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Abstract

The advent of modern supercomputers, in conjunction with larger, more comprehensive

datasets, has led to a paradigm shift in seismic imaging. Full waveform inversion is routinely

employed as a tool to estimate subsurface properties of the Earth with high resolution. The

method fits simulated waveforms to observed data by iteratively updating estimates of

subsurface properties. While recent advances have fostered seismic imaging success in areas

with complex subsurface geology, a variety of challenges persist. Underdeveloped topics

include the estimation of multiple physical parameters, uncertainty quantification, robust

convergence, and the incorporation of more complex physics.

This thesis focuses on multi-parameter inversion in isotropic, elastic full waveform inver-

sion. The transition from acoustic to elastic waveform inversion increases the computational

cost, data complexity, and the ill-posed nature of the inverse problem. Estimating multiple

independent subsurface parameters is challenging due to the limited, or overlapping, sen-

sitivity of data to different parameters. In this thesis, I explore approaches to accelerate

elastic full waveform inversion through simultaneous sources (Chapter 3) and second-order

stochastic optimization (Chapter 4). Performance is assessed through controlled numerical

experiments. Using the acoustic formulation, I present two forms of resolution/uncertainty

analysis predicated on an approximation of the Hessian as a superposition of Kronecker

products (Chapter 5). The final chapter compares applications of 2D acoustic and elastic

full waveform inversion to a land dataset from the western Canadian basin (Chapter 6). I

devise a workflow that includes data-preprocessing, initial model building and inversion.
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CHAPTER 1

Introduction

Seismology is a scientific discipline that includes the study of the Earth’s interior and seismic

wave propagation. The canonical seismic experiment begins with a source that generates

seismic waves that propagate into the Earth’s subsurface. The downward propagating waves

undergo refractions and reflections that are governed by subsurface material properties (e.g.

rock densities, seismic velocities). These interactions regularly redirect waves towards the

Earth’s surface where they are recorded as ground motions across an array of receivers.

Seismic sources are often categorized as “passive” or “active”, with the former referring

to naturally occurring sources e.g., earthquakes, whereas the latter is reserved for artificial

man-made sources. Schematic representations of active and passive source seismic surveys

are depicted in Figure 1.1.

Seismologists use time-series measurements of ground motion, known as seismograms, to

make inferences about the structure of the Earth, geodynamics, source mechanisms, and a

range of other topics. The variable scale of wave propagation leads to a natural division of

seismology into the sub-disciplines of global and exploration seismology. Global seismology

deals with wave propagation on a regional/continental/global scale (100-1000s km) relying

on passive sources to generate data. Exploration (or reflection) seismology involves the use

of active sources to survey the subsurface. It is the most prominently used technique for

hydrocarbon exploration in the oil and gas industry.

Thus far, the description of the seismic experiment has been limited to data acquisition which

marks one of its three distinct components. The remaining components are data processing

and seismic imaging/inversion. The three components are often treated independently, but

are inextricably linked as each component either caters to, or is reliant on another stage. This

thesis focuses solely on seismic imaging and inversion in an exploration setting. Specifically,

I address outstanding challenges in the seismic inversion technique known as full waveform

1
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(b)(a)

Figure 1.1: Schematic representation of a seismic survey for (a) exploration and
(b) global seismology. Stars and inverted triangles represent seismic sources and
receivers, respectively. Waves propagating through the Earth can undergo both
refraction and reflection. Reflections commonly occur in the presence of strong
material contrasts in the subsurface (illustrated with a red line in (a)).

inversion (FWI). FWI falls into a class of problems known as inverse problems. Inverse

problems estimate model parameters given some observations and a mathematical model

relating the model to the data. The remainder of the introduction provides a brief foray

into forward and inverse problems before reviewing the current state of FWI research.

1.1 Forward problems

The forward problem is the mathematical formulation of a system whereby observations d

are predicted from model parameters m through a mapping by operator G. The operator

G is derived from the governing equations of a system. The quantities d and m are abstract

and can represent continuous or discrete variables. In the case of a discrete linear system,

d and m would be vectors and G a matrix such that

m 7→ d = Gm. (1.1)

There are a wide array of problems that can be classed as linear systems, linear regression

being one such example. For linear regression, m represents a coefficient vector, G a matrix

containing the input data samples, and d the observations.

For non-linear systems, G represents a non-linear operator with the forward problem defined

as

m 7→ d = G(m). (1.2)
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In FWI, data are modelled by solving the seismic wave equation, which represented ab-

stractly, reads as

L(m)u = f , (1.3)

where u is the seismic wavefield excited by an external source f . The linear differential op-

erator L(m) characterizes the seismic wave equation and can accommodate varying degrees

of physical complexity. The operator L(m) may represent the acoustic or elastic forms of

the wave equation in 1, 2, or 3 dimensions without a loss of generality. The seismic wavefield

u is linear with respect to the external source. The non-linearity in FWI stems from the

non-linear relationship between u and m. The mapping from model-to-data space can be

expressed as u = PL(m)−1f , where P is a restriction/sampling operator that samples the

wavefield at select spatial positions.

1.2 Inverse problems

m d

Forward problem

Inverse problem
Figure 1.2: Illustration of the forward and inverse problem as mappings between
data and model spaces.

Inverse problems estimate model parameters m given observations d. Naively, the inverse

problem might be considered as the inverse mapping of the forward problem, that is to say

d 7→m = G−1d, (1.4)

in the case of a linear problem. It is easy to see that Equation 1.4 is plagued with problems.

If G is singular, its inverse does not exist. Assuming an inverse exists, in the presence of

data errors e,

m = G−1(d + e), (1.5)

in which case the inverse may be unstable if G is an ill-conditioned matrix. Furthermore,

the inverse is only defined when G is a square matrix i.e. when the size of the d and m

are the same, which is seldom true. Solutions to the inverse problem vary and depend on

the properties of the system. For example, consider a linear system with d ∈ Rn, m ∈ Rm,
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and G ∈ Rn×m. Systems are defined as underdetermined (n < m, more unknowns than

equations) or overdetermined (n > m, more equations than unknowns). Undetermined

systems have an infinite number of solutions owing to the finite (non-zero) size of the system’s

null space; therefore, additional information is required to constrain candidate solutions.

The minimum norm solution

m = GT (GGT )−1d (1.6)

arises from minimizing mTm such that Gm = d. Overdetermined systems approximate

solutions by minimizing the least-squares difference between the observations and the pre-

dictions,

minimize
m

‖Gm− d‖22, (1.7)

with the solution given by

m = (GTG)−1GTd. (1.8)

Both Equation 1.6 and Equation 1.8 impose requirements on the rank of G. The linear

problem has illustrated a number of difficulties that make the inverse problem non-trivial.

The inverse problem for non-linear systems is no less problematic and is characteristically

more challenging.

Non-linear inverse problems can be solved approximately using local optimization methods.

For a discrete non-linear system of n equations, an objective function is defined as

minimize
m

J(m) =
1

2
‖G(m)− d‖22, (1.9)

where d and the predictions G(m) represent n-dimensional vectors. The objective function

is at times referred to as the misfit functional or simply, the misfit. The principle behind

local optimization is to make repeated small updates to an initial model m0 such that

J(m)→ min. Written explicitly, the updates take the form

mk+1 = mk + νkδmk, (1.10)

where k denotes the iteration number, νk is a scalar step length, and δmk is a model

perturbation/update. The model perturbation can be computed by minimizing the second-

order Taylor expansion of the objective function around an initial model m0,

J(m0 + δm) = J(m0) + gT δm +
1

2
δmTHδm +O(δm3) (1.11)

where g = ∇mJ(m0) and H = ∇2
mJ(m0) are the gradient and Hessian of J(m0) (w.r.t. m)

written as a vector and matrix, respectively. After taking the derivative of Equation 1.11

with respect to m and setting it to zero, the minimizer of the local quadratic approximation
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J(m)
Local minima

Global minimum

Bad m0

Acceptable m0

Figure 1.3: Illustration of an objective function with numerous local minima. A
good starting point (initial model) is essential to ensuring proper convergence of
gradient-based minimization algorithms. Poor initial models can lead to conver-
gence to a local minimum that may not resemble the global minimum.

is given by the solution of the linear system

Hδm = −g. (1.12)

The solution of the so called “Newton equation” (Equation 1.12) yields the Newton search

direction. Explicitly computing and inverting the Hessian is computationally expensive and

rarely done in practice. Economical alternatives for δm can be obtained from a range of

gradient-based algorithms (Nocedal and Wright, 2006).

The challenges of non-linear inversion originate from the non-uniqueness and non-linearity

of the system. The objective function in Equation 1.9 is non-convex due to the non-linear

dependence of the predictions on m. The non-convexity manifests as numerous local minima

in the objective function (illustrated in Figure 1.3). Convergence towards the global mini-

mum is therefore contingent on the starting point. The optimization may converge to a local

minimum if m0 is far from the true model. Even if an acceptable minimum is found, it may

not be unique (e.g., consider an objective function with an extended, flat global minimum).

An ensemble of models may fit the data equally well. In the context of seismic imaging,

some models may not be resolvable if, for example, they contain fine-scale structure that is

below the resolution limit of the band-limited data. Furthermore, if seismic waves do not

propagate through a particular region of the Earth, the data will exhibit no sensitivity to

changes in that region. Limitations in the data and its acquisition introduce a null space

into the problem that results in non-unique solutions. Until this point, G(m) has been
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assumed to be an accurate mapping from the model to the data. Mathematical models of

physical systems often involve simplifications or approximations to the true physics. Errors

in the forward modelling restrict the class of solutions an inversion is able to recover.

Global optimization methods that probabilistically, or stochastically, search the model space

could help navigate the numerous local minima in FWI. However, for typical 2D/3D prob-

lems the model space is simply too large to sample efficiently. This problem is compounded

by the prohibitive cost of evaluating the objective function in FWI as it requires numerically

solving PDEs. These two factors have precluded the use of global optimization methods

in FWI for realistic problems. Despite issues with convergence, local optimization methods

remain the workhorse for practical applications of FWI.

1.3 Full waveform inversion: A review

Full waveform inversion is a seismic inversion technique that estimates subsurface parameters

(e.g. density, P - and S-wave velocities) by fitting simulated data to real-world observations.

A critical component of FWI is that the simulated data represent numerical solutions to

the seismic wave equation. By modelling the physics of the wave equation, complex wave

phenomena can be modelled and utilized for inversion. Unlike other techniques, FWI advo-

cates the fitting of complete waveforms/seismograms, where possible, as opposed to some

compressed feature/s of the data (e.g., traveltimes of seismic phases). These two points

mark a significant departure from traditional imaging techniques such as travel-time tomog-

raphy. By accounting for a range of wave modes and the band-limited nature of the data,

FWI offers significantly better resolving power than ray-based tomography. Despite this,

the name “full waveform inversion” is a misnomer in some regards, as FWI seldom fits entire

waveforms. In practice, FWI only attempts to fit wave modes that are accurately modelled

by the physics model, or modes that provide desirable updates to the subsurface model.

At its conception in the 1980s full waveform inversion was a mathematical construct that

lacked a definitive proof of concept. Lailly (1983) and Tarantola (1984b) present acoustic,

time-domain formulations of FWI. Elastic extensions are later derived by Tarantola (1986)

and Mora (1987). Subsequent 2D numerical studies characterize important properties and

challenges of FWI. Gauthier et al. (1986) and Mora (1988) perform 2D acoustic and elastic

inversion, respectively. Both studies demonstrate the scale separation achieved when using

transmitted and reflected waves for inversion. Specifically, transmitted waves capture long

wavelength components of the velocity model, whereas the inversion of reflection data yields

high wavenumber models that resemble seismic images. Early attempts at applying FWI to

real marine (Pica et al., 1990) and land (Crase et al., 1992) data resulted in limited success.
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Initial studies were hindered by the relative immaturity of the algorithm, the non-linearity,

and the prohibitive cost of the inverse problem.

Fundamental discoveries significantly advanced FWI in the 1990-2000s. Frequency-domain

FWI formulates the FWI forward problem as a discrete linear system (Pratt and Worthing-

ton, 1990; Pratt et al., 1996; Pratt, 1999). Wave equation solutions are obtained following an

LU decomposition of the forward modelling operator. The LU decomposition can be reused

for different sources thereby reducing the computational cost relative to 2D time-domain im-

plementations. The importance of wide-aperture surveys in recovering intermediate-to-long

wavelength structure was established by Mora (1988); Pratt and Worthington (1990); Pratt

et al. (1996). Multi-scale inversion schemes were introduced to mitigate the non-linearities

of FWI (Bunks et al., 1995; Pratt et al., 1996); such schemes have become standard practice

in modern FWI applications. Multi-scale schemes estimate large scale structure prior to

incorporating fine scale details into the model. Typically, this involves fitting low-to-high

frequencies in the data. Sirgue and Pratt (2004) propose a frequency progression scheme

that exploits redundancies in the wavenumber domain. Pratt et al. (1998) investigates the

role of the objective function’s Hessian in FWI. Pratt (1999) validated FWI for a physical

model, demonstrating a definitive improvement in the FWI inverted model over that re-

covered from traveltime tomography. Shortly thereafter, multiple applications of FWI on

marine streamer data emerged (Shipp and Singh, 2002; Ravaut et al., 2004; Brenders and

Pratt, 2007; Sears et al., 2008).

Simultaneously, FWI has been adapted in global tomography. The transition was stimulated

by the discovery of “banana-doughnut” kernels in the study of finite-frequency sensitivity

kernels (Marquering et al., 1999; Zhao et al., 2000; Dahlen et al., 2000). Finite-frequency

kernels indicate that seismic traveltimes are sensitive to model perturbations in a frequency-

dependent volume around, but not on, the geometric ray path. Tromp et al. (2005) unifies

the idea of finite-frequency kernels with the principles of FWI derived by Tarantola (1984b).

Full waveform tomography has been successfully applied for both regional and global to-

mography studies (e.g., Chen et al. (2007); Tape et al. (2009); Fichtner et al. (2009); French

et al. (2013); Zhu et al. (2015)).

Over the past decade, interest in FWI has grown dramatically with increased industry

adoption and general accessibility. The fundamental challenges currently plaguing FWI

can be summarized as: computational cost, robust convergence, uncertainty quantification,

utilizing reflections, multi-parameter inversion, and extensions to more complex physics.

Numerous studies have explored reducing the computational burden of FWI through more

advanced optimization schemes. Efforts include incorporating Hessian information to accel-

erate convergence (Brossier et al., 2009; Epanomeritakis et al., 2008; Métivier et al., 2013;

Anagaw and Sacchi, 2014; Pan et al., 2016), the use of simultaneous sources (Romero et al.,
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2000; Capdeville et al., 2005; Vigh and Starr, 2008; Krebs et al., 2009; Schuster et al., 2011;

Anagaw and Sacchi, 2014; Castellanos et al., 2015), and stochastic optimization (Haber

et al., 2012; van Leeuwen and Herrmann, 2013a).

Reflection data produce FWI gradients that contain high-wavenumber migration-like compo-

nents and low-wavenumber, tomographic components. The migration-type terms dominate

the update and are the reason why reflection data are often not included in FWI. Mora

(1989) estimates low- and high-wavenumber components of a velocity model by utilizing

both the migration and tomographic terms in the FWI gradient. Chavent et al. (1994)

use a migration-based traveltime approach to invert for background slowness models from

a poor initial guess. Xu et al. (2012) use the Born approximation to isolate the transmis-

sion, or tomographic, component of reflection ray paths to extract long-wavelength updates

from reflection data. The long-wavelength information from reflection data can be used

to provide deeper updates than conventional diving wave (i.e. waves that are redirected

to the Earth’s surface through refraction) FWI. Zhou et al. (2015) devise a joint inversion

scheme that estimates background velocities and an impedance model in an alternating

manner. The algorithm achieves scale separation by explicitly separating short-spread re-

flections and wide-angle transmitted waves in the data. The joint inversion uses both diving

waves and reflections to better constrain shallow structure. Reflection waveform inversion

requires an initial reflector/impedance model to generate reflections in the simulated data.

The inherent ambiguity between velocity and reflector depth limits the vertical resolution

of reflection waveform inversion (Gomes and Chazalnoel, 2017).

Robust convergence in conventional FWI is dictated by the quality of the initial model and

data properties. Two classes of algorithm have been proposed to improve the tolerance of

FWI to deficiencies in either of these factors; the classes are modified objective functions

and extended inversion methods. Modified objective functions seek to improve the convexity

of the optimization landscape i.e. to reduce the number of local minima. Objectives based

on traveltimes/correlation (Luo and Schuster, 1991; Van Leeuwen and Mulder, 2010) and

envelopes (Bozdag et al., 2011) benefit from simplifying the representation of the data. Ap-

proaches that maximize the delta-ness of matching filters that match synthetic and observed

data have observed success in improving convergence (e.g., Luo and Sava (2011); Warner

and Guasch (2016); Sun and Alkhalifah (2018)). Similarly, objectives based on optimal-

transport distances are more robust against poor starting models (Métivier et al., 2016;

Yang et al., 2018b; Yang and Engquist, 2018; Métivier et al., 2018). Extended inversion

methods expand the model space in a non-physical manner (Symes, 2008; van Leeuwen and

Herrmann, 2013b; Biondi and Almomin, 2014; Warner and Guasch, 2016). Extended mod-

els make it trivial to fit the data exactly; however, not all extended models are physically

realizable. The optimization uses annihilators that gradually push the extended model to a

physically realizable subset of the extended model space. While extended inversion methods



CHAPTER 1. INTRODUCTION 9

have demonstrated promising ability to navigate the non-convexity of FWI, they typically

come with an increased computational cost.

Multi-parameter inversion is closely linked to the inclusion of more complex physics in FWI.

In scenarios where the acoustic approximation no longer suitably approximates the data,

additional physics such as attenuation, anisotropy, and elasticity should be considered. With

each extension, the number of independent parameters required to parametrize the subsur-

face increases. For example, an acoustic medium can be characterized by P -wave velocity

and density whereas an isotropic, elastic medium also requires S-wave velocity. Anisotropy

can introduce up to 21 independent parameters in the most general description. Perturba-

tions to different parameters can produce similar responses in the data. This ambiguity leads

trade-offs between independent parameters. The difficulty inverting multiple parameters lies

in the problem becoming more ill-posed. The dimensions of the model space increases while

the number of data constraints generally remains fixed. In spite of the challenges, studies

have achieved success in multi-parameter variants of FWI (Sears et al., 2008; Brossier et al.,

2009; Plessix and Cao, 2011; Warner et al., 2013; Operto et al., 2013; Gholami et al., 2013;

Prieux et al., 2013b; Alkhalifah and Plessix, 2014; Pan et al., 2016).

A neglected branch of FWI research is that of uncertainty quantification. Practitioners rely

on heuristic quality control measures rather than rigorous uncertainty analysis. In recent

years, some effort has been made in this department. In global tomography, spike tests that

probe resolution/Hessian matrices have emerged as more reliable than classical checkerboard

tests (Fichtner and Trampert, 2011b; Trampert et al., 2013; Rawlinson and Spakman, 2016;

Fichtner and Leeuwen, 2015). While the framework for linearized Bayesian inversion has

been around for some time (Tarantola, 2005), it has not been computationally feasible until

recently (Bui-Thanh et al., 2013; Zhu et al., 2015). Fang et al. (2018) generalize Bayesian

inversion to a penalty formulation of FWI known as wavefield reconstruction inversion. Ely

et al. (2018) use a Metropolis-Hastings algorithm and a fast local solver to sample the

posterior distribution. Thurin et al. (2019) use an ensemble data assimilation technique

based on ensemble Kalman filters to quantify uncertainty in frequency-domain FWI.

1.4 Contributions of this thesis

The main contributions of this thesis are as follows:

• We explore the application of source encoding to multi-parameter FWI. Properties of

the multi-parameter Hessian, with and without source encoding, are explored to es-

tablish the implications of encoding on parameter trade-off. We demonstrate potential

limitations of encoding-based approaches for data-driven inversion schemes.
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• We introduce a stochastic second-order optimization scheme for multi-parameter FWI.

The inclusion of Hessian information into the optimization allows for improved per-

iteration convergence rates and parameter decoupling. Relative to conventional second-

order optimization schemes, the proposed method achieves comparable inversion re-

sults and convergence rates while reducing the per-iteration computational cost of

FWI. The algorithm can utilize non-uniform sub-sampling of the data to further re-

duce cost.

• We investigate two computationally feasible forms of resolution analysis in FWI: a

subsurface probing method and linearized Bayesian inversion. The analyses benefit

from a compact representation of the Hessian in the form of a superposition of Kro-

necker products. The Hessian approximation permits fast Hessian-vector products

that improve the efficiency and capability of both approaches. In addition to ex-

tracting uncertainty information associated with the inversion, we explore the unique

properties of the Kronecker-based factorization of the Hessian.

• We develop an inversion workflow for elastic FWI applied to a land dataset. The

workflow consists of data processing, initial model building and a tailored inversion

strategy. We also perform acoustic FWI and evaluate the merits of each. We in-

vestigate the inclusion of reflection data through the use of a modified free-surface

boundary condition.

1.5 Thesis overview

Chapter 2 formally introduces full waveform inversion as a PDE-constrained optimization.

I define the forward problem as the isotropic, elastic wave equation and present the in-

verse problem as a gradient-based optimization. The adjoint-state method is used to derive

expressions for the FWI gradient. I discuss challenges that arise when considering multi-

parameter forms of FWI. I discuss features of a generic FWI algorithm and provide details

of the software developed for this thesis.

Chapter 3 explores the application of source-encoding methods to multi-parameter FWI.

The algorithm uses simultaneous sources to reduce the number of PDE solves required

per FWI iteration, reducing the overall computational cost. This chapter examines the

implications of crosstalk noise in the source-encoded, multi-parameter Hessian on parameter

trade-off and inversion stability. We demonstrate that, when using source encoding, cross-

talk noise does not cause deteriorated inversion results or divergence away from a reasonable

solution. Parameter trade-off has similar characteristics to conventional FWI provided the

inversion follows a similar workflow; we present examples of simultaneous and the sequential
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inversion of multiple parameters to demonstrate this. We identify a limitation of source-

encoded FWI for certain data-driven FWI schemes. A version of this chapter is published as

a journal article (Matharu. G., and M. D. Sacchi, 2017, Source encoding in multi-parameter

full waveform inversion, Geophysical Journal International, Volume 214, Issue 2, Pages 792-

810).

Chapter 4 introduces a stochastic truncated-Newton method for multi-parameter inver-

sion. The method uses a random subset of sources to compute approximate FWI gradients

and Hessian-vector products. Model updates are estimated by iteratively solving an approx-

imate Newton equation. The approximate Newton step reduces the number of PDE solves

required per FWI iteration, while retaining advantageous properties of Truncated Newton

methods (e.g., higher per-iteration convergence rates, improved resolution). We propose

a non-uniform sampling scheme that preferentially selects sources based on a criteria that

minimizes the error in the Hessian-vector product approximation. We evaluate the perfor-

mance of the algorithm through synthetic inversions and comparisons with quasi-Newton

and truncated Newton methods. A version of this chapter is published as a journal arti-

cle (Matharu. G., and M. D. Sacchi, 2019, A subsampled truncated-Newton method for

multi-parameter full-waveform inversion, Geophysics, 84, R333-R340).

Chapter 5 presents two techniques to assess resolution and uncertainty in FWI. A sub-

surface probing approach assumes convergence to a model in the vicinity of the global

minimum. Horizontal and vertical resolution lengths are extracted by applying the Hessian

to spike perturbations placed throughout the subsurface. A secondary analysis formulates a

linearized Bayesian inversion that assumes Gaussian priors. The inverted model is presented

as a conditional probability distribution. Confidence intervals are obtained using the diago-

nal of the posterior covariance. The proposed analyses are facilitated by approximating the

Hessian as a superposition of Kronecker products. Important components of this chapter

were developed in a preceding co-authored journal article (Gao. W., Matharu. G., and M.

D. Sacchi, 2020, Fast least-squares reverse time migration via a superposition of Kronecker

products, Geophysics, 85, S115-S134).

In Chapter 6, we perform a case study of FWI applied to a 2D land dataset from the western

Canadian sedimentary basin. We conduct data-preprocessing and obtain initial velocity

models using traveltime tomography combined with prior information from well constraints.

We tailor an inversion workflow to ensure robust convergence given the properties of the

data. Separate workflows are deployed for acoustic and elastic forms of FWI. We update

near-surface P -wave velocity structure by focusing the inversion on fitting diving waves; the

elastic inversion also estimates S-wave velocity despite limited sensitivity to the parameter.

In the elastic inversion, we adopt a modified free-surface boundary condition and remove

surface waves from the data to allow fitting of reflection events. We discuss the merits and
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limitations of acoustic and elastic FWI. A version of this chapter is being prepared for a

manuscript submission to the journal Geophysics.



CHAPTER 2

Multi-parameter full waveform inversion

2.1 Mathematical formulation: A PDE constrained op-

timization problem

Full waveform inversion estimates a set of subsurface material parameters that minimize

the difference between observed and synthetic data; the latter are numerical solutions to

partial differential equations (PDEs). Mathematically, FWI can be formulated as a PDE-

constrained optimization problem of the form

minimize
m

J(m),

subject to L(m)u− f = 0,
(2.1)

where L(m) is the wave-equation operator (Plessix, 2006). The misfit functional J(m) —

also known as the cost or objective function— quantifies the difference between observed

and synthetic data u by comparing an observable quantity. The PDE constraint requires

that the synthetic data be solutions to the seismic wave equation. The optimization is

performed over an estimated model m; f is an external source. The classical choice of

objective function in FWI is the least-squares waveform misfit functional

J(m) =
1

2

Ns∑
s=1

Nr∑
r=1

∫
T

|us(xr, t; m)− ds(xr, t)|2 dt. (2.2)

The simulated multi-component data us(xr, t; m) are recorded at the r-th receiver and gen-

erated by the s-th source fs(x, t) for model m. An analogous definition holds for the observed

data ds(xr, t). The model parameters m(x) = [m1(x),m2(x), . . . ,mNp(x)]T , represent Np

13
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independent physical properties of the Earth’s subsurface; T denotes the transpose. The

number of sources and receivers are denoted by Ns and Nr, respectively. For the sake of

brevity, we henceforth omit the spatial and temporal dependencies of variables after they

are first introduced, provided that no ambiguities arise from the omission. The least-squares

waveform misfit (Equation 2.2) is a non-linear functional owing to the squared term and the

non-linear dependence of u on m (Virieux and Operto, 2009).

Non-linear functionals can be minimized via iterative gradient-based minimization algo-

rithms (Plessix, 2006). Lailly (1983) and Tarantola (1984b) demonstrated this by formu-

lating FWI as a linearized inverse problem. Solutions to Equation 2.1 can be estimated by

iteratively updating the model parameters via

mk+1 = mk + νkδmk, (2.3)

where k denotes the iteration number, νk is a scalar step length, and the model perturba-

tion/update is δmk(x) = [δm1(x), δm2(x), . . . , δmNp
(x)]T . A suitable νk can be estimated

using various line-search algorithms (Nocedal and Wright, 2006). In optimization literature,

the model update δmk is referred to as the search or descent direction and can be derived

from the gradient of the objective function with respect to the model parameters. Thus,

the key components of FWI are computing u(m) (forward problem) and the gradient of the

objective function with respect to the model parameters ∇mJ(m) (for the inverse problem).

Gradient-based optimization schemes are inherently local in nature i.e., they assume that

the global minimum can be reached via iterative gradient-based updates. For non-linear

optimization problems, the objective function typically contains numerous local minima.

This property stipulates that to reach the global minimum, the starting point must already

be within the same basin of attraction. Search based optimization methods such as Markov-

Chain Monte Carlo methods or simulated annealing are not computationally feasible for

FWI. In principle, these methods attempt to find the global minimum by evaluating the

objective function at various points, chosen stochastically or probabilistically, in the model

space. In FWI, the dimensions of the model space are too large to explore, particularly

given the computational cost of evaluating the objective function once (proportional to Ns

PDE solves). For these reasons, gradient-based optimization continues to be the preferred

approach for FWI.

2.1.1 The forward problem

The time-domain formulation of the elastic wave equation is defined as

ρ(x)ü(x, t)−∇ · σ(x, t) = f(x, t), (2.4)



CHAPTER 2. MULTI-PARAMETER FULL WAVEFORM INVERSION 15

inside the Earth Ω with surface ∂Ω (Aki and Richards, 2002). Time is denoted by t ∈ [0, T ]

and x ∈ Ω ⊂ Rd denote spatial coordinates with dimensions d = 1, 2, 3; the derivations in

this section take d = 3. The particle displacement u(x, t) is excited by an external force

f(x, t). The density ρ(x) is a material property and σ(x, t) is the stress tensor. Single

and double dots above a variable indicate first and second time derivatives, respectively.

The spatial gradient operator is denoted by ∇. Equation 2.4 is subject to the free-surface

boundary condition which states that the traction (normal component of the stress) is zero

at the boundary ∂Ω

σ · n̂|x∈∂Ω = 0, (2.5)

where n̂ is the unit normal vector. The initial conditions require the particle displacement

and velocity be zero at t = 0,

u(x, t = 0) = u̇(x, t = 0) = 0. (2.6)

The linear strain tensor ε(x, t) = 1
2 (∇u + ∇uT ) is related to the stress tensor σ(x, t) via

the constitutive relation

σ(x, t) = C(x) : ε(x, t). (2.7)

The elastic tensor C = Cijkl is a fourth order tensor that characterizes the subsurface

material properties of the Earth. The : is defined as a contraction over repeated indices

such that Equation 2.7 in index form is

σij =
d∑
k=1

d∑
l=1

Cijklεkl. (2.8)

The physical parameters comprised in m are problem dependent. For the general elastic

wave equation (Equation 2.4), m = [ρ,C]T . While C contains 81 elements, the symmetries

of σ and ε along with thermodynamic considerations require that

Cijkl = Cjikl = Cijlk = Cklij , (2.9)

thereby limiting the number of independent elastic constants to 21 (Aki and Richards, 2002).

Imposing additional symmetries on the medium, by making structural assumptions, further

reduces the number of independent parameters required to characterize the subsurface. For

an isotropic medium, the elastic tensor may be represented succinctly in terms of only two

independent parameters

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.10)
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where λ(x) and µ(x) are known as the Lamé parameters; the latter is also known as the

shear modulus. Substituting Equation 2.10 into Equation 2.4, leads to an expression for the

elastic wave equation in heterogeneous isotropic media,

L(ρ, λ, µ)u = ρü−∇ · [λ(∇ · u)I + µ(∇u +∇uT )] = f , (2.11)

where I is the identity. A potential model parametrization for an elastic isotropic medium

is in terms of density and the Lamé parameters, m = [ρ, λ, µ]T . Analytic solutions to eqs.

2.4-2.7 do not exist for general heterogeneous media; therefore, solutions must be computed

using numerical methods for partial differential equations. Details about my implementation

are provided in section 2.2.1.

2.1.2 The inverse problem

In FWI, the inverse problem equates to performing a gradient-based optimization to itera-

tively update m. This section describes how ∇mJ(m) is computed via Lagrange multipliers

and the adjoint-state method.

Let U be the space of all displacement fields ũ(x, t) and F be the space of all potential source

fields f̃(x, t). For any ũ ∈ U and f̃ ∈ F, the inner products in either space are defined as〈
ũ, f̃
〉
U

=
〈
f̃ , ũ
〉
F

=

∫
Ω

∫
T

ũ(x, t)f̃(x, t) dt d3x. (2.12)

In this section, we make a distinction between any wavefield ũ ∈ U and solutions of eqs.

2.4-2.7. Specifically, we refer to solutions of the wave equation as u or us.

