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Abstract

Measurements in the process industry can arrive with fast or slow sampling rates. Fast

measurements such as flowrate and temperature are sampled frequently and are obtained

instantly after sampling. The slow measurements, which are usually related with chemical

quality variables such as product composition, are sampled infrequently and have some delay

due to the laboratory analysis. Moreover, sample collection for laboratory analysis may

extend over a significant time interval, and the slow measurements are actually functions of

all the states during the sampling period. Our objective is to develop a multirate state and

parameter estimation method for this situation.

In state estimation, the objective is to fuse the two kinds of measurements to provide

a more accurate estimation of the system’s states. We propose two methods to solve the

problem, the exact Bayesian approach and the augmented state approach. In the exact

Bayesian approach, the algorithm is developed by implementing Bayes’ rule. In the aug-

mented state approach, the system is reformulated by augmenting the current state with

past information required for fusing the slow measurements and then apply general state

estimation procedures. For system identification, the parameters are estimated along with

the time delays using a particle filter (PF) under the framework of the expectation max-

imization (EM) algorithm. The performance of the proposed methods for both state and

parameter estimation are demonstrated though simulation and experimental studies and by

comparison with methods that only use the fast measurements.

Finally, the proposed state and parameter estimation methods are applied to the FWKO

vessel to demonstrate their effectiveness and applicability.
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Chapter 1

Introduction

1.1 Motivation

In the process industry, measurements are used to monitor and control the system. Typically,

measurements that arrive frequently and online are called fast measurements, while those are

infrequent and usually have some delay are named as slow measurements. It is common to

see both kinds of measurements in one process system. For example, in a distillation column,

the tray temperatures are fast measurements and the top and bottom product concentrations

are slow measurements that are sampled irregularly and needed to be sent to laboratory for

analysis. The slow measurements or laboratory measurements have three characteristics: (1)

they are more accurate than fast measurements; (2) they have delays due to the laboratory

analysis; (3) they are actually functions of all the states during the sampling period.

Although systems that contain both fast and slow measurements are universal, there is

little research related to the third characteristic mentioned above, and even that focuses

on state estimation. In [20], Fatehi and Huang considered multirate and variable delayed

measurements for a linear system. In another paper [21], they proposed a state estima-

tion method based on the Kalman filter for a linear state space model which consists of

fast and slow integrated measurements. Guo and Huang [30] proposed a variable dimension

unscented Kalman filter (VD-UKF) to estimate the states with infrequent, delayed and in-

tegral measurements for a nonlinear system. Motivated by the importance of the multirate

measurements problem and these researches, in this thesis, we present two different state es-

timation algorithms for nonlinear multirate measurements and a parameter algorithm under

the same assumptions.

The following three sections in this chapter will briefly introduce the general state-space
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model formulation, nonlinear filters used in the second chapter, and the expectation maxi-

mization (EM) algorithm applied in the third chapter. In the final section, the thesis outline

and contributions are illustrated.

1.2 Dynamic state space model

The nonlinear state space model is a general class of models to represent nonlinear dynamic

systems. The general nonlinear and non-Gaussian state space model can be expressed as

follows,

xk = f (xk−1, uk−1, ωk−1) (1.1)

yk = h (xk, vk) (1.2)

where xk ∈ Rnx is the system state vector; uk ∈ Rnu is the input vector; yk ∈ Rny is the

measurement; f and h are nonlinear functions; ωk ∈ Rnx and vk ∈ Rny are process noise and

measurement noise, respectively. It can also be represented as a state transition probability

density p (xk | xk−1, uk−1) and a measurement probability density p (yk | xk). It can be seen

that the states follow a first order Markov process and the measurements are assumed to be

independent given the states [40].

In this thesis, we will assume that the process and measurement noises follow Gaussian

distributions with zero means. And the state space model is specified by moving the noise

term out from the nonlinear function as an addend,

xk = f (xk−1, uk−1) + ωk−1 (1.3)

yk = h (xk) + vk (1.4)

Then the state transition and measurement probability densities are

p (xk | xk−1, uk−1) = N (f (xk−1, uk−1) , Q) (1.5)

p (yk | xk) = N (h (xk) , R) (1.6)

where Q and R are covariances of ωk and vk, respectively.

1.3 State estimation

In state estimation, the goal is to compute the posterior density p (xk | y1:k), where y1:k =

{y1, y2, · · · , yk}. If we know the posterior density, we can easily derive various estimates of
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Figure 1.1: Schematic of the unscented transformation [46]

the system’s states including means, modes, medians and confidence intervals [47]. Bayesian

methods provide a rigorous general framework for state estimation problems [29]. In Chapter

2, we will develop a state estimation algorithm named the exact Bayesian method by applying

Bayesian rules. For the general state space model in Section 1.2, the optimal solution is

called recursive Bayesian estimation, also known as a Bayes filter. The Bayes filter contains

two stages: prediction and update. The prediction stage applies the Chapman–Kolmogorov

equation [1]:

p (xk | y1:k−1) =

∫
p (xk | xk−1, uk−1) p (xk−1 | y1:k−1) dxk−1 (1.7)

Then, the Bayesian rule is used to provide the basis for the update stage,

p (xk | y1:k) =
p (yk | xk) p (xk | y1:k−1)

p (yk | y1:k−1)
(1.8)

where p (yk | y1:k−1) is the normalizing constant, and is obtained as,

p (yk | y1:k−1) =

∫
p (yk | xk) p (xk | y1:k−1) dxk (1.9)

When the system model is linear with white Gaussian noise, the Bayes filter becomes equiv-

alent to the Kalman filter [45]. Next, we introduce two nonlinear filters, the unscented

Kalman filter (UKF) and the particle filter (PF), which are built based on the Bayes filter

framework.

1.3.1 Unscented Kalman filter

The unscented Kalman filter (UKF) provides a Gaussian approximation to the posterior

density p (xk | y1:k). In the UKF, the state distribution is represented by a set of sigma

points selected using a deterministic sampling approach called the unscented transform.
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These sigma points completely capture the true mean and covariance of the state for the

Gaussian case, and when propagated through the true nonlinear functions, they can capture

the posterior mean and covariance accurately to the second order for any nonlinearity, with

errors only introduced in the third and higher orders [47]. Another advantage of the UKF is

that it removes the requirement to explicitly calculate Jacobians or partial derivatives [34],

[48]. Figure 1.1 shows the schematic of the unscented transformation used in the UKF.

To formulate the UKF, assume the density p (xk | y1:k) is approximated as a Gaussian

distribution with a mean µxk and a covariance Σx
k. Then, the UKF is recursive and formulated

in the prediction and update steps as in [48].

1. The prediction step

Calculate the sigma points as follows:

X 0
k = µxk (1.10)

X i
k = µxk +

(√
(nx + κ) Σx

k

)
i

i = 1, · · · , nx (1.11)

X i
k = µxk −

(√
(nx + κ) Σx

k

)
i

i = nx + 1, · · · , 2nx (1.12)

where κ is a scaling parameter and
(√

(nx + κ) Σx
k

)
i

is the ith row or column of the matrix

square root of (nx + κ) Σx
k. The first order weights for sigma points are determined as follows:

W
(m)
0 = κ/ (nx + κ) (1.13)

W
(m)
i = κ/2 (nx + κ) i = 1, · · · , 2nx (1.14)

The second order weights are

W
(c)
0 = κ/ (nx + κ) +

(
1− α2 + β

)
(1.15)

W
(c)
i = W

(m)
i i = 1, · · · , 2nx (1.16)

where α controls the spread of the sigma points and β is related to the distribution of the

state. Note that the summation of the weights for sigma points is equal to 1. The state
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mean and covariance are predicted by propagating sigma points as follows:

X i
k+1|k = f

(
X i
k, uk−1

)
(1.17)

µxk+1|k =
2nx∑
i=0

W
(m)
i Xk+1|k (1.18)

Σx
k+1|k =

2nx∑
i=0

W
(c)
i

(
X i
k+1|k − µxk+1|k

) (
X i
k+1|k − µxk+1|k

)T
+Q (1.19)

The measurement prediction is

Y ik+1|k = h
(
X i
k+1|k

)
(1.20)

µyk+1|k =
2nx∑
i=0

W
(m)
i Yk+1|k (1.21)

2. The update step

Calculate the UKF gain as follows:

Σy
k+1|k =

2nx∑
i=0

W
(c)
i

(
Y ik+1|k − µ

y
k+1|k

)(
Y ik+1|k − µ

y
k+1|k

)T
+R (1.22)

Σxy
k+1|k =

2nx∑
i=0

W
(c)
i

(
X i
k+1|k − µxk+1|k

) (
Y ik+1|k − µ

y
k+1|k

)T
(1.23)

Kk+1 = Σxy
k+1|k

(
Σy
k+1|k

)−1

(1.24)

Finally, the posterior state mean and covariance are obtained as

µxk+1 = µxk+1|k +Kk+1

(
yk+1 − µyk+1|k

)
(1.25)

Σx
k+1 = Σx

k+1|k −Kk+1Σy
k+1|kK

T
k+1 (1.26)

More details about the UKF are available in [33].

1.3.2 Particle filter

Unlike most other nonlinear Bayes filters, the particle filter (PF) does not rely on linearization

or a Gaussian assumption [40]. It is a sequential Monte Carlo method that approximates the

posterior density with a set of weighted particles [4], [17], [29], [31], in a discrete summation

form:

p (xk | y1:k) ≈
N∑
i=1

wikδ
(
xk − xik

)
(1.27)
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where xik represents the ith particle, wik is the associated weight, δ (·) is the Dirac delta

function and N is the number of particles.

The ideal case for Monte Carlo sampling is to generate particles directly from the

true posterior density p (xk | y1:k), which is unavailable [40]. So a technique called im-

portance sampling is utilized to sample particles in PF. The importance sampling density,

q (xk | x1:k−1, y1:k), is easy to be sample from and approximates the true posterior density.

The PF has been shown to be asymptotically unbiased if the support region for p (xk | y1:k)

is a subset of the region of q (xk | x1:k−1, y1:k) [16]. After sampling the particles, the weights

are given by

wik ∝ wik−1

p (yk | xik) p
(
xik | xik−1

)
q
(
xik | xi1:k−1, y1:k

) (1.28)

For derivation of this equation, readers are referred to [4].

In [36], it is shown that the optimal importance sampling density is

q (xk | x1:k−1, y1:k) = p (xk | x1:k−1, y1:k) (1.29)

But the optimal importance sampling density is generally unknown except for two cases.

The first case is when the state space consists of a finite number of states [18]. The second

case is when the state transition function is nonlinear and the measurements are linear [11],

[16]. Therefore, in this thesis, we will choose the most common used importance density,

i.e. the state transition density p (xk | xk−1), since the state space model is known. Then,

equation (1.28) reduces to

wik ∝ wik−1p
(
yk | xik

)
(1.30)

A general problem in the PF is the degeneracy phenomenon [16]. In order to avoid this

problem, a common solution is to apply a resampling step after the weight update. Several

resampling strategies are introduced and compared in [15]. In this thesis, we will use the

systematic resampling method.

The steps of PF for the state estimation are summarized as follows:

1. Initialization: Generate {xi0}
N
i=1 from the initial state density p (x0), set wi0 = 1/N for

i = 1, · · · , N , and k = 1.

2. Prediction: Predict
{
xik|k−1

}N
i=1

according to xik|k−1 ∼ p
(
xk | xik−1

)
for i = 1, · · · , N .

6



3. Update: Compute the weights as wik|k−1 =
wik−1p

(
yk | xik|k−1

)
∑N

j=1 w
j
k−1p

(
yk | xjk|k−1

) for i = 1, · · · , N .

4. Resampling : Generate posterior particles {xik}
N

i=1 from particle set
{
xik|k−1, w

i
k|k−1

}N
i=1

according to the resampling strategy, and set wik = 1/N for i = 1, · · · , N .

5. Output : Estimate the state as x̂k =
∑N

i=1 w
i
kx

i
k, set k := k + 1 and go back to step 2.

1.4 Parameter estimation

To conduct the state estimation, we always need an accurate state space model to represent

the system. This motivates the parameter estimation problem of the multirate measurements

system in Chapter 3. For the parameter estimation of a nonlinear state space model, there

are two commonly used solutions. The first method is to combine the parameters that need

to be estimated with the system state and to apply filtering approaches to the augmented

state [9], [38]. However, the estimated parameters using this method have large covariances

[3]. Another method is the maximum likelihood (ML) algorithm to find the parameters that

maximize the joint probability of measurements [27], [39]. In this section, we will focus on

the expectation maximization (EM) algorithm, which is a well known ML-based method.

1.4.1 EM algorithm

The EM algorithm [12] is recursive and consists of two steps, the expectation step and the

maximization step. In the first step, the latent or hidden data Z are estimated given the

observed data Yobs and the current estimate of the model parameters. In the second step,

the parameters are updated by maximizing the likelihood function (called the Q function)

under the assumption that the hidden data are known [7]. Convergence of the algorithm is

assured as the Q function is guaranteed to increase at each iteration.

The following is the formulation of the EM algorithm. In the expectation step, the Q

function is defined as

Q (θ | θn) = EZ|Yobs,θn {log [p (Z, Yobs | θn)]}

=

∫
log [p (Z, Yobs | θn)] p (Z | Yobs, θn) dZ

(1.31)
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where θn is the parameter estimate after n iterations. The maximization step maximizes the

Q function with respect to θ:

θn+1 = arg max
θ
Q (θ | θn) (1.32)

By implementing the expectation and maximization steps recursively, a good enough esti-

mates for the parameter θ can be obtained.

1.5 Thesis outline and contributions

The rest of this thesis is organized as follows:

In Chapter 2, two algorithms are proposed to solve the state estimation problem for

multirate system with variable measurement delays. The first algorithm is named as the exact

Bayesian approach, which is developed by implementing Bayes’ rule. The other algorithm

is called the augmented state approach. In this approach, the system is reformulated by

augmenting the current state with past information required for fusing the slow delayed

laboratory measurements. The performance of the proposed methods are demonstrated

through simulation and experimental studies by implementing the particle filter and the

UKF.

In Chapter 3, a parameter estimation method is presented for the same system. We

estimate the parameters along with the time delays using a particle filter under the framework

of the EM algorithm. In the evaluation section, the proposed method is compared with the

algorithm that only uses the fast measurements.

In Chapter 4, the proposed state and parameter estimation methods are applied to a

FWKO vessel. The implementation procedures and results are discussed in this chapter.

Chapter 5 summarizes the main results of this thesis and provides some perspectives for

future research.

A note on notation

In the following chapters, three dots between delimiters (parenthesis, brackets, or braces)

means that the quantity between the delimiters is the same as the quantity between the

8



previous set of identical delimiters in the same equation. For example,

(A+BCD) + (· · · )T = (A+BCD) + (A+BCD)T (1.33a)

(A+BCD)T E−1 (· · · ) = (A+BCD)T E−1 (A+BCD) (1.33b)

9



Chapter 2

State estimation for multirate
measurements in the presence of
integral term and variable
measurement delay

2.1 Introduction

In the process industry, laboratory analysis is commonly used to provide accurate measure-

ments for chemical quality variables, such as composition of chemicals and so on [20]. These

variables are usually not available for fast online measurements, or they are measured on line

with large errors. To obtain more accurate estimates for these variables, laboratory mea-

surements can be used to improve the performance of fast online state estimation. However,

in many cases, laboratory samples are collected gradually in a specific container for a period

of time [21], and the collected time and the sampling time can be irregular. Moreover, the

result from laboratory analysis, which can be seen as a measurement of the integrated state,

may be delayed variably. All these factors make the fusion of fast online measurements and

slow delayed laboratory measurements difficult.

There are many methods to incorporate delayed and infrequent measurements as intro-

duced in [26]. However, there are very few theoretical studies on this subject. Guo and

Huang [30] proposed a variable dimension unscented Kalman filter (VD-UKF) to estimate

the states with infrequent, delayed and integral measurements. They constructed a variable

dimension augmented state space model consisting of the original states and the integral

states. By applying UKF on this augmented model, the states can be estimated just as

10



fusing fast measurements and slow delayed integral measurements. This approach is an ex-

tension of the sample-state augmentation method which is usually applied to the delayed

measurement problem. The VD-UKF proposed by Guo and Huang is useful but difficult to

implement. On the other hand, Fatehi and Huang [20], [21] proposed some simpler methods,

but they treated this problem separately and only addressed the linear case. In [20], they con-

sidered multirate and variable delayed measurements, and proposed a fusion method named

the modified delayed track to track fusion (MDTTF) as the extension of MTTF method

from [23]. They applied MDTTF on a linear process to fuse the fast rate (delay-free but less

accurate) measurements with the slow rate (delayed but more accurate) measurements to

improve the state estimation through Kalman filter. In another paper [21], they considered

the delay-free integrated measurement problem assuming the integrated time was fixed, and

proposed a slow-rate integrated measurement Kalman filter (IMKF) to estimate the states

frequently when there were only integrated measurements. In addition, they utilized the

general optimal estimation fusion [6] to fuse the estimates of the same state from IMKF and

fast measurement Kalman filter (FMKF).

Because most industrial processes are nonlinear and linearizing the system can lead to

large errors, we focus on nonlinear systems. The most commonly used algorithms to solve the

problem of non-Gaussian, nonlinear state estimation are the extended Kalman filter (EKF),

unscented Kalman filter (UKF) and particle filter (PF). The EKF is based upon the principle

of linearizing the measurements and evolution models using Taylor series expansions, which

may lead to poor representations of the nonlinear functions and probability distributions

of interest [47]. The UKF, which uses the unscented transformation, is an extension of

the Kalman filter that reduces the linearization errors of the EKF. The UKF can provide

significant improvement over the EKF [43]. The PF, which is also called sequential Monte

Carlo method, is a completely nonlinear state estimator. The main idea behind the PF is

importance sampling. It uses a set of weighted particles to represent the posterior density.

In this chapter, we present two methods: the first is called the exact Bayesian approach,

which is an extension method from [52], and the second is the augmented state method.

These two methods are implemented on both the PF and UKF. Besides, the proposed meth-

ods are compared through simulation and experimental case studies. The remainder of this

chapter is organized as follows. The problem statement is presented in Section 2.2. In Sec-

tions 2.3 and 2.4, the exact Bayesian approach and augmented state method are introduced,
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respectively, with their implementations of PF and UKF in each section. In Section 2.5, the

proposed algorithms are tested by simulations and experimental studies. Section 2.6 is the

conclusion of this chapter.

