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Abstract 

Simulation has been used extensively for addressing probabilistic uncertainty in 

range estimating for construction projects. However, subjective and linguistically 

expressed information results in added non-probabilistic uncertainty in 

construction management. Fuzzy logic has been used successfully for 

representing such uncertainties in construction projects. In practice, an approach 

that can handle both random and fuzzy uncertainties in a risk assessment model is 

necessary. In this thesis, first, a Fuzzy Monte Carlo Simulation (FMCS) 

framework is proposed for risk analysis of construction projects. To verify the 

feasibility of the FMCS framework and demonstrate its main features, a cost 

range estimating template is developed and employed to estimate the cost of a 

highway overpass project. Second, a hybrid framework that considers both fuzzy 

and probabilistic uncertainty for discrete event simulation of construction projects 

is suggested. The application of the proposed framework is discussed using a real 

case study of a pipe spool fabrication shop. 
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CHAPTER 1 - INTRODUCTION 

1.1 Uncertainty in Construction 

Construction processes are affected by various uncertain variables such as 

weather changes, breakdown of equipment, labour deficiency, and delayed 

delivery of resources; these factors are unpredictable and may lead to the 

construction project failure (Zhang et al. 2003). However, because of the 

complexity of construction projects, the planner is generally incapable of 

considering the combined impact of uncertainties to produce reliable project 

estimates (Ahuja and Nandakumar 1984). Therefore, appropriate methods for 

representing uncertainties and predicting the effect of uncertain factors on 

construction processes are of great importance to effective construction planning. 

Uncertain variables can be represented with different methods according to their 

nature and the available sources of information.  

The most common method for representing the uncertainty of variables is based 

on probability theory. Probability theory has been studied and applied to various 

areas of inquiry since the 17th century (Liu 2002). This type of uncertainty is 

called randomness, and statistical analysis can be used for predicting its 

behaviour. 

In practice, the probability of an event can be estimated according to the 

frequency of that event occurring in a number of experiments (Pedrycz 1998). In 

this case, it is assumed that the nature of the variable is random and that we have 

samples of real numbers of that variable. However, if the number of experiments 
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is not large enough to be significant, and more experiments cannot be performed, 

it is not possible to accurately estimate the event’s probability. Furthermore, some 

factors, such as worker’s skill and complexity of the work, are subjective. In these 

circumstances, we can engage human experts who are usually adept at supplying 

required information of this nature. Nevertheless, the information gained from 

experts is subjective and contains ambiguity. AbouRizk and Halpin (1992) 

suggest that subjective judgment of the modeler can be used for selecting the best 

probabilistic distributions for these uncertain variables. However, experts usually 

think in linguistic terms such as much, very, big, etc. rather than probability 

values (Kim and Fishwick 1997). As a result, subjectively selecting the 

probability distributions may lead to inaccurate representation of the uncertainty 

(Shaheen 2005).   

Fuzzy set theory (Zadeh 1965) provides a methodology for handling linguistic 

variables and representing uncertainty in the absence of complete and precise 

data. Fuzzy logic methods have been used successfully in various types of 

construction applications. For example, fuzzy logic approaches have been 

implemented for project scheduling (Lorterapong and Moselhi 1996), predicting 

industrial construction labour productivity (Fayek and Oduba 2005), and cost 

estimating (Shaheen et al. 2007), to indicate some representative examples.  

In conclusion, when modeling uncertain variables in a construction problem, we 

may face two different scenarios (AbouRizk and Halpin 1992): 

a) Historical data are available for the uncertain variable, and we can use 

probability theory. 
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b) The variable is subjective or sufficient historical data is not available for 

that variable. We can benefit from experts’ information about the 

uncertain variable and use fuzzy set theory for representing that 

information. 

Therefore, probabilistic approach and fuzzy set theory can play a complementary 

role in representing the uncertainties of constructing projects.  

1.2 Problem Statement 

Risk analysis is usually performed on construction projects in order to identify 

potential issues ahead of time and to consider contingency. For this purpose, the 

effect of different uncertain factors on the productivity, cost, schedule, etc. are 

estimated. 

Simulation is a method for risk analysis of construction projects. Monte Carlo 

simulation is a method for estimating the effect of random variables on complex 

problems using computer programs (Liu 2002). Furthermore, discrete event 

simulation can be used to analyze the sensitivity of dynamic schedule and 

resource constraints to unexpected construction scenarios, while Monte Carlo 

simulation is applied to a model that does not depend on time. Since construction 

projects are usually complex in nature, simulation methods are extensively used in 

construction management for risk analysis of projects in which all uncertain 

variables are random (Ahuja and Nandakumar 1984).  

In risk analysis of construction projects, one may also face a project in which all 

the uncertain variables are fuzzy. This situation usually happens when human 
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judgment and decisions are the most important factors, such as forecasting 

seasonal runoff (Mahabir et al. 2003) or performance prediction and evaluation 

(Fayek and Sun 2001). Fuzzy calculus is used for analytically calculating the 

impact of different fuzzy variables on the output. Fuzzy rule-based systems allow 

the user to linguistically express the impact of different variables using if-then 

rules. Furthermore, fuzzy discrete event simulation provides the capability of 

considering fuzzy sets for the durations of the activities in discrete event 

simulation. 

The problem arises when we face a combination of fuzzy and random uncertainty. 

These situations are common in construction projects, where each project is 

unique and only limited data are available for many factors affecting a project 

while other factors can be addressed through historical data. Risk analyzers of 

construction projects usually fail to make appropriate use of available data and 

expert’s judgment simultaneously. Monte Carlo simulation framework is the most 

common risk analysis method in construction management, but this framework 

does not accept fuzzy types of uncertainty as for the input variables. As a result, 

the effect of subjective variables such as weather conditions and labour skill level 

cannot be modeled with fuzzy set theory, although these factors highly affect the 

productivity of construction projects. Some researchers try to incorporate 

subjective factors in simulation models by modifying the fitted distributions based 

on the impact of linguistic descriptors (for example, AbouRizk and Sawhney 

1993, Ayyub and Haldar 1984). In these methods, the existence of a primary 

probabilistic distribution is assumed. Furthermore, the final variable is 
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represented in the form of a probability distribution and cannot fully represent the 

imprecision in the input variables resulting from linguistic expressions. Shaheen 

(2005) feeds the crisp output of a fuzzy rule-based system to the input parameters 

of a simulation model. However, he does not build fuzzy inputs directly to the 

model. 

Since the appropriate representation of input parameters highly affects the 

reliability of the output of a risk analysis project, having a framework that can 

handle both fuzzy and probabilistic uncertainty is very essential for construction 

management. This framework enables us to incorporate the expert’s knowledge 

and historical data in risk analysis of the projects and to explicitly account for 

both random and fuzzy uncertainty. 

1.3 Research Objective  

In order to address the issues discussed in section 1.2, a Fuzzy Monte Carlo 

Simulation (FMCS) framework is proposed, which, for the first time, provides the 

capability of considering fuzzy and probability uncertainty simultaneously for risk 

analysis of construction projects. Furthermore, a framework for considering both 

fuzzy and probabilistic uncertainty in discrete event simulation is suggested. The 

objectives of this thesis are as follows: 

1. To develop a novel approach for dealing with two types of fuzzy and 

probabilistic inputs based on the mathematical foundations of fuzzy and 

probability theory. 
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2. To represent the output of FMCS containing randomness and fuzziness by 

using fuzzy random variables and calculating the mean and variance of the 

output. 

3. To propose fuzzy Cumulative Distribution Function (CDF) as a novel 

approach for risk analysis that is capable of considering both types of, 

fuzzy and random, uncertainties in a single diagram.  

4. To experiment with the consistency of FMCS framework and Monte Carlo 

simulation in the absence of fuzziness. Since the FMCS framework is a 

generalized form of Monte Carlo simulation, its results should be equal to 

Monte Carlo simulation in its extreme case, where we have purely 

probabilistic inputs.  

5. To develop a cost range estimating simulation template based on the 

FMCS method. This template will illustrate one of the practical aspects of 

FMCS in construction management by providing the capability of 

considering both fuzzy and probabilistic uncertainty for input variables.  

6. To illustrate the feasibility of the proposed FMCS framework and fuzzy 

CDF method using an example of cost range estimation for a highway 

overpass project. 

7. To discuss the need for a generalized form of discrete event simulation 

that is capable of considering both fuzzy and probabilistic uncertainty for 

modeling industrial construction projects. 

8. To propose a combined fuzzy and probabilistic framework for discrete 

event simulation using industrial fabrication as an example. 
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In conclusion, this thesis attempts to propose a generalized form of Monte Carlo 

simulation called Fuzzy Monte Carlo Simulation (FMCS) to enhance risk analysis 

methods in construction management. It also discusses a discrete event simulation 

framework that is capable of considering both fuzzy and probabilistic uncertainty 

for modeling construction projects. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows: 

Chapter 2, first provides a background to Monte Carlo simulation, discrete event 

simulation, fuzzy risk analysis, and fuzzy discrete event simulation. Second, it 

reviews available literature in which fuzziness and probabilistic information are 

considered simultaneously.  

Chapter 3 outlines the Fuzzy Monte Carlo Simulation Framework (FMCS). Fuzzy 

Cumulative Distribution Function (CDF) is introduced as a generalized form of 

CDF for modeling the output of FMCS framework in this chapter. Finally, the 

development of a FMCS range estimating template and its practical applications 

through an example of a construction project is illustrated. 

Chapter 4 proposes a new approach for discrete event simulation of industrial 

construction projects through a case study of pipe spool fabrication. Methods for 

enhancing the developed simulation model are discussed, and a framework for 

considering combined fuzzy and probabilistic uncertainty for discrete event 

simulation framework of industrial construction projects is proposed. 
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Chapter 5 discusses the conclusions and contributions of this thesis. In addition, 

limitations and future developments are explained in this chapter.  
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CHAPTER 2 - Background 

2.1 Introduction 

This chapter reviews the extant literature to provide a background and to review the previous 

methods to justify the need for developing combined fuzzy and probabilistic simulation for risk 

assessment of construction projects. A brief background in these areas is provided in Section 2.2 

and 2.3 respectively. In Section 2.2, simulation is introduced as a tool for risk analysis of 

construction projects when facing random type of uncertainty. Risk analysis using fuzzy logic is 

discussed in section 2.3.  

Section 2.4 provides a state of art review regarding the main concern of this research, which is 

risk analysis when facing both fuzzy and random input parameters in a model. Finally, Section 

2.5 summarizes the discussions and concludes the requirement of further steps to be developed 

based on the current state of research in risk analysis of construction projects. 

2.2 Simulation in Construction  

Simulation is a very powerful tool for modeling real life situations. Due to the unreliable 

environment and complex process of construction projects, simulation has been proposed as an 

indispensable problem-solving methodology for analyzing construction processes (Halpin and 

Riggs 1992). Monte Carlo simulation is applied to a model that does not depend on time, while 

time dependant or dynamic simulation is divided into two general categories: Continuous 
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simulation and discrete event simulation. In continues simulation, differential equations are used 

to model the progress of an activity. Discreet event simulation is utilized when mathematical 

modeling is not possible (Hajjar 1999). In the following Sections, a brief background on Monte 

Carlo simulation and discrete event simulation is provided. 

2.2.1 Monte Carlo Simulation for Construction  

Monte Carlo simulation has been used extensively for addressing probabilistic uncertainty in 

construction projects, for example for estimating the duration or cost of a construction project 

(Ahuja et al. 1994) or for schedule risks (McCabe 2003). Computer models can be used to 

predict the output of a system by abstracting its behavior. When probabilistic information of 

uncertain parameters of a computer model is provided, Monte Carlo simulation can be used to 

provide statistical estimations for the outputs. Probabilistic information is collected trough 

previous experiments of a project for variables that have random type of uncertainty and are 

called random variables (Ross et al. 2001).  