To solve the constrained optimization problem in Equation 2.1, we invoke the method of

Lagrange multipliers (e.g. Plessix (2006)). Consider a vector of Lagrange multipliers q̃ =

[q̃1, q̃2, . . . , q̃Ns
]T and a corresponding vector of wavefields ũ = [ũ1, ũ2, . . . , ũNs

]T . The

Lagrangian functional L(ũ, q̃,m) for a system of Ns equations is

L(ũ, q̃,m) = Ĵ(ũ,m)−
Ns∑
s=1

〈q̃s,Lũs(x, t)− fs(x, t)〉F , (2.13)

=
1

2

Ns∑
s=1

Nr∑
r=1

∫
T

|ũs(xr, t)− ds(xr, t)|2 dt−
Ns∑
s=1

〈q̃s,Lũs(x, t)− fs(x, t)〉F ,

where Ĵ(ũ,m) is the misfit functional for arbitrary wavefields ũs(xr, t); we assume the

waveform misfit functional introduced in Equation 2.2 for this development. We seek to

find ũ, q̃, and m for which L(ũ, q̃,m) satisfies the first-order optimality conditions (Kuhn
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and Tucker, 1951)

∂L(ũ, q̃,m)

∂ũs
= 0, s = {1, . . . , Ns} (2.14)

∂L(ũ, q̃,m)

∂q̃s
= 0, s = {1, . . . , Ns} (2.15)

∂L(ũ, q̃,m)

∂m
= 0. (2.16)

Examining these derivatives individually provides insight into the relevance behind each

stationary point. For example, satisfying

∂L(ũ, q̃,m)

∂q̃s
= Lũs(x, t)− fs(x, t) = 0. (2.17)

is equivalent to finding a solution to the wave equation, To satisfy the first condition, we

require that ũs = us, ∀s ∈ {1, . . . , Ns}. The derivative of Equation 2.20 with respect to m

gives

∂L(ũ, q̃,m)

∂m
= −

Ns∑
s=1

〈
q̃s,

∂L

∂m
ũs

〉
F
. (2.18)

Taking the derivative of Equation 2.20 with respect to ũs gives

∂L(ũ, q̃,m)

∂ũs
=
∂Ĵ(ũ,m)

∂ũs
− L†q̃s = 0, s = {1, . . . , Ns}, (2.19)

where Ĵ(ũ,m) is,

Ĵ(ũ,m) =
1

2

Ns∑
s=1

Nr∑
r=1

∫
T

|ũs(xr, t)− ds(xr, t)|2 dt. (2.20)

Also we have used the definition of an adjoint operator

〈q̃s,Lũs〉F =
〈
L†q̃s, ũs

〉
U . (2.21)

Rearranging Equation 2.19 yields a more recognisable form

L†q̃s(x, t) =

Nr∑
r=1

ũs(xr, t)− ds(xr, t). (2.22)

Indeed, Equation 2.22, referred to as the adjoint-state equation, resembles the wave equation

in Equation 2.4. The operator L† is the adjoint wave-equation operator. It can be shown

that solving Equation 2.22 is equivalent to solving Equation 2.4 in reverse time (t = T → 0)

with time reversed residuals, located at the receiver positions, acting as sources. For the
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elastic wave equation in non-dissipative media, L is self-adjoint (L = L†) (Fichtner, 2010).

The derivation of the adjoint operator is well established and is therefore omitted; interested

readers may refer to Tarantola (1984b); Mora (1987); Tromp et al. (2005); Plessix (2006);

Fichtner et al. (2006) for a complete description. The solutions of the adjoint-state equation

are the adjoint wavefields q̃s(x, t). The term on the right hand side of Equation 2.22 is the

adjoint source f̃†s (x, t).

Finally, to obtain ∇mJ(m) we recognize that

L(u, q̃,m) = J(m). (2.23)

Equation 2.23 holds since u are solutions to the state equations specified in Equation 2.17.

Using this in Equation 2.18 gives the desired gradient after a couple of steps. First, take

∂L(u, q̃,m)

∂m
=
∂J(m)

∂m
+
∂L
∂u

∂u

∂m
. (2.24)

The adjoint wavefield qs is a solution to Equation 2.22 having substituted us on the right

hand side. By substituting qs into Equation 2.24, the second term on the right hand side

vanishes by definition of the adjoint state. The gradient simplifies to

∂L(u,q,m)

∂m
=
∂J(m)

∂m
= −

Ns∑
s=1

〈
qs,

∂L

∂m
us

〉
F
. (2.25)

It is more meaningful to examine the gradient in dimensions of the model. The volumetric

densities of the derivative are

∂J

∂m
(x) = −

Ns∑
s=1

∫
T

qs ·
∂L

∂m
us dt. (2.26)

Equation 2.26 states that the gradient kernels are the zero-lag correlation between the

forward and adjoint-wavefields at each point in space. The FWI gradient bears resemblance

to the classic imaging condition in reflection seismology (Claerbout, 1971). The computation

of ∇mJ(m) can be summarized as follows: 1) Compute us as solutions to the wave equation

(eqs. 2.4-2.7). 2) Compute the adjoint wavefield qs as solutions to the adjoint-state equation

(2.22). The adjoint sources are the time-reversed waveform residuals located at the receiver

positions. 3) Compute∇mJ(m) from the interaction between forward and adjoint wavefields

as indicated by Equation 2.26. The cost of each gradient computation is 2Ns PDE solves,

Ns to compute us and Ns to compute qs for s ∈ {1, . . . , Ns}.

For elastic, isotropic FWI the gradients parametrized in terms of density and the Lamé
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parameters are expressed as

∂J

∂ρ
(x) = −

∫
T

u† · ü dt, (2.27)

∂J

∂λ
(x) =

∫
T

(∇u†) · (∇u) dt, (2.28)

∂J

∂µ
(x) =

∫
T

2(∇u†) : ε dt. (2.29)

A more common parametrization uses seismic velocities, m = [ρ, vp, vs], where vp and vs are

the P -wave and S-wave velocities, respectively. The Lamé parameters are related to vp and

vs through vp =
√

(λ+ 2µ)/ρ and vs =
√
µ/ρ. The gradients for the new parametrization

can be obtained via the chain rule; the new gradients are linear combinations of the existing

ones,

∂J

∂ρ′
=
∂J

∂ρ
+ (v2

p − 2v2
s)
∂J

∂λ
+ v2

s

∂J

∂µ
, (2.30)

∂J

∂vp
= 2ρvp

∂J

∂λ
, (2.31)

∂J

∂vs
= 2ρvs

∂J

∂µ
− 4ρvs

∂J

∂λ
. (2.32)

We reiterate that the spatial dependencies of variables have been omitted. The gradients

and model parameters are functions of space. Field variables are functions of space and

time.

For the waveform misfit functional, the gradient of Equation 2.2 can also be expressed as

∂J

∂m
(x) =

Ns∑
s=1

Nr∑
r=1

∫
T

∂us(xr, t)

∂m(x)
[us(xr, t)− ds(xr, t)] dt, (2.33)

where the derivative of us with respect to m is the Fréchet derivative operator. Computing

the Fréchet derivative operator requires as many PDE solves as model parameters in the

discrete setting (Pratt et al., 1998). The adjoint-state method avoids explicitly computing

the Fréchet derivatives by computing an equivalent product. The Hessian can be computed

by differentiating 2.1.2 with respect to m(y),

H(x,y) =
∂2J

∂m(x)∂m(y)
=

Ns∑
s=1

Nr∑
r=1

∫
T

∂us(xr, t)

∂m(x)

∂us(xr, t)

∂m(y)
(2.34)

+
∂2us(xr, t)

∂m(x)∂m(y)
[us(xr, t)− ds(xr, t)] dt

The first term on the right-hand side is the Gauss-Newton, or approximation, Hessian and
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accounts for first-order scattering effects (Pratt et al., 1998). The second term is related to

second-order scattering effects. The second term is often neglected due difficulties in eval-

uating the term. Furthermore, close to the global minimum, the data residuals should be

small making the term less of lesser importance. For the majority of this thesis, we focus on

the Gauss-Newton form of the Hessian; however, where possible, the notation is general and

the concepts are applicable to both approximate and full forms of the Hessian. The Hessian

is seldom evaluated in FWI due to the computational cost associated with computing the

Fréchet derivatives. Hessian-vector products can be computed relatively efficiently using

second-order adjoint-state methods (Fichtner and Trampert, 2011a). Hessian-vector prod-

ucts require at least 2 additional PDE solves not including those required to compute the

gradient. Hessian-vector products have a range of utilities that will be exploited throughout

this thesis.

2.1.3 The algorithm

Forward modelling Synthetic data Compute gradient 

Update modelConverged? 

Model appraisalFinal model

Observed dataInitial model

Yes 

No ITERATE

Figure 2.1: Simplified FWI workflow. Grey arrows mark input/output for the
algorithm.

With the forward problem established and a recipe to compute ∇mJ , an algorithm for FWI

can be described. A simplified workflow is displayed in Figure 2.1 while a more complete

time-domain FWI algorithm is presented in algorithm 1.

From algorithm 1, the computational cost of a single FWI iteration can be deduced. Each

gradient computation (lines 2-8), requires 2Ns PDE solves per iteration. Each iteration of

the line-search selects a trial step length νt, computes a trial model update mt = mk +
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Algorithm 1 Conventional FWI using an L2 waveform difference objective function

1: for k = 1,Max. iterations do
2: for s = 1, Ns do . Loop over sources
3: Compute us(x, t; m

k) . 1 PDE solve
4: Process ds(xr, t) and us(xr, t; m

k)

5: Compute f†s (x, t) =
∑Nr

r=1[us(xr, t; m
k)− ds(xr, t)]δ(x− xr)

6: Compute qs(x, t) . 1 PDE solve
7: Compute (∇mJ)s = −

∫
T

qs · ∂L∂mus dt
8: end for
9: ∇mJ =

∑ns

s=1(∇mJ)s
10: Compute δmk . Gradient-based techniques
11: Compute νk . Line search. Requires PDE solves
12: mk+1 = mk + νkδmk

13: if ||mk+1 −mk||/||mk|| < ε then . Check for convergence
14: return mk+1

15: end if
16: end for

νtδmk, and then evaluates the objective function J(mt) incurring a cost of Ns additional

PDE solves. In my implementation, the line search is based on either a bracketing or

backtracking search that satisfies the Armijo stopping criteria (Nocedal and Wright, 2006).

A line search that runs for Nl iterations requires NlNs PDE solves. Ultimately, the total

cost of an FWI iteration is (2 + Nl)Ns PDE solves. Since PDE solves for each source are

independent, algorithm 1 can be readily parallelized with an embarrassingly parallel scheme

i.e. by distributing the same (or very similar) tasks to independent CPU processes.

Line 7 of Algorithm 1 performs a zero-lag correlation between the forward wavefield (at time

t) and the adjoint wavefield propagating in reverse time (time T−t). The correlation requires

simultaneous access to both wavefields at various points in time. The simplest approach to

address this is to pre-compute the forward wavefield and store all time steps in memory. In

step 7, the forward wavefield is then read from memory/disk to compute the gradient. This

approach can incur large memory costs and potentially introduce I/O bottlenecks for large

models. An alternative, yet similar, approach stores the wavefield at select time intervals

and recomputes intermediate time steps (Symes, 2007). Optimized checkpointing algorithms

can reduce the storage requirements with a slight increase in computational cost. We adopt

a wavefield reconstruction approach that recomputes the forward wavefield on-the-fly during

adjoint wavefield computations. The reconstruction method stores the forward wavefield at

the final time step along with a small number of interior boundary elements for all time steps

(only for absorbing boundaries). The number of interior elements stored is equal to half

the length of the finite-difference stencil used (e.g., 2 elements for a fourth-order stencil).

By storing the boundary elements, we are able to re-inject energy that is dissipated by

the absorbing boundaries. Wavefield reconstruction has the smallest memory overhead,
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but effectively adds an additional PDE solve per gradient computation. In the presence of

attenuation, carefully designed checkpointing algorithms can account for energy dissipation

that occurs within the modelling domain (Yang et al., 2016).

2.1.4 Practical considerations

Multi-scale strategies

There are numerous adaptations to the generic FWI algorithm that can improve convergence

properties. Adaptations are often necessary when deficiencies in the data prohibit proper

convergence of the inversion. The most common alteration is the inclusion of multi-scale

strategies (e.g., Bunks et al. (1995)). Multi-scale methods perform inversion in a hierarchical

manner, fitting simple/more reliable features of the data before progressing to more chal-

lenging ones. A standard multi-scale approach is that of frequency continuation where low

frequencies in the data are fit before transitioning to higher frequencies. In these schemes,

the inverted model from the end of each stage is used as the initial model for the subsequent

stage. Additional multi-scale strategies include time windowing to isolate various seismic

events, and relaxation of scale lengths for gradient smoothers.

Choice of objective function

The L2 waveform difference is seldom used in practice due to its susceptibility to cycle

skipping. Cycle skipping occurs when distinct seismic phases are shifted by more than half

a wavelength relative to one another (Virieux and Operto, 2009). In such cases, the waveform

difference will subtract unintended portions of the data and synthetics from each other. In

addition, the waveform difference promotes fitting amplitudes, which in real data FWI is

generally not prioritized. Inadequate physics models can lead to inaccurate dynamics during

wave propagation making amplitude fitting unreliable. For real data applications, emphasis

is placed on fitting the kinematics observed in the data. For this, alternative objective

functions (e.g., traveltime/correlation-based, envelope, optimal-transport) are more suitable.

Some objective functions offer more robust convergence owing to fewer local minima and/or

broader basins of attraction in the optimization landscape. Changing the objective function

merely alters the adjoint source in step 5 of algorithm 1 (see (2.19)).

Optimization algorithm

The search direction δmk can be computed from a range of gradient-based optimization

algorithms. Common choices include steepest descent, non-linear conjugate gradients, quasi-

Newton methods (e.g., L-BFGS), and truncated Newton methods (Nocedal and Wright,
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2006). The simplest choice is the steepest descent step δmk = −∇mJk. More advanced

methods can improve convergence rates of the algorithm, although this comes at a significant

cost with Newton-type methods. Truncated Newton methods are explored in more detail

in Chapter 4. Gradient preconditioning can help provide more reliable updates; common

choices include scale and/or structure dependent smoothers and weighting functions.

Source estimation

Thus far we have neglected discussion of the seismic source f that is used to generate the

simulated data. In real data studies, the seismic source is not typically known and has

to be estimated. An initial estimate of the source can, at times, be estimated through

data processing techniques such as water bottom stacking for marine data or from vibroseis

sweeps for vibroseis land data. The treatment of the source in FWI varies between studies.

Pratt et al. (1998) proposes a technique that estimates the source through the solution of a

linear inverse problem. The method finds a filter s(t) that minimizes the expression

Nr∑
r=1

∫
T

[d(xr, t)− s(t) ∗ u(xr, t)]
2

dt, (2.35)

where ∗ denotes convolution. The initial simulated data are best modelled with a source that

possesses a similar frequency spectrum to the data. An Ormsby wavelet is a useful candidate

as the amplitude spectrum can be controlled more readily. The solution to Equation 2.35

can be expressed conveniently in the frequency-domain as

s(ω) =

∑Nr

r=1 ū(xr, ω)d(xr, ω)∑Nr

r=1 ū(xr, ω)u(xr, ω) + ε
, (2.36)

where d(xr, ω) = F{d(xr, t)},u(xr, ω) = F{u(xr, t)}, s(ω) = F{s(t)}, F is the Fourier

transform operator, and ε is a small value to avoid division by zero. The bar above variables

denotes complex conjugation. The Fourier transform is defined as

F{h(t)} def
=

1√
2π

∫ ∞
−∞

h(t) exp−iωt dt (2.37)

for an arbitrary function h(t) and i =
√
−1. Equation 2.36 deconvolves the summed cor-

relation of the data and synthetics with the summed autocorrelation of the synthetic data.

The final source used during inversion is s(t) ∗ f(x, t). The filters can be computed for each

source or as an average over the survey. Estimating the source requires Ns PDE solves to

estimate the initial set of synthetics. To reduce computational cost, the source is typically

updated at regular intervals throughout the inversion as opposed to at every iteration. In
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practice, it can be useful to use time- and offset-windowed data for source estimation. The

approach remains the same but u(xr, t) is replaced with W(xr, t)u(xr, t), where W(xr, t)

is a potentially source and receiver dependent windowing function; a similar substitution is

used for the data. Typically, the windowing is used to select early arrivals and short-to-mid

offsets. Alternatively, Plessix and Cao (2011) include the source as an inversion parameter

and derive a scheme to iteratively update it using gradient updates.

2.2 Numerical implementation

In this section, I provide an overview of my numerical implementation of time-domain

elastic FWI. The description is divided into two parts, one for the numerical PDE solver

and another for the inversion workflow. We do not describe the details of the numerical

methods here as they are already well established.

2.2.1 Wave equation solver

The (isotropic) elastic wave equation is solved using a time-stepping finite-difference scheme.

The solver is limited to two spatial dimensions to make computations more tractable.

P − SV wave modes are simulated in heterogeneous media using a staggered-grid, finite-

difference scheme that is fourth-order accurate in space and second-order accurate in time,

O(∆h4,∆t2) (Yee, 1966; Virieux, 1986; Levander, 1988). The staggered grid defines field

variables (e.g. displacement/velocity, stress) at regular (x + ∆x) and half intervals (x +

∆x/2), thereby reducing the effective grid spacing and reducing numerical dispersion (Virieux,

1986). Wave equation solvers operate on local computational domains that are significantly

smaller than the physical domain of the Earth. To simulate wave propagation in a medium

much larger than the computational domain, efficient absorbing boundary conditions are

necessary. Absorbing boundary conditions are implemented in the form of convolutional

perfectly matched layers which have been demonstrated to be effective at absorbing waves

in elastic wave propagation (Komatitsch and Martin, 2007). The code is developed in C

for fast numerical computations. An embarrassingly parallel scheme over seismic sources

is implemented using MPI. The adjoint-state method requires simultaneous access to the

forward and adjoint wavefields at all timesteps to calculate the gradient. The forward wave-

field could be stored at all timesteps; however, this becomes memory intensive and may

result in I/O bottlenecks for large problems. In my implementation, I calculate the regular

wavefield and only store a snapshot of the final timestep along with the boundary elements

at all time steps. During the computation of the adjoint wavefield, the forward wavefield is

reconstructed in reverse time. This method effectively requires 3Ns PDE solves per gradient

computation, compared with 2Ns PDE solves if the forward wavefield is stored.
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2.2.2 Inversion workflow management

A complete FWI implementation requires a number of additional components as well as an

efficient wave equation solver. Standard signal processing tools are required for intermediate

processing steps (e.g., data muting, filtering, etc.), array processing tools for gradient pro-

cessing, and robust optimization libraries for gradient-based optimization. In selecting my

workflow implementation I had two requirements: 1) Utilize existing libraries/code pack-

ages as much as possible. As many of the supplementary routines are not specific to FWI, a

range of well developed open-source packages already exist. 2) Exhibit high flexibility and

portability to enable rapid prototyping.

To fulfil these criteria I chose the Seisflows inversion framework, an open-source Python

workflow tool designed for the SPECFEM class of solvers (spectral-element solvers available

at https://geodynamics.org/cig/software/specfem3d/) (Modrak et al., 2018). I developed

custom routines to interface Seisflows with my own solver. After full integration, the frame-

work allows me to perform automated inversions with a range of processing and optimization

options. Another key feature of Seisflows is its portability. It is able to transition from desk-

top PCs to HPC compute cluster environments with only minimal changes to the code.

2.3 Multi-parameter inversion

Early applications of FWI in exploration seismology focused on single-parameter inversion

of P -wave velocity using the acoustic wave equation. As demonstrated in Equation 2.11,

more complex physics in the wave equation are characterized by an increased number of

independent physical parameters.

The estimation of multiple independent parameters with limited data poses a significant

challenge in multi-parameter FWI. Perturbations to different physical properties in the

Earth’s subsurface can give rise to similar responses in the data. This introduces trade-

off between the parameters during inversion, making it difficult, or impossible to resolve

independent parameters uniquely. The model, model parametrization, acquisition geometry,

and data, all affect the resolvability of individual parameters (Tarantola, 1986; Pratt et al.,

1998; Operto et al., 2013). Information on the resolution of model parameters is contained

in the Hessian of the objective function. Parameter trade-offs can be partially corrected

by using second-order optimization techniques (e.g. Newton, Gauss-Newton, truncated

Newton) (Pratt et al., 1998; Métivier et al., 2013). While second-order optimization methods

have been explored in FWI (Epanomeritakis et al., 2008; Métivier et al., 2013; Anagaw

and Sacchi, 2014; Castellanos et al., 2015; Pan et al., 2016; Yang et al., 2018a), they are

computationally expensive and justifying their additional costs can be difficult. In some
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Figure 2.2: Scattering patterns for various wave modes with respect to perturbations
in vp, vs, and ρ. (a) PP modes. (b) PS/SP modes. (c) SS modes. Angles are
scattering angles measured from vertical. Patterns represent amplitudes of scattered
wave modes computed using the Born approximation.

scenarios, quasi-Newton methods (e.g. L-BFGS) can achieve comparable inversion results

at a reduced cost (Métivier et al., 2013). In lieu of incorporating the Hessian, parameter

trade-off can be limited through a combination of data-driven inversion strategies (Shipp and

Singh, 2002; Sears et al., 2008; Prieux et al., 2013a,b) and appropriate model parametrization

(Tarantola, 1986; Plessix and Cao, 2011; Köhn et al., 2012; Operto et al., 2013; Gholami

et al., 2013; Alkhalifah and Plessix, 2014). Understanding parameter trade-off is necessary

for accurate model appraisal, particularly when first-order optimization methods are used. A

common approach to evaluating the trade-off between parameters is by analyzing scattering

patterns as presented in Figure 2.2. Scattering patterns depict the amplitude response of a

scattered wavefield with respect to perturbations in different parameters. The responses are

plotted as a function of scattering angle. Scattering patterns are derived from high-frequency

ray and Born approximations (Wu and Aki, 1985; Tarantola, 1986; Beylkin and Burridge,

1990; Forgues and Lambaré, 1997). Scattering angles for which amplitude responses show

significant overlap are interpreted as having greater parameter trade-off. For example,

PP scattered modes at narrow scattering angles exhibit considerable overlap for vp and ρ

responses. From an inversion perspective, this suggests that if only narrow scattering angles

are available in the data then it will be difficult to decouple vp and ρ perturbations in the

subsurface. Scattering patterns are useful because they have analytical expressions; however,

they are somewhat qualitative and do not take into consideration the finite-frequency nature

of wave propagation nor the acquisition geometry of a seismic survey.

Parameter trade-offs manifest mathematically in the multi-parameter Hessian. The Hessian

carries information pertaining to the strength of parameter trade-offs along with the spatial

resolution afforded by the acquisition geometry (Pratt et al., 1998). Forgues and Lambaré

(1997) demonstrated that under the ray + Born approximation, scattering patterns (Figure
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2.2) are related to the Hessian. Neglecting the Hessian in multi-parameter inversion intro-

duces inaccuracies into the inversion due to erroneous inter-parameter mappings (Operto

et al., 2013). The multi-parameter Hessian operator exhibits a block structure and may be

expressed in matrix form as

H(x,y) =


Hm1m1

(x,y) . . . Hm1mp
(x,y)

...
. . .

Hmpm1(x,y) Hmpmp(x,y)

 . (2.38)

The Newton equations in terms of the multi-parameter Hessian operator are

Np∑
j=1

∫
Hmimj

(x,y)δmj(y) dy = −gi(x). (2.39)

Equation 2.39 states that the gradient for the i-th model parameter is a linear combination

of the true model perturbations weighted by the relevant block elements from the Hessian.

Due to the expense of Newton based methods, the Hessian in Equation 2.39 is often replaced

with a diagonal preconditioning operator to give∫
Pmimi

(x,y)δmi(y) dy ≈ −gi(x). (2.40)

The lack of off-diagonal contributions (i 6= j) in P introduces inter- parameter mappings

that lead to inaccuracies in inverted models. Block-diagonal approximations of the Hessian

are a more sophisticated, yet inexpensive, form of preconditioning operator that account for

local interparameter trade-off (Korta et al., 2013; Métivier et al., 2015).

To illustrate parameter trade-off, we present a simple example of multi-parameter FWI in

Figure 2.3. We estimate a 3 parameter model that consists of spatially inconsistent Gaus-

sian perturbations in P -wave velocity (vp), S-wave velocity (vs), and density (ρ); the true

model appears in Figure 2.3a-c. In the second row (Figure 2.3d-f), we invert with sources

and receivers distributed regularly around the entire boundary of the model. In the last

row (Figure 2.3g-i, inversion is performed with a surface acquisition i.e. with sources and

receivers distributed only along the top of the model. The anomalies are 5% perturba-

tions from the background model for each parameter. In each inversion, all parameters are

estimated simultaneously using 20 NLCG iterations.

In the complete acquisition, dense coverage results in ample subsurface illumination allowing

for good recovery of the distinct perturbations. The surface acquisition provides limited

illumination of the subsurface due to the geometry restrictions. The acquisition limits the

range of scattering angles sampled by the data to narrow and intermediate angles. For this
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Figure 2.3: Toy inversion test for vp, vs and ρ Gaussian anomalies.(a-c) True model.
(d-f) Inverted model with full acquisition. (g-i) Inverted model with surface acqui-
sition. The surface acquisition provides restricted subsurface illumination resulting
in degraded spatial resolution and parameter separation. The artefacts observed
in (g-i) correspond to erroneous mappings, or parameter cross-talk, from other pa-
rameters.
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range of scattering angles, increased trade-off occurs between P and ρ.

Uniquely resolving multiple parameters is a nuanced problem that is made challenging due

to parameter trade-off and limitations of the data. The increased model space results in

greater non-uniqueness in the solutions due to a larger null space. Throughout this thesis,

we explore some of the challenges discussed in this chapter in more detail.



CHAPTER 3

Source-encoded multi-parameter FWI1

3.1 Introduction

Since its conception in the 1980s (Lailly, 1983; Tarantola, 1984a, 1986; Mora, 1987), full

waveform inversion (FWI) has matured from a mathematical concept to a viable imaging

technique used to estimate physical parameters in the Earth’s subsurface. The advent of

modern supercomputers coupled with algorithmic advances have led to a flurry of successful

applications of FWI in both exploration (Crase et al., 1992; Pratt et al., 1998; Shipp and

Singh, 2002; Ravaut et al., 2004; Sears et al., 2008; Virieux and Operto, 2009; Brossier et al.,

2009; Krebs et al., 2009; Prieux et al., 2013a) and earthquake seismology (Chen et al., 2007;

Tape et al., 2009; Fichtner et al., 2009; French et al., 2013; Zhu et al., 2015). In spite of

recent advances, the computational cost of FWI remains a limiting factor for large scale

3D applications on real data. As practitioners continue to accommodate larger datasets,

efficient algorithms are crucial to ensuring FWI remains tractable. Potential transitions

to more complex physics (e.g. acoustic to elastic) further compound the computational

cost. The bulk of FWI’s computational expense arises from computing numerical solutions

to multiple partial differential equations (PDEs) per source at each iteration. The linear

dependence of the cost on the number of sources hampers the scalability of FWI for large

datasets. Source encoding effectively reduces the dimensionality of the data by utilizing

multiple sources simultaneously rather than independently (Romero et al., 2000; Krebs

et al., 2009).

Source encoding was originally proposed by Romero et al. (2000) to reduce the cost of

1A version of this chapter is published in Matharu. G., and M. D. Sacchi, 2017, Source encoding in
multi-parameter full waveform inversion, Geophysical Journal International, Volume 214, Issue 2, Pages
792-810.
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shot-record migration. They substituted individual sources with a smaller number of en-

coded sources, where each encoded source represented a weighted linear combination of

individual sources. The weights —known as encoding functions— were chosen as random

phase-shifts and are necessary to reduce cross-talk artefacts in the corresponding migration

image. Cross-talk artefacts arise from interactions between different sources in the imag-

ing condition. Romero et al. (2000) significantly reduced the cost of shot-record migration

whilst maintaining acceptable image quality.

Following its introduction, source encoding has been explored in a range of applications.

Simultaneous sources (without source encoding) were utilized to improve the feasibility of

global tomography (Capdeville et al., 2005). Capdeville et al. (2005) demonstrated reduced

computational requirements for tomographic inversions of a synthetic dataset; however, the

effectiveness of their approach on real data was diminished by missing data. Vigh and Starr

(2008) synthesized plane-wave gathers for acoustic FWI using a deterministic form of time-

shift encoding. Krebs et al. (2009) generalized source encoding for FWI and presented two

significant results. The first, was the adoption of polarity-based encoding functions that

had the advantageous property of not increasing simulation time, unlike phase/time-shift

based encoding schemes. The second, was that cross-talk artefacts could be almost entirely

eliminated from inverted models by randomizing the encoding functions at each iteration.

Subsequent studies in source encoded migration/FWI (SEFWI) have explored the properties

of cross-talk (Schuster et al., 2011; Ben-Hadj-Ali et al., 2011), strategies for non fixed-spread

receivers in marine environments (Routh et al., 2011; Choi and Alkhalifah, 2012), the use of

second-order optimization methods (Anagaw and Sacchi, 2014; Castellanos et al., 2015), and

stochastic optimization methods in place of source encoding (Haber et al., 2012; van Leeuwen

and Herrmann, 2013a). Thus far, applications of source encoding to migration/FWI have

focused on mono-parameter inversion under the acoustic approximation. Growing interests

in multi-parameter FWI warrant the exploration of source encoding techniques applied to

multi-parameter FWI.

The estimation of multiple independent parameters with limited data poses a significant

challenge in multi-parameter FWI. Perturbations to different physical properties in the

Earth’s subsurface can give rise to similar responses in the data. This introduces trade-off

between the parameters during inversion, making it difficult, or impossible to resolve in-

dependent parameters uniquely. The model, model parametrization, acquisition geometry,

and data, all affect the resolvability of individual parameters (Tarantola, 1986; Pratt et al.,

1998; Operto et al., 2013). Information on the resolution of model parameters is contained

in the Hessian of the objective function. Parameter trade-offs can be partially corrected by

using second-order optimization techniques (e.g. Newton, Gauss-Newton, truncated New-

ton) (Pratt et al., 1998; Operto et al., 2013). While second-order optimization methods

have been explored in FWI (Epanomeritakis et al., 2008; Métivier et al., 2013; Anagaw and
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Sacchi, 2014; Castellanos et al., 2015; Pan et al., 2016), they are computationally expensive

and justifying their additional costs can be difficult. In some scenarios, quasi-Newton meth-

ods (e.g. L-BFGS) can achieve comparable inversion results at a reduced cost (Métivier

et al., 2013). Schemes that approximate the Hessian have also been developed in an effort

to mitigate parameter trade-off (e.g. Tang and Lee (2015); Pan et al. (2018)). In lieu of

incorporating the Hessian, parameter trade-off can be limited through a combination of

data-driven inversion strategies (Shipp and Singh, 2002; Sears et al., 2008; Prieux et al.,

2013a,b) and appropriate model parametrization (Tarantola, 1986; Plessix and Cao, 2011;

Köhn et al., 2012; Operto et al., 2013; Gholami et al., 2013; Alkhalifah and Plessix, 2014;

Krebs et al., 2016). Understanding parameter trade-off is necessary for accurate model

appraisal, particularly when first-order optimization methods are used.

In this chapter, we investigate source encoding in multi-parameter FWI with applications

presented for isotropic elastic full waveform inversion. Emphasis is placed on understand-

ing the influence of source encoding on the inversion of multiple parameters. Specifically,

we seek to determine how source encoding affects parameter trade-off in multi-parameter

inversion. While our study focuses on the isotropic, elastic case, our treatment is inde-

pendent of a specific parametrization so as to be applicable to the general case of multi-

parameter inversion. Our main contributions consist of three distinct areas: (i) An analysis

of the source-encoded Hessian and its implications on parameter trade-off in general multi-

parameter SEFWI. (ii) Investigations on the efficiency gain and stability of multi-parameter

SEFWI. (iii) Demonstrating a limitation of SEFWI that is not overcome with current solu-

tions that are otherwise successful in similar scenarios. To our knowledge, an in-depth study

on multi-parameter FWI with source encoding does not exist in the current literature.