2.2 Problem statement

Consider the following discrete time system:

xk = f (xk−1, uk−1) + ωk−1 (2.1a)

yfk = hf (xk) + vfk (2.1b)

ymks(j) = hm
(
msj+lj

)
+ vmks(j) (2.1c)

where xk ∈ Rnx is the state to be estimated, and the initial state x0 follows the distribution

p (x0); uk ∈ Rnu is the input vector which is known (for the sake of simplicity in presentation,

it is omitted in the following derivation); yfk ∈ Rnf
y is the fast and regular measurement and

ymks(j) ∈ Rnm
y (j ∈ Z+) is the slow and irregular laboratory measurement of a integral term;

and f , hf and hm are nonlinear functions. The noise terms ωk ∈ Rnx , vfk ∈ Rnf
y and

vmks(j) ∈ Rnm
y are i.i.d. Gaussian with zero mean and covariance matrices Q, Rf and Rm,

respectively. msj+lj ∈ Rnm is the integral term which represents the sample collected from

time instant sj to sj + lj (lj ∈ Z), it can be calculated as

msj+lj =

sj+lj∑
i=sj

cixi (2.2a)

Another representation of msj+lj is

msj+lj = C l
s(j)X

l
s(j) (2.2b)

where

C l
s(j) =

[
csj csj+1 ... csj+lj

]
∈ Rnm×(lj+1)nx

X l
s(j) =

[
xTsj xTsj+1 ... xTsj+lj

]T ∈ R(lj+1)nx

As the slow irregular laboratory measurement ymks(j) is usually delayed and much more

accurate than the fast measurement, the measurement arrives at time step ks(j) = sj+lj+dj,

where dj ∈ Z is the delayed time, and the noise covariance Rm is much smaller than Rf . As

illustrated in Figure 2.1, the sampling interval is ρj which is assumed ρj > lj + dj + 1.
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Figure 2.1: System with fast and delayed slow measurements

The goal is to estimate the state by fusing the fast measurements and delayed slow

integral laboratory measurements. As the fast measurements are online and frequent, the

frequent state estimation can be conducted using fast measurements, while the delayed slow

integral laboratory measurements are used to improve the accuracy of the estimation.

The state estimation can also be seen as a filtering problem. In Bayesian filtering, the task

is to derive the posterior density, denoted as p (xk | y1:k). For our system, the measurements

y1:k consist of both fast and slow measurements arriving at and before time instant k, i.e.

y1:k ,
{
yf1:k, y

m
ks(1):ks(j)

}
where ks(j) 6 k. Once the posterior density is derived, it is easy to

obtain a point estimate of xk, such as the mean, mode or median. The next two sections

describe the estimation of the posterior density p
(
xks(j) | y1:ks(j)

)
, which is defined as

p
(
xks(j) | y1:ks(j)

)
, p

(
xks(j) | y1:sj−1, y

f
sj :ks(j), y

m
ks(j)

)
(2.3)

where y1:sj−1 ,
{
yf1:sj−1, y

m
ks(1):ks(j−1)

}
.
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2.3 Exact Bayesian solution

2.3.1 Bayesian approach

According to Bayes’ rule, the posterior density in equation (2.3) can be calculated as

p
(
xks(j) | y1:ks(j)

)
=

p
(
ymks(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
p
(
xks(j) | y1:sj−1, y

f
sj :ks(j)

)
∫
p
(
ymks(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
p
(
xks(j) | y1:sj−1, y

f
sj :ks(j)

)
dxks(j)

(2.4)

where p
(
xks(j) | y1:sj−1, y

f
sj :ks(j)

)
can be obtained from frequent state estimation, the likeli-

hood p
(
ymks(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
is calculated as follows

p
(
ymks(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
=∫

p
(
ymks(j) | msj+lj

)
p
(
msj+lj | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
dmsj+lj (2.5)

In equation (2.5), the first term in the right hand side is determined by the slow mea-

surement equation (2.1c). For the second term, because the relationship between msj+lj

and X l
s(j) is linear, it is equivalent to calculate p

(
X l
s(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
. So the

remaining task is to obtain this probability density, for which we consider two cases.

Case 1: The delayed time dj = 1, that is ks(j) = sj + lj + 1. Using Bayes’ rule yields

p
(
X l
s(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
=

p
(
xks(j) | X l

s(j)
)
p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)−1

)
∫
p
(
xks(j) | X l

s(j)
)
p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)−1

)
dX l

s(j)

(2.6)

In equation (2.6), because of the xsj+lj in X l
s(j), p

(
xks(j) | X l

s(j)
)

can be derived directly

from the state transition equation (2.1a). p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)−1

)
is a smoothing density

of X l
s(j). Thus, p

(
X l
s(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
can be calculated from equation (2.6).

Case 2: The delayed time dj > 1, that is ks(j) > sj + lj + 1. First, rewrite the density as

p
(
X l
s(j) | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
=∫

p
(
X l
s(j) | xsj+lj+1, y1:sj−1, y

f
sj :sj+lj

)
p
(
xsj+lj+1 | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
dxsj+lj+1 (2.7)
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which has made use of the Markov property of the state. The first term on the right hand

side of equation (2.7) is given from Bayes’ rule:

p
(
X l
s(j) | xsj+lj+1, y1:sj−1, y

f
sj :sj+lj

)
=

p
(
xsj+lj+1 | X l

s(j)
)
p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
∫
p
(
xsj+lj+1 | X l

s(j)
)
p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
dX l

s(j)
(2.8)

which can be fully constructed similar to equation (2.6). The second term on the right hand

side of equation (2.7) needs to be obtained recursively. For n = ks(j)− 2, ks(j)− 3, · · · , sj +

lj + 1,

p
(
xn | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
=∫

p
(
xn | xn+1, y1:sj−1, y

f
sj :n

)
p
(
xn+1 | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
dxn+1 (2.9)

p
(
xn | xn+1, y1:sj−1, y

f
sj :n

)
in equation (2.9) is given by

p
(
xn | xn+1, y1:sj−1, y

f
sj :n

)
=

p (xn+1 | xn) p
(
xn | y1:sj−1, y

f
sj :n

)
∫
p (xn+1 | xn) p

(
xn | y1:sj−1, y

f
sj :n

)
dxn

(2.10)

where p (xn+1 | xn) is determined by state transition equation, p
(
xn | y1:sj−1, y

f
sj :n

)
can be

obtained from frequent state estimation. The initial value of the second term on the right

hand side in equation (2.9) is p
(
xks(j)−1 | xks(j), y1:sj−1, y

f
sj :ks(j)−1

)
. It can be obtained by

substituting n = ks(j)− 1 into equation (2.10).

From the derivation above, we can see that the sufficient statistics to get the target

posterior density are p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
and

{
p
(
xn | y1:sj−1, y

f
sj :n

)}ks(j)

n=sj+lj+1
. Figure

2.2 is the schematic of exact Bayesian method. It should be noted that this method needs

to store this information until the delayed slow measurement ymks(j) arrives.

2.3.2 Particle filter implementation

If the PF is implemented, the statistics
{
p
(
xn | y1:sj−1, y

f
sj :n

)}ks(j)

n=sj+lj+1
are approximated

by particle sets
{
x
f(i)
n , w

f(i)
n : n = sj + lj + 1, · · · , ks(j)

}N
i=1

from frequent state estimation.

Since X l
s(j) is just a combination of system states, p

(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
can be derived
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Figure 2.2: Schematic of the exact Bayesian method

by storing the particle trajectory from time sj to sj + lj and it is assumed to be described

by the particle set
{{
X l
s(j)

}f(i)

sj+lj
,W

f(i)
sj+lj

}N
i=1

. Note that W
f(i)
sj+lj

= w
f(i)
sj+lj

.

Now, we have

p
(
xks(j) | y1:sj−1, y

f
sj :ks(j)

)
≈

N∑
i=1

w
f(i)
ks(j)δ

(
xks(j) − xf(i)

ks(j)

)
(2.11)

Then, substitute equation (2.11) into equation (2.4) and get

p
(
xks(j) | y1:ks(j)

)
≈

∑N
i=1 w

f(i)
ks(j)p

(
ymks(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
δ
(
xks(j) − xf(i)

ks(j)

)
∑N

r=1 w
f(r)
ks(j)p

(
ymks(j) | x

f(r)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

) (2.12)

Consider another representation of p
(
xks(j) | y1:ks(j)

)
as

p
(
xks(j) | y1:ks(j)

)
≈

N∑
i=1

w
(i)
ks(j)δ

(
xks(j) − xf(i)

ks(j)

)
(2.13)

By comparing equations (2.12) and (2.13), it’s easy to find

w
(i)
ks(j) =

w
f(i)
ks(j)p

(
ymks(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
∑N

r=1 w
f(r)
ks(j)p

(
ymks(j) | x

f(r)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

) (2.14)

Thus, the goal is to obtain p
(
ymks(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
in equation (2.14). In the
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Bayesian approach (Section 2.3.1), this density can be calculated as equation (2.5). Suppose

p
(
X l
s(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
≈

N∑
r=1

W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
δ
(
X l
s(j)−

{
X l
s(j)

}(r)

ks(j)−1

)
(2.15)

whereW
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
is the weight of the particle

{
X l
s(j)

}(r)

ks(j)−1
given the state x

f(i)
ks(j). Then

p
(
msj+lj | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
in equation (2.5) can be approximated by the particle set{

C l
s(j)

{
X l
s(j)

}(r)

ks(j)−1
,W

(r)
ks(j)−1

(
x
f(i)
ks(j)

)}N
r=1

. Therefore,

p
(
ymks(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
≈

N∑
r=1

W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
p
(
ymks(j) | C l

s(j)
{
X l
s(j)

}(r)

ks(j)−1

)
(2.16)

Substituting equation (2.16) into equation (2.14) yields

w
(i)
ks(j) =

∑N
r=1 w

f(i)
ks(j)W

(r)
ks(j)−1

(
x
f(i)
ks(j)

)
p
(
ymks(j) | C l

s(j)
{
X l
s(j)

}(r)

ks(j)−1

)
∑N

t=1

∑N
n=1 w

f(t)
ks(j)W

(n)
ks(j)−1

(
x
f(t)
ks(j)

)
p
(
ymks(j) | C l

s(j) {X l
s(j)}

(n)
ks(j)−1

) (2.17)

Then, the remaining task is to obtain the particle set
{{
X l
s(j)

}(r)

ks(j)−1
,W

(r)
ks(j)−1(x

f(i)
ks(j))

}N
r=1

which approximates the density p
(
X l
s(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
in equation (2.15). There

are two cases as discussed in the Bayesian approach (Section 2.3.1).

Case 1: The delayed time dj = 1, that is ks(j) = sj+lj+1. p
(
X l
s(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
is calculated through equation (2.6). By substituting the particle representation of

p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
, it can be derived that

p
(
X l
s(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
≈∑N

r=1 W
f(r)
sj+lj

p
(
x
f(i)
ks(j) |

{
X l
s(j)

}f(r)

sj+lj

)
δ
(
X l
s(j)−

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
x
f(i)
ks(j) | {X l

s(j)}
f(n)
sj+lj

) (2.18)

Therefore, by comparing equations (2.18) and (2.15), one can note

{
X l
s(j)

}(r)

ks(j)−1
=
{
X l
s(j)

}f(r)

sj+lj
(2.19a)

W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
=

W
f(r)
sj+lj

p
(
x
f(i)
ks(j) |

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
x
f(i)
ks(j) | {X l

s(j)}
f(n)
sj+lj

) (2.19b)
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Case 2: The delayed time dj > 1, that is ks(j) > sj+lj+1. p
(
X l
s(j) | x

f(i)
ks(j), y1:sj−1, y

f
sj :ks(j)−1

)
can be calculated through equation (2.7). Substituting p

(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
≈∑N

r=1 W
f(r)
sj+lj

δ
(
X l
s(j)−

{
X l
s(j)

}f(r)

sj+lj

)
into equation (2.8), the first term on the

right hand side of equation (2.7) can be calculated as

p
(
X l
s(j) | xsj+lj+1, y1:sj−1, y

f
sj :sj+lj

)
≈∑N

r=1 W
f(r)
sj+lj

p
(
xsj+lj+1 |

{
X l
s(j)

}f(r)

sj+lj

)
δ
(
X l
s(j)−

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
xsj+lj+1 | {X l

s(j)}
f(n)
sj+lj

) (2.20)

Suppose the second term on the right hand side of equation (2.7) can be written as

p
(
xsj+lj+1 | xf(i)

ks(j), y1:sj−1, y
f
sj :ks(j)−1

)
≈

N∑
r=1

w
f(r)
sj+lj+1|ks(j)−1

(
x
f(i)
ks(j)

)
δ
(
xsj+lj+1 − xf(r)

sj+lj+1|ks(j)−1

)
(2.21)

Substituting equations (2.20) and (2.21) into equation (2.7) and comparing with equation

(2.15), we can see that {
X l
s(j)

}(r)

ks(j)−1
=
{
X l
s(j)

}f(r)

sj+lj
(2.22a)

W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
= W

f(r)
sj+lj

 N∑
t=1

w
f(t)
sj+lj+1|ks(j)−1

(
x
f(i)
ks(j)

)
p
(
x
f(t)
sj+lj+1|ks(j)−1 |

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
x
f(t)
sj+lj+1|ks(j)−1 | {X l

s(j)}
f(n)
sj+lj

)


(2.22b)

Now, the only unknown information is
{
x
f(r)
sj+lj+1|ks(j)−1, w

f(r)
sj+lj+1|ks(j)−1

(
x
f(i)
ks(j)

)}N
r=1

in

equation (2.21). In order to obtain this particle set, first using equation (2.10) and replacing

p
(
xn | y1:sj−1, y

f
sj :n

)
by its discrete representation, p

(
xn | xn+1, y1:sj−1, y

f
sj :n

)
is given by

p
(
xn | xn+1, y1:sj−1, y

f
sj :n

)
≈

∑N
i=1 w

f(i)
n p

(
xn+1 | xf(i)

n

)
δ
(
xn − xf(i)

n

)
∑N

r=1 w
f(r)
n p

(
xn+1 | xf(r)

n

) (2.23)

The density p
(
xn+1 | xf(i)

ks(j), y1:sj−1, y
f
sj :ks(j)−1

)
in equation (2.9) is written as

p
(
xn+1 | xf(i)

ks(j), y1:sj−1, y
f
sj :ks(j)−1

)
≈

N∑
r=1

w
f(r)
n+1|ks(j)−1

(
x
f(i)
ks(j)

)
δ
(
xn+1 − xf(r)

n+1|ks(j)−1

)
(2.24)
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Then, substituting equations (2.23) and (2.24) into equation (2.9) yields

p
(
xn | xf(i)

ks(j), y1:sj−1, y
f
sj :ks(j)−1

)
≈

N∑
r=1

wf(r)
n

 N∑
t=1

w
f(t)
n+1|ks(j)−1

(
x
f(i)
ks(j)

)
p
(
x
f(t)
n+1|ks(j)−1 | x

f(r)
n

)
∑N

q=1 w
f(q)
n p

(
x
f(t)
n+1|ks(j)−1 | x

f(q)
n

)
 δ (xn − xf(r)

n

)
(2.25)

The above can be written as

p
(
xn | xf(i)

ks(j), y1:sj−1, y
f
sj :ks(j)−1

)
≈

N∑
r=1

w
f(r)
n|ks(j)−1

(
x
f(i)
ks(j)

)
δ
(
xn − xf(r)

n|ks(j)−1

)
(2.26)

where

x
f(r)
n|ks(j)−1 = xf(r)

n (2.27a)

w
f(r)
n|ks(j)−1

(
x
f(i)
ks(j)

)
= wf(r)

n

 N∑
t=1

w
f(t)
n+1|ks(j)−1

(
x
f(i)
ks(j)

)
p
(
x
f(t)
n+1|ks(j)−1 | x

f(r)
n

)
∑N

q=1 w
f(q)
n p

(
x
f(t)
n+1|ks(j)−1 | x

f(q)
n

)
 (2.27b)

The recursion in equation (2.27) is carried out for n = ks(j)−2, ks(j)−3, · · · , sj+lj+1. At

the end of the recursion,
{
x
f(r)
sj+lj+1|ks(j)−1, w

f(r)
sj+lj+1|ks(j)−1(x

f(i)
ks(j))

}N
r=1

can be obtained. The ini-

tial values of
{
x
f(r)
n|ks(j)−1, w

f(r)
n|ks(j)−1(x

f(i)
ks(j))

}N
r=1

are
{
x
f(r)
ks(j)−1, w

f(r)
ks(j)−1|ks(j)−1(x

f(i)
ks(j))

}N
r=1

which

can be calculated using equation (2.23). This completes the PF implementation. We call this

algorithm as EB-PF. Algorithm 1 shows the pseudo-code of one fusion loop in EB-PF. The re-

quired particle sets
{
{X l

s(j)}
f(i)
sj+lj

,W
f(i)
sj+lj

}N
i=1

and
{
x
f(i)
n , w

f(i)
n : n = sj + lj + 1, · · · , ks(j)

}N
i=1

are available from the previous filtering.

2.3.3 Unscented Kalman filter implementation

The unscented Kalman filter (UKF), like other Gaussian filters, assumes that all filtering

density are Gaussian. It approximates the target posterior density p
(
xks(j) | y1:ks(j)

)
using

a Gaussian distribution N
(
µxks(j)|ks(j),Σ

x
ks(j)|ks(j)

)
. In this assumption, the densities

{
p
(
xn |

y1:sj−1, y
f
sj :n

)}ks(j)

n=sj+lj+1
are represented as Gaussian distributions

{
N
(
µx

f

n|n,Σ
xf

n|n
)}ks(j)

n=sj+lj+1

obtained directly from the UKF, while p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
needs to be calculated

additionally.

