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Abstract

Interference dominated wireless communications systems are considered. Joint detection

methods are applied to combat the negative effects of the temporal and spatial interference.

However, practical joint detectors are not commonly used due to their high complexity.

Therefore, there is a constant need to deliver reduced complexity solutions that approach

substantial fraction of the channel capacity.

In the first part of this thesis it is shown that simple transmission technique employing

repetition coding and interleaving combined with interference cancellation is an asympto-

tically optimal processing strategy when high interference is experienced, for instance due

to the relatively high ratio of the number of signals to the number of orthogonal dimen-

sions. Surprisingly, strong, capacity achieving codes exhibit inferior performance and are

not well suited for iterative interference cancellation due to their sharp threshold characte-

ristics. Motivated by this observation partitioned modulation is introduced and applied to

a multiuser spread spectrum system, which inherently encompasses a repetition coding me-

chanism. The detection of the resulting signals employs a parallel interference cancellation

approach, where the repetition code exchanges information iteratively with the canceller.

Precise signal-to-noise ratio evolution of the proposed receiver as a function of demodulation

iterations is given. It is shown, that for equal received power system, partitioned demodula-

tor outperforms linear minimum mean squared error processor at a fraction of complexity.

This receiver processing for a wide range of parameters delivers estimates that coincide

with the optimal processing based on exhaustive search. For unequal received signal powers

these advantages are even more visible and for a particular exponential power allocation



the proposed system reaches the capacity of the channel. The analytical investigations are

verified using computer simulations.

In the second part of this dissertation, multi-user MIMO systems compliant with 3GPP

LTE standard are considered. Turbo near-far resistant interference cancellation receiver

is proposed. It jointly removes multi-user, multi-antenna and inter-symbol interference

and outperforms traditional demodulation/decoding method adopted in the LTE standard.

Semi-analytical method of predicting the performance of this joint receiver for any system

setup is outlined. This approach makes it possible to tune up the performance of the system

without running extensive bit-error-rate simulations.
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CHAPTER 1

Introduction

It all started with the invention of the telephone by Alexander Graham Bell in the 19th

century and the first wireless long distance transmission established by Guglielmo Marconi

in the early 1900s. Since then a number of important discoveries have contributed to a rapid

development of communications engineering. Shortly after, the thought of interconnecting a

number of terminals to form a network was conceived. This invention made communications

more commonly available to the extent that it became a strategic point in the development of

countries, similar to that sparked by the railway system in early 1800s. With many advances

in solid state physics, mainly the invention of the transistor, the digital revolution slowly

started to emerge. Its first appearance is perhaps connected to PCM digital transmission

using wireline network and in principle these ideas are still used today. The pinnacle of

the wireline digital boom is marked with the invention of Ethernet and the development

of the US military network ARPANET, which after a number of gradual improvements

transformed into the internet. It is very likely the most influential human invention of the

second half of the 20th century. The internet changed life of not only individuals, but whole

nations. It rapidly caused the world to shrink. Worldwide access to communications is easily

available and what previous generations did not even dream of, is reality today. A plethora of

new services to communicate using all human senses was and is being constantly developed

up to the point, that mankind’s dependence on the unlimited access to information has

never been as high before. Contemporary society has for the last decade witnessed another

revolution in information processing and transfer. It has been vastly influenced by the

unprecedented success of the GSM cellular communications system. The number of mobile

subscribers exceeded that of wireline subscribers a long time ago. Until recently those

provided mostly voice services with some very limited data oriented applications, like for

instance short messaging service - SMS. Now, due to the existence and tremendous success

of the internet, the focus is quickly moving onto packet type connections, which can carry

1
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any type of traffic including traditional voice communications using the VoIP technology.

Due to rapid development of data oriented systems like GPRS, its improvement EDGE

and subsequently UMTS, ubiquitous wireless internet access is quickly becoming a reality.

Practically everyone can contact anyone, anytime from almost any place in the world and

at a reasonable cost, which is mainly influenced by high government fees of the spectrum

usage.

There are hundreds of new services which create an excess of new problems and challenges.

They can be intuitively summarized in the following. A rapid increase in the number

of mobile users, each demanding more sophisticated and data-hungry services, requires

extremely efficient use of available resources like bandwidth and power. Therefore, the

requirements on efficiency have never been so high before. The power/bandwidth efficiency

is crucial, especially for wireless systems, and as stated by Shannon [1], together with other

information theoreticians, for a given system model has a certain maximum value which,

for error-free transmission, cannot be exceeded.

This thesis aims at the development and mainly improvement of methods that optimize the

power/bandwidth trade-off for a number of communication situations, predominantly those

in which a number of independent users communicate to a common receiver, a situation

that mimics the uplink (or forward link) transmission in cellular communications systems.

Multiuser detection algorithms play a central role in achieving these goals. Joint detection is

a powerful method of separating signals embedded in the interference and noise of coexisting

transmissions. It was first adopted and later developed in the context of user isolation in

multiple-access spread spectrum CDMA systems [2, 3].

1.1 Thesis Contributions and Organization

This dissertation is organized as follows. Initially a number of basic concepts developed in

digital communications and information theory, that will be used extensively throughout

this thesis are introduced. Then, a short introduction to multiuser information theory is

given. The simple two-user multiple-access channel is investigated and a number of impor-

tant concepts for this type of channel, like the capacity region, are introduced as in [4] and

[5]. These results are then generalized to a multidimensional multiple-access channel and

the capacity notion captured by the capacity region is given. Subsequently, the attention

is focused on basic joint detection methods including the optimal approach based on the

exhaustive search algorithms. Additionally popular linear detection methods like matched

filtering (sometimes deemed correlation detection), decorrelator and particularly the MMSE

filter are outlined. In general, however, these methods are still of high computational com-

plexity primarily due to the need to perform matrix inversion. Therefore subsequently a
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number of popular approximations aimed at efficient matrix inversion are presented. First

chapter is summarized with the introduction of interference cancellation methods and its

most fundamental variants. One is the successive interference cancellation which is a direct

application of the chain rule of mutual information. The other is parallel method where all

signals are cancelled at once, but multiple times (iterations).

Chapter two focuses on the optimal channel coding for interference cancellation systems. As

a guideline to design optimal codes for the IC systems, the results from a very recent paper

[6] are utilized. The bound derived there indicates the minimum residual variance that any

coding scheme is possible to deliver. It is found that simple repetition codes are the best for

IC systems, when the amount of interference is high. Surprisingly, strong capacity achieving

codes perform poorly in this regime. A number of popular codes are examined and a couple

of numerical simulations are performed to prove the validity of the theoretical findings.

The third chapter applies the ideas of light inner coding to the case of CDMA. The new

system called partitioned CDMA or partitioned spreading CDMA exhibits substantial gains

over the traditional CDMA system at a minor increase in complexity. The proposed system

may be viewed as a generalization of IDMA [7]. However, both solutions have completely

different motivations. IDMA was initially proposed to separate users using different random

interleavers. Partitioned CDMA however is based on the observation that repetition coding

delivers better results for high interference scenarios. Additionally, unlike the IDMA litera-

ture this thesis delivers a very accurate SNR evolution analysis. It is shown that for certain

conditions the proposed system delivers SNR values that coincide with those achieved by

the optimal APP detector. The output SNR of the APP detector was found in [8, 9] via

complex analysis used in statistical mechanics. Additionally, it is found that the proposed

detector delivers estimates that are always better than those obtained via the traditional

one-shot MMSE filtering of cubic complexity.

Chapter four presents the partitioned CDMA analysis when each user’s received powers are

different. Since the equal power system is interference limited the attempt to remove this

limitation via unequal power allocation is made. It has been shown that for the special case

of exponential receive power profile the system can serve any number of users - system is not

interference limited. In other words, for certain power allocation, the capacity of GMAC

can be reached. Simulations for systems with a large number of users (and consequently

large interference levels) are presented and validity of the proposed solution is proven.

The fifth chapter treats signal processing for the uplink transmission in LTE standard.

The iterative turbo receiver that performs processing with a mixture of serial and parallel

cancellation methods is proposed, analyzed, and verified. It is shown that for the so called

cell-edge situation, the proposed receiver performs 2-3 dB better than the baseline processor.

Intuitive variance transfer graphs method for determining the waterfall occurrence of the
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proposed system is given and simulations prove that the accuracy of the proposed graphical

method is surprisingly high.

The last chapter concludes this dissertation, summarizes its main contributions and briefly

sketches future research directions on the subject.

1.2 Fundamental Concepts in Digital Communications

and Error Control Coding

In this section, a number of fundamental ideas and approaches to the design and analysis of

the communications systems are briefly outlined. The subsequent chapters introduce signal

processing methods that immensely rely on these crucial ideas, therefore their brief, but

rigorous description is of high importance for a smooth development of this dissertation.

1.2.1 Reliability Measure

The most commonly used measure of reliability is the LLR. Assume that the communica-

tion system transmits binary information x = {±1}. These signals enter the memoryless

Gaussian channel with noise variance σ2 and are attenuated/amplified by a factor a. The

received signal is

y = ax+ n = ax+N (0, σ2) (1.1)

and the LLR of x can be defined as

Λx(y) = log
P (x = +1|y)

P (x = −1|y)
(1.2)

and is a function of observation y. The term P (x = ±1|y) is called a posteriori probability.

Using Bayes rule

P (x = +1|y) =
P (y|x = +1)P (x = +1)

P (y)
(1.3)

Equation (1.2) can be rewritten as

Λx(y) = log
P (y|x = +1)P (x = +1)

P (y|x = −1)P (x = −1)
. (1.4)

Term P (x = ±1) is called a priori probability and P (y|x = ±1) is likelihood. Assuming

that prior probabilities are equal P (x = +1) = P (x = −1) = 1/2 Equation (1.4) reduces to

Λx(y) = log
P (y|x = +1)

P (y|x = −1)
. (1.5)
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Since the channel is Gaussian its likelihood function, sometimes named as a transition

probability, can be expressed using the PDF function of the Gaussian distribution as

P (y|x = ±1) =
1√

2πσ2
e−

(y∓a)2

2σ2 (1.6)

and after substituting it into (1.5) the following is obtained

Λx(y) =
2a

σ2
y (1.7)

and it states that LLR is a simple linear function of the observation y. The concept of LLR

is the foundation of modern soft information processing algorithms like turbo and LDPC

codes and a plethora of their derivatives. LLR has a number of useful properties. Λx is

conditionally Gaussian i.e.

Λx(y)|x ∼ N
(

2a2

σ2
x;

4a2

σ2

)
. (1.8)

Finally, a posteriori bit probabilities can be derived from LLR values as

P (x = +1|y) =
1

1 + e−Λx(y)
(1.9)

P (x = −1|y) =
e−Λx(y)

1 + e−Λx(y)
. (1.10)

After this extensive introduction the idea of a soft-bit, which will be reused extensively

in the following chapters, should be introduced. The soft-bit of a random variable is the

expectation of a bit, assuming that it is represented in antipodal format {±1}, given the

channel observation y in Equation (1.1)

x̃ = E[x|y] = P (x = +1)P (y|x = +1) + P (x = −1)P (y|x = −1) (1.11)

which for Gaussian channel using (1.9) and after some manipulations reduces to

x̃ = E[x|y] = +1 · P (x = +1|y) + (−1) · P (x = −1|y) (1.12)

=
1

1 + e−Λx(y)
− e−Λx(y)

1 + e−Λx(y)
= tanh

(
Λx(y)

2

)
.

Finally, another very useful property of the LLR values is discussed. Namely, that the LLR

of a number of independent observations of the same experiment is equal to the sum of the

LLR values obtained in each observation. Although this property is not very innovative, it

has been applied extensively in decoding algorithms of modern error control codes, as we

will see later.
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1.2.2 Iterative Processing

The invention of turbo codes [10] brought a revolution and was one of the major advances

in digital communications that influenced many domains of information transmission. The

basic idea is based on iterative message exchange between number of components in the

system. Generally for error control codes it is an exchange of information between com-

ponent decoders, whereas for joint detection/decoding, this exchange is performed between

the decoder of the applied channel code and the interference channel itself.

1.2.3 EXIT Charts

EXIT charts, introduced in [11], deliver insights into the iterative decoding (detection)

process by observing the input-output characteristics of each component decoder (detector).

Its motivation was to predict the behavior of the turbo codes. EXIT chart is primarily

used to predict the occurrence of the turbo-cliff. The accuracy of results obtained using

EXIT analysis increases by increasing the length of the considered code. For large codes

this approach is very precise. For the case of short codes and many decoding iterations

it loses its accuracy considerably. The input-output relationship of each component code

is expressed via the correlation between input LLR values and output for a given noise

level. This correlation is best captured by the mutual information measure introduced by

Shannon in his seminal 1948 paper [1]. The EXIT charts method can be used to predict the

performance of the turbo decoder with quantized extrinsic information as in [12].

1.2.4 Sufficient Statistics

Sufficiency is one of the most important paradigms in probability theory. Sufficient statis-

tics preserves the statistical properties of the observation, in other words is information

lossless. The most general mathematical definition states that a statistic T (X) is sufficient

for underlying parameter θ, if the conditional probability distribution of the data X, given

the statistic T (X), is not a function of the parameter θ i.e.

P (X = x|T (X) = t, θ) = P (X = x|T (X) = t) (1.13)

or in short

P (x|t, θ) = P (x|t). (1.14)

The Fisher-Neyman factorization theorem delivers a useful characterization of sufficient

statistics. If the PDF is fθ(x), T is sufficient for θ if and only if functions g and h can be
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found such that

fθ(x) = h(x)gθ(T (x)), (1.15)

meaning that the probability density function f can be factored into two, where one does not

depend on θ and the other that does depend on θ only through T (x). Sufficient statistics is

the central motivation to the idea of describing a possibly large observation set with a small

number of parameters that fully describe this set. The most simple example of sufficient

statistics is by using the set of Bernoulli distributed random variables with expected value

of p. The sufficient statistics for p is the mean T (X) = X1+...+Xn
n . Denoting Xn = 0 being

a failure and Xn = 1 a success, T (X) represents the fraction of experiments that will end

with a success. This example describes determining the bias of a coin in a coin tossing

experiment.

1.3 Multiple-Access Channels

The typical multiple-access situation is presented in Figure 1.1. Shortly speaking, a number

of transmitters communicate to a common receiver. The receiver’s task is to successfully

separate these data streams. Before we formally introduce the MAC channel let us concen-

trate on the general idea of a random channel, which is an important concept in wireless

communications and a basis for treating and approximating a number of practical channels.

1.3.1 Random Channel

Random channel is a very popular way to mathematically model the wireless channel. Its

usefulness comes from the fact that it is well understood and allows for elegant analytical

treatment. To describe the random channel let us use the following linear memoryless

channel

y = Hx + n (1.16)

where x is the K-dimensional data vector, y is the N -dimensional channel output and H is

the N by K channel matrix. The entries of matrix H are random and characterized by a

certain probability distribution. Usually the most convenient assumption is that the entries

of channel matrix H are i.i.d. and are valid for a number of cases like narrowband MIMO or

DS-CDMA multiple-access channels. For example hi,j ∼ CN (0, 1) models the narrowband

MIMO channel with K transmit and N receive antennas. The capacity of this channel was

found via the study of the behavior of its eigenvalues (singular values) in [13]. Assuming that

the channel entries are hi,j ∼ B(1, 1/2)1 a DS-CDMA channel is modeled and the capacity

1Binomial distribution Pr(hi,j = −1) = Pr(hi,j = +1) = 1/2.
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of this channel was derived in [14]. In this thesis attention is focused on these two channels.

More information on the subject of random channels can be found in [15]. Subsequently,

a brief introduction to multiple-access channels is given and selected relevant results from

multiuser information theory are presented. There are many models of multiuser channels

+

Multiple-Access
Channel

Noise

Source 1

Source 2

Source 3

Transm 1

Transm 3

Receiver

Destin 1

Destin 2

Destin 3

Transm 2

d1 x1(t)

d2 x2(t)

d3 x3(t)
τ3

τ2

τ1

y(t)

n(t)

d̂1

d̂2

d̂3

Figure 1.1: Multiple-access channel.

[4], but of most practical interest are the linear multiple-access channels and therefore,

throughout the rest of this thesis, vast attention is concentrated on this particular channel.

The most important model is Gaussian multiple-access channel (GMAC) model which can

be described using the following equation

y(t) =

K∑
k=1

xk(t− τk) + n(t) (1.17)

where y(t) is the received composite signal, xk(t) is k-th user signal and n(t) is additive noise,

usually assumed to be zero mean Gaussian with variance σ2 and can be easily extended to

the complex case1. The quantity τk models the delay experienced by user k.

The multiple-access channel can also be modeled as a probabilistic experiment, where the

channel itself is represented by a conditional probability distribution dependent on the

sources as in Figure 1.2. Assuming the system consists of K users

K = {1, 2, . . . ,K} (1.18)

1In complex case it is circularly symmetric complex Gaussian random variable consisting of independent
real and imaginary parts each with variance σ2/2.
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and that the input symbols belong to the set

XS = {Xk, k ∈ S} (1.19)

and the output alphabet be Y, we can model multiple-access channel with the conditional

probability as

p(y|xK) = p(y|x1, x2, . . . , xK) (1.20)

and the tuple

(XK, p(y|xK),Y) (1.21)

completely defines the channel probabilistically. An additional useful definition, that will

be reused subsequently, is that users are independent, so their joint probability distribution

can be expressed as

p(xK) =

K∏
k=1

pk(xk) (1.22)

With this short introduction we are now ready to define the capacity region of the multiple-

x1 ∈ X1

xk ∈ Xk

xK ∈ XK

p(y|x1, . . . , xk, . . . , xK) y ∈ Y

Figure 1.2: Multiple-access channel as a probabilistic experiment.

access channel1. This region indicates the information rates that can be achieved by every

user and therefore is directly related to the overall spectral efficiency of the multiuser system.

First the rate region should be introduced. Rate region is an entire set of achievable rates.

Definition of rate region is as follows. With the multiple-access channel described in (1.21)

and for a fixed distribution of channel inputs π(xK) =
∏
k pk(xk) every rate vector R in the

set

R[π(xK), p(y|xK)]
4
= {R : R(S) ≤ I(XS ;Y |XK S),∀S ⊆ K} (1.23)

is achievable. To illustrate the meaning of the rate region a simple example is presented.

Consider a two-user channel. For a fixed input distribution π(x1, x2) the following region is

1This is the equivalent of channel capacity in single-user situation.
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achievable

R[p1(x1), p2(x2), p(y|xK)] =

(R1, R2) :

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )

(1.24)

and I(A;B|C) represents the conditional mutual information between source A and outcome

B given C. This rate region has a convenient graphical interpretation and is shown in

Figure 1.3. The multiple-access channel capacity region is defined as a closure of the convex

hull of union of all achievable rate regions over the entire family of product distributions on

the sources, i.e.

C[p(y|xK)] = co
⋃
π(xK)

R[π(xK), p(y|xK)] (1.25)

Note the corner points (A and B) of the capacity region shown in the Figure 1.3. These

points can be achieved using interference cancelation methods, which is the foundation of

the proposed detector. Using the chain rule of mutual information [5] for our two–user

channel we can write the mutual information as follows

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1) = R1 +R2 (1.26)

which represents the point A in Figure 1.3, compare with (1.24). In the same way the equa-

tion for the case of point B can be derived. Equation (1.26) states that at the beginning the

first user’s data is detected (I(X1;Y )) and afterwards, using the already acquired knowledge

of X1, the data of the second user is detected. Generally the capacity region can be drawn

within the K-dimensional space and it is very hard to picture it graphically with a large

number of users. The capacity region of real GMAC can be expressed as

R(S) ≤ 1

2
log2

(
1 +

P (S)

σ2

)
, ∀S ⊆ K (1.27)

and it is a generalization of Shannon’s formula for the single user channel.

1.4 Optimal Multiuser Detection

Optimal multiuser detection attracted the community in the very early days of research

on multiple-access channels. This problem was solved quickly, due to the fact that it was

based on the most natural approach imaginable i.e. a brute force search. In this method the

transmitted sequence is guessed and compared with the channel output. For a large system
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R2

I(X2;Y |X1)

I(X1;Y |X2)

I(X2;Y )

I(X1;Y )

R
1
+
R

2
=
I(X

1 , X
2 ;Y

)

R1

A

B

Figure 1.3: Capacity region for 2 user multiple-access channel.

the number of guesses is becoming very large therefore a search over a very large space

is necessary. Such exhaustive search is very computationally expensive and this feature

discards optimum detection as a method to be considered for implementation in practice.

The optimum detector however, provides the best average performance in terms of sequence

error rate among all possible approaches (similarly like maximum likelihood decoding on a

single user channel) and is referenced today, but only to provide a benchmark for a number

of reduced complexity methods that are being extensively developed.

Consider the following basic channel model

y = Hd + n (1.28)

where H is the channel matrix, d is the data vector and n is the channel noise. Assuming

(1.28), the optimal multiuser, or as we may call it alternatively, joint detector can be divided

into two groups. First, jointly optimal detector which minimizes the probability of error for

the vector of transmitted symbols Pr(d̂ 6= d). This approach does not guarantee the best

possible performance for the group of users. Jointly optimal decoder tries to minimize over

all possible data symbols sent the distance between received and transmitted signals i.e.

d̂ML = arg min
d∈DKn

||y −Hd||22 (1.29)
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This minimization can be performed using, for example, Viterbi-type algorithm, which

operates on a trellis with an exponentially increasing number of states. For example, with

binary data symbols its depth is 2K , where K is the number of signals simultaneously

arriving at the receiver. Equation (1.29) can be rewritten as

d̂ML = arg max
d∈DKn

(
2dHHHy − dHHHHd

)
(1.30)

where HHy is the so called matched filter output, sometimes called the de–spreader or the

correlator. If the channel H is orthogonal implying that the correlation matrix is diagonal

R = HHH = I and information symbols d are uncorrelated with the constant energy then

(1.30) can be rewritten as

d̂ML = arg max
d

(
dHHHy

)
(1.31)

and is solved by d̂ML = sgn(HHy). It shows that the simple matched filter (see Section 1.5)

that does not perform joint detection for the case of uncorrelated spreading sequences is

an optimal detector. Unfortunately such situation in multiple-access systems is hardly ever

experienced.

Second method is called individually optimal detection, often abbreviated with APP (A

Posteriori Probability) detection. Unlike joint optimal detector in (1.29), APP detector

ensures that the given detected sequence is optimal for any given user k. Its detection rule

is as follows

d̂k[i] = arg max
d∈DKn

Pr(dk[i]|y) (1.32)

and is computed via the marginalization

d̂k[i] = arg max
d∈DKn

∑
d:dk[i]=d

Pr(y|d)Pr(d) (1.33)

where index i is the index of the symbol in the frame belonging to a particular user and

it is introduced since APP detection delivers optimal individual symbol estimates, not like

typical detector which minimizes the error probability of the whole sequence d. Efficient

computation of the marginalization in (1.33) is performed using forward-backward method,

called BCJR algorithm [16], popularized widely with the invention of turbo codes [10].

However, as mentioned, the complexity of both optimal receivers presented grows exponen-

tially with the number of users served in the system [17, 18]. Therefore, it is prohibitively

expensive to perform optimal detection even for a moderate number of users in the sys-

tem. Suboptimal solutions based on optimal detection were proposed. Among them are

approximate APP, sphere detectors and tree searching algorithms like LISS detector [4].

The main idea behind these approximate optimal approaches is the fact that practically
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only relatively small number of candidate vectors need to be considered to generate a good

estimate of the true APP. The problem is to select those most probable candidate vectors

intelligently. Sphere detectors operate without the a priori information and the compu-

tationally expensive marginalization is only performed on much smaller number of vectors

that lie inside a sphere of radius r with the center being the received point y. The challenge

is to choose the radius r such that acceptable performance is achieved. However, even those

approximations of optimal methods exhibit large computational burden and are of not much

practical interest.

Many attempts have been made in order to provide even less computationally expensive sub-

optimal solutions, which would deliver acceptable performance at much less computational

expense and some of the most important of them are briefly presented below.

1.5 Linear Detection Methods and Approximations

Much attention has been devoted to linear detection using quite intuitive methods originat-

ing from linear algebraic approaches. To these belong the matched filter, sometimes called

the correlator, the decorrelator and the Minimum Mean Squared Error (MMSE) detector.