Monte Carlo simulation performs various experiments on a model using inputs coming by 

sampling from the input probability distributions. Probability distributions define the probability 

of values of a discrete random variable. However, in an interval of continuous random variables, 

there are infinite number of values and the probability of getting any point is zero. Therefore a 

Probability Density Function (PDF) is defined on these variables. PDF can be used for 

calculating the probability that the random variable falls into a particular interval (Equation 2.1). 
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Figure 2.1 illustrates an example of a PDF and represents the probability based on the area under 

the curve.  

  Pr�� � � � �	 
 � ���	�
�

�
                                 (2.1) 

 

Figure 2.1 Probability Distribution Function (PDF) f(x) of random variable x and the probability 

that this variable falls into interval (a,b)  

The Monte Carlo simulation method is used for estimating the output (Y) of a model (g) with 

random input variables (R�, R�, … , R�) (Figure 2.2.a). The process of a Monte Carlo simulation 

is explained in the following steps (Ahuja et al. 1994). This procedure is also illustrated in Figure 

2.2.b. 

1. Sample n values ��, ��, … , ��from the probability distributions of the random inputs 

��, ��, … , �� 

2. Assign the values to the model and calculate the output: Y=M(��, ��, … , ��	 

3. Store the output Y 

4. Repeat steps 1 to 3 for i=1 to k 

5. Perform statistical analysis on the collected outputs 
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The number of iterations, k, depends on the level of accuracy that is required in a model. Having 

too few iterations results in inaccurate output, while too many iterations requires too much time 

to run the model. The accuracy of the model with k iterations can be estimated as the variance of 

required statistics (VOSE software). 

For decision making purposes, the mean and variance of the output of Monte Carlo simulation 

are the most important statistics that are typically calculated. If we run a simulation model for k 

independent times and record the output �� �� 
 1, … , �	 , the sample mean (�) and variance (��) 

can be calculated indicated in equations 2.2 and 2.3 respectively.  

 � 

∑ !"

#
"$%

&
                                                  (2.2) 

 �� 

�

&
∑ ��� ' �	�&

�(�                                          (2.3) 
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Figure 2.2 (a) A model g with random inputs can be calculated with Monte Carlo 

simulation (b) Process of Monte Carlo simulation 

Furthermore, in construction management, a decision-maker is usually interested in two other 

important statistics: (1) an arbitrary quantile, and (2) the probability of exceeding (or not 

exceeding) a specific threshold. For example, one may want to estimate the completion time of a 

project with 95% confidence. This value is referred as the 95th quantile of the output. In the 

context of the simulation process, this means that 95% of the conducted simulation results are 

less than the completion time. Decision-makers are also interested in finding the probability that 

a project will exceed a certain value of cost or time (Ahuja et al. 1994).  
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The Cumulative Distribution Function (CDF) is typically used for finding the probability of not 

exceeding a given threshold. Equation 2.4 defines the CDF function of a random variable X 

(Ahuja et al. 1994). The CDF can be calculated based on PDF f(x) using Equation 2.5.  

 FX�x	 
 Pr,X � �.                                       (2.3)                    

F�x	 
 � ��/	/
0

1∞
                                       (2.4) 

Considering a finite number of random samples resulted from k experiments, CDF function can 

be estimated with Equation 2.6. 

  23�/	 

456�78 :; <�6=>7< ?@�? �87 >7<< ?@�� ?

&
                       (2.6) 

The inverse of the CDF is used for finding the arbitrary quantile. Figure 2.3.b indicates the use of 

CDF F(x) for finding the 90th quantile of a random variable. 

 

Figure 2.3 Using the inverse CDF to find the 90th quantile of random variable x 

2.2.2 Discrete Event Simulation in Construction  

Discrete event simulation is defined as a chronological sequence of events and transitions 

between those events. In discrete event simulation, the events are managed in an event list. The 
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system determines the time advance step based on the next event that will occur. Accordingly, 

the forthcoming event is removed from the event list, and the state of the system is updated. As 

soon as the time is advanced, new events may be added to the event list. Simulation time or 

TNOW represents the time that in which the current event takes place. A simulation clock keeps 

track of the simulation time (Halpin and Riggs 1992). 

Many discrete event simulation frameworks have been developed to ease the use of discrete 

event simulation in construction projects, including CYCLONE (Halpin 1976), COOPS (Liu and 

Ioannou 1992), CIPROS (Tommelein and Odeh 1994), and STROBOSCOPE (Martinez and 

Ioannou 1994). These frameworks use real values or probabilistic distributions to represent the 

durations of events in the simulation model. When probabilistic inputs are used, sample values of 

probabilistic distributions are used for the duration of each event in discrete event simulation. In 

these circumstances, the model is run through various times, and statistical analysis is performed 

on the outputs resulting from different runs. 

2.3 Fuzzy Logic Methods in Construction  

Fuzzy logic methods have been used for considering subjective variables and expert’s judgment 

for construction management. Fuzzy sets and fuzzy logic techniques deal with linguistic terms 

that are used widely in construction related problems. Fuzzy logic provides a methodology for 

handling linguistic variables and facilitates common sense reasoning for modeling complex 

systems, such as management systems, especially in the absence of complete and precise data. It 

can be applied for forecasting, decision-making, or control of actions in any environment that 
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that deals with uncertainty, vagueness, impression, and subjectivity (Bojadziev and Bojadziev 

1997; Zhang et al. 2003; Gilberto 2007). Fuzzy methods were used successfully in various types 

of construction projects. For example, it is implemented for project scheduling (Ayyb and Haldar 

1984; Zayed and Halpin 2004), and for predicting industrial construction labour productivity 

(Fayek and Oduba 2005). Fuzzy set theory has been integrated with continuous simulation to 

modeling uncertain production environments (Dohnal 1983; Fishwick 1991; Negi and Lee 1992; 

Southall and Wyatt 1988). 

A fuzzy set is defined on a set of objects by assigning a membership degree between 0 and 1 to 

each object. The membership degree indicates the degree that the objects are compatible with the 

properties of the fuzzy set (Pedrycz 1998). Therefore a fuzzy set mimics the human way of 

thinking by providing shades of gray rather than working with black and white (Shaheen 2005). 

For example, assume that we want to assign the concept of tall or short based on the height of a 

person. in traditional sets, a magic threshold should be considered for separating short and tall 

people. In addition, a person is considered whether short or tall just because of 1 (cm) height 

difference (Figure 2.4 (a)). Fuzzy set theory allows us to express this concept by assigning a 

degree of being short or being tall based on the height of different people. Figure 2.4(b) 

illustrates how shadows of gray are defined for the height to represent degrees of being short or 

tall (Pedrycz and Gomide 2007). This way of representation is closer to the human way of 

thinking, since we usually consider a degree for these concepts, for example we may say a 

person is almost tall or not very short. 



17 

 

 

(a) (b) 

short tall short tall 

threshold 

Height Height 

 

Figure 2.4 Representing the concepts of short and tall based on the height of the people. 

a) Using traditional sets b) using fuzzy sets (Pedrycz and Gomide 2007) 

A fuzzy set A on the universal set X is defined by its membership function A��	 and represents 

the degree that x belongs to the fuzzy set. A��	 is mapping form X to the real unit interval [0, 

1].For example, Figure 2.5 indicates the membership function of being tall; a person with height 

equal to 170 cm is considered to be tall with the degree of 0.7 according to this membership 

function. Various methods exist in the literature for developing fuzzy sets using expert’s 

judgment. For example, horizontal method of membership estimation which is based on 

estimating the membership values of some selected items in the universe of discourse. In vertical 

method of membership estimation, the expert estimates different confidence intervals to 

construct the fuzzy set (Pedrycz and Gomide, 2007).  

 

Figure 2.5 Membership function for being tall 
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Membership functions can have different shapes according to the available information and 

nature of the parameter. One of the most common membership functions is triangular; the expert 

can provide minimum, maximum and most possible values and a triangular PDF can be 

estimated based on these values. Furthermore, triangular membership functions are very 

appropriate for performing fuzzy arithmetic; the results of addition or subtraction of two 

triangular fuzzy sets is also a triangular fuzzy set. Furthermore, the results of multiplication and 

division of two triangular fuzzy sets can be estimated as a triangular membership function with a 

small error. If the expert does not have enough information about a parameter to estimate the 

most possible value, µ(x) can be represented as a uniform membership function, using minimum 

and maximum values. 

Fuzzy set theory is used for construction management in two different ways: (1) fuzzy expert 

system (2) fuzzy calculus. Fuzzy expert systems can express expert way of thinking trough 

linguistically expressed rules. The inputs and output of a fuzzy expert system are crisp values. 

The input values go through a fuzzification interface to assign levels of truth of linguistic terms 

to each of the inputs. The rules are fired based on the level of truth of their premise part and the 

results of different rules are aggregated to get the final output. Finally, if the output resulted from 

the fuzzy rules are in the form of a fuzzy set, defuzzification interface transforms the fuzzy result 

into a crisp value (Shaheen 2005). 

On the other, fuzzy calculus is used for performing mathematical operations on the fuzzy sets. 

According to the fuzzy set theory, when the inputs of any function (g) with n real arguments are 
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in the form of fuzzy sets, the output will be a fuzzy set and can be calculated using t-norm 

extension principle (Equation 2.7). 

 g�A�, … , A�	�y	 
  A��x�	E�F%,…,FG	(H
IJK  t … t A��x�	                      (2.7) 

Where, A�, … , A�  are membership functions defined on the input variables x�, … , x�  and 

g�A�, … , A�	 is membership function of the Output (Chang and Hung 2006).  

A t-norm is any binary operation form M0, 1O�  to [0, 1] that is commutative, associative, 

monotonic and satisfies the boundary conditions if Equation 2.8. Minimum is an example of a t-

norm operation (Pedrycz and Gomide 2007). 

 0 t x 
 0 and 1 t x 
 x                                     (2.8) 

Another method for performing fuzzy calculus is alpha-cut method. This method is equal to the 

extension principal when minimum operation is used for t-norm (Chang and Hung 2006).The 

alpha-cut of a fuzzy set A at the level of PQ �0, 1O  is a set AP  , whose members have a 

membership degree equal or greater than . 

 

Figure 2.6 Alpha-cut of a fuzzy set A 

Any fuzzy set A can be represented uniquely by infinite number of alpha-cuts. Equation 2.9 

indicates how the final fuzzy set can be formed by aggregating its alpha-cuts (Pedrycz and 

Gomide 2007). 
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 A 
 R P APPST      Or   A�x	 
 SupPQ�T,�OMP AP�x	O                      (2.9) 

Any function� 
 X�Y�, Y�, … , Y�	, where Y�, Y�, … , Y� are fuzzy sets, can be calculated using 

alpha-cut method: first, interval analysis is performed on the alpha-cuts of input parameters to 

find the output alpha-cuts at different levels of alpha (Equation 2.10); second, the -cuts of Y at 

different levels of alpha can be aggregated to produce the fuzzy set for Y. 

 yP 
 g�A�,P, A�,P, … , A�,P	                              (2.10) 

Alpha-cut method can be implemented as a computer program. Figure 2.7 indicates how this 

method is used for estimating the output fuzzy set of a computer model when the inputs are 

fuzzy sets (Figure 2.7). In each level of alpha, the output alpha-cut intervals are calculated using 

interval analysis. Generally, Optimization routines should be carried out for finding these 

intervals. However, if the model is monotonic (increasing or decreasing) with regard to the input 

fuzzy sets, we can calculate the output alpha-cut based on the Infimum (Inf) and Supremum 

(Sup) values of the input alpha-cut intervals (Abebe et al. 2000). For example, if the model is 

increasing with regard to all input fuzzy sets, the Inf of input alpha-cuts will generate the Inf of 

output alpha-cut. 
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Figure 2.7 (a) A model g with input fuzzy sets. (b) Implementation of alpha-cut method 

on a computer model. 