Prior to derive the target posterior density, two propositions are introduced as the ex-

panded forms of Proposition 1 and 2 in [10].
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Algorithm 1 EB-PF for estimating the posterior density p
(
xks(j) | y1:ks(j)

)
Input:

{
x
f(i)
n , w

f(i)
n : n = sj + lj + 1, ..., ks(j)

}N
i=1

and
{{
X l
s(j)

}f(i)

sj+lj
,W

f(i)
sj+lj

}N
i=1

Output: Updated weights
{
w

(i)
ks(j)

}N
i=1

for particles
{
x
f(i)
ks(j)

}N
i=1

1: %% Calculate particle set
{{
X l
s(j)

}(r)

ks(j)−1
,W

(r)
ks(j)−1

(
x
f(i)
ks(j)

)}N
r=1

2: if ks(j) = sj + lj + 1 then
3: for r = 1 : N do
4:

{
X l
s(j)

}(r)

ks(j)−1
=
{
X l
s(j)

}f(r)

sj+lj

5: W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
=

W
f(r)
sj+lj

p
(
x
f(i)
ks(j) |

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
x
f(i)
ks(j) | {X l

s(j)}
f(n)
sj+lj

)
6: end for
7: else

8: %% Calculate particle set
{
x
f(r)
sj+lj+1|ks(j)−1, w

f(r)
sj+lj+1|ks(j)−1

(
x
f(i)
ks(j)

)}N
r=1

9: for r = 1 : N do
10: x

f(r)
ks(j)−1|ks(j)−1 = x

f(r)
ks(j)−1

11: w
f(r)
ks(j)−1|ks(j)−1

(
x
f(i)
ks(j)

)
=

w
f(r)
ks(j)−1p

(
x
f(i)
ks(j) | x

f(r)
ks(j)−1

)
∑N

t=1 w
f(t)
ks(j)−1p

(
x
f(i)
ks(j) | x

f(t)
ks(j)−1

)
12: end for
13: if ks(j) > sj + lj + 2 then
14: for n = ks(j)− 2 : sj + lj + 1 do
15: for r = 1 : N do
16: x

f(r)
n|ks(j)−1 = x

f(r)
n

17: w
f(r)
n|ks(j)−1

(
x
f(i)
ks(j)

)
=

18: w
f(r)
n

∑N
t=1

w
f(t)
n+1|ks(j)−1

(
x
f(i)
ks(j)

)
p
(
x
f(t)
n+1|ks(j)−1 | x

f(r)
n

)
∑N

q=1 w
f(q)
n p

(
x
f(t)
n+1|ks(j)−1 | x

f(q)
n

)


19: end for
20: end for
21: end if
22: for r = 1 : N do
23:

{
X l
s(j)

}(r)

ks(j)−1
=
{
X l
s(j)

}f(r)

sj+lj

24: W
(r)
ks(j)−1

(
x
f(i)
ks(j)

)
=

25: W
f(r)
sj+lj

∑N
t=1

w
f(t)
sj+lj+1|ks(j)−1

(
x
f(i)
ks(j)

)
p
(
x
f(t)
sj+lj+1|ks(j)−1 |

{
X l
s(j)

}f(r)

sj+lj

)
∑N

n=1 W
f(n)
sj+lj

p
(
x
f(t)
sj+lj+1|ks(j)−1 | {X l

s(j)}
f(n)
sj+lj

)


26: end for
27: end if
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28: %% Calculate the output
{
w

(i)
ks(j)

}N
i=1

29: for i = 1 : N do

30: w
(i)
ks(j) =

∑N
r=1 w

f(i)
ks(j)W

(r)
ks(j)−1

(
x
f(i)
ks(j)

)
p
(
ymks(j) | C l

s(j)
{
X l
s(j)

}(r)

ks(j)−1

)
∑N

t=1

∑N
n=1 w

f(t)
ks(j)W

(n)
ks(j)−1

(
x
f(t)
ks(j)

)
p
(
ymks(j) | C l

s(j) {X l
s(j)}

(n)
ks(j)−1

)
31: end for

Proposition 1. A density p (Aτ | Ct, B1:T ) which can be calculated as

p (Aτ | Ct, B1:T ) =
p (Aτ , Ct | B1:T )

p (Ct | B1:T )
(2.28)

where τ ≤ t ≤ T , Ak, Bk and Ck are related variables, can be approximated as a Gaussian

distribution N (Aτ |M,S). The moments of this approximation are in general computed

through

M = µAτ |T + ΣAC
τ,t|T

(
ΣC
t|T
)−1 (

Ct − µCt|T
)

(2.29a)

S = ΣA
τ |T − ΣAC

τ,t|T
(
ΣC
t|T
)−1 (

ΣAC
τ,t|T
)T

(2.29b)

where N
(
µAτ |T ,Σ

A
τ |T

)
is the Gaussian approximation of p (Aτ | B1:T ), N

(
µCt|T ,Σ

C
t|T

)
is the

Gaussian approximation of p (Ct | B1:T ), and ΣAC
τ,t|T is the covariance of Aτ and Ct given

B1:T .

Proof for Proposition 1. Assume the joint distribution p (Aτ , Ct | B1:T ) in equation (2.28)

can be approximated by a Gaussian distribution, that is

p (Aτ , Ct | B1:T ) ≈ N

([
µAτ |T
µCt|T

]
,

[
ΣA
τ |T ΣAC

τ,t|T(
ΣAC
τ,t|T

)T
ΣC
t|T

])
= N (µ,Σ)

Substituting the equation above into equation (2.28) yields

p (Aτ | Ct, B1:T ) ≈

1√
(2π)nA+nC |Σ|

exp

{
−1

2

([
Aτ Ct

]T − µ
)T

Σ−1 (· · · )
}

1√
(2π)nC |ΣC

t|T |
exp

{
−1

2

(
Ct − µCt|T

)T (
ΣC
t|T

)−1

(· · · )
}

≈ 1√
(2π)nA |S|

exp

{
−1

2
(Aτ −M)T S−1 (· · · )

}
where

M = µAτ |T + ΣAC
τ,t|T

(
ΣC
t|T
)−1 (

Ct − µCt|T
)

S = ΣA
τ |T − ΣAC

τ,t|T
(
ΣC
t|T
)−1 (

ΣAC
τ,t|T
)T

This concludes the proof of Proposition 1.
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Proposition 2. For a density p (Aτ | B1:T ) which can be calculated as

p (Aτ | B1:T ) =

∫
p (Aτ | Ct, B1:t−1) p (Ct | B1:T ) dCt (2.30)

where τ ≤ t ≤ T , Ck and Bk satisfy the hidden Markov property and Ak is a related vari-

able, the mean and covariance of a Gaussian approximation to the density p (Aτ | B1:T ) are

generally computed as

µAτ |T = µAτ |t−1 + Jτ
(
µCt|T − µCt|t−1

)
(2.31a)

ΣA
τ |T = ΣA

τ |t−1 + Jτ
(
ΣC
t|T − ΣC

t|t−1

)
JTτ (2.31b)

Jτ = ΣAC
τ,t|t−1

(
ΣC
t|t−1

)−1
(2.31c)

where N
(
µAτ |t−1,Σ

A
τ |t−1

)
is the Gaussian approximation of p (Aτ | B1:t−1), N

(
µCt|t−1,Σ

C
t|t−1

)
is the Gaussian approximation of p (Ct | B1:t−1), ΣAC

τ,t|t−1 is the covariance of Aτ and Ct given

B1:t−1, and N
(
µCt|T ,Σ

C
t|T

)
is the Gaussian approximation of p (Ct | B1:T ).

Proof for Proposition 2. To compute the density p (Aτ | B1:T ) in equation (2.30), we need to

first obtain the conditional density p (Aτ | Ct, B1:t−1) and formulate it as an unnormalized

density in Ct, then multiply it by p (Ct | B1:T ), and finally integrate over Ct.

From Proposition 1, we know a density with formulation as p (Aτ | Ct, B1:T ) can be ap-

proximated as a Gaussian distribution. In Proposition 2, we add an assumption that Ck and

Bk satisfy the hidden Markov property, so p (Aτ | Ct, B1:T ) = p (Aτ | Ct, B1:t−1). By applying

Proposition 1, p (Aτ | Ct, B1:t−1) can be approximated as N (Aτ |M,S), where

M = µAτ |t−1 + Jτ
(
Ct − µCt|t−1

)
S = ΣA

τ |t−1 − Jτ
(
ΣAC
τ,t|t−1

)T
Jτ = ΣAC

τ,t|t−1

(
ΣC
t|t−1

)−1

The square root of the exponent of N (Aτ |M,S) contains

Aτ −M = γ (Aτ )− JτCt

with γ (Aτ ) = Aτ − µAτ |t−1 + Jτµ
C
t|t−1, which is a linear function of both Aτ and Ct. By

reformulating N (Aτ |M,S) as a Gaussian of JτCt with mean γ (Aτ ) and unchanged variance
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S , we can obtain

N (Aτ |M,S) = N (JτCt | γ (Aτ ) , S)

=
1√

(2π)nA |S|
exp

{
−1

2
(JτCt − γ (Aτ ))

T S−1 (· · · )
}

= ε1

exp
{
−1

2
(Ct − J−1

τ γ (Aτ ))
T
JTτ S

−1Jτ (· · · )
}

√
(2π)nC |(JTτ S−1Jτ )

−1|
= ε1N (Ct | µ1,Σ1)

where ε1 =
√

(2π)nC−nA |(JTτ S−1Jτ )
−1|/|S|, µ1 = J−1

τ γ (Aτ ) and Σ1 =
(
JTτ S

−1Jτ
)−1

. Note

that the matrix Jτ defined in equation (2.31c) may not be quadratic, so for the non-quadratic

case, we can use the pseudo-inverse instead.

Multiplying the new distribution with the Gaussian approximation of p (Ct | B1:T ), which

is N
(
µCt|T ,Σ

C
t|T

)
, we can derive

ε1N (Ct | µ1,Σ1)N
(
µCt|T ,Σ

C
t|T
)

= ε1ε2 (µ1)N (Ct | µ2,Σ2)

where

µ2 =
[
Σ−1

1 +
(
ΣC
t|T
)−1
]−1 [

Σ−1
1 µ1 +

(
ΣC
t|T
)−1

µCt|T

]
Σ2 =

[
Σ−1

1 +
(
ΣC
t|T
)−1
]−1

ε2 (µ1) =

√
|Σ2|√

(2π)nC |Σ1||ΣC
t|T |

exp

{
−1

2

[
µT1 Σ−1

1 µ1 +
(
µCt|T

)T (
ΣC
t|T
)−1

µCt|T − µT2 Σ−1
2 µ2

]}

Since we integrate over Ct in equation (2.30), we are only interested in the parts which

are independent of Ct. They are the constants ε1 and ε2 (µ1), where the constant ε2 (µ1) can

be rewritten as ε2 (Aτ ) by reversing the step that inverted the matrix Jτ . Then, ε2 (Aτ ) is

given by

ε2 (Aτ ) = ε−1
1 N

(
Aτ | µAτ |T ,ΣA

τ |T
)

where

µAτ |T = µAτ |t−1 + Jτ
(
µCt|T − µCt|t−1

)
ΣA
τ |T = ΣA

τ |t−1 + Jτ
(
ΣC
t|T − ΣC

t|t−1

)
JTτ
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As ε1ε
−1
1 = 1, the desired density is

p (Aτ | B1:T ) ≈ N
(
Aτ | µAτ |T ,ΣA

τ |T
)

This concludes the proof of Proposition 2.

Using Bayes’ rule, equation (2.4) can also be written as

p
(
xks(j) | y1:ks(j)

)
=
p
(
xks(j), y

m
ks(j) | y1:sj−1, y

f
sj :ks(j)

)
p
(
ymks(j) | y1:sj−1, y

f
sj :ks(j)

) (2.32)

Assume the joint distribution p
(
xks(j), y

m
ks(j) | y1:sj−1, y

f
sj :ks(j)

)
in equation (2.32) can be

approximated by a Gaussian distribution

p
(
xks(j), y

m
ks(j) | y1:sj−1, y

f
sj :ks(j)

)
≈ N

([
µx

f

ks(j)|ks(j)

µy
m

ks(j)|ks(j)

]
,

[
Σxf

ks(j)|ks(j) Σxfym

ks(j)|ks(j)

Σymxf

ks(j)|ks(j) Σym

ks(j)|ks(j)

])
(2.33)

Then, applying Proposition 1, let τ = t = T = ks(j), Aτ = xks(j), B1:T =
{
y1:sj−1, y

f
sj :ks(j)

}
and Ct = ymks(j); the Gaussian approximation of p

(
xks(j) | y1:ks(j)

)
can be obtained as

µxks(j)|ks(j) = µx
f

ks(j)|ks(j) + Σxfym

ks(j)|ks(j)

(
Σym

ks(j)|ks(j)

)−1 (
ymks(j) − µ

ym

ks(j)|ks(j)

)
(2.34a)

Σx
ks(j)|ks(j) = Σxf

ks(j)|ks(j) − Σxfym

ks(j)|ks(j)

(
Σym

ks(j)|ks(j)

)−1

Σymxf

ks(j)|ks(j) (2.34b)

Thus, the remaining task is to calculate the covariance Σxfym

ks(j)|ks(j) and the Gaussian ap-

proximation of p
(
ymks(j) | y1:sj−1, y

f
sj :ks(j)

)
in equation (2.33). Once the Gaussian approxima-

tion has been obtained, we can use the unscented transformation to calculate the covariance

Σxfym

ks(j)|ks(j). Unless otherwise specified, this method is used to obtain covariances in the

following derivation. Generally, p
(
ymks(j) | y1:sj−1, y

f
sj :ks(j)

)
can be derived as

p
(
ymks(j) | y1:sj−1, y

f
sj :ks(j)

)
=

∫
p
(
ymks(j) | msj+lj

)
p
(
msj+lj | y1:sj−1, y

f
sj :ks(j)

)
dmsj+lj (2.35)

where the only unknown statistic is the smoothing density of integral term msj+lj . Just as

in equation (2.5), since the relationship between msj+lj and X l
s(j) is linear, we can obtain

the smoothing density by calculating p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)

)
, which can be computed as

p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)

)
=∫

p
(
X l
s(j) | xsj+lj+1, y1:sj−1, y

f
sj :sj+lj

)
p
(
xsj+lj+1 | y1:sj−1, y

f
sj :ks(j)

)
dxsj+lj+1 (2.36)
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By comparison, it is seen that equation (2.36) is very similar to equation (2.7), but easier

to calculate. Using Proposition 2, the approximated moments of p
(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)

)
are calculated as

µX
f

sj |ks(j) = µX
f

sj |sj+lj
+ JX

f

sj

(
µx

f

sj+lj+1|ks(j) − µx
f

sj+lj+1|sj+lj

)
(2.37a)

ΣXf

sj |ks(j) = ΣXf

sj |sj+lj
+ JX

f

sj

(
Σxf

sj+lj+1|ks(j) − Σxf

sj+lj+1|sj+lj

)(
JX

f

sj

)T
(2.37b)

JX
f

sj
= ΣXfxf

sj ,sj+lj+1|sj+lj

(
Σxf

sj+lj+1|sj+lj

)−1

(2.37c)

where N
(
µX

f

sj |sj+lj
,ΣXf

sj |sj+lj

)
is the Gaussian approximation of p

(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
,

and N
(
µx

f

sj+lj+1|ks(j),Σ
xf

sj+lj+1|ks(j)

)
is the Gaussian approximation of the smoothing den-

sity p
(
xsj+lj+1 | y1:sj−1, y

f
sj :ks(j)

)
if ks(j) > sj + lj + 1. Specifically, the smoothing density

p
(
xsj+lj+1 | y1:sj−1, y

f
sj :ks(j)

)
can be calculated recursively. For n = ks(j), ks(j)− 1, · · · , sj +

lj + 2

p
(
xn−1 | y1:sj−1, y

f
sj :ks(j)

)
=

∫
p
(
xn−1 | xn, y1:sj−1, y

f
sj :n−1

)
p
(
xn | y1:sj−1, y

f
sj :ks(j)

)
dxn

(2.38)

which can be described in terms of a Gaussian distribution by applying Proposition 2.

µx
f

n−1|ks(j) = µx
f

n−1|n−1 + Jn−1

(
µx

f

n|ks(j) − µx
f

n|n−1

)
(2.39a)

Σxf

n−1|ks(j) = Σxf

n−1|n−1 + Jn−1

(
Σxf

n|ks(j) − Σxf

n|n−1

)
JTn−1 (2.39b)

Jn−1 = Σxf

n−1,n|n−1

(
Σxf

n|n−1

)−1

(2.39c)

The final task is to calculate p
(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
. As defined in Section 2.2,

X l
s(j) =

[
xTsj xTsj+1 ... xTsj+lj

]T
, thus

µX
f

sj |sj+lj
=
[(
µx

f

sj |sj+lj

)T (
µx

f

sj+1|sj+lj

)T
· · ·

(
µx

f

sj+lj |sj+lj

)T]T
(2.40a)

ΣXf

sj |sj+lj
=


Σxf

sj |sj+lj
Σxf

sj ,sj+1|sj+lj
· · · Σxf

sj ,sj+lj |sj+lj

Σxf

sj+1,sj |sj+lj
Σxf

sj+1|sj+lj
· · · Σxf

sj+1,sj+lj |sj+lj
...

...
. . .

...

Σxf

sj+lj ,sj |sj+lj
Σxf

sj+lj ,sj+1|sj+lj
· · · Σxf

sj+lj |sj+lj

 (2.40b)

These elements in equation (2.40b) can be computed as follows, for n = sj + lj, sj + lj −
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1, · · · , sj + 1

µx
f

n−1|sj+lj
= µx

f

n−1|n−1 + Jn−1

(
µx

f

n|sj+lj
− µxfn|n−1

)
(2.41a)

Σxf

n−1|sj+lj
= Σxf

n−1|n−1 + Jn−1

(
Σxf

n|sj+lj
− Σxf

n|n−1

)
JTn−1 (2.41b)

Jn−1 = Σxf

n−1,n|n−1

(
Σxf

n|n−1

)−1

(2.41c)

This completes the UKF implementation. This method is referred to EB-UKF, which

is shown in Algorithm 2. From the derivation above, it can be found that the additional

statistics
{
N
(
µx

f

n|n,Σ
xf

n|n

)}sj+lj

n=sj
are needed to approximate p

(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
, and

the one-step-ahead predictive distributions
{
N
(
µx

f

n|n−1,Σ
xf

n|n−1

)}ks(j)

n=sj+1
are also used. Al-

though these predictions can be obtained directly from the filtering densities, for computing

efficiency, we assume they are saved during previous filtering process.

2.4 Augmented state method

In order to apply this method, the original system model has to be reformulated. By refor-

mulating the model, the state and integral term would be estimated simultaneously when

the slow delayed measurement arrives, which means the target posterior density becomes

p
(
xks(j),msj+lj | y1:ks(j)

)
. Obviously, adding the integral term msj+lj has no impact for us to

estimate xks(j). Besides, since we consider all information we have until time instant ks(j)

just as in the exact Bayesian solution, these two methods would lead to a similar result.

