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Abstract

It is well known that the normal return estimation for financial asset prices is defective. In

order to find better models to estimate the prices behavior of financial assets, people need

probabilistic distribution that can capture fat-tails, non-constant moments, etc. This thesis

find some distributions that can be utilized to model the financial asset returns and the

actuarial claim sizes, with the help of some orthogonal polynomials. We use the Pearson’s

differential equation as a way for orthogonal polynomials construction and solution. The

generalized Rodrigues formula is used for this goal. Deriving the weight function of the

differential equation, we use it as a basic distribution density of variables like financial asset

returns or insurance claim sizes. This density function is adjusted using the product with

a polynomial, which is expressed as a linear combination of the orthogonal polynomials we

find as the solutions of the Pearson’s differential equation. Using this method, we create the

Polynomial-Normal model, Polynomial-T-Distribution model and some further extensions.

We derive explicit formulae for option prices as well as for insurance premiums. The numer-

ical analysis shows that our new models provide a better fit than some previous actuarial

and financial models.
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CHAPTER 1

Introduction and Preliminaries

1.1 Introduction

The main goal of this thesis is to introduce and develop a new method to model the density

function of some important variables in financial and actuarial sciences with the help of

orthogonal polynomials.

Stochastic models and methods are widely used in comprehensive mathematical finance and

actuarial science. For the reason of simplicity and applicability of known mathematical

techniques, many popular models in these areas usually start with a number of assumptions

and restrictions, which lead to an ideal situation and end up with some fixed distribution

for estimated financial and actuarial assets. The Black-Scholes model has become the most

well-known model in the analysis of financial asset pricing, with the benefit of its properties

in mathematical theory and simplicity in numerical realization. But the shortcomings of

Black-Scholes model are obvious - its assumptions on the trading market are too ideal to be

possible in the real world (see Black (1989)). Normal distribution for the logarithmic returns

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

of financial assets is one of the most important implications of the Black-Scholes model, and

this result is severely doubted by other empirical and theoretical studies. Implications of

the normality of financial asset returns, that disagree with the historical data, include the

following: extreme returns (more than 3 standard deviations from mean) are only assigned

a tiny probability which is nearly neglectable (please see Rachev et al. (2005)). Financial

returns must have the same probability densities for the same level of prosperity and reces-

sion, as a result of the symmetry of the normal distribution and hence, the skewness and

kurtosis for financial returns are fixed (see lau et al. (1989)). Besides that there are many

practical evidences against normality for the financial asset returns. The shape market

downs in the equity trading market happening time to time, come up to be one of the worst

evidences against the normal assumption. Many financial institutes, especially many of the

hedge funds, show distinct non-normal characteristic in their return data. Therefore, other

distributions are needed to provide a better estimation for the financial asset returns.

Around such extensions of the Black-Scholes model, we would like to mention first the

Gram-Charlier model. This model uses the product of the normal density and a 4th degree

polynomial as the financial return density, and thus allows arbitrary skewness and kurtosis

(Jarrow and Rudd (1982); Madan and Milne (1994)). This is the first example of using

polynomial to generate normal-like distributions to model financial returns. The polynomial

used in the Gram-Charlier model is a linear combination of the Hermite polynomial series

up to order 4, which is an orthogonal polynomial series based on the normal distribution

(see Fedoryuk (2001)). If we extend the Gram-Charlier model by extending the degree of the

polynomial used in this model to an arbitrary finite integer N , we arrived at the Polynomial-

Normal model (see Li and Melnikov (2012)). The Polynomial-Normal model shows a better

ability than the Gram-Charlier model in capturing higher moments besides the skewness
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and kurtosis. However, there is a restriction for the Gram-Charlier and the Polynomial-

Normal model. The polynomials used in these models must be globally positive in order to

generate a valid density function. We study this restriction and found the ranges for the

valid polynomial parameters that generate a valid density function. The fair prices for the

European call/put option, as well as, for the power option and the polynomial options, can

be calculated in the framework of this new model. Moreover, the Value at risk (VaR) and

conditional Value at Risk (CVaR) can also be determined.

Though the Polynomial-Normal model shows some advantages in capturing non-constant

moment parameters, it is not more powerful than the simple normal distribution in esti-

mating extreme returns. The nature of the density tail decay for the Polynomial-normal

distribution is still the same as the simple normal distribution, and this property is not

consistent with the fact of the fat-tail distribution for financial returns. Some studies fo-

cused on tail analysis, claimed that the financial return distribution exhibits power-law

behavior (see Gabaix et al. (2003)). Considering such an observational result, the Studen-

t’s T-distribution becomes a nice candidate for financial return densities (see Cassidy et al.

(2010); Shaw (2011); Fergusson and Platen (2006); Rachev et al. (2005)). As a result, we

can use the product of the Student’s T-distribution density and a polynomial to model the

financial return density, thereby improving the estimation on the decay speed of the density

tail and the distribution shape around the mean. The polynomial used here is expressed

as a linear combination of the Romanovski polynomial series, which is the orthogonal poly-

nomial series based on the corresponding T-distribution. This extension was named as

”Polynomial-T-Distribution model”(see Li and Melnikov (2013)). Option pricing and risk

measures like VaR and CVaR can be calculated under the framework of this new model.

While we have the first two polynomial model extensions, we found this approach can
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be elegantly and widely generalized by means of the techniques connected to the famous

Pearson’s differential equation (see Raposo et al. (2007)). This equation is defined as follows:

s2(x)F
′′(x) + s1(x)F

′(x) + λF (x) = 0, (1.1)

where s1(x) and s2(x) are polynomials of x with at most first and second degree. The weight

function w(x) is defined as the solution of the differential equation

(w(x)s2(x))
′ = w(x)s1(x), (1.2)

The weight function is found to be a non-polynomial solution of a similar differential e-

quation. The weight function plays an important role in exploring the properties of the

differential equation. And it can be standardized to be a density function on a certain

interval. If

λ = −ns′1(x)−
n(n− 1)s′′2(x)

2
(1.3)

for some non-negative integer n, there exists a single polynomial solution for the differential

equation, and a non-polynomial solution. The polynomial solution is given by the so-called

generalized Rodrigues formula (see Raposo et al. (2007)), and the non-polynomial solution

can be derived from the polynomial solution. The property of orthogonality or partial or-

thogonality between these polynomial solutions can be proved via the generalized Rodrigues

formula. We also provide the general solution for the Pearson’s differential equation, in the

form of generalized hypergeometric function. This general solution can be reduced to a
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polynomial if the condition (1.3) holds. The Pearson’s differential equations can be splitted

into a few classes, which are determined by the quadratic function s2(x).

When s2(x) is a constant, the weight function w(x) in (1.2) can be standardized to be

the normal density, and the polynomial solution of the Pearson’s differential equation (1.1)

becomes the Hermite polynomial series. When s2(x) is a quadratic function of x with a

negative discriminant, the weight function can be standardized to be the T-distribution

density, and the polynomial solution become the Romanovski polynomial series.

Thus we can generalize our previous approach and considerations by using the product of

the standardized weight function w(x), and a linear combination of the polynomial solution

series solved by the Pearson’s differential equation, to model the density function for random

variables like the financial asset returns. The Polynomial-Normal model and the Polynomial-

T-Distribution model become special cases of this approach.

Besides the Polynomial-Normal model and the Polynomial-T-Distribution model, we con-

sider and explore other types of the Pearson’s differential equations, and the possibility of

using the distributions they derive in financial and actuarial modeling. Based on different

classes of the Pearson’s differential equations, we use the similar method to derive different

theoretical models to fit the distribution density of financial asset returns and actuarial

claim portfolio amounts.

As we explore many distributions and use them for the purpose of financial and actuarial

modeling, a verification for the model extension is needed. We use both historical data

and artificial data to test the efficiency of our model extensions. Parametrization methods

of different models will be discussed. Maximum likelihood and moment matching are the

two main methods we use for parametrization. Advantages and disadvantages of these two
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parametrization methods are discussed in comparison with each other. We also compare

different model extensions and assess the goodness of fitting for these models, based on

both historical and artificial data (see Li and Melnikov (2013)). Statistical properties of

the parameter estimators are also discussed. Numerical results of option prices and risk

measures for financial models are given and compared, as well as the probability of ruin and

the stop-loss premium for the actuarial models. The best model will be selected, based on

the goodness of fit to different data, and the simplicity of these models.

1.2 On modeling of Financial Returns

The normal distribution, also called Gaussian distribution in memory of the great mathe-

matician Gauss, is frequently used as an assumption for the logarithmic return distribution

for varieties of financial assets. It possesses the mathematical properties of the following:

first, it is a stable distribution; second, it has a finite mean and variance. Stability of a

distribution means that any linear combination of independent random variables following

this distribution is still following such a distribution, but may be with different drift and

scale parameters. This property helps the researchers to establish financial pricing model

using stochastic process, as it is convenient of assume the return distribution over different

periods are all normal. The property of finite mean and variance also helps to establish a

model that is easily mathematically manipulated. But most studies examining the validity

of these normal assumption failed find support for it.

Empirical studies on the stock prices have found that the extreme returns occur more

frequently than predicted by the normal assumption. While the stock prices are shifting

modestly at some periods, there will be periods when the prices swing up and down dramat-
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ically. Some people tried to explain it by the changes of fundamental economic variables,

but it seems a better explanation can be given via the heavy-tail distributions (see, for

instance, Shiller (1981)). Support on the heavy-tail distributions are found by studies mod-

eling the financial market agents’ interactions. One of the well-known studies regarding

this aspect is conducted by Arthur et al. (1997), who introduced an asset pricing modeling,

where different financial market agents continuously adjust their expectation for the finan-

cial market. Another explanation was given by Cont and Bouchaud (2000), who studied the

herd behaviors of market participators.

People doubted that the financial return is following non-normal stable distributions, which

are named as ”stable Paretian” or ”Levy stable” distributions in some literatures. The

stable Paretian distributions draw much attention in this area as it presents heavy tails

and skewness while maintaining stability, which is a desirable property for financial return

distributions. The earliest published studies regarding the stable Paretian distribution in the

financial market context might be given by Mandelbrot (1963), and his research was further

developed by Fama (1965). However, empirical studies report that the tails of historical

stock returns are heavier than the normal distribution, but thinner than the stable Paretian

distributions (see, for instance, Akgiray and Booth (1988)).

While the stable Paretian distribution is found inconsistent with empirical data, people

continue to look for other distributions for the proper modeling of the financial returns. The

Student’s T-distribution has become one of the alternatives, as it presents great similarity

with historical data in the density tail. Blattberg and Gonedes (1974) might be the earliest

published research using the T-distribution to fit the financial return density. The drawback

of the T-distribution in financial return distribution modeling would be its lack of stability,

which makes it difficult to find interconnections with diffusion models. However, it excels at
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fitting the historical data and is still worth our attention. This thesis gives a financial return

model extension based on the T-distribution with the name ” Polynomial-T-Distribution

model”, and it will be discussed at Chapter 4.

1.3 On the Actuarial Modeling

Mathematical and statistical methods have been applied in the insurance industry for a long

time. Nowadays, the most frequently used methods in actuarial sciences modeling the risks

arising from casualty insurance, might be the collective risk model. The first introduction of

the collective risk model may date back to the beginning of the last century (see Buhlmann

(1997)). In the framework of the collective risk model, the total insurance claim amount

is modeled as the sum of the individual claims, the number of which is described by some

probabilistic distributions. The Poisson distribution is one of the most frequently used

distribution here, as it is resulted from the mechanism of accumulated chances with risk

events. Other distribution are also used to model the number of claims sometimes, as they

are more reasonable at certain situations. However, to our knowledge, there are no fixed

models to estimate the claim severity for the variety of casualty insurance claims.

Different ways are used to estimate the distribution of claim severity, or to estimate the

distribution of total claims directly. A few categories of methods that are frequently used

are as following:

1. Parametric models. In a typical parametric model, it is assumed that the claim severity or

the total claim amount is following a certain distribution, and the parameters are estimated

by the ways such as maximum likelihood or moment matching. This is a relatively convenient

method. However, its main drawback in practice is that, the accuracy of the estimation
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largely depends on how the assumed distribution fits the real data.

2. Non-parametric methods. By the non-parametric methods, the expected claim amount

is calculated from historical data, as a function of statistical quantities such as mean and

variance. The non-parametric methods avoid inaccuracies caused by distribution assump-

tion. But it is usually hard to find a valid data set that is large enough, since observations

dated a long time ago would loose their usefulness to represent the future.

3. Monte Carlo method. This is a good way if the mechanism of the risk event is known or

well modeled. However, it usually needs a long calculation time by computer.

We extend our method of polynomial adjusted distribution of model the total claim amount.

Our way should be categorized as a parametric method. We have to select a proper basic

density function, which is similar to the real density of the total claim amount. The poly-

nomial is used to reduce the difference between our estimation and the real density. The

higher degree of polynomial we use, the better level of accuracy we can reach.

1.4 Outline

The thesis contains six chapters. Chapter 1 provides a general description of the problem

and the basic idea of our approach. It also tells some historical researches and some basic

situations of the fields, and how our approach is related to the previous researches.

Chapter 2 is about the Pearson’s differential equation, its polynomial solutions and their

related properties. We give a review of the Pearson’s differential equation (1.1), its polyno-

mial solution solved by the generalized Rodrigues formula and the related properties. The

classification of the differential equations and the corresponding polynomial solution of each

type are discussed in the subsections of chapter 2.
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Chapter 3 is devoted to the Polynomial-Normal model. The related properties and some

considerations regarding to this model are also discussed. The formula for the Value at

Risk (VaR) and option prices are also provided, as well as the power option and polynomial

option prices.

Chapter 4 discusses the Polynomial-T-Distribution model, and the related properties and

considerations. Similar as Chapter 3, we provide the calculation of VaR and the option

prices.

Other financial model extensions and actuarial applications will be discussed in Chapter 5.

We consider the model generated from other types of Pearson’s differential equations. We

further extend the Polynomial-T-Distribution model and introduce the asymmetric adjustor

for the financial models. Actuarial applications are found through the polynomial model

with Gamma, Inverse-Gamma, and Beta distribution. For financial returns modeling, we

derive the European option prices and the VaR/CVaR values. For actuarial claim amount

modeling, we derive the formulae for the stop-loss premium and probability of ruin at the

maturity.

Chapter 6 is devoted to the numerical examples and illustrations. The model extension-

s for financial return are fitted and parameterized by maximum likelihood method, using

historical return data. Goodness of fitting of different models is quantified by the Bayesian

Information Criteria (BIC) and compared between different model extensions. Statistical

properties such as confidence intervals are found. Option prices and VaR/CVaR are cal-

culated and compared. We use the artificial data to parameterized the actuarial model

extensions. Stop-loss premium and probability of ruin are calculated.



CHAPTER 2

The Pearson’s Differential Equation and its Polynomial

Solution

2.1 The Pearson’s Differential Equation and the Ro-

drigues Formula

This section gives a review of the famous Pearson’s differential equation and shows how

to use the generalized Rodrigues formula to solve it. The Rodrigues formula was first

introduced independently by Rodrigues (1816), Ivory (1824) and Jacobi (1827), to provide

a construction of the Legendre polynomials (see Askey, 2005). Later such equation was

exploited in more general aspects. Many properties of the polynomials can be recognized

using the system of the differential equation and the generalized Rodrigues formula. These

properties are extremely important and useful to provide financial and actuarial model

extensions.

11
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The Pearson’s differential equation is defined as follows:

s2(x)F
′′(x) + s1(x)F

′(x) + λF (x) = 0, (2.1)

where s1(x) and s2(x) are polynomials of x with at most first and second degree. The

general solution of this differential equation can be expressed as a generalized hypergeometric

function. When the parameters of the differential equation satisfy to a certain condition,

the solution is reduced to a polynomial. Suppose a polynomial F (x) with degree n is a

solution of equation (2.1), the following equation is obtained by eliminating the term xn at

the left hand side of the differential equation (see Raposo et al., 2007)

λ = −ns′1(x)−
n(n− 1)s′′2(x)

2
. (2.2)

The parameter λ is called the eigenvalue of the Pearson’s differential equation (see Raposo et al.

(2007)). Denote the eigenvalue λ given by (2.2) as λn. The following lemma proves the u-

niqueness of the polynomial solution under certain conditions.

Lemma 2.1. If the condition (2.2) holds for a non-negative integer n and λk ̸= λn for any

non-negative integer k < n, the differential equation (2.2) has a unique polynomial solution

with degree n, neglecting scaler multiplications.
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Proof. Denote s2(x), s1(x) and F (x) in the differential equation (2.1) as

s2(x) = ax2 + bx+ c, (2.3)

s1(x) = px+ q, (2.4)

F (x) =
∞∑
k=0

akx
k. (2.5)

The following relationship is obtained by plugging the above expression and the condition

(2.2) in the differential equation (2.1)

c(k+2)(k+1)ak+2 + (k+1)(bk+ q)ak+1 + (ak(k− 1)+ pk− an(n− 1)− pn)ak = 0. (2.6)

We note that

ak(k − 1) + pk − an(n− 1)− pn = λn − λk ̸= 0

for any non-negative integer k < n. If we let ak = 0 for any k > n, the linear system (2.4)

is solved as

an−1 =
n(b(n− 1) + q)

p+ 2a(n− 1)
an,

ak =
c(k + 2)(k + 1)ak+2 + (k + 1)(bk + q)ak+1

−ak(k − 1)− pk + an(n− 1) + pn
, for any 0 ≤ k ≤ n− 2.

Let an be a non-zero constant and we arrive at a unique solution for F(x).

Denote this unique solution as Fn(x). The second property of the polynomial series be-

gins from differentiation. Calculating the mth derivative of the equation (2.1) with the
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polynomial Fn(x), we obtain the following equation:

s2(x)(F
(m)
n (x))′′+(s1(x)+ms

′
2(x))(F

(m)
n (x))′+(

m(m− 1)

2
s′′2(x)+ms

′
1(x)+λ)F

(m)
n (x) = 0.

If we denote

s1,m(x) = s1(x) +ms′2(x), (2.7)

λn,m =
m(m− 1)− n(n− 1)

2
s′′2(x) + (m− n)s′1(x) = λn − λm, (2.8)

then the above differential equation becomes

s2(x)(F
(m)
n (x))′′ + s1,m(x)(F (m)

n (x))′ + λn,mF
(m)
n (x) = 0. (2.9)

Thus, F
(m)
n (x), as a polynomial of degree n − m, is the solution of a similar differential

equation. Let us introduce the weight function w(x), as a solution of the differential equation

(under a proper scale):

(s2(x)w(x))
′ = s1(x)w(x). (2.10)

It is called as the weight function because it plays the role of a weight function in the inner

product and orthogonality between polynomials. The solution of the above equation can be

obtained as (see Raposo et al., 2007)

w(x) = A
1

s2(x)
exp(

∫
s1(x)

s2(x)
dx). (2.11)

The weight function is a non-polynomial solution of the Pearson’s differential equation
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connected to the Pearson’s differential equation. By differentiating (2.10), we arrive to the

next equation

s2(x)w
′′(x) + (2s′2(x)− s1(x))w

′(x) + (s′′2(x)− s′1(x))w(x) = 0.

If the constant A is set such that w(x) is positive within the interval I = (a1, a2) and the

integral of w(x) over I is 1, the weight function w(x) can be further defined as a density

function for some random variable on the interval I. With all the above preparation, we

are ready to introduce the generalize Rodrigues formula, which gives the explicit solution

of the polynomial Fn(x).

