
University of Alberta

Transactional Pointcuts for Aspect-Oriented Programming

by

Seyed Hossein Sadat Kooch Mohtasham

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Seyed Hossein Sadat Kooch Mohtasham
Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor anysubstantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

H. James Hoover (Advisor), Computing Science

Kenny Wong, Computing Science

José Nelson Amaral, Computing Science

John C. Bowman, Mathematical and Statistical Sciences

Gregor Kiczales, Computer Science, University of British Columbia

To my wife,
and my family, especially Mom and Dad.

Abstract

In dynamic pointcut-advice join point models of Aspect-Oriented Programming (AOP),

join points are typically selected and advised independently of each other. That is, the

relationships between join points are not considered in join point selection and advice. But

these inter-relationships are key to the designation and advice of arbitrary pieces of code

when modularizing concerns such as exception handling and synchronization. Without

a mechanism for associating join points, one must instead refactor (if possible) into one

method the two or more related join points that are to be advised together. In practice, join

points are often not independent. Instead, they form part ofa higher-level operation that

implements the intent of the developer (e.g.managing a resource). This relationship should

be made more explicit.

We extend the dynamic pointcut-advice join point model to make possible the desig-

nation, reification, and advice of interrelated join points. The Transactional Pointcut (tran-

scut), which is a realization of this extended model, is a special join point designator that

selects sets of interrelated join points. Each match of a transcut is a set of join points that

are related through control flow, dataflow, or both. This allows transcuts to define new types

of join points (pieces of computation) by capturing the key points of a computation and to

provideeffectiveaccess for their manipulation (i.e. advice). Essentially, transcuts almost

eliminate the need for refactoring to expose join points, which is shown by others to have a

significant negative effect on software quality.

The transcut construct was implemented as an extension to the AspectJ language and

integrated into theAspectBenchcompiler. We used transcuts to modularize the concern of

exception handling in two real-world software systems. Theresults show that transcuts are

effective in designating target join points without unnecessary refactorings, even when the

target code is written obliviously to the potential aspectization.

Acknowledgements

I would like to thank my PhD advisor, H James Hoover, who supported me throughout all

the stages of this thesis. His advice, encouragement, and sense of humour enabled me to

keep the spirit up and stay focused even at difficult times.

Also, I would like to thank my supervisory committee, especially Ken Wong and José

Nelson Amaral, for their invaluable advice and comments during the development of this

project. I am also grateful to Gregor Kiczales for his guidance in my early explorations of

Aspect-Oriented Programming. Additionally, I would like to show my gratitude to Natural

Sciences and Engineering Research Council of Canada for supporting this work.

Lastly, I am indebted to all the people who encouraged me and helped me in any way

during the completion of this work, especially Daqing Hou and Xin Li for sharing their

thoughts and providing feedback on my work.

–Hossein Sadat-Mohtasham

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis . 3
1.3 Contributions . 3
1.4 Organization . 4

2 Background: Aspect-Oriented Programming 6
2.1 Modularizing Cross-Cutting Concerns 6
2.2 Join Point Model . 10
2.3 Pointcut-Advice Dynamic Join Point Model 10

2.3.1 Join Points . 11
2.3.2 Pointcuts . 12
2.3.3 Advice . 14
2.3.4 Aspect Association . 15

2.4 Inter-Type Declarations (Static Cross-Cutting) 15
2.5 An Example . 16

3 Transactional Pointcuts 20
3.1 Motivating Example . 20
3.2 Transactional Pointcuts .. . 23

3.2.1 Nested Transcuts . 26
3.2.2 Looped and Conditional Pointcuts 26
3.2.3 Dependent Pointcut . 27
3.2.4 Dataflow Pointcuts and Context Exposure 29
3.2.5 Overlapping Transcuts . 30

3.3 Program Dependence Graph: the Join Point Representation 30
3.3.1 Region Analysis . 33
3.3.2 Join Point Shadows . 35
3.3.3 PDG-based Matching Algorithm 36

3.4 Applications . 40
3.4.1 Modularizing Exception Handling 42
3.4.2 Transaction Management . 45
3.4.3 Synchronization . 48
3.4.4 Parallelization . 49
3.4.5 Data and Control Context Designation 50
3.4.6 Static Verification of API Usage51

3.5 Implementation . 53
3.6 Limitations . 54

3.6.1 Fragility . 54
3.6.2 Interaprocedural Limits, Escaping Objects, and Buried Effects . . . 55
3.6.3 Continuation vs. History Semantics 56

4 The Semantics of Transcuts 58
4.1 Continuation-based Semantics for Dynamic Join Points 58
4.2 Extending the Continuation-based Semantics to Support

Transcuts . 62
4.2.1 Defunctionalized CPS Interpreter: a Running Example. 63
4.2.2 AOP-Enabled CPS Interpreter . 66
4.2.3 Enabling Transcuts in CPS Interpreter 68

5 Evaluation 71
5.0.4 Evaluation Strategy . 73
5.0.5 Case Study 1: Tactical Separation Assisted Flight Environment . . . 75
5.0.6 Case Study 2: Eclipse Instant Messenger Plugin 80
5.0.7 Weaknesses of Transcuts . 82
5.0.8 Summary of Results . 86

6 Related Work 87

7 Conclusions 91
7.1 Contributions . 91
7.2 Future Work . 92

Bibliography 94

A Construction of the Program Dependence Graph in the Presence of non-Normative
Control Flow 98
A.1 Background . 99

A.1.1 Control Flow Graph . 99
A.1.2 Dominator and Post-Dominator Trees 101

A.2 Program Dependence Graph . 102
A.2.1 Region Analysis . 103
A.2.2 Constructing the Region Hierarchy 104
A.2.3 Implementation and Usage . 105

A.3 Non-Normative Control Flow .. 106
A.3.1 Abrupt Loop Exit and Continuation107
A.3.2 Exceptional Flow . 107
A.3.3 Multiple Exits . 114

A.4 Conclusion . 114

List of Tables

2.1 Pointcuts corresponding to various kinds of join points(adapted from [34].) 12

5.1 Four different treatments of exception handling cases in the experiment. . . 74
5.2 Results of the exception handling modularization in TSAFE system. 75
5.3 Results of the exception handling modularization in EIMP system. 80

List of Figures

2.1 A class from the database layer (left) and the corresponding security aspect
(right) . 7

2.2 Code tangling in a module . 9
2.3 Code scattering of security concern 9
2.4 General form of a named pointcut. .. . 12
2.5 ObserverProtocol aspect (from [24]) 17
2.6 Observer instance: ColorObserver (from [24]) 17
2.7 Observer instance: CoordinateObserver (from [24]) 18
2.8 Observer instance: ScreenObserver (from [24]) 18

3.1 A simple program that uses the standard Logger class to log messages. . . . 21
3.2 An aspect that guards the log calls and their argument evaluation code . . . 22
3.3 An example of three different join points:call andexecutionjoin points

as well as a region join point that could potentially be a match for f(), g()
sequence. 23

3.4 A simple transcut composed of 3 pointcuts. 24
3.5 A transcut that relates the join points based on their target object. 25
3.6 An example of transcut nesting .. . 26
3.7 Usinglooped()pointcut in a transcut . 26
3.8 A match forreadloop()(left) and a non-match (right). 27
3.9 Usingconditional()pointcut in a transcut 27
3.10 A match forreadConditionally()(left) and a non-match (right). 27
3.11 Composition ofconditional()andlooped()pointcuts. 28
3.12 A match forloopedConditionalRead. 28
3.13 An advice that targets a transcut and simply executes the original join point. 28
3.14 Three different matches for the same transcut. 29
3.15 A transcut usingdependent()pointcut. 29
3.16 Two overlapping transcuts .. . 30
3.17 A program and its CFG . 31
3.18 Dominator (left) and post-dominator (right) trees 32
3.19 PDG of the program in Figure 3.17 .. . 33
3.20 A region and its potential shadows 36
3.21 Transcut Matching Algorithm .. . 37
3.22 Transcut Matching Algorithm (matchPointcutInRegion) 39
3.23 Transcut Matching Algorithm (matchConditionalInRegion) 41
3.24 Handling an exception is an aspect 43
3.25 A file operation within method boundaries that could throw exceptions . . . 43
3.26 An aspect that implements recommended practice for handling resources . . 44
3.27 A typical database client code 45
3.28 Transaction handling transcut 46
3.29 Transcut to handle resources 47
3.30 Critical sections in writer (left) and reader (right) threads. 49
3.31 Transcut to synchronizes reader’s critical section. 49
3.32 Transcut for open/close usage 51
3.33 declare erroradvice in AspectJ . 52
3.34 Static API usage verification using transcuts. 52

5.1 Original code (left), after removing exception handling code (middle), pos-
sible handler aspect (right). .. 73

5.2 The original code of a method from TSAFE. 77
5.3 After removing exception handling code. 78
5.4 Exception handling aspect for method in Figure 5.3. 79
5.5 A sample case in EIMP system before separating exceptionhandling. . . . 81
5.6 Sample code after removing exception handling concern code. 81
5.7 Exception handling aspect corresponding to code in Figure 5.6. 82
5.8 Unsupported boundary join point 83
5.9 Exception handling advice would need to “return” from the method con-

taining the target join point. .. 83
5.10 The complex case of “return” from region 84
5.11 The complex case of “return” from region (left), its corresponding CFG

(middle), and PDG (right) . 85
5.12 A simple case (left), its corresponding CFG (middle), and PDG (right) . . . 85

A.1 A program and its CFG . 100
A.2 Dominator (left) and post-dominator (right) trees 101
A.3 PDG of the program in Figure A.1 .103
A.4 An example of construction and usage of a PDG 106
A.5 UML class diagram for part of the PDG package 107
A.6 A program and its CFG . 108
A.7 Dominator (left) and Post-dominator (right) trees 108
A.8 The PDG of program in Figure A.6 .109
A.9 Control flow out of a node . 109
A.10 Control flow inside a try-catch-finally 110
A.11 Brief CFG . 110
A.12 Adding a dummy node to the brief CFG 111
A.13 The enhanced CFG corresponding to the brief CFG 113
A.14 The enhanced CFG of typical exception-handling code 113
A.15 The PDG for program in Figure A.14 113

Chapter 1

Introduction

Almost all software development methodologies and programming paradigms have tried

to address the problem of software complexity by decomposing a software system into

manageable units that can be handled in isolation, which is generally referred to as the

separation of concerns1 and it is achieved through modularization. All important software

quality attributes are, directly or indirectly, influencedby the way the software is modu-

larized; that is, the criteria that are used to decompose a system and the modularization

constructs provided by the programming language used for implementation. In the early

years of programming, programs were small and machine language was the primary pro-

gramming tool. Flowcharts were used to model the processingsteps in programs and these

processing steps were the main factor in decomposing systems. As systems became more

complex, the old decomposition criteria and techniques were impractical. Parnas is his clas-

sic paper shows that “information hiding” is the right criterion to be used in decomposing

systems into modules [44]. Information hiding means that each module should hide a de-

sign decision (that is most likely to change) and expose as little of that decision as possible

to other modules through an interface. Therefore, when one design decision changes, other

parts of the system will most probably not be affected.

The advances in software development and programming languages have always been

mutually dependent. New programming abstractions and constructs were needed to real-

ize ideas such as Parnas’s information hiding. In fact, one could say that Object-Oriented

Programming (OOP) is a well-known realization of many ideas, one of which is informa-

tion hiding. OOP brought in abstraction and composition mechanisms that enabled the

development of very large systems with reasonable cost thatwould otherwise be very hard

1Informally, a concern is anything that any stakeholder thinks of at any given time [31]. Examples of
typical concerns in a software system include security, computing a mathematical function, printing status of
an operation, and so on.

1

to achieve. OOP was a major evolutionary step of programminglanguages; yet, not long

after its wide acceptance, as demands for larger and more complex software were rising,

researchers and engineers noticed new problems, that is cross-cutting concerns, that could

not be elegantly dealt with using the object-oriented techniques.

Kiczaleset al. [32] target these problems and propose yet another abstraction and com-

position mechanism that is fully compliant to the previous methods (i.e. OOP), but supports

the modularization of concerns that could not be cleanly modularized using the previous

methods. These concerns are referred to ascross-cutting concernsand the new program-

ming model is calledAspect-Oriented Programming (AOP).

AOP mechanisms are characterized by their join point models. As defined in [32], a join

point model has three components: join points, which are elements of language semantics;

“a means of identifying join points”; and “a means of affecting the behaviour at those

join points.” In dynamic join point models [56, 41], join points are well-defined points in

the execution. AspectJ, which is the state-of-practice aspect-oriented language, supports a

dynamic join point model that is referred to as thePointcut-Advicemodel.2 Pointcutsselect

a set of join points of interest andadviceaffects the semantics of the selected join points.

1.1 Motivation

In a pointcut-advice model, each join point is selected and advised individually and inde-

pendently. That is, the relationships between join points are not taken into account in join

point selection and advice, except in limited predefined ways, such as thecflowpointcut in

AspectJ. For example, one cannot designate a call join pointwhose target object is returned

by another join point in the same control flow region.

In fact, AspectJ designers made a decision to make join points as context-insensitive

as possible so as to make pointcuts more predictable to the programmer. Consequently,

there are two things that are not well supported. First, joinpoints cannot be selected based

on their relationship to other join points (context). For instance, one can designate all the

calls to methodf(), but not the subset of those that are preceded and succeeded by a call to

methodg(). Secondly, join point types are predefined (by the target language) and therefore

computation patterns that are in fact formed by a set of interrelated join points cannot be

designated and advised together. This limitation forces programmers to refactor the target

2AspectJ also supports a static join point model which is out of the scope of this work. We work with the
AspectJ’s pointcut-advice model as a real-world realization of dynamic join point model; however, the concepts
in this work are not specific to AspectJ.

2

code into methods to make them selectable by pointcuts, which is shown to negatively affect

software quality [8].

Other researchers have recognized the above limitations and provided languages or ex-

tensions to address them. Region pointcut [2] is an independent work that addresses the

same problems as we do even though important differences exist. Trace-based aspect mech-

anisms (e.g.[3]) aim at addressing the first limitation (i.e., join point selection based on their

relationship with other join points), to some extent, through making past contexts accessible

to the programmer but suffer from inherent limitations (noaround/beforeadvice and low

performance) of trace-based models. ThePtolemylanguage addresses the second limitation

by allowing the programmer to explicitly specify arbitrarypieces of code as instances of de-

clared typed events [46]. The main problem is that the event announcement mechanism in

Ptolemy is explicit; that is, the events are announced in thebase code (see Section 6 for

details of related work).

1.2 Thesis

We claim that the dynamic pointcut-advice join point model can be extended to take join

point interrelationships into account and to allow the designation, abstraction, and advice

of arbitrary but well-formed pieces of computation as join points. This extended model

simplifies the separation of extended concerns (such as transactions). It also helps avoid

refactorings that are primarily aimed at exposing join points that can be handled by the

original dynamic pointcut-advice join point model.

1.3 Contributions

We propose3, design, and implement Transactional Pointcuts (transcuts) [50] as a realiza-

tion of the new model in the AspectJ language. A transcut is a special join point desig-

nator that selects sets of interrelated join points. Each match of a transcut is a set of join

points that are related through control flow, dataflow, or both. The basic observation behind

transactional pointcuts is that join points do not occur in isolation, but rather, are parts of

a higher-level computation that can in turn be regarded as a join point. Transcuts define

new kinds of join points by capturing the key points of targetcomputations and providing

effectiveaccess for their manipulation.

We present a new join point representation based on the Program Dependence Graph

3First presented in [49] and later in [50].

3

(PDG). PDG is a program representation that incorporates both control flow and data flow,

as well as region hierarchies that are necessary for implementing transcuts.looped(), condi-

tional(), anddependent()pointcuts have been added to transcuts to allow expressing com-

plex join point dependencies. Also, nested transcuts and their interaction with other ele-

ments of transcuts are presented.

