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Abstract—This paper focuses on the problematic position 

tracking of a quadcopter under external disturbances by 

developing a super-twisting sliding mode controller (STSMC) 

based on a higher-order sliding mode observer (HOSMO). A 

generalized quadcopter model is presented with position and 

attitude dynamics. This observer-based controller design is 

applied adaptable for future hardware implementation on a 

COEX Clover 4.2. The Clover drone has measurable position 

signal using vision-based navigation and ArUco marker 

localization, where the HOSMO can estimate the unknown state 

being linear velocity. HOSMO helps in estimating the unknown 

external disturbances on the quadcopter for possible 

compensations. The proposed controller has been applied to the 

position dynamics with extensive simulations. If desired, it 

could be applied to the attitude dynamics as well. Lyapunov-

based method is used to investigate the closed-loop stability and 

convergence while a smoothing function was used to attenuate 

potential chattering problems.   

Keywords – super-twisting sliding mode control; high-order 

observer; disturbances; quadcopter; nonlinearity 

I. INTRODUCTION  

The research and development of the Unmanned Aerial 
Vehicle (UAV) has grown extensively over the past few 
decades. Its application has expanded and is now implemented 
in a variety of sectors such as agriculture, transportation and 
delivery, mining, security, and filming to name a few. It is 
through these applications where their benefits came to light and 
UAVs became known to perform complex tasks such as military 
reconnaissance and surveillance, search and rescue, science data 
collection, and payload delivery while being able to operate in 
complex environments. 

Throughout these applications the multirotor vehicle needs 
to perform maneuvers such as position tracking. Navigation 
through dangerous environments requires accurate position 
tracking of the vehicle and in a real-world setting system 
disturbance such as wind will be common. If the vehicle is not 
able to effectively perform and overcome these control 
problems, then damages may come about to the vehicle itself or 
even to the people involved. 

Considerable research has been conducted around the 
control of multi-rotors particularly in reference tracking control. 
An overview of the main control strategies of both linear and 
nonlinear types can be found in [1]. Some of the main linear 
techniques include the Proportional Integral Derivative (PID) 
and Linear Quadratic Regulator (LQR) controllers. PID is the 
most common because of its simplicity and is easy to implement 
as it is not model based. This controller can be easily tuned to  
produce good results. The use of linear control methods has 
limitations where linearized dynamics restricts flight to a certain 
domain and a smaller flight envelop. This can be undesirable for 
many real-time applications. 

To improve upon these limitations, nonlinear control 
strategies have been studied and implemented which have 
proven to expand control applications. Among the nonlinear 
controllers, feedback linearization is one of the more popular 
approaches [2, 3]. Backstepping is another nonlinear control 
technique developed to globally stabilize the overall system 
through a recursive control algorithm that works by designing 
intermediate control laws for some of the state variables [4]. 

Another nonlinear controller is the sliding mode controller 
(SMC) which is generally insensitive to unmodelled dynamics, 
parametric uncertainties and external disturbances. One major 
drawback with this control solution is the chattering phenomena 
that appears in the control law. To address this problem, the 
work in [5] presents the concept of high order sliding mode 
(HOSM), which can remove the requirement to have a relative 
degree of one as with conventional sliding mode and attenuate 
the effects of chattering phenomena [6]. This includes the 
twisting algorithm or super twisting sliding mode controller 
where the idea of acting on superior derivatives of the sliding 
variable was introduced.  

To utilize such a control strategy, knowledge of all state 
variables would be required. When applying to hardware, there 
may not be sensors to measure the bounded disturbances, or all 
required states. Because of this, the introduction of observers has 
become a popular occurrence where they can be used to estimate 
unknown disturbances and states and offer more robustness by 
compensating uncertainties.  

In [7], HOSMO was introduced with the super-twisting 
controller (STC) for a double integrator system to address the 
regulation problem despite the unmeasurable states and 
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unknown disturbances. The closed-loop asymptotic stability has 
been proven in [7]. This was extended in [8] where the observer-
based controller was implemented on both position and attitude 
dynamics for finite-time trajectory tracking under external 
disturbances by using a non-linear sliding manifold to ensure the 
finite-time convergence of the tracking error.  

