞ < hL(z))

≤
∑

|I|=[(k+1)/2]

∏
i∈I

exp
(
−|σi| exp(−Cvα2)

)
≤
(

k

[k/2]

)
exp

(
−(km/2) exp(−Cvα2)

)
≤ exp

(
k ln 2− (km/2) exp(−Cvα2)

)
,

where Cv = 5 ln(2/(1 − v)). By our choice of k and m we have km > 4N/5, therefore

(km/2) exp(−Cvα2) ≥ 2N1−βnβ/5. We also have k ≤ N1−βnβ/8. Thus

P (|||Γz||| < hL(z)/2) ≤ exp
(
−0.3 N1−βnβ

)
.

This completes the proof. �
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Finally we prove Lemma 3.16. For a positive integer m, define ||| · |||m on Rn by

|||z|||m = sup
m∑
i=1

(∑
k∈Bi

|zk|2
)1/2

,

where the supremum is taken over all partitions B1, . . . , Bm of [n]. We will need the

following lemma, which was essentially proved in [108] (see Lemma 2 there).

Lemma 3.19 Let α ≥ 1 and m ≥ 1 + 4α2 be an integer. For all x ∈ Rn one has

hBn∞∩αBn2 (x) ≤ |||x|||m.

Proof. Fix x ∈ Rn and choose y ∈ Bn
∞ ∩ αBn

2 so that h(x) =
∑

i xiyi. For every k with

y2
k ≥ 1/2 choose B1,k = {k}. Since |y| ≤ α there are at most 2α2 such sets. Denote

B := ∪kB1,k. Now let zi denote yi if |yi| ≤ 1/
√

2 and zi = 0 otherwise. Let n0 = 0 and

define n0 < n1 < n2 < ... by

nk+1 = 1 + sup
{
` ∈ [nk + 1, n− 1] |

∑̀
i=nk+1

z2
i ≤ 1/2

}

(if nk = n we stop the procedure). Denote B2,k := [nk−1 + 1, nk] \ B. Since |y| ≤ α we

have at most 2α2 + 1 such sets. Moreover, we have

∑
i∈B2,k

z2
i =

∑
i∈B2,k

y2
i ≤ 1.

Since y ∈ Bn
∞ and m ≥ 4α2 + 1, we obtain

h(x) =
n∑
i=1

xiyi ≤
2∑
j=1

∑
k

( ∑
i∈Bj,k

x2
i

)1/2( ∑
i∈Bj,k

y2
i

)1/2

≤
∑
j≤2,k

( ∑
i∈Bj,k

x2
i

)1/2

≤ |||x|||m.

�

Proofof Lemma 3.16. We folow the lines of Montgomery-Smith’s proof. Let m =
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d1 + 4α2e. Given z ∈ Rn, let m′ ≤ m and B1, . . . , Bm′ be a partition of [n] such that

∀i ≤ m′
∑
k∈Bi

|zk|2 6= 0 and |||z|||m =
m′∑
i=1

(∑
k∈Bi

|zk|2
)1/2

.

Then, using Lemma 3.19, we have

p := P

(
n∑
i=1

ξizi > hL(z)

)
≥ P

(
n∑
i=1

ξizi > cuv |||z|||m

)

= P

 m′∑
i=1

∑
k∈Bi

ξkzk > cuv

m′∑
i=1

(∑
k∈Bi

|zk|2
)1/2


≥ P

(⋂
i≤m′

(∑
k∈Bi

ξkzk ≥ cuv (
∑
k∈Bi

|zk|2)1/2

))
.

Since ξi’s are independent we obtain

p ≥
m′∏
i=1

P

∑
k∈Bi

ξkzk > cuv

(∑
k∈Bi

|zk|2
)1/2

 .

For i ≤ m′ set

fi =

(∑
k∈Bi

ξkzk

)
·

(∑
k∈Bi

|zk|2
)−1/2

.

Using that ξi’s are symmetric and applying Lemma 3.14 we get

P (fi > cuv) =
1

2
P (|fi| > cuv) ≥

1− v
2

.

Therefore,

p ≥ ((1− v)/2)m
′ ≥ ((1− v)/2)m ≥ ((1− v)/2)5α2

,

which implies the desired result. �
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3.4.1.3 The global small ball estimate

In this section, we prove Theorem 3.11. As we mentioned after its statement, our goal

is to prove (3.10) for N ≥Mn, where M depends only on β, u and v.

Let β ∈ (0, 1) and, as in Lemma 3.18, define m = 8d(N/n)βe and k = bN/mc so that

N1−βnβ/10 ≤ k ≤ N1−βnβ/8. By the choice of M , we obviously have k ln(eN/k) ≥ n.

Let T = ∂L◦ and set

δ = 0.1(n/N)β and ε =
1

cuv
√
n exp((N/n)1−β/20)

.

Since

T ⊂ L◦ = c−1
uv

(
conv Bn

1 ∪ (Bn
2 /R)

)
⊂ c−1

uvB
n
2 ,

we use Theorem 3.3 (see Remark 3.10) to construct a set N ⊂ T of cardinality at most

(
224δN

εcuvn3/2

)n
eδN

such that with probability at least 1− e−k ln(eN/k) − e−δN/4 one has

∀x ∈ T ∃z ∈ N such that ‖Γ(x− z)‖k,2 ≤ C1 ε

√
kn

δ
ln

(
eN

k

)
, (3.12)

where C1 > 0 is an absolute constant. Since

exp
(
n ln(224δN/n) + n ln(1/(εcuvn

1/2)) + δN − 0.3 N1−βnβ
)
≤ exp

(
−0.1 N1−βnβ

)
,

provided that (N/n)1−β is large enough, and N ⊂ T , we deduce from Lemma 3.18 that

P
(
∃z ∈ N :

1√
k
‖Γz‖k,2 < 1/2

)
≤
∑
z∈N

P
(

1√
k
‖Γz‖k,2 < 1/2

)
≤ exp

(
−0.1 N1−βnβ

)
.

Let Ω be the subset of Ω, where (3.12) holds. Then, on Ω, for every x ∈ T there exists
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z ∈ N such that

1√
k
‖Γz‖k,2 ≤

1√
k
‖Γx‖k,2 +

1√
k
‖Γ(z − x)‖k,2 ≤

1√
k
‖Γx‖k,2 + C1ε

√
n

δ
ln

(
eN

k

)
.

≤ 1√
k
‖Γx‖k,2 +

C2

√(
N
n

)β
ln
(

10e
(
N
n

)β)
cuv exp((N/n)1−β/20)

,

where C2 is an absolute positive constant. Since N ≥Mn (for large enough M depend-

ing only on u, v and β), we observe

c2
uv exp((N/n)1−β/10) > 16C2

2

(
N

n

)β
ln

(
10e

(
N

n

)β)
.

Therefore,

P
({

ω ∈ Ω : ∃x ∈ ∂Lo such that
1√
k
‖Γx‖k,2 <

1

4

})
≤ P

({
ω ∈ Ω : ∃z ∈ N such that

1√
k
‖Γz‖k,2 <

1

2

})
≤ exp

(
−0.1 N1−βnβ

)
.

The desired result follows since hKN (x) = ‖Γx‖∞ ≥ 1√
k
‖Γx‖k,2 for every x ∈ Rn and

since

P(Ω) ≥ 1− e−k ln(eN/k) − e−δN/4 ≥ 1− 2 exp(N1−βnβ/40).

3.4.2 Volumes and mean widths of KN and K◦N

In this section we apply the results of the previous subsection to obtain asymptotically

sharp estimates for the volumes and the mean widths of KN and K◦N . We refer to [117]

for general knowledge about these parameters. We recall that by Santaló inequality

and Bourgain-Milman [27] inverse Santaló inequality there exists an absolute positive

constant c such that for every convex symmetric body K one has

cnvoln(Bn
2 )2 ≤ voln(K)voln(K◦) ≤ voln(Bn

2 )2. (3.13)
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Below we fix constants M = M(u, v, β) and C(u, v, β) from Theorem 3.11.

We start estimating the volumes of KN and K◦N . For convenience we separate upper

and lower estimates (some bounds require an additional condition on the matrix Γ).

Corollary 3.13 and (3.13) imply the following volume estimates for KN and K◦N .

Theorem 3.20 Let Mn < N ≤ en, β ∈ (0, 1). There exists absolute positive constants

C and c such that with probability at least 1− exp
(
−cnβN1−β) one has

voln(KN)1/n ≥ 2C(u, v, β)

√
ln(N/n)

n
and voln(K◦N)1/n ≤ C

C(u, v, β)
√
n ln(N/n)

.

To prove the remaining bounds on volumes of KN and K◦N we introduce one more

condition on the matrix Γ, namely we require that

P
(

max
i≤N
|Γ∗ei| > λ

√
n

)
≤ p0 (3.14)

for some 0 < p0 < 1 and λ ≥ 1. Such condition holds for example when entries of Γ are

i.i.d. centered random variables with finite p-th moment for some p > 4, provided that

N ≤ Cpn
p/4 (this can be proved using Rosenthal’s inequality, see Corollary 6.4 in [69]).

The lower bound on voln(KN) (and the upper bound on voln(K◦N)) follows from

(3.13) and a well known estimate on the volume of the convex hull of k points ([7], [34],

[62]):

Let 2n ≤ k ≤ en and z1, . . . , zk ∈ Sn−1, then

|abs conv{zi}i≤k|1/n ≤ c
√

ln(k/n)/n,

where c > 0 is an absolute constant.

Theorem 3.21 Let Mn < N ≤ en and β ∈ (0, 1). Assume that the matrix Γ satisfies
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(3.14). There exist absolute positive constants c and C such that one has

voln(KN)1/n ≤ Cλ

√
ln(N/n)

n
and voln(K◦N)1/n ≥ c/(λ

√
n ln(N/n))

with probability at least 1− p0.

An important geometric parameter associated to a convex body is the (half of) mean

width of K◦ defined by

MK = M(K) =

∫
Sn−1

‖x‖K dν,

where ν is the normalized Lebesgue measure on Sn−1. It is well known that there exists

a constant cn > 1 (cn → 1 as n→∞) such that

MK =
cn√
n
E‖

n∑
i=1

eigi‖K ,

for every K ⊂ Rn. The (half of) mean width of K, M(K◦), we denote by M∗
K = M∗(K).

Observe that

M∗(K) =
cn√
n
E‖

n∑
i=1

eigi‖K0 =
cn√
n
E sup
t∈K

n∑
i=1

tigi =
cn√
n
`∗(K),

where `∗(K) = E supt∈K
∑n

i=1 tigi is the Gaussian complexity measure of the convex

body K. We recall the following inequality, which holds for every convex body K (see

e.g. [117])

M∗
K ≥

(
voln(K)

voln(Bn
2 )

)1/n

≥ 1/MK . (3.15)

Now we calculate the mean widths M(KN) and M(K◦N).

Theorem 3.22 Let Mn < N ≤ en and β ∈ (0, 1). Then

M(KN) ≤ CC−1(u, v, β)
(√

(ln(2n))/n+ 1/
√

ln(N/n)
)
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with probability at least 1− exp
(
−cnβN1−β) , where C and c are absolute positive con-

stants. Moreover, if the matrix Γ satisfies (3.14), then there exists an absolute positive

constant c1 such that with probability at least 1− p0 one has

M(KN) ≥ c1/(λ
√

ln(N/n)).

Proof. By Theorem 3.11 we have

M(KN) ≤ M
(
C(u, v, β)

(
Bn
∞ ∩

√
ln(N/n)Bn

2

))
≤ (1/C(u, v, β))

(
M (Bn

∞) +M
(√

ln(N/n)Bn
2

))
,

which proves the upper bound.

By (3.15) and Theorem 3.21 there exists an absolute positive constant c1 such that

M(KN) ≥ (voln(Bn
2 )/voln(KN))1/n ≥ c1/(λ

√
ln(2N/n)),

with probability larger than or equal to 1− p0. This proves the lower bound. �

Remark 3.23 Note that by Theorem 3.22, for N ≤ exp(n/ lnn) we have

M(KN) ≈ 1/
√

ln(N/n).

If N ≥ exp(n/ ln(2n)) there is a gap between lower and upper estimates. Both estimates

could be asymptotically sharp as was shown in [85].

Theorem 3.24 There exist positive absolute constants c, c0, and C such that the fol-

lowing holds. Let Mn < N ≤ en. Then

M(K◦N) ≥ c0

√
ln(N/n)

with probability at least 1 − exp
(
−cnβN1−β). Moreover, assuming that the matrix Γ
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satisfies (3.14), with probability at least 1− p0 one has

M(K◦N) ≤ Cλ
√

lnN.

Proof. By (3.15) we have

M(K◦N) ≥ (voln(Bn
2 )/voln(K◦N))1/n .

Therefore, the lower bound follows by Theorem 3.20.

Let G =
∑n

i=1 giei. Recall that KN is the absolute convex hull of N vertices Γ∗ei.