The major contributions of this thesis are as follows:

• A new join point model, based on the pointcut-advice model, is defined. This new

model makes designation and advice of interrelated join points possible.

• A new construct (transcut) is designed and implemented. Transcut is a (partial) re-

alization of the above model and can seamlessly be integrated with the existing lan-

guages, specifically AspectJ.

• A join point representation based on the Program DependenceGraph (PDG) is pre-

sented. This representation is the backbone of the transcutmatching algorithm.

• Some pseudo pointcuts that can be used in transcuts are designed: (looped(), condi-

tional(), anddependent().)

• Some applications of transcuts are presented.

• A continuation-based semantics for transcuts is presented.

• The results of modularizing exception handling using transcuts in two real-world

software systems are reported.

• An implementation of PDG that can deal with non-normative control flow, such as

exceptional flow and loop continuation/exit, contributed to the Soot [53] compiler

optimization framework.

• Weaknesses and limitations of transcuts, whether in their conceptual grounds or in

the design and implementation, are examined and possible directions are proposed

for resolving them.

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 presents some background mate-

rial on AOP, and AspectJ in particular. We present the new join point model along with

transcuts in Chapter 3. Also, more specifically in that chapter, Section 3.3 presents the

4

necessary program representations and concepts to understand transcuts’ semantics and the

join point model. A set of applications are presented in Section 3.4 to show how tran-

scuts can be utilized. The implementation details are explained in Section 3.5 and some of

the limitations are presented in Section 3.6. The semanticsof transcuts is explained based

on the continuation-based semantics in Chapter 4. Chapter 5discusses the concern of ex-

ception handling and the results of applying transcuts in the modularization of exception

handling in two real-world systems. The important related work is discussed in Chapter 6,

and, finally, we conclude the thesis in Chapter 7.

5

Chapter 2

Background: Aspect-Oriented
Programming

Aspect-Oriented Programming (AOP) [32] introduces the necessary concepts and mecha-

nisms that allow modularizing cross-cutting concerns. Procedural programming introduced

functional abstraction and composition and OOP introducedobject abstraction on top of it.

OOP enabled programmers to handle the complexity of large-scale software systems and

has been the dominant programming model for the last two decades. However, OOP cannot

help in the modularization of those concerns (behaviours) in a system that span many mod-

ules (the implementation of other concerns.) As it will be explained in this chapter, using

OOP to implement such concerns results incode scatteringandcode tangling, which imply

low-quality code [34]. AOP allows abstraction and composition of cross-cutting concerns.

2.1 Modularizing Cross-Cutting Concerns

Most of software development methodologies rely on decomposition techniques to break a

system into smaller and more manageable functional units. Traditional programming lan-

guage models provide the facilities needed to abstract these functional units and compose

them in different ways in different contexts. These units were called procedures in pro-

cedural programming and objects in object-oriented programming (OOP) both of which

are considered to be some forms ofgeneralized procedure(GP) [32]. The programming

language models whose main abstraction and composition constructs are generalized pro-

cedures are referred to as GP languages. In fact, in all GP languages units of decomposition

are usually units of functionality. Therefore, the features that are not functional (i.e., do not

fit well in the decomposition hierarchy) cannot be put in a single module; the result is an

implementation code that is tangled up and hard to maintain.It should be mentioned that

6

there are also functional units that cannot elegantly be modularized. Some of the common

features that might not be easy to modularize are security, tracing, profiling, performance,

and so on.

Informally, a concern is anything that any stakeholder thinks of at any given time [31].

Two different concerns, when implemented, crosscut each other if they must compose dif-

ferently and yet be coordinated [32]. GP languages only provide one composition mech-

anism, hence, only those concerns that can be abstracted andcomposed using generalized

procedures can be cleanly modularized. The implementationof the other concerns is scat-

tered over other modules because they need to coordinate with the other concerns at various

points in the code.

Several methodologies have been developed to address the problems related to cross-

cutting concerns (e.g. Adaptive Programming [42], [35], Composition Filters [7],Subject-

Oriented Programming [26], Intentional Software [51], Multi-0 Separation of Concerns [43],

Metaobject Protocols [33], and Generative Programming [13].) Aspect-Oriented Program-

ming has become the most widespread methodology to deal withcross-cutting concerns.1

In order to illustrate some of AOP concepts, we present a simple example of a cross-

cutting concern. We consider an online e-tailer application through which users can search

for and purchase products, as well as manage their accounts.In such applications, there

is usually a data-tier that consists of classes that access the database for retrieving or mod-

ifying information. The classes and their methods could be structured in various ways,

however, for the purposes of this example, we assume that anymethod in any class that has

a name starting with “db” is a method that accesses the database (Figure 2.1, on the left.)

1 c l a s s UserAccount {
2
3 . . .
4
5 pub l i c boolean dbChangeAddress (Address a){
6 /∗ g e t db c o n n e c t i o n
7 make a query
8 e x e c u t e t h e query
9 r e t u r n t r u e i f s u c c e s s f u l ,

10 f a l s e o t h e r w i s e .∗ /
11 }
12 . . .
13 pub l i c boolean dbAdd2Wishls t (P roduc t p){
14 . . .
15 }
16 }

1 a s p e c t S e c u r i t y{
2
3 p o i n t c u t dbaccess () :
4 e x e c u t i o n (boolean
5 UserAccount . db∗ (. .)) ;
6
7 boolean around () : dbaccess (){
8 /∗ check user l o g i n s t a t u s
9 i f s i gned in , c o n t i n u e w i th

10 method e x e c u t i o n . e l s e do
11 no t e x e c u t e and s imp ly r e t u r n
12 f a l s e .∗ /
13 }
14 }

Figure 2.1: A class from the database layer (left) and the corresponding security aspect
(right)

1Many of these methodologies can be considered to be “aspect-oriented”, if they have a join point model.

7

Each one of these methods implements part of afunctionality. Assume that a new

feature is requested that requires all database methods to check login status of the user

before accessing the database. One way of accommodating this change is to go through

all the code and find and change all the methods that access thedatabase. Not only is this

approach cumbersome and error-prone but it would also lead to less maintainable code (e.g.,

imagine a system with 40 classes in a data-tier, each containing on average 10 methods, that

access the database.) To make things worse, this new security feature might change (evolve)

as other features evolve in the system. What makes adding this new feature difficult is its

cross-cutting nature: the implementation of this feature,using traditional modularization

techniques, requires change in various places in the code. In other words, the feature’s code

cannot be packaged in one place and is scattered throughout the code.

To resolve this situation a mechanism is needed that not onlydoes allow expressing the

new cross-cutting features without breaking the existing decomposition, but also helps to

do it in a modularized fashion. Figure 2.1 (right) shows a module that can implement the

added security feature in the above example.2 TheSecurityaspect implements the required

security feature in a modularized way. It first gives a name (i.e. dbaccess) to the points

in the execution that correspond to theexecutionof the methods in theUserAccountclass,

whose names begin with “db” and return aboolean(lines 3-4.) These points are the places

where security should be checked (join points) anddbaccess()is a pointcut that identifies

them.

Having identified the points in the execution (i.e., join points) where the security should

be checked, the only thing that remains is to bind the security behaviour to the join points

so that it is executed when the join points are activated at runtime (i.e., when the control

enters the corresponding methods.) This behaviour can be implemented using anaround

advice, which is a construct that can change the behaviour of a set ofselected join points:

it runs instead of its target join points and can execute the join points once, or 1 (if at all.)

The security aspect, in the example, takes the control from the target methods and does the

necessary operations (e.g. check if the current user is authenticated) and then, it can then

either continue with the original execution or dismiss the database access (e.g. in case the

user has not signed in yet.)

Figure 2.23 shows how a module may look like in a system in which cross-cutting

concerns are not modularized. The module is implementing a functional feature in the

2This is AspectJ syntax, which is a popular aspect-oriented language based on Java.
3Adapted from [34].

8

business logic, however, there are pieces of code that belong to other concerns in the system,

such as security and tracing. In other words, the module implements pieces of multiple

concerns. This presence of pieces of implementation of multiple concerns in a module is

referred to ascode tangling.

Module X

Business logic

TracingSecurity

Figure 2.2: Code tangling in a module

Code scattering is illustrated in Figure 2.3. The implementation of a cross-cutting con-

cern like security can be present in many other modules, evenin other cross-cutting mod-

ules. Code scattering can occur in two different ways. It occurs when a piece of imple-

mentation repeatedly appears in many modules (like in the example in previous section.)

It can also be the result of complementary pieces of implementation (of a single concern)

appearing in various modules. For instance, security concern includes user authentication

and authorization which are checked and enforced in different modules in a system.

Shopping CartAccount

Admin Persistence

Security

Figure 2.3: Code scattering of security concern

Code tangling and code scattering negatively affect software design and development

by causing poor traceability, lower productivity, lower code reuse, poor quality, and harder

evolution [34].

9

2.2 Join Point Model

AOP mechanisms are characterized by their join point model.A join point modeldefines

three elements:join points, pointcuts, andadvice. Join points are meaningful elements of

the programming language semantics. Pointcuts are predicates that select join points based

on their properties and context. Advice is a way of changing the semantics at the selected

join points. In the above example, join points are method executions. dbaccess()is a

pointcut that selects those join points (method executions) whose signature pattern matches

boolean *.db*(..) (i.e. all methods that start with “db”, take any number parameterswith

any type, belong to any class, and return a boolean value.)

There are various join point models in AOP. AspectJ, for instance, supports two join

point models:introductionsandpointcut-advicejoin point model. Theintroductionsjoin

point model handles static cross-cutting: join points are class declarations to which new

member variables and methods can be added; also, the inheritance hierarchy can be changed

through adding new parent classes and interfaces. This static join point model complements

the pointcut-advicejoin point model in which join points are points in the execution of a

program.

Contrary to the common mentality, cross-cutting is a three-party relationship [40]: a

base program (in languageA), an aspect program (in languageB), and a common repre-

sentation (X). The base program and the aspect program cross-cut each other with regard

to X, that is the common representation, which can be (but not necessarily) a lower-level

code: neither contains the other, and they are not disjoint in the common representation.4

Join points are element inX; andA andB have constructs to refer to the join points in

some way to express some behaviour about them. A weaver then takesX, A, B, the join

point description, the base 0, and the aspect program, and composes the base program and

aspect program at the common join points to get a single representation inX. X does not

have to be different thanA andB.

In this work our focus is the dynamicpointcut-advicejoin point model, as realized in

AspectJ, however, the concepts introduced in this thesis are not limited to AspectJ.

2.3 Pointcut-Advice Dynamic Join Point Model

The dynamic pointcut-advice join point model is a join pointmodel in which join points are

run-time entities and not static elements in a program. Nonetheless, a specific implementa-

4It should be noted that there is no generally-agreed definition of cross-cutting concerns.

10

tion of a dynamic join point model might transform the staticrepresentations of these join

points to affect their semantics (i.e. weave advice.) Therefore, in the semantical sense, it is

not correct to use verbs such as “injecting”, “inserting”,etc. to refer to weaving; however,

these words might be used in the context of a specific implementation of weaving. In this

section, we introduce the AspectJ’s pointcut-advice join point model which is used in the

rest of this thesis.

2.3.1 Join Points

A dynamic join point in AspectJ is any identifiable point in the program execution, such as

a method call, a method execution. Not all join points, however, are exposed by AspectJ to

prevent unreliable and fragile aspects. For instance, the point where a local variable is set

is not a join point; nor is a loop inside a method. There are several kinds of exposed join

points in AspectJ:

• Method call: this is a point in execution where a method is to be dispatched.

• Method execution: this is when the body of a method is to be executed.

• Field access: when a field of a class is read or written.

• Constructor call and execution: these join points are similar to method call and exe-

cution but represent the creation of an object.

• Object initialization and pre-initialization: object initialization join point starts from

the return of a parent class’s constructor until the end of the first called constructor.

Object pre-initialization, which is rarely used, is the code from the beginning of the

first called constructor to the beginning of its parent constructor.

• Exception handler execution: represents the execution of ahandler block of an ex-

ception type in an exception-handling block.

Method call and execution are the most important kinds of join points because they

represent the points in execution where some meaningful behaviour (which a designer has

abstracted) occurs. These join points are referred to as “points” but some of them are

represented by not just a point but a block of code (e.g.method execution, handler.)

Join points can have some related context available to be exposed to aspect programs.

For example, a call join point can have a corresponding target object, executing object, and

list of arguments.

11

2.3.2 Pointcuts

Pointcuts are constructs that select and abstract a set of join points and expose their contexts.

There is a pointcut designator corresponding to each kind ofjoin point. For instance,call(*

. (..)) selects all the call join points andexecution(* *.* (..))selects all the execution join

points in a program. Pointcuts can be named to make it easier to reuse them at multiple

places. Figure 2.4 shows the general form of a named pointcutand Table 2.1 shows the

pointcuts used to identify various join point categories.

Keyword

public pointcut dbAccess(): execution(boolean UserAccount.db*(..));

Access modifier Pointcut name Signature pattern

Pointcut type

Figure 2.4: General form of a named pointcut.

Join Point Category Pointcut Syntax
Method call call(MethodSignature)

Method execution execution(MethodSignature)
Constructor call call(ConstructorSignature)
Constructor 0 execution(ConstructorSignature)

Field read access get(FieldSignature)
Field write access set(FieldSignature)
Class initialization staticinitialization(TypeSignature)
Object initialization initialization(ConstructorSignature)

Object pre-initialization preinitialization(ConstructorSignature)
Exception handler execution handler(TypeSignature)

Advice execution adviceexecution()

Table 2.1: Pointcuts corresponding to various kinds of joinpoints (adapted from [34].)

TypeSignatureis a pattern that identifies a set of types. For instance,java.util.* identifies

all types directly defined underjava.util package,UserAccountidentifies the type with the

nameUserAccount, and java..*Statement+specifies all the types in java package and its

direct or indirect sub-packages (the “..” operator) that have a name ending in “Statement”

(the “*” operator) and their subtypes (the “+” operator.) Binary operators can be used, as

set union and intersection, on type signatures to combine type signatures (e.g. “java.util.*

|| java.io.*” .)

MethodSignatureis a pattern that identifies a set of methods. For example, thefollowing

pattern identifies all the methods in class Model whose namesbegin with “get” and take a

12

single argument with any type:

* Model.get*(*)

To identify only those methods that take an argument of typeString and return a

boolean one can write:

boolean Model.*(String)

Similarly, to identify all the methods in Model and its subclasses that take any number

of arguments with any type one can write:

* Model+.*(..)

Other signature properties, such as access modifiers and list of thrown exceptions, can

also be specified in method patterns.

ConstructorSignatureis similar toMethodSignaturewith the exception that instead of

a method name,new is used and no return type is specified. For instance, the following

pattern specifies all the constructors of classModel:

Model.new(..)

FieldSignature is used to identify a set of member fields is just like a field declaration

with the possibility to use wild card characters in place of the filed type, the declaring type,

and the field’s name. For example, to select all the public fields in classModel with any

type and a name that starts with “parent”, one can write the following:

public * Model.parent*

Lexical Pointcuts

within() andwithincode()pointcuts can be used to restrict join point selection to those that

lexically occur in a specific class (set of classes) or a specific method (set of methods),

respectively. For example,within(Model)selects all the join points that lexically occur in

theModel class, which when combined with other pointcuts, can be usedto narrow join

point selection to a desired set. For example, to select all the method call join points within

theModel class, one can write:

call(* *.*(..)) && within(Model)

13

The other lexical pointcut iswithincode()which is similar towithin() but takes a method/0

signature instead. For instance, to select all theModel’s field-write join points in the

Model’s load() method the following can be used:

set(* Model.*) && withincode(* Model.load())

Control-flow Pointcuts

Control-flow-based pointcuts select join points based on the control flow of the join points

selected by another pointcut. For example, if one desires toidentify all the join points

that do not occur as a result of the execution of the advice in aspectErrorHandler , a

control-flow pointcut can be used:

cflowbelow(execution(* ErrorHandler.*(..)))

