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Abstract

Diffusion magnetic resonance imaging (dMRI) measures the diffusion

(i.e. random molecular motion) of water. Since the motion of water is inhib-

ited by cellular membranes, dMRI provides insight into the microstructural

characteristics of the tissue. However, distinguishing between small anatom-

ical subdivisions can be difficult due to dMRI methods having an inherently

low resolution. Increasing the resolution necessarily reduces the signal-to-noise

ratio, and to compensate for this a higher static magnetic field and larger dif-

fusion gradients can be utilized. In addition, there are newly emerging dMRI

techniques that have not been successfully implemented in the human brain

due to insufficient signal and gradient strengths on clinical MRI systems. How-

ever, increasing these parameters introduces new challenges.

The goal of this thesis was to address the challenges of performing dMRI

with a stronger magnetic field and gradients, and then to use the extra signal

for higher resolution and to enable new techniques that require more signal.

To do this, a 4.7 T human MRI system with 60 mT/m gradients was utilized,

which is a three times stronger field and 50% larger gradients compared to

typical clinical scanners. Approximately half of the thesis work involved solv-

ing challenges at high field or gradient strengths, while the remainder involved

applications enabled by the high strength MRI system.

The first challenge investigated was a previously undocumented issue

for dMRI introduced by strong gradients, concomitant gradient fields. Errors

introduced by these concomitant fields was found to be considerable in certain

cases, and techniques to mitigate them were explored. Another challenge

involved developing robust methods to perform parallel imaging, which is a

technique used to prevent distortions that worsen at higher field strengths. A
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final challenge investigated was errors introduced by the unwanted signal that

stems from cerebrospinal fluid. Traditional approaches to mitigate the error

do not translate well to high field, and an alternative method was sought and

characterized.

A potential application of the high strength MRI system involves the

probing of different tissue microstructure length scales. Typical dMRI tech-

niques are only sensitive to length scales longer than typical microstructural

dimensions because of a long “diffusion time”. However, the newly developed

oscillating gradient spin-echo (OGSE) technique is more sensitive to smaller

length scales because it can achieve much shorter diffusion times, which may

give new insight into healthy development or disease. Accordingly, OGSE was

used to investigate the microstructural length scale dependence of dMRI as

a function of diffusion direction for the first time in healthy subjects and in

patients with stroke. The former subject group was required to better un-

derstand the healthy brain and provide a reference point for comparison with

disease. The latter cohort of subjects helps to elucidate the underpinnings of

why standard dMRI is sensitive to stroke, which is still not well understood

even though dMRI is routinely used in its diagnosis. In addition, dMRI of

stroke is traditionally performed using thick slices to maintain low scan times.

Accordingly, by utilizing a high resolution dMRI sequence in stroke patients,

it was found in this thesis that thinner slices yield more precise measurements

of lesion volume and diffusion parameters.

In summary, the thesis work shows that dMRI can be successfully trans-

lated to large magnetic field and gradient strengths. The advantages of doing

so are the ability to perform novel dMRI techniques and improved performance

of existing techniques. While this work was performed at a field strength not

commonly utilized for human MRI (4.7 Tesla), all the work described in this

iii



thesis could be translated to 7 Tesla or 3 Tesla with modern radiofrequency

coil arrays.
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Chapter 1

Introduction

1.1 Overview

Medical imaging has become essential in clinical practice and research

given its ability to non-invasively investigate anatomy. A large number of

imaging modalities exist, including x-ray computed tomography (CT), ultra-

sound, positron emission tomography, single-photon emission tomography, and

magnetic resonance imaging (MRI). The advantages of MRI include excellent

soft-tissue contrast with customizable contrast mechanisms and the use of

non-ionizing radiofrequency (RF) radiation. However, the price paid for such

beneficial traits is extremely low signal, which leads to long scan times, and

contraindications for metallic foreign bodies and electronics, such as cardiac

pacemakers.

As stated above, an advantage of MRI is the multitude of contrast

mechanisms, and the ability to tailor an imaging protocol to target one specif-

ically, such as magnetization relaxation rates, blood flow, magnetization trans-

fer, or diffusion of water. Diffusion MRI (dMRI) has been utilized predom-

inantly in the brain, where microstructural information is obtained because
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the diffusion (i.e. random molecular motion) of water is inhibited by cellu-

lar membranes. This unique contrast mechanism has found extensive clinical

use for stroke due to a high sensitivity to the brain tissue changes that occur

immediately following ischemic attack. Another common clinical application

is the visualization of tumors in oncology. In addition, by probing the direc-

tional dependence of brain diffusion using diffusion tensor imaging (DTI) the

structure of axons can be inferred, granting unprecedented insight into fiber

pathways of the brain. While clinical use of DTI has so far been limited to

assessment of white matter tract locations for presurgical planning, its use in

research of neurodevelopment and neurological conditions such as epilepsy and

dementia has been substantial [1–3].

Diffusion MRI has numerous advantages, but it is not without limita-

tion. While DTI can detect major fiber tracts or lesions in the brain, measuring

small features can be difficult due to an inherently low resolution. Increas-

ing the resolution necessarily reduces the signal strength, and to compensate

for this a higher static magnetic field and larger gradients (for DTI) can be

utilized. In addition, there are newly emerging dMRI techniques that have

been utilized in animal MRI systems, such as oscillating gradient spin-echo

(OGSE) dMRI [4–6], but have not been successfully implemented in the hu-

man brain due to insufficient signal and gradient strengths on clinical MRI

systems. However, increasing the magnetic field and gradient strengths intro-

duces new challenges.

1.2 Scope of Thesis

The goal of this thesis was to address the challenges of performing

dMRI with a stronger magnetic field and gradients, and to apply it for high
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resolution and advanced techniques. To do this, a 4.7 T human MRI system

with 60 mT/m gradients was utilized, which is a three times stronger field and

50% stronger gradients compared to typical clinical scanners. Chapters 2 – 4

involve solving challenges at high field or gradient strengths, while Chapters

5 – 7 involve applications enabled by the high strength MRI system.

Chapter 2 characterizes and offers solutions for a previously unreported

issue for dMRI introduced by strong gradients, concomitant gradient fields.

The MRI signal is made sensitive to diffusion by applying large magnetic field

gradients. While all the static magnetic fields in MRI are ideally collinear

along a single direction, producing the gradients necessarily introduces small

unwanted tangential components of magnetic field [7]. In this thesis, the erro-

neous effect of these concomitant fields on DTI was found to be considerable

in certain cases, and techniques to mitigate them were introduced.

Parallel imaging is a multiple RF receiver technique that can be utilized

to address the high-field challenge of B0 inhomogeneity. Chapter 3 shows that

typical methods for performing parallel imaging for dMRI are sensitive to

subject motion. Therefore, a robust parallel imaging method for dMRI was

developed in the thesis work and is shown to have better performance than

the standard technique.

Measurements in the brain using dMRI can be severely corrupted by

cerebrospinal fluid (CSF) in the brain that partially occupies voxels with tis-

sue [8–11]. While RF-based methods have been developed to reduce these

errors [12], they do not translate well to higher magnetic field strengths due to

RF heating concerns. Therefore, Chapter 4 introduces high-field compatible

methods to reduce cerebrospinal fluid partial volume effects.

Although dMRI indirectly probes cellular microstructure through mea-

surement of water diffusion, typical dMRI techniques are only sensitive to

3



Chapter 1. Introduction

length scales longer than typical microstructural dimensions because of a long

“diffusion time”. However, the newly developed oscillating gradient spin-echo

(OGSE) technique is more sensitive to smaller length scales because it can

achieve much shorter diffusion times, which may give new insight into healthy

development or disease. Chapter 5 takes the first step in utilizing OGSE by

using it to investigate the microstructural length scale dependence of dMRI

in healthy subjects. Chapter 6 moves beyond the healthy brain by exploring

new insights into the microstructure changes that occur upon stroke via OGSE

dMRI in stroke patients. This may help elucidate why standard dMRI is sen-

sitive to stroke, which has eluded the scientific community since its discovery

over 20 years ago [13].

Clinical dMRI of stroke has traditionally been performed using thick

slices to maintain low scan times. However, it has been shown that using

thinner slices causes more lesions to be visible [14–16]. Chapter 7 validates

these findings, and additionally shows that thinner slices also yields more

precise measurements of lesion volume and diffusion parameters.

Background regarding brain tissue, stroke, MRI acquisition, and dMRI

are provided in the rest of this chapter.

1.3 The Brain

1.3.1 Brain Tissue

The primary functional cell of the brain is the neuron, which operates

by transporting electrical signal to neighboring cells.1 The neuron consists of

a cell body, a large process called an axon, and many small processes called

1The basics of brain tissue discussed in this section can be found in almost any intro-
ductory textbook on neuroanatomy, such as Clinical Neuroanatomy by Waxman [17].

4



Chapter 1. Introduction

dendrites (Figure 1.1). The dendrites receive electrical signals from the axons

Figure 1.1: Diagram of a neuron. Figure from Clinical Neuroanatomy 27
Edition [17].

of other neurons, the body contains the components for basic cellular main-

tenance including the nucleus, and the axon is designed to transmit electrical

signals over potentially long distances. Many neurons have axons that are cov-

ered by myelin (Figure 1.1), which provides electrical insulation and increases

the travelling speed of electric signals. Approximately 50% of the volume of

the brain is occupied by neurons, while the other half of the volume consists of

glial cells [18]. Glial cells are a broad category of cells that regulate the con-

tents of extracellular fluid (astrocytes), provide the myelin covering the axons

(oligodendrocytes), and provide immune functions (microglia).
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The major components of the brain are gray matter, white matter,

and cerebrospinal fluid (CSF). Grey matter is the home of groups of neuronal

cell bodies, while white matter primarily consists of long-range bundles of

myelinated axons that allow communication between different gray matter

regions. Grey matter can be further sub-divided into cortical gray matter,

which lines the outer surface of the brain, and deep gray matter, which consists

of specialized processing units deep in the brain. The CSF is a protective fluid

that fills the subarachnoid space that surrounds the brain and ventricular

spaces deep in the brain. In addition to providing a physical buffer for the

brain, the CSF helps regulate the chemical environment of the central nervous

system.

1.3.2 Stroke

Stroke is an acute medical event that is associated with suddenly im-

paired blood supply to the brain. The two major classes of stroke are hem-

orrhagic, which stems from a ruptured blood vessel, or ischemic, which stems

from a blocked blood vessel. In hemorrhagic stroke, the brain tissue may be

damaged from direct toxic effects from the blood and distortions and ischemia

that results from increased pressure. In contrast, ischemic stroke is only associ-

ated with ischemia itself. Ischemia causes a deprivation of oxygen and glucose,

which halts ATP production and causes ion ATPase pumps to cease function-

ing within minutes. The ion pumps normally keep the concentration of Na+

low in the cell and high in the extracellular space, but with their failure, Na+

builds up in the cell via diffusion. Thus, an osmotic gradient is formed and

water is shifted into the cell from the extracellular space in a process known as

cytotoxic edema. While cytotoxic edema may be reversible for partial ischemia

if it is resolved quickly (30 – 60 min), for extended durations the disrupted
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ionic balance results in the activation of enzymes that break the cells down,

culminating in cell death (i.e. infarction) [19].

Stroke is clinically diagnosed through a combination of symptom as-

sessment and diagnostic imaging. The severity of a stroke is quantified by a

score generated from the symptoms, the National Institute of Health Stroke

Scale Score (NIHSSS). Typically the first imaging test performed is CT due

to its speed and its ability to easily identify hemorrhaging and rule out some

disorders that can mimic stroke. However, the sensitivity of CT for detecting

ischemic stroke is low. In contrast, with dMRI the infarct core is visible within

minutes due to an acute decrease in the apparent diffusion coefficient of wa-

ter [13] (Figure 1.2). The mechanisms responsible for the reduced apparent

Figure 1.2: While the stroke lesion is not conspicuous on a standard T2

weighted image, a diffusion MRI (dMRI) image clearly shows the infarct core
(arrow).

diffusion coefficient are still not well understood, which is the motivation for

Chapter 6. With a confirmed ischemic stroke with no hemorrhage, clot-busting

medication (tissue plasminogen activator, tPA) can be administered to miti-

gate the extent of infarction if the stroke is within a 4.5 hr window. This is

not done for hemorrhagic strokes because it would result in worsening of the
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bleeding. For blockages in large vessels a mechanical thrombectomy may be

performed to remove the clot.

1.4 Magnetic Resonance Imaging

Fundamentals

1.4.1 Nuclear Magnetic Resonance

In atoms with an odd number of protons and/or neutrons, the nucleus

will have a non-zero magnetic moment. The microscopic interaction of a nu-

clear magnetic moment with an external magnetic field is governed by the laws

of quantum mechanics, which dictates that it will align obliquely to the field

and precess in a process known as nuclear magnetic resonance (NMR)2. For

macroscopic groups of atoms, the net magnetization will behave in a similar

manner. To create an initial magnetization M0 in an NMR or MRI experi-

ment, the sample is immersed in a large background magnetic field B0 = B0ẑ.

With smaller, time dependent fields applied so that the net magnetic field is

B(t) = (Bx(t)x̂, By(t)ŷ, (B0+Bz(t))ẑ), the influence on the net magnetization

M is given by the Bloch equations [20],

dM

dt
= γM×B+

(M0 −Mz)ẑ

T1

− Mxx̂+Myŷ

T2

(1.1)

where γ is the gyromagnetic ratio, which is a quantum mechanical property

of atoms that relates the nuclear magnetic moment to the spin angular mo-

mentum. For the hydrogen atom, which is the species measured most often

in MRI, γ = 2π42.576 rad/T/s. T1 is the spin-lattice relaxation constant,

2A comprehensive overview of MRI fundamentals can be found in Magnetic Resonance
Imaging by Haacke [20].
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which is the characteristic time it takes for nuclei to exchange energy with

surrounding atoms or molecules (i.e. the lattice) and recover to a less ener-

getic state. Accordingly, this causes the longitudinal magnetization, Mz, to

return to equilibrium, M0. T2 is the spin-spin relaxation constant, which de-

scribes the desynchronization of the precession of individual magnetic moments

(i.e. spins) due to the change of precessional frequencies that occur when the

spins pass through the neighboring magnetic moments of other atoms. When

neighboring magnetic moments are dephased relative to each other, the net

magnetization in the transverse plane (i.e. perpendicular to B0) is reduced

through destructive interference.

With only the background field present (i.e. B = B0ẑ), the solution to

the Bloch equations is

Mxy(t) = Mxy(0)e
−iγB0te−t/T2

Mz(t) = M0 + (Mz(0)−M0)e
−t/T1

(1.2)

where Mxy(t) ≡ Mx(t)+iMy(t) is the transverse magnetization in the xy-plane

in complex phasor notation and Mz is the longitudinal magnetization along ẑ.

The complex exponential term e−iγB0t in Equation 1.2 shows that the static B0

field causes the transverse magnetization to precess at the so-called “Larmor

frequency”,

ω0 = γB0 (1.3)

In addition, the magnitude of the transverse magnetization decays to zero over

time due to T2 relaxation, while the longitudinal magnetization recovers back

to the equilibrium magnetization at a rate governed by T1.

To generate transverse magnetization in the first place (i.e. Mxy(0)

in Equation 1.2), the equilibrium magnetization is tipped into the transverse
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plane by applying a radiofrequency (RF) magnetic field. For a transverse RF

field B1(t) = B1e
−iω0t (i.e. rotating at the Larmor frequency), the tip angle is

given by

θ = γ


B1dt (1.4)

Accordingly, a tip angle of 90◦ converts the entire equilibrium magnetization

into transverse magnetization, while a tip angle of 180◦ results in a longitudinal

magnetization with negative polarity.

Dephasing and the Spin-Echo

For a signal receiver tuned at the Larmor frequency, the net acquired

signal, S(t), is the integral of transverse magnetization throughout the sample,

S(t) =

  
Mxy(x, y, z, t)e

−iφ(x,y,z,t)dxdydz

φ(x, y, z, t) = γ

 t

0

∆B(t′)dt′
(1.5)

where non-zero phase, φ, is imparted by magnetic field offsets, ∆B, from the

static B0 field. A possible source of ∆B is magnetic susceptibility, which is a

tissue property that causes the magnetic field to be offset from the external

B0 field. The presence of phase varying throughout the sample (or voxel)

causes the net signal amplitude to decrease because of destructive interference

between spins (Equation 1.5). This effectively decreases T2 to become T ∗
2 ,

1

T ∗
2

=
1

T2

+
1

T ′
2

(1.6)

where T ′
2 is the contribution to dephasing from susceptibility. To reverse the

signal loss from susceptibility, a 180◦ RF “refocusing” pulse can be applied at

a time τ after the initial excitation to reverse the polarity of any accumulated
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phase, which causes the phase to recover towards zero as time continues. This

results in a re-phasing of all the spins, a “spin-echo”, at a time τ after the

refocusing pulse (i.e. 2τ after the initial excitation). Accordingly, at the spin-

echo the net signal is only decreased via T2 and not T ∗
2 . Notably, dephasing

from magnetic susceptibility (i.e. T ′
2) is reversible because the associated mag-

netic field offsets are static and slowly varying with respect to the microscopic

motion of the atoms (i.e. do not depend on time at the time scale of the MRI

experiment). T2 dephasing is not reversible because it stems from dephasing

at a microscopic scale from the magnetic moments of neighboring atoms whose

position is not static.

1.4.2 Image Encoding

The signal measured is simply the sum of all the transverse magnetiza-

tion throughout the sample (Equation 1.5). To encode the spatial dependence

ofMxy into the measured signal, combinations of magnetic field gradients along

each orthogonal direction, (Gx, Gy, Gz), are typically applied such that the

magnetic field offset is ∆B(x, y, z) = xGx+yGy+zGz. Ignoring other sources

of phase-accumulation (e.g. chemical shift), this results in φ having the form

φ(x, y, z, t) = γ


x

 t

0

Gx(τ)dτ + y

 t

0

Gy(τ)dτ + z

 t

0

Gz(τ)dτ


(1.7)

The equations can be condensed by making the variable substitution

kj(t) =
γ

2π

 t

0

Gj(τ)dτ (1.8)

where j can be x, y, or z. As such, Equation 1.5 can be re-written as

S(t) =

  
Mxy(x, y, z, t)e

−i2π(xkx+yky+zkz)dxdydz (1.9)
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Equation 1.9 serendipitously represents a 3D Fourier transform, which can be

efficiently computed numerically and has well-known properties (see Section

1.4.3). Since kj are known ahead of time, the spatial dependence of the trans-

verse magnetization can be easily computed from S(t) using an inverse Fourier

transform

Mxy(x, y, z, t) =

  
S(kx, ky, kz, t)e

i2π(xkx+yky+zkz)dkxdkydkz (1.10)

thus providing a 3D image volume. Accordingly, a goal of any MRI acquisition

is to play out gradients to measure the signal in a grid of (kx, ky, kz) locations,

or “k-space”, which can be inverted with the inverse Fourier transform to

create a 3D volume of images.

It is not always necessary or desirable to obtain images of the full 3D

volume. Instead, only a single slice (or slab) can be acquired at a time by

specifying a gradient during application of the excitation RF pulse. As de-

scribed in Section 1.4.1, the magnetization is most efficiently tipped if the

frequency of the excitation pulse matches the Larmor frequency. By apply-

ing a gradient, the Larmor frequency varies with position, and only positions

with frequencies within the bandwidth of the excitation pulse will have their

magnetization tipped (Figure 1.3). Typically a sinc shaped RF pulse is used

because it has a rectangular bandwidth profile; accordingly, the slice ends up

with a rectangular transverse magnetization as a function of position along the

slice. Notably, the presence of the gradient during the excitation also results

in dephasing across the slice by the time excitation is complete, which can be

negated by the application of a rephasing gradient that is approximately half

the area of the excitation gradient (Figure 1.3). For a thin slice at zS and
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Figure 1.3: (a) A gradient is applied during the RF pulse to enable excitation
of only a slice. The negative gradient lobe after the RF pulse is required
to reverse dephasing that occurs across the slice during excitation. (b) The
gradient, Gz, causes the resonant frequency of the spins to deviate from the
Larmor frequency by ∆ω as a function of position, z. The RF pulse only
interacts with positions where the resonant frequency lies with the RF pulse
bandwidth, BW , to create a slice with thickness ∆z = BW/(γGz).

kz = 0, Equation 1.10 simplifies to

Mxy(x, y, zS, t) =

 
S(kx, ky, t)e

i2π(xkx+yky)dkxdky (1.11)

1.4.3 k-space

Understanding k-space and the interplay between physical phenomena,

k-space, and the final images is a critical foundation for advanced MRI topics.

As described previously, MRI data is acquired in a grid in k-space. For sim-

plicity, only 1D k-space will be considered; however, the concepts are easily

generalized to 2 or 3 dimensions.

Nyquist Criterion

While Equation 1.11 would ideally be solved with k and x values having

all possible values from −∞ to ∞, in practice only a discrete subset can be ac-

quired. As such, a grid of k-space is acquired with N points, where kx = n∆kx

and x = m∆x, and ∆x is the grid spacing of the image to be reconstructed.
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This converts Equation 1.11 to a summation (in only one dimension here for

simplicity),

Mm =
N−1
n=0

Sne
−i2πmn∆kx∆x (1.12)

The above Equation has the same form as the discrete Fourier Transform,

Mm =
N−1

n=0 Sne
−i2πmn/N , where ∆kx∆x = 1/N . It is important to cast the

signal equation into a useful transform like the discrete Fourier Transform be-

cause it is reversible and efficiently computed numerically. Since the maximum

k-space position sampled is kmax = N∆kx/2, the definition ∆kx∆x = 1/N can

be rearranged to describe the resolution of the MRI acquisition,

∆x =
1

2kmax

(1.13)

In addition, a critical property of Equation 1.12 is that the computed Mm will

repeat every N points (i.e. Mm+N = M) because eiφ = ei(φ+n2π). Accordingly,

the effective field of view (FOV) of the imaging experiment is given by N∆x,

which combined with ∆kx∆x = 1/N yields

∆k =
1

FOV
(1.14)

Equations 1.13 and 1.14 form an important duality that describes how the

discretization of k-space is related to the images that are obtained.

If the FOV is smaller than the object, the repeated signals will over-

lap and cause aliasing (Figure 1.4). To avoid aliasing, one must ensure that

the FOV is larger than the maximum extent of the object, FOVmin, which

combined with Equation 1.14 reveals the so-called Nyquist criteria

∆k ≤ 1

FOVmin

(1.15)
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Figure 1.4: (a) The discrete Fourier transform of the acquired k-space implic-
itly assumes that the image space signal, M(x), repeats over a distance given
by the FOV (Equation 1.14). (b) When the FOV is smaller than the extent
of the object, FOVmin, the repeated signals overlap in what is referred to as
aliasing.

Important Properties of the Fourier Transform

The shift property of the Fourier transform is useful for understanding

how phase accumulation for various sources (e.g. motion or B0 inhomogeneity)

affects images. The property states that shifting an image is equivalent to

adding a linearly varying phase in k-space, or vice versa,

M(x− x′) = e−i2πx′kS(k)

S(k − k′) = ei2πxk
′
M(x)

(1.16)

where S is the Fourier transform of the image domain signal M , and x′ and k′

are the shifts in image space and k-space, respectively. Equation 1.16 shows

that the slope of the phase ramp is exactly equal to the shift multiplied by 2π.
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As an example of how this can provide insight into k-space sampling and the

resultant images, the effect of a global B0 offset by ∆B can be considered. For

a constant gradient G and sampling interval τ , additional phase of γ∆Bτ will

accumulate between each k-space sample. Accordingly, a phase ramp across

k-space with slope ∆B/G will form, and the resultant image will be shifted

along the gradient direction by ∆B/G.

Another well known property of the Fourier transform is linearity, which

states

M(x) = AM1(x) +BM2(x) ⇔ S(k) = AS1(k) +BS2(k) (1.17)

While this property appears quite trivial, it aids in the interpretation of MRI

phenomena. In particular, it dictates that the net k-space of an image is the

sum of the k-spaces that correspond to each individual object space voxel

or group of voxels, or vice versa (Figure 1.5). Therefore, the above example

regarding image shift due to B0 offsets can be generalized to B0 offsets that

vary with position (i.e. B0 inhomogeneity), where the k-space corresponding

to each region will have a phase ramp that causes a shift of signal in image

space. Regions having different B0 offsets will have different shifts of signal in

image space, resulting in distortions.

1.4.4 Echo Planar Imaging

Diffusion MRI typically utilizes echo-planar imaging (EPI) [21], which

acquires the entire extent of 2D k-space after a single excitation (Figure 1.6).

This feature is important for dMRI since it reduces sensitivity to physiological

and gross head motion, which is vital for a technique that attempts to measure

microscopic motion of molecules from diffusion (see Section 1.5.1). The RF
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Figure 1.5: The linearity property of the Fourier transform allows the k-space
that corresponds to different regions of the subject to be considered indepen-
dently. The forward and inverse Fourier transforms are denoted by F and
F−1, respectively.

features are a 90◦ excitation pulse and associated slice-selection gradients (A)

and a 180◦ refocusing pulse (B) to attain a spin-echo at the echo-time (TE).

The large “crusher” gradients on either side of the 180◦ pulse (C) strongly

dephase transverse magnetization excited by any deviations from a perfect

180◦ flip angle. Likewise, the large “spoiling” gradients at the end of the se-

quence (D) dephase any remaining transverse magnetization so that it does

not interfere with neighboring slices or repeated acquisitions. The oscillating

gradients on the frequency encode (FE) gradient channel combined with the

phase-encode (PE) blips (E) results in a side-to-side motion through k-space

(Figure 1.7), during which time the signal is sampled at a frequency called the
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Figure 1.6: (a) The pulse sequence for diffusion MRI using echo-planar imaging
(EPI), where the application of radiofrequency (RF) pulses, slice select (SS)
gradients, frequency encode (FE) gradients, and phase encode (PE) gradients
are shown as a function of time. The spin-echo at TE occurs at the center
of k-space, and the TR is the total time to repeat the pulse sequence for all
slices. The main features are (A) slice selective excitation, (B) refocusing, (C)
crusher gradients, (D) spoiler gradients, (E) EPI readout, and (F) diffusion
gradients.

sweep width (sw). The small negative polarity gradients immediately prior to

Figure 1.7: Because of the oscillating FE gradients and PE gradient blips in
the EPI pulse sequence, alternating lines of k-space are sampled in reverse
directions.

the oscillating gradients are required to get to the corner of k-space. While a

trapezoidal FE gradient shape would result in uniform sampling of k-space, a

sinusoidal shape was used in this work to mitigate the effects of eddy currents

and vibrations [22]. The non-uniform sampling can be accounted for by re-

sampling the k-space data onto a uniform grid [23, 24]. The gradients required

for encoding the signal to diffusion (more details in Section 1.5.1) are placed

on either side of the 180◦ pulse (F). The spin-echo at the TE is chosen to align
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with the center of k-space since the signal-to-noise ratio is primarily dictated

by the signal when k = 0. The repetition time (TR) is the time delay between

re-excitations of the same slice. Typically, all of the slices are acquired before

acquiring the same slice a second time (e.g. for another average). The TE is

long compared to the T2 of brain tissue, which causes tissues with differing

T2 to appear with different signal intensities in the final image (i.e. the signal

from regions with different T2 will decay to different values by the time the

data is sampled). The TR is also long compared to the T1 of brain tissue,

which causes T1 to have little influence on the image contrast because the

longitudinal magnetization of all tissue almost fully recovers during the TR.

Therefore, EPI acquisitions are generally T2-weighted.

For sinusoidal frequency encoding gradients the k-space accumulated

between samples varies and Nyquist criteria must be satisfied for the largest

k-space step. Around the sinusoid maximum where the gradient is Gmax, the

k-space sample separation is given by 2π∆k = γGmax/sw, which dictates a sw

minimum of γGmaxFOV/(2π) via Equation 1.15.

Details of the EPI image reconstruction used in this work are in Ap-

pendix A.

Fat Suppression for Spin-Echo EPI

Protons in fat have a resonant frequency differing from water by ap-

proximately 3.5 parts per million (PPM). Accordingly, phase accumulates dur-

ing the EPI readout and creates a phase ramp for the k-space correspond-

ing to the fat and the fat signal is shifted relative to the water signal in

object space (See Equation 1.16 and recall from Section 1.4.3 that the k-

space from different regions can be considered independently), which causes

an artifact where fat signal overlaps with the desired water signal in the fi-
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nal image. Similarly, the fat is also excited in a slice location offset from

the water by ∆z = (3.5 × 10−6)B0/G90, where G90 is the slice-select gradi-

ent height. Therefore, to suppress the fat signal and prevent this artifact

a different gradient height can be used for the 180◦ RF pulse, making the

fat slice affected by the 180◦ RF pulse offset from the fat excitation slice by

(3.5 × 10−6)B0(1/G90 − 1/G180) [25] (Figure 1.8a). With the fat refocusing

slice offset from the excited slice, the excited fat slice transverse magnetiza-

tion ends up getting spoiled by the gradients surrounding the 180◦ pulse and

do not contribute to the measured signal (Figure 1.8b).

Other methods that are commonly used for the suppression of fat signal

are: 1. fat saturation, where the fat magnetization is selectively saturated

with a narrow band RF pulse and spoiled (leaving the water unaffected); 2.

narrow-band RF pulses that only excite water. Both of these methods and the

fat-water slice offset method described above are based on chemical shift and

have similar performance; however, fat saturation and water only excitation

methods increase RF power and scan time, whereas the slice offset method

does not.

Limitations of EPI

One of the primary limitations of EPI is the resolution. The readout

of the entire grid of k-space after one RF excitation requires a long duration

relative to T2 and T ∗
2 , which results in significant signal loss (long TE relative

to T2) and blurring (T ∗
2 signal decay during readout). The signal decay and

blurring occurs primarily along the PE direction because of the long time

it takes to traverse k-space in that direction. For spin-echo EPI, the signal
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Figure 1.8: (a) The chemical shift in fat causes the resonance frequency to be
shifted by 3.5 PPM relative to the Larmor frequency ω0. If different gradient
heights are used for the 90◦ (G90) and 180◦ (G180) RF pulses (in this example
the gradients are negative of each other), the fat slices that get excited and
refocused do not overlap. The different gradient heights also requires different
bandwidths and frequency offsets for the RF pulses (BW90 and BW180). This
causes any fat signal in the transverse plane to get dephased by the crusher
gradients (Figure 1.6) and thus total removal of the fat signal, as demonstrated
by the EPI images in (b).
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envelope along the PE direction in k-space (kPE) is given by [20]

Senvelope = e−t/T2 . ∗ exp (− (|t| − TE) /T ′
2) (1.18)

where 1/T ∗
2 = 1/T2 + 1/T ′

2, which translates to a similar envelope along kPE

(Figure 1.9). The blurring can be better understood by performing the Fourier

Figure 1.9: Signal decay from T ∗
2 results in a signal envelope along the PE

direction in k-space (kPE) given by Equation 1.18 for spin-echo EPI. The width
of the point spread function (the Fourier transform of the signal envelope)
shows that the effective resolution is larger than the prescribed voxel size.
The signal envelope was estimated for typical EPI at 4.7T with 2 mm isotropic
voxels, T2 = 55 ms [26], and T ∗

2 = 30 ms [27].

transform of the signal decay envelope to obtain the point-spread function

(PSF). The acquired image is equal to the true image without T2 or T ∗
2 decay

convolved with the PSF, and the width of the PSF gives the effective resolution.

For typical EPI parameters, this can impair the resolution by 40% for a typical

EPI readout (Figure 1.9).