The channel model assumed is the same as in (1.16).

Matched filtering relies on correlating the received composite signal with known spreading

codes of a given user. It is the most basic way of retrieving transmitted data from the

multiple-access channel since in this way the channel operation H is in a sense reversed.

The matched filter operation is described by the equation

d̂MF = HHy = HHHd + HHn = Rx + HHn (1.34)

where R = HHH is the correlation matrix of the channel matrix H. Note that operation

in (1.34) is performed separately i.e. can be run on each user independently. In the case of

orthogonal channel i.e. when R = I the matched filter output is optimal (see 1.31). However,

ensuring this orthogonality is in most cases impossible due to time delays and amplitude

variations experienced by these sequences during transmission through the channel. It is

very important to mention that the matched filter estimate is a sufficient statistics for the

detection of transmitted symbols d. Therefore the output of matched filter can be used in

later processing as fully equivalent of the channel signal y.

Another linear method is the decorrelator. It operates according to the following formula

d̂DEC = R-1HHy = R-1Rd + R-1HHn = d + R-1HHn (1.35)
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Assuming that matrix R is invertible, decorrelator completely eliminates the multiple-access

interference. Since multiple-access interference is removed, one might think that this is an

optimal solution. Unfortunately it is not true, since during the elimination of interference

significant enhancement of additive noise may occur and severe performance degradation is

observed (term R-1HHn in the Equation (1.35)).

The last method called the Minimum-Mean-Square-Error (MMSE) is adopted from control

and filtering theory and is basically similar to the decorrelator, however it also takes into

account the channel noise, which the decorrelator ignores. This detector operates according

to the minimization criterion

d̂MMSE = arg min
M

E
[
||d−My||2

]
(1.36)

and matrix M = R + σ2I. The operation in (1.36) is equivalent to perform

d̂MMSE = M-1HHy = M-1yMF. (1.37)

The MMSE detector takes into account channel noise as well as interference, but it ignores

the data structure. As long as the data structure is not taken into account the MMSE filter

provides the best performance of all linear preprocessing approaches, however, similarly to

decorrelator, it has high complexity which is mostly related to the inherent need for matrix

inversion. This process has a complexity growing as O(K3), where K is the number of

signals present in the system.

These linear methods were extensively researched [2, 19], since they provide feasible alter-

native to the optimal detection. However, they have their own limitations, which appear

for the so called overloaded systems1. In these situations linear detectors provide very poor

output signal to noise ratios, which practically discard them as good detectors for highly

overloaded systems.

1.5.1 Iterative Approximations

As stated the complexity of linear filtering methods lies in matrix inversion. However, many

iterative filtering methods (essentially iterative matrix inverters) were proposed in order to

perform the detection with the sub-cubic complexity [20, 21], with performance loss almost

negligible as compared to the matrix inverters in (1.35) and (1.37). Since they operate

iteratively we call them iterative or sometimes multistage processors.

1System is overloaded, when the number of signals present in the channel exceeds the number of available
dimensions. For MIMO systems it describes the situation when the number of receive antennas Nr is smaller
than that of transmit Nt. For the case of CDMA, when the number of users is larger than the spreading
gain N , i.e. K/N > 1.
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It was already observed by Gauss in 19th century that a matrix can be inverted using iter-

ative processing methods. Technically, there are many variations of this inversion, however

conceptually they have the same goal. The most popular iterative matrix inversion methods

are:

• conjugate gradient,

• Gauss-Seidel,

• Jacobi,

• first and second order stationary,

• Chebyshev,

• successive relaxation method.

All of them, but the successive relaxation, are parallel cancellation methods1. Subsequently,

the most important iterative matrix inverters are described. Assuming that the output of

matched filters is available at the input of the iterative matrix inverter described by the

Equation (1.34). Taking into account user amplitudes matrix A, (1.34) can be rewritten as

d̂MF = RAd + HHn. (1.38)

Gauss-Seidel Method

Suppose the following linear matrix equation needs to be solved Md = b and it is apparent

that to do this the inversion of M is necessary. Gauss-Seidel method relies on splitting this

matrix into M = S−T. Now our matrix equation look as follows

Md = b⇔ [S−T]d = b⇒ Sd(m+1) = Td(m) + b (1.39)

where m represent the iteration index. Now the solution can be represented as

d(m+1) = S-1
(
Td(m) + b

)
(1.40)

Naturally, the complexity of this solution depends on the matrix S chosen. If it is chosen

poorly, (1.40) does not show any complexity reduction as compared to the original matrix

inversion. Different methods based on the Gauss-Seidel method depending on the choice of

the splitting of M exist. Additionally, the condition required (1.40) to arrive at the desired

solution is that the largest eigenvalue of S-1T must be less than one.

1This approach will be described in detail in the next section.
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Jacobi Method

This solution is a particular example of Gauss-Seidel method, when the matrix H is chosen

to be the identity matrix I. And this recursive process can be started with the initial vector

being the correlator estimate i.e. d(0) = y. Using the Jacobi method and with the right

choice of matrix M, every linear detector as decorrelator and MMSE can be implemented.

The method converges to the desired solution of decorrelator only when the spectral radius

(maximum eigenvalue) of the correlation matrix R is ρ(R) < 2 and for random channels it

occurs only for loads α < (
√

2− 1)2 ≈ 17% [20], which are relatively small when comparing

to current standards. In case of MMSE realization using Jacobi, much higher loads, up to

100%, can be accommodated. The most important aspect of Jacobi iteration is that this

method and its variations lead to parallel interference cancellation methods discussed later.

Stationary Iterative Methods

Generalizing the Jacobi method and overcoming its limitations about the size of spectral

radius by introducing the cancellation factor τ (m), we arrive at first-order stationary solution

[4]

Ad(m+1) = Ad(m) − τ (m)
(
MAd(m) − y

)
. (1.41)

It is seen that new estimate d(m+1) in Equation (1.41) depends only on the previous estimate

i.e. d(m). If we allow the dependence on n previous estimates the method is called n-th

order method. The cancellation factor τ is the equivalent of the learning factor well known

from the adaptive filter theory (gradient based adaptive filters and LMS algorithm). If

it is constant through all the iterations the method is called stationary. Setting M =

R and M = R + σ2A−2 in (1.41) decorrelator and MMSE filter can be implemented,

respectively. The value τ (m) can control the spectral radius of H-1T. Stationary iterative

methods can converge to decorrelator or MMSE filter for system loads α < 1 and the

fastest convergence is assured when τ = τopt = 2/(λmin + λmax). As before, λ represent

the eigenvalues of matrix M. Stationary iterative methods are very attractive from the

complexity and implementation point of view, however they fail, just like the approximated

methods, in situations when the number of available dimensions decreases, i.e. when system

loading exceeds 100%.
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1.6 Coded Transmission

The improvement can be obtained when using error control codes (ECC) that would help

to improve successively the reliability information passed to those above mentioned linear

filters. Coded multiuser communications can be viewed as a serial concatenation of an

error control code with multiple-access channel just like the serial turbo coding schemes.

An error control code plays the role of outer code whereas the multiple–access channel the

role of inner code. With such interpretation the soft information exchange principle can be

applied. It is shown in [22] that such configuration can achieve the capacity of the MAC.

However, this solution may be very complex, since many filtering/decoding runs are needed.

This approach is named later full decoding and represents a performance reference for the

evaluation of the proposed PS-CDMA detector and its various possible configurations.

The question arises what codes are best suited for the concatenation with multiple–access

channel. Contrary to what intuition might say the use of strong error control codes, like

turbo or LDPC, in the iterative multiuser detection loop is not the best possible approach

as reported extensively in [23, 24] and simpler codes like convolutional or even repetition

are more preferred. Those ideas will be thoroughly explained in Chapter 2.

1.7 Iterative Detection and Interference Cancellation

The invention of turbo codes and reinvention of Gallager’s LDPC codes brought attention

to iterative detection of signals in multiple-access channels. In [25, 26] it is demonstrated

that iterative detection of CDMA signals can provide substantial gains over traditional one

shot detection and still be considerably less complex than optimum ML detection.

Every iterative scheme contains a cancellation step, where the reconstructed signals are

subtracted from the composite channel signal. The cancellation step is a direct realization

of the conditional mutual information in (1.24). Estimates of the data used to produce the

reconstructed signal can be taken from the error control code, performing MAP detection

on coded symbols.

1.7.1 Successive (Serial) Cancellation

This idea of performing this detection is a direct application of chain rule of mutual infor-

mation [5]

I(X1, X2, . . . , XK ;Y ) =

K∑
k=1

I(Xk;Y |Xk−1, Xk−2, . . . , X1) (1.42)
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and is shown, for example in [27], to achieve the capacity of GMAC. This cancellation

approach relies on ordering (according to some specific criteria, usually with respect to the

received powers) users and processing them according to this order. Its principle is simple:

subtract off the strongest remaining signal successively user by user. This process is shown

in Figure 1.4. At the beginning, the first user (usually the strongest) is detected/decoded

treating all K − 1 other users as the noise. Then the decoded data is subtracted from

the composite channel signal and the second user is processed, but now there are only

K − 2 noise sources. The process is repeated successively until no users in the system

are left and the cancellation process results in additive channel noise independent from

users’ data. This method was proven to achieve the vertices of capacity region mentioned

during the description of Figure 1.3 and Equation (1.26). Of course, in the description

of detection/decoding process it is assumed that users transmit with rates that allow the

perfect decoding of their data streams. Otherwise the system performance is strictly away

from the capacity limits. The power ordering (or rate in the case of equal powers) is very

reasonable, since it is most probable that the strong user is estimated correctly and its errors

will not propagate in the cancellation chain to the other users. This is the first problem

Decoder 1 + +Decoder 2 +
Decoder K

Y

I(X1;Y ) I(X2;Y |X1)
I(XK ;Y |

XK−1, . . . , X1)X1 X2 XK−1

XK

Figure 1.4: Successive (serial) interference cancellation receiver.

arising in this method - the error propagation. An error in decoding k–th data stream will

propagate further down to all subsequent users k − 1, . . . , 1. Another evident drawback is

that a successive cancellation scheme exhibits long processing delay, which is proportional

to the number of users present in the system. To overcome this effect parallel cancellation

was introduced.

1.7.2 Parallel Cancellation

In parallel cancellation shown in Figure 1.5 no ordering is needed by definition. It relies on

subtracting off all of the users’ signals from all the others. All users are detected/decoded

at once, however many times1. In many cases the number of these iterations is much

less than the number of users, which provides a clear advantage over the serial scheme

described previously. The proposed partitioned detector operates on the principle of parallel

1To assure satisfactory performance.
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cancellation and its core characteristics will be explored in subsequent chapters. In [22] it

was concluded that parallel cancellation methods can achieve the capacity of the channel,

as long as proper power assignment is experienced.

Iteration
1

Iteration
I

Iteration
2

x1,K

x1,2

x1,1

x2,K

x2,2

x2,1

xI,K

xI,2

xI,1

Y

Figure 1.5: Parallel interference cancellation receiver.
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Optimal Coding for Interference Cancellation Systems

As stated in the previous chapter, achieving the limits of the multiple-access channel requires

the use of the channel codes. This situation is analogous to point-to-point communications,

where channel coding considerably increases the transmission efficiency. Invoking error

control coding in the equalization process is referred to as Turbo Equalization. In this

method the equalizer exchanges information with the error control code and both entities

are separated by an interleaver, preventing build-up of correlation during iterations. Since

the central idea of this thesis is interference cancellation, in this chapter, channel coding for

such systems will be discussed. As it will become evident the multiple-access situation has

quite different demands in terms of coding schemes as compared to a single-access model

impaired only with additive noise. Very often the ideas from the latter cannot be fully

transplanted to the former. This behavior can be captured and expressed analytically in

the form of a bound, representing the optimal performance of any coding scheme in IC

situations. Below, such a bound for the optimal coding scheme is presented and a number

of traditional coding schemes examined and verified from the point of their suitability for

IC purposes. Additionally computer simulations are performed to prove the validity of the

proposed approach.

The main characteristics that determines whether a given coding scheme is adequate for

interference cancellation systems is that such a scheme should deliver good performance not

only in the close-to-capacity SNR region, but also in very low SNR regions, where errors

inevitably occur. The main reasoning behind this statement is that if the codeword esti-

mates are poor error propagation occurs, very often preventing the system from reaching

acceptable performance. Besides that, it is known that the main issue with the majority of

channel codes is that for low signal-to-noise ratios they actually deliver very poor codeword

(as well as information contained in these codewords) estimates, often poorer than straight-

20
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forward uncoded transmission. This effect, surprisingly, is more pronounced for strong

capacity achieving codes, see for example [24]. The bound mentioned above formalizes this

phenomenon and therefore gives a guideline on how to design the optimal coding method

for the interference cancellation systems.

2.1 System Model

Starting with the system model, Figure 2.1 presents the generic interference-dominated

system. The channel considered here is generic and in fact can be any linear channel,

like CDMA, ISI, MIMO, OFDM, etc. The model operates as follows. First, the users’ or

streams’ signals b are independently encoded using specific channel codes. The choice of

the channel code can be arbitrary as long as soft decoding of such a code is possible. The K

coded streams ck are subsequently independently interleaved, modulated, and passed to the

linear channel1 in the form of xk. The main attention of this chapter is focused on channel

codes allowing the best performance at the receiver side. The output of the channel can be

expressed using a linear model as

y = HAx + n (2.1)

where H is the channel matrix, A is the matrix of user amplitudes, and n is the AWGN noise

with variance σ2
n. The need for interleaving after encoding is solely related to the nature of

Encoder Inteleaver Modulator +

Encoder Inteleaver Modulator +

Encoder Inteleaver Modulator +

Channel

b1

b2

bK

c1

c2

cK

x1

x2

xK

n1

n2

nN

H

Figure 2.1: Transmitter and linear channel model with coding.

the detection process performed at the receiver, where information is iteratively exchanged

between the channel code and the linear channel itself, via the interference cancellation

operation. In this way the turbo principle [10, 28, 29] is realized and the well-known turbo

cliff behavior expected. Figure 2.2 presents a generic receiver for the considered transmission

1We concentrate on the Gaussian Multiple-Access Channel (GMAC), unless otherwise stated.
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Figure 2.2: Generic receiver with interference cancellation.

system. The receiver’s dimensionality is N , and, generally receiver dimensionality is different

from that of the transmitter, i.e. N 6= K. In practice the number of receive dimensions can

be associated with the number of receive antennas or spreading gain for the case of CDMA.

Perfect channel knowledge at the receiver is assumed. The detection/decoding process is as

follows. The first operation of the receiver is filtering in order to retrieve initial estimates

of the codewords. For simplicity we concentrate now on simple matched filtering to the

channel1 that results in

x̂ = HHy (2.2)

where HH is the Hermitian (conjugate-transpose) of the matrix H. Symbols x̂ are soft

demodulated (this procedure is discussed extensively in Chapter 1) producing the LLRs of

the coded bits, de-interleaved and passed to the inner error control code decoders. Based

on the code constraints, the decoders deliver (hopefully more reliable) estimates of the

transmitted signals, which are subsequently re-interleaved, re-modulated and then used in

the interference cancellation block. The error control code decoders output extrinsic LLRs,

which are obtained as

Le = LAPP − La (2.3)

1Naturally, more sophisticated pre-processors are allowed, like the decorrelator or the MMSE filter.
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where LAPP is the complete A Posteriori Probability (APP) information from the decoder

and La is the a priori information. This subtraction is performed in order not to violate the

extrinsic information exchange principle [10] i.e. to avoid a negative correlation build-up

during the iterative cancellation process. In our case the channel LLRs are obtained from

soft demodulators. The process continues for a number of iterations, say I, and finally outer

decoding of the complete information is performed to obtain the estimates of the transmitted

bits, formally described as

b̂ = f(LIAPP) (2.4)

where f(x) can be a sign function or any other outer processing function.

2.2 Analysis of IC Systems

As in any communications system, depending on the level of interference and the level of

noise affecting the transmission, convergence to error-free performance may or may not

be achievable. For the case of iterative processors, this means that successful detection is

possible only if each entity participating in the information exchange has an output SNR

larger than that on the input, i.e. each block monotonically improves the reliability of

the processed information. This statement brings us to the main idea of the graphical

representation of the convergence of iterative systems captured by the variance transfer

charts.

2.2.1 Variance Transfer Charts

The variance transfer chart [23] is a graphical representation of the behavior of the iterative

system and conceptually is very similar to the EXIT [11] charts as shown in [30]. The notion

of variance transfer charts can be applied to any iterative system, however they have been

found particularly useful in the analysis of the interference systems, like multi-user CDMA

or MIMO. The primary reason for this is the fact that the interference process can very often

be modelled as a Gaussian process with given, usually zero, mean and a certain variance.

The VT method aims at tracking the variance changes during the iterative process and as

such is practically analogous to the density evolution approach described in the previous

chapter in the context of LDPC codes.

Practically, the variance transfer curve is a characterization of the behavior of a certain

block in the communications system structure, like a filter or a channel decoder. The latter

is of main interest here. The curve visualizes the relationship between input signals and

the resulting output signals. Those input/output quantities can be the SNR, or in the case
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of fixed signal power, the variance, usually describing the power of noise plus any form of

interference. However, as is customary for soft processing algorithms, the input and output

signals are LLR values. From chapter 1 we know that the expression for the LLR in the

case of the Gaussian channel is just a scaled version of the received signal.
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Decoderb
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Figure 2.3: Variance transfer curve evaluation procedure.

The procedure of obtaining the variance transfer curve is presented in Figure 2.3 and is

as follows. The information bits are represented as b. They are encoded into c codeword,

attenuated by a factor a and transmitted through the AWGN channel with noise power

σ2
n. Before feeding the resulting signals to the decoder, they are converted into LLR values

using (1.7). The decoder uses these LLRs to produce output LLRs, hopefully with improved

reliability. From these extrinsic LLRs, the soft-bit values are extracted. They describe the

influence of the decoder errors on the system performance in the subsequent cancellation

stages. The soft-bits (or soft-symbols) introduced in (1.12) measure the power of the error

introduced by the decoder. Value σ2
c = 1 implies that the decoder output is independent

of the transmitted coded data bits c. On the other hand, σ2
c = 0 describes the opposite

situation - perfect decoding, i.e. the output of the decoder is exactly the same as the input

to the modulator. Every other situation resides between those two extremes. The soft-bit

variance actually describes the amount of interference present in the system. The purpose

of the iterative detection/decoding is to reduce the soft-bit variance iteratively from the

initial value of full uncertainty of the transmitted information, denoted by σ2
c = 1 to full

knowledge of them, σ2
c = 0. The VT curve is simply a graphical representation of the

following relationship

σ2
c = f

(
σ2

a2

)
(2.5)
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and a2 is the power of the desired signal and σ2
n is the power of the AWGN distortion. For

the vast majority of known channel codes, the function f(·) has to be obtained numerically

using the procedure depicted in Figure 2.3. However, for simple repetition codes, as well as

LDPC codes, an analytical evaluation is possible using the DE approach.

DecoderFilter

Canceller

σ2
c σ2

Figure 2.4: Simplified diagram of the iterative information exchange.

The simplified information exchange describing this process is shown in Figure 2.4. As

we can see the filter accepts signals from the canceller and these signals contain residual

interference power described by the soft-symbol variance σ2
c,i. The response to this input

is a new signal, that is assumed to be Gaussian1 with zero mean and variance σ2. These

messages are converted into LLR values and passed to the error control decoder. This is

exactly the same situation as in the case of single user Gaussian channel. The decoder returns

soft codewords estimates which are passed to the canceller and after cancellation results in

new signal with residual interference power σ2
c,i+1. This process continues for a number

of iterations until both variances2 stabilize. This stabilization point may be equivalent to

achieving error free performance or in the opposite situation when the iterative receiver

gets stuck strictly away from errorless performance. When plotting VT curves it is usually

assumed that the decoder and the canceller are one entity accepting σ2 at the input and

delivering σ2
c at the output.

Figure 2.5 shows an example of a variance transfer graph related to no particular filter

or inner channel coding scheme. This graph has the following meaning. The decoding

process starts with the filtering operation. At this moment the soft-symbol variance is

maximum, σ2
c,0 = 1 and the filter returns a signal embedded in noise plus interference of

power σ2
0 = 0.85. This signal is passed to the channel decoder which returns soft symbol

estimates that are fed to the cancellation block resulting in soft-symbol variance σ2
c,1 = 0.25.

Again the filter is invoked and the process continues for a number of iterations until the final

1For large systems, K −→∞, it is exactly Gaussian, via the Central Limit Theorem arguments.
2Stabilization of soft-symbol variance implies stabilization of the σ2 and vice versa.
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Figure 2.5: A generic example of a set of VT curves.

stable point is reached, for our case this point is (σ2
c,∞ = 0.09, σ2

∞ = 0.45). Therefore perfect

decoding is not achieved, since the soft-symbol variance is greater than zero, σ2
c,∞ > 0.

Perfect decoding after a number of iterations, is possible when both variance transfer curves,

do not intersect. This condition is analogous to one determining convergence of concatenated

systems using EXIT analysis. Naturally, both curves always intersect at a point, where the

noise power is σ2
n > 0.

2.3 Optimal Coding for IC

As with any complete theory it is always good to indicate what performance can be expected

out of the system. Especially in information and communications theory a sort of best
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performance is very crucial in assessing the efficiency of a particular solution. Since the

early 1950s, such a guideline was the Shannon limit [1] which relates transmission power

(or equivalently SNR) to a maximum transmission rate where error-free communication is

possible.

The situation is not any different for the case of iterative interference cancellation systems.

We would like to find which codes output the best codeword estimates for a certain SNR.

The measure of this quality is the already introduced soft-bit (or symbol) variance σ2
c . We

are interested in codes producing codeword estimates with the smallest soft-bit variance

possible for a given SNR value.

There is a very vital connection between the perfect codes for cancellation and the Shannon

bound. The latter precisely describes the at which SNR level errorless codeword estimation

is possible i.e. σ2
c = 0. However, for iterative cancellation systems, not only the final value

of σ2
c is important, but even more important are its intermediate values. In this sense

the bound derived subsequently could be called an extension of the Shannon bound. The

derivation of the bound on optimal coding scheme presented below is taken from a very

recent paper by Schlegel and Burnashev [6].

Using the Gaussian approximation it can be assumed that signals available after the filtering

operation are scaled and noisy versions of the transmitted codewords, i.e.

yk = akck + nk (2.6)

where due to the Gaussian assumption, the noise nk ∼ N (0, σ2
n). Using the signal y =

[y1, . . . , yK ], the estimate of the codeword c

ĉ(y) (2.7)

is produced by the inner decoder. For clarity of derivation we can assume, without loss of

generality, that the attenuation constant ak is unity and can be omitted in the subsequent

derivations. We are interested in the decoder minimizing the error between the actual

transmitted codeword c and its decoded estimate ĉ

min
C

E||c− ĉ||2 (2.8)

for any value of the signal-to-noise1 ratio ρ. Three random variables are involved here. The

encoder outputs C, the information sequence U and the set of observed channel symbols Y .

Using Shannon theory, it can be inferred that the uncertainty about the information symbol

1plus interference
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uk is given by the difference between rate R and the channel capacity C

H(U |y) ≥ R− C(ρ)

R
(2.9)

where ρ = 1/σ2 is the normalized SNR w.r.t to unit signal power. Subsequently, for any

reasonable, uniquely decodable code the following holds

H(C|y) ≥ H(U |y) (2.10)

meaning that the uncertainty about the transmitted codeword is at least as large as that of

the information symbols. This fact comes from the assumption that the code itself is linear.

The vast majority of known channel codes are linear, so here we consider solely such classes

of codes. Therefore the uncertainty about the coded bits can be reproduced in the same

fashion as for information bits by combining (2.9) and (2.10) which results in

H(C|y) ≥ R− C(ρ)

R
. (2.11)

Now, armed with this mathematical apparatus, we can ask the fundamental question. Given

H(C|y) what is the mean-squared error E||c − ĉ||2 of the best estimate ĉ(y) that a soft

codeword estimator can produce from the received sequence y. This question is answered

by the following

Proposition 1. For a given σ2
c = E||c − ĉ||2, the maximum value of uncertainty H(C|y)

is achieved when Pr(C = 1|y) takes on only two values c0 and 1− c0 and is given by

max
(C,y)

H(C|y) = h

(
1−

√
1− σ2

c

2

)
(2.12)

where h(·) is the binary entropy function.