The cflowbelow(pc)pointcut takes another pointcut (pc) as argument and selects the

join points that occur in the control flow of the join points selected bypc excluding the join

points selected bypc.

cflow(pc)is similar tocflowbelow(pc)with the exception that it selects the join points

selected bypc as well.

Context Exposure Pointcuts

Join points might have some relevant context that can be usedby advice. For example, a

method call join point may have a target object, an executingobject, and a list of arguments.

Context exposure pointcuts are used to bind the context available at identified join points

and expose them to advice. For example, the following pointcut exposes all the above val-

ues at all call join points:

1 p o i n t c u t A l l C a l l s (Ob jec t t h i s o b j , Ob jec t t a r g e t o b j , Ob jec t a r g o b j) :
2 c a l l (∗ ∗ . ∗ (. .)) && t h i s (t h i s o b j) && t a r g e t (t a r g e t o b j) && a r g s (a r g o b j) ;

2.3.3 Advice

There are three kinds of dynamic advice:

• before(): which executes before the execution of the target join points.

• after(): which executes after the execution of the target join points.

14

• around(): executes in place of the target join points and can call the original join point

(using proceed()expression) with a possibly modified context, call them multiple

times, or not call them at all.

2.3.4 Aspect Association

By default, only one instance of an aspect exist per virtual machine which is shared by all

the advised join points. There are situations, however, that one desires to associate an aspect

with each object or method execution in such a way that a new instance of the aspect is cre-

ated and used per object or per execution of a method. For instance, theTrackStatusAspect

aspect below is associated with each object executing a method with signature pattern*

.execute(..). This association is necessary becausestatus member variable needs to be

associated with one single object so that different objectswill not overwrite other object’s

status.5

1 a s p e c t T r a c k S t a t u s A s p e c t p e r t h i s (excuteCommand ()){
2
3 p r i v a t e i n t s t a t u s ;
4
5 p o i n t c u t executeCommand () : e x e c u t i o n (∗ ∗ . e x e c u t e∗ (. .)) ;
6
7 /∗
8 s e t s t a t u s based on t h e r e s u l t s o f command e x e c u t i o n . . .
9 ∗ /

10 }

In addition toperthis(pc), pertarget(pc), percflow(pc), andpercflowbelow(pc)associa-

tion pointcuts can be used, all of which take a pointcut as argument.pertarget(pc)associates

an aspect instance with each target object of the join pointsselected bypc. percflow(pc)and

percflowbelow(pc)associate an aspect instance with each control flow (execution) matching

the pointcut. The following shows an example of thepercflow(pc)association:

aspect TransactionManager percflow(transacted())

pointcut transacted(): execution(* DataObject+.update(..));

/* Manage transactions */

2.4 Inter-Type Declarations (Static Cross-Cutting)

In addition to the dynamic pointcut-advice join point model, AspectJ supports a static join

point model that makes it possible to introduce new member fields and methods associ-

ated with a class in an aspect. It also allows changing class hierarchies by declaring new

5Once could use a hash table to implement aspect association.

15

parent-child relationships among classes and interfaces.For example, the following exam-

ple shows how to add a new fieldname and its access method to classModel:

1 a s p e c t Naming{
2 p r i v a t e S t r i n g Model . name ;
3
4 pub l i c S t r i n g getName () {
5 re tu rn name ;
6 }
7 }

When the access modifier in a member introduction isprivate, the field will only be

visible to the defining aspect.

To change the class hierarchy thedeclare parentadvice can be used. For instance, to

make theModel class implement theV iewable interface, the following advice can be used:

declare parent: Model implements Viewable;

There are two other useful static advice that usedeclarepattern, i.e. declare error

anddeclare warning. They can be used to generate compile-time error and warningmes-

sages when the presence of some identified join points is detected. For example, to issue

a compile-time error when some kind of factory pattern should be enforced, the following

can be used:

1 a s p e c t E n f o r c e F a c t o r y{
2 p o i n t c u t newInClass () : w i t h i n (SomeClass) && c a l l (∗ . new (. .)) ;
3 d e c l a r e e r r o r : newInClass () : ” Must on ly use f a c t o r y methods to c r e a t e o b j e c t s ! ” ;
4 }

2.5 An Example

To put everything together, an example is presented, from [24], to show how aspects can

be used to modularize and reuse the observer design pattern [23]. The observer pattern is

used when a list of observer entities are notified to be updated when a subject entity’s state

changes. For details about this example and its design rationale see [24].

Figure 2.5 shows theObserverProtocolaspect. The design is based on two roles:

Observer andSubject realized by two interfaces that only help in adding strong typing

to the related methods. The aspect keeps a mapping between each subject and its observers.

Also, the aspect has methods to add and remove an observer to and from the list of observers

of a subject.

The more interesting part of the aspect is the abstract pointcut subjectChange()that is

to be an abstraction of all the join points that are considered to be (causing) a “change”

16

1 pub l i c a b s t r a c t a s p e c t O b s e r v e r P r o t o c o l{
2 p ro tec ted i n t e r f a c e S u b j e c t { }
3 p ro tec ted i n t e r f a c e Observer { }
4
5 p r i v a t e WeakHashMap p e r S u b j e c t O b s e r v e r s ;
6
7 p ro tec ted L i s t g e t O b s e r v e r s (S u b j e c t s){
8 i f (p e r S u b j e c t O b s e r v e r s ==n u l l)
9 p e r S u b j e c t O b s e r v e r s =new WeakHashMap () ;

10
11 L i s t o b s e r v e r s = (L i s t) p e r S u b j e c t O b s e r v e r s . g e t (s) ;
12 i f (o b s e r v e r s == n u l l) {
13 o b s e r v e r s =new L i n k e d L i s t () ;
14 p e r S u b j e c t O b s e r v e r s . pu t (s , o b s e r v e r s) ;
15 }
16 re tu rn o b s e r v e r s ;
17 }
18
19 pub l i c vo id addObserver (S u b j e c t s , Observer o){
20 g e t O b s e r v e r s (s) . add (o) ;
21 }
22 pub l i c vo id removeObserver (S u b j e c t s , Observer o){
23 g e t O b s e r v e r s (s) . remove (o) ;
24 }
25
26 a b s t r a c t p ro tec ted p o i n t c u t : sub jec tChange (S u b j e c t s) ;
27
28 a b s t r a c t p ro tec ted vo id upda teObserve r (S u b j e c t s , Observer o) ;
29
30 a f t e r (S u b j e c t s) : sub jec tChange (s){
31 I t e r a t o r i t e r = g e t O b s e r v e r s (s) . i t e r a t o r () ;
32 whi le (i t e r . hasNext ())
33 upda teObserve r (s , ((Observer) i t e r . nex t ())) ;
34
35 }
36 }

Figure 2.5: ObserverProtocol aspect (from [24])

1 pub l i c a s p e c t Co lo rObserve rextends O b s e r v e r P r o t o c o l{
2 d e c l a r e p a r e n t s : P o i n timplements S u b j e c t ;
3 d e c l a r e p a r e n t s : L ineimplements S u b j e c t ;
4 d e c l a r e p a r e n t s : Screenimplements Observer ;
5
6 p ro tec ted p o i n t c u t sub jec tChange (S u b j e c t s) :
7 (c a l l (vo id P o i n t . s e t C o l o r (Co lor)) | | c a l l (vo id L ine . s e t C o l o r (Co lor)))
8 && t a r g e t (s) ;
9 p ro tec ted vo id upda teObserve r (S u b j e c t s , Observer o){

10 ((Screen) o) . d i s p l a y (” Co lor change . ”) ;
11 }
12 }

Figure 2.6: Observer instance: ColorObserver (from [24])

17

1 pub l i c a s p e c t Coord ina t e Ob se rv e rextends O b s e r v e r P r o t o c o l{
2 d e c l a r e p a r e n t s : P o i n timplements S u b j e c t ;
3 d e c l a r e p a r e n t s : L ineimplements S u b j e c t ;
4 d e c l a r e p a r e n t s : Screenimplements Observer ;
5
6 p ro tec ted p o i n t c u t sub jec tChange (S u b j e c t s) :
7 (c a l l (vo id P o i n t . setX (i n t))
8 | | c a l l (vo id P o i n t . setY (i n t))
9 | | c a l l (vo id L ine . se tP1 (P o i n t))

10 | | c a l l (vo id L ine . se tP2 (P o i n t))) && t a r g e t (s) ;
11
12 p ro tec ted vo id upda teObserve r (S u b j e c t s , Observer o){
13 ((Screen) o) . d i s p l a y (” Coord ina t e change . ”) ;
14 }
15 }

Figure 2.7: Observer instance: CoordinateObserver (from [24])

1 pub l i c a s p e c t Sc reenObserve rextends O b s e r v e r P r o t o c o l{
2 d e c l a r e p a r e n t s : Screenimplements S u b j e c t ;
3 d e c l a r e p a r e n t s : Screenimplements Observer ;
4
5 p ro tec ted p o i n t c u t sub jec tChange (S u b j e c t s) : c a l l (vo id Screen . d i s p l a y (S t r i n g))
6 && t a r g e t (s) ;
7
8 p ro tec ted vo id upda teObserve r (S u b j e c t s , Observer o){
9 ((Screen) o) . d i s p l a y (” Screen upda ted . ”) ;

10 }
11 }

Figure 2.8: Observer instance: ScreenObserver (from [24])

18

in the subject; it is abstract and protected because it is to be defined by concrete observer

patterns. However, nothing prevents one from advising the abstract pointcut. Anafter()

advice is used to implement the update behaviour for the listof observers of the changed

subject (lines 30-35.)

Figures 2.6, 2.7, and 2.8 show three different concrete instances of the observer pattern

in the context of a figure package, with classesPoint, Line (as subjects), andScreen (as

both subject and observer.)

19

Chapter 3

Transactional Pointcuts

3.1 Motivating Example

In this section, we present a natural situation that the existing constructs either cannot ad-

dress or where they are a hassle in practice. The example is a simple but important appli-

cation of transcuts to a problem that was described on AspectJ’s user mailing list.1 These

examples compile and run with our extension to AspectJ; we present these examples in full

detail so as to leave little to the reader’s imagination.

In dynamic join point models, a method-call join point does not include the evaluation

of the method parameters: all the parameters in a call are evaluated first, then the corre-

sponding call join point is activated. Consider the following scenario, adapted from the

AspectJ users mailing list:

An application contains 5000+ calls to a logging methodvoid Logger.log(Level, String)

whose first parameter is the level of importance of the log andthe second parameter is a

log string formed by several string concatenations. The standard Logger class provides

methods for getting and setting the current level of loggingto one of several severity levels

(e.g. SEVERE, ERROR, INFO,etc.). A message and its severity are passed to the logger,

which logs the message only if its severity level is higher than the logger’s current severity

level. Figure 3.1 shows a simple Java program that uses a standard Logger to log a severe

(lines 23-26) as well as an informational message (lines 18-21).

In the application scenario, most of the log messages are only informational messages

that are formed by assembling various strings. String concatenations are expensive, there-

fore a large number of logging calls degrades performance. One might think that perfor-

mance could be boosted by setting the severity level to Errorto disable the logging of in-

formational messages. The problem is that the severity level of a message is checked inside

1http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg06225.html and the follow-ups.

20

1 c l a s s LoggingExample{
2 Logger m logger = n u l l ;
3
4 pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
5 LoggingExample logExample =new LoggingExample () ;
6 logExample . doSomeOperat ion () ;
7 }
8
9 pub l i c LoggingExample () {

10 m logger = Logger . ge tL ogger (” ”) ;
11 m logger . s e t L e v e l (Leve l . SEVERE) ;
12 }
13
14 pub l i c vo id doSomeOperat ion (){
15 /∗ Assume t h a t ‘ ‘ g e t S t a t u s () ” i s a
16 method t h a t r e t u r n s s t a t u s s t r i n g .∗ /
17
18 m logger . l og (Level . INFO ,
19 ” t h i s shou ld NOT be logged : ” +
20 g e t S t a t u s () +
21 (new Date ()) . t o S t r i n g ()) ;
22
23 m logger . l og (Level . SEVERE,
24 ” t h i s shou ld be logged : ” +
25 g e t S t a t u s () +
26 (new Date ()) . t o S t r i n g ()) ;
27 }
28 }

Figure 3.1: A simple program that uses the standard Logger class to log messages.

the log() method and, as a consequence, the expensive corresponding string concatenations

(caused by eager parameter evaluation) are executed. Performance still degrades regardless

of whether the message is logged or not.

The first solution that comes to mind is to guard eachlog() call with a conditional that

checks the logging level and calls thelog() only if the message is worth logging. However,

that requires placing guards at all 5000+ places in the code,therefore the obvious tactic is to

use an AspectJaroundto implement the guard at calls to the logger method:void around():

call(* Logger.log(Level, String)). But in AspectJ, a call tolog() excludes the respective

parameter evaluation. Therefore, any around advice would be executed after the expensive

string concatenations. In other words, one incurs the priceof the parameter evaluation

regardless of advice. AspectJ exposes only the most important (principled) points in the

control flow of a program as join points. In cases such as this,refactoring is required to

restructure the code into exposable join points.

How transactional pointcuts (transcuts) can help in this situation is shown in Figure 3.2.

The logCut transcut is essentially a pointcut that matches only when all of its constituent

pointcuts match sequentially against a well-defined regionof code (see Section 3.2 for

precise definitions). The transcut designates the region ofcode that begins with creating

21

1
2 a s p e c t Logg ingAdapte rAspec t{
3
4 t r a n s c u t logCut (Logger logger ,
5 Level l e v e l ,
6 S t r i n g B u f f e r sb ,
7 S t r i n g s) {
8
9 p o i n t c u t c r e a t e b u f : c a l l (S t r i n g B u f f e r .new (. .))

10 && re tu rn (sb) ;
11 p o i n t c u t append : c a l l (∗ S t r i n g B u f f e r . append (. .))
12 && t a r g e t (sb) ;
13 p o i n t c u t t o s t r i n g : c a l l (S t r i n g S t r i n g B u f f e r . t o S t r i n g())
14 && t a r g e t (sb)
15 && re tu rn (s) ;
16 p o i n t c u t l o g c a l l : c a l l (∗ Logger . l og (Level , S t r i n g))
17 && t a r g e t (l o g g e r)
18 && a r g s (l e v e l , s) ;
19 }
20
21 vo id around (Logger logger ,
22 Level l e v e l ,
23 S t r i n g B u f f e r sb ,
24 S t r i n g s) : logCut (l , l e v e l , sb , s){
25
26 i f (l o g g e r . g e t L e v e l () . i n t V a l u e ()<= l e v e l . i n t V a l u e ())
27 p roceed (logger , l e v e l , sb , s) ;
28 }
29 }

Figure 3.2: An aspect that guards the log calls and their argument evaluation code

a StringBufferfollowed by at least oneStringBuffer.append()method call, followed by at

least oneStringBuffer.toString()method call, and ends with aLogger.log()method call.2

The pointcuts that form the transcut are traditional AspectJ pointcuts, but their param-

eters are shared — the union of the context parameters for each pointcut forms the shared

context parameter list of the transcut. Also, the semanticsof the pointcuts that rely on

run-time type information (e.g. args(), target(), etc.) has changed to rely on data flow in-

formation instead. For instance, theStringBufferobject that was created, in the example, is

tracked to the point where its embedded string is retrieved through a call totoString. The

logCut transcut matches the log calls in Figure 3.1, lines 18-21 and23-26. Lines 21-28 in

Figure 3.2 show the advice aroundlogCut that checks the level of the logger against that of

the message to decide whether or not to evaluate the parameters and proceed. Therefore,

the informational log call and its parameter expressions are not evaluated at all.