The ultimate goal of any risk analysis model is decision making. For making decision using the 

output fuzzy set, we can defuzzify the fuzzy set to get a crisp value and use that value for 

decision making. Centroid is one of the most common methods for defuzzification. The 

defuzzified value is calculated in this method by finding the center of the area under the 

membership function. Another method for making decision using fuzzy sets is based on the 

confidence level. The decision maker is able to decide on a confidence level P and the alpha-cut 

of the fuzzy set is used to provide a range for the output. In this way, the decision maker can 

choose from a range of values instead of crisp output. 
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Furthermore, one can compare a fuzzy set with a threshold. For example, the possibility P that 

the fuzzy set A with membership function µ is less than the threshold T is calculated using 

Equation 2.11 (Liu 2002). 

 Z�Y � [	 
 A�\	5]^
_5=

                                    (2.11)  

2.3.1 Fuzzy Discrete Event Simulation 

It is mentioned that in traditional frameworks of discrete-event simulation, the uncertainty about 

the duration of the events is modeled using probabilistic distributions. In fuzzy discrete event 

simulation this uncertainty is modeled using fuzzy sets. Recently, this approach is proposed for 

dealing with data deficient and subjective environments in construction projects. Many activities 

in construction projects can start without obeying a strict amount of resources and the decision 

on the activation of activities could be subjective (Zhang et al. 2003). Therefore, linguistic 

variables and fuzzy rules are used for expressing the quantities of resources and deciding on the 

activation of each activity, respectively.  

Since the durations of the vents are fuzzy sets in fuzzy discrete event simulation, the simulation 

time can be updated using fuzzy algebraic operations. Therefore, the simulation time will be also 

in the form of a fuzzy set (Perrone et al. 2001). In the traditional simulation model, a crisp value 

is used for the events completion time, which allows scheduling of the events by a simple 

comparison. However, for scheduling the event list in fuzzy simulation a fuzzy ranking method 

is required to compare fuzzy completion times of different events.  
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Some studies have been done using the traditional fuzzy ranking methods for ranking fuzzy 

number in discrete event simulation. These approaches use defuzzication to assign the fuzzy set 

representing the completion time of the event to a crisp number, and then fuzzy rating will be 

used instead of crisp rating. Zhang et al. (2003) utilize the Height Defuzzification Method 

(HDM) (Bojadziv and Bojadzeiv 1997). Perrone et al. (1998) applied the Integral Value method 

(Liou and Wang 1992) and the Chen method (Chen 1985). Bortolan and Degani (1985) as well 

as Wang and Kerre (2001) presented a comprehensive survey of the available fuzzy set ranking 

methods. There is not a best solution for ranking fuzzy numbers (Bortolan and Degani 1985) and 

each solution should be evaluated within the specific decision making process (Perrone et al. 

2001). By converting fuzzy numbers into crisp numbers for crisp-ranking, the fuzzy information 

such as subjectivity or vagueness may be lost (Yufei 1991; Bortolan and Degani 1985; Zadeh 

2004). Different methods are suggested for ranking fuzzy sets without defuzzifyig the fuzzy set 

such as Tran and Duzkstein (2002) and Mehdi et al. (2005).  

2.4 State of the Art Review in Considering both Fuzzy and Random Inputs for a 

Model 

In previous section, simulation models that have either fuzziness or randomness in their input 

parameters are discussed. This section reviews the former approaches for generalized problem in 

which we have both types of uncertainty, fuzzy and probabilistic. Here, we have to find the 

output of a model (g) that (R�, R�, … , R�) being random variables and (A�, A�, … , A`) being 

fuzzy sets as its input parameters (Figure 2.8). 
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Figure 2.8 A function M with both fuzzy and random inputs 

To estimate the output of this generalized model, most researchers attempt to eliminate or 

transform one type of uncertainty to another before performing a simulation. For example, 

Wonneberger et al. (1995) performed a possibility to probability transformation for a problem 

with both types of uncertainty. In this way, they replace input fuzzy sets by PDF to change the 

problem to a purely probabilistic simulation (see Figure 2.9). These transformations are 

questionable since fuzzy logic and probability theory capture different types of information. 

Therefore, there is a chance of losing information or introducing artificial knowledge that is not 

actually available to the model via these transformations (Guyonnet et al. 2003).  Also, there is 

no fully accepted way of transforming one to another (Pedrycz and Gomide, 1998). 

 

Figure 2.9 Converting fuzzy sets to PDF before performing Monte Carlo Simulation 



25 

 

Guyonnet et al. (2003) proposed a “hybrid approach” for solving a model that has both fuzzy and 

random types of uncertainty without transforming one type to another. The essence of their 

approach is summarized in Figure 2.10 for a model M that has both random variables as 

probabilistic distributions ��, ��, … , �� and fuzzy sets F�, F�, … , F` for the inputs. To determine 

the output Y of this model, as indicated in Figure 2.10, a number of sample sets (w) are 

generated from the probability distributions. After assigning each sample set ���, ���, … , ��� to the 

random variables of the model, the -cuts of the fuzzy inputs are calculated for different levels of 

alpha. Let us recall that the -cut of a fuzzy set F at the level of PQ �0,1O is a set FP , whose 

members have a membership degree equal or greater than . Therefore, the -cut of each fuzzy 

input represents a set of values. Guyonnet et al. (2003) calculated the Infimum (Inf) and 

Supremum (Sup) values of the model M considering all the values that are located within the -

cuts of the input fuzzy sets. In this way, for each sample set (i) and each alpha level �Pa	 two 

output values are calculated: ��Pb,��; and �c ��Pb,_5=  (Figure 2.10). Guyonnet et al. (2003) 

suggested that minimization and maximization algorithm can be used for finding Inf and Sup 

values of a general model. However, in their application, the model was a simple monotonic 

function, and the Inf and Sup values were identified directly without using minimization or 

maximization algorithms.  
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Figure 2.10 Guyonnet et al.’s (2003) “hybrid approach” for fuzzy Monte Carlo simulation 
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For decision making based on the hybrid approach, Guyonnet et al. (2003) 

developed the histograms of the Inf and Sup values of the alpha-cuts at each 

alpha-level and calculated the final Inf and Sup of the output alpha-cut based on a 

5% probability of getting respectively lower and higher values. The alpha-cuts are 

then aggregated to produce the output as a fuzzy set (Figure 2.11). In their 

application, they were interested in comparing the output fuzzy set with a specific 

threshold. They perform this comparison by finding the possibility that the output 

fuzzy set be less that the required threshold. 

 

Figure 2.11 Calculating the output alpha-cut based on the histogram of the 

Inf and Sup values of the alpha-cuts at the level of � 

The approach of Guyonnet et al. (2003) is unique in considering fuzzy and 

probabilistic simultaneously in Monte Carlo simulation; however, it is not free 

from shortcomings. A careful analysis reveals some points of the approach which 

require further evaluation/refinement. 

a) The alpha-cuts of a fuzzy set cannot always be represented by Inf and 

Sup values. Therefore, considering only Inf and Sup values of the 
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alpha-cuts may decrease the specificity of the results, since we may 

consider intervals that do not actually belong to the output alpha-cut 

in our results (Figure 2.12(b)). 

 

    Figure 2.12 (a) An alpha-cut of a non-convex fuzzy set (b) Considering 

only Inf and Sup values of the alpha-cuts and the associated lack of 

specificity 

b) Guyonnet et al. (2003) do not mention why a 5% probability of 

getting lower and higher values of the histograms of the alpha-cuts 

will generate the Inf and Sup of the output alpha-cut. In this manner, 

they remove the random type of uncertainty and consider a fuzzy set 

for the output. Buardit et al. (2005) indicate this method leads to 

unrealistic output and overestimation.  

c) In addition, if only random inputs are considered as the extreme case 

for this model, the result will not be similar to the traditional Monte 

Carlo simulation approach. In this case, the absence of fuzziness 

results in equal histograms for the Inf and Sup values at all levels of 

alpha. Therefore, the method will produce the same alpha cuts for all 

values of alpha, and the result of their aggregation will be an interval 
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that does not contain enough probabilistic or fuzzy information to 

help in decision making. 

Baudrit et al. (2005) propose an approach for “post-processing” of the hybrid 

method of Guyonnet et al. (2003) using the theory of evidence (or theory of belief 

functions; see Shafer 1979). The final output of their proposed method does not 

directly represent the fuzziness or randomness, but rather analyzes the output with 

concepts that are defined in the theory of evidence.   

2.5 Conclusions 

This chapter, first, discussed computer models in which either randomness or 

fuzziness exist in their input parameters. It is indicated that each of these models 

follow different mathematical logic. The main reason is that fuzzy logic and 

probability theory have conceptual difference; while calculating a probability 

value deals with “occurrence of events”, fuzzy logic deals with graduality concept 

and has nothing to do with frequencies of an event (Pedrycz 1998). Furthermore, 

the methods for making decision based on random variable and fuzzy set are 

totally different. As a result, having both fuzziness and randomness in the input 

parameters of a computer simulation model brings controversial issues. Literature 

suggests two main approaches for finding the output of such models: 1) 

transforming one type of uncertainties to another before processing the model, 

and 2) keeping the uncertainties as their original forms while processing the 

model. As we discussed in the chapter, transformations of fuzzy sets to PDFs or 

vice versa are questionable and there is no fully accepted way of transforming one 

by another. Furthermore, even in the second approach, the output is analyzed by 
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considering only one type of uncertainty or by representing fuzziness and 

randomness in other forms based on the theory of evidence.  

Since subjectivity and lack of data usually exist in some of the parameters 

affecting a construction project, a reliable framework that can address both types 

of randomness and fuzziness in the inputs of a model can enhance modeling of 

construction projects. However, the use of such models in construction 

management is very limited which could be due to the limitations of available 

methods, and because these methods are fairly new and are not yet introduced to 

construction managers. This thesis proposes a fuzzy Monte Carlo simulation 

framework that can accept both fuzzy and probabilistic inputs for risk analysis of 

construction projects. In the proposed framework, random and fuzzy uncertainties 

are represented explicitly in the output to allow the decision maker completely 

understands the origins of each type of uncertainty and make the wise decision 

based on the conceptual difference of fuzziness and randomness. 
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CHAPTER 3 - FUZZY MONTE CARLO SIMULATION 

(FMCS)  

3.1 Introduction 

This chapter proposes Fuzzy Monte Carlo Simulation (FMCS) framework for risk 

analysis of construction projects. This framework is a generalized form of Monte 

Carlo simulation in which we can have both fuzzy and probabilistic distributions 

for the inputs of construction simulation models.  

The FMCS framework, which includes the approach for performing simulation 

and analyzing the output results, is explained in Section 3.2. Section 3.3 discusses 

the practical aspects of applying FMCS on construction projects. It also provides 

a cost range estimating template to show how FMCS can be implemented for 

practical use in construction management. Section 3.4 provides a comparison 

between FMCS framework and traditional Monte Carlo simulation through an 

illustrative example. Finally, Section 3.4 summarizes the contributions of this 

chapter.  

3.2 Proposed Approach 

A simulation based approach for risk analysis of a problem in construction 

management can be summarized in the following steps: (1) identifying the 

structure of the problem (2) quantifying uncertainty in different parameters of the 

model (3) performing a simulation (4) analyzing the results and making decision 

(Walls III and Smith 1998). Monte Carlo simulation is a common simulation 
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approach that is performed in construction management. In Monte Carlo 

simulation, all the input uncertainties are modeled based on probability theory 

(Figure 3.1(b)), and random sampling of inputs is performed to find the output 

results. However, since the sources of information about various parameters of a 

project differ, we may have probabilistic uncertainty for some of the input 

variables and fuzzy uncertainty for others. Therefore, a simulation method is 

required that is capable of handling both types of fuzzy and probabilistic inputs. 