The chapter is structured as follows. Section 2 provides a brief review of FWI, source-

encoded FWI, and the optimization algorithms associated with either method. Section

3 introduces challenges associated with multi-parameter inversion. The multi-parameter

Hessian, with and without source encoding, is examined to determine the influence of source

encoding on parameter trade-off. Section 4 presents a series of numerical experiments catered

towards testing specific components of source-encoded FWI. We present results describing

the efficiency gain and parameter trade-off of SEFWI relative to FWI. Section 5 poses a

marine OBC experiment to convey a limitation of SEFWI when presented with data-driven

inversion schemes that require time-windowing on the data. Conclusions from the study are

presented in section 6.
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3.2 Theory

Full waveform inversion can be formulated mathematically as a PDE-constrained optimiza-

tion problem of the form (Plessix, 2006):

minimize
m

J(m),

subject to L(m)u(x, t) = s(x, t),
(3.1)

where the functional J(m) is dependent on model parameters m(x). Time is denoted by

t ∈ [0, T ] and x ∈ Ω ⊂ Rd denotes spatial coordinates with dimensions d = 1, 2, 3. The linear

differential operator L(m) characterizes the seismic wave equation and can accommodate

varying degrees of physical complexity e.g. acoustic, elastic, isotropic/anisotropic etc. The

particle displacement u(x, t) is excited by an external source s(x, t). For the sake of brevity,

we omit the spatial and temporal dependencies of variables after they are first introduced,

provided that no ambiguities arise from the omission. The model parameters m(x) =

[m1(x),m2(x), . . . ,mNp(x)]T , represent Np independent physical properties of the Earth’s

subsurface; T denotes the transpose. The physics incorporated into the forward modelling

operator L(m) dictate the physical properties comprised in m. In this study, L(m) refers

to the isotropic elastic wave equation in the time domain (Aki and Richards, 2002),

L(ρ, λ, µ) = ρ(x)
∂2

∂t2
[·]−∇ · [λ(∇ · [·])I + µ(∇[·] +∇[·]T )], (3.2)

where [·] is a place-holder for the variable acted upon by L(m) and I is the identity opera-

tor. The spatial gradient operator is denoted by ∇. The isotropic elastic wave equation is

parametrized in terms of density ρ(x) and the Lamé parameters λ(x) and µ(x). The partic-

ular choice of L(m) in Equation 3.2 does not lead to a loss of generality in the forthcoming

discussions on FWI and multi-parameter source-encoded FWI.

The misfit functional J(m) —also known as the cost or objective function— quantifies the

difference between observed and synthetic data by comparing an observable quantity. The

most prevalent choice of objective function for FWI is the least-squares waveform misfit

functional

J(m) =
1

2

Ns∑
s=1

Nr∑
r=1

∫
T

|us(xr, t; m)− ds(xr, t)|2 dt. (3.3)

The simulated multi-component data us(xr, t; m) are recorded at the r-th receiver and

generated by the s-th source ss for model m. A similar definition is applicable for the

observed data ds(xr, t). The number of sources and receivers are denoted by Ns and Nr,

respectively. The least-squares waveform misfit is a non-linear functional owing to the

quadratic term in (Equation 3.3) and the non-linear dependence of u on m (Virieux and
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Operto, 2009).

Non-linear functionals can be minimized via iterative gradient-based minimization algo-

rithms (Plessix, 2006). Lailly (1983) and Tarantola (1984a) demonstrated this approach in

the context of seismic imaging. Solutions to Equation 3.1 can be estimated by iteratively

updating the model parameters via

mk+1 = mk + νkδmk, (3.4)

where k denotes the iteration number, νk is a scalar step length, and the model perturba-

tion/update is δmk(x) = [δm1(x), δm2(x), . . . , δmNp(x)]T . A suitable νk can be estimated

using various line-search algorithms (Nocedal and Wright, 2006). In optimization literature,

the model update δmk is referred to as the search or descent direction and can be derived

from the gradient of the objective function with respect to the model parameters.

FWI gradient

The gradient of J(m) with respect to m, ∇mJ , can be calculated efficiently using the

adjoint-state method; for a complete description of the method, the reader is referred to

Tarantola (1986); Mora (1987); Tromp et al. (2005); Plessix (2006); Fichtner et al. (2006).

Solving the adjoint-state equation (appendix A) yields the adjoint wavefield u†(x, t). Given

u and u†, the time-domain expression for the derivative of J with respect to m is

∇mJ(x) = −
Ns∑
s=1

∫
T

u†s(x, t) ·
∂L

∂m
us(x, t) dt. (3.5)

Computation of ∇mJ requires Ns forward simulations and Ns adjoint simulations at each

iteration. The computational cost of an FWI iteration therefore grows linearly with Ns.

This linear dependence becomes prohibitive when Ns is large. Source encoding effectively

reduces the number of sources by considering multiple sources simultaneously rather than

independently.

3.2.1 Source-encoded FWI

The linear dependence of u with respect to s permits a reformulation of Equation 3.3

to accommodate simultaneous sources (Krebs et al., 2009). The revised misfit functional

assumes a fixed-spread acquisition (i.e. fixed receiver positions) and may be expressed as

Ĵ(m) =
1

2

Ne∑
e=1

Nr∑
r=1

∫
T

|ûe(xr, t; m)− d̂e(xr, t)|2 dt, (3.6)
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where d̂e are the encoded data and ûe are the synthetic data generated by encoded source

ŝe. The number of encoded sources Ne is selected such that Ne < Ns. We use a circumflex to

signify source-encoded variables or those associated with SEFWI. Source encoding reduces

the data volume by a factor Ns/Ne, thereby reducing the number of PDE solves required per

iteration. Maximal data compression is achieved when every individual source is combined

into a single encoded source.

At this stage, we define a selection criterion used to select individual sources for encoding.

Let S denote the set containing all the sources in a given acquisition. We synthesize Ne

encoded sources from Ne mutually disjoint subsets of S. Formally, S = ∪Ne
i=1Si where

Si ∩ Sj = ∅, {∀i, j = 1, . . . , Ne, i 6= j}. Mutually disjoint subsets ensure that individual

sources are not repeated over multiple encoded sources. This restriction is not essential to

the formulation of SEFWI; however, we impose it to simplify the forthcoming treatment of

SEFWI. Following this definition, ŝe and d̂e are formed from the linear combinations,

ŝe(x, t) =
∑
s∈Se

qes(t) ∗ ss(x, t), (3.7)

d̂e(x, t) =
∑
s∈Se

qes(t) ∗ ds(x, t), (3.8)

where qes(t) are source-specific encoding functions for the e-th encoded source. Convolution

in the time domain is denoted by ∗. Encoding functions are discussed in section 2.2.

SEFWI gradient

The SEFWI gradient is also computed using the adjoint-state method. Source encoding in-

troduces cross-talk artefacts into the gradient that are a consequence of zero-lag correlations

(Equation 3.5) between forward and adjoint wavefields that do not correspond to the same

source. For the case of pure simultaneous sources, i.e. if qes(t) = 1 {∀s ∈ Se, e = 1, . . . , Ne},
the derivative of Ĵ with respect to m is

∇mĴ(x) = −
Ne∑
e=1

∫
T

û†e(x, t) ·
∂L

∂m
ûe(x, t) dt, (3.9)

= ∇mJ(x)−
Ns∑
i=1

Ns∑
j=1

j 6=i

∫
T

u†j(x, t) ·
∂L

∂m
ui(x, t) dt

︸ ︷︷ ︸
Cross-talk term

. (3.10)

The simplification in Equation 3.10 is valid when subsets Si are mutually disjoint. The sec-

ond term on the right hand side of Equation 3.10 represents cross-talk artefacts that com-

promise the accuracy of the desired gradient. For pure simultaneous sources, the cross-talk
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artefacts stack as coherent noise over the course of SEFWI iterations resulting in inaccurate

models (Romero et al., 2000; Krebs et al., 2009). The influence of cross-talk artefacts can

be ameliorated via source encoding.

3.2.2 Source encoding

The frequency-domain representation of the SEFWI gradient allows the role of encoding

functions to be more readily understood. The frequency-domain formulation of ∇mĴ with

general source-encoding is

∇mĴ(x) =−
Ne∑
e=1

[∑
i∈Se

〈
Qe
i (ω)Ui

†(x, ω), Qe
i (ω)

∂L

∂m
Ui(x, ω)

〉
ω

+
∑
i∈Se

∑
j∈Se

j 6=i

〈
Qe
i (ω)Ui

†(x, ω), Qe
j(ω)

∂L

∂m
Uj(x, ω)

〉
ω


︸ ︷︷ ︸

Cross-talk term

, (3.11)

where Qe
i (ω) = F{qe

i (t)}, U(x, ω) = F{u(x, t)}, U†(x, ω) = F{u†(x, t)}, and F is the

Fourier transform operator. The inner product 〈·, ·〉ω between two arbitrary complex-valued

functions f and g, is defined as

〈f, g〉ω :=

∫
ω

f̄(ω)g(ω) dω. (3.12)

Complex conjugation is denoted by a bar above a variable. The origin of Equation 3.11

is available in appendix B. When the encoding functions form an orthonormal basis i.e.

Q̄e
i (ω)Qe

j(ω) = δij , {∀i, j ∈ Se}, Equation 3.11 reduces to the standard FWI gradient. In

practice, we seek random encoding functions with the property

E[Q̄e
i (ω)Qe

j(ω)] = δij . (3.13)

Equation 3.13 states that the expected inner product between any two random encoding

functions is a Kronecker delta function. Previous studies have used this condition to establish

potential encoding functions. Suitable choices include: random time-shifts (Romero et al.,

2000; Schuster et al., 2011), plane-wave encoding (Vigh and Starr, 2008), and polarity

encoding (Krebs et al., 2009). Polarity encoding uses encoding functions of the form Qi(ω) =

ri, where the discrete random variable ri takes values of +1 or -1 with equal probability.

Cross-talk artefacts can be further reduced by randomizing the encoding functions at regular

intervals. Altering the source encoding after every iteration has been demonstrated to be
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optimal (Krebs et al., 2009). Randomizing the encoding functions results in the cross-talk

terms stacking as incoherent noise over the course of SEFWI.

3.2.3 Gradient-based optimization

In the vicinity of an initial model m0, J(m0) can be approximated by a locally quadratic

function following a second-order Taylor expansion (Pratt et al., 1998). The perturbation

δm that minimizes the quadratic approximation is obtained by solving the Newton system

of equations, represented symbolically as

Hδm = −g, (3.14)

where g = ∇mJ and H = ∇2
mJ denote the gradient and Hessian of J(m0), respectively.

Henceforth, we adopt letter symbols for the FWI/SEFWI gradients and Hessians in favour

of readability. The multi-parameter Hessian is explored in section 3.1.

In this study we consider first-order techniques only; namely, steepest descent (SD), non-

linear conjugate gradients (NLCG), and the quasi-Newton L-BFGS method. L-BFGS gen-

erates approximations to the inverse Hessian from previous gradients (Liu and Nocedal,

1989). First-order algorithms neglect the Hessian and rely solely on gradient information to

generate search directions. Details for each algorithm can be found in Nocedal and Wright

(2006).

Optimization algorithms for source-encoded FWI

The source-encoded Hessian Ĥ = ∇2
mĴ can be altered considerably when the source encod-

ing is randomized. Applications of NLCG and L-BFGS should be amended to account for

this. In NLCG, the conjugacy condition cannot be guaranteed and therefore search direc-

tions are not assured to be conjugate pairs. Moghaddam et al. (2013) proposed a heuris-

tic alternative that formed search directions as a weighted sum of prior gradients. Their

approach demonstrated higher convergence rates relative to SD when applied to acoustic

SEFWI.

We implement hybrid forms of NLCG and L-BFGS that have been utilized for source-

encoded migration/FWI in the acoustic case (Huang and Schuster, 2012; Castellanos et al.,

2015). The hybrid algorithms amount to regular-restart versions of their conventional coun-

terparts. After every M -th iteration, the optimization history is reset and the source en-

coding is randomized. The source encoding does not vary between restart intervals. As the

hybrid algorithms do not randomize the source encoding at every iteration, cross-talk is ex-

pected to be more prominent for these algorithms. The restart interval should be chosen to
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be as small as possible (to suppress cross-talk), but large enough to allow the optimization

algorithm to perform effectively. For example, NLCG requires gradients from the current

and prior iteration, so the restart interval should be at least 2. The L-BFGS method gen-

erates search directions from M previous gradients, with M typically ranging between 3-15

(Liu and Nocedal, 1989). The performance of L-BFGS is problem dependent and also varies

with M (Nocedal and Wright, 2006), making it difficult establish a guideline for selecting

the restart interval. Extensive tests to assess the performance of the hybrid schemes for

various restart intervals have not been conducted. In this study, we deploy SEFWI with SD

and restart variants of NLCG and L-BFGS. We do not differentiate between regular and

restart versions of NLCG/L-BFGS in the text. The reader may assume that NLCG/L-BFGS

applied to SEFWI corresponds to the restart versions described in this section.

Model regularization

FWI is an ill-posed problem meaning an infinite number of models can fit the data equally

well (Virieux and Operto, 2009). Model regularization, included explicitly into the objective

function, serves to stabilize the inversion and make it more well-posed. Furthermore, model

regularization constrains updates by imposing prior assumptions on the model. In this study,

we implement a form of Tikhonov regularization that penalizes deviatoric perturbations from

a prior model,

R(m) =
γ

2

Np∑
p

‖mp −mprior
p ‖2. (3.15)

A tunable hyperparameter γ controls the contribution of the regularization term relative to

the data misfit. The prior model in Equation 3.15 is taken as the initial model input to

FWI/SEFWI.

3.3 Multi-parameter inversion

Prior applications of source encoding in migration and FWI have primarily focused on sin-

gle parameter inversion under the constant-density, acoustic approximation (Romero et al.,

2000; Vigh and Starr, 2008; Krebs et al., 2009; Schuster et al., 2011; Dai et al., 2012; Anagaw

and Sacchi, 2014; Castellanos et al., 2015). While Capdeville et al. (2005) performed elastic

inversion, it was restricted to a single-parameter (S-wave velocity). Krebs et al. (2016)

carried out a synthetic parameter resolution study for FWI in tilted transversely-isotropic

visco-elastic media. The study utilized source encoding to improve the efficiency of inver-

sions, but did not discuss the relationship between source encoding and parameter trade-off.

When considering anisotropic or elastic representations of the Earth, multiple independent
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model parameters are required to characterize the subsurface. An isotropic elastic medium is

adequately described by 3 independent parameters; a potential parametrization is in terms

of density (ρ) and the Lamé parameters (λ, µ).

An ideal model parametrization consists of a set of physical parameters that are uniquely

resolvable. The extent to which a model perturbation can be resolved uniquely, is dic-

tated by the choice of model parametrization, acquisition geometry, background model, and

bandwidth of the data (Tarantola, 1986; Plessix and Cao, 2011; Operto et al., 2013; Gho-

lami et al., 2013; Alkhalifah and Plessix, 2014). A poor choice of model parametrization

or inadequate subsurface illumination can lead to ambiguities between different parameters

(Plessix and Cao, 2011; Operto et al., 2013). Parameter trade-off is the phenomena where

changes in different parameters elicit similar responses in the data. A classic example is the

velocity-depth ambiguity associated with reflection travel times. To further complicate mat-

ters, perturbations to parameters that lie in the null space of the problem will not register

in the data making them unresolvable (Alkhalifah and Plessix, 2014).

Within a given parametrization, certain parameters have a greater influence on the data

than others. A good parametrization prioritises the accurate reconstruction of parameters

that most strongly influence the kinematics of the data (e.g. Plessix and Cao (2011); Gho-

lami et al. (2013); Alkhalifah and Plessix (2014)). For example, P -wave velocity controls

the kinematics of compressional waves, whereas density primarily influences reflection am-

plitudes. A parametrization that allows for the broadband reconstruction of P -wave velocity

should be favoured. Tarantola (1986) compared scattering patterns derived from the Born

approximation to assess parameter trade-off and resolution. The study concluded that a

parametrization of density (ρ), P -wave velocity (α), and S-wave velocity (β) was suitable

for broadband reconstruction of α while limiting parameter trade-offs.

3.3.1 Multi-parameter Hessian

Parameter trade-offs manifest mathematically in the multi-parameter Hessian. The Hessian

carries information pertaining to the strength of parameter trade-offs along with the spatial

resolution afforded by the acquisition geometry. Neglecting the Hessian in multi-parameter

inversion introduces inaccuracies into the inversion due to erroneous inter-parameter map-

pings (Operto et al., 2013). The multi-parameter Hessian operator exhibits a block structure

and may be expressed in matrix form as

H(x,y) =


Hm1m1

(x,y) . . . Hm1mp
(x,y)

...
. . .

Hmpm1
(x,y) Hmpmp

(x,y)

 . (3.16)
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The Newton equations in terms of the multi-parameter Hessian operator are

Np∑
j=1

∫
Hmimj (x,y)δmj(y) dy = −gi(x). (3.17)

Equation 3.17 states that the gradient for the i-th model parameter is a linear combination

of the true model perturbations weighted by the relevant block elements from the Hessian.

Due to the expense of Newton based methods, the Hessian in Equation 3.17 is often replaced

with a diagonal preconditioning operator to give∫
Pmimi(x,y)δmi(y) dy ≈ −gi(x). (3.18)

The lack of off-diagonal contributions (i 6= j) in P introduces inter parameter mappings that

lead to inaccuracies in inverted models. When inter-parameter mappings are not corrected,

it is important to understand their nature for proper model appraisal. A concern arises when

using first-order optimization for SEFWI. The cross-talk artefacts in the SEFWI gradient

will map across multiple parameters manifesting as additional parameter trade-offs. The

source-encoded, multi-parameter Hessian is examined in the following section to better

understand the behaviour of parameter trade-off in SEFWI.

3.3.2 Source-encoded multi-parameter Hessian

In the frequency domain, the source-encoded Gauss-Newton Hessian (Ĥa) can be written

as

Ĥa(x,y) =

Ne∑
e=1

Nr∑
r=1

〈∑
i∈Se

Qe
i (ω)

∂ui(xr, ω)

∂m(x)
,
∑
j∈Se

Qe
j(ω)

∂uj(xr, ω)

∂m(y)

〉
ω

, (3.19)

where ∂ui(xr,ω)
∂m(x) are the Fourier transformed Fréchet derivatives. Equation 3.19 can be

simplified to

Ĥa(x,y) = Ha +

Ne∑
e=1

Nr∑
r=1

∑
i∈Se

∑
j∈Se

j 6=i

〈
Qei (ω)

∂ui(xr, ω)

∂m(x)
, Qej(ω)

∂uj(xr, ω)

∂m(y)

〉
ω

. (3.20)

Once again we assumed that the subsets Si are mutually disjoint. A short derivation for

Equation 3.20 is presented in appendix C. The cross-talk terms in the source-encoded Hes-

sian are comparable to those in the source-encoded gradient (Equation 3.11). This implies

that the cross-talk in Ĥa can also be attenuated by selecting orthonormal encoding functions
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(Equation 3.13). The symbolic representation of the Newton equations in SEFWI is,

(Ha + Hc)δm = −(g + gc), (3.21)

where Hc and gc are the cross-talk components of the source-encoded Hessian and gradient,

respectively. The operator Hc maps model perturbations into gc. If δm is computed using

first-order gradient techniques, i.e. by neglecting Ĥa, estimates of δm will exhibit erroneous

inter-parameter mappings associated with gc. To verify that source encoding can be used

to suppress cross-talk in the Hessian, we perform an analysis that involves probing the

multi-parameter Hessian.

3.3.3 Hessian probing

In the vicinity of the true model, the resolvability of a model perturbation can be assessed

by computing

H−gHδmtrue = δm (3.22)

where H−g is the generalized inverse of the Hessian, δmtrue is a true model perturbation,

and δm is an estimated model perturbation (Fichtner and Trampert, 2011b). The term

H−gH acts as a resolution operator and H−gHδmtrue is a point spread function (PSF)

that describes how model perturbations are smeared in space. On its own, H can be viewed

as a conservative approximation to the true resolution operator. Likewise, Hδmtrue provides

an estimate of the true PSF (Fichtner and Leeuwen, 2015). Henceforth, we use the term

PSF to refer to the approximate PSF Hδm. PSFs can be interpreted as resolution proxies

in the vicinity of the true model or, more generally, as weighted row averages of H in the

discrete case. While the Hessian itself is expensive to compute, Hessian-vector products

can be computed efficiently using second-order adjoints (Fichtner and Trampert, 2011a) or

finite-difference approximations (Zhu et al., 2015). We use the finite-difference approach as

it is more convenient to implement with our current code.

For fixed δm, we define a realization of Ĥδm as the PSF computed for a particular set

of random encoding functions. When the encoding functions satisfy Equation 3.13, the

expected PSF in SEFWI satisfies

E[Ĥδm] = E[Ĥ]δm = Hδm. (3.23)

The convergence of Ĥ → H was noted by Tang (2009) and used for efficient access to the

Hessian in mono-parameter acoustic migration/FWI. The expected PSF is estimated from
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the ensemble average taken over N random realizations of Ĥδm,

E[Ĥδm] ≈ 1

N

N∑
i=1

Ĥ(i)δm. (3.24)

Schuster et al. (2011) defined the cross-talk signal-to-noise ratio (c-SNR) as a measure of

cross-talk noise in source-encoded migration images. An analogous definition for Hessian-

vectors products is given by

c-SNR =
‖Hδm‖

‖
∑N
i=1 Ĥ(i)δm−Hδm‖

. (3.25)

The L2 norm (‖ · ‖) follows a standard definition

‖ψ‖ := (

∫
Ω

|ψ(x)|2 dx)
1
2 , (3.26)

for an arbitrary real-valued function ψ(x). Schuster et al. (2011) demonstrated that the c-

SNR grows ∝
√
N . The effect of stacking random realizations is mimicked by randomizing

encoding functions at each iteration of SEFWI.

As a numerical test, we compute expected PSFs for perturbations applied to a homogeneous

model. The test focuses on the two parameter case, where m(x) = [α(x), β(x)]T . 16 sources

and 50 receivers are evenly distributed along the surface of a model that is discretized on a

100 x 100 grid with a spacing of 10 m. We use model perturbations of the form

δm(x) = [δα(x), δβ(x)]T =

[c, 0]T , for x = xc

[0, 0]T , otherwise

where xc is the central grid point and c is a constant value, taken as 1% of the background

model in this example. Perturbations are applied to one parameter at a time allowing us

to target individual block elements of the Hessian operator (Equation 3.16). We compute

similar PSFs with the sequential-source Hessian for reference.

Figure 3.1 depicts PSFs associated with H and Ĥ. For a small number of random realiza-

tions, prominent cross-talk artefacts are apparent in the expected PSFs. As the number

of random realizations increases, E[Ĥδm] increasingly resembles Hδm. For 64 realizations,

the expected PSF is almost identical to the reference PSF. We notice some spurious oscil-

lations that persist in Hαβ (Figure 3.1e) even after 64 realizations. These oscillations are

attributed to boundary related artefacts that stem from the relatively small grid size. Figure

3.2 displays the growth of c-SNR as a function of random realizations in an ensemble. The

PSFs associated with each block component of Ĥ exhibit similar convergence behaviour and
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Figure 3.1: Point spread functions for a point scatterer (x = z = 0.5 km) generated
using different block components of the Hessian (with and without source encoding):
(top row) Hαα, (middle row) Hββ , (bottom row) Hαβ . (a) PSFs computed using
the Hessian without source encoding. (b-e) Ensemble averaged PSFs for a varying
number of realizations of the source-encoded Hessian. With an increasing number of
realizations the cross-talk artefacts are suppressed and the expected PSFs approach
the equivalent PSF obtained without source encoding.
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approximately follow the ∝
√
N relation defined by Schuster et al. (2011). The bias in the

Hαβ PSF is attributed to the propagation of numerical errors mentioned previously.

Certain conclusions can be drawn from Figs. 3.1 and 3.2. Since the cross-talk terms in the

Hessian can be attenuated through SEFWI iterations, the parameter trade-off in SEFWI

should be comparable to that of FWI. Furthermore, as the cross-talk terms in Ĥ are at-

tenuated at the same rate as those in ĝ, the number of iterations need not be amended to

correct for inter-parameter mappings of cross-talk noise. Interpreting PSFs as resolution

proxies corroborates the notion that FWI and SEFWI have comparable resolution.

3.3.4 Trade-off and the number of inversion parameters

The property in Equation 3.23 suggests that SEFWI should have the same sensitivity to

model parametrization as FWI. As the expression is not restricted to a particular parametriza-

tion, the previous statement should be true for any model parametrization, including when

a change in parametrization occurs due to changes in the modelling physics. The charac-

teristics of parameter trade-off can be affected by the inversion scheme as well as changes

to the model parametrization. Multi-parameter FWI can invert for independent model

parameters sequentially, simultaneously, or through some combination of the two. While

simultaneous inversion reduces the overall number of inversions required, sequential schemes

may be favourable as they can be designed to mitigate non-linearities in FWI. Sequential

inversion strategies typically impose hierarchy on the importance of individual model pa-

rameters. For example, parameters that influence the kinematics (e.g. P -wave velocity) of

the data hold precedence over those that control the dynamics (e.g. density). By sequen-

tially inverting parameters, or parameter subsets, inversions can insert increasingly complex

features into the model in a progressive and controlled manner. Studies performing elastic

inversion on ocean-bottom cable (OBC) data have used this approach with success (Shipp

and Singh, 2002; Sears et al., 2008, 2010; Prieux et al., 2013b); a similar example is ex-

plored with source encoding in section 5. A drawback of sequential inversions is that they

can introduce strong artefacts due to inter-parameter mappings. If trade-off artefacts are

sufficiently strong, subsequent stages of the inversion may fail due to the inaccurate models

recovered in earlier stages (Operto et al., 2013; Prieux et al., 2013b). Sequential inversion is

a series of one-dimensional minimizations over the search space. A poor starting model or

errors introduced by parameter trade-offs can result in the inversion converging to a local

minimum.

The toy example presented in Figure 3.3 illustrates the variable behaviour of parameter

trade-off with scheme. The true model contains 3 uncorrelated Gaussian anomalies in α, β,

and ρ. Sources and receivers are placed along the boundaries of the model. All three
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Figure 3.2: PSF c-SNR as a function of the number of random realizations in an
ensemble. The mean c-SNR (solid blue line) for 20 independent trials is plotted
with errors bars that represent one standard deviation. Each panel corresponds to
the PSF c-SNR associated with a particular block component of the source-encoded
Hessian: (a) Hαα, (b) Hββ , (c) Hαβ . Mean c-SNR grows approximately ∝

√
N

(red dashed line) (Schuster et al., 2011). Each panel is normalized to have c-SNR=1
at the first iteration.
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Figure 3.3: Inversion results for (b, d) sequential and (c, e) simultaneous inversion
of multiple parameters using FWI and SEFWI. (a) True model containing three
spatially inconsistent Gaussian anomalies in α, β, and ρ. (b) Sequential FWI model.
(c) Simultaneous FWI model. (d) Sequential SEFWI model. (e) Simultaneous
SEFWI model. Parameter trade-off varies depending on the inversion strategy. For
a common strategy, FWI and SEFWI exhibit similar parameter trade-off.

parameters are inverted by applying FWI and SEFWI to two different inversion schemes.

The first scheme employs a sequential inversion strategy whereas the second performs a

simultaneous inversion. The sequential inversion inverts for α first, β second, and ρ last.

Each successive stage of a sequential inversion uses the final model from the prior stage as

an initial model. The parameter order reflects a progression used in real applications (Sears

et al., 2008; Prieux et al., 2013b), but is otherwise subjective.

Synthetic inversions terminate after 100 iterations or when the line search (up to 15 trial

steps) fails. When parameters are inverted simultaneously, both FWI and SEFWI reach the

maximum number of iterations; the relative misfit reduction is J(m100)/J(m0) = 3× 10−3

for FWI. In sequential FWI trials, the α and ρ inversions terminate early due to line search

failures; these are attributed to prominent trade-off artefacts in the inverted models. All

SEFWI trials reach the maximum number of iterations. Increasing the maximum number

of iterations does not result in the same inverted models for the simultaneous and sequential

trials. This suggests that the two schemes converge to different points in the search space.

The variable parameter trade-offs are evident from a comparison of Figs. 3.3(b) and 3.3(c).

In the sequential case, the inverted α model contains strong artefacts associated with the β

and ρ anomalies. Similar artefacts appear in the simultaneous example, but with diminished
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amplitudes. For the β and ρ models, the artefacts appear to be stronger in the simultaneous

inversion case. Overall, the trade-off behaviour is consistent with eqs. (3.17) and (3.18).

Given a common inversion scheme, FWI and SEFWI have comparable trade-off character-

istics, as observable through a comparison of Figs. 3.3(b) and 3.3(d) along with Figs. 3.3(c)

and 3.3(e).

3.4 Numerical experiments

We conduct a series of numerical experiments to interrogate specific components of the

SEFWI algorithm. Initially, we test the efficiency gain offered by SEFWI when coupled

with first-order optimization algorithms. In a subsequent test, we seek to verify the claim

that parameter trade-off in SEFWI is comparable to FWI. Tests with noisy data and early

termination are performed to test the stability of the algorithm.

3.4.1 Inversion procedure

The inversion procedure described in this section is applicable to every experiment unless

stated otherwise. ‘Observed’ and synthetic data are generated using 2D time-domain, P -

SV finite difference modelling (fourth order in space, second order in time) (Virieux, 1986;

Levander, 1988). Convolutional perfectly matched layers are implemented to simulate ab-

sorbing boundaries at the edges of the numerical grid (Komatitsch and Martin, 2007). The

free surface is replaced with an absorbing boundary to avoid generating surface waves in

the data. Source inversion is not performed and the true source wavelet is assumed to be

known. We acknowledge that this is not realistic but we make the assumption to reduce the

number of variables in the inversions.

Elastic models are parametrized in terms of seismic velocities and density. Density is

not included as an inversion parameter and is updated empirically via Gardener’s rela-

tion (ρ = 310α0.25) (Gardner et al., 1974), where appropriate. Nondimensionalization is

applied to the inversion parameters via rescaling of the form m′p = mp/m0 (Prieux et al.,

2013a). The scaling values m0 are taken as the mean values of the starting models. The

gradient associated with the nondimensionalized parameters is g′p = m0gp. Inversion results

are presented in terms of physical parameters. A square-root of depth preconditioner is

implemented to compensate for inadequate illumination in deeper regions of the model. We

forego Hessian based preconditioners due to the differences between H and Ĥ.

Restart versions of NLCG and L-BFGS are restarted after every 3 and 5 iterations, re-

spectively. The Polak-Ribière scheme is used for NLCG (E. and Ribiere, 1969). Trials
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using SD and NLCG are deployed with a bracketing line search, whereas conventional and

restart versions of L-BFGS use a backtracking line search. In conjunction with L-BFGS,

the backtracking line search can provide step-lengths at almost no additional cost (Modrak

and Tromp, 2016). The line search satisfies the Armijo condition (first Wolfe condition)

(Nocedal and Wright, 2006). We do not require the curvature condition (second Wolfe

condition) be satisfied as it requires additional gradient computations for each trial step.

Source-encoded inversions are performed 5 times to account for the variability introduced

by the random source encoding. To enable fair comparisons between the various algorithms,

termination conditions for the inversions must be specified. Termination criteria based on

the relative misfit reduction (J(mk)/J(m0)) or gradient norms can be problematic when

source encoding is used. In SEFWI, the objective function changes each time the encoding

is randomized; therefore, the relative misfit reduction may not be a reliable indicator of

convergence. Alternatively, a criterion that monitors the changes in misfit/gradient norm

over a few iterations could be used (e.g. Castellanos et al. (2015)). Instead, we opt to

terminate inversions after a predetermined number of iterations. The maximum number of

iterations is selected based upon preliminary trials. To account for the fact that different

algorithms converge at different rates, performance comparisons are evaluated at a target

convergence point.