The polynomial solution Fn(x) of equation (2.1) and its derivatives are given by the gener-

alized Rodrigues formula presented in the following theorem.

Theorem 2.1. If Fn(x) is a n
th-degree polynomial and the solution of the differential equa-

tion (2.1) and λn,m ̸= 0 for any non-negative integer m < n, the mth derivative of Fn(x)

should follow the formula below:

F (m)
n (x) = Nn,m

1

w(x)sm2 (x)

dn−m

dxn−m
(w(x)sn2 (x)), (2.12)

where Nn,m = (−1)mNn0

m−1∏
k=0

λn,k, (2.13)

for any n ≥ m ≥ 0, Nn,0 ∈ R.

The generalized proof of the Theorem 2.1 is given in Nikiforov (1988). We give a different

proof of the formulae (2.12) - (2.13) by induction method.

Proof. Let F ∗
n(x) = w(x)sn2 (x). By calculating the first and second derivatives of F ∗(x), we
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have the following formulae:

F ∗′

n (x) = w(x)sn−1
2 (x)(s1(x) + (n− 1)s′2(x)), (2.14)

F ∗′′

n (x) = w(x)sn−2
2 (x)(s1(x) + (n− 2)s′2(x))(s1(x) + (n− 1)s′2(x))

+w(x)sn−1
2 (x)(s′1(x) + (n− 1)s′′2(x)). (2.15)

From the above formulae, we can verify that

s2(x)F
∗′′

n (x)− (s1(x) + (n− 2)s′2(x))F
∗′
(x)− (s′1(x) + (n− 1)s′′2(x))F

∗(x) = 0. (2.16)

Differentiate the above formula for n−m− 2 times, we have

s2(x)
dn−m

dxn−m
F ∗
n(x)− (s1(x) +ms′2(x))

dn−m−1

dxn−m−1
F ∗
n(x)

+((
m(m+ 1)

2
− n(n− 1)

2
)s′′2(x) + (m− n+ 1)s′1(x))

dn−m−2

dxn−m−2
F ∗
n(x) = 0. (2.17)

To prove the theorem, we use the induction method. When m = n, F
(m)
n is a constant, as

a result of the nth differentiation of the nth-degree polynomial Fn(x). Denote F
(n)
n as Nn,n,

and this denotation is consistent with the theorem.

As λn,m ̸= 0, we arrive to the following induction formula from (2.9)

F (m)
n (x) =

−s2(x)F (m+2)
n (x)− s1,m(x)F

(m+1)
n (x)

λn,m
, for any 0 ≤ m < n (2.18)
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When m = n− 1, the equation (2.18) becomes

F (n−1)
n (x) =

((n− 1)s′2(x) + s1(x))Nn,n

(n− 1)s′′2(x) + s′1(x)

= Nn,n−1(s1(x) + (n− 1)s′2(x))

= Nn,n−1
1

w(x)sn−1
2 (x)

d

dx
(w(x)sn2 (x)). (2.19)

The above equation verifies the theorem when m = n − 1. If the theorem is satisfied for

any m = n, n− 1, · · · k + 1 where n− 2 ≥ k ≥ 0, we can verify the theorem when m = k as

follows, using equations (2.9) and (2.17):

F (m)
n (x) =

−1

λn,m
(s2(x)F

(m+2)
n (x) + (s1(x) +ms′2(x))F

(m+1)
n (x))

=
−1

λn,m

(
Nn,m+2

w(x)sm+1
2 (x)

dn−m−2

dxn−m−2
(w(x)sn2 (x))

+
Nn,m+1(s1(x) +ms′2(x))

w(x)sm+1
2 (x)

dn−m−1

dxn−m−1
(w(x)sn2 (x))

)
=

−Nn,m+1

λn,mw(x)s
m+1
2 (x)

(
−λn,m+1

dn−m−2

dxn−m−2
F ∗
n(x)

+(s1(x) +ms′2(x))
dn−m−1

dxn−m−1
F ∗
n(x)

)
=

−Nn,m+1

λn,mw(x)sm2 (x)

dn−m

dxn−m
F ∗
n(x)

=
Nn,m

w(x)sm2 (x)

dn−m

dxn−m
(w(x)sn2 (x)). (2.20)

Therefore, the theorem is proved for every n ≥ m ≥ 0.

Remark 2.1. If there is a non-negative integer m < n such that λn,m = 0, we the following

equation by factorizing the equation (2.8)

λn,m = (m− n)(
m+ n

2
s′′2(x) + s′1(x)) = 0.
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If s′′2(x) = s′1(x) = 0, the differential equation (2.1) is degenerated. The solution of the

differential equation becomes the Bessel function if the parameter λ ̸= 0 in the differential

equation, or a linear function of x if λ = 0. We are not going with a detail discussion for

this special case.

If s′′2(x) ̸= 0, we have

m+ n = −2s′1(x)/s
′′
2(x).

The solution of the differential equation (2.1) becomes a polynomial with degree m, which

is given by the generalized Rodrigues formula (2.12) - (2.13), but using m instead of n.

For simplicity, we letNn,0 = 1, then the equation (2.12) indicates a unique polynomial. With

the explicit formula for the polynomials given, we can explore the orthogonality between the

polynomial solutions in the following sense. For any interval I = (a1, a2), with ∞ ≥ a1 >

a2 ≥ −∞, if w(x) is positive on I, we can define the inner product between polynomials as

follows:

< p, q >=
a2∫

x=a1

p(x)q(x)w(x)dx (2.21)

for any polynomials p, q with real parameters.

Two polynomials are said to be orthogonal to each other if the inner product between them

is zero. The corresponding results about orthogonality of such polynomials are presented in

the following theorem. We give it to provide a completeness of exposition of our approach,

while similar results can be found in the literature (see, for instance Kirshnamoorthy, 1951).

Theorem 2.2. If Fn(x) is given by equation (2.12), with Nn,0 = 1, and s1(x), s2(x), w(x)
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satisfy

lim
x→a+

1

w(x)s2(x)x
l − lim

x→a−
2

w(x)s2(x)x
l = 0, (2.22)

for any l = 0, 1, · · ·L,

then the inner product

< Fn, Fm >= δnmf
2
n, (2.23)

where δnm denotes the Kronecker delta notation, n and m take any non-negative integer

under the condition of n+m ≤ L+ 1, and

f2n = (−1)n
Nn,n

Nn,0

a2∫
x=a1

w(x)sn2 (x)dx.

Proof. Suppose n ≥ m, Let F ∗
m(x) = w(x)sm2 (x). Using integration by parts for multiple

times, the inner product between Fn and Fm can be calculated as follows:

< Fn, Fm > =

a2∫
x=a1

1

w(x)

dn

dxn
(w(x)sn2 (x))

dm

dxm
(w(x)sm2 (x))dx

=
1

Nn,0

a2∫
a1

dm

dxm
(F ∗

m(x))Fn(x)dx

= − 1

Nn,0

a2∫
a1

dm−1

dxm−1
(F ∗

m(x))F ′
n(x)dx+

1

Nn,0

dm−1

dxm−1
(F ∗

m(x))Fn(x)

∣∣∣∣a2

a1

· · ·

=
(−1)m

Nn,0

a2∫
a1

F ∗
m(x)

dm

dxm
(Fn(x))dx+

m−1∑
k=0

(−1)k

Nn,0

dm−k−1

dxm−k−1
F ∗
m(x)

dk

dxk
Fn(x)

∣∣∣∣∣
a2

a1
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= (−1)m
a2∫

a1

Nn,m

Nn,0

dn−m

dxn−m
(w(x)sn2 (x))dx+

m−1∑
k=0

(−1)kNn,k

w(x)sk2(x)Nn,0

dn−k

dxn−k
(w(x)sn2 (x))

dm−k−1

dxm−k−1
(w(x)sm2 (x))

∣∣∣∣∣
a2

a1

= (−1)m
a2∫

a1

Nn,m

Nn,0

dn−m

dxn−m
(w(x)sn2 (x))dx+

m−1∑
k=0

(−1)kw(x)s2(x)

Nm,k+1Nn,0
(sk2(x)

dk+1

dxk+1
Fm(x)

dk

dxk
Fn(x))

∣∣∣∣∣
a2

a1

. (2.24)

The second term of the above formula, can be rewritten as the integration of w(x)s(x) times

a m+ n− 1th degree polynomial. If m+ n− 1 ≤ L and the equation (2.23) is satisfied, the

second term can be reduced to 0. If n > m, the above calculation continues as follows:

< Fn, Fm > = (−1)m
a2∫

x=a1

Nn,m

Nn,0

dn−m

dxn−m
(w(x)sn2 (x))dx

= (−1)m
Nn,m

Nn,0

dn−m−1

dxn−m−1
(w(x)sn2 (x))dx

∣∣∣∣a2

a1

=
(−1)mNn,mw(x)s

m+1
2 (x)

Nn,m+1Nn,0

dm+1

dxm+1
(Fn(x))dx

∣∣∣∣a2

a1

= 0. (2.25)

If n = m, the inner product becomes

< Fn, Fm >= (−1)n
Nn,n

Nn,0

a2∫
x=a1

w(x)sn2 (x)dx. (2.26)

Remark 2.2. The orthogonal polynomials are generated by the Pearson’s differential equa-

tion only when s2(x) and s1(x) satisfy certain conditions. It is also possible that orthogo-



CHAPTER 2. THE PEARSON’S ODE AND ITS POLYNOMIAL SOLUTION 21

nality is satisfied when the sum of polynomial degrees is bounded by a certain level, which

arise the case of finite orthogonality. This is the case when we deal with the Romanovski,

Lagurre and Bessel polynomials.

In order to access to the orthogonality between polynomials, the weight function, should

be converging to 0 with a certain degree at both of the endpoints of the interval. When

this condition is satisfied, the weight function turns out to be integrable on the interval I.

Therefore, we can standardize the weight function w(x) and make it a density function on the

interval I by multiplication with a proper constant. For example, when s2(x) is a constant,

w(x) can be standardize and becomes the density function of the normal distribution, and

{Fn(x)} becomes the Hermite polynomial series in this case.

When the full or finite orthogonality is satisfied between the polynomial solutions, we can

express Fn(x) in the matrix form presented by the following proposition:

Proposition 2.1. If Fn(x) is given by equation (2.12) and the condition (2.23) is satisfied

for l = 0, 1, · · · , L, then

Fn(x) = Adet



p1(x) p2(x) · · · pn+1(x)

m1,1 m1,2 · · · m1,n+1

m2,1 m2,2 · · · m2,n+1

...
. . .

...

mn,1 mn,2 · · · mn,n+1


, for n = 0, 1, · · · , 1 + ⌊L

2
⌋. (2.27)

where p1(x), p2(x), · · · , pn+1(x) are any n+ 1 linear independent polynomials of x with the

degree no more then n, q1(x), q2(x), · · · , qn(x) are any n linear independent polynomials of

x with that degree no more than n− 1, and mi,j =
∫ a2

a1
qi(x)pj(x)w(x)dx, and A represents
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any constant.

Proof. From the theorem of polynomial orthogonality, we know that < Fn(x), Fm(x) >= 0

when m ̸= n and m + n ≤ 1 + L. If we ignore the scaler multiplication, there is only

one degree n polynomial that is orthogonal to all polynomials with degree less than n, as

n+ (n− 1) ≤ 1 + L. The equation (2.27) presents a polynomial with the degree at most n.

The inner product between the polynomial (2.27) and qi(x) is

a2∫
x=a1

Adet



p1(x) p2(x) · · · pn+1(x)

m1,1 m1,2 · · · m1,n+1

m2,1 m2,2 · · · m2,n+1

...
. . .

...

mn,1 mn,2 · · · mn,n+1


qi(x)w(x)dx

= Adet



< p1(x), qi(x) > < p2(x), qi(x) > · · · < pn+1(x), qi(x) >

m1,1 m1,2 · · · m1,n+1

m2,1 m2,2 · · · m2,n+1

...
. . .

...

mn,1 mn,2 · · · mn,n+1



= Adet



mi,1 mi,2 · · · mi,n+1

m1,1 m1,2 · · · m1,n+1

m2,1 m2,2 · · · m2,n+1

...
. . .

...

mn,1 mn,2 · · · mn,n+1


= 0.
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Therefore, the polynomial (2.27) is orthogonal to any polynomial qi(x) and as well as to

any polynomial with the degree no more than n − 1, because of the independence of the

polynomial series qi(x). So (2.27) equals Fn(x) if we ignore the scaler multiplication.

If we let pj(x) = qj(x) = xj in the above formula, we arrive to

Fn(x) = Adet



1 x · · · xn

m0 m1 · · · mn

m1 m2 · · · mn+1

...
. . .

...

mn−1 mn · · · m2n−1


,

where mk =
∫ a2

a1
xkw(x)dx is the kth moment of the distribution defined by w(x).

When the generalized Rodrigues formula (2.12) - (2.13) is satisfied, the polynomial solu-

tion Fn(x) can be derived from the recursive formula. The following theorem presents the

recursive relation for the polynomial series Fn(x).

Theorem 2.3. For any positive integer n, if the polynomial series Fk(x), k = 0, 1, · · · , n+1

is given by the generalized Rodrigues formula (2.12) - (2.13) with s2(x) = ax2 + bx+ c and

s1(x) = px+ q, the coefficient Nk,0 = 1, and λk ̸= λl for any k, l ≤ n+ 1 and k ̸= l, then

Fn+1(x) =
p+ 2na− a

p+ na− a

(
(p+ 2na)x+

2n2ab− 2nab+ 2nbp+ pq − 2aq

p+ 2na− 2a

)
Fn(x)

+
n(2na+ p)((n− 1)(4ac− b2)(na− a+ p) + aq2 − bpq + cp2)

(na− a+ p)(2na− 2a+ p)
Fn−1(x).

(2.28)

Proof. Following from the generalized Rodrigues formula (2.12), the following equation is
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derived using the product rule of differentiation

Fn(x) =
1

w(x)

dn

dxn
(w(x)sn2 (x))

=
1

w(x)

dn−1

dxn−1
(w(x)sn−1

2 (x)(s1(x) + (n− 1)s′2(x))). (2.29)

If we use the product rule of differentiation twice on Fn+1(x), we arrive to the following

equation

Fn+1(x) =
1

w(x)

dn+1

dxn+1
(w(x)sn+1

2 (x))

=
1

w(x)

dn

dxn
(w(x)sn2 (x)(s1(x) + ns′2(x)))

=
1

w(x)

dn−1

dxn−1

(
w(x)sn−1

2 (x)

((s1(x) + ns′2(x))(s1(x) + (n− 1)s′2(x)) + (s′1(x) + ns′′2(x))s(x)) .(2.30)

At the mean while, if we use the product rule of differentiation and the Leibniz’s formula

on Fn+1(x), we have

Fn+1(x) =
1

w(x)

dn+1

dxn+1
(w(x)sn+1

2 (x))

=
1

w(x)

dn

dxn
(w(x)sn2 (x)(s1(x) + ns′2(x)))

=
s1(x) + ns′2(x)

w(x)

dn

dxn
(w(x)sn2 (x))

+
n(s′1(x) + ns′′2(x))

w(x)

dn−1

dxn−1
(w(x)sn2 (x))

= (s1(x) + ns′2(x))Fn(x) +
n(s′1(x) + ns′′2(x))

w(x)

dn−1

dxn−1
(w(x)sn2 (x)). (2.31)
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Use a linear combination on the equations (2.29) - (2.31), we arrive at the following

γ · (2.29) + θ · (2.30) + (1− θ) · (2.31) :

Fn+1(x) = ((1− θ)(s1(x) + ns′2(x))− γ)Fn(x) +
1

w(x)

dn−1

dxn−1

(
w(x)sn−1

2 (x)

(r(s1(x) + (n− 1)s′2(x)) + θ(s1(x) + ns′2(x))(s1(x) + (n− 1)s′2(x))

+θ(s′1(x) + ns′′2(x))s(x) + n(1− θ)(s′1(x) + ns′′2(x))s2(x))) , (2.32)

where γ and θ are predetermined parameters. Our goal here is to find the proper parameters

γ and θ to reduce the following polynomial to a constant denoted as A:

A = r(s1(x) + (n− 1)s′2(x)) + θ(s1(x) + ns′2(x))(s1(x) + (n− 1)s′2(x))

+θ(s′1(x) + ns′′2(x))s(x) + n(1− θ)(s′1(x) + ns′′2(x))s2(x). (2.33)

If the above equation is satisfied for any parameters γ and θ, the second term of the equation

(2.32) would become a multiple of Fn−1(x) and the recursive relation would be found. Plug

the equations s2(x) = ax2 + bx + c and s1(x) = px + q in the equation (2.33), the proper

parameters γ and θ are solved as

γ =
n(2na− a+ p)(−bp+ 2aq)

(2na− 2a+ p)(na− a+ p)

θ =
−na

p+ (n− 1)a
.

One can verify that if λk ̸= λl for any k ̸= l and k, l ≤ n+1, the denominators of the above

values of γ and θ are non-zero. So the above parameter solutions are valid if the condition
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holds. Plug these parameters in the equation (2.32), we have the following

Fn+1(x) =
p+ 2na− a

p+ na− a

(
(p+ 2na)x+

2n2ab− 2nab+ 2nbp+ pq − 2aq

p+ 2na− 2a

)
Fn(x)

+
n(2na+ p)((n− 1)(4ac− b2)(na− a+ p) + aq2 − bpq + cp2)

(na− a+ p)(2na− 2a+ p)
Fn−1(x).

The equation (2.1) is a second order ODE, whose solution should be in the form of a linear

sum of two different basic solutions. Though Theorem 1 gives one basic solution for the

differential equation, one might wonder what the second basic solution is. The following

theorem gives the general solution for the differential equation, in the form of a combination

of two basic solutions, while the condition (2.2) holds.

Theorem 2.4. If the function F (x) satisfies the equations (2.1) and (2.2), and the polyno-

mial solution is given by the generalized Rodrigues formula (2.12) - (2.13), then

F (x) = Fn(x)(C1 + C2

∫
dx

w(x)s2(x)F 2
n(x)

), (2.34)

where C1 and C2 are constants and Fn(x) is given by the Rodrigues formula in (2.12) and

(2.13).

Proof. From the Rodrigues formula, we know that the function Fn(x) is a solution of the

differential equation (2.1) - (2.2). Assume the general solution F (x) = Fn(x)g(x). We put
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this expression in the differential equation (2.1) and the following equation is derived

g(x)(s2(x)F
′′
n (x) + s1(x)F

′
n(x) + λFn(x)) +

2s2(x)g
′(x)F ′

n(x) + s2(x)Fn(x)g
′′(x) + s1(x)Fn(x)g

′(x) = 0.