Motivated by the literature work, this paper proposes to 
develop a super-twisting sliding mode controller based on a 
higher order sliding mode observer for reference tracking under 
external disturbances for Quadcopters. Simulation studies in 
Matlab/Simulink have been carried out to demonstrate the 
effectiveness of the approach. The purpose is to set up the 
observer-based control architecture for future implementation 
on hardware with the COEX Clover 4.2 drone available in the 
Advanced Control and Mechatronics (ACM) Lab at Dalhousie 
University. The Clover drone has a PX4 flight controller that 
implements a cascaded PID control structure with an inner loop 
for attitude control and an outer loop for position control. The 
design will be set up to replace the PID position control module. 
Using vision-based navigation with an ArUco marker map for 
position feedback, position can be determined, and velocity can 
be estimated with the observer.  

II. PROBLEM FORMULATION 

A. Modelling  

Consider the quadcopter (COEX Clover 4.2 drone) in Fig. 1, 
two coordinate frames are of interest. The first coordinate frame 
is the inertial frame I ={x̅I,y̅I

,z̅I} described by the North East 

Down (NED) convention and the second is the body-fixed 
coordinate frame B ={x̅B,y̅

B
,z̅B}. 

A quadcopter can be modeled by a six degrees-of-freedom 
(DOFs) rigid body. The forces acting on this rigid body can be 
described by kinetic equations (1) and (2),  

   FB = mV̇B + ΩB × (mVB),  

MB = IΩ̇B + ΩB × (IΩB),    

  (1) 

(2) 

where FB and MB are the body forces and moments acting on 
the quadcopter. Parameters m and I are the mass and moment of 
inertia of the quadcopter and ΩB  and VB  are the angular and 
linear velocities of the quadcopter in the body frame. 

The model is derived using Euler angles and the kinematics 
can be represented by applying Newton’s second law, where the 
position dynamics are seen in (3) and (4),  

mη ̈ = FI
G + RFB 

T + ξ,         (3) 

[

 x 

ÿ

z̈

̈
]= [

0

0

g
]  + [
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ψ
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θ
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m
)  + [

ξ
x

ξ
y

ξ
z

] , 

 

(4) 

where Sx = sin(x),  Cx = cos(x),  η0= [x  y  z]T  is the 

quadcopter’s position in the inertial frame, FI
G = [0  0  g]T is the 

gravitational force in the inertial frame, FB 
T =[0  0  Uz]

T  is the 

total thrust from the rotors in the body frame, g = 9.81 m/s2 is 

the gravitational constant, and ξ
0
= [ξ

x
 ξ

y
 ξ

z
]

T

is the unknown 

time-varying lumped external disturbances such as wind gusts 
on the system.  

 

Figure 1.   Quadcopter modelling coordinate frames (COEX Clover 4.2 drone 

at ACM-Lab, Dalhousie University) 

The rotation matrix is defined as 

R = [

CψCθ  CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ

SψCθ SψSθSϕ + CψCϕ  SψSθCϕ − CψSϕ

−Sθ CθSϕ CθCϕ

], 

which is an orthogonal rotation matrix that transforms from the 
body-fixed frame to the inertial frame. 

Similarly, the attitude dynamics seen in (2) are in the body 
frame and after applying Newton’s second law and considering 
the moments produced by the actuators and external 
disturbances, they can be represented with (5) and (6). 

 IΩ̇B = ΩB × (IΩB) + MB
T  + MB

D, (5) 

    [

IxxΩ̇Bx

IyyΩ̇By

IzzΩ̇Bz

]  = [

(Iyy − Izz)ΩBy
ΩBz

(Izz − Ixx)ΩBx
ΩBz

(Ixx − Iyy)ΩBx
ΩBy

]  + [

Uϕ

Uθ

Uψ

]  + [

Mϕ

Mθ

Mψ

], 

 

 (6) 

where MB
T  = [Uϕ  Uθ  Uψ]

T
are the input moments on the 

quadcopter and MB
D = [Mϕ  Mθ  Mψ]

T
are the moments produced 

by the time-varying lumped disturbances such as wind gusts. In 
this paper the aerodynamic and gyroscopic effects are not 
considered in the modeling. 

B. General Second-Order System  

This section presents a general second-order system which 
the observer-based controller will be developed on before 
applying it to the quadcopter dynamics to solve the reference 
tracking control problem. This second-order system can be 
represented by the following model 

                     { 

ẋ1 = x2,                                                 

ẋ2 = f(x) + h(x)u + ξ(x),                     

 y = x1,                                                

 

 

(7) 

where x(t) = [x1  x2]
T ∈ ℝ2 is the system state vector, f(x) ∈ ℝ 

and h(x) ∈ ℝ are known functions and y = x1 is the measurable 
system output. Lastly, ξ(t) is the unknown time-varying lumped 
disturbance on the system dynamics with ξ

s
 being its upper 

bound where |ξ(t)| ≤ ξ
s
. 