3.4.2 Diagnostic quantities

Before proceeding to the examples, we define diagnostic quantities that enable comparisons

between SEFWI and FWI. The efficiency gain η is defined as η = NS/N̂S and represents

the ratio between the total number of simulations performed in FWI (NS) and SEFWI

(N̂S). A simulation refers to any numerical solution of the forward or adjoint wave-equation

during gradient computations or the line search. The variable convergence behaviour of

each algorithm is implicitly represented by η. The efficiency gain is evaluated at a common

convergence point for each algorithm. Specifically, η is computed once a target α model

error is reached. The relative model error is defined for each independent parameter as

merr
p =

‖m∗p −mk
p‖

‖m∗p‖
, (3.27)

where m∗p is the true model for parameter p. Repeated trials in SEFWI are used to compute

the mean and local covariances of inverted models in SEFWI; we use 5 independent trials

for SEFWI inversions in this study. The mean m̃p(x) is computed over N independent trials

(Castellanos et al., 2015),

m̃p(x) =
1

N

N∑
i=1

m(i)
p (x). (3.28)
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Table 3.1: SEG/EAGE overthrust inversion results. A comparison of the compu-
tational resources required by FWI and SEFWI to achieve αerr = 0.65. Efficiency
gain (η) describes the ratio between the total number of simulations required by
FWI and SEFWI. As an additional comparison, efficiency gain is computed relative
to the most efficient FWI implementation (FWI with L-BFGS).

Iterations No. simulations η
Optimization FWI SEFWI FWI SEFWI vs FWI vs FWI (L-BFGS)
SD 59 98 44160 568 77.7 8.6
NLCG 33 48 16416 341 48.1 14.4
L-BFGS 24 76 4896 266 18.4 18.4

The diagonals of the covariance matrix, are obtained via

Σpq(x,x) =

N∑
i=1

(m
(i)
p (x)− m̃p(x))(m

(i)
q (x)− m̃q(x))

N − 1
. (3.29)

In the absence of noise, the covariances act as a proxy for the cross-talk noise. The previous

statement assumes that the mean inverted model is largely devoid of cross-talk artefacts.

3.4.3 Efficiency gain

Inversions are performed on a 20 km x 4.5 km, 2D section of the 3D acoustic SEG/EAGE

overthrust model (Aminzadeh et al., 1997). Scaling relations are used to synthesize density

(ρ = 310α0.25) and S-wave velocity (β = α/
√

3) models. Starting models are obtained by

convolving the true models with a Gaussian kernel (σx = σz = 700 m). True and initial α

models are displayed in Figure 3.4. The seismic experiment consists of 96 explosive sources

(∆xs = 200 m, zs = 25 m) recorded at 264 multi-component receivers (∆xr = 75 m, zr

= 25 m). All 96 sources are combined into a single encoded source in SEFWI. The source

wavelet is a Ricker wavelet with a dominant frequency of 5 Hz, corresponding to a bandwidth

of 0-15 Hz. Inversions are performed using SD, NLCG, and L-BFGS and terminate after

100 non-linear FWI/SEFWI iterations. We invert the full bandwidth data as multi-scale

methods are not required in this case. Model regularization did not lead to a discernible

improvement in the inverted models for this experiment and is therefore not included. Trun-

cating inversions by iteration number acts as an implicit form of regularization that limits

overfitting (e.g. Hansen (1998)).

The convergence behaviour of FWI and SEFWI is summarized in Table 3.1 and Figure 3.5.

For a particular optimization algorithm, SEFWI exhibits slower convergence, per iteration,

in data misfit and model error when compared to FWI. The slower convergence is attributed

to the presence of cross-talk noise in the gradient and is well established from prior studies



CHAPTER 3. SOURCE-ENCODED MULTI-PARAMETER FWI 50

0

1

2

3

4D
e
p
th
 [
km

]
(a) True α

0 2 4 6 8 10 12 14 16 18 20

Distance [km]

0

1

2

3

4D
e
p
th
 [
km

]

(b) Initial α
2.5

3.5

4.5

5.5

km
 /
 s

2.5

3.5

4.5

5.5

km
 /
 s

Figure 3.4: SEG/EAGE overthrust model. (a) True α model. (b) Initial α model.
Empirical scaling relations, with respect to α, are used to synthesize the correspond-
ing ρ and β models.

(Moghaddam et al., 2013; Anagaw and Sacchi, 2014; Castellanos et al., 2015). Efficiency

gain and other performance comparisons are evaluated at a target model error αerr = 0.65,

which is the final model error for the slowest converging algorithm (SEFWI-SD). At the

target model error, the largest efficiency gain is demonstrated by SD SEFWI (η = 77.7).

NLCG and L-BFGS offer reduced efficiency gains of η = 48.1 and η = 18.4, respectively. The

reduced effectiveness of NLCG/L-BFGS is due to an increased sensitivity of the algorithms to

cross-talk noise; similar observations were documented by Castellanos et al. (2015). Despite

exhibiting reduced efficiency gains, NLCG and L-BFGS still outperform SD in SEFWI,

requiring fewer iterations and simulations to reach the target model error (Figure 3.5b).

L-BFGS requires a greater number of iterations (76) than NLCG (48) to reach the desired

model error; however, the more efficient line search results in fewer overall simulations

despite the disparity in iterations. Relative to our most efficient FWI implementation (L-

BFGS with a backtracking line search), the efficiency gain of SEFWI algorithms is more

modest. This is an indication that the computational gain provided by SEFWI can be

partially offset by more sophisticated optimization algorithms available in FWI.

Figs. 3.6 and 3.7 display mean inverted models and diagonal covariances. Figure 3.6 displays

the evolution of α̃, Σ
1/2
αα , and |Σαβ |1/2 over the course of SD SEFWI iterations. The standard

deviation of β (Σ
1/2
ββ ) is not included, but follows trends consistent with the other terms of the

diagonal covariance matrix. The diagonal covariances reduce in magnitude at later iterations
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Figure 3.5: Convergence behaviour of FWI/SEFWI algorithms. (a, d) Normalized
misfit. (b, e) α model error. (c, f) β model error. Each property is displayed as a
function of iterations (top row) and number of simulations (bottom row). Dashed
and solid coloured lines display results for FWI and SEFWI, respectively. For
SEFWI, lines correspond to mean values of misfit/model error from 5 random trials;
error bands represent one standard deviation. FWI exhibits higher per iteration
convergence rates at the expense of a greater per iteration cost. The horizontal
black line in panel (b) is the target model error used to compare algorithms in
Table 1.



CHAPTER 3. SOURCE-ENCODED MULTI-PARAMETER FWI 52

0

2

41
0

 i
te

rs
. 

 
 D

e
p
th

 [
km

] (a) Mean inverted α (b) Σ1/2
αα (c) |Σαβ|1/2

0

2

45
0

 i
te

rs
.

 
 D

e
p
th

 [
km

]

0 5 10 15 20

Distance [km]

0

2

41
0

0
 i
te

rs
. 

 
 D

e
p
th

 [
km

]

0 5 10 15 20

Distance [km]
0 5 10 15 20

Distance [km]

2.5

3.5

4.5

5.5

km
 /

 s

0

50

100

m
 /

 s

0

25

50

m
 /

 s

2.5

3.5

4.5

5.5

km
 /

 s

0

50

100

m
 /

 s

0

25

50

m
 /

 s

2.5

3.5

4.5

5.5

km
 /

 s

0

50

100

m
 /

 s

0

25

50

m
 /

 s

Figure 3.6: SEFWI inversion results for the overthrust model after 10 (top row), 50

(middle row), and 100 SD iterations (bottom row). (a) Mean α model. (b) Σ
1/2
αα . (c)

|Σαβ |1/2. The diagonal covariances decrease in magnitude as the iteration number
increases implying that cross-talk artefacts are being attenuated.

indicating that the cross-talk artefacts are being suppressed. Figure 3.7 displays a similar

comparison, but compares α̃, Σ
1/2
αα , and |Σαβ |1/2 after 100 iterations for the 3 different

optimization methods. While SD exhibits diagonal covariances with lower magnitudes, the

models inverted using NLCG/L-BFGS are better resolved, indicated by the lower model

errors in Figure 3.5. The magnitude of the diagonal covariances is tied to the frequency

with which the source-encoding is randomized for each algorithm. In these trials the restart

intervals are 1, 3, and 5 for SD, NLCG, and L-BFGS, respectively. The restart version of

NLCG appears to provide the best compromise between model resolution and mitigating

cross-talk artefacts in the final model.

3.4.4 Parameter trade-off

The Marmousi II model is a fully elastic synthetic model with multiple hydrocarbon layers

and complex faulting (Martin et al., 2006). Shallow shale layers in the original model exhibit

low shear wave velocities (300-400 m/s) that require fine grid spacing to avoid dispersion

related artefacts in the data. Reduced grid spacing increases the computational cost of

forward/adjoint simulations due to a larger computational domain and considerations of

numerical stability. To reduce the computational burden, S-wave velocities in the shale

layers are replaced by β = α/
√

3; density in these layers is rescaled via Gardner’s relation.

Adjusting the shale layers alone preserves heterogeneities exclusive to α or β. In this case, an

exclusive heterogeneity refers to instances where one parameter demonstrates a significant

perturbation from background, while the other parameter does not. Some examples are

identified with white arrows in Figure 3.8. Heterogeneities exclusive to the α/β models

serve as positional markers that are used to examine parameter trade-off. The water layer

in the original model is removed to simulate land acquisition.
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Figure 3.7: Final SEFWI inversion results after 100 iterations using SD (top row),

NLCG (middle row), and L-BFGS (bottom row). (a) Mean α model. (b) Σ
1/2
αα .

(c) |Σαβ |1/2. For SD, the source-encoding is randomized at every iteration, whereas
NLCG and L-BFGS randomize the source-encoding every 3 and 5 iterations, respec-
tively. The amplitudes of the diagonal covariances reflect the strength of cross-talk
artefacts, which in turn relate to the frequency at which the source-encoding is
reset. Larger reset intervals are associated with more prevalent cross-talk artefacts.
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Figure 3.8: Modified Marmousi II model. (a) True and (b) initial α models. (c)
True and (d) initial β models. The original β model has been altered to increase
shear wave velocities in the shale layers. A heterogeneous ρ model is used, but
not displayed. White arrows identify hydrocarbon reservoirs as perturbations from
background in α and β. The dashed vertical lines designate the pseudo well logs
used in Figure 3.10.
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Initial models (Figure 3.8) are derived by convolving the true models with a Gaussian kernel

(σx = σz = 800 m). The seismic experiment is composed of 112 explosive sources (∆xs =

80 m, zs = 10 m) and 296 receivers (∆xr = 30 m, zr = 10 m). 112 sources are reduced to

Ne = 2 encoded sources, with each encoded source containing 56 individual sources. The

source wavelet is a Ricker wavelet with a dominant frequency of 10 Hz. A 3 Hz highpass

filter is applied to the data and source to remove some of the low frequency information.

The starting model is sufficiently far from the true model that full-bandwidth FWI fails

and converges to a local minimum in the objective function. The multi-scale approach of

Bunks et al. (1995) is implemented to circumvent cycle-skipping. The frequency bands used

for inversion are informed by the selection criteria of Sirgue and Pratt (2004). Inversions

are performed using low-pass cutoff frequencies of 3 Hz, 5 Hz and, 8 Hz. The inversions

start at 3 Hz because the filters do not have sharp cutoffs; therefore, some low-frequency

information persists in the data. Some frequencies above the cutoff frequency prematurely

appear in the inversion for the same reason. Multi-scale inversions are performed using SD

to allow for a more direct comparison. The source encoding is randomized at every iteration

and inversions are terminated after 75 SD iterations at each scale. We include damping

regularization in the form of Equation 3.15 with γ = 1× 10−4.

The final inverted α and β models are displayed in Figure 3.9. The SEFWI example corre-

sponds to 1 of the 5 random trials conducted. Qualitatively, both inversion methods produce

comparable results and no cross-talk artefacts are noticeable in the SEFWI models. Hydro-

carbon layers, indicated by arrows in Figure 3.8, appear to be well resolved in α and β, with

no perceptible trade-off between parameters. Further confirmation is provided by pseudo

well-logs taken at different points in the model (Figure 3.10). Conventional FWI provides

a marginal improvement in the estimation of true model perturbations.

Sensitivity to random noise

To test the sensitivity of SEFWI to noise, we add random noise to the Marmousi II data.

Gaussian white noise arrays are generated for each component of each shot record. The

variance of the noise array is set by selecting a desired signal-to-noise ratio (SNR), defined

as

SNR (dB) = 10 log10

(
a2
rms

σ2

)
, (3.30)

and solving for the variance σ2, where a2
rms is the root mean square amplitude of the shot

record. For any given shot, the noise arrays of both components (x, z) have equal variance

which results in different SNRs for the two components. We pick a2
rms from the z-component

data and refer to the SNR of the z-component data in the text. The noisy dataset used for

inversion has SNR = 10 dB. The inversion procedure follows the noise-free example, but with
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Figure 3.9: Final Marmousi II models after a multi-scale inversion. (a, c) FWI
models. (b, d) SEFWI models. SEFWI attains models with similar resolution to
those from FWI. SEFWI models do not exhibit any discernible parameter trade-off
originating from cross-talk
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Figure 3.10: Pseudo well logs of α and β taken at (a, b) x = 2.5 km, (b, d) 4.0 km,
and (e, f) 6.4 km. FWI Models display marginally better amplitude recovery at
intermediate depths. Perturbations distinct to α or β do not appear to map into
the other parameter, suggesting that the parameters are well resolved with both
methods.
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an increase to the regularization hyperparameter (γ = 1 × 10−3) to damp high-frequency

contributions from noise in the model update.

Figure 3.11 (b) displays the mean inverted models and the diagonal covariances. The inver-

sion results are largely similar to the noise-free case. A small increase in the magnitudes of

the diagonal covariances is observed.

Sensitivity to early termination

Model updates that occur during the the later stages of FWI i.e. when the data misfit

has largely flattened out, can still generate appreciable reductions in the model error de-

spite producing only small reductions in the data misfit (e.g. Figure 3.5a-c). In realistic

applications of 3D FWI, it may not be feasible to extend an inversion to a large number

of iterations due to considerations of time or computational expense. In such cases, practi-

tioners may terminate the inversion after a set number of iterations, before the optimization

has truly converged. Early termination may also be prompted by strong noise in the data.

In the presence of noise, the least-squares waveform misfit will converge to L2 norm of the

noise. Once the data misfit has flattened out, it is difficult to ascertain whether subsequent

model updates are fitting the data or the noise. Early termination serves as a precautionary

measure to prevent overfitting the data. In SEFWI, the later iterations are valuable as they

further reduce the imprint of cross-talk artefacts.

We perform a test to investigate the effect of early termination in SEFWI. The inversion

procedure follows the earlier multi-scale inversion performed on noise-free Marmousi II data,

but with the number of SD iterations reduced from 75 to 30 at each scale. The mean inverted

models and the diagonal covariances are depicted in Figure 3.11(c). Early termination

does not appear to destabilize the inversion, rather it demonstrates two predictable results.

Firstly, the mean inverted models are not as well resolved as in equivalent inversions run

to a greater number of iterations (Figure 3.11a). Secondly, early termination increases the

magnitude of the diagonal covariances, consistent with the expectation of increased cross-

talk artefacts.

3.5 Limitations - Data driven inversion

The final synthetic example highlights a potential limitation of SEFWI when confronted

with data-driven inversion schemes. Data-driven schemes perform a series of inversions in

a hierarchical manner using various portions of the data, typically as means to mitigate

the non-linearity of FWI by gradually introducing increased resolution/complexity into the

model (e.g. Shipp and Singh (2002); Brossier et al. (2009)). This approach has been
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Figure 3.11: Mean velocity models and diagonal covariances for SEFWI: (a) noise-
free data, (b) with noisy data (SNR=10 dB), and (c) early termination (noise-free
data). 75 SD iterations, per scale, are used in (a) and (b) compared to only 30 for
(c). Early termination produces models that are less resolved with greater cross-talk
than those of (a).



CHAPTER 3. SOURCE-ENCODED MULTI-PARAMETER FWI 58

successfully adopted to perform elastic inversion using ocean-bottom cables in a marine

environment (Shipp and Singh, 2002; Sears et al., 2008, 2010; Prieux et al., 2013b). Sears

et al. (2008) proposed a 3 stage inversion that imposed hierarchy on the model parameters

and data components. The first stage conducts a broadband estimation of α from short- and

wide-angle P -wave data recorded on hydrophones or z component OBC data. The inversion

for β is divided into two stages to ensure that the intermediate wavelength structure is

recovered prior to including shorter wavelength features into the model thereby mitigating

the potential for cycle skipping. The amplitude variation with offset (AVO) of wide-angle

P -waves can be used to update the intermediate wavelengths of the β model whereas PS

waves primarily contribute to the short wavelength structure (Sears et al., 2008). However,

as PS-waves exhibit greater sensitivity to changes in β than P -wave AVO (Tarantola, 1986;

Ji et al., 2000), separating the two sources of information is important to prevent PS-waves

from dominating the inversion. Stage 2 estimates intermediate wavelength structure of

β from wide-angle P -wave data recorded on z component OBC data. The third and final

stage fits PS-wave data recorded on x component OBC data to update the short wavelength

structure of β. In this section, we apply the data-driven strategy of Sears et al. (2008) to a

marine version of the overthrust model. We demonstrate that SEFWI fails in this setting

because the assumption of a fixed-spread is not realized owing to time-windowing applied

on the data.

A marine example is created by modifying the overthrust model presented in section 4.3.

A 500 m water layer is added to the top of the model. 96 sources (∆xs = 200 m, zs =

25 m), placed just beneath the sea surface, are recorded at 264 multi-component ocean-

bottom nodes (∆xr = 75 m, zr = 525 m). Low frequencies are removed from the data and

source wavelet by applying a 5 Hz lowcut filter. The removal of low frequencies further

promotes the use of a hierarchical strategy as it ensures that low/intermediate wavelength

information cannot be obtained from low-frequency PS-waves. The starting models are

obtained by smoothing the true models, excluding the water layer, with a Gaussian kernel

(σx = σz = 1000 m). A multi-scale approach (over frequencies) did not alter the success

or failure of an inversion nor did it noticeably improve the results in these trials; therefore,

we invert the full bandwidth data. Preliminary inversions showed strong sensitivity to the

near surface structure. To ensure accurate sea-floor mode conversions, we assumed that the

upper 250 m of the seafloor was known and kept it fixed during inversions.

Figure 3.12 displays FWI models inverted without a hierarchical inversion scheme. The

parameters α and β are estimated simultaneously using x and z component OBC data in

an inversion that terminates after 50 L-BFGS iterations. While the α model is recovered

well, the β model converges to a local minimum (Figure 3.12b), evident from the poorly

reconstructed deeper layers. The failure of the inversion is attributed to PS-mode converted

waves dominating the inversion and adding short wavelength features before the intermediate
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Figure 3.12: Final FWI models following a simultaneous inversion of α and β from
x and z component OBC data. (a) Final α and (b) β models after 50 L-BFGS
iterations. The β model has converged to a local minimum.

wavelengths are suitably recovered. To circumvent the non-linearity encountered here, we

employ the data-driven scheme of Sears et al. (2008) as described earlier.

Stage 1 estimates α by fitting x and z components with no time windowing applied to the

data. Stage 2 is restricted to wide-angle P -wave data after muting short offsets (< 4 km)

and late arrivals (linear slope mute) in z component OBC data. Stage 3 data focuses on

PS-waves by applying a linear slope mute to early arrivals in x component OBC data. Each

stage of the inversion terminates after 50 SD iterations and uses the final model from the

preceding stage as an initial model. Examples of the time-windowed input data for stages

2 and 3 are available in Figure 3.13, alongside corresponding synthetics (Figs. 3.13b and f),

initial (Figs. 3.13c and g) and final residuals (Figs. 3.13d and h). The residual energy is

slightly reduced after each stage. The FWI models after each stage are displayed in Figure

3.14. An acceptable α model is recovered after stage 1 at which point density is updated

using Gardener’s relation. Stage 2 captures some features of the fault zones and begins

to distinguish between the different layers in the β model. Following stage 3, the deeper

layers in β are mostly continuous and flat, demonstrating better resolution than the earlier

simultaneous inversion result. We note that some of the shallow layers are not completely

recovered in either the α or β model.



CHAPTER 3. SOURCE-ENCODED MULTI-PARAMETER FWI 60

-15.0 -10.0 -5.0 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
im

e
 [

s]

(a) Observed

-15.0 -10.0 -5.0 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(b) Synthetic

-15.0 -10.0 -5.0 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(c) Initial residuals

-15.0 -10.0 -5.0 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(d) Final residuals

-10.0 -5.0 0.0 5.0

Offset [km]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
im

e
 [

s]

(e) Observed

-10.0 -5.0 0.0 5.0

Offset [km]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(f) Synthetic

-10.0 -5.0 0.0 5.0

Offset [km]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(g) Initial residuals

-10.0 -5.0 0.0 5.0

Offset [km]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(h) Final residuals

Figure 3.13: Time-windowed data and residuals from (a-d) stage 2 and (e-h) stage
3 of the marine overthrust example. Stage 2 inverts for intermediate length scales
of the β model by fitting amplitude variations of wide-angle P -wave data. Stage 3
inverts for short wavelength β structure by fitting PS waves. Shot records from a
single stage are plotted using the same scaling.
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Figure 3.14: FWI models after each stage of a data-driven inversion of OBC data
(Sears et al., 2008). (a) Final α model inverted from x and z component OBC data.
(b) Intermediate wavelength β model inverted from wide-angle P -waves recorded
on the z component. (c) Final β model inverted using PS-waves recorded on the x
component.
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We attempt an equivalent inversion using SEFWI where the input data are the time-

windowed data as depicted in Figure 3.13. A comparison of the encoded data (Figs. 3.15a

and e) and synthetics (Figs. 3.15b and f) reveals a problem. Since the synthetic wavefield

is computed as an encoded wavefield, we cannot access independent shot records. Conse-

quently, we cannot apply the time windowing that was applied to the data, to the synthetic

data. The encoded synthetics include portions of the wavefield that are not present in the

encoded data. This limitation ultimately stems from the fixed-spread acquisition assumption

in SEFWI. Certain sources may not be recorded across all the receivers within an acquisi-

tion due to reasons including, but not limited to, poor/failed measurements, non-stationary

acquisition geometries (e.g. towed streamer), or processing requirements on the data (e.g.

time windowing). To further illustrate this problem, we compare the encoded residuals with

the waveform adjoint source. The encoded residuals refer to the result obtained by encoding

the waveform residuals computed for independent shot records (computed separately here).

Re-injecting the encoded residuals would produce the FWI gradient plus crosstalk noise as

described in Equation 3.10. During adjoint modelling, the waveform adjoint source back-

propagates synthetic data in places where no data exists. These undesired contributions

introduce errors into the gradient and subsequently the inversion.

A similar situation is encountered when source encoding is applied to towed-streamer data, a

scenario in which the observed and synthetic data have incompatible acquisition geometries.

Routh et al. (2011) and Choi and Alkhalifah (2012) used the normalized cross correlation

(NCC) in lieu of the waveform misfit to circumvent this issue. Maximizing the normalized

cross correlation is akin to minimizing a normalized form of the waveform misfit (Choi and

Alkhalifah, 2012). The advantage becomes apparent by observing the NCC adjoint source

(Figs. 3.15d and i). The adjoint source resembles an instance of the waveform residual in

which the amplitude of the synthetic wavefield is controlled by the similarity between the

observed and synthetic data. Due to the weighting, the contributions from traces where

data are not available are downweighted relative to traces where data exists. This effect

is noticeable in Figure 3.15(d) where the NCC adjoint source more closely resembles the

encoded residual. The L1 waveform misfit is a robust norm that is less sensitive to outliers

than the L2 waveform misfit (Crase et al., 1992; Brossier et al., 2010). We attempt to

treat the undesired components in the waveform residual as outliers by employing the L1

waveform misfit. Both alternative objective functions are utilized in the upcoming SEFWI

trials.

Each stage of SEFWI performs 50 SD iterations. The 96 independent sources are combined

into 16 encoded sources each containing 6 individual sources. The inverted FWI models

from the previous stage are used as initial models in SEFWI to ensure a consistent starting

point for all inversions. All 3 misfit functionals expectedly invert α during stage 1 as

no time-windowing was applied to the data. Stage 1 results are not presented as they
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Figure 3.15: Encoded data and adjoint sources for (a-d) stage 2 and (e-i) stage
3. For illustration purposes, only 3 sources are encoded in panels (a-i). The en-
coded data are obtained by encoding the time-windowed data observed in Figure
3.13. Similar time-windowing cannot be applied to the synthetics as the wavefield
is computed with encoding in place. The encoded residuals (c, d) represent the
encoded waveform residuals computed when the synthetic wavefield is available for
each independent source. The waveform adjoint source (d, h) contains undesired
contributions from synthetic wavefield. The normalized cross correlation adjoint
source more closely resembles the encoded residuals (Routh et al., 2011; Choi and
Alkhalifah, 2012).
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Figure 3.16: SEFWI β models after (a-c) stage 2 and (d-f) stage 3 for different misfit
functionals. Each stage is initialized with the final FWI model from the previous
stage. The normalized cross correlation fares better than the alternatives, but no
choice of misfit produces acceptable inversion results.

do not offer additional insight over earlier examples. Inversion results for stages 2 and

3 are displayed in Figure 3.16. None of the inversion results from the latter two stages

are deemed successful as, in all instances, the model error of the final inverted model is

worse than the starting model. For this example, the two variants of the waveform misfit

do not show appreciable differences in inversion results. As evidenced by the failure of

the L1 waveform objective function, it is not suitable to treat the undesired components

of the waveform residual as outliers. The algorithm is not able to distinguish between

wanted/unwanted signal and therefore fails. The normalized cross correlation generally

outperforms the other two objective functions tested. Two factors may explain the inability

of the NCC to properly invert for β. Firstly, the normalization causes a loss of sensitivity

to amplitude variations which is counter-productive considering that stage 2 is predicated

on fitting P -wave AVO. Secondly, while the NCC adjoint source damps unwanted noise in

the residuals, the remaining noise is too prominent and contributes to the failure of the

inversion.

Current forms of SEFWI fail to accommodate time-windowing steps that can be essential

to ensuring the success of an inversion. In place of alternative objective functions, we

offer speculation on how the fixed-spread limitation might be overcome by applying an

intermediate processing step that deblends the synthetic data. Hypothetically, if deblending

could be applied to the synthetic data (e.g. Ibrahim and Sacchi (2014)), it would provide

access to the individual shot records. Following deblending, the desired time-windowing
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could be applied to the separated shot records. The time-windowed, deblended synthetics

would be used to compute encoded residuals as portrayed in Figure 3.15. Replacing the

waveform adjoint source with the encoded residuals would result in a meaningful gradient

as in Equation 3.10. A strategy centred around deblending would require an encoding

scheme that is not overly aggressive i.e. the number of sources in an encoded source should

be low enough to fall into the regime where deblending is possible. Restricting the number

of sources in an encoded source imposes an upper limit on the efficiency gain, thereby

diminishing the appeal of SEFWI. When time-windowing is a requirement of the workflow,

stochastic optimization algorithms (e.g. Haber et al. (2012); van Leeuwen and Herrmann

(2013a)) are likely a more suitable means to improving the efficiency of FWI. Stochastic

algorithms achieve their computational efficiency by operating over a small subset of the

complete dataset. In FWI, this amounts to subsampling the sources used for inversion at any

iteration. Stochastic algorithms require minimal changes to the conventional FWI algorithm.

As source encoding is not required, time-windowing can readily be applied. We do not pursue

the deblending concept or comparisons with stochastic optimization techniques further as

they are beyond the scope of this study.

3.6 Conclusions

Source encoding has been applied to elastic isotropic full waveform inversion. The theory

of source-encoded FWI was extended to the general multi-parameter case, with an empha-

sis placed on understanding the influence of source encoding on parameter trade-off. The

behaviour was determined by analysing the source-encoded multi-parameter Hessian. The

convergence of the expected source-encoded Hessian towards the conventional FWI Hes-

sian, was verified via Hessian probing techniques. When cross-talk artefacts are suppressed,

the properties of the source-encoded Hessian ensure that the parameter trade-off in SE-

FWI is comparable with FWI. Furthermore, SEFWI exhibits similar sensitivities to model

parametrization and inversion schemes as FWI.

Additional numerical tests evaluated the performance and stability of SEFWI. In particular,

tests sought to assess the efficiency gain, parameter trade-off, and the suitability of SEFWI

for data-driven workflows. For all optimization algorithms, SEFWI required significantly

fewer overall simulations (than FWI) to reach a target model error. The efficiency gain was

on the order of the number of individual sources in an experiment. A hybrid-CG algorithm

was judged to have outperformed SD or L-BFGS alternatives. While SD generated SEFWI

models with the lowest variances, both CG and L-BFGS converged to a smaller model error

in the same number of iterations. The increased model variance observed with hybrid CG/L-

BFGS algorithms is due to less frequent randomization of the source encoding. A test on
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the Marmousi II model corroborated the claim that the parameter trade-off in SEFWI is

comparable to that of FWI. Spatially inconsistent P− and S-wave velocity models were well

resolved in both methods. The presence of noise or early termination did not exacerbate the

inversion results significantly. Early termination resulted in models that were less resolved

and exhibited greater diagonal covariances.

Our results indicate that source encoding is feasible in multi-parameter FWI; however, there

are concerns that hinder the use of source encoding in real data applications. The fixed-

spread acquisition assumption impedes the use of source encoding in data-driven workflows

that require extensive data pre-processing (e.g. time or offset windowing), as demonstrated

by a 3 stage inversion of OBC data. Stages that required time-windowing on the data

failed to produce acceptable models when tested with the waveform misfit. The normalized

cross correlation and L1 waveform objective functions were not able to compensate for the

time-windowing and also failed. Out of the three objective functions tested, the normalized

cross correlation offered the most reasonable results. Ultimately, the applicability of source

encoding on real data, multi-parameter FWI is entirely dependent on the dataset. Alterna-

tive misfit functionals are not always applicable; therefore, future work on source encoding

should pursue techniques that can accommodate processing steps into SEFWI. Source en-

coding may be useful for accessing the multi-parameter Hessian in an economical manner

(Tang, 2009) or to produce preconditioners for FWI/migration (Tang and Lee, 2010). In

addition, source-encoding could be used to reduce the cost of the inner conjugate gradient

iteration of truncated Newton methods (e.g. (Castellanos et al., 2015)).



CHAPTER 4

A subsampled truncated-Newton method for

multi-parameter full waveform inversion1

4.1 Introduction

Multi-parameter full-waveform inversion (FWI) can benefit from Newton-based optimization

algorithms that account for the Hessian; potential advantages include improved convergence

rates, resolution, and mitigation of parameter trade-off (Pratt et al., 1998; Operto et al.,

2013). However, explicit computation of the Hessian is not feasible on current hardware

for large-scale FWI problems due to its computational cost. This limitation has motivated

the pursuit of computationally inexpensive approximations to the Hessian to augment the

performance of FWI. Hessian approximations are generally derived from knowledge about

its structure. Pratt et al. (1998) established the Hessian in FWI as a dense, diagonally-

dominant banded matrix. The banded structure arises from the finite-frequency nature of

seismic data. The Hessian acts as a convolutional operator that, when applied to a vector,

smooths it spatially. Conversely, the inverse Hessian behaves as a focusing operator that

improves resolution. We present a brief overview of some common Hessian approximations

and describe their potential limitations.