Because Fn(x) is the solution of the differential equation, the first part of the above formula

is 0. The second part ends up with

2s2(x)g
′(x)F ′

n(x) + s2(x)Fn(x)g
′′(x) + s1(x)Fn(x)g

′(x) = 0. (2.35)

If g′(x) is not 0, it can be derived as follows

g′′(x)

g′(x)
= −s1(x)

s2(x)
− 2F ′

n(x)

Fn(x)
, (2.36)

g′(x) = exp(−
∫
s1(x)

s2(x)
− 2F ′

n(x)

Fn(x)
dx) (2.37)

=
C2

w(x)s2(x)F 2
n(x)

. (2.38)

Then

g(x) = C1 + C2

∫
dx

w(x)s2(x)F 2
n(x)

, (2.39)

and

F (x) = Fn(x)(C1 + C2

∫
dx

w(x)s2(x)F 2
n(x)

). (2.40)

The general solution of the Pearson’s differential equation can be written in the form of

generalized hypergeometric series. The polynomial solution only exists as a special case for
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the general solution when the condition (2.2) holds. We explore the general solution as a

generalized hypergeometric function in the following discussion. Define the Pochhammer

symbol as follows:

(x)n =
n∏

k=1

(x+ k − 1) for any non-negative integer n and real number x. (2.41)

A generalized hypergeometric series with the order p and q is defined as follows:

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq;x) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
. (2.42)

If one of ak is a negative integer, the above series become a polynomial as (ak)n = 0 when

n > −ak. Recall the notation of (2.3) - (2.5) for the coefficients and solution of the Pearson’s

differential equation

s2(x) = ax2 + bx+ c,

s1(x) = px+ q,

F (x) =
∞∑
k=0

akx
k.

If the function s2(x) is not a constant, we can use the proper linear transformation to on

the variable x and make c = 0 for the function s2(x). The transformed s2(x) and s1(x)

may contain complex coefficients after the linear transformation. If c = 0 for s2(x), we plug

in the above expressions of s2(x), s1(x) and F (x) in the Pearson’s differential equation, we

have the following relationship for the parameters of F (x):
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k(kb+ q − b)ak + (a(k − 1)(k − 2) + p(k − 1) + λ)ak−1 = 0. (2.43)

Therefore, if the jb+ q − b ̸= 0 for any integer j ≤ k, the coefficient ak can be expressed as

ak =
−a(k − 1)(k − 2)− p(k − 1)− λ

k(kb+ q − b)
ak−1

=
k∏

j=1

−a(j − 1)(j − 2)− p(j − 1)− λ

j(jb+ q − b)
a0

=
(1− α1)k(1− α2)k

(1)k(q/b)k

(
−a
b

)k

, (2.44)

where α1 and α2 are the two roots of a(x − 1)(x − 2) + p(x − 1) + λ. The solution of the

Pearson’s differential equation can be expressed

F (x) =2 F1(1− α1, 1− α2; q/b;
−ax
b

). (2.45)

Remark 2.3. The equation (2.45) can be reduced in two cases. Case 1, if the quadratic

function a(x − 1)(x − 2) + p(x − 1) + λ is reduced to a linear function or even a constant,

the generalized hypergeometric function would be reduced to the form of 1F2 or 0F2 corre-

spondingly. Case 2, if the jb+ q − b = 0 for some integer j, the generalized hypergeometric

function of (2.45) would be reduced to 3F2(1 + j − α1, 1 + j − α2, 1; 1 + j, j + q/b; −ax
b )xj .

Another special case we want to mention is the case when the function s2(x) in the Pearson’s

differential equation (2.1) is a constant. This case will lead to the normal density as the

weight function and the Hermite polynomial as the solution of the differential equation.

The generalized hypergeometric function (2.45) is not valid in this case. But the polynomial

solution can be expressed in the form of the generalized hypergeometric function in another
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way. We will discuss this method in detail at the section 2.2.

2.2 Classification of the Pearson’s Differential Equa-

tions and the Polynomial Solutions

With different selections of s1(x) and s2(x), we arrive at the different weight function w(x)

and the polynomial solution Fn(x). The weight function w(x) can be standardized to be den-

sity function for some random variable. The distribution defined by such a density function

is called the Pearson distribution (see Pearson (1893, 1895, 1901, 1916)). For example, when

s2(x) = 1 − x2, we arrive at the Beta distribution and the Jacobi polynomials. The Beta

distribution is called the type I Pearson distribution. If the additional condition s1(0) = 0 is

satisfied, the resulted distribution is the symmetric version of the Beta distribution, which

is classified as disIn fact, we can classify the corresponding distributions and polynomials

using the discriminant of the second order polynomial s2(x). After standardization, s2(x)

in the differential equation (2.1) can be reduced to one of five basic forms, which are listed

in Table 2.1.

Table 2.1: Different classes of weight function, distributions and polynomials

s̃2(x) s̃1(x) w(x) Distributions Polynomials Support

1 −x exp(−x2/2) Normal Hermite (−∞,∞)

x −x+ b exp(−x)xb−1 Gamma Laguerre (0,∞)

1 + x2 ax+ b (1 + x2)
a
2
−1 exp(b tan−1 y) Romanovski (−∞,∞)

1− x2 ax+ b (1− x)(a+b−2)/2(1 + x)(b−a−2)/2 Beta Jacobi (−1, 1)

1− x2 ax+ b (x− 1)(a+b−2)/2(1 + x)(b−a−2)/2 F Jacobi (1,∞)
x2 ax+ b xa−2 exp(−b

x
) Inverse Gamma Bessel (0,∞)
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2.2.1 Hermite Polynomial: s2(x) is a constant

When s2(x) in the Pearson’s differential equation (2.1) is a non-zero constant, we can stan-

dardized the differential equation and let s2(x) = 1. Assume s1(x) = px+ q, and the weight

function can be derived from (2.11) as

w(x) = A exp(
p

2
(x+

q

p
)2).

However, not all parameters p, q generate orthogonal polynomials. If orthogonality between

different polynomial solutions holds, the condition of orthogonality (2.23) must be satisfied.

We conclude that only if the parameter p < 0, the weight function can be standardized to

be a density function, and the generated polynomials are orthogonal to each other.

Remark 2.4. If the parameter p > 0 in s1(x), the weight function cannot be standardized

to be a density function on the whole real line. The polynomial solution of the Pearson’s

differential equation is given by the generalized Rodrigues formula (2.12) - (2.13), but these

polynomials are not orthogonal with each other. If the parameter p = 0, the generalized

Rodrigues formula is not satisfied. The solution of the Pearson’s differential equation can

be expressed as a linear combination of exponential functions.

Denote the solution of the Pearson’s differential equation as H(x). If we assume p < 0 in

s1(x) = px+q, we can use the proper linear transformation on the variable of x, and further

standardized the Pearson’s differential equation as

H ′′(x)− xH ′(x) + λH(x) = 0. (2.46)
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From the equation (2.11), the weight function w(x) of the above differential equation is

w(x) = A exp(
−x2

2
). (2.47)

This weight function is the density function of the standardized normal distribution if we

let A = 1/
√
2π. If we use the generalized Rodrigues formula (2.12) - (2.13) and let the

parameter Nn,0 = (−1)n, the polynomial solution Hn(x) can be derived as

Hn(x) =
(−1)n

exp
(
x2

2
)
dn

dxn
(
−x2

2
). (2.48)

We set the parameter Nn,0 = (−1)n in the generalized Rodrigues formula for the above

equation. With such a parameter setting, the polynomial Hn(x) equates the Hermite poly-

nomial of degree n. The Hermite polynomial series is named after the mathematician Charles

Hermite in 1860s, although they are studied earlier by Laplace and Chebyshev. Using the

generalized Rodrigues formula (2.12) - (2.13)

H(m)
n (x) = n(n− 1) · · · (n−m+ 1)Hn−m(x). (2.49)

The recursive formula for the Hermite polynomial series can be obtained by plugging the

coefficients of (2.46) in the equation (2.28):

Hn+1(x) = xHn(x)− nHn−1(x). (2.50)

Some other properties for the Hermite polynomial series can be derived to help with our

derivation of the financial model extensions.
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Corollary 2.1. If Hn(x) is given by (2.48) and t is a real number, then

Hn(x+ t) =
n∑

k=0

(
n

k

)
tkHn−k(x). (2.51)

Proof. We can prove this equation by induction. From the equation (2.48), it is found that

H0(x) = 1 and it is consistent with (2.51). Assume the equation is valid when n = j. We

can calculate the partial derivative of the Hermite polynomial by

∂

∂t
Hj+1(x+ t) = (j + 1)Hj(x+ t).

Then we can write Hj+1(x+ t) as an integral plus a proper constant C.

Hj+1(x+ t) = (j + 1)

∫
Hj(x+ t)dt+ C

= (j + 1)

∫ j∑
k=0

(
j

k

)
tkHj−k(x)dt+ C

=

j∑
k=0

(
j

k

)
(j + 1)tk+1

k + 1
Hj−k(x) + C

=

j+1∑
k=1

(
j + 1

k

)
tkHj+1−k(x) + C.

Plug t = 0 in the above equation, the constant term is found as C = Hj+1(x). Therefore

the equation (2.51) is valid when n = j + 1 and eventually for every non-negative integer

n.

The Hermite polynomial can be expressed in the form of a hypergeometric function. We

have explored the expression of Hn(x) as a generalized hypergeometric function in the last

section. This expression is presented based on the equation (2.43) - (2.45). However, the
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Hermite polynomial series is a special case, for which this method does not work. We explore

the Hermite polynomial series using the Pearson’s differential equation (2.46). From (2.2),

we know the solution of the differential equation is a polynomial with degree n if λ = n. Let

H(x) =
∞∑
k=0

akx
k.

Plug this expression in the differential equation (2.46), we have

k(k − 1)ak + (−k + 2 + n)ak−2 = 0. (2.52)

Therefore, if we let an = 1 and an+1 = 0, we can express ak as

ak =


(k + 1)(k + 2) · · ·n
(−2)(−4) · · · (k − n)

if n− k is even,

0 if n− k is odd.

(2.53)

So, we can express Hn(x) as

Hn(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

(n− 2m)!m!2m
xn−2m

= xn 2F0(
−n
2
,
−n+ 1

2
;−2x−2). (2.54)

2.2.2 Associated Laguerre Polynomial: s2(x) is a linear function

If s2(x) in the Pearson’s differential equation (2.1) is a linear function of x and cannot be

reduced to a constant, we can standardized the differential equation by linear transformation,

and let s2(x) = x. Let us assume s′1(x) ̸= 0 for the Pearson’s differential equation. Using
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the proper linear transformation, we can further standardize the differential equation and

let s1(x) = −x+q. Denote the solution of the Pearson’s differential equation as L(x). Thus,

the Pearson’s differential equation becomes

xL′′(x) + (−x+ q)L′(x) + λL(x) = 0. (2.55)

Remark 2.5. If s2(x) = x and s′1(x) = 0 in the Pearson’s differential equation (2.1), the

solution of the differential equation is a linear function of x if λ = 0, or a combination of

the Bessel functions if λ ̸= 0. We shall focus on other non-trivial cases and will not go for

further discuss for these special cases.

The weight function w(x) of the differential equation (2.55) can be derived from (2.11) as

w(x) = A exp(−x)xq−1, (2.56)

If q > 0 and the constant A = 1/Γ(q), the weight function w(x) is standardized and becomes

the density function of a Gamma distribution with degree q. The supporting interval of

this distribution is (0,+∞). This distribution is also categorized as the type III Pearson

distribution. Denote the polynomial solution with degree n of the differential equation (2.55)

as Ln,q(x). It can be derived from the generalized Rodrigues formula (2.12) - (2.13)

Ln,q(x) = (−1)nx1−qex
dn

dxn
(xn+q−1e−x). (2.57)

We set the parameter Nn,0 = (−1)n in the generalized Rodrigues formula for the above

equation. The polynomial series {Ln(x)}n are called the associated Laguerre polynomials.
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It can be reduced to the Laguerre polynomials if q = 1. The associated Laguerre polynomials

are called Sonin polynomials in some literatures, as they were studied by the mathematician

Nikolay Yakovlevich Sonin. One can verify that the condition of orthogonality (2.23) is

satisfied for any positive number l, therefore the polynomials Ln,q(x) with different degree

n are orthogonal to each other. By the generalized Rodrigues formula (2.12) - (2.13), the

derivatives of Ln,q(x) can be derived as follows

L(m)
n,q (x) = (−1)nx1−m−qex

dn−m

dxn−m
(xn+q−1e−x)

= (−1)n−mLn−m,q+m(x). (2.58)

From the equation (2.28), we can derive the recursive formula for Ln(x).

Ln+1,q(x) = (x− 2n− q)Ln,q(x)− n(n+ q − 1)Ln−1,q(x). (2.59)

If we use the equation (2.43) to study the coefficients of Ln+1,q(x), we arrive at the following

equation for the polynomial coefficients ak:

k(k + q − 1)ak + (−k + 1 + n)ak−1 = 0.

Therefore, if we let an = 1, we have

ak =
n−k∏
j=1

−(n+ 1− j)(n− j + q)

j
,

Ln+1,q(x) = (−1)nq(q + 1) · · · (q + n− 1) 1F1 (−n; q;x). (2.60)

Remark 2.6. Please note that the above formula for Fn(x) is valid only when q is not an
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integer between −n+1 and 0. If 0 ≥ q ≥ −n+1 and q is an integer, we can instead express

Fn(x) as

Fn,q(x) = (−1)qq(q + 1) · · · (−1)

(
n

1− q

)
1F1 (−n+ 1− q; 2− q;x)xq+1. (2.61)

2.2.3 Jocobi Polynomial: s2(x) is a quadratic function with a posi-

tive discriminant

If s2(x) is a quadratic function with a positive discriminant in the Pearson’s differential

equation (2.1), we can standardize the differential equation and let s2(x) = 1− x2. Let the

function s1(x) = −(α+ β + 2)x+ β − α. Denote the solution of the differential equation as

J(x). The Pearson’s differential equation becomes

(1− x2)J ′′(x)− ((α+ β + 2)x+ α− β)J ′(x) + λJ(y) = 0. (2.62)

The weight function w(x) of the above equation can be calculated from the equation (2.11)

as following

w(y) = A|1− x|α|1 + x|β . (2.63)

The above w(x) can be standardize to be a density function of a Beta distribution or

a F-distribution. If α, β > −1, we can standardize the weight function w(x) to be the

density function of a beta distribution, with the supporting interval (−1, 1). The constant

A = 2−α−β−1/B(α+ 1, β + 1) in this case. The Beta distribution is also categorized as the

type I Pearson distribution. If α > −1, α+β < −1 and A = 2−α−β−1/B(α+1,−α−β−1),

the weight function becomes the density function of an F-distribution, with the supporting
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interval (1,∞). If β > −1, α+ β < −1 and A = 2−α−β−1/B(β +1,−α− β − 1), the weight

function becomes the density function of an F-distribution, with the supporting interval

(−∞,−1). The F-distribution is also categorized as the type VI Pearson distribution, and

is also known as the inverted Beta or Beta prime distribution. Denote the polynomial

solution of (2.62) with degree n as Jn,α,β(x). The polynomial solution can be solved by the

generalized Rodrigues formula (2.12) - (2.13) as following.

Jn,α,β(x) =
(−1)n

n!
(1− x)−α(1 + x)−β dn

dxn
((1− x)α+n(1 + x)β+n)

=
n∑

k=0

(
n+ α

k

)(
n+ β

n− k

)
(−1 + x)n−k(1 + x)k. (2.64)

We set Nn,0 = (−1)n/n! in the generalized Rodrigues formula in the above equation. It

is conventional to use such a setting, as the resulted Jn,α,β(x) becomes consistent with

the Jacobi polynomial with degree n. By checking the condition of orthogonality (2.23), we

conclude that Jn,α,β(x) with different n is orthogonal with each other, if w(x) is standardized

as a density function of a Beta distribution with degree α+ 1 and β + 1, and orthogonality

is defined based on such a distribution. However, if orthogonality between polynomials is

defined based on the F-distribution, only finite orthogonality is granted between Jn,α,β(x)

with different n. Precisely speaking, Jn,α,β(x) and Jm,α,β(x) are orthogonal to each other

if and only if n ̸= m and n+m < −1− α− β.

Some other properties of Jn,α,β(x) are found useful in the financial model extension discussed

later. From the equation (2.64), we derive the property of symmetry for Jn, α, β(y) as

follows,

Jn,α,β(y) = (−1)nJn,β,α(−y). (2.65)
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The property of symmetry requires switching the shape parameters for the polynomial

Jn,α,β(y). From the Rodrigues formula, it is found that the derivative of the Jacobi poly-

nomial can be expressed in the form of another Jacobi polynomial.

J
(m)
n,α,β(x) =

(−1)n−m

n!

m−1∏
k=0

((n− k)(α+ β + 1 + n+ k))

(1− x)−α−m(1 + x)−β−m dn−m

dxn−m
((1− x)α+n(1 + x)β+n)

=
m−1∏
k=0

(α+ β + 1 + n+ k)Jn−m,α+m,β+m(x). (2.66)

If we plug the coefficients of s2(x) and s1(x) of the differential equation (2.62) in the formula

(2.28), we arrive at the following recursive formula.

n(n+ α+ β)(2n+ α+ β − 2)Jn,α,β(x) =

(2n+ α+ β − 1){(2n+ α+ β)(2n+ α+ β − 2)x+ α2 − β2}Jn−1,α,β(x)

−4(n+ α− 1)(n+ β − 1)(2n+ α+ β)Jn−2,α,β(x). (2.67)

The Jacobi Polynomial can be expressed in the form of a hypergeometric series, around the

point ±1. If we use the transformation by letting y = (1 − x)/2, the differential equation

(2.62) becomes:

y(1− y)J ′′
n,α,β(y)− ((α+ β + 2)y − (α+ 1))J ′

n,α,β(y) + λJn,α,β(y) = 0. (2.68)

Plug the coefficients of the equation (2.68) in the equation (2.45) and we can express
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Jn,α,β(x) as follows

Jn,α,β(x) = 2F1 (−n, 1+n+α+β;β−α; y) = 2F1 (−n, 1+n+α+β;β−α; 1−x). (2.69)

2.2.4 Romanovski Polynomial: s2(x) is a quadratic function with a

negative discriminant

If s2(x) is a quadratic function with a negative discriminant in the Pearson’s differential

equation (2.1), we can standardize the differential equation and let s2(x) = 1 + x2. Let the

function s1(x) = px+ q. Denote the solution of the Pearson’s differential equation as R(x).

The Pearson’s differential equation becomes

(1 + x2)R′′(x) + (px+ q)R′(x) + λR(y) = 0. (2.70)

The weight function w(x) of the above equation can be calculated from the equation (2.11)

as following

w(x) = A(1 + x2)p/2−1 exp(q arctanx). (2.71)

When p < 1, the above weight function can be standardized to a density function. If we let

A =
Γ( qi−p

2 + 1)Γ(−qi−p
2 + 1)

2pπΓ(−p+ 1)
,

the weight function w(x) in (2.71) is standardized to be a density function. The distribution

defined by such a density function is categorized as the type IV Pearson distribution, and it

was studied as a generalization of the Student’s T-distribution (see Koepf and Masjed-Jamei
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(2006)). We note that when the parameter q = 0 in the weight function w(x), it is re-

duced to the density function of a Student’s T-distribution, with degree of freedom 1 − p.