Thus we have

M(K◦N) ≤ c1√
n
E‖G‖K0

N
=

c1√
n
Emax

i≤N
〈G,Γ∗ei〉 ,

where c1 is an absolute constant. Since with probability at least 1−p0 we have |Γ∗ei| ≤

λ
√
n for every i ≤ N , using standard estimate for the expectation of maximum of

Gaussian random variables (see, e.g., [117]), we obtain that there is an absolute constant

c2 such that

M(K0
N) ≤ c2λ

√
lnN

with probability larger than or equal to 1− e−n. �

Finally we note that the bounds of Theorem 3.24 are sharp, whenever lnN and

ln(N/n) are comparable, for example if N > n2. However, when N is close to n we

have a gap between upper and lower bounds. Below we provide a better lower bound

for M(K◦N) in the case N ≤ n2, which closes this gap. We will need two more conditions

on the matrix Γ, namely

P
(
‖Γ‖HS <

√
Nn/2

)
≤ p1, (3.16)

for some p1 ∈ (0, 1) and where ‖Γ‖HS denotes the Hilbert–Schmidt norm of Γ; and

P
(
‖Γ‖ > µ

√
N
)
≤ p2, (3.17)
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for some p2 ∈ (0, 1), µ ≥ 1 and where ‖Γ‖ denotes the operator (spectral) norm of Γ.

Both conditions are satisfied for example when entries of Γ are i.i.d. centered random

variables with finite p-th moment for some p > 4. Indeed, Rosenthal’s inequality

(see proof of Corollary 6.4 in [69]) implies (3.16) with p1 ≤ (CpE|ξ|p)/(Nn)p/4; while

Theorem 2.1 combined with Corollary 6.4 in [69] implies (3.17) with µ = C ′p and

p2 ≤ 1/N cp + (CpE|ξ|p)N/np/4

(to make p2 < 1 we have to ask CpE|ξ|pN ≤ np/4). We would like also to note that the

proof below works also for N ≤ nα for some α ∈ (1, 2] if we substitute the condition

(3.17) with

P (‖Γ‖ > µ(Nn)γ) ≤ p2

for some γ ∈ (0, 1/2), which could be the case in the absence of 4-th moment (see for

example Corollary 2 in [3] and Remark 2 in [88]). Note also that the condition (3.17)

implies (3.14), since ‖Γ‖ ≥ maxi≤N |Γ∗ei|.

Theorem 3.25 Let µ ≥ 1, n ≥ 16µ2, and 2n < N ≤ n2 and assume that the matrix Γ

satisfies conditions (3.16) and (3.17) for some p1, p2 ∈ (0, 1). Then with probability at

least 1− p1 − p2

M(K◦N) ≥ c
√

ln(n/(8µ2)).

Proof. We apply Vershynin’s extension [151] of Bourgain-Tzafriri theorem [28]. Denote

A = ‖Γ∗‖HS, B = ‖Γ∗‖. Vershynin’s theorem implies that there exists σ ⊂ {1, . . . , N}

of cardinality at least A2/(2B2) such that for all i ∈ σ one has |Γ∗ei| ≥ c3A/
√
N , where

c3 is an absolute positive constant, and vectors Γ∗ei, i ∈ σ, are almost orthogonal (up

to an absolute positive constant). Since Γ satisfies conditions (3.16) and (3.17), with

probability at least 1− p1 − p2 we have A ≥
√
Nn/2 and B ≤ µ

√
N . Therefore, there

exists σ ⊂ {1, . . . , n} of cardinality at least n/(8µ2) such that |Γ∗ei| ≥ c3

√
n/2 for i ∈ σ
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and {Γ∗ei}i∈σ are almost orthogonal. Then,

M(K◦N) ≥ 1√
n
E‖G‖K◦N =

1√
n
Emax

i≤N
〈G,Γ∗ei〉 ≥

1√
n
Emax

i∈σ
〈G,Γ∗ei〉 .

Since {Γ∗ei}i∈σ are almost orthogonal, by Sudakov inequality (see, e.g., [117]), the last

expectation is greater than c4

√
ln(n/(8µ2)), where c4 is an absolute constant. This

completes the proof. �

3.5 Smallest singular value

In this section we provide a simple short proof of a weaker inclusion, namely, we obtain

a lower bound on the radius of the largest ball inscribed into KN . It is based on a

lower bound for the smallest singular value for tall matrices. Although such bounds are

known with possibly better constants (see the last remark in [79] or the main theorem

of [149]), we would like to emphasize a simple short proof, based on our Theorem 3.3.

In fact our proof is close to the corresponding proofs in [85] and [87], however it is

somewhat cleaner and it uses Theorem 3.3 instead of a standard net argument via the

norm of an operator. We would also like to mention that very recently G. Livshyts

has extended such results to rectangular random matrices with arbitrarily small aspect

ratio [89].

In this section we assume that the random matrix Γ satisfies conditions described

at the beginning of Section 3.4 with fixed u, v ∈ (0, 1). Recall that cuv = cuv
√

1− v

is the constant from Lemma 3.14. It will be also convenient to fix two more constants

depending on v,

γ1 = γ1(v) :=


√

ln 2 if v ≥ 1/2,√
ln 1

v
if v < 1/2

and γ2 = γ2(v) :=

 ln 2
1+v

if v ≥ 1/2,

ln 1
2v−v2 if v < 1/2.

Theorem 3.26 There exist an absolute constant C0 > 1 such that for N ≥
(
C0

γ2
ln 1

cuv

)
n
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one has

P
(
sn(Γ) ≤

cuv
√
γ2

4γ1

√
N

)
≤ 3 exp (−min{2, γ2}N/8) .

Since

hΓ∗BN1
(x) = ‖Γ∗x‖∞ and KN = Γ∗BN

1 ⊃
1√
N

Γ∗BN
2 ,

this theorem immediately implies the following inclusion.

Corollary 3.27 For N ≥
(
C0

γ2
ln 1

cuv

)
n one has

P
(
KN ⊃

cuv
√
γ2

4γ1

√
NBn

2

)
≥ 1− 3 exp (−min{2, γ2}N/8) .

To prove Theorem 3.26 we first provide the individual bounds.

Proposition 3.28 Let 1 ≤ n < N . Then for every x ∈ Sn−1 one has

P
(
‖Γx‖2 ≤

cuv
√
γ

2

2γ1

√
N
)
≤ exp (−3γ2N/4) .

Proof. Fix x = (x1, . . . , xn) ∈ Rn with ‖x‖2 = 1. Denote fj := |
∑n

i=1 ξjixi|, so that

‖Γx‖2
2 =

N∑
j=1

f 2
j .

Clearly f1, . . . , fN are independent. Therefore, for any t, τ > 0 one has

P
(
‖Γx‖2

2 ≤ t2N
)

= P
( N∑
j=1

f 2
j ≤ t2N

)
= P

(
τN − τ

t2

N∑
j=1

f 2
j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f 2
j

)
= eτN

N∏
j=1

E exp

(
−
τf 2

j

t2

)
.

Lemma 3.14 implies that P(fj < cuv) ≤ v for every j ≤ N . Write τ = t2η/c2
uv for some
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η > 0. Then

E exp
(
−
τf 2

j

t2

)
=

∫ 1

0

P
(

exp
(
−
ηf 2

j

c2
uv

)
> s

)
ds

=

∫ e−η

0

P
(

exp
(ηf 2

j

c2
uv

)
<

1

s

)
ds+

∫ 1

e−η
P
(

exp
(ηf 2

j

c2
uv

)
<

1

s

)
ds

≤ e−η + P(fj < cuv)(1− e−η) ≤ e−η + v(1− e−η).

Choose η = γ2
1 = ln max{2, 1/v}. Then the right hand side is e−γ2 . Therefore

P
(
‖Γx‖2

2 ≤ t2N
)
≤ eτNe−γ2N = exp

(
−N(γ2 − t2γ2

1/c
2
uv)
)
.

Choosing t =
√
γ2cuv/(2γ1) we complete the proof. �

Proof of Theorem 3.26. Let δ = min{1, γ2/2}. Note that n/(2N) ≤ δ ≤ 1. Let C ≥ 1

be the absolute constant from Theorem 3.3. Set

ε :=
cuv
√
γ2δ

4Cγ1

√
n
<

1√
n
.

By Theorem 3.3 (see Remark 3.10), applied with T = Sn−1 and k = N , there exists a

net N ⊂ Bn
2 with cardinality at most

(
224δN

εn3/2

)n
eδN ≤

(
896Cγ1

√
δN

cuv
√
γ2n

)n

eδN

such that with probability at least 1− e−δN/4 − e−N one has

∀x ∈ Bn
2 ∃yx ∈ N such that Γ(x−yx) ∈ Cε

√
Nn/δ Bn

2 = (cuv
√
γ2/(4γ1))

√
N Bn

2 .

Condition on the corresponding event, denoted below by Ω0. Assume that x ∈ Sn−1
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satisfies ‖Γx‖2 ≤ (cuv
√
γ2/(4γ1))

√
N . Then for the corresponding yx ∈ N we have

‖Γyx‖2 ≤ ‖Γx‖2 + ‖Γ(yx − x)‖2 ≤ (cuv
√
γ2/(2γ1))

√
N.

This implies

q0 := P
(
∃x ∈ Sn−1 : ‖Γx‖2 ≤

cuv
√
γ2

4γ1

√
N

)
≤ P (Ωc

0)+P
(
∃y ∈ N | ‖Γy‖2 ≤

cuv
√
γ2

2γ1

√
N

)
.

Applying Proposition 3.28 and using δ ≤ γ2/2,

q0 ≤ 2e−δN/4 +

(
896Cγ1

√
δN

cuv
√
γ2n

)n

exp (−γ2N/4) .

Using formulas for cuv, γ1, γ2, and δ, it is not difficult to check that there exists an

absolute constant C1 > 0 such that

ln
896Cγ1

√
δ

cuv
√
γ2

≤ C1 ln
1

cuv
.

Therefore there exists another absolute constant C2 > 0 such that

(
896Cγ1

√
δN

cuv
√
γ2n

)n

exp (−γ2N/4) ≤ exp (−γ2N/8) ,

provided that

N/n ≥ (C2/γ2) ln(1/cuv).

This completes the proof. �
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Chapter 4

A Steiner formula in the Lp

Brunn-Minkowski theory 3

4.1 Introduction

The Brunn-Minkowski theory which classical building block is also called the theory

of mixed volumes is the very core of convex geometric analysis. It centers around the

study of geometric invariants and geometric measures associated with convex bodies.

A central part of the theory is the classical Steiner formula.

A theory analogous and dual to the Brunn-Minkowski theory, called the theory

of dual mixed volumes or dual Brunn-Minkowski theory, was introduced by Lutwak

[93]. The main geometric invariants in the dual Brunn-Minkowski theory are the dual

quermassintegrals W̃i(K). As proved in [93], they appear as the coefficients in the

Steiner formula of the dual Brunn-Minkowski theory where the Minkowski addition

“+” of convex bodies is replaced by the radial addition “+̃” of star bodies. Indeed, for

3A version of this chapter was published: K. Tatarko, E. Werner “A Steiner formula in the Lp

Brunn Minkowski theory”, Adv. Math. 355 (2019), 106772.
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a star body K and t > 0, we have that

voln(K +̃ tBn
2 ) =

n∑
i=0

(
n

i

)
W̃i(K)ti =

n∑
i=0

(
n

i

)
Ṽi(K)tn−i.

The details are given in Section 4.3.1. Investigations in the dual Brunn-Minkowski

theory led to isoperimetric inequalities and kinematic formulas involving dual mixed

volumes, as summarized in [56, 132].

A localization of the quermassintegrals gives rise to curvature measures for Borel sets in

Rn, respectively area measures for Borel sets on the Euclidean unit sphere. The classical

Minkowski problem asks to characterize those measures. Similarly, a localization of the

dual quermassintegrals leads to the dual curvature measures [77, 93], and analogously

to the dual Minkowski problem. Much work has been devoted to these problems. We

refer to, e.g., [24, 25, 26, 36, 77, 118, 140, 170] for background and progress.

An extension of the classical Brunn-Minkowski theory, the Lp Brunn-Minkowski

theory, was initiated by Lutwak in the groundbreaking paper [96]. This theory evolved

rapidly over the last years and due to a number of highly influential works, see, e.g.,

[57, 71, 72, 73, 91, 92], [103] - [115], [134] - [158], it is now a central part of modern

convex geometry. The Lp Brunn-Minkowski theory centers around the study of affine

invariants associated with convex bodies. In fact, this theory redirected much of the

research about convex bodies from the Euclidean aspects to the study of the affine

geometry of these bodies, and some questions that had been considered Euclidean in

nature turned out to be affine problems. For example, the famous Busemann-Petty

Problem (finally laid to rest in [58, 167, 168]), was shown to be an affine problem with

the introduction of intersection bodies by Lutwak in [95]. Central objects in the Lp

Brunn-Minkowski theory are the Lp affine surface areas,

asp(K) =

∫
∂K

Hn−1(x)
p

n+p

〈x, ν(x)〉
n(p−1)
n+p

dHn−1(x),
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where ν(x) denotes the outer unit normal at x ∈ ∂K, the boundary of K, Hn−1(x) is

the Gauss curvature at x and Hn−1 is the usual surface area measure on ∂K.