2In Java, String objects are immutable, therefore, to do string concatenation,StringBuffer, which is a muta-
ble string, should be used. Strings can be appended to the buffer and in the end, the result can be retrieved by a
call to toString(). Java provides the + operator to make things easier.

22

3.2 Transactional Pointcuts

The basic observation behind transactional pointcuts is that join points do not occur in

isolation, but rather, are parts of a higher-level computation that can in turn be regarded as

a join point. For instance, when a file object is acquired at a constructor-call join point it is

most probably going to be used for data input/output and thenreleased by closing. This file

operation pattern consists of a set of key related join points that can define the operation at

some abstraction level. The traditional dynamic join pointmodel cannot elegantly define,

designate, and advise a set of interrelated join points.

AspectJ designers made a decision to make join points as context-insensitive as possible

to make pointcuts more predictable to the programmer. We believe that in some situations

suitably managed contexts can deliver more powerful aspects with an acceptable loss of

reliability, hence, transcuts bring some context into the join point model.

call JP

A non−contiguous JP

f();

g();

CFG of method f

f’s execution JP

Figure 3.3: An example of three different join points:call andexecutionjoin points as well
as a region join point that could potentially be a match for f(), g() sequence.

To specify a dynamic join point model, three elements need tobe defined: join points,

pointcuts, and advice. Join points in our new model are arbitrary pieces of computation

whose shadows belong to well-defined single-entry-single-exit regions of the control flow

graph (see Section 3.3.1 for the definition of region). Figure 3.3 shows a control flow graph

that contains calls to methodsf() andg() along with other nodes.call andexecutionjoin

points are probably the most important and well-understoodjoin points in a dynamic join

point model. As it is annotated in the figure, thecall join point is a “point” in the CFG3;

however, the execution join point is not a point but a set of points between the entry of the

CFG to the exit. This observation is interesting because at first, the idea of extending the
3Dynamic join points are execution-time concepts, while thecompiler works with join point shadows [28].

23

definition of join point to arbitrary (single-entry-single-exit) regions of a control flow graph

seemed a little controversial. However, the existingexecutionjoin point is one realization

of this notion. In Figure 3.3, the region that begins with a call to methodf() and ends with

a call to methodg() can be designated and advised as a join point. We refer to an arbitrary

(possibly) non-contiguous segment of a region in the control flow graph as aRegion Shadow

and the corresponding join point as aRegion Join Point.

A transcut is a special join point designator that selects sets of interrelated join points.

Each match of a transcut is a set of join points that are related through control flow, dataflow,

or both. The transcut definition begins with thetranscutkeyword followed by the transcut

identifier and a list of parameters. A transcut is defined by a sequence (or pattern in general)

of pointcuts that match individually almost similar to a traditional pointcut. A transcut only

matches a piece of computation when all of its constituent pointcuts match some corre-

sponding key join point in the computation. When a transcut contains only one pointcut, it

does exactly what the contained pointcut does. Transcuts are useful when they contain more

than one pointcut, the simplest form of which is a linear sequence of pointcuts. Figure 3.4

shows a transcut that would match computations that are generated by regions of code that

have a call toa() followed by a call tob() followed by a call toc(): 4

1 t r a n s c u t abc (){
2 p o i n t c u t a : c a l l (∗ ∗ . a ()) ;
3 p o i n t c u t b : c a l l (∗ ∗ . b ()) ;
4 p o i n t c u t c : c a l l (∗ ∗ . c ()) ;
5 }

Figure 3.4: A simple transcut composed of 3 pointcuts.

This is a very simple transcut that only captures the implicit control-flow relationship

among the join points. It might seem that the transcut matches when a trace of events

matches ana(), b(), c()sequence. That is the behaviour expected from trace-based mecha-

nisms (see Section 6 for comparison), but that is not the meaning of this transcut.

Theabc() transcut identifies pieces of computation that are known to the programmer

with three points of reference: the beginning of the computation, a(), its end,c() and some

point in between,b(). A piece of computation is a match only if it is possible to findout

(at the beginning of its execution, at least) that its key points of reference (join points) will

occur. Consequently, there can be a computation that has these join points in it but is not a

match. For example, consider the following piece of code:

4Most of the examples in this section are simple and their purpose is to illustrate the concepts or function of
the constructs. More realistic examples and applications are presented in Section 3.4.

24

1 a () ;
2 i f (c ()) {
3 b () ;
4 }
5 c () ;

In some control flow paths, the generated computation has in fact all three key join

points in it, however, it will not be known until the control is inside the computation, at

which point, onlyafter() advice can be applied, which is basically what trace-based mech-

anisms can do. Transcuts match a piece of computation only ifit can be determined, by

looking at the continuation of the head join point of the computation, that the rest of the

join points will be present in the continuation.

The transcut reifies these identified computations as join points, and consequently, can

be advised in the same way as traditional join points (all three major types of advice are

supported). The points of reference in computations, whichare join points themselves, are

in reality related. In the current design, these join pointshave to be in the same control flow

graph (method) to be visible to the matching algorithm.

Transcuts do not match against the source code; neither do they match against the ex-

ecution trace. Transcuts match at the level of the control flow graph. Understanding the

semantics of transcuts requires the concept of a region of control dependence which is ex-

plained in Section 3.3.

The pointcuts that constitute the transcut are defined almost similar to AspectJ pointcuts

with one difference: they do not have separate parameter lists for exposing context but all

share the transcut’s list of parameters.

This shared context is used to establish dataflow relationships among various join points.

For example, theabc() transcut would capture a sequence ofa(), b(), c()even if they are

called on different objects. While this behaviour might be useful in some cases, many situ-

ations require that the target of the designated join pointsbe the same object. This modified

version captures thea(), b(), andc() call join points only when they have the same target

(Figure 3.5.)

1 t r a n s c u t o b j a b c (Ob jec t ob j) {
2 p o i n t c u t a : c a l l (∗ ∗ . a ()) && t a r g e t (ob j) ;
3 p o i n t c u t b : c a l l (∗ ∗ . b ()) && t a r g e t (ob j) ;
4 p o i n t c u t c : c a l l (∗ ∗ . c ()) && t a r g e t (ob j) ;
5 }

Figure 3.5: A transcut that relates the join points based on their target object.

The context variableobj establishes a dataflow relationship between the three desig-

25

nated join points. Thetarget()pointcut in the context of transcuts does two things: exposes

the context values (which is what it does in AspectJ) and enforces a must-alias relation on

the target object of the participating join points.

From another perspective, transcuts make it possible to define new join point types.

Traditionally, the set of selectable join points is predefined by the language (e.g. method

call, field get/set,etc. in pointcut-advice join point model.) Transcuts define new types of

join points by composing them. In some sense, transcuts define new interfaces into code

which advice can affect.

3.2.1 Nested Transcuts

A transcut can be used within another transcut which makes the composition and reuse of

transcuts possible. Figure 3.6 shows an example.

1 t r a n s c u t openClose (){
2 p o i n t c u t open : c a l l (∗ ∗ . open (. .)) ;
3 p o i n t c u t rw : readW r i te () ;
4 p o i n t c u t c l o s e : c a l l (∗ ∗ . c l o s e (. .)) ;
5 }
6 t r a n s c u t readW r i te (){
7 p o i n t c u t read : c a l l (∗ ∗ . r ead (. .)) ;
8 p o i n t c u t w r i t e : c a l l (∗ ∗ . w r i t e (. .)) ;
9 }

Figure 3.6: An example of transcut nesting

3.2.2 Looped and Conditional Pointcuts

There are situations in which a transcut should be sensitiveto looped or conditional join

points. For instance, if one needs to capture join points that begin with anopen(), contain a

loop in which aread() is called, and end inclose(), the transcut in Figure 3.7 can be used.

1 t r a n s c u t r e a d l o o p (){
2 p o i n t c u t open : c a l l (∗ ∗ . open (. .)) ;
3 p o i n t c u t read : looped (c a l l (∗ ∗ . r ead (. .))) ;
4 p o i n t c u t c l o s e : c a l l (∗ ∗ . c l o s e (. .)) ;
5 }

Figure 3.7: Usinglooped()pointcut in a transcut

looped()is a new pointcut that matches a sub-region in a region of control flow if the

sub-region is a loop and the given pointcut matches somewhere in the body of the loop. The

above transcut matches the join point shadow in Figure 3.8 onthe left but does not match

the one on the right becauselooped()pointcut finds the first loop and looks into its body

26

for a shadow that matchescall(* *.read(..)) but finds another loop. If ones requires a deep

matching behaviour, thenlooped *(pc)should be used instead, wherepc is the pointcut that

should be matched inside a loop at some level down the top-level region.

1 open () ;
2 whi le (cond ())
3 read () ;
4 c l o s e () ;

1 open () ;
2 whi le (c1 ())
3 whi le (c2 ())
4 read () ;
5 c l o s e () ;

Figure 3.8: A match forreadloop()(left) and a non-match (right).

Similarly, theconditional()pointcut can be used to express interest in join points that

may (conditionally) occur. An example is shown in Figure 3.9, which matches the shadow

on the left in Figure 3.10 but does not match the one on the right. To match a join point

conditionally at any level,conditional *(pc)should be used, wherepc is the pointcut that

should match conditionally.

1 t r a n s c u t r e a d C o n d i t i o n a l l y (){
2 p o i n t c u t open : c a l l (∗ ∗ . open (. .)) ;
3 p o i n t c u t read : c o n d i t i o n a l (c a l l (∗ ∗ . r ead (. .))) ;
4 }

Figure 3.9: Usingconditional()pointcut in a transcut

1 open () ;
2 i f (s u c c e s s ())
3 read () ;

1 open () ;
2 i f (s u c c e s s ())
3 i f (c1 ())
4 read () ;

Figure 3.10: A match forreadConditionally()(left) and a non-match (right).

Looped()andconditional()pointcuts can be composed to create new transcuts that can

express various composite join point relationships, as shown in Figure 3.11, which can

potentially matches the code in Figure 3.12 (if the calls areall on the same object.)

Figure 3.13 shows an advice that targets the transcut in Figure 3.11 and simply exe-

cutes the original join point. The purpose of this example was to show the composition of

looped()andconditional()and does not have any special purpose.

3.2.3 Dependent Pointcut

Dependent pointcut,dependent(), is the generalized form of matching join points that exe-

cute conditionally, that is, either in a loop body or in a conditional, at any regional depth.

27

1 t r a n s c u t loopedCond i t i on a l Re a d (Ob jec t ob j){
2 p o i n t c u t open : c a l l (∗ ∗ . open (. .)) && t a r g e t (ob j) ;
3 p o i n t c u t loopedRead : looped (c o n d i t i o n a l (readData (ob j))) ;
4 p o i n t c u t condRead : cond i t i ona lRead L oop (ob j) ;
5 p o i n t c u t c l o s e : c a l l (∗ ∗ . c l o s e (. .)) ;
6 }
7 t r a n s c u t readData (Ob jec t ob j){
8 p o i n t c u t a : c a l l (∗ ∗ . readA (. .)) && t a r g e t (ob j) ;
9 p o i n t c u t b : c a l l (∗ ∗ . readB (. .)) && t a r g e t (ob j) ;

10 }
11 t r a n s c u t cond i t i ona lReadL oo p (Ob jec t ob j){
12 p o i n t c u t read : c o n d i t i o n a l (looped (c a l l (∗ ∗ . r ead (. .))
13 && t a r g e t (ob j))) ;
14 }

Figure 3.11: Composition ofconditional()andlooped()pointcuts.

1 open () ;
2 whi le (r unn ing ()) {
3 i f (r eady ()) {
4 readA () ;
5 readB () ;
6 }
7 }
8 i f (s u c c e s s ()) {
9 whi le (r eady ())

10 read () ;
11 }
12 c l o s e () ;

Figure 3.12: A match forloopedConditionalRead.

1 vo id around (Ob jec t ob j) : l oopedCond i t i o n a l R e a d (ob j){
2 proceed (ob j) ;
3 }

Figure 3.13: An advice that targets a transcut and simply executes the original join point.

28

This pointcut is a powerful and syntax-independent way of expressing conditional execu-

tion of a join point. For instance, consider the different ways a read operation can occur in

a program in Figure 3.14, all of which can be designated with the transcut in Figure 3.15.

1 open () ;
2 whi le (r unn ing ())
3 i f (r eady ())
4 read () ;
5 }
6 c l o s e () ;

1 open () ;
2 i f (r eady ())
3 whi le (r unn ing ())
4 read () ;
5 c l o s e () ;

1 open () ;
2 i f (r eady ())
3 read () ;
4 c l o s e () ;

Figure 3.14: Three different matches for the same transcut.

1 t r a n s c u t read (){
2 p o i n t c u t open : c a l l (∗ ∗ . open (. .)) ;
3 p o i n t c u t read : dependen t (c a l l (∗ ∗ . r ead (. .))) ;
4 p o i n t c u t c l o s e : c a l l (∗ ∗ . c l o s e (. .)) ;
5 }

Figure 3.15: A transcut usingdependent()pointcut.

3.2.4 Dataflow Pointcuts and Context Exposure

The traditional context-binding dynamic pointcuts (i.e. this(), target(), args()) bind their

variables to the corresponding values exposed by join points. For instance, when anargs()

pointcut is matched against a method-call join point, it binds its variables to the respective

arguments of the method call (which are already evaluated and available). Therefore, if the

join point matches, the exposed context can be used (and/or altered) in advice.

The context variables exposed by a transcut, however, couldbe bound by a context-

binding pointcut at any point within the transcut. The problem is that not all the join points

designated in a transcut are activated at the time the transcut is being matched and advised,

therefore, their context values might not be available yet to be exposed; in other words, an

exposed context variable might not have any meaningful value if its value is being defined

within the join point. Transcut parameters are dual purpose: they are used both for context

exposure (as in traditional pointcuts) and for establishing data-flow relations between join

points (there might be opportunity for improvement here by separating the two roles.) In the

latter case, the transcut binds its variable to the compile-time representation of the context

value (a local variable in the intermediate code) and makes it possible to track the data-flow

using a must-alias analysis.

In general, it is meaningful to expose a context value only ifthe value is generated

outside of and used inside the region join point and remains unchanged throughout the

29

join point. This definition of context ensures that the exposed context value makes sense

right at the time the region join point is activated (which isthe beginning of the designated

computation). An example islogger context variable in Figure 3.2, which is bound by the

target(logger)pointcut at line 17.

Thereturn() pointcut, which is similar to the one defined in [39], binds its parameter to

the returned value of a join point, which does not exist before the join point execution.

3.2.5 Overlapping Transcuts

The designated join points of multiple transcuts can overlap without any restriction because

pointcuts do not have computation effects [18] and transcuts are no exception. However,

two transcuts can simultaneously receivearound()advice only if their designated join point

shadows are disjoint or one is contained in the other (the head or tails of the shadows can

overlap).Before()andafter() advice are applicable even when the transcuts overlap.

1 t r a n s c u t abc (){
2 p o i n t c u t a : c a l l (∗ ∗ . a (. .)) ;
3 p o i n t c u t b : c a l l (∗ ∗ . b (. .)) ;
4 p o i n t c u t c : c a l l (∗ ∗ . c (. .)) ;
5 }
6 t r a n s c u t be () {
7 p o i n t c u t a : c a l l (∗ ∗ . b (. .)) ;
8 p o i n t c u t b : c a l l (∗ ∗ . e (. .)) ;
9 }

Figure 3.16: Two overlapping transcuts

The transcuts in Figure 3.16 match two overlapping regions of the following code:

1 a () ; b () ; c () ; e () ;

Therefore,around()advice is not allowed, if both are advised. However,before()and

after() advice can be applied.