2.4.1 Reformulation of the system model

The integral term msj+lj can be calculated recursively as

mk+1 = mk + ck+1xk+1

= mk + ck+1f (xk, uk) + ck+1ωk
(2.42)

for k = sj, sj + 1, ..., sj + lj − 1. The initial value of mk in equation (2.42) is msj = csjxsj .

Next, let us define an augmented state as,

xak =

{ [
xTk mT

k

]T
for k = sj, sj + 1, ..., sj + lj[

xTk mT
sj+lj

]T
for k = sj + lj + 1, ..., ks(j)

(2.43)

One can see that the augmented state xak only exists when k = sj, sj + 1, ..., ks(j),

which is the period to collect integral samples and analyze slow measurements. For other
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Algorithm 2 EB-UKF for estimating the posterior density p
(
xks(j) | y1:ks(j)

)
Input:

{
N
(
µx

f

n|n,Σ
xf

n|n

)}ks(j)

n=sj
and

{
N
(
µx

f

n|n−1,Σ
xf

n|n−1

)}ks(j)

n=sj+1

Output: Gaussian approximation N
(
µxks(j)|ks(j),Σ

x
ks(j)|ks(j)

)
≈ p

(
xks(j) | y1:ks(j)

)
1: %% Calculating N

(
µX

f

sj |sj+lj
,ΣXf

sj |sj+lj

)
≈ p

(
X l
s(j) | y1:sj−1, y

f
sj :sj+lj

)
2: for n = sj + lj : sj + 1 do

3: Jn−1 = Σxf

n−1,n|n−1

(
Σxf

n|n−1

)−1

4: µx
f

n−1|sj+lj
= µx

f

n−1|n−1 + Jn−1

(
µx

f

n|sj+lj
− µxfn|n−1

)
5: Σxf

n−1|sj+lj
= Σxf

n−1|n−1 + Jn−1

(
Σxf

n|sj+lj
− Σxf

n|n−1

)
JTn−1

6: end for

7: µX
f

sj |sj+lj
=
[(
µx

f

sj |sj+lj

)T (
µx

f

sj+1|sj+lj

)T
· · ·

(
µx

f

sj+lj |sj+lj

)T]T

8: ΣXf

sj |sj+lj
=


Σxf

sj |sj+lj
Σxf

sj ,sj+1|sj+lj
· · · Σxf

sj ,sj+lj |sj+lj

Σxf

sj+1,sj |sj+lj
Σxf

sj+1|sj+lj
· · · Σxf

sj+1,sj+lj |sj+lj
...

...
. . .

...

Σxf

sj+lj ,sj |sj+lj
Σxf

sj+lj ,sj+1|sj+lj
· · · Σxf

sj+lj |sj+lj


9: %% Calculating N

(
µx

f

sj+lj+1|ks(j),Σ
xf

sj+lj+1|ks(j)

)
≈ p

(
xsj+lj+1 | y1:sj−1, y

f
sj :ks(j)

)
10: if ks(j) = sj + lj + 1 then

11: µx
f

sj+lj+1|ks(j) = µx
f

ks(j)|ks(j)

12: Σxf

sj+lj+1|ks(j) = Σxf

ks(j)|ks(j)

13: else
14: for n = ks(j) : sj + lj + 2 do

15: Jn−1 = Σxf

n−1,n|n−1

(
Σxf

n|n−1

)−1

16: µx
f

n−1|ks(j) = µx
f

n−1|n−1 + Jn−1

(
µx

f

n|ks(j) − µx
f

n|n−1

)
17: Σxf

n−1|ks(j) = Σxf

n−1|n−1 + Jn−1

(
Σxf

n|ks(j) − Σxf

n|n−1

)
JTn−1

18: end for
19: end if
20: %% Calculating N

(
µX

f

sj |ks(j),Σ
Xf

sj |ks(j)

)
≈ p

(
X l
s(j) | y1:sj−1, y

f
sj :ks(j)

)
21: JX

f

sj
= ΣXfxf

sj ,sj+lj+1|sj+lj

(
Σxf

sj+lj+1|sj+lj

)−1

22: µX
f

sj |ks(j) = µX
f

sj |sj+lj
+ JX

f

sj

(
µx

f

sj+lj+1|ks(j) − µx
f

sj+lj+1|sj+lj

)
23: ΣXf

sj |ks(j) = ΣXf

sj |sj+lj
+ JX

f

sj

(
Σxf

sj+lj+1|ks(j) − Σxf

sj+lj+1|sj+lj

)(
JX

f

sj

)T
24: %% Calculating N

(
µy

m

ks(j)|ks(j),Σ
ym

ks(j)|ks(j)

)
≈ p

(
ymks(j) | y1:sj−1, y

f
sj :ks(j)

)
25: Use the unscented transformation to get sigma points

{
X i
sj |ks(j)

}2nX+1

i=1
of

N
(
µX

f

sj |ks(j),Σ
Xf

sj |ks(j)

)
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26: for i = 1 : 2nX + 1 do

27: Y iks(j)|ks(j) = hm
(
C l
s(j)X i

sj |ks(j)

)
28: end for
29: µy

m

ks(j)|ks(j) =
∑2nX+1

i=1 W i
sY iks(j)|ks(j)

30: Σym

ks(j)|ks(j) =
∑2nX+1

i=1 W i
c

(
Y iks(j)|ks(j) − µ

ym

ks(j)|ks(j)

)
(· · · )T +Rm

31: %% Calculating output N
(
µxks(j)|ks(j),Σ

x
ks(j)|ks(j)

)
≈ p

(
xks(j) | y1:ks(j)

)
32: µxks(j)|ks(j) = µx

f

ks(j)|ks(j) + Σxfym

ks(j)|ks(j)

(
Σym

ks(j)|ks(j)

)−1 (
ymks(j) − µ

ym

ks(j)|ks(j)

)
33: Σx

ks(j)|ks(j) = Σxf

ks(j)|ks(j) − Σxfym

ks(j)|ks(j)

(
Σym

ks(j)|ks(j)

)−1

Σymxf

ks(j)|ks(j)

time, there are normal states and fast measurements in the system. So as to estimate

p
(
xks(j),msj+lj | y1:ks(j)

)
= p

(
xaks(j) | y1:ks(j)

)
, a new model of augmented state is defined for

this special period.

The augmented state transition equation is, for k = sj, sj + 1, ..., ks(j)− 1,

xak+1 =

[
f (xk, uk)

mk + gk+1f (xk, uk)

]
+

[
ωk

gk+1ωk

]
(2.44)

where the initial value of xak is xasj =
[
xTsj mT

sj

]T
, the covariance of process noise in equation

(2.44) is Qa
k =

[
Q (gk+1Q)T

gk+1Q gk+1Qg
T
k+1

]
, and

gk =

{
ck for k = sj, sj + 1, ..., sj + lj
0 for k = sj + lj + 1, ..., ks(j)

For time from sj to ks(j)− 1, the measurement equation is the same as equation (2.1b). At

time ks(j), the measurement equation becomes

yaks(j) = h
(
xaks(j)

)
+ vaks(j) (2.45)

where

yaks(j) =

[
yfks(j)

ymks(j)

]
h
(
xaks(j)

)
=

[
hf
(
xks(j)

)
hm
(
msj+lj

)] vaks(j) =

[
vfks(j)

vmks(j)

]

The variance of vaks(j) is Ra
ks

=

[
Rf 0
0 Rm

]
.

After reformulation, it is much easier to fuse two measurements according to Bayes’ rule

as

p
(
xaks(j) | y1:ks(j)

)
=

p
(
yaks(j) | xaks(j)

)
p
(
xaks(j) | y1:sj−1, y

f
sj :ks(j)−1

)
∫
p
(
yaks(j) | xaks(j)

)
p
(
xaks(j) | y1:sj−1, y

f
sj :ks(j)−1

)
dxaks(j)

(2.46)
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Figure 2.3: Schematic of the augmented state method

In equation (2.46), the first term in the numerator can be derived from equation (2.45),

while the second term can be obtained through Bayes filter using the augmented state model.

Figure 2.3 is the schematic of the augmented state method. Thus, the only required statistic

is the initial value used in the Bayes filter, i.e. p
(
xasj | y1:sj−1, y

f
sj

)
. In this section, two Bayes

filters, the particle filter and the unscented Kalman filter are both applied just as described

in Section 2.3.

2.4.2 Implementations of the PF and UKF

In the particle filter, since xasj =
[
xTsj

(
csjxsj

)T]T
, the density p

(
xasj | y1:sj−1, y

f
sj

)
can be

approximated by the particle set
{
x
af(i)
sj , w

af(i)
sj

}N
i=1

, where x
af(i)
sj =

[(
x
f(i)
sj

)T (
csjx

f(i)
sj

)T]T
and w

af(i)
sj = w

f(i)
sj . This method is named as AS-PF. The algorithm of AS-PF is described

in Algorithm 3.

Before implementing the UKF, it should be noted that the covariance of xasj is singular

which can lead to many problems in calculation process. The solution is to use p
(
xasj+1 |

y1:sj−1, y
f
sj :sj+1

)
as the initial value. Assume its approximation is N

(
µx

a

sj+1|sj+1,Σ
xa

sj+1|sj+1

)
,

where

µx
a

sj+1|sj+1 =

[
µx

f

sj+1|sj+1

µm
f

sj+1|sj+1

]
(2.47a)

Σxa

sj+1|sj+1 =

[
Σxf

sj+1|sj+1 Σxfmf

sj+1|sj+1

Σmfxf

sj+1|sj+1 Σmf

sj+1|sj+1

]
(2.47b)

29



Algorithm 3 AS-PF for estimating the posterior density p
(
xks(j) | y1:ks(j)

)
Input:

{
x
f(i)
sj , w

f(i)
sj

}N
i=1

Output:
{
x

(i)
ks(j), w

(i)
ks(j)

}N
i=1

1: %% Calculating the particle set
{
x
af(i)
sj , w

af(i)
sj

}N
i=1

2: m
f(i)
sj = csjx

f(i)
sj

3: x
af(i)
sj =

[
x
f(i)
sj

m
f(i)
sj

]
and w

af(i)
sj = w

f(i)
sj

4: %% Calculating the particle set
{
x
af(i)
ks(j)−1, w

af(i)
ks(j)−1

}N
i=1

5: for n = sj, sj + 1, ..., ks(j)− 2 do
6: for i = 1, 2, ..., N do

7: x
f(i)
n+1 = f

(
x
f(i)
n , un

)
+ ω

(i)
n

8: m
f(i)
n+1 = m

f(i)
n + gn+1x

f(i)
n+1

9: x
af(i)
n+1 =

[
x
f(i)
n+1

m
f(i)
n+1

]
10: w

af(i)
n+1 ∝ w

af(i)
n p

(
yfn+1 | x

af(i)
n+1

)
11: end for
12: if N̂eff < NT then

13: Resample
{
x
af(i)
n+1 , w

af(i)
n+1

}N
i=1

14: end if
15: end for

16: %% Calculating the output particle set
{
x

(i)
ks(j), w

(i)
ks(j)

}N
i=1

17: for i = 1, 2, ..., N do

18: x
f(i)
ks(j) = f

(
x
f(i)
ks(j)−1, uks(j)−1

)
+ ω

(i)
ks(j)−1

19: m
f(i)
ks(j) = m

f(i)
ks(j)−1 + gks(j)x

f(i)
ks(j)

20: x
af(i)
ks(j) =

[
x
f(i)
ks(j)

m
f(i)
ks(j)

]
21: w

af(i)
ks(j) ∝ w

af(i)
ks(j)−1p

(
yaks(j) | x

af(i)
ks(j)

)
22: x

(i)
ks(j) = x

f(i)
ks(j) and w

(i)
ks(j) = w

af(i)
ks(j)

23: end for
24: if N̂eff < NT then

25: Resample
{
x

(i)
ks(j), w

(i)
ks(j)

}N
i=1

26: end if
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In equations (2.47a) and (2.47b), the unknown statistics µm
f

sj+1|sj+1, Σmf

sj+1|sj+1 and Σmfxf

sj+1|sj+1

are calculated as

µm
f

sj+1|sj+1 = csjµ
xf

sj |sj+1 + csj+1µ
xf

sj+1|sj+1

Σmf

sj+1|sj+1 = csjΣ
xf

sj |sj+1c
T
sj

+ csj+1Σxf

sj+1|sj+1c
T
sj+1 + 2csjΣ

xf

sj ,sj+1|sj+1c
T
sj+1

Σmfxf

sj+1|sj+1 = csjΣ
xf

sj ,sj+1|sj+1 + csj+1Σxf

sj+1|sj+1

where N
(
µx

f

sj |sj+1,Σ
xf

sj |sj+1

)
is the Gaussian approximation of p

(
xsj | y1:sj−1, y

f
sj :sj+1

)
, and

Σxf

sj ,sj+1|sj+1 is the covariance of xsj and xsj+1 given
{
y1:sj−1, y

f
sj :sj+1

}
.

p
(
xsj | y1:sj−1, y

f
sj :sj+1

)
=

∫
p
(
xsj | xsj+1, y1:sj−1, y

f
sj

)
p
(
xsj+1 | y1:sj−1, y

f
sj :sj+1

)
dxsj+1

(2.48)

Thus, N
(
µx

f

sj |sj+1,Σ
xf

sj |sj+1

)
can be calculated using Proposition 2.

µx
f

sj |sj+1 = µx
f

sj |sj + Jsj

(
µx

f

sj+1|sj+1 − µx
f

sj+1|sj

)
(2.49a)

Σxf

sj |sj+1 = Σxf

sj |sj + Jsj

(
Σxf

sj+1|sj+1 − Σxf

sj+1|sj

)
JTsj (2.49b)

Jsj = Σxf

sj ,sj+1|sj

(
Σxf

sj+1|sj

)−1

(2.49c)

This method is named as AS-UKF.

2.5 Simulation and experimental evaluation

In this section, the proposed methods are evaluated through simulation and experimental

studies. In the first example, two cases are tested to see the impact of increasing integral time

lj and delayed time dj. In the second example, the proposed methods are experimentally

studied on a hybrid tank.

2.5.1 Simulation study

The first example is based on the model of a continuous fermenter [30], [32], [35]. The process

consists of a constant volume reactor in which a single, rate limiting substrate promotes

biomass growth and product formation. The process model is

Ẋ = −DX + µ (S, P )X (2.50a)

Ṡ = D (Sf − S)− 1

YX/S
µ (S, P )X (2.50b)

Ṗ = −DP + [αµ (S, P ) + β]X (2.50c)
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where X, S and P are the biomass, substrate, and product concentration, respectively; D

is the dilution rate; Sf is the feed substrate concentration; and YX/S, α and β are yield

parameters. The specific growth rate µ is modeled as

µ (S, P ) =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

(2.51)

where µm is the maximum specific growth rate; Pm, Km and Ki are constant parameters.

Nominal operating conditions are shown in Table 2.1. The state and fast measurement

vectors are defined as

x =
[
X S P

]T
yf = P (2.52)

Table 2.1: Nominal operating conditions for the fermenter model [32]

Variable Value Variable Value
YX/S 0.4 g/g α 2.2 g/g
β 0.2 h−1 µm 0.48 h−1

Pm 50 g/L Km 1.2 g/L
Ki 22 g/L Sf 20 g/L
D 0.202 h−1 X 6.0 g/L
S 5.0 g/L P 19.14 g/L

The system is discretized with a sampling interval of ∆t = 1/60 h = 1 min, and simulated

for 700 time steps from the initial condition x0 =
[

6 5 19.4
]T

. The covariances of states

and fast measurements are Q = 0.01I3 and Rf = 1, respectively. The integral term msj+lj is

defined as

msj+lj =
1

lj

sj+lj∑
i=sj

xi (2.53)

The slow measurement equation is

ymks(j) =
[

0 0 1
]
msj+lj + vmks(j) (2.54)

where the covariance of vmks(j) is Rm = 10−6. Simulations start from a initial guess x̂0 =[
6.03 4.98 19

]
with the covariance P0 = diag {0.09, 0.06, 0.9}. Because the results are

influenced by both integral time lj and delayed time dj, simulations are conducted by con-

sidering these two factors separately. In the first case, different values of lj are tested with

delayed time dj = 0 and the time between two slow measurements ρj = lj + 1. For the

second case, the integral time is set to be a constant lj = 1, and different values of delayed
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Figure 2.4: True product concentration x3, fast measurement yf and integrated laboratory
measurement ym with lj = 10, dj = 0

time dj are simulated with ρj = lj + dj + 1 = dj + 2. Although all three states can be

estimated, we compare the estimation of product concentration P , since only P is measured.

For comparison, the Average Root Mean Squared Error (ARMSE) is used, which is defined

as

ARMSE =
1

M

M∑
n=1

√√√√ 1

T

T∑
k=1

(
e

(n)
k

)2

(2.55)

where e
(n)
k is the estimation error of product concentration P at k time instant for the

nth simulation run, T is the simulation horizon which is 700 in our case, and M is the

number of simulation runs. The simulation results of two cases are shown in Table 2.2 and

2.3, respectively, where each result comes from a Monte Carlo simulation with 100 runs.

The ARMSE of the PF and UKF that only use fast measurements are 0.3280 and 0.3189,

respectively. Figure 2.4 is a plot of the state P , its fast measurements with high noise, and

integrated no-delay laboratory measurements with integral time lj = 10.