In this chapter we provide an analogue of the Steiner formula for the Lp affine

surface area and s-th mixed p-affine surface area (see Section 4.6) of a Minkowski outer

parallel body for any real parameters p 6= −n and s, i.e. we investigate

asp(K + tBn
2 ) and asp,s(K + tBn

2 ).

A different Steiner formula for the Lp Brunn-Minkowski theory, involving Blaschke

sum instead of Minkowski sum, was put forward by Lutwak in [94]. Our new Steiner

formula, presented in Theorem 4.1 and 4.4, covers a whole range of Steiner formulas

for all −∞ ≤ p ≤ ∞. It includes the classical Steiner formula and the Steiner formula

from the dual Lp Brunn-Minkowski theory as special cases.

We call the coefficients in our Steiner formula Lp Steiner coefficients. In their general

form they do not seem to have appeared before in the literature. Special cases of those

include not only the classical quermassintegrals and the dual quermassintegrals, but

also variants of the Willmore energy. This is explained in Section 4.5. We also observe

a connection of the Lp Steiner coefficients to information theory. Analogously to the

curvature measures of the classical theory and the dual curvature measures of the dual

Brunn-Minkowski theory, the Lp Steiner coefficients lead to new curvature measures

and area measures, respectively. They are discussed in more detail in Section 4.4. The

Steiner formula for the s-th mixed Lp affine surface area is treated in Section 4.6.

4.2 Results

For a convex body K in Rn, we define

β(K) = min
u∈Sn−1

hK(u). (4.1)
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If K is such that its centroid is at the origin, which we will assume throughout, there is

λ(K) > 0 such that Bn(0, λ(K)) ⊂ K. As K is bounded, there is λ(K) ≤ Λ(K) < ∞

such that K ⊂ Bn(0,Λ(K)). Thus,

λ(K) ≤ β(K) ≤ Λ(K).

Theorem 4.1 Let K be a convex body in Rn that is C2
+ and let t ∈ R be such that

0 ≤ t < β(K). For all p ∈ R, p 6= −n,

asp(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

( n(1−p)
n+p

k −m

)
tk
∫

Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u)

]
. (4.2)

When integrating over the sphere, we write σ(u) = Hn−1(u). The coefficients Amp rep-

resent a sum of mixed products of the elementary symmetric functions of the principal

curvatures Hi = Hi

(
ξ̄K(u)

)
(see Section 4.3.1 below), with corresponding multinomial

coefficients. The detailed statement and local versions of it will be given in Section 4.4.

We call the coefficients in the formula (4.2) the Lp Steiner coefficients

Wm,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u). (4.3)

The expression fK(u)hK(u)1−p is called the Lp curvature function fp(K, ·) : Sn−1 →

[0,∞). With this notation we can write

Wm,k(K) =

∫
Sn−1

fp(K, u)
n
n+phK(u)m−k Amp dσ(u).

We want to point out that the first coefficient in the expansion (4.2) represents the
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Lp affine surface area of the body K,

W0,0(K) = asp(K).

As other special cases, we get mixed affine surface areas, defined in Section 4.6. More

properties of the coefficients are discussed in Section 4.5, a connection to information

theory among them.

The case p = 0 of Theorem A reduces to the classical Steiner formula which involves

the classical quermassintegrals Wi(K) (see (4.6) below).

Corollary 4.2 Let K be a convex body in Rn that is C2
+. Then

as0(K + tBn
2 ) = n

n∑
i=0

(
n

i

)
Wi(K) ti.

In the case p = ±∞, Theorem A reduces to the Steiner formula from the dual Brunn-

Minkowski theory involving Lutwak’s dual quermassintegrals W̃i(K) (see (4.8) below).

Corollary 4.3 Let K be a convex body in Rn that is C2
+ and let t ∈ R be such that

0 ≤ t < β(K). Then

as±∞(K + tBn
2 ) = n vol((K + tBn

2 )◦) = n W̃0((K + tBn
2 )◦)

= n
∞∑
i=0

(
−n
i

)
W̃−i(K

◦) ti.

Thus Theorem A covers a whole range of Steiner formulas in the Lp Brunn-Minkowski

theory for all −∞ ≤ p ≤ ∞, including the classical case and a case related to the dual

Brunn-Minkowski theory.
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4.3 Background

4.3.1 Background from differential geometry

For more information and the details in this section we refer to e.g., [56, 132].

Let K be a convex body of class C2. For a point x on the boundary ∂K of K

we denote by ν(x) the unique outward unit normal vector of K at x. The map ν :

∂K → Sn−1 is called the spherical image map or Gauss map of K and is of class C1.

Its differential is called the Weingarten map. The eigenvalues of the Weingarten map

are the principal curvatures ki(x) of K at x.

The j-th normalized elementary symmetric functions of the principal curvatures are

denoted by Hj. They are defined as follows

Hj =

(
n− 1

j

)−1 ∑
1≤i1<···<ij≤n−1

ki1 · · · kij (4.4)

for j = 1, . . . , n− 1 and H0 = 1. Note that

H1 =
1

n− 1

∑
1≤i≤n−1

ki

is the mean curvature, that is the average of principal curvatures, and

Hn−1 =
n−1∏
i=1

ki

is the Gauss curvature.

We say that K is of class C2
+ if K is of class C2 and the Gauss map ν is a diffeo-

morphism. This means in particular that ν has a smooth inverse. This assumption is

stronger than just C2, and is equivalent to the assumption that all principal curvatures

are strictly positive, or that the Gauss curvature Hn−1 6= 0. It also means that the

differential of ν, i.e., the Weingarten map, is of maximal rank everywhere.
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Let K be of class C2
+. For u ∈ Rn \ {0}, let ξK(u) be the unique point on the

boundary of K at which u is an outward normal vector. The map ξK is defined on

Rn \ {0}. Its restriction to the sphere Sn−1, the map ξ̄K : Sn−1 → ∂K, is called the

reverse spherical image map, or reverse Gauss map. The differential of ξ̄K is called the

reverse Weingarten map. The eigenvalues of the reverse Weingarten map are called the

principal radii of curvature r1, . . . , rn−1 of K at u ∈ Sn−1.

The j-th normalized elementary symmetric functions of the principal radii of cur-

vature are denoted by sj. In particular, s0 = 1, and for 1 ≤ j ≤ n− 1 they are defined

by

sj =

(
n− 1

j

)−1 ∑
1≤i1<···<ij≤n−1

ri1 · · · rij . (4.5)

Note that the principal curvatures are functions on the boundary of K and the principal

radii of curvature are functions on the sphere.

Now we describe the connection between Hj and sj. For a body K of class C2
+, we

have for u ∈ Sn−1 that ξ̄K(u) = ν−1(u). In particular, the principal radii of curvature

are reciprocals of the principal curvatures, that is

ri(u) =
1

ki(ξ̄K(u))
.

This implies that for x ∈ ∂K with ν(x) = u,

sj =

(
n− 1

j

)−1 ∑
1≤i1<···<ij≤n−1

1

ki1(ξ̄K(u)) · · · kij(ξ̄K(u))
=
Hn−1−j

Hn−1

(
ξ̄K(u)

)

and

Hj =
sn−1−j

sn−1

(
ν(x)

)
,

for j = 1, . . . , n− 1.

The mixed volumes Wi(K) of the classical Steiner formula (1.3) can be expressed

with the help of the elementary symmetric functions of the principal curvatures. By
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definition, W0(K) = voln(K) and

Wi(K) =
1

n

∫
∂K

Hi−1dHn−1, (4.6)

for i = 1, . . . , n. Moreover, we have the following formulae, which in integral geometry

and differential geometry are known as Minkowskian integral formulae,

∫
Sn−1

sjdHn−1 =

∫
Sn−1

hKsj−1dHn−1,

and ∫
∂K

Hj−1dHn−1 =

∫
∂K

〈x, ν(x)〉HjdHn−1 (4.7)

for j = 1, . . . , n− 1.

The corresponding Steiner formula in the dual Brunn-Minkowski theory is

voln(K +̃ tBn
2 ) =

n∑
i=0

(
n

i

)
W̃i(K) ti.

For x, y ∈ Rn, a radial addition x +̃ y is defined to be x + y if x and y are on a

line through 0, and 0 otherwise. Let K and L be star bodies in Rn, then a radial

linear combination K +̃ tL = {x + ty : x ∈ K, y ∈ L} (see Figure 4.1). Moreover,

ρK +̃ tL(u) = ρK(u)+ tρL(u) where ρK(u) = max{λ ≥ 0 : λu ∈ K} is the radial function

of K.

The dual mixed volume of the convex bodies K and L that contain 0 in its interior

is defined for all real i by

Ṽi(K,L) =
1

n

∫
Sn−1

ρK(u)n−iρL(u)idσ(u).
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Figure 4.1: An example of a radial linear combination K +̃ tB2
2 .

In particular, if L = Bn
2 , then

W̃i(K) = Ṽi(K,B
n
2 ) =

1

n

∫
Sn−1

ρK(u)n−idσ(u) (4.8)

are called dual quermassintegrals of order i.

A well known change of integral formula, e.g., [132], which we use frequently, says

that for a C2
+ convex body K and a continuous function g : ∂K → R

∫
Sn−1

g(u)fK(u)dσ(u) =

∫
∂K

g(x)dHn−1(x), (4.9)

where u ∈ Sn−1 and x ∈ ∂K are related via the Gauss map, i.e., ν(x) = u.

4.3.2 Background from affine geometry

From now on we will always assume that the centroid of a convex body K in Rn is at

the origin. For real p 6= −n, we define the Lp affine surface area asp(K) of K as in [93]
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(p > 1) and [135] (p < 1, p 6= −n) by

asp(K) =

∫
∂K

Hn−1(x)
p

n+p

〈x, ν(x)〉
n(p−1)
n+p

dHn−1(x) (4.10)

and

as±∞(K) =

∫
∂K

Hn−1(x)

〈x, ν(x)〉n
dHn−1(x). (4.11)

In particular, for p = 0,

as0(K) =

∫
∂K

〈x, ν(x)〉 dHn−1(x) = n voln(K). (4.12)

The case p = 1,

as1(K) =

∫
∂K

Hn−1(x)
1

n+1dHn−1(x)

is the classical affine surface area which is independent of the position of K in space.

For dimensions 2 and 3 and sufficiently smooth convex bodies, its definition goes back

to Blaschke [13].

If the boundary of K is sufficiently smooth, then (4.10) and (4.11) can be written as

integrals over the boundary ∂Bn
2 = Sn−1 of the Euclidean unit ball Bn

2 in Rn,

asp(K) =

∫
Sn−1

fK(u)
n
n+p

hK(u)
n(p−1)
n+p

dσ(u), (4.13)

where fK(u) is the curvature function, i.e. the reciprocal of the Gaussian curvature

Hn−1(x) at this point x ∈ ∂K that has u as outer normal. In particular, for p = ±∞,

as±∞(K) =

∫
Sn−1

1

hK(u)n
dσ(u) = n voln(K◦). (4.14)
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For p = −n, the L−n affine surface area was introduced in [103] as

as−n(K) = max
u∈Sn−1

fK(u)
1
2hK(u)

n+1
2 . (4.15)

4.4 The Steiner formula of the Lp Brunn-Minkowski

theory

In this section, we state our main theorems and discuss some of their consequences.

The proofs are given in Section 4.7.

4.4.1 The general case

We will need the generalized binomial coefficients. For α ∈ R and k ∈ N, they are

defined as

(
α

k

)
=


1 if k = 0,

0 if k < 0,

α(α− 1) · · · (α− k + 1)

k!
if k > 0.

(4.16)

Also, we will need the multinomial coefficients from the multinomial formula

(a1 + . . .+ ar)
q =

∑
i1,...,ir≥0
i1+···+ir=q

(
q

i1, . . . , ir

)
ai11 · . . . · airr , (4.17)

where (
q

i1, i2, . . . , ir

)
=

q!

i1!i2! · · · ir!

is the multinomial coefficient. Note that

(
q

i1, i2, . . . , ir

)
= 0 if ij < 0 or ij > q. (4.18)

The sum in the multinomial formula is taken over all nonnegative integer indices
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i1, . . . , ir such that the sum of all ij is q. In the case r = 2, we get the binomial

theorem.

To give the precise statement of Theorem 4.1, we introduce the following coefficients,

which are sums of mixed products of the elementary symmetric functions of the principal

curvatures, up to some multinomial coefficients. For any real p 6= −n,

Amp = Amp
(
ξ̄K(u)

)
= (4.19)∑

i1,...,in−1≥0
i1+2i2+···+(n−1)in−1=m

( n
n+p

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

(
ξ̄K(u)

)}
.

For p = −n, we have

Am−n = Am−n(u) =
∑

i1,...,i2n≥0
i1+2i2+···+2ni2n=m

(
1
2

i1 + · · ·+ i2n

)(
i1 + · · ·+ i2n
i1, . . . , i2n

) 2n∏
q=1

Biq
q (4.20)

and

Bq = Bq(u) =
∑
k+i=q

[(
n− 1

k

)(
n+ 1

i

)
Hk(ξ̄K(u))

hK(u)i

]
.

Recall that the Lp Steiner coefficients are defined by

Wm,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u).