The pseudo-Hessian is a popular preconditioner that approximates the Hessian as a di-

agonal matrix (Shin et al., 2001). Block diagonal extensions of the pseudo-Hessian for

multi-parameter problems have also been explored (Innanen, 2014; Métivier et al., 2015;

Wang et al., 2016). Diagonal approximations act as spatial weighting operators, typically

used to rescale gradients to compensate for geometrical spreading or inadequate subsurface

1A version of this chapter is published in Matharu. G., and M. D. Sacchi, 2019, A subsampled truncated-
Newton method for multi-parameter full-waveform inversion, Geophysics, 84, R333-R340.
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illumination. In neglecting the banded-diagonal structure of the Hessian, diagonal approxi-

mations fail to account for the finite-frequency nature of the Hessian and therefore do not

improve focusing in the gradient. Approximating the action of the Hessian within a limited

spatial window has been proposed as a strategy to incorporate the banded structure of the

Hessian (Valenciano et al., 2006; Tang and Lee, 2015; Feng et al., 2018). In such methods,

the Hessian is replaced by a series of non-stationary filters computed at certain points in

a model. Filter construction is an added expense as it requires sampling elements from

the Hessian. The effectiveness of these methods relies on the action of the Hessian being

limited to small spatial windows about various grid points in the model. When violated,

the size of the windows can become large thus requiring more samples from the Hessian.

Inexact or truncated Newton (TN) methods do not approximate the Hessian, but rather

approximate the solution of a linear system of equations (featuring the Hessian) using the

conjugate gradient method (CG) (Akcelik et al., 2002; Epanomeritakis et al., 2008; Métivier

et al., 2013). Each CG iteration computes the action of the Hessian on a vector at a cost

comparable to that of two gradient computations (Fichtner and Trampert, 2011a). The

advantages of second-order algorithms can become marginal in light of their increased cost

(Métivier et al., 2013). Gradients and Hessian-vector products in FWI, typically computed

using adjoint-state methods, require a number of PDE solves that grows linearly with the

number of sources in a data set. The linear dependence prompts the consideration of strate-

gies that reduce the dimensions of the data thereby lessening the computational burden of

FWI.

Two proven data reduction strategies in FWI are source subsampling/decimation and source

encoding. The former employs subsets of the complete data set within FWI (eg., van

Leeuwen and Herrmann (2013a); Warner et al. (2013)) whereas the later employs simulta-

neous or encoded sources that represent weighted linear combinations of multiple sources.

The linearity of the wave equation with respect to the source, allows combined wavefields

to be simulated using encoded sources. The number of encoded sources is generally much

smaller than the number of independent sources in a survey. A drawback associated with

source encoding is the introduction of cross-talk artefacts to the FWI gradient; however,

these can be ameliorated by selecting appropriate encoding functions (Romero et al., 2000;

Krebs et al., 2009). Source encoding assumes a fixed-spread acquisition making it incom-

patible with data-driven inversion strategies (e.g., time/offset windowing schemes) that are,

at times, necessary to navigate the non-linearities of multi-parameter FWI (e.g., Sears et al.

(2008); Matharu and Sacchi (2018)). Source subsampling techniques are not subject to this

limitation, motivating us to examine stochastic second-order optimization methods. Second-

order optimization with source encoding has been explored in earlier studies (Anagaw and

Sacchi, 2014; Castellanos et al., 2015).

This chapter investigates a subsampled truncated Newton (STN) approach to multi-parameter
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(isotropic) elastic FWI. Hessian-vector products are computed for a uniformly, or non-

uniformly, sampled subset of the sources. The performance of STN is benchmarked against

LBFGS and TN algorithms in a series of synthetic inversions. Generally, we find the perfor-

mance of STN is similar to TN but with computational costs closer to first-order methods

for the selected convergence criteria.

4.2 Theory

Full-waveform inversion estimates subsurface parameters m by minimizing the least-squares

waveform misfit functional over a set D of n sources:

JD(m) =
1

2|D|
∑
i∈D

‖PDui(m)− di‖2 +R(m)

=
1

|D|
∑
i∈D

ji(m) +R(m), (4.1)

where ui(m) and di denote simulated and observed data for the ith source, respectively.

The sampling operator PD extracts the synthetic wavefield at the receiver positions, and

R(m) is a regularization term. The model vector for p independent parameters is m =

[m1,m2, . . . ,mp]
T , where each mi ∈ RM i = {1, . . . , p} represents a physical parameter

discretized onto a grid of size M . Canonically, Equation 4.1 is minimized via gradient-based

optimization algorithms that iteratively update estimates of the model via

mk+1 = mk + νkδmk, (4.2)

where k denotes the iteration number, νk is a scalar step length, and δmk is the model update

(Tarantola, 1986; Virieux and Operto, 2009). First-order gradient methods construct δm

using current, and potentially previous, iteration gradient gD = ∇JD(m) information. The

gradient associated with Equation 4.1 is

gD =
1

|D|
∑
i∈D

∇ji(m) +∇R(m). (4.3)

Second-order gradient methods solve the Newton equation

HDδm = −gD, (4.4)
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where HD = ∇2J(m) is the Hessian of the objective function. Truncated Newton (TN)

methods solve Equation 4.4 by solving

arg min
δm

‖HDδm + gD‖2, (4.5)

using CG. Second-order adjoint-state methods can be used to compute Hessian-vector prod-

ucts HDδm without explicitly forming the Hessian (Fichtner and Trampert, 2011a). The

number of PDE solves required (per-iteration) to estimate δm are 2n and 2n+ (NCG× 2n)

for first-order gradient and TN methods, respectively; NCG denotes the number of CG iter-

ations performed in a single TN iteration. The costs depend linearly on the size of the data

set |D| = n, presenting a significant bottleneck for large data sets.

4.2.1 Stochastic optimization

Stochastic optimization exploits redundancy in the data to randomly omit samples (Bottou,

2010). Stochastic approximations to JD and gD arise from substituting a random subset

X ⊆ D in place of D in equations 4.1 and 4.3. Estimating δm only requires 2|X| PDE solves

per iteration under the stochastic approximation. First-order stochastic gradient methods

have been successfully adopted in FWI (van Leeuwen and Herrmann, 2013a).

Our contribution is to investigate the extension of stochastic optimization to second-order

methods via the subsampled Truncated Newton method. The feasibility of the STN ap-

proach has been validated on machine learning applications (Byrd et al., 2011). The pro-

posed method introduces a second level of subsampling such that Hessian-vector products

are computed over a smaller subset S ⊆ X. The CG iterations of STN estimate δm by

(approximately) solving

arg min
δm

‖HSδm + gX‖2, (4.6)

where HS is the subsampled Hessian. The definition of HS is provided at a later stage.

The subsets X and S are redrawn after every iteration. Fixing subsets X and S can bias the

estimated search directions. With fixed subsets, acquisition related artefacts can stack as

coherent noise over FWI iterations (van Leeuwen and Herrmann, 2013a). Dynamic subsets

where |X| and |S| grow over iterations are possible (Byrd et al., 2012; Friedlander and

Schmidt, 2012; van Leeuwen and Herrmann, 2013a; Bollapragada et al., 2016); however, we

do not consider them here. For theoretical analyses on convergence and sufficient subset

sizes, the reader is referred to the existing literature on the topic (Erdogdu and Montanari,

2015; Roosta-Khorasani and Mahoney, 2016a,b; Xu et al., 2017; Bollapragada et al., 2016).

Assuming fixed subset sizes, the per-iteration cost of computing δm with STN is 2|X| +
(NCG × 2|S|) PDE solves. A summary of the costs for various algorithms is presented in
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Algorithm Class PDE solves per iter.
FG First-order 2n
SG First-order 2|X|
TN Second-order 2n+ (NCG × 2n)
STN Second-order 2|X|+ (NCG × 2|S|)

Table 4.1: Computational cost associated with calculating δmk for full (FG) and
stochastic gradient (SG) methods, along with truncated Newton (TN) and sub-
sampled truncated Newton (STN) methods. The costs assume that the wavefields
required to construct the gradient (or Hessian-vector products) are stored.

Table 4.1.

We compute the gradient over all the sources (X = D). While gradient subsampling can

readily be applied, it raises the question of whether STN should be benchmarked against

stochastic or conventional gradient methods. To enable fair comparisons we do not consider

gradient subsampling, but we acknowledge that additional efficiency gains may be attained

by doing so. Bottou et al. (2018) caution against the use of small |X| (|X| << |D|) as noisy

gradients may yield poor search directions from the truncated Newton iterations.

4.2.2 Sampling strategies

Given a discrete sampling probability distribution ri i = {1, . . . , |X|}, HS can be defined as

HS =
1

|X||S|
∑
i∈S

∇2ji
ri

+∇2R(m), (4.7)

and is an unbiased estimator of HX (E[HS] = HX) (Xu et al., 2016). The sub-Hessians

∇2ji can refer to the full or Gauss-Newton form of the Hessian. For uniform sampling,

ri = 1/|X| i = {1, . . . , |X|}; however, this may be sub-optimal when the sources contribute

non-uniformly to the Hessian. Xu et al. (2016) propose a non-uniform STN approach derived

from matrix sketching techniques (Drineas et al., 2006). If HX refers to the Gauss-Newton

Hessian, it can be decomposed in terms of the Jacobian matrices Gi = ∂ui(m)
∂m such that

HX =
∑
i∈X

GT
i Gi +∇2R(m). (4.8)

A non-uniform probability distribution can be generated from

ri =
trace(GT

i Gi)

trace(GTG)
i = {1, . . . ,X}, (4.9)
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Figure 4.1: Probability distributions used for uniform (red line) and non-uniform
(magenta line) sampling for (a) Marmousi II and (b) BP 2.5D models. The blue
bars depict probability distributions estimated from stochastic trace estimation (200
random trials) (Hutchinson, 1990). Source indices marked by coloured stars are
linked to their source positions in Figures 4.3-4.4 (a).

where G =
∑
i∈X Gi (Xu et al., 2016). The sub-Hessians GT

i Gi, or their diagonals, are not

typically constructed in FWI. In lieu of calculating the true diagonal, we employ the pseudo-

Hessian, an approximation to the diagonal of the Gauss-Newton Hessian (Shin et al., 2001).

The assumption herein is that the pseudo-Hessian captures the relative contribution of each

source to the summed Hessian. To test our assumption, we estimate the true non-uniform

sampling distribution (Equation 4.9) using stochastic trace estimates of the Gauss-Newton

Hessian (Hutchinson, 1990). The sampling distributions for two test models are displayed

in Figure 4.1. The pseudo-Hessian based sampling distribution is similar to the estimated

true non-uniform distribution. Before proceeding, we analyse the errors in Hessian-vector

products when the subsampled Hessian is used in place of the true one.

We compute the average error (over Nr random trials) 1
Nr
‖Hδm −HSδm‖2 as a function

of subset size; the results are displayed in Figure 4.2. While the non-uniform distributions

(obtained from the pseudo-Hessian and stochastic trace estimation) are not exactly alike

(Figure 4.1), the corresponding average errors are indistinguishable (not displayed). For

the Marmousi II model, uniform and non-uniform sampling produce near identical average

errors. With the BP 2.5D model, non-uniform sampling clearly provides more accurate esti-

mates of Hδm for a given subset size. The differences between the two models is attributed

to the extent of the non-uniformity in the underlying sampling distributions. For example,

in Figure 4.1b approximately half of the sources have small, but non-zero, contributions to

the Hessian. The distribution in Figure 4.1a shows a comparatively small deviation from

the uniform distribution.
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Figure 4.2: Normalized average error in subsampled Hessian-vector products (over
500 random trials) for (a) Marmousi II and (b) BP 2.5D models. Scales are normal-
ized relative to the initial average error (|S| = 1) for uniform sampling. The subset
sizes required to achieve an average error of 0.05 (black dotted line) are listed and
marked with dots. The Hessian-vector products are computed at the first iteration
of either inversion.

The diagonal of the Hessian primarily describes geometrical spreading (Pratt et al., 1998),

hence the probabilities can be loosely interpreted as the relative contribution of a source to

the overall subsurface illumination. Assuming regularly distributed sources and consistent

source signatures, non-uniformity primarily arises from the subsurface model. By correlating

dips and peaks in the non-uniform sampling distributions to source positions in the model,

we can gain further physical intuition on the influence of the model on non-uniformity in

the Hessian. In the Marmousi II model, the marked source (cyan star in Figures 4.1-4.3a)

lies in close proximity to two steeply dipping faults. The marked source, and those right

of it, generate waves that are promptly scattered out of the model by the faults leading to

lower illumination from these sources. The BP 2.D model consists of two distinct subsurface

regions (Etgen and Regone, 2005). The left half (∼ x < 5 km) is composed of relatively low

contrast sedimentary layers, whereas the right half (∼ x > 5 km) consists of high contrast

layers with complex geometrical structures. Sources overlaying the low contrast region have

relatively weak illumination. The high contrast layers induce strong scattering and internal

reflections that trap energy and increase illumination. The coloured stars in Figures 4.1-4.3b

identify regions of interest.

4.3 Method

The performance of STN, with uniform and non-uniform sampling, is benchmarked against

LBFGS and TN algorithms under the framework of isotropic, elastic FWI in the time
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domain. The observed and synthetic data are computed using 2D P -SV finite difference

modelling (fourth order in space, second order in time) (Virieux, 1986; Levander, 1988). Ab-

sorbing boundary conditions are implemented in the form of convolutional perfectly matched

layers (Komatitsch and Martin, 2007). The source wavelet is assumed to be known and is

not estimated. Band-limited noise is added to the data to prevent the inverse crime and

to test the performance of the proposed algorithms in the presence of noise. We generate

Gaussian white noise arrays for each component of each shot record. The variance of the

noise array is set by selecting a desired signal-to-noise ratio (S/N), defined as

S/N (dB) = 10 log10

(
a2
rms

σ2

)
, (4.10)

where a2
rms is the root mean square amplitude of the shot record. For any given shot, the

noise arrays of both components (x, z) have equal variance resulting in variable S/N ratios

for the two components. The z-component of the noisy data set used for inversion has

S/N = 12 dB. Inversion workflows are managed with a customised version of the Seisflows

framework (Modrak et al., 2018).

Our TN implementation follows that proposed by Métivier et al. (2013). For the sake of

completeness, we review some key components of the algorithm. The CG iterations of TN

methods terminate when a maximum number of iterations is reached, or when the Eisenstat-

Walker stopping conditions are satisfied (Eisenstat and Walker, 1996; Métivier et al., 2013).

The Eisenstat-Walker conditions set a forcing term ζ and terminate CG iterations if

‖HSδm + gX‖2 ≤ ζ‖gX‖2. (4.11)

The forcing term regulates the accuracy to which the linear system is solved. Its purpose is

to prevent overfitting in the event that J(m) is poorly approximated by a quadratic function.

The scalar ζ is set dynamically at each FWI iteration with larger values yielding less accurate

solutions to Equation 4.6. Crucially, the conditions allow for early termination preventing

unnecessary PDE solves. The Gauss-Newton Hessian is symmetric positive semi-definite,

violating the requirement of positive-definiteness for linear CG. The Marquadt-Levenberg

algorithm guarantees the positive definiteness of the Gauss-Newton Hessian by adding a

weighted identity matrix to it (Marquardt, 1963). The full Hessian can have positive or

negative eigenvalues and offers no such guarantees even with damping. To overcome this,

we test for negative curvature (xTHSx ≤ 0) , x is an arbitrary vector) at each CG iteration.

If detected, CG iterations are terminated and the search direction is replaced by the most

recent update direction before negative curvature was detected. If negative curvature is

detected at the first CG iteration, a steepest descent direction is taken for the current FWI

iteration.
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Step lengths are computed with an Armijo backtracking line search for all optimization

methods considered (Nocedal and Wright, 2006). Minmax normalization is applied to the

inversion parameters to place them into the range [0, 1]. Preconditioning is not used al-

though it can be readily accommodated (e.g. Métivier et al. (2015); Yang et al. (2018a)).

The performance of an algorithm is evaluated through comparisons of the relative cost

η = NSOPT /NSLBFGS and model error p errork = 100
M ‖

mk
p−m

∗
p

m∗
p
‖1, where m∗p is the true

model for parameter p. The quantity η describes the ratio between the number of PDE

solves required by a particular algorithm and LBFGS to reach a target misfit reduction J∗.

In synthetic trials, the noise level Jnoise (squared-norm of the noise) is known. If the data

are fit exactly, the misfit converges to the noise level. Based upon this, the target misfit

reduction is set as J∗ = Jnoise + 0.1(J(m0) − Jnoise). Explicit regularization is omitted

in favour of heuristic stabilization techniques; namely, gradient smoothing and limiting the

number of iterations. We repeat STN trials 5 times to account for the variability introduced

by random source subsampling.

4.4 Numerical experiments

Synthetic inversions are conducted on the Marmousi II (Martin et al., 2006) and BP 2.5D

(Etgen and Regone, 2005) models. The Marmousi II model is fully elastic with spatially

inconsistent vp, vs and ρ models i.e., the three parameters have independent structure and

do not represent scaled versions of one another. The BP 2.5D model only provides a vp

model. A density model for the BP 2.5D model is obtained via Gardener’s relation; an

S-wave velocity is obtained via vs = vp/
√

3. Initial models are generated by smoothing

the true models with Gaussian kernels with σ=100 m and σ=200 m for the Marmousi II

and BP 2.5D model, respectively. The true and initial models are displayed in Figures 4.3-

4.4a and b. Simulation and inversion parameters for each example are presented in Table

4.2. Subsets S are formed from twenty percent of the available sources (|S| = 0.2n) for

both trials. For the Marmousi II, |S| = 10 corresponds to average errors of 0.09 for both

sampling schemes (Figure 4.2a). In the BP 2.5D trial, |S| = 18 produces average errors

of 0.04 and 0.02 for uniform and non-uniform sampling, respectively (Figure 4.2b). Non-

uniform probability distributions are kept fixed throughout the inversion. Updating the

sampling distributions at each iteration did not alter the performance in preliminary trials.

We suspect that this is due to the initial model being relatively close to the true model. In

inversions where multi-scale strategies are necessary i.e. when the true and initial models

are sufficiently different that cycle skipping occurs, updating the non-uniform probabilities

will likely be required to improve performance.
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Marmousi II BP
Numerical grid

Dimensions (km) 4 x 1.4 11 x 2
Grid 400 x 140 551 x 101
Spacing (∆x = ∆z) (m) 10 20

Acquisition
No. Src/Rec 48/199 88/135
Src/Rec int. (∆xs/∆xr) (m) 80/20 120/80
Src/Rec depth (zs/zr) (m) 10/10 20/20
Max offset (km) 3.9 10.6

Simulation
Time steps 2000 2000
Time interval (∆t) (s) 1.5e-3 2.4e-3
Source wavelet 8 Hz Ricker 5 Hz Ricker

Optimization
Max iters. 50 100
Max CG iters. 8 8

Table 4.2: Inversion and simulation parameters.

Optimization Iterations No. simulations η

Marmousi II
LBFGS 21 3408 -
TN 13 7296 2.14
STN (U) 14.0 ± 1.5 3715 ± 161 1.09 ± 0.05
STN (NU) 14.0 ± 1.3 3760 ± 336 1.10 ± 0.10

BP 2.5D
LBFGS 21 5984 -
TN 8 11000 1.80
STN (U) 14.0 ± 0.9 6478 ± 386 1.08 ± 0.06
STN (NU) 10.8 ± 1.2 5177 ± 425 0.86 ± 0.07

Table 4.3: Summary of inversion statistics evaluated at target misfit reduction J∗.
STN trials display mean values and standard deviations computed over 5 indepen-
dent trials. Uniform and non-uniform sampling trials are indicated by U and NU,
respectively. Subset sizes |S| of 10 and 18 are used for the Marmousi and BP 2.5D
trials, respectively.

Inverted models for the Marmousi II and BP 2.5D trials are displayed in Figures 4.3 and

4.4, respectively. Depth profiles of the true and inverted models are presented in Figures 4.5

and 4.6. The convergence properties of the different algorithms are summarized in Table 4.3

and Figure 4.7. Generally, TN trials provide the highest per-iteration convergence rates in

data misfit and model error; however, they require around twice the number of PDE solves,

compared to LBFGS, to reach J∗. The efficiency is improved for STN which demonstrates

misfit and model error reductions similar to TN with a cost increase of less than 10% relative

to LBFGS. In Figures 4.3c-e and 4.5, TN and STN inverted models exhibit better focusing at

fault boundaries and improved amplitude recovery of model perturbations, most notably at

deeper regions of the models. The performance difference between algorithms is more evident

in the BP 2.5D inversion results (Figures 4.4 and 4.6). Of note, non-uniform STN appears
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to yield improved inversion results when compared to its uniform sampling counterpart.

Due to the highly non-uniform contribution of sources to the Hessian (Figure 4.2b), STN

with uniform sampling only provides a minor improvement over the LBFGS inverted models.

With non-uniform sampling, the inverted models are closer to those obtained with TN while

requiring ∼ 15% fewer PDE solves to reach J∗.

To gauge parameter trade-off we examine the inversion results of the Marmousi II model for

which vp, vs and ρ are spatially inconsistent. For the optimization methods considered, the

individual parameters are well resolved and exhibit monotonically decreasing model errors

(Figure 4.7). Figures 4.3 and 4.5 do not indicate strong inter-parameter mappings where

distinct features of one parameter have been discernibly mapped into another. Models

inverted using TN/STN recover the amplitudes of model perturbations slightly better than

LBFGS and achieve smaller model errors at any given iteration. The results imply that the

parameter set is well decoupled for the chosen inversion configuration (acquisition geometry,

offset ranges, frequency band etc.). The utility of the Hessian in mitigating parameter trade-

off is more apparent in cases where the parameters are strongly coupled; one such example

is presented by Yang et al. (2018a).

The performance of STN as a function of certain parameters (e.g., NCG, |S|) has not been

tested, in part due to the computational expense of the endeavour. Furthermore, the implicit

dependence of the optimization on the initial and true models means that the range of

acceptable parameters may vary between test cases. A heuristic approach to determining

sufficient subset sizes and data redundancy could be via the analysis presented in Figure

4.2. Limited tests using the full Hessian in uniform STN demonstrated similar performance

gains as STN using the Gauss-Newton Hessian. Non-uniform STN with the full Hessian

remains to be tested. Pseudo-Hessian based non-uniform sampling is only meaningful if

the full Hessian is dominated by the Gauss-Newton component. If this is not the case,

alternative strategies may be required to obtain representative trace estimates. Stochastic

trace estimation could be used; however, it requires repeated applications of the Hessian to

random vectors making it potentially expensive.

4.5 Conclusions

A subsampled truncated Newton has been proposed to ameliorate the computational de-

mands of second-order optimization methods. Source subsampling employed in the com-

putation of Hessian-vector products, reduces the number of PDE solves required at each

iteration. The STN approach exhibits convergence rates comparable to TN methods while

requiring a similar number of PDE solves as the LBFGS method to reach a target misfit.

Non-uniform sampling outperformed uniform sampling in the BP 2.5D trials, but did not
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produce a discernible difference in the Marmousi II trials. The results suggest that non-

uniform sampling is beneficial when sources contribute in a highly non-uniform manner to

the Hessian. The extent of non-uniformity required (in the Hessian) to make non-uniform

sampling preferable, is unclear and a topic for future research. Our results demonstrate

that second-order information can be accommodated into FWI with only minor algorithmic

changes.
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Figure 4.3: Marmousi II trials: (a) True model. (b) Initial model. (c-e) Models in-
verted after 21 non-linear iterations. Inverted models are compared at the iteration
number where LBFGS reaches the target misfit J∗. Non-uniform STN results are
not displayed due to their similarity with uniform STN. Dashed black lines depict
the location of depth-profiles presented in Figure 4.5.
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Figure 4.4: BP 2.5D trials: (a) True model. (b) Initial model. (c-f) Models inverted
after 22 non-linear iterations. Inverted models are compared at the iteration number
where LBFGS reaches the target misfit J∗. Dashed black lines depict the location
of depth-profiles presented in Figure 4.6.
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Figure 4.5: Marmousi II trials: Depth profiles for (a, d) vp, (b, e) vs and (c, f) ρ
after 21 iterations. Profiles are taken at (a-c) x = 2.1 km and (d-f) x = 3.3 km.
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Figure 4.6: BP 2.5D trials: Depth profiles for (a, d) vp, (b, e) vs and (c, f) ρ after
22 iterations. Profiles are taken at (a-c) x = 7.0 km and (d-f) x = 8.2 km.
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Figure 4.7: Convergence behaviour as a function of iteration number for (a, c, d,
g) Marmousi II (b, d, f, h) BP 2.5D experiments. (a, b) Normalized misfit. The
target misfit J∗ is marked with a dotted black line. (c, d) vp model error. (e,
f) vs model error. (g, h) ρ model error. Dashed lines for the subsampled trials
represent mean values computed over 5 independent trials; error bands represent
one standard deviation.



CHAPTER 5

Resolution analysis in FWI using the Kronecker-factored

Hessian1

5.1 Introduction

Advanced techniques such as reverse-time migration and full waveform inversion (FWI)

have led to a step change in the resolving capability of seismic imaging. Much attention has

been given to the development of these algorithms to produce high-resolution models of the

Earths subsurface; however, essential tools for rigorous resolution and uncertainty analysis

remain underdeveloped. Backus and Gilbert (1968); Backus et al. (1970) pioneered early

concepts of resolution for linear and non-linear geophysics inverse problems. Probabilistic

formulations of the non-linear inverse problem seek posterior model distributions that are

highly complex and multi-modal. Global search algorithms offer a natural approach to ex-

ploring complex distributions as they sample different regions of the posterior in search of

a maximum likelihood model. Early studies using global search methods include Monte

Carlo search using the Metropolis algorithm (Mosegaard and Tarantola, 1995; Sambridge

and Mosegaard, 2002; Tarantola, 2005), neighbourhood search (Sambridge, 1999a,b), ge-

netic algorithms (Gallagher et al., 1991; Stoffa and Sen, 1991; Sambridge and Drijkoningen,

1992), and simulated annealing (Mosegaard and Vestergaard, 1991; Sen and Stoffa, 1991).

The immense size of the model space in 2D/3D problems coupled with the prohibitive com-

putational cost of repeatedly evaluating the FWI objective function precludes FWI from

global optimization methods using current compute systems.

Subsequent studies in FWI have simplified the formulation of the inverse problem to make

1A version of this chapter is being considered for a journal submission. The material has been presented
at conferences.
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resolution analysis more feasible. Tarantola (2005) formulates a Bayesian inverse problem

applicable to the regime where the forward modelling operator can be linearized. Rawlinson

et al. (2014) reviews popular techniques suitable for seismic tomography, including the use

of resolution matrices for spike tests. In a similar vein, Hessian probing has been used to

extract local resolution information in global tomography (Fichtner and Trampert, 2011b;

Trampert et al., 2013; Fichtner and Leeuwen, 2015; Rawlinson and Spakman, 2016). Bui-

Thanh et al. (2013) perform linearized Bayesian inversion for 3D global tomography using

hundreds of thousands of model parameters. They utilize a low-rank approximation of

the Hessian that facilitates efficient sampling of a Gaussian posterior distribution. Zhu

et al. (2015) apply the same computational framework to waveform inversion in exploration

seismology. Fang et al. (2018) apply Bayesian inversion to a penalty formulation of FWI.

Ely et al. (2018) use a Metropolis-Hastings algorithm and a fast local solver to sample the

posterior distribution. Thurin et al. (2019) use an ensemble data assimilation technique

based on ensemble Kalman filters to quantify uncertainty in frequency-domain FWI.

Resolution analyses in FWI, either involving resolution operators or posterior model covari-

ances (in Bayesian formulations), are challenging as they involve the Hessian. The com-

putational cost associated with computing and storing the Hessian has prevented extensive

research on the topic. We employ a computationally efficient approximation of the Hessian

as a superposition of Kronecker products (Gao et al., 2020). The factorization yields a Hes-

sian approximation that honours its block, banded-diagonal structure. The factor matrices

are small relative to the size of the Hessian. Hessian-vector products are approximated

through a series of computationally inexpensive matrix multiplications involving relatively

small matrices. In this chapter we exploit the Kronecker-based factorization of the Hessian

to perform local resolution analyses and linearized Bayesian inversion. We first formulate

the Bayesian inverse problem before reviewing the Kronecker-based factorization of the Hes-

sian. We subsequently explore properties of the Kronecker factors as directional blurring

operators. We present a numerical example for the acoustic Marmousi model. In the lo-

cal resolution analysis, we probe the Hessian to extract horizontal and vertical resolution

lengths at various points in the subsurface. A low-rank approximation of the Hessian is used

to sample the posterior model distribution and compute sample standard deviations. We

observe that resolution deteriorates at deeper regions of the model where the illumination

quality from the surface acquisition decreases.
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5.2 Theory

5.2.1 Resolution analysis in linear problems

We initially explore resolution analysis for linear inverse problems as a prelude to ‘local

resolution analysis’, a simplified non-linear analogue. Consider the linear system

Gm = d, (5.1)

where G ∈ RN×M is a modelling kernel, m ∈ RM×1 are the model parameters, or unknowns,

and d ∈ RN×1 are the observations; N and M are the number of observations and model

parameters, respectively. For observations dobs ∈ RN×1, the estimated model parameters

can be computed via

mest = G−gdobs, (5.2)

where G−g represents the generalized inverse. The generalized inverse is associated with

the minimum norm solution for underdetermined problems, or the least-squares solution

for overdetermined problems e.g. G−g = (GTG)−1GT . Substituting Equation 5.1 into

Equation 5.2 yields

mest = G−gGmtrue = Rmtrue, (5.3)

where R ∈ RM×M is the resolution matrix (Backus et al., 1970; Menke, 1984). Each row

of R corresponds to a filtering kernel for a discrete location in the model space. When the

resolution matrix is R = I, where I is the identity, the exact model can be recovered.

For non-linear inverse problems, an analogous interpretation of resolution matrices can be

derived by first assuming convergence to the global minimum. The objective function J(m)

can be Taylor expanded by applying a small perturbation δm to the optimal model m∗,

J(m∗ + δm) = J(m∗) + δmTg(m∗) +
1

2
δmTH(m∗)δm +O(δm3), (5.4)

where g(m∗) = ∂J
∂m

∣∣
m=m∗ and H(m∗) = ∂2J

∂m2

∣∣∣
m=m∗

are the gradient and the Hessian

of the objective function, respectively. Given that the gradient at the minimum vanishes

(g(m∗) = 0), a steepest descent step taken from the perturbed state m∗+ δm results in the

update formula

m̃ = (m∗ + δm)− νHδm, (5.5)

given a scalar step length ν. The gradient update is the true model perturbation scaled by

the Hessian matrix. In FWI, the Hessian has been demonstrated to act as a low-pass filter

(Pratt, 1999; Fichtner and Leeuwen, 2015). Fichtner and Leeuwen (2015) estimate vertical
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and horizontal resolution lengths by repeatedly applying the Hessian to random perturba-

tions. This form of local resolution analysis can also be obtained within the framework of

linearized Bayesian inversion which is explored in the next section.

5.2.2 Linearized Bayesian inversion

The ill-posedness of the FWI inverse problem means that an infinite number of models

can fit the data. In spite of this, it remains common practice for researchers to present a

single velocity model as the inversion result. Contrary to this practice, Tarantola (2005)

advocates for inversions results in the form of probability distributions or model ensembles.

With a probability distribution, numerous models can be sampled and used to characterize

uncertainty. We outline the Bayesian formulation of FWI made more tractable through a

series of simplifying assumptions.