Fuzzy Monte Carlo Simulation (FMCS) is proposed as a solution to this problem 

in this research. FMCS is a generalized form of Monte Carlo simulation that 

provides the capability of using both fuzzy logic and probability theory for 

quantifying the input uncertainties of a Monte Carlo simulation model (Figure 

3.1(a)).  

 

Figure 3.1 (a) Traditional model for Monte Carlo simulation with random 

inputs (b) FMCS model as a generalized form of Monte Carlo Simulation 

FMCS integrates fuzzy arithmetic method with Monte Carlo simulation to find 

the output of a model with both fuzzy and probabilistic inputs, Consider a model 

(M) that has both random variables as probabilistic distributions ��, ��, … , �� and 

subjective variables as fuzzy sets F�, F�, … , F` for the inputs (Figure 3.1(b)). In 
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the FMCS framework, sample sets are produced from the probabilistic 

distributions. After assigning each sample set ���, ���, … , ���  to the random 

variables of the model, the model will contain only fuzzy input variables. Fuzzy 

arithmetic is used to calculate the output in the form of a fuzzy set (Figure 3.2). 

As discussed in chapter 2, based on the extension principle (Zadeh 1975), one can 

apply fuzzy arithmetic on a function (M) with input fuzzy sets F�, F�, … , F� to get 

the output fuzzy set Y. The -cut method can also be used to perform fuzzy 

arithmetic on a function. This method is equivalent to the Zadeh’s extension 

principle. However, it is easier to implement since it is based on interval analysis 

of the -cuts of the input fuzzy sets.           
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Figure 3.2 Fuzzy Monte Carlo Simulation (FMCS) approach
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Since in FMCS, fuzzy arithmetic is performed for each sample set, the output of 

FMCS is represented as a number of fuzzy sets with random variation. This 

randomness is resulted from random samplings of random input parameters. .The 

output can be modeled with a fuzzy random variable. A fuzzy random variable is 

a mapping from the probability space to the fuzzy sets (Terán 2007). Figure 3.3 

illustrates how each sample set of probability space is mapped to a fuzzy set.  

 

Figure 3.3 In FMCS, each sample set of probability space is mapped to a 

fuzzy set 

3.2.1 Output Analysis of FMCS Framework 

The ultimate goal of any risk analysis model is decision support. FMCS is 

proposed as a general form of Monte Carlo simulation and similar decisions that 

are made using Monte Carlo simulation can be made based on the FMCS 

framework. The mean and variance can be calculated to provide an estimate of the 

output of Monte Carlo simulation. We can benefit from work in measurement 

theory for calculating the mean and variance of the output of the FMCS 

framework. Terán (2007) used fuzzy random variables to represent the results of 

measurements. He represented each measurement as a fuzzy set, while the 
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variability between fuzzy sets was considered random. This scenario is similar to 

results obtained from fuzzy Monte Carlo simulation. Terán (2007) suggested to 

use fuzzy arithmetic for performing statistical calculations on the fuzzy samples. 

Similarly, we can apply fuzzy arithmetic to the fuzzy outputs of FMCS to find the 

mean and variance. For example, Equation 3.1 indicates how Zadeh’s (1975) 

extension principle can be used to find the membership function of mean, Y67��, 

of the outputs of FMCS, ��, ��, … , �d, with membership functions Y�, … , Yd . 

Y67���f	 
 g\h
i(
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k
"$%

k

�A��y�	, … , Al�yl		                     (3.1) 

When we have no fuzziness, the values ��, ��, … , �d  are real numbers and the 

results of the extension principle will be the same as the result of performing 

normal arithmetic on crisp numbers. In this sense, this approach provides an 

analysis tool that behaves reasonably well.  

However, the mean and variance is not enough for the risk analysis of 

construction projects. In construction management, a decision-maker is usually 

interested in two other important statistics: (1) an arbitrary quantile, and (2) the 

probability of exceeding (or not exceeding) a specific threshold. For example, one 

may want to estimate the completion time of a project with 95% confidence. This 

value is referred as the 95th quantile of the output. In the context of the simulation 

process, this means that 95% of the conducted simulation results are less than the 

completion time. Decision-makers are also interested in finding the probability 

that a project will exceed a certain value of cost or time (Ahuja et al. 1994).  

The Cumulative Distribution Function (CDF) is typically used for finding the 

probability of not exceeding a given threshold. Equation 3.2 defines the CDF 
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function of a random variable X (Ahuja et al. 1994). The inverse of the CDF is 

used for finding the arbitrary quantile. 

FX�x	 
 Pr,X � �.                                                        (3.2)  

Considering a finite number of random samples resulting from a Monte Carlo 

simulation, the CDF function can be estimated from Equation 3.3. 

 23�/	 

456�78 :; <�6=>7< ?@�? �87 >7<< ?@�� ?

^:?�> �56�78 :; <�6=>7<
     (3.3) 

However, the samples of the output of a FMCS are fuzzy sets, and when the 

threshold is a member of a sample fuzzy set, there is an uncertainty in considering 

the sample fuzzy set as less than or greater than the threshold t (Figure 3.4). 

 

Figure 3.4 The threshold is in the sample fuzzy set 

This problem is solved by incorporating fuzziness into the CDF and generating a 

fuzzy CDF. The Inf and Sup values of the -cuts of the samples are used to 

calculate two CDFs at each -level. The number Inf value of the alpha-cuts that 

are less than a threshold are greater than or equal to the number of Sup values that 

are less than that threshold. Therefore, 2P,6�0 is calculated based on the Inf values 

of the -cuts of the samples at the level of  (Equation 3.4), and 2P,6��  is 
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calculated by considering the Sup values of the -cuts of the samples at the level 

of  (Equation 3.5). For example, in Figure 3.4, the fuzzy set A is considered less 

than t for calculating 2P,6�0�/	, and is considered greater than t for calculating 

2P,6���/	. 

2P,6�0�/	 

456�78 :; m�; :; P1n5?< :; ?@7 <�6=>7< ?@�? �87 >7<< ?@�� ?

^:?�> �56�78 :; <�6=>7<
            (3.4) 

2P,6���/	 

456�78 :; _5= :; P1n5?< :; ?@7 <�6=>7< ?@�? �87 >7<< ?@�� ?

^:?�> �56�78 :; <�6=>7<
            (3.5) 

2P,6�0�/	  and 2P,6���/	  should be calculated for various values of t between 

minimum sample and maximum sample, in order to develop the CDF graphs of 

2P,6�� and 2P,6�0 . 2P,6�� and 2P,6�0  will generate a CDF bound 2P��	  at each 

alpha level. The CDF bound represents a range for CDFs at an alpha level (Figure 

3.5).  

 

Figure 3.5 CDF bound represents a range of CDFs in an alpha level 

The final fuzzy CDF, 2��	, can be determined by aggregating CDF bounds at 

different levels of alpha based on the representation theorem (Equation 3.6; 

Pedrycz and Gomide 2007).  

2��	 
 g\hPQMT.�OMP 2P��	O                                                    (3.6) 
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Since fuzzy CDF, 2��	, represents both probability and membership degree for 

the outputs of FMCS,the graphical representation of fuzzy CDF is in the form of a 

3-Dimentional(3D) graph Figure 3.5(a) represents the CDF bounds that are used 

to produce the 3D graph of the fuzzy CDF in Figure 3.6(b). The 2-Dimentional 

(2D) graph of Figure 3.6(b) is represented in Figure 3.6(c). In this figure we can 

see how CDF bounds produce different layers of fuzzy CDF.  
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Figure 3.6. (a) CDF bounds at different levels of alpha to generate the fuzzy CDF (b) fuzzy CDF resulted from aggregating 

CDF bounds (c) 2D view of the fuzzy CDF in (b) 
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 Fuzzy CDF provides the capability of representing both fuzzy and probabilistic 

uncertainty in a single figure as the output of FMCS framework. Furthermore, 

when we have no fuzziness, each sample value is a real number instead of a fuzzy 

set. In this case, 2P,6�0��	 equals to 2P,6����	, and all of the alpha levels will 

have equal CDFs. Therefore, the results are exactly equal to those obtained by 

traditional Monte Carlo simulation. This behavior of FMCS framework is also 

illustrated in section 3.4 using an illustrative example. However, Fuzzy CDF has a 

shortcoming in that only the Inf and Sup values of the -cuts are considered for 

decision making, while the alpha-cuts of a fuzzy set cannot always be represented 

by the Inf and Sup values. This issue is an area for future research.  

Having developed the fuzzy CDF, we can perform any decision analysis that can 

be performed using CDF. The estimator can find the probability that the output is 

less than a threshold t. The answer is in the form of a fuzzy set that is obtained by 

intersecting the fuzzy CDF graph at the desired threshold. A method for making 

decision using fuzzy sets is based on the confidence level. The estimator is able to 

decide on a confidence level between 0 and 1 to get a range of values for the final 

output. This range is calculated by finding the -cut at the value of 1 minus the 

confidence level (Mauris et al. 2001). In this way, the estimator can choose from a 

range of values instead of a crisp output. An arbitrary quantile can also be 

estimated using the inverse of the fuzzy CDF. Section 3.4 compares decision 

making using Fuzzy CDF resulting from FMCS framework with CDF resulting 

from traditional Monte Carlo simulation through an example.  
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3.3 Practical Aspects of Using FMCS in Construction Risk 

Assessment 

One can find many practical examples in Monte Carlo simulation of construction 

projects in which some of the input variables are estimated based on experts’ 

judgments and some are derived from historical data. FMCS is appropriate in 

these situations since it can solve a model in which experts’ judgments are 

represented using fuzzy sets and historical data are used to develop probability 

distributions of input parameters. 

For example, for life-cycle analysis of a pavement design, Walls III and Smith 

(1998) used recent bid records to find probability distributions of the costs of 

construction and rehabilitation of a project, while experts’ judgment has been 

used for estimating the service life of the pavement. Monte Carlo simulation is 

used as the method of risk analysis in this study. Although explaining the details 

of this project is beyond the scope of this research, we suggest this work can be 

used as an actual case study of FMCS framework for future research.   

Range estimating includes a wide range of examples in which FMCS can be 

applied. Range estimating using Monte Carlo simulation is a common process for 

risk analysis and decision making regarding the budget and schedule of 

construction projects. The approach is based on considering the Work Breakdown 

Structure (WBS) of a project and estimating the cost or duration of each work 

package in the form of a probability distribution function. The Monte Carlo 

simulation method is used to aggregate the work packages and to estimate the 
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range and degree of uncertainty for the overall project cost or duration (Shaheen 

et al. 2007; Ahuja et al. 1994).  

Expert judgment has been extensively used in the literature for estimating the 

uncertain input values of the cost or schedule range estimating models of 

construction projects. Ayyub and Haldar (1984) used fuzzy logic to incorporate 

the effect of subjective factors on the duration of construction activities. Their 

approach is used by AbouRizk and Sawhney (1992) for range estimating of the 

duration of construction projects. As an example, cost range estimating is studied 

in more details. Accurate cost estimation plays a major role in the success of a 

construction project. Different methods have been suggested in the literature for 

estimating the cost of construction projects (e.g. Adeli and Wu 1998) and for 

determining a contingency value (Touran 2003). Contingency is the anticipated 

cost for unknowns that may increase the total cost of a project (Ahuja et al. 1994). 

Monte Carlo simulation is a common approach that is performed for estimating 

the cost and contingency. The process of Monte Carlo simulation for cost range 

estimating can be summarized as the follows: 

1. Provide the WBS and remove work packages that do not have major 

effects on the total cost of the project. Ahuja et al. (1994) suggest that 

those work packages that affect the total cost of the project with at least 

0.5% should be considered major. 

2. Provide the quantity and unit cost related to each work package. Use a 

PDF to represent the uncertainty associated with different values of the 

quantity and unit cost of each work packages.  
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3. Use Monte Carlo simulation to determine the uncertainty associated with 

the total cost of the project. 