   

III. HIGHER-ORDER SLIDING MODE OBSERVER DESIGN 

The HOSMO is designed to estimate the dynamics x2 along 
with the system disturbance ξ in (7) as 

             

{
 

 

 

ẋ̂1 = x̂2 + λ1|x̃1|
2
3sign(x̃1),                                    

ẋ̂2 = x̂3 + λ2|x̃1|
1
3sign(x̃1) + f(x) + h(x)u,          

ẋ̂3 = λ3sign(x̃1),                                                   

 

 

 

(8) 

where ẋ̂i, i = 1,2,3, represents the estimated values of the states. 
The estimation errors are defined as x̃1 = x1 − x̂1 where x̃2 and 
x̃3 are defined analogously. Let x3 = ξ, and the initial value of x̂3 
is assumed to be zero for simplicity. Considering a new 
estimation error variable x̃3 = ξ − x̂3, then from (7) and (8), the 
estimation error dynamics can be written as  

              

{
 

 

 

ẋ̃1 = x̃2 − λ1|x̃1|
2
3sign(x̃1),                      

ẋ̃2 = x̃3 − λ2|x̃1|
1
3sign(x̃1),                      

ẋ̃3 = ξ̇ − λ3sign(x̃1).                               

 

 

 

(9) 

The above equation has the form of a non-recursive exact 
robust differentiator [8]. Therefore, (9) is finite-time stable and 
it has been proven in [9] using geometric methods and in [10] 
using a quadratic and strict Lyapunov function. We can conclude 
that the errors, x̃1, x̃2, and x̃3 will converge to zero in a finite 
time t > t0  if the gains λ1 , λ2 , and λ3  are chosen appropriately 
[11]. After the convergence of the estimation error, it can be 
derived that x1 = x̂1

, x2 = x̂2
, and x3 = x̂3

 after finite time t > 

t0.          

IV. SUPER-TWISTING SLIDING MODE CONTROLLER DESIGN 

The goal is to design a super-twisting sliding mode 
controller based on the estimated state information for system 
(7) to track a reference trajectory in a finite time with the 
presence of external disturbances and modelling uncertainties. 
For this system, the position component x1 is measurable and 
available while the velocity x2  will be estimated with the 
observer x̂2.  For second-order sliding mode control, the 
following convergence condition should be verified s(x) = 
ṡ(x) = 0  where s(x)  represents the sliding manifold of the 
following form 

 

        s = c1e1 + ê2 = 0, (10) 

where c1 > 0,  e1 = x1 − x1
d,  and ê2 = x̂2 − ẋ1

d.  The desired 

position and velocity are denoted as x1
d  and x2

d = ẋ1
d 

respectively. Taking the derivative of the sliding manifold (10) 
and substituting the system and observer dynamics gives 

      ṡ = c1x̂2 − c1ẋ1
d +∫ λ3sign(x̃1)dt

t

0

+               

       λ2|x̃1|
1

3sign(x̃1) + f(x) + h(x)u− ẋ2
d.                       

 

(11) 

The control input is chosen such that the second order sliding 
mode occurs in finite time. This is given as,  

u = h(x)-1[− c
1
x̂2 + c1ẋ1

d − ∫ λ3sign(x̃1)dt
t

0
−

              λ2|x̃1|
1

3sign(x̃1) − f(x) + ẋ2
d − k1|s|

1

2sign(s) −

∫ k2sign(s)dt
t

0
].                                            

 

(12) 

The control law (12) consists of two parts, one being the 
equivalent control and the other being the switching control. 
The equivalent control is responsible for maintaining the 
motion on the sliding surface and the switching control is 
responsible for forcing the trajectory towards the sliding surface 
despite the bounded uncertainties and external disturbances [8]. 

Substitution of the super-twisting control law (12) into (11) 
gives the following reaching law,  

     ṡ = − k1|s|
1

2sign(s) − ∫ k2sign(s)dt
t

0
.  

(13) 

Defining η = − ∫ k2sign(s)dt
t

0
, we have  

                    { ṡ = − k1|s|
1
2sign(s) + η, and       

η̇ = − k2sign(s).                           
 