Theorem 4.4 Let K be a convex body in Rn that is C2
+ and let t ∈ R be such that

0 ≤ t < β(K). For all p ∈ R, p 6= −n,

asp(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

( n(1−p)
n+p

k −m

)
Wm,k t

k

]
. (4.21)
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In particular,

as1(K + tBn
2 ) =

∞∑
m=0

[ ∫
Sn−1

fK(u)
n
n+1Am1 dσ(u)

]
tm =

∞∑
m=0

Wm,m t
m. (4.22)

The cases p = 0 and p = ±∞ are Corollary 4.2 and Corollary 4.3, respectively.

The next Theorem 4.5 describes the case p = −n.

Theorem 4.5 Let K be a convex body in Rn that is C2
+ and let t ∈ R be such that

0 ≤ t < β(K). Then

as−n(K + tBn
2 ) = max

u∈Sn−1
fK(u)

1
2hK(u)

n+1
2

∞∑
m=0

Am−nt
m.

Observe that the first coefficient in the expansion is as−n(K).

Remark on the polytopal case

When K = P is a polytope, we denote by vertP the set of its vertices and for v ∈ vertP ,

Norm(v) = {u ∈ Rn : 〈u, z − v〉 ≤ 0 for all z ∈ P}

is the normal cone to P at v, see [132]. Then the following Steiner formula for polytopes

holds.

Theorem 4.6 Let P be a convex polytope in Rn and let t ∈ R be such that 0 ≤ t < β(P ).

For all p ∈ R such that

(i) p /∈ [−n, 0],

asp(P + tBn
2 ) =

∞∑
m=0

(n(1−p)
n+p

m

) ∑
v∈vertP

∫
u∈Norm(v)

hP (u)
n(1−p)
n+p

−mdσ(u) tm+
n(n−1)
n+p ;

(ii) p ∈ [−n, 0), asp(P + tBn
2 ) =∞;
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(iii) p = 0, as0(P + tBn
2 ) = n voln(P + tBn

2 ).

Note that by definition (4.15), as−n(P ) is trivially infinite, since the curvature function

of the flat part is infinite. Of course, as−n(P+tBn
2 ) is also infinite by the same reasoning.

4.4.2 Local version

In this section, we introduce new curvature and area measures for Borel sets on the

boundary of a convex body K and for Borel sets on the Euclidean sphere Sn−1, and

state local Steiner formula of the Lp Brunn-Minkowski theory.

When K is a C2
+ convex body, the curvature, respectively area, measures for Borel

sets B ∈ B(Rn) and ω ∈ B(Sn−1) are defined by

Ci(K,B) =

∫
∂K∩B

Hn−1−i(x) dHn−1(x);

Si(K,ω) =

∫
ω

si dσ(u)

for i = 0, . . . , n − 1, e.g., [132]. Note that for general convex bodies these measures

replace the elementary symmetric functions of principal curvatures and the elementary

symmetric functions of the principal radii of curvature. In the extreme cases i = 0 and

i = n − 1, we obtain Cn−1(K,B) = H(∂K ∩ B) and S0(K,ω) = σ(ω). If B = Rn and

ω = Sn−1, we get the classical quermassintegrals

Wi(K) =
1

n
Cn−i(K,Rn) =

1

n
Sn−i(K,S

n−1)

which were introduced in (4.6).

Our approach in Theorem 4.4 leads to new curvature and area measures. Namely,
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for a Borel set B ∈ B(Rn) and for a Borel set ω ∈ B(Sn−1),

Cm,k(K,B) =

∫
∂K∩B

Hn−1(x)
p

n+p

〈x, ν(x)〉
n(p−1)
n+p

+k−m
Amp (x) dHn−1

and

Sm,k(K,ω) =

∫
ω

sn−1(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp (ξ̄(u)) dσ(u)

for k ≥ m and m ≥ 0. Taking B = Rn and ω = Sn−1, we recover the Lp Steiner

coefficients, i.e.

Wm,k(K) = Cm,k(K,Rn) and Wm,k(K) = Sm,k(K,Sn−1).

When m = k = 0, B = Rn and ω = Sn−1, we obtain the Lp affine surface area, i.e.

C0,0(K,Rn) = S0,0(K,Sn−1) = asp(K).

Now we can state the local Steiner formula for these newly introduced measures.

Theorem 4.7 (Local Steiner formula) Let K be a convex body in Rn that is C2
+,

B ∈ B(Rn) and ω ∈ B(Sn−1). Let t be such that 0 ≤ t < β(K). For all p ∈ Rn, p 6= −n,

we have

C0,0(K + tBn
2 , B) =

∞∑
m=0

∞∑
k=m

( n(1−p)
n+p

k −m

)
Cm,k(K,B) tk

and

S0,0(K + tBn
2 , ω) =

∞∑
m=0

∞∑
k=m

( n(1−p)
n+p

k −m

)
Sm,k(K,ω) tk.

We recover the Steiner formula (4.21) of the Lp Brunn-Minkowski theory when B = Rn

or ω = Sn−1.
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4.5 Properties of the coefficients

In this section, we discuss some properties of the new coefficients which appeared in

Theorem 4.4, i.e. the Lp Steiner coefficients,

Wm,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u), k ≥ m, m ∈ N ∪ {0},

where Amp is given by (4.19). We will see that the s-mixed p-affine surface areas, defined

in Section 4.6, appear as special cases of Lp Steiner coefficients. As it is known that

mixed affine surface areas in general are not affine invariant quantities, we cannot expect

affine invariance for Lp Steiner coefficients either.

4.5.1 Willmore energy

Firstly, we restrict ourselves to three-dimensional space. Recall that the Willmore

energy of a compact surface Σ in R3 is given by

WE(Σ) =

∫
Σ

H2
1 dH2,

where H1 = (k1 + k2)/2 is the mean curvature. The Willmore energy naturally appears

in mathematical biology and physics, and has been widely studied. In the 1960s Will-

more [160] conjectured the lower bound on the Willmore energy of a torus immersed in

R3. This conjecture was proved only recently in [102]. The choice of the exponent 2 of

the mean curvature and dimension n = 3 in the definition of the Willmore energy is the

proper fit in the context of differential geometry as WE is invariant under conformal

maps. The natural generalization of the type
∫

Σ
Hn

1 dHn−1 of the Willmore energy to

higher dimensional hypersurfaces is called Willmore-Chen functional. When n = 2, it

coincides with the Willmore energy. The Willmore energy and Willmore-Chen func-

tionals have been studied in [2, 35, 83] and references therein. If one considers integrals
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of the type
∫

Σ
Hα

1 dHn−1, then they lose their conformal invariance and become much

more difficult to study. For any dimension n, we recover such integrals as the Lp Steiner

coefficients in the Steiner formula (4.21).

4.5.2 The case p = 1

We start analyzing the coefficients from expansion (4.22). We observe that among them

there are mixed affine surface areas which will be introduced in Section 4.6.

If m = 0, then A0
1 = 1 and we have

W0,0(K) =

∫
Sn−1

fK(u)
n
n+1A0

1 dσ(u) =

∫
Sn−1

fK(u)
n
n+1 dσ(u) = as1(K).

Hence, the first term in (4.22) is the classical affine surface area of a body K.

If m = l(n− 1), l ∈ N, then A
l(n−1)
1 =

( n
n+1

l

)
H l
n−1. Thus,

Wl(n−1),l(n−1)(K) =

∫
Sn−1

fK(u)
n
n+1A

l(n−1)
1 dσ(u) =

( n
n+1

l

) ∫
Sn−1

fK(u)
n
n+1
−l dσ(u)

=

( n
n+1

l

) ∫
Sn−1

fK(u)
n−l(n+1)
n+1 dσ(u) =

( n
n+1

l

)
as1, l(n+1)(K),

where as1, l(n+1)(K) is the l(n+1)-mixed 1-affine surface area of K. Therefore, in (4.22)

we have mixed affine surface areas as coefficients in front of powers of t, which are

multiples of n− 1.

4.5.3 The general case

Now we move to analyzing the coefficients appearing in (4.21). We note that again

mixed affine surface areas appear.
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If m = 0, then A0
p = 1 and we have

W0,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−kA0
p dσ(u) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k dσ(u)

= asp+ k
n

(n+p),−k(K),

for k ∈ N ∪ {0}. When k = 0, we get the Lp affine surface area asp(K) of a body K.

If m = l(n− 1), l ∈ N, then A
l(n−1)
p =

( n
n+p

l

)
H l
n−1. Thus,

Wl(n−1),k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+l(n−1)Al(n−1)
p dσ(u) =

=

( n
n+p

l

) ∫
Sn−1

fK(u)
n
n+p
−lhK(u)

n(1−p)
n+p

−k+l(n−1) dσ(u)

= asnp+(n+p)(k−ln)
n−l(n+p) , 2nl−k(K).

The Lp Steiner coefficients consist of combinations of mixed products of the ele-

mentary symmetric functions of the principal curvatures Hi and the support function.

Applying Hölder’s inequality, we can bound those integrals from above. We present one

typical example and the other cases can be dealt accordingly.

For instance, consider the case when only one symmetric function of the principal

curvatures Hj appears in Amp , that is, if m = lj, l ∈ N, i.e., all is = 0, s 6= j and ij = l

for 1 ≤ j ≤ n − 2, then Aljp =
( n
n+p

l

)(
n−1
j

)l
H l
j. Using Hölder’s inequality, we get an

upper bound

Wlj,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−kAljp dσ(u)

=

( n
n+p

l

)(
n− 1

j

)l ∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+ljH l
j dσ(u)

≤
( n
n+p

l

)(
n− 1

j

)l ∫
Sn−1

H2l
j dσ(u)

 1
2

as
p+

(k−lj)(n+p)
n

, 2lj−2k−n(K)
1
2 .
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Applying Hölder’s inequality a necessary number of times, we can obtain similar bounds

for any term in the expansion (4.21).

The following theorem gives the inequality for the Lp Steiner coefficients which is

similar to the inequality for the mixed affine surface areas given in [94, Theorem 3]

when the second body is taken to be a ball.

Theorem 4.8 Let K be a convex body and i, j, k ∈ R such that m ≤ i < j < k. Then

for a fixed m ∈ N ∪ {0},

Wm,k(K)j−iWm,i(K)k−j ≥ Wm,j(K)k−i

with equality if and only if K is a Euclidean ball.

Proof. We use Hölder’s inequality

∫
Sn−1

g1(u) · · · gq(u) dσ(u) ≤
q∏
i=1

 ∫
Sn−1

gi(u)ai dσ(u)

 1
ai

with q = 2 and a1 = k−i
j−i , a2 = k−i

k−j . We take

g1(u) =
(
fp(K, u)

n
n+p hK(u)

n(1−p)
n+p Amp

) 1
a1
hK(u)

1
a1

(m−k)
,

g2(u) =
(
fp(K, u)

n
n+p hK(u)

n(1−p)
n+p Amp

) 1
a2
hK(u)

1
a2

(m−i)
.

Then using the definition of the Lp Steiner coefficients (4.3), we get the desired result.

Equality holds in Hölder inequality if and only if ga11 is proportional to ga22 . This leads

to the condition that the support function of K must be a constant, i.e. hK(u) = const.

Thus, K must be a ball, which follows from the fact that the support function uniquely

determines a convex body. �

As we have shown above that someWm,k are mixed affine surface areas, they satisfy

the inequality of Theorem 4.8.
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4.5.4 Connections to information theory

We would like to point out a connection between the Lp Steiner coefficients and infor-

mation theory. To do so we need some background.

Let (X,µ) be a measure space and let dP = p dµ and dQ = q dµ be measures on X that

are absolutely continuous with respect to the measure µ. Then the Rényi divergence of

order α, introduced by Rényi [122] for α > 0 and α 6= 1, is defined by

Dα(P‖Q) =
1

α− 1
log

∫
X

pαq1−αdµ. (4.23)

It is the convention to put pαq1−α = 0, if p = 0 or q = 0, even if α < 0 and α > 1. The

integrals ∫
X

pαq1−αdµ (4.24)

are also called Hellinger integrals. See e.g. [84] for those integrals and additional

information. Rényi divergences and Hellinger integrals and their related inequalities are

important tools in information theory, statistics, probability theory, machine learning

and convex geometry, see e.g., [9, 32, 33, 40, 74, 84, 121].

Usually, in the literature, α ≥ 0. However, we will also consider α < 0, provided

the expressions exist. Following the ideas of [156], where Rényi divergences for convex

bodies K were introduced, we consider the measure space (∂K,Hn−1) and densities

pK , qK on ∂K,

pK(x) =
Hn−1(x)

〈x, ν(x)〉n
, qK(x) = 〈x, ν(x)〉. (4.25)

Then

PK = pK µK and QK = qK µK (4.26)

are measures on ∂K that are absolutely continuous with respect to µK . We remark

that those measures are the cone measures of K and K◦, respectively, see e.g. [115].

By the change of integration formula (4.9), the Lp Steiner coefficients can be written
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as

Wm,k(K) =

∫
Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u)

=

∫
∂K

Hn−1(x)
p

n+p 〈x, ν(x)〉
n(1−p)
n+p

−k+mAmp dHn−1(x) (4.27)

=

∫
∂K

(
Hn−1(x)

〈x, ν(x)〉n

) p
n+p

〈x, ν(x)〉1−
p

n+p 〈x, ν(x)〉m−kAmp dHn−1(x).

