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Abstract

As computing technology evolves, the need to manage very large collec-
tions of complex data objects continues to arise. Database systems have been
continually adapting to support new data-types, for instance, support for spa-
tial data management is now standard in most Relational Database Manage-
ment Systems (RDBMSs). With the proliferation of mobile devices capable
of accurately reporting their position in time and space, there exists an ur-
gent need to efficiently manage very large databases of moving object data
inside a RDBMS. Currently, RDBMS support for such spatio-temporal data
is limited and inadequate for non-trivial datasets, and most existing spatio-
temporal access methods cannot be readily integrated into a RDBMS. This
technical report proposes an approach for spatio-temporal storage, index-
ing and query support that can be fully integrated within any off-the-shelf
RDBMS. A cost model which allows one to fine tune the proposed approach
in order to minimize the number of disk accesses at query time is also pre-
sented. An implementation of the approach in Oracle 9i is compared with
other alternatives to map the problem into a RDBMS. Extensive experiments
show that the cost model is reliable and that the proposed approach signifi-
cantly outperforms other options for managing spatio-temporal data inside a
RDBMS.
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1 Introduction

For decades, Relational Database Management Systems (RDBMSs) have provided
users with advanced data management capabilities. A RDBMS offers a host of
convenient and useful features to their users, e.g., a central repository for data stor-
age, concurrency control, backup and recovery mechanisms, support for multiple
users and transactions, and tools to manage very large datasets. The basic build-
ing blocks of a database remains relational tables whose columns consist of sim-
ple data-types such as integers, floating point numbers, and text strings. RDBMS
developers have integrated within their systems index support for these basic data-
types, however the data-types and index support is oftentimes insufficient for more
complex application domains. Inevitably, as the need to manage more complex
data-types emerges, indexing support for these advanced data types is integrated
into the RDBMS. For example, most off-the-shelf RDBMS systems have storage,
indexing, and retrieval support for geometric or spatial data used in Geographic In-
formation System (GIS) applications [3, 27, 35]. A specialized spatial object type
and multi-dimensional index structure can dramatically enhance retrieval perfor-
mance for large databases versus the alternative of having to map a spatial object
into the simple data-types and index structures that would normally be available.
Similarly, specialized index structures integrated within the RDBMS for temporal
data [19, 30] have been proposed.

Given emerging application domains involving moving object data, there now
exists an urgent need to support spatio-temporal data inside a RDBMS. Anything
that changes position through time can be classified as spatio-temporal data. A
prolific number of GPS, wireless computing, and mobile phone devices are capa-
ble of accurately reporting their position [16], and ubiquitous applications that can
take advantage of this information are in high demand, e.g., tracking and fleet man-
agement [20], traffic and re-routing applications [9], spatio-temporal data-mining
[40, 29], and location-aware services [16]. There are an estimated 500 million users
of mobile-phones worldwide [37], many of which can be tracked. US law [10] has
mandated that all wireless phones in that country be traceable in order to provide
enhanced location information to 911 dispatchers during emergencies. The over-
whelming task of managing large datasets of such data demands the convenience,
reliability, and data storage capabilities that a traditional RDBMS affords.

Although ample research on Spatio-Temporal Access Methods (STAMs) has
been performed (an overview can be found in [25]), very little work exists on how
to provide a STAM inside a RDBMS, [17] being a notable exception. This work
fills this crucial need by proposing a spatio-temporal access method which can be
fully integrated within any RDBMS.
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1.1 Problem Statement

There are two main types of spatio-temporal databases [25], those that manage his-
torical information and those that manage current information for current/predictive
query purposes. This report focuses on the first category, i.e., we assume that the
database stores the complete history of moving objects through time and must an-
swer queries about any time in the history of objects. We assume that records
about object’s movements are tracked and sent (possibly via regular updates) to the
RDBMS. Each record has the attributes 〈oid, x, y, ts, te〉 where:

• oid identifies an object,

• 〈x, y〉 are spatial coordinates, and

• 〈ts, te〉 indicate the temporal interval during which an object remained at
position 〈x, y〉.

A typical domain where such a model fits is mobile device tracking [50], e.g., of
GPS users, wireless computing devices, or cell phones. Unlike the trajectory model
[39], where the movement of objects between data points is interpolated, our data
model does not assume anything about the movement of objects between records.
The model reflects real-world applications where assuming an object follows a lin-
ear trajectory between data points may lead to incorrect assumptions. For example,
in security/monitoring applications, a person could be mistakingly assumed to have
entered a restricted area because his/her movement was interpolated. The temporal
interval implicitly performs a form of data compression, when an object’s location
does not change (either because the object does not move or does not move beyond
the accuracy of the positioning device) only the temporal interval will grow and a
single tuple will be added to the database.

A spatio-temporal range query Q takes the form Q = 〈R, T 〉 where R is a
spatial region and T is a time range. Q returns the unique oid’s of records where
(1) 〈x, y〉 is inside R and (2) 〈ts, te〉 intersects with T . An example of such a
query would be “find all objects that were in the West Edmonton Mall at some
point between noon and 1 p.m. yesterday”.

The problem we investigate in this technical report is to define a practical stor-
age and indexing model fully integrated inside a RDBMS that can store a very
large database of the given records, handle regular inserts into the database and
efficiently answer spatio-temporal range queries.

1.2 Technical Report Scope and Organization

This technical report provides:
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• An efficient spatio-temporal indexing technique fully integrated within a
RDBMS,

• A cost model that fine tunes the proposed technique for optimal performance,
and

• An experimental study demonstrating the reliability of the cost model and
both the efficiency and effectiveness of our proposed method.

This report is structured as follows: Section 2 reviews related work in the
spatio-temporal domain, including a discussion of spatio-temporal data generation
and modeling, the types of spatio-temporal queries that exist, and an overview of
several spatio-temporal access methods that have been proposed. Section 3 pro-
vides background on what options for RDBMS support of spatio-temporal data
exist. Therein we identify three general alternatives for providing RDBMS support
for spatio-temporal data:

1. Recasting the problem to employ existing RDBMS support for spatial data,

2. Loosely coupling a STAM to the RDBMS, and

3. Tightly coupling a STAM inside the RDBMS via a relational mapping.

Our approach falls under the third alternative, i.e., we design a STAM that lever-
ages existing RDBMS functionality. The chief advantage thereof being that our
method can be readily integrated into any relational database management sys-
tem. In Section 3, we also provide important background about the other methods
that we use for experimental comparison to our approach, specifically a spatial
index based approach and a space-filling curve approach. Section 4 details our
proposed approach, and the associated cost model. We call our method the Space-
Partitioning with Indexes on Time (SPIT) approach. SPIT is a grid-based access
method with a relational mapping. The SPIT cost model provides a means to mini-
mize the number of disk accesses at query time with respect to grid size. In Section
5 we describe how our approach can be implemented using a RDBMS, Oracle 9i in
particular. Here we also describe relevant implementation details of the approaches
we will use for experimental comparison to SPIT, namely, the spatial index based
approach and the space-filling curve approach. In Section 6 we confirm the reliabil-
ity of the cost model and compare our approach to the other methods for indexing
spatio-temporal data inside a RDBMS. We show that SPIT is extremely efficient
– outperforming all approaches for the dataset and queries we investigated. Sec-
tion 7 concludes the report and provides ideas for extending the work to handle
additional spatio-temporal data models and queries, and to further enhance query
performance.
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2 Related Work

A RDBMS organizes data into tabular files (tables) that can be related to each other
by common fields. The columns of each table represent the data fields and have a
predetermined data-type, i.e., integer, floating point number, or string. Table rows,
often called tuples, store the actual data. In order to enhance query performance a
RDBMS provides means to index table columns. An index speeds query process-
ing by providing a separate data structure with pointers to the rows, identified by
unique row identifiers, of entries in the table that satisfy query criteria.

The basic index structures provided inside a RDBMS are hash-based and tree-
based indexes. A hash-based index uses a function to map records to pages on disk.
To answer queries on a specific value efficiently, the hash function on that value
is applied which returns the page where any records with that value are located.
Assuming an effective hash function, it is often the case that only one disk access
is necessary to retrieve a matching tuple at query time. Typically, the B+tree [4]
is the tree-based index structure of choice inside the RDBMS. Given a column of
table data already in sorted order, a B+tree is constructed by adding each entry
along with a pointer (the unique row identifier of that tuple) into nodes at the leaf-
level of the index. Each node corresponds to a page on disk. As shown in Figure 1,
parent nodes are constructed so as to contain values which bound the minimum and
maximum range of values that their children nodes contain. The process is repeated
recursively to construct the upper levels of the tree. For every node (except the
root) a minimum m and maximum M number of entries per node is specified so
as to ensure that the tree has a balance structured. At query time, the root node
and internal level nodes direct the search. For a point query, i.e., a query against
a single value, a single path down the tree is followed. For range queries as well,
only a single path down the tree must be followed – once the minimum value of the
range is found, an index range scan can proceed by following pointers between the
leaf-level nodes. For 1-dimensional data, i.e., a column of characters in a database
table, the B+tree index offers extremely good performance and scalability. Even
given millions of tuples (database rows), the B+tree structure typically requires
only three levels. Assuming that root and intermediate level nodes are cached,
only 1 disk access (I/O) is necessary to answer a point query because leaf-level
nodes contain the actual column value stored in its associated table tuple.

Although the basic data modeling and index support provided in an off-the-
shelf RDBMS is sufficient for many real-world applications, it has long been ac-
knowledged that more complex data types require extensions to basic RDBMS
support. Via object-relational extensions to the database, a column can be made to
store a complex object type. The challenge is to provide built-in index support for
these complex object types.
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Figure 1: B+tree

Support for spatial data types and indexes is provided in most RDBMS. The R-
tree [14] is the classic structure that most RDBMS vendors base their spatial index
support on. A R-tree builds a Minimum Bounding Rectangle (MBR) approxima-
tion of every spatial object in the database and inserts each MBR in the leaf level
nodes of the R-tree. Figure 2 illustrates a three-dimensional R-tree, boxes A–F rep-
resent the MBRs of the actual 3-dimensional spatial objects on disk. The parents
nodes, R1 and R2, represent the MBRs of a group of object MBRs. At insertion
time, a cost-based algorithm is used to decide which node a new object should be
inserted in based on the criterion of limiting the amount of overlap between nodes
and the amount of dead-space in the tree. For example, in Figure 2, grouping ob-
jects A, E, and F together into R1 creates a smaller MBR than if A, E, and C were
grouped together instead. As with the B+tree, a minimum and maximum num-
ber of entries per node is enforced so as to ensure that the tree remains balanced.
At query time, the tree is traversed, beginning at the root, by visiting each node
wherein the query window intersects a MBR. At the leaf-level, only those object
MBRs that intersect the query MBR need to be retrieved from disk. Recall that
with a B+tree, only a single path through the tree need be traversed. With the R-
tree, however, it may be necessary to follow several paths along the tree, because
the query window may intersect several MBRs in each node.

Another type of spatial index structure supported in many RDBMSs is the
Quad-tree [42]. The Quad-tree is a partition-based index in that objects are re-
cursively divided into quadrants. A spatial object is represented by the quadrant
in which it belongs. Figure 3 illustrates a Quad-tree index structure. The root
node represents the entire data-space, the second level represents the division of
the data-space into quadrants, and subsequent levels divide each of the quadrants
into smaller sub-quadrants. Leaf nodes point to the actual spatial objects within
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Figure 2: Three-dimensional MBRs stored in a R-tree structure (from [45])

that quadrant. At query time, the tree is navigated by following those nodes where
the query window intersects a quadrant until the leaf level pointers are reached.
For general usage in spatial applications, it is reported that the R-tree tends to be
more efficient than the Quad-tree [18]. This behavior is at least partially due to
the R-tree’s ability to adapt to the data it represents, i.e., the index is based on the
actual spatial objects in the database, not on a division of space. For certain appli-
cations, especially in the domain of image-based applications [49], the Quad-tree
offers better performance because data exists throughout the space.