Another significant limitation of EPI is its sensitivity to magnetic field

inhomogeneities that stem from interfaces between tissue and air (e.g. near

the sinuses). If the magnetic field in a particular region is offset by ∆B, a

phase ramp with slope a = γ∆BtPE/∆kPE is formed in k-space, where tPE is

the time it takes to acquire adjacent phase encode lines separated by ∆kPE.

As shown in Equation (1.16), this results in the signal in the final image being

shifted by a/2π. When the offset varies with position, different regions undergo
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different shifts which results in distortions. EPI is sensitive to these distortions

because the k-space traversal rate in the PE direction, ∆kPE/tPE, is slow due

to the time required to acquire each FE line.

1.5 Diffusion Tensor Imaging

1.5.1 Sensitizing the Signal to Diffusion

How the MRI signal depends on diffusion can be understood by first

considering Fick’s second law, which governs how particles are distributed over

time under the influence of thermal random motion,

dn

dt
= D∇2n (1.19)

where D is the diffusion coefficient, and n(r, t) is the probability of finding

the particle at a position r and time t. Torrey made the association that this

equation could be adapted to the Bloch equations (Equation 1.1) to describe

the self-diffusion of local magnetization when a gradient is present [28]

dMxy

dt
= −iγG • r− Mxy

T2

+D∇2Mxy (1.20)

The solution to Equation 1.20 is [29]

Mxy = e−iγ
 t
0 r·g(t′)dt′ · et/T2 · e−Dγ2

 t
0

 t′
0 G(t′′)dt′′

2
dt′

(1.21)

The first and second terms are just the usual phase imparted by the gradient

and the attenuation from T2, respectively, while the last term represents the

effect of diffusion, which turns out to be a signal attenuation. This is not unex-

pected, since the diffusing spins will experience different phase accumulation
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depending on their motion through the gradient which results in net signal

dephasing. The signal attenuation from diffusion is more simply depicted by

making the substitution for k (Equation 1.8) and defining

br = 4π2

 t

0

kr(t
′)2dt′ (1.22)

where r describes the direction of the gradient. At the gradient echo (i.e. TE,

where k = 0) the magnetization is

Mxy = M b0
xye

−brDr (1.23)

where M b0
xy is the magnetization at TE when b = 0 and Dr is the diffusion

coefficient along the direction of r. It is clear from Equation 1.23 that the

sensitivity of an experiment to diffusion can be increased by increasing the b-

value, which in turn can be increased by increasing the magnitude and duration

of applied gradients. The diffusion coefficient can be experimentally estimated,

then, by rearranging Equation 1.23:

Dr = − ln


Mxy

M b0
xy


/br (1.24)

In tissue the diffusion coefficient is generally directionally dependent

(see Section 1.5.2) and better described by a second order tensor, D, which

necessitates replacement of the diffusion term in Equation 1.20 with∇D∇Mxy.

This causes b to also be a tensor with elements l,m that correspond to pairings

of three orthogonal directions (i.e. x, y, z) so that [30]

bl,m = 4π2

 t

0

kl(t
′)km(t

′)dt′ (1.25)
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Mxy = M b0
xye

−b·D (1.26)

The diffusion tensor describes the directional dependence of diffusion relative

to the laboratory frame. To obtain the axes of principal diffusion, the eigen-

values and eigenvectors of D are computed. At least 6 gradient directions are

required to determine all 6 unique components of D (instead of 9 because the

3 × 3 diffusion tensor is symmetric). With more than 6 directions, a least

squares solution for D must be performed via the pseudo-inverse of ball [31]:

D =

bT
allball

−1
bT
allMall

Mall =


− ln


M1

xy

Mb0
xy


− ln


M2

xy

Mb0
xy


· · · − ln


MN

xy

Mb0
xy

 T (1.27)

where N is the number of directions, ball is an N × 6 matrix of the b-tensor (a

symmetric 3× 3 matrix with 6 unique elements) for each direction, and Mall

is an N×1 vector of the imaging data. Equation 1.27 is carried out separately

for each voxel.

The first reliable method reported for obtaining a large enough b-value

to measure diffusion coefficients in tissue was the Stejskal-Tanner method,

where two large gradient lobes are placed on either side of the refocusing RF

pulse in a spin-echo acquisition with no imaging gradients [32] (Figure 1.10).

Stejskal and Tanner included the effect of a background gradient, G0, in their

analysis, which leads to a b-value given by

b =γ2


δ2

∆− δ

3


G2 +

2

3
τ 3G2

0

−δ


t21 + t22 + δ (t1 + t2) +

2

3
δ2 − 2τ 2


G0 •G

 (1.28)

where G is the diffusion gradient amplitude, δ and ∆ are the duration and
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Figure 1.10: Diffusion encoding gradients relative to the RF pulses for the
Stejskal-Tanner method, where G is the net gradient amplitude over all three
gradient channels.

separation of the diffusion gradients, respectively, τ is the separation between

the 90◦ and 180◦ pulses, t1 is the time from the 90◦ pulse to the start of

the first diffusion gradient, and t2 is the time from the end of the second

diffusion gradient to the spin-echo. A possible source of background gradients

is magnetic susceptibility; however, it has been experimentally shown that

they do not cause any measurable affect of DTI parameters (to be discussed in

more detail in the next section). Therefore, the effect of background gradients

is usually ignored to yield the b-value equation for Stejskal-Tanner diffusion

preparation as

b = γ2G2δ2

∆− δ

3


(1.29)

In 1990, Turner implemented a Stejskal-Tanner diffusion gradient preparation

in combination with EPI, as depicted in Figure 1.6 [33]. Single-shot EPI is

used for the signal readout because physiological or head motion during the

diffusion gradients results in signal phase that varies from shot to shot. If

the data was acquired in multiple shots, the phase inconsistencies from slight

variations in motion from shot to shot would introduce artifacts. When single

shot EPI is used, any coherent motion in a voxel results in non-zero phase

in the voxel after the diffusion gradients, while intravoxel incoherent motion

results in signal loss. Accordingly, only the magnitude of the images are used
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in Equation 1.26 to remove the effects of bulk motion. Both diffusion and

perfusion can result in intravoxel incoherent motion [34]; however, at the large

b-values typically used (1000 s/mm2) the signal is dominated by diffusion

effects.

While the Stejskal-Tanner method is still often used, many scanners

utilize more complex arrangements of gradients and refocusing RF pulses to

mitigate eddy currents induced by the large gradients [35]. In the thesis work,

gradient pre-compensation [36, 37] resulted in effective mitigation of eddy cur-

rent effects, allowing use of the classic Stejskal-Tanner approach.

1.5.2 Diffusion Measurements in Tissue

In a medium with no boundaries, the probability distribution obtained

from the solution to Fick’s second law (Equation 1.19) has a Gaussian spa-

tial profile, with a width determined by the time elapsed. In a medium with

boundaries, the random motion of molecules will be hindered or restricted and

the probability distribution will no longer be Gaussian. Therefore, the solu-

tion of Equation 1.23, which assumes Gaussian diffusion, provides an apparent

diffusion coefficient (ADC) rather than a true self-diffusion coefficient. For

more restriction of diffusion by boundaries, the shorter the distance molecules

are permitted to diffuse and the smaller the ADC. If boundaries change with

direction the ADC also varies with direction, which can be probed by the

measurement of the eigenvalues of the diffusion tensor (Equation 1.26) (Fig-

ure 1.11). Another consequence of non-Gaussian restricted diffusion is that

the ADC measurements generally depend on b-value [38]. It is observed that

the ADC decreases as the b-value increases because the molecules are not al-

lowed to move as far as self-diffusion would dictate (because of boundaries),

and the disparity between the measured signal and what the signal should be
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Figure 1.11: If the diffusion of water is impeded by cellular microstructure,
the diffusion ellipsoid measured with DTI has its long axis, λ||, aligned with
the direction along which motion is least impeded. The size of the ellipsoid
is given by the eigenvalues of the diffusion tensor (i.e. λ|| and λ⊥) and the
orientation is given by the eigenvector.

with Gaussian diffusion is worsened as the b-value increases.

In gray matter, DTI measurements show relatively isotropic diffusion,

while DTI measurements in white matter are highly anisotropic. The longi-

tudinally oriented structural components of white matter that were originally

postulated to contribute to anisotropic DTI measurements were myelin, the

axonal membrane, and neurofibrils (microtubules and neurofilaments). In ad-

dition, potential non-structural sources that were considered were fast axonal

transport and magnetic susceptibility. Various experiments in ex-vivo nerve

samples in the 1990’s provided evidence for or against the various postulated

sources of diffusion anisotropy:

� Susceptibility A potential source of anisotropy that was proposed was

susceptibility induced magnetic field gradients that would anisotropically

modulate the local b-value. The effect of the background gradients can

be eliminated with the application of bipolar gradient pulses. In both ex-

vivo nerves [39] and in-vivo human brain [40] no difference in ADC was

observed for the insensitive method compared to the normal Stejskal-

Tanner method, suggesting little influence of magnetic susceptibility on

diffusion anisotropy.
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� Fast Axonal Transport and Neurofibrils In garfish nerves that were treated

to break down microtubules and inhibit fast axonal transport, diffusion

anisotropy was preserved [41], suggesting that neither fast axonal trans-

port nor microtubules themselves strongly influence diffusion anisotropy.

Also, ADC values measured in the axoplasmic space of the giant axon of

a squid [42] and giant reticulospinal axons of the lamprey [43] (i.e. the

measurements were in a region lacking membranes) were near the value

in pure water and anisotropy was low, suggesting that neurofilaments

overall have a low impact on ADC measurements.

� Axonal Membranes and Myelin Strongly anisotropic ADC was measured

in non-myelinated garfish olfactory nerves [41] and the non-myelinated

white matter of human neonates [44, 45]. In myelin deficient rats,

anisotropy was decreased only a small amount compared to normal con-

trols [46], suggesting that while not required for anisotropic ADC mea-

surements, myelin may modulate the amount of anisotropy.

In summary, anisotropy in ADC measurements primarily stems from

membranes. While evidence suggests that myelin likely modifies anisotropy, it

is difficult to delineate its effect from the membranes because other properties

may be different between myelinated and non-myelinated axons, such as axon

density and diameters.

1.5.3 Diffusion Tensor Imaging Metrics

As described earlier, the diffusion tensor can be represented by its three

eigenvalues (e.g. λ1, λ2, and λ3) and three eigenvectors, where the eigenval-

ues describe the ADC along the principle axes defined by the eigenvectors.

Typically the largest eigenvalue (λ1) is assumed to have its eigenvector along
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the direction of the underlying white matter tracts, and is thus referred to

as the parallel or longitudinal diffusivity, λ||. The two smaller eigenvalues are

averaged to obtain the perpendicular diffusivity, λ⊥ = (λ2 + λ3)/2. The mean

diffusivity, MD = (λ1 + λ2 + λ3)/3 describes the mean ADC averaged over

all directions. The anisotropy of the diffusion over different direction is char-

acterized by the fractional anisotropy (FA), which is given by the variance

of the eigenvalues normalized to be a value between 0 (perfectly isotropic;

λ1 = λ2 = λ3) and 1 (perfectly isotropic; λ⊥ = 0),

FA =


3

2


(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

(1.30)

Example brain maps of MD, FA, λ||, and λ⊥ are shown in Figure 1.12, where it

is evident that MD has little contrast between white and grey matter, whereas

FA clearly identifies the major white matter tracts. While it is not common to

display λ|| and λ⊥ parameter maps, contrast between white and grey matter

is nevertheless observed.

1.5.4 Probing Diffusion Length Scales

The mean squared displacement of a particle with a Gaussian proba-

bility distribution (i.e. intrinsic self-diffusion) in one dimension was shown by

Einstein to be [47] 
x2

= 2Dt (1.31)

Here, it is observed that the expected squared distance away from the start-

ing position that a molecule is found increases linearly with time. In a DTI

experiment, the period of time over which the diffusion coefficient is probed is

approximated as the diffusion time, ∆eff . If ∆eff is so short that most of the

molecules do not have enough time to reach any boundaries in the tissue (i.e.
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Figure 1.12: Examples of mean diffusivity (MD), fractional anisotropy (FA),
and parallel (λ||) and perpendicular (λ⊥) eigenvalue maps for a healthy subject.
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∆eff << ∆x2
barriers/2Dintrinsic via Equation 1.31), the ADC will be equivalent

to the intrinsic diffusion coefficient of the water in the tissue [42, 43]. However,

as the diffusion time increases and the molecules interact with more barriers,

the ADC values decrease to an asymptotic value. In brain tissue, where length

scales are ≈ 1 µm (∆x2
barriers/2Dintrinsic ≈ 0.2 ms), standard DTI experiments

where ∆eff > 20 ms are in the asymptotic long time regime. While a long

∆eff is not a limitation in itself, measuring how ADC values change at shorter

diffusion times may permit additional insight into tissue microstructure.

In a Stejskal-Tanner experiment, if the gradients are assumed to be

much narrower than their separation (i.e. δ << ∆ in Figure 1.10), the diffusion

time ∆eff is derived from the b-value equation by setting b = γ2G2δ2∆eff

[4, 48] to obtain

∆eff = ∆− δ/3 (1.32)

In practice, though, small ∆eff (i.e. less than 20 ms) are difficult to attain with

a Stejskal-Tanner implementation because of gradient hardware limitations.

Early attempts to address these limitations and achieve short ∆eff were to

apply multiple, short ∆eff pairs of bipolar gradients. While a single bipolar

gradient pair has a small b-value, the b-value will scale up linearly with the

number of bipolar pairs. However, for this case the approximation δ << ∆ is

no longer true and the validity of the equation for diffusion time is not strictly

valid; thus, a different interpretation is warranted. Additionally, estimation of

tissue length scales by inserting the diffusion time and ADC into Equation 1.31

is not ideal, since Equation 1.31 is only valid for diffusion with no boundaries.

A more general definition of the diffusion coefficient that is more readily

applied to diffusion with boundaries is given by the velocity autocorrelation
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formalism [49],

D(t) =
1

2

 t

0

⟨v(t′)v(0)⟩ dt′ (1.33)

where v is the velocity of the particles and ⟨v(t′)v(0)⟩ is the velocity autocor-

relation. Using a Fourier transform, one can define the diffusion spectrum,

D(ω) =
1

2

 ∞

0

⟨v(t′)v(0)⟩ eiωt′dt′ (1.34)

In pure water at room temperature the velocities become decorrelated in less

than a nanosecond [50], which effectively makes ⟨v(t′)v(0)⟩ a delta function

and the diffusion spectrum independent of frequency. With barriers present

(permeable or impermeable), a long lasting negative correlation exists due to

reflections from the boundaries [51], which results in a diffusion spectrum with

a notch at ω = 0 (Figure 1.13). The value of D(ω = 0) is equivalent to the

diffusion coefficient measured with an infinite diffusion time (i.e. D∞), and

higher frequencies correspond to smaller length scales of diffusion. D(ω) is

Figure 1.13: In a environment with barriers to diffusion, a long lasting neg-
ative velocity autocorrelation, ⟨v(t′)v(0)⟩, exists due to reflections from the
boundaries [51]. The initial delta-function of positive correlation results from
velocity correlations at extremely short time scales before any boundaries are
reached. The resultant diffusion spectrum, D(ω), has a notch at ω = 0.

related to the measured signal in an analogous way to Equations 1.25 and 1.26

[49],

Mxy = M b0
xye

−2π
∞
−∞ k(ω)D(ω)k(ω)dω (1.35)
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k(ω) =
γ

2π

 ∞

0

 t′

0

G(t′′)dt′′


eiωt

′
dt′ (1.36)

where k(ω) is the Fourier transform of k.

It is implicit from Equation 1.36 that the frequency components of the

ADC that are measured in a DTI experiment are those where k(ω) is non-

zero. Accordingly, this gives a basis for designing gradient waveforms that

produce a narrow bandwidth of k(ω), where higher frequencies correspond to

smaller scales of microstructure. For the standard Stejskal-Tanner diffusion

preparation (i.e. pulsed gradient spin-echo, PGSE), k(ω) is centered at ω =

0 (Figure 1.14). For decreasing diffusion time (i.e. decreased separation of

Figure 1.14: PGSE gradients produce a k-spectra that is centered at ω =
0, while cosine-modulated gradients produce a narrow spectra at a non-zero
frequency. A 180◦ RF pulse is assumed to occur between the gradient pairs,
and it is accounted for in the diagram by reversing the polarity of the gradients
after the RF pulse.

the gradient lobes) k(ω) becomes wider; thus, while decreasing the diffusion

time grants access to higher frequencies, a large contribution from D(0) (i.e.

infinite diffusion time) persistently remains. In contrast, a cosine gradient

waveform with the end lobes replaced with twice frequency sinusoidal lobes

(i.e. oscillating gradient spin-echo, OGSE, diffusion MRI) produces a narrow
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high-frequency spectrum with no zero-frequency component (Figure 1.14). By

sweeping through several frequencies D(ω) can be estimated, which may lend

insight into the microstructural characteristics of the medium.

1.5.5 High Field DTI

As was first introduced in the overview (Section 1.1), DTI is generally

a low resolution technique. To better understand how the resolution might

be improved, it is instructive to review the formula for signal to noise ratio

(SNR) in an MRI acquisition (assuming that body resistance dominates the

noise) [52],

SNR ∝ M0V


taqC (1.37)

where M0 is the equilibrium magnetization ∝ B0, V is the volume of a voxel,

taq is the total time spent acquiring signal, and C is signal changes from the

contrast (e.g. e−TE/T2 for T2 weighted scans). Thus, the minimum achievable

voxel volume is limited by the available SNR. DTI only has sufficient SNR for

fairly low resolutions for two primary reasons: (1) the diffusion gradients re-

quire a long duration, which makes the TE long and the net signal low, and (2)

signal loss introduced by the diffusion gradients further decreases the available

signal (≈ 50% for the typical b = 1000 s/mm2 in brain tissue). In addition,

OGSE dMRI requires even longer TE than standard DTI because oscillating

gradients are inefficient at creating large b-values and many oscillations must

be used, which further lengthens the TE. Also, the lower b-value results in

sub-optimal sensitivity of ADC calculations to noise. Both of these issues cre-

ate extremely stringent SNR conditions for OGSE dMRI, making it difficult

to perform in-vivo; only one in vivo human paper on OGSE dMRI exists in

the current literature aside from the work presented in this thesis [53].
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To increase the SNR without increasing scan time, the B0 field can

be increased to increase M0 (Equation 1.37). However, there are several well

known challenges to performing DTI at higher magnetic field strengths, which

are increased distortions from B0 inhomogeneity, increased specific absorption

rate (SAR), and increased B1 inhomogeneity. The work in this thesis was

performed at the high field strength of 4.7T, approximately 3 times larger

than typical. The techniques used to mitigate these challenges are described

below.

� Distortions As discussed in Section 1.4.4, the distortions caused by B0 in-

homogeneity are dictated by the equation ∆x = γ∆BtPE/∆kPE, where

tPE is the time it takes to acquire phase encode lines separated by

∆kPE. At high magnetic field strengths, ∆B is larger and the distor-

tions are worsened. The above equation also reveals that distortions

can be reduced by traversing through k-space at a faster rate (i.e. de-

crease tPE/∆kPE). In the thesis work, this was performed by using

rate R = 2 generalized autocalibrating partially parallel acquisitions

(GRAPPA) [54], which enables collection of only half the normally re-

quired number of k-space samples (via skipping of alternate phase en-

code lines). This causes ∆kPE to be twice as large for the same tPE,

thus reducing distortions by a factor of 2. The primary trade-off for

using parallel imaging is a decrease in the SNR by a factor of
√
R due

to the reduced time spent acquiring signal; however, this limitation is

offset by the reduced TE that parallel imaging enables for EPI. Spatially

dependent noise increases may also occur from non-optimal receive coil

sensitivity profiles, which is quantified by the geometry factor (g-factor).

For the work in this thesis, g-factors were typically within the range

0.8 to 1.2 (note that g-factors less than 1 can occur for GRAPPA [55]).
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GRAPPA for EPI may also introduce additional sensitivity to motion,

which is described in Chapter 3.

� Specific Absorption Rate When the radiofrequency pulses are applied,

transient electric fields are induced by Faraday induction of current from

the changing B1 field. Resistance in the body results in tissue heating,

and the specific absorption rate (SAR) of RF power must be kept at

safe levels to prevent injury. The energy deposited from RF pulses is

proportional to B2
0B

2
1 [20], which causes SAR to become a limiting factor

at high field strengths. In the spin-echo EPI sequence relevant to this

thesis, the primary contribution to SAR stems from 180◦ RF pulses. The

work in this thesis was primarily performed using only one 180◦ pulse,

compared to multiple refocusing pulses that are often utilized [35], which

resulted in manageable SAR for most cases. In rare cases where SAR

was still too high the TR was slightly lengthened to reduce the average

power deposited.

� B1 Inhomogeneity For increasing B0, the Larmor frequency also in-

creases (Equation 1.3). Accordingly, the wavelength of the B1 field in the

medium, λ = 2πc/(ω0n) (where c is the speed of light and n is the index

of refraction) decreases for increasing B0. When the wavelength becomes

comparable to the size of the sample, standing waves cause the B1 field

amplitude to be non-uniform. In a spin-echo acquisition with multiple

refocusing 180◦ pulses, each 180◦ RF pulse will modulate the amplitude

of the transverse magnetization by a factor sin2(θ/2) [20], where θ is the

actual flip angle that results from B1 inhomogeneity (Figure 1.15a). The

effect of B1 inhomogeneity is easily visible in a large water phantom be-

cause the RF wavelength is shorter compared to in brain tissue (Figure
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Figure 1.15: (a) For an inhomogeneous B1 field, the transverse magnetization,
Mxy, becomes more inhomogeneous as more 180◦ pulses are added after the
initial 90◦ excitation pulse (stimulated echoes are ignored). (b) Extreme inho-
mogeneity can be experimentally observed in a large phantom of pure water
using spin-echo EPI with one 180◦ pulse. The line in the image indicates the
location of the signal profile shown on the right. Notably, B1 inhomogeneity
is not nearly as severe in the human brain.
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1.15b). By using only one refocusing pulse in the spin-echo EPI sequence

this effect was mitigated. Also, dMRI is a quantitative approach where

the diffusion weighted signal is divided by the non-diffusion weighted

signal (Equation 1.24). Because the B1 inhomogeneity is equivalent for

both images that are divided, it does not affect quantitative ADC values.

However, it does reduce the SNR in some regions, which increases the

uncertainty of the calculated ADC.

1.6 Summary

The background presented in this chapter represents the basic knowl-

edge required for the research projects described in this thesis. Good resources

for additional details are Clinical Neuroanatomy by Waxman [17] for brain

physiology, Magnetic Resonance Imaging by Haacke [20] for MRI fundamen-

tals, and Diffusion MRI: Theory, Methods, and Applications by Jones [31] for

dMRI fundamentals.
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Chapter 2

The Effect of Concomitant Gradient

Fields on Diffusion Tensor Imaging1

2.1 Introduction

In MRI, magnetic field gradients are used for spatial encoding and to

provide contrast for particular sequences. While the applied gradient fields

are typically assumed to be linear and along the principle magnetic field direc-

tion, Maxwell’s equations dictate that small non-linear components are also

present in the transverse direction. The magnetic field amplitude offset caused

by these concomitant gradient fields scales inversely with the static magnetic

field strength and have historically been a concern in low-field applications

[7, 56, 57]. While concomitant gradient fields can usually be ignored for com-

mon pulse sequences at most field strengths, there are some pulse sequences

that are susceptible to their effects, such as echo-planar imaging (EPI) [58–

60], fast spin-echo [61], spiral trajectories [62, 63], phase contrast MRI [64],

balanced steady-state free precession [65], and combined gradient and spin-

1A version of this chapter has been published: Baron CA, Lebel RM, Wilman AH,
Beaulieu C. The Effect of Concomitant Gradient Fields on Diffusion Tensor Imaging. Magn
Reson Med. 68:1190-201 (2012) doi: 10.1002/mrm.24120

40



Chapter 2. Concomitant Gradients in DTI

echo acquisition [66]. Generally, concomitant fields introduce additional phase

variation. Depending on the k-space sampling scheme and slice orientation,

this can cause mis-registration of k-space data, which may result in signal

loss or image shifting, warping, and/or blurring. Depending on the pulse se-

quence, corrections can sometimes be performed using preparation gradients

before a 180◦ refocusing radiofrequency (RF) pulse to pre-warp the image

phase [59], or by taking the mis-registration into account during reconstruc-

tion [58, 63, 64, 67]. The amplitude of concomitant gradient fields scales with

the square of gradient strength; therefore, with the advent of increasingly high

amplitude gradient hardware, the effects of concomitant gradient fields will

likely become increasingly relevant.

In diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI),

there is considerable motivation to utilize stronger gradients to achieve higher

diffusion-sensitizing factors (i.e. b-value) and to reduce the echo time for a

given b-value, thereby increasing the signal per shot and reducing scan time

via a shorter TR (given the reduced TE for each slice). The effect of con-

comitant gradient fields on diffusion imaging has been partly discussed in the

context of asymmetric gradient coils by Meier et al. [68], where concomi-

tant gradient effects can be more severe than for symmetric gradient coils. It

was shown that a diffusion preparation containing bipolar gradients can yield

concomitant gradient fields that create a linear phase ramp along the phase-

encode direction, which can potentially shift the center of k-space out of the

acquisition window, particularly when using partial Fourier undersampling.

Note that diffusion pulse sequences containing bipolar gradients, as opposed

to the pair of monopolar gradients applied on either side of the 180◦ refocus-

ing RF pulse as in the Stejskal-Tanner method [32], minimize eddy current

effects [35, 69]. Meier et al. also introduced a prospective correction that
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mitigates this specific source of error. They did not consider, however, errors

in quantification of the apparent diffusion coefficient (ADC) that can arise

from non-linear phase variations or through-plane phase variations imparted

by concomitant gradient fields. The directionality and non-linearity of the

phase accrual generated by concomitant gradient fields has a dependence on

net gradient direction, which represents a considerable concern in DTI, where

numerous gradient directions (6 or greater) are acquired with simultaneous

gradients that are often at maximum strength. This directionally-dependent

signal decay beyond diffusion will adversely impact the tensor and higher order

models used for the determination of anisotropy and the orientation of white

matter tracts.

In the current work, the potential errors of diffusion measurements as-

sociated with these unaddressed sources of concomitant gradient fields are

investigated by performing simulations based on theoretical derivation and

experimental validation using phantoms and healthy human subjects. Eddy-

current minimizing diffusion preparation schemes that are sensitive to con-

comitant gradient fields, namely the usual Reese twice refocused [35] and the

split-gradient single spin echo (SGSSE) (sometimes used in place of the twice-

refocused preparation in favour of fewer 180◦ RF pulses) [69, 70] preparations,

are compared to the Stejskal-Tanner preparation [32], which is immune to

error from concomitant gradient fields. Examples are shown experimentally

at 4.7 Tesla with a maximum gradient amplitude of 60 mT/m per axis. A

prospective correction scheme that is a generalization of the specific scheme

introduced in earlier work [68] is proposed and verified to reduce the diffusion

measurement error. Error predictions from simulations are also presented for

a range of common gradient and static field strengths.
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2.2 Theory

2.2.1 Concomitant Gradient Fields for Diffusion

Imaging

The net amplitude of the magnetic field is augmented by the presence

of concomitant gradient fields, where the Taylor expansion to second order

for symmetric gradient coils, with x- and y- gradient sets related by 90◦, is

repeated here (detailed derivations can be found elsewhere [64, 68]):

BC =


G2

x +G2
y


z2

2B0

+
G2

z (x
2 + y2)

8B0

− GxGzxz

2B0

− GyGzyz

2B0

(2.1)

A potential concern is the impact of BC on b-value, which can be calculated via

a spatial derivative of Equation 2.1. Within a 20 cm region surrounding iso-

center, b-value variations are on the order of 10−4% for a 4.7 T system with 60

mT/m gradients, which is completely negligible. While the impact on b-value

is inconsequential, the concomitant fields from the large diffusion-sensitizing

gradient lobes can cause spatially non-linear phase accrual. For gradients

placed symmetrically about an RF refocusing pulse (shaded regions in Figure

2.1), phase accrual from BC is refocused. As such, the net phase accrual occurs

over the cumulative duration, τ , of gradients that are not symmetrically placed

about the RF refocusing pulse (Figure 2.1), and is given by:

φ(x, y, z, τ) = γ


τ

BC(x, y, z)dt ≈ γτBc(x, y, z) (2.2)

It is unknown to what extent that this phase accrual could impart error into

quantitative diffusion measurements. In contrast to the SGSSE and twice-

refocused preparations, all phase accrual from BC is RF refocused in the
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Figure 2.1: Basic timing of RF pulses and diffusion gradient lobes for (a)
Stejskal-Tanner, (b) split-gradient single-spin-echo (SGSSE), and (c) Reese
double-spin-echo preparations. The shaded regions indicate the portion of the
gradient lobes where the phase accumulation from concomitant gradient fields
are refocused by the 180◦ RF pulses. For (a)-(c), slice select, spatial encoding,
and spoiler gradient waveforms are omitted for clarity. (d) Proposed correction
gradient lobes with areas GStS, GP tP , and GF tF applied on the slice-select (S),
phase-encode (P), and frequency-encode (F) gradient channels, respectively.
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Stejskal-Tanner preparation. Phase variation along the slice plane (i.e. in-

plane dephasing) can cause warping of k-space data that is incompatible with

partial Fourier acquisition techniques. Intravoxel dephasing causes a decrease

in image intensity which would corrupt measurements of the apparent diffusion

coefficient (ADC).

2.2.2 In-Plane Dephasing

From Equation 2.1, concomitant gradient fields can introduce a parabolic

phase variation within the imaging plane, which causes a blurring of k-space

because the signal from voxels spatially distant from iso-center re-phase away

from the center of k-space.2 Additionally, the GiGj cross terms in Equation

2.1 can cause a linear phase ramp in image space, which corresponds to a

bulk k-space translation. These two concepts will be referred to as k-space

blurring and k-space shifting, respectively. Image artefacts can occur from

these two sources if data is pushed near or outside the edge of the acquisition

window; artefact severity is strongly enhanced with partial Fourier undersam-

pling. When this occurs, low spatial-frequency components of the MR signal

are artificially attenuated. While artefacts stemming from similar effects have

been discussed in other contexts [58, 61, 63, 65], concomitant field induced

k-space blurring has not been previously discussed in the context of DTI.

Conversely, k-space shifting in DTI has been introduced elsewhere [68]. It is

instructive to evaluate the expected fractional translation of k-space data along

the undersampled direction (with respect to width of entire k-space), δk. For

frequency-encode, phase-encode, and slice-select axes along the unit-vectors

r̂F , r̂P , and r̂S, respectively, and undersampling along r̂P , the magnitude of

2i.e. the spatially distant voxels have phase ramps in image space that causes their
respective contributions to k-space to be shifted - see Section 1.4.3
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the maximum shift (positive or negative) of any frequency component is given

by:

δkP =
FOVP

2πNP

γτ (max (|r̂P • ∇BC(x, y, z)|)) (2.3)

In the above equation, FOVP andNP are the field-of-view and number of image

pixels, respectively, along the phase-encode direction. For undersampling in

the frequency-encode direction, all parameters with P subscripts are replaced

with their frequency-encode analogues. For axial slices and symmetric gradient

coils, Equation 2.3 simplifies to:

δkP = δkP,Bl + δkP,Sh

δkP,Bl =
FOVPG

2
zyMγτ

8πNPB0

δkP,Sh =
FOVPGyGzzSγτ

4πNPB0

(2.4)

In Equation 2.4, the contributions to δkP from k-space blurring and shifting

are given by δkP,Bl and δkP,Sh, respectively, zS is the slice position, and yM

is the farthest position in the image from iso-center. For an object that fills

the entire field-of-view, yM = FOVP/2. The signal loss associated with δk

is in general dependent on the subject geometry because the amount of k-

space data shifted out of the acquisition window is dependent on the width of

the k-space spectrum. In addition, while δkP,Sh vanishes as the slice position

approaches iso-center for axial slices, δkP,Bl is equally present for all slices.