Thus the Lp Steiner coefficients are weighted (by the weight 〈x, ν(x)〉m−kAmp ) Hellinger

integrals of the measures PK and QK , respectively,

1

α− 1
logWm,k(K)

are weighted α-Rényi divergences with weight 〈x, ν(x)〉m−kAmp and α = p
n+p

.

4.6 Mixed affine surface areas

For all p ≥ 1 and all real s, the s-th mixed Lp affine surface area of K is defined in [94].

We use generalization of this definition to all p 6= −n and all real s, which is given

in [158] by

asp, s(K) =

∫
Sn−1

fp(K, u)
n−s
n+pdσ(u),

where fp(K, u) = fK(u)hK(u)1−p.

Theorem 4.9 Let K be a convex body in Rn that is C2
+ and let t ∈ R be such that

0 ≤ t < β(K). For all p ∈ R, p 6= −n, for all s ∈ R,

asp, s(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

(n−s
n+p

(1− p)
k −m

) ∫
Sn−1

fK(u)
n−s
n+phK(u)

n−s
n+p

(1−p)−k+mAmp, s dσ(u)

]
tk,
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where

Amp, s = Amp, s
(
ξ̄K(u)

)
=∑

i1,...,in−1≥0
i1+2i2+···+(n−1)in−1=m

( n−s
n+p

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

}
.

When s = 0, we recover Theorem 4.4 and when p = 1, we get the expansion for the

s-mixed affine surface areas.

Remark on the polytopal case

The next theorem gives the corresponding Steiner formula for the s-mixed Lp affine

surface area of the polytope P .

Theorem 4.10 Let P be a convex polytope in Rn and t be such that 0 ≤ t < β(P ).

For all s ∈ R, for all p ∈ R such that if n < s, then p /∈ (−s,−n] and if n > s, then

p /∈ [−n,−s),

asp, s(P + tBn
2 ) =

∞∑
m=0

(
n−s
n+p

(1− p)
m

) ∑
v∈vert P

∫
u∈Norm(v)

hP (u)
(n−s)(1−p)

n+p
−mdσ(u) tm+

(n−1)(n−s)
n+p .

4.7 Proofs

We start by showing that Corollary 4.2 and 4.3 are consequences of Theorem 4.4.

4.7.1 Proof of Corollary 4.2 and 4.3

Proof of Corollary 4.2

By (4.12), we get for the left hand side of (4.21),

as0(K + tBn
2 ) = nvoln(K + tBn

2 ).
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The right hand side of (4.21) becomes

∞∑
m=0

[
∞∑
k=m

(
1

k −m

)
tk
∫

Sn−1

fK(u)hK(u)1−k+mAm0 dσ(u)

]
=

∞∑
m=0

[
tm

∫
Sn−1

fK(u)hK(u)Am0 dσ(u) + tm+1

∫
Sn−1

fK(u)Am0 dσ(u)

]
,

where

Am0 =∑
i1,...,in−1≥0

i1+2i2+···+(n−1)in−1=m

(
1

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

}
.

By (4.16), we only get a contribution for Am0 if either i1+i2+· · ·+in−1 = 0, i.e., all ij = 0,

or if i1+i2+· · ·+in−1 = 1, which means that ij = 1 and ik = 0 for all k 6= j. Then m = j

as the summation is over all i1, . . . , in−1 ≥ 0 such that i1 + 2i2 + · · ·+ (n− 1)in−1 = m.

We also use (4.9) and then we get for the right hand side of (4.21),

n−1∑
m=0

(
n− 1

m

)[
tm
∫
∂K

〈νK(x), x〉Hm dHn−1 + tm+1

∫
∂K

HmdHn−1

]

=

∫
∂K

〈νK(x), x〉 dHn−1(x)

+
n−1∑
m=1

(
n− 1

m

)[
tm
∫
∂K

Hm−1(x) dHn−1(x) + tm+1

∫
∂K

Hm(x)dHn−1(x)

]
.

In the last equality we have used (4.7). Collecting terms and using the recursive identity

for binomial coefficients (
n

k

)
=

(
n− 1

m

)
+

(
n− 1

m− 1

)
for all integers n,m such that 1 ≤ m ≤ n − 1, and the identity (4.6), we get for the
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right hand side of (4.21)

nvoln(K) +
n∑

m=1

(
n

m

) ∫
∂K

Hm−1(x) dHn−1(x) tm = n
n∑

m=0

(
n

m

)
Wm tm.

This shows that the classical Steiner formula is a corollary of Theorem 4.4.

Proof of Corollary 4.3

By (4.11) and (4.8), we get for the left hand side of (4.21),

as±∞(K + tBn
2 ) = n voln((K + tBn

2 )◦) = n W̃0((K + tBn
2 )◦).

The right hand side of (4.21) becomes

∞∑
m=0

[
∞∑
k=m

(
−n
k −m

)
tk
∫

Sn−1

hK(u)−n−k+mAm±∞ dσ(u)

]
,

where

Am±∞ =∑
i1,...,in−1≥0

i1+2i2+···+(n−1)in−1=m

(
0

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

}
.

We only get a contribution for Am±∞ if i1 + i2 + · · · + in−1 = 0, i.e., if ij = 0 for all j.

This means that we only get a contribution for m = 0. As A0
±∞ = 1, the right hand

side of (4.21) becomes

∞∑
k=0

(
−n
k

)
tk

∫
Sn−1

hK(u)−n−k dσ(u).
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If K is a convex body such that 0 ∈ int(K), then

ρK◦(u) =
1

hK(u)
for all u ∈ Sn−1.

Hence, with (4.8),

∞∑
k=0

(
−n
k

)
tk

∫
Sn−1

hK(u)−n−k dσ(u) =

∞∑
k=0

(
−n
k

)
tk

∫
Sn−1

ρK◦(u)n+k dσ(u) = n
∞∑
k=0

(
−n
k

)
W̃−k(K

◦) tk.

Before we prove the general case of Theorem 4.4, it will be helpful to treat a special

case.

Throughout this chapter, we will also need the facts that are listed next.

First, note that it is not difficult to see that the support function of K + tL can be

expressed in terms of the support functions of K and L by

hK+tL(u) = hK(u) + thL(u) (4.28)

(see, for example, [132]). Now we write the expression for the curvature function

fK+tBn2
(u). Recall that the curvature function is reciprocal of the Gauss curvature,

that is,

fK+tBn2
(u) =

1

Hn−1(ξ̄K+tBn2
(u))

.

Since ξ̄K+tBn2
(u) is the point on ∂(K + tBn

2 ) that has u as unique outer unit normal,

ξ̄K+tBn2
(u) = x + tu, where x is this point on ∂K that has u as unique outer normal,

i.e., x = ξ̄K(u). We will also use the fact that the Gauss curvature Hn−1(x + tu) is

the product of the principal curvatures kt1(x+ tu), . . . , ktn−1(x+ tu). A well-known fact

from differential geometry provides the connection between the principal curvatures kti
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of the outer parallel body K + tBn
2 and principal curvatures ki of the body K, namely

kti(x+ tu) =
ki(x)

1 + tki(x)
,

for x ∈ ∂K and u the outer unit normal vector to K at the point x. Therefore, the

Gauss curvature of the parallel body is

Hn−1(x+ tu) =
n−1∏
i=1

kti(x+ tu) =
n−1∏
i=1

ki(x)

1 + tki(x)
=

Hn−1(x)∏n−1
i=1 (1 + tki(x))

.

Since u is a unit outward normal vector at x to K (and also a unit outer normal vector

at x+ tu to K + tBn
2 ), we derive an expression for the curvature function fK+tBn2

(u),

fK+tBn2
(u) = fK(u)

n−1∏
i=1

(
1 + tki

(
ξ̄K(u)

))
= fK(u)

n−1∑
k=0

(
n− 1

k

)
Hk(ξ̄K(u))tk

= fK(u)

(
1 +

n−1∑
k=1

(
n− 1

k

)
Hk(ξ̄K(u))tk

)
. (4.29)

4.7.2 The case when n
n+p is a natural number

We consider case when n
n+p

is a natural number, that is

n

n+ p
= l where l ∈ N,

or equivalently,

p = −n(l − 1)

l
, for l ∈ N.

Then (1− p) n
n+p

= l + n(l − 1) ∈ N, since l ∈ N.
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Then, by (4.13), (4.28) and (4.29),

asp(K + tBn
2 ) =

∫
Sn−1

f lK(u)

(
1 +

n−1∑
k=1

(
n− 1

k

)
Hkt

k

)l

(hk + t)l+n(n−1) dσ(u)

=

∫
Sn−1

f lK(u)

[(
l

0

)
+

(
l

1

) n−1∑
k=1

(
n− 1

k

)
Hkt

k +

(
l

2

)(n−1∑
k=1

(
n− 1

k

)
Hkt

k

)2

+ . . .

+

(
l

l

)(n−1∑
k=1

(
n− 1

k

)
Hkt

k

)l]
·[(

l + n(l − 1)

0

)
h
l+n(l−1)
K + . . .+

(
l + n(l − 1)

l + n(l − 1)

)
tl+n(l−1)

]
dσ(u),

where we used Taylor series expansion of the curvature term and support function

term. Note that t
hK(u)

≤ t
β(K)

< 1. Hence, the binomial series for the support function

uniformly converges on Sn−1. Since K is C2
+, all curvature expressions are bounded

from above and strictly positive, independently of x.

Expanding the summations, we can write the general term corresponding to the

power tm as

∑
i1,...,in−1≥0

i1+2i2+···+(n−1)in−1=m

(
l

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

(
n− 1

j

)i1
H
ij
j .

The multinomial coefficients here are coming from the multinomial formula (4.17).

Therefore, the following gives the general formula for the Lp affine surface area,

asp(K + tBn
2 ) =

l(n−1)∑
m=0

[
l+n(l−1)+m∑

k=m

(
l + n(l − 1)

k −m

)
tk
∫

Sn−1

f lK(u)h
l+n(l−1)−k+m
K ·

 ∑
i1,...,in−1≥0

i1+2i2+···+(n−1)in−1=m

(
l

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

} dσ

]
.

88



The parameter m determines the number of sums inside and varies between 0 and

l(n− 1), since the highest power of t is l + n(l − 1) + l(n− 1).

For convenience, we denote the part of the expression under the integral by Amp, s =

Amp, s
(
ξ̄K(u)

)
:

Amp, s =
∑

i1,...,in−1≥0
i1+2i2+···+(n−1)in−1=m

( n−s
n+p

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

}

(4.30)

for any real p 6= −n and s. Note that in the current case p = n(1−l)
l
, s = 0 and

the expression n
n+p

= l. Coefficients Amp = Amp, 0 represent a sum of mixed products of

symmetric functions of the principal curvaturesHi (4.4) with corresponding multinomial

coefficients.

Thus,

asn(1−l)
l

(K+tBn
2 ) =

l(n−1)∑
m=0

l+n(l−1)+m∑
k=m

(
l + n(l − 1)

k −m

)
tk
∫

Sn−1

f lK(u)h
l+n(l−1)−k+m
K Amn(1−l)

l

dσ(u)


(4.31)

for l ∈ N.

4.7.3 The case of real p 6= −n

The Lp affine surface area of K + tBn
2 is given by (4.13). Using relation (4.29) for the

curvature function of the parallel body, we can rewrite it in the following form,

asp(K+tBn
2 ) =

∫
Sn−1

fK(u)
n
n+p

(
1 +

n−1∑
k=1

(
n− 1

k

)
Hk(ξ̄K(u))tk

) n
n+p

(hK(u) + t)
n(1−p)
n+p dσ(u).
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Using Taylor series expansions of the curvature and support functions terms, we have

asp(K + tBn
2 ) =∫

Sn−1

fK(u)
n
n+p

∞∑
i=0


( n
n+p

i

)[n−1∑
k=1

(
n− 1

k

)
Hk(ξ̄K(u))tk

]i
∞∑
j=0

(n(1−p)
n+p

j

)
hK(u)

n(1−p)
n+p

−jtj dσ.

Now, analogous to the procedure used in Section 4.7.2, we have the general formula

asp(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

( n(1−p)
n+p

k −m

)
tk
∫

Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+m·

 ∑
i1,...,in−1≥0

i1+2i2+···+(n−1)in−1=m

( n
n+p

i1 + · · ·+ in−1

)(
i1 + · · ·+ in−1

i1, i2, . . . , in−1

) n−1∏
j=1

{(
n− 1

j

)ij
H
ij
j

} dσ

]
.

Using the notation Amp defined in (4.30), we can write the expression above in a more

compact way:

asp(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

( n(1−p)
n+p

k −m

)
tk
∫

Sn−1

fK(u)
n
n+phK(u)

n(1−p)
n+p

−k+mAmp dσ(u)

]
.

We note that the first coefficient in this expansion represents the Lp affine surface area

asp(K) of a body K.