As with spatial data, there exists a need to incorporate support for temporal
data-types and index structures within a RDBMS. A standard database only sup-
ports a view of the data at a single point in time, i.e., can only answer queries of the
form “what is employee X’s salary?”. In many domains, however, it is important to
store historical information or to have information become valid at a future point in
time. For example, queries such as “what was employee X’s salary last year?”. It is
of interest to support indexing in such domains in order to efficiently answer tem-
poral queries. One approach is the Relational-Interval Tree (RI-Tree) [19], which
integrates temporal index into the RDBMS by modifying the R-tree so as to support
efficient indexing of 1-dimensional temporal intervals. The approach can be inte-
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Figure 3: Quad-tree

grated into an Oracle RDBMS using database extender technology, which provides
a mapping between the API of the index and query structure, and the underlying
database tables and index structures. A related technique for indexing temporal
data inside a RDBMS is the MAP21 approach [30]. With MAP21, a maximum
temporal interval assumption is used so as to map the start and end points of a
temporal interval into a one dimensional value that can be readily indexed using a
B+tree.

The need to provide RDBMS support for spatio-temporal data is a natural ex-
tension of the stance taken for purely spatial or purely temporal database support.
In the most general sense, spatio-temporal databases deal with geometries chang-
ing over time [11]. The geometry represents a moving object (whose geometry may
or may not change over time), and the object is assumed to move continuously. If
only the position of an object in space is of interest, for example when tracking
vehicles, then the data is essentially that of moving points. If the object geometries
(spatial extents) are of importance, for example when dealing with the movement
of weather patterns, then the data consists of a moving region that can shrink or
grow over time. In the rest of this section we discuss issues related to the acquisi-
tion and generation of spatio-temporal data, the modeling of spatio-temporal data,
spatio-temporal query types, and existing methods, in particular STAMs, to support
spatio-temporal data and queries.

2.1 Spatio-Temporal Data

Spatio-temporal data comes from various sources, for example the movements of
people, animals, vehicles, airplanes, boats, extra-terrestrial objects, military ob-
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jects, weather (areas of high/low pressure, and storms), the changing borders of
countries or cities [11] – the list is endless because anything that changes position
through time can be classified as spatio-temporal data. An important classification
of moving objects is to define any constraints on movement that may exist. In gen-
eral, three movement scenarios exist – “unconstrained movement (vessels at sea),
constrained movement (cars, pedestrians), or movement in networks (trains and, in
some cases, cars)” [37].

Important uses for spatio-temporal information include tracking inventory, per-
sonal, shipments, fleet, spatio-temporal data-mining, e.g., finding patterns in large
datasets of changing data or grouping users based on similar behavior patterns. Of
enormous interest in cities with traffic congestion problems is traffic and re-routing
applications, e.g., directing users where to go, helping a user when they are lost, or
suggesting alternative routes when a road is congested or closed [9].

Various technologies can be used to actually collect the data. If a device in-
cludes a GPS (Global Positioning System) module, the user’s location can be de-
fined very accurately (within 2-20 meters) [16]. GPS-based devices do not work
well indoors, and require that the user device sends location updates to the service
provider on a regular basis. Besides advanced positioning and mapping applica-
tions, GPS modules can be used to provide location-aware services, fleet monitor-
ing support, and for historical tracking purposes.

The location of a cell phone in the mobile network can be extrapolated by
telecommunication operators without the need for a GPS module. Based on the
cell in which the phone is in or by measuring the distance between overlapping
cells, it is possible to pinpoint the location of a cell phone within a radius of 50
meters (in urban areas) and a few kilometers in rural settings [15]. The advantage
of such an approach is that existing mobile phone technology can be used for the
purposes of providing location-aware services or tracking, without the need for ex-
tra technological infrastructure. US law [10] has mandated that all wireless phones
in that country be traceable in order to provide enhanced location information to
911 dispatchers during emergencies, and wireless carriers are beginning to take ad-
vantage of this capability to offer location-based services to users. Location-based
services can be defined as “services that are related as such or by their information
contents to certain places or locations” [16].

Wireless computing devices can also generate spatio-temporal data [16]. De-
pending on the density of the network, the accuracy of such an approach can be
extremely high (within 2 meters). Typically, the required wireless network infras-
tructure means that data can only be generated within restricted areas such as an
office building or a university campus.

Not surprisingly, due to the private and proprietary nature of data generated
using any of the above technologies, it can be difficult to obtain real datasets of
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spatio-temporal data for experimental purposes. Some animal tracking, hurricane,
and public bus datasets are publicly available [31]; however, the number of records
(in the hundreds) is insufficient for large scale database benchmarking. Due to the
lack of readily available real datasets and the need to generate data in a controlled
fashion for experimental purposes, synthetic spatio-temporal data generators have
been developed. The most notable synthetic generators include the Generate Spa-
tioTemporal Data (GSTD) Tool [46], the Network-based Generator of Moving Ob-
jects [7], a Generator for Time-Evolving Regional Data (G-TERD) [48], and the
City Simulator by IBM.

The GSTD 1 [46] generates data according to prescribed statistical distribu-
tions. Currently uniform, Gaussian, and Skewed distributions are supported. Both
point and moving region (rectangle) spatio-temporal data can be generated. The
cardinality of the dataset can be easily adjusted in order to perform large scale
experiments. For point data, GSTD requires an initial, time, and center distribu-
tion. The initial distribution defines where objects begin within the unit space that
GSTD assumes. The time distribution controls the timestamps when object lo-
cations are updated. The center distribution controls the movement of points in
space. Advanced features supported by the GSTD include support for a frame-
work, i.e., obstacles that objects cannot enter, support for multiple datasets with
different properties, and an on-line dataset visualizer. GSTD also supports three
approaches for handling points that leave the data-space – a radar approach where
objects exiting the space are allowed, an adjustment approach where objects are
forced to remain in the space and a toroid approaches where objects “wrap-around”
so as to remain in the space. Figure 4 shows three snapshots taken from the GSTD
visualizer tool for a generated dataset consisting of points moving with a toroid
approach, i.e., wrap-around. A point represents an object and boxes represent the
set of obstacles, a framework, that restrict an object’s movement.

Even with the use of a framework, the objects generated by the GSTD can
move anywhere and along any path within the unit space where obstacles do not
exist. On the other hand, the Network-based Generator of Moving Objects [7] can
generate a dataset where objects follow a given network, e.g., roads. In such a
scenario the maximum allowable speed and capacity of a network is important, as
well as the interaction of moving objects. Objects are assumed to have a starting
location and a destination. A key advantage of the Network-based generator is
that synthetic data that follows the real topology of a network, e.g., the roads of a
city, can be generated. Objects can also belong to a class, e.g., cars vs pedestrians,
with different properties such as maximum velocity. A representation of the data
generated by the Network-based Generator is shown in Figure 5. The dots repre-

1http://db.cs.ualberta.ca:8080/gstd/index.html
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Figure 4: Snapshots of a framework-based GSTD Dataset

sent different types of moving objects and the lines the infrastructure that objects
navigate.

G-TERD [48] generates a sequence of raster images rather than points as with
the GSTD. With G-TERD, objects have associated colors that can change so as
to represent additional properties (for example, temperature) of an object beyond
the spatio-temporal. Data generation requires a large number of parameters. G-
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Figure 5: Snapshot of a Network-based Generator Dataset
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Figure 6: Snapshots of a G-TERD Dataset
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Figure 7: Snapshot of an IBM City Simulator Dataset

TERD also supports frameworks, or obstacles to movement. Three snapshots of
a G-TERD dataset2 are shown in Figure 6. The moving objects are the regions
themselves.

IBM’s City Simulator3 is a Java based spatio-temporal data generator that
creates spatio-temporal data representing the movement of people in a fully 3-
dimensional virtual city. One can generate a dataset of up to 1 million people
moving through the infrastructure of a city, i.e., buildings, parks, roads, and in-
tersections. Most generators only allow for up to 2-dimensional movement in the
spatial plane; the city simulator is unique in that it allows movement between the
floors of buildings – elevation is taken into account. A snapshot of a city simulator
dataset is shown in Figure 7. The points represent people in the city. The darker
gray regions represent the road structure of the map, with lighter gray sections cor-
responding to buildings in the city. In the top-left corner one sees a park where
several people have congregated.

2from http://delab.csd.auth.gr/stdbs/g-terd.html
3http://alphaworks.ibm.com/tech/citysimulator
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2.2 Modeling Spatio-Temporal Data

As identified in [2], both real and synthetic spatio-temporal data can be modeled
in various ways depending on the semantics of the application and the types of
queries that must be supported. The data can be modeled as 2 or 3 dimensional
spatial objects with time as another dimension. For many applications, the spatial
extents of objects are not of interest, therefore the data consists of points in a 3 or
4 dimensional space, for example as shown in Figure 8. Although the movement
of objects through time is continuous, the data typically consists of discrete sample
points of the object position through time. For example, a taxi cab might report its
position to a central server every 10 minutes.

Figure 8: Modeling Spatio-Temporal Data as Points

An abstraction that can be used on these points is that of the trajectory model.
In such a case a linear trajectory is assumed between data points. As Figure 9
exemplifies, this model assumes that an object traveled in a straight line at a con-
stant velocity between actual recorded data points. The actual data to be indexed
consists of a set of polylines – one for each moving object. The trajectory model
can be an especially useful abstraction in domains where the position of objects is
updated relatively infrequently and queries may fall between time update intervals.

A third alternative for data modeling, used more often when the current and
future position of moving objects is of interest, is a parametric model [43]. Instead
of recording actual data points, the spatio-temporal database stores a parameterized
velocity function for each moving object in the system as per Figure 10. Although
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Figure 9: Modeling Spatio-Temporal Data as Trajectories

this approach means reduced storage overhead, the accuracy of the information
is uncertain because the model assumes that an object follows a projected path.
When the parameters of the stored object function changes beyond a set threshold,
the function parameters (and any associated database indexes) must be updated.
This can occur via polling (a pull-model) or a push-model where the object itself
is responsible to inform the database of its changes. Under a parametric approach,
the history of object movement is generally discarded – only the current velocity
vector is of interest, however a separate mechanism could be used to store historical
information using this model.

Another alternative data model approach is to take advantage of an underlying
network [9] or constraints in the space if they exist [37]. For instance, data can be
modeled as points along the 1-dimensional line of a road, or as a relative position
along a path in a constrained data space.

The model we use is slightly different than the above in that we assume point
geometries with a temporal interval, e.g., objects remain in a given position for an
interval of time as shown in Figure 11. A step-wise linear interpolation between
data points is assumed. The model is more realistic for spatio-temporal data track-
ing, i.e., for surveillance purposes. In such a domain one cannot assume anything
about the movement of object’s between data points.
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Figure 10: Modeling Spatio-Temporal Data as Parametric Functions

Figure 11: Modeling Spatio-Temporal Data as Step-Wise Interpolations

2.3 Spatio-Temporal Queries

The types of spatio-temporal queries depend on the spatio-temporal database of
interest – historical or current. Current/predictive queries look to answer queries
regarding the current or projected path of objects, for example, “which taxi cabs
will be near the hockey arena at 7 p.m.?”. Historical queries focus on reporting
information about the past movement of objects. Answering both types of queries
efficiently is very important for spatio-temporal based applications.
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Figure 12: Spatio-Temporal Range Query

Current/Predictive STAMs support queries that predict a moving object’s lo-
cation at a given time based on the current velocity of the object. Much of the
challenge of predictive queries is that the answer to a query is tentative in that it
is based on what is currently known about objects in the real world – the motion
vectors of objects can change at any time and thus (possibly) change the query an-
swer set. Continuous queries offer an alternative solution to this problem, in the
sense that they provide a query answer that is continuously updated as the state of
the database changes, i.e., updates about object velocities are received.