2.2.3 Intravoxel Dephasing

Intravoxel dephasing from concomitant gradient fields results in a de-

crease of signal intensity and has not been previously considered in the context

of DTI. The decrease in signal is given by the integral of the phase dispersion
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across any given voxel. Assuming that the magnetization is uniform across

the slice thickness, w, and that the dephasing is predominantly perpendicular

to the slice3, the signal is:

S(rF , rP , rS,0) = S0(rF , rP , rS,0)
1

w

 rS,0+w/2

rS,0−w/2

e−iγτBC(rF ,rP ,rS)drS (2.5)

The distances along the frequency encode, phase encode, and slice select di-

rections are given by rF , rP , and rS, respectively, rS,0 is the position of the

center of the slice, and S0 is the signal received if concomitant fields were not

present. For a thin slice, the dephasing from concomitant gradient fields can

be approximated as a linear phase ramp at any voxel within the slice. Consid-

ering only the signal magnitude and using a linear approximation, one obtains:

 S(rF , rP , rS,0)S0(rF , rP , rS,0)

 = 1

w


 rS,0+w/2

rS,0−w/2

e−iγτrS(r̂S•∇BC)drS


=

sinc 1

w
γτ(r̂S • ∇BC)


(2.6)

This signal attenuation propagates into the ADC computation by falsely at-

tributing phase dispersion to diffusion attenuation. For a reference measure-

ment where b = 0 s/mm2 denoted as SREF , ADC = − ln |S/SREF | /b. With

the error-free value given by ADC0 = − ln |S0/SREF | /b, the error is:

δADCTh ≡ ADC(rF , rP , rS,0)− ADC0

= − ln


sinc


1

w
γτ(r̂S • ∇BC)


/b

(2.7)

3A triple integral over the entire voxel would ideally be taken; however, this would
preclude an analytical representation of the signal loss. Further, for axial slices (most
common for DTI) intravoxel dephasing from concomitant fields is predominantly across the
slice direction (see Equation 2.1).
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Interestingly, Equation 2.7 shows that δADCTh is sample-independent. δADCTh

is generally dependent on position within the slice, with specific spatial de-

pendencies dictated by the diffusion gradient direction and slice prescription.

For an axial slice using symmetric gradient coils:

δADCTh(x, y) =− ln


sinc


G2

x +G2
y


zSwγτ

2B0

−(GxGzx+GyFzy)wγτ

4B0


/b

(2.8)

where zS is the position of the slice, and x, y is the position of a voxel in the

slice.

Since the artefacts encountered depend on both slice and diffusion gra-

dient orientations, Table 2.1 summarizes the expected artefacts for several

gradient combinations for the three standard views, where the slice-select di-

rections are along the z-, x-, and y-directions for axial, sagittal, and coronal

views, respectively.

Table 2.1: Main Effect of Concomitant Fields for Various Gradient Combina-
tions and Cardinal Planes

Gradient Combination Axial Slices Sagittal Slices Coronal Slices

Gx, Gy, or Gx +Gy In Bl Bl
Gz Bl In,Bl In,Bl
Gx +Gz In,Bl,Sh In,Bl,Sh In,Bl
Gy +Gz In,Bl,Sh In,Bl In,Bl,Sh
Gx+Gy +Gz In,Bl,Sh In,Bl,Sh In,Bl,Sh

In = intravoxel dephasing, Bl = k-space blurring, Sh = k-space shifting
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2.2.4 Corrections

The linear component of dephasing caused by concomitant gradient

fields can be mitigated by applying an appropriate gradient lobe to refocus

the spins. In Ref. [68], this is suggested for the correction of k-space shifting,

and similar approaches have been used in the context of EPI [60, 66]. Here,

we generalize this prospective correction to apply to both k-space shifting

and intravoxel dephasing. In cases where the dephasing varies throughout

the slice, some residual error will remain away from the reference point used

for the linear approximation of the dephasing. By choosing a position at the

center of the anatomy of interest in the slice, xC , yC , zC , the average error will

be reduced. Accordingly, the gradient area, Giti, required for each gradient

channel, i = S, P, F , is:

Giti = −τ (r̂i • ∇BC){xC ,yC ,zC} (2.9)

A suitable implementation of the correction is to add GStS to the gradient area

required for the rephasing gradient of the excitation pulse, and simultaneously

apply GP tP and GF tF , as shown in Figure 2.1d. For an axial slice of a subject

centered on the z-axis, the corrective gradient areas for symmetric gradient

coils reduce to:

GStS = −

G2

x +G2
y


zSτ

B0

GP tP = −GyGzzSτ

2B0

GF tF = −GxGzzSτ

2B0

(2.10)

While the proposed measures can correct for much of the error in-

troduced by the concomitant gradient fields, the application of gradient lobes
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cannot correct for errors that result from non-linear dephasing, such as k-space

blurring. To mitigate ADC errors from this, a retrospective phase correction

using low-frequency phase information is implemented before partial Fourier

reconstruction [71, 72]. While this approach can not correct for data shifted

outside the acquisition window nor have any impact on intravoxel dephas-

ing, it de-blurs and centers the acquired k-space data before partial Fourier

reconstruction.

2.3 Methods

To examine the effect of concomitant gradient fields on DTI, simula-

tions based on the above theoretical derivations were performed first, and then

the theory was experimentally validated in a phantom and healthy human sub-

jects. Experiments were performed using a Varian Unity Inova (Walnut Creek,

CA) 4.7 T whole body imaging system utilizing a symmetric gradient coil with

a maximum gradient amplitude of 60 mT/m per axis. RF transmission and

reception were performed using a 27 cm diameter birdcage coil. Data was

acquired using Stejskal-Tanner (δ = 9.1 ms, ∆ = 28.1 ms), SGSSE (δ1 = 12.6

ms, δ2 = 14.9 ms, δ3 = 2.3 ms), and Reese twice-refocused (δ1 = 3.0 ms, δ2 =

11.4 ms, δ3 = 11.7 ms, δ4 = 2.7 ms) preparations (Figure 2.1). All sequences

utilized single shot echo planar imaging (EPI) readouts with FOV = 24 cm,

matrix size 96 × 96, and slice thickness 3.0 mm. The τ -values were 25.2 ms

and 17.8 ms for the SGSSE and twice-refocused preparations, respectively. All

scans (and simulations) were performed with axial slices since DTI is predom-

inantly performed parallel to the anterior-posterior commissure axis, which

is typically less than 10◦ from pure axial. Note that the concomitant phase

errors caused by EPI gradients may affect the concomitant phase errors from
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the diffusion gradients. To mitigate this as a source of error when comparing

the different diffusion preparations, the EPI readout used was identical for all

scans.

Simulations of the error from concomitant gradient fields were per-

formed using acquisition parameters consistent with the experimental values

stated above. Two values were calculated as a function of slice position: δkP

(Equation 2.3) and the mean δADCTh (Equation 2.8). In the calculation of

δkP , yM was chosen as half the field of view. Both a 6 direction diffusion

encoding scheme that applies gradients on two axes simultaneously for each

direction and a 30 direction diffusion encoding scheme (results similar for any

scheme with gradients distributed about a sphere) [73] were investigated.

To validate the theoretical predictions offered by Equations 2.3 and

2.8, images of a phantom containing ST0-50 silicone oil (Clearco Products Co.

Inc., Bensalem, PA) were acquired with six diffusion-encoding directions. This

phantom was chosen because the B1 field is uniform within it, which mitigates

the additional sensitivity of the twice-refocused preparation to B1 inhomogene-

ity in comparison to the Stejskal-Tanner and SGSSE preparations. Moreover,

the diffusion coefficient of the phantom is many orders of magnitude smaller

than that of water, and the signal loss from diffusion weighting is primarily

from concomitant gradient induced error. Thirty-four slices (3 mm thick) with

an inter-slice gap of 3 mm (to avoid cross-talk) were obtained with a scan time

of 2 minutes (TR = 6 s; TE = 92 ms). The single-axis diffusion gradient

strength was 60 mT/m (b = 1000 s/mm2), and partial Fourier undersampling

was not implemented (i.e. partial Fourier fraction, pff = 1). A diffusion ori-

entation of (0, -1, 1) was chosen to create in-plane dephasing for comparison

with Equation 2.4. It is expected that signal intensity errors from in-plane

dephasing are dependent on pff; therefore, pff values of 3/4 and 5/8 were sim-
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ulated by using homodyne reconstruction [74] with only a portion of the fully

acquired k-space data. The retrospective correction was not performed prior

to homodyne reconstruction, and the nominal number of over-scans are used

(i.e. k-space shifts are not taken into account in the homodyne reconstruction)

to show the amount of error if k-space shifting is not considered. The diffusion

orientation of (1, 1, 0) was chosen to study the error caused by intravoxel

dephasing and to validate Equation 2.8 for slice positions ranging from -10

cm to 10 cm. To experimentally obtain δADC, the ADC’s obtained using a

Stejskal-Tanner diffusion preparation (insensitive to concomitant fields) were

subtracted from those obtained using either SGSSE or twice-refocused diffu-

sion preparations (sensitive to concomitant fields) to create a difference image;

voxels containing signal within the image were averaged to obtain an exper-

imental δADC. While these types of subtractions are not typically done in

DTI, they serve to eliminate other sources of ADC error that are consistent for

all of our acquisitions, such as concomitant field effects from the EPI readouts

[58–60] or gradient non-linearity induced errors [75]. The diffusion gradient

direction dependence was examined for the 6 direction DTI protocol.

To validate the corrections, δADC was calculated for two healthy hu-

man volunteers (with informed consent) using pff = 3/4 and diffusion gradient

orientations of (0, -1, 1) (i.e. in-plane dephasing) and (1, 1, 0) (i.e. intravoxel

dephasing) with and without the application of both the prospective and retro-

spective corrections. 20 slices (3 mm thick; 3 mm inter-slice gap) were obtained

using 6 averages and a scan time of 3 min (TR = 4 sec; TE = 68 ms). The sub-

ject’s brain was positioned such that slices near 0 cm and 10 cm correspond to

the inferior and superior regions of the brain, respectively (i.e. subject centered

5 cm off iso-center). While the subject is normally centered at iso-center, this

shifted positioning allows demonstration of the effectiveness of the correction
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for the larger amount of error that occurs for slices farther from iso-center. To

validate the theoretical predictions that δADCTh depends on neither the ADC

of the subject nor the pff (Equation 2.8), the (1,1,0) data was also compared to

the analogous phantom data described in the above paragraph. To illustrate

the impact of concomitant gradient fields on DTI, a 6-direction DTI scan was

performed on five healthy subjects (with informed consent). First, a slice was

acquired at iso-center (0 cm). The same anatomical slice at 5 cm was then

acquired after positioning the subject 5 cm from iso-center. This experimental

technique demonstrates how the slice position-dependent artefacts manifest

using consistent anatomy between the slice positions. The impact of con-

comitant fields, and the influence of the corrections, on fractional anisotropy

(FA) and mean diffusivity (MD) in white matter was investigated by manu-

ally specifying regions of interest within the corticospinal tract and splenium

of the corpus callosum. To isolate grey matter, thresholds of MD < 1× 10−3

mm2/s and FA < 0.2 were used in the Stejskal-Tanner data sets (i.e. data not

impacted by concomitant gradient fields) to create masks that were applied

to both the SGSSE and twice-refocused data. Mis-registration was mitigated

by hardware based eddy current compensation and retrospective correction of

motion and any remaining eddy current induced distortions [76]. Note that

differences of image distortions were not apparent between the three diffusion

preparations.

2.4 Results

2.4.1 In-Plane Dephasing

Simulation results of in-plane dephasing for both SGSSE and twice-

refocused preparations show a strong dependence of δkP on diffusion gradient
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direction (Figure 2.2). The error increases with distance from iso-center. The

Figure 2.2: Simulation results (Equation 2.4) for the concomitant gradient
field induced fractional k-space error, δkP (unitless), from in-plane dephasing
for axial slices. Simulations for both 6 direction and 30 direction standard
DTI protocols have been performed for both SGSSE (τ = 25.2 ms) and Reese
twice-refocused (τ = 17.8 ms) diffusion preparations. Since δkP is linearly
proportional to τ , the differing τ between SGSSE and twice-refocused prepa-
rations results in a simple scaling of δkP relative to each other. Various diffu-
sion directions have been plotted in each graph; note that the curves for some
pairs of directions are identical in the 6-direction cases. In all cases, direction-
dependent error that worsens with distance from iso-center is observed, with
the 6 direction SGSSE preparation representing the most severe case. The 30
direction protocol is less sensitive to errors than the 6 direction protocol due to
a smaller net gradient amplitude (

√
2× 60 mT/m = 85 mT/m for 6 direction

and 60 mT/m for 30 direction).

twice-refocused preparation exhibits a lower sensitivity to concomitant gradi-

ent fields than the SGGSE preparation due to a smaller τ (the cumulative

duration of non-RF-refocused diffusion gradients). The 30 direction protocol

is less sensitive to errors than the 6 direction protocol due to a smaller net

gradient amplitude (
√
2×60 mT/m = 85 mT/m for 6 directions and 60 mT/m

for 30 directions).

The k-space magnitudes (logarithmically scaled) for the silicone oil

phantom with a diffusion gradient orientation of (0,-1,1) show no discernible

error with a Stejskal-Tanner diffusion preparation, where the dephasing from
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concomitant gradient fields is completely refocused (Figure 2.3a). In contrast,

the SGSSE and twice-refocused cases show both k-space blurring and k-space

shifting. The k-space blurring (i.e. a larger full-width-half-maximum, FWHM)

is observed at both slice positions (9 mm and 51 mm), while shifting is only

observed for zS = 51 mm. For SGSSE, the FWHM is narrower at 51 mm

compared to at 9 mm because k-space shifting causes the k-space peak to no

longer be acquired at the spin-echo. Away from the spin-echo the signal varies

due to T ∗
2 decay, artificially narrowing the FWHM. The amount of k-space

shifting increases with distance from iso-center, which is observed in the ex-

perimentally measured δkSh (using centroid of k-space peak) for slices ranging

from -10 cm to 10 cm for both SGSSE and twice-refocused, in agreement with

that predicted from Equation 2.4 (Figure 2.3b). The signal intensity errors

that result from in-plane dephasing, which is measured by the ratio of the dif-

fusion weighted and non-diffusion weighted image intensities, Ib/I0, strongly

depends on the partial Fourier fraction, pff (Figure 2.3c). Since the diffusion

coefficient of silicone oil is many orders of magnitude smaller than that of wa-

ter, Ib/I0 ≈ 1 is expected. For the Stejskal-Tanner preparation a deviation

from unity by less than 5% is observed for all pff’s investigated; however, for

pff < 1 the SGSSE and twice-refocused preparation have Ib/I0 that are well

below unity. For the slice at 9 mm, k-space shifting is negligible and the error

(as high as 20% for SGSSE and pff = 5/8) is due to k-space blurring. For

the slice at 51 mm, both k-space shifting and k-space blurring contribute to

the error (as high as 45% for SGSSE and pff = 5/8). For the k-space shifted

data, additional signal loss from T ∗
2 decay also contributes to the error in Ib/I0.

By applying the retrospective correction before homodyne reconstruction, the

errors decrease to less than 10% for all cases shown in Figure 2.3c (data not

shown). Note that since the (0,-1,1) diffusion direction creates relatively little
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Figure 2.3: (a) k-space for axial DTI data acquired with a diffusion gradient
orientation of (0,-1,1) (single axis gradient 60 mT/m; b = 1000 s/mm2) for a
silicone oil phantom for slice positions of 9 mm and 51 mm. In the SGSSE
and twice-refocused cases, k-space blurring is observed for both slice positions
(the full-width-half-max along the y-direction is identified in each panel) and
shifting is observed for the slice at 51 mm. (b) Comparison of experimentally
obtained k-space shifting fraction to theoretical prediction (Equation 2.3). The
slight deviation for slices near 8 cm is due to B0 inhomogeneity near the edge
of the phantom. (c) Partial Fourier fractions (pff) of 3/4 and 5/8 are simulated
from the fully acquired k-space data, and the signal ratio between diffusion-
weighted and non-diffusion-weighted images (Ib/I0) within the region specified
in the inset is calculated.
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intravoxel dephasing, the expected signal amplitude error from intravoxel de-

phasing (Equation 2.6) is less than 3% for all slice positions, pff, and diffusion

preparation types shown in Figure 2.3c.

2.4.2 Intravoxel Dephasing

Analogously to in-plane dephasing, the simulation results of intravoxel

dephasing for both a SGSSE and twice-refocused preparation show a strong

dependence of δADCTh on diffusion gradient direction, and the error increases

with distance from iso-center (Figure 2.4a). The twice-refocused preparation

exhibits a lower sensitivity to concomitant gradient fields than the SGGSE

preparation due to a smaller τ , and the 30 direction protocol is less sensitive

to errors than the 6 direction protocol due to a smaller net gradient ampli-

tude. At 6 cm (coinciding with typical extent of human brain), δADCTh can

be as high as 0.14 × 10−3 mm2/s for the SGSSE preparation, which is 20%

of the mean diffusion coefficient in human brain parenchyma of 0.7 × 10−3

mm2/s [77]. There is good agreement of experimental results for δADCTh

measured for a diffusion gradient orientation of (1,1,0) with the values pre-

dicted from Equation 2.8 for both phantom at slice positions of -10 cm to 10

cm and human brain from 0 to 10 cm (Figure 2.4b) for the SGSSE prepara-

tion. The slight overestimation of δADCTh from Equation 2.8 is likely due to

the assumption of a perfectly uniform magnetization profile, which does not

occur in practice, and/or possibly from differing eddy current characteristics

between the Stejskal-Tanner and eddy-current compensating diffusion prepara-

tions (gradient pre-emphasis mitigated this source of error). The comparable

results between phantom and in-vivo human brain highlight the theoretical

prediction that δADCTh is sample-independent. Moreover, since the phantom

and human data were acquired with pff = 1 and 3/4, respectively, the results
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Figure 2.4: (a) Simulation results for the concomitant gradient field induced
ADC error from intravoxel dephasing for axial slices (mean error over en-
tire slice). For arguments of the sinc function close to zero in Equation 2.8,
δADCTh is approximately proportional to τ 2, where τ = 25.2 ms for SGSSE
and τ = 17.8 ms for twice-refocused. Direction-dependent error worsens with
distance from iso-center, with the 6 direction SGSSE representing the most
severe case. The 30 direction protocol is less sensitive to errors than 6 di-
rections due to a smaller net gradient amplitude (85 mT/m for 6 direction
and 60 mT/m for 30 direction). (b) Comparison of experimentally obtained
ADC error in a silicone oil phantom and human brain to theoretical predic-
tion (Equation 2.8) for both SGSSE and twice-refocused preparations (error
defined as difference from Stejskal-Tanner). Excellent agreement is observed
for the silicone oil phantom for both preparations; however, for the human
brain there is worse agreement to theory for the twice-refocused case due to a
higher sensitivity to B1 inhomogeneity. The position of slices for the human
subject is depicted in the inset the brain was offset from iso-center to demon-
strate the agreement with theory at larger offsets from iso-center. (c) ADC
error in the silicone oil phantom at a slice position of 6 cm for the diffusion gra-
dient directions of the 6 direction protocol. The trend supports the theoretical
prediction in (a) that directions (±1,±1, 0) exhibit the highest error.
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highlight the lack of dependence of intravoxel dephasing error on pff. For the

twice-refocused preparation, the poor in-vivo agreement with Equation 2.8 is

likely due to a higher sensitivity to B1 inhomogeneity for the twice refocused

preparation compared to the SGSSE preparation. B1 inhomogeneity is negligi-

ble in the silicone oil phantom where there is better agreement with Equation

2.8. The error is experimentally highest for diffusion directions of (1, 1, 0)

(Figure 2.4c), which supports the theoretical prediction in Figure 2.4a.

2.4.3 Corrections and DTI Metrics

The experimentally measured ADC error for data acquired with and

without the prospective and retrospective corrections for a human brain is

shown at slice positions ranging from 0 cm to 10 cm (slice range depicted

in inset of Figure 2.4b) for diffusion directions of (1,1,0) and (0,-1,1) (Figure

2.5). For both diffusion directions, it is evident that the prospective correction

substantially reduces the error that arises from both in-plane and intravoxel

dephasing, while the retrospective correction is only effective for mitigating

the effects of in-plane dephasing. Optimal results are obtained when both

corrections are used together. Similar results have been obtained for other

diffusion directions.

The mean FA and MD in grey matter, the corticospinal tract, and

splenium for 5 healthy volunteers are summarized in Figure 2.6 (see Figure

2.7 for example MD and FA maps). In grey matter the FA is larger for

the SGSSE and twice-refocused preparations relative to Stejskal-Tanner at a

slice position of 0 cm. The error is reduced with the corrections, but the

FA is still higher than from Stejskal-Tanner; this residual error can likely be

attributed to k-space blurring (a slice-position independent error that cannot

be fully corrected with these corrections). For the slice position at 5 cm, an
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Figure 2.5: The difference in ADC (δADC) between Stejskal-Tanner and either
SGSSE (left) or twice-refocused (right) diffusion preparations measured for
two gradient directions at slice positions (zS) ranging from 0 cm to 10 cm for
a human brain (slice positioning in Figure 2.4b). Results are shown for no
correction, only the prospective correction, only the retrospective correction,
and both corrections. The (1,1,0) and (0,-1,1) diffusion gradient directions
are primarily associated with intravoxel and in-plane dephasing, respectively.
The retrospective correction is only effective for mitigating the effects of in-
plane dephasing. For all cases where measurable error is present, the error
is significantly reduced with the prospective correction. Similar results were
obtained for other gradient directions and in our second human subject.
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Figure 2.6: Mean FA and MD in five volunteers for the same anatomical axial
slice positioned at isocenter (i.e. 0 cm) and 5 cm from isocenter (Both the
patient bed and slice position were moved) with three different diffusion sensi-
tizing schemes: ST Versus SGSSE and Reese twice refocused spin-echo (TRSE)
without (no cor.) and with (cor.) retrospective and prospective corrections.
Paired t-test significance (with respect to ST at the same slice position) is
portrayed using * for p < 0.05, �for p < 0.01, and �for p < 0.001.
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Figure 2.7: Example MD and FA for one subject at a slice position of 0
cm for the three different diffusion preparations, with both prospective and
retrospective corrections.
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even greater increase of FA in grey matter is observed for the SGSSE and

twice-refocused preparations with respect to the Stejskal-Tanner preparation

(increases of 0.12 and 0.11, respectively). This slice-dependent error is likely

due to a combination of intravoxel dephasing and k-space shifting. The error

is substantially reduced when the corrections are used, but again there is still

a residual difference from Stejskal-Tanner. In the corticospinal tract, the FA is

larger for both SGSSE and twice-refocused compared to Stejskal-Tanner and

the corrections essentially bring the FA values in agreement. Few significant

differences of FA were observed in the splenium, in fact only with SGSSE,

which was 0.03 higher than Stejskal-Tanner at 0 cm while the corrections

brought them in-line. These results suggest that structures with larger FA

are proportionally less prone to error, in agreement with observations of low

SNR DTI data [78]. Overall, few changes of MD were observed; only the

corticospinal tract and splenium at 0 cm showed differences for uncorrected

data. The overall lack of sensitivity of MD on concomitant gradients is likely

because the ADC error for some diffusion directions is much smaller than for

others, resulting in reduced overall error.

2.5 Discussion

In this work, it has been shown through simulation and experimental

validation on phantom and human brain that concomitant gradient fields can

corrupt diffusion imaging data via k-space blurring and intravoxel dephasing.

A k-space shifting artefact due to concomitant gradients was confirmative of an

earlier report [68] and the extension to intravoxel dephasing is a key addition

here. The concomitant gradient induced dephasing can create marked errors

of diffusion parameters that depend on diffusion gradient asymmetry (i.e. τ),
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the gradient direction, encoding scheme, and distance from iso-center. While

the effects are demonstrated at 4.7T and stronger than average gradients of 60

mT/m per axis, the use of similar strength gradients at lower static fields such

as 3T will be even more problematic if using similar eddy-current minimizing

diffusion encoding schemes as those depicted in Figure 2.1.

By using Equations 2.3 and 2.7 it is possible to predict the sensitiv-

ity of any set of parameters to concomitant gradient fields. To portray the

sensitivity of various B0 and gradient strength combinations that can lead

to significant error from concomitant gradient fields, the predicted maximum

percentage error in ADC (from intravoxel dephasing, Equation 2.7) over all

diffusion directions for both SGSSE and twice-refocused diffusion preparations

is shown in Figure 2.8(a-d) for both 6 and 30 direction protocols. The mean

error over all directions is about half the maximum error depicted in Figure

2.8(a-d). Also note that the error is greater with increasing distance of slices

from iso-center (Figure 2.8e), and with increasing τ (Figure 2.8f), which in

turn varies with specific pulse sequence timings and the choice of eddy cur-

rent time constants to be canceled. Nevertheless, it is evident that a clinical

field strength scanner with large amplitude gradients can be prone to sub-

stantial error. For example, the ADC from a single diffusion direction can be

off by as much as 25% (mean error over all diffusion directions is 13%) at 5

cm from iso-center for a 6 direction twice-refocused protocol (τ = 17.8 ms)

at 1.5T equipped with 50 mT/m gradients. Note that using an increased B0,

decreased gradient strength, or 30 direction protocol with smaller net effective

gradient would yield smaller errors in ADC. Also, while the simulations in Fig-

ure 2.8 show the error from intravoxel dephasing, in-plane dephasing will also

contribute to the total error. For our case, in-plane dephasing effects were

of similar magnitude to intravoxel dephasing effects (see Figure 2.5). Since
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Figure 2.8: (a) - (d) Expected maximum percent-error of the ADC (over all
directions of DTI protocol) for SGSSE and twice-refocused preparations for 6
and 30 direction protocols as a function of main field strength and maximum
gradient strength along a single axis. The absolute intravoxel dephasing error
at the center of the slice is calculated from Equation 2.7 for a 3 mm thick slice
5 cm from iso-center, and a mean diffusion coefficient of 0.7×10−3 mm2/s [77]
is used in the percent error calculation. All parameters except the gradient
and main field strength are set equal to those used in this work. Dark bands
are visible where the error is infinite due to 2π dephasing across the slice. Also
shown are iso-contours for 5%, 10%, and 25% error (white lines). Notably, the
error increases with slice distance from iso-center, as depicted in (e). Also, the
difference between the SGSSE and twice-refocused preparations in (a)-(d) is
due to the differing τ . The choice of eddy current cancellation, unique pulse
sequence design, and b-value will likely affect τ ; as depicted in (f), the error
increases with increasing τ .
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in-plane dephasing depends on in-plane voxel size (larger in-plane voxel sizes

decrease the maximum extent of acquired k-space for a constant pff, causing

exacerbated data loss) and intravoxel dephasing depends on slice thickness

(Equation 2.7), the relative contributions from these two sources of error will

vary with voxel anisotropy.

For low-field scanners with large gradients an erroneous increase in MD

is likely (see Figure 2.8). This would also apply to 3 direction protocols com-

mon for clinical DWI, where net gradient amplitude is typically maximized to

decrease TE. It is relevant to note that for our scanner specifications the error

in a 30 direction protocol is small. However, Figure 2.8(a-d) suggests that large

errors may be present for 30 direction protocols (or any high angular resolu-

tion spherical shell diffusion gradient encoding scheme) for systems utilizing

large gradients (e.g. 100 mT/m “connectome” gradients). The concomitant

fields do not appear to be much of an issue at 7T for any diffusion encoding

scheme with currently available gradient strengths and the τ -values used here.

It should be kept in mind that the errors are worse for the SGSSE method

(due to a larger τ), which has the advantage of one less 180◦ RF pulse and can

have lower TE relative to the twice-refocused method. While here we focus

on the common Reese implementation of a twice-refocused diffusion prepa-

ration, other implementations of twice-refocused diffusion preparations that

allow cancellation of multiple eddy current components may also have non-

zero τ [79, 80], as high as 33.2 ms in Ref. [79]. In general, the twice-refocused

protocol has an additional degree of freedom for timing design compared to

SGSSE (via one additional gradient lobe), which may be used to minimize τ

even further (or even reduce to 0, completely nullifying the effect of concomi-

tant gradient fields) while retaining eddy current compensating qualities. Such

modifications would likely have the cost of increasing TE, since the additional
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degree of freedom is used to minimize TE in the original Reese implementation

[35]. While to the best of our knowledge there are no studies explicitly out-

lining these types of modifications of the twice-refocused sequence to remove

concomitant gradient effects, it appears that some studies have implemented

such methods to eliminate τ [81]; note that one can verify whether such se-

quences with τ=0 have been implemented on a per scanner (model, software

level, etc) basis. Also note that while Stejskal-Tanner is immune to such er-

rors, care must be taken to ensure eddy current compensation (via hardware

and in reconstruction) is adequate.

Because the manifestation of concomitant gradient field errors depends

on position relative to iso-center, they can impart false variance to multi-

subject data due to inconsistency in the position and brain size of the subjects.

Furthermore, variability in scanner hardware can introduce systematic errors

in diffusion parameters, thus compromising data reliability in multi-scanner

or multi-center research [82]. DTI of organs such as the liver [83] or kidneys

[84] will be more sensitive to errors from concomitant fields since inherently

low SNR requires that relatively thick slices be used, which increases δADCTh

(Equation 2.8), in addition to the larger distances from iso-centre (Figure 2.8e);

although one mitigating factor may be the use of smaller b-values (i.e. weaker

gradients). The effects of concomitant gradient fields may also be severe for

animal MRI systems, where the gradient strength can be as large a 1 T/m

[85]; although the slice offsets are markedly less than for human applications.

These errors may have deleterious consequences on deterministic tractography,

where the increase in FA may promote voxels in grey matter to be above a fibre

tracking threshold (e.g. in Figure 2.6 the FA in grey matter is increased to well

beyond the common threshold of FA=0.2 for the SGSSE slice at 5 cm). The

accurate detection of crossing fibres may be compromised by concomitant gra-
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dient fields. High angular resolution diffusion imaging (HARDI) and diffusion

spectrum imaging (DSI) techniques utilize many diffusion gradient directions

to resolve multiple fibre populations co-existing in a single voxel [86–88]. Also,

the higher b-values used in HARDI/DSI may necessitate larger τ or applying

maximum gradient amplitude on more than one gradient channel simultane-

ously (not done for typical 30 direction protocol). For example, to increase b

to 3000 s/mm2 while maintaining the same eddy current cancellation, τ must

increase to 35.4 ms for SGSSE (note that τ does not increase with increasing

b for the Reese twice-refocused sequence). Increasing τ drastically increases

the error (Figure 2.8f); thus, the direction-dependent errors from concomitant

gradient fields may be particularly detrimental for these techniques, partic-

ularly for those requiring higher b-values. Moreover, we have observed that

voxels with low FA in the tensor formalism, which is typical for crossing fibres,

are more sensitive to error from concomitant gradient fields.