Although expert judgment is usually used in range estimating of construction 

projects, only the random type of uncertainty can be considered using this 

approach. Experts’ judgment is especially useful in the preliminary stages of a 

project when not enough data are available for many factors. For example, before 

performing geotechnical tests, experts may estimate the geotechnical parameters 

to calculate the cost of the project. In the later stages of the project, we may still 

have some fuzzy parameters due to the unique aspects of the project, lack of data 

or subjectivity. Shaheen et al. (2007) suggested an alternative method of using 

fuzzy set theory for modeling uncertainties in range estimating problems. The 

researchers proposed a range estimating model that uses fuzzy arithmetic to 

estimate the cost or duration of a project with purely fuzzy inputs. The FMCS 

framework can be used to solve this problem by using the PDF to represent 

random uncertainty and fuzzy sets for representing subjective or linguistically 

expressed values in the WBS. A cost range estimating template is developed 

based on FMCS framework. This template illustrates how the FMCS framework 

can be implemented for practical use in construction management. 

3.3.1 Fuzzy Monte Carlo Cost Range Estimating Template 

A Special Purpose Simulation (SPS) template has been developed by connecting 

the Simphony.NET© platform and MATLAB for range estimating based on the 

proposed FMCS. Simphony.NET© is a simulation software application for 

construction processes that is capable of developing different SPS templates. The 
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SPS template provides a tool for an expert, who is not necessarily knowledgeable 

in simulation, to develop a simulation model in the area of his/her expertise 

(Hajjar and AbouRizk 1999). Our developed cost range estimating SPS template 

allows the user to represent the WBS of a project by dragging and dropping the 

elements on a computer screen and connecting them according to the structure of 

the WBS. Using the fuzzy Monte Carlo cost range estimating template, input 

values can be entered as the properties of each element in the form of fuzzy sets 

or probabilistic distributions. 

The -cut method is used to perform fuzzy arithmetic on the fuzzy sets in FMCS. 

Since the calculations for cost range estimating are limited to addition and 

multiplication, which are monotonically increasing, finding the Inf and Sup values 

of the output -cut intervals is straightforward by using the Inf and Sup of the 

input -cut intervals. The elements of the developed template are listed in Table 

3.1. The Root element is responsible for calculating the value of alpha and 

deciding whether a minimum or maximum value of the -cut should be calculated 

in each run of the simulation. Other elements identify their appropriate actions 

based on the status of the root element in each run. The cost of each child work 

package is calculated by multiplying its unit cost and quantity. A number of child 

work packages or parent work packages may be defined under a parent work 

package. Therefore, it is possible to have any number of levels in the WBS. The 

cost for the parent work package is the sum of the costs of its lower level work 

packages multiplied by the quantity of the parent work package. The Analysis 
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element collects the output results and sends them to a MATALAB routine. In 

this routine Fuzzy CDF graph is created for decision making.  

Table 3.1 Elements of fuzzy Monte Carlo cost range estimating template 

Element Name Graphical 

representation 

Description 

Root  

 

This element defines the status of the 

simulation and controls the actions of all 

the other elements.  

Parent Work 

Package 

 

Parent Work Package represents a group 

of work packages that will be defined 

under this element.  

Child Work 

Package  

Child Work Package represents the 

lowest level of the WBS, the unit cost 

and quantity can be defined for this 

element. 

Analysis 

Element 
 

This element collects the outputs and 

calculates the statistics. 

 

3.4 An Illustrative Example to Compare Monte Carlo Simulation 

and FMCS 

This section analyzes the behavior of FMCS framework in comparison with 

Monte Carlo simulation using a cost range estimating example. A sample 

application by Ahuja et al. (1994) of a cost range estimating problem for a 
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highway overpass project is used for this purpose. The unit cost and quantity for 

major work packages of this project are shown in Table 3.2. Probabilistic 

distributions are used to express the uncertainty regarding those variables. These 

uncertainties may result from uncertainty regarding the accuracy of take-off 

values or different scenarios that may happen in the field during construction. For 

example, uncertainty in the unit cost may be a result of uncertainty associated 

with the productivity of workers or variability in weather conditions. Ahuja et al. 

(1994) used subjective judgment to derive the given probabilities, and it is beyond 

the scope of this research to verify these distributions, which are also specific to 

this example and its assumptions. It is assumed that the model is developed 

correctly and their suggested probability values are appropriate. This assumption 

does not bring any limitations to our analysis, since the model is used with the 

sole goal of performing a sensitivity analysis on the FMCS framework and 

comparing the results with the probabilistic approach. Figure 3.7 illustrates the 

model developed for this example using the fuzzy Monte Carlo cost range 

estimating template. 
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Table 3.2 Major work packages and their associated cost and quantity for a 

highway overpass project (adapted from Ahuja et al. 1994) 

Work Package Quantity Unit Cost 

1. Excavation (m3)  Uniform(2200, 2500) Triangular(10, 11, 13) 

2. Backfill (m3) Uniform(1700, 2200) Triangular(9, 10, 13) 

3.Pilings and Bells    

     Piling(300 dia) (m) Constant(160) Constant(29) 

     Piling(750 dia) (m) Constant(510) Triangular(175, 183, 190) 

     Bells(1500 dia) (ea) Constant(42) Triangular(370, 390, 420) 

     Bells(1200 dia) (ea) Constant(16) Constant(340) 

4. Cast in place concrete    

     Pier footing (m3) Constant(73) Triangular(320, 330, 350) 

     Pier column (m3) Constant(55) Triangular(600, 650, 700) 

     Abutments (m3) Constant(635) Triangular(200, 235, 290) 

     Approach slabs (m3) Constant(55) Triangular(220, 230, 400) 

     Bridge girder (m3) Constant (1310) Triangular(370, 390, 450) 

     Parapets incl. finish 

(m) Constant (171) Triangular(150, 160, 175) 

    Concrete median (m) Constant(67) Constant(124) 

5. Concrete slope 

protection (m3)  Uniform (1000, 1100) Triangular(42, 45, 50) 

6. Hot mix asphaltic 

concrete paving (m2) Constant (1900) Triangular(17, 18, 19) 

7. Deck water proofing Uniform(1800, 2000) Constant(5.7) 

8. Class 5 finish (NIC 

parapets) (m2) Constant(565) Constant(6) 
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Figure 3.7 Developed model for the highway overpass example using fuzzy Monte Carlo cost range estimating SPS template 
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To experiment with the FMCS approach using a combination of fuzzy and 

probabilistic inputs, some of the probability distributions of Table 3.2 are 

transformed into fuzzy sets using the probability-possibility transformation 

method of Dubois et al. (2004). For example, Figure 3.8 represents the 

transformation of the triangular distribution for the unit cost of the excavation 

process in Table 3.2 to a fuzzy membership function based on Dubois et al. 

(2004). In this method, the confidence level of the intervals is estimated using the 

probability of that interval. This probability is equal to the area under the 

Probability Distribution Function that is bounded within that interval. Among 

different intervals of the same confidence level, Dubois et al. (2004) proved that 

the most informative interval is the one with minimal length, and this interval 

should be considered as the -cut of the final fuzzy set. This approach will 

produce a nested family of intervals that are considered as the -cuts of the final 

fuzzy set.  

 

Figure 3.8 Transformation of the triangular distribution for the unit cost of 

the excavation process to a fuzzy membership function 

It is not recommended that such transformations from probabilistic to fuzzy sets 

be done in practice but rather that the fuzzy sets be derived directly (e.g. form 
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expert judgment). However, these transformations are performed in this study 

only to be able to compare the FMCS framework with traditional Monte Carlo 

simulation.  

In Section 3.4.1, a sensitivity analysis is performed to investigate the effect of 

different numbers of fuzzy sets on the output of the FMCS framework. Section 

3.4.2 discusses how similar decisions that can be made using Monte Carlo 

simulation can be made based on the FMCS framework. 

3.4.1 Sensitivity Analysis of the FMCS Framework 

For experimenting with differing numbers of fuzzy sets as inputs to the FMCS 

framework, the first k uncertain variables are selected from Table 3.2, which are 

not constant, and are transformed into fuzzy sets, while keeping the rest of the 

inputs as probabilistic distributions. For example, when k equals 4, the unit cost 

and quantity of the excavation and backfill processes are transformed into fuzzy 

numbers, since these parameters comprise the first four uncertain parameters in 

Table 3.2. The value of k is gradually increased in each experiment. The total 

number of uncertain variables in Table 3.2 is 16; therefore, when k equals 16, all 

of the uncertainty is in the form of fuzzy numbers, and we have no randomness in 

the model. Other variables are constant and are considered as crisp values in the 

model. 

Figure 3.9 illustrates the 3D graphs of the fuzzy CDFs that are generated by 

MATLAB for several experiments performed using the FMCS framework. The x-

axis indicates the total cost of the model in millions of dollars, the y-axis is the 

probability, and the z-axis is the alpha value associated with each output. 
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Therefore, these graphs illustrate both probabilistic and fuzzy uncertainty. We can 

see how the fuzziness of the output increases when the number of fuzzy inputs (k) 

increases, illustrating the intuitively appealing behavior of the method.  
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Figure 3.9 3D view of fuzzy CDF resulting from the output of FMCS for 

the highway overpass project; k indicates the number of fuzzy sets in each 

experiment 

The x-y view of the fuzzy CDF is also represented in Figure 3.10. These figures 

illustrate the CDF bounds of the output of the experiments for different values of 
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k. As expected, for smaller values of k, the CDF function has less fuzziness, and 

the CDF bound is narrower.  

 

Figure 3.10 x-y view of output results of Figure 3.9; k indicates the 

number of fuzzy sets in each experiment 
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The reasonable behaviour of the FMCS in the absence of fuzziness or randomness 

is also illustrated by these experiments. If a traditional Monte Carlo cost range 

estimating model is developed using the inputs of Table 3.2, the output will be 

exactly equal to the one shown in Figure 3.10(a). Therefore, in the absence of 

fuzziness, the results of the proposed methodology in Figure 3.10(a) will be 

exactly equal to the traditional CDF derived from the purely probabilistic Monte 

Carlo simulation method. Also, the results in Figure 3.10(e) indicate that when we 

have no randomness in the model, the CDF bound does not contain any 

probabilistic information. However, the fuzzy information can be viewed in the x-

z view of the output in Figure 3.11. This example illustrates the reasonable 

behavior of the proposed methodology in the sense that the output is exactly equal 

to the output of the same model solved using the purely fuzzy cost range 

estimating method suggested by Shaheen et al. (2007).  

 

Figure 3.11 The fuzzy information of the output in the absence of 

randomness (k=16) 
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3.4.2 Decision Making Based on Fuzzy CDF 

Similar to the CDF function resulting from Monte Carlo simulation, an estimator 

can use the fuzzy CDF of the total cost to estimate the probability of finishing the 

project within a certain budget. For example, using the CDF function for k equals 

4 in which the first 4 uncertain variables of the example by Ahuja et al. (1994) are 

transformed to fuzzy sets, Figure 3.12(a) indicates how the probability that the 

total cost of the project will be less than $1, 100,000 is calculated by assigning $1, 

100,000 to the x-axis of the fuzzy CDF. This probability is in the form of a fuzzy 

set, as shown in Figure 3.12(b). A fuzzy set can be defuzzified to get a crisp value 

and use that value for decision making. The centroid method is one of the most 

common methods for defuzzification, in which the defuzzified value is calculated 

by finding the center of the area under the membership function. By defuzzifying 

the fuzzy output of Figure 3.12(b) using the centroid method of defuzzification, 

we can state that the probability of finishing this project with $1, 100,000 is about 

0.82.  
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Figure 3.12 (a) Intersecting the fuzzy CDF to find the probability of not 

exceeding a specific threshold (b) The fuzzy set representing this 

probability 

 

An arbitrary quantile can be used to find an appropriate contingency value for a 

project. Traditionally, this decision is made by considering a quantile value and 

using the CDF to find the output. In a fuzzy CDF, the arbitrary quantile is in the 

form of a fuzzy set. Figure 3.13(a) illustrates how the 80th quantile of the total 
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cost of the project is calculated by intersecting the y-axis of the fuzzy CDF at y is 

equal to 0.80. The result indicates that, with 80% probability, a budget of around 

$1,095,000 is enough for recovering the total cost of the project (Figure 3.13(b)). 