Proof: see [6].

Extracting σ2
c from (2.12) we obtain the minimum possible variance of the best codeword

estimator as

σ2
c,min = 4h−1(H(C|y))

(
1− h−1(H(C|y))

)
. (2.13)

Combining (2.11) and (2.13) we arrive at

Theorem 1. The estimation error of the output symbols of an optimal binary error control

symbol estimator is lower bounded by

σ2
c ≥ 4h−1

(
R− C(ρ)

R

)(
1− h−1

(
R− C(ρ)

R

))
. (2.14)



CHAPTER 2. OPTIMAL CODING FOR CANCELLATION SYSTEMS 29

Unachievable
Region

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ2
c

Rσ2

Figure 2.6: Graphical representation of the bound in (2.14).

Figure 2.6 shows the bound on optimal codes as states in (2.14). It has one particularly

interesting point. Namely the point where σ2
c = 0. It’s corresponding Y-axis point equals

1

2Rσ2(σ2
c = 0)

= ln 2 = −1.59dB (2.15)

which is the famous Shannon bound. Therefore it is appropriate to name the derived bound

on optimal cancellation codes an extended Shannon bound, since it is extended to error

rates (or soft-symbol variances) strictly away from zero.

2.4 Performance Evaluation

In this section the performance with respect to the bound described previously for certain

popular coding schemes and their suitability to IC systems are presented. For better clarity,
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the performance of each code is briefly preceded with the explanation of the particular

channel coding scheme.

2.4.1 Repetition Codes

Repetition coding is the simplest coding scheme imaginable and a very basic method of

encoding signals. It is described here due to its optimality in the high noise region as

proved in [6]. A repetition code of rate R = 1/M is a block code and therefore can be

described by the generator matrix

G(M,1) =
[
1 1 1 1 1 . . . 1

]
(2.16)

consisting of M ones and a parity-check matrix

H(M,1) =
[
1M−1 | IM−1

]
(2.17)

where 1m is a column vector of m ones and Im is m×m identity matrix. Soft decoding of

this code is used extensively throughout this thesis as follows. After collecting M outputs

of a channel the following sequence of the LLR values is obtained

{Λx(y1),Λx(y1), . . . ,Λx(yM )} (2.18)

the LLR of the transmitted information bit x is simply

Λx(y) =

M∑
i=1

Λx(yi). (2.19)

This operation equals the traditional ”majority vote decoding” approach. The formula (2.19)

delivers full APP information about the information bit. For the purposes of interference

cancellation, the estimates of the coded bits are needed. In these circumstances equation

(2.19) must be modified. The LLR of the m-th coded bit can be obtained as

Λx,m(y) =

M∑
i6=m

Λx(yi) (2.20)

where the extrinsic information exchange rule is clearly adopted, since symbol m does not

depend on itself - the summation excludes this particular term. We will return to this idea

in Chapter 3, during the analysis of partitioned modulation on the example of CDMA.

The BER curve for the repetition code coincides with that of an uncoded system, which for
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the Gaussian channel model is expressed using the Q1 error function, and the signal-to-noise

ratio is measured per bit. As shown the main advantage of repetition codes is their decoding

simplicity, which boils down to a simple addition of the reliability information. Variance

transfer curves of those codes are obtained using

σ2
c (x) = E

[
1− tanh(x+

√
xξ)
]2

(2.21)

for a chosen code rate R = 1/M and x = (M−1)P
σ2
n

. The expectation is taken over ξ, which is a

standard Gaussian random variable N (0, 1). Closed form expression for formula (2.21) does

not exist, but its accurate approximations were presented in [31] and will be discussed in

more detail in Chapter 3. Variance transfer curves for a number of coding rates are presented

in Figure 2.7. As evidenced, repetition codes approach the bound relatively closely in the

high noise region, which conforms with the observations made previously, stating that in

the limit of high noise, repetition codes reach the bound. However, the gap increases visibly

in the high SNR regime.

2.4.2 Hamming Codes

Hamming codes are one the earliest invented error correction/detecting codes and were

introduced by Richard Hamming in [32]. They are block codes and are capable of correcting

single errors since its parity-check matrix columns are linearly independent. The total length

of the code is n = 2r − 1 when encoding k = 2r − r− 1 of information bits. Hamming codes

are capable of correcting single errors exactly in accordance with the Hamming bound and

therefore they are a rare example of perfect codes. It is known that there are no other

perfect codes capable of correcting t errors, t > 1, except for the Golay codes: a binary

(23, 12, 7) that can correct triple errors and a ternary (11, 6, 5) capable of correcting double

errors. For more information on Golay codes see [33].

The parity-check matrix of a Hamming code has a very characteristic structure. Namely for

an (n, k) code the columns are binary representations of the numbers 1, . . . , n. For example

for the simplest (7, 4) code we have

H(7,4) =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 . (2.22)

Hamming codes can be decoded using SISO algorithms. The results below are obtained using

a simple one-way APP algorithm introduced in [34]. Figure 2.8 presents variance transfer of

1Q(x) = 1√
2π

∫∞
x e−

t2

2 dt.
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Figure 2.7: VT curves of repetition codes.

different rates and lengths. As clearly seen Hamming codes overall performance is quite far

from the bound. Additionally, these codes have a very limited choice of achievable rates, i.e.

they cannot be flexibly set. As we see from the graph and will observe later, Hamming codes

have a very remarkable property. By increasing the rate they come closer to the bound,

opposite as with repetition codes and other codes examined subsequently.

2.4.3 Convolutional Codes

Convolutional codes were introduced by Peter Elias in [35]. The canonical version of a

simple convolutional encoder is presented in Figure 2.9. It consists of as shift register with

delay elements. It has one input and two outputs, implying rate of 1/2. The connection

from the shift register cells to the output is usually given using the octal notation. Since

the first output is a function of all delay elements as well as the input, the connection can
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Figure 2.8: VT curves of Hamming codes of various rates.

be represented in binary form as [1 1 1 1], which translates into octal form of 17. Second

output has a binary description [1 0 0 1], which is 12 in octal. Therefore this particular

code is described as [17,12] convolutional code and its generator matrix is

G(D) = [1 +D +D2 +D3 1 +D2] (2.23)

A convolutional code has a number of characteristic parameters that arise from the structure

of its generator matrix. One is memory, which equals the number of delay elements in

the encoder and in our case equals 3. Another parameter is the constraint length of the

convolutional code, which is simply the memory plus the current input. Our example code

has a constraint length of 4.

Convolutional codes are in fact the first class of codes that facilitated soft-decoding via the

BCJR algorithm [16] or SOVA introduced in [36]. Convolutional codes were primarily of
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b
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Figure 2.9: Encoder for a canonical version of rate 1/2 convolutional code with
generator [17,12], i.e. [1 +D +D2 +D3, 1 +D2].

interest in the pre-turbo era as they could approach capacity limits within 2-3 dB, however

at enormous expense in the decoding complexity [37]. This complexity grows exponentially

with the memory of the code, since the number of possible states of the decoder grow accord-

ing to exponential law. For example, for memory 3 convolutional code the decoding trellis

of a binary code has 23 = 8 states, but for memory 10 it is already exceeding 1000 states.

This is the main drawback of convolutional codes, which was partly overcome with the in-

vention of the turbo codes and iterative message processing. For more detailed overview of

the convolutional codes, please refer to [37, 38, 39].

As stated before, for the purposes of interference cancellation, the decoder has to estimate

the most likely transmitted codeword. For the case of convolutional codes, it means that the

decoding complexity will be somewhat increased and this increase depends on the number

of code bits per information bit, i.e. code rate. The BCJR algorithm needs to compute its

internal variables (α, β, γ). The most computationally expensive of them is the calculation

of γ, which is the state transition probability directly dependent on the channel information.

When estimating LLRs of all the coded bits, the algorithm has to calculate set of γ variables

only once and save them in different positions in a trellis according to the parity bits.

Remaining variables (α, β) however need to be computed for each stream of parity bits.

In Figure 2.10 variance transfer curves for convolutional codes of different rates are pre-

sented. All codes are of length 720 information bits. As evidenced, decreasing the rate of

the code does not help much in terms of decreasing the soft-bit variance for a given SNR
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Figure 2.10: VT curves of convolutional codes of low rates.

value - it barely has any impact on the performance. On the other hand, decoding com-

plexity of the low rate convolutional codes increases with lowering rate due to arguments

discussed previously. As pessimistic as it may seem, lowering the rate does not help sig-

nificantly in making convolutional codes good for IC purposes. We gain almost nothing in

terms of lowering output variance of the estimated codeword by adding extra complexity to

the inner coding. Additionally, lowering the rate in order to avoid mimicking a repetition

code requires the use of longer generating polynomials which implies increasing the depth

of the trellis. This causes the increase of the number of states of each constituent code.

Summarizing, simple convolutional codes are almost as good as it gets for this family of

codes and adding extra complexity is counterproductive.
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2.4.4 Parallel Turbo Codes

Parallel turbo codes were also examined due to their excellent performance on the AWGN

channel. Turbo code is a concatenation of simple convolutional codes separated by an

interleaver. Similar concatenations were proposed before the invention of the turbo codes,

however no interleaving operation was used then. A Turbo encoder, in order to guarantee

an expected performance during the decoding process, has to meet certain criteria. First of

them is that each component convolutional encoder has to be recursive systematic. Secondly,

at least one of the encoders needs to be terminated to the initial zero state. This requirement

is a consequence of using the BCJR decoding algorithm, which performs backward recursion

assuming the final state of the trellis to be known. The structure of the famous Berrou turbo

encoder is presented in Figure 2.11. It consists of two identical recursive systematic codes

with an interleaver in between. The output of the encoder is the input information sequence

(systematic output) and two parity streams, one from each RSC encoder.

RSC 2

Interleaver

RSC 1

+

+ Delay Delay Delay Delay

b

c1

c2

Figure 2.11: Original Berrou code with two identical component RSC codes [1,

21/37], i.e. [1, 1+D4

1+D+D2+D3+D4 ].

As mentioned, concatenating the number of component codes is not a new idea [40]. What

is revolutionary and crucial to the fantastic performance of turbo codes is the decoding

strategy. It is performed iteratively and consists of soft-decoding of each convolutional

code. Component decoders exchange extrinsic information. Therefore extrinsic information

is the new inference about the transmitted codeword, possible to obtain due to the code

constraints, delivered by a single MAP decoding run. For more information on turbo codes

see for example [41, 39].
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To illustrate suitability for interference cancellation two famous codes were chosen, namely

the Berrou code [10] and the 3GPP turbo code, being the choice for modern wireless broad-

band standards like HSPA and LTE [42]. The first code consists of two identical constituent

codes of polynomials [37,21] and its decoding trellis has 16 states. The latter code has lower

decoding complexity since it has only 8 states and generating polynomials [17,15]. Variance
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Figure 2.12: VT curves of popular parallel turbo codes of rate R = 1/3.

transfer curves of these codes are presented in Figure 2.12. It is well seen that turbo codes

are not well suited for iterative cancellation systems. Of course only a fraction of possible

codes is presented here, however there is strong evidence that any turbo code will perform

equally poorly with respect to the optimal cancellation code. Note that a very pronounced

sharp threshold (cliff) characteristics is present.
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2.4.5 Regular LDPC Codes

The idea of LDPC codes was introduced by Gallager in his PhD thesis [43] and because of

their decoding complexity largely forgotten until the discovery of turbo codes and major

advances in the VLSI circuits domain. Today they have become a very intensively researched

subject since they can perform close to the Shannon limit and their decoding complexity

is in many cases lower than that of the turbo codes. Also the analysis of LDPC codes is

relatively simple and delivers very precise results using the DE method.

Since an LDPC code is a linear block code it can be described uniquely using the parity-

check matrix H. Such a matrix has a very regular structure and for large codes, which

is very often the case, is sparse (this fact is the main reason for calling these codes low

density) - it contains a small number of non-zero entries. Gallager proposed constructing

LDPC codes by randomly placing 1’s and 0’s in a parity-check matrix, subject to constraints

that each row of H had the same number dv of 1’s and each column has the same number

dc of 1’s. This condition determines whether the code is regular. If it is not fulfilled for each

column/row pair, an irregular code is created. Gallager showed that the minimum distance

of a ”typical” regular LDPC code increases linearly with code size N as long as dv ≥ 3.

Below the parity-check matrix of a code that has dv = 3 and dc = 6 that defined LDPC

code of length N = 18 is presented1. From this parity-check matrix it is straightforward to

derive the rate of the code. The number of coded symbols equals to the number of columns

of H and is N = 18. The number of information bits is the number of columns less the

number of rows, in this case K = 9, which gives the code rate R = 9/18 = 1/2. Using the

(dv, dc) notation, rate is

R =
dc − dv
dc

(2.24)

implying that dc > dv.

H(3,6,18) =



1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1


. (2.25)

An LDPC code can be viewed as a concatenation of a short repetition code and single

1This particular matrix is not actually ”low density”, but it serves mainly for illustration purpose.
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parity-check code with a large interleaver in between, which from these short component

codes create a large code, which as per Shannon theory, is necessary to approach the capacity

limits. An LDPC code can be described graphically using a bi-partite Tanner graph [44].

Such a method of describing these codes provides useful insights into the decoding process

and, generally, the behavior of these codes. The Tanner graph of our (3, 6, 18) regular LDPC

code is presented in Figure 2.13. Decoding of LDPC codes is performed by an iterative

+ + + ++++++

Variable Nodes (Repetition Code)

Check Nodes (Single Parity Check Code)

Figure 2.13: Tanner graph of the considered (3,6,18) regular LDPC code.

information exchange between variable and check nodes along the edges defined by the

interleaver. This approach is referred to as message passing and this decoding methodology

is a variation of the SPA algorithm. The convergence behavior of LDPC codes can be

analyzed using the DE tool.

Density Evolution

Density Evolution is one of the most successful analytical tools used in predicting the per-

formance of iterative systems. Originally, it was developed for LDPC codes [45], but it

can be used in the analysis of any codes which are composed of a number of component

codes separated by an interleaver. The DE idea is as follows. Since a classical LDPC code

can be viewed as a concatenation of repetition code and a single parity-check code with an

(preferably large) interleaver in between, the convergence behavior can be predicted via the

input-output characteristics of each of these component codes. The DE relies on the average

values of the LLRs exchanged between those two component codes. Although only average

messages are used in this analysis, this approach describes the behavior of the decoder very

accurately.
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Since in this thesis regular LDPC codes are considered, where the degrees of variable and

check nodes are the same for each type of node, DE for a such a family of codes is briefly

outlined. For every LDPC code a variable node is an RC decoding node. Its input is the

LLR from the channel m
(0)
v and LLR values from the dv − 1 check nodes m

(i−1)
c connected

to it1. Therefore its operation can be written as

m(i)
v = m(0)

v + (dv − 1)m(i−1)
c . (2.26)

The variable node performs just the summation of incoming messages. On the other hand,

the average output LLRs of the check nodes have a slightly more complicated expression

m(i−1)
c = Φ−1

(
1− [1− Φ(m(i−1)

v )]dc−1
)

(2.27)

where

Φ(mc) = 1− E

[
tanh

(
U

2

)]
= 1− 1√

4πmc

∫
<

tanh
(u

2

)
e−

1
4mc

(u−mc)2du. (2.28)

Evaluation of this integral is computationally expensive therefore the following practical

approximation was developed in [45]

Φ(m) =

{
e−0.4527m0.86+0.0218, m < 19.89√

π
me
−m4 (1− 11

7m ), m ≥ 19.89.
(2.29)

where m > 0. The DE algorithm converges to error-free performance if m
(i)
v → ∞. Other-

wise the decoder delivers error rates strictly away from zero.

Suitability for IC

Variance transfer curves for the popular family of regular LDPC codes with variable node

degree dv = 3 are presented in Figure 2.14. A wide range of codes with different rates

are investigated. The results suggest that those powerful codes are a poor choice for the

cancellation systems. They exhibit a relatively sharp cliff behavior, but for low SNR value

(large values of Rσ2) they do not provide any error correction capability. This results

inevitably in severe error propagation phenomena, which effectively prevents the iterative

system from converging even for moderate system loads.

1These are mean values.
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Figure 2.14: VT curves of regular (3, x) LDPC codes.

2.4.6 VT Curve of the Correlation Detector

A number of transfer characteristics for modern channel coding schemes were presented

above. What is left is the variance transfer function for the filter (detector) part, since the

code VT interacts with the detector during the iterative interference cancellation process.

Unlike for the majority of channel codes, the characteristics of the detector can be derived

analytically. Such derivation for the simplest detector, the matched filter, is given in the

following.

Recalling Equation (2.1) for an equal power channel, A = I, we have

y = Hx + n. (2.30)
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The desired stream k can be separated out as

y = hkxk + Hkxk + n. (2.31)

Hk denotes matrix H with the k-th column removed. Similarly xk is a vector of modula-

tion symbols x with the k-th element removed. After interference cancellation with signal

estimates x̃k we have the following signal for stream k

yk = y −
Nt∑
i=1
i 6=k

hix̃i = hkxk +

Nt∑
i=1
i 6=k

hi(xi − x̃i) + n. (2.32)

This signal is passed to the matched filter resulting in estimates of k-th stream data

x̂MF,k = hk
Hyk (2.33)

which after a number of trivial operations becomes

x̂MF,k = xk︸︷︷︸
signal

+

Nt∑
i=1
i 6=k

hk
Hhi(xi − x̃i)

︸ ︷︷ ︸
interference

+ hk
Hn︸ ︷︷ ︸

noise

(2.34)

where signal, interference from other streams affecting stream k and noise components are

clearly separated. We are primarily interested in the power of these three terms. Since all

three terms in (2.34) are statistically independent we can look at them separately. Therefore

the signal power is

PS = E[xkxk
H] = Pk, (2.35)

interference power is

PI = E


 Nt∑
i=1
i6=k

hk
Hhi(xi − x̃i)


 Nt∑
i=1
i6=k

hk
Hhi(xi − x̃i)


H (2.36)

which after some algebraic operations, and the fact that the expectation of cross-terms is

zero, becomes

E

 Nt∑
i=1
i 6=k

hk
Hhi(xi − x̃i)(xi − x̃i)H

hi
Hhk

 . (2.37)
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The sum can be carried in front of the expectation

Nt∑
i=1
i6=k

E
[
hk

Hhi(xi − x̃i)(xi − x̃i)H
hi

Hhk

]
. (2.38)

Since modulation symbols x are statistically independent of the channel H, (2.38) can be

rewritten as
Nt∑
i=1
i6=k

E
[
(xi − x̃i)(xi − x̃i)H

]
E
[
hk

Hhihi
Hhk

]
. (2.39)

The quantity E
[
(xi − x̃i)(xi − x̃i)H

]
is the soft-symbol variance σ2

c,i. Subsequently, if the

random channel (see 1.3.1) is column normalized to unity the expectation over channel

coefficients becomes

E
[
hk

Hhihi
Hhk

]
=

1

Nr
. (2.40)

Combining (2.39) with (2.40) we obtain the final expression for the interference power as

PI =
1

Nr

Nt∑
i=1
i 6=k

σ2
c,i. (2.41)

which is a linear function of individual soft-symbol variances.

The power of the noise component is

PN = E[(hk
Hn)(hk

Hn)
∗
] (2.42)

= E[(h∗k,1n1 + . . .+ h∗k,NrnNr )(h
∗
k,1n1 + . . .+ h∗k,NrnNr )

∗
]

= E[h∗k,1n1hk,1n
∗
1 + . . .+ h∗k,NrnNrhk,Nrn

∗
Nr ]

= E[h∗k,1hk,1n1n
∗
1 + . . .+ h∗k,Nrhk,NrnNrn

∗
Nr ]

where cross-terms disappear due to the white noise assumption and due to independence of

noise and channel coefficients we obtain

PN =

Nr∑
i=1

E[h∗k,ihk,i]︸ ︷︷ ︸
=1/Nr

E[nin
∗
i ]︸ ︷︷ ︸

=σ2
n

= σ2
n (2.43)

Summarizing, the noise plus interference powers experienced by stream k at the output of
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the matched filter detector in iteration j can be expressed as

σ2
k,j = σ2

n +
1

Nr

Nt∑
i=1
i 6=k

σ2
c,i,j . (2.44)

Assuming that each stream has a different power Pi (2.44) becomes

σ2
k,j = σ2

n +
1

Nr

Nt∑
i=1
i 6=k

Piσ
2
c,i,j (2.45)

and values of σ2
c,i,j represent the quality of the codeword estimates delivered by the inner

error control code for stream i in iteration j.

The variance transfer of the matched filter receiver with interference cancellation can be

plotted. Since the curve is just a straight line it is enough to calculate two points and

connect them. First point would be for the case where the soft-symbol variance is one.

Then (2.45) becomes

σ2
k,j = σ2

n +
1

Nr

Nt∑
i=1
i 6=k

Pi. (2.46)

The second point is when the soft-symbol variance is zero and then (2.45) turns into

σ2
k,j = σ2

n. (2.47)

Figure 2.15 presents a number of matched filter detector variance transfer curves for various

noise levels and antenna configurations with the assumption of equal, unit power streams,

i.e. Pk = 1. The dependence between the amount of interference in the system, described

by the slope of the curve, and the amount of noise, captured by the shift in the Y-axis

direction, is very clearly visible. Usually the slope of these curves is called the system load,

and in the large-system limit1, when the array size grows (Nr, Nt →∞), it equals

α =
Nt
Nr

. (2.48)

In highly loaded systems the interference component dominates, the performance of lightly

loaded systems is governed by the amount of additive noise. Armed with these tools it is

now straightforward to predict the behavior of any MIMO system by combining the detector

variance transfer curve as in Figure 2.15 with that of the inner code.

1For finite size systems it is α = Nt−1
Nr

.
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Figure 2.15: Variance transfer curves for matched filter detector and a number of
MIMO Nt ×Nr array configurations.

2.5 Numerical Experiments

The purpose of this section is to show that variance transfer charts indeed predict the

behavior of iterative cancellation systems with the help of a series of computer simulation

experiments. For this purpose a Rayleigh fading MIMO flat channel with Nt transmit and

Nr received antennas is chosen. This channel model is an adequate representative of a

general linear channel and attracted theoretical [13, 46] as well as practical interest. The

channel matrix consists of Nt columns describing gains between given transmit antenna and

all Nr received antennas

H = [h1,h2, . . . ,hNt ]. (2.49)
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Each entry hi,j is complex Gaussian with unit variance, that is hi,j ∼ CN (0, 1). In the

simulations the following channel normalization is applied

hi
Hhi = 1 (2.50)

meaning that columns are normalized to unity. This assures that transmitted power is the

same as the received power for each stream. In other words the overall channel gain is equal

to the number of streams1.

The transmitter and receiver schemes are identical to those presented in Figure 2.1 and

Figure 2.2, respectively. Such a system deals with 3 types of signals. One is the target

signal, second the multi-antenna (multi-stream) interference, the third is additive noise.

The signal to noise ratio of such a system, often acronymed by SINR, can be expressed as

γ =
P

σ2
I + σ2

N

. (2.51)

The evolution of this parameter during the iterative process is important and can be visual-

ized with VT curves. The amount of interference in the MIMO system considered depends

on the antenna array configuration, i.e. the number of transmit, receive antennas or more

precisely the ratio of these i.e. Nt/Nr. This quantity is called the channel load α.

In order to compare different systems fairly the maximum spectral efficiency must be kept

constant which translates into

Nt
Nr

RiRo = αRiRo = const. (2.52)

where Ri and Ro denote inner and outer code rate, respectively. Subsequently, attention is

drawn to three inner coding schemes: repetition, convolutional and turbo codes. We will

show via simulations and VT analysis in what regions which coding scheme performs best.

Moreover, the total transmit power is kept constant

PtNt = const. (2.53)

to allow for fair comparisons. Pt denotes transmitted of each antenna.