The proposed gradient correction scheme can be readily added to min-

imize the error and reduce its slice-position dependence. The effectiveness

of the prospective correction depends on the diffusion gradients applied as

well as the slice orientation (the retrospective correction does not). While

the prospective correction reduces δADCTh for all slice and gradient orienta-

tions, axial slices receive the most benefit (Figure 2.9). In contrast, slices with

θ ≈ 45◦ contain the most residual error when the correction is implemented

due to the amount of linear dephasing varying throughout the slice. Inter-

estingly, coronal slices exhibit much higher δk than axial slices; δk can be as

high as 0.5 (primarily due to k-space blurring), which may lead to signal loss

even without partial Fourier undersampling. We have experimentally observed

this much higher degree of k-space blurring in preliminary phantom data (not

shown). Note that this simulation likely underestimated the total intravoxel
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Figure 2.9: The mean δADCTh (a, b, c) and δkP (d, e, f) calculated from
Equations 2.7 and 2.3, respectively, when the proposed prospective correction
is (dashed) and is not (solid) implemented for a slice 5 cm from iso-center using
an SGSSE diffusion preparation with no retrospective correction. All other
relevant sequence parameters are the same as those used in the experiments
in this work. The horizontal axis of each plot is the inclination angle, θ, of
the slice from the z-axis, where θ = 0◦ and θ = 90◦ correspond to axial and
coronal slices, respectively. Panels (a, d), (b, e), and (c, f) depict the results for
diffusion gradient orientations of (1, 1, 0), (1, 0, 1), and (0, 1, 1), respectively.
The effectiveness of the correction depends on the diffusion gradients applied
as well as the slice orientation, with the correction being most effective for
axial slices.
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dephasing for coronal slices because the assumption of the dominant source

of intravoxel dephasing stemming from the through-plane direction in Equa-

tion 2.7 is not as valid for coronal versus axial slices. Nevertheless, since the

prospective correction does not completely remove the error for all cases, and

because the retrospective correction cannot account for intravoxel dephasing,

signal lost outside the acquisition window, nor signal loss from additional T ∗
2

decay for k-space shifted data, alternate strategies to reduce the error are rec-

ommended: minimize τ (the ideal case is Stejskal-Tanner), ensure that the

anatomy of interest is located near iso-center, avoid severely oblique slices, use

a larger pff when using partial Fourier undersampling, and minimize voxel size.

It is relevant to note that the phase accrual imparted by BC could, in princi-

ple, be accurately corrected using second order shims. This would require fast

activating, low eddy current, and low oscillation shim coils and amplifiers.

In summary, our work suggests a “26th” pitfall for diffusion MRI to be

added to the list of Jones and Cercignani [8]. Concomitant gradient fields are

shown to cause phase accrual, which can lead to ADC errors as high as 20%

near the periphery of the human brain (4.7T, 60mT/m gradients, SGSSE). As

gradient strengths are increased to enable improved diffusion imaging, con-

comitant gradient fields will necessitate corrections like the one proposed here

and careful parameter selection.

2.6 Results Additional to the Published

Paper

While the main equations used to calculate how the concomitant fields

propagate through the data to introduce error into DTI (i.e. Equations 2.3

and 2.7) used various assumptions to simplify analysis (see Theory section),
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the main assumption in the Equation for BC (Equation 2.1) and the phase

accumulated by BC (Equation 2.2) is the Taylor expansion. Accordingly, the

phase accrual from concomitant fields can be quite accurately estimated from

Equation 2.2, as is evident from phase experimentally measured in a phantom

compared to the phase predicted from theory (Figure 2.10). Notably, no fitting

Figure 2.10: Experimentally measured phase (points), θ, along with the phase
from concomitant gradient fields predicted by Equation 2.2 (line) as a func-
tion of z-position. The experimental phase values were obtained by acquiring
a coronal slice in a silicone oil phantom with and without SGSSE gradients
applied on the x- and y- gradient channels (using similar parameters as the
SGSSE sequence described in the Methods), and calculating the phase differ-
ence between the two acquisitions to remove other sources of phase like B0

inhomogeneity. The dotted lines identify the physical extent of the phantom.

or scaling of data was performed in Figure 2.10; the plot is simply experimental

data versus the prediction from Equation 2.2.

2.7 Collaborators

The development of the theory regarding how concomitant gradient

fields translated to the experimental observations was aided through discus-

sions with Marc Lebel and Alan Wilman (Biomedical Engineering, University

of Alberta).
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Motion Insensitive GRAPPA for

Echo-Planar Imaging

3.1 Introduction

Echo-planar imaging (EPI) is essential for both fMRI and diffusion

MRI due to its fast acquisition speed and insensitivity to bulk motion [89,

90]. Well known limitations of EPI are distortions from B0 inhomogeneity

and low resolution. To address these limitations, parallel imaging can be

used to undersample in the phase-encode (PE) direction [91–95]. This enables

faster traversal through k-space, thus decreasing accumulation of phase from

B0 inhomogeneity and lessening T2 blurring, which reduces distortions and

enables higher resolutions, respectively. Two commonly implemented options

for performing parallel imaging are GRAPPA [54] or SENSE [96]; however, it

has been shown that EPI acquisitions using GRAPPA are more robust against

artifacts related to both motion and off-resonance [94].

Additional reference lines/scans that fully sample k-space, the auto-

calibration signal (ACS), are required for GRAPPA calibration. For non-EPI

applications where parallel imaging is used to decrease scan time, the ACS is
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obtained by sampling the center of k-space more densely than the outer regions.

However, this technique provides no benefit to EPI where GRAPPA is used to

reduce distortions, because densely sampling the center of k-space introduces

no k-space traversal rate increase for the low-frequency contrast generating

portions of k-space [94]. Instead, the calibration data should be acquired sep-

arately from the undersampled data so that the entire extent of k-space can be

sampled at a faster rate. Accordingly, for EPI the ACS is typically acquired

via an interleaved EPI data set, where each shot is undersampled similarly to

the fMRI or DTI data to be acquired. However, subject motion between the

shots leads to miscalculation of the GRAPPA weights and ghosting, and phys-

iological motion can lead to localized residual undersampling artifacts [94].

This work introduces and characterizes two alternative reference scans that

are potentially more robust to both gross and physiological motion.

3.2 Theory

When a Cartesian k-space grid is acquired, GRAPPA is typically per-

formed by acquiring only every Rth line of k-space, where R is the acceleration

factor, as depicted in Figure 3.1a for R = 2. The missing lines in the under-

sampled data (UD) acquisition are filled in by the forward solution of

Sl,k =

l′


k′

Wl,l′,k′Sl′,k′ (3.1)

where Wl,l′,k′ are the GRAPPA weighting factors, l is the receiver in which the

signal at k-space location k is to be determined and l′ is the receiver and k′

is a sampled k-space location near k. The weighting kernel (i.e. the k-space

locations k′ relative to the unknown k-space point k that are allowed to have

non-zero weights) is designated a priori, and the calculated weights encode
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Figure 3.1: Acquired k-space and pulse sequences for (a) undersampled data,
UD, and ACS methods A, B, and C (b-d) for GRAPPA rate R = 2. Skipped
lines of k-space are shown dotted in (a), and a 3 × 2 GRAPPA kernel is
shown. Only one receiver is shown for (b-d) for simplicity. The slice-select
gradients are omitted from the pulse sequence diagrams and the spin-echo case
is identical to the shown gradient echo EPI pulse sequence diagrams, aside
from the addition of a 180◦ refocusing RF pulse and associated gradients.
In contrast to methods B or C, for ACS A any position of the GRAPPA
kernel includes k-space lines that are obtained from different shots (which may
have subject motion between them). The smaller PE gradients for method B
results in slower k-space traversal in the PE direction and worse distortions
from B0 inhomogeneity. By decreasing the duration of FE gradient lobes
while simultaneously decreasing the PE gradients by a factor of R, the k-space
traversal rate in method C is the same as for the UD.
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the sensitivity profiles of the receiver coils. To determine Wl,l′,k′ , the inverse

solution of Equation 3.1 must be performed using a fully sampled region of

k-space (i.e. the ACS) [54]. Tikhonov regularization is often used to reduce

noise, leading to the inverse least squares solution of Equation 3.1,

W =

SH
kernSkern + βI

−1
SH
kernSlk

Slk =



S1,1 · · · Sl,1 · · ·
...

. . .

S1,k Sl,k

...
. . .



Skern =



S1,1 · · · Sn,1 · · ·
...

. . .

S1,k Sn,k

...
. . .



(3.2)

where β is a Tikhonov regularization weighting factor, I is an identity matrix,

k encompasses all the k-space locations acquired in the ACS, l is the receiver,

and n = (l, k′, l′) are the points required to determine the signal in receiver l

from ACS points located at k′ in receiver l′, where the choice of k′ relative to

k are defined by the kernel.

A set of R interleaved shots may be used to form a fully sampled k-

space ACS (method A) [94]; however, motion between the shots leads to k-

space inconsistencies between adjacent lines which impairs GRAPPA weight

calculation because the k-space points at k and k′ would correspond to different

subject locations (Figure 3.1b). In order to reduce the sensitivity of the ACS to

motion, it should be acquired such that adjacent lines of k-space are measured

in the same shot, which causes the image position associated with k and k′
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to be the same. One option to achieve this is to reduce the k-space phase

encode step by a factor of R, so that a fully sampled portion of k-space is

acquired in one shot (method B) (Figure 3.1c), where the only change in

the pulse sequence compared to the UD scans is a reduction of the phase

encode gradients. However, for this approach the ACS k-space is traversed

at a slower rate along the PE direction compared to the UD, causing the

distortions from B0 inhomogeneity to be worse. Since B0 inhomogeneity also

distorts the underlying receiver sensitivity profiles that are encoded into the

GRAPPA weights, the receiver sensitivity mismatch between the ACS and UD

results in GRAPPA reconstruction errors.

To retain the motion insensitivity of method B while ensuring that PE

distortions are equivalent for the ACS scan and UD, fully sampled bands of

k-space with a shortened frequency encode extent can be acquired such that

the k-space traversal speed is the same for both ACS and UD (method C)

(Figure 3.1d). This requires reductions of PE gradients by a factor of R in

addition to shortened frequency encode lobes to maintain the same total read-

out duration. While the PE k-space traversal speeds are equivalent, the ACS

scan may have a slower FE traversal speed compared the UD due to slew rate

constraints; however, this is expected to result in negligible errors because of

the much faster FE k-space traversal rate compared to PE. Multiple overlap-

ping bands of k-space are acquired to increase coverage of k-space, similar to

readout-segmented EPI [71]. While one band may be sufficient for spin-echo

(SE) EPI, using multiple bands to increase the total k-space coverage is im-

portant for gradient-echo (GE) EPI because k-space signal from regions with

B0 inhomogeneity can be shifted outside the coverage of the acquired band

[97]. It is not necessary to stitch together the multiple bands of k-space when

computing the GRAPPA weights; in fact, it is preferable to leave them sep-
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arate because of motion-induced phase inconsistencies between them (similar

to how motion between interleaved shots of ACS lines corrupts computation

of weights). Rather, the k positions in Equation 3.2 should encompass all of

the bands, where the k′ locations corresponding to each k are only taken from

within the same band; thus, Equation 3.2 determines the least squares solution

of the GRAPPA weights over all the bands simultaneously.

3.3 Methods

3.3.1 Simulation

The performance of the three methods described above (i.e. A, B, and

C) were investigated using simulations of k-space sampling with GRAPPA

reconstruction. A modified Shepp-Logan numerical phantom was used with B0

inhomogeneity increasing non-linearly along the phase encode direction from 0

to 1.5 PPM (parts per million) (Figure 3.2a). The B0 offset approximates B0

inhomogeneity near the sinuses, and 4 receiver coils were simulated. For each

phase encoding step, the image phase from B0 inhomogeneity was advanced

assuming a resonance frequency of 200 MHz and acquisition delay between

lines of tPE = 0.7 ms (equivalent to experimental work) before the k-space

line was sampled. The simulation algorithm for data sampling is displayed in

Figure 3.3. A total matrix size of 128×64 was used (increased to 128×128 after

GRAPPA reconstruction). For method A, two interleaves were sampled, where

movement by 2 voxels along the phase encode direction (equivalent to ≈ 3 mm)

was simulated to have occurred between the two interleaves. For method B,

two identical fully sampled reference scans were acquired with the same 2

voxel motion between them, and both scans were used together in Equation

2 to calculate Wl,l′,k′ . For method C, three segments with 25% the width
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Figure 3.2: (a) Simulation of GRAPPA reconstructions were performed for
a modified Shepp-Logan phantom having B0 inhomogeneity varying from 0
to 1.5 PPM using the shown sensitivities of four receiver coils. (b) With no
motion, ACS methods A and C performed identically, while method B had
some residual ghosting from regions with B0 inhomogeneity. With motion of
2 voxels during the ACS scans, severe artifacts were introduced for method A
while methods B and C were almost identical to the ideal case with no motion.
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Figure 3.3: The data sampling algorithm of the simulations advanced the
image phase for each phase encode line of k-space. For each phase encoding
step (i.e. n), the image phase from B0 inhomogeneity was advanced assuming
an acquisition delay between lines of tPE for each of the NPE phase encode
steps. After data sampling, GRAPPA calculations were performed identically
as in the experiments.
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of the nominally acquired k-space and overlapping by 8 voxels were sampled

(similar to experimental work). Again, the motion of 2 voxels occurred between

the sampling of the first and second segments. The three methods were also

simulated without prescribing any motion. A GRAPPA kernel spanning four

PE lines with five points along the FE direction was used.

3.3.2 Image Acquisition

Intentional Motion

To test the robustness of the ACS methods to extreme motion, 3 sub-

jects were instructed to perform continuous head motion during the acquisition

of one UD scan followed by 3 repetitions of each of the reference scan types

(i.e. UD - (ACSA - ACSB - ACSC) × 3). This scheme was performed for both

spin-echo EPI (SE-EPI) and gradient echo EPI (GE-EPI). The 3 repetitions

of the ACS scans were performed to reduce the effects of inconsistencies of

the subjects’ intentional motion. This led to a total of 9 reconstructed image

volumes for each subject, where each of the 9 volumes were generated from

the same UD but different GRAPPA weights. Method C used 3 segments,

each with an FE width 25% of the nominally acquired k-space. While more

segments could have been used to more fully fill k-space, the benefit of doing so

is negligible as long as low frequency k-space information is not shifted outside

the total acquired k-space by B0 inhomogeneity, which is a concern primarily

for GE-EPI. Other parameters were: R = 2 GRAPPA; TR = 6 s; TE = 60

ms for SE-EPI, TE = 20 ms for GE-EPI; FOV = 22 × 24 cm2; resolution

2× 2× 2 mm3; 50 slices. The GRAPPA kernel was identical to the one used

in the simulations. Nyquist ghosting was corrected using an iterative linear

correction [98].
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No Motion

Six subjects were instructed to remain still during the acquisition of one

UD scan followed by 9 repetitions of each of the reference scan types (i.e. UD -

(ACSA - ACSB - ACSC) × 9) for both SE-EPI and GE-EPI. Aside from having

more repeats (9 instead of 3), all acquisition parameters were identical as the

above scans where intentional motion was performed. More repetitions of the

ACS were collected to better characterize stability of the tissue signal with

identical scanning parameters, because it was expected that the tissue signal

would be less consistent between repetitions for ACS methods less robust to

motion, even if the ghosting intensity outside the brain is small.

3.3.3 Image Analysis

The scans with and without intentional motion were analyzed sepa-

rately. For each case, automated segmentation [99] was used to create signal

masks for all the images reconstructed from the different GRAPPA weights

(including all repeats and all 3 ACS methods), and the location of ”true” sig-

nal free from ghosts was estimated as the voxel locations that coincided on all

masks. The mean ghost intensity (IG) over all the repeated ACS was quan-

tified as the mean signal from the voxels outside the “true” mask minus the

noise floor. The noise floor was estimated from voxels outside the extent of the

object along the frequency encode direction where neither ghosting nor true

signal resides. IG values were normalized to the signal in a region-of-interest

(ROI) manually placed in the internal capsule. To investigate consistency of

the tissue signal in the scans with no motion, the standard deviation of signal

over the images reconstructed using weights from the repeated ACS scans,

normalized by the mean signal in the ROI in the internal capsule, was calcu-
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lated for each of the three ACS methods and averaged over the entire brain,

(ISTD). Statistical significance of differences of IG and ISTD for ACS method

C compared to methods A and B was evaluated using a paired students t-test

(P < 0.05).

3.4 Results

3.4.1 Simulation

With no subject motion, both of ACS methods A and C performed

nearly perfectly; however, method B suffered from residual aliasing from the

B0 inhomogeneity (Figure 3.2b). Almost no change was observed for methods

B and C when the phantom was shifted by 2 voxels during the reference scans;

however, severe artifacts were introduced for method A. For simulations with

no B0 inhomogeneity the performance of method B was similar to method C

(data not shown).

3.4.2 In vivo

For subjects instructed to move their head during the entire scan, ACS

method A resulted in severe ghosting artifacts for both SE and GE EPI (Figure

3.4). In contrast, both of methods B and C produced images of reasonable

quality. Over all 3 subjects, method A exhibited ghosting signal a factor of

10 larger than method C for both SE and GE (Figure 3.5a). Even though

method B had much lower ghosting than method A, it still had ghost signal

30% larger than method C for both SE and GE.

The performance of method A was much better for subjects instructed

to remain still compared to when they moved intentionally; however, the ghost
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Figure 3.4: Results in one subject moving continuously throughout the entire
acquisition of ACS and UD for both spin-echo (a) and gradient echo (c) EPI,
where the same UD was used for all three ACS methods. The same images
with low contrast are also shown to better portray the level of ghosting (b,
d). Severe ghosting is observed for method A compared to method B or C.
Also, method B exhibits more ghosting that method C, particularly for the
gradient-echo EPI scan.
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Figure 3.5: Quantitative measurements of total background ghosting (IG) and
tissue signal standard deviation (ISTD) over all slices in subjects moving in-
tentionally (a) or remaining still (b). The IG and ISTD values are relative to
the tissue signal in the internal capsule. ACS method A exhibited extremely
strong ghosting with moving subjects. While the ghosting for ACS A was
reduced for the still subjects, the tissue signal still varied considerably over
repeated acquisitions of the ACS (i.e. ISTD). ACS methods B and C show
little sensitivity to subject motion; however, method B has more background
ghosting than method C regardless of whether the subjects moved. Differences
between methods A and B relative to method C were evaluated using a paired
student’s t-test (* P < 0.05).

signal was still 17% higher for method A compared to method C for SE (Figure

3.5b). Again, method B had approximately 30% more ghost signal compared

to method C for both SE and GE. In addition, the signal variability, ISTD,

within the brain was more than a factor of 3 larger for method C compared to

method B or method C. The standard deviation of the images reconstructed

from repeated ACS (i.e. voxel-wise ISTD) shows that eye or physiological

motion in the brain causes localized ghosting artifacts for method A, but not

for methods B or C (Figure 3.6).

3.5 Discussion

This work has shown that severe GRAPPA-EPI artifacts can occur

from motion during the acquisition of ACS, which can be drastically reduced by
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Figure 3.6: (a) The standard deviation of images reconstructed using 9 differ-
ent calibration scans (i.e. voxel-wise ISTD) for subjects instructed to remain
still. Eye (i) or physiological (ii) motion resulted in localized ghosting artifacts
for ACS method A, but not for methods B or C (the images are scaled the
same). (b) For reference, one of the 9 images reconstructed using method A
is shown.
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using a densely phase encoded (i.e. method B) or readout-segmented GRAPPA

reference scan (method C). The intentional motion data represents a worst case

scenario that is possible if the subject moves during the GRAPPA reference

scan, which would require time-expensive re-acquisition of data if method A

was used. Even though method B decreased sensitivity to motion, additional

ghosting was still present compared to method C regardless of whether the

subjects moved or not. The ghosting using the standard interleaved approach

(i..e. method A) was not as drastic when the subjects were instructed to

remain still; however, the signal varied considerably with re-acquisition of the

ACS data and localized artifacts from eye or physiological motion were present.

Notably, the subjects scanned were well accustomed to participating in MRI

scans and likely moved less than subjects being scanned for the first time.

Accordingly, even for the best case scenario, errors from motion are present

when using method A.

The methods introduced here only address motion during the acqui-

sition of the ACS, and not motion between the ACS and UD scans. It has

been experimentally shown that if the subject position is different between the

reference scan and UD, the impact on GRAPPA reconstruction is negligible

because Wl,l′,k′ (Equation 3.2) only depends on the receiver sensitivity profiles

(which have not moved between ACS and UD) and not the image contrast

[98]. For example, even though severe motion (through-plane and in-plane)

was present between the ACS and UD in Figure 3.4, negligible ghosting is

observed for method C. A caveat, though, is that the B0 inhomogeneity may

change due to a new head position and introduce some ghosting (similar to

the residual ghosting for method B); however, even at the high field of 4.7 T

and extreme motion investigated, this was not observed.

A limitation of method C is the increased scan time required to acquire
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additional blinds (e.g. here 3 blinds were acquired for method C compared

to 1 extra interleaved acquisition for method A). However, it is likely that

fewer blinds are required for SE-EPI because it was found that the image

quality was not degraded when only one central band of k-space was used

to calculate the weights (data not shown). However, the image quality was

degraded when only one band was used for GE-EPI. Also, since DTI or fMRI

scans typically acquire many image volumes, the additional total scan time

increase for the extra blinds would be low. For example, for an 8 minute

fMRI scan with a TR of 1.5 seconds, the scan time would increase by less

than 1% for method C compared to method A (for R = 2). A potential

limitation of method C is that differing eddy currents between the ACS scan

and UD scan (because of the different frequency encode gradients) may result

in different image distortions for the reference scan compared to the UD scan,

leading to reconstruction errors similar to method B. This can be mitigated

by gradient precompensation [36, 37], which was performed for this work.

Finally, measuring the ghost signal intensity only in the background may have

underestimated the artifacts for method B, since B0 inhomogeneity can result

in spatially varying ghost intensity (Figure 3.2).

The results shown here were all for rate 2 parallel imaging, which is the

most commonly utilized parallel imaging acceleration rate and the limit for

our 4-channel receive array, and simulations with more receiver elements (e.g.

16) showed similar results as the 4-channel simulations in Figure 3.2 (data

not shown). The readout-segmented method can likely be applied to higher

accelerations, where the number of blinds required to adequately fill k-space

would increase because the faster k-space traversal speed would necessitate

narrow blinds.

In conclusion, a readout-segmented GRAPPA reference scan enables
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high quality, motion-robust GRAPPA for EPI.
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Chapter 4

Acquisition Strategy to Reduce

Cerebrospinal Fluid Partial Volume

Effects for Improved DTI

Tractography 1

4.1 Introduction

Diffusion tensor imaging (DTI) and tractography are commonly used to

delineate voxels associated with specific white matter (WM) tracts which are

then characterized by diffusion parameters such as fractional anisotropy (FA)

and mean diffusivity (MD). Current DTI techniques are limited by their inher-

ently low spatial resolution, leading to deleterious partial volume effects where

the signal measured is a volume, relaxation, and diffusion-weighted average of

the signal from each of the compartments [8–11]. One long recognized contam-

inating compartment is cerebrospinal fluid (CSF) which has high diffusivity,

1A version of this chapter has been published: Baron CA, Beaulieu C. Acquisition Strat-
egy to Reduce Cerebrospinal Fluid Partial Volume Effects for Improved DTI Tractography.
Magn Reson Med. Epub Early View DOI: 10.1002/mrm.25226
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isotropic diffusion, and greater signal than tissue on the non-diffusion-weighted

(b0) scans due to its long T2 and the typical use of an echo-planar imaging

(EPI) acquisition, where a long spin echo time is needed to accommodate the

diffusion-sensitizing gradients. As a result, the CSF signal can overwhelm the

tissue signal even when the CSF volume fraction in a particular voxel is rel-

atively low. An improvement of spatial resolution is considerable motivation

to perform DTI at higher magnetic field strengths. While improved resolution

reduces partial volume effects, it may still be insufficient to overcome CSF con-

tamination; furthermore, the move to higher fields introduces new challenges

for DTI acquisition.

Since the diffusion of water is isotropic in CSF (i.e. FA near zero),

the voxels containing both CSF and tissue have reduced FA compared to pure

tissue voxels. Accordingly, these voxels can often be missed during tractog-

raphy as they end up below the tracking FA threshold, impairing the ability

to extract fiber tracts that are adjacent to CSF [100–102]. Furthermore, even

if the white matter tract is delineated, the 3 to 4 fold greater MD in CSF

relative to brain tissue will yield erroneously elevated diffusivity values (mean,

parallel, and perpendicular), as well as reduced FA as mentioned earlier. The

dependence of the diffusion metrics on the amount of partial volume of CSF

will impair their interpretation relative to the underlying white matter mi-

crostructure. There is much interest in tractography of the fornix as it is the

major efferent tract from the hippocampus. However, the fornix is severely

impaired by CSF partial volume effects and is difficult to consistently delin-

eate without some form of CSF signal removal [101, 103]. The fornix has been

studied with DTI tractography in numerous brain disorders, including epilepsy

[104–106], dementia [107, 108], schizophrenia [109, 110], aging [111–113], and

multiple sclerosis [114], but removal of the CSF signal is not usually done (only
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4 of these 11 example fornix studies did this).

An inversion recovery preparation that nulls signal from CSF (i.e., fluid

attenuated inversion recovery, FLAIR) is the most common method for reduc-

ing CSF partial volume effects in diffusion EPI acquisitions, although there is

a signal-to-noise and acquisition time penalty, the latter which often limits the

brain coverage [12]. The FLAIR-DTI acquisitions have shown more accurate

measures of MD and FA in human brain [12, 115–118], as well as improved trac-

tography of tracts near CSF, such as the fornix and corpus callosum [100, 101].

While FLAIR-DTI works well at lower magnetic field strengths such as 1.5 T

and 3 T, specific absorption rate (SAR) constraints preclude the practical use

of FLAIR with DTI at ultra-high magnetic field strengths such as 4.7 T (in

our case), 7 T, and beyond. This necessitates alternative acquisition strategies

other than inversion recovery in order to minimize CSF contamination, ideally

without increasing SAR or scan time. While post-acquisition strategies that

model each voxel as having two signal sources have been developed [103, 119],

reducing the CSF signal at the acquisition stage is of relevance since it has no

dependence on any model assumptions or constraints.

In this work, an alternative acquisition method comprised of two com-

plementary components was investigated for reducing the effects of CSF signal

on DTI tractography and parameter quantification at 4.7 T. The first compo-

nent is to reduce the repetition time (TR) by acquiring DTI data in smaller sets

of slices to achieve the steady state effects of stronger T1 weighting, thereby

reducing the relative signal contribution from long T1 CSF. In the second

component, at least a small degree of diffusion weighting, quantified by the

b-value, is applied to all scans to attenuate CSF signal with respect to brain

tissue signal (i.e. do not acquire b0 images). The latter methodology has

been investigated in a preliminary report using an approach requiring twice
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the typical scan time [120]; however, we investigate a strategy that does not

increase scan time. Short TR and non-zero minimum b-value can be used in

combination to decrease the CSF signal, albeit at the expense of overall brain

tissue SNR. Simulations were performed for choosing suitable combinations of

TR and b-values, and the effectiveness of the techniques were experimentally

evaluated for deterministic tractography of the fornix in healthy young adult

volunteers. Tractography of the superior longitudinal fasciculus (SLF) was

also performed as a “control” tract since it is not expected to be nearly as

influenced by CSF.

4.2 Methods

4.2.1 Optimization of Parameters

A reduction of TR will attenuate the CSF signal strength relative to

the tissue due to T1 saturation given the longer T1 of CSF (≈ 4.5 s [121])

relative to brain tissue (1.1 s in WM at 4.7 T [122]). An increase of the

minimum b-value, bmin, to a value greater than 0 s/mm2 will further reduce

the CSF signal due to dephasing of the highly diffusive CSF, whose water has

an apparent diffusion coefficient (ADC) much larger than water in brain tissue

(≈ 3× 10−3 mm2/s in CSF and 0.5-1.5 ×10−3 mm2/s in tissue, both at an in

vivo temperature of 37◦ C). Both of these modifications also result in an SNR

decrease in the tissue, and there exists a choice of TR and bmin that results in

maximum SNR for a given level of CSF signal suppression. Since the tissue of

interest in DTI is typically WM, the level of CSF signal suppression is given

by the ratio, RCSF/WM , of the CSF signal over the WM signal. The choice of

bmin and TR is dictated by the equations governing RCSF/WM and the SNR
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in WM at bmin:

RCSF/WM = CR


1− e−TR/TCSF

1


e−bminADCCSF

1− e−TR/TWM
1


e−bminADCWM e−TEbmax/T

WM
2

(4.1)

SNRCSF/WM = CWM


1− e−TR/TWM

1


e−bminADCWM

e−TEbmax/T
WM
2 (4.2)

where CR is a constant representing the relative initial magnetizations between

CSF and WM with b = 0 s/mm2, CWM is a constant representing the initial

tissue magnetization, receiver sensitivity, and standard deviation of the noise,

and TEbmax is the echo-time (dependent on the maximum b-value, bmax). At

4.7 T, TWM
1 = 1100 ms and TWM

2 = 60 ms [26, 122], and TCSF
1 = 4500 ms [121].

The T2 of CSF is ignored due to its large value compared to the small changes

in TE caused by changes in bmax. A typical diffusion coefficient of ADCWM

= 0.7 × 10−3 mm2/s was chosen for white matter. Since it has been shown

that a difference between minimum and maximum diffusion values of ≈ 1000

s/mm2 will yield minimal error in the diffusion tensor [123, 124], a maximum

b-value 1000 s/mm2 greater than bmin was assumed for the determination of

TEbmax . CR = 1.8 and CWM = 166 were determined experimentally for this

work using several b = 0 s/mm2 scans at various TR. In summary, the only

unknown parameters in Eq. 4.1 and 4.2 are SNRWM , RCSF/WM , TR, and

bmin.

The first step in determining the SNR-optimal choice of bmin and TR

is choosing a target CSF to white matter signal ratio. An exemplary value of

RCSF/WM = 0.8 will be used here and in the experimental work (RCSF/WM

= 3.5 for standard DTI on the system used in this work). This value was

chosen because it maintains a high SNR of ≈ 40 on the minimum b value
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images while lowering the CSF signal to below the WM signal. For any value

of RCSF/WM , Eq. 4.1 gives bmin as a function of TR, as shown in Figure 4.1a

for RCSF/WM = 0.8 (i.e. bmin and TR are the only unknown values in Eq. 4.1).

This relationship simply shows that if a small bmin is used, then a short TR

must be utilized to achieve the desired RCSF/WM . Thus, bmin as a function of

TR can be substituted into Eq. 4.2 to obtain SNRWM as a function of TR (i.e.

eliminating bmin from Eq. 4.2), as shown in Figure 4.1b. A maximum SNR is

clearly evident for TR = 3.0 s which, according to Figure 4.1a, requires bmin

= 425 s/mm2 to reach the target value RCSF/WM = 0.8. Note that the same

optimal values could have also been obtained by using Eq. 4.1 to eliminate

TR in Eq. 4.2 instead of bmin. This results in SNRWM as a function of bmin,

as shown in Figure 4.1c, where the maximum value is unsurprisingly located

at bmin = 425 s/mm2. This optimization procedure can be performed for

any RCSF/WM value; as such, the value of SNRWM at the optimal choice of

TR and bmin as a function of RCSF/WM is shown in Figure 4.1d. A trade-off

is observed, where greater CSF suppression (i.e. lower RCSF/WM) results in

larger SNR penalties for the WM. Note that the experimental determination

of CWM is not strictly necessary for determining the optimal TR and bmin since

it simply scales the plots in Figure 4.1b,c; however, it provides quantitative

values of the expected SNR, which aids in determining a target RCSF/WM

based on the trade-off with SNR (Figure 4.1d), with the caveat that for high

bmax (e.g. > 2000 s/mm2) the accuracy of the simulations will decrease due

to the non-monoexponential behaviour of diffusion in tissue [41, 125].