It it worth mentioning that these kinds of situations cannotbe handled through refactor-

ing because two different views of the target computation are needed simultaneously.

3.3 Program Dependence Graph: the Join Point Representation

Program Dependence Graph (PDG) [21] is a program representation in which both control

flow and data flow relationships among program operations aremade explicit. PDG has

successfully been used for program optimization, parallelization, slicing, automatic testing,

etc. all of which require that dependencies among program statements be easily accessi-

ble. Nodes in PDG are the same as the nodes in Control Flow Graph (i.e. basic blocks, or

30

at a lower level, instructions). Edges in PDG denote controldependency and data depen-

dency between two nodes. Control flow information is implicitly available in PDG through

ordering, but it can also be explicitly represented throughcontrol flow edges.

As explained in the previous section, transcuts capture thecontrol flow and data flow re-

lationships among join points; therefore, PDG, quite naturally, is the most suitable program

representation for realizing transcuts because it makes both types of relationships explicit

and readily available. In this section, we illustrate a PDG of a simple program and explain

how it is constructed.

Figure 3.17 shows a program and its CFG, Figure 3.18 shows itsdominator and post-

dominator trees, and Figure 3.19 shows the corresponding PDG. Only control flow depen-

dencies are shown in the PDG because we currently do not use explicit data flow edges in

PDG.

} e

c3

f

e2

ENTRY

EXIT

c2

a

c1

g

b

d

void m()
{
 a();
 while(c1())
 {
 b();
 while(c2())
 d();
 if(c3())
 e();
 else
 e2();
 f();
 }
 g();

Figure 3.17: A program and its CFG

Informally, nodeB is control dependent on nodeA if the execution ofA determines

whetherB executes or not. The formal definition from [21] is as follows. LetG be a control

flow graph. LetX andY be nodes inG. Y is control dependent onX iff

1. there exists a directed pathP from X to Y with anyZ in P (excludingX andY)

post-dominated byY and

2. X is not post-dominated byY .

For instance, method callb() is dependent onc1()because there is a path fromc1() to b()

that only containsb() andc1() (therefore the first condition holds because there is noZ in

the path), andc1() is not post-dominated byb() (see Figure 3.18). Intuitively,b() is control

31

dependent onc1() because the execution ofb() depends on the result of the execution of

c1(). But c1() is not control dependent ona() becausea() is post-dominated byc1().

Intuitively, c1()’s execution is not dependent ona()’s execution.

c2

bg

d c3

e e2 f

c1

a

e2

fa

g

c1

d b

c2 e c3

Figure 3.18: Dominator (left) and post-dominator (right) trees

Nodes in a PDG can be CFG nodes or region nodes and there is an edge fromA to B if

B is control-dependent onA. A region node summarizes and factors out the set of control

dependences of a set of nodes in a PDG. For instance, all the nodes within the body of the

top-level loop in Figure 3.17 are control dependent onc1(); so, a region node can represent

this shared dependence set: region nodeR2 in Figure 3.19 is created and made control

dependent onc1() and all the nodes in the body of the loop are made control-dependent on

R2. This dependence set summarization is performed for all control dependences and the

created region nodes are added to the PDG. At each level of thePDG, nodes are ordered

from left to right according to the flow of control. In other words, control flow in each

region in PDG (i.e. the child nodes of the region) is from left to right.

Initially, we used weak regions (defined in the next section)as the basis of transcut

matching, however, we did not have a PDG as the program representation, therefore, the

relationships between regions were not available to the matching algorithm.5 PDG makes

the region hierarchy explicit and available for matching. For instance, inner loops can easily

be identified (e.g.regionR3 is the inner loop in regionR1).

Various algorithms have been proposed to efficiently compute the PDG6 of a program

(e.g. [21], [12], [27], [6]). We reuse the region analysis machinery that we initially imple-

mented to build weak regions (based on the algorithm in [6]) and construct the PDG based

on the algorithm given in [21].

5For example, the region corresponding to a loop body and the parent region that contained the whole loop
were considered independently for matching.

6Some only compute the Control Dependence Graph and some onlythe set of regions.

32

n

R0

a R1 g

c1

R2

b f

e2e

R3

R5 R6

c3

c2

R4

d

Weak regions:
 {a, c1, g},
 {b, c2, c3, f},
 {d}, {e}, {e2}.

Strong regions:
 {a, g}, {c1},
 {b, c3, f}, {c2},
 {d}, {e}, {e2}.

y

Figure 3.19: PDG of the program in Figure 3.17

3.3.1 Region Analysis

In any execution path from the beginning of the flow graph to the end, either all the nodes in

a region execute or none of them do. Regions are, therefore, the natural extension of basic

blocks (the control enters through the header of a block and exits through the end). Regions

can beweakor strong. We use these definitions from [45], which result in slightlydifferent

regions than the ones defined in [1].

• Weak Region: verticesv andw are in the same weak region iff for any complete

control-flow path,v andw are both in the path or are both absent from the path.

• Strong Region: verticesv andw are in the same strong region iffv andw occur the

same number of times in any complete control-flow path.

We used an algorithm presented in [6] which finds weak regionsbased on the observa-

tion that

• v andw are in the same weak region iff (v dominatesw andw post-dominatesv) or

(w dominatesv andv post-dominatesw).

Strong regions would be the same as weak regions if there wereno loops in the CFG.

Distinct verticesv andw are in the same strong region iff

• they are in the same weak regionand

• (v is in every cycle containingw) and (w is in every cycle containingv.)

33

The weak and strong regions of the CFG in Figure 3.17 are shownin Figure 3.19. Note

that the regions in the PDG correspond to the strong regions.The linear algorithm given in

[6] is based on the key observation that for any CFG the vertices of each weak region form

a chain in the post-dominator tree that is the reverse of a chain in the dominator tree (see

Figure 3.18 for the chains corresponding to the weak region{a, c1, g}).

After computing the weak regions, we compute the strong regions and construct the

PDG at the same time. The outline of the algorithm is as follows. Given the list of weak

regions, PDG can be constructed by finding the inter-region dependencies. Starting from

the top-level weak region, a top-level PDG node,R, is created and for each (CFG) nodeA

in the region, first, a PDG node is created to representA in the PDG, then, a dependency

edge is added fromR to the PDG node representingA.

Then the set of nodes that are dependent onA are found: for each edge (A,B) in the

CFG such thatB does not post-dominateA, let L be the least common ancestor ofA and

B in the post-dominator tree. EitherL is A or L is the parent ofA in the post-dominator

tree (see [21] for proof). IfL is the parent ofA, then all nodes in the post-dominator tree

on the path fromL to B, including B but notL, are control dependent onA. If L is A,

then all nodes in the post-dominator tree on the path fromA to B, includingA andB, are

control dependent onA (this case captures loop dependence.) Both cases can be covered

by traversing backwards fromB in the post-dominator tree until we reachA’s parent (if

it exists, orA otherwise) and adding all visited nodes to a list as nodes that re control

dependent onA.

The A’s PDG node is changed to be a “Conditional” PDG node to represent the fact

that there are nodes that depend on it; then, for each of the dependants ofA, the containing

(weak) region is looked up7 and a PDG node is created to represent it; a dependency edge

is then added from theA’s PDG node to the region’s PDG node. This step is repeated for

all the nodes in the list of dependants that are in a differentweak region than the previously

processed dependants ofA. Loops that contain abrupt exit or continuation statementscause

some conditions that need to be checked in the above steps. When it turns out that a loop

header is being processed, a new strong region is created along with its corresponding

PDG node which is added to the graph and the appropriate dependency edges are added.

It is worthwhile to mention that loops create circular dependencies in the PDG. For more

details on how PDG is constructed and also how we handle non-normative control flow see

Appendix A.

7This information is available from the region analysis phase.

34

Regions have an important property that makes them very useful in realizing transac-

tional pointcuts: if the normal flow of control enters the region (which occurs only through

the head node of the region), it will go through all the nodes in the region, and eventually

exit through the tail node of the region; this property is similar to the property of basic

blocks [1] with the difference that regions can consist of non-contiguous pieces of code. In

other words, while the control is within a region, other regions might be activated but the

control would eventually return to the original region.

3.3.2 Join Point Shadows

Join points in our model are either

• traditional call, constructor, or set/get join points, or

• a set of related join points that occur in the same region of control dependency.

The above definition is recursive, in the sense that, once join points are selected using a

transcut in our model, they can be used in other transcuts to designate other composite join

points.

We match a transcut against all the potential join point shadows. A join point shadow in

our model is a Single-Entry-Single-Exit (SESE) segment of acontrol dependence region in

the PDG. For example, the segment of code that begins witha() and ends ing() is a SESE

sub-region ofR0 in the PDG in Figure 3.19. Similarly, the sub-region that begins with c3()

and ends inf() is a SESE sub-region ofR2, and so on. To instantiate all the potential region

shadows in a method, we consider all the regions in the PDG andmake a linear list of nodes,

ordered based on control flow, in that region (e.g. [a(), c1(), g()]in R0). Each sub-region

of such a linear list is a SESE sub-region and should be considered a join point shadow and

be checked for potential matches. There could be different ways of instantiating these sub-

regions and each approach might affect the semantics of matching. In our current approach,

each node in the region is the start of a shadow and the end of the shadow is determined at

matching time. Figure 3.20 shows a SESE region and its potential shadows.

The matching is aware of the PDG structure, that is, region hierarchy, loop structure,

conditional regions. In fact, without PDG it would not be possible to support nested, looped,

and conditional transcuts.

35

tail

region shadows

c3

c2

f

b head

Figure 3.20: A region and its potential shadows

3.3.3 PDG-based Matching Algorithm

Figures 3.21, 3.22, and 3.23 show a simplified version of the PDG-based matching algo-

rithm. For brevity and readability, many details (types, parameters, context variable track-

ing, etc.) are omitted. Also, only the conditional pointcut matchingis presented as the loop

and dependent pointcuts are similar. Some comments are added in the algorithm to make it

easier to understand. A more narrative description follows.

The algorithm is divided into three procedures to make it easier to present. The top-level

procedurematch(tc, rsm), matches the transcuttc against the region shadowrsmand returns

a residue that can be eitherAlwaysMatch, NeverMatch, or primitive operation such as bind-

ing a variable to a value, or a combination thereof. A residuerepresents the code that need

to be inserted before a join point to be executed at runtime. Needless to say,AlwaysMatch,

andNeverMatchrepresent no code but are used to determine if there is definitely a match

or no match.

After some initialization (explained inside the figure), a loop iterates through the or-

dered list of pointcuts that constitute the transcut; each pointcut is matched against potential

positions in the region starting at locationi which is the head of the current shadow,rsm

(line 29,matchPointcutInRegion()). If a match cannot be found, then the transcut matching

returns with no matching; otherwise, the returned residue is combined with the residues of

the previous constituent pointcuts’ residues (line 40). Ifthe loop reaches to the end of the

list of pointcuts, that means there is a match and the accumulated residue is returned.

The index of the current matching target within the region,i, which represents the index

of the current matching target within the region, is boxed before being passed to other

matching procedures so that it can retain applied changes. There is another boxed variable

of type boolean that is used to track when the head of the shadow is matched. This variable

is necessary because, in our implementation, each instruction is the head of a new shadow,

as discussed previously, and it has to match the current pointcut if the current pointcut is

36

1 Res idue match (T r a n s c u t tc , RegionShadowMatch rsm){
2
3 Res idue r e s = AlwaysMatch ;
4 p o i n t c u t s = o r d e r e d l i s t o f c o n s t i t u e n t p o i n t c u t s in t c ;
5
6 i f (p o i n t c u t s i s empty)
7 re tu rn NeverMatch ;
8
9 r e g i o n = t h e r e g i o n c o n t a i n i n g t h e shadow , rsm ;

10 u n i t s = t h e o r d e r e d l i s t o f i n s t r u c t i o n s in t h e r e g i o n ;
11
12 / / boxed i n t e g e r to keep t r a c k o f t h e c u r r e n t p o s i t i o n in t h e reg ion
13 i = index of t h e head of t h e shadow in t h e r e g i o n ;
14
15 / / boxed boolean , s e t to t r u e when t h e head o f t h e shadow i s matched
16 headMatched =f a l s e ;
17 /∗
18 I t e r a t e th rough t h e c o n s t i t u e n t p o i n t c u t s and match one by one .
19 There i s a match i f t h e l a s t p o i n t c u t matches w i t h i n t h i s shadow .
20 ∗ /
21 whi le (no t reached t h e end of t h e l i s t o f p o i n t c u t s){
22
23 cu r ren tPC = nex t p o i n t c u t in t h e l i s t ;
24
25 I f (reached t h e end of t h e shadow)
26 re tu rn NeverMatch ;
27
28 / / Match t h e c u r r e n t p o i n t c u t in t h e reg ion from t h e c u r r e n t po s i t i o n
29 r = m atchPo in tc u t I n Re g i on (tc , cur rentPC , reg ion , i , headMatched) ;
30
31 i f (r == NeverMatch)
32 re tu rn r ;
33
34 /∗
35 At t h i s po in t , t h e c u r r e n t p o i n t c u t has matched t h e c u r r e n t
36 p o s i t i o n in t h e reg ion ; combine t h e new r e s i d u e and t h e
37 p r e v i o u s one ; c o n t i n u e to t h e n e x t p o i n t c u t and p o s i t i o n .
38 ∗ /
39
40 r e s = combine (res , r) ;
41 }
42
43 /∗ At t h i s po in t , a match has been found .∗ /
44 re tu rn r e s ;
45 }

Figure 3.21: Transcut Matching Algorithm

37

the first pointcut in the transcut.

Figure 3.22 shows the algorithm for procedurematchPointcutInRegion()called from

match(). At the beginning of the procedure, after some initialization, the current index,i

(which is copied toj), is checked to see if it is the end of the current region, in which

case the matching fails. This check is done at the beginning of almost all of the matching

procedures because these procedures might be called mutually recursively form within other

procedures.

From line 10 to 17, depending on the type of the current pointcut, the proper matching

procedure is called. For example, if the pointcut is aconditional()pointcut, thenmatchCon-

ditionalInRegion()is called whose algorithm is depicted in Figure 3.23. If the pointcut is

none of the dependent pseudo pointcuts (i.e. looped(), conditional(), or dependent()), then

the matching continues in the same procedure by iterating through all instructions from the

current index,j, to the end of the current region (line 17.)

Each instruction can be the beginning of different kinds of method positions, such as

statement position and region position, for each of which a special position object is created

(line 20, which, for simplicity, is showing only one position object;) then a procedure is

called (doShadows()) that goes through all different kinds of shadows to see if the position

can be a candidate for any of them. If so, a shadow object is created for that position and

matched against the currentPC pointcut. If a match is found,the corresponding residue is

returned. For brevity, details have been omitted.

After a match is is found, if currentPC is a transcut itself (i.e. a nested transcut, which

has matched), then the newly-bound context variables should be checked to be compatible

with the previously-bound ones (line 29.) The context variables are the variables that are

declared by the transcut definition and bound within it. A must-alias analysis is used to find

out whether the new bindings are compatible with the old ones. The bindings are saved in

the transcut that is being matched (lines 37, 48.) ANeverMatchis returned if the bindings

are not compatible.

Whether the current pointcut is a transcut or a traditional pointcut (call()), upon success-

ful matching, the current matching index is adjusted accordingly (line 36, 47), the context is

saved (lines 37, 48), theheadMatchedflag and thei box are set if needed (lines 39-42, 50-

53), and finally, the residue is returned (line 43, 54.) Otherwise, if the current position does

not match the current pointcut, then the accumulated context bindings in the transcut are

cleared (line 60), and if this match was supposed to be a head match but theheadMatched

flag is false, then the matching fails; otherwise, the loop continues with the next instruction.