2.5.1 System Parameters Setup

The question arises which inner channel code in which situation to use in order to achieve

the highest spectral efficiencies. The answer can be delivered via careful analysis of the

1Each stream has a unity gain on average.
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variance transfer charts. For the purpose of comparison we use the inner channel code

like turbo, convolutional and repetition of various rates. Note that the Y-axis of the plots

presented subsequently are not rate normalized anymore, because the interference canceller

and matched filter does not depend on the rate of the applied coding scheme, since both of

these entities operate on symbols, not the information bits.

Repetition Code

We can identify what spectral efficiencies are achievable for this coding scheme. Also, it

is interesting to ask what maximum spectral efficiency can be attained for the interference

cancellation receiver in the case when the SNR is high, in fact is going to infinity. To do

that the non-normalized variance transfer curves of the code together with those of the

matched filter receiver are necessary. They are presented in Figure 2.16. For clarity, a

separate Figure 2.17 is given for low rate codes (R = 1/15, . . . , R = 1/50). For example

the maximum spectral efficiency for the case of a half-rate repetition code is

Cmax =
Nt
Nr

R = 2.1× 1

2
= 1.05 [bits/dimension]. (2.54)

where 2.1 describes maximum system load α for which rate 1/2 repetition code can converge

- see rate 1/2 curve in Figure 2.17. When decreasing the rate, the spectral efficiency actually

increases, since this decrease is compensated by a larger number of users (streams) that the

system can accommodate. The values of these spectral efficiencies are gathered in Table 2.1.

Summarizing, for the case of repetition codes and equal received powers, the maximum

Table 2.1: Maximum achievable spectral efficiencies for repetition codes.
Rate R αmax αmaxR

1/2 2.1 1.05
1/3 4.3 4.3/3=1.43
1/4 6 1.5
1/5 8 8/5=1.6
1/6 10 5/3=1.66
1/7 12 12/7=1.71

...
...

...
1/15 30 2.0

...
...

...
1/50 102 102/50=2.01

spectral efficiency of roughly 2 bits/dimension can be attained in the high SNR limit. As

it will be seen in the next chapters this limitation can be surpassed via unequal power

allocations.
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Figure 2.16: VT curves of repetition codes of various rates R = 1/2, . . . , 1/10.

Convolutional Code

Table 2.2 shows the maximum spectral efficiencies of the considered convolutional codes and

are obtained via the examination of Figure 2.18. These efficiencies are visibly lower than

those of the repetition codes. Currently, there is no indication that other convolutional

codes could have the potential of outperforming the repetition codes.

Turbo Code

Figure 2.19 presents the maximum spectral efficiency that strong turbo coding schemes can

achieve. As it can be clearly seen both codes considered perform almost identically in this
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Figure 2.17: Non-normalized VT curves of repetition codes of various rates R =
1/15, . . . , 1/50.

regard. The maximum spectral efficiency they can achieve is

Cmax =
1

3
× 2 =

2

3
[bits/dimension]. (2.55)

Similarly, as in the case of convolutional codes, its doubtful that any other turbo scheme

could perform significantly better.

2.5.2 Simulation Results

Subsequently, a couple of simulation results will be presented and explained. As it was

already established, different coding schemes are optimal in different situations. Repetition

codes are best for high spectral efficiencies and large SNR values. Turbo codes are the
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Figure 2.18: Non-normalized VT curves of convolutional codes of various rates
R = 1/3, 1/4, 1/5.

winning choice for low spectral efficiencies and high noise levels and convolutional codes are

placed between the two. Therefore, it is proposed to examine those three coding schemes

in three different scenarios of low, moderate, and high spectral efficiency. For the case of an

inner repetition code there is an outer LDPC code of high rate applied to allow the system

to achieve error-free performance for reasonable SNR values. In subsequent discussions I

is the number of turbo iterations, i.e. extrinsic information exchanges between the channel

and the code.
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Table 2.2: Maximum achievable spectral efficiencies for the considered convolutional
codes.

Rate R αmax αmaxR

1/3 3.2 1.06
1/4 4.7 1.17
1/5 5.9 1.18

Very Low Spectral Efficiencies, αR < 0.5

For this setup it is certain that interference cancellation with inner turbo codes will converge

for the lowest SNR values. To show this the following simulations were performed:

1. Inner turbo 3GPP code of length 720 information bits of rate 1/3, number of transmit

antennas Nt = 2, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 2/3=0.661 bits/complex dimension

2. Inner convolutional code of length 720 information bits of rate 1/3 and generator

polynomial [17 15 13], number of transmit antennas Nt = 2, number of receive an-

tennas Nr = 2. Modulation: QPSK. The spectral efficiency is 2/3=0.66 bits/complex

dimension

3. Inner repetition code of length 720 information bits of rate 1/3, outer (3,30) LDPC

code of rate 0.9, number of transmit antennas Nt = 2, number of receive antennas

Nr = 2. Modulation: QPSK. The spectral efficiency is 0.6 bits/complex dimension

The performance for the case of very low spectral efficiencies is presented in Figure 2.20.

As expected the system employing inner turbo code provides the best performance beating

both remaining systems by 2 and 3 dB. These results are not surprising and are in good

agreement with the theoretical predictions.

1It is half, i.e. 0.33 with real modulation.
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Figure 2.19: Non-normalized rate VT curves of popular turbo codes of rate R = 1/3.

Low Spectral Efficiencies, αR < 1.0

As in the previous example for this setup it also is certain that all coding schemes will

converge, but again for different SNR values. To show this the following simulations were

performed:

1. Inner turbo 3GPP code of length 720 information bits of rate 1/3, number of transmit

antennas Nt = 4, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 4/3=1.33 bits/complex dimension

2. Inner convolutional code of length 720 information bits of rate 1/3, number of transmit

antennas Nt = 4, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 4/3=1.33 bits/complex dimension
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Figure 2.20: Bit error rates for very low spectral efficiencies αR ≈ 1/3.

3. Inner repetition code of length 720 information bits of rate 1/3, outer (3,30) LDPC

code of rate 0.9, number of transmit antennas Nt = 4, number of receive antennas

Nr = 2. Modulation: QPSK. The spectral efficiency is 0.9 · 4/3 = 1.2 bits/complex

dimension

Figure 2.21 presents the performance for the case of very low spectral efficiencies αR < 1.0.

As expected by the analysis of variance transfer charts for this particular situation the system

employing inner turbo code provides the worst performance beaten by both remaining coding

systems. The gap in favor of the best scheme employing convolutional code is about 4 dB.

Again these results are in good agreement with the theoretical predictions.
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Figure 2.21: Bit error rates for low spectral efficiencies αR ≈ 2/3.

Medium Spectral Efficiencies, αR ≈ 1.0

For this setup it is certain that interference cancellation with inner turbo codes is expected

not to converge at all. The convolutional code will converge first and after the repetition

code. To show this the following simulations were performed:

1. Inner turbo 3GPP code of length 720 information bits of rate 1/3, number of transmit

antennas Nt = 6, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 2.0 bits/ complex dimension

2. Inner convolutional code of length 720 information bits of rate 1/4, number of transmit

antennas Nt = 8, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 2.0 bits/complex dimension

3. Inner repetition code of length 720 information bits of rate 1/6, outer (3,9) LDPC
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code of rate 2/3, number of transmit antennas Nt = 18, number of receive antennas

Nr = 2. Modulation: QPSK. The spectral efficiency is 2.0 bits/complex dimension

The number of transmit antennas for the case of repetition code may appear very large,

much larger than current and even future MIMO systems could support. However, instead

of streams from a single user, the system could accept and successively resolve number of

streams from multiple users. For the case considered, where Nt = 18, it could be for example

9 users each equipped with two transmit antennas. Of course, the transmission of all the

data streams would occur at the same time and utilizing the same bandwidth. As evidenced
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Figure 2.22: Bit error rates for medium spectral efficiencies αR ≈ 1.

in Figure 2.22 it is seen that strong inner turbo code does not converge at all, no matter how

many turbo iterations are performed - the performance in the 10th iteration is shown with

green solid curve. The experiment for the system with inner turbo code was performed until

very high value of SNR Eb/N0 = 30 dB and still the convergence has not been achieved.

The clear winner for this system setup is the convolutional code beating the repetition code

system by ca 9 dB.



CHAPTER 2. OPTIMAL CODING FOR CANCELLATION SYSTEMS 56

High Spectral Efficiencies, αR ≈ 1.1

For this setup as previously, only the system with inner convolutional and repetition coding

is expected to converge. The turbo coding system will not converge no matter how high

of an SNR is available, therefore it is neglected in the numerical experiments. To illustrate

this the following simulation was performed:

1. Inner convolutional code of length 720 information bits of rate 1/5, number of transmit

antennas Nt = 11, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 2.2 bits/complex dimension

2. Inner repetition code of length 720 information bits of rate 1/5, outer (3,30) LDPC

code of rate 0.9, number of transmit antennas Nt = 12, number of receive antennas

Nr = 2. Modulation: QPSK. The spectral efficiency is 2.16 bits/complex dimension
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Figure 2.23: Bit error rates for spectral efficiencies αR ≈ 1.1.
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Results for high spectral efficiencies are presented in Figure 2.23. We can see that in this case

the best performer is the system employing inner repetition code and it has an advantage

of ca 2 dB over the system with the inner convolutional code.

Highest Spectral Efficiencies, αR = 1.2

For this setup only the system with inner repetition code is expected to converge. The

turbo coding system will not converge no matter how high SNR is available, therefore it

is neglected in the numerical experiments. To illustrate this the following simulation was

performed:

1. Inner convolutional code of length 720 information bits of rate 1/5, number of transmit

antennas Nt = 12, number of receive antennas Nr = 2. Modulation: QPSK. The

spectral efficiency is 2.4 bits/complex dimension

2. Inner repetition code of length 720 information bits of rate 1/6, outer (3,30) LDPC

code of rate 0.9, number of transmit antennas Nt = 16, number of receive antennas

Nr = 2. Modulation: QPSK. The spectral efficiency is 2.4 bits/complex dimension

Finally, the spectral efficiency is boosted even higher. For αR = 1.2 only the system based

on inner repetition code can converge to error-free performance as evidenced in Figure 2.24.

The setup using a convolutional code does not converge for examined signal-to-noise ratios.

Its BER curve is very shallow and possibly error-free behavior can be expected but for very

large values of SNR. Therefore for this scenario the repetition code is a clear winner.
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Figure 2.24: Bit error rates for spectral efficiencies αR ≈ 1.2.

2.6 Chapter Summary

This chapter contains an extensive introduction to the methods of describing the behavior

of iterative interference cancellation systems. The concept of variance transfer charts is

explained and a number of popular coding schemes are examined for their suitability in IC

systems.

Although we do not know how to find the optimal coding schemes and moreover we do

not know if such practical codes even exist, the desired properties of such a code can be

easily identified by careful examination of the variance transfer charts. Such a code must

successfully combine two contradicting characteristics. Namely, it should act as a repetition

code in a very high noise region and as strong, capacity-achieving code in the moderate to

low-noise regime.

The positive message is that such an optimal code can be approximated with a serial con-
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catenation of two codes with the before-mentioned characteristics. The outer code should

be a strong capacity-achieving code and the inner, the one facing the channel, a repetition

code. Such concatenation however would likely not be decoded as customary in well known

turbo fashion. The new processing schedule can be easily outlined using the variance trans-

fer charts. This brings us to the key idea of this thesis - two-stage processing. It states

that iterative message exchange between the canceller and the inner repetition code should

be performed initially to remove the interference and then the outer code decoder just for

removing the effects of additive noise should be invoked. Such an approach is especially

suitable for high interference situations, for example in the case of MIMO communications

it happens when the number of active data streams exceeds the number of receive anten-

nas. A comparison between two-stage processing and traditional turbo equalization, where

a feedback connection between the outer code and the canceller exist is the subject of the

next chapter.



CHAPTER 3

Partitioned Spreading Code Division Multiple-Access

The main message of the previous chapter is that repetition coding is the best choice for an

error control code facing the channel in iterative interference cancellation systems as long

as interference is high. As it is known, CDMA modulation has an inherent built-in error

control mechanism, i.e. spreading mimics the repetition coding. Utilizing and developing

further this particular observation the PS-CDMA transmission is proposed [47, 48]. This

chapter, besides the explanation of the system model and demodulation process, provides

a precise analysis and performance evaluation of the proposed transmission methodology.

A careful reader may immediately observe that PS-CDMA system is very similar to IDMA

proposed in [7, 49]. However, PS-CDMA can be viewed as a generalization of IDMA and

is, as presented in the previous chapter, motivated using precise arguments flowing from

Chapter 2. IDMA on the other hand was motivated by the idea to distinguish user in the

CDMA system not by signature sequence but by the interleavers. Additionally, in this thesis

a precise analytical treatment of PS-CDMA is outlined, which was unknown at the time

that IDMA was introduced.

The inner repetition code delivers symbol estimates with minimal residual variance for a

range of SINR values, which means it effectively combats the interference coming from other

users/streams. However, for high noise levels it performs poorly as shown in the previous

chapter. Therefore an outer error control mechanism is required. Below attention is focused

on regular LDPC codes, since they are easy to analyze, have excellent error correction

capabilities and are very flexible in terms of adjusting the code rate.

The proposed two-stage processor relies on iterative information exchange between the inner

repetition code and the interference canceller. It presents a turbo system. However, the inner

repetition code is very easy to decode therefore implying small complexity requirements as

opposed to traditionally viewed turbo equalization where stronger codes, like convolutional

60
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codes, are used. Additionally, the way the repetition coding is utilized in the CDMA system

(with normalizing the power to unity) incurs no rate loss as compared to the traditional

CDMA with correlation or MMSE detection followed by the decoding of the applied channel

code. In other words partitioned modulation is the concatenation of a rate 1/M repetition

code with a CDMA channel of reduced dimensionality of N/M with interleaver in between.

3.1 Transmission Model

In this chapter chip-asynchronous CDMA, where a number of concurrent users transmit

information over a GMAC channel, is considered. No fading or multipath is experienced

and packet arrivals are synchronous, implying the level of interference remains constant in

time. Chip asynchronousity models chip sampling process imperfections. For simplicity

BPSK modulation is used, but the analysis can be extended to higher order formats (see

Chapter 5). The system model is presented in Figure 3.1. Each user’s information vector

x
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Figure 3.1: Partitioned Spreading CDMA transmitter.

bk is initially encoded by the outer error control code producing the output vector ck. The

users are distinguished by the unique pseudo–random spreading sequences s1, . . . , sK , with

chips chosen randomly and uniformly from the set {−1/
√
N, 1/

√
N}, where N is the bit

interval in terms of chip times, usually referred to as spreading gain. Partitioned spreading

relies on dividing length LN spreading sequences into a number of sections of equal size,

say LM , and interleaving them using the permutation function πk(j), 0 ≤ j < LM , where
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L is the length of the entire user data block in bits. Formally these operations are described

as follows and visualized in Figure 3.2. Let Ts be the symbol (bit) duration, Tc = Ts/N the

duration of a chip, and p(t) the unit–energy chip waveform. The k-th user signal xk(t) is

given by

xk(t) =
√
Pk

L−1∑
l=0

ck,l

M−1∑
m=0

s′k,l,m

(
t− lTs − τk − πk(lM +m)

Ts
M

)
(3.1)

where

s′k,l,m(t) =

N/M−1∑
n=0

sk,n+lN+m N
M
p (t− nTc) (3.2)

represents the m-th partition for the coded bit ck,l. Pk is the power of user k, and τk is the

time delay of user k, which models the asynchronous situation. p(t) is the impulse response

of the chip pulse shaping filter. After spreading, the signals are transmitted over an AWGN

channel and the resulting received signal is

y(t) =

K∑
k=1

xk(t) + n(t) (3.3)

where the noise power per dimension equals E[n2(t)] = N0/2 = σ2. Note that while (3.3)

is a real system model, all results translate to complex equivalent systems without loss of

generality.

Partitioned Spreading Sequences of user k

Interleaver πk(m)

M = 4 sections interleaved over a duration of L = 3 symbols

Figure 3.2: PS-CDMA modulation.

At the receiver, signals pass through a bank of filters
√
Ms′k,l,m(−t) matched to the spread

partitions. This detector operation is illustrated in Figure 3.3. The filter outputs of these
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filters can be expressed as

zk,l,m =

√
Pk
M
ck,l + Ik,l + nk,l (3.4)

where the noise samples nk,l have power σ2
n and the interference Ik,l has power

κ

N

K∑
k′ 6=k

Pk′ . (3.5)

The factor κ depends on the specific chip waveform used and is calculated for various pulses

later in this chapter and in [50]. The purpose of interleaving with πk(·) is to decrease

the correlation between zk,l,m, m = 0, . . . ,M − 1, which deliver M (largely) independent

estimates of the coded bits ck,l. The noise and interference in (3.4) are well approximated
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Figure 3.3: Structure of the partitioned CDMA iterative detector.

by a Gaussian random variable [22] and therefore its distribution is given by

f(zk,l,m|ck,l = ±1) ∼ N

(
±
√
Pk
M
,σ2

0,k

)
(3.6)

where

σ2
0,k = σ2

n +
κ

N

K∑
k′ 6=k

Pk′ (3.7)

is the interference and noise power of the partition zk,l,m. The cumulative a posteriori
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probability taking into account signals from all M partitions is given by

Pr (zk,l,1, . . . , zk,l,M |ck,l = ±1) ∼ exp

− 1

2σ2
0,k

M−1∑
m=0

(
zk,l,m ∓

√
Pk
M

)2
 . (3.8)

Assuming Pr(ck,l = ±1) = 1/2 the log-likelihood ratio (LLR) of ck,l at each iteration i is

ln

(
Pr(ck,l = 1|z(i)

k,l,0, . . . , z
(i)
k,l,M−1)

Pr(ck,l = −1|z(i)
k,l,0, . . . , z

(i)
k,l,M−1)

)
=

M−1∑
m=0

2

σ2
i,k

√
Pk
M
z

(i)
k,l,m =

M−1∑
m=0

λ
(i)
k,l,m (3.9)

which is the summation of M LLR values of each partition

λ
(i)
k,l,m =

2

σ2
i,k

√
Pk
M
z

(i)
k,l,m. (3.10)

Equation (3.10) assumes that these LLRs are Gaussian (see the derivation in (1.1) and

thereafter). Thus using (1.12) and not violating the extrinsic information principle we

obtain a soft estimate of the coded partition at iteration c̃
(i)
k,l,m as

c̃k,l,m = tanh

1

2

M−1∑
m′=0
m′ 6=m

λ
(i)
k,l,m′

 = tanh

 1

σ2
i,k

√
Pk
M

M−1∑
m′=0
m′ 6=m

zk,l,m′

 . (3.11)

The interference variance of the k-th user becomes independent of k as K becomes large, i.e.,

σ2
0,k → σ2

0 = σ2
n+ κ

N

∑K
k=1 Pk. Equation (3.10) describes the decoding of the inner repetition

code while excluding self-message so not to violate the extrinsic information exchange rule.

Second, equation (3.11) refers to obtaining soft-bit estimates from the LLR value obtained

from the Gaussian channel, explained in (1.11) and (1.12). These soft-bits are then used to

form a canceled signal for each user k as

y
(i)
k (t) = y(t)−

K∑
k′ 6=k

x̃k′(t) (3.12)

= xk(t) +

K∑
k′ 6=k

√
Pk′

M

L−1∑
l=0

M−1∑
m=0

(ck′,l − c̃(i)k′,l,m) · s′k′,m
(
t− τk′ − πk′(lM +m)

Ts
M

)
+ n(t)

= xk(t) +

K∑
k′ 6=k

√
Pk′

M

M−1∑
m=0

δ
(i)
k′,l,m · s

′
k′,m

(
t− τk′ − πk′(lM +m)

Ts
M

)
+ n(t)

These canceled signals are used in iteration i+ 1 via repeated matched filtering to produce

z
(i+1)
k,l,m . The quantity δ

(i)
k′,l,m is the soft–bit error at partition m in the i–th iteration step and
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its power is the soft-bit variance introduced in Chapter 2.

3.2 Analysis of the Detection Dynamics

The main analysis approach uses variance evolution. It can be shown that the noise

and interference values in the iterative process follow a Gaussian distribution [22], and

Pr(zk,l,m(i)|ck,l = ±1) ∼ N
(
±
√

Pk
M , σ2

i

)
. Together with equations (3.10) and (3.11), soft

bit estimates can be expressed as

c̃k,l,m(i) = tanh

 1

σ2
i

√
Pk
M

M∑
m6=m′

zk,l,m′

 (3.13)

= tanh

(
(M − 1)Pk
Mσ2

i

+ ξ

√
(M − 1)Pk
Mσ2

i

)
(3.14)

where ξ ∼ N (0, 1). The factor (M − 1)/M is a consequence of excluding the self-message

in (3.10). These messages will be fed back subsequently to the canceller.

Define the following quantity which constitutes the expectation of the soft–bit error δk,l,m

as

g(s) = E
[(

1− tanh
(
s+ ξ

√
s
))2]

(3.15)

Although no trivial closed form expression exists for g(s), tight upper bounds are known

[31], such as

ĝ(s) ≤


1

1+s , s < 1

πQ(
√
s), s ≥ 1

(3.16)

and Q (·) is the Gaussian error function already defined in Chapter 2. Now, following (3.12),

the evolution of the interference and noise power can be written as

σ2
i+1 =

κ

N

K∑
k=1

Pkg

(
(M − 1)Pk
Mσ2

i

)
+ σ2

n. (3.17)

For an equal power scenario, Pk = P , and for N , M and number of detection iterations, I,

all tending to infinity (3.17) simplifies to

σ2
∞ = καPg

(
P

σ2
∞

)
+ σ2

n (3.18)

where α is the CDMA channel load

α =
K

N
(3.19)
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and is analogous to the channel load in (2.48) expressed for the case of the multi-stream

MIMO transmission.
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Figure 3.4: SNR evolution of different CDMA detectors for different channel loads a)
α = 0.5 b) α = 1.0 c) α = 1.5 when Eb/N0 = 10 dB. d) α = 2.0 and Eb/N0 = 20 dB,
M →∞. Spreading gain N = 30.

Figure 3.4 presents the SINR evolution of popular CDMA detectors for a number of system

loads. For comparisons a performance matched filter (black curve) as well as MMSE receiver

(red curve) is shown. We can see that partitioned demodulation with matched filtering

outperforms both traditionally adopted detectors in every considered situation. Since the

partitioned demodulator is based on the matched filter the initial SNR delivered by both

is the same. As evidenced, the performance curves are affected by the repetition factor

M . Its impact is more pronounced for higher loaded systems. Additionally, the partitioned

system achieves interference-free performance in almost all the cases, except the situation

when α = 150% and M is small.
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It is very interesting to ask what maximum system load can be supported by the partitioned

demodulation. For limiting arguments, σ2 → 0 as well as increasing the repetition factor

such that M → ∞, the maximum supportable load α for synchronous partitioned CDMA

demodulator is described by the following

σ2
∞ = αmaxPg

(
P

σ2
∞

)
(3.20)

which implies that

αmax = lim
σ2
∞→0

σ2
∞

Pg
(
P
σ2
∞

) ≈ 2.09. (3.21)

It is assumed here that the system does not get stuck before on some σ2
∞ 6= 0. In other

words maximum load is such that it prevents variance transfer curves of the repetition code

and the matched-filter canceller to overlap except at the final point (σ2
c,∞ = 0, σ2

∞ = 0).

This condition can be grasped graphically with the variance transfer charts as presented in

Figure 3.5. As customary for a matched filter canceller the load is equivalent to the slope

of the cancellation curve. Two sets of VT curves correspond to exact evaluation of the

soft-bit variance function as in (3.15) and to the approximation which is the upper bound.

As is indicated the maximum load is ≈ 2.1 and ≈ 1.9 corresponding to the exact evaluation

and the approximation, respectively. Naturally, in practical situations these maximum load

figures will be slightly different (smaller) due to the number of factors, like noise level

and finite repetition factor M . Nevertheless, this result indicates a great potential of the

partitioned modulation not only in terms of efficiency but also implementation feasibility

[51].