Historical STAMs support queries that can be classified as coordinate-based or
trajectory-based [39]. Coordinate-based queries can come in many forms, includ-
ing range, nearest neighbor, k-nearest neighbor, or reverse nearest neighbor [9].
Range queries, which is exactly the case we are interested in, focus on retrieving
objects within a prescribed area at a given time period or time slice. The cuboid in
Figure 12 represents an example range query. Given the coordinates of a moving
object, a nearest neighbor query finds the the object within the closest proximity
at a given time. A k-nearest neighbor (where k is a user-specified constant) finds
the k objects closest to the coordinates of the query object’s coordinates. Reverse
nearest neighbor queries return the objects that have a query object as their closest
object [6]. Trajectory-based queries focus on topological or navigational informa-
tion [36]. A topological query asks whether trajectories enter, leave, cross, stay
within, or bypass a given spatio-temporal range [39]. A navigational query con-
siders derived information such as speed (e.g. top or average), heading, traveled
distance, covered area, etc. Combined queries (using both coordinated-based and
trajectory-based information), can also be considered.

17



2.4 Spatio-Temporal Access Methods

Here we provide an overview of work on STAMs for current/predictive and his-
torical spatio-temporal support. Another comprehensive overview can be found in
[25].

Current/Future Position STAMs

The class of STAMs that answer queries regarding the current position of objects
and predicted future position include many R-tree and Quad-tree based variations.

The 2+3 Trajectory R-tree (2+3 TR-tree) [28] actually indexes both current
and past information. Two separate R-trees are used, one for the current two-
dimensional points of objects and one for the historical three-dimensional trajec-
tories (two spatial dimensions and one temporal dimension). At query time, both
trees may need to be scanned depending on the query time interval. The 2-3 Tra-
jectory R-tree (2-3 TR-tree) [1], a close cousin of the previous approach, also uses
two separate R-tree indexes for current and past information. The 3-dimensional
R-tree, however, is not trajectory-based.

Figure 13: The Problem with Indexing Lines With Boxes

One of the main problems with using R-tree based approaches for indexing
spatio-temporal data is the degradation of index performance due to overlap and
dead-space among moving objects, especially when using a trajectory model. As
shown in Figure 13, using Minimum Bounding Rectangles (MBRs) to approximate
a trajectory leads to much wasted dead-space inside the approximation that will be
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indexed by the R-tree, especially when one considers the MBR of the complete
trajectory polyline. The inaccurate approximation means that the query window
will intersect several MBRs in the R-tree, many of which being false positives in
the sense that the query window intersects the MBR but does not intersect the actual
object trajectory. Filtering out false positives will reduce query performance.

In [51], the authors offer a Quad-tree [42] based approach to help deal with
this problem. A combined Quad-tree and R-tree, the Q+RTree, is suggested. The
basis of the Q+RTree is to distinguish between fast moving objects and “quasi-
static objects”, defined as objects that move slowly (if at all). The authors argue
that fast-moving objects are what lead to performance degradation in the R-tree.
Quasi-static objects are indexed using an R∗-tree (a modified version of the R-tree,
c.f. [5]) , and fast-moving objects are indexed in a Quad-tree. At query time both
indexes may need to be scanned; however the performance of the R-tree over the
quasi-static objects will (hopefully) be good, and the fast-moving objects (of which
the authors assume only a small percentage are) will benefit from the Quad-tree’s
use of a spatial partitioning.

The main STAM of interest for predictive queries is the TPR-tree [41], a para-
metric spatial access method based heavily on the R∗-tree that uses bounding boxes
extended by the velocity vector of moving objects. The velocity of an object is
modeled as a parametric function that is updated whenever objects deviate from
their stored model. The TPR∗-Tree, a version of the TPR-tree with improved con-
struction algorithms based on a performance model, has recently been proposed
[43].

In [9], the authors present a grid-based approach for current/future position
support. In this model, space is only 1-dimensional because objects are assumed
to follow a road network. Of particular interest with this approach is that moving
objects impact the movement of other moving objects. For example, when too
many objects are located within the same grid cell, i.e., due to traffic congestion,
the speed of objects decreases via a “ripple effect”.

Historical STAMs

For historical STAMs (our focus), data is typically modeled in terms of trajectories
as per Figure 9. Assuming a two-dimensional spatial region, time is introduced as
a third dimension and the movement of objects between actual records is modeled
in terms of line segments. Many historical STAMs have been proposed [1, 8, 32,
39, 47] the majority of which are based on the R-tree [14], [8] being a notable
exception.

The 3-D R-Tree [47] is perhaps one of the simplest R-tree variants; it deals with
the temporal dimension simply by treating time as a regular “spatial” dimension.
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Figure 14: HR-tree (from [45])

Spatio-temporal data is indexed using a standard 3-dimensional R-tree structure.
The Historical R-tree (HR-tree) [32] is an example of an overlapping and

multi-version structure which also adapts the R-tree for historical spatio-temporal
data. The HR-tree extends the idea of multi-version B+-trees [21] into the spatial-
temporal domain. A “virtual” spatial R-tree for each time-stamp (sample point)
in the dataset is created. As shown in Figure 14, to avoid the storage overhead
of storing a separate R-tree index at each time-stamp, the nodes pointing to nodes
that do not change are linked back to the original structure. For a time slice query,
the approach is extremely efficient because a R-tree at each time stamp “virtually”
exists. For window queries, however, the approach is not as effective. A similar
approach using Quad-trees is suggested in [49].

The Trajectory Bundle Tree (TB R-tree) [39] proposes a trajectory-oriented ac-
cess methods that can (under certain conditions) answer trajectory-oriented queries
faster than the R-tree. As shown in Figure 15, the TB R-tree calls for a modified
R-tree structure wherein leaf nodes that contain information from the same trajec-
tory are linked together. This can lead to reduced query time when retrieving the
complete trajectory of an object. In [37], the authors suggest an R-tree based ap-
proach to handle on-line mobile objects with infrastructure (lakes, etc.) which uses
the TB R-tree as the underlying STAM. In order to improve query performance,
the authors propose a method to segment spatio-temporal queries. The work of
Pfoser in [38] is noteworthy in that it deals with networked constrained historical
data using the TB R-tree. A technique to reduce the dimensionality of the dataset
is employed in order to take advantage of the underlying network.

In [8], the authors propose a grid based spatio-temporal indexing technique
which they call SETI. The idea of using a grid or partitioning scheme to index data
dates back to the work on grid files [12, 33]. The Quad-tree [42, 49] in essence
is also a spatial partitioning approach. SETI partitions the spatial dimension into
static, non-overlapping partitions, and within each partition uses a “sparse” tempo-
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Figure 15: TB R-tree (from [36])

Figure 16: SETI (from [8])

ral index – which the paper describes as a 1-dimensional R-tree over the temporal
interval of all the object records stored in a single data page. An in-memory “front
line” structure keeps track of the last position of each moving object. Figure 16
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provides a conceptual representation of the SETI model. The in-memory front line
structure aims to process inserts and updates in an expeditious manner. The parti-
tioning module manages a separate temporal index and data file for each partition.

Our approach builds on the framework SETI uses, i.e., a temporal index inside
of spatial partitions, in addition, our work provides (1) a cost model to analyti-
cally (instead of experimentally as SETI does) determine the optimal number of
partitions to use with respect to minimizing disk access, (2) a relational mapping
of our proposed STAM to any RDBMS and (3) a comprehensive experimental
comparison of our proposed technique against several other RDBMS-supported
spatio-temporal indexing alternatives.
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3 RDBMS Support for Spatio-Temporal Data

There are several lines along which the problem of indexing spatio-temporal data
inside a RDBMS can be classified. In this section, we provide an implementation-
oriented classification in the sense that we focus on the various options for inte-
grating the internal mechanisms of support inside the RDBMS. This section also
provides necessary theoretical background on the techniques that will be used for
experimental comparison later in this technical report. We distinguish three main
alternatives for providing RDBMS support for spatio-temporal data:

1. Recasting the problem in a way such that existing RDBMS facilities for spa-
tial data can be used.

2. Designing a new STAM, and loosely coupling it with a RDBMS via wrapper
functions that can be called from within SQL queries, and

3. Designing a new STAM, and tightly coupling it within the RDBMS using
native RDBMS facilities, i.e., relational tables and existing index support.

Next we discuss each of these in turn.

3.1 Recasting the problem

Most RDBMSs, including DB2 [3], MySQL [27], and Oracle [35], provide support
for spatial data, e.g., R-tree and Quad-tree indexes. There are several ways to recast
the spatio-temporal data indexing problem to take advantage of RDBMS-support
for spatial data. Perhaps the most straightforward recourse is to model time as an
additional “spatial” dimension so that existing support for spatial indexes can be
re-used. By combining the 2-dimensional spatial domain and the 1-dimensional
temporal domain, a 3-dimensional R-tree (c.f., Figure 2) can be adapted to support
spatio-temporal indexing using this approach. Such an approach often results in
several snags – performance is poor because the spatial index is unaware of the
distinctive nature of the temporal dimension. Typically, R-tree construction re-
quires that each dimension be bounded – a constraint that time does not observe.
Also, certain spatio-temporal data models, such as the parametric and the step-
wise model we employ, cannot be readily integrated into a 3-dimensional R-tree
structure. It should also be mentioned that typically, the spatial index structures
provided by the RDBMS are tuned to support 2-dimensional data [35]. For ex-
ample, a 3-dimensional R-tree in Oracle supports only a small subset of the query
functionality and optimization provided were the data 2-dimensional. Although
the strategy of treating time as a third dimension benefits from the ease of re-using
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existing RDBMS spatial support, because of the discussed drawbacks the approach
is unsuitable to solve the spatio-temporal indexing problem.