Similarly, an expansion for the s-th mixed p-affine surface area asp, s(K + tBn
2 ) is

obtained for all real s. In fact, for a convex body K and 0 ≤ t < β(K), one has

asp, s(K + tBn
2 ) =

∞∑
m=0

[
∞∑
k=m

(n−s
n+p

(1− p)
k −m

)
tk
∫

Sn−1

fK(u)
n−s
n+phK(u)

n−s
n+p

(1−p)−k+mAmp, s dσ(u)

]
.

Note that the first coefficient in this expansion gives the s-mixed Lp affine affine surface

area asp, s(K) of a body K. If p = 1, this gives the expansion for the s-th mixed affine

surface area as1, s(K + tBn
2 ) for any real s.
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This finishes the proof of Theorem 4.4 and Theorem 4.9.

4.7.4 Proof of Theorem 4.5

The L−n affine surface area of K + tBn
2 is given by

as−n(K + tBn
2 ) = max

u∈Sn−1
fK+tBn2

(u)
1
2hK+tBn2

(u)
n+1
2 .

Using relations (4.29) and (4.28), we can rewrite it as

as−n(K + tBn
2 ) =

= max
u∈Sn−1

fK(u)
1
2hK(u)

n+1
2

([
1 +

n−1∑
k=1

(
n− 1

k

)
Hk(ξ̄K(u))tk

]
(hK(u) + t)n+1

) 1
2

= max
u∈Sn−1

fK(u)
1
2hK(u)

n+1
2

(
1 +

2n∑
j=1

∑
k+i=j

[(
n− 1

k

)(
n+ 1

i

)
Hk(ξ̄K(u))

hK(u)i

]
tj

) 1
2

.

For convenience, we denote the coefficients in front of powers of t as

Bj = Bj(u) =
∑
k+i=j

[(
n− 1

k

)(
n+ 1

i

)
Hk(ξ̄K(u))

hK(u)i

]
, 0 ≤ j ≤ 2n.

Using Taylor series expansion, we obtain

as−n(K + tBn
2 ) = max

u∈Sn−1
fK(u)

1
2hK(u)

n+1
2

(
1 +

2n∑
j=1

Bjt
j

) 1
2

= max
u∈Sn−1

fK(u)
1
2hK(u)

n+1
2

∞∑
m=0

 ∑
i1,...,i2n≥0

i1+2i2+···+2ni2n=m

(
1
2

i1 + · · ·+ i2n

)(
i1 + · · ·+ i2n
i1, . . . , i2n

) 2n∏
q=1

Biq
q

 tm.
Similarly to (4.30), we can introduce coefficients Am−n = Am−n(u) by

Am−n = Am−n(u) =
∑

i1,...,i2n≥0
i1+2i2+···+2ni2n=m

(
1
2

i1 + · · ·+ i2n

)(
i1 + · · ·+ i2n
i1, . . . , i2n

) 2n∏
q=1

Biq
q .
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Then

as−n(K + tBn
2 ) = max

u∈Sn−1
fK(u)

1
2hK(u)

n+1
2

∞∑
m=0

Am−nt
m.

4.7.5 Proof of Theorem 4.6

For −n < p < 0, the exponent p
n+p

of the Gauss curvature Hn−1(x) in (4.10) is negative.

Since for the set {y ∈ ∂(P + tBn
2 ) : Hn−1(y) = 0} Gauss curvature is equal to zero, we

have that asp(P + tBn
2 ) =∞.

Next, we consider the case when p /∈ [−n, 0]. Note that in this case the exponent p
n+p

of Hn−1(x) in (4.10) is positive. We have that fP+tBn2
(u) 6= 0 only for those u ∈ Sn−1

for which fP+tBn2
(u) <∞ and then fP+tBn2

(u)
n
n+p = t

n(n−1)
n+p . By this, (4.13) and (4.29),

asp(P + tBn
2 ) =

∫
{y∈∂(P+tBn2 ):Hn−1(y)=0}

Hn−1(y)
p

n+p

〈y, ν(y)〉
n(p−1)
n+p

dHn−1(y)

+

∫
{y∈∂(P+tBn2 ):Hn−1(y)6=0}

Hn−1(y)
p

n+p

〈y, ν(y)〉
n(p−1)
n+p

dHn−1(y)

=

∫
{u:fP+tBn2

(u)<∞}

fP+tBn2
(u)

n
n+phP+tBn2

(u)
n(1−p)
n+p dσ(u)

= t
n(n−1)
n+p

∫
{u:fP+tBn2

(u)<∞}

(hP (u) + t)
n(1−p)
n+p dσ(u)

= t
n(n−1)
n+p

∫
{u:fP+tBn2

(u)<∞}

hP (u)
n(1−p)
n+p

∞∑
j=0

(n(1−p)
n+p

j

)
tj

hP (u)j
dσ(u)

=
∞∑
j=0

(n(1−p)
n+p

j

)
tj+

n(n−1)
n+p

∫
{u:fP+tBn2

(u)<∞}

hP (u)
n(1−p)
n+p

−j dσ(u)

=
∞∑
j=0

(n(1−p)
n+p

j

) ∑
v∈vertP

∫
u∈Norm(v)

hP (u)
n(1−p)
n+p

−jdσ(u) tj+
n(n−1)
n+p .

As by assumption t < β(P ), we have for all u ∈ Sn−1 that t
hP (u)

≤ t
β(P )

< 1 and,

therefore, the above infinite sum converges uniformly. Moreover, for all u ∈ Sn−1,

92



λ(P ) ≤ hP (u) ≤ Λ(P ). Thus, we can interchange integration and summation, which

was done in the second last equality above.

For p = 0, we have a different situation, namely,

as0(P + tBn
2 ) =

∫
{y∈∂(P+tBn2 ):Hn−1(y)=0}

1

〈y, ν(y)〉−1dH
n−1(y)

+

∫
{y∈∂(P+tBn2 ):Hn−1(y)6=0}

1

〈y, ν(y)〉−1dH
n−1(y)

=

∫
∂(P+tBn2 )

〈y, ν(y)〉 dHn−1(y) = n voln(P + tBn
2 ).

93



Chapter 5

A sausage body is a unique solution

for a reverse isoperimetric

problem 4

5.1 Introduction

Inequality (1.4) has a long and beautiful history, and has been generalized to a variety of

different settings (see, for example, surveys [29, 124]). The distinctive point of almost

all of these generalizations is that the extreme object is always a ball, as the most

symmetric body. On the other hand, the problem can be looked at from a different

point of view: under which conditions can one minimize the volume among all domains

of a given constraint (such as given surface area, etc.)? Questions of such type are

known as reverse isoperimetric problems, and have been actively studied recently.

The naive attempt of minimizing volume among all sets of a given surface area will

clearly lead to a trivial result: the n-dimensional volume is zero for every set with

empty interior. Therefore, we must consider a family of sets with additional conditions

4A version of this chapter was published: R. Chernov, K. Drach, K. Tatarko, “A sausage body is
a unique solution for a reverse isoperimetric problem”, Adv. Math. 353 (2019), pp. 119-128.
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imposed in order to obtain a well-posed reverse isoperimetric problem. One of the

natural conditions is convexity or strict convexity.

One of the first results on the reverse isoperimetric problem is due to Keith Ball.

In his celebrated works [5, 6] he showed that for any convex body K in Rn there is an

affine transformation T such that the volume of T (K) ⊂ Rn is no smaller than that of

the standard simplex of the same surface area; if the bodies are additionally assumed to

be symmetric, then the cube is an extreme object. The equality case in Ball’s reverse

isoperimetric inequalities was completely settled later by Barthe [10]. Observe that for

Ball’s approach the minimizers are no longer balls.

Another approach towards obtaining a reverse isoperimetric inequality was recently

taken in [114], where the authors provided a lower bound on the area enclosed by a

convex curve γ ⊂ R2 in terms of its length and the area of the domain enclosed by the

locus of curvature centers of γ. The authors also showed that equality is attained only

for a disk. In this respect, the results in [114] do not follow the philosophy of a reverse

isoperimetric problem. See also [162], but again these results, although called ‘reverse’,

do not follow the philosophy of a reverse isoperimetric problem.

At the same time, motivated by the study of strictly convex hypersurfaces in Rie-

mannian spaces (see, for instance, [23, 17, 19]), Borisenko and Drach in a series of papers

[20, 21, 43] obtained two-dimensional reverse isoperimetric inequalities for so-called λ-

convex curves, i.e. curves whose curvature k, in a weak sense, satisfies k > λ > 0.

Recently, these results were generalized in [18] for λ-convex curves in Alexandrov met-

ric spaces of curvature bounded below. The result of Borisenko completely settles the

reverse isoperimetric problem for λ-convex curves.

λ-convexity is a notion that can be easily transferred to higher dimensions. A convex

body in Rn is λ-convex if the principal curvatures (ki)
n−1
i=1 of the boundary of the body

are uniformly bounded, in a weak sense, by λ, i.e. ki > λ > 0 for all i ∈ {1, . . . , n− 1}

(we refer to [23, 22, 44] for various results concerning the geometry of multidimensional

λ-convex bodies). It is worth pointing out that the reverse isoperimetric problem for
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λ-convex bodies has a non-trivial solution in any dimension, although for dimensions

greater than two it is a hard problem that is still widely open (see Subsection 5.4.2).

In this chapter we consider a notion, in a sense, dual to the notion of λ-convexity.

In particular, we consider so-called λ-concave bodies in Rn. These are the convex

sets such that the principal curvatures of their boundaries satisfy λ > ki > 0 for all

i ∈ {1, . . . , n − 1} (in viscosity sense, see Definition 5.2). For λ-concave bodies we

completely solve the reverse isoperimetric problem in any dimension. This is the first

result on the reverse isoperimetric problem in Rn, besides the celebrated results of Ball

and their various extensions, where the inequality is not restricted to curves or surfaces.

Moreover, our methods allow us to prove the full family of sharp inequalities involving

quermassintegrals of a convex body.

5.1.1 Further motivation

Part of our motivation, besides previously mentioned work on the reverse isoperimetric

problem for λ-convex domains due to Borisenko and Drach [20, 21, 43], came from

results on so-called Will’s conjecture.

If K is a planar convex body with inradius r, i.e., the radius of the largest ball which

is contained in the body, then the inequality

vol2(K) 6 r vol1(∂K)− r2π

is called Bonnesen’s inradius inequality. Equality holds for the sausage body, that

is, the Minkowski sum of a line segment and a circle with radius r. An extension of

Bonnesen’s inradius inequality to higher dimensions was conjectured by Wills [161] in

1970. He conjectured that

voln(K) 6 rvoln−1(∂K)− (n− 1) rn voln(Bn
2 ),
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for every convex body K ⊂ Rn with inradius r. This conjecture was proven inde-

pendently by Bokowski [15] and Diskant [42]. Although the same inequality with the

circumradius R of K substituting r is not true in dimensions greater than two (see

[42, 76]), Bokowski and Heil [16] showed that for higher dimensions, in fact, the in-

equality sign is reversed:

voln(K) >
2R

n− 1
voln−1(∂K)− (n+ 1)Rn

n− 1
voln(Bn

2 ). (5.1)

In [16] inequality (5.1) was obtained as a corollary of the following more general result

Theorem 5.1 ([16]) For an arbitrary convex body K ⊂ Rn with circumradius R, the

inequalities

cijkR
iWi(K) + cjkiR

jWj(K) + ckijR
kWk(K) > 0, (5.2)

hold for every 0 6 i < j < k 6 n, where cpqr = (r − q)(p+ 1).

Here Wi(K) is the quermassintegral of order i of the convex body K, i ∈ {1, . . . , n}

(see Section 4.3.1 for details). Quermassintegrals can be viewed as geometric quantities

assigned to a convex body that are a higher-dimensional generalization of the integral

curvature of a closed curve, and can be explicitly calculated in terms of the principal

curvatures ki of ∂K, provided ∂K is sufficiently smooth (see (4.6)). The quermassinte-

grals of different order provide a natural embedding of the volume voln(K), the surface

area voln−1(∂K) and the volume of the unit ball voln(Bn
2 ) into the sequence (Wi(K))ni=0

for which (up to a constant) these are respectively, the zeroth, the first, and the n-th

element. Therefore, (5.1) is a special case of (5.2) with i = 0, j = 1 and k = n.

The form of the Bokowski–Heil inequality (5.1) inspired the statement of our main

result, Theorem 5.4, although we use different techniques for the proof. It appears

that, having a natural inclusion of the volume, the surface area and the volume of the

unit ball into the sequence of quermassintegrals helps to solve the reverse isoperimetric

problem for λ-concave bodies in Rn for every n > 2.

97



5.1.2 The main results

Recall that a convex body in the Euclidean space Rn is a compact convex set with a

non-empty interior.

Definition 5.2 (λ-concave body) For a given λ > 0, a convex body K ⊂ Rn is called

λ-concave if for every p ∈ ∂K there exists a ball B1/λ,p (called a supporting ball at p)

of radius 1/λ passing through p in such a way that

B1/λ,p ∩ U(p) ⊆ K ∩ U(p) (5.3)

for some small open neighborhood U(p) ⊂ Rn of p.

Figure 5.1: A λ-concave body.

Note that since K is assumed to be convex, if K is λ-concave, then a supporting

ball is unique at every point. As for the nomenclature, compare it to the notion of λ-

convexity (see [22, 19, 44]), for which inclusion (5.3) is reversed (see also the discussion

in Subsection 5.4.2).