3.2.1 Optimality of Partitioned Modulation

Expressing the partitioned detector’s output SINR after an infinite number of iterations and

in the limiting case M →∞ as γ∞ = P/σ2
∞ it can be derived that

γ∞ =
P

σ2
n + καPE

[
1− tanh

(
γ∞ +

√
γ∞ξ

)]2 (3.22)

where equation (3.18) is used. In [8] it was shown that the output signal-to-noise and

interference ratio of the individually optimal (APP) detector for the original (unpartitioned)

CDMA system satisfies (3.22) for κα < αs ≈ 1.49. This shows that partitioned CDMA with

iterative processing is an asymptotically optimal demodulation method for equal–power

CDMA, as long as κα < 1.49. The analysis carried out in [8] for dense case (without

interleaving) breaks for values of loads higher than 1.49 and it is unknown whether above

this threshold the APP estimates are still delivered. Due to that, the PS-CDMA method
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Figure 3.5: Maximum system load α achievable for PS CDMA demodulator in equal
power scenario.

is an example of an optimal detection method with bounded (non-exponential) complexity.

Moreover, following [19, equation (6)] the noise plus interference power at the output of

the minimum mean–squared error (MMSE) filter again applied to the equal power CDMA

satisfies

σ2
MMSE =

καP

1 + P
σ2
MMSE

+ σ2
n ≥ καPg

(
P

σ2
MMSE

)
+ σ2

n (3.23)

which leads to σ2
∞ ≤ σ2

MMSE using (3.16). Therefore it is implied that partitioned CDMA

always performs better than MMSE–based CDMA detection, and, where the two are near

equal, MMSE filtering is near optimal by the argument above.
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3.2.2 Simulations

Until this point performance evaluation of the partitioned demodulator relied on solving the

iterative equation (3.17). In this subsection the validity of this approach will be examined

using numerical simulation experiments. This comparison is mainly based on variance evo-

lution approach. It will be clearly seen that simulations are in perfect agreement with the

analysis given previously.

Two systems were simulated, with K = 45 and K = 60 users. Remaining parameters are

shared, namely spreading gain N = 30, repetition factor M = 10 and channel Eb/N0 =

10 dB. The frame length is set to L = 120 implying the interleaver length of LM = 1200.

SNR evolution is presented in Figure 3.6. It is clearly observed that the analysis captures the

0 2 4 6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

12

S
IN

R
 [d

B
]

Iterations

Simulation
Analysis

Figure 3.6: Comparison between analytical evaluation of variance evolution and
that obtained from the numerical simulation.

behavior of the partitioned demodulator very precisely and virtually there is no difference



CHAPTER 3. PARTITIONED SPREADING CDMA 70

between the analysis and the simulation. With this observation we can safely assume that

SNR evolution for different systems presented previously in Figure 3.4 is the same as the

simulation would deliver. Summarizing, it is enough to evaluate the system performance

analytically without the need to run expensive and time consuming numerical experiments.

This observation is true however as long as interleaver size, which is the product of frame

length L and number of partitions M , is large. With the decrease of frame length the

gap between the analysis and simulation might start to show up, since in the analysis it is

assumed that the LLR values in the repetition code decoding block are not correlated. When

the correlation starts to build-up the analysis is no longer valid. The effect of correlations

will be more pronounced for high loaded systems and it will be discussed in the subsequent

paragraph.

3.3 Practical Considerations

3.3.1 Finite Interleaving

One of the most pronounced characteristics of the partitioned transmission is interleaving.

The analysis presented in the previous section bears the crucial assumption that interleav-

ing is large enough to assure independence between partition estimates zk,l,m. Variance

transfer (see Equation 3.17) and all its derivatives are valid if interleavers are large. From

practical point of view large interleavers are unfeasible, especially in wireless environments,

where propagation conditions change very rapidly and large frame sizes cannot be easily

accommodated.

Correlation is the phenomena that destroys partitioned system performance as compared

to the theoretical predictions. The shorter interleaving the more severely correlation affects

the system. Figure 3.7 shows the divergence from the theory due to use of finite interleaver.

As it can be observed short interleaving makes system performance saturate away from final

performance predicted by the theory. However, for larger interleaver (length 2000) system

results in behavior very closely to theory. It must be stressed here that gap seen in the

Figure 3.7 translates into an SNR loss of several decibels, which is very considerable, looking

at today’s standards1. In Figure 3.8 the minimum required interleaver size depending on

the system load α for PS-CDMA detector to follow (3.17) is presented. It is seen that for

underloaded system (α < 1) interleaver size practically does not matter. Its role is becoming

more important as channel load increases. As it can be seen above certain threshold load

(about 1.75) interleaver size does not matter again. This is due to the fact that the system

does not converge for a given load (α > 1.75) even for the infinite case. As already stated,

1In Figure 3.7, final variance of the finite system is about 4 times higher than that of the perfect
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performance degradation due to short interleavers is observed. To understand the cause

of this effect let us concentrate on equation (3.14) which evaluates the soft–bits. This

equation is only valid if estimates zik,l,m′ are uncorrelated, which is true for large interleavers.

With interleavers size reduction this correlation starts to play a significant role. With the

correlation between messages corresponding log–likelihood–values

λik,l,m′ =
2

σ2
i

zk,l,m′ (3.24)

coming from the repetition code are correlated and their sum

M∑
m′ 6=m

zik,l,m′ (3.25)

theoretical variance obtained via (3.17). It translates into SNR loss of 6 dB.
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generally can be no longer substituted with the random variable1

N (µi, ωi) = N

 M∑
m′ 6=m

sim′ ;

M∑
m′ 6=m

vim′

 (3.26)

where sim′ = E[zik,l,m′ ] is the mean of a single partition and vim′ = E[zik,l,m′ − sim′ ]2 is its

variance. This fact translates into signal-to-noise degradation in Equation (3.17) i.e. the

increase of power (variance) of the noise that partitions are immersed in. Also the nature of

this variance is changed due to the following observation. The distribution of LLRs in the

first detection iteration is Gaussian, however as iterations progress the deviation from Gaus-

sian occurs and is more severe with increasing system load, decreasing the interleaver size

or both. Below a number of figures depicting the distribution of zk,l,m estimates for various

1Like it is assumed in (3.14).
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scenarios are presented. For clarity of presentation, it is assumed that all-one codewords

are transmitted.

Figures 3.9, 3.10 and 3.11 present the distributions of the local field

M∑
m′ 6=m

zk,l,m′ (3.27)

for iterations, I = 1, 3, 5, 7, 10, 20, for various block sizes L and therefore interleaver lengths.

As shown the distribution in the finite interleaving case (red curves) has tails that are more

extended and the main lobe is shrunk as compared to the Gaussian case (black curves) and

this is more pronounced for higher iterations. Both distributions, true Gaussian and the

”new distribution” presented in each plot have the same means and variances. Note, that all

the figures are in the logarithmic scale in order to show the tail behavior better. Since the

shrinking is much more visible on the linear scale than on the logarithmic scale, Figure 3.13

is also plotted. Such similar distributions of the local field are observed in fluid dynamics

theory and treated solely via simulation experiments. See for example [52, Figure 11] and

[53]. Figure 3.12 shows how the distribution in iteration I = 20 is affected by increasing

the block size L. As it is clearly seen the distribution approaches Gaussian as long as frame

length is increased. Since local field diverges from Gaussian for i > 0, evolution of other

parameters besides the mean and variance must be tracked in order to retrieve the actual

distribution and predict the actual performance of the finite system. These are likely higher

moments like skewness and kurtosis, which are the simplest measures of non-gaussianity.

Such tracking makes not only the problem of finite interleaving complex, but also quite

separated from the plethora of solutions and concepts developed in the communications and

information theory, which heavily rely on the Gaussian assumption.

3.3.2 Complexity

The main advantage of the proposed partitioned modulation besides good performance is

complexity. Since there are many definitions of complexity, here the focus on the complexity

related to the number of basic operations that hardware has to execute to facilitate the

detection. Looking at the algorithm, it is noticeable that the major complexity burden comes

from evaluating the non-linear hyperbolic tangent function together with the division by the

noise variance, which is estimated at the receiver constantly, see (3.11). However, this non-

linear operation can be evaluated in hardware quite effectively using the approximation as a

lookup table, which is proven to work fast and efficient1. All the other PS-CDMA receiver

1As shown in [51] via fixed point simulations the imperfect LLR estimation, due to non perfect division
and tanh(·) evaluation, has very little impact on the overall performance of the PS-CDMA detector. What
matters is to perform cancellation and matched filtering precisely.
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Figure 3.9: Logarithmic-scale distributions of the local field in iteration I. Partition
multiplicity M = 10, spreading gain N = 100, number of users K = 150, Eb/N0 =
10 dB. Frame length L = 1. Interleaver length LM = 10.

operations is the message exchange, very similar to those existing in LDPC decoders. After

careful examination of the algorithm, the following complexity estimate can be given for the

proposed detector1

Theorem 2. The complexity of partitioned spreading CDMA system with K users, M

partitions and processing gain N in terms of the number of multiplication/division arithmetic

operations per iteration is

O (K(4M +N)) . (3.28)

Therefore, the complexity of detecting bits ofK users in I iterations shapes asO (IK(4M +N)).

1Computational load associated with interleaving is omitted, since it is negligible compared to the
remaining operations.
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Figure 3.10: Logarithmic-scale distributions of the local field in iteration I. Par-
tition multiplicity M = 10, spreading gain N = 100, number of users K = 150,
Eb/N0 = 10 dB. Frame length L = 10. Interleaver length LM = 100.

It is a linear growth with the number of users K in the system, whereas linear MMSE fil-

tering associated with matched filtering followed by matrix inversion is cubic O(KN +K3).

The optimal, maximum likelihood detection complexity is exponential O(KN + aK) and

it also depends on the constellation size. The total amount of computations per bit per

iteration is presented in Appendix A.

3.4 Coded PS-CDMA

Up to this point the attention was focused on the uncoded transmission, i.e. the case that

no outer error control coding mechanisms were present and only inner repetition coding
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Figure 3.11: Logarithmic-scale distributions of the local field in iteration I. Par-
tition multiplicity M = 10, spreading gain N = 100, number of users K = 150,
Eb/N0 = 10 dB. Frame length L = 100. Interleaver length LM = 1000.

was applied. In this section the situation when outer coding is utilized will be investigated.

A number of processing schedules will be examined and compared in terms of attainable

performance. Since it was already established that the inner repetition code is optimal

for cancellation systems and powerful outer error control codes are best for fighting-off

the additive noise such codes will be used subsequently and the attention is particularly

focused on regular LDPC codes. They have good error correcting capabilities and very

elegant analytical treatment allowing for more insights into the iterative detection/decoding

process.
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Figure 3.12: Logarithmic-scale distributions of the local field in iteration I = 20
for various frame lengths L = 1, . . . , 500. Partition multiplicity M = 10, spreading
gain N = 100, number of users K = 150, Eb/N0 = 10 dB.

3.4.1 Processing Schedules

Since in coded PS-CDMA system three entities are interacting together, a number of pro-

cessing schedules can be outlined. In the following, the attention is concentrated on two

particular schemes. The first is the two-stage schedule. In this scheme the signal processing

is already presented in Figure 3.3 and is as follows. First the iterations between the channel

(MF, MMSE filter) and the inner repetition code are performed. It is just an operation of

partitioned demodulator as introduced at the beginning of this chapter. A number of par-

titioned iterations are performed and if a given stopping criterion is satisfied (for example

predefined maximum number of iterations reached or stabilization of the output variance)

the signals are passed in the form of LLRs to the outer channel code decoder. This procedure
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Figure 3.13: Linear-scale distribution of the local field in iteration I = 20. Partition
multiplicity M = 10, spreading gain N = 100, number of users K = 150, Eb/N0 =
10 dB. Frame length L = 1. Interleaver length LM = 10.

can be described formally as

1. For i = 1, . . . , IPS perform customary PS detector iterations according to

σ2
i+1 = σ2

n + αPg

(
(M − 1)P

Mσ2
i

)
, (3.29)

starting with σ2
0 = σ2

n + αP .

2. Return resulting (full APP1) LLRs

LLRk,l =
2
√
P

σ2
I

M∑
m=1

zIk,l,m (3.30)

to the outer error control decoder.

1Factor M−1
M

disappears, since no message exclusion is performed.
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Table 3.1: Table of thresholds [in dB] of LDPC/BPSK for a given rates R.

Rate R dv dc τLDPC [dB] τBPSK [dB] P/σ2
∞ = 2RτLDPC P/σ2

∞ [dB]
0.25 3 4 1.05 -0.79 0.636 -1.965
0.40 3 5 0.9 -0.23 0.984 -0.070
0.50 3 6 1.15 0.19 1.303 1.149
0.66 3 9 1.9 1.02 2.044 3.1048
0.75 3 12 2.2 1.63 2.489 3.9602
0.80 3 15 2.55 2.04 2.878 4.5909
0.85 3 20 3.05 2.55 3.431 5.3542
0.90 3 30 3.75 3.2 4.268 6.3022

In order to find the maximum channel loading for the two-stage detector it is enough to

find such maximum α that allows the partitioned demodulator to return LLRs with signal-

to-noise-ratio equal to the outer LDPC code convergence threshold. Such thresholds can

be evaluated analytically using the density evolution outlined before. The code thresholds

for considered (3,x) family of regular LDPC codes is presented in Table 3.1. Also capacity

for BPSK modulation on AWGN channel is indicated. An interesting observation can be

made is that high rate LDPC codes from this family approach capacity limits much closer

than low rate ensembles of codes and the gap is less than 0.5 dB. Of course these results

are achieved for very long codes and for finite configurations numerical simulations need

to be performed. Nevertheless, the limiting performance of such coding scheme using the

threshold in the table can be indicated.

The second schedule is a generalization of the two-stage processing. It is deemed full-schedule

and relies on returning the LLRs from the outer code decoder to the interference canceller

after their conversion into soft-symbols using (1.12). Therefore its analysis is exactly the

same as with the exception of the first iteration of the partitioned detector. Instead of using

equation

σ2
i+1 =

1

N

K∑
k=1

Pkg

(
(M − 1)Pk
Mσ2

i

)
+ σ2

n (3.31)

the following is applied

σ2
i+1 =

1

N

K∑
k=1

Pkg
(mv

2

)
+ σ2

n (3.32)

where mv is the LLR received from the variable node of the LDPC code and is simply

expressed as

mv = dvmc (3.33)

where mc are final messages obtained from the check nodes. Then the iterations proceed as

in (3.17) and LLRs from the detector are passed again to the outer LDPC code. The process
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continues for a number of iterations until some stopping criterion is satisfied. As clearly

seen, the full processing schedule is far more complex than the two-stage methodology. It

invokes an outer channel code decoder multiple times. However, as it is the case, such joint

processing results in a better performance. Figure 3.14 presents the maximum achievable
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Figure 3.14: Maximum supportable system loads with partitioned CDMA, plotted
as a function of rate R for regular (3,x) LDPC codes and Eb/N0 = 10 dB. M = 20.

system loads for a number of detectors. A number of interesting observations can be derived

from this plot. First, the partitioned CDMA detector with simple matched filters for the

two-stage configuration always perform better than the much more complex MMSE filter

requiring matrix inversion and it coincides with observations inferred from the analysis of

Equation (3.23). However, the MMSE filter however results in better performance when full

schedule is employed. However, in this method such MMSE filtering is computationally very

expensive, since separate MMSE inversion per each user per each modulation symbol has

to be performed. Such MMSE filtering, where a priori information is accepted for the case
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of CDMA channels was proposed in [26]. However, for high rate outer coding schemes the

difference in favor of the partitioned detector can be more than 50% and simple partitioned

demodulation outperforms per-user MMSE filtering. Secondly, the advantage of the full

decoding schedule in case of PS detector is negligible. Both schedules perform virtually the

same. Note that the simple matched filter (traditionally used in today’s CDMA systems)

with coding performs really poor with performance noticeably away from other detectors

considered.
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Figure 3.15: Spectral efficiency with partitioned CDMA, plotted as a function of
rate R for regular (3,x) LDPC codes and Eb/N0 = 10 dB. M = 20.

Another important conclusion can be drawn. Namely, although it may seem that larger loads

can be supported when lower rate codes are used and naturally it would imply that use of

such low rate codes is the best, but the reality is actually opposite. The most important

performance measure of any communication system is the spectral efficiency. For the case
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considered here the spectral efficiency is

C = αR [bits/dimension] (3.34)

which is a product of achievable load (related to number of users/streams that the system

can support) and information rate R of each stream, which is exactly the outer code rate.

This is the straightforward derivative of the equation (2.52). Bearing that in mind, we

plot Figure 3.15, which delivers quite the opposite message from the one by Figure 3.14.

In fact it is most beneficial for partitioned system to use a high rate powerful outer code,

since this maximizes the system’s spectral efficiency. This message brings the attention to

the previous chapter, when it was suggested that repetition code should be combined with

powerful outer code to facilitate optimal performance.

3.5 Notes on Asynchronicity

To model asynchronous sampling of a user’s chip waveforms the constant κ was previously

used. Its value depends on one parameter, namely the chip waveform. Assuming that the

desired user is sampled perfectly, asynchronous arrivals of remaining users will cause the

interference that can be simply described using the κ constant. This value is less than unity

and exactly equal to unity in the case of perfect synchronism between all the users. A brief

explanation of calculating the value of this parameter is presented subsequently.

Assume that chips of all users are modulated using the same waveform p(t). The receiver

correlates the interferers signals shifted in time by τ1 with this waveform. This process has

the following mathematical description∫ ∞
−∞

p(t)p(t− τ)dt = cp,p(τ). (3.35)

Equation (3.35) is the definition of the autocorrelation function of the pulse p(t) evaluated in

point τ . Therefore finding the power of the interference boils down to sampling the squared

autocorrelation function of the pulse shaping filter at specific points for a number of possible

time shifts and subsequently averaging over these shifts. It is as follows

PI =
1

Tc

∫ Tc

0

cp,p(τ)2dτ. (3.36)

This equation describes the energy from one pulse of the interfering user. In order to take

1The value of τ = 0 or τ |Tc represents the chip synchronous situation.
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into account the other 2L pulses1 of the interfering users2 the following straightforward

expression has to be evaluated

P = lim
L→∞

L∑
l=−L

1

Tc

∫ Tc

0

cp,p(τ − lTc)2dτ. (3.37)

The results of the evaluation of (3.37) are gathered in Table 3.2 for a number of popular

shaping pulses. It is clearly visible that the interference coming from other users is dimin-

Table 3.2: Table of coefficients κ for selected pulse shaping filters
Filter Roll-off β κ κ [dB]

Sinc 0 1 0
Root RC 0.1 0.975 -0.11

0.2 0.949 -0.23
0.3 0.925 -0.34
0.4 0.899 -0.46
0.5 0.874 -0.58
0.6 0.849 -0.71
0.7 0.824 -0.84
0.8 0.799 -0.97
0.9 0.774 -1.11

Rect - 2/3 -1.76

ished due to the lack of synchronicity and this reduction ranges from 1.75 dB for rectangular

pulses to no loss (0 dB) when using sinc-type chip waveforms.

Summarizing, it is beneficial to have asynchronous arrivals of user signals since the interfer-

ence power is reduced as compared to the synchronous situation. Naturally, it is assumed

here that the desired user is sampled perfectly, which is possible due to sophisticated syn-

chronization algorithms, like the one in [54].

3.6 Chapter Summary

This chapter describes the application of partitioned modulation for CDMA signalling. It

is shown that this method significantly outperforms traditional signal processing and in a

vast majority of cases is even better than complex MMSE filtering, while still having lower

computational demand. The case when finite interleavers are employed was briefly outlined

and precise complexity measures of the proposed algorithm were given. Additionally, the

1L preceding and L succeeding. It is assumed that non-causal shaping filters can be used.
2For the continuous transmission there is an infinite number of these pulses, i.e. L→∞, however their

power vanishes in the limit and therefore their sum is finite.
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concatenation of partitioned modulation with the outer error control code was investigated

on the example of strong regular LDPC codes. Contrary to intuition, the use of the outer

error correction mechanism does not give a substantial advantage and in many cases the

system performance is virtually identical to the two–stage case where the outer error control

code does not feed back its output messages to the interference canceller. This argument

favors the use of two–stage processing rather than complex turbo processing, since it is often

counterproductive.

Besides many attractive features, partitioned modulation has its own drawbacks. Namely

this modulation is interference limited, meaning that beyond certain channel load threshold,

the partitioned detector cannot deliver sufficient SNR, allowing for outer error control code

mechanism to converge. The good news however is that this obstacle can be overcome with

careful received power assignments. The case of removing this limitation by varying the

users’ received powers is the focus of the next chapter.



CHAPTER 4

Unequal Power Allocations for PS-CDMA

Until now all the derivations were performed with the assumption that received power

levels were the same for all users/streams, which characterizes traditional power controlled

system. However, as motivated by the arguments in [22] and by the fact that equal power

allocations represent the worst case scenario for iterative interference cancellation receivers in

this chapter the attention will be focused on relaxing this assumption and allowing received

powers to differ. For the case of partitioned spreading modulation for CDMA the first

observation that unequal power allocations can result in much better performance of the

iterative receiver was made in [25]. It was shown there that allowing J groups of different

power users will increase the maximum supportable load J-fold as compared to just only one

group (J = 1), which of course denotes the equal power system. This increase is not obtained

for free. It is possible because of the evident increase of the overall power present in the

system. In other words, allowing unequal power allocations, power and spectral efficiency

can be effectively traded and for certain cases, as will be seen later, the system is no longer

interference limited. These observations coincide with the ones flowing from chapter 2,

i.e. that systems with inner repetition codes can achieve very high spectral efficiencies

and this as per information theory arguments, can only be possible in high signal-to-noise

ratios regime. Figure 4.1 presents the maximum achievable loads for 2-stage schedule with

1,2 and 3 different power groups. The results in this figure are semi-analytical, and were

obtained via numerical optimization. Nevertheless, the tendency and general message is

well illustrated. It can be clearly observed that the maximum system load increases linearly

with the increasing number of groups as

αmax = Jα0 (4.1)

where α0 is the maximum load achieved for the 2-stage system in the equal power situation.

85



CHAPTER 4. UNEQUAL POWER ALLOCATIONS 86

R
eq
u
ir
ed

av
er
ag
e
E
b

N
0
[d
B
]

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5
Load α

uniform
R = 0.9

uniform
R = 0.25

bimodal
R = 0.9

bimodal
R = 0.25

3-modal
R = 0.9

3-modal
R = 0.25

αmax ≈ 1.92

αmax ≈ 2.57

αmax ≈ 3.84

Figure 4.1: Average signal-to-noise ratio required to achieve given load α using
two-stage schedule with unequal user power levels.

Moreover, in [55] and to some extent in [50] it was shown that the proposed two–stage

partitioned detector can achieve the capacity of the linear multiple-access channel within

1 bit. However it is fulfilled when certain power profile is assured at the receiver. The

derivation of this profile proceeds as follows.

Let us modify the variance transfer equation in (3.17) and instead of discrete analysis use

continuous approach initially suggested in [56] where sums are replaced with integrals. Con-

sider equation (3.17) with K users with powers P1 ≤ P2 ≤ . . . ≤ PK . Denoting Pk = P (k)

and assuming K,M →∞, we may use the continuous approximation

σ2
i+1 =

1

N

∫ K

0

P (x)g

(
P (x)

σ2
i

)
dx+ σ2

n i = 1, 2, . . . ⇔ (4.2)

σ2
i+1 =

∫ α

0

T (u)g

(
T (u)

σ2
i

)
du+ σ2

n i = 1, 2, . . . (4.3)

where T (u) = P (uN), u ∈ [0, α], is the power distribution and as defined a non–decreasing

function.

In the case of two–stage decoding the system converges to error–free performance only if
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the signal-to-noise ratio T (0)/σ2
∞ of the weakest user at the output of the detector is higher

than the code’s convergence threshold µ. Denote fixed point σ2
∞ of the iterative equation

in (4.3) as σ2
∞ = v. Then (4.3) becomes

v =

∫ α

0

T (u)g

(
T (u)

v

)
du+ σ2

n. (4.4)

Dividing by both sides by v we obtain

1 =

∫ α

0

T (u)

v
g

(
T (u)

v

)
du+

σ2
n

v
. (4.5)

The convergence condition using (4.3) and (4.5) can be rewritten as∫ α

0

T (u)

v
g

(
T (u)

v

)
du+

σ2
n

v
< 1 (4.6)

for all values of v

T (0)

µ
≤ v ≤

∫ α

0

T (u)du+ σ2
n.