The posterior probability distribution is a conditional distribution that characterizes the

probability of a model m given observed data d. Neglecting constants, the posterior is

proportional to the product of the model-prior and the likelihood

ρ(m|d) ∝ ρ(d|m)ρ(m), (5.6)

where ρ(m) and ρ(d|m) denote the prior probability and likelihood, respectively. Assuming

Gaussian priors, the model prior and likelihood are expressed as

ρ(m) ∝ exp
[
−(m−m0)C−1

m (m−m0)
]
, (5.7)

and

ρ(d|m) ∝ exp
[
−(u(m)− d)TC−1

d (u(m)− d)
]
, (5.8)

where C−1
m ∈ RM×M and C−1

d ∈ RN×N are the inverse model and data covariances, re-

spectively. The use of Gaussian priors imposes certain assumptions on the data residuals

and model perturbations. In the presence of non-Gaussian noise or large modelling errors,

the data residuals are unlikely to be Gaussian and zero-mean. Likewise, the model prior

assumes the Earth model can be approximated as Gaussian perturbations imposed on an

initial background model. If the subsurface exhibits large velocity contrasts, as is the case

when salt bodies are present, this assumption becomes invalid. For this study, we construct

scenarios where these assumptions remain reasonable. However, when these assumptions

are violated the prior distributions are no longer reasonably approximated by a Gaussian

distribution and the formulation will not be suitable. Substituting Equations 5.7 and 5.8
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into Equation 5.6 results in the following expression for the posterior distribution

ρ(m|d) ∝ exp[−(u(m)− d)TC−1
d (u(m)− d)− (m−m0)TC−1

m (m−m0)]. (5.9)

In the probabilistic interpretation, the objective of an inverse problem is to find the most

likely model given some observed data. Mathematically, this equates to maximizing the

log-posterior distribution

arg max
m

log ρ(m|d). (5.10)

Applying the logarithm to Equation 5.9 converts the maximization problem to a minimiza-

tion of a regularized least-squares objective:

J(m) =
1

2
‖u(m)− d‖2

C−1
d

+
1

2
‖m−m0‖2C−1

m
, (5.11)

where the norms are defined as ‖w‖2
C−1

m
= wTC−1

m w for an arbitrary vector w. The solution

of Equation 5.11 can be obtained using iterative gradient-based optimization techniques. In

the context of FWI, gradients can be calculated using the adjoint-state method (Plessix,

2006). The gradient of Equation 5.11 is

∂J

∂m
= GTC−1

d (u(m)− d) + C−1
m (m−m0), (5.12)

where G = ∂u(m)
∂m ∈ RN×M denotes the Fréchet derivative matrix. The corresponding

Hessian, after neglecting terms involving second order derivatives in u(m), is defined as

H = GTC−1
d G + C−1

m . (5.13)

Equation 5.13 is the Gauss-Newton form of the Hessian. For the remainder of this chapter,

we use Hessian to exclusively refer to the Gauss-Newton approximation. Following conven-

tional gradient-based optimization schemes, the model update can be obtained from the

solution of the Newton system

(GTC−1
d G + C−1

m )δm = −GTC−1
d (u(m)− d)−C−1

m (m−m0). (5.14)

Equation 5.14 can be used to derive a local resolution analysis for the Bayesian formulation

(Bosch et al., 2005). First, we assume that the observed data d = u(mtrue). From there,

we consider a perturbation to the true model such that mtrue → mtrue + δmtrue and

dobs → dobs + δdtrue ≈ dobs + Gδmtrue. Here we use the Born approximation and assume

that the data perturbation δdtrue is linearly related to the model perturbation. Inserting
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the perturbed forms into Equation 5.14 yields

(GTC−1
d G + C−1

m )(δm + δm′) = −GTC−1
d (u(m)−d−Gδmtrue)−C−1

m (m−m0), (5.15)

where (δm + δm′) represents the perturbed second-order model update. Subtracting Equa-

tion 5.14 from Equation 5.15 results in

(GTC−1
d G + C−1

m )δm′ = GTC−1
d Gδmtrue. (5.16)

Equation 5.16 states that an estimate δm′ of the true perturbation δmtrue is obtained

through the solution of a linear system. For illustration, setting Cm = Cd = I reduces the

previous equation to

δm′ = (GTG + I)−1GTGδmtrue, (5.17)

(5.18)

The term GTG is precisely the Gauss-Newton Hessian in conventional FWI. The damped

inverse Hessian acts as a focusing operator (Pratt et al., 1998). Fichtner and Leeuwen (2015)

suggest that a conservative estimate of resolution is obtained by computing the action of

the Hessian on a model perturbation. In this case the (damped) inverse Hessian is replaced

with an identity and δm′ = Hδmtrue.

Sampling the posterior

Local resolution analysis does not permit a probabilistic interpretation of the subsurface. To

enable this, we estimate, then sample from, the posterior distribution. We initially assume

that the observed data can be represented as a small perturbation from the modelled data

at the maximum a posteriori (MAP) model m∗ and that the perturbation is linearly related

to a model perturbation such that

dobs ≈ u(m∗) + G(m−m∗). (5.19)

Following the linearization, Tarantola (2005) demonstrates that the posterior distribution

is also a Gaussian distribution of the form

ρ(m|d) ∝ exp
[
−(m−m∗)C̃−1

m (m−m∗)
]
, (5.20)

where C̃m is the posterior covariance. For Gaussian priors, the posterior is given by

C̃m = (GTC−1
d G + C−1

m )−1. (5.21)
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Referring to Equation 5.13, it is apparent that the posterior covariance is equivalent to the

inverse Hessian. Before further discussing the posterior distribution, it warrants mentioning

that the goal is to produce model ensembles and quantify uncertainties. A sample from the

posterior distribution can be computed via

ms = m∗ + C̃
1
2
mn, n ∼ N (0, 1), (5.22)

where n ∈ RN×1 is a random vector drawn from a zero-mean Gaussian with unit variance.

Assuming we obtain the MAP model, sampling and characterizing the posterior remains

a challenge. The most apparent issue is that the Fréchet derivative matrix (or operator)

G is not typically computed during FWI. By not computing the Fréchet derivatives, di-

rect computation of the Hessian is also avoided. For inverse problems with large model

spaces, representing covariances as matrices is also no longer practical. It is more common

to consider covariance operators that act on vectors. For these reasons, computing the pos-

terior covariance as defined in Equation 5.21 is not feasible. By extension, the square root

(posterior) operator required to sample from the posterior is also not readily available.

Low-rank approximation

Here we review a low-rank approximation of the prior-preconditioned Hessian that permits

efficient sampling of the posterior distribution (Bui-Thanh et al., 2013). For a thorough

description, readers are referred to the original manuscript. The first step utilizes an alter-

native expression for the posterior covariance (Equation 5.21),

C̃m = C
1
2
m(C

1
2
mGTC−1

d GC
1
2
m + I)−1C

1
2
m. (5.23)

The first term within the parentheses is related to the data misfit and is termed the prior-

preconditioned Hessian by Bui-Thanh et al. (2013). Bui-Thanh et al. (2013) approximate

the prior-preconditioned Hessian with a truncated singular value decomposition:

C
1
2
mGTC−1

d GC
1
2
m ≈ VrΓrV

T
r , (5.24)

where Γr ∈ Rr×r is a diagonal matrix of the r largest singular values and Vr ∈ RM×r is

a matrix whose columns contain the rth largest singular vectors. Inserting the low-rank

approximation into Equation 5.23 and applying the Sherman-Morrison-Woodbury formula

results in

(VrΓrV
T
r + I)−1 = I−VrDrV

T
r , (5.25)
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where Dr = diag( λi

λi+1 ), i = 1, · · · , r ∈ Rr×r. An approximation of the posterior covariance

may then be expressed as

C̃m = Cm −C
1
2
m(VrDrV

T
r )C

1
2
m = LLT (5.26)

for a factor matrix L. Bui-Thanh et al. (2013) demonstrate that the factor L of the posterior

covariance is given by

L = C
1
2
m(VrPrV

T
r + I), (5.27)

where Pr = diag( 1√
λi+1

− 1), i = 1, · · · , r ∈ Rr×r.

Computing the low-rank approximation requires calculating the rth largest singular vectors

of the prior-preconditioned Hessian. This is achieved using Lanczos iterations where only

the action of the (prior-preconditioned) Hessian on a vector is required. In FWI, this is

conventionally done using the second-order adjoint state method to compute Hessian-vector

products (Fichtner and Trampert, 2011a). We explore an alternative approach that first ap-

proximates the Hessian as a superposition of Kronecker products. The factorization permits

fast Hessian-vector products through a sequence of inexpensive matrix multiplications.

5.3 Implementation details

In this section, we address additional theory related to the specific implementation of lin-

earized Bayesian inversion presented in this study. Firstly, we discuss a preconditioned for-

mulation of the iterative gradient-based minimization. Secondly, we establish a prior model

covariance that allows for the inclusion of structural constraints. Finally, we introduce a

novel factorization of the Hessian that facilitates fast-Hessian vector products required for

the Lanczos iterations.

5.3.1 Preconditioned formulation

The regularized least-squares objective Equation 5.11 is impractical within the framework of

FWI for a number of reasons. Regularized inverse problems require tunable hyperparameters

to balance gradient contributions that come from the data misfit and model regularization

terms. The scaling is implicit in Equation 5.11 and is embedded within the model and

data covariance matrices. For demonstration, consider model and data covariances that are

uncorrelated such that C−1
d = 1

σ2
d
I and C−1

m = 1
σ2
m

I, where σ2
d and σ2

m are the data and

model variances, respectively. The original objective function can be simplified to

J(m) =
1

2
‖u(m)− d‖22 +

µ

2
‖m−m0‖22, (5.28)
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where µ =
σ2
d

σ2
m

. In this scenario, the misfit terms are balanced by a ratio of the variances;

however, the variances are typically not known. In practice, the value of µ is selected

heuristically by balancing the data and model misfits. The objective is to ensure that data

misfit is the primary contributor to the gradient while the regularization term provides

an ancillary contribution. Testing different values of hyperparameters is expensive due

to the high computational cost of a single FWI iteration. Furthermore, as an inversion

progresses the data misfit will decrease while the model misfit will likely increase due to

the perturbations added to the initial model. The balance between the two terms changes

throughout the inversion suggesting that a constant hyperparameter may be suboptimal.

A more practical approach reformulates the regularized form into a preconditioned one. The

first step involves a change of variables where m̂ = C
− 1

2
m (m −m0) (Guitton et al., 2012).

The regularizing term in Equation 5.11 then becomes

1

2
‖(m−m0)‖2

C−1
m

=
1

2
‖m̂‖22. (5.29)

The new variable m̂ is updated using a gradient step,

m̂k+1 = m̂k + νk
∂J

∂m̂
. (5.30)

Expanding out the variables and applying the chain rule leads to a preconditioned update

for the original model vector m

mk+1 = mk + νkCm
∂J

∂m
. (5.31)

In the preconditioning formulation, we neglect the formal gradient that would arise from

the 1
2‖m̂‖

2
2 term as its effect can be mimicked by truncating the number of iterations in an

inversion.

In the context of conventional regularized inverse problems, C
− 1

2
m represents an operator

W that penalizes undesirable features in the model. For example, a spatial derivative

operator promotes smooth models by penalizing discontinuities. The inverse of the prior

covariance can be expressed as C−1
m = WTW. Conversely, the prior covariance Cm = LLT

where L = W−1. A preconditioning operator has the interpretation of promoting desirable

features in a model.

5.3.2 Prior covariance

The prior covariance operator embeds prior knowledge about the subsurface model into the

inversion. In the simplest case, Cm = I and the model perturbations are uncorrelated.
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This assumption states that any given point in the subsurface exhibits no correlation with

other points in the subsurface. Such an assumption is unrealistic due to the prevalence

of structured media in the subsurface e.g., in the form of layered media with a preferred

orientation. Subsurface points within some vicinity or within a single geological unit (un-

der similar physical conditions) likely possess similar rock properties, thus are correlated.

We enforce this interpretation with preconditioning operators that promote structural co-

herence. Specifically, the preconditioner is designed to smooth the model in directions

consistent with the geology. Structural orientation can be inferred by computing structure

tensors from seismic images. Structure-oriented preconditioners have been used in a number

of studies in the past (Guitton et al., 2012; Bui-Thanh et al., 2013; Li et al., 2016; Trinh

et al., 2017). For this study, we employ an adapted form of a Matérn covariance (or shaping

covariance) proposed by Hale (2014). Applying the prior covariance operator to a vector

requires solving an anisotropic PDE, the cost of which is small compared to a solution of the

wave equation. The operator is characterized by a user-defined scale length (r0) that defines

the spatial extent of correlations/smoothing. Larger scale lengths correspond to increased

correlations/smoothing. A more detailed description of the shaping covariance operator is

presented in Appendix A.

5.3.3 The Kronecker-factored Hessian

The local resolution analysis and linearized Bayesian inversion require repeated applications

of the Hessian to a vector. Hessian-vector products can be computed using second-order

adjoint-state methods (Fichtner and Trampert, 2011a). The computational cost of a single

Hessian-vector products is 4Ns PDE solves, twice that of the gradient. This section pro-

vides a brief review of theory developed in our earlier study Gao et al. (2020); interested

readers may refer to the published article for extensive details on the approximation. The

Kronecker-based factorization permits fast Hessian-vector products through operations in-

volving (relatively) small matrices. At present, the factorization has only been tested for

2D problems.

As a prelude to the Kronecker-based approximation of the Hessian, we provide some brief

conceptual motivation. The Hessian in FWI possesses a block band-diagonal structure

(Pratt et al., 1998; Operto et al., 2013). The structure is a consequence of the model

discretization and the band-limited nature of seismic waves. An example of this structure is

displayed in Figure 5.1 for an explicitly computed Hessian matrix. The reason for pursuing

a Kronecker-based factorization of the Hessian becomes more apparent by examining the
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Figure 5.1: Illustration of the block banded-diagonal structure of the Hessian ma-
trix. The Hessian was computed explicitly for a homogeneous acoustic model dis-
cretized on a 100× 50 finite-difference grid. Zooming into the large matrix reveals
its block banded-diagonal structure. Within the matrix, each block has dimensions
of nz × nz; a total of nx such blocks exist in the nznx × nznx Hessian matrix.
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definition of a Kronecker product. Consider the 2 × 2 matrices A and B defined as

A =

[
a1 a3

a2 a4

]
, B =

[
b1 b3

b2 b4

]
. (5.32)

The Kronecker product (A⊗B), by definition is

A⊗B =

[
a1 a3

a2 a4

]
⊗

[
b1 b3

b2 b4

]
=


a1

(
b1 b3

b2 b4

)
a3

(
b1 b3

b2 b4

)

a2

(
b1 b3

b2 b4

)
a4

(
b1 b3

b2 b4

)
 =

[
C11 C12

C21 C22

]
, (5.33)

where ⊗ denotes the Kronecker product. The block elements Cij are 2×2 matrices obtained

by multiplying the complete matrix B, by a single element of matrix A. From this simple

example, it is evident that the Kronecker product of two matrices yields a matrix with block

structure. This property motivates us to pursue an approximation of the Hessian in terms

of Kronecker products.

For a discrete 2D grid of size nz×nx, the Hessian H ∈ Rnznx×nznx is a large square matrix.

The proposed method approximates the Hessian matrix as a superposition of Kronecker

products

H ≈
k∑
i=1

Ai ⊗Bi. (5.34)

The matrices Ai ∈ Rnx×nx and Bi ∈ Rnz×nz are referred to as Kronecker factors; k denotes

the number of factors used in the approximation. The Hessian in FWI exhibits block-band

structure owing to the finite-frequency nature of the seismic wavefield and the discretization

of the subsurface (Pratt et al., 1998; Operto et al., 2013).

Assuming the Hessian can be decomposed into a superposition of Kronecker products, the

identity

(A⊗B)m = vec(BMAT ), (5.35)

is useful. The operator vec denotes the vectorization of a matrix i.e. appending the columns

of a matrix into a long vector. The matrix M is defined such that m = vec(M). In 2D, M

is simply the discretized model in physical dimensions. Using equations Equation 5.34 and

Equation 5.35, approximate Hessian-vector products can be computed using

Hm ≈ (
k∑
i=1

Ai ⊗Bi)m =
k∑
i

vec(BiMAT
i ). (5.36)

Equation 5.36 states that, assuming the Kronecker factors are known, a Hessian-vector
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product can be approximated by a superposition of matrix multiplications involving small

matrices. The significance of this result is that it allows for very fast computation of Hessian-

vector products compared to conventional second-order adjoint-state methods.

Estimating the Kronecker factors is a nuanced process and not the focus of this study.

An extensive outline describing the procedure for estimating the Kronecker factors is pro-

vided by Gao et al. (2020). To briefly summarize, the Kronecker factors are estimated by

solving a low-rank matrix completion problem for a rearranged form of the Hessian. The

low-rank completion problem requires samples of the Hessian which are obtained using re-

ceiver Green’s functions. Computation of the receiver Green’s functions marks the most

computationally intensive part of the algorithm as it requires Nr PDE solves.

5.4 Numerical experiments

Synthetic inversions are conducted on an acoustic version of the Marmousi II model (Martin

et al., 2006). The inversion parameter is the P -wave velocity vp. A heterogeneous density

model is used; however, we do not update density and assume that it is known. The 9.0 x

3.0 km model is discretized on a 900 x 300 regular grid with a spacing of 10 m. An initial

vp model is obtained by smoothing the true model with a Gaussian kernel (σ=200 m). The

true and initial vp models are displayed in Figure 5.2. The synthesized acquisition consists

of 22 sources placed at 400 m intervals one grid point beneath the surface (zs = 20 m). 225

receivers are positioned at the surface at 40 m intervals. To simplify the problem, we assume

that the source wavelet is known and model it with a 10 Hz Ricker. A 3 Hz lowcut is applied

to the source to remove low frequencies that are typically unavailable in real data. The

‘observed’ data are pressure component seismograms generated with the true source wavelet

and model. Data are generated using an acoustic modelling engine and absorbing boundary

layers at each boundary; absorbing boundaries are implemented via convolutional perfectly

matched layers (Komatitsch and Martin, 2007). A multi-scale inversion, progressing from

low-to-high frequency bands, is used to ensure proper convergence (Bunks et al., 1995). The

frequency bands used for this study are 3-5 Hz, -7 Hz and -9 Hz. 30 preconditioned NLCG

iterations are used at each inversion stage. All resolution analyses are performed for the

final inversion results from the 3-9 Hz inversion.

The prior covariance operator is parametrized using structure tensors computed from a

reverse-time migration (RTM) image computed in the initial model (see Appendix A). The

RTM image, overlain with representations of computed structure tensors, is displayed in

Figure 5.3. To illustrate the effect of the prior covariance operator, we apply it to a random

vector in Figure 5.4 and to a raw FWI gradient in Figure 5.5. Figure 5.4a depicts a random

vector sampled from a zero-mean, unit-variance normal distribution. Figures 5.4b and c are
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Figure 5.2: Marmousi model. (a) Initial vp. (b) True vp. Yellow dots indicate 22
source locations.
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Figure 5.3: RTM image computed using the initial vp model. Green ellipses repre-
sent a subset of structure tensors. In regions where coherent structure is detected,
the structure tensors are almost linear. In the absence of structure, the structure
tensors appear circular. A linear depth scaling is applied to the RTM image for
display purposes. Structure tensors are used to characterize the prior covariance
operator.
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the action of different prior covariance operators on the random vector. Figures 5.4b and

c differ in the characteristic scale length (r0) of the prior covariance operator. The scale

length controls the effective correlation length of the prior covariance operator. Larger scale

lengths (Figure 5.4b) produce correlations between a larger neighbourhood of points than

short scale lengths (Figure 5.4a). Applied to the gradient (Figure 5.5), the prior covariance

operator smooths the gradient in directions of coherent structure. Larger r0 results in

increased smoothing of the gradient. The choice of r0 is subjective and would ideally be

informed by prior knowledge about the subsurface. For this study, we opt for the smaller

scale length (r0 = 15) to prevent excessive smoothing to the FWI gradient.

5.4.1 Kronecker factors

Figure 5.6 displays the initial and inverted (or MAP) vp models for the multi-scale inversion.

A good initial model coupled with the multi-scale scheme results in a well recovered model.

We observe a slight degradation in the recovery below 2 km depth that is attributed to

inadequate illumination.

The horizontal and vertical factors, computed in the MAP model at the 3-9 Hz frequency

band, are displayed in Figures 5.7 and 5.8, respectively. The Kronecker factors are diagonally

dominant matrices that become increasingly complex with increasing factor number. Figure

5.9 displays the log-diagonal of the Kronecker approximation to the Hessian (reshaped to

model dimensions). The Hessian diagonal is often used as a proxy for subsurface illumination

(Shin et al., 2001); illumination appears to drop considerably below 1.5 km. Figure 5.10

displays the action of the Kronecker-factored Hessian on a sequence of spike perturbations.

In Figure 5.10b, the result has been preconditioned by the inverse of the diagonal Hessian

to balance amplitudes at different depths. The Hessian defocuses the spikes to pulses of

varying size reflecting the variable resolution in the subsurface. As described in the theory,

the Kronecker decomposition approximates the action of the Hessian (on a vector) with

two directional operators; this behaviour is demonstrated in Figure 5.11. The horizontal

factors AT
i act to smear the spikes horizontally whereas the vertical factors Bi smear input

in the vertical direction. By repeating this procedure for multiple factors and summing the

output, we approximate the more complex blurring pattern of the Hessian (Figure 5.10).

The columns of Ai and Bi are point-spread functions (PSFs), which when convolved with

some input produce a blurred result. Examples for a spike at x = 4.5 km and z = 1.5 km

are presented in Figure 5.12. Sharp boundaries in the PSFs stem from the band constraints

imposed during the estimation of the Kronecker products (Gao et al., 2020). The PSFs for

small factor numbers resemble finite-width spikes. As the factor number increases, the PSFs

become more oscillatory.
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Figure 5.4: Action of the prior covariance operator on a random vector. (a) Random
noise vector. (b) Prior covariance operator (short-scale length, r0 = 15) applied to
a random noise vector. (c) Prior covariance operator (intermediate-scale length,
r0 = 50) applied to a random noise vector.
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Figure 5.5: Action of the prior covariance operator as a preconditioner to the FWI
gradient. (a) Initial vp gradient in Marmousi model at 3-5 Hz. (b) Preconditioned
gradient (short-scale length, r0 = 15). (c) Preconditioned gradient (intermediate-
scale length, r0 = 50). The covariance operator has smoothed the gradient along
the coherent directions in the seismic image.
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Figure 5.6: Marmousi vp inversion results (a) Prior mean, the initial model. (b)
MAP model (posterior mean), the inverted model.
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Figure 5.7: Estimated ‘horizontal’ Kronecker factors (Ai ∈ R900×900) used to ap-
proximate the Hessian computed at the MAP model. (a-f) The 9 factors arranged
from largest to smallest; all factor matrices exhibit banded diagonal structure. The
complexity of the diagonal structure generally increases with factor number.
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Figure 5.8: Estimated ‘vertical’ Kronecker factors (Bi ∈ R300×300) used to approx-
imate the Hessian computed at the MAP model. (a-f) The 9 factors are arranged
from largest to smallest; all factor matrices exhibit banded diagonal structure.
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Figure 5.10: Application of the Hessian to an array of spike perturbations. The
spike array is composed of unit perturbations at 1 km × 1 km intervals. The results
are presented (a) without and (b) with inverse-diagonal Hessian preconditioning.
The smearing effect of the Hessian is apparent. In deeper regions, spikes are less
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Figure 5.11: Various stages of the Kronecker approximation of Hδm for the 5 largest
Kronecker factors: (a-c) k = 1, (d-f) k = 2, (g-i) k = 3, (j-l) k = 4, (m-o) k = 5.
The input perturbation δm = vec(δM), is a spike array with 1 km × 1 km spac-
ing. For each k, the columns display (left) δMAT

k , (middle) BkδMAT
k and (right)∑i=k

i=1 BiδMAT
i . The horizontal factors Ai smear the perturbations horizontally,

whereas the vertical factors Bi smear perturbations vertically. The superposition
(right column), gradually improves the approximation of the Hessian-vector prod-
uct, adding more nuanced details to the image as more factors are included in the
approximation.
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Figure 5.12: Point spread functions extracted from the 5 largest Kronecker factors:
(a, b) k = 1, (c, d) k = 2, (e, f) k = 3, (g, h) k = 4, (i, j) k = 5. (left column)
450th column from horizontal factors Ai. (right column) 150th column from vertical
factors Bi.
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5.4.2 Local resolution analysis

Applying the Hessian to a unit-spike perturbation equates to sampling a column of the

Hessian. Similar to the Kronecker factors, the columns of the Hessian can be considered as

PSFs (Fichtner and Leeuwen, 2015). To extract resolution information, we pick vertical and

horizontal widths of Hessian PSFs. Examples demonstrating the procedure are depicted in

Figures 5.13-5.15. In Figure 5.13, slices through the PSF illustrate how the resolution lengths

are selected (black bars slice plots). To expedite the process, only 8 Kronecker factors are

used to compute approximate PSFs; 8 was the minimum number of factors that produced

PSFs with similar characteristics to the true PSFs. For a complete characterization of the

subsurface, we compute resolution lengths at 100 m intervals (every 10 grid points). The

resultant horizontal and vertical resolution length maps are interpolated to fill gaps; the

maps are displayed in Figure 5.16. A gradual deterioration of resolution is apparent from

increasing vertical and horizontal resolution lengths with depth. In addition, a comparison

of resolution lengths with the vp structure suggests a potential correlation between increased

resolution lengths and more complex subsurface structure. Towards boundaries of the model,

PSFs become less circular and resemble ellipses with some orientation (e.g., Figure 5.15).

In such cases, resolution lengths as they are measured in this study may not be entirely

representative of resolution. For the final stage of our local analysis, we generate a bank of

non-stationary, 1D Gaussian filters parametrized by the measured resolution lengths (appear

as dashed blue lines in Figures 5.13-5.15). We perform a 1D non-stationary convolution of

the true vp model with the Gaussian filters. The reasoning for this test is as follows, if

the measured resolution lengths are indicative of the smallest resolvable features in the

inverted model, then the true model filtered to these scale lengths should resemble the

inversion result. Given the simplicity of this interpretation, this test serves as more of a

quality control measure. Ideally, this test would be performed using a 2D non-stationary

convolution with normalized Hessian PSFs, but we forego that here. A more comprehensive

analysis would integrate the local resolution analysis into the framework of homogenization

theory. Homogenized models a smooth version of the true Earth model that is “visible“ to

the finite-frequency data (Capdeville and Mtivier, 2018). Vertical and horizontal velocity

profiles are presented in Figures 5.17 and 5.18, respectively. The filtered profiles demonstrate

a reasonable correspondence, in terms of the resolved features, with the inverted model.

The filtered profiles do not account for variable subsurface illumination; therefore, better

represent the true amplitudes of perturbations. The horizontal profile (Figure 5.18) exhibits

instances where the filtered profile resolves smaller scale features than the inversion. This

may suggest that the horizontal resolution lengths are underestimated in these areas.
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Figure 5.13: Kronecker-factored Hessian applied to a spike perturbation δm at
x = 4.5 km, z = 1.0 km. The panels above and to the right display horizontal
and vertical slices through the image, respectively. The green line is the spike
perturbation. The black bars mark the picked resolution length at this point. The
dashed blue line is Gaussian parametrized with the selected horizontal and vertical
resolution lengths.
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Figure 5.14: Same as Figure 5.13 for a spike perturbation δm at x = 4.5 km,
z = 2.0 km. The vertical and horizontal resolution lengths are notably larger than
in Figure 5.13
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Figure 5.15: Same as Figure 5.13 for a spike perturbation δm at x = 8.5 km,
z = 2.5 km. Towards the limits of the model, unbalanced illumination results in
less-circular spikes with preferred orientations.
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Figure 5.16: Interpolated (a) vertical and (b) horizontal resolution lengths. The
resolution lengths were picked from Hessian PSFs computed at 100 m intervals;
gaps were filled via interpolation. A greyscale vp model overlay is included to
demonstrate correlations between structure and resolution length.
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Figure 5.17: Vertical pseudo well log at x = 2.0 km. Comparison of the true (blue
line), initial (green line), inverted (red line) and smoothed true model (magenta
line). The smoothed log is obtained by performing a 1D non-stationary convolution
of the velocity profile with a bank of non-stationary Gaussian filters whose widths
are parametrized by the resolution lengths. Inset displays the vertical resolution
lengths used to design the non-stationary Gaussian filters.
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Figure 5.18: Similar to Figure 5.17 but for a horizontal log at z = 0.75 km.
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Figure 5.19: Normalized singular values of prior-preconditioned Hessian.

5.4.3 Linearized Bayesian inversion

Figure 5.19 displays the 800 largest singular values of the prior-preconditioned Hessian

computed from Lanczos iterations. Each Lanczos iteration is accelerated by the use of the

Kronecker-based Hessian approximation (which uses 100 Kronecker factors). The singular

values, normalized by the largest singular value, fall below 0.1 after approximately 100

singular vectors. The 12 largest singular vectors of the prior-preconditioned Hessian appear

in Figure 5.20. The largest singular vectors are smooth directions concentrated towards the

surface. For smaller singular values, the corresponding singular vectors become increasingly

oscillatory with shorter wavelength patterns that extend deeper into the subsurface. Figure

5.21 compares the action of the prior-preconditioned Hessian on a vector, with it’s low rank

approximation (r=800). Qualitatively, the low rank approximation yields similar output

although some localized differences are evident (Figure 5.21d).

Figure 5.22 displays the prior and posterior means and standard deviations computed from

500 random samples drawn from each distribution. By construction, the prior and posterior

means are the initial and inverted models, respectively. The standard deviation of the

prior covariance shows limited spatial variations. By contrast, the standard deviation of

the posterior covariance exhibits lower values for z < 1.5 km where illumination is greatest.

The patches of low deviation, apparent with both the prior and posterior covariances, are

a consequence of the diffusion-tensor determinant related scaling in the prior. Regions

of the RTM image lacking structure were downweighted and essentially neglected by the

covariance operators. Below 1.5 km depth, the STD of the posterior covariance appears
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Figure 5.20: Estimated singular vectors of prior-preconditioned Hessian. (a-l) 12
largest estimated singular vectors ordered left-to-right, top-to-bottom.
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Figure 5.21: Comparison of the prior-preconditioned Hessian and its low-rank ap-
proximation. (a) Random noise vector. (b) Action of prior-preconditioned Hessian
applied on random vector. (c) Action of low-rank approximation of the prior-
preconditioned Hessian on a random vector. (d) Difference between true product
(b) and low-rank approximation (a).
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Figure 5.22: Prior and posterior mean and standard deviations for Marmousi inver-
sion. (a) Prior mean, the initial model. (b) Posterior mean, the inverted model. (c)
Prior standard deviation (diagonal of prior covariance). (d) Posterior standard de-
viation (diagonal of posterior covariance). The introduction of the data constraints
reduces the uncertainty in the shallow regions where illumination is greatest. Due
to a lack of illumination, deeper regions are not better constrained than by the prior
distribution.

largely unchanged suggesting that the data has not helped to further constrain this region

of the subsurface. There are further nuances to this statement that we address in the

discussion. The difference between the standard deviation of prior and posterior covariances

is displayed in Figure 5.23. Figure 5.24 presents random samples drawn from the prior and

posterior distributions. Figures 5.25 and 5.26 display depth profiles of velocity before and

after inversion. Figure 5.25 is an example where the standard deviation of the posterior

covariance is reduced relative to that of the prior covariance. This results in narrower

confidence intervals for z < 1.5 km, indicating better constrained subsurface structure. For

z >1.5 km, the confidence intervals have similar widths for both the prior and posterior

covariances. Figures 5.27 and 5.28 display horizontal velocity profiles taken at different

depths. Again, in the shallow areas the posterior exhibits tighter confidence intervals than

the prior covariance. At depth, the uncertainties remain similar.