If the boundary ∂K of a convex body K is at least C2-smooth, then K is λ-concave

if and only if the principal curvatures ki(p) for all i ∈ {1, . . . , n−1} are non-negative and
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Figure 5.2: A λ-sausage body.

uniformly bounded above by λ, i.e. 0 6 ki(p) 6 λ for every i and p ∈ ∂K. Equivalently,

in the smooth setting λ-concavity can be expressed in terms of uniformly bounded

normal curvature. Let p ∈ ∂K be a point, v ∈ Tp∂K be a vector which belongs to the

tangent hyperplane at point p, ν be the inward pointing normal to ∂K at p, and π(p, v)

be the two-dimensional plane through p spanned by v and ν. The normal curvature

kn(p, v) of ∂K ⊂ Rn at the point p in the direction of v is defined as

kn(p, v) := κ(p),

where κ(p) is the curvature of the planar curve ∂K ∩ π(p, v) at the point p. Using

this notion, a convex body K with smooth boundary is λ-concave if and only if 0 6

kn(p, v) 6 λ uniformly over p and v. In general, K is λ-concave if the uniform bound

on normal curvatures is satisfied in the viscosity sense (see [22, Definition 2.3] for a

similar approach).

Definition 5.3 (λ-sausage body) A λ-sausage body in Rn is the convex hull of two

balls of radius 1/λ (see Figure 5.2).

We are now ready to state the main results of this chapter.

Theorem 5.4 (Reverse quermassintegral inequality for λ-concave bodies)
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Let K ⊂ Rn be a convex body. If K is λ-concave, then

(k − j)Wi(K)

λi
+ (i− k)

Wj(K)

λj
+ (j − i)Wk(K)

λk
> 0 (5.4)

for every triple (i, j, k) with 0 6 i < j < k 6 n. Moreover, equality in (5.4) holds if

and only if K is a λ-sausage body.

Since W0(K) = voln(K), W1(K) = voln−1(∂K)/n and Wn(K) = voln(Bn
2 ), inequal-

ity (5.4) for i = 0, j = 1 and k = n immediately implies the following result:

Theorem 5.5 (Reverse isoperimetric inequality for λ-concave bodies) Let K ⊂ Rn

be a convex body. If K is λ-concave (for some λ > 0), then

voln(K) >
voln−1(∂K)

(n− 1)λ
− voln(Bn

2 )

(n− 1)λn
. (5.5)

Moreover, equality holds if and only if K is a λ-sausage body.

Theorem 5.4 (and hence Theorem 5.5) for n = 2 and n = 3 was first proved using

different techniques in [37]. It should be pointed out that Theorem 5.5 for n = 2 was

suggested earlier in [21]; in that paper the authors also prove a similar result on the

two-dimensional sphere.

In Section 5.2 we recall some necessary background from convex geometry that

will be used in the sequel. In Section 5.3 we provide a proof of the key result (Theo-

rem 5.4). Finally, Section 5.4 contains some further remarks on the reverse problems; in

particular, in Subsection 5.4.1 we obtain a so-called reverse isodiametric inequality for

λ-concave bodies, and in Subsection 5.4.2 we discuss a connection to the dual problem

for λ-convex bodies.

100



5.2 General background on quermassintegrals and

convex geometry

In this section we present some background material and auxiliary lemmas towards the

proof of the main result.

As was mentioned above, the Minkowski addition of two convex bodies K and L in

Rn is defined by

K + L := {x+ y : x ∈ K, y ∈ L}.

One can rewrite the definition in the following form

K + L =
⋃
y∈L

(K + y),

that is K + L can be viewed as the set that is covered if K undergoes translations by

all vectors in L. Since K and L are convex, then K +L is also convex. The Minkowski

difference of convex bodies K and L is defined by

K − L := {x ∈ Rn : L+ x ⊂ K}.

Similarly to the operation of addition, we can rewrite the definition of Minkowski dif-

ference in the form

K − L =
⋂
y∈L

(K − y).

For a parameter t > 0, the Minkowski difference K − tBn
2 is called the inner parallel

body.

By convention, W0(K) is equal to the n-dimensional volume of the body. In particu-

lar, nW1(K) is the n−1-dimensional volume (surface area) of ∂K, and nWn(K) =: sn−1

is the n − 1-dimensional volume (surface area) of the unit sphere Sn−1. Recall that

sn−1/n = voln(Bn
2 ); hence Wn(K) = voln(Bn

2 ).
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We will need the following generalization of the Steiner formula for inner parallel

bodies (see [132, p. 225]):

Wq(K −Bn
2 ) =

n−q∑
i=0

(−1)i
(
n− q
i

)
Wq+i(K) (5.6)

for every 0 6 q 6 n. In particular, for q = 0 we have

voln(K −Bn
2 ) =

n∑
i=0

(−1)i
(
n

i

)
Wi(K). (5.7)

For the later purposes we will also adopt the notation Wk,j(K) for the quermassin-

tegral of order j of a convex body K lying in Rk. In particular, such a distinction is

needed for the following Kubota formula.

Lemma 5.6 (Kubota formula, [132, p. 301]) For given 0 < k ≤ n− 1, let Gn,k be

the Grassmann manifold of all k-dimensional linear subspaces of Rn, and let dP be the

probability measure on Gn,k which is invariant under the orthogonal group. Then for

every convex body K in Rn and for every integer j with 0 ≤ j ≤ k,

∫
Gn,k

Wk,j (K|P ) dP =
volk(B

k
2 )

voln(Bn
2 )
Wn,n−1−k+j(K),

where K|P is the orthogonal projection of K onto the k-dimensional linear subspace

P ∈ Gn,k.

The Kubota formula allows to run inductive arguments over the dimension of the

space provided that the class of convex bodies in question is closed under orthogonal

projections. As we will see now, this is exactly the case for λ-concave bodies.

The classical result due to Blaschke implies that local condition (5.3) is in fact global

(see [30, 104], and [14] for the original result of Blaschke).

Theorem 5.7 (Blaschke’s ball rolling theorem of λ-concave bodies)
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Let K ⊂ Rn be a λ-concave body. Then

B1/λ,p ⊆ K

for every point p ∈ ∂K and every supporting ball B1/λ,p at p.

From Blaschke’s ball rolling theorem it follows that the class of convex λ-concave

bodies in Rn is exactly the class of convex bodies K ⊂ Rn such that K = Kc +Bn
2

(
1
λ

)
for some convex set Kc, where Bn

2

(
1
λ

)
is Euclidean ball of radius 1

λ
(see 1.1). This

motivates the following definition.

Definition 5.8 (Core of a λ-concave body) A core of a λ-concave body K is the

set Kc := K −Bn
2

(
1
λ

)
.

It is easy to see that Kc is a convex set in Rn; however, the core is not necessarily

λ-concave, even more, Kc is not necessarily a convex body in Rn. Recall that the affine

hull of a convex set S ⊂ Rn is the affine subspace of least dimension that contains S.

We will call the dimension of the core (denoted by dimKc) to be the dimension of the

affine hull of Kc. Clearly, Kc is a convex body if its dimension is n. In these terms, a

λ-concave body is a λ-sausage body if and only if the dimension of its core is at most

one, and hence it is either a point or a segment.

Let P be a k-dimensional subspace of Rn, and K be a λ-concave body in Rn. Then

K|P =

(
Kc +Bn

2

(
1

λ

))
|P = Kc|P +Bn

2

(
1

λ

)
|P

by linearity of orthogonal projections. But Bn
2

(
1
λ

)
|P is a ball of radius 1/λ in P , while

Kc|P is some convex set in P . Therefore, K|P is a λ-concave body in P with the core

equal to Kc|P . These facts prove the following easy, but structurally important, lemma.

Lemma 5.9 (Orthogonal projections of λ-concave bodies) Orthogonal projections

of λ-concave bodies are λ-concave. More precisely, if K is a λ-concave body in Rn and P
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is a k-dimensional linear subspace of Rn, then K|P is a λ-concave body in P ; moreover,

if K is a λ-sausage body, then so is K|P .

5.3 Proof of the reverse quermassintegral inequality

for λ-concave bodies (Theorem 5.4)

In this section we will prove the main result of this paper — Theorem 5.4. Since the

left-hand side of (5.4) divided by λ is scale-invariant, without loss of generality we can

assume that λ = 1.

The following lemma is an important step towards the proof of the result. It allows

to drastically simplify further computations. The proof partly follows the ideas in [16,

Theorem 2].

Lemma 5.10 (On three consecutive indices) Theorem 5.4 holds true if and only

if it holds true for every triple of consecutive indices (l, l+ 1, l+ 2) with 0 ≤ l ≤ n− 2.

Proof. One direction in this lemma is obvious; so suppose Theorem 5.4 holds true

for every triple of consecutive indices. For three consecutive indices (l, l + 1, l + 2)

Theorem 5.4 reads as follows:

Wl(K)− 2Wl+1(K) +Wl+2(K) ≥ 0, (5.8)

and equality holds if and only if K is a sausage body. Then for any given triple (i, j, k)

with 0 ≤ i < j < k ≤ n applying (5.8) repeatedly, we get

Wk −Wk−1 > Wk−1 −Wk−2 > · · · > Wj −Wj−1 > · · · > Wi+1 −Wi (5.9)

(here we simplify our notation by setting Wi := Wi(K)). Estimating the sum of the
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first k − j and the last j − i differences in (5.9), we get

(Wk −Wk−1) + . . .+ (Wj+1 −Wj) > (k − j)(Wj −Wj−1),

(Wj −Wj−1) + . . .+ (Wi+1 −Wi) 6 (j − i)(Wj −Wj−1).

Performing cancellation and dividing both inequalities by k − j and j − i respectively,

we obtain

Wk −Wj

k − j
> Wj −Wj−1 >

Wj −Wi

j − i
,

and hence (Wk −Wj)/(k − j) > (Wj −Wi)/(j − i). This is equivalent to (5.4); the

inequality is proven. If we have equality in (5.4), then we must have equality throughout

in (5.9). But equality for a triple of consecutive indices yields that K is a sausage body.

This concludes the lemma. �

Our main approach towards the proof of Theorem 5.4 will be by induction on the

dimension of the ambient space. The following two lemmas provide necessary steps to

run such an induction.

Lemma 5.11 (Reverse inequality for (0, 1, 2)) For every n ≥ 2, if Theorem 5.4

holds for the triple (1, 2, 3), then it also holds for the triple (0, 1, 2).

Proof. This lemma is a consequence of the general Steiner formula for inner parallel

bodies. Indeed, by (5.6) for every integer q with 0 ≤ q ≤ n we have

Wq(K −Bn
2 (1)) = Wq(Kc) =

n−q∑
i=0

(−1)i
(
n− q
i

)
Wq+i(K) ≥ 0. (5.10)

Therefore

R :=
n−3∑
q=0

(
n− 3

q

)
Wq(Kc) =

n−3∑
q=0

(
n− 3

q

) n−q∑
i=0

(−1)i
(
n− q
i

)
Wq+i ≥ 0. (5.11)

Using the simplified notation Wj = Wj(K), we claim that R = W0 − 3W1 + 3W2 −
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W3. This can be easily seen by using the formalism of generating functions. To a

linear combination of quermassintegrals
∑n

i=0 ciWi we associate the generating function∑n
i=0 cix

i. Using such a formalism, the sum in (5.10) corresponds to the generating

function xq(1− x)n−q. Hence, the sum in (5.11) corresponds to the generating function

n−3∑
q=0

(
n− 3

q

)
xq(1− x)n−q = (1− x)3 ·

n−3∑
q=0

(
n− 3

q

)
xq(1− x)n−3−q

= (1− x)3 · (x+ 1− x)n−3 = (1− x)3.

Therefore, R = W0− 3W1 + 3W2−W3, as was claimed. But then, since R ≥ 0, and

W1 − 2W2 +W3 ≥ 0 by the hypothesis of the lemma, it follows that

W0 − 2W1 +W2 = R +W1 − 2W2 +W3 ≥ 0. (5.12)

This is inequality (5.4) for the triple (0, 1, 2). In order to conclude equality case, assume

that W0 − 2W1 +W2 = 0. Inequality (5.12) then implies W1 − 2W2 +W3 = 0 because

R is non-negative (by (5.11)). By hypothesis, Theorem 5.4 holds for the triple (1, 2, 3),

and thus equality case for this triple implies that K is a sausage body. The lemma

follows. �

Recall that the extended notation Wk,l(K) stands for the quermassintegral of order

l of a convex body K in Rk. For 0 ≤ l ≤ k − 2, put

Ek,l(K) := Wk, l(K)− 2Wk, l+1(K) +Wk, l+2(K).

The next lemma guarantees that this quantity is always non-negative in dimension n

provided that l > 0 and that Theorem 5.4 holds in all lower dimensions.

Lemma 5.12 (Reverse inequality for (l, l + 1, l + 2) with l ≥ 1) For a given n ≥

2, if Theorem 5.4 holds in Rk for every k with 2 ≤ k < n, then Theorem 5.4 holds in

Rn for every triple of consecutive indices (l, l + 1, l + 2) with 1 ≤ l ≤ n− 2.
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Proof. Let K be a 1-concave body in Rn, and l be an integer satisfying 1 ≤ l ≤ n− 2.