The difference between the T-distribution and distribution defined by (2.71) is the term of

exp(q arctanx). We name this term the asymmetric adjustor for the T-distribution, as it

adds asymmetry to the T-distribution. It is important to note that such a distribution does

not necessarily has a finite mean and variance. Only when p is negative in the weight func-

tion w(x), the mean of the corresponding distribution is finite. Only when p < −1 in the

weight function, the corresponding distribution has a finite variance. Denote the polynomial

solution with degree n of the differential equation (2.70) as Rn,p,q(x). Using the generalized

Rodrigues formula (2.12) - (2.13), we can derive the polynomial solution Rn,p,q(x) of the

differential equation (2.70) as following

Rn,p,q(x) =
(1 + x2)−p/2+1 exp(−q arctanx)

n!

dn

dxn
((1 + x2)p/2−1+n exp(q arctanx)). (2.72)

We set the parameter Nn, 0 = 1/n! in the generalized Rodrigues formula for the above

equation. The polynomial in (2.72) is called the Romanovski polynomial. The Romanovski

polynomials were discovered in 1884 by Routh in the form of complexified Jacobi polynomials

on the unit circle in the complex plane (see Raposo et al. (2007)) and were rediscovered as

the orthogonal polynomials on some probability distribution by Romanovski (Romanovsky

(1929)). If we check the condition of orthogonality (2.23), we conclude that Rn,p,q(x) and

Rm,p,q(x) are orthogonal with each other based on the weight function (2.71), if m ̸= n and

m + n < 1 − p. Using the generalized Rodrigues formula, we can derive the derivatives of
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the polynomial Rn,p,q(x) as

R(m)
n,p,q(x) = (1 + x2)−p/2+1−m exp(−q arctanx) d

n−m

dxn−m
((1 + x2)p/2+n−1 exp(q arctanx))

= Rn−m,p+2m,q(x). (2.73)

If we plug the coefficients of the differential equation in the equation (2.28), the recursive

formula of Rn,p,q(x) as follows:

Rn+1,p,q(x) = (
(p+ 2n− 1)(p+ 2n)x

p+ n− 1
+

(p+ 2n− 1)(pq − 2q)

(p+ n− 1)(p+ 2n− 2)
)Rn,p,q(x)

+
n(2n+ p)((2n− 2 + p)2 + q2)

(n− 1 + p)(2n− 2 + p)
Rn−1,p,q(x). (2.74)

The Romanovski polynomials can be derived by complexifying the Jacobi polynomials on

the unit circle. Consider the Pearson’s differential equation (2.70) with the variable x in

the complex plane. If we use the transformation y = ix, the differential equation can be

expressed with the variable y as

(1− y2)F ′′(−iy)− (py + iq)F ′(−iy)− λF (−iy) = 0. (2.75)

Therefore, using the equation (2.64) and (2.69), we can express the Romanovski polynomial

in the form of generalized hypergeometric function as

Fn,p,q(x) = Jn, p+iq
2 −1, p−iq

2 −1(ix)

= 2F0 (−n,−1 + n+ p;−iq; 1− ix). (2.76)
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2.2.5 Bessel Polynomial: s2(x) is a quadratic function with a zero

discriminant

If the function s2(x) in the Pearson’s differential equation (2.1) is a quadratic function

of x with a zero discriminant, we can use the proper linear transformation on x and let

s2(x) = x2. Denote s1(x) = px+ q. If q = 0, the weight function w(x) and the solution of

the differential equation will both be reduced to power function of x. We shall discard this

trivial case and assume q ̸= 0. If we apply the proper linear transformation on x, we can

further standardize the differential equation and let s1(x) = px+ 1. Denote the solution of

the Pearson’s differential equation as B(x). The Pearson’s differential equation becomes

x2B′′(x) + (px+ 1)B′(x) + λB(x) = 0. (2.77)

The weight function w(x) can be derived by plug the parameters of the above differential

equation in the formula (2.11)

w(x) = Axp−2 exp(− 1

x
). (2.78)

If p < −1, the above weight function can be standardize to be a density function by letting

A = 1/Γ(1−p). The supporting interval of the density function is (0,∞). The corresponding

distribution is call the inverse gamma distribution, as the reciprocal of the random variable

with such a density function is following a gamma distribution. This distribution is also

categorized as the type V Pearson distribution. Denote the polynomial solution with degree

n of the differential equation (2.78) as Bn,p(x). Using the generalized Rodrigues formula
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(2.12) - (2.13), Bn,p(x) can be derive as

Bn,p(x) = x2−p exp(
1

x
)
dn

dxn
(xp+2n−2 exp(− 1

x
)). (2.79)

We set the parameter Nn,0 = 1 in the generalized Rodrigues formula for the above equation.

The derivatives of Bn,p(x) can be derived by the generalized Rodrigues formula as well.

B(m)
n,p (x) = x2−2m−p exp(

1

x
)
dn−m

dxn−m
(xp+2n−2 exp(− 1

x
)).

= Bn−m,p+2m(x). (2.80)

If we plug the parameters of the differential equation (2.77) in the equation (2.28), we arrive

to the recursive formula for the polynomial series Bn,p(x) as follows:

Bn+1,p(x) = (
(p+ 2n− 1)(p+ 2n)x

p+ n− 1
+

(p+ 2n− 1)(p− 2)

(p+ n− 1)(p+ 2n− 2)
)Bn,p(x)

+
n(2n+ p)

(n− 1 + p)(2n− 2 + p)
Bn−1,p(x). (2.81)

We can express Bn,p in form of a generalized hypergeometric function by plug the parameters

of the differential equation in the formula (2.45)

Bn,p = 2F1 (−n, n− p− 1; 1,−x). (2.82)



CHAPTER 3

Polynomial-Normal Model

3.1 Polynomial-Normal Model and Related Considera-

tions

Let {Ω, F, P} be a probability space which will be used in models below. Among the

models in our discussion, the following standard assumptions are supposed to hold true (see

Black and Scholes (1973)):

1. the market consists of two components: a non-risky asset B (bank account) and a

risky asset S (stock); both assets are perfectly divisible;

2. the interest rate is a non-negative constant r;

3. the stock pays no dividends;

4. no penalty and restriction on borrowing and short selling;

5. no transaction costs;

45
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6. the market is complete; Q is the unique risk-neutral probability measure.

One well-known market model that satisfies the conditions above is the Black-Scholes model.

Under the risk-neutral probability measure Q (martingale measure), the variation of stock

price on the time interval [0, T ] is restricted by the following equality

EQ(ST ) = S0e
rT . (3.1)

Define the (logarithmic) stock return as RT = ln(ST /S0) and the moment generating func-

tion of RT as M(θ) = EQ(e
θRT ). Thus

M(1) = EQ(e
RT ) = EQ(

ST

S0
) = erT .

In the Black-Scholes model RT is normally distributed (for given S0 and T ): RT ∼ N(m, δ2)

, where m and δ are the mean and the standard deviation of RT respectively. Then M(θ) =

exp(mθ + θ2δ2/2) and M(1) = exp(m+ δ2/2) = exp(rT ). Therefore

m = rT − δ2

2
. (3.2)

Due to the Gaussian nature of the Black-Scholes model, both the skewness and kurtosis

of the return are fixed constants no matter what values m and δ take. However, many

real-world examples confirm that skewness and kurtosis are different from those provided

by the Black-Scholes model (see for instance, Kling and Alles (1994)).

To provide a better model of the stock prices, the Black-Scholes model may be generalized

with the help of other distributions. It turns out that the Gram-Charlier series expansion
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presents a particularly good example (see Jarrow and Rudd (1982); Abken et al. (1996)).

Applying the Gram-Charlier series to model RT under Q, the density function of RT under

Q can be expressed in the following way

fRT
(x) = h(

x−m

δ
)p(

x−m

δ
)/δ, (3.3)

where h(x) = exp(−x2/2)/
√
2π is the density function of the standard normal distribution

N(0, 1). The function p(x) is a linear combination of Hermite polynomials

p(x) = 1 +
ξ

6
H3(x) +

κ− 3

24
H4(x),

Hk(x) = (−1)k
dkh(x)

dxk
/h(x).

Denote PR the set of all polynomials on real line R. Let L : PR → PR be an operator

such that L(l(x)) = −(l(x)h(x))′/h(x) for any polynomial l(x). Using this we can rewrite

Hermite polynomials as follows Hk(x) = Lk(1R(x)), where 1R(x) ≡ 1 for any x ∈ R. Let us

define the function p̃(x) = 1 + ξx3/6 + (κ− 3)x4/24, then p(x) = p̃(L)(1R)(x).

The probabilistic nature of parameters m and δ remains the same as EQ(RT ) = m, and

V arQ(RT ) = δ2. It can also be determined from (3.3) that EQ((x − m)3) = δ3ξ and

EQ((x−m)4) = δ4κ. So ξ and κ are the skewness and excess kurtosis of RT respectively.

Generalizing the equality (3.2), we can find that in the model

m = rT − δ2

2
− ln(p̃(δ)). (3.4)
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The Hermite polynomial Hk(x) is introduced at Chapter 2, as the polynomial solution of the

Pearson’s differential equation when s2(x) = 1 and s1(x) = −x. The Hermite polynomial

series is a very common type of orthogonal polynomials in the theory of probability and

functional analysis, featuring a number of useful properties (see Fedoryuk (2001)). We

recall a few useful properties of the Hermite polynomial as below:

H ′
k(x) = kHk−1(x),

∞∫
−∞

h(x)Hk(x)Hk(x)dx = k!
√
2π,

Hk(x+ y) =

k∑
j=0

(
k

j

)
xk−jHj(y).

Being an extension of the Black-Scholes model, the Gram-Charlier model allows for arbitrary

skewness and kurtosis while the higher moments of the stock return are constants determined

by input parameters. The Gram-Charlier model is further expanded using the Polynomial-

Normal distribution.

Assume the density function of RT is given by (3.3), where p(x) =
∑N

k=0 bkHk(x) =

p̃(L)(1R)(x) and p̃(x) =
∑N

k=0 bkx
k. Parameter b0 = 1 because fRT

(x) is a density func-

tion. Assume for simplicity that b1 = b2 = 0 since there exists a unique solution in the

parameter set (m, δ, b3, · · · , bN ). Similar to the Gram-Charlier model, EQ(RT ) = m and

V arQ(RT ) = δ2. The equation (3.4) also applies here for the value of m in the risk-neutral

measure.

We call this model the Polynomial-Normal model. When the polynomial degree N = 0,

the model becomes the Black-Scholes model. When N = 4, the model becomes the Gram-
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Charlier model. The Polynomial-Normal model provides a further extension of the above

models with the association of arbitrary polynomial. We also notice that the normal distri-

bution is the standardized weight function of the following Pearson’s differential equation

H ′′(x)− xH ′(x) + λH(x) = 0. (3.5)

The Hermite polynomial is the polynomial solution of the above differential equation. There-

fore, the model (3.3) is using the product of the weight function and a linear combination

of the polynomial solutions of a specific Pearson’s differential equation, to fit the density

function of the financial return. This method could be extended to other classes of Pearson’s

differential equations. These further extensions will be discussed at the later chapters.

Considering the Polynomial-Normal model, one must be careful regarding the sign of fRT
.

Generally this function is not globally positive. In other words, the function fRT
(x) defined

by (3.3) is positive for every x, and therefore is a valid p.d.f., only for parameters bi in a

special region of RN .

In the Gram-Charlier Model (N = 4), Barton and Dennis (1952) obtained the parameter

conditions for positivity with the help of a numerical method. Later Jondeau and Rockinger

(1998) obtained the border of this region using an analytical method. In the following

discussion we provide the region of (ξ, κ) that ensures positivity for the Gram-Charlier

distribution, and this method is also extended to the case of a general Polynomial-Normal

distribution.

In the Gram-Charlier distribution, the density function of ln(ST /S0) is fRT
(x) = h(y)p(y)/δ

with y = (x − m)/δ. We have to find a region of (ξ, κ) where the following condition is

satisfied
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p(y) = 1 +
ξ

6
H3(y) +

κ− 3

24
H4(y) ≥ 0 for every y .

Let us specify the border of this region. If a point (ξ0, κ0) is on the border, the function

z = p(y) should be tangent to the line z = 0 on the y − z plane. It is because any small

change of (ξ, κ) would make the function above or below the y-axis at a neighborhood of

tangent point, and affect the existence of a negative p(y) value. Therefore, the equation

p(y) = 0 should have a root of multiplicity 2 or higher. Denote this root by y0, then (ξ0, κ0)

should be the solution of following system of linear equations



(
1 +

ξ0
6
H3(y) +

κ0 − 3

24
H4(y)

)∣∣∣∣
y=y0

= 0,

d

dy

(
1 +

ξ0
6
H3(y) +

κ0 − 3

24
H4(y)

)∣∣∣∣
y=y0

= 0.

Solving these equations, we have

(ξ(y), κ(y)) =

(
−24H3(y)

4H2
3 (y)− 3H4(y)H2(y)

, 3 +
72H2(y)

4H2
3 (y)− 3H4(y)H2(y)

)
.

Figure (3.1) below shows the parametric curve (ξ(y), κ(y)) and the shaded region represents

the acceptable area that generates a positive density function.

The similar method can be used for a general Polynomial-Normal distribution where p(x) =

N∑
k=0

bkHk(x). Any parameter set (b3, b4, · · · , bN ) that makes p(x) = 0 and p′(x) = 0 for some

x would correspond to a point on the border if 0 is the global minimum of the polynomial.

Denote A = {(b3, b4, · · · , bN ) : p(x) = p′(x) = 0 for some x}. The set A generates a compli-

cated manifold in RN dividing the space into many parts; the part containing (0, 0, · · · , 0)

is the region we are looking for.
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Figure 3.1: Acceptable skewness-kurtosis region in the Polynomial-Normal model

3.2 Option Pricing in the framework of Polynomial-

Normal Model

This subsection demonstrates how to calculate call, put, power and polynomial option prices

in the Polynomial-Normal model. We also provide the analysis of sensitivities to model

parameters (the Greeks).

In a complete market any option can be hedged by a specific strategy and the initial price

of the option must be equal to the initial investment to avoid arbitrage. The price of the

option turns out to be the discounted expected payoff under the risk-neutral measure.

Theorem 3.1. In the Polynomial-Normal model the price of a call option is given by

C = − Ke−rT (Φ(−D2) +

n∑
k=1

bkHk−1(D2)h(D2))

+ S0Φ(−D1) +
S0h(D1)

p̃(δ)

n∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)δ

k−j , (3.6)
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where

D1 = (ln(
K

S0
)− rT − δ2

2
+ ln(p̃(δ)))/δ, (3.7)

D2 = D1 + δ. (3.8)

Proof. To prove the formula we recall some properties of the Hermite polynomials:

+∞∫
x=−∞

h(x)Hi(x)Hj(x)dx =


0 if i ̸= j,

j! if i = j,

Hn
′(x) = nHn−1

′(x),

Hn(x+ t) =

n∑
k=0

(
n

k

)
tkHk(x).

The proof of the above properties of the Hermite polynomials can be found at Chapter 2.

In the Polynomial-Normal model the risk-neutral option price is determined, as the dis-

counted expected payoff of the option with respect to the risk-neutral measure. Below we

calculate the risk-neutral price C using the equations (3.9) - (3.9) and integration by parts.

C = e−rTEQ(ST −K)+

= e−rT

∞∫
−∞

(S0e
x −K)

+
h(
x−m

δ
)p(

x−m

δ
)
1

δ
dx

= S0e
−rT

∞∫
D2

(eδ+m − K

S0
)h(y)p(y)dy

= S0e
−rT

∞∫
D2

eδ+mh(y)p(y)dy −Ke−rT

∞∫
D2

h(y)p(y)dy
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= −Ke−rT (Φ(y)−
n∑

k=1

bkHk−1(y)h(y))

∣∣∣∣∣
+∞

D2

+ S0e
−rT+ δ2

2 +m

∞∫
D2

h(y − δ)p(y)dy

= −Ke−rT (Φ(−D2) +

n∑
k=1

bkHk−1(D2)h(D2)) + S0e
− ln(p̃(δ))

∞∫
D1

h(z)p(z + δ)dz

= −Ke−rT (Φ(−D2) +
n∑

k=1

bkHk−1(D2)h(D2))

+
S0

p̃(δ)

∞∫
D1

h(z)(1 +

n∑
k=1

bk

k∑
j=0

(
k

j

)
Hj(z)δ

k−j)dz

= −Ke−rT (Φ(−D2) +
n∑

k=1

bkHk−1(D2)h(D2))

+
S0

p̃(δ)

Φ(−D1) +
n∑

k=1

bk

δkΦ(−D1) + h(D1)
k∑

j=1

(
k

j

)
Hj−1(D1)δ

k−j


= −Ke−rT (Φ(−D2) +

n∑
k=1

bkHk−1(D2)h(D2))

+S0Φ(−D1) +
S0h(D1)

p̃(δ)

n∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)δ

k−j .

In addition, put-call parity can be used in order to derive the explicit formula for the put

price:

P = − Ke−rT (−Φ(D2) +
n∑

k=1

bkHk−1(D2)h(D2))

− S0Φ(D2) +
S0h(D1)

p̃(δ)

n∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)δ

k−j . (3.9)
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Sensitivity of option price is usually measured with the Greeks (See Hull (2011)) which are

defined as derivatives with respect to the model parameters.

In the Black-Scholes formula, call and put option prices depend on 5 parameters: initial

price, time to maturity, interest rate, volatility and strike price. In the Gram-Charlier and

Polynomial-Normal models, these prices also depend on the polynomial parameters. With

the option formulae at hand, we can calculate the Greeks simply by differentiating the price.

Using the above theorem, we arrive at the following expressions for delta (∆ = ∂C/∂S0):

∆call = Φ(−D1) +
S0h(D1)

p̃(δ)

n∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)δ

k−j , (3.10)

∆put = −Φ(D1) +
S0h(D1)

p̃(δ)

n∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)δ

k−j . (3.11)

Note that ∆call −∆put = 1 because of put-call parity. Other Greeks can be calculated in a

similar way.

Let us demonstrate our approach for other type of options.

An α-power call is a call option which pays the asset price raised to the power α (α > 0) less

the strike price. An α-power put is a put option which pays the strike price less the asset

price raised to the power α (α > 0). The payoff function of an α-power call with maturity

T and strike price K is g = (Sα
T −K)+, and the payoff function for the corresponding put

option is g = (K − Sα
T )

+. A polynomial option is an option whose payoff at maturity is a

specific polynomial of the asset price, provided the payoff is positive. The payoff function

is g = (l(ST ))
+, where l(x) is a polynomial specified by the option.

These kinds of exotic options present a powerful tools for investors, since the payoff has
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a non-linear relationship with the stock price. Power and polynomial options are used in

practice: for instance, squared LIBOR notes in the interest rate market, compensation

options for top managers ,etc (see, for example, Macovschi and Quittard-Pinon (2006)).

Another example involving polynomial options may be found in portfolio choice theory (see

Bertrand and Prigent (2005)).

The fair price of a power option equals the expected value of the discounted payoff with

respect to the risk-neutral measure. The pricing of the power option is presented in the

following theorem.

Theorem 3.2. In the Polynomial-Normal model, the fair prices of call/put power options

are given by

C = − Ke−rT (Φ(−D2) +
N∑

k=1

bkHk−1(D2)h(D2))

+ Sα
0 e

−rT+(αδ)2/2+αm(Φ(−D1)p̃(αδ) +
N∑

k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j),

and

P = − Ke−rT (−Φ(D2) +
N∑

k=1

bkHk−1(D2)h(D2))

+ Sα
0 e

−rT+(αδ)2/2+αm(−Φ(D1)p̃(αδ) +

N∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j).

Here D2 = (lnK/α− lnS0 −m)/δ and D1 = D2 − αδ.
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Proof. Again, the fair price of the power option can be derived as the discounted expected

payoff of the option, with respect to the risk-neutral measure. Below we calculate the power

option price C using the equations (3.9) - (3.9) and integration by parts.