For the case of full decoding the soft–bit estimates (3.13) are produced by the error control

code instead of simply combining partitions. Denoting the soft symbol variance correspond-

ing to (3.15) by gecc(·) we can express the convergence condition for full decoding as∫ α

0

T (u)

v
gecc

(
T (u)

v

)
du+

σ2
n

v
< 1 (4.7)

for all

T (0)

µ
≤ v ≤

∫ α

0

T (u)du+ σ2
n .

Equations (4.6) and (4.7) determine the maximal loads α for a given average power to noise

ratio and user power profile.

4.1 Achievable Loads with Two–Stage Decoding

In Figure 3.14 we argued that the performance of the two–stage decoding of partitioned

CDMA can be virtually identical to the full decoding. In this section we present an analysis

further supporting the potential of two–stage decoding.

Lemma 1. Any system load α can be achieved with two–stage decoding and an appropriate
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choice of a power distribution T (u) i.e. two-stage demodulation is not interference limited.

Proof. See [50] and B.1.

Figure 4.2 presents the performance of the partitioned detector in an unequal power scenario

and illustrates that power and spectral efficiency can be traded effectively with partitioned

CDMA. The parameters used are K = 80, N = 20, M = 20, with rate R = 0.9 regular

(3,30) LDPC outer code of length 2100 coded bits. Number of detector iterations is I = 60

and decoder was set to 30. The exponential power with a = 1.5 was used. The figure labels

the average Eb/N0, the BER performance is that of the weakest user. The received power

distribution range was ca 25 dB following T (u) in Lemma 1. It can be seen that the theory

matches the simulation very precisely.

Partitioned CDMA with two-stage demodulation also has a very appealing property of

dynamic user assignment. It says that the constants a (and σ2) describing the required

power distribution do not depend on the system loads α. Thus, for two different system

loads α < α′, the corresponding power distributions T (u) and T ′(u) coincide for u < α, i.e.,

T ′(u) = T (u) = eau, u ∈ [0, α] . (4.8)

The implication of this results is that, in an operational system, new users can always be

added without disturbing the existing population. Lemma 1 proves that all users can still

be decoded, and (4.8) proves that previously active users do not need to adjust their power.

4.2 Approaching Channel Capacity with Two–Stage De-

coding

Below are the steps showing that two-stage demodulation of partitioned CDMA can achieve

the capacity of the GMAC channel. For details see Appendix B.

After having shown that arbitrary loads can be achieved with exponential power distribu-

tions T (u) = eau if a ≥ 2 ln 2
def
= a0, we consider now partitioned signaling using the limiting

distribution T (u) = ea0u. We will assume that the individual error correcting codes (ECC)

are capacity-achieving on the BIAWGN channel. Let us define

f(t)
def
=

1

a0

∫ tea0α

t

g(x)dx+ tσ2
n − 1 , (4.9)
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Figure 4.2: Bit error rate performance of the weakest user for a high-rate LDPC
coded partitioned CDMA system at the high load of α = 4.

and rewrite f(t) as

f(t) =
1

a0

∫ tea0α

t

g(x)dx+ tσ2
n −

1

a0

∫ ∞
0

g(x)dx

=
1

a0

(
−
∫ t

0

g(x)dx−
∫ ∞
tea0α

g(x)dx

)
+ tσ2

n

≤ − 1

a0

∫ t

0

g(x)dx+ tσ2
n

def
= f̃(t) . (4.10)

The following lemma assures a system with a = a0 converges to a residual variance σ2
∞ <

1/a0.

Lemma 2. For σ2
n = 1/a0 − ε where ε ≥ 0.3, the system converges to the residual noise

variance σ2
∞ ≤ 1/a0.

Proof. See [55].

The next lemma gives a lower bound on the spectral efficiency of the system.
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Lemma 3. Consider the power distribution T (u) = ea0u, u ∈ [0, α] and σ2
n = 1/a0 − ε.

Assume capacity approaching codes for each user. The parameter ε is chosen according to

Lemma 2, such that σ2
∞ < 1/a0. The spectral efficiency of the system is lower bounded by

Ceff ≥ α− 0.1985 (4.11)

for any α > 0.

Proof. See [55] and B.2.

The next lemma upper bounds the average signal-to-noise ratio of the system.

Lemma 4. Consider the power distribution T (u) = ea0u, u ∈ [0, α] and σ2
n = 1/a0 − 0.3 =

0.4213. Assume capacity-achieving error control codes for every user. Eb/N0 denote the

average signal-to-noise of the system. The AWGN channel capacity which can be achieved

for this Eb/N0 satisfies

CAWGN ≤ α+ 0.8 (4.12)

for any α ≥ 1.

Proof. See [55] and B.3.

Combining Lemmas 3 and 4 we obtain main result:

Theorem 3. The spectral efficiency per dimension of the partitioned transmission under

two–stage decoding satisfies

CAWGN−Ceff < 1 [bits/dimension] (4.13)

for any system load α ≥ 1.

Those findings are illustrated in Figure 4.3, where it can be seen that spectral efficiency

achieved by the partitioned detector using two-stage demodulation is following the channel

capacity for a broad range of signal-to-noise ratios. For low SNR values there exists a

visible gap to AWGN capacity. This is due to fact that in evaluating the capacity of

two–stage processor, a high rate outer LDPC code was used. This code has a theoretical

convergence point at ca 3.75 dB. As we can see this is roughly the same as the cut-off SNR

in Figure 4.3. Below this value, only a fraction of users (the stronger ones) converge to

error-free performance, others inevitably deliver erroneous estimates of transmitted bits.

Figure 4.4 presents the achievable rates for each user in the population. We can see that

the weakest user achieves the rate R ≈ 0.9 whereas other users have higher rate, quickly
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Figure 4.3: Spectral efficiency achieved by PS-CDMA two–stage detector using
optimal power allocation and outer (3,30) LDPC code of rate R = 0.9.

achieving the maximum offered by the binary modulation employed. It is also important

to note that modern binary error control coding systems of high rate, like high rate LDPC

codes, operate very close to the capacity limits. This gap increases for low rate scenarios.

This statement simply implies that the high rate codes are not a limiting factor in keeping

the resulting performance of PS detector to be away from the capacity. It is sitting inherently

in the detection process.

Figure 4.5, on the other hand, illustrates how the maximum achievable system load α

varies with the choice of power exponent a. A clear asymptote at a0 = 1.3863 is observed.

Additionally the power dynamic range between strongest and weakest user in the pool as a

function of system load is indicated (in red). Those power ranges shown are usual in wireless

scenarios, but here they give the system advantage over, for example, linear receivers, which
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Figure 4.4: Example of rate distribution for unequal power scenario. Eb/N0 = 4 dB
for the weakest user is slightly above the code threshold i.e. 3.75 dB.

in such situation experiences the so called near–far problem.

4.3 Power Control Elimination

The need to assure a certain power distribution at the receiver imposes some form of power

control, previously known from CDMA receivers working on the principle of simple corre-

lation (matched filtering). In fact power control is a complex mechanism, which requires

exchange of many control messages, which generally significantly contribute to the drop of

information rate achieved as compared to the ideal, capacity achieving system.

As seen previously, users can be added to the system, without disturbing the already existing

population. Whenever a user wants to join the pool of users and transmit to the base station

it must after sending its signal with power level P1 receive the connection confirmation from

the BS. If it does not receive this message then it changes its power level and tries to get

connected again. The process continues until the connection is finally established.

Figure 4.6 shows the performance of the system with the distribution as a function of

the transmitter–referred signal–to–noise ratio1. The relationship between transmitted and

1As transmitted SNR we express the value P̄tr/2Rσ2 in order to compare systems fairly based on the
transmitted power.
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received power is assumed to follow the relationship

Pr =
Pt

(1 + d)
β

(4.14)

where d is distance between transmitter and receiver and β is path loss factor which is at

least 2, for the free space case, or higher for other cases. We further assume that transmitters

are uniformly spatially distributed. The performance behavior of equal power (traditional

power controlled) CDMA using partitioned spreading is shown for comparison. In both

cases it was assured that each user converges and the convergence threshold corresponds

to the BPSK capacity. In the figure we used µ = 2.04 dB which corresponds to the rate

R = 0.8. It is clearly seen that the system with random received powers is behaving almost

identically to the equal-power system for loads up to an α ≈ 1.75. However, past this value

their performances diverge. An equal power system saturates around α ≈ 2.08, whereas

uncontrolled power system can further increase the load until the saturation point at about

α ≈ 3.05. It correspond to an almost 50% increase in the system capacity in favor of

uncontrolled powers.
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Figure 4.6: Achievable loads as a function of average transmitter–referred signal-
to-noise ratio. Path loss factors β = 3 and β = 4.

4.4 Distribution of PS–CDMA Outputs

It is important to describe the statistics of partition estimates delivered by the partitioned

CDMA front-end in unequal power scenarios1. Partition estimates are obtained via simple

matched filtering of the detector input y = [y1, y2, . . . , yN ], where N is the spreading gain.

This composite signal is

yn =

K∑
k=1

sk,ndk
√
Pk + bn (4.15)

where bn ∼ N (0, σ2
n) is the channel noise. In subsequent derivations we assume, without

loss of generality, that for every user dk = 1. The filtered signal zk,l,m, corresponding to one

partition can be expressed as a sum of desired signal, interference and transformed channel

noise

zk,l,m = Sk,l,m + Ik,l +Nk,l (4.16)

1For equal power scenarios it is known that asymptotic distribution tends to Gaussian, via Central Limit
Theorem arguments, see [4].
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Assume that we want to recover one partition. Then the matched filter estimate (normalized

by
√
M) looks like

zk,1 =

N/M∑
n=1

√
Msk,nyn =

N/M∑
n=1

√
Msk,ndk

√
Pksk,n + (4.17)

+

N/M∑
n=1

√
Msk,n

K∑
k′ 6=k

dk′
√
Pk′sk′,n +

N/M∑
n=1

√
Msk,nbn

where for the simplicity we omit bit index l. From this we can see that each partition

estimate zk,m, k = 1, . . . ,K and m = 1, . . . ,M is a random variable, a summation of K + 1

terms (random variables), where one is desired signal, K−1 is interference and one is noise.

As the number of terms (users K) increases we can apply the Central Limit Theorem [57].

The number of partitions per symbol does not matter here, the only important detail is to

allow a large number of users K. It appears to be true, since in regular CDMA (M = 1)

we get Gaussian outputs from a matched filter by summation of terms belonging to other

users. Let us look at the interference contained in each partition zk,m. It is

Ik,1 =

N/M∑
n=1

√
Msk,n

K∑
k′ 6=k

dk′
√
Pk′sk′,n =

K∑
k′ 6=k

dk′
√
Pk′
√
M

N/M∑
n=1

sk,nsk′,n =

K∑
k′ 6=k

ωk′ (4.18)

where ωk′ is a random variable that has mean and variance as (the expectations are taken

over spreading sequences)

E[ωk′ ] = 0 (4.19)

E[ω2
k′ ] =

1

N
Pk′ = σ2

k′

Now it is seen that interference is just a summation of K−1 random variables with bounded

variances as in (4.19). If some necessary conditions are met [58] (Lindeberg condition)

the summation of large number of independent random variables with bounded variance

according to Central Limit Theorem [57, 58] tends to a Gaussian distribution with zero

mean and variance

θ2
k =

K∑
k′ 6=k

σ2
k′ =

1

N

K∑
k′ 6=k

Pk′ (4.20)
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Also noise and the signal itself have bounded variances (Pk′M and σ2 respectively), therefore

we can conclude that the distribution of partition estimates zk,l,m is

p(zk,l,m|dk = 1) = N

(√
Pk
M
, θ2
k + σ2

)
(4.21)

Having this established, we can now use the LLR derivation as well as soft-bit extraction

as described in section 1.2.1. This derivation will be correct and analogous to the single

user Gaussian channel, when the Lindeberg condition [58] is satisfied. This condition states

that the individual powers Pk
M are small compared to the their sum

∑K
k′=1

P ′k
M i.e. contribute

negligibly to the sum. Formally it is expressed as follows. Assume that the powers for each

user k are ordered such that P1 < P2 . . . < PK . Then for any k < K the ratio

Pk∑K
k′=1 Pk′

(4.22)

approaches zero. In other words, each user has a negligible impact on the system as a whole

or that the individual powers Pk are small compared to their sum
∑K
k=1 Pk. Moreover since

the powers are ordered it can be written that

Pk∑K
k′=1 Pk′

≤ PK∑K
k′=1 Pk′

. (4.23)

Therefore it is sufficient to show that the (4.22) vanishes for the case of the strongest user

ζ(a, α,N) =
PK∑K
k=1 Pk

=
P0e

aα

N
∫ α

0
P0eaxdx

=
aeaα

N(eaα − 1)
(4.24)

Now it is only enough to show that ζ(a, α,N) → 0 for any choice of parameters a, α,N .

Even for moderate values of α and a we have:

ζ(a, α,N) = O(N−1) (4.25)

Interestingly, (4.25) is independent of the number of users in the system.

4.5 Chapter Summary

This chapter demonstrated that varying the received powers can be beneficial to the per-

formance of the partitioned detector. It is of no surprise, since equal power allocations

are the worst case for the iterative interference cancellation demodulators. Unequal power

assignments can virtually remove the interference limited nature of the system. Optimal
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power distribution is derived and has an exponential nature with control parameter a. It is

shown that assigning the user pool according to this distribution results in system’s spectral

efficiency to be only constant away from the channel capacity. The most visible drawback

of the partitioned two–stage demodulator is that in order to achieve high spectral efficien-

cies and deliver interference-free estimates, large number of iterations has to be performed.

However, as shown in the previous chapter, each such iteration is not computationally ex-

pensive. But even if the received power assignment is random and typical uplink cellular

environment is considered in many situations the partitioned detector exhibits performance

advantages over the power controlled system.



CHAPTER 5

Signal Processing for Uplink LTE

Previous chapters discussed the application of interference cancellation for MIMO and

CDMA transmission systems. The key signal processing parameters like transmission for-

mat, coding scheme, interleaving, modulation etc. were freely chosen to maximize the

system’s overall spectral efficiency. In this chapter parameters like channel coding and mod-

ulation, are chosen according to the LTE standard [42, 59], which is presently the object of

intensive industrial as well as academic research worldwide.

To lay down the ground for specific receiver design solutions, a brief introduction to the

most relevant aspects related to the receiver processing for the LTE standard is subsequently

provided.

5.1 High-Level Overview

The development of the next generation cellular technology started with the introduction of

broadband transmission techniques such as WiMAX which offer very high data rates. The

UMTS technology upgrade has been dubbed LTE - Long Term Evolution. The aim is to

enable much higher throughput values to be achieved along with considerably lower packet

latency (a growing requirement for many mobile services), and enable cellular communica-

tions services to move forward to meet the needs of cellular systems technology in 2017 and

beyond.

HSPA, a combination of HSDPA and HSUPA, and HSPA+ are now being deployed, the

3G LTE development is being named 3.99G as it is not meeting formally the requirements

of the IMT-4G standard, although in reality there are many similarities with the cellular

98
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technologies being touted as 4G. However, regardless of the terminology, it is certain that

LTE will offer significant improvements in performance over the existing 3G standards.

Many operators have not yet upgraded their basic 3G networks, and LTE is seen as the next

logical step for them as they will leapfrog from basic 3G straight to LTE. Such an approach

will avoid providing several stages of upgrade. The use of LTE will also provide the data

capabilities that will be required for many years and until the full launch of the full 4G

standard, known as LTE Advanced [60].

The Third Generation Partnership Project, 3GPP, that oversaw the development of the

UMTS 3G system started a campaign on the evolution of the 3G technology with a workshop

that was held in late 2004. LTE core specifications were then included in Release 8, dated

March 2009. It set down a number of high level requirements for 3G LTE such as:

• Increased service provisioning - more services at lower cost with better user experience

• Flexibility of use of existing and new frequency bands

• Simplified architecture

• Reasonable terminal power consumption

5.1.1 Requirements

The following key LTE specifications give an overall view of the performance that the system

offers. It meets the requirements of industry for high data download speeds as well as reduced

latency - a factor important for many applications from VoIP to gaming and interactive use

of data. It also provides significant improvements in the use of the available spectrum. In

terms of actual figures, targets for LTE included download rates of 100Mbps, and upload

rates of 50Mbps for every 20MHz of spectrum. In addition to this, LTE is required to support

at least 200 active users in every 5MHz cell. (i.e. 200 active phone calls). Targets have also

been set for the latency in IP packet delivery. With the growing use of service including VoIP,

gaming and many other applications, where latency is of primary concern a requirement of

sub-10ms latency for small IP packets has been set. The detailed requirements for LTE are

summarized in Table 1. For comparison the table also illustrates the performance of HSPA.

There are many aspects regarding the full characterization of the uplink transmission in the

LTE like:

• Transmission organization and parameters

• Transmitter and receiver signal processing
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Metric LTE Requirement HSPA+ 

Peak data rate
 (Single antenna config) 

DL: 100Mbps 

UL: 50Mbps (20MHz spectrum) 

DL: 42Mbps 

UL: 11Mbps 

Mobility Up to 350kmph, optimized for low 
speeds 0-15kmph 

 

Spectrum flexibility 1.4, 3.0, 5.0, 10.0, 15.0, 20.0 MHz 5.0, 10.0 MHz 

Duplex FDD and TDD FDD only 

Multi antenna 
configurations 

DL: 4x4, 4x2, 2x2, 1x2, 1x1 (BSxMS) 

UL: 1x2, 1x1 (MSxBS) 

 

Control plane latency  <100ms  

User plane latency <5ms 50ms 

User capacity 200 users per cell (5 MHz spectrum)  

Coverage size 5-100km with slight degradation 
after 30km 

 

 

DL: 2x2, 1x1 (BSxMS)

UL: 1x2, 1x1 (MSxBS)

Figure 5.1: LTE high-level requirements.

• Uplink reference signals - the channel estimation procedures

• Physical channel structure - multiplexing of various control and data channels

• Capacity, coverage and link budget

• Random access and synchronization

• Power control

Here the attention is mainly concentrated on the first two aspects, transmission format

and eNodeB signal processing since these experienced most modifications as compared to

the previous standards and are main reason for the dramatic improvement of the end-user

experience.

5.1.2 Evolution

Although there are major advances between LTE and its 3G predecessors, LTE is never-

theless looked upon as an evolution of the UMTS/3GPP 3G standards. However, despite
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employing a different radio interface, using OFDMA/SC-FDMA instead of CDMA, there

are many similarities with the earlier forms of 3G architecture and there is a much scope

for re-use of existing architectures.

LTE can be seen as a further evolution of functionality, increased speeds and generally,

improved performance. In addition to this, LTE is an all IP based network, supporting

both IPv4 and IPv6. There is also no basic provision for voice, since this can be carried

using VoIP packets.

5.1.3 Mobility and Latency

3GPP puts a strong emphasis on LTE’s mobility aspects. Even though the system is designed

to provide its peak performance in slow environment (up to 15 km/h) it is also expected

to maintain connection and support voice and real time services for very high speeds up to

350 km/h or even 500 km/h.

5.1.4 Coverage

Apart form increasing data rates for LTE, 3GPP specifies the service area which considerably

exceeds those existing in today’s 3G standard like UMTS. The highest throughput and

mobility will be supported in cell ranges up to 5 km. The maximum range where acceptable

data rate degradation and overall quality of service reduction is allowed is 100 km.

5.1.5 Core Technology

LTE introduces a number of new technologies comparing to the previous cellular systems.

They enable LTE to be able to operate more efficiently with respect to the use of the

available bandwidth and power.

• OFDM (Orthogonal Frequency Division Multiplexing): this technology has been in-

corporated into LTE because it enables high data bandwidths to be transmitted effi-

ciently.

• MIMO (Multiple-Input Multiple-Output): One of the main problems that previous

telecommunications systems have encountered is that of multiple signals arising from

the many reflections that are encountered. By using MIMO, these additional signal

paths can be used to advantage and increase the throughput.
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• SAE (System Architecture Evolution): With the very high data rate and low latency

requirements for 3G LTE, it is necessary to evolve the system architecture to enable

the improved performance to be achieved. One change is that the number of functions

previously handled by the core network has been transferred out to the periphery.

Essentially this provides a much ”flatter” form of network architecture. In this way

latency times can be reduced and data can be routed more directly to the destination.

5.2 Physical Layer Overview

5.2.1 OFDM

OFDM modulation has been used in practical systems for many years. Most important of

them are the WiFi networks deployed worldwide. However, the use of OFDM in cellular

systems was largely opposed in the previous standards like 3G, in favor of WCDMA techno-

logy. This will change with the introduction of LTE. It is the first cellular communications

standard based on principles of OFDM, both on the uplink as well as the downlink. The ma-

jor advantage of OFDM is its robustness to the effects of ISI, which are typically dominant

in broadband communication systems. The equalization process necessary to recover the

transmitted data streams is straightforward and usually boils down to a single-tap equaliza-

tion. Mainly due to this particular property, OFDM is very attractive in conjunction with

multiple antenna arrays, which are the second main breakthrough in modern wireless com-

munications. The access schemes differ between the uplink and downlink: OFDMA is used

in the downlink while SC-FDMA in the uplink. SC-FDMA is used in view of the fact that

its peak to average power ratio is small and the more constant power enables high efficiency

of the RF power amplifier in the mobile handsets - an important factor for battery-powered

equipment.

5.2.2 MIMO

Until recently, communications consisted of a single transmit and a single receive antenna

and with advances in communications theory as well as VLSI the theoretical limits of such

single antenna configurations were approached very closely. That means that without in-

creasing the bandwidth or/and transmit power, higher data rates could not be achieved.

In order to further increase data rates a fresh look at the channel itself was necessary. It

was delivered with the invention of MIMO technology, which alters the channel between a

transmitter-receiver pair. When using MIMO, it is necessary to use multiple antennas to

enable different propagation paths to be distinguished. It was shown theoretically as well
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as practically that the use of multiple antennas both at the transmitter and at the receiver

can significantly increase the data rates without increasing the bandwidth and the overall

system transmit power. This increase scales linearly with the number of antennas employed.

Shortly after laying down the theoretical foundations for MIMO channel analysis, practical

experimental solutions were presented. Although those were in laboratory conditions, the

large data rate increases predicted by the theoretical investigations were observed. In LTE

2-by-2, 4-by-2, or 4-by-4 antenna arrays will be used, at least in the first phase of deploy-

ment of the standard. While it is relatively easy to add further antennas to a base station,

the same is not true for mobile handsets, where the dimensions of the user equipment limit

the number of antennas, which should be placed at least a half wavelength apart in order

to reduce the correlation between signals.

5.2.3 Dynamic Spectrum Allocation and Duplexing

Bandwidth can be allocated dynamically on both the downlink and the uplink depending on

the service requirements. Six configurations are defined ranging from 1.4MHz up to 20MHz

in both FDD and TDD mode. TDD has a strong advantage in the case where an asymmetry

between the uplink and downlink data speeds exists.

5.2.4 Modulation Formats

LTE employs three quadrature modulation formats: QPSK, 16QAM and 64QAM. The

choice of a particular scheme depends on prevailing conditions expressed in terms of SNR

and the CQI. Only when there is a sufficient SNR, a higher order modulation formats is

used, as discussed later.

5.2.5 Downlink

As mentioned above, the data rates anticipated on the downlink can reach 100Mbps in the

first release of the standard. The use of MIMO configurations will further increase those

numbers to roughly 300Mbps. To achieve such peak data rates clever and efficient designs of

radio interfaces are necessary. On the downlink, OFDMA is employed, which is a multi-user

version of OFDM, where certain users can use only a subset of the available subcarriers, the

remaining subcarriers being used by other users.
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5.2.6 Uplink

The uplink radio interface is based on SC-FDMA, sometimes called DFT-spread OFDM

(DFT-S-OFDM). It is a modification of OFDM that aims at better power efficiency. It

combines a low PAPR of a single carrier system with the multipath interference resistance

and subcarrier frequency allocation of the OFDM systems. Another important advantage of

SC-FDMA over DS-CDMA used in HSPA is that it achieves intra-cell orthogonality between

users even on highly dispersive channels.