By the Kubota formula (Lemma 5.6),

En,l(K) =
voln(Bn

2 )

voln−l(B
n−l
2 )

∫
Gn,n−l

En−l,0(K|P )dP. (5.13)

From the bounds on l it follows that 2 ≤ n− l < n, and hence the Grassmann manifold

Gn,n−l is not the trivial one point set {Rn}.

By Lemma 5.9, the set K|P is a λ-concave body in the (n− l)-dimensional subspace

P . By hypothesis of the lemma, Theorem 5.4 holds true for such spaces. Therefore,

En−l,0(K|P ) ≥ 0 for every P ∈ Gn,n−l, (5.14)

and for any given P equality holds if and only if K|P is a sausage body. Combining

(5.13) and (5.14) we conclude that En,l(K) ≥ 0, which is exactly the inequality part in

Theorem 5.4 for the triple (l, l + 1, l + 2) and all 1-concave bodies in Rn.

Let us analyze the equality part of Theorem 5.4 for the triple (l, l+1, l+2). Suppose

for a given 1-concave body K ⊂ Rn one has En,l(K) = 0. Then En−l,0(K|P ) = 0 for

almost all P ∈ Gn,n−l. By hypothesis, the latter equality implies that K|P is a sausage

body, again for almost all P ∈ Gn,n−l. Moreover, since

K|P = Kc|P +Bn
2 (1)|P,

and K|P is a sausage body, we conclude that dim(Kc|P ) ≤ 1 for almost all P in the

Grassmannian Gn,n−l. Taking into account that the dimension of each P is at least

2, this gives us that dim(Kc) ≤ 1. Therefore, K is a 1-sausage body. The lemma is

proven. �

Proof of Theorem 5.4. Due to Lemma 5.10, it is enough to prove the result for

every triple of consecutive indices. The claim of Theorem 5.4 is now a consequence of
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Lemmas 5.11 and 5.12 by induction on the dimension of the ambient space, which is

done as follows.

The case n = 2 forms the base of the induction. In R2 the result is obvious, and

is just a restatement of Steiner formula (5.7). Indeed, if K is a 1-concave body in R2,

then

0 ≤ vol2(K −Bn
2 ) = vol2(Kc) = W0(K)− 2W1(K) +W2(K)

by (5.7); this proves the inequality (the triple (0, 1, 2) is the only possible in dimension

two). In order to conclude the inequality part, observe that vol2(Kc) = 0 implies

dimKc ≤ 1, and hence K is a 1-sausage body.

The inductive step is a combination of Lemmas 5.11 and 5.12. �

5.4 Concluding remarks

5.4.1 The reverse isodiametric inequality

In this subsection we want to extend our philosophy of a reverse isoperimetric problem

to a so-called isodiametric inequality. Recall that a diameter of a convex body K ⊂ Rn,

denoted as diam(K), is the following quantity:

diam(K) = max
p,q∈K

|p− q|.

In other words, the diameter is the length of the largest segment that connects two

points in K. The classical isodiametric inequality for convex bodies in Rn asserts that

for a given diameter D the ball of radius D/2 has the largest volume among all convex

bodies of diameter D (see [132, p. 383]).

One simple observation allows us to prove the reverse isodiametric inequality.

Theorem 5.13 (Reverse isodiametric inequality for λ-concave bodies) Let K ⊂

Rn be a convex body. Suppose K is λ-concave, and let Sλ ⊂ Rn be the λ-sausage body
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with

diam(K) = diam(Sλ).

Then

Wi(K) > Wi(Sλ) (5.15)

for every i ∈ {0, 1, . . . , n− 1}. Moreover, equality holds if and only if K is a λ-sausage

body.

Proof. Let p and q be a pair of points in K realizing the diameter of K. It is easy to

see that necessarily p, q ∈ ∂K, and moreover, both tangent planes to ∂K at p and q

are perpendicular to the segment pq. Therefore, if B1/λ,p and B1/λ,q are the supporting

balls at p resp. q of radius 1/λ, then B1/λ,p ⊆ K and B1/λ,q ⊆ K (by Blaschke’s ball

rolling theorem (Theorem 5.7)) and the convex hull of B1/λ,p ∪ B1/λ,q is the λ-sausage

body Sλ of diameter |p − q| = diam(K). Inequality (5.15) and the equality case then

follow by monotonicity of quermassintegrals with respect to inclusion (see [132, p. 282]).

�

Remark 5.14 Theorem 5.13 implies the following sharp estimate on the i-th quermass-

integral Wi = Wi(K) of a 1-concave body K in terms of its diameter D = diam(K):

Wi > voln(Bn
2 ) +

n− i
n

(D − 2) voln−1(Bn
2 ) for every i ∈ {0, . . . , n− 1}.

The estimate follows by a direct computation of Wi(S1).

5.4.2 The reverse isoperimetric problem for λ-convex domains

We conclude with a surprising difference between the reverse isoperimetric problems for

λ-convex and λ-concave bodies. For simplicity we restrict ourselves to the Euclidean

space, although everything written below makes perfect sense for constant curvature

spaces and even general Riemannian manifolds (with appropriate adjustments).
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Recall that a convex body K ⊂ Rn is λ-convex if for every p ∈ ∂K there exists a

ball B1/λ,p of radius 1/λ with the boundary sphere passing through p in such a way

that

B1/λ,p ∩ U(p) ⊇ K ∩ U(p) (5.16)

for some small open neighborhood U(p) ⊂ Rn of p (see [19, 44]).

Although λ-convexity and λ-concavity seem to be two notions dual to each other,

methods and difficulties in solving the reverse isoperimetric problem in each of these

classes are quite distinct. In our paper we completely solved the reverse isoperimetric

problem for λ-concave bodies in Rn. At the same time, only partial results are currently

available for λ-convex bodies. In particular, the two-dimensional case of the reverse

isoperimetric problem for λ-convex curves, as we already mentioned in the introduction,

is completely solved, see [18, 20, 21, 43]. For higher dimensions the following conjecture

is due to Alexander Borisenko (private communication; see also [44, Subsection 4.7]).

Conjecture 5.15 (Reverse isoperimetric inequality for λ-convex bodies)

A λ-convex lens in Rn, that is an intersection of two balls of radius 1/λ, is the

unique body that minimizes the volume among all λ-convex bodies of given surface area.

Remark 5.16 A similar conjecture can be stated for all model spaces of constant

curvature. In this case the balls are substituted with convex bodies whose boundary is

of constant normal curvature equal to λ.

Apart from the case n = 2, so far this conjecture was verified only in R3 for λ-convex

surfaces of revolution, see the research announcement in [45], and [46].

Finally, it is interesting to point out numerous results concerning so-called ball-

polyhedra (see, for example, the paper of Bezdek et al. [12] and references therein). A

ball-polyhedron is the intersection of finitely many balls of the same radius. Therefore,

this is a dual notion to a λ-concave polytope. In our terminology we would call them

λ-convex polytopes, and a λ-convex lens is one of them. Following the ideas of Bezdek
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et al. , Fodor, Kurusa and Vı́gh [53] introduce a notion of r-hyperconvexity, which is

1/r-convexity in the sense of the definition above. In the same paper the authors prove

that a two-dimensional λ-convex lens is a solution of the reverse isoperimetric problem

for λ-convex curves in R2 [53, Theorem 1.3], which was proven earlier in a sharper

version in [20]. Besides, Fodor, Kurusa and Vı́gh [53] state a conjecture (attributed to

Bezdek) which in our language asserts that the intersection of all balls of radius 1/λ

containing a pair of given points (a λ-convex spindle) is a unique body with smallest

volume among all λ-convex bodies of given surface area. This conjecture is false, at

least in R3, as the results in [45, 46] indicate (it is also not hard to check by a direct

comparison of volumes of the conjectural solutions).
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Chapter 6

Conclusion

In this thesis, we solved several problems from Random Matrix Theory and Convex

Geometry.

In Chapter 2, we obtained non-asymptotic bound for the smallest singular value of a

square matrix with i.i.d. heavy-tailed entries. Szarek in [143] showed that intermediate

singular values s` of Gaussian matrix are of order n+1−`√
n
, ` = 2, . . . , n − 1. Earlier

mentioned results of Rudelson and Vershynin in [129] and Wei in [153] confirmed the

same estimates of singular values s` for matrices with subgaussian entries. What one can

say about behavior of the intermediate singular values s`, ` = 2, . . . , n− 1 for matrices

with i.i.d. heavy-tailed entries? Since the largest singular value can be unbounded

for such matrices, we cannot expect to obtain estimates for all s`. Although, we can

ask whether some portion of the intermediate singular values will resemble the same

behavior as in Gaussian and subgaussian cases. In Chapter 3, we considered random

polytopes which are generated by rectangular matrices with i.i.d. heavy-tailed entries

and studied their geometric parameters. We extended known estimates to a much larger

class of random polytopes by reducing assumptions on the entries of the matrix.

We established an analogue of the Steiner formula for the Lp surface area in Chap-

ter 4. This provided an Lp extension of the classical Steiner formula. In the future, I

would like to generalize this formula to the case of Minkowski sum of two convex bodies
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K and L, that is K + tL for some parameter t > 0. Theorem 4.1 deals with a special

case when L = Bn
2 . In Chapter 5, we obtained a family of reverse quermassintegral

inequalities for λ-concave bodies. The reverse isoperimetric inequality in the class of

n-dimensional λ-concave bodies appeared as a particular case. One can consider a sim-

ilar reverse isoperimetric problem for the notion of λ-convexity which is in some sense

a dual notion to λ-concavity. As we mentioned in Section 5.4.2, only partial results

are known for λ-convex bodies. Conjecture 5.15 suggests that a λ-convex lens, that is

an intersection of two balls of radius 1/λ, is the unique volume minimizer among all

λ-convex bodies of given surface area.

113



Bibliography

[1] R. Adamczak, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Quantitative es-

timates of the convergence of the empirical covariance matrix in log-concave En-

sembles, J. Amer. Math. Soc. 23 (2010), 535–561.

[2] J. Arroyo, M. Barros, O. J. Garay, Willmore-Chen tubes on homogeneous spaces in

warped product spaces, Pacific J. Math. 188 (1999), 201–207.
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[7] I. Bárány, Z. Füredy, Approximation of the sphere by polytopes having few vertices,

Proc. Amer. Math. Soc. 102 (1988), no. 3, 651–659.
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[47] M. E. Dyer, Z. Füredi, C. McDiarmid, Volumes spanned by random points in the

hypercube, Random Structures Algorithms 3 (1992), 91–106.

[48] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J.

Matrix Anal. Appl., 9 (1988), 543–560.

[49] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

[50] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.

[51] W. J. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17–24.

[52] W. J. Firey, Blaschke sums of convex bodies and mixed bodies, Proc. Coll. Convexity

(Copenhagen, 1965), Københavns Univ. Mat. Inst (1967), 94–101.

[53] F. Fodor, A. Kurusa, V. Vı́gh, Inequalities for hyperconvex sets, Adv. Geom. 16

(2016), no. 3, 337–348.

[54] J.H.G. Fu, Curvature measures of subanalytic sets, Amer. J. Math. 116 (1994),

819–880.

[55] A. Gard, Reverse isoperimetric inequalities in R3, PhD Thesis, The Ohio State

University, Columbus, 2012.

[56] R. Gardner, Geometric Tomography, second edition, Cambridge University Press,

New York, 2006.

[57] R. J. Gardner, D. Hug, W. Weil, The Orlicz-Brunn-Minkowski theory: a general

framework, additions, and inequalities, J. Differential Geom. 97 (2014), 427–476.

[58] R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytical solution to the

Busemann-Petty problem on sections of convex bodies, Ann. Math. (2) 149 (1999),

691–703.

[59] S. Geman, A limit theorem for the norm of random matrices, Ann. Probab. 8

(1980), 252–261.

[60] A. Giannopoulos, M. Hartzoulaki, Random spaces generated by vertices of the cube,

Discrete Comp. Geom. 28 (2002), 255–273.

118



[61] E. D. Gluskin, The diameter of Minkowski compactum roughly equals to n, Funct.

Anal. Appl. 15 (1981), 57–58 (English translation).

[62] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their appli-

cations to the geometry of Banach spaces, (Russian) Mat. Sb. (N.S.) 136 (178)

(1988), no. 1, 85–96; translation in Math. USSR-Sb. 64 (1989), no. 1, 85–96.

[63] E. D. Gluskin, The octahedron is badly approximated by random subspaces, Funct.

Anal. Appl. 20 (1986), 11–16; translation from Funkts. Anal. Prilozh. 20 (1986),

no. 1, 14–20.

[64] Y. Gordon, A. E. Litvak, C. Schuett, E. Werner, Geometry of spaces between

zonoids and polytopes, Bull. Sci. Math. 126 (2002), 733–762.
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[68] O. Guédon, F. Krahmer, C. Kümmerle, S. Mendelson, H. Rauhut, On the geometry

of polytopes generated by heavy-tailed random vectors, preprint, arXiv:1907.07258.
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