3.1.1 Linear Referencing System (LRS) Approach

Figure 17: Example of a Spatio-Temporal Geometry Modeled using a
LRS geometry (from [17])

To overcome some of the above limitations, in [17], the authors suggest the use
of Oracle’s Linear Referencing System (LRS) to index the third (temporal) dimen-
sion of spatial-temporal objects. The advantage of using LRS is that the temporal
dimension can be indexed separately from the spatial without having to create a
separate storage location (column) to store temporal information. Figure 17 shows
an “LRS Geometry” object representing the trajectory of a moving object. The
point “(a,b,10)” represents an object at location “(a,b)” at time “10”. The “Start”
and “End” time of the trajectory can be extracted and indexed using functions pro-
vided by the LRS package. The spatial component of the trajectory is then indexed
separately from the temporal using a standard 2-dimensional R-tree. Figure 18 vi-
sualizes the proposed LRS-based dual-index model. The key advantage of using
LRS to index spatio-temporal data is that the spatio-temporal object can be stored
as a single object in a table while still allowing for the flexibility of indexing the
spatial and temporal domains using separate structures. In our experimental analy-
sis, we will employ an indexing approach based on LRS as a means of comparison
to our proposed method.
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Figure 18: Indexing Spatio-Temporal Data using the LRS Approach (from [17])

3.1.2 Space-Filling Curve Approach

Another option (which we will also compare to our approach) by which to in-
dex spatio-temporal data using built-in RDBMS spatial data support is to employ
space-filling curves. Given a data space that is partitioned into rectangular cells,
a space-filling curve can be thought of as a thread that visits each cell in the grid
once and only once, thus imposing a linear-order on the multi-dimensional space
[24]. Because B+tree indexes are inherently linear (one-dimensional), a space-
filling curve can be used to map multi-dimensional data into a 1-dimensional space
that the B+tree can index. Objects can be approximated by an integer representing
the cell number defined by the curve instead of using their exact spatial coordi-
nates. Figure 19 illustrates various space-filling curves that map a two-dimensional
space into a one-dimensional space, namely the Sweep, Z, and Hilbert curves. The
mapping should be locality-preserving in the sense that points close together in
two-dimensional space should still be close together in the one-dimensional space
defined by the curve. Each type of curve defines a different linear order on the
space with unique locality-preserving properties – a thorough analysis of the per-
formance behavior of the various curves can be found in [24]. Ideally we want
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Figure 19: Space-Filling Curves (from [24])

two points that are close together in Euclidean space to be close in the linear order
defined by a space-filling curve. Also, cell numbers should be easy to compute
because data insertion, updates, and queries will require repeated cell number cal-
culations.

Typically, there is a trade-off between the quality of the locality-preservation
and the computational complexity of the curve. The sweep-curve, which we will
use with SPIT, does not preserve spatial proximity especially well but can be
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Figure 20: Spectral Curve (from [23])

Figure 21: Recursive Construction of the Z-curve (from [24])

computed with ease. The Z-curve, labeled such due to its side-ways “Z” shape,
can be calculated very efficiently using a bit interleaving process while provid-
ing reasonable locality-preservation. The Hilbert curve can be shown to provide a
slightly better spatial clustering (locality-preservation) than the Z-curve [26] but is
more expensive to compute. Figure 20 shows a unique type of space-filling curve
named the spectral-curve. This curve can be shown to provide the optimal locality-
preservation given a fixed set of multi-dimensional points [23]. Unfortunately, it is
not practical for our purposes because it can only be computed over a static dataset,
e.g., the curve would require a complete re-calculation whenever an update to the
database occurred. Another important classification for space-filling curves is that
of recursive versus non-recursive space-filling curves. As demonstrated in Fig-
ure 21, by starting with a basic shape, i.e., a side-ways ‘Z” shape covering four
cells, the Z-curve can be defined recursively within each sub-quadrant by further
expanding the same “Z” shape. Likewise, the Hilbert curve can also be defined by
following a recursive pattern. It should be noted that space-filling curves can be
extended to cover a multi-dimensional space. Figure 22 illustrates the shape of the
various space-filling curves discussed as they thread through a three-dimensional
grid.

In [13] the authors show how to support geo-spatial operations in a RDBMS
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Figure 22: Three-dimensional Space-Filling Curves (from [24])

using Z-curves and B-tree indexes. This approach can be readily extended into the
spatio-temporal domain by approximating the spatial component of records using
cell numbers (as defined by a space-filling curve) and creating a combined B-tree
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Figure 23: Bit Interleaving to Calculate Z-values

index over the cell numbers and temporal dimension of the records. A combined
B-tree index is identical to a standard B-tree index, except that the indexed keys
are the concatenation of the two or more values, i.e., cell number and temporal
information. As in [13], we decided on the Z-curve for this approach because
it provides a reasonable trade-off between computational overhead and locality-
preservation. In order to compute the Z-value for point data, one uses a fixed
resolution of the space in all dimensions, i.e., each cell has the came size. Each
point is then approximated by one cell using a recursive bit interleaving process.
The process works by recursively partitioning the data space into two halves and
alternating between the x and y dimensions in order to append values to a bit string
as follows: if the point lies in the left/bottom half of the partition append a “0” to
the bit string, if a point lies in the right/top partition append a “1” to the bit string.
The decimal value of the bit string is the Z-value of the point. For example, Figure
23 demonstrates computing the Z-value of the point (.3,.4) assuming a unit space
and a “4×4” grid. In the first step, because x = 0.3 is to the left of 0.5 (half of
the space), a “0” is appended to the bit string. In step 2, “0” is also appended for
the y dimension because y = 0.4 is below 0.5. Step 3 divides the x dimension in
half again, adding a 1 to the bit string because x = 0.3 is to the right of x = 0.25.
Alternating to the y dimension (Step 4) adds another 1 to the bit string because
y = 0.4 is above 0.25. The final bit string is “0011” which upon conversion to
decimal gives a Z-value of 3. Note that this process can be readily extended to
compute a three-dimensional Z-curve.

Using a Z-order with B-tree approach, the spatial component of records is ap-
proximated by cells defined according to the linear Z-order and a combined B-tree
index over Z-values and time is created. At query time it is necessary to map the
spatial component of a query to the one-dimensional space. As shown in Figure
24, a window query becomes a range query on the linear order, e.g., find all entries
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Figure 24: Z-Order Space-Filling Curve to Cell Number

(Z-values) in the range [l, u] where l = smallest Z-value of the window (bottom
left corner) and u = largest Z-value of the window (top right corner). The search
over the combined index first narrows the search to those tuples within the range
of Z-values [l, u] and then to those tuples within the temporal range of the query
window.

As mentioned, the Z-order with B-tree approach and the LRS-based R-tree
strategy we described, are example techniques for indexing spatio-temporal inside
the RDBMS by recasting the problem into a spatial data problem that can be in-
tegrated using existing RDBMS technology. Because spatio-temporal data has its
own distinct properties, e.g., time is an unbounded dimension, approaches that
recast the problem as a spatial indexing problem tend not to perform as well as
specialized methods for spatio-temporal data. Our approach (SPIT) is to develop a
true-spatio-temporal access method and provide a relational mapping thereof. We
will use the Z-order with B-tree and LRS-based approaches for experimental com-
parison against our approach in order to understand the performance impact such
design decisions have.

3.2 Loose Coupling

Many of the R-tree based structures previously discussed, e.g., [1, 32, 39, 47],
could be used within a RDBMS using a loosely coupled approach, i.e., by taking an
existing implementation of a STAM and wrapping it into an Application Program-
ming Interface (API) that the RDBMS can access. Some RDBMSs support, for
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example, Java classes that can be loaded directly into the database. A Java-based
implementation of the STAM, which maintains its own set of data structures, could
be loaded into the RDBMS and used to index spatio-temporal data. An example of
such an approach in the spatial domain is [34] wherein a separate extra-database
file structure is used to store spatial information and indexes.

We are not aware of any loosely coupled approaches proposed for the spatio-
temporal domain, in part due to the serious drawbacks such a strategy entails.
Because of the loose coupling, the STAM has limited ability to manage buffers,
deal with disk page layout, or access internal database structures. Furthermore,
the STAM designer is left with the daunting task of integrating standard RDBMS
features, such as concurrency control and crash recovery mechanisms, into their
access method. Our approach avoids these pitfalls because we map the problem
directly onto relational tables and existing index structures, thus automatically in-
heriting the desirable properties that a RDBMS provides.

3.3 Tight Coupling

One of the key features of our proposal is that we employ a tight coupling between
our STAM and the database using (only) native RDBMS functionality, i.e., rela-
tional tables and existing index support. Tightly coupling the STAM within the
RDBMS involves providing a relational mapping of the STAM. Examples of such
an approach in the temporal domain include the Relational Interval tree (RI-tree)
[19] and the MAP21 technique [30]. As discussed, the key to both these approaches
is the translation of a logical temporal index structure into an implementation rely-
ing on pre-existing RDBMS functionality. The RI-tree takes advantage of database
extender technology while the MAP21 uses a data translation function to map the
start and end points of temporal interval to 1-dimensional values that can indexed
using a B+tree.

Such an approach is also used in the spatial domain to map the Quad-tree and
R-tree into the RDBMS. For example, the R-tree in Oracle Spatial is a purely
logical structure whose underlying implementation is based on relational tables
and B+tree indexes [18]. Similarly, the mechanism underlying the Quad-tree relies
on Z-order tessellation, relational tables, and B+tree indexes [18].

The main difficulty of integrating existing STAMs within a RDBMS is the
enormous gap between conceptual model and relational mapping. In general, the
mapping of a STAM inside the RDBMS is not obvious. Much of the importance
of our work is that we, to the best of our knowledge, are the first to propose a
STAM that can be tightly coupled inside a RDBMS using only native RDBMS
functionality. As we will discuss, this makes it possible for our method to be
smoothly integrated with any off-the-shelf RDBMS.

31



4 The Space-Partitioning with Indexes on Time Approach

In what follows we present our proposal for spatio-temporal data management in-
tegrated within a RDBMS – which we name the Space-Partitioning with Indexes
on Time (SPIT) approach. SPIT partitions the data according to its spatial loca-
tion and then creates temporal indexes over each partition. The data is partitioned
into a fixed number of cells, each cell corresponding to a different partition in the
RDBMS where the tuple is physically stored.
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Figure 25: SPIT Approach for a 4 x 4 spatial grid

As shown in Figure 25, we use a static grid and number the cells using a hor-
izontal sweep space-filling curve in order to give each cell a unique identifier pid.
The pid of each cell is shown in the top right corner. The length l refers to the size
of a grid cell in each spatial dimension. Recall that a spatio-temporal range query
has a spatial component R and temporal interval T consisting of the start time ts
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and end time te of the query window. To efficiently support such queries, SPIT
defines a local temporal index on 〈ts, te〉 over the domain of tuples within each
partition. The key advantage of spatial partitioning is that of partition elimination
at query time. For example, given the query window shown in Figure 25, only
cells (0, 1, 4, 5) need be examined to answer the query window – cells that do not
intersect the spatial component of the query window can be eliminated from con-
sideration. For spatio-temporal data this works extremely well because we further
apply a temporal filter within all intersecting cells using the temporal indexes on
〈ts, te〉 inside each partition. The spatial discrimination is achieved at next to no
cost and the local temporal index benefits from having to manage only a (small)
subset of the data. As in [8], query processing proceeds according to four stages:
(1) coarse spatial filtering based on the grid location of tuples, (2) temporal filtering
using the per grid temporal indexes, (3) fine spatial refinement based on the actual
spatial location of tuples, and (4) duplicate elimination. Section 4.1 describes how
to map SPIT’s data and query processing model to a RDBMS. A critical perfor-
mance factor in SPIT is choosing the number of grid cells to use, i.e., setting the
length l, therefore Section 4.2 provides a disk access based cost model for choosing
an optimal number of partitions to use.