C = e−rTEQ(ST
α −K)+

= e−rT

∞∫
−∞

(S0
αeαx −K)

+
h(
x−m

δ
)p(

x−m

δ
)
1

δ
dx

= S0
αe−rT

∞∫
D2

(eαδ+αm − K

S0
α )h(y)p(y)dy

= S0
αe−rT

∞∫
D2

eαδ+αmh(y)p(y)dy −Ke−rT

∞∫
D2

h(y)p(y)dy

= −Ke−rT (Φ(y)−
N∑

k=1

bkHk−1(y)h(y))

∣∣∣∣∣
+∞

D2

+ S0
αe−rT+

(αδ)2

2 +αm

∞∫
D2

h(y − αδ)p(y)dy

= −Ke−rT (Φ(−D2) +

N∑
k=1

bkHk−1(D2)h(D2)) + S0
αe−rT+

(αδ)2

2 +αm

∞∫
D1

h(z)p(z + αδ)dz

= −Ke−rT (Φ(−D2) +
N∑

k=1

bkHk−1(D2)h(D2))

+S0
αe−rT+

(αδ)2

2 +αm

∞∫
D1

h(z)(1 +
N∑

k=1

bk

k∑
j=0

(
k

j

)
Hj(z)(αδ)

k−j
)dz

= −Ke−rT (Φ(−D2) +

N∑
k=1

bkHk−1(D2)h(D2)) + S0
αe−rT+

(αδ)2

2 +αm

Φ(−D1) +

N∑
k=1

bk

(αδ)
k
Φ(−D1) +

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j


= −Ke−rT (Φ(−D2) +

N∑
k=1

bkHk−1(D2)h(D2))

+S0
αe−rT+

(αδ)2

2 +αm

Φ(−D1)p̃(αδ) +

N∑
k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j

 .
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If p(x) = 1, the model is essentially reduced to the Black-Scholes case, and the prices (3.12),

(3.12) have the following form (see Macovschi and Quittard-Pinon (2006)):

C = −Ke−rTΦ(−D2) + Sα
0 e

−rT+(αδ)2/2+αmΦ(−D1),

P = Ke−rTΦ(D2)− Sα
0 e

−rT+(αδ)2/2+αmΦ(D1).

To simplify the calculation of polynomial option prices, we introduce the notion of a gap

power option. The payoff function of this option is given by

g =


Sα
T −K if ST > λ,

0 if ST ≤ λ.

We can price this option using the same technique as before. Denote the risk neutral price

of this option by C(S0, α,K, λ).

Theorem 3.3. The gap power option price can be calculated as

C(S0, α,K, λ) = β(S0, α, λ)− γ(K,α, λ), (3.12)

where
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β(S0, α, λ) = Sα
0 e

−rT+(αδ)2/2+αm

(
Φ(−D1)

+
K∑

k=1

bk((αδ)
kΦ(−D1) +

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j)

)
.

represents the present value of Sα
T , and

γ(K,λ) = Ke−rT (Φ(−D2)−
N∑

k=1

bkHk−1(D2)h(D2))

represents the present value of the strike price, with

D2 = (ln(λ/S0)−m)/δ,

D1 = D2 − αδ.

Proof. We know that

C(S0, α,K, λ) = e−rTEQ((ST
α −K)I(ST > λ))

= e−rTEQ(ST
αI(ST > λ))−Ke−rTQ(ST > λ).

Let β(S0, α, λ) = e−rTEQ(ST
αI(ST > λ)) and γ(K,α, λ) = Ke−rTQ(ST > λ). Using the

properties of Hermite polynomials (3.9) - (3.9) and integration by parts, we can calculate

β(S0, α, λ) and γ(K,α, λ) as follows
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β(S0, α, λ) = e−rTEQ(ST
αI(ST > λ))

= e−rT

∞∫
ln(λ/S0)

S0
αeαxh(

x−m

δ
)p(

x−m

δ
)
1

δ
dx

= S0
αe−rT

∞∫
D2

eαδ+αmh(y)p(y)dy

= S0
αe−rT+

(αδ)2

2 +αm

∞∫
D2

h(y − αδ)p(y)dy

= S0
αe−rT+

(αδ)2

2 +αm

∞∫
D1

h(z)p(z + αδ)dz

= S0
αe−rT+

(αδ)2

2 +αm

∞∫
D1

h(z)(1 +
N∑

k=1

bk

k∑
j=0

(
k

j

)
Hj(z)(αδ)

k−j
)dz

= S0
αe−rT+

(αδ)2

2 +αm

(
Φ(−D1)

+
N∑

k=1

bk((αδ)
k
Φ(−D1) +

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j
)


= S0

αe−rT+
(αδ)2

2 +αm

Φ(−D1)p̃(αδ) +
N∑

k=1

bk

k∑
j=1

(
k

j

)
Hj−1(D1)(αδ)

k−j

 ,

and

γ(K,α, λ) = Ke−rTQ(ST > λ)

= Ke−rT

∞∫
ln(λ/S0)

h(
x−m

δ
)p(

x−m

δ
)
1

δ
dx

= Ke−rT

∞∫
D2

h(y)p(y)dy



CHAPTER 3. POLYNOMIAL-NORMAL MODEL 60

= Ke−rT (Φ(y)−
N∑

k=1

bkHk−1(y)h(y))

∣∣∣∣∣
+∞

D2

= Ke−rT (Φ(−D2) +

N∑
k=1

bkHk−1(D2)h(D2)).

Let the payoff function of the option be g = (l(ST ))
+, where l(x) =

n∑
i=1

cix
i is a polynomial

specified by the option. Since a polynomial is a linear sum of power functions, this option

can be seen as a linear sum of gap power options. Assume l(x) > 0 in the region (x1, x2) ∪

(x3, x4) ∪ · · · ∪ (xn−1, xn), where x1 and xn can be ±∞ , and other xi are roots of l(x).

Thus the price of such a polynomial option is given as follows:

C = e−rTEQ(g(ST ))
+

= e−rTEQ(

n∑
i=1

ciS
i
T )I((x1, x2) ∪ · · · ∪ (xn−1, xn))

=

n/2∑
j=1

n∑
i=1

ci(β(S0, i, x2j−1)− β(S0, i, x2j)). (3.13)

The proof of (3.13) is a corollary of the formula for the gap power option.
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3.3 VaR And CVaR under the Polynomial-Normal mod-

el

Value at Risk (VaR) and Conditional Value at risk (CVaR) are very important risk measures,

which probabilistically estimates the potential risk of the certain financial assets. VaR and

CVaR are wildly used by banks, security firms, commodity merchants and other financial

institutions. For a given financial portfolio, probability λ and a time period with the length

T , VaR is usually defined as the maximum loss value within the 1− λ left-sided confidence

interval, or the 1−λ-quantile of the loss value equivalently, where the loss value on a future

financial asset price is the expected asset value (ST ) less the actual asset value (ST ). CVaR

is the average of V aRξ over the significance level ξ, where ξ is taking the value in (0, λ).

Mathematically, these two measures can be defined as following (see Rockafellar (2002)):

V aRλ(ST ) = = S0(e
rT − eRλ), (3.14)

CV aRλ(ST ) =
1

λ

λ∫
−∞

V aRξ(ST )dξ, (3.15)

where λ is the significance level of the value at risk, and Rλ is the λ-quantile of RT . The

CVaR can also be interpreted as the conditional expected loss value, given that the loss

value is greater than its 1−λ-quantile. The equivalence of these definitions would be proved

in the following theorem, as well as the VaR and CVaR value under the Polynomial-Normal

model.

Theorem 3.4. The CVaR value defined by (4.25) can be expressed as
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CV aRλ(ST ) = S0e
rT − S0

λ

Rλ∫
−∞

exdFRT (x), (3.16)

where FRT (x) is the cumulative distribution function (c.d.f.) of RT . This expression is

regardless of the distribution of the returning financial asset value. If the density of the

underlying stock is given by (3.3), where the polynomial p(x) = 1+
∑N

k=3 bkHk(x), the VaR

and CVaR value of the underlying stock are as follows:

V aRλ(ST ) = S0(e
rT − eRλ), (3.17)

CV aRλ(ST ) = S0e
rT − S0e

δ2/2+m

λ
p̃(δ)Φ(

Rλ −m− δ2

δ
)

−
N∑

k=3

bk

h(Rλ −m− δ2

δ
)

k∑
j=1

(
k

j

)
Hj−1(

Rλ −m− δ2

δ
)δk−j

 ,(3.18)

where Rλ is the λ-quantile of RT and

λ = Φ(
Rλ −m

δ
)− h(

Rλ −m

δ
)

N∑
k=3

bkHk−1(
Rλ −m

δ
). (3.19)

Proof. According to the definition, V aRλ is the loss of the underlying financial asset when

RT is at its λ-quantile. Therefore (4.24) is satisfied. The cumulative probability in (4.26)

can be calculated as following:
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λ =

Rλ∫
x=−∞

fRT
(x)dx

=

Rλ−m

δ∫
y=−∞

h(y)p(y)dy

=

[
Φ(y) +

N∑
k=3

(−1)kbk
dk−1

dyk−1
h(y)

]∣∣∣∣∣
Rλ−m

δ

−∞

= Φ(
Rλ −m

δ
)− h(

Rλ −m

δ
)

N∑
k=3

bkHk−1(
Rλ −m

δ
).

From the CVaR definition (4.25), the integral can be further derived in the following way,

with the help of the integration by parts:

CV aRλ(ST ) =
1

λ

λ∫
0

V aRξ(ST )dξ

=
1

λ

Rλ∫
−∞

V aRFRT
(y)(ST )dFRT (y)

=
1

λ

Rλ∫
−∞

S0(e
rT − ey)dFRT

(y)

=
1

λ
(S0e

rTλ− S0

Rλ∫
−∞

eydFRT (y))

= S0e
rT − S0

λ
(

Rλ∫
−∞

eydFRT
(y)).

So, the equation (3.16) is satisfied, and therefore under the Polynomial-Normal model,

CV aRλ can be calculated as



CHAPTER 3. POLYNOMIAL-NORMAL MODEL 64

CV aRλ(ST ) = S0e
rT − S0

λ

Rλ∫
−∞

exfRT
(x)dx

= S0e
rT − S0

λ

Rλ−m

δ∫
−∞

eδ+mh(y)p(y)dy

= S0e
rT − S0e

δ2/2+m

λ

Rλ−m

δ∫
−∞

h(y − δ)p(y)dy

= S0e
rT − S0e

δ2/2+m

λ

Rλ−m−δ2

δ∫
−∞

h(z)p(z + δ)dz

= S0e
rT − S0e

δ2/2+m

λ

Rλ−m−δ2

δ∫
−∞

h(z)(1 +
N∑

k=3

bk

k∑
j=0

(
k

j

)
Hj(z)δ

k−j)dz

= S0e
rT − S0e

δ2/2+m

λ
p̃(δ)Φ(

Rλ −m− δ2

δ
)

−
N∑

k=3

bk

h(Rλ −m− δ2

δ
)

k∑
j=1

(
k

j

)
Hj−1(

Rλ −m− δ2

δ
)δk−j

 .

Hence, the equation (3.18) is satisfied.



CHAPTER 4

Polynomial-T-Distribution Model

4.1 Polynomial-T-Distribution Model and Related Con-

siderations

While the Gram-Charlier model and its extension focused on producing a better estimation

of skewness, kurtosis and other moment parameters for financial asset returns, they made no

improvements on the tail density estimation. To overcome the shortcomings of tail underesti-

mation in the Black-Scholes model, fat-tail distributions were used to describe financial asset

returns. Being a fat-tail distribution with normal-like shape, the Student’s T-distribution

was used first to model financial asset returns at early 1970s (see Blattberg and Gonedes

(1974)). Comparisons between Student’s T-distribution and other distributions were made

thereafter using historical financial data, and in some cases it provided a better fit than oth-

er distributions (see Platen and Sidorowicz (2007)). The density function of the standard

Student’s T-distribution with ν degree of freedom can be expressed as

65
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T (x) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

(1 +
x2

ν
)−

ν+1
2 , (4.1)

Define ΦT (x) as the cumulative probability function (c.d.f.) of the standard Student’s T-

distribution function, then we have

ΦT (x) =
1

2
+

Γ(ν+1
2 )

√
νπΓ(ν2 )

2F1 (
1

2
,
ν + 1

2
,
3

2
;−x

2

ν
)x, (4.2)

where 2F1(x) is the hypergeometric function. We will use the following function as the

density function of RT :

fRT (x) =
1

δ
T (

x−m

δ
), (4.3)

where ν is the degree of freedom, m and δ are the drift and scale parameters respectively.

The corresponding model is called as the Student’s T-distribution model.

A significant difference between the Black-Scholes and the Student’s T-distribution models

is that the expected stock value diverges in the Student’s T-distribution model. This result

is also true for other distributions with a power-law decay. Cassidy et al. (2010) used an

upper limit to cap the density function to justify the model. Similar methods can be used

here for the model parameters’ estimation. For any real number Sc, we have the following

equation:
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E(ST ) = E(S0e
RT )

= S0

∞∫
−∞

exfRT
(x)dx

= S0

Sc+m∫
−∞

ex, fRT
(x)dx+ S0

∞∫
Sc+m

exfRT
(x)dx

= S0

Sc+m∫
−∞

exfRT
(x)dx+ S0R(Sc),

where

R(Sc) =

∞∫
Sc+m

exfRT (x)dx. (4.4)

The term of R(Sc) is seen as the remainder of the integral subject to truncation, where Sc is

large and reasonable selected. Let us denote Ec(·) the partial expectation E(·I{ST<Sc+m}).

Then the expected value of ST can be estimated as follows:

E(ST ) ≈ S0

Sc+m∫
−∞

ex.fRT (x)dx = S0E
c(eRT ). (4.5)

If the density function (4.3) is used to fit the risk-neutral measure density, the estimate

S0e
rT = E(ST ) ≈ Ec(ST ) can be applied. In this case, the drift parameter m can be

estimated in the following way:
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erT = EQ(
ST

S0
) ≈

Sc+m∫
−∞

exfRT
(x)dx =

Sc
δ∫

−∞

eδy+mT (y)dy = em

Sc
δ∫

−∞

eδyT (y)dy,

and hence, m ≈ ln

 erT

Sc
δ∫

−∞
eδyT (y)dy

 . (4.6)

Let pc denote the probability that the stock price ST is larger than Sc +m. Then

pc = P (ST > Sc +m) =

∞∫
Sc+m

fRT (x)dx =

∞∫
Sc
δ

T (y)dy. (4.7)

Solving Sc from pc by (4.7), each selection of pc will end up with a unique upper bound

value Sc. With an appropriate significance probability pc, it is reasonable to truncate R(Sc)

to be zero and therefore avoid a diverging integration. A value of pc close to 0 will diminish

the effect of truncation and generate more accurate results. Though the integration in (4.6)

diverges as pc approaches to 0, it will not be a problem until the value of pc is very small.

In our numerical example in Chapter 6, the results would make sense for a pc as small as

10−100.

Using the Student’s T-distribution to model the logarithmic return gives better tails fitting

to empirical data, but it does not give arbitrary skewness or kurtosis. The skewness of the

Student’s T-distribution is zero, while empirical data suggest a negative skewness. Exces-

sive kurtosis of the Student’s T-distribution, is a constant 3(ν − 2)/(ν − 4). However, we

cannot assess the tail decay speed and the kurtosis at the same time with the Student’s
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T-distribution. To provide further improvements of the model, we use the product of a

polynomial and the Student’s T-distribution density as the density function of RT :

fRT (x) =
1

δ
T (

x−m

δ
)p(

x−m

δ
), (4.8)

where p(x) is the Nth degree polynomial. Let us represent p(x) in the form (see Kirshnamoorthy

(1951)):

p(x) =

N∑
k=0

bkRk(x), (4.9)

where Rk(x) = (1 +
t2

ν
)

ν+1
2

dk

dxk
{ 1

(1 + t2

ν )
ν+1
2 −k

}. (4.10)

The polynomials Rk(x) are called the Romanovski Polynomial Series. These polynomials

are discussed at Chapter 2 as the solution of the Pearson’s differential equation. They are

the polynomial solutions of the following Pearson’s differential equation

(1 +
x2

ν
)R′′(x) +

(1− ν)x

ν
R′(x) + λR(x) = 0, (4.11)

for which the weight function turns out to be the density function of the T-distribution

presented at the equation (4.1). This is another example of using the product of the weight

function and a linear combination of polynomial solution of a specific Pearson’s differential

equation, to fit the density function of the financial asset return. The model (4.8) - (4.10)

is called the Polynomial-T-Distribution model (see Li and Melnikov (2013)).

The linear parameter must satisfy b0 = 1 to be a valid density function. We assume
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b1 = b2 = 0 so that the expectation and variance of the return are solely determined by

the drift and scale parameters. Without b1 and b2, we can find that E(RT ) = m and

V ar(RT ) = νδ2/(ν − 2).

We can estimate the mean m as in case of the Student’s T-distribution model with respect

to the risk-neutral measure:

m ≈ ln

 erT

Sc
δ∫

−∞
eδyT (y)p(y)dy

 . (4.12)

The significance probability pc becomes

pc =

∞∫
Sc
δ

T (y)p(y)dy. (4.13)

We can see that the Student’s T-distribution model is a particular case when we use a trivial

polynomial. When the degree of freedom ν approaches infinity, the Student’s T-distribution

is reduced to the normal distribution, and the Polynomial-T-Distribution model is reduced

to the Gram-Charlier model and the Polynomial-Normal model. We note also that Rn(x)

will approach to Hermite polynomial of the same degree. Taking the limit of Rk in (2.18)

as ν → ∞, we have

lim
ν→∞

Rn(x) = e
x2

2
dn

dxn
e−

x2

2 , (4.14)

which turns out to be the Hermite polynomial of degree n.

Remark 4.1. With a finite degree of freedom ν, the decay speed of the density tail becomes
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ν − N , where N is the degree of the polynomial in (4.9). The existence of finite moments

for RT can also be decided by this decay speed: for any k < ν −N , the kth moment of RT

exists. But existence of a finite kurtosis or even variance is remaining as an open question

(see Shaw (2011)).

Another property of the Polynomial-T-Distribution model is the sign of the polynomial

p(x). The function fRT (x), presented as the product of the Student’s density function

and the polynomial p(x), ought to be globally positive. Thus global positivity of p(x) is

necessary. Only when {bk}k=3,··· ,N resides in a special region of the parameter space RN−2,

the positivity condition is satisfied. In the Gram-Charlier model and the Polynomial-Normal

model, this region for positive density functions was found. We may use a similar method

for the Polynomial-T-Distribution model. If the parameters {bk}k=3,··· ,N are on the border

of this region, p(x) should be tangent to the x-axis. Therefore, p(x) should have a multiple

root x0, satisfying the linear equations:


p(x0) = 0

p′(x0) = 0

(4.15)

Solving equations (4.15) for any real x0, we span a solution set into a (N − 3)-dimensional

manifold, which is indicating the border of the positivity region. The part including origin

is the region generating valid density functions.
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Figure 4.1: Acceptable polynomial parameters region in the Polynomial-T-
Distribution model

4.2 Option Pricing under Polynomial-T-Distribution Mod-

el

The main difficulty of option pricing under the Polynomial-T-distribution model is the

divergence of expected stock prices. It may lead to infinite option prices if the standard

pricing method is applied. Cassidy et al. (2010) exploited a truncation method to price

options in the framework of the Student’s T-distribution model. This result was derived in

an integral form, called Gosset formula. However, it is not an explicit solution because the

integral is non-elementary. We try to show how to solve the problem, in the framework of

the Polynomial-T-Distribution model.