In SC-FDMA, multiple access is facilitated by inserting silent Fourier-coefficients (zero

padding) on the transmitter side before the iDFT (inner, OFDM specific DFT), and remov-

ing them on the receiver side before the iDFT (outer SC-FDMA specific DFT). Different

users are assigned to different Fourier-coefficients (sub-carriers). The difference between the

size of both DFTs (M ≤ N) indicates the maximum number of orthogonal users that can

be served within a single radio link and allows for very flexible bandwidth usage depending

on the instantaneous demands of the particular user. The size of the outer DFT used in

SC-FDMA is restricted such that it can be constructed from multiplies of 2,3 and 5, i.e.

M = 2j3k5l (5.1)

where j, k, l are integers, enabling efficient, relatively low-complexity mixed-radix FFT im-

plementations.

5.2.7 Modulation/Coding Schemes and Channel Reporting

In LTE, the base station can report the channel quality information to assist the mobile in

choosing an appropriate MCS for transmission via the use of CQI control messages. The

criterion is block error rate BLER ≤ 10−1. Table 5.1 presents the available choices as a

function of the CQI index [61].

The adjustment to a specific MCS scheme, or equivalently CQI index, is performed via

the rate matching operation, which relies on puncturing or repeating bits coming from the

channel encoder [42].

5.2.8 Transmission Format

Although LTE supports both TDD as well as FDD, here stress will be put on symmetric

alignment used in FDD, since this mode is more intuitive and therefore easier to follow. For

more detailed information on TDD mode please refer to [61, 62]. Since SC-FDMA is based



CHAPTER 5. SIGNAL PROCESSING FOR UPLINK LTE 105

Table 5.1: Available modulation and coding schemes in LTE.

CQI index Modulation Approx. code rate Info bits per symbol
0 No transmission - -
1 QPSK 0.076 0.1523
2 QPSK 0.12 0.2344
3 QPSK 0.19 0.3770
4 QPSK 0.30 0.6016
5 QPSK 0.44 0.8770
6 QPSK 0.59 1.1758
7 16QAM 0.37 1.4766
8 16QAM 0.48 1.9141
9 16QAM 0.60 2.4063
10 64QAM 0.45 2.7305
11 64QAM 0.55 3.3223
12 64QAM 0.65 3.9023
13 64QAM 0.75 4.5234
14 64QAM 0.85 5.1152
15 64QAM 0.93 5.5547

on the same fundamental processing as OFDM the details presented below are the same for

the uplink as well as the downlink transmission.

FDD Frame Structure

The transmission format hierarchy of LTE is depicted in Figure 5.2. In LTE a maximum

of 1200 modulation symbols per OFDM time slot are allowed, assuming that the FFT size

is maximum, i.e. N = 2048. The duration of a subframe (1ms) specifies the TTI. As seen

in the Figure 5.2, an SC-FDMA symbol has a duration of 67µs1, which is the inverse of

the carrier spacing (15 kHz). Therefore there are a maximum of 16800 useful modulation

symbols within one subframe of duration 1ms. These numbers can be extended to every

possible configuration adopted in LTE and are presented in Table 5.2.

Table 5.2: LTE bandwidth/resource configuration

Channel bandwidth [MHz] 1.4 3 5 10 15 20
No. of resource blocks 6 15 25 50 75 100

No. of occupied subcarriers 72 180 300 600 900 1200
FFT size 128 256 512 1024 1536 2048

Sample rate [MHz] 1.92 3.84 7.68 15.36 23.04 30.72
Samples per slot 960 1920 3840 7680 11520 15360

1Assuming short (normal) cyclic prefix of duration 4.7µs.
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LTE frame (10ms)

subframe (1ms)

0 1 2 3 4 5 6

SC-FDMA symbol (66.7 µs)CP (4.7µs)

Modulation
symbol

slot (0.5ms) slot (0.5ms)

Figure 5.2: LTE uplink frame structure for short cyclic prefix length.

Mapping to Resource Blocks

LTE transmission is organized into resource blocks. One RB consists of NRB
sc = 12 consec-

utive subcarriers, spaced 15 kHz apart and 6 or 7, depending on the length of cyclic prefix,

OFDM symbols Nsymb. The total number of available subcarriers depends on the overall

transmission bandwidth of the system, which varies from 1.4 up to 20MHz. Depending

on this bandwidth a different number, NRB, of 180kHz resource blocks can be used (6 up

to 100). The smallest unit defined in LTE is the resource element, which consists of one

subcarrier of duration of one OFDM symbol, i.e. 71.4µs. This implies that each RE can be

viewed as the equivalent of a modulation symbol in single-carrier transmission. Resource

configurations are presented in Table 5.2. Using this information, Table 5.1, and Figure 5.3,

we can calculate the maximum data rate for a single-layer LTE configuration as

R = NRB,maxN
RB
sc NsymbCQI(15)

number of 0.5ms slots

second
(5.2)

= 100 · 12 · 7 · 5.5547 · 2000 = 93.3Mbit/s
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OFDM/SC-FDMA symbol (time)

RB
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12

RB
scN

=

symbN

Resource block=

Resource element

RB
symb scN N= × resource elements

Figure 5.3: Resource block allocation in LTE.

With a dual layer configuration, like MIMO 2-by-2, that rate doubles to 186.6Mbit/s.

Example of Resource Block Allocation for 5MHz System Bandwidth

UsuallyN is larger than the maximum number of occupied subcarriers, providing for efficient

oversampling and ”sinc” pulse-shaping, i.e. not all available bandwidth is occupied by

resource blocks as depicted in Figure 5.4. In this 5MHz bandwidth configuration an FFT

of size 512 (300 occupied subcarriers) is used as presented in Table 5.2.



CHAPTER 5. SIGNAL PROCESSING FOR UPLINK LTE 108

F
re

qu
en

cy

Time

300

RB
RB scN N×

=12

RB
scN

=
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512
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(4.5 MHz)(180 kHz)

Resource
block

Zeros

Zeros

1 slot

DL or UL
symbol

Figure 5.4: Example of resource block allocation for 5MHz bandwidth.

Resource Block Alignment

Figure 5.5 presents the relationship between resource blocks, OFDM symbols and subcarriers

in time.

5.3 LTE Channel Model

Since the generation of SC-FDMA signals is almost identical to that performed in the case

of OFDM, the attention is first concentrated on how the OFDM, with CP, transforms the

multipath channel into a set of orthogonal flat channels. Applying subsequently outer DFT,

the proper SC-FDMA stream is obtained.
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Figure 5.5: Allocation of resource blocks in time.

5.3.1 OFDM with Cyclic Prefix Channel

As already established, OFDM effectively mitigates multipath interference via the use of a

particularly simple single-tap equalization in the frequency domain. Below the derivation

of this idea is explained.

Assuming that the channel impulse response of length L is

h = [h0, h1, . . . , hL−1] (5.3)

and data of length N that has to be transmitted is

d = [d0, d1, . . . , dN−1]
T
. (5.4)

First, inverse DFT of size N on data vector is performed resulting in

x = FHd = [x0, x1, . . . , xN−1]
T
. (5.5)

where F is the N size DFT matrix1 with entries Fm,n = e−j2πmn/N . Then cyclic prefix of

1It is a unitary matrix, i.e. F-1 = FH.
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minimum length is added1

x̃ = [xN−(L−1), xN−(L−2), . . . , xN−2, xN−1, x0, x1, . . . , xN−1]
T
. (5.6)

Signal x̃ is transmitted over a multipath channel which acts as a linear filter, i.e. linear

convolution is performed. Therefore the output of the channel is

ym =

L−1∑
l=0

hlxm−l + nm (5.7)

which in matrix form can be expressed as

y−(L−1)

y−(L−2)

...

y0

y1

...

yN−2

yN−1


=


h0 0 . . . . . . . . . . . . 0

h1 h0 . . . . . . . . . . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . hL−1 . . . h1 h0





xN−(L−1)

...

xN−1

x0

x1

...

xN−1


+



n−(L−1)

n−(L−2)

...

n0

n1

...

nN−2

nN−1


.

(5.8)

After removing the cyclic prefix from (5.8), which is equivalent to removing first µ = L− 1

rows of the channel matrix, we obtain



y0

y1

...

yN−2

yN−1


=


hL−1 . . . h1 h0 0 . . . 0

0 hL−1 . . . h1 h0 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . hL−1 . . . h1 h0





xN−(L−1)

...

xN−1

x0

x1

...

xN−1


+



n0

n1

...

nN−2

nN−1


.

(5.9)

1The minimum length µ of cyclic prefix is L − 1 for channels of length L. In practice however longer
CP is used to always assure that µ > L− 1. Increasing the length of CP results in increasing the rate loss
of OFDM systems as compared to single carrier systems.
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However, equation (5.9) is equivalent to

y0

y1

...

yN−2

yN−1


=


h0 0 . . . hL−1 . . . h1

h1 h0 0 . . . hL−1 . . .
...

...
. . .

. . .
. . .

...

0 . . . hL−1 . . . h1 h0




x0

x1

...

xN−1

+



n0

n1

...

nN−2

nN−1


(5.10)

where the channel matrix H̃ is a circulant matrix. Writing (5.10) in a matrix form we obtain

y = H̃x + n = H̃F+. n. (5.11)

This signal is subsequently used as input to the DFT block

Fy = FH̃FHd + Fn. (5.12)

Using the fact that the Fourier matrix diagonalizes any circulant matrix [63], we can write

(5.12) as

Y = Hd + Fn (5.13)

and matrix H is diagonal with the DFT of the first column of H̃ on its diagonal. Y is a

vector and it is the Fourier transform of time vector y. Gaussian noise n is transformed

from time to the frequency domain, but this transformation1 does not change its statistical

properties. In this way multipath channel was transformed into a flat channel due to the

use of DFT/IDFT and the application of the cyclic prefix.

OFDM with Multiple Antennas

Previously, the OFDM channel for SISO antenna configuration was derived. Here the guide-

lines on how to treat multipath MIMO channel by the means of OFDM with CP are given.

Recalling the OFDM channel for single antenna systems, i.e. equation (5.12) the MIMO

channel with Nt transmit and Nr receive antennas can be expressed as
Y1

Y2

...

YNr

 =


H1,1 H1,2 . . . H1,Nt

H2,1 H2,2 . . . H2,Nt

...
...

...
...

HNr,1 HNr,2 . . . HNr,Nt




d1

d2

...

dNt

+


N1

N2

...

NNr

 (5.14)

1DFT is orthonormal transformation and Gaussian signals are invariant to the use of DFT/IDFT.
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where each entry Hnr,nt is diagonal matrix of frequency gains between receive antenna nr

and transmit antenna nt and is exactly like matrix H in equation (5.13). It can be seen that

OFDM is particularly simple and suitable for the case of multiple antennas. Such a baseband

channel model as in (5.14) applies to the downlink LTE transmission where OFDMA is

used. However, for the case of uplink, where SC-FDMA is employed the situation is slightly

different.

5.3.2 SC-FDMA Signal Generation

In order to generate SC-FDMA signals, the modulation symbols are spread using a size M

DFT. Then zeros are inserted so the DFT outputs match the size of N subcarrier OFDM

modulator. The positions of the zeros determine to which subcarriers the DFT-precoded

data are mapped. Usually N is larger than the number of subcarriers used, M , thus allowing

for efficient oversampling and pulse shaping [61]. For single antenna channels the SC-FDMA

can be described similarly like it was in the case of OFDM in (5.12). Received signal after

N size IDFT is

Y = HZFMd + FNn. (5.15)

Matrix FM is a Fourier matrix of size M while Z is the N ×M zero padding matrix adding

silent Fourier coefficients to the output of size M DFT. So M +Z = N . Two zero insertion

mechanism presented in Figure 5.6 are foreseen for SC-FDMA in LTE:

• Localized mapping. In this scheme M adjacent subcarriers are used and zeros are

inserted in one or two consecutive blocks.

• Distributed mapping. Here the subcarrier mapping allocates M equally spaced sub-

carriers, (every K-th subcarrier) and K − 1 zeros are inserted between the M DFT

outputs. Also additional zeros are appended to either size of DFT output before the

N -IDFT, because MK < N .

This subcarrier matching can be used to make users orthogonal by assigning each of them

a different subset of all available subcarriers. In practice localized mapping is preferred,

simplifying the transmission scheme where the same RB structure, as in downlink, can be

utilized. Distributed allocation is only used for SRS enabling eNodeB to perform uplink

frequency-selective scheduling [61].
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Figure 5.6: Subcarrier mapping in SC-FDMA as in [61], K = 3.

5.4 Signal Processing for UL-LTE

In this section the transmit signal processing chain and various receiver processing schemes

are outlined. We start with the SC-FDMA signal generation for LTE. Then the channel

model is briefly outlined. Subsequently, two receiver schemes are discussed and compared.

First is the baseline MMSE frequency-domain filtering followed by decoding of the channel

code. Second is group SIC/PIC MMSE turbo cancellation. It is shown by using the semi-

analytical method based on variance transfer charts and numerical simulations, that the

latter outperforms the baseline processor when the users’ signals arrive at the base station

with different power levels. In other words, in this development we concentrate on improving

uplink transmission quality for users located on the cell edges. Such a situation is presented

in Figure 5.7. Two users are accessing the base station. Their signals arriving at the BS are

of different strength due to their different geographical and electrical locations. The problem

that arises here, namely that weak user cannot be decoded due to the presence of strong

closely-located user arises in modern cellular systems and is very vital in high performances

systems, like LTE. The nature of this problem is very similar to near-far problem present

in networks based on CDMA.

5.4.1 Transmitter

The frequency domain generation of the SC-FDMA signal is shown in Figure 5.8. Note

that the figure depicts a single-stream two-transmit antenna scenario. Naturally multiple

independent stream transmission (multi codeword) is also possible, however current LTE
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Figure 5.7: Cell-edge problem. Two-user case.

releases implement transmission of up to two codewords only. Zero padding is also called

subcarrier mapping and it ascertains that the size of the block after the M -point DFT is in

alignment with the inner iFFT of size N as discussed before.
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Figure 5.8: SC-FDMA dual-stream MIMO transmitter.

5.4.2 Channel Model

LTE uplink communication utilizes SC-FDMA, where a block of M time-domain symbols

is transformed via an M -point DFT into the frequency domain and transmitted as M out

of N OFDM tones [64]. The resulting channel can be modeled as follows

Y = HAX + N = HAFx + N, (5.16)



CHAPTER 5. SIGNAL PROCESSING FOR UPLINK LTE 115

where H is a matrix composed of diagonal matrices in a form solely dependent on the MIMO

configuration. For instance for a 2× 2 MIMO case

H =

[
H1,1 H1,2

H2,1 H2,2

]
, (5.17)

where each matrix Hr,t is a diagonal matrix of size M frequency gains between the r-th

receive and t-th transmit antenna. The matrix A is a diagonal matrix of stream (user)

amplitudes

A =

[
A1 0

0 A2

]
, (5.18)

implying that W = AAH is the power matrix. F is composed ofNt size-M Fourier transform

matrices

F =

[
FM 0

0 FM

]
. (5.19)

x is the vector of transmitted QAM modulation symbols

x =

[
x1

x2

]
, (5.20)

and the noise N is complex Gaussian with variance σ2
n.

Below, we concentrate on a specific cellular situation where two MIMO users with different

powers are communicating to the base station. They use the same resources at the same

time. The strong user is close to the base station and the weak one is further off, possibly

at the cell edge. Usually, in such situations the weak user experiences very low QoS and in

many cases it cannot transmit. The proposed approach aims at separating both users, so

both of them can operate simultaneously.

5.4.3 Receiver

The need for sophisticated receiver algorithms is dictated by the characteristics of the SC-

FDMA modulation itself. Since the signals are transmitted in the time domain, unlike

with downlink transmission where OFDMA is used, they experience ISI. Furthermore, for

the case when spatial multiplexing is employed, multi-antenna interference starts to play

a dominant role. Therefore, the receiver has to remove both types of interference in the

presence of additive noise.



CHAPTER 5. SIGNAL PROCESSING FOR UPLINK LTE 116

5.4.4 Baseline Linear MMSE MIMO Equalization

Baseline uplink signal processing is fundamentally the same as on the downlink and is based

on OFDM modulation. A key advantage of adopting OFDM for LTE is that it transforms

the channel from a finite-state time-domain channel into a frequency-domain multiplicative

channel, greatly simplifying basic signal processing functions. The generic MMSE equalizer

for the channel model (5.16) is given by

X̃MMSE = AHHHM−1Y = (5.21)

= AHHH
(
HWHH + σ2I

)−1
Y.

which using the matrix inversion lemma [4] can be transformed into

X̃MMSE = A−1M−1HHY (5.22)

= A−1
(
HHH + σ2W−1

)−1
HHY.

Inversion of the matrix M is simple, since as shown previously it consists of Nt blocks

of diagonal matrices and can be accomplished by M separate inversions of Nt × Nt size

matrices. Subsequently, to obtain modulation symbol estimates in case of SC-FDMA, the

resulting signal in (5.21) or (5.22) is passed to the inverse DFT block

x̃MMSE = FHX̃MMSE. (5.23)

Finally, these signals are passed to soft QAM demodulators followed by the individual error

control decoders. In case of LTE these would be turbo codes.

5.4.5 Group Turbo MMSE MIMO Equalization

The key idea of the modification of the baseline receiver relies on the use of the following

splitting of the received signal depending on the received powers [65]. Rewriting (5.16) in

the presence of two users as

Y = H1FA1x1 + H2FA2x2 + N (5.24)

it can be seen that signals belonging to each user (group of Nt streams) are separated and

we applied the trivial equality AF = FA, which is true for diagonal matrix A. Hi is the

i-th column of the MIMO matrix1, see for example (5.17). The proposed group iterative

equalizer is shown in Figure 5.9. The receiver operates as follows. First the received signal

1In the case of multiple antenna users with Nt antennas, it is a group of Nt columns.
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Y is passed to an MMSE filter tuned to the strong user. The resulting signal is1

x̃1 = M1Y (5.25)

where

M1 = A1
HFHH1

H
(
H1W1H1

H + H2W2H2
H + σ2I

)−1

(5.26)

is the scaled2 covariance matrix of Y which is the input signal to the filter at the initial

iteration and a trivial relationship FFH = FHF = I was applied. It can now clearly be seen

that the proposed receiver performs inversion in the frequency domain.

The estimate x̃1 is then passed to the soft-demodulator and subsequently to the turbo code

decoder, which produces estimates of all (systematic and parity) bits x̂1. These estimates

can be erroneous and the influence of these errors can be captured using the soft-symbol

variance parameter

σ2
s,1 = E [x1 − x̂1]

2
(5.27)

which is related to the power of the residual interference that the weak user will experience

from imperfect cancellation of the strong user. The estimates x̂1 are QAM remodulated to

obtain Y1 and cancelled from the composite signal Y to produce the interference-reduced

signal for the weak group detector/decoder

Y2 = Y −Y1 (5.28)

1Without loss of generality, it is assumed that the first user is the stronger one.
2by A1

HF1
HH1

H.
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which can be further developed into

Y2 = H1FA1(x1 − x̂1) + H2FA2x2 + N (5.29)

where interstream interference1 and intersymbol interference is present. The covariance

matrix of (5.29), used in the subsequent MMSE filtering, is

E
[
Y2Y

H
2

]
= H1W1σ

2
s,1H1

H + H2W2H2
H + σ2I. (5.30)

Similarly, the process of MMSE filtering is repeated for the weak user to obtain

x̃2 = M2Y2 (5.31)

where

M2 = A2
HFHH2

H
(
H1W1σ

2
s,1H1

H + H2W2H2
H + σ2I

)−1

. (5.32)

The cancellation and demodulation/decoding is performed and this completes a first global

turbo iteration. The number of such global iterations can be arbitrary, however avoiding

high complexity it should be limited to a moderate number of 2 − 3 in order to facilitate

practical implementation.

Before the analysis and simulation results are presented bit error rates of different mod-

ulation schemes using the 3GPP turbo code used subsequently in the LTE-MIMO setups

are given. These results, depicted in Figure 5.10 act as a benchmark in evaluating the per-

formance of the baseline as well as the proposed detector. It can be clearly seen that for

chosen block lengths 700, 1400 and 2100, the decoder achieves nearly error free performance

(Pb = 10−5) for Eb/N0 = 2, 4.75, 9.25 dB for QPSK, 16QAM, and 64QAM modulations,

respectively.

Soft Modulation/Demodulation

In all the simulations we assume that the soft symbols x̂ are generated by first generating

LLR values for each component bit of the constellation, then (after decoding) rebuilding the

soft symbols using the decoded soft bits b̃i. We assume that all quadrature constellations

are bit-mapped in the binary superposition form, where in each dimension, a PAM symbol

is created as

x =

B−1∑
i=0

bi2
i (5.33)

and B is the order of the PAM constellation.

1In case of single transmit antenna, Nt = 1, no interstream interference occurs.
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Figure 5.10: Bit-error-rates for turbo coded [13,15] data modulated using LTE
standard modulations (QPSK, 16QAM and 64QAM) on AWGN channel. Code
length is 700, 1400 and 2100 information bits, respectively.

5.4.6 Analysis

It is desirable to analytically predict the behavior of the proposed iterative structure. Here

once again the attention is focused on the variance transfer charts that can predict the

turbo-cliff occurrence of any iterative systems as described extensively in Chapter 2. With

this tool the error free performance of the detector can be predicted as a function of the SNR.

The only important knowledge required to sketch those graphs is the SNR transfer of each

of the blocks involved in the processing chain. To comply with the LTE standards [42, 59],

the choice of channel coding and modulation is fixed, therefore we do not consider other

alternatives. For the case considered, two transfer functions have to be evaluated. One for

the MMSE detector and one for the demodulation/decoding block as shown in Figure 5.11.

The MMSE filter for user k accepts as its input the cancelled signal with residual interference

power of group k′ σ2
s,k′ and outputs signal plus disturbance of power1 σ2

norm,k which is

subsequently passed to the demodulator/decoder and re-modulator to produce soft-symbol

1VT analysis assumes that interference is modeled as Gaussian noise CN (0, σ2
norm,k).
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Figure 5.11: SNR transfer procedure.

values that will be used in subsequent MMSE filtering of group k′. The variance σ2
k can be

calculated using equations (5.31) and (5.32). Usually the signal power is alternated through

the MMSE filtering and in general Pk 6= 1. Therefore the normalization w.r.t to unit signal

power is necessary and new normalized noise plus interference power is obtained as

σ2
norm,k =

σ2
k

Pk
. (5.34)

Having the VT plots one can precisely predict the number of turbo equalization iterations

needed for the system to achieve error-free performance for both types of traffic. This is

particulary interesting for mixed traffic, where one user affects others depending on param-

eters like modulation format, coding applied. Although the analysis given below is carried

only for a two user case, it is straightforward to extend to other cases. The system converges

when two VT curves of the code and detector do not cross for all users.

Subsequently, the attention is focused on two different antenna configuration systems:

• Two single antenna users communicating to BS equipped with 2 receive antennas,

• Two double antenna users communicating to BS equipped with 4 receive antennas.

The following parameters are common for both cases analyzed. A 6-path channel model

with impulse response is assumed

E[|h|2] = [0.6429 0.2553 0.0671 0.0222 0.0084 0.0042]. (5.35)

These values are averages over a number of runs and were obtained from an SCM channel

simulator [66] for the urban macro scenario. Each of the channel impulse response taps

has distribution hi ∼ CN (0, |hi|2), which implies Rayleigh fading. It is also assumed that
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the entire block of M modulation symbols experiences the same fading. Since M is usu-

ally smaller than the number of symbols in a data frame therefore the whole turbo frame

experiences a number of fading channels, which are assumed to be independent. At the

receiver, complex Gaussian noise CN (0, σ2) is added to every receive antenna. The average

signal-to-noise ratio per bit for both systems with the assumption that both terminals have

the same number of antennas is obtained as

Eb/N0 =
1

2

(
Es,1

Rt,1Rm,1σ2
+

Es,2
Rt,2Rm,2σ2

)
(5.36)

and used therein. Rt,k and, Rm,k are the turbo code rate (here Rt,i = 1/3) and the

modulation rate for user k. In the simulations, localized subcarrier mapping was used

[67]. Both figures below present system behavior with the parameters listed in Table 5.3.