4.1 Mapping SPIT into a RDBMS

Algorithm 1 find pid() function

INPUT: 〈x, y〉
OUTPUT: pid

1: x grid := bx × N ∗

p c
2: y grid := by × N ∗

p c
3: if x = 1.0 then
4: x grid := x grid − 1
5: end if
6: if y = 1.0 then
7: y grid := y grid − 1
8: end if
9: return x grid + N ∗

p × y grid

Mapping SPIT to a RDBMS requires defining and assigning partitions, creat-
ing partitioned temporal indexes, and providing a query mechanism. Algorithm 1
provides the pseudo-code of the find pid() function which returns the pid of a
record given its spatial coordinates 〈x, y〉. The algorithm assumes that each cell
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is assigned its pid according to a horizontal sweep space-filling curve (c.f., Fig-
ure 25). The algorithm uses (as a constant) the number of partitions to use in one
dimension, which we label N ∗

p , and assumes a unit space. In Section 4.2, we pro-
vide a means to analytically determine N ∗

p . Lines 1–2 of the find pid() function
calculate x grid and y grid, which correspond to the grid cell in the x and y di-
mensions where the 〈x, y〉 coordinate resides. Lines 3–8 deal with the special case
of a x (y) value lying on the rightmost (uppermost) boundary of the grid. Line 9
returns the pid, which using a horizontal sweep curve consists of the grid number
(x grid) in the x dimension added to the number of cells in one dimension N ∗

p

multiplied by the grid number (y grid) in the y dimension.
The pid attribute maps each tuple to a unique partition in the database where

the tuple is physically stored. Conceptually, a RDBMS with partition support treats
a partitioned table as a collection of separate tables that can be accessed as though
they were a single table. Some RDBMSs provide built-in support for table parti-
tioning. If this feature is unavailable, partitioned table support can be simulated by
explicitly creating a set of tables (one for each partition) managed via a partition
meta-data lookup table.

Next we create local indexes over the temporal domain of each partition. A
combined B-tree index on 〈ts, te〉 is used as the index of choice. Recall that a
combined B-tree is simply an index over the concatenation of the two columns of
data. Note that the options of creating a combined index on 〈te, ts〉 or two separate
B-trees on ts and te also exist. Using two separate indexes, however, is unlikely
to improve performance because for those tuples that satisfy te, the start time ts
must also be checked (and vice versa). There is also the option of creating all (or
some) of the above indexes and allowing the RDBMS’s query optimizer to choose
which (if any) of the indexes to use. This may provide performance advantages in
certain situations but has the drawback of extra index creation, maintenance and
space overhead.

We considered the use of a 1-dimensional R-tree to index the temporal dimen-
sion. However, we abandoned the idea because in our data model, a large degree
of overlap among the temporal intervals of objects occurs – querying almost any
time interval will return nearly all oid’s. The problem is that the selectivity in the
temporal dimension is poor because most (if not all) objects exist somewhere in the
space at all times. In such a situation the performance (and index creation times)
of the 1-D R-tree approach is prohibitively expensive. Not only can the combined
B-tree on 〈ts, te〉 be readily supported in any RDBMS, but the B-tree index also has
a performance advantage of being able to perform an index range scan. Assuming
tuples are sorted by time, at query time a sequential scan is performed on disk over
the range where tuples intersect the temporal query interval.

The order in which data is clustered on disk strongly impacts query perfor-
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mance. Because the temporal index within each partition requires a local range
scan of the data, query performance will be faster if the data on disk is already
sorted according to time. Therefore, before inserting data it is beneficial (though
not necessary) to ensure that all tuples are ordered by 〈ts, te〉. This ensures that
all those tuples satisfying the temporal component of a query will be located close
together on disk.

4.1.1 Query Processing

Since a spatio-temporal query Q consists of a spatial range R and a temporal in-
terval T , query processing requires four steps:

1. spatial filtering,

2. temporal filtering,

3. spatial refinement, and

4. duplicate elimination.

Algorithm 2 provides the pseudo-code for the function st query() which processes
queries according to the four steps used by the SPIT model. Note that lines 4–9
assume the existence of a SQL interface in order to retrieve matching tuples from
partitions in the RDBMS. A key advantage of SPIT is that filtering occurs in a
pipelined fashion – at each step of query processing only those tuples satisfying the
previous step are further examined. In what follows the details of the st query()
function are explained.

Spatial Filtering

Only those cells intersecting R need to be scanned to answer Q. Algorithm 3
provides the pseudo-code for the function p intersect() which returns the list of
pid’s of (only) those cells which intersect R (assuming R is rectangular). For
example, using the sample query window shown in Figure 25, the return value of
p intersect() would be (0, 1, 4, 5). The p intersect() function first (lines 1–2)
sets the minimum and maximum pid of the bottom-left and top-right corners of the
query rectangle by calling the function find pid(). Line 3 calculates the number
of rows of the grid that the query window extends over. The loop from line 4–8
iterates over the columns that intersect the query window (line 4), and over the
rows in each column (line 5), adding each intersecting cell to the pid list (line 6).
Because grid cells are mapped to partitions, the list allows the query algorithm to
take advantage of partition elimination. Line 2 of Algorithm 2 uses the pid list to
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Algorithm 2 st query() function

INPUT: 〈R, T 〉
OUTPUT: list of oid’s

1: pid list := p intersect(R) // (see Algorithm 3)
2: for all pid in pid list do
3: oid list := oid list ∪
4: SELECT oid
5: FROM partition(pid)
6: WHERE ts <= T .tmax

7: AND te >= T .tmin

8: AND x between R.xmin and R.xmax

9: AND y between R.ymin and R.ymax

10: end for
11: sort oid list and remove duplicates
12: return oid list

scan only those partitions corresponding to cells intersecting R. No disk reads of
other partitions occur.

Temporal Filtering

Within each partition that needs to be scanned, we can further improve performance
by filtering out those tuples that do not intersect the temporal interval component
of the query using the local temporal index (lines 6–7 of Algorithm 2).

When querying historical information aggregated over an extended period of
time, it is often the case that the time between updates of an object’s position do
not exceed a certain maximum. In fact, one can always maintain, as meta-data,
the length of the maximum stored temporal range. Query performance can be
improved by assuming the largest temporal interval is known, as in [30], by which
we can further restrict the temporal interval that needs to be scanned – we name
this constant MAX TI. For example, in fleet monitoring, it can be safe to assume
that vehicles do not remain stationary for more than 2 or 3 days. Moreover, the
value of MAX TI will become relatively smaller as the database becomes “older”.
Objects within the query temporal interval T cannot have begun or ended their
temporal before/after T± MAX TI. In our experimental section we show that the
maximum interval assumption speeds up query performance. Note that in cases
where a minority of objects may occasionally exceed the MAX TI, the offending
records can be split into two or more records that adhere to the assumption. Using
the maximum time interval assumption, lines 6–7 of Algorithm 2 are replaced with
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Algorithm 3 p intersect() function
INPUT: R
OUTPUT: list of pid’s

1: pidmin := find pid(R.xmin, R.ymin)
2: pidmax := find pid(R.xmax, R.ymax)
3: num rows := b pidmax−pidmin

N∗

p
c

4: for i := pidmin to pidmax − num rows × N ∗

p do
5: for j := 0 to num rows do
6: pid list := pid list ∪ (i + j × N ∗

p )
7: end for
8: end for
9: return pid list

the following.

6: WHERE ts between T .tmin− MAX TI and T .tmax

7: AND te between T .tmin and T .tmax+ MAX TI

After the temporal filtering phase, only those tuples within each partition that
intersect T are further scanned in the (next) spatial refinement step.

Spatial Refinement

The spatial coordinates of each tuple satisfying the above two checks are scanned
by retrieving the tuple from the table partition where it is stored (lines 8–9 of Algo-
rithm 2). If the 〈x, y〉 coordinates of tuple is inside R then it’s oid is in the answer
set. This check is necessary because a tuple may be inside of the partition but not
inside of the query window. For example, using the query window from Figure 25,
any tuples in grid cell 0,1,4 or 5 but not inside the query window would have to be
removed from the answer set. Note that this could be improved by not scanning
the disk when a partition is completely contained by the spatial component of the
query R, i.e., by performing an index-only scan. Such a strategy, however, would
required a modified querying mechanism that could determine when complete con-
tainment occurs in order to take advantage of this special case. As well, because
the actual answer set returns the oid of each object within the query window, the
oid column would need to be included as an additional indexed column in the
combined temporal index in order for the query mechanism to remain index-only.
Otherwise, even though the query would not have to read from disk to perform the
spatial refinement in this special containment case, it would still need to go to disk
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to read the oid.

Duplicate Elimination

Duplicates answers can occur because within a partition there may be several tuples
within the query answer set for the same object. Because our query should return
only the oid’s that satisfy Q, the final query phase is to eliminate any duplicate
oid’s in the answer set (line 11 of Algorithm 2). This can be easily accomplished
by the use of a unique clause in the SQL query.

4.2 SPIT’s Cost Model

Symbol Meaning
N number of tuples in the database
DA number of disk I/Os to answer a query
GA average number of grid cell accesses
DAg number of data (disk) I/Os per grid cell accessed
IAg number of index (disk) I/Os per grid cell accessed
f fanout of a B-tree index
BS block size (the number of tuples that fit in one block on disk)
q size (fraction of the space) of query in one spatial dimension
qt size (fraction of the space) of the temporal aspect of the query
l length of a grid cell in each dimension
l∗ optimal length of a grid cell in each dimension
Ng total number of cells in the grid = (1/l)2

N∗

g optimal total number of cells in the grid = (1/l∗)2

N∗

p optimal number of partitions (grid cells) in one dimension

Table 1: Symbols Used and their Meanings

We propose the following cost model to choose an optimal grid size for use
with SPIT assuming a fixed regular grid. Table 1 lists the notation we will use.

Assuming a unit space [0, 1] in each dimension then the total number of disk
accesses to answer a query can be calculated by the average number of grid cells
(partitions) that need to be accessed and the number of I/O’s performed inside each
accessed grid cell – which is the combination of reads to the data and reads to the
temporal index structure inside each grid cell. This can be formalized as:

DA = GA × (DAg + IAg) (1)
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In [44], the authors derive a formula for calculating the average number of boxes
that intersect a known size query window, assuming a unit space. The average
number of boxes that will be scanned is the total number of boxes multiplied by
the average space the spatial component of a query covers extended by the average
length of each box. The extended query covers the case of a query intersecting a
box only partially. Based on [44], we formalize the average number of cells that
will be scanned (GA) as the total number of cells multiplied by the average space
the spatial component of a query covers extended by l:

GA = Ng(l + q)2 (2)

Assuming a uniform data distribution, there are on average N/Ng tuples per grid

cell which take up N/Ng

BS blocks on disk to store. Because the index on 〈ts, te〉 will
point to the range of tuples in the query answer set, we only need to scan those
blocks that are within the temporal dimension of our query qt:

DAg =
N/Ng

BS
× qt (3)

Assuming a B-tree on the combined key of 〈ts, te〉 and (as in the worst case) that
none of the index pages are located in buffer, the number of index accesses can be
described in terms of the fanout f and N using: IAg = logfN . We simplify the
index access cost to IAg = 3, which is typical for indexes with f ≈ 100 and N in
the millions of tuples [22].

Combining Equations 2 and 3, into Equation 1 yields:

DA = (l + q)2(N×qt

BS + 3

l2 ) (4)

One immediate observation from Equation 4 is that the index performance it more
sensitive to the size of the spatial component than to the temporal component. This
is due to the fact that increasing the query’s area requires traversing more partitions
and the indexes within them. On the other hand, increasing the query’s temporal
range requires only a larger scan on the indexes which can be done efficiently.

To find the grid size l∗ that will minimize disk accesses we take the first deriva-
tive of (4) with respect to l and set it to 0, obtaining (after some algebraic manipu-
lation):

l∗ = 3

√

6q × BS

2N × qt
(5)

which can be shown to be a unique solution and can also be shown to be a minimum
according to the second derivative test with respect to l∗. Finally, the optimal
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number of grid cells (N ∗

g ) can be represented in terms of l∗ using

N∗

g =
1

(l∗)2
= (

N × qt

3q × BS
)2/3 (6)

Note that in the special case where the average query size in the spatial and tem-
poral dimensions is equal, i.e. q = qt, an optimum number of grid cells regardless
of query size can be determined. It is also interesting to note that N ∗

g grows sub-
linearly with N . This suggests that SPIT can be sensitive to the database size; how-
ever, our experimental results will show that SPIT is fairly resilient to the growth
of N .