Assume that the call or put European option has a time to maturity T , strike price K,

in a market of constant interest rate r, and are placed regarding a stock {S}t whose risk-

neutral logarithmic return density is given by (4.8). The fair prices of European options

should always equate the discounted expected payoff of the underlying option, regarding the

risk-neutral measure. Thus the put option price is given as:
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P = e−rTEQ(K − ST )
+

= e−rT

ln(K)−ln(S0)∫
x=−∞

KfRT
(x)dx− S0e

−rT

ln(K)−ln(S0)∫
x=−∞

exfRT
(x)dx. (4.16)

Due to the put-call parity, the call option price would be the following:

C = P + S0 −Ke−rT . (4.17)

In section 2, we estimated m using a truncation method, by setting

S0 ≈ e−rTEc
Q(ST ).

Plugging this expression instead of S0 in the put-call parity, we have

C ≈ P + e−rTEc
Q(ST )− e−rTK

= e−rTEQ((K − ST )I{ST<K}) + e−rTEQ(ST I{ST<Sc+m})− e−rTK

= e−rTEQ(ST I{Sc+m>ST>K})− e−rTEQ(KI{ST>K}).

By using estimated expected stock prices and put-call parity, we therefore avoid calculating

a divergent integral in call option, but draw it for put option price instead. The put option

price is given in the following theorem.

Theorem 4.1. If the density of logarithmic stock return is defined by (4.8), the European
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put option price with time to maturity T and strike price K is given as

P = Ke−rTΦT (
ln(K)− ln(S0)−m

δ
)

+S0e
m−rT Γ(ν+1

2 )
√
νπΓ(ν2 )

N∑
k=0

bk(−δ)k
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
ln(K)− ln(S0)−m

δ
√
ν

)

+
Γ( ν+1

2 )
√
νπΓ( ν2 )

N∑
k=3

bk

(
S0e

m−rT+δy
k∑

l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

+Ke−rT dk−1

dyk−1
(1 +

y2

ν
)k−

1+ν
2

)∣∣∣∣
y=

ln(K)−ln(S0)−m
δ

, (4.18)

where

Φ∗(ξ, k, x) =

∫ x

−∞
eξy(1 + y2)kdy ,for any ξ < 0, k ∈ R. (4.19)

Proof. The first term in (4.16) can be calculated by basic integration as follows:

e−rT

ln(K)−ln(S0)∫
x=−∞

KfRT
(x)dx

= Ke−rT

ln(K)−ln(S0)−m
δ∫

y=−∞

T (y)p(y)dy

= Ke−rT Γ(ν+1
2 )

√
νπΓ(ν2 )

ln(K)−ln(S0)−m
δ∫

y=−∞

((1 +
y2

ν
)−

ν+1
2 +

N∑
k=3

bk
dk

dyk
(1 +

y2

ν
)k−

ν+1
2 )dy
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= Ke−rTΦT (
ln(K)− ln(S0)−m

δ
)

+Ke−rT Γ( ν+1
2 )

√
νπΓ( ν2 )

N∑
k=3

bk
dk−1

dyk−1
(1 +

y2

ν
)k−

ν+1
2 )

∣∣∣∣∣
y=

ln(K)−ln(S0)−m
δ

. (4.20)

To calculate the second term in (4.16), we derive the following equation with integration by

parts for k times:

x∫
−∞

eδy+m dk

dyk
(1 +

y2

ν
)k−

ν+1
2 dy

= em+δy
k∑

l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
x

+ (−δ)k
x∫

−∞

eδy+m(1 +
y2

ν
)k−

ν+1
2 dy

= em+δy
k∑

l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
x

+(−δ)kem
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
x√
ν
). (4.21)

Applying now (4.21), we simplify the second part of (4.16) as follows:
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S0e
−rT

ln(K)−ln(S0)∫
x=−∞

exfRT
(x)dx

= S0e
−rT

ln(K)−ln(S0)−m
δ∫

y=−∞

eδy+mT (y)p(y)dy

= S0e
m−rT Γ( ν+1

2 )
√
νπΓ( ν2 )

ln(K)−ln(S0)−m
δ∫

y=−∞

eδy((1 +
y2

ν
)−

ν+1
2 +

N∑
k=3

bk
dk

dyk
(1 +

y2

ν
)k−

ν+1
2 )dy

= S0e
m−rT Γ( ν+1

2 )
√
νπΓ( ν2 )

{√
νΦ∗(δ

√
ν,−ν + 1

2
,
ln(K)− ln(S0)−m

δ
√
ν

)

+

N∑
k=3

bk

{
eδy

k∑
l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
y=

ln(K)−ln(S0)−m
δ

+(−δ)k
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
ln(K)− ln(S0)−m

δ
√
ν

)

}}
. (4.22)

Combining both (4.20) and (4.22), we arrive to the formula (4.18).

Remark 4.2. Option prices depend on a few parameters, and sensitivity of the option prices

over these parameters is crucially important in problems like hedging portfolios. These

sensitivities is often measured in terms of Greek letters, which are defined by derivatives

of option prices over corresponding parameters. In the Black-Scholes model, option prices

are determined from underlying stock prices, strike prices, volatility, time to maturity and

interest rate. In the Polynomial-T-Distribution model, it also depends on degree of freedom

of the distribution and the polynomial parameters. With option prices at hand, we can

calculate the Greek letter by differentiating the price over particular parameters. Sensitivity

with regards to stock price (∆put = ∂P/∂S0, ∆call = ∂C/∂S0) can be calculated as follows:
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∆put = em−rT Γ( ν+1
2 )

√
νπΓ( ν2 )

{√
νΦ∗(δ

√
ν,−ν + 1

2
,
ln(K)− ln(S0)−m

δ
√
ν

)

+
N∑

k=3

bk

{
eδy

k∑
l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
y=

ln(K)−ln(S0)−m
δ

+(−δ)k
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
ln(K)− ln(S0)−m

δ
√
ν

)

}}
(4.23)

and ∆call = ∆put + 1.

Other Greek letters can be calculated similarly.

4.3 Value at Risk under Polynomial-T-Distribution Mod-

el

This section is devoted to calculations of VaR and CVaR in the Polynomial-T-Distribution

model. As VaR and CVaR are usually calculated as percentiles of the predictive distribution

for the future financial returns, an appropriate tail estimation for financial returns becomes

critically important in calculating these measures. According to the fat-tail property in the

returns, a normal distribution would severely underestimate VaR and CVaR.

VaR and CVaR can be interpreted as quantile and partial expected value of the loss variable.

The definition and some basic properties of VaR and CVaR is given in Chapter 3 by the

equations (3.14) - (3.16). The following theorem gives the VaR and CVaR value in the

Polynomial-T-Distribution model.

Theorem 4.2. If the density of the underlying stock is given by (4.8) - (4.10), the VaR

and CVaR value of the underlying stock should be as follows:
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V aRλ = S0(e
rT − eRλ), (4.24)

CV aRλ = S0e
rT −

S0e
mΓ(ν+1

2 )

λ
√
νπΓ( ν2 )

{√
νΦ∗(δ

√
ν,−ν + 1

2
,
Rλ −m

δ
√
ν

)

+
N∑

k=3

bk

{
eδy

k∑
l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
y=

Rλ−m

δ

+(−δ)k
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
Rλ −m

δ
√
ν

)

}}
, (4.25)

where Rλ is the λ-quantile of RT and

λ = ΦT (
Rλ −m

δ
) +

Γ( ν+1
2 )

√
νπΓ(ν2 )

N∑
k=3

bk
dk−1

dyk−1
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣
y=

Rλ−m

δ

. (4.26)

Proof. V aRλ is the loss of the underlying financial asset when RT is at its λ-quantile.

Therefore (4.24) is satisfied. The cumulative probability in (2.49) can be calculated as

following:

λ =

Rλ∫
x=−∞

fRT
(x)dx

=

Rλ−m

δ∫
y=−∞

T (y)p(y)dy

=
Γ( ν+1

2 )
√
νπΓ( ν2 )

Rλ−m

δ∫
y=−∞

((1 +
y2

ν
)−

ν+1
2 +

N∑
k=3

bk
dk

dyk
(1 +

y2

ν
)k−

ν+1
2 )dy

= ΦT (
Rλ −m

δ
) +

Γ( ν+1
2 )

√
νπΓ( ν2 )

N∑
k=3

bk
dk−1

dyk−1
(1 +

y2

ν
)k−

ν+1
2

∣∣∣∣∣
y=

Rλ−m

δ

.
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As CV aRλ is the conditional expected loss, it can be rewritten as follows using integration

by parts

CV aRλ = S0e
rT − S0

λ

Rλ∫
−∞

exfRT (x)dx

= S0e
rT − S0

λ

Rλ−m

δ∫
y=−∞

eδy+mT (y)p(y)dy

= S0e
rT −

S0e
mΓ(ν+1

2 )

λ
√
νπΓ( ν2 )

Rλ−m

δ∫
y=−∞

eδy((1 +
y2

ν
)−

ν+1
2 +

N∑
k=3

bk
dk

dyk
(1 +

y2

ν
)k−

ν+1
2 )dy

= S0e
rT −

S0e
mΓ(ν+1

2 )

λ
√
νπΓ( ν2 )

{√
νΦ∗(δ

√
ν,−ν + 1

2
,
Rλ −m

δ
√
ν

)

+

N∑
k=3

bk

{
eδy

k∑
l=1

(−δ)l−1 d
k−l

dyk−l
(1 +

y2

ν
)k−

1+ν
2

∣∣∣∣∣
y=

Rλ−m

δ

+(−δ)k
√
νΦ∗(δ

√
ν, k − ν + 1

2
,
Rλ −m

δ
√
ν

)

}}
.



CHAPTER 5

Generalization of Polynomially Extended Models with

Financial and Actuarial Applications

5.1 The Polynomial-T-Distribution Model with Asym-

metric Adjustor

This chapter is devoted to the further extension of the polynomial models in finance, as well

as applications in actuarial science. The leading idea of our approach is to standardize the

weight function of the Pearson’s differential equation and further use this function for the

basic density function construction. We use the product of this basic density function and a

linear combination of the corresponding orthogonal polynomials to fit the density function

of the variables of interest, like logarithmic financial returns or insurance portfolio claims.

The Polynomial-Normal model and the Polynomial-T-Distribution model become special

cases of this method.

80
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The Polynomial-Normal model shows better ability than the Black-Scholes model in cap-

turing moment parameters of logarithmic financial returns (see Li and Melnikov (2012)).

In the Polynomial-Normal model, the density function of RT is modeled as the product of

the normal density and a linear combination of the Hermite polynomials - the orthogonal

polynomials based on the normal distribution. If we let s2(x) = 1 and s1(x) = −x in the

Pearson’s differential equation, the differential equation becomes

F ′′(x)− xF ′(x) + λF (x) = 0. (5.1)

The standardized weight function w(x) of the equation (5.1) becomes the normal density and

the polynomial solution Fk(x) of (5.1) is the Hermite polynomial as given by the generalized

Rodrigues formula (2.12) - (2.13). In the Polynomial-Normal model, the density function

fRT
(x) can be expressed as

fRT
(x) =

1

δ
w(
x−m

δ
)p(

x−m

δ
), (5.2)

p(x) = 1 +

N∑
k=3

bkFk(x). (5.3)

Combining the above two equations and the generalized Rodrigues formula, we have the

following

fRT
(x) =

w(y)

δ
+

N∑
k=3

bk
δ

dk

dxk
(w(x)sk2(x))

∣∣∣∣∣
y= x−m

δ

. (5.4)

The Polynomial-T-Distribution model handles the fat-tail property of the logarithmic finan-
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cial returns and the non-constant moment parameters simultaneously, and thus presents a

nice estimate of the distribution density for the logarithmic stock returns (Li and Melnikov

(2013)). In the Polynomial-T-Distribution model, we use the above equations (5.2) - (5.4)

to model the density function of RT , where w(x) is the standardized weight function and

Fk(x) is the k
th order polynomial solution of the following Pearson’s differential equation

(1 + x2)F ′′(x) + (1− ν)xF ′(x) + λF (x) = 0. (5.5)

The weight function w(x) of the above differential equation turns out to be the density func-

tion of the Student’s T-distribution with degree of freedom ν, and the polynomial solutions

Fk(x) become the Romanovski polynomials. This is our second example of distributions

generated from the Pearson’s differential equation, used in the propose of financial returns

modeling.

A further extension of the approach can be done as follows. The coefficient of the term

F ′(x) in (5.5) can be generalized as a full linear function of x. In this case, the differential

equation (5.5) becomes the full form of the Pearson’s differential equation, and can be

written as follows

(1 + x2)F ′′(x) + (px+ q)F ′(x) + λF (x) = 0. (5.6)

The weight function w(x) of equation (5.6) can be calculated using equation (2.11):

w(x) = A(1 + x2)
p
2−1 exp(q arctanx). (5.7)
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When p < 1 in formula (5.7), w(x) becomes a density function of a distribution defined

on the whole real line, where the constant A should be properly selected. We call the

additional term exp(q arctanx) the asymmetry adjustor, because it helps to capture the

asymmetry of the density function of RT . Finally, we arrive to the following expression for

A (Koepf and Masjed-Jamei (2006)):

A =
Γ( qi−p

2 + 1)Γ(−qi−p
2 + 1)

2pπΓ(−p+ 1)
.

Following from the generalized Rodrigues formula (2.12) - (2.13), the polynomial solution

of the differential equation (5.6) is given as

Rk(x) = (1 + x2)−
p
2+1 exp(−q arctanx) d

k

dxk
((1 + x2)

p
2−1+k exp(q arctanx)). (5.8)

Similarly, we can use a combination of weight functions and orthogonal polynomials to

determine the density function fRT of logarithmic stock return RT and find

fRT
(x) =

1

δ
w(
x−m

δ
)p(

x−m

δ
), (5.9)

where p(x) = 1 +
N∑

k=3

bkRk(x). (5.10)

Combining the equations (5.8) - (5.10), we have

fRT
(x) =

A

δ
(1 + y2)

p
2−1eq arctan y +

A

δ

N∑
k=3

bk
dk

dyk

(
(1 + y2)

p
2+k−1eq arctan y

)∣∣∣∣∣
y= x−m

δ

. (5.11)
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Due to the asymmetry adjustor, the above density function is more powerful in capturing

the asymmetry of distribution of RT , in comparison with the Polynomial-T-Distribution

model. We name this model the Polynomial-T-Distribution model with the asymmetric

adjustor. When the parameter q = 0 in the equation (5.11), the model is reduced to the

Polynomial-T-Distribution model with degree of freedom 1− p.

Similarly to the Polynomial-T-Distribution model, one must be careful about the sign of the

polynomial p(x) and the diverging integral when calculating the expected stock prices. The

polynomial p(x) used in (5.11) must be globally positive in order to generate a valid density

function. Only when the polynomial parameters {bk}k=3,··· ,N resides in a special region of

the parameter space, the positivity condition is satisfied. We use the similar method in the

previous models to determine the region of positivity: if the parameters {bk}k=3,··· ,N are on

the border of this region, p(x) should be tangent to the x-axis. Therefore, p(x) should have

a multiple root x0, satisfying the linear equations:


p(x0) =1 +

N∑
k=3

bkRk(x0) = 0,

p′(x0) =
N∑

k=3

bkR
′
k(x0) = 0

.

Solving {bk}k=3,··· ,N from the above linear equation system for any real x0, we find the set

of solutions in the parameter space RN−2. The set of solutions span a N − 3 dimensional

manifold, and indicates the border of the positivity region. The part including origin is the

region generating valid density functions.

Because the density function (5.11) defines a fat-tailed distribution, one will find the integral

diverges when calculating the expected stock prices. We use the same method of truncation

as we used in the Polynomial-T-Distribution to deal with the problem (see Cassidy et al.
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(2010)). For any real number Sc, we have the following equation:

E(ST ) = E(S0e
RT )

= S0

∞∫
−∞

exfRT
(x)dx

= S0

Sc+m∫
−∞

exfRT (x)dx+ S0

∞∫
Sc+m

exfRT (x)dx

= S0

Sc+m∫
−∞

exfRT (x)dx+ S0R(Sc),

where

R(Sc) =

∞∫
Sc+m

exfRT
(x)dx. (5.12)

When Sc is large and reasonable selected, we can ignore the reminder term R(Sc) in the

expected stock prices calculation. If the density function (5.11) is used to fit the risk-neutral

measure density, the estimate S0e
rT = E(ST ) ≈ Ec(ST ) can be applied. In this case, the

drift parameter m can be estimated in the following way:
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erT = EQ(
ST

S0
) ≈

Sc+m∫
−∞

exfRT
(x)dx

= em

Sc
δ∫

−∞

eδyw(y)p(y)dy,

Hence, m ≈ ln

 erT

Sc
δ∫

−∞
eδyw(y)p(y)dy

 . (5.13)

Let pc denote the probability that the stock price ST is larger than Sc +m. Then

pc = P (ST > Sc +m) =

∞∫
Sc+m

fRT
(x)dx =

∞∫
Sc
δ

w(y)p(y)dy. (5.14)

The idea for our estimation here is to assign a reasonable value for pc, and solve Sc and m

by the equations (5.13) and (5.14). With the proper parametrization for the risk-neutral

measure, we can estimate the European call and put option prices by the following integrals:

C =

Sc+m∫
ln(K/S0)

(S0e
x −K)fRT

(x)dx

=

Sc/δ∫
ln(K/S0)−m

δ

(S0e
δy+m −K)w̃(y)p(y)dy, (5.15)

P =

ln(K/S0)−m
δ∫

−∞

(K − S0e
δy+m)w̃(y)p(y)dy. (5.16)
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Please see Chapter 6 for data processing and numerical illustration for the Polynomial-T-

Distribution model with the asymmetric adjustor.

5.2 Orthogonal Polynomials and Their Applications in

Actuarial Modeling

5.2.1 Polynomial extension of Gamma distribution

The section develops our approach in risk estimation with respect to insurance claim portfo-

lios. In most cases, it is extremely difficult to evaluate the true distribution of the insurance

claim portfolio. However, it is possible to evaluate the moments of the claim amount distri-

bution per claim and the whole portfolio by historical data. Therefore, it is reasonable and

convenient to use a basic distribution to fit the distribution of the portfolio insurances claim,

and use a combination of polynomials to adjust the distribution according to different mo-

ment parameters. For instance, the Gamma distribution and its corresponding polynomial

model was explored and used to estimated the density function of portfolio claims amount

(see Bowers, 1966). Let us begin with the collective risk model defined on some probability

space {Ω, F, P}. Denote the number of claims for a given insurance contract portfolio asM ,

and let it follows a Poisson distribution, whose mean is denoted as η. Then the probability

mass of M is given as

P (M = k) = e−η η
k

k!
. (5.17)

Denote each claim amount as Xk, k = 1, 2, · · ·M , and the total claim amount as X =
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M∑
k=1

Xk. The claim amount Xk are supposed to be i.i.d. distributed and independent with

the claim count M . We are interested in the distribution of the total claim X = X1 +X2 +

· · ·+XM . By estimating the moments of Xk by observation, we can calculate the estimated

moments of X. Denote the jth moment of Xk as µ̄j = E(Xj
k) and the jth moments of X as

µj . The first few µj are given as

µ1 = ηµ̄1,

µ2 = ηµ̄2 + η2µ̄2
1,

µ3 = ηµ̄3 + 3η2µ̄2µ̄1 + η3µ̄3
1,

µ4 = ηµ̄4 + 4η2µ̄3µ̄1 + 3η2µ̄2
2 + 6η3µ̄2µ̄

2
1 + η4µ̄4

1,

µ5 = ηµ̄5 + 5η2µ̄4µ̄1 + 10η2µ̄3µ̄2 + 10η3µ̄3µ̄
2
1 + 15η3µ̄2

2µ̄1 + 10η4µ̄2µ̄
3
1 + η5µ̄5

1.