38

1 Res idue m atchPo in tc u t I n Re g i on (tc , cur rentPC , reg ion , i, headMatched){
2
3 u n i t s = t h e o r d e r e d l i s t o f i n s t r u c t i o n s in t h e r e g i o n ;
4 / / Note t h a t i i s a boxed i n t e g e r and j i s a normal i n t e g e r
5 j = i ;
6
7 I f (r eached t h e end of t h e shadow)
8 re tu rn NeverMatch ;
9

10 i f (cu r ren tPC i s a Loop p o i n t c u t)/ / looped ()
11 re tu rn matchLoopInRegion (tc , cur rentPC , reg ion , i , headMatched) ;
12 e l s e i f (cu r ren tPC i s a C o n d i t i o n a l p o i n t c u t) / / c o n d i t i o n a l ()
13 re tu rn m atchCond i t i o na l I n R eg i on (tc , cur rentPC , reg ion , i , . . .);
14 e l s e i f (cu r ren tPC a Dependent p o i n t c u t)/ / dependen t ()
15 re tu rn matchDependent InRegion (tc , cur rentPC , reg ion , i , . . .) ;
16
17 e l s e fo r(a l l i n s t r u c t i o n s from j to t h e end of r e g i o n){
18
19 c u r r e n t = t h e j ’ t h i n s t r u c t i o n in t h e r e g i o n ;
20 pos = t h e p o s i t i o n of t h e c u r r e n t i n s t r u c t i o n in t h e method;
21 r = doShadows (cur rentPC , pos) ;
22
23 i f (r != NeverMatch) {
24
25 /∗ I f cu r ren tPC i s a t r a n s c u t , check t h e newly−bound c o n t e x t
26 v a r i a b l e s to be com pat ib le w i th t h e p r e v i o u s l y−bound ones .∗ /
27
28 i f (cu r ren tPC i s a T r a n s c u t){
29 r = checkBoundContex tVars (tc , cur rentPC , r) ;
30
31 i f (r != NeverMatch) {
32
33 /∗ Matched n e s t e d t r a n s c u t . . . moving on to t h e
34 nex t p o i n t c u t / s t a t e m e n t∗ /
35
36 j = t h e index of t h e l a s t matched i n s t r u c t i o n + 1 ;
37 save bound c o n t e x t in t c ;
38
39 i f (! headMatched)
40 headMatched . s e t V a l u e (t r u e) ;
41
42 i . s e t V a l u e (j) ;
43 r e t u r n r ;
44 }
45 }
46 e l s e {
47 j = t h e index of t h e l a s t matched i n s t r u c t i o n + 1 ;
48 save bound c o n t e x t in t c ;
49
50 i f (! headMatched)
51 headMatched . s e t V a l u e (t r u e) ;
52
53 i . s e t V a l u e (j) ;
54 1 r ;
55 }
56 }
57 / / Not matched . . .
58 / / c l e a r t h e tem pora ry bound v a r i a b l e s in t h e l a s t t r y
59 c l e a r bound c o n t e x t in t c ;
60
61 /∗ I f t h i s was supposed to be a head match bu t t h e f l a g s t i l l
62 i s f a l s e , then i t i s a no match .∗ /
63
64 i f (! headMatched)
65 r e t u r n NeverMatch ;
66 }
67 /∗ Reached t h e end of t h e r e g i o n w i thou t match ing a l l t h e p o i n t cu t s ;
68 so , r e t u r n no match .∗ /
69 r e t u r n NeverMatch ;
70 }

Figure 3.22: Transcut Matching Algorithm (matchPointcutInRegion)

39

If the loop reaches the end of the region while trying to matchthe current pointcut, the

matching returnsNeverMatch(line 74.)

Figure 3.23 shows the procedure for matching a conditional pointcut in a region. Es-

sentially, the PDG nodes in the region are iterated, starting from the node corresponding to

the current instruction (i), until a conditional PDG node that is not a loop header is found.

Then, for each PDG node dependent on the conditional node, the previously discussed

matchPointcutInRegion()is called to match the inner pointcut of the conditional pointcut

(currentPC) within the dependent region represented by thedependent PDG region; that is,

for a conditional pointcut, which has the formconditional(pc), matchPointcutInRegion()is

called to matchpc in the dependent region.

The matching index and the boolean flag indicating a head match need to be created,

set to their default values, and passed in the matching procedure (lines 28-31) because this

matching is in a new region. If the inner pointcut does not match within the dependent re-

gion, then if the conditional pointcut is in deep matching mode (i.e. conditional *(pc)), an-

other matching effort is made: this time,matchConditionalInRegion()is recursively called

to match for the current conditional pointcut (currentPC) within the dependent region, to

give a chance to all the regions that are nested deep in the region (lines 34-38.)

In any case, when a match is found, then the next instruction from where the matching

should continue is determined and thei index is adjusted accordingly. It is worth men-

tioning that when a match is found, the tail of the shadow match need to be adjusted due

to different way dependent pointcuts match. Basically, thefirst and last point of the con-

ditional shadow match should be adjusted in such a way that itmimics a reduction of the

conditional node in the program. The intuition is that, if the shadow is not executed, it is as

if the conditional was never there. The same goes with loop matches. When constructing

the PDG, the flow relationships between the PDG nodes are determined as well; therefore,

once the current conditional PDG node (cnode) is found out tobe a match for the current

conditional pointcut, then next PDG node in the flow is retrieved whose head instruction

will be the next matching index (44-46.) The rest of the matching is similar to the previous

procedure.

3.4 Applications

In this section we present a few examples to show the power of transcuts to address some

familiar problems.

40

1 Res idue m atchCond i t i on a l I nR e g i o n (tc , cur rentPC , reg ion , i , headMatched){
2
3 u n i t s = t h e o r d e r e d l i s t o f i n s t r u c t i o n s in t h e r e g i o n ;
4 j = i ;
5
6 I f (r eached t h e end of t h e shadow)
7 re tu rn NeverMatch ;
8
9 pdgNodes = o r d e r e d l i s t o f PDG nodes in t h e r e g i o n ;

10
11 curPDGNode = t h e PDGNode c o r r e s p o n d i n g to t h e c u r r e n t i n st r u c t i o n ;
12
13 /∗ I f t h i s i s supposed to be a head match∗ /
14 i f (! headMatched){
15
16 i f (curPDGNode i s no t a C o n d i t i o n a l node
17 or t h e c u r r e n t i n s t r u c t i o n a t index i i s
18 no t a b ranch ing i n s t r u c t i o n)
19 re tu rn NeverMatch ;
20 }
21
22 / / f rom t h e c u r r e n t PDG node to t h e end o f t h e l i s t
23 whi le (t h e r e i s a node (cnode)){
24 i f (cnode i s C o n d i t i o n a l and no t a loop header){
25 f o r e a c h (dependen t node (depNode) o f cnode){
26
27 dependentReg ion = t h e r e g i o n c o r r e s p o n d i n g to t h e dependen t node
28 createNewBoxes : i2box = 0 , headMatched2 =f a l s e ;
29
30 r = m atchPo in tc u t I n R e g i o n (tc , cu r ren tPC . g e t D e p e n d e n tP o i n t c u t () ,
31 dependentReg ion , i2box , headMatched2) ;
32
33 / / Go deep in t h e c o n d i t i o n a l r e g i o n s ?
34 i f ((r == NeverMatch) and (cu r ren tPC i s a deep p o i n t c u t){
35 c r e a t e and i n i t i a l i z e boxes (as above) ;
36 r = m atchCond i t i on a l I nR e g i o n (tc , cur rentPC , dependentReg ion ,
37 i2box , headMatched2) ;
38 }
39 i f (r != NeverMatch) {
40
41 /∗ f i n d t h e n e x t i n s t r u c t i o n from where match ing shou ld
42 c o n t i n u e∗ /
43
44 next InF low = t h e PDG node nex t in t h e c o n t r o l f low of cnode
45 f i r s t O f N e x = t h e f i r s t i n s t r u c t i o n in next InF low
46
47 j = index of f i r s t O f N e x t in t h e r e g i o n + 1 ;
48 t c . saveBoundContex t () ;
49
50 i f (! headMatched)
51 headMatched . s e t V a l u e (t rue) ;
52
53 i . s e t V a l u e (j) ;
54 re tu rn r ;
55 }
56 }
57 /∗ I f t h i s was supposed to be a head match bu t d id no t match
58 t h e f i r s t node , then t h i s cannot be a match .∗ /
59
60 i f (! headMatched . ge tVa lue ())
61 re tu rn NeverMatch ;
62 }
63 }
64 re tu rn NeverMatch ;
65 }

Figure 3.23: Transcut Matching Algorithm (matchConditionalInRegion)

41

3.4.1 Modularizing Exception Handling

Exception handling concerns cross-cut the implementationof the normal behaviour of a

system. In Java and many other languages repetitive exception handling code is tangled

with the normal code. But some studies [36] show that the number of reactions to different

exceptions is considerably lower than the number of places exceptions are caught, therefore

there is the opportunity for reuse of the handling patterns.

Writing flawless exception-handling code is hard. As reported in [57], many pro-

grams fail to properly release acquired resources along allexecution paths in the presence

of run-time errors. Many programmers that are aware of exceptions and use proper con-

structs to catch and handle them, still write faulty exception-handling code. Writing correct

exception-handling code becomes even more difficult when the number of resources that

need to be handled increases (e.g. a database connection, a query statement, and a query

result set are three resources typically involved in a database operation). Correctly dealing

with N resources typically requiresN nested try-finally statements or a number of run-time

checks to track if resources are still allocated.

Therefore, it makes sense to factor exception handling codeinto a separate module.

However, traditional programming languages, such as C++ and Java, do not support such

separation. AOP languages (e.g. AspectJ) provide facilities to achieve this separation to

some extent. As an example, Figure 3.24 shows an AspectJ program that capturesIOEx-

ception’s that are raised inside the methods ofLoader.8 With the help of this aspect, the

original code is shorter and more readable. Tangible results of applying aspects for handling

exceptions in a real code base are reported in [36].

The limitations in AspectJ’s join point model prevent us from fully separating excep-

tion handling code from the base code. If the target piece of code is a single join point,

then it can be handled in AspectJ. But if it consists of more than one join point, its excep-

tion handling cannot be modularized in AspectJ without refactoring, because there is no

join point corresponding to the execution of an arbitrary block of code. This limitation,

that AspectJ does not provide the necessary means to captureand handle exceptions inside

method boundaries, is mentioned in [36] but no solution has been proposed. [8] shows that

refactoring these target blocks to expose them as join points results in low cohesion among

other things.

8In Java, potential checked exceptions must be either handled or thrown; to get around this problem and
handle exceptions in an aspect, AspectJ provides a work-around and that is todeclarethat a checked exception
is soft. When an exception is softened, aSoftException, which is an unchecked exception, is thrown instead of
the original exception.

42

1 a s p e c t E xcep t ionHand l ingAspec t{
2
3 p o i n t c u t loadMethods () :
4 e x e c u t i o n (∗ Loader . l oad∗ (. .)) ;
5 d e c l a r e s o f t : IOExcept ion : loadMethods () ;
6
7 vo id around () : loadMethods (){
8 t r y {
9 proceed () ;

10 }
11 catch (IOExcept ion e) {
12 System . ou t . p r i n t l n (e . getMessage ()) ;
13 }
14 }
15 }

Figure 3.24: Handling an exception is an aspect

Figure 3.25 shows an example program that performs an input operation within a method

(from [50].) During the execution ofsomeMethod(), anIOExceptioncould be raised some-

where between the creation of the file input reader up to the point that the reader is closed

(lines 12-16). Although in AspectJ one can wraptry-catch block around captured join

points, there is no join point corresponding to the execution of an arbitrary block of code.

Transactional pointcuts provide a solution; Figure 3.26 shows an aspect that implements

the recommended practice for handling resources in the presence of exceptions.

1 pub l i c c l a s s Buf feredReaderExample{
2
3 pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
4 Buf feredReaderExample example =new Buf feredReaderExample () ;
5 example . someMethod () ;
6 }
7
8 pub l i c vo id someMethod () throws IOExcept ion {
9 doSomeWork () ;

10
11 / / now read some data . . .
12 Bu f fe redReader r e a d e r =new Buf fe redReader (new F i l e R e a d e r (” ou t . t x t ”)) ;
13 S t r i n g s t r = n u l l ;
14 whi le ((s t r = r e a d e r . readL ine ()) !=n u l l)
15 p r o c e s s (s t r) ;
16 r e a d e r . c l o s e () ;
17
18 doSomeOtherWork () ;
19 }
20 }

Figure 3.25: A file operation within method boundaries that could throw exceptions

The transactional pointcutfileInputOp (lines 7-12) designates the target piece of file

opening-processing-closing code, which could leak the reader resource if an exception oc-

curs and is not properly handled. The aspect contains a field,m bufReader, of typeBuffere-

dReaderto keep track of the actualBufferedReaderobject from the creation point to the

43

1 a s p e c t E xcep t ionAspec t pe rc f l ow (e x e c u t i o n (∗ Buf feredReaderExample .∗ (. .))) {
2
3 d e c l a r e s o f t : IOExcept ion : c a l l (∗ Buf feredReaderExample .∗ ()) ;
4
5 p r i v a t e Buf fe redReader mbufReader = n u l l ;
6
7 t r a n s c u t f i l e I n p u t O p (Bu f fe redReader bufReader , F i l e R ea d e r f i l e R e a d e r){
8 p o i n t c u t c r e a t e : c a l l (F i l e R e a d e r .new (. .)) && re tu rn (f i l e R e a d e r) ;
9 p o i n t c u t b u f C r e a t e : c a l l (Bu f fe redReader .new (. .)) && a r g s (f i l e R e a d e r)

10 && re tu rn (bu fReader) ;
11 p o i n t c u t c l o s e : c a l l (∗ Buf fe redReader . c l o s e ()) && t a r g e t (bufReader) ;
12 }
13
14 p o i n t c u t b u f f e r C r e a t e () : c a l l (Bu f fe redReader .new (. .))
15 && cf low (e x e c u t i o n (vo id Buf feredReaderExample .∗ ())) ;
16
17 a f t e r () r e t u r n i n g (Bu f fe redReader b f) : b u f f e r C r e a t e (){
18 m bufReader = bf ;
19 }
20
21 vo id around (Bu f fe redReader bf , F i l e R e a d e r f r) : f i l e I n p u t O p (bf , f r) {
22 t r y {
23 proceed (bf , f r) ;
24 m bufReader = n u l l ;
25 }
26 catch (IOExcept ion e) {
27 / / Handle IOE xcep t ion i f p o s s i b l e
28 }
29 f i n a l l y {
30 / / r e s o u r c e c r e a t e d and no t r e l e a s e d ?
31 i f (m bufReader != n u l l)
32 t r y { m bufReader . c l o s e () ;}
33 catch (E xcep t ion e){ / / Handle i t}
34 }
35 }
36 }

Figure 3.26: An aspect that implements recommended practice for handling resources

release point. Theafter() advice at lines 17-19, setsm bufReaderto the returned object

of the successful constructor call. Thearound() advice at lines 21-35, which intercepts

the execution of the target file operation (designated byfileInputOp), wraps the operation

inside atry-catch-finallyto capture any exception; if the target file operation finishes suc-

cessfully (i.e. the execution gets to line 23),m bufReaderis set tonull because, at this point,

one can be sure that the BufferedReader.close(), in the target file operation, has executed

successfully.IOExceptionis handled at lines 26-28, and then in thefinally block (that is,

regardless of whether an exception is thrown or not),m bufReaderis checked to see if the

object has been created and not released, in which case, it will be released (lines 31-34).

If other types of exceptions (e.g. NullPointerException, etc.) are thrown somewhere in the

operation,m bufReaderwill still be properly handled and the unhandled exception will be

propagated.