5.5 Discussion

Our development relies on an informative initial subsurface image to characterize the prior

covariance operator. If this is not available, for example, due to poor data quality or a poor

initial velocity model, a more conservative prior can be selected. Conservative priors may

include isotropic covariance operators or operators that capture depth-dependent velocity

trends. In our example, the small scale length of the prior covariance operator results in
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Figure 5.23: Difference between the prior and posterior standard deviations. Similar
to Figures 5.22c, d. The standard deviation of the posterior distribution is primarily
reduced in the shallower regions (z < 1.5 km) where data illumination is largest.
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Figure 5.24: Random samples from the (a, c, f) prior and (b, d, f) posterior distri-
bution.
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Figure 5.25: Vertical pseudo well log at x = 2.0 km. (a) Prior distribution. (b)
Posterior distribution. The prior and posterior means (green line) are bounded by
the 95% confidence intervals (dashed magenta lines). 500 random samples, drawn
from the prior and posterior distributions, are plotted on top of one another (red
lines). The true model is displayed as a blue line.
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Figure 5.26: Vertical pseudo well log at x = 6.35 km. (a) Prior distribution. (b)
Posterior distribution. The prior and posterior means (green line) are bounded by
the 95% confidence intervals (dashed magenta lines). 500 random samples, drawn
from the prior and posterior distributions, are plotted on top of one another (red
lines). The true model is displayed as a blue line.
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Figure 5.27: Horizontal pseudo well log at z = 0.75 km. (a) Prior distribution. (b)
Posterior distribution. The prior and posterior means (green line) are bounded by
the 95% confidence intervals (dashed magenta lines). 500 random samples, drawn
from the prior and posterior distributions, are plotted on top of one another (red
lines). The true model is displayed as a blue line.
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Figure 5.28: Horizontal pseudo well log at z = 2.5 km. (a) Prior distribution. (b)
Posterior distribution. The prior and posterior means (green line) are bounded by
the 95% confidence intervals (dashed magenta lines). 500 random samples, drawn
from the prior and posterior distributions, are plotted on top of one another (red
lines). The true model is displayed as a blue line.
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prior/posterior samples with potentially unrealistic small scale perturbations. For more

realistic applications, r0 should be informed by prior geological knowledge.

The posterior STD suggests that the data constraints provide a minimal reduction in the

uncertainty at depths below 1.5 km. However, if we examine the MAP model we observe

weakly resolved but well defined structure throughout the complete depth extent of the

model. A potential explanation for this comes from the use of a multi-scale inversion ap-

proach. Lower frequency data produce gradients with larger Fresnel zones, thus produce

deeper updates than higher frequency data. Deeper structure is inserted during the lower

frequency updates. The uncertainty analysis utilizes only the 3-9 Hz data making it some-

what incomplete. How to properly integrate a multi-scale approach into a Bayesian inversion

warrants further consideration but is beyond the scope of this study. One of the target hy-

drocarbon reservoirs in the Marmousi model appears at approximately x = 6.5 km and

z = 2.5 km. At this depth, it appears that the data do not help to further constrain the

velocity structure (when compared to the prior); however, this example is also representa-

tive of the issue with multi-scale uncertainty estimation. Assuming that our data do not

help to further constrain the velocity model, it indicates potential deficiencies in the acqui-

sition where the target area is not being adequately illuminated. Such information could

be potentially useful when considering improved survey design. Imaging at depth could

be improved by wider offset acquisition or improved low frequency information in the data.

Shallower gas traps in the Marmousi model are located in regions where the data constraints

help to reduce the posterior STD (relative to the prior STD). The reduction in uncertainty

could be useful to interpreters seeking to identify hydrocarbon reserves through quantitative

interpretation of inverted models.

For simplicity, our example was noise free and assumed that the data covariances were

uncorrelated. Because the inverse of the data covariance is embedded between the Fréchet

derivative matrices/operators (Equation 5.13), accommodation of a data covariance operator

would have to be done prior to the estimation of the Kronecker factors. Specifically, its

inclusion would feature during the computation of Hessian samples required to estimate the

Kronecker factors.

Extensions of the Kronecker-based factorization of the Hessian are possible for the multi-

parameter Hessian. The bulk of the computational cost still lies in computing samples of

the Hessian from receiver Green’s functions. Since the multi-parameter Hessian is a block

matrix, it may be possible to decompose the matrix into block elements and estimate Kro-

necker factors for each block element individually (as opposed to for the full matrix). Further

investigation is required to assess the merits of each approach. A multi-parameter Bayesian

inversion would follow a similar formulation as used in this study. Additional consideration

would need to be given to the design of a suitable model prior. A multi-parameter prior
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model covariance operator should consider both correlations between different subsurface

points as well as correlations between independent physical parameters. The latter requires

a deeper understanding of rock physics in the survey area. Li et al. (2016) use a stochastic

rock physics modelling approach to design multi-parameter prior covariance operators.

5.6 Conclusions

We have presented two forms of resolution analysis for FWI. The first performs a local

resolution analysis assuming convergence to a model in the vicinity of the global minima.

This approach extracts horizontal and vertical resolution lengths by examining the action of

the Hessian, a blurring operator, on spike perturbations at various points in the subsurface.

The validity of the resolution lengths is further investigated by performing non-stationary

convolution of the true model with Gaussian filters parametrized by the measured resolution

lengths. The second approach to resolution analysis formulates FWI as a Bayesian inverse

problem following a linearization of the modelled data about the MAP model. Gaussian

priors are assumed for the data and model. The prior model covariance operator is designed

using an anisotropic shaping covariance that is parametrized by coherent structures in an

image of the subsurface. We employ a low-rank approximation of the prior-preconditioned

Hessian to facilitate sampling of the posterior distribution. Random samples drawn from

the prior and posterior distributions are used to compute standard deviations for the sub-

surface model. A numerical test is performed on the Marmousi model assuming the acoustic

approximation. A multi-scale inversion is performed up to a frequency band of 3-9 Hz. We

approximate the Gauss-Newton Hessian as a superposition of Kronecker products, which

themselves are relatively small matrices. The Kronecker factorization permits an accurate

approximation combined with a compact representation of the Hessian. Fast Hessian-vector

products, required to probe the subsurface and for Lanczos iterations, can be computed via

matrix multiplications involving small matrices. The local resolution analysis suggests that

resolution lengths i.e. smallest resolvable features, increase with depth. This is consistent

with the fact that illumination at deeper parts of the model are more limited. Similar

effects are observed in the STD of the posterior covariance. With the inclusion of data

constraints, the posterior distribution exhibits smaller deviations below 1.5 km depth where

illumination is greatest. During this process we identify some shortcomings of the current

implementation. The prior covariance could be better designed. Furthermore, the Hessian

was computed at the highest frequency band used for inversion. As a result, the results sug-

gest limited data-constraints at depths where the inverted model appear to be reasonably

resolved. We interpret this as relating to the fact that higher bandwidth data have lower

penetration depths.



CHAPTER 6

Acoustic and elastic FWI in the western Canadian

sedimentary basin1

6.1 Introduction

Full waveform inversion (FWI) has matured considerably since its conception in the 1980’s

(Lailly, 1983; Tarantola, 1984b). Advances in computational hardware, data acquisition,

and algorithmic developments have resulted in FWI being integrated into standard velocity

model building workflows in exploration seismology. The majority of case studies explore

marine streamer or ocean-bottom node datasets (e.g., Shipp and Singh (2002); Ravaut et al.

(2004); Sears et al. (2008); Warner et al. (2013); Prieux et al. (2013a,b)). While relatively

robust workflows exists for FWI in marine settings, the same is less true for land data.

Performing FWI on land is considerably more challenging due to, for example, degraded data

quality, strong elastic effects, and surface topography (Stopin et al., 2014). Comparatively

poor signal-to-noise ratios (SNR) can compromise low-frequency information in the data

that is vital for FWI. Furthermore, ground roll generated by the elastic free surface obscures

reflected arrivals at near offsets in the data. In general, applications of land FWI require

more design to ensure successful inversions. The adoption of elastic FWI has been precluded

by its high computational cost meaning that the vast majority of FWI studies have been

performed using the acoustic or viscoacoustic approximation. Improved understanding of

the FWI algorithm has led to some initial studies being conducted for elastic (Vigh et al.,

2014; Raknes et al., 2015) and land (Plessix et al., 2012; Stopin et al., 2014; Vigh et al.,

2018; Sedova et al., 2019; Solano and Plessix, 2019; Trinh et al., 2019) applications of FWI.

1A version of this chapter is being prepared for a manuscript submission to Geophysics.
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In this chapter, we apply acoustic and elastic FWI to a 2D land dataset from the western

Canadian sedimentary basin (WCSB). The study aims to establish the feasibility and utility

of FWI for land data in this region. We seek to develop FWI workflows that may be readily

transferred to similar datasets in the region. Finally, we also explore the limitations of the

dataset, the differences between acoustic and elastic inversion, and a strategy to incorporate

reflection data into the elastic inversion. The theory used in this chapter follows that

established in Chapter 1. The first section details the geological setting and the Cynthia

dataset. The second and third sections describe the data preprocessing and initial model

building steps that precede FWI. The fourth section outlines the generic elements of the

FWI workflow utilized for acoustic and elastic inversion. The subsequent three sections

present results for the acoustic, elastic and reflection-based elastic inversions. The final

section focuses on validation of the FWI results.

6.2 Geological background and dataset

6.2.1 Western Canadian sedimentary basin

The study region resides in a conventional oil field in the western Canadian sedimentary

basin (WCSB). The geology of the WCSB has been studied extensively owing to an abun-

dance of outcrops that enable identification of various geological strata. Fundamentally, the

WCSB is a wedge of sedimentary strata deposited on the stable North American craton

(Mossop and Shetsen, 1994). The basin can be separated into two parts: a predominantly

carbonate base formed between the Paleozoic and Jurassic period and a foreland basin

formed primarily during the Cretaceous period. The Cretaceous foreland basin consists

predominantly of marine shales interlaced with thin sandstone layers. The sandstone layers

within these sequences are of great economic importance as they host the majority of oil and

gas reservoirs in the region. More recent formations are composed of mostly sand and gravel.

The uppermost layers are primarily glacial till and unconsolidated sediments (Mossop and

Shetsen, 1994). Notable shale formations identified in the survey area include the Lea park,

Colorado, and Fernie groups. The major sandstone formations identified are the Belly river,

Cardium, Viking, and Mannville groups; the Cardium and Viking formations are prominent

oil reserves. The transition to the carbonate base is marked by the Nordegg formation. The

tops of select formations are marked in Figure 6.1.

Figure 6.1 displays a schematic interpretation of the subsurface geology (overlain on a PSTM

image). The various colour overlays indicate the dominant rock types associated with major

geological formations identified in well logs from the survey area. The depths of the first two

layers are not accurate as information was not available for these layers. The near-surface
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Figure 6.1: Schematic geological interpretation of the survey area. The coloured
overlay indicates the dominant rock types associated with various geological forma-
tions identified in the region. The depths of the first two layers are not accurate
and possibly exaggerated as constraints were not available. The first layer (orange)
is composed primarily of glacial till and unconsolidated sediments. The second
layer (red) is a mixture of sand and gravel which transitions to primarily sandstone
layers at some unidentified depth. Hydrocarbon reservoirs are mostly found in the
sequence of interlaced sandstone (green) and shale (blue) layers. A transition to car-
bonate layers (yellow) conincides with a sharp increase in P -wave velocities. Black
lines mark geological formation tops identified in a nearby log; notable formation
tops are labelled. The position of the sonic log (red line) does not coincide with its
true x location and is only included for display purposes.

is composed of glacial till and unconsolidated sediments, with aquifers also documented

within these layers. Loose sediment layers are a likely source of attenuation which would

require visco-acoustic/elastic inversion to be properly accounted for. Anisotropy is also not

accounted for due to a lack of constraints. Anisotropy is likely present either due to inherent

rock properties or effective anisotropy from a horizontally layered subsurface (Backus, 1962).

6.2.2 Cynthia 2D land dataset

The Cynthia dataset is a 2D seismic survey composed of 148 dynamite sources and 639 fixed-

spread 3C receivers. Sources and receivers are regularly spaced at 30 m and 10 m intervals,

respectively. A map of the source and receiver positions is displayed in Figure 6.2a. It

should be noted that the x-axis represents the inline direction (North-South). Source and

receivers exhibit crossline (y direction) deviations of less than 70 m from a line of best fit for

the acquisition. In addition, the variation in source and receiver elevations is less than 40 m
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(Figure 6.2b). Given that the variations in y and z source and receiver positions are small

relative to the length of the line (6.4 km), we neglect them, thus approximating the survey

as a flat 2D line. We do not account for topography in our numerical wave propagation, nor

do we apply elevation statics to the data during preprocessing.
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Figure 6.2: Source and receiver distributions after transformation to a local coordi-
nate system. (a) Aerial map of source, receiver and well (sonic log) locations. (b)
Inline elevation profile (vertical exaggeration ∼ 20 : 1).

TGS supplied raw and preprocessed horizontal and vertical component data along with cor-

responding PP and PS pre-stack time migrated (PSTM) images. The TGS preprocessing

included coherent noise attenuation, ground roll removal, and surface-consistent deconvo-

lution. Representative raw shot records are displayed in Figure 6.3. Average amplitude

spectra for the data peak at around 50 Hz for most sources. Ground roll is more prominent

in the horizontal component (Figures 6.3b, d). The PSTM images displayed in Figure 6.4

provide initial indications of subsurface structure. Both PP and PS images indicate a finely

layered subsurface with multiple strong, flat reflectors. While TGS provided processed data,

we opt to conduct our own processing, catering it to the needs of various forms of FWI.
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Figure 6.3: Raw (a, b, c) vertical and (d, e, f) horizontal component data. (a,
d) Shot #10 (x = 1.1 km), (b, e) Shot #94 (x = 2.86 km) and (c, f) Shot #100
(x = 5.3 km) in sequence.
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Figure 6.4: Pre-stack time migrated (PSTM) images supplied by TGS. (a) PP
image (b) PS image.
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Figure 6.5: Bandpass filtered raw data for shot #10. (a, b, c) Vertical component
data. (d, e, f) Horizontal component data. (a) 2-4 Hz vertical. (b) 2-6 Hz vertical.
(c) 2-8 Hz vertical. (d) 2-4 Hz horizontal. (e) 2-6 Hz horizontal. (f) 2-8 Hz
horizontal.

Low frequencies in the data are essential to FWI as they constrain the long-wavelength

components of the velocity model (Virieux and Operto, 2009). We examine the data in

various frequency bands to assess the usability of the lower frequencies; the filtered data

are presented in Figure 6.5. Ground roll and noise dominate the 2-4 Hz bandpass (Figure

6.5a, d). No significant P -wave energy is apparent except at very short offsets. At 2-6 Hz,

usable P -wave signal and weak reflections are evident on the vertical component (Figure

6.5b); the SNR on the horizontal component remains poor. Clear signal is observed in the

2-8 Hz bandpass for both horizontal and vertical component data; however, the noise levels
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in the horizontal component are still problematic. Horizontal component data exhibit rapid

time shifts within certain offsets (e.g., between -2 and -3 km offsets in Figure 6.5f). This

behaviour is also apparent in the fullband raw data between -3–2 km and 2-3 km offsets

in Figures 6.3d and f, respectively. Upon further examination, we observe that the rapid

variations occur within a particular range of offsets that coincide with a fixed location in

the survey, specifically between x = 3 − 4 km. Limited elevation variations in this region

make elevation an unlikely source of the shifts. In addition, we do not observe similar time-

shifts in the vertical components which would be expected if the shifts were attributed to

elevation variations. In fact, within the range of interest, there are no discernible variations

in the vertical component data. While we cannot confirm it, we speculate that this effect

is a consequence of a localized, shallow shear-wave velocity anomaly. The low-frequencies

(2-4 Hz) and horizontal component data are too noisy to utilize for FWI. The complex wave

phenomena in the horizontal component also makes it challenging to fit with FWI. Based

on these factors, we focus our attention on fitting vertical component data for frequencies

above 4 Hz.

6.3 Preprocessing

While preprocessing is a necessary step for FWI, it’s importance is arguably reduced com-

pared to more conventional seismic imaging procedures. There are a number of factors

that contribute to this. First, the importance of low frequencies in FWI means that practi-

tioners emphasize preserving as much signal as possible. As such, unless noise attenuation

algorithms can avoid harming lower frequency signal, they may be avoided. In relation to

this, the influence of noise or undesirable features in the data can be suppressed by the

FWI algorithm itself through methods including selective windowing of the data, the use of

robust objective functions and gradient preconditioning. In practice, it is not uncommon

to utilize all these approaches to some degree. Finally, since FWI involves simulating the

wave equation, it can account for multiples, elevation variations, source and receiver ghost

effects, and other effects that are commonly removed for conventional imaging.

The primary objective of preprocessing in FWI is to remove, or normalize, features in the

data that cannot be modelled by the wave propagation engine. For example, in a land setting

acoustic modelling will not generate shear waves or surface waves; therefore, they should

either be removed from the data or excluded from the inversion to prevent erroneous fitting

of the data. Our processing sequence emphasizes the removal of coherent noise, amplitude

corrections and ground roll attenuation for the acoustic inversion. Ground roll removal is

done via FK (frequency-wavenumber domain) filtering. The processing flows are displayed

in Figure 6.6. Since ground roll is not removed in the elastic inversion, we are able to use
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Figure 6.6: Processing sequences for acoustic and elastic FWI.

a shorter taper at the lower frequencies. The 3D-to-2D amplitude corrections are a crude

geometrical spreading correction that correct for the fact that we are using a 2D propagator

to simulate 3D field data (Crase et al., 1990).

Variable source and receiver coupling along with complex near surface structure can con-

tribute to inconsistent signal amplitudes between sources and receivers. To mitigate this

effect, we apply surface-consistent amplitude corrections to the data. The original surface-

consistent hypothesis uses a convolutional model to decompose the data into source, receiver

and average amplitude terms (Taner and Koehler, 1981). Different studies have proposed

alternative decompositions, for example, Cary and Lorentz (1993) use a four component

convolutional model that separates the data into source, receiver, offset and common-depth

point terms. van Vossen et al. (2006) replace the offset and common-depth point terms with

Green’s functions computed for the subsurface. Our approach is similar to that of Kamei

et al. (2015) and can be viewed as an extension, in principle, to the study of van Vossen

et al. (2006). We focus solely on amplitude corrections, thus separate the root-mean square

amplitudes of the data into three terms:

Dij = UijSiRj , (6.1)

where Dij =
√∫

T
di(xj , t)2 dt and Uij =

√∫
T

ui(xj , t)2 dt. The decomposition is in terms

of source (Si), receiver (Rj) scalars and the RMS amplitudes of the synthetic data. To solve
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Figure 6.7: Surface-consistent scalars for acoustic inversion. (a) Source scalars. (b)
Receiver scalars.

for Si and Rj , Equation 6.1 is linearized by taking a log-transform such that

D̃ij = Ũij + S̃i + R̃j , (6.2)

where the tilde denotes the log-transformed variable (e.g., D̃ij = logDij). The contribution

from the synthetic data is known and can be subtracted from the left hand side of Equation

6.2 to give

∆̃ij = S̃i + R̃j , (6.3)

where ∆̃ij = D̃ij − Ũij . The linear problem is solved with Gauss-Seidel iterations that

update Si and Rj in an alternating manner (Cary and Lorentz, 1993). The decomposition

we propose assumes that the data and modelled data are similar down to a source and

receiver amplitude scaling. This is unlikely to be true in practice since errors in the velocity

model, source wavelet and modelling physics result in synthetics that do not match the

data. In our case, this issue is partially alleviated by source inversion and an initial model

that provides a reasonable initial fit to the data. In addition, we use time windows to limit

the data and synthetics to early arriving phases where the similarity is highest. Windowed

versions of the data and synthetics are used to solve the problem in Equation 6.3.

The estimated source and receiver amplitude scalars are presented in Figure 6.7. To assess

the correction, Figure 6.8 plots the RMS amplitudes for every trace in the data before and

after corrections. Columns or rows with low/high RMS values, relative to their neighbours,

correspond to inconsistent amplitudes in receivers or sources, respectively. Figure 6.8 depicts

a number of receivers with relatively high RMS values prior to surface consistent corrections.

After the corrections, the source and receiver amplitudes are more balanced. The effect of

these corrections can be observed in the shot gathers before and after surface consistent cor-

rections in Figure 6.9. Traces with high RMS amplitudes, relative to neighbouring traces,

have been scaled down after surface consistent corrections. We observe a weak offset de-

pending scaling (after processing) that arises from geometrical-spreading related amplitude
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differences between the data and synthetics that persist even after the 3D-to-2D correction.

We address concerns with the current amplitude scaling scheme in later discussion.
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Figure 6.8: Tracewise RMS amplitudes of data. (a) Processed acoustic data before
surface-consistent corrections. (b) Processed acoustic data after surface-consistent
corrections. (c) Acoustic synthetics. Gaps in the amplitude maps occur due to
mutes applied to the data.
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Examples of the final processed data for acoustic and elastic inversion are presented in

Figures 6.9d-f and 6.10. Figure 6.11 displays the average amplitude spectra for 3 shots

before and after processing. The data processed for elastic inversion possess more low

frequency content since the ground roll has not been removed.

6.4 Initial model building

The optimization landscape in FWI is highly non-convex and contains numerous local min-

ima (Virieux and Operto, 2009). The formulation of FWI as a linearized inverse problem

assumes that the initial model is in the vicinity of the true model. When this assumption

is violated, the local optimization will likely converge to a local minima that is not repre-

sentative of the true subsurface Earth model. A ‘good’ initial model is characterized as one

that does not produce synthetics that are cycle skipped. Cycle skipping is the phenomenon

whereby distinct phases in the simulated and observed data are shifted in time by more than

half a period of one another. Such behaviour is symptomatic of bulk errors in the velocity

model. Despite algorithmic advances in recent years, a good initial velocity model remains

the most essential ingredient to successful applications of FWI.

Our first iteration velocity model is an interval velocity model obtained through a Dix con-

version of the migration velocities provided by TGS (Dix, 1955). The synthetics generated

with this velocity model are cycle skipped by 2-3 periods. Bandpass filtered and fullband

data comparisons for select shots are presented in Figures 6.12 and 6.13. The synthetics

are delayed at all offsets indicating that the current velocity model is too slow. Given how

prominent the cycle skipping is, even in the lower bandpass, we do not anticipate being able

to invert for such significant velocity errors. To develop a more reliable initial model, we

combine information from sonic logs and first-break traveltime tomography.

6.4.1 Near-surface tomography

First-break traveltime tomography is performed using the TomoPlus software developed by

GeoTomo. First-breaks in the data are picked manually and exhibit good coherence except

at higher offsets (5 − 6 km). Ray tracing indicates that the penetration depth of refracted

arrivals is severely limited. The highest ray densities are observed between 300-400 m depth,

with only a few rays penetrating to the maximum penetration depth of 600 m. We expect

diving-wave FWI to allow for slightly deeper updates than this since FWI accounts for the

finite-frequency nature of wave propagation. Diving waves describes a set of wave modes

that are redirected to the Earth’s surface via refraction. Preliminary tests indicate that FWI

yields reliable updates down to depths of 750 m. The final tomography model is displayed
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Figure 6.9: Comparison of processed data (acoustic inversion) (a-c) before and (d-f)
after surface-consistent corrections. (a, d) Shot #10 (x = 1.1 km), (b, e) Shot #94
(x = 2.86 km) and (c, f) Shot #100 (x = 5.3 km). Processed data after surface
consistent corrections are the final data used for FWI.
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Figure 6.10: Processed data for elastic inversion. (a) Shot #10 (x = 1.1 km), (b)
Shot #94 (x = 2.86 km) and (c) Shot #100 (x = 5.3 km). FK filtering is not
applied to the elastic data.
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Figure 6.11: Comparison of amplitude spectra before and after processing. Spectra
for the raw (cyan), processed acoustic (blue) and processed elastic (red) data are
displayed. (a) Shot #10 (x = 1.1 km), (b) shot #94 (x = 2.86 km) and (c) shot
#100 (x = 5.3 km).
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Figure 6.12: Data comparison for acoustic observations and synthetics generated in
the interval velocity model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km)
and (c) Shot #100 (x = 5.3 km). The sections display observed and synthetic traces
in interlaced blocks. Viewed from left-to-right, data traces are bound by dashed
blue → red lines, whereas synthetic traces are bound by dashed red → blue lines.
The interval velocity model yields synthetics that are significantly cycle skipped.
Sections are trace normalized for display purposes.

in Figure 6.14. Figure 6.15 displays a comparison of bandpass-filtered data and synthetics

computed in the initial tomography model. In the 4-8 Hz band, the data and synthetics

exhibit good agreement, particularly in the first breaks. For the elastic inversion, an S-wave

velocity model is also required; however, we lack reliable constraints on S-wave velocities.

Shallow vp/vs ratios are only available in some distant logs (approximately 5 km crossline

distances). The shallow logs exhibit vp/vs ≈ 2 between 100-600 m depths. Low vs in the

near surface is consistent with the slow moveout of surface waves in the data which are

known to propagate at approximately 0.9vs and be sensitive to structure within 1-2 shear

wavelengths of the surface. Based on these observations, we assume a constant vp/vs ratio

of 2.0 below 100 m, and a linearly increasing vp/vs ratio to a maximum of 2.5 just beneath

the surface. Some shallow sonic logs, while removed from the survey area, demonstrate an

improved agreement with the tomographic initial model (Figure 6.16).
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Figure 6.13: Data comparison for bandpass filtered (4-8 Hz) acoustic observations
and synthetics generated in the interval velocity model. (a) Shot #10, (b) Shot
#94 and (c) Shot #100.
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Figure 6.14: Initial velocity models. (a) P -wave velocity model obtained via Dix
conversion of migration (PSTM) velocities. (b) P -wave velocity model obtained
from near-surface traveltime tomography. (c) S-wave velocity model.
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Figure 6.15: Data comparison for bandpass filtered (4-8 Hz) acoustic observations
and synthetics generated in the initial velocity model (after tomography). (a) Shot
#10, (b) Shot #94 and (c) Shot #100.
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Figure 6.16: Sonic logs for shallow structure. The plots display depth profiles for the
sonic logs (light blue), interval velocity (orange) and initial (green) P -wave velocity
models. Inset maps display the locations of the logs relative to the survey line. The
interval velocity is significantly slower than the tomography model and sonic logs.

A laterally homogeneous velocity model, derived from a smoothed sonic log, is inserted

below 750 m depth. The PSTM images suggest a flat subsurface with no significant dips.

This interpretation of the subsurface is consistent with the sonic longs which exhibit very

similar depth profiles. A range of sonic logs are plotted with the updated initial model in

Figure 6.17. A density model is generated using Gardner’s relation (Gardner et al., 1974);

the resultant model shows a reasonable agreement with available log constraints (6.17).

Unlike the sonic logs, the density logs do not display a slight decrease in density at 2 km

depth. We acknowledge that we have introduced an apparent error into the density model;

however, due to the limited effect that density has on the kinematics of wave propagation,

we proceed without further corrections.

6.5 FWI workflow

While FWI is a highly non-linear inverse problem, a number of successful strategies have

been established to assist with convergence to meaningful subsurface models. Developing

successful FWI strategies requires careful consideration of the dataset, acquisition, and the

parameters that are to be estimated. Limitations of the dataset often restrict the scope of

FWI. The properties of the dataset are used to customize an FWI workflow that promotes

robust convergence. We use a similar workflow for both acoustic and elastic inversions, with

the main differences coming in the choice of parameters in the optimization scheme.
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Synthetic data are generated with a 2D time-domain, staggered-grid finite-difference solver

(Virieux, 1986; Levander, 1988). The solver simulates isotropic P − SV wave propagation

in the elastic case; the variable-density acoustic solver is a modified version of the elastic

code. During inversion, we mute the near offsets (< 300 m) to prevent contamination from

strong noise in the data. Time windowing is utilized to focus the inversions on diving

P -waves and other early arriving events. For the acoustic inversion, since elastic effects

are neglected, it is not meaningful to fit amplitudes in the data; therefore, we replace the

waveform objective function with the global correlation objective function (Routh et al.,

2011; Choi and Alkhalifah, 2012). The global correlation objective is defined in the time-

domain as

J(m) = −
Ns∑
s=1

Nr∑
r=1

∫
T

us(xr, t; m) · ds(xr, t) dt√∫
T

us(xr, t; m)2 dt
√∫

T
ds(xr, t)2 dt

, (6.4)

and is analogous to phase-only objective functions used in frequency-domain FWI (Shin

and Min, 2006). Equation 6.4 is equivalent to minimizing a normalized waveform differ-

ence objective function (Choi and Alkhalifah, 2012). By matching phases in the data and

synthetics, we focus on fitting the kinematics of the data. Altering the objective function

in FWI only changes the adjoint source used during gradient computations (Plessix, 2006).

The adjoint source for the global correlation objective function is defined by Routh et al.

(2011); Choi and Alkhalifah (2012). While elastic inversion allows us to account for elastic

effects, amplitude information is still unreliable due to errors from 2D modelling and the ne-

glecting of attenuation. For this reason, we continue to emphasize fitting phase-information

with the global correlation norm in the elastic inversions.

Multi-scale strategies are effective at mitigating non-linearities in the FWI objective func-

tion. The principle of multi-scale strategies in FWI is to perform a series of inversions in

a hierarchical manner, fitting large scale features of the data before progressing to smaller

scale features. Conventionally, scale separation in the data is achieved in the Fourier do-

main, with large scales corresponding to low frequencies in the data and vice versa. For

time-domain FWI, we adopt the multi-scale strategy of Bunks et al. (1995). The method

operates in successive frequency stages that increase the upper cutoff frequency of a band-

pass filter (applied to the data and synthetics). The initial model for each stage (except

for stage one) is taken as the final inverted model from the preceding stage. The frequency

bands that we invert range from 4-20 Hz.

FWI is an ill-posed problem meaning an infinite number of models can fit the data equally

well (Virieux and Operto, 2009). Model regularization, included explicitly into the objective

function, serves to stabilize the inversion and make it more well-posed. Furthermore, model

regularization constrains updates by imposing prior assumptions on the model. The tuning

of regularization hyperparameters is a costly procedure in FWI. In lieu of conventional



CHAPTER 6. FWI IN THE WESTERN CANADIAN SEDIMETARY BASIN 140

regularization, we constrain inversion updates with a form of gradient preconditioning known

as anisotropic scaled Sobolev preconditioning (SSP) (Zuberi and Pratt, 2017). Anisotropic

SSP involves applying a wavenumber domain filter with differing vertical and horizontal scale

lengths to the gradient. In contrast to a Gaussian filter, SSP allows fine scale structure to

feature into the inversion earlier by retaining high wavenumber features while emphasizing

low wavenumber ones (Zuberi and Pratt, 2017). An example of raw and preconditioned

gradients are presented in Figure 6.19. The SSP parameters µ0, µx, and µz follow the

definition in equation 16 of Zuberi and Pratt (2017); in all applications we use µ0 = 1. The

SSP promotes the continuity of horizontal features in the gradient and effectively reduces

the presence of acquisition related artefacts in the gradient. The SSP scale lengths µx

and µz can be relaxed as the inversion progresses. In this application, we do not find a

noticeable difference by relaxing the parameters within a frequency band. We find the

best performance is achieved by gradually relaxing the vertical scale length (µz), while

keeping the horizontal scale length (µx) fixed. Reducing both scale lengths increases the

presence of acquisition related artefacts in the inverted model. Larger horizontal scale

lengths produce preconditioned gradients that are preferentially smoothed in the horizontal

direction, consistent with the geological structure suggested by the PSTM images. Each

stage of our multi-scale inversion performs 10 preconditioned non-linear conjugate gradient

iterations with a parabolic line search (Nocedal and Wright, 2006). Limiting the number

of FWI iterations prevents overfitting of the data and mimics the effect of damping. The

extent of model updates are also constrained by bound (box) constraints. Parameter values

that lie outside of a permissible interval are projected to the boundaries of the user specified

interval; the bound intervals are set using log information. This step helps to avoid non-

physical updates and potential instabilities.

Source estimation is performed using the time-windowed version of Equation 2.36. In prac-

tice, we found windowing yields cleaner, more impulsive source signatures and prevents late

arriving energy from appearing in the source. We select a time window that is sufficiently

wide to prevent distortion of the source signature. An example of the windowed data are

presented in Figure 6.20. Tighter windows are used for the elastic inversion to counter-

act the increased complexity in the waveforms. The initial synthetics are modelled with

minimum-phase Ormsby wavelets that have a flat spectra in the bandwidths present in the

data. An independent source wavelet is estimated for each shot.