To investigate how the choice of RCSF/WM affects measured DTI pa-

rameters, MD and FA as a function of RCSF/WM were simulated for a voxel

containing relative volumes of CSF to white matter of 20%, 50%, and 80%

(Figure 4.1e,f). See Section 4.5 for a derivation of the dependence of the
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Figure 4.1: (a) Relationship between bmin and TR obtained by setting
RCSF/WM = 0.8 in Eq. 4.1. Using this relationship, Eq. 4.2 can be re-written
to give SNRWM as a function of TR (b) or as a function of bmin (c). The
optimal TR and bmin (where SNRWM is maximum) occurs when TR = 3.0 s
and bmin = 425 s/mm2. Panel (d) shows the SNRWM at bmin that is obtained
with the optimal choice of TR and bmin for various CSF to WM signal ratios,
where a trade-off between CSF suppression and SNR is observed. Panels (e)
and (f) show simulations of the measured MD and FA, respectively, in voxels
with 20%, 50%, and 80% of the volume filled by CSF (MD = 3× 10−3 mm2/s;
FA = 0). The rest of the voxel is occupied by white matter with intrinsic
DTI eigenvalues of (1.5, 0.3, 0.3)×10−3 mm2/s (MD = 0.7x10−3 mm2/s; FA =
0.77). At RCSF/WM = 0.8, FA and MD values are much closer to the intrinsic
values in WM compared to standard DTI where RCSF/WM = 3.5.
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ADC on RCSF/WM . The intrinsic white matter MD and FA were assumed to

be 0.7 × 10−3 mm2/s and 0.77, respectively (eigenvalues [1.5, 0.3, 0.3] × 10−3

mm2/s), and for CSF an isotropic MD of 3 × 10−3 mm2/s was assumed. All

other parameters were the same as in the other simulations shown in Figure

4.1.

4.2.2 Image Acquisition

The primary experimental goal was to compare DTI with the SNR-

optimal combination of both reducing TR and increasing bmin relative to stan-

dard DTI (i.e. long TR, bmin=0 s/mm2). It was also of interest to investigate

the individual effects of reduced TR and increased bmin to assess their relative

contributions to the combined approach. Additionally, it may be possible to

reduce CSF partial volume effects by increasing resolution (instead of the pro-

posed methods), which also results in decreased SNR. As such, an acquisition

with improved resolution was also compared to standard DTI.

Five Stejskal-Tanner DTI protocols were acquired in 8 healthy young

adult subjects on a Varian Unity Inova (Walnut Creek, CA) 4.7 T MRI using

standard DTI (DTIS), standard DTI with high resolution (DTIhighres), reduced

TR DTI (DTITR), DTI with no b0 acquisitions (DTIb), and a combination

of DTITR and DTIb (DTITR+b). The differences between the five protocols

are summarized in Table 4.1. All protocols used: FOV = 24 cm × 24 cm; 1

average; R=2 GRAPPA; 0.75 partial Fourier fraction. The standard resolution

protocols (DTIS, DTITR, DTIb, DTITR+b) used a 120× 120 matrix (zero-filled

to 240 × 240) and 64 slices at a thickness of 2.0 mm. The 8 mm3 acquisition

voxel volume is common in DTI, but the differences between the standard and

CSF-suppressed scans would be greater at lower spatial resolutions than those

evaluated here [9]. The DTIhighres protocol used a 148 × 148 matrix (zero-
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Table 4.1: DTI protocols for reducing CSF signal (TR+b, TR, b) versus stan-
dard (S) and high resolution (highres) scans without any CSF suppression

Scan time (min) Resolution (mm) bmin bmax TR TE

DTIS 6.7 2.00 0 1000 10 56
DTITR+b 6.7 2.00 425 1425 2.5 56
DTIhighres 8.1 1.62 0 1000 12.2 62
DTIb 6.7 2.00 425 1425 10 60
DTITR 6.7 2.00 0 1000 2.5 56

Primary differences from DTIS are in bold.
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filled to 296× 296) and 78 slices at a thickness of 1.62 mm. The resolution for

DTIhighres was chosen such that the SNR in white matter (WM) was similar

to DTITR+b at bmax (where SNR is more limiting).

For standard full-brain DTI acquisitions, the minimum TR is limited

by the number of slices. Therefore, to decrease the TR below this limit the

acquisition was performed by acquiring multiple slabs of slices independently

from each other. As portrayed in Figure 4.2, this approach does not affect the

total scan time. The TR was 10 s for both DTIS and DTIb, while the increased

Figure 4.2: Portrayal of how total scan time is maintained when a number of
slabs are acquired with a reduced TR, where the TR reduction factor is equal
to the number of slabs. The shorter effective TR enables greater suppression
of long T1 compartments like CSF. All diffusion weighted images of a slab are
acquired before moving to the next slab.

number of slices for DTIhighres (to maintain total brain coverage) resulted in a

TR of 12.2 s. To determine the optimal combination of TR and b for DTITR+b,

a target CSF to WM signal ratio of RCSF/WM = 0.8 was chosen because it

reduces the CSF signal to below that of the WM signal while maintaining a

reasonably large SNR of at least 40 on the bmin images (Figure 4.1d). While

there may be enough SNR for additional CSF suppression, it was kept high for

this study to minimize the impact of SNR differences between the five proto-

cols. The optimal TR and bmin for RCSF/WM = 0.8 are 3.0 s and 425 s/mm2,

respectively (Figure 4.1); however, to divide the CSF suppressed acquisition

into 4 equally sized slabs of 16 sequential slices each and maintain total scan
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time (Figure 4.2), a TR of 2.5 s was used for DTITR and DTITR+b. While this

does not exactly match the design target of 3.0 s, the SNR penalty for using

TR = 2.5 s instead of the optimal TR and bmin (for the same RCSF/WM) is

less than 1%.

For DTIS, DTIhighres, and DTITR, 30 directions at bmax = 1000 s/mm2

were acquired along with six bmin = 0 s/mm2 scans. For DTIb and DTITR+b,

6 directions at bmin = 425 s/mm2 (optimal value for RCSF/WM = 0.8 for

DTITR+b) were acquired instead of any b0 scans along with 30 directions at

bmax = 1425 s/mm2. The set of 30 directions used at bmax and the set of 6

directions used for non-zero bmin were each uniformly distributed in space [73].

Note that the bmin directions need not be parallel to the bmax directions, which

would require nearly twice the scan time for 30 directions, as in [120]; an over-

determined matrix equation that solves for the diffusion tensor simply needs a

good spread of directions at both b-values to provide a robust least squares fit.

Also, DTIb and DTITR are expected to exhibit lower CSF suppression than

DTITR+b; their purpose is for determination of the relative contributions of

each method (reduction of TR and increase of bmin) to the net CSF suppression

observed for DTITR+b. The TE values were 56 ms for DTIS and DTITR, 60 ms

for DTITR+b and DTIb (increased due to higher bmax), and 62 ms for DTIhighres

(increased due to longer EPI readout train).

The average SNR over all acquisitions at each b-value was measured

in the SLF. The signal ratio of CSF (using lateral ventricles) over WM (using

the SLF) was averaged amongst the 6 bmin acquisitions for each protocol, since

CSF partial volume effects are most problematic at the minimum b-values.
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4.2.3 Fibre Tracking

The fornix is a thin tract that passes directly through ventricular CSF

and is thus the primary interest for assessing the mitigation of CSF partial

volume effects, whereas the SLF was chosen as a “control” tract with little

CSF contamination expected (assuming one avoids the sulci). ExploreDTI

v4.8.2 [76] was used for deterministic (streamline) tractography using an FA

threshold of 0.3 and angle threshold of 45◦. Note that the fornix studies in

References [104–114] that utilized deterministic tractography had FA thresh-

olds ranging from 0.15 to 0.3. A higher FA threshold is desirable as it limits

the participation of voxels corrupted by partial volume effects. Tracts were

selected if they passed through a selection region halfway along the desired

portion of the tract and any of two selection regions drawn at the extremes of

the portion (Figure 4.3), in a similar manner to an earlier study [101]. The

fornix has a high degree of curvature, and is difficult to extract without sep-

arating it into manageable sections; thus, tractography for the crura of the

fornix was performed independently from tractography of the body, as shown

in Figure 4.3. The SLF (our “control” tract) was refined by omitting stream-

lines deviating to the cortex to avoid sulcal regions with CSF (Figure 4.3).

The left and right side diffusion and volumetric values were averaged for both

the crura of the fornix and the SLF.

Tractography was performed separately for each protocol to determine

their relative tract volumes and enable qualitative assessment of the tractogra-

phy. In addition, mean, parallel, and perpendicular diffusivities and FA were

measured for all five protocols in the fornix and SLF. Voxels for these mea-

surements were chosen from the tractography masks obtained from DTITR+b

and applied to the four other protocols, since DTITR+b consistently resulted
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Figure 4.3: Tractography was performed separately for the body and crura
of the fornix and was used to identify the core of the superior longitudinal
fasciculus (SLF). Tracts were selected if they passed through a center selection
region halfway along the desired portion of the tract and any of two selection
regions drawn at the extremes of the portion. The cortical extensions of the
SLF were excluded from the tract. The relative sizes between the fornix and
SLF are not to scale, and the example shown was acquired with the DTITR+b

protocol.

in the largest tract volume. For DTIhighres the tract mask was re-sampled at

the higher resolution. This approach was used instead of using each respec-

tive protocols own tracts for a mask because it ensures that the same voxel

positions are queried for all the protocols, and removes FA-biasing between

the different protocols that would occur due to FA being used as criteria to

start/terminate tracts. Moreover, tractography was incomplete in the crus of

the fornix for many the subjects when using DTIS, precluding the use of the

DTIS tract mask to determine mean values of FA and MD. For each individ-

ual, motion between the 5 scans was corrected using rigid body translations

and rotations [126] with an autocorrelation cost function. Correction between

adjacent slabs within a given scan was not performed, as there was no ap-

parent misalignment between slabs. Statistical significance of the results was

evaluated with paired students t-tests for DTIS with respect to the four other
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protocols using a p-value of 0.05. Multiple comparisons were compensated

using a Bonferroni correction, where each tract and variable were considered

separately (i.e. there were 4 comparisons for each case).

4.3 Results

The top half of Figure 4.4 displays example raw data for bmin and

bmax for one subject, SNRWM , and the CSF to WM signal ratio at bmin for

the five protocols (the numerical values are the mean from all 8 subjects).

The DTITR+b method markedly reduced the CSF to WM signal ratio to 0.7,

compared to the ratio of 3.5 for standard DTI (DTIS); however, SNRWM was

reduced from 36 to 23 (36% reduction) at bmax and 71 to 40 (44% reduction)

at bmin. In contrast, the CSF to WM signal ratio is increased to 3.8 for the

high resolution approach (DTIhighres), which is due to the longer TR and TE

relative to DTIS. Similarly to DTITR+b at bmax, the SNRWM for DTIhighres was

reduced to a value of 23 at bmax (71 to 47 at bmin). The CSF to WM signal

ratio reductions to 1.3 and 2.0 for DTIb and DTITR, respectively, indicate

that both protocols significantly contributed to reducing the CSF signal. It

is relevant to note that the signal ratio of 0.7 for DTITR+b is comparable to

the design target of 0.8. MD maps and FA maps color-coded with principle

eigenvector direction for the five protocols are shown in the bottom half of

Figure 4.4. While the color-coded FA maps were similar for all 5 protocols,

the MD appears globally lower for all brain tissue for both DTITR+b and DTIb

compared to DTIS. Coronal views of the FA maps show good alignment of

the slabs (similar for other subjects).

Examples of tractography of the fornix (crura and body combined) and

SLF of the same subject for all five protocols are shown in Figure 4.5. For
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Figure 4.4: Example raw data at bmin and bmax and DTI parameter maps
for one subject (raw data individually scaled for each protocol). For non-zero
bmin, the diffusion encoding direction is (x, y, z) = (0.1,−0.9, 0.1), and for bmax

the diffusion encoding direction is (0.1,−0.8, 0.7). The mean ratio of CSF to
white matter (WM) signal is given for the bmin raw data, and the SNR in the
SLF, SNRWM , is given for both bmin and bmax. All numerical values are the
mean from all 8 subjects. The MD maps appear to yield lower values for the
DTI scans with reduced CSF signal while the direction-encoded FA maps are
all similar.
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Figure 4.5: Examples of tractography of the fornix (body and crura; coronal
view from front) and left superior longitudinal fasciculus (SLF; sagittal view
from left) in one subject. The tractography of the crura was incomplete for
DTIS due to a reduction of FA below the tractography threshold. It was best
outlined using DTITR+b, while the other protocols contained much wispier
connections. Little difference is observed between the five protocols for the
SLF. Similar findings were observed in the other 7 subjects. The relative sizes
between the fornix and SLF are not to scale.
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the example shown, the tractography of the crura was incomplete and did not

connect to the body for DTIS. The best connection in terms of thickness of

tract between the bottom of the crura and body was observed for DTITR+b.

Figure 4.6 shows the results of fornix tractography for DTIS and DTITR+b

for all 8 subjects, where it is evident that the DTITR+b approach resulted in

consistently larger and better connected tracts in all cases. For DTIS, trac-

tography of the crura of the fornix was artificially disconnected for half of the

subjects (who had narrow fornix crura), whereas for DTITR+b the tracts were

all completely delineated (Figure 4.6). While tractography was more successful

for all four of the other protocols compared to DTIS (artificial disconnections

in 25% of the subjects for DTIhighres, 12.5% for DTIb, and 25% for DTITR),

the DTITR+b approach was the only one where it was successful in all of the

subjects. As seen in the example in Figure 4.5, tractography of the SLF was

similar for all five protocols. Similar results were observed in the other sub-

jects, which is likely due to the large size of the SLF and lack of CSF adjacent

to it.

Figure 4.7 shows that significant increases in tract volume were ob-

served for DTITR+b compared to DTIS for all the tracts studied (increases

of 69% in the fornix crura, 54% in the fornix body, and 14% in the SLF),

which reflects that more voxels were able to overcome the FA threshold with

the removal of CSF signal. This was even the case in the SLF (albeit by a

smaller margin), which is not typically associated with CSF partial volume

effects. There was a significant decrease in volume of the crura of the fornix

for DTIhighres relative to DTIS, potentially because the CSF to WM signal

ratio for DTIhighres was larger than for DTIS. Alternatively, partial volume

effects may have caused the lower resolution images to over-estimate the size

of the crura; however, wispy connections observed for DTIhighres (e.g. Figure
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Figure 4.6: Tractography of the fornix in all 8 subjects (a-h) for DTIS (left
column) and DTITR+b (right column), where it is evident that DTITR+b con-
sistently results in larger and better connected tracts compared to DTIS. Ar-
tificial disconnections between the crura and body can be observed in half of
the subjects (a,c,e,g) when DTIS is utilized (no artificial disconnections for
DTITR+b).
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Figure 4.7: Mean (a) volume, (b) FA, and (c) mean, parallel, and perpen-
dicular diffusivities in the fornix crura, fornix body, and superior longitudinal
fasciculus (SLF) for 8 healthy subjects using the various protocols for mitigat-
ing CSF partial volume effects. Volumes are reported relative to the volumes
measured using the DTIS protocol, where the mean volumes for DTIS are 1900
mm3 for the fornix crus (left and right combined), 900 mm3 for the fornix body,
and 3900 mm3 for the SLF (left and right combined). Volumes were measured
using tractography masks from each individual protocol, while the DTITR+b

tractography mask was applied to all the other data sets to measure FA and
diffusivity values (i.e. the same voxels were queried). Paired t-test significance
with respect to DTIS is portrayed using �for p < 0.05.
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4.5) point to the former explanation. In the SLF, there was no significant

change in tract volume when using DTIhighres. In all tracts the volume in-

creased when using DTIb; nearly to the level of that observed with DTITR+b.

Volume increases were observed in the body and crura of the fornix, but not

in the SLF, with DTITR.

In the fornix (body and crura), the FA and diffusivities (MD, paral-

lel, and perpendicular) are increased and decreased, respectively, for all of

DTITR+b, DTIb, and DTITR compared to DTIS (Figure 4.7) in the voxels de-

fined by the DTITR+b protocol (i.e. the one that yielded the largest tracts).

The highest FA values and lowest diffusivity values are observed with DTITR+b

(e.g. in the crura, FA is 30% larger and MD is 36% smaller for DTITR+b with re-

spect to DTIS), which is consistent with reduced CSF partial volume effects. In

the SLF, both DTITR+b and DTIb resulted in increased FA and decreased MD,

while no change was observed for DTITR. The DTIhighres protocol produced

similar FA and diffusivity values compared to the DTIS protocol. Overall, the

parallel and perpendicular diffusivities behaved similarly to MD; however in

cases where FA increased and MD decreased relative to DTIS, the proportional

decreases in parallel diffusivity were smaller than the proportional decreases

in perpendicular diffusivity, which is consistent with the FA increases.

4.4 Discussion

The results indicate that tractography of the fornix can be improved

through a combination of reducing TR and using a non-zero bmin. The trends

observed in tract volume (increased), FA (increased), and MD (decreased) are

in agreement with methods that instead use FLAIR to suppress the CSF sig-

nal in the fornix [101]. Interestingly, the inter-subject variation of FA and
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MD values was the lowest for DTITR+b for both the fornix and SLF, which

is indicative of more reliable measurements. Since both DTIb and DTITR re-

sulted in improvements for tractography and changes in tract volume, FA, and

MD, the marked improvements observed with DTITR+b were caused by both

increasing the minimum b-value and reducing the TR. In addition, the only

protocol where no artificial disconnections occurred in the fornix was DTITR+b;

however, the similar tract volumes between DTITR+b and DTIb suggest that

increasing bmin provided a larger benefit than reducing the TR. It was also

observed that using a similar SNR penalty as the DTITR+b protocol to in-

stead improve resolution (i.e. DTIhighres) does not circumvent CSF partial

volume effects as well; an artificially disconnected fornix still occurred in two

of the eight subjects (none for DTITR+b) and FA values were not increased

by as much, nor MD values decreased, as for DTITR+b. It is noteworthy that

in single shot techniques, as was the case here, increasing the resolution has

diminishing returns due to worsening T2 blurring of the image. The results

here used a relatively high FA threshold of 0.3 for deterministic tractography.

A lower FA threshold of 0.2, as used in other studies of the fornix, results

in similar relative differences in tract volume, FA, and MD between the pro-

tocols, but causes globally lower measures of FA, higher tract volumes, and

lower rates of artificial disconnection. While reduced artificial disconnection

of tracts improves the ability to extract the tract, a globally decreased FA

suggests increased corruption by partial volume effects.

Reliable DTI tractography using a low SAR approach is desirable given

the shift to increasing magnetic field strengths and their associated SAR limi-

tations, particularly for high SAR sequences like FLAIR. Moreover, while the

combined approach proposed here results in a 36% SNR loss, FLAIR also re-

sults in an SNR loss that can be as large as 28% [101], and while FLAIR
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requires longer scan times, the proposed method does not. This time savings

also makes the proposed methods attractive for low field application. While

post-acquisition corrections have also been reported for mitigating CSF partial

volume effects and improving tractography of the fornix [103, 119], these use

model assumptions (e.g. Gaussian diffusion) and constraints (e.g. smoothness)

that may not work as well as minimizing CSF signal in the first place during

acquisition; however, a direct comparison was not demonstrated here and is

beyond the scope of this work. Additionally, it may be beneficial to combine

the post-acquisition techniques with the acquisition strategies introduced here

to mitigate partial volume effects stemming from any remaining CSF signal as

well as allow the estimation of the amount of partial volume initially.

Even in the SLF “control” tract, FA values increased and MD values

decreased using DTITR+b (which could be from sampling at higher b-values

where the signal decay curve is deviating from exponential); however, trac-

tography itself was not greatly impacted. Therefore, the SNR penalty from

DTITR+b is likely not worthwhile for the SLF and other tracts that are not

substantially impacted by CSF partial volume effects. Instead, the techniques

introduced here may be best suited for targeting a problem area like the fornix.

The approach of reducing TR by using smaller slabs of slices may be well suited

to this type of usage, since only a single slab may be required for the specific

tract of interest.

While the RCSF/WM chosen here for exemplary purposes was 0.8, the

value chosen for other applications would depend on the specific goals. Here,

the value was chosen to attenuate the signal of CSF below WM (rather than

being 3.5 times brighter) and still maintain a high SNRWM , mitigating any

differences in our results that could have stemmed from different SNR between

the five scan protocols. This RCSF/WM value does not eliminate the effect of
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partial volume on the quantitative parameters, as is evident in Figure 4.1e,f,

but does result in a marked improvement. For example, for RCSF/WM = 0.8,

the FA is higher than a typical tractography threshold of 0.3 even in voxels 80%

filled with CSF; however, for the standard case of RCSF/WM = 3.5, voxels with

50% CSF do not surpass FA = 0.3. A much lower RCSF/WM = 0.15 could have

been chosen while maintaining SNRWM > 20 at bmin. It is clear from Figure

4.1e,f that DTI parameters would be fairly accurate even for voxels with CSF

occupying 80% of the volume; however, for this case the optimal minimum b-

value turns out to be 1100 s/mm2. Coupled with a required second b value of

2100 s/mm2 (keeping with a 1000 s/mm2 separation between b values), ADC

values would be much lower than the expected CSF-suppressed values because

of non-Gaussian behaviour [41, 125]. Since only the few voxels with very high

CSF volume fractions are affected when moving to such a low RCSF/WM , it may

be more desirable to target a higher RCSF/WM like 0.8 and use the remaining

“extra” SNR to increase spatial resolution. This is demonstrated in Figure

4.8, where a small 3.25 cm slab covering the fornix has been acquired at an

isotropic resolution of 1.62 mm (4.3 mm3) in 3.8 min using RCSF/WM = 0.8.

Given that all diffusion directions were acquired for one slab before

moving to the next, there is potential for slab misalignment due to subject

motion. This was not observed in the experienced volunteers recruited for

this work (see coronal images in Figure 4.4); however, if problematic for a

certain patient group it could likely be corrected via registration of partially

overlapping slabs. Also, cardiac gating was not used here, but its implemen-

tation would require additional considerations. First, cardiac gating decreases

scan efficiency, meaning that fewer slices could be acquired within a desired

TR; thus, more slabs would be required for the same brain coverage. Second,

variations in heart rate could cause TR variations that would introduce CSF
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Figure 4.8: A color-coded FA map of an axial slice acquired with 1.62 mm
isotropic resolution and the fornix identified by streamline tractography using
the DTITR+b approach with RCSF/WM = 0.8. A small 3.25 cm slab (20 slices)
spanning the fornix was acquired in 3.8 min.

signal inconsistencies between different diffusion weightings.

Changes in the diffusion parameters with the use of a non-zero bmin and

a higher bmax likely arose not only from the suppression of CSF, but also from

non-Gaussian diffusion in tissue. In free liquids (e.g. CSF), signal amplitude

scales exponentially with b-values. In contrast, signal amplitudes measured

in brain tissue tend to decrease more slowly with increasing b-value [41, 125],

because the diffusion is hindered by cell membranes and myelin. Accordingly,

decreased ADC and MD values are measured at higher b-values. This was

investigated by acquiring 30 direction data sets with b-values ranging from

0 s/mm2 to 2500 s/mm2 in 500 s/mm2 increments in one healthy volunteer

(one scan session; all sequence parameters identical for all b-values; Figure

4.9). Non-Gaussian diffusion characteristics were observed in an ROI placed

in the SLF, and ADC values decreased if either the minimum or maximum b-

value used in the two-point fit was increased. For b-values of {0,1000} s/mm2
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Figure 4.9: (a) Mean diffusion weighted images (averaged over 30 directions)
for b-values ranging from 0 s/mm2 to 2500 s/mm2. (b) Natural logarithm of the
mean signal in an ROI in the SLF (circle in a), with linear fits calculated using
two points at b = 0 s/mm2 and b = 1000 s/mm2 (solid), b = 0 s/mm2 and b =
1500 s/mm2 (dashed), and b = 500 s/mm2 and b = 1500 s/mm2 (dotted). The
slopes of the fits gives the mean ADC which, as a result of the non-Gaussian
nature of diffusion in tissue at large b-values, decreases substantially as either
the minimum or maximum b-value is increased.

compared to {500,1500} s/mm2, the ADC decreased from 0.68× 10−3 mm2/s

to 0.54×10−3 mm2/s (21%), which is similar to the drop in MD observed in the

SLF for DTITR+b and DTIb compared to DTIS (22%). Thus, the decrease of

MD in the SLF was likely due to the higher b-values, while the larger decreases

of 41% and 36% in the body and crura of the fornix, respectively, are likely due

to reduced partial volume effects in addition to increased b-value. Assuming a

22% decrease of MD in the fornix from the higher b-value, the MD decreases

from partial volume effects alone were approximately 24% (body) and 17%

(crura).

Enhanced suppression of CSF signal near the ventricle walls was ob-

served with non-zero bmin (e.g. bmin for DTITR+b in Figure 4.4). This ex-

aggerated signal reduction varied (or disappeared entirely) depending on the

diffusion gradient orientation, which suggests it was likely due to incoherent

flow in the CSF arising from intra-ventricular pulsation.
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It is evident from the parameter optimization results (Figure 1b,c) that

one could obtain the same design target of RCSF/WM = 0.8 by using b = 650

s/mm2 and TR = 10 s, which avoids the necessity a multi-slab approach.

This may be preferable in some situations; however, the disadvantage of doing

so is a 12% decrease in SNR relative to the optimal combination of TR and

bmin (Figure 4.1b,c), and even more reduction in measured ADC values from

sampling at higher b-values. It is also important to note that the optimal

parameters to achieve a desired RCSF/WM will vary with different MRI sys-

tems, because the CSF to WM signal ratio depends on TE (which changes

with maximum gradient strength) and T2 (which changes with field strength).

In addition, while the multi-slab slice re-organization used here provides a

simple, easily implemented method for the reduction of TR, an alternative (or

complimentary) method may be simultaneous multi-slice EPI [127, 128].

In conclusion, it has been demonstrated that CSF partial volume effects

in DTI can be effectively mitigated through a combination of reduced TR and

a non-zero minimum diffusion weighting. While these techniques decrease the

overall tissue SNR, they have the advantage of having no impact on scan time

or SAR. The lack of SAR increase is attractive for DTI at high field strengths,

where RF power deposition must be carefully considered, while the scan time

benefit over FLAIR may be attractive for any field strength. The effective

reduction of confounding CSF partial volume effects may have a particular

benefit in studies where one needs to mitigate the confound from variable

CSF, such as in aging.
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4.5 Addition to the Published Paper

To show how the partial volume effect depends on the choice of both the

low and high b-value, the formula for the ADC measured in a voxel containing

partial volumes of CSF and white matter will be investigated. The calculation

of ADC along a single direction will be assumed, where p is the fractional

volume of the voxel occupied by CSF. For standard DTI that uses b = 0 s/mm2

and some non-zero b-value, bhigh (typically 1000 s/mm2), the measured ADC

in a voxel with partial volume is given by:

ADC = − ln


pSCSF e

−bhighDCSF + (1− p)SWMe−bhighDWM

pSCSF + (1− p)SWM


/bhigh (4.3)

where SCSF and SWM are the signal strengths of CSF and white matter,

respectively, at b = 0 s/mm2 for the given TE and TR (i.e. the signal values

received if there was no partial volume), and DCSF and DWM are the ”real”

ADC’s of CSF and white matter, respectively (again, the values without partial

volume). The equation can be rearranged to show that the partial volume

effect depends on the relative net signal levels of CSF and WM at b0:

ADC = − ln


SCSF

SWM
pe−bhighDCSF + (1− p)e−bhighDWM

SCSF

SWM
p+ (1− p)


/bhigh (4.4)

and thus for non-zero p (proportion of CSF), one must reduce SCSF in order

for the ADC to primarily reflect the white matter.

If the low b-value is increased by b1 and the high b-value is increased

by b2 = b1 +∆b (assuming bhigh +∆b > 0 to keep the high b-value larger than
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the low b-value), the equation becomes:

ADC =− ln


e−b2DCSF SCSF

SWM
pe−bhighDCSF + e−b2DWM (1− p)e−bhighDWM

e−b1DCSF SCSF

SWM
p+ e−b1DWM (1− p)



/((bhigh + b2)− b1)

=− ln


SCSF e−b2DCSF

SWMe−b2DWM
pe−bhighDCSF + (1− p)e−bhighDWM

SCSF e−b1DCSF

SWMe−b1DWM
p+ (1− p)


/(bhigh +∆b)

=− ln


RCSF/WM

e−∆bDCSF

e−∆bDWM
pe−bhighDCSF + (1− p)e−bhighDWM

RCSF/WMp+ (1− p)



/(bhigh +∆b)

(4.5)

The above equation sheds some light on how the choices of increases of

b will affect the partial volume effect:

1. The ADC that is measured will become the true ADC in white matter

(i.e. DWM) if RCSF/WM is close to 0.

2. When both the high and low b-values are increased by the same amount

(i.e. b1 = b2 and ∆b = 0), as was the case in our work, the reduc-

tion of the partial volume effect via increased b-values depends only on

RCSF/WM .

3. For a larger b2 compared to b1 (i.e. ∆b > 0), the ADC will be closer to

DWM for the same RCSF/WM .

4. For a smaller b2 compared to b1 (i.e. ∆b < 0), the ADC will be farther

from DWM for the same RCSF/WM .

Therefore, the partial volume effect depends on the separation of the

b-values in addition to the common increase of b at both the low and high
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b-values. However, for the case where b1 = b2, which maintains the optimal

separation of low and high b-values of 1000 s/mm2 [123, 124], the reduction

of partial volume error of ADC depends directly on RCSF/WM .
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Chapter 5

Oscillating Gradient Spin-Echo

(OGSE) Diffusion Tensor Imaging of

the Human Brain1

5.1 Introduction

The apparent diffusion coefficient (ADC) measured using diffusion ten-

sor imaging (DTI) depends on the time allowed for diffusing water molecules

to probe the local environment; namely, the effective diffusion time (∆eff ). If,

during the diffusion time, most molecules do not travel far enough to inter-

act with any obstacles, the measured ADC will be equivalent to the intrinsic

diffusion coefficient [42, 43]. For increasing diffusion times, the molecules will

interact with more barriers and the ADC will decrease, eventually reaching an

asymptotic lower value; thus, measuring diffusion time dependence of ADC

values may give insight into the microstructure [129].

DTI is typically performed using pulsed gradient spin-echo (PGSE)

1A version of this chapter has been published: Baron CA, Beaulieu C. Oscillating Gra-
dient Spin-Echo (OGSE) Diffusion Tensor Imaging of the Human Brain. Magn Reson Med.
Epub Early View DOI: 10.1002/mrm.24987
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diffusion encoding [32], which has an inherently large ∆eff , typically greater

than 30 ms for in-vivo human studies. The minimum diffusion time attain-

able while maintaining a desired level of diffusion sensitization (i.e. b-value)

is limited by the maximum gradient strength. Early investigations utilizing

strong insert gradients demonstrated the dependence of ADC on ∆eff in vari-

ous excised nerves [39, 130–132] and rodents [133]. The minimum ∆eff ranged

from 1-4 ms and yielded increases of approximately a factor of 2 in perpendic-

ular diffusion coefficients for short relative to long ∆eff [39, 130–132]. While

no changes in parallel diffusion coefficients were observed in one case [39],

increases in parallel ADC by approximately a factor of 1.5 were observed in

other studies [130, 131]. Lower diffusion anisotropy with decreasing ∆eff was

also reported in general [39, 130, 131]. In contrast, there have been no findings

of ∆eff -dependence (with constant b-value) in human brain using PGSE or

combinations of bi-polar pulsed gradients with ∆eff ranging from 8 ms to 256

ms [134–136]. The equivalent diffusion distances in water at body temperature

for these diffusion times ranges from 7 - 39 µm and, given that axon diameters

in the human corpus callosum range from 0.5 - 3 µm [137, 138], most axons in

these studies were likely in a restricted regime for all ∆eff . Therefore, shorter

diffusion times, as shown in the pre-clinical studies mentioned above, are pre-

sumably necessary to observe the onset of diffusion restriction in the human

brain.