 

(14) 

From (7) and (8), the sliding manifold in (10) can be rewritten 
as 

    s = x2 − x̃2 − ẋ1
d
 + c1e1, (15) 

and knowing ẋ1 → x2 after some finite time t0, one can write 

  ẋ1 = s + x̃2 + ẋ1
d − c1e1. (16) 

V. STABILITY ANALYSIS 

The closed-loop dynamics with the STSMC and HOSMO 
can be summarized as 

 

Υ:{

ẋ1 = s + x̃2 + ẋ1
d − c1(x1 − x1

d),     

ṡ = − k1|s|
1
2sign(s) + η,          

η̇ = − k2sign(s),                       

 

Π:

{
 

 

 

ẋ̃1 = x̃2 − λ1|x̃1|
2
3sign(x̃1),         

ẋ̃2 = x̃3 − λ2|x̃1|
1
3sign(x̃1), and  

ẋ̃3 = ξ̇− λ3sign(x̃1).                  

 

 

 

 

(17) 

A. Analysis of Subsystem 𝛱 

It was discussed earlier in section III that the estimation 
error of system Π converges to zero in finite time [12, Theorem 
5.1]. Therefore, one can substitute x̃1 = x̃2 = 0 into (17). 

 

The estimation error convergence is further proven by [8] 
where the authors in [10] have proposed a Lyapunov function 

for |ξ̇| ≤ ξ
s
 as 

   V1 = ϑ
T
Γϑ, (18) 

where ϑ = [|x̃1|
2

3sign(x̃1)    x̃2    |x̃3|
2sign(x̃3)]

T

and 



   

Γ=

[
 
 
 
 
 γ

1

1

2
γ

12
0

−
1

2
γ

12
γ

2
−

1

2
γ

23

0 −
1

2
γ

23
γ

3 ]
 
 
 
 
 

.          

 
This implies that V1 is positive definite and radially unbounded 
if and only if Γ > 0. The following conditions must be satisfied 
to ensure Γ > 0 [10, Theorem 1] 

γ
1
 > 0,      γ

1
γ

2
 > 

1

4
γ

12
2 , 

γ
1
(γ

2
γ

3
−

1

4
γ

23
2 )  > 

1

4
γ

1
2γ

3
,  

and in this case V1 satisfies the differential inequality 

V̇1 ≤ − κV
1

3

4 , 
(19) 

for some positive κ therefore it is clear the estimation error will 
converge to zero in finite time for every value of derivative 

perturbation |ξ̇| ≤ ξ
s
. 

B. Analysis of Subsystem 𝛶 

When the estimation error becomes zero, the closed loop 
system becomes 

     {

ẋ1 = s + ẋ1
d − c1(x1 − x1

d),            

ṡ = − k1|s|
1
2sign(s) + η,           

η̇ = − k2sign(s).                       

 

 

 

(20) 

As stated in [7], the lower two equations in (20) are a super-
twisting algorithm (STA), therefore by selecting appropriate 
gains k1 > 0 and k2 > 0 then s ̇= s = 0 in finite time. 

This is further proven in [8] by choosing a candidate 
Lyapunov function as [13],  

V2 = ζ
T
Pζ,  (21) 

where ζ = [|s|
1

2sign(s)   η]
T

 and the derivative vector is given by 

ζ̇ = 
1

|ζ
1
|
Aζ,   A = [

−
k1

2

1

2
−k2 0

], 

where |ζ
1
| = |s|

1

2, and taking the time derivative of (21) gives 

V̇2 = ζ̇
T
Pζ + ζ

T
Pζ̇,  

      = − |s|-
1
2ζ

T
Qζ,  

where P and Q are related by the Algebraic Lyapunov Equation 

(ALE) ATP + PA = − Q. Noting that A is Hurwitz if k1 > 0 and 
k2 > 0, it has been proven in [13, Theorem 1] that the stability 
of the equilibrium s = 0  is completely determined by the 
stability of matrix A. Therefore, the second-order sliding mode 
phenomena will occur and s and ṡ will converge to zero in finite 
time. 

Once s = 0, the closed loop dynamics will reduce to (22) and 
the asymptotic convergence of tracking error e1 can be attained. 

 

ė1 = − c1e1, (22) 

considering another Lyapunov function as 
 

V3 = 
1

2
e1

2, (23) 

and taking the time derivative of (23) gives 
 

V̇3 = e1ė1= e1(−c1e1) = − c1e1
2.               

 

Therefore, e1  is asymptotically stable by suitably selecting 

c1 > 0 where V̇3 < 0. This further ensures the convergence of x1 

to x1
d. 