 

Figure 3.13 (a) Intersecting the fuzzy CDF to find an arbitrary quantile (b) 

The fuzzy set representing this arbitrary quantile 

The real intent of FMCS framework is not to defuzzify the output results, but 

rather to indicate the fuzziness that exists in the output and to allow the estimator 

to use his/her subjective judgment in deciding on a final value. After obtaining the 
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output fuzzy sets using the above-mentioned methods, the estimator has to decide 

on  an alpha level to get a range of values. (Mauris et al. 2001). The final value 

should be selected from this range based on the optimistic or pessimistic view of 

the decision maker. For example, a manager may wish to estimate a final bid price 

based on the fuzzy set obtained from the 80th quantile of the project. If the 

decision maker chooses 0.4 for the alpha level the range of outputs will be 

[1,085,000 1, 100,000] (Figure 3.13(b)). Finally, the decision maker can choose 

the bid price from this range. For example, a conservative decision maker may go 

for the Sup value of this range, which is $1, 100,000.  

3.5 Conclusions  

This chapter proposes a Fuzzy Monte Carlo Simulation (FMCS) framework as a 

generalized form of Monte Carlo simulation for modeling construction projects. 

This framework is capable of considering both fuzzy and probabilistic uncertainty 

in a problem. In FMCS, the output is modeled using fuzzy random variables and 

fuzzy Cumulative Distribution Function (CDF) is introduced as a generalized 

form of CDF. Fuzzy CDF has the unique feature of representing both fuzzy and 

probabilistic uncertainty in a single figure. The proposed FMCS framework is 

capable of considering imprecise information in the form of fuzzy sets without 

assuming probabilistic information that is not actually available in a simulation 

model. Therefore, the decision maker is presented with the uncertainty in the 

output in the form of fuzziness and probabilistic uncertainty, and he/she can use 

subjective judgment and experience to make the final decision. Practical examples 

are suggested for applying the FMCS framework on real construction projects. 
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However, actual testing on real projects by industry personnel should be 

conducted to better justify the benefits that FMCS framework brings to the 

construction industry.  

FMCS is used to develop a cost range estimating template for construction 

projects. The template is used for sensitivity analysis of the FMCS framework 

based on a highway overpass example. The results illustrate the reasonable 

behavior of the FMCS framework. 

Finally, although the fuzzy CDF is developed as part of the proposed FMCS 

framework, the fuzzy CDF approach is a general method based on fuzzy random 

variables and may be used for risk analysis in any application, in which both 

fuzzy and probabilistic uncertainty are involved. For example, fuzzy CDF can be 

used in measurement theory to analyze the uncertainty of the data resulting from 

measurements in cases in which there is both probabilistic and fuzzy uncertainty 

(for example,  Terán 2007). 
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CHAPTER 4 - COMBINED FUZZY AND 

PROBABILISTIC DISCRETE EVENT SIMULATION 

FOR INDUSTRIAL CONSTRUCTION  

4.1 Introduction  

The term “industrial construction” is used for construction of facilities for basic 

industries such as petrochemical plants, nuclear power plants and oil/gas 

production facilities (Barrie and Paulson 1992). Some parts of industrial 

construction projects can be processed in the controlled environment of the 

fabrication shop; however, there is no mass production in industrial fabrication 

shops, which distinguishes them from the category of job shops (Karumanasseri 

and AbouRizk 2002). 

Construction projects are complex and associated with a high degree of 

uncertainty. As a result, it is difficult for planners to consider the combined 

impact of uncertainty of different products and resources and produce a reliable 

project estimate (Ahuja and Nandakumar 1984). Traditional management 

methods such as CPM/PERT fail to model the dynamic nature of these complex 

processes, because they lack certain modeling components such as probabilistic 

branching, resource interaction, and production cycling (Pritsker 1986). 

Moreover, most of the developed optimization algorithms (e.g., Hopp and 

Spearman 1997) are based on highly simplified assumptions (Song et al. 2006).  



62 

 

Discrete event simulation has been proposed as an indispensable problem-solving 

methodology for analyzing complex and uncertain processes such as construction 

projects (Halpin and Riggs 1992). Researchers widely apply simulation 

techniques to various industrial and construction processes (Banks 1998; Law and 

Kelton 2000).  

The traditional approach for representing uncertainty in discrete event simulation 

models is probabilistic theory. Enough historical data are required to accurately 

estimate the probability of input parameters, yet subjectivity and lack of data 

regarding the parameters of an industrial construction project are very common, 

since there is no mass production and each product is unique. In these 

circumstances, fuzzy logic can be used for modeling the uncertainty of parameters 

based on experts’ judgment. However the features of a product can be usually 

derived from a database, and the variation between the features of different 

products is considered random.  

As discussed in Chapter 2, previous research has used fuzzy logic to model 

uncertainty in discrete event simulation models, yet it has not successfully 

combined both fuzzy and probabilistic uncertainty in the same model. In this 

chapter, a hybrid framework for discrete event simulation of industrial 

construction that can consider both random variations in the available data and 

fuzzy uncertainty resulting from expert’s judgment is proposed. This framework 

provides a useful tool for more realistically modeling uncertainty in industrial 

construction for improved simulation. The proposed hybrid framework is 

discussed using a real case study of a pipe spool fabrication shop.  
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4.2 Pipe Spool Fabrication Shop 

Pipe spool modules are used in developing modular construction units in 

refineries and oil-processing plants (Mohamed et al. 2007). The piping process 

involves drafting, material procurement and supply, shop fabrication including 

pipe spools and steel pieces, module assembly in the yard, and module installation 

on site. This process is very complicated and is associated with many 

uncertainties (Wang 2006). 

The main activities for fabricating spools in a fabrication shop are cutting, fitting, 

and welding. Each spool is composed of a number of pipes that are welded 

together. A fitting component usually exists between two pipes. The joint between 

each fitting and a pipe is welded in the shop to produce the spool. For example, 

the spool in Figure 4.1 consists of 4 pipes and requires 7 welds. 

 

Figure 4.1 Pipes, fittings, and joints in a spool 
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For fabricating a spool in the shop, the pipes are first cut to their required size in a 

cutting station. Stations that are used for cutting in a fabrication shop could be 

different according to the type of material and diameters of the spools.  

After cutting, the pipes are tagged together (fitted) and welded at each joint. The 

welding process includes roll welding and position welding. In roll welding, the 

pipe is welded by means of a roll welding machine (positioner machine) (Figure 

4.2 (a)). Position welding is used when the pipe has long legs and cannot be roll 

welded (Figure 4.2(b)). Since the process of position welding is much slower 

compared to roll welding, fabricators try to find the sequence of steps that 

maximize roll welding and minimize position welding for each spool.  

 

Figure 4.2 (a) Roll welding (b) Roll welding is impossible 

Each spool is composed of a number of assemblies that can be fabricated only by 

a roll welding process. Different assemblies are then position welded to build the 

complete spool (Figure 4.3). 



65 

 

 

 

Figure 4.3 A spool is divided to some assembly parts that can be roll 

welded 

Fitting and roll welding are done in two separate stations; there are usually two 

welding stations that are working with one fitting station. The fitters may fit one 

or more joints at a time before sending the spool for roll welding. The number of 

times that the product goes back and forth between fitting and welding stations 

depends on the number of joints and the structure of the spool (Figure 4.4). Also, 

different types of fitting and roll welding stations are used in the fabrication shop 

according to the characteristics of the spool. For example, for a long pipe we need 

a station that provides enough space for fitting and welding; and for a large 

diameter pipe, a welding station with a large roll welding machine is required. 
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Figure 4.4 A product goes back and forth between fitting and roll welding 

station until it is completed 

Fitting and position welding are done in the same place. There is usually one fitter 

and one welder working together in one station. A fitter brings all the finished 

components together and assembles them.  

Quality control can be done at any stage of the process. Some of the spools may 

need hydro-testing, Post Weld Heat Treatment (PWHT), x-ray, or painting, 

depending on the required specifications from the owner.  

4.3 Discrete Event Simulation of Pipe Spool Fabrication Shop 

In this section, a discrete event simulation model for pipe spool fabrication shop is 

developed. For this purpose, a platform for modeling the raw materials in 

industrial fabrication is first developed. The platform is used to develop a 
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simulation based decision support system using a real case study of a pipe spool 

fabrication shop. 

In industrial fabrication, each product has its unique features and the duration and 

activity sequence can vary greatly from other products. In an industrial fabrication 

shop, such as pipe spool and steel fabrication, a product usually travels in the 

system in the form of raw materials or components of the product. During the 

fabrication process, different components are assembled together to fabricate the 

final product. To increase the accuracy of modeling fabrication processes and to 

better model the durations of the processes, a platform that can automatically 

model the raw materials and the assembly process of components of a product 

based on the unique features of a product is proposed. The process of pipe spool 

fabrication shop using this approach is modeled. 

4.3.1 Modeling Approach 

Products in industrial construction are usually decomposed into smaller 

assemblies to make the fabrication process easier; each assembly may have a 

number of detailed components. Therefore, each product does not travel in the 

system as one entity but usually travels as raw materials or different components. 

Since each entity is unique, the process of assembling and decomposing the 

elements depends on the entity’s unique features. Traditional simulation models 

assign user-defined ID values to different entities of a product in order to simulate 

the assembly process (Wang 2006). In this section, the Work Breakdown 

Structure (WBS) of a Product Model (Song et al 2006) for modeling the assembly 



68 

 

process is proposed. This approach can generate the raw material entities for a 

product, based on the product’s unique features. It is also capable of automatically 

assembling the entities to generate a component or the final product. 

This platform extends the function of the virtual shop modeling approach by Song 

et al. (2006) in order to model the flow of raw materials and components of a 

product as individual entities in a simulation model and to use the Product Model 

to estimate the duration of the activities.  

Song et al. (2006) suggested a “virtual shop modeling system” to model the 

unique characteristics of each product entity in a simulation model. In their 

approach, a Product Model (PM) is defined for each entity that includes its 

physical features and its Work Breakdown Structure (WBS) features. An example 

of a PM of a spool is shown in Figure 4.5. Each part or component of a product 

can be represented by a node in the WBS.  

During the fabrication of a product, some processes are performed on the raw 

materials, which are at the lowest level in the PM of an entity. Raw materials are 

then assembled together to produce higher level components, and this process 

continues until the final product is produced. For example, in the spool fabrication 

process, the cutting machine works on the pipe level (level 3 in Figure 4.5), roll 

welding is done on the assemblies (level 2 in Figure 4.5), the process of position 

welding takes place on the spool level (level 1 in Figure 4.5), and material 

handling can takes place at any level of the WBS of a spool. Different 

components of a spool can flow in a simulation model as different entities, so 
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when a process requires a specific level in the WBS, the entity should be sent to 

the required level. Therefore, a level of the WBS can be assigned to each process. 
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Figure 4.5 Product model including physical and WBS features 
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In the proposed methodology, raw materials or entity components of a product 

represent a node in the WBS. Since the entities that exist in a simulation model at 

the same time should be mutually exclusive, they cannot be ancestors or 

descendants of another entity in the WBS. For example, for a spool with a product 

model shown in Figure 4.5, we can have 4 entities representing “pipe 2”, “pipe 3”, 

“pipe 4”, and “assembly A” in a simulation model, but it is not possible to have 

“pipe 3” and “assembly B” at the same time in a model.  

A level of WBS is assigned to each process in the simulation. Before an entity 

starts a process, the level of WBS is adjusted to the required level of that process. 