As can be seen from Table 2.2, with the integral time lj increasing, the estimation errors

of all algorithms become larger. Besides, no matter the value of lj, they perform better than
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Table 2.2: Estimation errors (ARMSE) of different algorithms with dj = 0, R̂m = 10−6

Algorithm EB-PF AS-PF EB-UKF AS-UKF
lj = 1 0.1146 0.1168 0.0860 0.0860
lj = 2 0.1587 0.1611 0.1206 0.1210
lj = 3 0.1986 0.1971 0.1544 0.1549
lj = 4 0.2162 0.2172 0.1684 0.1685
lj = 5 0.2447 0.2444 0.1918 0.1919
lj = 6 0.2612 0.2670 0.2058 0.2067
lj = 7 0.2819 0.2817 0.2192 0.2201
lj = 8 0.2959 0.2966 0.2333 0.2328
lj = 9 0.3066 0.3034 0.2434 0.2426
lj = 10 0.3143 0.3162 0.2563 0.2547

Table 2.3: Estimation errors (ARMSE) of different algorithms with lj = 1, R̂m = 10−6

Algorithm EB-PF AS-PF EB-UKF AS-UKF
dj = 1 0.1683 0.2113 0.1468 0.1472
dj = 2 0.2119 0.2771 0.1819 0.1823
dj = 3 0.2442 0.3234 0.2199 0.2192
dj = 4 0.2604 0.3334 0.2269 0.2273
dj = 5 0.2791 0.3544 0.2563 0.2563
dj = 6 0.2949 0.3647 0.2683 0.2644

the PF and UKF that only use fast measurements. Figure 2.5 shows that the differences in

UKF-based methods and PF-based methods are very small. That is because when dj = 0, the

exact Bayesian algorithm and the augmented state algorithm are actually the same. Figure

2.6 illustrates that the estimated variance of x3 decreases once the laboratory measurement

arrives. Although the variance goes back to the normal value gradually as there are only fast

measurements, it is still smaller than the minimum variance of the UKF. Therefore, fusing

the laboratory measurements can improve the accuracy of estimation.

From Table 2.3, we can see that the estimation errors of all algorithms increase with the

delayed time dj becoming large. The UKF-based methods result in similar performance,

while the PF-based methods have large differences. Comparing within Table 2.2 and 2.3,

we find that the UKF-based methods always result in more accurate estimation than the

PF-based methods. By looking into the estimation process, we can find the reason is sample

impoverishment in the PF [4]. Because the noise of the slow laboratory measurements is so

small, there are very few particles left after the resampling step, which leads to reduction of

particle diversity and hence poor estimation. Furthermore, the large delay time dj aggravates
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Figure 2.5: Simulation results of PF-based approaches and UKF-based approaches with
lj = 3, dj = 0. Top: Results of PF-based approaches with PF only using fast measurements.

Bottom: Results of UKF-based approaches with UKF only using fast measurements.
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Figure 2.6: Estimated variance of x3 during a simulation process with lj = 10, dj = 0

the sample impoverishment problem. But since EB-PF has a smoothing step, the sample

impoverishment is relieved a little, which makes it perform better than AS-PF (see in Table

2.3).

A possible solution for the sample impoverishment problem is to use a larger number of

particles, but this can greatly increase the computation load. So another solution is used

in this section which is to enlarge the estimated noise covariance R̂m. As shown in Table

2.4 and 2.5, increasing R̂m relieves the sample impoverishment problem and decreases the

estimation errors. Figure 2.7 shows the error bounds for different PF-based algorithms. The

error bounds of the proposed methods are smaller than PF method.

2.5.2 Experimental evaluation on a hybrid tank

The proposed algorithms are experimentally evaluated on a hybrid tank at the University

of Alberta. Figure 2.8 shows the experimental setup. There are three tanks in this system.

However, in this experiment, only the left and middle tanks are used. The schematic of the

experiment system is shown in Figure 2.9. Water is pumped into the left tank, and can flow

to the middle tank through the valve V1. The water levels of both tanks are measured using
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Table 2.4: Estimation errors (ARMSE) of PF-based algorithms with different R̂m and dj = 0

Algorithm
R̂m = 10−4 R̂m = 10−2

EB-PF AS-PF EB-PF AS-PF
lj = 1 0.0904 0.0907 0.0997 0.1002
lj = 2 0.1257 0.1269 0.1335 0.1329
lj = 3 0.1619 0.1616 0.1616 0.1630
lj = 4 0.1806 0.1854 0.1845 0.1841
lj = 5 0.2042 0.2056 0.2021 0.2028
lj = 6 0.2246 0.2228 0.2191 0.2195
lj = 7 0.2327 0.2340 0.2282 0.2303
lj = 8 0.2494 0.2509 0.2424 0.2430
lj = 9 0.2657 0.2641 0.2558 0.2560
lj = 10 0.2840 0.2808 0.2692 0.2666

Table 2.5: Estimation errors (ARMSE) of PF-based algorithms with different R̂m and lj = 1

Algorithm
R̂m = 10−4 R̂m = 10−2

EB-PF AS-PF EB-PF AS-PF
dj = 1 0.1531 0.1564 0.1563 0.1560
dj = 2 0.1912 0.1979 0.1905 0.1896
dj = 3 0.2345 0.2488 0.2322 0.2314
dj = 4 0.2437 0.2622 0.2418 0.2432
dj = 5 0.2729 0.2978 0.2681 0.2691
dj = 6 0.2813 0.3139 0.2763 0.2779

differential pressure (DP) level sensors.

The nonlinear state space model of the experiment plant derived using first principle

modelling is as follows [19]–[21]:

ḣl =
−k1

sl

√
hl − hm +

1

sl
qi (2.56a)

ḣm =
k1

sm

√
hl − hm +

−k2

sm

√
hm (2.56b)

where hl and hm are the water level of the left and middle tank, respectively, qi is the flow

of the pump, sl and sm are the cross-sectional area of the tanks, which are equal to 243.22

cm2, and k1 = 25.62, k2 = 13.47 are the coefficients of valves V1 and V2.

In the experiment, an RBS signal input around the operating point is used as the flow of

the pump. To test the proposed approaches, the nonlinear state space model is discretized

with a sampling time ∆t = 1s. The system state is defined as x = [hl hm]T and the fast

measurement is middle tank level yf = [0 1] x. It is assumed that process noise ωk and
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Figure 2.7: Error bounds of PF-based methods with lj = 10, dj = 0

Figure 2.8: Picture of the hybrid tank
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Figure 2.9: Schematic of the experiment plant

fast measurement noise vfk can be approximated by zero-mean Gaussian distributions. The

covariance matrix of process noise ωk is estimated as follows, using experiment data:

Q = 10−4 ×
[

0.1486 −0.0427
−0.0427 0.1556

]
(2.57)

The covariance of the fast measurement noise vfk is Rf = 5.0× 10−3, and the initial state is

x0 = [44.04 34.58]T . The fast measurement data used to conduct state estimation is the

middle tank DP sensor output, with artificially added Gaussian noise whose covariance is

equal to Rf .

In this example, we conduct two experiments. In the first one, the integrated laboratory

measurement is the integration of the left tank level, and in the second experiment, the

integrated laboratory measurement is the integration of the middle tank level [21]. Therefore,

the slow delayed laboratory measurement is

ymks(j) = Cmmsj+lj + vmks(j) (2.58)

where Cm varies depending on the experiment, vmks(j) is the measurement noise which follows

a Gaussian distribution N (0, Rm) and the covariance Rm according to the variances of DP

sensors is

Rm =

{
6.33× 10−7 for the first experiment
2.42× 10−7 for the second experiment
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Figure 2.10: Output of middle tank DP level sensor, together with noise contaminated data
yf and slow delayed laboratory measurement ym. Top: The whole data. Bottom:

Zoomed-in-view of data
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and the integral term msj+lj is defined as

msj+lj =
1

lj + 1

sj+lj∑
i=sj

xi (2.59)

Specifically, the sampling interval ρj is determined as 20 seconds, the collection time of

samples lj randomly varies between 1 and 10 seconds following a uniform distribution, and

the analysis time (i.e. time delay) dj also randomly varies between 0 and 5 seconds following

a uniform distribution. To construct the slow delayed laboratory measurement, the values

of DP sensors are integrated over lj + 1 sampling instants. Figure 2.10 shows the output of

DP level sensor of the middle tank, together with fast measurements yf and slow delayed

laboratory measurements ym in the second experiment.

Table 2.6: Estimation errors (ARMSE) of different algorithms using the integrated
measurement of the left tank (Experiment 1)

Algorithm EB-PF AS-PF JFM-PF EB-UKF AS-UKF JFM-UKF
Left tank 0.0650 0.0621 0.1302 0.0361 0.0362 0.1301

Middle tank 0.0325 0.0315 0.0132 0.0311 0.0310 0.0118

Table 2.7: Estimation errors (ARMSE) of different algorithms using the integrated
measurement of the middle tank (Experiment 2)

Algorithm EB-PF AS-PF JFM-PF EB-UKF AS-UKF JFM-UKF
Left tank 0.1304 0.1308 0.1302 0.1296 0.1295 0.1301

Middle tank 0.0094 0.0093 0.0132 0.0069 0.0070 0.0118

Tables 2.6 and 2.7 present the estimation errors in each experiment. Figures 2.11 and

2.12 show the estimates of left and middle tank levels in two experiments. The algorithms

JFM-PF and JFM-UKF are PF and UKF approaches that only use fast measurements. The

difference between the results of EB-PF and AS-PF is very small, as is the difference between

EB-UKF and AS-UKF. A comparison of the results reveals that including the slow delayed

measurement can improve the estimation of the corresponding variable that is measured

directly. In the first experiment, as the slow laboratory measurement is the integrated left

tank level, the estimate for the left tank level is much more accurate than that obtained just

using fast measurements. For the same reason, in the second experiment, the estimation

error of the middle tank level is much smaller. However, the accuracy for the variable which
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Figure 2.11: Estimates of the left and middle tank levels in the first experiment

is not directly measured does not actually improve, especially in the first experiment, the

estimation error of the middle tank level increases. From Table 2.6 and Figure 2.11, we can

see the estimation error of the left tank level is much larger than that of the middle tank

level when only fast measurements are used, which means the model mismatch of the left

tank is significant. Due to this reason, improving the estimate for the left tank level results

in bad estimation for the middle tank level.

Although the above results show that the exact Bayesian method and augmented state

method lead to about the same result, it is important to notice that the exact Bayesian

method has a smoothing step and needs to store the state trajectory before the slow de-

layed laboratory measurement arrives. This makes the exact Bayesian method have a heavy

computation load, especially for the PF-based algorithm, which is not good for online im-

plementation. On the contrary, the augmented state method is not only easy to understand,

but also fast in realization and computation.
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Figure 2.12: Estimates of the left and middle tank levels in the second experiment

2.6 Conclusions

The problem of state estimation for multirate measurements in the presence of integral term

and variable measurement delay is studied in this chapter. Two methods are proposed: one

is the exact Bayesian approach, and the other is the augmented state method. Both methods

are implemented on particle filter and unscented Kalman filter. By simulation and experi-

mental evaluation, we can find these two methods result in similar performances. Fusing the

slow delayed integrated laboratory measurements with fast online measurements can give us

more accurate estimates than fast state estimation. Since the laboratory measurement noise

is very small, the PF-based algorithms have the sample impoverishment problem which can

be relieved by increasing the estimated noise covariance artificially.
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Chapter 3

Parameter estimation for nonlinear
system with multirate measurements
and random delays

3.1 Introduction

In the previous chapter, we studied the state estimation problem for multirate nonlinear

system with integral term and random delays. In this chapter, we will focus on the parameter

estimation problem for the same system.

Expectation maximization (EM) is a standard algorithm for parameter estimation in

state space models [42]. There are two steps in the EM algorithm, the expectation step and

the maximization step [12]. For linear systems with Gaussian noise, these two steps can be

solved analytically, and explicit equations for parameter estimation can be obtained [37], [41].

However, for most nonlinear state space models with Gaussian or non-Gaussian noise, the

expectation and maximization cannot be performed explicitly. A number of approximations

have been proposed in the literature [28]. For instance, Monte Carlo sampling techniques

have been utilized to perform the expectation step [2], [44]. Ghahramani and Roweis [24]

used extended Kalman smoothing to estimate the states in the expectation step. In [25], a

Taylor’s series expansion of the process around a maximum a posteriori estimate of the state

is used. Gopaluni [28] used a particle smoother to approximate the smoothing densities. In

[13], [14], the smoothing densities in the expectation step are reduced to filtering densities

using the particle filter for decreasing the computation cost.

The identification for nonlinear and multirate systems with single measurements and

random delays is well studied in literature. In [51], Xie et al. proposed an EM-based al-
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gorithm to estimate parameters along with the time delays for FIR models by considering

the time delays as hidden latent variables. Zhao et al. [53] provided a variational Bayesian

(VB) approach for ARX models with time varying time delays. In [8], Chen et al. extended

the algorithm in [53] when the interval of varying time delays is unknown. The problem

discussed in this chapter is however more complicated and challenging. The objective is to

estimate parameters and delays for nonlinear state space models with regular fast-rate mea-

surements and slow delayed laboratory measurements. By fusing the slow delayed laboratory

measurement with the fast-rate measurements, the estimated parameters are supposed to be

more accurate than just using fast-rate measurements.

The remainder of this chapter is organized as follows. Section 3.2 states the parameter

estimation problem of multirate systems in the presence of uncertain random delays. The

next section applies the EM algorithm to solve this as well as a traditional single-rate iden-

tification problem as a comparison. Section 3.4 provides the particle filter implementation

of the proposed algorithm. Two simulation examples along with a hybrid tank experiment

are presented in Section 3.5, followed by the conclusion.

3.2 Problem statement

Consider the following discrete time system:

xk = f (xk−1, uk−1, θ
x) + ωk−1 (3.1a)

yfk = hf
(
xk, θ

f
)

+ vfk (3.1b)

ymks(j) = hm
(
msj+lj , θ

m
)

+ vmks(j) (3.1c)

where xk ∈ Rnx is the system state, and the initial state x0 follows the distribution p (x0);

uk ∈ Rnu is the input vector which is known (for the sake of simplicity in presentation, it

is omitted in the following derivation); yfk ∈ Rnf
y is the fast and regular measurement and

ymks(j) ∈ Rnm
y (j ∈ Z+) is the slow and irregular laboratory measurement; and f , hf and hm are

nonlinear functions with parameters θx, θf and θm, respectively. The noise terms ωk ∈ Rnx ,

vfk ∈ Rnf
y and vmks(j) ∈ Rnm

y are i.i.d. Gaussian with zero mean and covariance matrices Q,

Rf and Rm, respectively. msj+lj ∈ Rnm is the integral term which represents integral of the
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samples collected from time instant sj to sj + lj (lj ∈ Z), and it is defined as

msj+lj =
1

lj + 1

sj+lj∑
i=sj

xi (3.2)

As the slow irregular laboratory measurement ymks(j) is usually delayed but much more

accurate than the fast measurement, the measurement arrives at time step ks(j) = sj+lj+dj,

where dj ∈ Z is the delayed time, and the noise covariance Rm is much smaller than Rf .

The delayed time dj is assumed to follow a uniform distribution between 0 and M , i.e.,

p (dj = tr) =
1

M + 1
for t = 0, 1, · · · ,M (3.3)

where r ∈ Z+ is the delay ratio. The sampling interval of laboratory measurements is ρj

with ρj > lj + dj + 1, so sj+1 = sj + ρj. The whole system can be represented as shown in

Figure 2.1.

In this chapter, we assume that all parameters are unknown except the integral time lj, as

it can be measured directly during the sample collection interval. Therefore, the parameters

that need to be estimated are system parameters θx, θf and θm, the noise covariances Q, Rf

and Rm, and the delay time {d1, d2, · · · , dNm}, where Nm is the number of slow sampled and

delayed laboratory measurements.

3.3 Formulation of parameter estimation based on EM

algorithm

In this section, two cases are considered. The first case is to estimate parameters θx and θf

using only fast measurements. In the second case, both fast measurements and slow sampled

and delayed laboratory measurements are used to estimate θx, θf and θm. The reason to

include the first case is to provide a comparison of the accuracy of estimated θx between the

two cases. The EM algorithm used in this chapter is briefly introduced in Section 1.4.1.

3.3.1 Using only fast measurements

In this case, the observed output data Yobs are Y f =
{
yf1 , y

f
2 , · · · , y

f
T

}
, while the hidden

states X = {x0, x1, · · · , xT} can be viewed as the latent data in the EM algorithm. Let

Θf =
{
θx, θf , Q,Rf

}
represent the overall parameters to be identified. Then, the Q function
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is

Q1

(
Θf | Θf

n

)
= EX|Y f ,Θf

n

{
ln
[
p
(
Y f , X | Θf

)]}
=

∫
ln
[
p
(
Y f , X | Θf

)]
p
(
X | Y f ,Θf

n

)
dX

=

∫
ln
[
p
(
x0:T , y

f
1:T | Θ

f
)]
p
(
x0:T | yf1:T ,Θ

f
n

)
dx0:T

(3.4)

where Θf
n is the estimate of Θf after nth iteration.

In equation (3.4), the first term on the right hand side can be derived as follows, according

to the hidden Markov property:

p
(
x0:T , y

f
1:T | Θ

f
)

= p (x0)
T∏
k=1

p
(
xk | xk−1,Θ

f
) T∏
k=1

p
(
yfk | xk,Θ

f
)

(3.5)

where p
(
xk | xk−1,Θ

f
)

and p
(
yfk | xk,Θf

)
for k = 1, · · · , T are determined by equations

(3.1a) and (3.1b), respectively. Substituting equation (3.5) into equation (3.4), the Q func-

tion is derived as

Q1

(
Θf | Θf

n

)
=

∫
ln
[
p
(
x0:T , y

f
1:T | Θ

f
)]
p
(
x0:T | yf1:T ,Θ

f
n

)
dx0:T

=

∫
ln [p (x0)] p

(
x0:T | yf1:T ,Θ

f
n

)
dx0:T

+
T∑
k=1

∫
ln
[
p
(
xk | xk−1,Θ

f
)]
p
(
x0:T | yf1:T ,Θ

f
n

)
dx0:T

+
T∑
k=1

∫
ln
[
p
(
yfk | xk,Θ

f
)]
p
(
x0:T | yf1:T ,Θ

f
n

)
dx0:T

(3.6)

With further normalization of the states, the Q function can be written as

Q1

(
Θf | Θf

n

)
=

∫
ln [p (x0)] p

(
x0 | yf1:T ,Θ

f
n

)
dx0

+
T∑
k=1

∫
ln
[
p
(
xk | xk−1,Θ

f
)]
p
(
xk−1:k | yf1:T ,Θ

f
n

)
dxk−1:k

+
T∑
k=1

∫
ln
[
p
(
yfk | xk,Θ

f
)]
p
(
xk | yf1:T ,Θ

f
n

)
dxk

(3.7)

Thus, to evaluate and maximize the Q function, the unknown statistics are these smoothing

densities
{
p
(
xk−1:k | yf1:T ,Θ

f
n

)}T
k=1

and
{
p
(
xk | yf1:T ,Θ

f
n

)}T
k=0

. Due to the iterative nature

of the EM algorithm, the smoothing step has high computation cost [14]. A practical solution

47



is to replace the smoothing densities with filtering densities which can be easily obtained

from Bayes filters. That means the Q function is approximated as follows

Q1

(
Θf | Θf

n

)
≈
∫

ln [p (x0)] p (x0) dx0

+
T∑
k=1

∫
ln
[
p
(
xk | xk−1,Θ

f
)]
p
(
xk−1:k | yf1:k,Θ

f
n

)
dxk−1:k

+
T∑
k=1

∫
ln
[
p
(
yfk | xk,Θ

f
)]
p
(
xk | yf1:k,Θ

f
n

)
dxk

(3.8)

The implementation of the particle filter will be introduced in the next section.