One might wonder why in thebufferCreatepointcut (lines 14-15) we keep track of the

44

targetBufferedReaderobject using a member field in the aspect, while the transcut binds

one of its parameters to the object (Line 10). This is necessary because it only makes sense

to expose the context values that do not change within the join point; the BufferedReader

object is created within the join point, therefore its valuecannot be exposed before the join

point has even executed. In such cases, he context variablesonly act as data flow variables

which are used to establish data flow relations among join points. Hence, the aspect keeps

track of the created object manually through another variable.

3.4.2 Transaction Management

The program in Figure 3.27 connects to a database and updatesa list of old values in a

table with new ones. There are at least three important concerns that a programmer should

have and handle when writing this code. First, most of the code statements can potentially

throw checked exceptions, which need to be handled, becauseJava enforces the handling

of checked exceptions unless the containing method’s signature is explicitly annotated to

throw them. Secondly, there are two resources in this code that should be released properly.

If the code executes normally, theclose()statements release the resources. But if an ex-

ception is raised anywhere and not properly handled, then one or two of the resources can

leak. Finally, it might be required by the specifications that the values should be updated

altogether and if not all of them can be updated (e.g.because of an error) then none of them

should be changed. That is, the updates should be transactional.

1 Connect ion conn = Dr iverManager . ge tConnec t i o n (. . .) ;
2 P r e p a r e d S t a t e m e n t upda te =
3 conn . p r e p a r e S t a t e m e n t (”UPDATE names SET name = ? WHERE name = ? ”) ;
4 I t e r a t o r<S t r i n g> i t r = old2newMap . keySet () . i t e r a t o r () ;
5 whi le (i t r . hasNext ())
6 {
7 S t r i n g o l d v a l u e = i t r . nex t () ;
8 S t r i n g newvalue = old2newMap . g e t (o l d v a l u e) ;
9

10 upda te . s e t S t r i n g (1 , newvalue) ;
11 upda te . s e t S t r i n g (2 , o l d v a l u e) ;
12 upda te . execu teUpda te () ;
13 }
14 upda te . c l o s e () ;
15 conn . c l o s e () ;

Figure 3.27: A typical database client code

These three concerns could be implemented by inserting the necessary code in the client

code, resulting in tangled code that is hard to maintain. Furthermore, in applications that

work with databases there are many instances of code that is similar in pattern to the code

in Figure 3.27.

45

1 a s p e c t T r a n s a c t i o n A s p e c t pe rc f l ow (dbcu t (Connect ion)){
2 p r i v a t e Connect ion mcon = n u l l ;
3 d e c l a r e p recedence : ResourceHand lerAspect , T r a n s a c t i on A s p e c t ;
4
5 t r a n s c u t dbUpdate (Connect ion con , P r e p a r e d S t a t e m e n t s t) {
6 p o i n t c u t c r e a t e S t m t : c a l l (∗ Connect ion . p r e p a r e S t a t e m e n t (. .)) && t a r g e t (con)
7 && re tu rn (s t) ;
8 p o i n t c u t r s C l o s e : c a l l (∗ Sta tem en t + . c l o s e ()) && t a r g e t (s t) ;
9 }

10
11 t r a n s c u t dbcu t (Connect ion con){
12 p o i n t c u t c rea teCon : c a l l (∗ Dr iverManager . ge tConnec t i o n (. .)) &&re tu rn (con) ;
13 p o i n t c u t r s C l o s e : c a l l (∗ Connect ion . c l o s e ()) && t a r g e t (con) ;
14 }
15
16 a f t e r () r e t u r n i n g (Connect ion con)throws SQLException :
17 c a l l (∗ Dr iverManager . ge tConnec t i on (. .)) && cf low (dbcu t (Connect ion)) {
18 m con = con ;
19 m con . setAutoCommit (f a l s e) ;
20 }
21
22 vo id around (Connect ion con , P r e p a r e d S t a t e m e n t s t) : dbUpdate (con , s t) {
23 boolean s u c c e s s = f a l s e ;
24 t r y {
25 proceed (con , s t) ;
26 s u c c e s s =t rue ;
27 }
28 f i n a l l y {
29 i f (s u c c e s s) {
30 t r y {con . commit () ;}
31 catch (E xcep t ion e1) {}
32 }
33 e l s e {
34 t r y {con . r o l l b a c k () ;}
35 catch (E xcep t ion e2) {}
36 }
37 }
38 }
39 }

Figure 3.28: Transaction handling transcut

Figure 3.28 shows an aspect that implements the transactionmanagement for instances

of database code that match the expressed behaviour. This behaviour, in this specific ex-

ample, is captured by two transcuts,dbUpdate()(lines 5-9) anddbcut (lines 11-14). The

former captures pieces of computation beginning with the creation of a databaseStatement

(query) object and ending with the statement releasing the object9; and the latter does the

same for theConnectionobject. An aspect instance is associated with each flow of a com-

putation designated bydbcut()(i.e. instances of code similar to Figure 3.27).

The aspect uses an instance variable (m con) to keep track of the associatedConnection

object, and also disables automatic commit on the connection so that the aspect can commit

when appropriate (lines 16-20). Then anaround() advice wraps the designated database

query execution (e.g. for code in Figure 3.27, this corresponds to the execution oflines 2-

9In AspectJ, “Statement+” means the “Statement” type and itssubclasses.

46

13) in atry-finally block and uses a flag to keep track of the success of the query execution.

If the proceed()at line 25 returns successfully (that is, the target query statement is

executed with no error) then the success flag is set totrue. Otherwise, if an exception is

raised, the flag will befalse. In thefinally block, the transaction will be committed if the flag

is true(query execution successful) or rolled back otherwise. Theraised exceptions will still

be propagated up fromTransactionAspectso that theResourceHandlerAspect(Figure 3.29)

can handle the exception and resources.

1 a s p e c t ResourceHand le rAspec t pe rc f l ow (dbcu t (Connect ion)) {
2 d e c l a r e s o f t : SQLException : c a l l (∗ DBConnectionExample .∗ (. .)) ;
3 Connect ion mcon = n u l l ;
4 S ta tem en t mstmt = n u l l ;
5 /∗
6 dbQuery () and dbcu t () are t h e same as b e f o r e . . .
7 ∗ /
8 a f t e r () r e t u r n i n g (S ta tem en t s tm t) : c a l l (∗ Connect ion . p r e p a r e S t a t e m e n t (. .))
9 && cf low (dbcu t (Connect ion)) {

10 m stmt = s tm t ;
11 }
12 vo id around (Connect ion con , P r e p a r e d S t a t e m e n t s t) : dbQuery (con , s t) {
13 t r y {
14 proceed (con , s t) ;
15 m stmt = n u l l ;
16 }
17 f i n a l l y {
18 i f (m stmt != n u l l) {
19 t r y {
20 m stmt . c l o s e () ;
21 m stmt = n u l l ;
22 }
23 catch (E xcep t ion e) {}
24 }
25 }
26 }
27 vo id around (Connect ion con) : dbcu t (con){
28 t r y {
29 proceed (con) ;
30 m con = n u l l ;
31 }
32 f i n a l l y {
33 i f (m con != n u l l) {
34 t r y {
35 m con . c l o s e () ;
36 m con = n u l l ;
37 }
38 catch (E xcep t ion e1) {}
39 }
40 }
41 }
42 }

Figure 3.29: Transcut to handle resources

The exceptions and resources are handled in one single aspect as shown in Figure 3.29.10

This aspect captures any exceptions raised for the whole computation fromConnectioncre-
10Obviously, there is opportunity for reuse between these twoaspects, but that was not the point in this

example.

47

ation, query execution, toConnectionrelease. In this specific example, the only special

handling occurs in thefinally blocks, by checking the instance variable that tracks the cor-

responding resource and releases the resource if not released already. Note that at line 15

and 30, the instance variables are set tonull to indicate that the target code has successfully

executed to the end and that the corresponding resource is released.

3.4.3 Synchronization

Concurrent systems designers often desire customizable synchronization mechanisms be-

cause different composition and deployment contexts demand different synchronization

policies. An AOP synchronization library like FlexSync [58] achieves customizability

through decoupling synchronization intentions and mechanisms (three mechanisms are sup-

ported: Javasynchronized, Atomic Blocks, andSoftware Transactional Memory). FlexSync

requires refactoring to convert blocks into methods so thatthey can be picked out by point-

cuts. Transcuts can be used to designate the pieces of code that are targets of synchroniza-

tion without refactoring.11

Even if one single synchronization mechanism is used, customized policies for differ-

ent contexts may still be desirable. For instance, the granularity of synchronization can

affect performance. If large blocks of code are synchronized (locked) other threads might

be blocked for long periods of time waiting for the thread that owns the lock to release it.

On the other hand, if the granularity is too low, the overheadof the lock/unlock mecha-

nism might affect performance, and ensuring consistency becomes tricky. Transcuts can be

used to separate demarcation of the boundaries of a criticalsection from the code so that

different boundaries could be used for different synchronization granularities (This cannot

be accomplished by FlexSync because the critical sections are refactored into methods and

hence are fixed.) The synchronization mechanism itself can then be customized once the

transcuts designate the critical section.

Consider a typical sharedBuffer object that is used by a number of reader and writer

threads. One way of synchronizing the buffer is to make all ofits read/write methods

synchronized. The problem is that, if the buffer must be checked by the writers to make

sure it is not full before writing (and similarly not empty before reading) then the buffer

needs to be locked before checking and released after the actual write (read) operation, in

order to make the buffer update atomic.

11The designer of FlexSync confirmed in a private conversationat ICSE’09 that transcuts can be very useful
in FlexSync.

48

Transcuts can be used to express the synchronization intention (that is, the boundaries

of the critical sections) as well as applying different synchronization mechanisms to the

designated critical sections. Figure 3.30 shows parts of the code of two types of threads:

a writer and a reader which write to and read from a shared buffer, respectively. Multiple

threads of both types could be running simultaneously. We would like to have lines 2-3

of the writers and lines 2-5 of the readers execute atomically with respect to other threads.

Figure 3.31 shows a transcut that captures the critical section of the reader threads and the

advice that synchronizes the section. A similar transcut/advice pair is used (not shown) to

synchronize the writer threads.

1 whi le (r unn ing) {
2 i f (! bu f . i s F u l l ())
3 buf . w r i t e (d a t a) ;
4 }

1 whi le (r unn ing) {
2 i f (! bu f . isEmpty ()) {
3 Ob jec t d = buf . read () ;
4 p r o c e s s (d) ;
5 }
6 }

Figure 3.30: Critical sections in writer (left) and reader (right) threads.

1 t r a n s c u t r e a d b u f (Bu f fe r buf){
2 p o i n t c u t t e s t : c a l l (∗ Buf fe r . isEmpty ()) && t a r g e t (buf) ;
3 p o i n t c u t read : c o n d i t i o n a l (c a l l (∗ Buf fe r . r ead ()) && t a r g e t (buf)) ;
4 }
5 vo id around (Bu f fe r buf) : r e a d b u f (buf){
6 synchron ized(bu f) {
7 proceed (buf) ;
8 }
9 }

Figure 3.31: Transcut to synchronizes reader’s critical section.

3.4.4 Parallelization

Can aspects be used on existing single-threaded code to takeadvantage of increasingly

common multi-core systems? AOP can help, to some extent, to identify the desired join

points and run them in a thread. However, the dynamic pointcut-advice AOP is stuck at the

limits that were discussed before. Consider the following scenario.

Imagine a game engine that uses typed messages for communication and coordination

among its components, such as graphics subsystem, physics subsystem, sound subsystem,

and AI. For instance, of a missile is fired, aPlaySoundEffectMessagemessage needs to

be created, configured with the proper values, and sent to thesound subsystem to play the

missile sound. The general form of a message creation and configuration is as below:

1 Spec i f i cMessa ge msg =new Spec i f i cMessa ge () ;

49

2 msg . s e t F i e l d 1 (. . .) ;
3 / / . . .
4 msg . s e t F i e l d N (. . .) ;
5 som eE n t i t y . send (msg) ;

There are tens of different message types and, obviously, they have different field

names, and consequently, setter method names. When the message is sent, it is processed

by the destination entity synchronously and the processingtime varies with the type of the

message.

One might want to write an aspect to parallelize the execution of such message creations

and dispatch so that the main thread can continue without having to wait for the message to

be processed12; however, the overhead of advice and thread creation might not be worth the

parallelization of a single message creation and dispatch.But if there are cases in the code

where a list of messages are dispatched together in a loop, then the parallelization might

well be worth the effort.

The pattern of message creation and dispatch can be expressed using transcuts and a

loop that contains instances of such transcuts can be identified using alooped()pseudo

pointcut. Once designated, anaround()advice can be written to intercept the whole loop

and executes it on a newly created and launched thread:

1 vo id around () : messageLoop (){
2
3 Thread t = new Thread () {
4
5 pub l i c vo id run () {
6 proceed () ;
7 }
8 } ;
9 t . s t a r t () ;

10 }

3.4.5 Data and Control Context Designation

Transcuts can be used to define a control flow and dataflow context that can be used to more

selectively target join points. For example, consider a resource that is created and used

within a method. Resource objects usually have a well-defined usage pattern (interface

protocol) that captures the correct way of using the resource. Transcuts can capture such

patterns and be used to filter illegal or useless uses of the resource.

The example of Figure 3.32 shows how to skip any redundant calls to close(), and skip

any method call on a resource before a call toopen()and after a call toclose()). That is, in

the following example, method calls in lines 1 and 3 should beskipped:

12Of course, some messages might have to be processed before the main thread can continue.

50

1 r e s o u r c e . read () ; / / s k i p t h i s c a l l
2 r e s o u r c e . open () ; r e s o u r c e . read () ; r e s o u r c e . c l o s e () ;
3 r e s o u r c e . read () ; / / s k i p t h i s c a l l

1 a s p e c t F i l t e r R e d u n d a n t C a l l s{
2 t r a n s c u t c loseAndA f te r (Resource f){
3 p o i n t c u t c1 : c a l l (∗ Resource . c l o s e ()) && t a r g e t (f) ;
4 p o i n t c u t c2 : c a l l (∗ Resource .∗ ()) && t a r g e t (f) ;
5 }
6 p o i n t c u t anyUseA f te rC lose (Resource f , Resource f2) :
7 c a l l (∗ Resource .∗ ())
8 && ! c a l l (∗ Resource . c l o s e ())
9 && t a r g e t (f)

10 && cf low (c loseAndA f te r (f2))
11 && i f (f == f2) ;
12
13 around (Resource f , Resource f2) : anyUseA f te rC lose (f , f2) {}
14
15 t r a n s c u t openAndBefore (Resource f){
16 p o i n t c u t c1 : c a l l (∗ Resource .∗ ()) && t a r g e t (f) ;
17 p o i n t c u t c2 : c a l l (∗ Resource . open ()) && t a r g e t (f) ;
18 }
19 p o i n t c u t anyUseBeforeOpen (Resource f , Resource f2) :
20 c a l l (∗ Resource .∗ ())
21 && ! c a l l (∗ Resource . open ())
22 && t a r g e t (f)
23 && cf low (openAndBefore (f2))
24 && i f (f == f2) ;
25
26 around (Resource f , Resource f2) : anyUseBeforeOpen (f , f2){}
27 }

Figure 3.32: Transcut for open/close usage

The same behaviour could be achieved in AspectJ by introducing two flags that track

whetheropen()andclose()have been called, and skip the useless calls accordingly. Tran-

scuts should be able to do this more declaratively; however,as we discuss it in Section 3.6,

the pinpointing mechanism needed for doing the above example more declaratively has not

been implemented yet, therefore, we rely on traditional pointcuts to express the intent.