VI. POSITION CONTROL OF QUADCOPTER 

A. Application to the Position Control Module 

The Quadcopters translation dynamics presented in (4) can 
be represented with the following equations 

 

ẋ = vx,        
v̇x = ux + ξ

x
, 

ẏ = vy,        

v̇y = uy + ξ
y
, 

ż = vz,        
v̇z = uz + ξ

z
,  

 

 

(24) 

where ux, uy, and uz are defined as virtual control inputs and are 

defined as 

            

{
 
 

 
 ux = (CψSθCϕ + SψSϕ) (

Uz

m
) ,             

uy = (SψSθCϕ − CψSϕ) (
Uz

m
) ,             

uz = g− (CθCϕ) (
Uz

m
) .                     

 

 

 

(25) 

To track a desired trajectory xd, yd, and zd, we will utilize 
the super-twisting controller based on the higher order sliding 
mode observer developed in Sections III and IV. The observer 
(8) applied to the x-dynamics is shown:  

{
 
 

 
 ẋ̂ = v̂x + λx1|x̃|

2
3sign(x̃),          

v̇̂x = ξ̂
x
 + λx2|x̃|

1
3sign(x̃) + ux,   

ξ̇̂
x
 = λx3sign(x̃),                        

 

 

 

(26) 

and the representation would be the same for the y and z 
dynamics. Now we can design the STSMC based on the 
estimated state information. For that, consider the sliding surface 
for the x-dynamics 

sx = c1x(x− xd) + v̂x − vx
d, (27) 

where c1x > 0, ∈ ℝ+. The virtual controller for (24) is 

ux = −c1xv̂x + c1xẋd − ∫ λ3xsign(x̃)dt
t

0
−

                   λ2x|x̃|
1

3sign(x̃) + v̇x
d − k1x|sx|

1

2sign(sx) −

∫ k2xsign(sx)dt,                         
t

0
   

 

(28) 

and the virtual controller above guarantees that x  tracks 

asymptotically to xd. The virtual control definitions (25) can be 
rearranged into the following nonlinear decoupling equations 
[14] 



   

Uz = m√ux
2 + uy

2 + (uz − g)2, 

ϕ
d
 = arcsin(

m

Uz

(uxsinψd − uycosψd)) , 

θ
d
 = arctan(

1

uz − g
(uxcosϕ

d
 + uysinϕ

d)), 

 

 

 

(29) 

where this correction block determines the necessary angles ϕ
d
, 

θ
d
 and the desired total thrust Uz. In this work, it is assumed the 

onboard attitude controller in the PX4 can track the desired roll 
and pitch angles provided by the position control module as 

described: ϕ(t) → ϕd(t) and θ(t) → θd(t) as t → ∞. 

B. Chattering Analysis 

One feature of SMCs is the discontinuous switching 
component sign(s) that is used to maintain the trajectories on 
the surface s = 0. In order to deal with the unmodelled dynamics 
and disturbances, s  is typically always varying about zero, 
causing the control to switch signs in order to maintain s = 0. 
This creates an undesirable effect known as chattering. An 
analysis on chattering was completed in [8] and it was 
determined that the chattering phenomenon was greatly 
increased due to the unmodelled dynamics. Moreover, 
increasing the value of the gain λ3 to overcome the effect of 
growing disturbance will lead to increased chattering 
amplitude. It was concluded that chattering is present for the 
super-twisting algorithm but can be alleviated by properly 
selecting the gain parameters. It should be noted that the value 
of the gains is limited because the effect of disturbance is 
getting canceled by the disturbance estimation from the 
HOSMO resulting in reduced chattering.  

Another method to smooth the chattering is replacing the 
sign(s) with a smooth function such as a saturation sat( s ϵ⁄ ) 
where ϵ is a small constant. This places a margin around s = 0 
so that the sensitivity is reduced and when the trajectories are 
within the margins around s = 0, then the control is successful. 
The demonstrated results are as in Section VII. 

VII. SIMULATION RESULTS 

In this section, the proposed observer-based controller is 
applied to the quadcopter dynamics to solve the reference 
tracking control problem with simulations. The virtual 
controllers developed for the STSMC-HOSMO pair on the 
dynamics (24) are simulated while under time-varying 
disturbances. The STSMC-HOSMO pair is applied on the 
position dynamics only, therefore observing the decoupling 
equations (29), the required physical characteristic needed is the 
mass of the quadcopter. The decoupling equations and mass 
would be used when implemented in the hardware within the 
on-board control system. Therefore, the mass of the COEX 
Clover would need to be identified. 