The oscillating gradient spin-echo (OGSE) method enables reduced

∆eff by employing a succession of short diffusion weighting periods [4–6]. The

use of bipolar gradient pulses to achieve small ∆eff in some earlier studies

was similar [39, 133, 135]; however, OGSE theory additionally considers the

frequency content of the diffusion gradients, which enables the design of opti-

mal gradient waveforms. Moreover, OGSE waveforms enable the measurement
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of MRI signal with unique dependencies on intracellular properties [139], and

may provide a means of quantitative measurements of cell characteristics, such

as nuclear size and surface to volume ratios [140, 141]. A recent study in an

in-vivo rat model reported increases of mean ADC in cortical and subcortical

grey matter as diffusion time decreased from 9.75 ms to 0.38 ms [142]. An-

other study in an in-vivo mouse brain with diffusion times ranging from 15 ms

to 1.67 ms observed enhanced tissue contrast between different cell layers in

the hippocampus at the shortest diffusion times [143]. The same study also

showed increases in diffusion tensor eigenvalues (parallel and perpendicular)

and decreases in fractional anisotropy (FA) in various white and grey matter

regions with a reduction of ∆eff . Similar OGSE DTI results in both white

and grey matter have been observed in the in-vivo rat brain with ∆eff ranging

from 7.5 ms to 1.88 ms [144]. The additional specificity to intracellular struc-

ture provided by OGSE may provide insight into pathology. For example, the

aforementioned study of the rat brain observed that the mean ADC decrease

observed after a global ischemic event was approximately 50% lower for a ∆eff

of 0.5 ms compared to 9.75 ms, which suggests that half of the ischemic ADC

decrease is from microstructure sensitive to diffusion times shorter than 0.5

ms [142]. A recent study examining ADC characteristics in a rat glioma cell

culture upon ischemia (∆eff ranging from 40 ms to 0.83 ms) concluded that

at long diffusion times ischemia-induced ADC decreases in intracellular water

result from changes in cell size and cellular volume fraction, while at short

diffusion times ADC decreases are from changes in the intrinsic properties of

the intracellular water [145]. Additionally, it has been proposed that sensitiv-

ity to cell nuclear size may make OGSE useful in the monitoring of tumors

[140, 146, 147].

The exploration of ∆eff -dependence of diffusion in the human brain
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could enable greater insight into the mechanisms behind disease and their

progression. First, though, an understanding of diffusion time dependence of

DTI measurements is required in the healthy human brain. There has been one

publication reporting ∆eff -dependence of ADC measurements at constant b-

value in humans, utilizing OGSE gradients with a tetrahedral-encoding scheme

and b = 200 s/mm2 [53]. The mean ADC in the corpus callosum showed a

tendency to increase in 4 subjects with ∆eff from 20 to 4 ms. The purpose

of this work is to investigate the ∆eff dependence of the full diffusion tensor

in white and grey matter regions of healthy subjects by comparing OGSE and

PGSE DTI with b = 300 s/mm2 and ∆eff ranging from 4 - 40 ms.

5.2 Theory

The OGSE method utilizes the multiple application of short dura-

tion diffusion sensitizing periods (i.e. multiple bipolar pulses of gradients)

to achieve a low ∆eff , as shown in Figure 5.1(a-d). Since the individual diffu-

sion weighting periods are adjacent to each other, they cannot be considered

independent. As such, the diffusion time for OGSE is better understood by

recasting the diffusion tensor to a frequency-dependent form, D(f), where the

signal attenuation, S/S0, is described by [4, 48]

ln(S/S0) = −


F (f)D(f)F (f)df (5.1)

F (f) characterizes the frequency content of the diffusion sensitizing gradients,

G, and is given by

F (f) = −
 ∞

0

 t

0

γG(τ)dτ


ei2πftdt (5.2)
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Figure 5.1: Diffusion gradient waveforms and gradient modulation power spec-
tra, |F (f)|2, for OGSE (a-d) and PGSE (e). The polarity of the second gradi-
ent waveform has been reversed from what is actually played out to account for
the 180◦ RF pulse that is between the gradient waveforms (RF pulses omitted
from diagrams), and |F (f)|2 is numerically calculated directly from the time-
domain waveforms. The OGSE waveforms are cosine-modulated, with the
start and end quarter-periods replaced with a twice-frequency sinusoid lobe.
The separation between gradient waveforms, tsep, is required to accommodate
the 180◦ RF pulse. In (a-d), the dashed lines show that if tsep is a value that
allows a continuous single frequency oscillating gradient to be drawn between
the two waveforms, narrower |F (f)|2 are obtained. It is evident in (c-d) that
trapezoidal gradients result in a negligible change in the shape of |F (f)|2 rela-
tive to the sinusoidal gradients; however, it does increase the relative spectral
amplitude enabling larger b-values. The duration of the shorter lobes in the
trapezoidal case are increased by half the gradient ramp time, tramp, to en-
sure zero cumulative gradient area. The relationship for ∆eff depends on the
gradient shape, and is shown below each gradient waveform.
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where γ is the gyromagnetic ratio. F (f) can be intuitively understood as the

Fourier transform of the wave number, k. It is clear from Equations 5.1 and

5.2 that the signal attenuation is only sensitive to frequency components that

are present in F (f). It has been shown that cosine gradients apodized with

sinusoidal lobes at twice the target frequency produces a gradient modulation

power spectra, |F (f)|2, that is narrow around the desired frequency [48, 142].

For such a gradient waveform the diffusion time is given by ∆eff = 1/(4f).

Additionally, the separation and polarity between the two gradient

waveforms before and after the 180◦ RF pulse affects the diffusion frequency

spectra [53]. Figure 5.1a-c shows that a separation, tsep, which allows a con-

tinuous, unbroken sinusoid to be drawn across the two waveforms results in

the most narrow spectral shape. Since sinusoids are not efficient for achieving

large b-values, trapezoidal gradient waveforms are used in this work to enable

an increase in b-value by 67% over the sinusoidal variant [53, 148]. There is

almost no difference in the shape of F (f) for the trapezoidal case (Fig. 5.1c,d),

because integrating the gradient before performing the Fourier transform in

Equation 5.2 results in a very similar spectra for the two waveform types; how-

ever, the amplitude of the trapezoidal |F (f)|2 at the desired frequency is 69%

larger than the sinusoidal version, reflecting it’s increased b-value. As with

the sinusoidal shape, for the trapezoidal gradient shape there is an optimal

tsep where a continuous oscillating trapezoidal gradient can be drawn across

the waveforms (Fig. 5.1d). Using the same procedure as Gross [4] and Par-

sons [48], the relationship between ∆eff and f for the trapezoidal waveform is
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derived to be (see Section 5.6)

∆eff =
1

6f
+

2

3
tramp −

t2ramp

6 (0.25/f − tramp/2)
+

(2N + 1)t3ramp

120N (0.25/f − tramp/2)

≈ 1

6f
+

2

3


tramp − t2rampf


(5.3)

where tramp is the gradient ramp time from zero gradient to the maximum

gradient value and N is the total number of periods in both the gradient wave-

forms combined. Interestingly, the trapezoidal gradients are characterised by

smaller diffusion times than the original cosine shape (for the same oscillation

frequency) because of the larger b-values that are attained. The b-value is

given by b = 2Nγ2G2(0.25/f− tramp/2)
2∆eff , where G is the maximum gradi-

ent amplitude. For PGSE, F (f) is broad and centered at a frequency of zero

and the diffusion time is given by ∆eff = ∆− δ/3 (Fig. 5.1e).

5.3 Methods

5.3.1 Image Acquisition

Four DTI protocols were acquired per session in 7 healthy human sub-

jects (4 male / 3 female; age 28± 4 years) on a Varian Unity Inova 4.7 T MRI

using ∆eff = 4.1 ms (OGSE 50 Hz), 7.4 ms (OGSE 25 Hz), 20 ms (PGSE),

and 40 ms (PGSE). The protocol parameters are summarized in Table 5.1.

All protocols used b = 300 s/mm2 with 6 diffusion encoding directions. Note

that for low b-values, such as the case here, OGSE and PGSE gradient wave-

forms with the same ∆eff have been shown to provide similar measurements

of ADC [149]. The 6 direction diffusion encoding scheme permits maximum

gradient amplitude on two channels simultaneously that allows for b-values
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Table 5.1: DTI Protocols

∆eff (ms) f(Hz) Type δ (ms) a Periods b b (s/mm2) Scan Time (min)

4.1 50 OGSE 4.4 2 300 10
7.4 25 OGSE 9.7 1 300 10
20 0 PGSE 5.7 - 300 10
40 0 PGSE 3.9 - 300 10

a For OGSE, the effective gradient pulse width is given by δ = 0.25f − tramp/2
b The number of periods on each side of the 180◦ pulse.

2 times larger than from schemes with many directions (e.g. 30 directions).

The 50 Hz OGSE protocol utilized 2 periods per gradient waveform with a

maximum gradient of 57.5 mT/m per channel, while the 25 Hz OGSE pro-

tocol utilized 1 period per gradient waveform with a maximum gradient of

28.1 mT/m, thereby maintaining an equal total diffusion gradient time and

b-value compared to the 50 Hz protocol. The number of periods are limited to

prevent excessively long TE. For the 50 Hz scan tsep was 1/8 of a wavelength

from the optimal value (the closest possible while maintaining the shortest

possible TE), while tsep was optimal for the 25 Hz scan. A conservative net

slew rate of only 70 T/m/s was used to avoid peripheral nerve stimulation.

Both PGSE protocols used a maximum gradient amplitude of 57.5 mT/m per

channel, and used δ = 3.9 ms and ∆ = 41.3 ms for the ∆eff = 40 ms scan,

and δ = 5.7 ms and ∆ = 21.9 ms for the ∆eff = 20 ms scan. Other single-shot

EPI imaging parameters were as follows: TR = 12.5 s; TE = 110 ms; FOV

= 24 cm; 2 mm x 2 mm acquired in-plane resolution (zero-filled to 1 mm x

1 mm resolution); 40 slices, thickness 2.5 mm; 6 averages; R=2 GRAPPA;

scan time 10 min per protocol. Note that the TR (and scan time) was slightly

lengthened to mitigate gradient heating that occurs due to the high duty cycle

of the OGSE gradients.
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A potential concern for this study was differing eddy currents for each

diffusion gradient scheme; however, this was mitigated by utilizing gradient

pre-compensation [36, 37]. Any remaining eddy currents were evaluated by

measuring them directly using a signal point source 2. The maximum gradient

from any eddy current in any of the four protocols was less than 35 µT/m

(0.1% of frequency encode gradient) at the beginning of the data readout, and

exponentially decayed to less than 5 µT/m at TE (0.02% of frequency encode

gradient). Thus, eddy current induced gradients were not expected to impact

any findings from this study. Conversely, a transient B0 eddy current (≈ 1

ppm at beginning of data readout and 0.03 ppm at TE for OGSE 50 Hz; all

other scans had a smaller B0 eddy current) was found to degrade image quality

if not accounted for. The phase imparted by the B0 eddy current was found

to be consistent with repeated acquisitions, and it was modelled by applying

a least squares exponential fit to the phase accrual directly measured using a

small 3 mm diameter probe sample. Then, the phase accrual was subtracted

from the phase of the raw subject data before EPI image reconstruction. The

effectiveness of the correction is shown in Fig. 5.2.

5.3.2 Fiber Tracking and Statistical Analysis

ExploreDTI used an FA threshold of 0.2 and angle threshold of 30◦

for tractography of the body (bCC), splenium (sCC), and genu (gCC) of the

corpus callosum, corticospinal tracts (CST), cingulum (CG), inferior fronto-

occipital fasciculus (IFO), superior longitudinal fasciculus (SLF), and inferior

longitudinal fasciculus (ILF) bilaterally. Examples of tractography and the

regions used for diffusion parameter analysis are shown in Figure 5.3. Only

2The measurements of eddy currents were performed by Robert Stobbe, Research Asso-
ciate, Biomedical Engineering, University of Alberta.
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Figure 5.2: FA color coded with principal eigenvalue direction with and with-
out the phase correction for a transient B0 eddy current, which causes non-
uniform image shifts that vary with diffusion gradient direction. By applying
a phase correction in k-space, incorrect directionality is ameliorated in the
periphery.
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Figure 5.3: Examples of tractography for eight white matter tracts using the
∆eff = 40 ms scan, where tracts are color-coded with principal eigenvector
direction, and ROI placement for the thalamus and putamen in one subject.
The thin tract portions extended into the cortical areas (semi-transparent
portions of the shown tracts) were excluded from analysis to minimize partial
volume effects.
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central core regions were used for analysis to reduce errors that can occur from

mis-registration of the 4 scans due to bulk patient motion and partial volume

effects for the narrow tract extensions into the cortex (Fig. 5.3). The thala-

mus (TH) and putamen (PT) were delineated using manual region-of-interest

(ROI) placement on multiple axial slices on the b = 0 s/mm2 (b0) images.

ROI’s were placed on all slices that the TH or PT could be clearly identified;

as such, the number of slices used varied with each subject. The data from the

4 scans were rigid-body motion corrected relative to each other using in-house

auto-correlation based registration software. Voxels for analysis were chosen

using the tract mask (or volumetric ROI for grey matter) obtained from the

∆eff = 40 ms scan to yield parallel (λ||) and perpendicular (λ⊥) eigenvalues

and fractional anisotropy (FA). A potential limitation was misalignment of the

tract voxel mask across the 4 scans. Since eddy currents were effectively miti-

gated using gradient pre-compensation and correction methods, differences in

eddy current distortions between the scans were not observed. Also, rigid body

motion was corrected using registration and proper alignment of the data sets

was confirmed before analysis for each subject. The scans and DTI analysis

were performed on four different occasions for a 22◦ C, 14 cm diameter water

phantom doped with CuSO4 to evaluate diffusion parameter consistency over

the four DTI protocols in a homogeneous, unrestricted environment. Statis-

tical significance of overall ∆eff -dependence was evaluated using a repeated

measures ANOVA, and changes with respect to the ∆eff = 40 ms scans were

evaluated using paired t-tests if the ANOVA reported a p-value less than 0.05.

The relatively small b-value of 300 s/mm2 (b300) could potentially

result in low quality data because the signal difference between the b0 and

diffusion weighted images is smaller compared to typical b = 1000 s/mm2

(b1000) DTI and, thus, is more susceptible to errors from noise and residual
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Nyquist ghosting. To investigate this, the ∆eff = 40 ms scan was performed

at b-values of 300 and 1000 s/mm2 in two subjects with all other imaging

parameters identical (data not shown in paper; see Figure 5.10). Note that

the ∆eff = 40 ms, b300 scan had large durations where no gradients were

played out in order for it to have the same TE as the OGSE scans (i.e. the

TE was limited by the OGSE scans); therefore, it was possible to increase the

diffusion gradient duration from 3.9 ms (Table 5.1) to 7.4 ms and change ∆eff

from 40 ms to 39 ms to attain b1000 without changing any other parameters in

the pulse sequence. While the FA maps colour coded with principal eigenvector

direction had a similar qualitative appearance for the two scans, b300 generally

resulted in smaller tracts and was more prone to false tracking than b1000.

Nevertheless, tractography at b300 was capable of delineating the 8 major

white matter tracts that were investigated in this study. The two scans did

not have noticeably different eddy current distortions (due to effective gradient

pre-compensation - see above), and the extraction of DTI values within the

tracts was evaluated by applying the tract masks obtained with b300 to both

co-registered scans. Over all 10 regions, λ|| changes ranged from 15% to 30%

and λ⊥ changes ranged from -19% to 29% for b300 relative to b1000. A -19%

change in λ⊥ in the genu was the only negative change, and it arose due to

a Gibbs ringing artefact that was most severely present in that tract. While

the artifact varied with b-value, it was consistent with different ∆eff at the

same b-value. FA changes ranged from -4% to 10% in the 8 white matter

tracts. The consistent overall increase in ADC values is likely a result of the

non-Gaussian nature of diffusion in brain tissue, where ADC values decrease

for increasing b-values [150], while the small changes in FA are likely due to

the greater sensitivity of the lower b-value data to noise; for example, in the

CST the mean signal drop compared to b0 was 13% for b300 (mean SNR =
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31) and 39% for b1000 (mean SNR = 21). Nevertheless, the results suggest

that the smaller b-value did not have a large impact on the data quality within

the regions studied, aside from a uniform shift in ADC values (perhaps with

the exception of λ⊥ in the genu).

5.4 Results

The b = 0 s/mm2 and b = 300 s/mm2, as well as the diffusion para-

metric maps of mean diffusivity (MD, the average of the three eigenvalues)

and FA, had similar qualitative appearance in the brain tissue over all four

diffusion times (Fig. 5.4). Additionally, λ|| and λ⊥ appear qualitatively sim-

ilar for ∆eff = 4.1 ms compared to ∆eff = 40 ms where difference images

between the two diffusion times shows widespread increases in eigenvalues in

brain tissue for the shorter diffusion time (Fig. 5.5). Even with a low b-value

of 300 s/mm2 the DTI images were of reasonable quality over much of the

brain (Fig. 5.6), presumably due to the high SNR of greater than 50 (in the

splenium) on b0 images for all the protocols.

In the water phantom, no significant variation of eigenvalues or FA was

observed with respect to ∆eff , and the very low FA of ≈ 0.03 suggests high

data quality (Fig. 5.7). In contrast, statistically significant variations of λ||,

λ⊥, and FA were observed in the 7 healthy volunteers. For all white matter

regions aside from λ|| in the bCC, both eigenvalues increased significantly at

the shorter OGSE diffusion times relative to the ∆eff = 40 ms PGSE scan

(Fig. 5.8). Very large proportional changes in ADC occurred in the SLF,

with a 35% increase in λ⊥ and 20% increase in λ|| for ∆eff = 4.1 ms relative

to ∆eff = 40 ms (Table 5.2). The other association tracts (CG, IFO, and

ILF) had much smaller increases, near 10% for λ⊥ and 15% for λ||. In the
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Figure 5.4: Example raw data at b = 0 s/mm2 and 300 s/mm2 along with MD
and FA (computed from the same data) color-coded with principal eigenvector
direction for one subject. The images from the four diffusion times (4.1 ms
OGSE, 7.4 ms OGSE, 20 ms PGSE, and 40 ms PGSE) are displayed using the
same scale.
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Figure 5.5: Eigenvalue maps for the shortest (4.1 ms OGSE) and longest (40
ms PGSE) diffusion times (∆eff ) and their difference (OGSE 4.1 ms PGSE 40
ms). Widespread increases for both parallel and perpendicular eigenvalues are
observed throughout the brain tissue as the diffusion time is reduced. Large
ADC differences in the opposite direction are observed in CSF, particularly
the lateral ventricles, due to elevated values (greater than free water at 37◦ C)
in the 40 ms PGSE scan presumably due to flow.
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Figure 5.6: Example data showing FA color-coded with principal eigenvector
direction for one subject at diffusion times of 4.1 ms (OGSE) and 40 ms
(PGSE). The images are very similar, particularly within the major white
matter tracts that were of interest in this work.
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Figure 5.7: Measurements of DTI eigenvalues and FA, which are very low at
≈ 0.03, showing consistency in a CuSO4 doped water phantom (N=4) at room
temperature (22◦ C) as a function of diffusion time, ∆eff .
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Figure 5.8: Mean ± standard deviation of DTI eigenvalues and FA in 7 healthy
human volunteers as a function of diffusion time, ∆eff , for ∆eff values of 4.1
ms (OGSE), 7.4 ms (OGSE), 20 ms (PGSE), and 40 ms (PGSE). Statistical
significant deviations from the ∆eff = 40 ms scan determined using a paired t-
test are denoted with * (p < 0.05). Increasing parallel (λ||) and perpendicular
(λ⊥) eigenvalues for reduced ∆eff are observed in all white matter regions
except the bCC, while decreasing FA for reduced ∆eff is observed only in
the bCC, sCC, CST, and SLF. In the deep grey matter (TH and PT), both
eigenvalues increase with decreasing ∆eff ; however, there is no clear trend of
FA. Region abbreviations are as in Figure 3.
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Table 5.2: Mean percent change (± standard deviation) of λ||, λ⊥, and FA for
diffusion times of 4 ms (OGSE) relative to 40 ms (PGSE) in seven healthy
subjects

λ|| (%) λ⊥ (%) FA (%)

bCC 2 ± 3 24 ± 29 -12 ± 12 *
sCC 8 ± 4 * 40 ± 22 * -9 ± 4 *
gCC 14 ± 10 * 32 ± 21 * -3 ± 10
CST 6 ± 3 * 23 ± 9 * -9 ± 4 *
CG 11 ± 2 * 13 ± 11 * -3 ± 7
SLF 20 ± 4 * 35 ± 14 * -11 ± 8 *
IFO 9 ± 6 * 14 ± 13 * -4 ± 8
ILF 12 ± 5 * 22 ± 16 * -6 ± 6
TH 16 ± 6 * 18 ± 10 * -2 ± 12
PT 16 ± 8 * 26 ± 26 * -8 ± 18

Values with statistical significance using a paired t-test (p < 0.05) are denoted
by *.

sCC, gCC, and CST, ADC increases near 30% and 10% were observed for λ⊥

and λ||, respectively. Additionally, statistically significant decreases of FA to

approximately -10% for diffusion times decreasing to 4.1 ms were observed in

the bCC, sCC, CST, and SLF. Notably, FA reductions occurred because λ⊥

increased by a larger proportion compared to λ|| (Table 5.2). In the TH and

PT, large increases in λ|| and λ⊥ of 16% and 18%, respectively (TH), and 16%

and 26%, respectively (PT), were observed. The similar changes for λ|| and

λ⊥ resulted in no clear trend in FA, and contrast the observations in half of

the white matter tracts. While an FA increase was observed in the TH for

∆eff = 7.4 ms, the variation in FA in that region was high and more prone to

error due to its low value [151].
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5.5 Discussion

This work demonstrates that OGSE DTI is feasible in the adult human

brain and that a b-value of 300 s/mm2 can yield adequate diffusion tensor

parameterization for major white matter tracts and deep grey matter, provided

that the SNR is sufficient. This is partially enabled by a trapezoidal gradient

design, for which the equation for diffusion time has been introduced here. The

key finding is that the diffusion tensor in human brain depends on diffusion

time for ∆eff as low as 4 or 7 ms in many white matter tracts and in deep

grey matter. A diffusion time of 7 ms corresponds to a characteristic diffusion

length of 4.6 µm, which defines a threshold of length scales where diffusion

begins to become unrestricted [152]. Given that typical axon dimensions in

the human corpus callosum range from 0.5 to 3 µm, with a small number

of axons as large as 10 µm [137, 138], much larger changes in eigenvalues

and FA may be observed for even smaller diffusion times because many more

molecules would become unrestricted. That being said, cells other than axons

likely contributed to the changes observed, such as the oligodendrocytes. These

findings may explain the lack of ∆eff -dependence observed previously [134–

136], where the diffusion measurements used a larger minimum ∆eff of 8

ms. Moreover, since the diffusion gradients contained spectral components at

f = 0, in contrast to the cosine-like gradient waveforms used in this work, the

previous PGSE experiments were not performed in a high-frequency regime

[153]. Notably, this work agrees with and expands upon the recent OGSE

findings that suggested an increase of mean ADC in the splenium and genu of

the human corpus callosum ranging from 5% to 50% for a diffusion time of 4

ms compared to 20 ms [53], compared to the increases of mean ADC found in

the splenium (17%) and genu (18%) in this work (mean ADC, i.e. MD, not
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shown here, but readily calculated from the eigenvalues).

The overall finding in white matter that both λ⊥ and λ|| increase and

FA decreases with substantially reduced ∆eff agrees with some early findings

in ex-vivo nerve [130, 131] and white matter of in-vivo mouse [143]. Using

bipolar gradient pulses, one early study in excised frog sciatic nerve did not

observe a change in λ|| as diffusion time was reduced from 28 ms to 2 ms [39].

Moreover, over the same OGSE frequency range as here (0 to 50 Hz), λ⊥ and

λ|| increases of approximately 30% and 10%, respectively, and FA decreases

of 5% were observed in mouse white matter in vivo [143], which is compara-

ble to our findings. The ∆eff for which ADC values approach an asymptotic

value defines a transition to a regime where the free water diffusion distance

is several times larger than the surrounding tissue microstructure. Therefore,

since the FA decreased for short ∆eff in the bCC, sCC, CST, and SLF, it is

probable that more molecules transitioned from a restricted to unrestricted

regime in the perpendicular direction compared to the parallel direction as

the diffusion time was decreased, likely because the perpendicular direction

had more molecules in a restricted regime to begin with. This rationale coin-

cides with the observations of larger eigenvalue changes in the perpendicular

direction compared to the parallel direction. This is appropriate given the

highly anisotropic microstructural dimensions of white matter. The FA only

decreased for smaller ∆eff in half of the white matter tracts, as it did not

significantly change in the ILF, IFO, gCC, and CG, since the proportional

increases in λ⊥ and λ|| were similar. This finding suggests that the anisotropy

in these tracts stems from smaller length scales than those accessed by the

minimum diffusion time of 4 ms. This may suggest smaller axon diameters

compared to the other tracts. This finding agrees with histological findings

in the corpus callosum, where the axons in the genu are smaller than in the
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body and splenium [137]. The finding of similar increases of both λ⊥ and λ||

with decreasing ∆eff in the thalamus and putamen agrees with observations

of deep grey matter in rodents [142, 143]. Thus, there were no changes of FA,

which is consistent with “isotropic” length scales of microstructure (averaged

over each voxel) expected in grey matter. Also, the increases in mean ADC

of approximately 10 - 15% that were observed in the rodent deep grey matter

for OGSE frequencies from 0 to 50 Hz are comparable to our findings.

Geometric dispersion of axons (i.e. fanning), particularly in the as-

sociation tracts, may have contributed to differences in the eigenvalues and

FA with ∆eff . The degree of axon dispersion varies for different white matter

tracts [154], but is less plausible to have affected the results for the central por-

tions of the genu and splenium of the corpus callosum. The axon dispersion

effectively creates some mixing of perpendicular and parallel diffusion. Note

that crossing fibers would result in a similar effect. This may also explain

why changes in parallel eigenvalues were observed here for most tracts, but

not previously in an excised frog sciatic nerve which has highly ordered axons

and presumably little dispersion [39]. However, excised nerves have other un-

derlying microstructural differences (e.g. edema) relative to in vivo. Another

alternative explanation is that changes in parallel eigenvalues at short diffu-

sion times may be due to restriction effects of water in isotropic cells, such

as oligodendrocytes, in the white matter. Another potential consideration in

the interpretation of these results are the effects of different diffusion gradi-

ent pulse durations for the different scans (Table 5.1), where longer gradient

pulses can lead to an apparent narrowing of restricted geometry and reduction

of the signal drop expected from diffusion [155]. This effect has been shown

to decrease with b-value, and for b-values of 1000 s/mm2 it was negligible in

a rat sciatic nerve with gradient durations ranging from 2 to 32 ms [156]. As
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such, at the very low b-value of 300 s/mm2, it is unlikely that this phenomenon

affected the results.

It was evident in the processed diffusion maps that the MD and FA for

water in the CSF became elevated beyond expected values and less uniform

for the PGSE scans with longer ∆eff (Fig. 5.4-5.6). The origin of this is likely

turbulent flow of CSF, which would have long effective ”diffusion” distances

and, thus, only the long ∆eff PGSE scans with gradient frequency components

(i.e. F (f) in Equation 5.2) equal to zero are sensitive to it. Moreover, the

OGSE waveform used is inherently velocity-compensated [53], which reduces

first order flow effects. Non-uniform MD and FA in CSF is not observed in

typical PGSE DTI acquisitions because the much larger b-values (1000 s/mm2

instead of 300 s/mm2) are not as sensitive to flow. Averaging over all the

ventricular space in all subjects, this flow-sensitivity led to higher λ⊥ of 5%

(OGSE (2.9 ± 0.09) × 10−3 mm2/s, PGSE (3.0 ± 0.2) × 10−3 mm2/s), λ|| of

19% (OGSE (3.22 ± 0.02) × 10−3 mm2/s, PGSE (3.8 ± 0.4) × 10−3 mm2/s),

and FA of 115% (OGSE 0.07 ± 0.02, PGSE 0.15 ± 0.03) for PGSE (∆eff =

40 ms) relative to the OGSE (∆eff = 4 ms) in CSF, which is in the opposite

direction to the diffusion parameter changes seen in brain tissue. The above

values also demonstrate that the flow effects were highly subject dependent.

Notably, diffusion time dependence of ADC in CSF with very large inter-

subject variation has been mentioned for in-vivo rat brain measured with low

b-value of 400 s/mm2 [142].

The primary limitation of the OGSE methodology for human in-vivo

applications is the long TE of 110 ms required to yield a minimally acceptable

b-value of 300 s/mm2 given our single axis gradient strength of 60 mT/m. At

this long TE, particularly at 4.7 T, the SNR in some regions with or near

high concentrations of iron was not sufficient for analysis, such as in the basal
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ganglia (note: this problem will be worse at 7 T and higher). The long TE also

resulted in very high CSF signal, which exacerbated Gibbs ringing and partial

volume effects adjacent to the ventricles and cortex; as such this precluded

tractography in small tracts near CSF, such as the fornix, and measurements

in the cortex (also limited by spatial resolution).

The ability to accurately identify the onset of ∆eff -dependence may

provide insight into microstructure changes that occur in pathology. With

recent advances in hardware enabling gradients as large as 100 or 200 mT/m

on custom-built human MRI scanners, higher b-values and/or OGSE frequen-

cies (i.e. lower diffusion times) will be achievable with OGSE. For example,

a frequency as high as 100 Hz at a b-value of 1000 s/mm2 could be possible

with 200 mT/m gradients; however, slew rate constraints would have to be

carefully considered. Given that the minimum diffusion time of 4 ms in this

work is likely only small enough to circumvent restricted diffusion in larger

axons, much larger changes in DTI parameters will likely occur with shorter

minimum diffusion times (and higher frequencies), as shown in the animal

models. Further, a larger range of ∆eff may enable quantitative measure-

ments such as nuclear size or surface to volume ratios in the in-vivo human

brain, which may give new understanding into the mechanisms underlying tis-

sue changes observed in disease, such as the still not well understood ADC

decreases observed in ischemic stroke.