A “level adjusting” element is designed to assemble the entities based on their 

WBS automatically (Figure 4.6). For assembling an entity to an ancestor 

component, the level adjusting element checks the required components for the 

assembly process using the WBS of the entity. The entity waits until all the 

components arrive to the element, and the assembly process proceeds afterwards. 

 

Figure 4.6 Level adjusting element for assembling an entity 
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To produce the raw materials at the start of the simulation, an element first 

generates each product and its PM and sends it to the level adjusting element to 

immediately decompose it to the lowest level of its WBS. Figure 4.7 shows how 

the level adjusting element decomposes an entity to its raw materials.  

 

 

Figure 4.7 Decomposing an entity to its raw materials 

Using this approach, we can have access to the unique characteristics of the 

materials in each activity based on its PM. Therefore, different methods can be 

used for modeling the effect of features of the products on the duration of 

activities depending on the data and information that is available for a process.  

4.3.2 Discrete Event Simulation Model  

The proposed methodology is used to develop a simulation based decision support 

model for an actual case study of a pipe spool fabrication shop. The model is 

capable of estimating the production and bottlenecks of the shop. It is also 
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possible to use the model to explore different if-then scenarios to determine 

possible improvements in the shop. The developed model integrates a Visual 

Basic program with a discrete event simulation model developed in 

Simphony.NET©. 

Simphony.NET© is an integrated simulation environment for building Special 

Purpose Simulation templates (SPS) (Hajjar and AbouRizk 2002). SPS templates 

allow an expert who is not necessarily knowledgeable in simulation to easily 

model a project using visual modeling tools. It provides a high degree of 

similarity to the actual construction process in a specific domain (AbouRizk and 

Hajjar 1998). 

A SPS template in Simphony.NET© was developed to model the pipe spool 

fabrication process of an industrial construction fabrication shop in Alberta. Job 

characteristics are captured in the form of probabilistic distributions, and the 

“spool generator” element generates the spool’s PM based on these 

characteristics. Simphony.NET© provides the capability of assigning different 

attributes to an entity. This feature has been used to assign a unique PM to each 

entity. The rest of the elements that have been developed for this model are as 

follows; these elements can be used for modeling any fabrication process and are 

not specific to pipe spool fabrication:  

• Fabrication shop: The parent element of all elements in the fabrication 

shop.  
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• Station: Represents a station that is doing a specific fabrication process 

such as cutting, fitting, or welding. The type of component that the station 

requires is specified in this element. 

• Level adjusting: Before processing an entity in a station, a “level 

adjusting” element adjusts the level of the entity to the required WBS level 

of its PM. 

• Next station: This element determines the next appropriate station for an 

entity based on the entity’s physical features, which are accessible from its 

PM, and the characteristics of the station. 

• Material handling: This element models the process of handling materials 

within or in/out of the shop.  

• Worker: This element represents different types of workers. 

• Overhead crane: This element represents the overhead cranes in the shop 

that are used for handling heavy materials. 

• Waiting file: The entities will wait in this element until they receive their 

required resources. 

The above-mentioned elements have been used to model the pipe spool 

fabrication process of an actual fabrication shop. Different types of stations are 

considered for each process based on the size and specifications of the entities.  

4.3.3 Estimating Input Values 

The duration of processes can be modeled using probabilistic distributions to 

represent the variation of durations (Law and Kelton 2000). By considering the 



75 

 

factors that affect the duration of an activity, the variance of the probability 

distribution function can be reduced. Therefore, by considering more factors we 

can decrease the uncertainty in the duration of different activities in a simulation 

model and increase its accuracy (AbouRizk and Sawhney 1993). Since the 

duration of processes such as cutting, fitting, and welding are highly affected by 

the spool features, the knowledge about the product model of each spool and its 

effect on the productivity is used to reduce the uncertainty and increase the 

reliability of the simulation model .In the proposed model, the durations of these 

processes are estimated by accounting for three factors: productivity values 

estimated by experts, amount of work units in each spool, and number of workers. 

In the case study of the fabrication shop, historical data are provided in the form 

of productivity values which are the produced work units delivered by the man-

hours used to produce them (Equation 4.1).  

productivity 

A`uJ�v uw luxy J�zvI

M|�1}uJxI
                                 (4.1) 

Work unit amounts can be estimated at different levels of the WBS of a spool in 

the fabrication shop based on the number of welds, diameter of each weld, weld 

type, type of material and wall thickness. The company uses certain tables to 

account for the effect of these factors on the work unit amount. Because of the 

confidentiality issue, these excel sheets cannot be revealed. The productivities are 

recorded in the database for the main tasks such as cutting (PrCJvvz�E	, fitting 

(PrFzvvz�E	 and welding (PrW���z�E	. 

The productivity values of the historical data can be used for estimating the 

duration of a spool for a specific task. For example, assume that we would like to 
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calculate the duration of welding for a spool (Durl���z�E	. First, the work unit of 

that spool, (WUIKuu�	, should be calculated. Considering (w) workers are working 

on the spool, the duration can be calculated according to Equation 4.2.  

Durl���z�E 

WU�����

PxW�������l
                                  (4.2) 

Many factors affect the durations of activities in the fabrication shop that are not 

considered in estimating the work unit amount. For example, roll welding and 

position welding are two different activities that are performed in two different 

stations. However, for calculating the work unit amount of weld, the effect of 

position welding or roll welding in the duration is not considered. As a result 

there is a variation in the productivity values in the shop that can be reduced by 

explicitly considering these factors. However, available productivity values in the 

historical data cannot show the real variance in the productivity for processing 

different spools, since the historical productivities are recorded based on the work 

units that are produced by the whole shop in a given period of time.  

To refine the durations based on other factors, the average value of the historical 

data is combined with expert judgment, by asking the expert to compare the 

duration of performing a task under a specified situation with the average 

duration. For example the expert may say “the duration of performing position 

welding is about twice of the average productivity for welding”. The duration for 

position welding ( DurPW	  can be estimated based on this statement using 

Equation 4.3 

DurPW 
 2 � Durl���z�E � DurPW 
2* 
WU�����

A���PxW������	�l
                (4.3) 
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To get a range for the duration of position welding that can represent the variance 

in this process; the expert is asked to determine the maximum and minimum 

values of the ratio between the duration of position welding and the average 

duration of welding. The expert may say it could range from 1.5 to 2.5 of the 

average duration. Therefore, a triangular Probability Density Function (PDF) 

function, f(x), can be developed using these three values, where x is the ratio 

between the duration of position welding to the average duration of welding 

(Figure 4.8).  

 

Figure 4.8 A triangular PDF, f(x), is defined for the ration(x) between the 

duration of position welding to the average duration of welding  

Developed PDF, f(x) is used to estimate the duration of position welding by 

sampling the ratio form the PDF and using Equation 4.4. 

DurPW 
 ratio � Durl���z�E � DurPW 
 ratio* 
WU�����

A���PxW������	�l
                (4.4) 

The same approach is used for estimating the duration of other activities such as 

roll welding for small spools, roll welding for large spools and small cutting 

stations, etc. 

A Visual Basic (VB) application has been developed to control the input to the 

simulation model, making its use more readily accepted by industry practitioners 

(Figure 4.9). Since the layout is not fixed in the fabrication shop, the user can 
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change the shop layout as well as the job characteristics and resource 

specifications through the user interface. This feature also provides the capability 

of experimenting with different if-then scenario to come up with the best possible 

shop layout. The user can also update resource specifications such as, number of 

stations, productivity of each station, the number of workers that are required in 

each station and the total number of workers. The VB program analyzes the 

simulation results and highlights the bottlenecks and underused resources through 

the interface (Figure 4.9). 

The simulation model is validated by comparing the estimated produced work 

units by the simulation model with the actual produced work units of the shop in a 

specific period of time. A number of experiments are performed for different 

periods in the fabrication shop. For each experiment, the job characteristics, 

number of workers and shop layout are specified by the managers. The model 

runs for various times to use different samples of the PDFs defined for the 

durations of the activities.  

The results of the model are very satisfactory to the managers of fabrication shop; 

the average produced work units estimated by the model was very close to the 

actual produced work units experienced by the fabrication shop, with less than 5% 

error for all of the considered periods. Error percentage is calculated according to 

Equation 4.5. (ABS is the absolute value in this equation). 

�����% 
 Y�g�1 '
��78��7 d:8& 5��?< 7<?�6�?7� �i ?@7 6:�7>

�n?5�> d:8& 5��?< =8:�5n7� �i ?@7 ;��8�n�?�:� <@:=
	 � 100    (4.5) 
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Figure 4.9 User interface for simulation model developed in Visual Basic 
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4.4 Improving Uncertainty Assessment in Discrete Event Simulation 

Using a Combined Fuzzy and Probabilistic Approach  

In the developed simulation model for pipe spool fabrication shop in Section 4.3, 

the PM of the spools are derived based on sampling from PDFs of the job 

characteristics provided by experts. This method is appropriate in situations that 

we do not have the exact information of the spools, for example, before the 

contract, when we are at the bidding stage. However, the company usually has 

access to the specifications of the spools after the contract. If a database contains 

all the specifications of the available spools, the accuracy of the simulation model 

can be improved by connecting the model to the database and developing the PM 

of the spool based on the actual information that is provided in the database. In 

this way, the uncertainty in the model will decrease, each spool can be tracked in 

the fabrication shop, and the model can be further used for scheduling purposes.  

While connecting the model to the database will decrease the uncertainty in the 

PMs of the spools, fuzzy logic can be used to better represent the uncertainty in 

the durations of the activities resulting from experts’ judgment. In the approach 

proposed in Section 4.2, experts’ judgment and the PM are used to estimate the 

PDF of the duration of activities by providing the minimum, maximum and most 

likely value. Other researchers also try to convert experts’ knowledge into 

probabilistic distributions (see Ahuja et al. 1994; Garthwaite et al. 2005). 

However, there are some criticisms on performing probabilistic analysis on 

subjective and linguistically expressed data, as the subjective reasoning of 

individuals may not be appropriate for objective scientific conclusions (Goldstein 
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2006). In other words, the information gained from experts is subjective and 

contains ambiguity, and there is a chance of introducing artificial knowledge that 

is not actually available to the model when using probability values gained from 

experts (Guyonnet et al. 2003). 

Fuzzy logic is an appropriate alternative for expressing the information gained 

from experts. Various methods exist for developing fuzzy sets based on expert 

judgment, as discussed in Chapter 2. For example, in the method that is developed 

for estimating the duration of position welding in Section 4.3.3, we can model the 

ratio between the duration of position welding and average duration for welding 

using a fuzzy membership function, µ(x), instead of the PDF, f(x). Therefore, a 

fuzzy set A can represent the ratio x between the duration of position welding and 

duration of welding. The required amount of working units for position welding 

�WUKuIvzu�	 can be derived from PM of the spool, as discussed in Section 4.3. 

Therefore, the duration for position welding, (DurPW	 , for a spool with (w) 

number of workers, can be calculated from Equation 4.6. 

DurPW 
 A�x	 � Durl���z�E � DurPW 
 A�x	* 
WU��� ���

A���PxW������	�l
                (4.6) 

Since the values of the working unit amount and average productivity of welding 

are real numbers, fuzzy arithmetic can be used to find the duration of position 

welding as a fuzzy set. This approach for calculating the duration of the activity is 

illustrated in Figure 4.10. 
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Figure 4.10 Calculating the duration of position welding in the form of a fuzzy set based on the PM and expert’s judgment 
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Different methods can be used to consider the effect of different factors on the 

duration of construction activities based on fuzzy logic (for example, Ayyub and 

Haldar 1984). The method suggested in this section is just an example appropriate 

for the case study of pipe spool fabrication shop. In a general, for an industrial 

fabrication process, the duration of the activity should be estimated based on 

different factors such as product features, characteristics of the resources, and 

environmental factors. Expert judgment is used to express the effect of different 

factors on project duration. Finally, the uncertainty regarding the duration can be 

modeled using fuzzy sets to represent the vagueness and uncertainty resulting 

from expert judgment (Figure 4.11). 