For the first position tracking simulation using the STSMC-
HOSMO, the translational system represented by (24) was 
made to track a circular  

 

xd = a cos(t), 

yd = a sin(t),  

 zd = bt. 

 

(30) 

 
Figure 2.   Translational response under the proposed controller for a 

quadcopter 

 
Figure 3.  Tracking response under the proposed controller in a 3D space 

The helix has a radius of "a", a slope of b/a, and t represents the 

time variation and when increased the desired trajectory (xd, 

yd, zd) traces a right-handed helix with a pitch of 2πb about the 
z-axis. In this scenario, both the HOSMO and initial states’ 
values are set to zero. The lumped external disturbances are 
chosen as ξ

x
 = 0.6sin(t), ξ

y
 = 0.4sin(t), and ξ

z
 = 0.2sin(t). 

For this simulation, the radius was selected as a = 5 m and 
parameter b was set to 0.4 m giving a slope of a/b = 12.5 for the 
helix. Upon sufficient gain tuning, it is clear that the controller 
design is successful in position tracking under the influence of  
external disturbances where the translational dynamic tracking 
can be seen in Fig. 2. The actual (x, y, z) is the quadcopters 
position (dashed line) while the desired (x, y, z) are the desired 
reference trajectories (solid line). The x and y positions begin 
on the desired ones and maintain the position without any 
noticeable deviation even under the influence of external 
disturbances. 

Considering the well performing position tracking, it is 
convenient to view the three-dimensional tracking of the 
circular helix which is shown in Fig. 3. While the dynamics 
were tracking the desired reference trajectory, the controller 
was also rejecting the time-varying external disturbances based 
on the estimations from the HOSMO. An illustration of the 
system disturbances along with their estimations from the 
HOSMO can be seen in Fig. 4. 

What stands out in both the disturbance estimation and the  



   

 
Figure 4.   Profiles of the time-varying external system disturbance and the 

estimated system disturbance via a HOSMO observer 

 
Figure 5.   Profiles of the time-varying external system disturbance and the 

estimated system disturbance via observer with a smoothing function 

control input is the chattering effect which was discussed at the 
end of Section VI.B. This effect has been increased due to the 
unmodelled dynamics; however, this is expected in the presence 
of external disturbances. This can have consequences on the 
continuity of the control input. The method proposed in Section 
VI.B to alleviate this chattering in the control input was by 
replacing the function sign(s) with a saturation function 
sat( s ϵ⁄ ) for the disturbance estimation in the HOSMO which 
is fed to the virtual control input for disturbance rejection. The 
constant was selected as a small constant ϵ = 0.000001. The 
resulting disturbance rejection and virtual control input after 
this application can be seen in Fig. 5. The reduced chattering is 
noticeable where the smoothing function worked very well. 
Although the precision is reduced by this, the impact on the 
position tracking was negligible. During simulation, the 
disturbance rejection response and virtual control input 
response are much improved. 

VIII. CONCLUSIONS 

This paper addressed a control problem of the position 
tracking that is basic in nature but very important in research 
with its application common in quadcopter applications. For the 
position tracking problem, a STSMC based on a HOSMO 
observer was presented. This control strategy was implemented 
on the position dynamics and by defining virtual controllers, the 
proposed controller could be designed based on simplified 
dynamics and was designed as an improvement upon the 
standard SMC as it attenuates the chattering affect.  

Furthermore, the HOSMO provides an estimation of the 
velocity as well as the external disturbance introduced to the 
system. From the results and analysis, it was determined that 
the external disturbance is estimated and rejected very well and 
tracking the circular helix was successful.  

To alleviate the chattering problem, a smoothing scheme 
was used in the disturbance estimation of the HOSMO that is 
fed to the control input for rejection. From this, the results were 
satisfactory as the chattering was alleviated and the influence 
on the position tracking was negligible. This removes any 
concern when applying to hardware in the future. 

Future work will involve replacing the position control 
module in the PX4 control structure with this designed 
controller on the COEX Clover 4.2 drone in ACM-Lab at 
Dalhousie University. That was the motivation in designing a 
controller based on the position dynamics alone. Experiments 
will then be run using the Clover and ArUco marker localization 
with vision-based position feedback via the onboard camera to 
replicate the simulations. 
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