Recall that Algorithms 1 and 3 relied on a constant N ∗

p corresponding to the
number of partitions in each dimension. Based on equation (6), N ∗

p can be (near)
optimally set as:

N∗

p = d
√

N∗

g e (7)

In the next section we describe instantiating SPIT inside an Oracle database using
the query processing and cost model just outlined.
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5 RDBMS Support Implementation Within Oracle

Here we describe how to instantiate SPIT inside an Oracle database. We discuss
the implementations of the R-tree and space-filling curve with B-tree approaches
that we use as comparisons to SPIT. For completeness, we also describe other
alternative methods that were considered during the course of this research and the
reasons these methods were abandoned.

5.1 Space-Partitioning with Indexes on Time Approach

The SPIT grid is implemented using Oracle’s built-in table partitioning support –
a grid cell corresponds to a single Oracle table partition. The number of partitions
(N∗

p ) to use is calculated according to Equation 7. (Oracle allows a maximum of
216 − 1 = 65535 partitions per table.) The ST SPIT table (whose DDL for an
example 2×2 grid is provided in Table 2) stores records along with the additional
pid attribute. Oracle range partitioning is used to automatically map the spatial
grid to unique table partitions on disk. Conceptually, Oracle treats the ST SPIT
table as a collection of separate tables – one for each partition.

Within each partition, a local domain B-tree index is created over 〈ts, te〉 using
the index creation DDL provided in Table 2. In Oracle, the only difference between
creating a local partitioned index versus a standard “global” index is the keyword
local as part of the index creation DDL. Before inserting data into the ST SPIT
table we order all tuples by 〈ts, te〉 through the use of a temporary table. For each
tuple inserted into ST SPIT the pid is calculated using a PL/SQL implementation
of Algorithm 1.

We considered and rejected the use of techniques for RDBMS-support of tem-
poral intervals to index the temporal dimension, e.g., the Relational Interval Tree
(RI-tree) [19]. Unfortunately, the RI-tree implementation in Oracle does not cur-
rently support partitioned indexes and its data insertion times were prohibitively
expensive for the datasets we used.

As mentioned earlier we do not consider the use of a 1-dimensional R-tree
index over the temporal dimension. Experiments over a dataset of 6 million tuples
showed that query performance for this approach was 5 times higher than a B-
tree index on 〈ts, te〉. Furthermore, it took nearly 16 times longer to create the 1-
dimensional R-tree index as opposed to the B-tree index. The 1-dimensional R-tree
is outperformed because of the high amount of overlap among the time intervals of
the tuples. Also the R-tree’s performance may suffer because Oracle Spatial does
not provide native support for 1-dimensional objects – we were forced to “pad”
the data with a second dimension in order to successfully build the 1-dimensional
R-tree.
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Table
Creation
DDL

CREATE TABLE ST SPIT
oid INTEGER,
x NUMBER,
y NUMBER,
t s NUMBER,
t e NUMBER,
pid INTEGER

) PARTITION BY RANGE (pid) (
partition p01 values less than (1),
partition p02 values less than (2),
partition p03 values less than (3),
partition p04 values less than (MAXVALUE)

)

Index
Creation
DDL

CREATE INDEX idx st spit t
ON ST SPIT(t s,t e) LOCAL

Sample
SQL
Query

1: SELECT unique oid
2: FROM ST SPIT
3: WHERE pid in (0,1,4,5)
4: AND t s between 0.5 - MAX TI and 0.6
5: AND t e between 0.6 and 0.6 + MAX TI
6: AND x between 0.1 and 0.3
7: AND y between 0.2 and 0.4

Table 2: SPIT DDL and SQL statements

Given the sample SQL query “find the objects that were within the area 0.1–
0.3 x and 0.2–0.4 y during during the interval 0.5 to 0.6”, Table 2 provides the
SQL query that would be issued against the ST SPIT table. The query assumes a
4×4 grid by which to calculate pid’s.

Line 3 of the sample query in Table 2 corresponds to the Spatial Filtering stage
of SPIT’s query processing. The clause forces Oracle to scan only table partitions
corresponding to cells (0, 1, 4, 5). The list is computed using a PL/SQL implemen-
tation of Algorithm 3. Only 4 out of 16 partitions need be scanned – a significant
reduction in I/O cost achieved with only a small computational overhead.

Lines 4–5 correspond to the Temporal Filtering stage of SPIT’s query process-
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ing. Within each partition, the combined B-tree index on 〈ts, te〉 will be taken
advantage of as Oracle will perform a local index range scan of the data. Because
the index on 〈ts, te〉 provides pointers to the actual physical location on disk where
the corresponding tuples are stored, the order in which data is clustered on disk will
have an important impact on query performance. By ordering the data according to
〈ts, te〉 at insertion time, query processing will be faster because those tuples with
similar temporal intervals will be located close together on disk.

Lines 6–7 correspond to the Spatial Refinement stage of SPIT’s query process-
ing. All tuples whose spatial coordinates are not inside of the spatial query range
are removed from the query result. It is this step of query processing that performs
disk access because the spatial coordinates are not represented in any index. By
ensuring that the data is clustered according to 〈ts, te〉, disk access will be mini-
mized because the tuples in the query answer set will be located close together, i.e.,
within the same block on disk, thus reducing disk seek time.

Finally, line 1 corresponds to the Duplicate Elimination stage of SPIT’s query
processing. The unique clause on oid removes duplicates from the query result
which may have occurred because several tuples for the same object were in the
answer set.

We implemented the necessary SPIT functions (Algorithms 1, 2 and 3) using
Oracle’s built-in procedural language PL/SQL. The implementation is capable of
generating SQL queries of the form provided in Table 2 given a query spatial and
temporal range. We choose to implement the algorithms using PL/SQL because of
the ease of integration between PL/SQL and SQL queries; however, any language
capable of interacting with the RDBMS could be used.

5.2 The R-tree + Temporal B-tree Approach

As a method of comparison to SPIT, we adapt the LRS spatio-temporal indexing
approach suggested by Oracle [17] to our data model by creating a 2-dimensional
R-tree over point objects consisting of the 〈x, y〉 of records and a B-tree index on
ts and on te. We do not utilize a Quad-tree based approach because Oracle reports
that for most applications the R-tree is more efficient [18] than the Quad-tree. The
R-tree also has the advantage of requiring no parameterization except the choice of
dimensionality – with the Quad-tree a tessellation level must be chosen. The “R-
tree + Temporal B-tree” approach uses the ST RTREE table whose creation DDL
is provided in Table 3. The syntax for creating both the spatial index and temporal
indexes is also provided in Table 3.

A sample query against the ST RTREE table (using the same query range as
with the ST SPIT table) is provided in Table 3. Queries on this approach employ
the Oracle Spatial [35] built-in spatial query predicate sdo relate() which takes
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Table
Creation
DDL

CREATE TABLE ST RTREE (
oid INTEGER,
position MDSYS.SDO GEOMETRY,
t s NUMBER,
t e NUMBER

)

Index
Creation
DDL

CREATE INDEX idx st rtree
ON ST RTREE(position)
INDEX TYPE IS MDSYS.SPATIAL INDEX

CREATE INDEX idx st rtree t ON ST RTREE (t s,t e)

Sample
SQL
Query

1: SELECT unique oid
2: FROM ST RTREE
3: WHERE sdo relate(
4: point,
5: MDSYS.SDO GEOMETRY(

--spatial query window
2003, --2-dimensional polygon
NULL,NULL,
MDSYS.SDO ELEM INFO ARRAY(
1,1003,3)
MDSYS.SDO ORDINATE ARRAY(
0.1,0.2,0.3,0.4)

),
6: ’mask=ANYINTERACT querytype=window’

) = ’TRUE’
7: AND t s between 0.5 - MAX TI and 0.6
8: AND t e between 0.6 and 0.6 + MAX TI

Table 3: R-tree + Temporal B-tree Approach DDL and SQL statements

an Oracle geometry column object (line 4), a query window (line 5), and a filtering
predicate (line 6), and returns only those objects that intersect the query window.
The B-tree index is used to further filter tuples based on the temporal aspect of the
query (lines 7–8).
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Table
Creation
DDL

CREATE TABLE ST ZORDER (
oid INTEGER,
x NUMBER,
y NUMBER,
t s NUMBER,
t e NUMBER

)

Index
Creation
DDL

CREATE INDEX idx st zorder
ON ST ZORDER(t s,t e,z order(x,y))

CREATE INDEX idx st zorder
ON ST ZORDER(z order(x,y),t s,t e,)

Sample
SQL
Query

1: SELECT unique oid
2: FROM ST ZORDER
3: WHERE z order(x,y) between 0 and 3
4: AND t s between 0.5 - MAX TI and 0.6
5: AND t e between 0.6 and 0.6 + MAX TI
6: AND x between 0.1 and 0.3
7: AND y between 0.2 and 0.4

Table 4: Z-value + B-tree Approach DDL and SQL statements

5.3 The Z-value + B-tree Approach

For the Z-value B-tree approach, the table ST ZORDER, whose DDL is given
in Table 4, is used to store records. Algorithm 4 provides the pseudo-code for the
function z order that calculates the Z-value of the cell where the spatial coordi-
nates 〈x, y〉 of a tuple reside in. Lines 1–8 of the z order algorithm are used to
calculate the grid cell in the x and y dimensions where the point 〈x, y〉 resides,
and are identical to lines 1–8 of Algorithm 1, the find pid function. Line 9 of the
z order algorithm calculates the number of bits (num bits) that will be used to
code the Z-value (zvalue). Recall that Z-values can be efficiently calculated based
on the bit representation of the cell number in each dimension of the point in the
grid. The loop from lines 11–16 constructs the zvalue by iteratively adding a bit
from the bit-string representation of x grid or y grid. The mask (line 12) is used
to turn off all bits except for the bit from x grid or y grid we require to add to the
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Algorithm 4 z order function
INPUT: 〈x, y〉
OUTPUT: zvalue of the cell containing 〈x, y〉

1: x grid := bx × N ∗

p c
2: y grid := by × N ∗

p c
3: if x = 1.0 then
4: x grid := x grid − 1
5: end if
6: if y = 1.0 then
7: y grid := y grid − 1
8: end if
9: num bits := log2 N∗

p

10: shift := num bits
11: for i := 1 to num bits do
12: mask := 2num bits−i

13: zvalue := zvalue + bitand(x grid,mask) ∗ 2shift

14: shift := shift − 1
15: zvalue := zvalue + bitand(y grid,mask) ∗ 2shift

16: end for
17: return zvalue

zvalue. Line 13 adds to the zvalue a bit from x grid, and then line 14 decrements
the shift value which represents the bit position in the z value string that we are
currently interested in. Line 15 adds to the zvalue a bit from the y grid. The algo-
rithm assumes the existence of a bitand operator which performs the logical and
operation between two bit strings. For each dataset, we calculate Z-values using
the same number of cells in each dimension (N ∗

p ) that SPIT employs.
Because the Z-value of each tuple is only used for indexing purposes, it does

not need to be stored as a separate column in the ST ZORDER table. Instead, at
index creation time, as shown in Table 4, a function-based index is created over
the calculated Z-value of each tuple. Using the function-based index reduces ta-
ble storage overhead which should help increase query performance because the
number of tuples that can fit in one block on disk is correspondingly increased.
A function-based index acts just as a regular column index, except the indexed
value is the result of applying a function to each row in the table. The z order()
function is invoked at index creation time for every tuple in the database. The two
Z-value B-tree approaches we consider for experimental comparison are called
t z index and z t index which correspond to creating a combined B-tree index on
〈t s, t e, z order(x, y)〉 and 〈z order(x, y), t s, t e〉.
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Query processing using the ST ZORDER table proceeds by first computing the
lower (l) and upper (u) Z-values of the spatial component of the query range. The
sample query in Table 4 scans the z value column over the range 〈l, u〉 (line 3),
along with the temporal (line 4–5) and spatial (line 6–7) range components of the
query. The t z index and z t index approaches use the same query; the difference
between the approaches is whether the primary index filter is temporal or spatial.
With both strategies, the actual 〈x, y〉 of records must be scanned after the index
filtering stage to ensure that tuples actually intersect the spatial query range.