During inversion, we found it sufficient to update the source wavelet after each frequency

stage as opposed to after every FWI iteration. As a final step, we normalize each estimated

wavelet by their RMS amplitudes in an effort to equalize the individual source contribu-

tions (Cheng et al., 2017). An example of the estimated wavelets before and after source

normalization is displayed in Figure 6.21.
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Sequence Frequency band (Hz) Damping (s) Anisotropic SSP (µx, µz)

I/II 4-8 0.13, 0.25 1, 0.10
III/IV 4-12 0.09, 0.18 1, 0.08
V/VI 4-16 0.06, 0.13 1, 0.06

VIII/IX 4-20 0.05, 0.10 1, 0.05
Table 6.1: Parameter choices for multi-scale Acoustic FWI. Each frequency band
performs inversion over two time windows.

Source estimation is performed after using each frequency stage as opposed to after every

FWI iteration. Offsets below 500 m and above 3500 m are not considered during source

estimation. A 0.15 s time window is also applied around the first-breaks of the data and

synthetics for source estimation.

6.6 Results

6.6.1 Acoustic FWI

The acoustic inversion begins in the 4-8 Hz frequency band and advances in 4 Hz increments

to a final frequency band of 4-20 Hz. Acoustic modelling generates pressure-component seis-

mograms and uses a free surface boundary condition (with absorbing boundaries elsewhere).

To fit pressure-component waveforms to velocity measurements in the data, we bury the re-

ceivers just beneath the surface following the approach of Plessix et al. (2012). Table 6.1

summarizes the inversion stages and parameters used for the acoustic inversion. While a

variable-density model is used, it is not updated throughout the inversion. The inverted vp

models after each frequency stage are depicted in Figure 6.22. The 4-8 Hz inversion intro-

duces a high-velocity layer to the velocity model at around 500 m depth. The continuity

of the layer is interrupted for x > 4.5 km and is likely caused by 2 400 m source gaps in

the acquisition for this area. As the inversion progresses to higher frequencies, the high-

velocity layer becomes more refined; however, some imprints of the acquisition become more

apparent towards to the boundaries of the model. We also observe a very thin, low-velocity

channel at approximately 100 m depth between x = 3 − 6 km. In the subsequent elastic

inversion, this feature does not appear leading us to believe that it is not genuine and is

an artefact of the acoustic inversion. The artefact may represent leakage of low S-wave

velocities in the near surface which could occur if shallow converted modes are present in

the data. Since the acoustic modelling cannot account for the converted wave modes, the

inversion will compensate by trying to fit these modes with erroneous structure.
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Figure 6.17: Sonic logs for deeper structure. The plots display depth profiles for the
sonic logs (light blue), interval velocity (orange) and initial (green) P -wave velocity
models. Inset maps display the locations of the logs relative to the survey line.
Similar velocity trends are apparent in all the logs, consistent with a flat, layered
subsurface. Inset maps display the locations of the logs relative to the survey line.
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Figure 6.18: Density logs. The plots display depth profiles for the density logs (light
blue), interval (orange) and initial (green) density models. The interval and initial
density models are derived from Gardner’s relation using the corresponding P -wave
velocities. Inset maps display the locations of the logs relative to the survey line.
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Figure 6.19: Comparison of (a) raw FWI gradient and (b) SSP preconditioned
gradient (µ0 = 1.0, µx = 1.0, µz = 0.1). (c) A comparison of 1D Sobolev and
Gaussian filters. The preconditioning attenuates acquisition artefacts and promotes
horizontal continuity in the gradient.
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Figure 6.20: Windowed data used for source estimation in acoustic inversion. Offsets
are limited to 3.5 km and a tapered time window is applied around the first breaks.
(a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km) and (c) Shot #100
(x = 5.3 km).
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Figure 6.21: Source wavelets for independent shots (a) before and (b) after source
normalization. Normalization equalizes the contribution from different sources.
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Figure 6.22: Inverted P -wave velocity models from acoustic FWI. (a) Initial model
and model after (b) 4-8 Hz, (c) 4-12 Hz, (d) 4-16 Hz and (e) 4-20 Hz inversions.

Figure 6.23 displays a data comparison for acoustic synthetic data generated in the initial

velocity model. The initial synthetics show a relatively good fit to the data and is expected

due to the first-break fitting performed during tomography. The most notable mismatches

occur in the wave coda arriving after the first breaks. In the later phases, the waveforms

display less agreement and misalignment of various phases is apparent. After inversion,

the waveform match is improved across all offsets (Figure 6.24). Examination of the source

wavelet can be used as an additional QC measure. After inversion, the wavelets are expected

to be more consistent between shots. While the change is not dramatic, the wavelets for

shots 20-40 demonstrate improved similarity after inversion.
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Figure 6.23: Data comparison for acoustic observations and synthetics generated in
the initial FWI model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km)
and (c) Shot #100 (x = 5.3 km). First breaks are well fit but later arrivals are less
consistent at mid/long offsets.

6.6.2 Elastic FWI

Elastic inversion follows similar steps to the acoustic inversion with some additional changes.

The synthetic data are velocity component seismograms recorded at the surface. A free sur-

face boundary condition is implemented using stress-image methods (e.g., Levander (1988)).

The elastic free surface produces high-amplitude surface waves in the synthetics. Due to

errors in our S-wave velocity model, the modelled ground roll propagates faster than in

the true data. While recent studies have explored waveform inversion of surface waves, we

do not consider it here due to the large inconsistencies in the ground roll signature. Time

windows and bottom mutes are used to exclude surface waves from the inversion. Due to the

increased complexity of elastic inversion, we take more conservative steps in the multi-scale

inversion. The frequency bands inverted range from 4-20 Hz, increasing in 2 Hz increments

from a starting band of 4-8 Hz. Both vp and vs are considered for inversion parameters;

density is updated at each iteration via Gardner’s relation. Given that the inversion will be

fitting phase-information in the vertical component data, we anticipate limited sensitivity

to S-wave velocity structure. Nonetheless, we include it as an inversion parameter to miti-

gate potential crosstalk between the parameters. A summary of the inversion parameters is

presented in Table 6.2.
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Figure 6.24: Data comparison for acoustic observations and synthetics generated in
the final FWI model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km) and
(c) Shot #100 (x = 5.3 km). The waveform fit has been improved in the mid to
long offsets.

Sequence Frequency band (Hz) Damping (s) Anisotropic SSP (µx, µz)

I 4-8 0.25 5, 0.10
II 4-10 0.2 4, 0.1
III 4-12 0.2 4, 0.1
IV 4-14 0.2 3, 0.1
V 4-16 0.2 1, 0.1
VI 4-18 0.2 1, 0.06
VII 4-20 0.1 1, 0.05

Table 6.2: Parameter choices for multi-scale elastic FWI.
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Figure 6.25: Estimated source wavelet (a) before and (b) after acoustic FWI. (c)
Comparison of average wavelet before and after inversion.
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Figure 6.26: Inverted P -wave velocity models from elastic FWI. (a) Initial model
and model after (b) 4-8 Hz, (c) 4-12 Hz, (d) 4-16 Hz and (e) 4-20 Hz inversions.
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Figure 6.27: Inverted S-wave velocity models from elastic FWI. (a) Initial model
and model after (b) 4-8 Hz, (c) 4-12 Hz, (d) 4-16 Hz and (e) 4-20 Hz inversions.

The inverted P - and S-wave velocity models are displayed in Figures 6.26 and 6.27, respec-

tively. The vp updates exhibit longer-wavelength updates than their acoustic counterparts

owing to the increased bandwidth of the processed elastic data. The high vp perturbation

that appeared in the acoustic inversion is also observed in the elastic inversion at higher

frequency stages (after 4-16 Hz band). The amplitude of the high velocity layer is reduced

relative to the acoustic vp model, yet it exhibits improved lateral coherency and more well

defined layered structure. It is not clear whether the difference arises from the switch to

elastic modelling or the additional low-frequency information in the data. The shallow

channel feature observed in the acoustic vp inversion is not apparent here. The vs model
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Figure 6.28: Difference between initial and inverted S-wave velocity model. The
inversion has poor sensitivity to S-wave structure in general; however, we do observe
a decrease in shallow velocities consistent with the data.

updates appear to be limited to depths below 400 m. Due to the lack of constraints, it

is challenging to comment on the validity of the vs updates. We note that the inversion

reduces S-wave velocities for depths below 100 m (Figure 6.28). The reduction in velocity is

consistent with low velocities indicated by the slow moveout of the ground roll in the data.

The final source wavelets display improved consistency, across sources, compared to the

initial wavelet. Comparisons of the data before and after inversion are displayed in Figures

6.29 and 6.30, respectively. Similar to the acoustic case, the first-breaks in the synthetics

match reasonably well with the observations. The waveform fit for later arriving phases is

improved across all offsets after inversion.
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Figure 6.29: Data comparison for elastic observations and synthetics generated in
the initial elastic FWI model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x =
2.86 km) and (c) Shot #100 (x = 5.3 km). Synthetic ground roll has been muted
to prevent obfuscating the sections.

As an initial QC independent of the inversion, we compare the inverted P -wave velocity

models from acoustic and elastic inversion to a depth-converted PSTM image in Figure

6.32. The purpose of the comparison is to identify any structural similarities in the velocity
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Figure 6.30: Data comparison for elastic observations and synthetics generated in
the final elastic FWI model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km)
and (c) Shot #100 (x = 5.3 km).

model and the seismic image. In the comparison, a dashed cyan line marks the approximate

depth of the base of the high-velocity layer. The presence of a strong reflection event in the

image (Figure 6.32c) offers some confidence to the validity inverted models.

6.6.3 Elastic FWI (w/ reflections)

Thus far, we have applied conventional FWI by attempting to fit refracted arrivals in the

data. Given the nature of the acquisition and subsurface, the diving waves in this study

have limited penetration depths. Reflections penetrate deeper into the subsurface and can

therefore be used to constrain deeper structure. The challenge with using reflections in land

data is that they are typically masked by high amplitude ground roll. Fitting reflection

data requires for the ground roll to be removed. One approach is to apply ground roll

attenuation to both the data and the modelled synthetics at each FWI iteration prior to

gradient computations. We explored this approach but found it to be impractical due to

the differing ground roll signatures in the data and the synthetics. FK filtering is also prone

to producing artefacts that could compromise the FWI updates.

To access the reflections, we implemented the modified free-surface boundary condition

proposed by Plessix and Perez Solano (2015). The modified boundary condition alters the

zero normal-stress condition, σ · n̂|z=0 = 0. In the conventional condition, σxz = σzz = 0,

whereas in the updated condition the σxz term is replaced by its vertical derivative such

that ∂σxz

∂z = 0; the σzz term is not altered. The modification prevents ground roll from being
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Figure 6.31: Estimated source wavelet (a) before and (b) after elastic FWI. (c)
Comparison of average wavelet before and after inversion.

generated in the synthetic data, albeit with some limitations. The reflection coefficient of

PP waves at the free surface has a fixed value of -1 and is no longer angle dependent.

Similarly, the SS reflection coefficient has a value of 1 and is most often in the opposite

direction to that produced with a true free surface. Plessix and Perez Solano (2015) state

that the approximation is best suited for small angles and when near-surface vp/vs ratios

are above 2. The error in SS reflection coefficients is justified by the fact that we focus on

fitting P -wave data on the vertical component.

For the inversion, offsets above 2.25 km are muted and ground roll in the data is removed

prior to inversion via FK filtering. The inversion domain is extended to 2 km depth. The

initial model is updated in the upper 750 m with the near-surface inversion results from

elastic FWI. Inversion is performed over 4-12, 4-16 and 4-20 Hz frequency bands. Low SNR

means that the reflection events are not distinguishable at lower frequency bands. Each

frequency stage performs 20 preconditioned NLCG iterations. Since reflections contribute

to higher-wavenumber features in the gradient, we use larger Sobolev scale length in the pre-

conditioner to promote longer-wavelength updates. A summary of the inversion parameters
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Figure 6.32: Comparison of inverted vp models with a depth-converted PSTM im-
age. The final FWI models from (a) acoustic and (b) elastic inversion exhibit a
high-velocity perturbation at approximately 0.5 km depth (cyan line). The struc-
ture appears to coincide with a strong reflector apparent in the depth-converted
PSTM image.

Sequence Frequency band (Hz) Damping (s) Anisotropic SSP (µx, µz)

I 4-12 - 5, 0.75
II 4-16 - 5, 0.25
III 4-20 - 3, 0.1

Table 6.3: Parameter choices for multi-scale elastic FWI including reflections.

is presented in Table 6.3.

The initial and final inverted vp and vs models are displayed in Figures 6.33 and 6.34, re-

spectively. The inclusion of the reflection data into the inversion has improved the lateral

continuity of the high-velocity layer at 500 m depth in the vp model. Additional layers

become apparent below the high-velocity perturbation. A secondary high velocity pertur-

bation is observed at 800 m depth; however, it appears that the inversion was not able to

construct its assumed true lateral extent. No significant updates appear below 1 km depth.

The vs model again shows very limited updates as expected. The inversion does appear to
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further decrease the S-wave velocities in the upper 250 m. A comparison of data and final

synthetics is displayed in Figure 6.35. After inversion, some weak reflections events are now

apparent in the near offsets up to 1 s; within this range the data and synthetics are well

aligned.
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Figure 6.33: Estimated P -wave velocity models. (a) Initial model after tomography
and well analysis. (b) Model after near-surface elastic FWI. (c) Model after elastic
inversion using reflections and a modified free-surface boundary condition. Incor-
porating reflections has helped to improve the lateral continuity of the apparent
reflectors.
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6.7 Validation

For the final validation of the inverted model, we compare the inversion results to sonic log

data and investigate the impact of the updated velocities on their respective RTM images.

Figure 6.36 plots two sonic longs close to the survey line. Since the initial model was partially

derived from a smoothed sonic log, the agreement is already good before inversion. In the

first log, some velocity perturbations have been added to the initial model. It is unclear

whether the inverted model can be considered an improved fit to the sonic log. The second

log is positioned closer to the edge of the geometry where acquisition gaps and reduced

illumination result in negligible updates.
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Figure 6.34: Estimated S-wave velocity models. (a) Initial model after tomogra-
phy and well analysis. (b) Model after near-surface elastic FWI. (c) Model after
elastic inversion using reflections and a modified free-surface boundary condition.
Incorporating reflections has further reduced shallow S-wave velocities.
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Figure 6.35: Data comparison for elastic observations and synthetics generated in
the final elastic FWI model. (a) Shot #10 (x = 1.1 km), (b) Shot #94 (x = 2.86 km)
and (c) Shot #100 (x = 5.3 km). Some of the early arriving reflection events, visible
at near offsets, now appear in the synthetic data and demonstrate good agreement
to the data.
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Figure 6.36: Sonic log validation. (a) Well at x = 2.5 km. (b) Well at x = 5.2 km.
The sonic logs and initial model are depicted as pale blue and dashed green lines,
respectively. The inverted P -wave velocities appear as bold red lines. Horizontal
dashed red lines mark formation tops picked from the log data. FWI has added
small perturbations to the background model. No discernible updates are achieved
below 1 km depth.

The primary use of high-resolution FWI models is to facilitate improved depth imaging. We

compute 25 Hz RTM images for 4 different velocity models: the interval velocity, the initial

model, the model after elastic near-surface inversion and the final inversion model after

elastic inversion including reflections. A comparison of the various RTM results is displayed

in Figure 6.37. To assess the correctness of the seismic images, the positions of various

formation tops are also plotted. The RTM image computed with the interval velocity (Figure

6.37) is clearly inadequate. Deeper reflectors show prominent undulations and shallow

reflectors are disrupted and defocused. The image is noticeably improved with the initial

model. Shallow reflectors exhibit improved lateral coherency and the flatness of the deeper

reflectors has improved. The formation tops now are now aligned with prominent reflectors

in the image. After near-surface FWI, the flatness of the reflectors between x = 5− 6 km is

slightly improved. We observed no noticeable difference between the RTM images produced
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with the acoustic and elastic near-surface vp models. The final RTM, computed with the

reflection-based inverted model, shifts the reflector positioning slightly but shows no distinct

improvement in the image. The velocity models used to produce the RTM images in Figure

6.37 are kinematically very similar, hence the lack of change in the various images.
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Figure 6.37: Acoustic RTM images computed using the (a) interval, (b) initial,
(c) inverted elastic (near-surface) and (d) inverted elastic (w/ reflections) P -wave
velocity models. The red ticks mark geological formation tops. The reflectors in
the image exhibit poor alignment with the formation tops in the interval velocities.
Significant undulations exist in the layers, further confirming the inaccuracy of the
velocity model. The initial model significantly improves the flatness of the reflectors
with their positioning with respect to the formation boundaries. After near-surface
FWI, some uplift is observed in the deep reflectors improving their flatness. The
update after including reflections has negligible impact on the RTM image.

Before concluding, we discuss some potential concerns that were not addressed by the pro-

posed FWI workflow. Topography was neglected in this study due to the small variations

in elevation across the survey line. For more pronounced topography, neglecting it can in-

troduce time shifts (in synthetic data) due to mispositioned sources and receivers. Such

time shifts could result in erroneous velocity structure being introduced into the model.

The more egregious omissions in this study are those of anisotropy and attenuation. The

geological evidence suggests that both factors could be prevalent in the survey area. By

assuming an isotropic model, our inversion may under/overestimate velocity perturbations,

as well as introduce erroneous features as a consequence of attenuation/anisotropy param-

eters mapping into the velocity model. Velocity errors can arise because the inversion is

forced to fit the data by modifying only isotropic acoustic or elastic parameters. In reality,
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Figure 6.38: Final inverted P -wave velocity model after elastic inversion with an
RTM overlay.

features of the data may be associated with changes in anisotropy/attenuation. Without

further exploration, it is difficult to assess if, or to what extent, we have introduced errors

by omitting attenuation and anisotropy; future studies in the area should consider including

them.

The amplitude corrections we have adopted exhibit some redundancy/competing effects. For

example, source normalization largely equalizes amplitude variations arising from variable

source signatures. As such, the source correction term in the surface-consistent amplitude

correction has limited influence. Similarly, a secondary geometrical spreading type correc-

tion arises from the amplitude matching of data and synthetics in the surface-consistent

amplitude correction step. This effect occurs because amplitude differences (at mid-wide

offsets), between data and synthetics, persist after the 3D-to-2D correction. Ultimately,

our emphasis on a phase-based inversion of velocity parameters reduces the importance

of amplitude information in the inversion. If accurate amplitude information is necessary,

an inversion workflow should reconcile issues pertaining to geometrical spreading, along

with inconsistent source and receiver signatures. Geometrical spreading concerns can be

alleviated with 2.5D or 3D modelling; however, this will increase the computational cost.

More research is required to determine a proper approach to dealing with variable source

and receiver signatures on land data. Signature in this context refers to amplitude and

phase variations that occur between adjacent/nearby receivers. Variable signatures may

be linked to instrument variation, but can also be due to complex near-surface hetero-

geneities. Future research, should explore the potential link between near-surface structure

and source/receiver signatures and whether the signatures can be inverted for.
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6.8 Conclusions

We have presented applications of acoustic and elastic FWI on a 2D land dataset from the

WCSB. Initial velocity models are developed through a combination of first-break traveltime

tomography and structural constraints from well log data. An initial interpretation of the

subsurface is obtained by combining geological knowledge of the study area with PSTM

images which indicate a finely layered flat subsurface. Interleaved shale and sandstone

layers at approximately 2 km depth are the primary sources of hydrocarbons in the region

and potential target areas. Prior to FWI, the quality of the low frequencies in the data are

assessed. Poor SNR observed at frequency bands below 4 Hz prompts us to only consider

frequencies above 4 Hz. In preprocessing, the data are prepared differently for acoustic and

elastic inversions. For both cases, the data undergo bandpass filtering, resampling, trace

editing, 3D-to-2D amplitude corrections and surface consistent amplitude corrections. FK

filtering is also included in the acoustic inversion to remove ground roll from the data.

We perform multi-scale FWI using the global correlation objective function to emphasize

the fitting of phase information in the data. A combination of time windowing and gradient

preconditioning ensures proper convergence of the inversion. For the acoustic inversion only

P -wave velocities are updated whereas both P - and S-wave velocities are updated during

elastic inversion. We observe reasonable updates down to depths of 750 m. FWI introduces

a high-velocity vp perturbation in both acoustic and elastic inversions. The elastic FWI

result demonstrates improved structural coherence and remove a shallow channel artefact

that is present in the acoustic result. Updates to vs are limited, but generally demonstrate

a decrease in shallow velocities relative to the starting model. After inversion, the data fit

is improved in both test cases.

To extend the penetration depth of FWI below that of the diving waves, we include reflec-

tions into the inversion. This is done in the elastic case by implementing a modified free

surface boundary condition in the waveform simulations. The modified boundary avoids

generating surface waves, thus makes reflections visible. Ground roll is removed from the

observed data prior to inversion. By including reflections, we improve the lateral continu-

ity of the reflector introduced by near-surface FWI. Some additional reflectors also become

more apparent down to depths of 1 km.

The deficiencies in the data (lack of wide offsets and low frequencies) limit the utility of

this dataset for FWI. While FWI updates are able to provide increased resolution in the

velocity model, the updates produced only small improvements in the RTM images. This

is because the initial model already captured the correct kinematics of the data. Pushing

FWI to high resolutions in this study results in velocity updates that enter the scale lengths

of migration. High-resolution FWI is potentially useful if it allows direct interpretation;
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however, this often relies on having knowledge on multiple parameters. Although the vs

model is updated in reasonable directions, we are unable to achieve similar high-resolution.

Furthermore, the limited penetration depth prevents us from updating the model in the

target area. Complex near surface structure remains challenging to fit with FWI due to the

influence of multiple parameters in this region.



CHAPTER 7

Conclusions

7.1 Summary

Full waveform inversion is a powerful inversion technique used to estimate subsurface mate-

rial parameters from seismic data. Increased accessibility and capabilities of high-performance

computing systems, coupled with continued algorithmic advancements have led to the adop-

tion of FWI for large-scale 3D inversion in global and exploration seismology. FWI is rou-

tinely applied in modern seismic processing workflows for oil and gas exploration in complex

subsurface environments. In spite of recent successes, FWI remains troubled by fundamental

problems stemming from the ill-posed nature of the inverse problem. The non-linearity of

the objective function mandates a good initial velocity model to ensure proper convergence.

The sensitivity and computational cost of the algorithm mean that applications on real data

typically require careful monitoring and extensive quality control checks.

In chapter 2, we review the formulation of FWI as a PDE-constrained optimization problem.

Some details related to the adjoint-state method and a generic FWI algorithm are included.

We also establish and demonstrate some of the challenges of multi-parameter FWI.

In chapter 3, we explore the extension of source-encoding methods to multi-parameter FWI.

Source encoding encompasses a range of methods that use simultaneous sources to reduce

the number of PDE solves required per FWI iteration. In the presence of source-encoding,

the FWI gradient exhibits cross-talk noise associated with interactions between wavefields

from different sources. Cross-talk noise also appears in the source-encoded Hessian. We

demonstrate that cross-talk noise (in the Hessian) can be attenuated randomizing the source

encoding at each iteration. By suppressing cross-talk noise, similar parameter trade-off

behaviour is observed for conventional and source-encoded FWI. A shortcoming of source
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encoding methods is presented in the case of a data-driven inversion. We demonstrate

that the inability to perform time/offset windowing to individual simulated shots, when

using encoding, compromises the inversion leading to unsatisfactory inversion results for a

particular test case.

In chapter 4, we propose a subsampled truncated Newton method for FWI. The method

uses second-order stochastic optimization to reduce the computational cost of second-order

optimization methods. Source subsampling is applied during the computation of Hessian-

vector products to reduce the number of PDE solves required for the inner CG iterations.

The STN approach demonstrates convergence rates and resolving power comparable to

conventional truncated Newton methods, while incurring a computational cost closer to first-

order gradient methods. A non-uniform sampling scheme is also proposed to identify sources

that have a greater contribution to the summed Hessian-vector products. We perform

numerical tests for two synthetic models and demonstrate that non-uniform sampling is

beneficial when illumination in the subsurface is highly irregular. In the examples, irregular

illumination is caused by lateral heterogeneities and structure that causes strong scattering

in isolated regions of the model.

Chapter 5 presents a local resolution analysis and a linearized Bayesian inversion for acous-

tic FWI. Both analyses are supported by approximating the Hessian as a superposition of

Kronecker products. The factorization allows for Hessian-vector products to be computed

efficiently through a series of matrix multiplications involving (relatively) small matrices.

The Kronecker factors are interpreted as vertical and horizontal point-spread functions. In

the local resolution analysis, we apply the Hessian to spike perturbations at various points in

the subsurface to extract horizontal and vertical resolution lengths. A linearized Bayesian in-

version is performed using a structurally-informed model prior. The prior model distribution

and data likelihood terms are assumed to be Gaussian. We use a low-rank approximation of

the prior-preconditioned Hessian to enable efficient sampling of the posterior distribution.

Samples estimated from the posterior distribution are used to compute standard deviations

and 95% confidence intervals on the inverted vp model. Through the analyses, we observe

that resolution degrades towards the boundaries of the acquisition/model where illumination

is limited.

Chapter 6 presents applications of acoustic and elastic FWI on a 2D land dataset from

the WCSB. We devise a workflow that covers initial model building, data processing, and

multi-scale inversion. A near-surface P -wave velocity model (to 750 m depth) is obtained

from traveltime tomography. Deeper regions of the initial vp model are inferred from sonic

log data; log data are also used to inform the initial vs model. A preliminary analysis

of the subsurface, using PSTM and knowledge of geological formations, identifies a finely

layered subsurface composed of interleaving shale and sandstone layers. We apply minimal
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data processing for acoustic and elastic inversion. The processing consists of bandpass

filtering, resampling, trace editing, 3D-to-2D amplitude corrections, and surface-consistent

amplitude corrections. For the acoustic inversion, an additional ground-roll attenuation

step is performed via FK filtering. During FWI, we apply a multi-scale approach and use

the global correlation objective function to emphasize the fitting of phase information in

the data. Time windowing and gradient preconditioning assist with proper convergence of

the inversion. Acoustic and elastic inversion yield reasonable updates to P -wave velocity to

depths of 750 m. Both inversions introduce a high-velocity vp perturbation. Elastic FWI

result demonstrates improved structural coherence and removes a shallow channel artefact

apparent in the acoustic result. Updates to vs are limited, but generally demonstrate a

decrease in shallow velocities relative to the starting model. After inversion, the data fit

is improved in both test cases. In the elastic inversion, reflections are included by using a

modified boundary condition. The inclusion of reflections improves the lateral continuity of

the reflector introduced by near-surface FWI. Some additional reflectors also become more

apparent down to depths of 1 km.

In this final section, I offer some of my personal curiosities for future FWI research. Nu-

merous alternative objective functions (e.g., traveltime-based, matching-filter objectives,

optimal transport methods etc.) have been proposed to reduce the non-convexity of FWI

and improve the robustness of convergence. At a basic level, these objectives succeed by sim-

plifying the representation of the data. Comparing the similarities and shortcomings of these

various algorithms could be useful in identifying more fundamental factors controlling con-

vergence behaviour. Extended inversion algorithms have demonstrated impressive resilience

to poor initial models in FWI; however, most current algorithms are too computationally

expensive to be practical. An interesting parallel exists between deep neural networks and

extended modelling algorithms. In both cases, models are over-parametrized to the extent

that it becomes trivial, or easy, to fit the data. Models can be subsequently simplified to

something more reasonable. In deep learning, this over-parametrization seems important to

navigating the non-convex optimization landscape. It remains to be seen whether concepts

from either discipline can assist the other.

Deep learning has emerged as a powerful tool for computer vision and natural language

processing. While some efforts in translating deep learning algorithms to exploration seis-

mology have been made, transferability of trained networks over a wide range of datasets

has not been demonstrated. An interesting avenue of research could explore deep learning as

a means to augment full waveform inversion/seismic imaging. One might envision training

a network that acts as a projection-like operator, projecting model updates onto a learned

set of feasible models. Generative models that estimate samples of a learned probability

distribution may be useful for exploring prior, or true, model distributions. The challenge in

these scenarios is producing suitable datasets that are diverse enough to be representative
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of true Earth models.

My exposure to real data FWI has made it abundantly clear that the data dictate what

FWI can accomplish. As a response to this, I believe we should establish better constraints

on what subsurface properties the data can realistically estimate. Formally, this involves

characterizing the null space in FWI. Proper diagnosis of the null space should allow us to

identify which parameters our data are sensitive to, whether there are deficiencies in the data

that could be targeted, and whether we are overextending the “reach” of our data. Ideally,

such analyses would be done inexpensively prior to inversion to help inform the choice of

physics model and FWI workflow. The ability to quantify the null space, and uncertainties,

will be necessary to provide rigorous validation of multi-parameter models. If FWI is ever

to be used for quantitative interpretation, such analyses are essential. Finally, during my

land FWI application, we explored the inclusion of surface-consistent amplitude scalars.

A more comprehensive approach might utilize surface-consistent deconvolution operators to

account for phase and amplitude variations between source and receiver signatures. Surface-

consistent deconvolution operators can also capture complexities in the data associated with

complex near-surface structure. How such operators interact with high-resolution, near-

surface FWI remains to be seen.
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APPENDIX A

Shaping covariance operator

In this section, we define structure tensors and provide details about the shaping covariance

operator. Equations are expressed in terms of continuous scalar fields (that are a function

of position x); however, they can be readily adapted to discrete systems. Where suitable,

we drop the spatial dependence of variables for brevity. Structure tensors T(x) are outer

products of the gradient operator applied to an arbitrary scalar field p(x):

T(x) = (∇p(x))(∇p(x))T . (A.1)

Structure tensors are symmetric positive-definite matrices that are commonly used to extract

orientation information from images. In the 2D case, T is a 2 × 2 matrix defined at each

position x. In the discrete setting, a structure tensor would be defined for each discrete

point, or pixel in the case of images. For each position, the Eigen decomposition of T can

be written as

T = λ1v1v
T
1 + λ2v2v

T
2 , (A.2)

where λ1 and λ2 are the eigenvalues of T associated with the eigenvectors v1 and v2. Hale

(2014) defines a smoothing or diffusion tensor D(x). The diffusion tensor shares the same

eigenvectors as T but alters the eigenvalues. In our implementation, we define D as

D = κ1v1v
T
1 + κ2v2v

T
2 , (A.3)

where κ1 = α and κ2 = α + (1 − α) exp
(
− λ1

λ1−λ2

)
; α is a small value taken to be 0.01.

By rearranging the eigenvalues, the largest eigenvectors of D (v2) are oriented parallel to

coherent structures in the scalar field q.

To begin the definition of the smoothing covariance, we define the scalar fields p(x) and
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q(x) that are related via

q(x) = CM(x)p(x), (A.4)

where CM(x) denotes a covariance operator. Hale (2014) equates the application of the

smoothing covariance operator, to the solution of the following anisotropic PDE:

|D|− 1
4 (x)(1− α∇ ·D(x) · ∇)l(1− β∇ ·D(x) · ∇)|D|− 1

4 (x)q(x) = γp(x), (A.5)

where α and β are scalars that characterize the covariance operator (see Hale (2014) for

more details). We reiterate that D is a non-stationary diffusion tensor. In this study, we

select l = 2, α = 1 and β = 0 and do not further experiment with these parameters. Hale

(2014) proposes to solve equation Equation A.5 by sequentially solving a series of linear

problems:

q0(x) = |γ2D(x)| 14 p(x) (A.6)

(1−∇ ·D(x) · ∇)q1(x) = q0(x) (A.7)

(1−∇ ·D(x) · ∇)q2(x) = q1(x) (A.8)

q(x) = |γ2D(x)| 14 q2(x). (A.9)

The scalar γ is a scaling term that is proportional to a user-defined scale length r0 (γ ∝
4πr2

0); further specifics can be found in Hale (2014). The characteristic scale length r0

defines the spatial range of the covariance operator. Larger scale lengths coincide with

larger spatial correlations in the covariance operator. Equations A.7 and A.8 are solved

with linear conjugate gradient iterations. The covariance operator can be decomposed as

CM = FFT . The result of solving Equation A.6 followed by A.7 represents the application

of F. Likewise, the solution of A.7 followed by A.8 represents the application of FT .
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