3.3.2 Using both fast and slow delayed laboratory measurements

Consider the observed output data are fast measurements Y f =
{
yf1 , y

f
2 , · · · , y

f
T

}
and slow

delayed laboratory measurements Y m =
{
ymks(1), y

m
ks(2), · · · , ymks(Nm)

}
. The hidden latent data

are states X = {x0, x1, · · · , xT}. The parameters to be estimated are delayed time Γ =

{d1, d2, · · · , dNm} and Θm =
{
θx, θf , Q,Rf , θm, Rm

}
. Then, the Q function is given by

Q2 (Γ,Θm | Γn,Θm
n ) = EX|Y f ,Ym,Γn,Θm

n

{
ln
[
p
(
Y f , Y m, X | Γ,Θm

)]}
(3.9)

where Γn and Θm
n are the estimated parameters after nth iteration. Specifically,

Γn = {(d1)n , (d2)n , · · · , (dNm)n} (3.10)

Θm
n =

{
θxn, θ

f
n, Q,R

f
n, θ

m
n , R

m
n

}
(3.11)

The joint density p
(
Y f , Y m, X | Γ,Θm

)
in equation (3.9) can be decomposed using the

Bayes’ rule as

p
(
Y f , Y m, X | Γ,Θm

)
= p

(
Y m | Y f , X,Γ,Θm

)
p
(
Y f , X | Γ,Θm

)
= p

(
Y m | Y f , X,Γ,Θm

)
p
(
Y f | X,Γ,Θm

)
p (X | Γ,Θ)

(3.12)

Using the Markov property and the fact that slow and delayed measurements Y m are inde-

pendent of fast measurements Y f , the first term on the right hand side in equation (3.12)

can be further written as

p
(
Y m | Y f , X,Γ,Θm

)
= p

(
ymks(1):ks(Nm) | y

f
1:T , x0:T , d1:Nm ,Θ

m
)

= p
(
ymks(1):ks(Nm) | x0:T , d1:Nm ,Θ

m
)

=
Nm∏
j=1

p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
) (3.13)
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where sj = ks(j) − lj − dj. Similarly, because fast measurements Y m and states X are

independent of delay Γ, the second and third term can be simplified as follows:

p
(
Y f | X,Γ,Θm

)
= p

(
yf1:T | x0:T , d1:Nm ,Θ

m
)

= p
(
yf1:T | x0:T ,Θ

m
)

=
T∏
k=1

p
(
yfk | xk,Θ

m
) (3.14)

p (X | Γ,Θm) = p (x0:T | d1:Nm ,Θ
m)

= p (x0:T | Θm)

=
T∏
k=1

p (xk | xk−1,Θ
m) p (x0)

(3.15)

Thus, substituting equations (3.13)–(3.15) into equation (3.12) yields

p
(
Y f , Y m, X | Γ,Θm

)
=

Nm∏
j=1

p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)

×
T∏
k=1

p
(
yfk | xk,Θ

m
)
p (xk | xk−1,Θ

m) p (x0)

(3.16)

Substituting equation (3.16) into equation (3.9) leads to the derivation of the Q function

as

Q2 (Γ,Θm | Γn,Θm
n ) = EX|Y f ,Ym,Γn,Θm

n

{
Nm∑
j=1

ln p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)

+ ln p (x0)

}

+ EX|Y f ,Ym,Γn,Θm
n

{
T∑
k=1

[
ln p

(
yfk | xk,Θ

m
)

+ ln p (xk | xk−1,Θ
m)
]}

=
Nm∑
j=1

∫
ln
[
p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)]
p
(
x0:T | Y f , Y m,Γn,Θ

m
n

)
dx0:T

+
T∑
k=1

∫
ln
[
p
(
yfk | xk,Θ

m
)]
p
(
x0:T | Y f , Y m,Γn,Θ

m
n

)
dx0:T

+
T∑
k=1

∫
ln [p (xk | xk−1,Θ

m)] p
(
x0:T | Y f , Y m,Γn,Θ

m
n

)
dx0:T

+

∫
ln [p (x0)] p

(
x0:T | Y f , Y m,Γn,Θ

m
n

)
dx0:T

(3.17)
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With further marginalization of the states and delay time, the Q function can be rewritten

as

Q2 (Γ,Θm | Γn,Θm
n ) =

∫
ln [p (x0)] p

(
x0 | Y f , Y m,Γn,Θ

m
n

)
dx0

+
Nm∑
j=1

∫
ln
[
p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)]
p
(
xsj :sj+lj | Y f , Y m,Γn,Θ

m
n

)
dxsj :sj+lj

+
T∑
k=1

∫
ln
[
p
(
yfk | xk,Θ

m
)]
p
(
xk | Y f , Y m,Γn,Θ

m
n

)
dxk

+
T∑
k=1

∫
ln [p (xk | xk−1,Θ

m)] p
(
xk−1:k | Y f , Y m,Γn,Θ

m
n

)
dxk−1:k

(3.18)

where the calculations of
{
p
(
xsj :sj+lj | Y f , Y m,Γn,Θ

m
n

)}Nm

j=1
,
{
p
(
xk | Y f , Y m,Γn,Θ

m
n

)}T
k=0

and
{
p
(
xk−1:k | Y f , Y m,Γn,Θ

m
n

)}T
k=1

are smoothing problems, for which the computation

cost is high. Therefore, the smoothed densities are approximated as

p
(
xsj :sj+lj | Y f , Y m,Γn,Θ

m
n

)
≈ p

(
xsj :sj+lj | y1:sj+lj ,Γn,Θ

m
n

)
(3.19)

p
(
xk | Y f , Y m,Γn,Θ

m
n

)
≈ p (xk | y1:k,Γn,Θ

m
n ) (3.20)

p
(
xk−1:k | Y f , Y m,Γn,Θ

m
n

)
≈ p (xk−1:k | y1:k,Γn,Θ

m
n ) (3.21)

p
(
x0 | Y f , Y m,Γn,Θ

m
n

)
≈ p (x0) (3.22)

where y1:k is defined as y1:k ,
{
yf1:k, y

m
ks(1):ks(j)

}
, with ks(j) − (dj)n 6 k, for notational

simplicity. Thus, the remaining task is to calculate the approximated densities in equations

(3.19)–(3.21). The particle filtering method is introduced in the next section.

3.4 Parameter estimation using particle filter

3.4.1 Using only fast measurements

Using the particle filter, the densities
{
p
(
xk | yf1:k,Θ

f
n

)}T
k=1

in equation (3.8) are approxi-

mated as follows:

p
(
xk | yf1:k,Θ

f
n

)
=

N∑
i=1

w
f(i)
k δ

(
xk − xf(i)

k

)
for k = 1, · · · , T (3.23)
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where N is the number of particles, and w
f(i)
k is the weight of particle x

f(i)
k . The joint

densities
{
p
(
xk−1:k | yf1:k,Θ

f
n

)}T
k=1

are approximated as

p
(
xk−1:k | yf1:k,Θ

f
n

)
=

N∑
i=1

w
f(i)
k−1|kδ

(
xk−1 − xf(i)

k−1

)
δ
(
xk − xf(i)

k

)
for k = 1, · · · , T (3.24)

where

w
f(i)
k−1|k =

w
f(i)
k−1p

(
x
f(i)
k | xf(i)

k−1,Θ
f
n

)
∑N

j=1 w
f(j)
k−1p

(
x
f(j)
k | xf(j)

k−1,Θ
f
n

) (3.25)

The initial state distribution is approximated as

p (x0) =
N∑
i=1

w
f(i)
0 δ

(
x0 − xf(i)

0

)
(3.26)

Substituting equations (3.23)–(3.26) into equation (3.8), the Q function is derived as

Q1

(
Θf | Θf

n

)
≈

N∑
i=1

w
f(i)
0 ln

[
p
(
x
f(i)
0

)]
+

T∑
k=1

N∑
i=1

w
f(i)
k−1|k ln

[
p
(
x
f(i)
k | xf(i)

k−1,Θ
f
)]

+
T∑
k=1

N∑
i=1

w
f(i)
k ln

[
p
(
yfk | x

f(i)
k ,Θf

)] (3.27)

where

p
(
x
f(i)
k | xf(i)

k−1,Θ
f
)

=
1√

(2π)nx |Q|
exp

{
−1

2

[
x
f(i)
k − f

(
x
f(i)
k−1, θ

x
)]T

Q−1 [· · · ]
}

(3.28)

p
(
yfk | x

f(i)
k ,Θf

)
=

1√
(2π)n

f
y |Rf |

exp

{
−1

2

[
yfk − h

f
(
x
f(i)
k , θf

)]T (
Rf
)−1

[· · · ]
}

(3.29)

Therefore, the Q function is finally derived as

Q1

(
Θf | Θf

n

)
≈

N∑
i=1

w
f(i)
0 ln

[
p
(
x
f(i)
0

)]
+

T∑
k=1

N∑
i=1

w
f(i)
k−1|k

{
− ln

[√
(2π)nx |Q|

]
− 1

2

[
x
f(i)
k − f

(
x
f(i)
k−1, θ

x
)]T

Q−1 [· · · ]
}

+
T∑
k=1

N∑
i=1

w
f(i)
k

{
− ln

[√
(2π)n

f
y |Rf |

]
− 1

2

[
yfk − h

f
(
x
f(i)
k , θf

)]T (
Rf
)−1

[· · · ]
}

(3.30)

The algorithm is denoted as EM1 and can be summarized as:
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1. Initialization: Initialize the parameter Θf to Θf
0 . Set n = 0.

2. Expectation: Evaluate the approximate Q function according to equation (3.30) using

the current parameter estimate Θf
n.

3. Maximization: Maximize the approximate Q function with respect to Θf and obtain

the new parameter estimate Θf
n+1. Set n = n+ 1.

4. Iteration: Repeat steps 2 and 3 until the convergence condition is satisfied.

3.4.2 Using both fast and slow delayed laboratory measurements

To derive the Q function in Section 3.3.2, probability densities {p (xk | y1:k,Γn,Θ
m
n )}Tk=1,

{p (xk−1:k | y1:k,Γn,Θ
m
n )}Tk=1, and

{
p
(
xsj :sj+lj | y1:sj+lj ,Γn,Θ

m
n

)}Nm

j=1
must be obtained. Since

the delay of slow laboratory measurements is estimated and the calculation is off-line, the

slow laboratory measurements can be treated as if there is no delay; this makes fusing two

measurements simpler.

First, consider an augmented set of states:

xasnj +lj
=

[
xsnj +lj

msnj +lj

]
(3.31)

where

snj = ks(j)− lj − (dj)n (3.32)

msnj +lj = msnj +lj−1 +
1

lj + 1
xsnj +lj (3.33)

msnj +lj−1 =
1

lj + 1

snj +lj−1∑
i=snj

xi (3.34)

with (dj)n being the estimated delay of slow laboratory measurement ymks(j) after nth EM

iteration. An augmented measurement at time step snj + lj is defined as

yasnj +lj
=

[
yfsnj +lj

ymks(j)

]
(3.35)

The covariance of yasnj +lj
is Ra =

[
Rf 0
0 Rm

]
.
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Using Bayes’ rule, the posterior density of state p
(
xasnj +lj

| y1:snj +lj ,Γn,Θ
m
n

)
is calculated

as

p
(
xasnj +lj

| y1:snj +lj ,Γn,Θ
m
n

)
=

p
(
yasnj +lj

| xasnj +lj
,Γn,Θ

m
n

)
p
(
xasnj +lj

| y1:snj +lj−1,Γn,Θ
m
n

)
∫
p
(
yasnj +lj

| xasnj +lj
,Γn,Θm

n

)
p
(
xasnj +lj

| y1:snj +lj−1,Γn,Θm
n

)
dxasnj +lj

(3.36)

The first term in the numerator is obtained as

p
(
yasnj +lj

| xasnj +lj
,Γn,Θ

m
n

)
=

1√
(2π)n

a
y |Ra

n|
exp

{
−1

2

[
yasnj +lj

− ha
(
xasnj +lj

)]T
(Ra

n)−1 [· · · ]
}

(3.37)

where

nay = nfy + nmy (3.38)

Ra
n =

[
Rf
n 0

0 Rm
n

]
(3.39)

ha
(
xasnj +lj

)
=

 hf
(
xsnj +lj , θ

f
)

hm
(
msnj +lj , θ

m
) (3.40)

The second term in the numerator can be computed as

p
(
xasnj +lj

| y1:snj +lj−1,Γn,Θ
m
n

)
=∫

p
(
xasnj +lj

| xasnj +lj−1,Θ
m
n

)
p
(
xasnj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
dxasnj +lj−1 (3.41)

where

xasnj +lj−1 =

[
xsnj +lj−1

msnj +lj−1

]
(3.42)

The transition density p
(
xasnj +lj

| xasnj +lj−1,Θ
m
n

)
is determined by the following equation

(3.43), with consideration of equations (3.1a) and (3.33),

xasnj +lj
=

 f
(
xsnj +lj−1, θ

x
n

)
msnj +lj−1 + 1

lj+1
f
(
xsnj +lj−1, θ

x
n

) +

[
ωsnj +lj−1
1

lj+1
ωsnj +lj−1

]
(3.43)

Assume that p
(
xasnj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
in equation (3.41) can be approximated by

the particle set
{
x
a(i)
snj +lj−1, w

a(i)
snj +lj−1

}N
i=1

using the particle filter.

p
(
xasnj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
=

N∑
i=1

w
a(i)
snj +lj−1δ

(
xasnj +lj−1 − x

a(i)
snj +lj−1

)
(3.44)
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To construct
{
x
a(i)
snj +lj−1, w

a(i)
snj +lj−1

}N
i=1

, we need the particle set that approximates the density

p
(
xasnj :snj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
, i.e.

p
(
xasnj :snj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
=

N∑
i=1

w
(i)
snj +lj−1δ

(
xsnj :snj +lj−1 − x(i)

snj :snj +lj−1

)
(3.45)

Using the property of the particle filter, the smoothing particles
{
x

(i)
snj :snj +lj−1

}N
i=1

can be

obtained by storing and resampling the particle trajectory, and
{
w

(i)
snj :snj +lj−1

}N
i=1

are the

particle weights of state posterior density p
(
xsnj +lj−1 | y1:snj +lj−1,Γn,Θ

m
n

)
. Therefore, the

particle set of the augmented state at time step ks(j)− 1 is

x
a(i)
snj +lj−1 =

[
x

(i)
snj +lj−1

m
(i)
snj +lj−1

]
(3.46)

w
a(i)
snj +lj−1 = w

(i)
snj +lj−1 (3.47)

where

m
(i)
snj +lj−1 =

1

lj + 1

snj +lj−1∑
k=snj

x
(i)
k (3.48)

Substituting equation (3.44) into equation (3.41) results in

p
(
xasnj +lj

| y1:snj +lj−1,Γn,Θ
m
n

)
=

N∑
i=1

w
a(i)
snj +lj−1δ

(
xasnj +lj

− xa(i)
snj +lj

)
(3.49)

where particles
{
x
a(i)
snj +lj

}N
i=1

are calculated through equation (3.43).

Next, substituting equation (3.49) into equation (3.36) yields

p
(
xasnj +lj

| y1:snj +lj ,Γn,Θ
m
n

)
=

N∑
i=1

w
a(i)
snj +lj−1p

(
yasnj +lj

| xa(i)
snj +lj

,Γn,Θ
m
n

)
∑N

k=1 w
a(k)
snj +lj−1p

(
yasnj +lj

| xa(k)
snj +lj

,Γn,Θm
n

)δ (xasnj +lj
− xa(i)

snj +lj

)
(3.50)

Assume p
(
xasnj +lj

| y1:snj +lj ,Γn,Θ
m
n

)
can be represented as

p
(
xasnj +lj

| y1:snj +lj ,Γn,Θ
m
n

)
=

N∑
i=1

w
a(i)
snj +lj

δ
(
xasnj +lj

− xa(i)
snj +lj

)
(3.51)
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Comparing equation (3.50) with equation (3.51), we can easily find that

w
a(i)
snj +lj

=
w
a(i)
snj +lj−1p

(
yasnj +lj

| xa(i)
snj +lj

,Γn,Θ
m
n

)
∑N

k=1 w
a(k)
snj +lj−1p

(
yasnj +lj

| xa(k)
snj +lj

,Γn,Θm
n

) (3.52)

After computing the weights, the posterior density of state xsnj +lj and msnj +lj can be repre-

sented as

p
(
xsnj +lj | y1:snj +lj ,Γn,Θ

m
n

)
=

N∑
i=1

w
(i)
snj +lj

δ
(
xsnj +lj − x

(i)
snj +lj

)
(3.53)

p
(
msnj +lj | y1:snj +lj ,Γn,Θ

m
n

)
=

N∑
i=1

w
(i)
snj +lj

δ
(
msnj +lj −m

(i)
snj +lj

)
(3.54)

where

w
(i)
snj +lj

= w
a(i)
snj +lj

(3.55)

Thus, the probability densities p (xk | y1:k) for k = ks(1), · · · , ks(Nm) have been derived,

while densities for the other k values can be obtained through the general particle filter

using fast measurements and represented as

p (xk | y1:k) =
N∑
i=1

w
(i)
k δ
(
xk − x(i)

k

)
(3.56)

The joint densities p (xk−1:k | y1:k) for k = 1, · · · , T are approximated as

p (xk−1:k | y1:k) =
N∑
i=1

w
(i)
k−1|kδ

(
xk−1 − x(i)

k−1

)
δ
(
xk − x(i)

k

)
(3.57)

where

w
(i)
k−1|k =

w
(i)
k−1p

(
x

(i)
k | x

(i)
k−1

)
∑N

n=1 w
(n)
k−1p

(
x

(n)
k | x

(n)
k−1

) (3.58)

and the initial state distribution is approximated as

p (x0) =
N∑
i=1

w
(i)
0 δ
(
x0 − x(i)

0

)
(3.59)

Therefore, the remaining task is to calculate
{
p
(
xsj :sj+lj | y1:sj+lj ,Γn,Θ

m
n

)}Nm

j=1
. Since

ymks(j) depends on msj+lj and msj+lj is a summation of states xsj :sj+lj , the first term on the
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right hand side of equation (3.18) can be calculated as

Nm∑
j=1

∫
ln
[
p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)]
p
(
xsj :sj+lj | Y f , Y m,Γn,Θ

m
n

)
dxsj :sj+lj

≈
Nm∑
j=1

∫
ln
[
p
(
ymks(j) | msj+lj , dj,Θ

m
)]
p
(
msj+lj | y1:sj+lj ,Γn,Θ

m
n

)
dmsj+lj (3.60)

Now, we can see the problem is that there exists no analytical representation of the above

equation as the delay dj is unknown. A practical solution is to assume dj = (dj)n, so

Nm∑
j=1

∫
ln
[
p
(
ymks(j) | xsj :sj+lj , dj,Θ

m
)]
p
(
xsj :sj+lj | Y f , Y m,Γn,Θ

m
n

)
dxsj :sj+lj

≈
Nm∑
j=1

∫
ln
[
p
(
ymks(j) | msnj +lj , (dj)n ,Θ

m
)]
p
(
msnj +lj | y1:snj +lj ,Γn,Θ

m
n

)
dmsj+lj

≈
Nm∑
j=1

N∑
i=1

w
(i)
snj +lj

ln
[
p
(
ymks(j) | m

(i)
snj +lj

, (dj)n ,Θ
m
)]

(3.61)

where the final representation is obtained by substituting equation (3.54) into equation

(3.61).