5.4 Other Approaches

For completeness, this section describes other approaches which we also explored
during the course of this research. For each approach described below we discuss
why the technique was infeasible or would be unlikely to provide efficient query-
ing.

Naı̈ve Indexing Approaches

Perhaps the most naı̈ve spatio-temporal indexing approach would be the straight-
forward use of built-in B-tree indexes. By storing the data in a table with a similar
schema as the ST ZORDER table, various types of indexes on the spatial 〈x, y〉
and temporal 〈t s, t e〉 columns of the data can be created. For example, a sep-
arate index on each of the four columns could be used, or a set of combined in-
dexes, perhaps on 〈x, y, t s〉 or 〈t s, x, y〉 could be created. Such approaches will
suffer performance-wise because they do not take advantage of the semantics of
the underlying spatio-temporal data model. The spatial region is a 2-dimensional
space, therefore 1-dimensional index structures are characterized by poor locality-
preservation and corresponding slow performance at query time. For example,
given two separate 1-dimensional indexes on x and on y, an expensive intersec-
tion operation between the index pointers for those tuples within the x range and
y range of the query will need to be performed. A 1-dimensional index on time,
without any prior spatial discrimination, will also suffer from poor performance
due to the high amount of overlap among the temporal intervals and the need to
examine both the start and end time of temporal intervals.

3D Z-curve curve Approach

By treating the temporal dimension as a third spatial dimension, a 3-dimensional
space-filling curve (for our purposes we considered the Z-curve) can be used for
spatio-temporal indexing purposes. The code for calculating the 3-dimensional
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z-curve is a modification of Algorithm 4 in order to take into account the extra di-
mension. This approach was rejected for several reasons. Treating time as a spatial
dimension in order to create the 3-dimensional Z-curve ignores the unique proper-
ties of the temporal dimension, i.e., time is monotonically increasing. Furthermore,
since time is unbounded and space-filling curves can only be computed within a
fixed spatial area, creating the 3-dimensional curve necessitates the division of time
into bounded intervals within which the Z-curve can be calculated. Another issue
was the feasibility of mapping a 3-dimensional Z-curve into both the temporal in-
terval and the spatial dimensions of the data – only the start time (ts) of the data,
and not the complete temporal interval could be indexed using this approach.

Quad-tree based Approaches

Oracle provides built-in support for Quad-tree spatial indexes. The creation of a
Quad-tree in Oracle is very similar to the R-tree. By default, when the user creates
a spatial index in Oracle the index type is the R-tree, by specifying the tessellation
level (SDO LEVEL) to use in the index creation statement a Quad-tree is created
instead. We could easily substitute a Quad-tree for the R-tree used in the “R-tree +
Temporal B-tree Approach” by changing the index creation DDL in Table 3 to:

create index idx_st_quadtree
on st_rtree(position)
indextype is mdsys.spatial_index
parameters(’SDO_LEVEL=8’)

We performed several initial experiments using such a Quad-tree index over the
spatial component of the data and a temporal B-tree index. The performance in
all cases was extremely poor. Indeed, as reported in [18], the R-tree in Oracle
tends to outperform the Quad-tree index for the type of application domain we are
interested in.

3-D R-tree

Similarly to the 3D Z-curve approach, we experimented with the use of a 3-dimensional
R-tree to index the dataset by treating time as the third spatial dimension. Note that
the Quad-tree in Oracle does not support 3-dimensional data. Unfortunately, such
an approach is not compatible with the data model we use because the temporal
dimension of the data is actually in the form of an interval.
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Partitioned Spatial Indexes

Much like the partitioned local temporal indexes used with SPIT, Oracle allows
the creation of partitioned spatial indexes. Given a partitioned table, the creation
of a partitioned spatial index is identical to the regular syntax for spatial index
creation except the keyword local is appended. We experimented with variations
on this approach, such as creating separate R-tree or Quad-tree structures for each
partition in SPIT, or for just the temporal interval in SPIT. We also experimented
with a partitioned spatial index as a stand-alone indexing technique. Given the
temporal interval component of the data model, however, this approach did not
provide adequate query performance because only the spatial component of tuples
could be indexed.

Z-curve Partitioning with Indexes on Time

We tested a variation of SPIT that uses a space-filling curve (again, the Z-curve)
as the means to partition the space instead of using a sweep space-filling curve.
Theoretically, this allows grid cells that are closer in space to be located closer
on disk, however the problem with this approach is the overhead of calculating
the intersecting cells at query time. With the current sweep-space filling curve
approach, the intersecting cells can be computed directly; with a Z-curve approach
however a range of cells is computed – which either requires a further refinement
phase or the scanning of cells that are outside the spatial component of the query.
In initial experiments, the extra overhead of such an approach could not compete
with the performance of the sweep space-filling curve approach currently used by
SPIT.
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6 Experimental Results

In this section we experimentally compare SPIT with other approaches for spatio-
temporal support in order to confirm the reliability of the SPIT cost model and to
better understand the performance characteristics of the SPIT approach. Due to the
need to generate data in a controlled manner for experimental purposes, we used
the GSTD [46] to produce several datasets for testing purposes. Recall that GSTD
allows for the generation of arbitrary sized datasets using prescribed statistical dis-
tributions describing the initial location of objects, the frequency of movement
(snapshots) of objects through time, and the movement of objects through space.
The datasets we experiment with consist of 1.5 million, 3 million, and 6 million
tuples corresponding to 15000, 30000, and 60000 objects with 100 snapshots (sam-
pled positions) each. We experiment with both a Gaussian and Skewed distribution
of the data points, both distributions reflecting possible real-world application sce-
narios. (The specifics of which cannot be disclosed due to confidentiality reasons.)
It is important to stress however, that the objects do not follow a simple uniform
distribution in the data space. This is important because even though the cost model
derived in Section 4.2 assumes a uniform distribution of the data points, our exper-
iments will show that the optimum grid size suggested by the model is still nearly
optimal for a non-uniform distribution.

For the Gaussian dataset, the initial location of objects is described by a Gaus-
sian distribution centered in the middle of the space after which point objects
movement through space is described by a uniform distribution. A snapshot of
the Gaussian dataset at three snapshots is shown in Figure 26. With the Gaussian
distribution, the density of points throughout the space is roughly equal after the
initial snapshot. A typical real-world scenario would be to assume that certain
areas of space have a higher density of objects, therefore we also created and ex-
perimented with a Skewed distribution dataset where the density of points through
the space is non-uniform. The Skewed distribution was defined such that more data
points occur in the bottom-left and top-right quadrants as compared to the bottom-
right and top-left quadrants of the data space. A snapshot of the Skewed dataset is
shown in Figure 27. The initial distribution is still Gaussian; however the skewness
forces more points into the top-right and bottom-left quadrants. All experiments
are carried out on both datasets.

We employ three sizes of spatio-temporal queries corresponding to 0.01%,
0.10% and 1.00% of the spatio-temporal space. Note that 1.00% of the spatio-
temporal space corresponds to a selectivity of approximately 21.6% on each spatial
and temporal dimension. To measure average time/query we issue 100 randomly
generated queries and measure the total execution time using Oracle’s built-in tim-
ing functionality (refer to Oracle’s timing command for more details). Disk ac-
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Figure 26: Snapshots of the Gaussian Dataset

51



Figure 27: Snapshots of the Skewed Dataset
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N N∗

p # of Grid Cells
1,000,000 10 100
3,000,000 16 256
6,000,000 20 400

Table 5: N ∗

p and the corresponding Number of Grid Cells used in the ST SPIT
table for given dataset sizes.

cesses are measured according to the average number of “physical reads” reported
by Oracle’s query trace statistics report (refer to Oracle’s set autot command
for more details).

All experiments were carried out on a 4-processor IBM p690 system using
Oracle 9.2i Enterprise Edition. (More details about the system used can be found
on-line at http://www.cs.ualberta.ca/hiso.)

6.1 Cost Model Evaluation

We experimentally confirm the reliability of our cost model by reporting the per-
formance of SPIT at grid sizes set below, at, and above the optimum grid size
determined by the cost model. We hypothesize that if the performance of SPIT is
best at the grid size analytically determined by the model to be optimum then the
model is reliable.

For sake of clarity, we repeat Equation 6

N∗

g = (
N × qt

3q × BS
)2/3

which calculates the optimal total number of cells in the grid given the size of the
dataset (N ), the query size in the temporal dimension (qt), the query size in the spa-
tial dimension (q) and the block size (BS) representing the number of tuples stored
in a page on disk. The size of our datasets are known a priori. The query extents
in the spatial and temporal dimensions are equal; therefore N ∗

g can be calculated
irregardless of query size. In order to estimate the block size we assume a page size
on disk of 8192 bytes and a tuple size of 4 bytes per column. The ST SPIT table
consists of 6 columns, one for the object identifier, two for the spatial coordinates,
two for the temporal interval, and one for the partition number. The block size can
thus be calculated as:

BS =
8192

4 × 6
tuples/block.
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The SPIT algorithms require the number of partitions in one dimension (N ∗

p ) as a
parameter. The value of N ∗

p can be calculated in terms of N ∗

g using Equation 7,
which we repeat:

N∗

p = d
√

N∗

g e

The value of N ∗

p determines the optimal number of grid cells (partitions) used when
creating the ST SPIT table for each dataset. These values are reported in Table 5.
The methodology behind the following experiments is to vary the number of grid
cells used by the ST SPIT table and to measure average query performance over
100 randomly generated queries. If the best performance for each dataset occurs
on the ST SPIT table with the optimally determined number of grid cells then the
model is reliable.

Figure 28 plots the number of grid cells used by the SPIT model against both
the number of disk accesses and query time reported by Oracle for the three query
sizes over the Gaussian Dataset. The shape of the curve reflects the trade-off be-
tween adding more partitions so as to benefit from partition elimination and the ex-
tra per partition cost of performing a local index range search of the data. The query
performance times curves given in Figure 28 plot the time per query against the
number of grid cells. As the plot shows, a strong correlation between time/query
and disk accesses clearly exists. Although the model is only guaranteed to find
the number of grid cells such that disk accesses are minimized, that point is also
very likely to provide (near) optimum query performance in terms of time. The
time/query results show that number of partitions can have a strong impact on real-
time query performance.

For the 6 million tuple dataset, the empirical minimum number of disk accesses
at all query sizes occurs at 400 cells, which is precisely the number of cells SPIT’s
cost model suggests we use. The results for the 1.5 million and 3 million tuple
datasets are equally encouraging. For the 3 million tuple dataset the fastest query
performance time occurs using 256 cells, which is the number of cells the model
recommended we use. For the 1.5 million tuple dataset as well, the best query
performance occurs at 100 grid cells – the grid size analytically determined by the
model to minimize disk accesses.