Now we can implement the polynomial models to fit the distribution of X. Let us consider

the Pearson’s differential equation

xF ′′(x) + (q − x)F ′(x) + λF (x) = 0. (5.18)

The standardized weight function generated by this differential equation directly follows

from the formula (2.11):

w(x) =
1

Γ(q)
xq−1 exp(−x). (5.19)

The polynomial solution of the equation (5.18) is the Lagurre polynomials:
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Ln(x) = x−q+1ex
dn

dxn
(xn+q−1e−x)

=
n∑

k=0

(−1)k
Γ(n+ q)Γ(n+ 1)

Γ(k + q)Γ(k + 1)Γ(n− k + 1)
xk. (5.20)

The formula (5.20) follows from the generalized Rodrigues formula (2.12) - (2.13). We

use the above w(x) as a basic density function, and use the product of w(x) and a linear

combination of Ln(x) to model the density function of the total claim of an insurance

portfolio. The density function is modeled as

fX(x) =
1

δ
w(
x

δ
)(1 +

N∑
k=3

bkLk(
x

δ
)). (5.21)

The terms of L1 and L2 are ignored, in order to determine a unique parameter set of q, δ

and {bk}k≥3 by the observed moments. For simplicity, we put b0 = 1 and b1 = b2 = 0.

Let us denote b∗k as the parameters found via the moment matching method. Denote p̂(x) =

1+
∑N

k=3 b̂kLk(x) as the estimation of the polynomial p(x), q̂ and δ̂ as the estimation of the

shape and scale parameters. Hence, the parameters b∗k should satisfy the following equations

µ1 = δ̂q̂,

µ2 = δ̂2q̂ + (δ̂q̂)2,

µk =

k∑
j=0

(
k

j

)
δ̂kb∗j j!(q̂)

2
j .
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To provide a global positivity of polynomials and to make other estimations reasonable, we

use the following process to determine the estimation of p̂(x):

Denote τ = min

{
0, min

x∈(0,∞)
(1 +

N∑
k=3

b∗k(x))

}
, (5.22)

and p̂(x) = 1 +

N∑
k=3

b̂kLk(x) = 1 +

N∑
k=3

b∗k
1− τ

Lk(x). (5.23)

Using this procedure, we will arrive to a globally positive polynomial, as well as a positive

density function fX(x). Denote ρX the stop-loss premium of the total claim, which is

expected total claim value given that it exceeds its mean. Mathematically, the stop-loss

premium is defined as follows:

ρX = E(X|X > E(X)). (5.24)

The following theorem gives the value of the stop-loss premium ρX under the above model-

ing.

Theorem 5.1. If the density of total claim size X is given by (5.21), then the stop-loss

premium ρX is determined by the formula

ρX = (
q

e
)q

δ

Γ(q)
(1 +

N∑
k=3

bkqL
′′
k(q)

k(k − 1)
). (5.25)

Proof. The mean of X is already calculated as δq. Using the generalized Rodrigues formula

(2.12) - (2.13) and integration by parts, we can calculate ρX as follows:
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ρX =

∞∫
δq

(x− δq)fX(x)dx

=

∞∫
δq

x− δq

δΓ(q)
e

−x
δ (

x

δ
)q−1p(

x

δ
)dx

=

∞∫
q

δ(y − q)

Γ(q)
e−yyq−1p(y)dy

=

∞∫
q

δ(y − q)

Γ(q)
e−yyq−1dy +

N∑
k=3

bk

∞∫
q

δ(y − q)

Γ(q)
e−yyq−1Lk(y)dy

= −δe
−yyq

Γ(q)

∣∣∣∣∞
q

+

N∑
k=3

bk

∞∫
q

δ(y − q)(−1)k

Γ(q)

dk

dyk
(e−yyq−1+k)dy

= (
q

e
)q

δ

Γ(q)
+

N∑
k=3

bkδ(−1)k

Γ(q)

(
(y − q)

dk−1

dyk−1
(e−yyq−1+k)

∣∣∣∣∞
q

−
∞∫
q

dk−1

dyk−1
(e−yyq−1+k)dy


= (

q

e
)q

δ

Γ(q)
+

N∑
k=3

bkδ(−1)k+1

Γ(q)

dk−2

dyk−2
(e−yyq−1+k)

∣∣∣∣∞
q

= (
q

e
)q

δ

Γ(q)
−

N∑
k=3

bkδ

Γ(q)k(k − 1)
e−yyq+1L′′

k(y)

∣∣∣∣∞
q

= (
q

e
)q

δ

Γ(q)
(1 +

N∑
k=3

bkqL
′′
k(q)

k(k − 1)
).

Assume the premium income is collected at the rate of c + θ, continuously over time. The

collecting rate of c offsets the expected rate of claim payment, while the rate of θ is the price

for taking the risk, and/or making a profit for the insurance company (see Beekman, 1968).

Denote Z0 as the original portfolio reserve at time 0 and ZT as the portfolio value at time
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T . If there is no the interest and there are no any other investment incomes, the portfolio

value change at [0, T ] is expressed in the following equation:

ZT = Z0 + (c+ θ)T −X. (5.26)

The probability of ruin at time T is defined as

ψT = P (ZT < 0) = P (X > Z0 + (c+ θ)T ). (5.27)

Theorem 5.2. If the density of total claim size X is given by (5.21), then the probability

of ruin ψT is determined by the formula

ψT =
1

Γ(q)
(Γ(q,

Z0 + θT

δ
+ q)−

N∑
k=3

bke
−yyq

k
L′
k(
Z0 + θT

δ
+ q). (5.28)

Proof. The fist part of the premium income cT should be equal to the expected claim amount

δq. Using the density function (5.21) and the generalized Rodrigues formula (2.12) - (2.13),

the probability of ruin is calculated as follows:
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ψT = P (X > Z0 + (c+ θ)T )

= P (X > Z0 + δq + θT )

=

∞∫
Z0+δq+θT

fX(x)dx

=

∞∫
Z0+δq+θT

1

δΓ(q)
exp(

−x
δ

)(
x

δ
)q−1p(

x

δ
)dx

=

∞∫
(Z0+θT )/δ+q

1

Γ(q)
exp(−y)yq−1

N∑
k=0

bkLk(y)dy

=

∞∫
(Z0+θT )/δ+q

1

Γ(q)

N∑
k=0

(−1)kbk
dk

dyk
(e−yyq−1+k)dy

=
1

Γ(q)
(Γ(q,

Z0 + θT

δ
+ q) +

N∑
k=3

(−1)kbk
dk−1

dyk−1
(e−yyq−1+k)dy)

∣∣∣∣∣
∞

(Z0+θT )/δ+q

=
1

Γ(q)
(Γ(q,

Z0 + θT

δ
+ q)−

N∑
k=3

bke
−yyq

k
L′
k(
Z0 + θT

δ
+ q).

5.2.2 Polynomial extension of Beta distribution

We show that the Gamma distribution and its polynomial extension is useful in modeling

the density function of the total claims X. The density tail of X would be similar to an

exponential distribution in the model based on the Gamma distribution. However, if we

have valid evidence that the total claim amount is below a certain limit, it is not appropriate

to model the density of X by this model. In this case, we would use a combination of the

Beta distribution and a polynomial to model the density function. Consider the following
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Pearson’s differential equation

(1− x2)F ′′(x) + (β − α− (α+ β + 2)x)F ′(x) + λF (x) = 0. (5.29)

The standardized weight function generated by this differential equation is

w(x) =
(1− x)α(1 + x)β

2α+β+1B(α+ 1, β + 1)
. (5.30)

The polynomial solution of differential equation is the Jacobi Polynomials, given as follows

Jk(x) =
(−1)k

k!
(1− x)−α(1 + x)−β dk

dxk
((1− x)α+k(1 + x)β+k)

=
k∑

j=0

(
k + α

j

)(
k + β

k − j

)
(−1 + x)k−j(1 + x)j . (5.31)

Combining the weight function and a polynomial expressed as a linear summation of J(x),

we model the density function of total claim X as follows:

fX(x) =
1

m
w(
x−m

m
)p(

x−m

m
), (5.32)

where, p(x) = 1 +

N∑
k=3

bkJk(x). (5.33)

The drift parameter m is set such that 2m is the upper bound of the total claims. Denote

α̂ and β̂ as the estimation of the parameters α and β, p̂(x) = 1 +
∑N

k=3 bkJk(x) as the

estimation of the polynomial used in the density function, b∗k as the polynomial parameters
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found via the moment matching method. The following equations are used to solve the

estimation of the parameters α̂, β̂ and b̂k.

µ1 =
2mβ̂ + 2m

α̂+ β̂ + 2
,

µ2 =
4m2(β̂ + 2)(β̂ + 1)

(α̂+ β̂ + 2)(α̂+ β̂ + 1)
,

µk =

k∑
l=0

l∑
j=0

l−j∑
i=0

(
k

l

)
mk−l

mlb∗j (−1)i22j
(
l
j

)(
l−j
i

)
B(α̂+ j + i+ 1, β̂ + l − i+ 1)

B(α̂+ 1, β̂ + 1)
,

for any N > k > 2,

τ = min

{
0, min

x∈(0,∞)
(1 +

N∑
k=3

b∗kJk(x))

}
,

p̂(x) = 1 +

N∑
k=3

b̂kLk(x) = 1 +

N∑
k=3

b∗k
1− τ

Jk(x).

With the estimated density function at hand, the stop-loss premium and the probability of

ruin for such a model, can be calculated accordingly. The following theorems provide the

value of stop-loss premium and probability of ruin.

Theorem 5.3. If the density function of total claim amount X is defined by (5.30) - (5.33),

the stop-loss premium of the total claim is as follows

ρX =
2m(α+ 1)B( β+1

α+β+2 , α+ 1, β + 2)− 2m(β + 1)B( β+1
α+β+2 , α+ 2, β + 1)

(α+ β + 2)B(α+ 1, β + 1)

+
N∑

k=3

(−1)kbk
k!2α+β+1B(α+ 1, β + 1)

(
m
dk−2

dyk−2
((1− y)α+k(1 + y)β+k)

)∣∣∣∣∣
β−α

α+β+2

.(5.34)

Proof. Using the density function (5.32) and integration by parts, the stop-loss premium
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ρX is calculated as follows

ρX =

2m∫
2m(β+1)
α+β+2

(x− 2m(β + 1)

α+ β + 2
)fX(x)dx

=
1

2α+β+1B(α+ 1, β + 1)

1∫
β−α

α+β+2

(my − m(β − α)

α+ β + 2
)(1− y)α(1 + y)βp(y)dy

=
1

2α+β+1B(α+ 1, β + 1)
1∫

β−α
α+β+2

(my − m(β − α)

α+ β + 2
)

N∑
k=0

(−1)kbk
k!

dk

dyk
((1− y)α+k(1 + y)β+k)dy

=
1

2α+β+1B(α+ 1, β + 1)


N∑

k=3

(−1)kbk
k!

−m
1∫

β−α
α+β+2

dk−1

dyk−1
((1− y)α+k(1 + y)β+k)dy

+ (my − m(β − α)

α+ β + 2
)
dk−1

dyk−1
((1− y)α+k(1 + y)β+k)

∣∣∣∣1
β−α

α+β+2

)

+

1∫
β−α

α+β+2

m(α+ 1)

α+ β + 2
(1− y)α(1 + y)β+1 +

m(−β − 1)

α+ β + 2
(1− y)α+1(1 + y)βdy


=

2m(α+ 1)B( β+1
α+β+2 , α+ 1, β + 2)− 2m(β + 1)B( β+1

α+β+2 , α+ 2, β + 1)

(α+ β + 2)B(α+ 1, β + 1)

+

N∑
k=3

(−1)kbk
k!2α+β+1B(α+ 1, β + 1)

(
m
dk−2

dyk−2
((1− y)α+k(1 + y)β+k)

)∣∣∣∣∣
β−α

α+β+2

.

Theorem 5.4. If the density function of total claim amount X is defined by (5.30) - (5.32),

the probability of ruin at time T is given as
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ψT =
1

2α+β+1B(α+ 1, β + 1)

(
B(

Z0 −m+ (c+ θ)T

m
,α+ 1, β + 1)

+
N∑

k=3

(−1)k+1bk
k!

dk−1

dyk−1
((1− y)α+k(1 + y)β+k)

∣∣∣∣∣
Z0−m+(c+θ)T

m

 . (5.35)

Proof. Using the density function (5.32) and integration by parts, the probability of ruin

ψT is calculated as follows

ψX = P (X > Z0 + (c+ θ)T )

=

∫ 2m

Z0+(c+θ)T

fX(x)dx

=

∫ 1

Z0−m+(c+θ)T
m

1

2α+β+1B(α+ 1, β + 1)

N∑
k=0

(−1)kbk
k!

dk

dyk
((1− y)α+k(1 + y)β+k)dy

=
1

2α+β+1B(α+ 1, β + 1)

(
B(

Z0 −m+ (c+ θ)T

m
,α+ 1, β + 1)

+
N∑

k=1

(−1)kbk
k!

dk−1

dyk−1
((1− y)α+k(1 + y)β+k)

∣∣∣∣∣
1

Z0−m+(c+θ)T
m


=

1

2α+β+1B(α+ 1, β + 1)

(
B(

Z0 −m+ (c+ θ)T

m
,α+ 1, β + 1)

+
N∑

k=3

(−1)k+1bk
k!

dk−1

dyk−1
((1− y)α+k(1 + y)β+k)

∣∣∣∣∣
Z0−m+(c+θ)T

m

 .

5.2.3 Polynomial extension of Inverse-Gamma distribution

We have developed the polynomial extensions based on the Gamma distribution and the

Beta distribution to model the insurance portfolio claims. The Gamma distribution is good
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at estimating portfolio claim amounts following distributions with exponential tails. The

Beta distribution is good at estimation portfolio claim amounts with certain upper limits.

But other distributions are needed when it comes to the fat-tail claims. The power principle

is a common property for the fat-tailed distributions (Rachev et al. (2005). Some previous

research used the generalized Pareto distribution to model the portfolio claim amounts (Gay

(2005)). In this subsection, we introduce a model using a combination of the inverse Gamma

distribution and a polynomial to model the density function of insurance portfolio claims.

Consider the following Pearson’s differential equation

x2B′′(x) + (qx+ 1)B′(x) + λB(x) = 0. (5.36)

The standardized weight function of the above differential equation can be derived from

(2.11) as

w(x) =
xq−2

Γ(1− q)
exp(− 1

x
). (5.37)

The polynomial solution of the differential equation (5.36) is the Bessel polynomials, given

as follows

Bk(x) = x−q+2 exp(
1

x
)
dk

dxk
(xq+2k−2 exp(− 1

x
)). (5.38)

We use the product of the standardized weight function w(x) and a linear combination of

Bk(x) to model the density function of the insurance portfolio claim amount
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fX(x) =
1

δ
w(
x

δ
)p(

x

δ
), (5.39)

where, p(x) = 1 +

N∑
k=3

bkBk(x). (5.40)

In the above density function of X, the polynomial degree N must satisfy N < 1 − q to

make the integral of fX(x) converge. Similar to the previous model extensions, We ignore

the term of B1(x) and B2(x) in the polynomial p(x), in order to find the unique parameter

set for δ, q, and bk via the moment matching method. Denote q̂ and δ̂ as the estimation of

the shape parameter q and the scale parameter δ, p̂(x) = 1+
∑N

k=3 b̂kBk(x) as the estimation

of the polynomial p(x), and b∗k as the polynomial parameters found via moment matching

method. We obtain the moments µk from data, and use the following procedure to calculate

q̂, δ̂ and p̂(x):

µ1 = − δ̂
q̂
,

µ2 =
δ̂2

q̂(q̂ + 1)
,

µk = δ̂k

1 +
k∑

j=3

(−1)jb∗j
k(k − 1) · · · (k − j + 1)

−q̂(−q̂ − 1) · · · (−q̂ − k − j + 1)

 ,

τ = min

{
0, min

x∈(0,∞)
(1 +

N∑
k=3

b∗kBk(x))

}
, when N > k > 2,

p̂(x) = 1 +

N∑
k=3

b̂kBk(x) = 1 +

N∑
k=3

b∗k
1− τ

Bk(x).

Using the density function of the total claim X, we give the value of stop-loss premium and
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probability of ruin in the following theorems.

Theorem 5.5. If the density function of total claim amount X is defined by (5.39) - (5.40),

the stop-loss premium of the total claim is as follows

ρX =
δeq(−q)−q−1

Γ(1− q)
+

N∑
k=3

bkδ

Γ(1− q)(
dk−2

dyk−2
(yq+2k−2e−1/y)− (y +

1

q
)
dk−1

dyk−1
(yq+2k−2e−1/y)

)∣∣∣∣
y=−1/q

. (5.41)

Proof. Using integration by parts, we can calculate the stop-loss premium of X as follows

ρX =

∞∫
−δ/q

(x+
δ

q
)fX(x)dx

= δ

∞∫
−1/q

(y +
1

q
)w(y)p(y)dy

=
δ

Γ(1− q)

∞∫
−1/q

(y +
1

q
)(yq−2e−1/y +

N∑
k=3

bk
dk

dyk
(yq+2k−2e−1/y))dy

=
δ

Γ(1− q)

 yqe−1/y

q

∣∣∣∣∞
−1/q

+
N∑

k=3

bk

∞∫
−1/q

(y +
1

q
)
dk

dyk
(yq+2k−2e−1/y)dy


=

δeq(−q)−q−1

Γ(1− q)
+

N∑
k=3

bkδ

Γ(1− q)(
dk−2

dyk−2
(yq+2k−2e−1/y)− (y +

1

q
)
dk−1

dyk−1
(yq+2k−2e−1/y)

)∣∣∣∣
y=−1/q

.

Theorem 5.6. If the density function of total claim amount X is defined by (5.30) - (5.32),
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the probability of ruin at time T is given as

ψX =
Γ(1− q)− Γ(1− q, δ/(Z0 + (c+ θ)T ))

Γ(1− q)

+
N∑

k=3

bk
Γ(1− q)

dk−1

dyk−1
(yq+2k−2e−1/y)

∣∣∣∣
(Z0+(c+θ)T )/δ

. (5.42)

Proof. The probability of ruin at time T can be calculated as follows using basic integration

ψX = P (X > Z0 + (c+ θ)T )

=

∫ ∞

Z0+(c+θ)T

fX(x)dx

=

∫ ∞

(Z0+(c+θ)T )/δ

w(y)p(y)dy

=
1

Γ(1− q)

∞∫
(Z0+(c+θ)T )/δ

(yq−2e−1/y +
N∑

k=3

bk
dk

dyk
(yq+2k−2e−1/y))dy

=
1

Γ(1− q)

δ/(Z0+(c+θ)T )∫
0

z−qe−zdz +
N∑

k=3

bk
Γ(1− q)

dk−1

dyk−1
(yq+2k−2e−1/y)

∣∣∣∣
(Z0+(c+θ)T )/δ

=
Γ(1− q)− Γ(1− q, δ/(Z0 + (c+ θ)T ))

Γ(1− q)

+
N∑

k=3

bk
Γ(1− q)

dk−1

dyk−1
(yq+2k−2e−1/y)

∣∣∣∣
(Z0+(c+θ)T )/δ

.