In conclusion, this work has demonstrated the feasibility of acquiring

OGSE DTI in the human brain, and that DTI eigenvalues and FA depend

on the diffusion time over 4 to 40 ms in both white matter tracts and deep

grey matter. The ability to target different length scales via the diffusion time

may improve specificity to changes in tissue microstructure associated with

particular pathologies.
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5.6 Additional Content to the Published

Paper

5.6.1 Derivation of Diffusion Time for Trapezoidal

Gradients

The first step to derive the diffusion time, ∆eff , for any diffusion gra-

dient waveform is to derive the b-value. For a trapezoidal OGSE gradient

waveform G(t), there are two types of diffusion “blocks” where k(t) is zero at

the start and end of the block: the blocks at the start and end of the gradient

waveform (type A) and the blocks in the middle (type B) (Figure 5.9). For

Figure 5.9: The trapezoidal OGSE gradients, G(t), consist of two types of b-
value generating “blocks” that have a net k-space accumulation of zero. Block
type A occurs at the beginning and end of each OGSE waveform, and block
type B occurs for additional periods in the middle of the waveform. The net
b-value can be computed from the sum of the individual b-value contributions
from each block.

each block, the analytical form of |k(t)| can be computed through integration

of G(t) (Figure 5.9). As discussed in Section 1.5.1, b = 4π2

|k(t)|2dt. Be-

cause k(t) returns to zero at the end of each block, the net b-value is just the
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sum of the contributions from each block. The contribution to b from block

type A is

bA =γ2G2
M
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where GM is the maximum gradient, x is the duration required to ramp from

a gradient of 0 to GM , and y is the duraction spend at GM (Figure 5.9). The

four integrals in Equation 5.4 correspond to the initial gradient ramp up of

duration x, the constant gradient at GM for a duration y − x/2, the ramp

down to a negative gradient of −GM for duration 2x, and the final constant

gradient portion of duration y, respectively. The contribution to the net b-

value is computed similarly for block type B to obtain

bB = γ2G2
My2


2y

3
+ 2x+

4x2

3y
+

4x3

15y2


(5.5)

For a total of N periods of oscillation, with half of the periods on each side of

a 180◦ RF pulse, the net b-value is b = 4bA + (2N − 4)bB, which yields

b = 2Nγ2G2
My2


2y

3
+ 2x+

4x2

3y
+

4x3

15y2
+

x3

60Ny2


(5.6)

To determine the effective diffusion time, the equation for b must be recast into

a form b = Rγ2G2
Mδ2∆eff , where R is the number of times a bipolar gradient

pair is repeated (= 2N for this case) and γδGM is the maximum k-space value
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attained by a single gradient lobe [4, 48]. Relating these requirements to

Equation 5.6 yields

δ = y + x/2

∆eff =
2δ

3
+ x− x2

6δ
+

x3

60δ2
+

x3

60Nδ2

(5.7)

For OGSE it is instructive to portray the diffusion time as a function of oscil-

lation frequency, and by making the substitution f = 1/4(δ + x/2), Equation

5.3 is obtained.

5.6.2 Comparing b300 to b1000

The data from 2 subjects comparing eigenvalues and FA for b-values of

300 s/mm2 and 1000 s/mm2 (see Methods section) is shown in Figure 5.10.

5.6.3 Potential Impact of Perfusion

Because of the low b-value of 300 s/mm2, it is possible that perfusion

may have had a larger effect on results compared to DTI at a b-value of 1000

s/mm2. However, the comparison between b300 and b1000 shown above and

the high quality color coded FA maps (Figure 5.4) suggests that the impact

on measured DTI parameters was low.
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Figure 5.10: Mean values of DTI eigenvalues and FA in 2 healthy human
volunteers for b values of 300 s/mm2 and 1000 s/mm2 (∆eff ≈ 40 ms for
both). Generally increased eigenvalues for all regions and increased FA in
gray matter is observed for b = 300 s/mm2 compared to 1000 s/mm2. Region
abbreviations are as in Figure 3.
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Oscillating Gradient Spin-Echo

(OGSE) Diffusion Tensor Imaging

Yields Mechanistic Insights in Acute

Human Stroke

6.1 Introduction

The measurement of mean apparent diffusion coefficients of water (MD)

using diffusion weighted MRI is a sensitive marker of acute ischemic attack.

Although it was discovered 24 years ago that the MD markedly decreases in

the infarct within minutes after an ischemic event [13], the underlying bio-

physical mechanisms are still not well understood. Upon ischemia, glucose

and oxygen deprivation results in the failure of Na+/K+ ion pumps in cell

membranes, leading to an osmotic shift of water and swelling (i.e. cytotoxic

edema). Accordingly, the long-standing hypothesis is that this shift of wa-

ter from highly diffusive extracellular space to a more restrictive intracellular

space is the underlying mechanism for the MD changes [157–159]. However,
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the models based on cell swelling alone cannot explain that the intracellular

MD of metabolites decreases after global ischemia, which has been determined

from diffusion weighted spectroscopy in rat brain for many different intracellu-

lar metabolites including choline, creatine, N-acetylaspartate (NAA), taurine,

glutamate, myo-inositol, and Cs+ [160–164]. Similar findings have been ob-

served in the acute stage of stroke in human brain for NAA, creatine, and

choline [165, 166]. Recent simulations and pre-clinical models implicate that

cytotoxic edema causes the formation of enlargements and constrictions in

neuronal membranes (i.e. “beading”), which introduces barriers along neural

fibers that restrict water mobility and may account for the MD decreases ob-

served in acute stroke (Figure 6.1) [167]. Beading is a generalized property of

Figure 6.1: Upon ischemia, neurites (e.g. axons - depicted above, dendrites)
swell non-uniformly (i.e. “beading”). This inhibits the ability of water to
diffuse along the length of the axon and increases tortuosity in the extracellular
fluid (ECF), making it a plausible mechanism for the marked decrease of the
overall apparent diffusion coefficient (MD) of water within a lesion after stroke
observed using diffusion-weighted MRI.

axons and dendrites that occurs after injury such as depolarization or stress

[168, 169]. This beading hypothesis has yet to be evaluated in human acute

ischemic stroke given the technical limitations of routine diffusion MRI.
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The beading in white matter occurs with length scales on the order of

the axon diameters, and adjusting the length scale sensitivity of the diffusion

MRI experiment may shed light on changes that occur upon stroke. Different

microstructure length scales can be probed by varying the “diffusion time”,

∆eff . If, during the diffusion time, most molecules do not travel far enough

to interact with any obstacles, the measured ADC is equivalent to the intrin-

sic diffusion coefficient [42, 43]. For increasing diffusion times, the molecules

interact with more barriers and the ADC decreases. As described in Chapter

5, this has been observed in several ex vivo investigations using strong gradi-

ent inserts, where increases in MD and decreases in anisotropy were observed

for shorter ∆eff (< 5 ms) [39, 130–132]. The oscillating gradient spin-echo

(OGSE) method enables shorter ∆eff compared to PGSE, which grants sensi-

tivity to diffusion restriction/hindrance over smaller length scales [4–6] (Figure

6.1). In a rat model of global ischemia, the mean ADC decrease in cortical

grey matter observed after a global ischemic event was approximately 50%

lower for a ∆eff of 0.5 ms compared to 9.8 ms, which suggests that the MD

decreases observed during ischemia are due to structural changes (i.e. not

permeability or viscosity changes) because moving to shorter length scales can

mitigate the MD decrease [142, 170]. OGSE has only recently been applied to

healthy human brain [53, 171] (Chapter 5) where, similar to the early ex vivo

work, increases in MD and decreases in anisotropy were observed for shorter

∆eff . However, OGSE has not yet been applied to human stroke and OGSE

diffusion tensor imaging (DTI), which may shed light on directional dependen-

cies of the length scales of diffusion, has been applied neither for the study of

human nor animal ischemia. This work aims to determine the dependencies

of DTI eigenvalues and anisotropy on ∆eff in human stroke, and test whether

any changes are consistent with cellular beading using simulations.
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6.2 Methods

6.2.1 Subjects

Participants included 11 male patients recently diagnosed with ischemic

stroke (age 51 ± 12 years, range 25-67 years), who were recruited from the

University of Alberta Hospital stroke unit. The patients were scanned 46± 31

hr after symptom onset (range 13-106 hr), National Institute of Health Stroke

Scale (NIHSS) Scores at presentation were 4.0 ± 2.5 (range 1-10), and the

mean total lesion volume was 9 ± 20 mL (0.2 - 69 mL). Lesions in white and

grey matter were outlined with separate regions of interest (ROI), and a total

of 20 lesions (9 white matter; 6 cortical grey matter, 5 deep grey matter)

were located in vascular territories of the middle cerebral artery (9), basilar

artery (2), lateral lenticulostriate arteries (2), posterior cerebral artery (2),

and anterior choroidal artery (2).

6.2.2 MRI Acquisition

MRI acquisition was performed in one scan session on a Varian Unity

Inova 4.7 T. A b = 1000 s/mm2 (b1000) DWI protocol with 3 orthogonal

diffusion encoding directions was used to locate the lesion(s). The single-shot

EPI parameters were: TR = 10 s; TE = 60 ms; FOV = 24 x 19 cm2; 1.5

mm x 1.5 mm acquired in-plane resolution (zero-filled to 0.75 mm x 0.75 mm

resolution); 80 slices, thickness 1.5 mm; 4 averages; R=2 GRAPPA; scan time

3.5 min. Two DTI protocols were acquired using ∆eff = 4.1 ms (OGSE 50

Hz) and 40 ms (PGSE) with identical parameters as in Chapter 5 (Figure

6.2). Both protocols acquired a 5 cm slab that was centered on the lesion, and

used b = 300 s/mm2 with 6 diffusion encoding directions. Both scans used a
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Figure 6.2: Diffusion gradient waveforms and gradient modulation power spec-
tra, |F (f)|2, for PGSE and OGSE. The polarity of the second gradient wave-
form has been reversed from what is actually played out to account for the
180◦ RF pulse that is between the gradient waveforms (RF pulses omitted from
diagrams). The relationship for ∆eff depends on the gradient shape, and is
shown below each case.

maximum gradient amplitude of 57.5 mT/m per channel. Other single-shot

EPI imaging parameters were: TR = 12.5 s; TE = 110 ms; FOV = 24 x 24

cm2; 2 mm x 2 mm acquired in-plane resolution (zero-filled to 1 mm x 1 mm

resolution); 20 slices, thickness 2.5 mm; 6 averages; R=2 GRAPPA; scan time

5 min per protocol. Confounding effects from eddy currents were mitigated

using a combination of gradient pre-compensation and post-acquisition phase

correction, as in previous work (Chapter 5).

6.2.3 MRI Analysis

For each individual, motion between the OGSE and PGSE scans was

corrected using rigid body translations and rotations [126] with an autocor-

relation cost function. The b1000 DWI scan was re-sampled to be the same

resolution as the OGSE and PGSE scans, and aligned to them using the same

rigid body motion correction algorithm. The lesions were outlined on the b1000
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DWI on all slices where they were visible using a semi-automated region-of-

interest (ROI) tool that defines the boundary of the ROI where the DWI signal

intensity is halfway between a value manually selected in the lesion and a value

in nearby healthy tissue (Appendix B). ROIs were also manually drawn in the

contralateral healthy tissue. Portions of the lesions or contralateral healthy

tissue within grey (GM) or white matter (WM) were differentiated with the aid

of the b1000 DWI, which had strong grey-white matter contrast, and PGSE

fractional anisotropy (FA) maps.

DTI eigenvalues, MD, and FA were computed for the PGSE and OGSE

scans using ExploreDTI v4.8.3 [76]. The regions identified using the DWI scan

were applied to the PGSE and OGSE DTI parameter maps to measure MD in

the GM lesions (n=11) and parallel (λ||) and perpendicular (λ⊥) eigenvalues

and MD in the WM lesions (n=9). Statistical significance was evaluated using

paired t-tests for OGSE relative to PGSE (P < 0.01).

6.2.4 Monte Carlo Diffusion Simulations

Simulations of the diffusion weighted MRI experiment for various geo-

metrical surfaces [167] were performed using the Camino diffusion toolkit [172]

1. Three-dimensional mesh surfaces were generated in Matlab and consisted

of cylinders arranged in a hexagonal lattice with a uniform initial radius and

intracellular volume fraction. Beaded axons were modeled as axisymmetric

three-dimensional unduloids with a degree of undulation (A) scaling from 0

(cylinder) to 1 [167].

The dynamics of the simulation consisted of a random walk of 20000

magnetic spins. The initial position was random but consistent with the intra-

1All simulations were performed by collaborator Matthew Budde, Assistant Professor,
Neurosurgery, Medical College of Wisconsin.

152



Chapter 6. OGSE DTI in Human Stroke

and extracellular volume fractions of the geometrical surfaces. At each of

1000 time-points, spins moved a distance equivalent to a “free” diffusivity of

1.7 × 10−3 mm2/s, which was chosen from the λ|| measured in healthy white

matter tissue using OGSE. Boundaries were impermeable, and spins that inter-

sected a boundary were elastically reflected. The diffusion gradient waveforms

replicated those of the in vivo experiments, including identical diffusion gra-

dient waveforms, diffusion times, and b-values. The spin phase was updated

at each time step with the total signal equal to the phase-sensitive average of

all spins at the final time-point. The effects of T2 relaxation were ignored.

To fully investigate the effects of axonal diameter, volume fractions,

and beading amplitude on the resulting DTI measures and differences be-

tween OGSE and PGSE, simulations were performed using all possible com-

binations of initial diameters of {1, 2, 3, 4, 5, 6, 7, 8} µm, volume fractions of

{0.4, 0.5, 0.6, 0.7, 0.79}, and beading amplitudes of {0, 0.2, 0.4, 0.6, 0.73}. The

resultant DTI eigenvalues were interpolated to 100 points for each of the 3

independent variables using cubic spline interpolation. The simulation pa-

rameters that resulted in DTI eigenvalue percent changes (pre-beading versus

post-beading) with the smallest root mean squared difference from the exper-

imental results was determined from all possible combinations of the interpo-

lated simulation parameters.

6.3 Results

DWI lesions were clearly observed in the b1000 scans, as in the examples

in Figure 6.3; however, while the lesions are hypointense in the PGSE MD

maps, they are not as clearly visible in the OGSE MD maps.

Over all the subjects, this translated to very little MD change in white
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Figure 6.3: Hyper-intense lesions were observed in a standard DWI scan
(b1000). While the MD was hypo-intense in the lesions for PGSE, the le-
sions show far less diffusion change in the OGSE MD maps acquired with
much shorter diffusion time.
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matter lesions for OGSE (−8 ± 18%) compared to the normal decrease of

−37± 15% for PGSE (Figure 6.4a). Moreover, λ|| and λ⊥ were reduced in the

lesions compared to healthy tissue for PGSE (λ||: −42±12%; λ⊥: −30±21%),

which is typical, but notably, λ|| did not reduce nearly as much for OGSE

(−22 ± 12%), while λ⊥ even increased (7 ± 26%) (Figure 6.4b). In the grey

matter, a similar MD decrease in the lesion was observed for both PGSE

(−32± 18%) and OGSE (−25± 12%).

The Monte Carlo simulations performed at a range of axonal diame-

ters, volume fractions, and beading amplitudes provides insight into the depen-

dencies of OGSE and PGSE measurements (Figure 6.5). In general, volume

fraction had little impact on OGSE-PGSE differences for λ||, but higher VF

decreased λ⊥. Alternatively, increasing the beading amplitude resulted in de-

creased λ|| and increased λ⊥. There was little difference between OGSE and

PGSE for axon diameters smaller than 3 µm, which is a limitation of the exper-

imental diffusion time (shorter diffusion times would increase the differences

for smaller axons).

A simulated cellular swelling from an axonal volume fraction of 0.58

to 0.74 (similar to expected from edema) along with beading of the axonal

membrane (amplitude 0.6) for 5.5 µm diameter axons most closely approxi-

mated both the direction and percentage change in the in vivo DTI param-

eters (Figure 6.6a). The simulations with swelling or beading alone help to

expose the mechanisms behind the diffusion changes (Figure 6.6b). The ex-

perimental finding of a smaller decrease in λ|| for OGSE compared to PGSE in

white matter was only mirrored in the simulations when beading was present

(with or without swelling). In contrast, the experimental finding of a small

increase in λ⊥ for OGSE compared to a decrease for PGSE was only mir-

rored in the simulations when both beading and swelling occurred. The root
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Figure 6.4: (a) The MD reductions in white matter lesions (n = 9) observed
using PGSE was almost eliminated when using OGSE, but the MD reductions
in grey matter lesions (n = 11) were similar for both acquisitions. (b) More
insight can be gained from the directional ADCs in white matter, where a
smaller decrease (lesion versus healthy) in parallel diffusivity was observed for
OGSE compared to PGSE, while the change of perpendicular diffusivity was
opposite for OGSE compared to PGSE. The average percent changes are were
compared using a paired students t-test (* P < 0.01).
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Figure 6.5: Parallel (λ||) and perpendicular (λ⊥) apparent diffusion coefficients
obtained from Monte Carlo simulations of diffusion tensor MRI of beaded
cylinders for a range of axonal diameters, beading amplitudes, and axonal
volume fractions (VF) for long diffusion time PGSE (solid lines) and short
diffusion time OGSE (dashed lines). Volume fraction had little impact on
OGSE-PGSE differences for λ||, but higher VF decreased λ⊥. Additionally,
increasing beading amplitude decreased λ|| and increased λ⊥. There was little
difference between OGSE and PGSE for axon diameters smaller than 3 µm,
which is a limitation of the experimental diffusion time (shorter diffusion times
would increase the differences for smaller axons).

mean squared difference between simulation and experiment for the ischemic

to healthy tissue percent-changes (over both λ⊥ and λ|| for each of PGSE and

OGSE) was a smoothly varying function with a well-defined global minimum

at the aforementioned “best-fit” simulation parameters with no other local

minimums (Figure 6.7).

6.4 Discussion

In healthy tissue, eigenvalues and MD were larger for OGSE compared

to PGSE, which agrees with previous in-vivo [53, 171] and rodent [142, 143]

work. Only one other study has investigated ADC changes during ischemia
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Figure 6.6: (a) In Monte Carlo simulations of beaded cylinders, changes in
parallel (λ||) and perpendicular (λ⊥) diffusivities mirrored the in vivo white
matter results in Figure 6.4b when beading (amplitude 0.6) and swelling from
an axon volume fraction of 0.58 to 0.74 occurred in 5.5 µm diameter axons. (b)
Swelling or beading alone could not replicate the experimental results because
swelling alone had no affect on λ|| for both OGSE and PGSE and had the
wrong direction of change for OGSE λ⊥, while beading alone resulted in the
wrong direction of change for PGSE λ⊥.
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Figure 6.7: The determination of the simulation parameters (axonal volume
fraction before stroke, axonal volume fraction after stroke, axon diameter,
and beading amplitude) that resulted in DTI eigenvalue changes that most
closely matched the experimental findings were determined by finding the set of
parameters with the smallest root mean squared difference between experiment
and simulation. The root mean squared difference surfaces for the 6 possible
combinations of the 4 fitted parameters is shown, where a smoothly varying
function with a well-defined global minimum is observed in all cases.
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using OGSE, where the MD was measured in the cortex of rats before and

after death (i.e. global ischemia) for OGSE frequencies ranging from 0 to 500

Hz [142]. Smaller ischemic decreases in MD were observed for larger OGSE

frequencies (17% decrease at 500 Hz (∆eff ≈ 0.5ms) compared to 32% at 0

Hz), which was not observed with statistical significance in the grey matter in

this work. This is likely due to the much smaller OGSE frequency of 50 Hz used

here and the fact that much shorter diffusion times (i.e. higher frequencies)

would be needed to circumvent beading in dendrites that are smaller than

axons. Notably, the MD decrease in the aforementioned rat study was 27% at

50 Hz, which is similar to the 32% decrease they observed at 0 Hz. In addition,

the difference could have stemmed from anatomical differences between human

and rat, or the difference between an in-vivo system and postmortem model.

This is the first OGSE study of ischemic white matter. Only a small

difference between OGSE and PGSE is observed in the healthy tissue. The

smaller decrease of λ|| in the lesion for OGSE vs PGSE, along with evidence

from measurements of diffusion kurtosis [173], suggests the introduction of

parallel barriers upon ischemia (i.e. greater reductions at long diffusion times).

As shown by the simulations, neurite beading is sufficient to create parallel

barriers that result in λ|| changes that mirror the experimental results. In

addition, the simulations suggest that the increase in λ⊥ for OGSE stems

from beading, which likely stems from fewer molecules interacting with the

walls in the beads (because they have a higher effective diameter than the

healthy axons) for the short diffusion time OGSE. In contrast, the simulations

suggest that the decrease in λ⊥ for PGSE stems from cell swelling, which likely

results from the reduced diffusion lengths and increased tortuosity in the ECF.

Since neither the decreases in λ|| for OGSE and PGSE nor the increase in λ⊥

for OGSE was replicated with swelling alone (Figure 6.6), these findings argue
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against the long-held belief that swelling alone is responsible for MD decreases

in stroke [13]. Rather, the results implicate beading as the primary source of

MD decreases. These findings also argue against the MD decreases stemming

from changes in intracellular viscosity or cytoplasmic streaming because the

diffusion measurements would not depend on the diffusion time.

Interestingly, while we did not observe a statistically different MD in

the grey matter for OGSE compared to PGSE, the changes of MD in white

matter are similar to the changes in MD observed in the cortical grey matter in

the global ischemia rat study [142]. It is likely that with shorter diffusion times

where diffusion distances are on the order of the size of dendrites, human grey

matter would show similar behaviour. However, partial volume effects may

have had a larger effect in cortical GM (5 of the 9 GM data points) due to

its proximity to cerebrospinal fluid, and the SNR was low in some deep GM

regions.

The mean diameter of axons in the human corpus callosum are around

1-2 µm with decreasing populations for sizes increasing to 10 µm [137]. How-

ever, the in vivo findings were most closely replicated by simulations with 5.5

µm diameter axons because the OGSE parameters only provide sensitivity to

the largest axons (as shown in Figure 6.5). Notably, though, even a small

number of large axons may significantly contribute to the MRI signal given

that the volume scales with the square of diameter. While infeasible with most

current human MRI systems, shorter diffusion times would improve sensitivity

to smaller axons and dendrites.

The primary limitation of the OGSE methodology for human in-vivo

applications is the long TE of 110 ms required. At this long TE, particularly

at 4.7T, the SNR is low in regions with high concentrations of iron (e.g. basal

ganglia). The long TE also resulted in very high CSF signal, which exacerbated

161



Chapter 6. OGSE DTI in Human Stroke

Gibbs ringing and partial volume effects adjacent to the ventricles and cortex.

The high CSF signal could potentially be reduced by using a lower TR, as

in Chapter 4; however, this would decrease the tissue signal and require more

averages and longer scan times. The b-value increase suggested in Chapter 4 is

not feasible here where the OGSE waveforms can only achieve even the modest

b-value of 300 s/mm2. Also, geometric dispersion (i.e. fanning) of axons and

crossing fibers may have contributed to differences in the eigenvalues and FA

between PGSE and OGSE in the white matter. These phenomena effectively

create some mixing of perpendicular and parallel diffusion; thus, the changes in

perpendicular diffusivity may have resulted from some locally parallel changes

erroneously being mapped to the perpendicular eigenvalues or vice versa. In

addition, non-axonal features of white matter, such as glial cells, were not

modeled and may have also contributed to the diffusion measures.

Recent studies using in vivo microscopy have demonstrated that bead-

ing as a consequence of acute ischemia is caused by the combination of oxygen-

glucose deprivation (OGD) with depolarization [169]. Since transient MD

changes of 30% to 40% and cellular swelling have been observed with non-

ischemic spreading depression (SD) [174], these results implicate that transient

reversible beading may underpin SD or acute neurological injuries where MD

decreases and/or cellular swelling is observed.

In conclusion, OGSE has demonstrated diffusion time dependencies of

MD and parallel and perpendicular diffusivities white matter for the first time

in human acute ischemic stroke. Simulations of cellular beading showed dif-

fusion tensor changes nearly identical to the in vivo results for physiologically

plausible parameters. Accordingly, these results support the hypothesis that

MD reductions during stroke are primarily due to cellular beading.
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6.5 Collaborators

Patient recruitment was supported by Mahesh Kate (Neurology; Uni-

versity of Alberta), Laura Gioia (Neurology; University of Alberta), Ken

Butcher (Neurology; University of Alberta), and Derek Emery (Radiology;

University of Alberta). The simulations were performed by Matthew Budde

(Neurosurgery, Medical College of Wisconsin).
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Chapter 7

High Resolution Diffusion Weighted

Imaging of Stroke

7.1 Introduction

Diffusion weighted imaging (DWI) is the gold standard for the detection

of the infarct core after ischemic stroke. Current DWI protocols for stroke

strive to collect the images as fast as possible (≈1 min) by using thick slices

of 5 - 7 mm, often with a gap of up to 2 mm. While the in-plane resolution

is generally higher (e.g. 1.7 × 1.7 mm2), spatial averaging caused by thick

slices reduces the visibility of small lesions. In acute ischemic stroke, 2-3x as

many lesion have been observed for a slice thickness of 3.5 mm compared to 7

mm [14], and 20-30% of transient ischemic attack (TIA) patients have lesions

detected on thin-slice DWI (3 mm) when no lesions are detected on the thick

slices (6 mm) [15, 16]. The latter finding has large implications for patient

care, since according to the 2009 American Heart Association guidelines any

suspected TIA patient with a DWI lesion of any size is now diagnosed with

acute stroke [175].

While increased detection of small lesions has been reported by the
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above studies when the slice thickness was decreased, little insight into the

differences in quantitative metrics like lesion volume or mean diffusivity (MD)

has been provided. A number of studies have implicated that lesion volume

[176–181] and MD [177, 179, 181] correlate with patient outcomes; however, it

has been reported that neither estimated volumes nor MD provide predictive

value beyond clinical variables (e.g. stroke symptom severity and age) [182,

183]. A low added predictive value of quantitative DWI measurements may

be due to poor resolution (i.e. thick slices). For example, when only a portion

of the ischemic core of a stroke resides within long and narrow voxels, the

estimate of lesion volume can either be increased or decreased with respect to

the true volume depending on whether the voxels are included or not (Figure

7.1). Accordingly, using a large slice thickness increases the uncertainty of an

estimate of lesion volume. The fractional uncertainty in lesion volume can by

estimated from the number of voxels that contain both infarct and healthy

tissue multiplied by the proportion of volume of a single voxel that needs to

be filled by infarct for an observable MD decrease (νsee). This leads to an

uncertainty of

σV ≈ νsee
w
3
√
V

(7.1)

where w is the thickness of the slice, and V is the true volume of the lesion.

In addition, the inclusion of voxels only partially filled with infarcted tissue

generally results in an increase of MD measurement since non-compromised

tissue would be included in some voxels (Figure 7.1).

The aim of this work was to investigate the uncertainty in lesion volume

and MD measurement error by performing DWI in acute and sub-acute stroke

patients using a 1.5 x 1.5 x 1.5 mm3 resolution with no gap between slices (3.4

mm3) compared to a typical resolution of 1.7 x 1.7 x 5 mm3 with a 1 mm gap

between slices (17.3 mm3).
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Figure 7.1: When thick slices are used, lesion volumes can be either under-
estimated (A) or over-estimated (B) depending on the position of the lesion
relative to the slices. As in the shown example, this can result in a 50%
uncertainty in measured volume for lesions with dimensions comparable to
twice the slice thickness. In addition, MD measurements are generally lower
due to partial volume effects with the healthy tissue. The MD measurements
were simulated for the shown scenarios assuming a healthy tissue MD of 0.7×
10−3 mm2/s.
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7.2 Methods

7.2.1 Subjects

Participants included 13 patients (11 male) diagnosed with ischemic

stroke (age 56 ± 13 years, range 25− 76 years), who were recruited from the

University of Alberta Hospital stroke unit. The patients were scanned 39 ±

32 hr after ictus (range 6 − 106 hr), and National Institute of Health Stroke

Scale (NIHSS) Scores at presentation were 3.2 ± 2.6 (range 0− 10).

7.2.2 MRI Acquisition

MRI acquisition was performed in one scan session on a Varian Unity

Inova 4.7 T. High resolution (HR) DWI was performed with an acquired voxel

size of 1.5 x 1.5 x 1.5 mm3 (zero-filled to 0.75 x 0.75 x 1.5 mm3) with no

inter-slice gap in a scan time of 3.5 min (4 averages). Full brain coverage

with this resolution was the highest the system could achieve due to console

memory limitations. 80 slices were acquired with TR = 10 s and TE = 60 ms.

The typical resolution (i.e. low resolution, LR) DWI was performed with an

acquired voxel size of 1.7 x 1.7 x 5 mm3 (zero-filled to 0.85 x 0.85 x 5 mm3)

with an inter-slice gap of 1 mm. The scan time was kept the similar to the

high resolution scan by increasing the number of averages to 16 (only 1 average

is normally required). 20 slices were acquired with TR = 3 s and TE = 53

ms. Both sequences used single-shot echo-planar imaging with R=2 GRAPPA

[54], FOV = 24 x 19 cm2, and Stejskal-Tanner diffusion encoding [32] with b

= 1000 s/mm2 along 3 orthogonal directions.
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7.2.3 MRI Analysis

Regions of interest (ROIs) were drawn around all hyperintense lesions

with a semi-automated ROI tool (developed in-house, see Appendix B) and

with manual ROI drawing in the contralateral healthy tissue using the mean

DWI image for both the LR and HR scans independently. Within each ROI the

infarct core was defined to include only voxels where the MD was reduced by

at least 20% compared to the MD in the ROI around the contralateral healthy

tissue. The lesion volume was estimated by multiplying the number of voxels

in the infarct core by the voxel volume (including any inter-slice gaps), and the

mean MD in the infarct core was measured. The relative MD of each lesion

compared to the contralateral healthy tissue (rMD) was calculated. Differences

in rMD were evaluated using a students paired t-test (P < 0.001).

7.3 Results

Small lesions were much more readily visible on the HR DWI compared

to LR, with some not appearing on the LR DWI at all (Figure 7.2). The sagit-

tal and coronal views of the LR scan are poor quality and demonstrate spatial

averaging that occurs due to the thick slices. In contrast, the corresponding

views on the HR DWI provide accurate depictions of the lesions. The loss of

information for LR compared to HR is particularly evident around the corti-

cal gyri. Overall, 13 out of the 43 infarcts detected on the HR scans were not

detected on the LR scans.

The uncertainty in lesion volume that is realized by the thick slices is

evident via the percent volume difference between the LR scans as a function

of the lesion volume on the HR scan (Figure 7.3a). With the assumption that

the HR scan gives a good estimate of lesion volume, it is observed that the
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Figure 7.2: Example images from low (LR) and high (HR) resolution DWI
in a subject scanned 27 hr after symptom onset. The lesion identified by the
arrow is not visible on the LR scan.
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Figure 7.3: (a) The percent difference between lesion volumes measured using
the low resolution (LR) and high resolution (HR) DWI scans increased for
smaller HR lesion volumes. The results agree with the expected uncertainty
estimated by Equation 7.1 (dashed line). (b) The MD measured in the lesion
compared to contralateral healthy tissue (rMD) was smaller for HR (mean
0.62) compared to LR (mean 0.68) (P < 0.001).

volume error increases for smaller volumes. This trend is captured by Equation

7.1, which is also plotted in Figure 7.3a for νsee = 0.25 (set by assuming that

the true MD drop is 40% [184], compared to the threshold of 20% described

in the Methods). Interestingly, even the larger lesions with volumes greater

than 5 mL still have a magnitude of volume difference as large as 20%, and

the overall root-mean-squared (RMS) volume difference over all the lesions

was 60%. Notably, a variance metric like RMS for volume difference is more

appropriate to quantify volume error compared to a mean difference because

the larger voxel volume increases the uncertainty of the measurement, as shown

in Figure 7.1 (i.e. the difference can be positive or negative, and the mean

difference is close to 0). The larger voxel size of the LR scan also resulted in

an increase in rMD from 62 ± 7% to 68 ± 7% (P < 0.001) compared to the

HR scan (Figure 7.3b). Of the 30 lesions detected on the LR scan, 29 of the

corresponding lesions on the HR scan had a smaller rMD. Note that the MD

in contralateral healthy tissue was similar for LR (0.76± 0.06× 10−3 mm2/s)

and HR (0.77± 0.06× 10−3 mm2/s).
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7.4 Discussion

The HR DWI protocol resulted in the detection of 43% more lesions

compared to a typical DWI protocol (i.e. LR), and in lesions that were detected

by both scans the rMD was 10% higher for LR compared to HR. Therefore,

even if lesions are visible the smaller MD drops would likely decrease diagnos-

tic certainty. Overall, the estimates of lesion volume differed from the high

resolution estimate by 60% RMS. The corruption of volume and MD mea-

surements by partial volume effects would likely impair studies investigating

correlations of these measurements with clinical metrics like symptom sever-

ity, time of onset, lesion location, or patient outcome. For example, several

studies have reported correlations of lesion volume with outcome for volumes

greater than 10 mL [176–181], but very little has been reported for smaller

lesions where the volumes are more uncertain.