Substituting equations (3.56)–(3.59) and equation (3.61) into equation (3.18), the Q

function is derived as

Q2 (Γ,Θm | Γn,Θm
n ) ≈

N∑
i=1

w
(i)
0 ln

[
p
(
x

(i)
0

)]
+

Nm∑
j=1

N∑
i=1

w
(i)
snj +lj

ln
[
p
(
ymks(j) | m

(i)
snj +lj

, (dj)n ,Θ
m
)]

+
T∑
k=1

N∑
i=1

w
(i)
k ln

[
p
(
yfk | x

(i)
k ,Θ

m
)]

+
T∑
k=1

N∑
i=1

w
(i)
k−1|k ln

[
p
(
x

(i)
k | x

(i)
k−1,Θ

m
)]

(3.62)

where

p
(
ymks(j) | m

(i)
snj +lj

, (dj)n ,Θ
m
)

=

1√
(2π)n

m
y |Rm|

exp

{
−1

2

[
ymks(j) − hm

(
m

(i)
snj +lj

, θm
)]T

(Rm)−1 [· · · ]
}

(3.63)

p
(
x

(i)
k | x

(i)
k−1,Θ

m
)

=
1√

(2π)nx |Q|
exp

{
−1

2

[
x

(i)
k − f

(
x

(i)
k−1, θ

x
)]T

Q−1 [· · · ]
}

(3.64)

p
(
yfk | x

(i)
k ,Θ

m
)

=
1√

(2π)n
f
y |Rf |

exp

{
−1

2

[
yfk − h

f
(
x

(i)
k , θ

f
)]T (

Rf
)−1

[· · · ]
}

(3.65)
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Therefore, the Q function is finally derived as

Q2 (Γ,Θm | Γn,Θm
n ) ≈

N∑
i=1

w
(i)
0 ln

[
p
(
x

(i)
0

)]
+

Nm∑
j=1

N∑
i=1

w
(i)
snj +lj

{
− ln

[√
(2π)n

m
y |Rm|

]
− 1

2

[
ymks(j) − hm

(
m

(i)
snj +lj

, θm
)]T

(Rm)−1 [· · · ]
}

+
T∑
k=1

N∑
i=1

w
(i)
k

{
− ln

[√
(2π)n

f
y |Rf |

]
− 1

2

[
yfk − h

f
(
x

(i)
k , θ

f
)]T (

Rf
)−1

[· · · ]
}

+
T∑
k=1

N∑
i=1

w
(i)
k−1|k

{
− ln

[√
(2π)nx |Q|

]
− 1

2

[
x

(i)
k − f

(
x

(i)
k−1, θ

x
)]T

Q−1 [· · · ]
}

(3.66)

It should be noticed that the delay Γ cannot be estimated by maximizing Q2 (Θm | Θm
n )

above. To estimate dj for each slow laboratory measurements ymks(j), the maximum a poste-

riori principle can be used:

(dj)n+1 = arg max
dj

p
(
dj | X̂, Y m

)
(3.67)

where X̂ is the estimated state trajectory obtained from the particle filter using parameters

Θm
n . The posterior density of dj can be calculated using Bayes’ rule as

p
(
dj = tr | X̂, Y m

)
= p

(
dj = tr | m̂t, y

m
ks(j)

)
=

p
(
ymks(j) | X̂t, dj = tr

)
p (dj = tr | m̂t)∑M

n=1 p
(
ymks(j) | m̂n, dj = nr

)
p (dj = nr | m̂n)

=
p
(
ymks(j) | m̂t, dj = tr

)
p (dj = tr)∑M

n=0 p
(
ymks(j) | m̂n, dj = nr

)
p (dj = nr)

= wjt

(3.68)

where

m̂t =
1

lj + 1

ks(j)−lj∑
k=ks(j)−lj−tr

x̂k (3.69)

So the algorithm, denoted as EM2, can be summarized as

1. Initialization: Initialize the parameters Θm, Γ to Θm
0 , Γ0. Set n = 0.

2. Expectation: Evaluate the approximate Q function according to equation (3.66) using

the current parameter estimates Θm
n and Γn.
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3. Maximization: Maximize the approximate Q function with respect to Θm using Γ = Γn,

and get the new parameter estimate Θm
n+1. Obtain Γn+1 by maximizing wjt in equation

(3.68) for j = 1, 2, · · · , Nm. Set n = n+ 1.

4. Iteration: Repeat steps 2 and 3 until the convergence condition is satisfied.

3.5 Simulation and experimental study

In this section, the proposed method is evaluated through simulation and experimental

studies. In the first simulation example, fast measurements with different noise covariances

are used to test if fast measurements will influence the performance of EM2. In the second

simulation example, EM2 with known delays is also examined. In the third example, the

proposed method is experimentally studied on a hybrid tank with different slow delayed

laboratory measurements. The details of EM1 and EM2 implementations are also shown in

the third example.

3.5.1 Nonlinear process example

Consider the following nonlinear process taken from [25], [28]:

xk+1 = axk + buk + ωk (3.70)

yfk = c cos (xk) + vfk (3.71)

ymks(j) = msj+lj + vmks(j) (3.72)

where ωk ∼ N (0, Q), vk ∼ N
(
0, Rf

)
, vmks(j) ∼ N (0, Rm) and a = 0.9, b = c = 1, Q = 0.001,

Rf = 0.1, Rm = 5 × 10−6. The integral term msj+lj is calculated through equation (3.2),

where the sample collection time lj randomly varies between 1 and 2, and the time delay dj

for laboratory measurement ymks(j) follows the uniform distribution:

p (dj = t) =
1

3
for t = 0, 1, 2 (3.73)

The data set collected from the nonlinear process is shown in Figure 3.1. There are 100

fast measurements and 9 slow delayed laboratory measurements in this data set. In the

simulation, Rf and Rm are assumed to be known, while a, b, c, Q and dj are the parameters

to be estimated. The initial parameter estimates are â = b̂ = ĉ = Q̂ = 0.5, and d̂j = 0 for
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j = 1, · · · , Nm. In the PF approximation, N = 150 particles are used. Figure 3.2 shows the

trajectories of the parameter estimates when both fast and delayed laboratory measurements

are used. Correspondingly, the estimated delays are plotted in Figure 3.3. Table 3.1 contains

the parameter values after 100 EM iterations, where EM1 represents the algorithm using only

fast measurements and EM2 uses both measurements. For comparison, the simulation result

when Rf = 0.4, Rm = 5× 10−6 is also included.

Table 3.1: Parameter values after 100 iterations

Parameters
Rf = 0.1 Rf = 0.4

EM1 EM2 EM1 EM2
a = 0.9 0.9022 0.8993 0.8808 0.8934
b = 1 1.0106 1.0050 1.0657 1.0681
c = 1 1.0028 1.0044 0.7950 0.7841

Q = 0.001 1.3585× 10−10 1.0795× 10−7 6.5368× 10−10 6.2305× 10−7

The number of
– 8 – 6correctly estimated

delays (Nm = 9)

Table 3.2: State estimation errors (ARMSE) of particle filters for different algorithms using
the final parameter estimates

Algorithms
Rf = 0.1 Rf = 0.4

EM1 EM2 EM1 EM2
ARMSE 0.0925 0.0913 0.1164 0.1147

As can be seen from Table 3.1, although the estimated Q is much smaller than the true

value, parameters a, b, c can converge to the neighbourhood of true values. When the

noise variance Rf is increased from 0.1 to 0.4, the errors of estimated parameters are also

increased, especially for the estimate of c, since the parameter c is directly related to the fast

measurements. It is seen that algorithm EM2, which combines two measurements, performs

slightly better in the estimation of a and b than EM1 in this example. Table 3.2 contains

the ARMSE over 100 Monte Carlo simulations for state estimation with particle filters that

use the final parameter estimates of EM1 and EM2. It shows that EM2 can also result in a

better state estimation than EM1.
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Figure 3.1: True states, fast measurements and slow delayed laboratory measurements with
Rf = 0.1, Rm = 5× 10−6
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Figure 3.2: Parameter trajectories using both fast and delayed laboratory measurements
with Rf = 0.1, Rm = 5× 10−6
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Figure 3.3: The estimations of delays with Rf = 0.1, Rm = 5× 10−6

3.5.2 Semi-continuous fermentation example

A model of the semi-continuous (fed-batch) fermentation of baker’s yeast is tested here.

Assuming Monod-type kinetics for biomass growth and substrate consumption, the system

is described by the following equations [5], [14]:

dx1

dt
=

(
θ1x2

θ2 + x2

− u1 − θ4

)
x1 (3.74)

dx2

dt
= − θ3x1x2

θ2 + x2

+ u1 (u2 − x2) (3.75)

where x1 is the biomass concentration (g/L), x2 is the substrate concentration (g/L), u1 is

the dilution factor (h−1), and u2 is the substrate concentration in the feed (g/L). θ1, θ2, θ3

and θ4 are the system parameters with true values of θ1 = 0.31, θ2 = 0.18, θ3 = 0.56 and

θ4 = 0.05. In the simulation, the system is discretized with a sampling time ∆t = 1 min

with state covariance Q equal to 10−4I. The fast and slow delayed laboratory measurements

are

yfk =
[
1 0

]
xk + vfk vfk ∼ N

(
0, Rf

)
(3.76)

ymks(j) =
[
1 0

]
msj+lj + vmks(j) vmks(j) ∼ N (0, Rm) (3.77)

where Rf = 0.05, Rm = 5 × 10−6, the sample collection time lj of integral term msj+lj

randomly varies from 1 to 5 minutes following a uniform distribution, and the time delay dj
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also randomly varies between 0, 10 and 20 minutes which means p (dj = 10t) = 1/3 for t =

0, 1 or 2.

Assume θ1 and θ4 in equation (3.74) are unknown. T = 2000 fast measurements and

Nm = 65 slow delayed laboratory measurements are collected from the process simulation,

which are shown in Figure 3.4. The parameter estimation algorithms proposed in Section 3.4

are applied to this data set. The initial guesses of two parameters for both algorithms are

θ̂1 = 0.1, θ̂4 = 0.1. The initial values for all time delays are set to zero. N = 200 particles

are used for the particle filter approximation. EM1, EM2 and the EM2 version that uses

laboratory measurements with known delays are simulated in this example.

After 100 iterations, Figure 3.5 shows the parameter trajectories for each algorithm. The

parameters converge to the neighborhood of the true parameters. Although the trajectory

trend of each algorithm is similar, Table 3.3 shows that the parameter estimation results

of EM2 are closer to the true values. The delay estimation is shown in Figure 3.6 and

the delay estimation accuracy of EM2 is about 81.5%. However, EM2 with known delays

performs worse than EM2, which seems unreasonable. The possible reason is the particle

filter approximation. In Table 3.4, the algorithm EM2 with known delays has the smallest

error in estimates of state x1, which is measured directly.

Table 3.3: Parameter values after 100 iterations for the semi-continuous fermentation
process

Parameters EM1
EM2 EM2

(delay unknown) (delay known)
θ1 = 0.31 0.2831 0.2948 0.2901
θ4 = 0.05 0.0359 0.0439 0.0414

The number of
– 53 –correctly estimated

delays (Nm = 65)

Table 3.4: State estimation errors (ARMSE) of particle filters for different algorithms using
the final parameter estimates for the semi-continuous fermentation process

Algorithms EM1
EM2 EM2

(delay unknown) (delay known)
Biomass concentration x1 0.0474 0.0460 0.0393

Substrate concentration x2 0.0393 0.0437 0.0406
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Figure 3.4: True states, fast measurements and slow delayed laboratory measurements for
the semi-continuous fermentation process
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Figure 3.6: The estimations of delays for the semi-continuous fermentation process

3.5.3 Experimental evaluation on a hybrid tank

The proposed algorithms are experimentally evaluated on a hybrid tank at the University

of Alberta. The details of the experimental plant are introduced in Section 2.5.2. The

nonlinear state space model of the experimental plant derived using first principles modeling

is as follows [19]–[21]:

ḣl =
−k1

sl

√
hl − hm +

1

sl
qi (3.78a)

ḣm =
k1

sm

√
hl − hm +

−k2

sm

√
hm (3.78b)

where hl and hm are the water level of the left and middle tank, respectively, qi is the flow

of the pump, sl and sm are the cross-sectional area of the tanks, which are equal to 243.22

cm2, and k1, k2 are the coefficients of valves V1 and V2 that need to be estimated.

In the experiment, a RBS signal input around the operating point is used as the flow

rate of the pump. The outputs of DP sensors are shown in Figure 3.7. To test the proposed

approaches, the nonlinear state space model is discretized with a sampling time ∆t = 1 s,

using rectangular integration. The system state is defined as x = [hl hm]T and the fast
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measurement is yf = x. Thus,

f (xk, θ
x) = φkθ

x + bk (3.79)

hf (xk) = xk (3.80)

where

θx =
[
k1 k2

]T
(3.81)

φk =

−
√
xk(1)− xk(2)

sl
0√

xk(1)− xk(2)

sm
−
√
xk(2)

sm

 (3.82)

bk = xk +

[
1

sl
qi 0

]T
(3.83)

It is assumed that process noise ωk and fast measurement noise vfk can be approximated

by zero-mean Gaussian distributions with covariances Q = σ2I and Rf = 0.05I, respectively,

where σ2 is set as a small value (0.022) to reduce the estimation error of θx. The initial guess

x̂0 follows a Gaussian distribution N
(

[44.19 34.83]T , I
)

.

In this example, we conduct two experiments. In the first one, the integrated laboratory

measurement is the integration of the left tank level, and in the second experiment, the

integrated laboratory measurement is the integration of the middle tank level [21]. Therefore,

the slow delayed laboratory measurement is

ymks(j) = Cmmsj+lj + vmks(j) (3.84)

where Cm varies depending on the experiment, vmks(j) is the measurement noise which follows

a Gaussian distribution N (0, σ2
m) and the variance σ2

m is equal to 4× 10−6. The parameters

to be estimated are the delay dj for each slow delayed laboratory measurement ymks(j).

There are 7000 measurements obtained from DP level sensors as shown in Figure 3.7.

In the simulation, we assume the fast measurements are inaccurate and noisy. So the fast

measurement data used to conduct parameter estimation is the middle tank DP sensor

output, with artificially added Gaussian noise whose covariance is equal to Rf . In order to

construct the slow delayed laboratory measurement, the values of DP sensors are integrated

over lj + 1 sampling instants as shown in equation (3.2). Specifically, the collection time of

samples lj randomly varies from 1 to 5 seconds following a uniform distribution, and the time
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Figure 3.7: Outputs of the left and middle tank DP level sensors

delay dj also randomly varies between 0, 1, 2 and 3 minutes, which means p (dj = 60t) = 1/4

for t = 0, 1, 2 or 3.

For comparison, EM1 uses the first 5000 fast measurements to estimate θx, and EM2

uses the same 5000 fast measurements and Nm = 25 slow delayed laboratory measurements

to estimate both θx and Γ. Note that there are 7000 DP sensors measurements. Hence, the

remaining 2000 DP sensors measurements are used for testing the model.

In EM1, the Q function is calculated according to equation (3.30), where the first and last

term on the right hand side are independent on θx. So, maximizing Q1 (θx | θxn) is equivalent

to maximize the following equation:

F (θx | θxn) =
T∑
k=1

N∑
i=1

w
f(i)
k−1|k

{
− ln

[√
(2π)nx |Q|

]
− 1

2

[
x
f(i)
k − f

(
x
f(i)
k−1, θ

x
)]T

Q−1 [· · · ]
}

=
T∑
k=1

N∑
i=1

w
f(i)
k−1|k

[
− ln (2πσ)− 1

2σ2

(
x
f(i)
k − φf(i)

k−1θ
x − bf(i)

k−1

)T
(· · · )

]
(3.85)

Then, taking the derivative of F (θx | θxn) with respect to θx yields

∂F (θx | θxn)

∂θx
=

T∑
k=1

N∑
i=1

w
f(i)
k−1|k

[
1

σ2

(
φ
f(i)
k−1

)T (
x
f(i)
k − φf(i)

k−1θ
x − bf(i)

k−1

)]
(3.86)
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Figure 3.8: Parameter trajectories for the hybrid tank system (EM2l: EM2 using the
integrated left tank level as the laboratory measurement. EM2m: EM2 using the

integrated middle tank level as the laboratory measurement)

To maximize F (θx | θxn), the right hand side of equation (3.86) is set to zero and the new

parameter estimate θxn+1 can be calculated by

θxn+1 =

[
T∑
k=1

N∑
i=1

w
f(i)
k−1|k

(
φ
f(i)
k−1

)T
φ
f(i)
k−1

]−1 [ T∑
k=1

N∑
i=1

w
f(i)
k−1|k

(
φ
f(i)
k−1

)T (
x
f(i)
k − bf(i)

k−1

)]
(3.87)

In EM2, the parameters to be estimated are the time delay sequence Γ and θx. The

Q function is calculated according to equation (3.66). Since the parameter θm of the slow

and delayed laboratory measurements are assumed to be known, the new parameter esti-

mate can be calculated using equation (3.87) by replacing
{
w
f(i)
k−1|k, x

f(i)
k , φ

f(i)
k−1, b

f(i)
k−1

}N
i=1

with{
w

(i)
k−1|k, x

(i)
k , φ

(i)
k−1, b

(i)
k−1

}N
i=1

derived from the particle filter using both fast and delayed slow

laboratory measurements.