The experiments confirm the model’s ability to find the optimal number of
grid cells irregardless of query size in the situation where the query extents in the
temporal and spatial components are identical. The query size does not strongly
impact the optimum performance point. For all datasets, as the number of par-
titions increases beyond the optimum, there is an increasing overhead due to the
cost of accessing more partitions. This is even more pronounced for larger query
sizes, which cover a larger number of partitions. When the number of partitions
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Figure 28: Disk Accesses and Query Processing Time – Gaussian Dataset

is smaller than the optimum then the overhead is due to reading more data per
partition than it would be necessary in the optimal case. As we hypothesized, the
model is reliable because the analytical number of grid cells corresponds with the
empirically reported best performance point.

The experimental results using the Skewed dataset are shown in Figure 29. The
results confirm that the cost model is still reliable at determining an optimal number
of grid cells to use given that the assumption of uniform data density does not
hold. The ideal grid size for the Skewed data is slightly higher than what the model
predicts because queries in areas of high data density benefit from the finer grid
present when the number of grid cells is larger than the optimum. The cost model
slightly underestimates the ideal grid size given the Skewed data distribution.
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Figure 29: Disk Accesses and Query Processing Time – Skewed Dataset

Recall that N ∗

p is determined for a given set of parameters, including N . As
the lifespan of the database increases N is bound to increase, therefore the opti-
mal value N ∗

p should grow (sub-linearly with N ) as well. Therefore a value of
N∗

p determined for a given N is bound to be sub-optimal at some point in time.
Fortunately, the experiments show that SPIT is fairly resilient to the growth of
N especially for smaller query sizes. For instance, the index performance for a
database of 6 million tuples using a value of N ∗

g determined for 3 million tuples
instead, is not too far from the optimal performance. Nevertheless, for a very large
increase of N , performance can deteriorate, suggesting that N ∗

g should be periodi-
cally recomputed and, if necessary, the index rebuilt.

Note that related work suggesting the use of a grid for spatio-temporal index-
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Figure 30: Query Performance on the 6 million tuple dataset with the maximum
temporal interval (MAX TI) assumption and without the assumption

ing, i.e., SETI [8], does not provide any means of tuning the number of grid cells
beyond experimental trial and error. As our experiments have shown, the number of
grid cells is a crucial parameter in determining the performance of a grid-based in-
dexing approach. The ability to reliably determine the optimal number of partitions
in an analytical manner is a major contribution of this work and is very important
in making SPIT a practical solution for RDBMS spatio-temporal support.

6.2 Performance Evaluation

Next we compare the performance of SPIT against the other approaches for RDBMS-
based spatio-temporal support described in Sections 5.2 and 5.3, denoted as the
R-tree, t z index, and z t index approaches, respectively. The implementation of
SPIT uses the optimal grid size set according to Table 5. In all experiments we use
as a baseline a Full Scan of the data, i.e., no index support. Indeed, in many cases
all approaches perform worse than a full scan of the data; SPIT, on the other hand,
never did.

We first establish the benefit of using the maximum temporal interval assump-
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Table Index Time Gaussian Dataset Skewed Dataset
1.5 M 3 M 6 M 1.5 M 3 M 6 M

ST ZORDER t z insert: 0:14 0:24 0:35 0:14 0:23 0:41
index index: 1:07 2:18 4:39 1:04 2:50 4:30

total: 1:13 2:42 5:14 1:18 3:13 5:11
ST ZORDER z t insert: 0:14 0:24 0:35 0:14 0:23 0:41

index index: 1:07 2:16 4:37 1:07 3:02 4:30
total: 1:21 2:40 5:12 1:21 3:25 5:11

ST RTREE R-tree insert: 0:15 0:26 0:53 0:52 1:23 2:00
index: 4:41 10:21 25:01 4:38 19:39 44:01
total: 4:56 10:47 25:54 5:30 22:02 46:01

ST SPIT B-tree insert: 1:05 2:24 4:04 1:08 2:23 5:18
index: 0:17 0:29 1:32 0:22 0:46 1:40
total: 1:23 2:53 5:36 1:30 3:09 6:58

Table 6: Data Insertion and Index Creation Time in min:sec

tion at query time. Figure 30 shows query performance of all approaches both
with the maximum interval assumption and without the assumption for the 6 mil-
lion tuple dataset. As expected, the assumption benefits all approaches because
the temporal filter takes advantage of the tighter bound. Figure 30 establishes that
the SPIT approach outperforms all other approaches both with and without the
maximum interval assumption. For all further experiments, we report query per-
formance using the maximum interval assumption and assume that the value of
MAX TI is known at query time.

Table 6 reports the time needed to insert and index the datasets for the four ap-
proaches used for comparison, assuming that the data is already sorted by 〈ts, te〉.
The insert time for the ST SPIT table is higher than that for the ST RTREE be-
cause of the overhead involved in calculating the pid of each tuple and for Oracle
to lookup and write the tuple to the appropriate partition. However, the index cre-
ation time for the R-tree approach is prohibitively expensive. The indexing time
for the ST ZORDER is high because the Z-value calculation must be performed at
index time. As the results show, creating the local partitioned indexes for SPIT
does not incur a major overhead. In fact, SPIT’s data insertion and index creation
time is 5 times faster than the R-tree approach. Table 6 also provides the insertion
and indexing times for the Skewed Dataset. Typically, insertion and index times
tend to take longer for the Skewed dataset as compared to the Gaussian; however
the relative order between the approaches is the same.

We now report the performance results of all approaches over the 100 ran-
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Figure 31: Query Performance for different database and query sizes – Gaussian
Dataset

domly generated queries. The left-hand side of Figure 31 plots the performance of
all approaches as the database scales between 1.5 million to 6 million tuples using
a fixed query size. The right-hand side plots, on the other hand, show the results
in terms of varying query size with a fixed database size. The R-tree approach has
consistently poor performance and is outperformed by a sequential scan of the data
in all cases. The t z index approach also performs poorly, for nearly every test it too
is outperformed by a sequential scan. The problem with a primary index on time
is that there is an enormous amount of overlap among the temporal intervals of
tuples because data about every moving object in the system is being continuously
reported. As expected, the performance of the full scan of the data remains rela-
tively constant throughout. Part of the reason that a full table scan can be difficult
to outperform, especially as the query size increases, is that a full scan of the table
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Figure 32: Query Performance for different database and query sizes – Skewed
Dataset

requires very few seek operations on disk – data is scanned and filtered in continu-
ous blocks. The z t index approach, because of its efficient spatial discrimination,
performs relatively well in all cases, although it is outperformed by the full table
scan for the largest query size (1%). On average, SPIT outperforms the z t index
by a factor of three. SPIT is the only option to consistently outperform all other
approaches (including a full table scan) in all tests.

The SPIT approach scales extremely well. In the worst case, i.e., the largest test
query and database size, SPIT’s query performance was still under 2 seconds. The
t z index approach, in the worst case, took 21.6 seconds to answer a query. For the
z t index approach worst case performance was 4.8 seconds. The R-tree approach,
in the worst case, took 30.2 seconds to answer a query. The key advantage of SPIT
lies in the performance advantage of partition elimination. Only those partitions
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that intersect the spatial component of the query window are scanned. The local
temporal index on each partition reduces the number of tuples read from disk. The
ability to optimize the number of partitions further enhances performance. The
R-tree, a general purpose spatial data structure, can not approach the performance
advantage received from partition elimination. For the 3 million dataset and 0.1%
query size, the R-tree approach takes 5 seconds whereas SPIT takes on average 0.3
seconds to answer a query – a speedup of 16 times.

Figure 32 show the performance of all approaches as database and query size
varies on the Skewed dataset. On average, queries on the Skewed dataset take
longer for all approaches as opposed to the Gaussian dataset. This can be partially
attributed to the larger query answer set size for the Skewed dataset (queries in
areas of high density return more tuples). For SPIT, query performance on the
Skewed data degrades very little because queries in areas of low density return a
small answer set extremely quickly, and queries that fall in areas of higher density
are still serviced relatively quickly. Our experiments have shown that the SPIT
approach offers the best overall query response time, scalability, and data loading
performance on both the Gaussian and Skewed datasets. The experiments con-
firm that SPIT is an efficient approach for indexing spatio-temporal data inside the
RDBMS.
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7 Conclusions and Future Work

The need for built-in RDBMS support of complex data-types has long been ac-
knowledged in the database community. Support for purely spatial or purely tem-
poral data has been proposed, and a natural extension thereof is to develop a true
Spatio-Temporal Access Method (STAM) with a relational mapping. The Space-
Partitioning with Indexes on Time (SPIT) approach fills this crucial need by provid-
ing an efficient means to manage historical spatio-temporal data inside a RDBMS.
SPIT uses a pipelined query mechanism wherein an initial coarse spatial partition-
ing based on a grid location is applied, followed by temporal filtering, spatial re-
finement and duplicate elimination steps. Excellent query performance is provided
due to SPIT’s ability to efficiently prune the search space so as to reduce the need
to scan spatio-temporal records on disk. SPIT leverages existing RDBMS technol-
ogy and has been shown to outperform other alternatives for spatio-temporal data
management inside the RDBMS.

We have developed a disk access based cost model that can optimally choose
the number of grid cells to use with SPIT. Empirical testing confirms that the model
is reliable and that the SPIT approach offers excellent query performance as com-
pared to other RDBMS-support alternatives. While the use of spatial partitioning
to index the spatial component of the data is a well known method, applying this
strategy in the spatio-temporal domain while providing tightly integrated RDBMS
support has not been done before. Although a more traditional spatial index based
approach, i.e., adapting an R-tree to the problem at hand, does not require a fixed
grid-based partitioning, as we demonstrated experimentally our method dramati-
cally outperforms the R-tree based approach. The coarse spatial partitioning com-
bined with accurate temporal filter offer incomparable query performance to typical
R-tree based approaches.

In [45], the authors identify three main requirements for indexing in spatio-
temporal databases:

1. offer appropriate data types and query language support,

2. provide efficient indexing and retrieval methods, and

3. exploit cost models for query processing and optimization purposes.

Our method satisfies all three requirements. We provide a meaningful data type for
tracking spatio-temporal objects as well as a mechanism for query support. Our
indexing method, as shown experimentally, is very efficient largely due to the cost
model we developed that optimizes the grid size used by SPIT.
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7.1 Future Work

SPIT could be expanded in the future by adapting the model to take into account
other types of spatio-temporal data models, i.e., the trajectory or parametric mod-
els. One possible approach that could be taken up would be to insert a data point
into each cell where a trajectory (or the future parametric path) of an object follows.
Such an approach would require a more complex insertion and query method, and
would incur an extra storage expense. Given the already excellent performance of
SPIT, however, we predict that such an approach would still outperform alternative
methods.

Another opportunity for future work would be optimizing SPIT through the
adaptation of a non-uniform spatial grid. Query performance could be further en-
hanced by making SPIT aware of areas of higher and lower density in the dataset.
A denser data space may benefit from a finer grid, whereas in areas of low data
density a coarse grid may be adequate. This would help make SPIT more scalable
and adaptable to skewed data distributions.

As well, we are investigating manners in which SPIT’s partitioning could be
periodically re-adjusted as the database size increases. Even though the experi-
mental results suggest that SPIT is resilient to modest increases in database size,
rebuilding the index is bound to be necessary after some point in time. It would
useful to investigate whether a self-adaptation scheme, where the RDBMS would
re-configure the partition by itself without having to rebuild the whole index, can
be developed. This would help make SPIT even more scalable and adaptable for
very large databases.
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