CHAPTER 6

Numerical Illustrations and Comparison of Different

Models

6.1 Numerical Illustrations for Financial Models

This section is devoted to the numerical fitting of our model extensions and their effective-

ness. We use the monthly and daily returns for the index of S&P 500 from 1996 to 2010

process for parameter identification.

Firstly, We perform a tail analysis to see how the return period affects normality of the

return distribution. The normal distribution and the Student’s T-distribution represent

the normal decay and power decay at tail analysis, respectively. We produce a logarithmic

density plot for the normal distribution and the Student’s T-distribution, along with the

logarithmic frequency of the historical data, to see the approximate decay speed of the

density tail.

Secondly, we fit and parameterize the financial model extensions by historical data. The

102
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Black-Scholes model, the Polynomial-Normal model, the T-distribution model and the

Polynomial-T-Distribution model and the Polynomial-T-Distribution model with the asym-

metric adjustor are considered. We use the maximum likelihood method to find the optimal

parameters, and use the Bayesian Information Criteria (BIC) to balance the simplicity and

goodness of fit for different models (see Liddle (2007)). The optimal model is found in

the sense of largest BIC values. The maximum polynomial degree we use in the financial

polynomial models are set as 10. We use the bootstrap method to simulate the 95% and

90% percentage confidence intervals for the optimized parameters, in order to explore the

statistical properties of these parameters. We provide the European option prices, the VaR

and CVaR value, to estimate the effectiveness of the financial model extensions.

Figure 6.1(a) below shows the logarithmic frequency of the monthly returns beginning from

1950, and figure 6.1(b) shows the logarithmic frequency of daily returns in the same period.

We can see the normal distribution severely underestimates the tail density of index return.

The Student’s T-distribution has a much better estimation on tail densities, but it is not

accurate in estimations around the mean. This shortcoming can be overcome by using the

Polynomial-T-Distribution model and the asymmetric adjustor. We can also see that the

degree of freedom in daily returns is smaller than that in the monthly returns. It means that

monthly returns present lighter density tails than monthly return, since the non-normality

becomes diluted in the monthly returns.

Optimization over different polynomials for different model extensions indicates that the

optimal polynomial for the Polynomial-Normal model is p(x) = 1 + b4H4 + b6H6 for daily

data, and p(x) = 1+ b3H3+ b4H4 for monthly data, in the sense that it provides the largest

BIC value and, therefore, balances the simplicity and goodness of the best fit. The optimal

polynomial for the Polynomial-T-Distribution model is p(x) = 1 + b4R4 + b6R6 + b8R8 for
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(a) monthly return (b) daily return

Figure 6.1: Logarithmic frequency for S&P 500 returns from 1950

daily data, and p(x) = 1 + b3R3 + b4R4 for monthly data. The optimal polynomial for

the Polynomial-T-Distribution model with the asymmetric adjustor is p(x) = 1 + b4R4 +

b6R6 + b8R8 for daily data, and p(x) = 1+ b3R3 + b4R4 for monthly data. The Polynomial-

T-Distribution model is the best among different models, because of the larger BIC value.

Table 6.1 and Table 6.2 below shows the likelihood value and BIC value for the daily data

and monthly data, respectively.
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Table 6.3 below provides the optimal parameters of the polynomial and the 95% and 90%

confidence intervals of these parameters, for the Polynomial-Normal model fitted by the

daily data. Table 6.4 below gives the corresponding results fitted by the monthly data.

These results are obtained by the bootstrap method (see Kling and Alles (1994)).

Table 6.3: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-Normal model, fitted by daily return

optimal parameters 95% CI 90% CI

b3 (-0.05467,0.10891) (-0.03123,0.08027)
b4 0.31291 (0.13997,0.43187) (0.12598,0.36528)
b5 (-0.10412,0.08226) (-0.09011,0.06903)
b6 0.42810 (-0.00723,0.16515) (0.00071,0.1512)
b7 (-0.06196,0.01407) (-0.06022,0.01190)
b8 (-0.02791,0.00452) (-0.02002,0.00188)
b9 (-0.01501,0.04199) (-0.01134,0.03670)
b10 (-0.0088,0.00342) (-0.0063,0.00302)

Table 6.4: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-Normal model, fitted by monthly return

optimal parameters 95% CI 90% CI

b3 0.14400 (-0.04820,0.23196) (0.03126,0.21517)
b4 0.05322 (-0.00145,0.11902) (0.00093,0.10317)
b5 (-0.05731,0.03411) (-0.02619,0.02893)
b6 (-0.00744,0.00618) (-0.00580,0.00489)
b7 (-0.00561,0.00419) (-0.00358,0.00299)
b8 (-0.00360,0.00106) (-0.00297,0.00079)
b9 (-0.00082,0.00037) (-0.00064,0.00026)
b10 (-0.00023,0.00041) (-0.00012,0.00038)

Table 6.5 provides the optimal polynomial parameters and the confidence intervals, for the

Polynomial-T-Distribution model fitted by the daily data. Table 6.6 gives the corresponding

results fitted by the monthly data.

Table 6.7 provides the optimal polynomial parameters and the confidence intervals, for the

Polynomial-T-Distribution model with the asymmetric adjustor, fitted by the daily data.
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Table 6.5: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-T-Distribution model, fitted by daily return

optimal parameters 95% CI 90% CI

b3 (-0.04417,0.08181) (-0.03253,0.07237)
b4 0.42569 (0.11432,0.30547) (0.12598,0.28528)
b5 (-0.11212,0.07934) (-0.09625,0.06537)
b6 0.43165 (-0.00885,0.16498) (0.00092,0.14784)
b7 (-0.06693,0.01392) (-0.05816,0.01035)
b8 0.304304 (-0.02598,0.00361) (-0.01740,0.00197)
b9 (-0.01427,0.04243) (-0.01426,0.03596)
b10 (-0.0089,0.00248) (-0.01063,0.00321)

Table 6.6: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-T-Distribution model, fitted by monthly return

optimal parameters 95% CI 90% CI

b3 0.11360 (-0.0422,0.23195) (0.05138,0.21397)
b4 0.04000 (-0.00113,0.10967) (0.00108,0.10019)
b5 (-0.02218,0.02838) (-0.01937,0.02122)
b6 (-0.00561,0.00571) (-0.00464,0.00492)
b7 (-0.00483,0.00329) (-0.00387,0.00295)
b8 (-0.00348,0.00065) (-0.00291,0.00045)
b9 (-0.00071,0.00028) (-0.00064,0.00022)
b10 (-0.00013,0.00046) (-0.00009,0.00042)

Table 6.8 gives the corresponding results fitted by the monthly data.

We can verify that polynomials with the optimized parameters in our models satisfy the

global positivity condition and therefore generate valid density functions. The distribution

decay speed for the models fitted with daily data is mostly less than the corresponding

decay speed fitted with monthly data, except for the Polynomial-T-Distribution model with

the asymmetric adjustor. It is an indication of the diluted normality for the monthly data,

as the fitted distribution for the monthly data is closer to the normal distribution. The

T-Distribution based models yield a better fit than normal distribution based models, in

the sense of much larger likelihood and BIC values. The confidence intervals (see Table
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Table 6.7: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-T-Distribution model with the asymmetric adjustor, fitted by daily re-
turn

optimal parameters 95% CI 90% CI

b3 (-0.14217,0.27928) (-0.10491,0.18898)
b4 0.24349 (0.09391,0.37131) (0.12660,0.29003)
b5 (-0.14607,0.05660) (-0.10558,0.04910)
b6 0.08783 (-0.00935,0.17117) (0.00252,0.14487)
b7 (-0.03673,0.01188) (-0.03091,0.00889)
b8 0.01617 (-0.00440,0.03282) (-0.00191,0.03097)
b9 (-0.07310,0.03055) (-0.03539,0.02897)
b10 (-0.00732,0.00238) (-0.0686,0.00197)

Table 6.8: optimal parameters, 95% and 90% confidence intervals for the
Polynomial-T-Distribution model with the asymmetric adjustor, fitted by monthly
return

optimal parameters 95% CI 90% CI

b3 0.00457 (-0.00192,0.00893) (-0.00665,0.00080)
b4 0.00107 (-0.00083,0.00528) (0.00023,0.00462)
b5 (-0.00148,0.00098) (-0.00131,0.00088)
b6 (-0.00051,0.00059) (-0.00046,0.00053)
b7 (-0.00010,0.00019) (-0.00008,0.00017)
b8 (-0.00007,0.00006) (-0.00005,0.00005)
b9 (-0.00002,0.00001) (-0.00002,0.00001)
b10 (-0.00001,0.00001) (-0.00000,0.00001)

6.3 - Table 6.8) demonstrate that some polynomial parameters are significantly different

from 0, and therefore, they should not be ignored statistically. The asymmetric adjustor

for the Polynomial-T-Distribution model slightly increases the maximum likelihood value,

but decreases the BIC value. It means that the additional goodness of fit provided by

the asymmetric adjustor is not enough to afford the increase of model complexity. The

optimal polynomials we found also shows that the distribution with daily return is more

likely symmetric, as the non-zero parameters are found with even degree. It means that

daily returns have similar chances to increase or decrease. The distribution with monthly
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return becomes less symmetric, as the skewness becomes more statistically important for

monthly returns. It indicates a non-zero skewness returns of a longer period.

Assume the original index price and strike price to be 1000 and the market risk-free rate

to be 0.05, then we can calculate the one-month option prices as in Table 6.9 below. These

prices depend on the significance probability for the T-Distribution model, the Polynomial-T

Distribution model and the Polynomial-T-Distribution model with the asymmetric adjustor.

Table 6.9: option prices, S0 = 1000, r = 0.05, 1 month expiry

K = 950 K = 1000 K = 1050
pc call put call put call put

Black-Scholes model 53.95 0 9.84 5.682 0 45.634
Polynomial-Normal model 54.04 0.09 10.489 6.331 0.042 45.676

T-Distribution model 10−2 53.96 0.01 7.324 3.166 -9.998 35.636
10−4 53.993 0.042 10.784 6.626 0.258 45.892
10−6 53.993 0.043 10.830 6.672 0.365 45.999
10−8 53.993 0.043 10.830 6.672 0.365 45.999

Polynomial-T model 10−2 54.028 0.078 7.655 3.497 -10.218 35.416
10−4 54.158 0.208 10.625 6.467 0.121 45.755
10−6 54.160 0.21 10.666 6.508 0.231 45.865
10−8 54.160 0.21 10.666 6.508 0.231 45.865

P-T model with the 10−2 54.035 0.085 7.703 3.545 -9.892 35.742
asymmetric adjustor 10−4 54.162 0.212 10.635 6.477 0.171 45.805

10−6 54.164 0.214 10.674 6.516 0.252 45.886
10−8 54.164 0.214 10.674 6.516 0.252 45.886

We can see how option prices vary with different significance probability pc in the T-

Distribution based models. A pc value of 10−2 is obviously not producing sufficient ac-

curacy, as option prices generated are far away from those in other models. When we use

pc values smaller than 10−4, option prices begin to converge to reasonable prices, and show

little changes when the pc value is below 10−6. We regard pc = 10−6 as an acceptable

significance probability that leads to reasonable accuracy. We also note that when the value

of pc is below 10−160, option prices begin to diverge and finally end up with a zero call
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price. This is because in the equations (4.6) and (4.12), the estimation of m will diverge

as pc approaches to 0. The value of pc that leads to such divergence depends on the data

variance. The T-Distribution based models give higher values for the out-of-money option-

s than the Polynomial-Normal and Black-Scholes model. Both the out-of-money options

worth 0 in the Black-Scholes model according to the table above, because the return tail

density are severely underestimated. The Polynomial-Normal and the T-Distribution model

are possibly underestimating tail density too, as the out-of-money option prices generated

by these two models are relatively low.

Assume the original index price is 1000 and the market risk-free rate is 0.05, Table 6.10 and

Table 6.11 below give the VaR and CVaR values for the different models, fitted by the daily

return data and the monthly return data respectively.

Table 6.10: one-day VaR and CVaR values, S0 = 1000, r = 0.05

VaR value CVaR value
λ = 0.05 λ = 0.02 λ = 0.01 λ = 0.05 λ = 0.02 λ = 0.01

Black-Scholes model 9.364 11.664 13.195 11.712 13.723 15.093
Polynomial-Normal model 9.272 14.276 16.674 13.82 17.224 19.045

T-Distribution model 10.216 12.946 14.847 13.077 15.592 17.388
Polynomial-T model 8.655 13.594 17.202 14.572 20.505 25.787

P-T with the asymmetric adjustor 9.282 13.709 16.860 14.401 18.922 23.713

Table 6.11: one-month VaR and CVaR values, S0 = 1000, r = 0.05

VaR value CVaR value
λ = 0.05 λ = 0.02 λ = 0.01 λ = 0.05 λ = 0.02 λ = 0.01

Black-Scholes model 36.135 44.332 49.757 44.482 51.609 56.439
Polynomial-Normal model 39.008 50.236 57.294 50.123 59.367 65.281

T-Distribution model 37.382 46.185 52.124 46.442 54.262 59.667
Polynomial-T model 41.812 55.919 64.291 55.583 66.759 73.764

P-T with the asymmetric adjustor 38.481 53.741 63.363 53.662 66.422 74.672

Comparing Table 6.10 and Table 6.11 above, we see that the T-distribution based models

give higher VaR and CVaR values than the normal distribution based models, and the distri-
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butions with polynomial adjustments give higher VaR and CVaR values than distributions

without polynomial adjustments. The polynomial adjustments present heavier effects than

T-distribution tails. The cause of such effect would be the lack of goodness of fit in the

Black-Scholes model and the T-Distribution model. The distributions of both the daily and

monthly returns could not be fitted well and are underestimated at the lower quantiles by

the normal distribution and T-distribution. Polynomial adjustments appears to be effective

in adjusting such underestimations. The Polynomial-T-Distribution model gives the best

estimates as the T-Distribution tails provides more reasonable estimations than normal tail-

s, in additional to the polynomial adjustment. Comparing the Polynomial-T-Distribution

model and the Polynomial-T-Distribution model with the asymmetric adjustor, we see that

the asymmetric adjustor reduces the VaR and CVaR values slightly. It might be caused by

the reduced probability mass assigned to the negative returns when we use the asymmetric

adjustor.

6.2 Numerical Illustration for Actuarial Models

For the actuarial modeling, we use artificial data to compare the fitting of different models.

The number of claims N and the claim sizes Xk, k = 1, 2, · · · , N are generated randomly,

based on some prior distribution assumptions. The method of moments is exploited for

identification of parameters in the models under consideration. The identification procedure

is processed on multiple scenarios, which are classified by the prior assumptions on the

artificial data.

In the first scenario, we use the Poisson distribution with mean η = 10, to count the number

of claims, while each claim follows a uniform distribution on the interval [0, 1000].
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In the second scenario, we again use the Poisson distribution with mean η = 10, but the

claim size each follows an exponential distribution with mean 1000.

In the third scenario, we model the claim number as a Binomial distribution B(25, 0.4)

(Binomial distribution, which indicates the success counts for 25 trials, while the success

rate for each trial is 0.4), while each claim follows a uniform distribution on the interval

[0, 1000]. In all cases, we use polynomials with degrees up to 8.

Table 6.12 shows the parametrization results of our artificial data(the stop-loss premium

and the probability of ruin), generated by a Polynomial-Gamma model. Table 6.13 shows

the corresponding results for the Polynomial-Beta model. Finally, Table 6.14 displays the

corresponding results for the Polynomial-Inverse-Gamma model. In the calculation of the

probability of ruin, the additional premium rate θ is set as θ = 0.01c, and the initial reserve

is Z0 = 2000.

Table 6.12: parametrization results for the Polynomial-Gamma model, stop-loss
premium and probability of ruin

distribution of N Poisson(10) Poisson(10) Binomial(25, 0.4)
distribution of Xk Uniform(0, 1000) Exponential(1000) Uniform(0, 1000)

shape parameter b = 7.313 b = 5.887 b = 8.190
scale parameter δ = 638.82 δ = 776.87 δ = 721.95

polynomial Parameters b3 = 2.69× 10−6 b3 = 3.28× 10−6 b3 = 2.39× 10−6

b4 = 3.83× 10−8 b4 = 4.81× 10−8 b4 = 3.31× 10−8

b5 = 6.77× 10−10 b5 = 1.02× 10−9 b5 = 5.35× 10−10

b6 = 7.99× 10−12 b6 = 1.33× 10−11 b6 = 5.96× 10−12

b7 = 7.53× 10−14 b7 = 1.38× 10−13 b7 = 5.31× 10−14

b8 = 4.90× 10−16 b8 = 1.04× 10−15 b8 = 3.18× 10−16

stop-loss premium 681.418 909.649 878.024
probability of ruin 0.1219 0.1753 0.1692
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Table 6.13: parameterization results for the Polynomial-Beta model, stop-loss pre-
mium and probability of ruin

distribution of N Poisson(10) Poisson(10) Binomial(25, 0.4)
distribution of Xk Uniform(0, 1000) Exponential(1000) Uniform(0, 1000)

shape parameter α = 11.099 α = 16.317 α = 12.877
β = 3.892 β = 4.160 β = 4.555

drift parameter m = 7501 m = 24326 m = 10734
polynomial Parameters b3 = −1.83× 10−8 b3 = −2.94× 10−6 b3 = −5.02× 10−7

b4 = 3.61× 10−7 b4 = 1.91× 10−6 b4 = 1.59× 10−6

b5 = −1.01× 10−6 b5 = −6.44× 10−7 b5 = −3.01× 10−7

b6 = −1.08× 10−7 b6 = 2.91× 10−7 b6 = 2.25× 10−7

b7 = 1.73× 10−7 b7 = −1.26× 10−7 b7 = −4.25× 10−8

b8 = −4.01× 10−5 b8 = −2.67× 10−5 b8 = −7.85× 10−5

stop-loss premium 645.022 1692.25 863.134
probability of ruin 0.0071 0.012 0.0145

Table 6.14: parameterization results for the Polynomial-Inverse-Gamma model,
stop-loss premium and probability of ruin

distribution of N Poisson(10) Poisson(10) Binomial(25, 0.4)
distribution of Xk Uniform(0, 1000) Exponential(1000) Uniform(0, 1000)

shape parameter q = −8.391 q = −7.159 q = −9.037
scale parameter δ = 52375 δ = 87300 δ = 50175

polynomial Parameters b3 = 0.301 b3 = 1.00 b3 = 0.048
b4 = 0.342 b4 = −0.74 b4 = −0.053
b5 = −0.145 b5 = 2.27 b5 = 0.0193
b6 = −0.985 b6 = −0.47 b6 = 0.1685
b7 = 0.105 b7 = −0.09 b7 = −0.0277
b8 = 0.043 b8 = −0.07 b8 = −0.0062

stop-loss premium 530.85 551.78 670.35
probability of ruin 0.1304 0.0902 0.1772
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