In simulation, the initial guesses for parameters are
{
k̂1 = 25, k̂2 = 13

}
, and d̂j = 0 for

j = 1, · · · , Nm. The number of particles in the particle filtering approximation is N = 200.

The estimations are terminated after 100 iterations. Figure 3.8 shows the trajectory of the

estimates for k1 and k2. Tables 3.5 and 3.6 contain the final parameter values and test errors

for both levels, respectively. The test errors of EM2s are smaller than EM1, which indicates

that fusing the slow delayed laboratory measurements can indeed improve the accuracy of
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Table 3.5: Parameter values after 100 iterations for the hybrid tank system

Parameters EM1
EM2 EM2

(left level integrated) (middle level integrated)
k1 25.6248 25.6065 25.6165
k2 13.4859 13.4770 13.4821

The number of
– 13 16correctly estimated

delays (Nm = 25)

Table 3.6: Test errors (RMSE) using the final parameter estimates of different algorithms
for the hybrid tank system

Test error (RMSE) EM1
EM2 EM2

(left level integrated) (middle level integrated)
Left tank level 0.1760 0.1309 0.1560

Middle tank level 0.0587 0.0328 0.0456

estimated parameters k1 and k2, even when the estimations of delays may not be sufficiently

accurate.

3.6 Conclusions

In this chapter, the problem of parameter estimation for a nonlinear system with multirate

measurements and random time delays is studied. The proposed method is based on EM

algorithm by incorporating the delays of slow measurements as the parameter to be esti-

mated. In the expectation step, smoothing densities are approximated using the particle

filter. In the maximization step, delays are estimated by implementing maximum a pos-

teriori principle. Simulations show the proposed algorithm which uses both fast and slow

delayed measurements can provide more accurate parameter and state estimates than that

only using fast measurements.
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Chapter 4

State and parameter estimation for
the FWKO vessel

4.1 Process Description

A Free Water Knockout (FWKO) is a three-phase separator that is used to remove free

water held in the vessel and separate brine from crude oil. It is referred to as a three-phase

separator because it is capable of segregating oil, gas, and free water [22]. The principle of

FWKO is that the oily emulsion will get separated from the water because of the difference

in their densities, rate of flow, and residence time. Figure 4.1 is the picture of a FWKO

vessel.

In oil sands industries, it is important to control the water content in the emulsion

output of the FWKO to ensure the product quality. Therefore, the objective is to develop a

model for the FWKO output emulsion water content and estimate the water content. The

data set used in this chapter is collected from an industrial site, with the source withheld

for reasons of confidentiality. Figure 4.2 shows the process flow diagram of the research

object and the measured variable of each sensor is presented in Table 4.1. These online

measurements are sampled every 1 minute and can be treated as fast measurements. It is

known that the water content measured by sensor AI434 is not accurate and reliable. So the

operators also sample the output emulsion for laboratory analysis. The off-line laboratory

analysis is much more accurate, but is only available every 6 hours. Figure 4.3 shows the

comparison between the measurements from the online sensor and laboratory analysis, where

the measurements are resampled as introduced in the next section, and the Y-axis scale

is erased for confidentiality. It can be seen that the online measurement has an obvious
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Figure 4.1: Free Water Knockout (FWKO) [49]

bias compared to the laboratory data. Therefore, obtaining a more accurate and real-time

measurement of the output emulsion water content is desirable.

Considering this multirate measurements system, the algorithm proposed in Chapter 3 is

used to estimate the parameters as well as the states for FWKO vessels. The remainder of this

chapter is organized as follows. Section 4.2 introduces the procedure of data preprocessing.

Section 4.3 solves the parameter estimation problem for the FWKO vessel. In Section 4.4,

we focus on the state estimation for water content when the laboratory analysis delay is

unknown. The final section includes the conclusion of this chapter.

Table 4.1: Measured variables of the online sensors

Sensor Variable
FI451 Emulsion input flowrate (m3/h)
TI356 Emulsion input temperature (oC)

FFIC780 Clarifier injection flowrate (mL/min)
FIC435 Produced water flowrate (m3/h )
LHS433 FWKO level measurement (%)
TI437 FWKO temperature (oC)

PIT431 FWKO pressure (kPa)
FIC434 Emulsion output flowrate (m3/h )
AI434 Emulsion output water content (%)
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Figure 4.2: Process flow diagram for the Free Water Knockout (FWKO)
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Figure 4.3: Comparison between the online measurements and laboratory analysis
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4.2 Data preprocessing

Before modelling the FWKO system, the original data set is needed to be preprocessed due

to the problems such as missing data, outliers and so on. The methods applied to deal with

these problems are briefly introduced in this section.

Dealing with missing data

Data points are usually missing due to sensors malfunction, process shut down or mainte-

nance activities. The missing value is filled by a random number from a Gaussian distribution

with mean µ and variance σ2. µ and σ2 are calculated according to the previous and future

measurements within a window as 200.

Dealing with outliers

Outliers are detected and replaced dynamically using the moving window Mean Absolute

Deviation (MAD) principle. The MAD around of a set X = {x1, x2, · · · , xn} is calculated

as follows [50]:

MAD (X) =
1

n

n∑
i=1

|xi −m (X)| (4.1)

The choice of measure of central tendency m (X) has a marked effect on the value of the

mean deviation. The two commonly used central points are the mean and median. Since

the mean value may be affected by other possible outliers in the chosen window, the median

value of the data set is used to calculate the MAD. So the data point zk is detected as an

outlier if

|zk −median (Z)| > 2MAD (Z) (4.2)

where the data set Z = {zk−1000, · · · , zk−1, zk+1, · · · , zk+1000}.

Resampling

Since there are a very large number of samples in the data set, the fast measurements are

resampled every 10 minutes to reduce the computational cost.
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Figure 4.4: Input data for the FWKO vessel

4.3 Parameter estimation for the FWKO vessel

Considering the continuity of the separation process in the FWKO, it is appropriate to use

a nonlinear dynamic state space model to describe the system as following:[
xk
bk

]
=

[
axk−1 +BTuk−1 + c cos xk−1

bk−1

]
+

[
ωk−1

vbk−1

]
(4.3)

yfk = exk + bk + vfk (4.4)

ymksj = xsj + vmksj (4.5)

where xk is the emulsion output water content (%); bk is the bias; uk is the model input

including five variables: emulsion output flowrate, clarifier injection flowrate, FWKO level,

emulsion input flowrate and temperature, and the input data is shown in Figure 4.4; yfk is the

fast measurement from sensor AI434; ymksj is the jth slow measurement with delay dj which

is sampled at sj and arrives at time ksj; ωk−1, vbk, v
f
k and vmsj are assumed to be independent

and identically distributed Gaussian noises with variances Q = 1, Qb = 0.1, Rf = 4 and

Rm = 1, respectively. So the parameters to be estimated are Θ = {a,B, c, e, d1:Nm}.

The proposed parameter estimation algorithm presented in Chapter 3 is applied to esti-

mate Θ in the state space model. But because the slow measurement in FWKO does not

have integral terms, some minor changes are made to the Q function. By eliminating the
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terms that are not related to Θ, the Q function is given by

Q (Θ | Θn) =
T∑
k=1

N∑
i=1

w
(i)
k

{
− ln

(√
2π|Rf |

)
−
(
yfk − ex

(i)
k − b

(i)
k

)2

2Rf

}

+
T∑
k=1

N∑
i=1

w
(i)
k−1|k

{
− ln

(√
2π|Q|

)
−
(
x

(i)
k − ax

(i)
k−1 − BTuk−1 − c cos x

(i)
k−1

)2

2Q

}
(4.6)

where
{
x

(i)
k , w

(i)
k

}N
i=1

is the particle set from particle filter, w
(i)
k−1|k is calculated through

equation (3.58).

By taking the derivative over the Q function with respect to {a,B, c, e} and setting it to

zero, the parameter estimates of the current iteration are calculated as

an+1 =

∑N
i=1 w

(i)
k−1|kx

(i)
k−1

(
x

(i)
k − BT

n uk−1 − cn cos x
(i)
k−1

)
∑N

i=1 w
(i)
k−1|k

(
x

(i)
k−1

)2 (4.7)

Bn+1 =

(
T∑
k=1

uk−1u
T
k−1

)−1 [ T∑
k=1

N∑
i=1

w
(i)
k−1|k

(
x

(i)
k − anx

(i)
k−1 − cn cos x

(i)
k−1

)
uk−1

]
(4.8)

cn+1 =

∑N
i=1 w

(i)
k−1|k cos x

(i)
k−1

(
x

(i)
k − anx

(i)
k−1 − BT

n uk−1

)
∑N

i=1 w
(i)
k−1|k

(
cos x

(i)
k−1

)2 (4.9)

en+1 =

∑T
k=1

∑N
i=1 w

(i)
k x

(i)
k

(
yfk − b

(i)
k

)
∑T

k=1

∑N
i=1 w

(i)
k

(
x

(i)
k

)2 (4.10)

The delay is assumed to be 0, 1 or 2 hours and is estimated by applying equation (3.67).

In the simulation, the initial guesses for parameters are â = 0.5, ĉ = 1, ê = 1, B̂T =[
0.01 0.01 0.01 0.01 0.01

]
and d̂j = 0 for j = 1, · · · , Nm. The simulation is terminated

when the mean absolute error (MAE) between the estimated water contents from particle

filter and the true laboratory measurements stops decreasing. In particular, we consider two

MAE, for which MAE1 and MAE2 are the mean absolute errors after and before fusing the

laboratory measurements, respectively. Since we only have the references from laboratory

analysis, MAE2 is a better criterion to evaluate the algorithms. Moreover, two algorithms

are simulated for comparison, where EM1 assumes there are no delays in laboratory analysis

and EM2 considers variable delays as described in Chapter 3.

Figure 4.5 shows the state estimation performance on the entire training data using EM1.

Figure 4.9 is a plot of estimated bias of the online sensor. The bias has a similar trend with
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Figure 4.5: State estimation performance of EM1 on the entire training data
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Figure 4.6: Parameter trajectories of EM1 when using the entire training data
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Figure 4.7: MAE trajectories of EM1 when using the entire training data

the online measurements. Figure 4.6 and 4.7 plot the parameter and MAE trajectories,

respectively. As we can see, although the MAE trajectories converge, the parameter trajec-

tories are still changing. It is shown that the state estimation is not satisfactory, especially

in the time period before 100000 min.

Therefore, considering the instability of the laboratory analysis in this time period, we

discard the data points before 150000 min, and train a model on the rest of the data. In the

second simulation, the initial guesses are unchanged, but noise covariances are increased to

Q = 6, Qb = 1, Rf = 6 and Rm = 1. As seen in Figure 4.8, the state estimation performance

are improved. The corresponding parameter and MAE trajectories are shown in Figures 4.10

and 4.11, respectively. The parameter trajectories demonstrate that the parameter estimates

for c and e have converged.

Table 4.2 shows the state estimation results in the last iteration for the two simulations.

It is shown that the proposed algorithm EM2, which considers the measurement delays,

provides best estimates on water content. The algorithm assuming no delays also performs

better than the online sensor.
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Figure 4.8: State estimation performance of EM1 on a part of the training data
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Figure 4.9: Bias estimation of EM1 on a part of the training data
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Figure 4.10: Parameter trajectories of EM1 when using a part of the training data
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Figure 4.11: MAE trajectories of EM1 when using a part of the training data
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Table 4.2: MAE comparison of different algorithms for the water content estimates

Simulation1 Simulation2
Online sensor EM1 EM2 Online sensor EM1 EM2

MAE1 – 3.2104 3.0699 – 0.4799 0.4536
MAE2 6.1641 4.9642 4.6477 6.0341 3.0642 2.7650

4.4 State estimation for the FWKO vessel

In the previous section, we consider the parameter estimation problem and we also estimate

the states using the estimated parameters for the FWKO vessel. But in application, the

delay of the laboratory analysis is unknown and the objective is to obtain the estimated

water content in real time. Therefore, we focus on the problem of state estimation for the

FWKO vessel in this section.

The state space model of the FWKO vessel is described in Section 4.3. The target is

to calculate the posterior density p
(
xksj | y1:sj−1, y

f
sj :ksj

, ymksj

)
when the laboratory analysis

arrives. In Chapter 2, the delay of the slow measurement was assumed to be known. Thus,

the first step is to estimate the delay dj of the current laboratory analysis ymksj in order to

apply the state estimation method. Similar to the parameter estimation, the delay can be

estimated by applying the MAP approach using the estimated states:

d̂j = arg max
dj

p
(
dj | x̂ksj−dj , ymksj

)
(4.11)

where x̂ksj−dj is derived from the particle filter using fast online measurements. The posterior

density of dj is derived using Bayes’ rule:

p
(
dj = 6t | x̂ksj−dj , ymksj

)
=

p
(
ymksj | x̂ksj−6t, dj = 6t

)
p (dj = 6t)∑2

n=0 p
(
ymksj | x̂ksj−6n, dj = 6n

)
p (dj = 6n)

(4.12)

After obtaining the estimated delay d̂j, the exact Bayesian method proposed in Chapter 2

can be utilized to estimate the states.

In this section, we use another data set that is sampled in a different time period for

testing the performance of the algorithms on data for which they were not trained. The

parameters used are obtained from EM2 that considers variable delays. Table 4.3 contains

the MAE results for different state estimation methods, where JFM-PF is the particle filter

that only uses fast online measurements, EB-PF1 assumes no laboratory analysis delays and
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Figure 4.12: State estimation performance on the test data

EB-PF2 assumes variable delays. Furthermore, it is to be noted that the MAE is calculated

using the laboratory analysis that is assumed to have the delays as estimated in EB-PF2. As

we can see, the performance of the state estimators is much better than the online sensor.

The MAE difference between different particle filters are small, which shows the identified

model is well fitted to the system. By fusing the laboratory analysis and considering variable

delays, we can obtain the most accurate estimates of water contents. Figure 4.12 shows the

state estimation result of EB-PF2.

Table 4.3: MAE comparison of various particle filters for the water content estimates

Online sensor JFM-PF
EB-PF1 EB-PF2

(No delays) (Variable delays)
MAE 8.3373 3.8410 2.8644 2.8264

4.5 Conclusions

In this chapter, we solve the state and parameter estimation problem separately for the

FWKO vessel. Parameter estimation results show that considering the laboratory analysis

delays can improve the estimation accuracy. State estimation performance demonstrates the

effectiveness of the identified model and the proposed state estimation approach.
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Chapter 5

Conclusions

5.1 Summary of this thesis

In this thesis, we consider the multirate processes with variable measurement delays and

integrated states measurements. Specifically, in Chapter 2, we proposed the exact Bayesian

approach and the augmented state approach to deal with the state estimation problem

for this system. Two approaches are shown to have similar performance by simulation and

experiment studies. Moreover, since we fuse fast and slow measurements, the state estimation

results are better than those which only use fast measurements. The improvement of state

estimation declines as the delay and integral time increase.

In order to estimate the states of the multirate process, an accurate representation of

the system is indispensable. Therefore, Chapter 3 studies the parameter estimation problem

when the delays of slow measurements are unknown. The parameters are estimated along

with the time delays using a particle filter under the framework of expectation maximization

algorithm. In the expectation step, smoothing densities in the Q function are approximated

using the particle filter. Then, the Q function can be calculated numerically. In the max-

imization step, the parameters are estimated by differentiating the Q function, while the

delays are estimated by applying the maximum a posteriori (MAP) principle. Simulations

show that the proposed algorithm can provide more accurate estimates of the parameters as

well as the states than that only uses fast measurements.

For further evaluating the proposed methods in Chapter 2 and 3, we discuss the im-

plementations to a FWKO vessel. In this application, the objective is to derive accurate

real-time water content estimates. There are online fast measurements with large errors and

off-line laboratory analysis for the water content. Thus, the FWKO vessel is a multirate
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system. It is noted that we do not consider the sampling collection time for laboratory

analysis since the time is very small compared to the sample time of the system. The first

step is to estimate the parameters and obtain a state space model for the FWKO vessel out-

put emulsion water content in which the algorithm proposed in Chapter 3 is applied. The

second step is to estimate the real-time state, which is the water content. However, since

the delay is unknown when the laboratory measurement is available, the proposed algorithm

in Chapter 2 cannot be directly implemented. Hence, we first estimate the delay using the

MAP principle and then apply the exact Bayesian approach to estimate the water content.

The results show the effectiveness and applicability of the proposed methods.

5.2 Directions for future work

In this section, we would like to share our perspective on the directions that are worthy of

future investigation based on the current results.

• In Chapter 2, we develop two algorithms and implement both the PF and UKF to

solve the nonlinear state estimation problem for the multirate system. In fact, the

two proposed algorithms are generalizable and many Bayes filters can be applied, such

as Kalman filter (KF) for the linear case, and extended Kalman filter (EKF) and

unscented particle filter (UPF) for the nonlinear case. By trying different filters, we

can find the best state estimates for a particular system.

• We have studied the normal state estimation problem for the multirate system with

variable measurement delays. There are still abnormal situations to be considered, for

instance, states with multi-modal distributions, states with constraints, etc.

• In Chapter 3, we estimate the parameters for the dynamic state space model using

the EM algorithm where we obtain a single point estimate for each parameter. We

can also apply the variational Bayesian (VB) algorithm to estimate the distributions

of parameters. In addition, other model representations for the multirate system can

be discussed.

• In the application example of Chapter 4, the laboratory measurement is quantized and

only even integers are recorded. If higher resolution laboratory measurements can be
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obtained in the future, we will be able to derive more accurate state and parameter

estimations for the FWKO vessel.
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