 

 

Figure 4.11 Estimating activity duration in the form of a fuzzy set 

Using the proposed approach, we need to solve a simulation model in which the 

duration of each activity for the spools is a fuzzy set. Usually the fuzzy durations 

are defuzzified (Shaheen 2005) or converted to a PDF (Ayyub and Haldar 1984) 

to be used in discrete event simulation. However, as discussed in Chapter 2, there 

is no fully accepted way of transforming one type of uncertainty to another, and 

the defuzzified value cannot represent the uncertainty exists in the inputs. 
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Fuzzy discrete event simulation can be applied to use the fuzzy durations directly 

in the simulation model. The simulation time in the fuzzy discrete event 

simulation is in the form of a fuzzy set, as described in Chapter 2. Therefore, any 

statistics that are calculated based on the simulation time are in the form a fuzzy 

set. For example, cycle time of a spool is calculated based on the arrival time of 

the spool (/<?�8?	 and the time when the spool leaves the shop (/7��	 using 

Equaiton 4.7. Since the times /<?�8? and /7�� are fuzzy sets, the estimated cycle 

time will be in the form of a fuzzy set, as well. 

¡f¢£� [�¤� 
 /7�� ' /<?�8?                               (4.7) 

Therefore, using fuzzy discrete event simulation, each observation of the outputs 

that is calculated based on simulation time, such as cycle time of the spool, is in 

the form a fuzzy set. However, the managers are not only interested in the outputs 

regarding each observation of the products, but they are also interested in the 

overall view of the project. For example, they would like to analyze the cycle 

times of different spools. In this case, we have a number of observations of 

different fuzzy sets and fuzzy random variables can be used to model this output. 

Also, fuzzy CDF can be developed for making decisions based on the output 

results, as discussed in Chapter 3. 

In a general fabrication process, the proposed framework can be summarized in 

the following steps: 

1. Model the activities and resources of the industrial fabrication process. 

2. Generate the entities for the products and their product model using a 

database.  
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3. For each activity, compose and decompose entities to the required 

level of the PM.  

4. Estimate the duration of each activity in the form of fuzzy set based on 

the PM, experts’ judgment, resource characteristics, and environmental 

factors. 

5. Use fuzzy discrete event simulation to run the model. 

6. Collect the model outputs that are in the form of fuzzy sets. 

7. Use fuzzy random variables and fuzzy CDF to analyze the collected 

outputs of the simulation models to present the overall view of project. 

The approach that is suggested in this thesis enables the use of obtained fuzzy 

durations directly in the simulation model and performing fuzzy discrete event 

simulation. The output is in the form of a number of fuzzy sets that have random 

variations. The fuzziness in the output represents the uncertainty resulting from 

experts’ judgment. The variation between fuzzy sets is the result of the possible 

variations in the characteristics of recourses and the environmental factors, as well 

as the difference between the product models of different spools. Therefore, the 

output can be modeled using a fuzzy random variable. To implement the proposed 

framework, possible methods for developing fuzzy durations based on expert 

judgment for an industrial fabrication process should be investigated. Also, 

various approaches for developing fuzzy discrete event simulation for industrial 

fabrication processes should be analyzed, and an appropriate method should be 

implemented.  
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4.5 Conclusions 

We have developed a platform for simulating industrial fabrication processes that 

is capable of simulating a process to the level of raw materials and components of 

a product to estimate the duration of different activities and model the sequence of 

activities. The use of WBS of a Product Model to model the assembly process is 

proposed. This methodology allows the assignment of different levels of WBS to 

different processes. A node in the WBS is assigned to each entity, and a level 

adjusting element is designed that can automatically assemble or decompose the 

entities to the required level of each process. Expert judgment has been used to 

estimate the Probability Density Function (PDF) for the duration based on the PM 

of a product. This approach has been implemented using an actual case study to 

develop a simulation based decision support system for a pipe spool fabrication 

shop. The results show that the method is practical and useful. An SPS template 

that can be used for any industrial fabrication process has been developed in 

Simphony©.  

To improve the modeling of the uncertainty in the input parameters, fuzzy sets are 

proposed instead of PDF for modeling the duration of the activities that are 

derived based on experts’ judgment. Finally, a combined fuzzy and probabilistic 

discrete event simulation framework is proposed to consider the fuzzy durations 

of the activities, as well as the variation in the characteristics of resources, 

environmental factors, and product models of the entities. Future research should 

be conducted to implement the proposed framework and compare the results with 

a model using only the probabilistic type of uncertainty.              
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CHAPTER 5- CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 Research Summary 

Simulation modeling is a powerful tool for capturing uncertainty in construction 

projects. The traditional approach for representing uncertainty in construction 

projects is probabilistic theory. Comprehensive historical data are required to 

accurately estimate the probability of input parameters, yet subjectivity and lack 

of data regarding the parameters of a construction project are very common. In 

these circumstances, fuzzy logic can be used for modeling the uncertainty of 

parameters based on expert judgment. Since subjectivity and a lack of data 

usually exist in some of the parameters affecting a construction project, a reliable 

framework is required to address both types of uncertainty in the form of 

randomness and fuzziness in the inputs of a simulation model. Different 

simulation methods may be applied to a model depending on the structure of the 

problem. In this research, we focused on two types of simulations: (1) Mont Carlo 

Simulation, and (2) Discrete Event Simulation. Monte Carlo simulation is applied 

to a model that does not depend on time, while discrete event simulation is time-

based and can be used to analyze the sensitivity of dynamic schedule and resource 

constraints to unexpected construction scenarios. 

The literature suggests two main approaches for solving a Monte Carlo simulation 

that has both fuzzy and probabilistic inputs: (1) transforming one type of 

uncertainty to another before processing the model, and (2) keeping the 
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uncertainties in their original forms while processing the model. There is no 

single accepted method of transforming fuzzy sets to PDF or vice versa. 

Furthermore, even in the second approach, the output is analyzed by considering 

only one type of uncertainty or by representing fuzziness and randomness in other 

forms based on the theory of evidence. A Fuzzy Monte Carlo Simulation (FMCS) 

framework that can accept both fuzzy and probabilistic inputs for risk analysis of 

construction projects is presented in Chapter 3. In FMCS, the output is modeled 

using fuzzy random variables, and the fuzzy Cumulative Distribution Function 

(CDF) is introduced as a generalized form of CDF. Fuzzy CDF has the unique 

feature of representing both fuzzy and probabilistic uncertainty in a single figure. 

In fuzzy CDF, random and fuzzy uncertainties are represented explicitly to allow 

the decision maker to completely understand the origins of each type of 

uncertainty. FMCS is used to develop a cost range estimating template for 

construction projects. The template is used to perform a sensitivity analysis of the 

FMCS framework based on the example project of a highway overpass. The 

results illustrate the reasonable behaviour of the FMCS framework. 

A hybrid framework for discrete event simulation of industrial fabrication that 

considers both fuzzy and probabilistic uncertainty is proposed. Although previous 

research has used fuzzy logic to model uncertainty in discrete event simulation 

models, it has not successfully combined both fuzzy and probabilistic uncertainty 

in the same model. In reality, we usually face both types of uncertainty 

simultaneously in construction simulation. To develop a combined fuzzy and 

probabilistic discrete event simulation model for industrial fabrication, first of all, 
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a platform for simulating industrial fabrication processes is developed that is 

capable of modeling the products to the level of raw materials. A node in the 

WBS is assigned to each entity, and a level adjusting element is designed that can 

automatically assemble or decompose the entities to the required level of each 

process. Expert judgment has been used to estimate the Probability Density 

Function (PDF) for the duration based on the Product Model (PM) of a product. 

This approach has been implemented using an actual case study to develop a 

simulation-based decision support system for a pipe spool fabrication shop. The 

results show that the method is practical and useful. An improvement on this 

approach is suggested by using fuzzy sets instead of PDF for modeling the 

duration of the activities that are derived based on expert judgment. Finally, a 

combined fuzzy and probabilistic discrete event simulation framework is 

proposed to consider the fuzzy durations of the activities as well as the random 

variation in the characteristics of different products in the shop. 

5.2 Contributions 

This research provides a generalized framework for Monte Carlo simulation that 

is capable of considering both fuzzy and probabilistic inputs. It also suggests a 

framework for discrete event simulation to explicitly consider both fuzzy and 

random types of uncertainty. Therefore, the modeler can benefit from the rich 

information provided by data as well as by capturing the ambiguity in expert 

judgments. The following major contributions are made in this thesis: 
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1) A Fuzzy Monte Carlo Simulation (FMCS) framework is developed as a 

generalized form of Monte Carlo simulation. This framework allows both 

types of uncertainty to be captured separately in Monte Carlo simulation 

for more realistic results.   

2) The fuzzy Cumulative Distribution Function is proposed for the first time 

in this research as a generalized form of CDF. Although fuzzy CDF is 

developed as part of the FMCS framework, it is a general method based on 

fuzzy random variables and may be used for risk analysis in any 

application in which both fuzzy and probabilistic uncertainty are involved. 

3) A new framework for simulation of industrial fabrication capable of 

modeling the products to the level of their raw materials is proposed. As a 

result, the effect of the characteristics of each component of a product on 

the duration of different activities is considered for use in discrete event 

simulation. 

4)  A methodology based on fuzzy logic is proposed for incorporating expert 

judgment to estimate the duration of activities for different product 

characteristics.  

5) A consideration of both fuzzy and random uncertainty in a discrete event 

simulation model is suggested.  A framework for simulation of industrial 

fabrication processes is proposed in which the duration of the activities are 

presented using fuzzy sets that are derived according to the Product Model 

of each entity. 
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5.3 Recommendations for Future Research 

In the course of this thesis, numerous areas that have the potential for future 

research have been identified. The areas that can be investigated in greater detail 

are as follows: 

1) Actual testing of fuzzy cost range estimating template in the industry 

should be conducted to better justify the benefits that this template brings 

to the cost range estimating of construction projects. 

2) The Fuzzy Monte Carlo Simulation framework is implemented for cost 

range estimating. Implementing this framework in other areas such as 

construction project scheduling can indicate the practical aspects and the 

wide impact that FMCS framework can have on construction 

management. 

3) Although the behavior of FMCS is verified by comparing the results with 

traditional Monte Carlo simulation, further research is required to find 

appropriate validation methods in order to evaluate the performance of the 

proposed methodology. For this purpose, validation criteria should be 

defined as part of formulating the research problem.   

4) Currently, minimum t-norm is used to perform fuzzy arithmetic as part of 

the FMCS framework. The effect of other t-norms in FMCS framework 

shall be experimented. The best t-norm may be found in different 

applications to better satisfy the user. 

5) Fuzzy CDF is proposed as a general approach based on fuzzy random 

variables. However, only Infinum and Supernum values of the alpha-cuts 
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are used for the development of the fuzzy CDF that can be improved in 

future research.  

6) The methodology that is developed for estimating the duration of activities 

based on product characteristics can be improved by using other 

approaches such as fuzzy expert systems. 

7) More case studies should be conducted to show the capability of the 

combined fuzzy and probabilistic discrete event simulation framework for 

modeling industrial fabrication processes using Product Model (PM).  

8) The simulation model that is developed for pipe spool fabrication can be 

connected to the database of the company to read the exact information of 

the pipes from the data base and create more accurate Product Models 

(PM) for the entities in the simulation model.  

9) The method proposed for combined fuzzy and probabilistic discrete event 

simulation should be investigated in more detail and implemented for pipe 

spool fabrication or other case studies. The first step for implementation of 

this framework is to develop a fuzzy discrete event simulation model. For 

this purpose, a fuzzy ranking method should be selected and implemented 

within a discrete event simulation model.  
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