Another advantage of the HR protocol is that with an effective 4x

smaller slice thicknesses, any particular lesion is visible in 4x more slices. This

would improve diagnostic confidence because a small lesion residing in 2-4 slices

instead of only 1 slice would help to rule out artifacts (e.g. B0 inhomogeneity)

as the source of the apparent lesion.

While large improvements in resolution were primarily obtained by de-

creasing the slice thickness in this work, improving the in-plane resolution for

single shot EPI has diminishing returns due to a wide point spread function

from T2 signal decay (see Section 1.4.4). While multi-shot EPI techniques

could potentially reduce this issue [71, 185], they are associated with large

scan time increases of at least a factor of 2.

The scan time of the LR scan was kept similar to the HR scan by in-

creasing the number of averages to ensure that time spent to acquire an HR
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DWI would not be better spent acquiring more averages with LR parameters.

Considering the much higher lesion visibility for the HR scan, this was not the

case. Nevertheless, a limitation of high resolution DWI is the increased scan

time required. While the LR scan could be completed in less than 30 seconds

(only 1 average), the HR scan was 3.5 min (4 averages with a longer TR).

Accordingly, patients may be best served by a LR scan, where a subsequent

HR DWI is performed if no lesions are detected on the LR DWI. Further, this

work suggests that research protocols that may be searching for statistical cor-

relations should use HR DWI to reduce uncertainty in measured parameters.

It should be noted, though, that with only two averages in the HR protocol

the images are still of reasonable quality (Figure 7.4), which would only ne-

cessitate a 2 min scan time. Also, while this work was performed at 4.7 T,

Figure 7.4: The quality of the mean diffusion weighted images (DWI) and
mean diffusivity (MD) decreases for the use of a decreasing number of averages;
however, reasonable image quality is still observed for only two averages.

the HR protocol could also be performed at 3.0 T or 1.5 T (Figure 7.5) with

reasonable scan times (≈ 5.5 min and ≈ 10 min, respectively).
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Figure 7.5: Preliminary diffusion weighted images acquired at 1.5 Tesla (Uni-
versity of Alberta) and 3.0 Tesla (University of Calgary - images acquired by
Dr. Shelagh B. Coutts, Department of Radiology) at a typical resolution (1.7
mm x 1.7 mm x 6 mm for 1.5 T; 1.9 mm x 1.9 mm x 3 mm for 3 T) and
high resolution (1.5 mm isotropic) show that the same resolution as the HR
protocol can be implemented at typical field strengths.

This work was performed in patients with relatively minor stroke sever-

ity (mean NIHSSS = 3.2) and small lesion volumes (< 10 mL). The volume and

MD error may be lower for larger lesions because fewer voxels would contain

both infarcted and viable tissue together; however, large lesions with complex

shape and high surface to volume ratios would still have a large proportion of

voxels only partially filled with infarcted tissue.

In conclusion, thick slice DWI decreases the rate of detection of small

lesions, introduces uncertainty in measured lesion volumes on the order of

60% for lesions smaller than 10 mL, and results in increased MD in lesions

with respect to healthy tissue by 10% compared to high resolution DWI with

isotropic voxels. These findings suggest that high resolution isotropic voxels

should be used for accurate quantitative DWI measurements in stroke lesions.
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7.5 Collaborators

Patient recruitment was supported by Mahesh Kate (Neurology; Uni-

versity of Alberta), Laura Gioia (Neurology; University of Alberta), Ken

Butcher (Neurology; University of Alberta), and Derek Emery (Radiology;

University of Alberta).
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Chapter 8

Discussion and Conclusions

While each Chapter of this thesis describes the main limitations spe-

cific to itself, there are several broad limitations that affected most of the

work. Following the discussion of limitations, some overarching conclusions

and future directions will be discussed.

8.1 Limitations

8.1.1 Partial Volume Effects

As discussed in Chapter 4, partial volume effects of cerebrospinal fluid

(CSF) with tissue voxels introduces error into quantitative DWI and DTI

measurements. While the CSF-suppressing sequence introduced in Chapter

4 was not used in other work in this thesis (due to timing of work being

completed and incompatibility of the method with OGSE), no measurements

in regions with high CSF contamination (e.g. fornix) were performed in any

of the other chapters. In addition, partial volume effects between tissue from

different brain structures introduce error [9]. This may have introduced some

uncertainty in measured values in any of the Chapters of this thesis. Notably,
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the technique of only using the core region of white matter tracts for the

analysis of OGSE data in Chapter 5 likely mitigated this source of error.

8.1.2 Magnetic Field Inhomogeneity

Even though the distortions from B0 inhomogeneity were reduced by

using parallel imaging, there were still some distortions remaining. This gen-

erally decreased data quality near the sinuses and temporal lobes (e.g. Figure

8.1), which precluded analysis of some tracts in those regions (e.g. the uncinate

fasciculus in Chapter 5).

8.1.3 Receiver Array Sensitivity

Most work in this thesis used the same 4-element receive array. While

the receiver array provided good signal strength in central brain regions (sim-

ilar to a birdcage coil), the sensitivity quickly decreased in inferior regions

of the brain and in the temporal lobes (Figure 8.1). This resulted in non-

uniform signal intensities, which may have impaired stroke lesion detection in

DWI’s, particularly near the base of the brain. Also, the lower SNR may have

increased uncertainty in quantitative DTI measurements near the base of the

brain; however, most brain regions investigated were in high sensitivity regions

of the receiver array.

8.1.4 SAR Monitoring

The RF power monitoring equipment only measured the transmitted

RF power; however, reflected RF power does not contribute to tissue heating

and SAR. By measuring the reflected power and subtracting it from the trans-

mitted power, more accurate SAR measurements could have been estimated.
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Figure 8.1: The signal from the 4 receivers had non-uniform intensity that
quickly diminished toward the base of the brain. Distortions from B0 inho-
mogeneity are also visible in the images, which are the non-diffusion weighted
images acquired using the high resolution DWI protocol from Chapter 7.
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This could have allowed shorter TR (and scan times) in some cases, as well

as shortening of RF pulse lengths resulting in shorter TE. However, it was

generally non-DTI pulse sequences that were most SAR limited (e.g. fast-spin

echo). Nevertheless, because of the SAR limitations of the other sequences

in a protocol, the birdcage transmit RF coil was often not lowered all the

way down towards the shoulders of the subjects because this caused excitation

of the shoulders and higher RF power requirements. This decreased B1 field

strengths near the base of the brain and exacerbated the receiver sensitivity

issue described above for all sequences, including DTI. With more accurate

SAR monitoring, this issue could have been mitigated.

8.1.5 Data Bottlenecks

A particularly limiting aspect of the hardware was a data flow bottle-

neck that limited the number of points that could be acquired per unit time.

More specifically, the “First In First Out” (FIFO) data buffer in the Inova

console is only 64 MB, and if it is filled up faster than it can send data out

the scan will terminate early with an error. The conditions where this error

can occur are not easily predicted, and whether a pulse sequence is suscepti-

ble to it or not is most easily determined through trial and error. This issue

was most limiting for the high resolution DWI scan in Chapter 7, where the

TR was actually limited by the data flow bottleneck and not SAR. Without

this hardware issue, scan times could have been decreased by 10 to 20%. The

bottleneck also resulted in long times required for the console to save the data

after the sequence was completed (i.e. the hardware had to catch up because

it was consistently falling behind during the scan), which is lost time where no

other scanning can be performed. For the high resolution DWI sequence, the

scan time was 3.5 minutes while the saving time afterward was approximately
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3 minutes.

8.1.6 Gradient Duty Cycle

Because of heating, the gradient duty cycle must be kept within certain

limits. The temperature of the gradients and cooling water was monitored

to ensure that temperatures did not approach the gradient epoxy melting

temperature. This issue was most limiting for the OGSE work, where the TR

was gradient duty cycle limited. With a higher permissible duty cycle, the TR

(and scan time) could have been decreased by 30 to 40%.

8.1.7 Contraindications

This work was performed at the unique field strength of 4.7 T. How-

ever, there is no safety data regarding safe metallic foreign bodies at this field

strength (or higher). While certain metallic objects in the body are likely safe

at 4.7 T, to prevent any unforeseen issues a zero-tolerance policy regarding

metal in the body was adhered to. This greatly reduced patient yield for the

stroke work, as many individuals at ages typical for stroke have had procedures

done. In particular, this problem reduced the yield of women because many

have had tubal ligations, where there is a reasonable chance that a metallic

clip was used.

8.1.8 Scanning Preparation

Most of the pulse sequences on the 4.7 T scanner have been devel-

oped in house, and the selection of preloaded sequences is small. As such,

there is not consolidated “preparation” sequence that performs frequency off-

set calibration, power calibration, and rough shimming. Rather, these steps
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are performed manually by the operator using 3 separate protocols, which

typically takes 5 to 10 minutes. This represents an unnecessary increase in

scan time as the consolidated preparation protocol on new clinical scanners

typically requires less than 1 minute.

8.1.9 Sample Size and Subjects

Most of the healthy volunteers in this work were local graduate stu-

dents. While this subject population can serve to demonstrate improvements

gained by new techniques (Chapters 2-4), they do not accurately reflect the

general population for work that investigates quantitative parameters in the

normal healthy brain, such as Chapter 5. Also, the total size of subject groups

was generally small (≈ 10). While large effect sizes can result in statistically

significant observations, the data may be subject to skew. Accordingly, the

results should be considered a proof of concept of methods that should be

investigated in larger and more diverse populations (e.g. Chapters 5, 6, and

7).

8.1.10 Portability

All of the pulse sequence development was on a 12 year old Varian

console, which is quite rare for human MRI systems. As such, the pulse

sequences that were developed are not easily ported to other systems, which

limits the ability to expand the work to other centers.

8.2 Conclusions and Future Directions

The work performed in this thesis explored some challenges with dMRI

using large field strengths and gradients (Chapters 2-4), and explored appli-
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cations that exploited the unique system capabilities (Chapters 5-7). dMRI

publications at field strengths beyond 3 T are sparse, with very few focusing

on application in patients. This work establishes that dMRI can be performed

at a high field of 4.7 T using fairly standard techniques, and represents some

of the first high field dMRI studies in patients.

The characterization of concomitant gradient fields for DTI in Chapter

2 has implications for many new MRI systems that are now equipped with

gradients having strengths up to 80 mT/m, which is 25% higher than on the

system in this work. This higher gradient field is advantageous for DTI be-

cause it allows for a 56% larger b-value at the same TE, or a reduced TE at

the same b-value. Combined with the lower field of new systems (e.g. 3 T)

compared to the this work at 4.7 T, uncontrolled accumulation of phase from

concomitant gradient fields may have disastrous effects. In addition, the pro-

liferation of large gradient systems may merit investigation into concomitant

fields associated with the imaging gradients. An extension of the work pre-

sented in this thesis may be to design diffusion preparations that are immune

to concomitant gradients while simultaneously mitigating eddy currents, or

the development of fast switching shim coils that could be used to counter-act

the phase from concomitant fields.

The development of parallel imaging methods for EPI that are robust

to motion is particularly important for patient populations where the subjects

are likely unaccustomed to MRI and there is not time to reacquire corrupted

data. Also, in certain patient groups there is persistent involuntary motion

(e.g. parkinson’s disease) that must be accounted for. While the methods

in Chapter 3 mitigate motion effects for future studies, it requires pulse se-

quence programming that many centers may not be equipped for. Therefore,

future work on this topic might involve the development of post-acquisition
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motion correction algorithms that can be applied to existing pulse sequence

implementations.

Contamination of signal from CSF partial volume effects makes DTI

measurement in structures near CSF, like the fornix, fraught with difficulty.

Using tractography to extract the position of the fornix in the first place

often fails, and even if it’s extracted values measured are erroneous. While

these issues were overcome at typical field strengths using FLAIR, the high

SAR inversion pulses required for FLAIR are not easily translatable to higher

field strengths. The high field compatible methods for the reduction of CSF

partial volume effects in Chapter 4 thus satisfy the need for accurate DTI of

structures near CSF at high field strengths. However, the proposed methods

do not completely remove the CSF signal, and a small degree of partial volume

contamination of measurements may remain. Therefore, future work may be

to combine the proposed methods that work at the pulse sequence level with

post-processing methods that use modeling in an attempt to remove the signal

contribution from CSF.

Diffusion MRI using the OGSE method had been exclusively in ani-

mal models on small bore systems prior to the start of the work in this thesis.

While the results that generally showed increasing MD and decreasing FA with

shorter diffusion times (i.e. higher OGSE frequencies) were intriguing, trans-

lation of the experiments to a human population was still required. The work

performed by Van et al [53] was published while the work in this thesis was ac-

tively being pursued, and represented the first report of OGSE measurements

in the human brain. While tantalizing, the results were in 4 subjects with

no statistical significance reported, and only MD was measured. The work in

Chapter 5 of this thesis was the first report of statistically significant diffusion

time dependencies of DTI eigenvalues (which MD stems from) and fractional
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anisotropy in the human brain. However, the minimum diffusion time of 4

ms was only short enough to barely start to see changes of the DTI parame-

ters with diffusion time; accordingly, there is a need to move to higher OGSE

frequencies (i.e. lower diffusion times) to allow characterization of tissue mi-

crostructure in different regions of the brain. In addition, OGSE sequences

with shorter TE are required to obtain accurate measurements in deep gray

matter regions rich in iron. Likely, higher gradient strengths on new systems

will enable these investigations.

While it has been known for over 20 years that ischemic stroke results

in a marked acute decrease in apparent diffusion coefficients (ADC) measured

using dMRI, the mechanisms underlying the ADC drop are still uncertain. Ev-

idence from histology and diffusion spectroscopy has suggested that the most

popular hypothesis of cytotoxic edema with rapidly diffusing extra-cellular wa-

ter moving to a more restricted intra-cellular space may not be correct (see

Chapter 6). The OGSE findings in ischemic stroke patients in Chapter 6 adds

to this body of evidence, and supports the hypothesis of ADC drops caused

by barriers introduced by neurite beading. However, more work needs to be

done to firmly establish a physiological link to the experimental observations.

There is a need to establish whether the preliminary results are maintained

in a larger cohort of patients with a diverse range of stroke severity, location,

and onset time.

The investigations in Chapter 7 showed that improving the resolution

of DWI for stroke results in the detection of more lesions and presumably

more accurate measurements of lesion volumes and mean diffusivity (MD).

While more lesions were generally detected in patients where the low resolu-

tion DWI still detected at least one other larger lesion, it is not clear how

many patients would be promoted from a negative to positive finding of DWI
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lesions. Whether or not this is the case has large implications for patient

care as a positive DWI would direct the patient towards more rigorous stroke

treatment and preventative care for future strokes. Answering of this question

would require a larger number of patients and follow-up MRI with T2 scans

to confirm the presence of necrosis that would confirm the earlier presence of

the hyper-acute lesion. Also, the finding of high uncertainty in lesion volumes

and MD merits re-visiting correlational studies of these measurements with

other clinical metrics and outcomes using higher resolution DWI that takes

advantage of modern MRI technology.

Overall the thesis research involved the development and application of

2D EPI based techniques for dMRI on a high field and large gradient system.

The strategies developed/used in this work for dMRI at high field could in

principle be implemented at higher field and/or gradient strengths than those

utilized here (4.7 T and 60 mT/m).
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A Common Methods

A.1 The Diffusion Weighted Echo-planar Imaging

Pulse Sequence

The echo-planar imaging (EPI) pulse sequence that was used is shown

in Figure A.1. Some specific characteristics of the pulse sequence are de-

Figure A.1: (a) The pulse sequence for echo-planar imaging (EPI), where the
application radiofrequency (RF) pulses, slice select (SS) gradients, frequency
encode (FE) gradients, and phase encode (PE) gradients are shown as a func-
tion of time. The spin-echo at TE occurs at the center of k-space, and the TR
is the total time to repeat the pulse sequence for all slices. The main features
are (A) slice selective excitation, (B) refocusing, (C) crusher gradients, (D)
spoiler gradients, (E) EPI readout, and (F) diffusion gradients. The durations
of key components are shown under the pulse sequence.
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Figure A.2: With partial Fourier undersampling, acquisition of a high spatial
frequency portion of k-space is skipped.

scribed below.

1. Partial Fourier Undersampling

The center of k-space occurs at the spin-echo (i.e. TE). To decrease the

TE (thus increasing SNR), k-space can be partially sampled (Figure A.2)

which causes tk0 to be shorter (Figure A.1). Recovering the skipped por-

tion of k-space can be performed by exploiting prior information about

the signal acquired, which is described in more detail in Section A.2. A

typical partial Fourier fraction was 7/10.

2. Calculation of b-value

The design of the pulse sequence for a particular b-value was performed

by solving a system of equations that attain the desired b-value (ignoring

imaging gradients) with minimum TE. The minimum TE will occur for a

Stejskal-Tanner diffusion preparation with tgap1 = 0 (Figure A.1) because

it allows all the “dead” time in the pulse sequence where no gradients or

RF pulses reside (required to have the spin-echo at the center of k-space)

to contribute to growing the b-value (via tgap2). Therefore, to determine

sequence timing for a desired b-value the only unknown parameters are
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δ and tgap2, which can be solved through the system of equations

b = γ2G2δ2

2

3
δ + tgap2 + t180


(A.1)

t90 + tgap2 = tk0 (A.2)

where t90 and t180 are known timings required for slice section and

tk0 is the time where the center of k-space is reached (Figure A.1).

Equation A.1 is the b-value equation for a Stejskal-Tanner diffusion

preparation, while Equation A.2 must be satisfied to have the spin-

echo at the center of k-space. After determining the sequence tim-

ing, the true b-value including all imaging and slice selection gradients

was determined by numerically solving the b-tensor equation, bl,m =

γ2
 TE

0

 t

0
Gl(t

′)Gm(t
′)dt′


dt, where l,m correspond to different pair-

ings of the x, y, and z gradient channels (see Section 1.5.1).

3. Spoiling

Spoiling for dMRI consists of spoiling gradients at the end of the pulse

sequence to eliminate the transverse magnetization for the next TR (D

in Figure A.1). However, with short enough TR stimulated echoes can

occur if the spoiler gradients are identical every TR; fortunately the TR

for most dMRI is too long for this to be a consideration. Because the

work in Chapter 4 involved using shorter than typical TR for dMRI,

spoiling was performed more carefully. To eliminate any potential stim-

ulated echoes, RF spoiling and variation of the spoiling gradient heights

between repetitions was utilized [20].

4. Timing “tweak”
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To calibrate the sequence, a short “tweak” version of it that only acquires

a single imaging volume was used. The tweak turns off the phase encode

imaging gradients so that the same frequency encode line of k-space is

acquired repeatedly. After the tweak scan finishes, the offsets between

the k-space peaks for odd and even lines are measured, which allows

estimation of the net gradient timing delay (caused by eddy currents

and hardware delays). This delay is then accounted for with a tweak

delay within the pulse sequence (typically ≈ 40µs).

5. Pre-imaging Volumes

Several extra imaging volumes were acquired before the acquisition of

any b = 0 or diffusion weighted images: 1. a “dummy” excitation that is

discarded so that the longitudinal magnetization gets closer to steady-

state before acquisition of useful data; 2. Nyquist ghosting reference

volume (see Section A.2); 3. GRAPPA reference volume (see Chapter

3). Only one dummy acquisition is required because of the typically long

TR used for dMRI.

A.2 Echo-planar Imaging Reconstruction

The pipeline for reconstruction of the raw data obtained from the scan-

ner is described below. All reconstruction steps were performed in Matlab in

the order shown, and were written by the thesis author unless otherwise stated.

1. Nyquist Ghost Correction

The back and forth nature of progression through k-space via positive

and negative frequency encode gradient lobes (see Section 1.4.4) can re-

sult in an artifact known as Nyquist ghosting. The artifact generally

stems from fairly short time constant eddy currents that cause two ef-
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fects: 1. a gradient time delay that results in misalignment of the start

of the gradient readout and the start of data sampling; 2. accumula-

tion of phase from eddy currents that reverses polarity with the reversed

gradient direction. The first effect results in misalignment of the gra-

dient echoes for the odd and even phase encode lines of k-space, while

the second effect results in a phase difference between the odd and even

lines. The net result of the image is partial ghosting by half the FOV

(Figure A.3a). These effects can be experimentally measured by setting

the phase encode gradients to zero, which results in a k-space image

where the shifted odd and even lines are clearly visible (Figure A.3b).

While the misalignment can be estimated by measuring the differences

between k-space peak locations, more accurate results are obtained if a

1D Fourier transform is applied along the frequency encode direction,

which transforms the shift into a linear phase ramp (see Section 1.4.3).

Then, subtracting the phase of the even lines from the odd lines results

in a phase profile that is approximately linear, with a slope (effect 1)

and DC offset (effect 2) that can be calculated from a least squares lin-

ear fit. Also, it has been observed that minimizing the Nyquist ghosting

also minimizes the image entropy, which allows the determination of the

phase ramp and offset using iterative methods that minimize entropy

[98].

With the above considerations, the pipeline to correct Nyquist ghosting

was to first estimate the phase ramp and offset between odd and even

k-space lines using a reference scan as described above and subtract it

from the phase of the even lines of k-space on the rest of the acquired

volumes. Second, the phase correction was refined using iterative meth-
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Figure A.3: Time delay and phase accumulation from eddy currents results
in Nyquist ghosting (a) and misalignment of gradient echoes in k-space for a
reference scan where the phase encode gradients are disabled (b). By using the
reference scan in (b) to correct for the phase and timing error, the ghosting is
removed (c) and the gradient echoes become aligned (d).

ods similar to those in reference [98]. While it is possible to determine

the correction phase from the iterative method alone, using the phase

estimated from the reference scan as an initial guess greatly sped up con-

vergence and improved robustness of the iterative approach. The results

of the correction are portrayed in Figure A.3(c,d).

Notably, it is important to perform Nyquist ghost correction before re-

sampling the data onto a Cartesian k-space grid. Because the phase

ramps correct for a time delay, the temporal spacing between samples

should be uniform. Resampling to a Cartesian grid first causes the time

spacing between k-space points to become non-uniform, which results
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in the phase ramp being incorrect for samples far from the center of

k-space.

2. Resampling to Cartesian Grid The non-uniform sampling from the si-

nusoidal frequency encode gradients was accounted for by resampling

the k-space data onto a uniform grid using an inverse sinc interpolation

method [24]. While gridding using a Kaiser-Bessel kernel is often used

to approximate the optimal sinc kernel to save computation time [23],

this case only requires resampling in one-dimension (along the frequency

encode direction) which reduced the computational complexity enough

to use a sinc method.

3. Calculate GRAPPA Weights from Reference Data Most of the work in

this thesis utilized a GRAPPA reference scan where the phase encode

step was halved, which corresponds to method B in Chapter 3. While

method C was found to yield better performance, development of method

C did not occur until late in the PhD program. Recall from Chapter 3

that the GRAPPA weights are calculated through the equation

W =

SkernS

H
kern + βI

−1
SH
kernSlk (A.3)

where Skern is the signal at the points in the GRAPPA kernel relative to

the signal at central kernel positions Sl,k, β is the Tikhonov regularization

weighting factor, and I is the identity matrix. A value of β = 0.01 ×SkernS
H
kern

 /N was typically used, where
SkernS

H
kern

 and N are the

Frobenius norm and matrix size of SkernS
H
kern, respectively. The value

β = 0.01 was empirically chosen to minimize noise propagation while

maintaining good GRAPPA performance.
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4. Fill Missing Lines on Undersampled Data using GRAPPA Weights Miss-

ing k-space lines were filled using GRAPPA (see Chapter 3 and Reference

[54]) with a kernel typically 5 points wide in the frequency encode direc-

tion and covering 4 phase encode lines.

5. Shift Image Based on Prescribed Slice Offsets When the user selects the

in-plane position of the slice, the pulse sequence does not change. Rather,

parameters signifying the position of the center of the slice with respect

to isocenter is saved so that the slice can be shifted during reconstruction.

The shifting of the slice is trivially performed by applying the appropriate

phase ramps in k-space.

6. Partial Fourier Undersampling Reconstruction Partial Fourier under-

sampling works by recognizing that 1. real-valued images have conjugate

symmetric k-space and 2. the phase in images that removes conjugate

symmetry is typically slowly varying in space (i.e. is almost completely

described by k-space data near the center of k-space). Therefore, a

central band of k-space can be acquired to get all the necessary infor-

mation about the image phase, and only one side of the rest of k-space

needs to be acquired to get the high resolution information because of

the ability to exploit conjugate symmetry. The work for most of the

Chapters in this thesis used a variant of homodyne reconstruction [74]

to fill the portion of k-space missing due to partial Fourier undersam-

pling. Homodyne reconstruction works best when the image phase is

small, and as discussed in Chapter 2, the low frequency phase in the

image was removed prior to exploiting conjugate symmetry to help ac-

count for large phase variations imparted by any motion during the dif-

fusion gradients. Later work (namely Chapter 3) utilized the projection
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onto convex sets (POCS) algorithm [186] because of its better perfor-

mance for larger undersampling factors. The POCS Matlab code was ob-

tained from the Matlab File Exchange and was written by Michael Volker

(http://www.mathworks.com/matlabcentral/fileexchange/39350-mri-partial-

fourier-reconstruction-with-pocs).

7. Receiver Combination Receiver combination was performed using the

Summation Using Profiles Estimated from Ratios for Diffusion (SUPER-

D) algorithm [187]. The most basic form of receiver combination is sum

of squares (SOS), which causes the receiver with the highest signal in

a particular voxel to contribute more to the net signal compared to the

other receivers (compared to a linear summation). This property is de-

sirable as the receiver with the highest SNR is given priority. It turns out

that the sum of squares method implicitly assumes that the receiver sen-

sitivity is given by the actual image intensities from the receiver (noise

included). The SUPER method [188] overcomes this limitation by using

a low pass filtered version of the signal as the receiver sensitivity, which

decreases the of high frequency noise in the final receiver combined im-

age. The SUPER-D method is an extension of SUPER for dMRI where

only the non-diffusion weighted images (i.e. b = 0) are used to estimate

the receiver sensitivities since they have higher SNR than the diffusion

weighted images. Also, low frequency phase variations in the diffusion

weighted images are filtered out with SUPER-D, which is important for

the complex average combination described below (note that the SUPER

and SUPER-D algorithms produce complex valued images). Notably,

the noise correlation between receiver elements should be considered for

SNR-optimal combination of receivers [187, 189]. While the gold stan-

dard for calculation of the noise correlation matrix involves finding the
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correlation matrix of noise voxels using a zero flip angle RF excitation

pulse, in this work the correlation matrix was estimated by using vox-

els outside the brain in the frequency encode direction (where residual

Nyquist ghosting does not occur). Similarity between the approach used

and the gold standard was validated in a phantom and human brain.

8. Filter for Gibbs Ringing Gibbs ringing occurs because only a finite region

of k-space is sampled, which results in a sinc shaped point spread function

(PSF). When the sinc PSF is convolved with the “true” image, signal

ringing occurs near regions with sharp contrast variations. A Kaiser-

Bessel filter was applied to k-space to convert the box shaped finite

sampling window to something with a smoother transition to zero. A

Kaiser-Bessel function was used because it has a relatively narrow PSF

with little sidelobe energy [23].

9. Motion Correction of Averages While EPI is robust to subject motion

during the acquisition on any particular slice, subject motion between

repeated acquisitions (i.e. averages) should be accounted for before the

averages are combined. All averages were motion corrected relative to

the first average acquired (note that all diffusion directions were typically

acquired before moving to the next average). Alignment was performed

using iterative rotations and translations of the image volumes until the

squared difference between the two was minimized [126].

10. Combine Averages After motion correction, the complex mean of the

averages was taken. Notably, the complex average should only be per-

formed if the low frequency phase of diffusion weighted images is re-

moved (both the homodyne and SUPER-D algorithms do this), because

the phase can vary between averages because of different physiological
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motion during the diffusion gradients (which would cause artifacts upon

complex averaging). It is important to perform a complex average rather

than an average of the image magnitudes because averaging the magni-

tudes results in a larger noise floor. In other words, with an infinite

number of averages the noise floor would become zero for complex aver-

aging, but would remain non-zero for magnitude averaging.

11. Zero-filling The last reconstruction step is zero-filling k-space by a fac-

tor of 2, which is important to properly resolve small image features

[190]. This is shown via simulation in Figure A.4, where small features

of a numerical phantom are only properly resolved if some zero-filling is

performed.

Figure A.4: For a bulls-eye numerical phantom (a), sampling of a 64×64 grid of
k-space with no zero-filling results in a poor representation of the phantom (b),
particularly along the diagonal directions. By zero-filling to increase k-space
to a 128×128 grid, the smaller features are much more accurately represented
(c).

A.3 Diffusion Imaging Calculations and Analysis

Diffusion Weighted Imaging

Further analysis for diffusion weighted imaging consisted of two ad-

ditional steps beyond the basic image reconstruction: 1. motion correction

between b = 0 and diffusion weighted images and 2. calculation of the mean
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DWI and MD. Motion correction used the same Matlab code as for motion

correction of averages, with the only difference being the cost function. The

mean squared difference cost function does not perform well when the con-

trast between two images is different, as is the case for the different diffusion

weighted images. Therefore, a joint histogram cost function was used [191] 1.

The mean DWI was simply the average of all the diffusion weighted images,

while the MD was calculated through the equation

MD = −
N

n=1

ln


Sn

S0


/b (A.4)

where N is the number of diffusion weighted images (typically 3), Sn is the

n’th diffusion weighted image, and S0 is the b = 0 image.

Diffusion Tensor Imaging

All diffusion tensor analysis, including motion correction between dif-

fusion weighted images, eddy current distortion corrections, diffusion tensor

calculations, and tractography were performed using ExploreDTI by Alexan-

der Leemans [76].

1While at first I wrote my own joint histogram function, a more com-
putationally efficient Matlab function, jointhist.m, was later obtained from
http://www.maths4medicalimaging.co.uk/material/Maths4MedicalImaging/matlab/tools/.
Both versions of the function produced identical results.
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B Lesion Delineation Tool

Stroke lesions were delineated by a semi-automated ROI tool developed

in Matlab. The user selects a position within the hyperintense lesion on the

mean DWI image, and another point in nearby healthy tissue. This defines an

image intensity threshold equal to the mean intensity of the two points. The

tool then searches for connected voxels that have intensity above the threshold

(all within the same slice), starting from the first within-lesion position selected

by the user. The portion of the lesion in adjacent slices is defined by the same

two position selection by the user until the entire lesion is accounted for. A

typical ROI and the two points defined by the user is shown in Figure A.5.

Figure A.5: After manual selection of positions within (a) and in healthy
tissue nearby (b) the lesion on a mean DWI image, the ROI tool automatically
outlines the lesion for further analysis.
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