2 by 2 MIMO System

Figure 5.12 presents the detection/decoding process for an 2×2 MIMO system with 10 dB

power difference between single antenna users for different SNR levels. The convergence

trajectories are outlined. Dashed lines represent variance transfer of the QAM demodulator

and turbo decoder, while solid curves describe the behavior of the group MMSE detector.

To visualize the correctness of semi-analysis based on VT charts subsequently we draw the

attention on a number of SNR levels that are close to the convergence point. First, let us

concentrate on subfigure a) for average Eb/N0 of 6.5 dB. The detection/decoding process

starts with σ2
s = 1. First piece of the trajectory, horizontal line, denoted by (1), represents

MMSE filtering of the strong group (equation (5.25)). Second, the vertical line (2), describes

the decoding of the signal from the strong group MMSE filter. Third line (3) denotes the

MMSE filtering of the weak group and (4) shows the decoding characteristics of the weak

user. This completes the first turbo iteration, therefore one such iteration is described by

four lines (1-4). Process continues (lines 5-7) and gets stuck. Line (8), which points in

backward direction, is responsible for the lack of convergence at this SNR level. It indicates

that the performance do ”back-off” from the error-free situation. Precisely, due to this

behavior, it can be observed that after a number of turbo iterations the red trajectory curve

does get stuck in an infinite loop, denoted by the red dashed line, and the system will never

achieve σ2
s = 0 for both users. After increasing the SNR to 7 dB we obtain system behavior

presented in subfigure b). In this case both users are closer to error-free performance and

as seen in subfigure c) for 7.5 dB detection/decoding trajectory arrives at σ2
s = 0 for both

users implying that almost error-free behavior is observed.

It is however difficult to exactly point out the moment when the system achieves almost

error-free performance using the variance transfer analysis. The main reason is that we do



CHAPTER 5. SIGNAL PROCESSING FOR UPLINK LTE 122

not expect for our system to exhibit perfect cliff behavior due the application of finite length

codes. Therefore, for our particular scenario we can expect vanishing error-rates for SNR

values between 7-7.5 dB or even 8 dB1 as presented later in the simulations section.

1As in the case of EXIT charts, VT charts do not provide any information about the actual error rates
past the threshold. They just assume that these rates are small.
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4 by 4 MIMO System

Figure 5.13 presents the detection/decoding process for an 4×4 MIMO system with 10 dB

power difference between two users each equipped with two transmit antennas. Results

are very similar to those for 2×2 setup. The only difference is that error-free behavior

occurs for slightly larger value of SNR. Figure 5.13 c) indicates that system should give

vanishing error rates when average Eb/N0 is 8 dB. In this case everyone converges, since the

detection/decoding trajectory arrives at σ2
s = 0.

The extension to larger number of power groups is conceptually straightforward, however

a graphical representation of such a situation would require use of multidimensional1 VT

charts making them hard to read and eventually not very clear and useful. Nevertheless,

the outlined method is well suited for situations when number of power groups equals two.

1Number of dimensions would equal to number of power groups in our case.
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5.4.7 Numerical Results

To prove the validity of the above proposed semi-analytical approach numerical experiments

were performed. All the important simulation parameters are given in Table 5.3.

Table 5.3: MIMO-SC-FDMA LTE simulation parameters

Parameter Value

# of users K 2
User power separation 10dB
# of transmit antennas per user Nt 1 or 2
# of receive antennas at the base station Nr 2 or 4
Turbo frame length for weak user L 700
Turbo frame length for strong user L 2100
Modulation of the weak user QPSK
Modulation of the strong user 64QAM
Turbo encoder [13, 15]
Internal turbo decoding iterations 5
Turbo equalization iterations up to 5
DFT size M 36
Bit errors counted per user per stream 100

2 by 2 MIMO System

Simulation results for 2× 2 MIMO system are presented in Figure 5.14. It can be observed

that the proposed receiver provides a coding gain of about 2 dB over the baseline receiver

for bit error rate of Pb = 10−5 and this advantage is achieved after 3 turbo iterations.

Performing more iterations does not provide significant improvement, it just adds to the

receiver complexity. We can see that error-free performance is achieved for about SNR of

8 dB. The turbo cliff starts to occur at about 7-7.5 dB as predicted by the variance transfer

charts in Figure 5.12.

Additionally, the distance to interference-free performance can be indicated which actually

tells us how the proposed system combats the effects of multiuser interference. By comparing

the BER curves in Figure 5.14 with those in Figure 5.10 it is seen that the weak user is still

about 2.5 dB away from its AWGN performance. On the other hand this distance for the

strong user is less than 0.5 dB. It practically means that by applying the proposed decoding

process the strong user experiences an almost interference-free channel.
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Figure 5.14: Bit error rates for 2 user 1 × 2 system with 10 dB power difference
between users.

4 by 4 MIMO System

Similarly to the case of 2 × 2 system, for 4 × 4 system, it can be seen that the proposed

receiver outperforms the baseline processor and this improvement is even larger. From

the results presented in Figure 5.15 we notice that 3 global turbo iterations are necessary

for the system to achieve almost error-free performance, which agrees with the predictions

obtained via the variance transfer analysis in Figure 5.13. The maximum gain is ca 2.5 dB

(at Pb = 10−5) after three global turbo iterations and no visible gains were observed by

performing more iterations. The performance of the strong user in the initial iteration is

the same as for the baseline algorithm, since no cancellation benefits (and therefore SNR

advantage) are exploited. However, the weak user experiences about 1.5 dB gain in the

first iteration. The channel code thresholds for the chosen codeword lengths are 2 dB and
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9.25 dB for QPSK and 64QAM modulation, respectively. This means that at least for the

strong user almost interference-free performance is achieved. The weak user, on the other

hand, is ca 2.5 dB away from its AWGN performance, similar to the 2 × 2 case. In this

particular scenario, this statement implies that the weak user could be transmitting with a

slightly higher rate. This may be achieved by flexible control of the code rate via puncturing

and repetition, which is performed by the rate matching operation [42].
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Figure 5.15: Bit error rates for 2 user 2 × 4 system with 10 dB power difference
between users.
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5.5 Chapter Summary

In this chapter the most advanced wireless communications system up to date, LTE, was

presented. The radio interface as well as main characteristics and requirements for the

system were briefly indicated. After a general introduction, receiver signal processing for the

uplink LTE was described in detail together with its mathematical treatment. Two receivers

were compared. First, the traditional two-stage receiver adopted in first release of LTE

(LTE release 8) consisting of MMSE frequency domain filtering followed by the decoding

of the channel code. This receiver is treated as a baseline. Using mathematical notation

and applying interference cancellation methods an improved version of such a receiver is

proposed. The comparisons between both systems were made on a specific scenario often

present in the uplink transmission and named a cell-edge problem. In this situation different

power and rate users access a common receiver. An intuitive method of predicting the

convergence behavior of the proposed turbo equalization processor based on variance transfer

charts is presented. The method predicts behavior of the turbo receiver accurately, as

evidenced using series of computer simulations. It can be seen that an advantage of almost

2.5 dB over the baseline receiver can be experienced at a cost of reasonable complexity

increase.



CHAPTER 6

Conclusions and Future Work

This thesis concentrates on methods of detecting signals in the presence of strong interfer-

ence. Such a situation arises commonly in multi-user communications as well as in MIMO

setups. This thesis explores methods of designing and analyzing such systems. The most

dominant is the one based on variance transfer graphs. This method is based on an implicit

assumption that interference is Gaussian distributed. This is certainly the case when the

number of interferes is large. But as shown in Chapter 5, even for small populations VT

graphs satisfactorily predict the cliff behavior of the interference cancellation receivers.

6.1 Summary of Contributions

This thesis contains a number of contributions to the field of receiver design for multi-user

communications and they are summarized below.

6.1.1 Optimal Coding for IC Systems

The focus is put on answering the crucial question of what kind of channel coding is the

best for interference cancellation systems. Basing on analytical results presented in [6] a

number of coding schemes applied to multi-user communication systems are examined. To

these belong: repetition, convolutional, Hamming, turbo and LDPC. It is shown, using

variance transfer charts as well as simulation experiments, that in the high interference

regime, simple coding schemes particularly repetition codes outperform the state-of-the-art

capacity achieving codes like turbo and LDPC.

130
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6.1.2 Partitioned CDMA

Using the fact that repetition coding is asymptotically optimal in the high interference

regime partitioned modulation for CDMA is proposed. A precise SINR evolution is given.

It is shown that this analysis is very accurate and results are virtually identical to those

obtained by computer simulations. Using the outlined SINR evolution it is inferred that

for certain conditions the partitioned detector of polynomial complexity outputs estimates

identical to those delivered by optimal (APP) receiver of exponential complexity. Another

very important observation is made. Namely, that the performance of the proposed iterative

receiver is at least as good as those of widely celebrated linear MMSE filter and in many

cases better.

Additionally, a concatenation of the proposed partitioned front-end with powerful error

control codes (in our case regular LDPC codes) is investigated. The conclusion is that very

complex per-user MMSE system with error control code input surpasses the partitioned

processor only if rate of the applied code is low. For high rate codes (R > 1/2) the proposed

structure performs significantly better resulting in considerably higher spectral efficiencies.

6.1.3 Unequal Power Allocations

It is shown that adding another degree of freedom to the partitioned CDMA system in the

form of varying received signal powers results in even better performance of the partitioned

iterative detector. SINR evolution equation is modified to account for power differences

and using a continuous analysis it is demonstrated that arbitrary system loads can be

accommodated. It is possible as long as received powers are allocated according to par-

ticular (derived) exponential distribution. Subsequently, it is shown that a capacity of a

linear multiuser channel is achieved within 1 bit per dimension as long as power exponent

is a0 = 2 log 2. Again these theoretical findings are proven using computer simulations.

Subsequently, it is demonstrated that random received powers, mimicking non-power con-

trolled CDMA system, outperforms the one with equal power distribution (power controlled

scenario) for a number of practical scenarios.

6.1.4 Signal Processing for Uplink LTE

In order to improve the baseline system performance in a particular very often practically

occurring situation, named the cell-edge problem, group-based turbo equalization scheme

based on frequency domain MMSE filtering is proposed. This structure delivers almost 2 dB

(2 × 2 MIMO) and 3 dB (4 × 4 MIMO) advantage over baseline processor at the expense
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of a minor complexity increase. The advantage of the group-turbo equalizer increases by

expanding the system size.

6.2 Future Work

Naturally, each of the points presented before can be extended. For chapter 2 all the codes

analyzed are quite far from the optimal performance. Therefore, more code families can

be examined like Hadamard, fountain (with its special cases LT [68] and raptor codes [69])

or repeat accumulate codes [70] to name a few. Also the modifications of codes already

examined via the operations of puncturing and repetition can be a promising addition. This

would fit into the design of cancellation systems for 3GPP standard, particularly LTE, where

mandatory rate matching operation is mainly based on puncturing or repetition of the code

bits.

For chapter 5, more analytical results are needed. Two main subjects of future research

can be identified. First is the expression for the receiver output SNR for a given predefined

power difference between users. The value of this output SNR can be directly translated

into CQI index. On this basis, throughput advantage of the proposed receiver vs. baseline

receiver can be quantified. Second is the analytical evaluation of the VT curve for the

MMSE filter, so sketching VT graphs is easy and fast.

Also the reduction of the complexity during the MMSE matrix inversion in the LTE system

should be addressed. It should be performed via the use of iterative filters [20] briefly intro-

duced in Chapter 1, since these methods are very attractive alternative to direct methods.

This extension seems to be particularly beneficial for large antenna arrays at the base station

preferably larger than 8. Such sizes will be inevitably seen in future releases of LTE/LTE-A

standard.
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APPENDIX A

Detailed complexity analysis of the PS-CDMA receiver in terms of elementary operations is

presented in the table below

Table A.1: PS-CDMA computational complexity per bit per iteration

Task Computation Operation
KM(N/M − 1) additions

Matched Filtering
KN multiplications

K(2M − 1) additions
KM multiplications

Soft bit evaluation
2KM divisions
KM tanh(·) operations

Re-modulation KM multiplications
Cancellation 2KN subtractions/additions

K(M + 3N − 1) additions/subtractions
K(N + 2M) multiplications

Overall
2KM divisions
KM tanh(·) operations
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B.1 Proof of Lemma 1

Any channel aspect ratio α can be achieved with two-stage decoding and an appropriate

choice of a power distribution T (u).

Proof. Consider the power distribution T (u) = eau, u ∈ [0, α], and where a is a parameter.

Let us consider different signal-to-noise ratios by varying the channel noise variance σ2.

Now, using t = 1/v, the right hand side of (4.6) can be rewritten as

α∫
0

T (u)

v
g

(
T (u)

v

)
du+

σ2

v
=

α∫
0

teaug (teau) du+ tσ2

=
1

a

teaα∫
t

g(x)dx+ tσ2 , (B.1)

where x = teau, and we used T (u) = eau. Further using the transformation∫
teaug (teau) du =

1

a

∫
g (teau) d (teau)

=
1

a

∫
g(x)dx , (B.2)

where u ∈ [0, α] translates into x ∈ [t, teaα]. Hence the convergence condition based on (4.6)
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is equivalent to

1

a

∫ teaα

t

g(x)dx+ tσ2 < 1 (B.3)

for t ∈
(
1/
(
eaα−1
a + σ2

)
, µ
]

(from (4.3)). In Appendix B.4 it is shown that∫ ∞
0

g(x)dx = 2 ln 2 ≈ 1.3863 , (B.4)

and applying (B.4) in (B.3) and choosing a and σ2 such that

1

a
2 ln 2 + µσ2 < 1 , (B.5)

it is guaranteed that

1

a

∫ teaα

t

g(x)dx+ tσ2 < 1 (B.6)

for t ∈ (0, µ] and any α.

B.2 Proof of Lemma 3

Consider the power distribution T (u) = ea0u, u ∈ [0, α] and σ2 = σ′2. Assume capacity

approaching codes for each mode. Then, for any α > 0, the spectral efficiency of the system

is lower bounded by

Ceff > α− 0.1985. (B.7)

Proof. The spectral efficiency is calculated as

Ceff =

∫ α

0

R(u)du , (B.8)

where R(u) are the achievable rates of the modes calculated from the capacity formula of

the BIAWGN channel with signal-to-noise ratio

T (u)

σ2
∞
≥ a0T (u) = a0e

a0u , (B.9)

as CBIAWGN

(
T (0)/σ2

∞
)
. For σ2 = σ′2 the system converges to σ2

∞ = 1/a0, so we have
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T (u)/σ2
∞ = a0e

a0u, and

Ceff =

∫ α

0

CBIAWGN (a0e
a0u) du

= α−
∫ α

0

(1− CBIAWGN (a0e
a0u))du

> α−
∫ ∞

0

(1− CBIAWGN (a0e
a0u))du . (B.10)

where the value ∫ ∞
0

(1− CBIAWGN (a0e
a0u))du = 0.1985 (B.11)

is found by numerical integration.

In order to avoid the infinite limit the following decomposition was used, which employs the

lower bound CBIAWGN on CBIAWGN derived in Appendix B.5

∞∫
0

(1− CBIAWGN (a0e
a0u) du

≤
10∫

0

(1− CBIAWGN (a0e
a0u) du+

∞∫
10

(1− CBIAWGN (a0e
a0u) du

<

10∫
0

(1− CBIAWGN (a0e
a0u) du+

2π
3
2

ln 2(π2 − 8)

∞∫
10

e−
1
2a0e

a0u

du

<

10∫
0

(1− CBIAWGN (a0e
a0u) du+

2
√

2π2

ln 2(π2 − 8)
Q(10) ≈ 0.1985.

B.3 Proof of Lemma 4

Consider the power distribution T (u) = ea0u, u ∈ [0, α] and σ2 = σ′2. Assume capacity-

achieving ECCs and let Eb/N0 denote the average SNR of the system, where N0 = 2σ2, as

is customary. Then for α > 1 the AWGN channel capacity which can be achieved for this

SNR satisfies

CAWGN ≤ α+ 0.79 . (B.12)

Proof. The average SNR for the system with T (u) = ea0u power distribution is expressed
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as

Eb

N0
=

1

α

∫ α

0

T (u)

2R(u)σ2
du , (B.13)

where R(u) is the rates of a BIAWGN channel facing noise with variance σ2
∞. Since σ2 = σ′2,

σ2
∞ = 1/a0. Consider some fixed α′ < α. We write

Eb

N0
=

1

α

∫ α

0

T (u)

2R(u)σ2
du

=
1

α

(∫ α′

0

T (u)

2R(u)σ2
du+

∫ α

α′

T (u)

2R(u)σ2
du

)

≤ 1

α

(∫ α′

0

T (u)

2R(u)σ2
du+

1

2R(α′)σ2

∫ α

α′
T (u)du

)

=
1

α

(∫ α′

0

T (u)

2R(u)σ2
du+

ea0α − ea0α′

2a0R(α′)σ2

)

=
22α + c2

2c1α
, (B.14)

where

c1
def
= a0R(α′)σ2 > 0 , (B.15)

c2
def
= a0R(α′)σ2

∫ α′

0

T (u)

R(u)σ2
du− ea0α

′
. (B.16)

Now define δ as the smallest positive number such that for any α ≥ α′

22α + c2
2c1α

≤ 22(α+δ) − 1

2(α+ δ)
⇔ (B.17)

22α + c2
c1

+
22α + c2
αc1

δ + 1 ≤ 22(α+δ) ⇔

1

c1
+

c2
c122α

+
δ

αc1
+

c2δ

αc122α
+

1

22α
≤ 22δ (B.18)

For c2 ∈ (−1, 0) the left hand side rapidly decreases for α > 0 and therefore if δ satisfies

1

c1
+

c2
c122α′

+
δ

α′c1
+

c2δ

α′c122α′
+

1

22α′
= 22δ (B.19)

then (B.18) will be satisfied for all α ≥ α′.
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For specific numerical choices of α′ we obtain different bounds:

α′ = 1⇒ δ = 0.79 (B.20)

α′ = 2⇒ δ = 0.5629 (B.21)

α′ →∞⇒ δ = −1

2
log2(a0σ

2) = 0.3796 (B.22)

B.4 Integral of the Soft Bit Variance Function g(x)

Proposition 2. ∫ ∞
0

g(x)dx = 2 ln 2 (B.23)

Proof. We use the representation of the soft-bit function g(x) stated in Proposition 2

from [31]. The signal-to-noise ratio parameter x used in this paper is x = b2, where b

is the argument of the soft-bit function in [31].∫ ∞
0

g(x)dx =

∫ ∞
0

g(b2)db2 = 2

∫ ∞
0

bg(b2)db

=

∫ ∞
0

8be−b
2/2 ·

∞∑
n=0

(−1)neb
2(2n+1)2/2Q[b(2n+ 1)]db , (B.24)

where

Q(y) =
1√
2π

∫ ∞
y

e−u
2/2du . (B.25)

We start with work on the Q-function making the variable exchange v = u− b(2n+ 1)

Q(b(2n+ 1)) =
1√
2π

∞∫
b(2n+1)

e−u
2/2du

=
1√
2π

∞∫
0

e−(v+b(2n+1))2/2dv =
1√
2π

∞∫
0

e−v
2/2e−bv(2n+1)e−b

2(2n+1)2/2dv.

(B.26)
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Substituting (B.26) into (B.24) leads to∫ ∞
0

g(x)dx

=

∞∫
0

8be−b
2/2

∞∑
n=0

(−1)neb
2(2n+1)2/2 · 1√

2π

∞∫
0

e−v
2/2e−bv(2n+1)e−b

2(2n+1)2/2dvdb

=

∫ ∞
0

8be−b
2/2

∞∑
n=0

(−1)n · 1√
2π

∞∫
0

e−v
2/2e−bv(2n+1)dvdb

=
8√
2π

∞∑
n=0

(−1)n ·
∫ ∞

0

∫ ∞
0

be−b
2/2e−v

2/2e−bv(2n+1)dvdb

=
8√
2π

∞∑
n=0

(−1)n
√

2π

2

1

2(n+ 1)
= 2

∞∑
n=0

(−1)n
1

n+ 1
= 2 ln 2 (B.27)

B.5 Lower Bound on the Capacity of AWGN Channel

with Binary Input

Consider a user with power P using BPSK modulation over AWGN channel with variance σ2.

The maximum achievable rate of this mode is determined by the capacity of the BIAWGN

channel with two input levels −
√
P ,
√
P . Below a simple convenient lower bound on the

achievable rate as a function of the input SNR is derived.

Let us denote the signal to noise ratio in the channel by x, x = P/σ2 and the corresponding

BIAWGN channel capacity by CBIAWGN(x). We prove that

Proposition 3. For x ≥ a0 = 2 ln 2

CBIAWGN(x) ≥ 1− 2π
3
2

ln 2(π2 − 8)
e−

1
2x

def
= CBIAWGN(x) (B.28)

Proof. In [71] (Equation (18)) gives the following lower bound on the BIAWGN channel

capacity:

CBIAWGN(x) ≥ 1− log2(e)
2π

π2 − 8

[
π√
2

erfc

(
2

π

√
x

)
e

8−π2

2π2 x − 2erfc

(√
x√
2

)]
. (B.29)
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For y > 1/
√

2 the following inequality

erfc(y) = 2Q(
√

2y) ≤ 2
e−(
√

2y)2/2

√
2π

< e−y
2

√
2

π
(B.30)

holds. Now we observe that 2
√
x/π > 1/

√
2 for x ≥ a0 and we can lower bound the right

hand side of (B.29) as

1− log2(e)
2π

π2 − 8

[
π√
2

erfc

(
2

π

√
x

)
e

8−π2

2π2 x

]
≥ 1− log2(e)

2π

π2 − 8

π√
2

√
2√
π
e−

4
π2 xe

8−π2

2π2 x

= 1− 2π
3
2

ln 2(π2 − 8)
e−

1
2x . (B.31)


	Introduction
	Thesis Contributions and Organization
	Fundamental Concepts in Digital Communications and Error Control Coding
	Reliability Measure
	Iterative Processing
	EXIT Charts
	Sufficient Statistics

	Multiple-Access Channels
	Random Channel

	Optimal Multiuser Detection
	Linear Detection Methods and Approximations
	Iterative Approximations

	Coded Transmission
	Iterative Detection and Interference Cancellation
	Successive (Serial) Cancellation
	Parallel Cancellation


	Optimal Coding for Cancellation Systems
	System Model
	Analysis of IC Systems
	Variance Transfer Charts

	Optimal Coding for IC
	Performance Evaluation
	Repetition Codes
	Hamming Codes
	Convolutional Codes
	Parallel Turbo Codes
	Regular LDPC Codes
	VT Curve of the Correlation Detector

	Numerical Experiments
	System Parameters Setup
	Simulation Results

	Chapter Summary

	Partitioned Spreading CDMA
	Transmission Model
	Analysis of the Detection Dynamics
	Optimality of Partitioned Modulation
	Simulations

	Practical Considerations
	Finite Interleaving
	Complexity

	Coded PS-CDMA
	Processing Schedules

	Notes on Asynchronicity
	Chapter Summary

	Unequal Power Allocations
	Achievable Loads with Two–Stage Decoding
	Approaching Channel Capacity with Two–Stage Decoding
	Power Control Elimination
	Distribution of PS–CDMA Outputs
	Chapter Summary

	Signal Processing for Uplink LTE
	High-Level Overview
	Requirements
	Evolution
	Mobility and Latency
	Coverage
	Core Technology

	Physical Layer Overview
	OFDM
	MIMO
	Dynamic Spectrum Allocation and Duplexing
	Modulation Formats
	Downlink
	Uplink
	Modulation/Coding Schemes and Channel Reporting
	Transmission Format

	LTE Channel Model
	OFDM with Cyclic Prefix Channel
	SC-FDMA Signal Generation

	Signal Processing for UL-LTE
	Transmitter
	Channel Model
	Receiver
	Baseline Linear MMSE MIMO Equalization
	Group Turbo MMSE MIMO Equalization
	Analysis
	Numerical Results

	Chapter Summary

	Conclusions and Future Work
	Summary of Contributions
	Optimal Coding for IC Systems
	Partitioned CDMA
	Unequal Power Allocations
	Signal Processing for Uplink LTE

	Future Work

	References
	Appendix A
	Appendix B
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 4
	Integral of the Soft Bit Variance Function g(x)
	Lower Bound on the Capacity of AWGN Channel with Binary Input