3.4.6 Static Verification of API Usage

The programming interfaces of application frameworks and software libraries do not usu-

ally enforce (statically) their usage protocol. For instance, a file system interface might

provide methods for initialization and finalization of the underlying system but it cannot

specify, in a checkable manner, that a programmer must not call any services before initial-

ization and after finalization method calls. These design rules are usually communicated

to the application programmers through code comments and API documentation. The sys-

tematic process of making sure that the use of an ApplicationProgramming Interface (API)

complies with the designer’s intent is referred to as API usage conformance and design

51

intent verification. Many techniques have been developed tostatically check such design

rules and interface protocols [15], [30].

In AspectJ, thedeclare error/warningadvice can be used to statically check some kinds

of design rules. Figure 3.33 shows a very simple example of anaspect that can stop compi-

lation with an error whenever thenewoperator is used to explicitly create an object in some

class.

1 a s p e c t E n f o r c e F a c t o r y{
2 p o i n t c u t newInSomeClass () : w i t h i n (SomeClass) && c a l l (∗ . new (. .)) ;
3
4 d e c l a r e e r r o r : newInSomeClass () :
5 ” Must on ly use f a c t o r y methods to i n s t a n t i a t e o b j e c t s ! ” ;
6 }

Figure 3.33:declare erroradvice in AspectJ

Transcuts can also be used as the target ofdeclare error/warningand therefore can

capture and verify some object protocols and design rules. For example, consider the file

system initialization and finalization example and assume that the file system object is a

singleton. Figure 3.34 shows an aspect that enforces the aforementioned interface protocol.

1 a s p e c t E n f o r c e P r o t o c o l{
2 t r a n s c u t u s e B e f o r e I n i t (){
3 p o i n t c u t som eserv i ce : c a l l (∗ F i leSys tem .∗ (. .)) ;
4 p o i n t c u t i n i t : c a l l (∗ F i leSys tem . i n i t i a l i z e (. .)) ;
5 }
6 t r a n s c u t u s e A f t e r F i n i (){
7 p o i n t c u t som eserv i ce : c a l l (∗ F i leSys tem . f i n a l i z e (. .)) ;
8 p o i n t c u t i n i t : c a l l (∗ F i leSys tem .∗ (. .)) ;
9 }

10 d e c l a r e warn ing : u s e B e f o r e I n i t () : ” F i l eSys tem shou ld be i n i t i a l i z e d b e f o r e use ! ” ;
11 d e c l a r e warn ing : u s e A f t e r F i n i () : ” F i l eSys tem canno t beused a f t e r f i n a l i z a t i o n ! ” ;
12 }

Figure 3.34: Static API usage verification using transcuts.

Currently, transcuts that use dataflow relations between join points cannot be used in

declareadvice because the AspectJ language requires a static pointcut as the target ofde-

clareand our dataflow pointcuts are used both for context exposure(dynamic) and dataflow

relations (static). In the future, we would like to allow theuse of transcuts with dataflow

pointcuts as the target ofdeclareadvice to enable powerful static checking for objects and

resources. Consider a resource that should be used in a specific manner. For instance, a

file object that needs to be first opened, then read, then closed. It is possible to inform the

programmer at compile time if a file object is used after closing or before opening.

52

3.5 Implementation

We have implemented13 transactional pointcuts as an extension to the AspectBenchcom-

piler (abc) [5]. The AspectBench compiler is an implementation of AspectJ developed to

make it easier to add language extensions and optimizations. The back-end ofabc is based

on the Soot framework [53], which we used to implement regionanalysis.

The abc compiler supports two front-ends one of which is based on JastAdd [20], a

compiler framework, which we chose to use for the transcuts front-end implementation.

Jimple [54] is the underlying intermediate 3-address code used for code generation and

weaving. We used AspectJ to implement some parts of the extension. The binary for

the transcut extension and the examples presented in this thesis are available online for

download.14

Jimple intermediate representation has been designed to simplify the implementation

of analysis and optimization algorithms for Java. While many existing optimization and

transformation algorithms work with 3-address code (in which an instruction operates on

named operands), Java bytecode is stack-based and its instructions have implicit effects on

the evaluation stack. The following is a piece of bytecode from [54]:

1 i l o a d 1 / / load v a r i a b l e 1 , and push i t on to t h e s t a c k
2 i l o a d 2 / / load v a r i a b l e 22 , and push i t on to t h e s t a c k
3 iadd / / pop two va lues , and push t h e sum of t h e two onto t h e s t a c k
4 i s t o r e 1 / / pop a va lue from t h e s tack , and push i t on to t h e s t a c k

whose Jimple translation looks like:

1 i n t x , y , z ;
2 . . .
3 z = x + y ;

In Jimple, all operands have to be explicitly-typed local variables. The Jimple frame-

work can translate Java bytecode to Jimple and vice versa.

We extended theabc compiler through its provided extension points. Whenever an

invasive code modification in theabc’s code base seemed necessary, we used aspects instead

to implicitly extend and adapt the behaviour. The use of aspects essentially helped to create

more extension interfaces and allowed us to avoid modifyingbase code.15

13The implementation is not perfect; for instance, there is a fixable bug which causes changes to local variable
within an around-advised join point to be lost; or many smallenhancement that could improve the usability of
transcut to a good extent but were not implemented due to timeconstraints.

14http://bit.ly/cSLKJN
15The use of aspects in extendingabcwas originally inspired by [25].

53

3.6 Limitations

The expressive power of transcuts can be improved by adding auxiliary pointcuts, operators,

and modifiers to help designers better capture their intended join points. For example,

the data flow relations are currently limited to must-alias relations; it would potentially be

useful to enable may-alias relations and expose them through a proper interface. In addition,

the pattern language can be enriched to allow better controlover the matching algorithm.

For instance, anot(x) pseudo pointcut can be implemented to control the non-contiguous

matching behaviour in a way that it fails if it comes across a join point that matchesx.

Additionally, the lexicalwithincode()pointcut should be enabled to work with transcuts.

It will be very effective in selecting join points based on their presence within a specific

context.

Perhaps the most useful future enhancement is a direct pinpointing mechanism that

allows targeting a segment of a transcut directly. Currently, one has to work around this

limitation, as seen in some of the examples, which does not always work as desired.

3.6.1 Fragility

Pointcuts, in non-invasive pointcut-advice models, rely on the properties of join points to

select them; this implicit dependency on join points implies that the evolution of the base

code may break the existing pointcuts; that is, a simple change in the code can prevent a

previously selected join point from being selected, and also, pointcuts may now pick out

the join points that were not intended to be selected. This property of pointcuts is referred

to as pointcutfragility and is inherent in pointcut-advice mechanisms as they implicitly rely

on properties of join points.

Transcuts appear to be making fragility worse because of stronger reliance on structural

and behavioural information of the target code. Transcuts should be carefully designed

along with the target system to minimize such negative effects. At the same time, the

designer should have a rich set of constructs to be able to clearly express her intent.

From another perspective, transcuts can help in some situations to remove dangerous de-

pendency on method names. Traditional pointcuts can be broken by a simple name change

of a method if they rely on the method’s name. If instead of identifying the target method

using its name, a transcut can be used to directly identify the operation of interest, then the

method’s name can freely be changed without breaking the transcut.

Whether the dependency on method name is worse or the dependency on the structure of

54

the actual target operation is something that needs to be investigated; however, it seems that

in the context of framework design where carefully-designed well-written code is frequently

reused, transcuts can be used with the fairly safe assumption that the designated pieces of

code will not change frequently. This assumption would probably not be a safe assumption

in the context of application code written by inexperiencedprogrammers.

3.6.2 Interaprocedural Limits, Escaping Objects, and Buried Effects

One important criticism against transcuts can be explainedas follows. Consider a read

operation on a file in the following form:

1 f i l e . open () ;
2 d a t a = f i l e . read () ;
3 f i l e . c l o s e () ;

wherefile is an object representing a file. This pattern of I/O is very common and a

transcut can be composed to identify the set of such file operations by relating three key

join points,i.e. open(), read(),andclose(), all on the same target object,i.e. file; however,

the identified pattern is not the only way a file operation can be coded. For instance, the

same behaviour can be coded in the following form:

1 f i l e . open () ;
2 d a t a = r e a da n d c l o s e (f i l e) ;

whereread and close()is a procedure that reads some data from a file and then closes

the file. This example is a case from a more general scenario inwhich the objects within

a target join point escape the current matching scope and areused within a called method

(e.g. filepassed in toread and close()). Consequently, current matching algorithm cannot

determine what methods are called on the escaped object. Forinstance, in the above exam-

ple, the matching algorithm does not consider the body ofread and close()when looking

for a read()method call; therefore, no match is found.

This issue is closely related to the fragility problem and many cases can be avoided if

a system is designed with aspects in mind. In cases where aspects need to be added to an

existing design, one can still write a few transcuts to capture different code patterns that

perform the same operation with respect to the key join points and the involved objects.

This approach addresses almost all of this issue because a method name is an abstraction of

the code within its body and therefore can be used in identification of the abstracted code.

There is another add-in feature that can help partially address the above limitation. An

effect()pointcut can be designed that takes a set of desirable computational effects (e.g.

method calls) and matches a join point if the execution of that join point emits that effect;

55

that is, a call join point can matcheffect(read())if read() is potentially called at some point

within the execution of the method corresponding to the joinpoint16.

3.6.3 Continuation vs. History Semantics

One of the conceptual criticisms to our work is that we base our model on the dynamic

pointcut-advice join point model while the matching algorithm uses static program repre-

sentation. This is not an issue becausecall() pointcut in AspectJ is also a static pointcut

matched based on the static representation of join points, still, it is defined within the dy-

namic join point model because it matches runtime join points (dynamic join points.)

In a similar fashion, transcuts are static in the sense that the matching algorithm uses

static program representation to identify whether a section of code can generate the desired

dynamic join points. What complicates the semantics of transcuts is the fact that, the dy-

namic join points that are identified as matches for a transcut are identified conservatively;

that is, if the matching algorithm cannot predict that the join points generated by a piece of

code match with the key pointcuts in a transcut, then that piece of code is not chosen as a

match even if it actually generates the desired join points.

For instance, consider the following transcut:

1 t r a n s c u t ab () {
2 p o i n t c u t a : c a l l (∗ a ()) ;
3 p o i n t c u t b : c a l l (∗ b ()) ;
4 }

In trace-based approaches, the semantics of such a sequenceof pointcuts is clear be-

cause they are based on the history of runtime events; but in our model, in which predicting

future events is necessary to allowbefore()and around() advice, the semantics is not as

intuitive anymore. The reason is that it is not possible to determine whether a sequence (or

any other pattern for that matter) of dynamic join points occurs before all of its join points

are executed, at which point only a history of the target computation is at hand which can

only be affected usingafter() advice.

Therefore, transcuts make available to the programmer whatis practically possible and

obviously cannot do any magic. In fact, in the thesis statement, we had to qualify the target

“pieces of computation” with “well-formed” to capture thissubtlety that a target piece of

computation is matched if it can be determined statically that it will be a match at runtime.

In a way, when a join point that can potentially be the beginning of a match for a transcut is

activated at runtime, its (partial) continuation should match the rest of the transcut in order

16A simple semantic pointcut that matches join points based ontheir effect on heap is introduced in [9].

56

to have a complete match for the transcut. In other words, thematching algorithm does

not wait until a history of execution is available at the end of computation, but acts on the

available continuation of the beginning of candidate computation (join point).

Consequently, there will be pieces of computation at runtime that generate the same

event (join point) pattern but could not be identified as matches before runtime. For exam-

ple, in the code{ a(); b(); }, there is a match for theab() transcut, whereas in the code{

a(); c(); } wherec() is defined as{ b(); ... }, there is no match because the current matching

algorithm does not look into the body of the called methods when matching within another

method. Even{a(); if(...) then b();} is not a match because whetherb() is executed or not

depends on the guarding condition17.

It might be easier to think of transcuts as static pattern matchers that act on program

text, which is not correct. Transcuts act on control flow and control dependence graphs and

that separates them from language-level and text-level pattern matching and transformation

techniques.

It is fair to say that, according to the above argument, the semantics of transcuts is

confusing and counter-intuitive. That said, the usefulness of transcuts pushes us to find

better ways to give meaning to them and think about them.

17This case can be captured usingdependentpointcuts, which is not the point of this argument.

57

Chapter 4

The Semantics of Transcuts

In this chapter, it is shown that transcuts and the associated join point model are compatible

and can be explained in the existing semantic accounts of dynamic joint points. The seman-

tics framework that is used here is the Dutchyn’s continuation semantics for dynamic joint

points [18] explained in Section 4.1. It is shown, in Section4.2, that this semantics can be

extended to allow transcut matching.

4.1 Continuation-based Semantics for Dynamic Join Points

Dutchyn [18] gives a continuation-based semantics to dynamic join points, pointcut, and

advice for a simple procedural language with first-order mutually recursive procedures and

a top-level expression. Following Reynolds definitional interpreters [47] style of semantic

specification, he defines an interpreter for the language andthen augments it to support

aspect-oriented constructs. The interpreter is implemented in continuation passing style

(CPS) [4] to make the continuations explicit in the interpreter. Continuations in such an

interpreter are regarded as “the rest of the computation” [14], which basically sequence

the remaining steps of a computation. Continuations are usually represented as closures

and, therefore, demand higher-order interpreter implementation; however, there are tech-

niques that can be used to defunctionalize a continuation and avoid higher-order procedures.

Dutchyn, specifically, linearizes the continuations and represents the entire continuation as

a list (stack) of continuation frames.

Each continuation frame represents a single step in the computation and is represented

as a data structure that contains the relevant fields for thatcomputation. The top frame in

the list is the immediate action that is taken if the continuation is activated (i.e., provided a

value to continue with.) For instance, aCALL continuation frame has a field that contains

the procedure name to be called, and it expects (consumes) a list of values (evaluated ar-

58

guments). AnEXECcontinuation frame keeps a list of values (evaluated arguments) and

expects a procedure.SETandGETcontinuation frames represent setting and getting global

variables, respectively. There are a few auxiliary continuation frames that are not essential

but help in sequencing multiple argument evaluation and passing, as well as conditional

constructs.

In the unmodified interpreter (non-AOP), the evaluation is an interplay between an

eval(expr, env, cont)function and anapply(cont, val)function; theeval() function evaluates

the trivial expressions and sequences the ones that are non-trivial (e.g. function application)

by creating continuation frames and pushing them on the continuation frame stack. When

a value is available (i.e. computed), theapply() function is called to send the value to the

continuation: if the continuation stack is empty, the computation is halted; otherwise, the

top-most frame is popped and processed. For instance, when expression “a()” is evaluated,

theeval()function determines that this expression is a function application, therefore, it first

evaluates its arguments with a continuation extended with anew CALL continuation frame

(callF [id] ; CALL id :: !val). That is, after the arguments (if any) are evaluated, the values

are sent to the awaiting continuation, which now has a CALL frame at the top. The CALL

continuation frame contains the name of the function that iswaiting for the values of its

arguments. (The arguments are also evaluated using two auxiliary continuation frames: one

is used to hold an expression and environment and to consume alist of evaluated arguments;

the other is used to hold a list of evaluated values and consumes newly evaluated arguments

to be added to its list. In the end of argument evaluation, a list of evaluated arguments are

sent to the top-most continuation frame which is going to be aCALL.)

When the empty list (of arguments) is applied to the CALL continuation frame (which

contains “a” as the name of the function), the procedure corresponding to the name is looked

up and a new EXEC continuation frame is created (execF [args]; EXEC val... :: !proc) and

pushed on the continuation stack and at the same timeapply()is called to send the looked-up

procedure to the continuation (which has now an EXEC frame atthe top.)

When a continuation that has an EXEC frame at the top is applied to a procedure, the

procedure is examined and if it is a primitive procedure thenit is invoked with the values

held within the EXEC frame (the evaluated arguments) as wellas the continuation (which

does not contain the top EXEC anymore), as arguments. If the procedure is a user-defined

procedure then theeval() function is called to evaluate the body of the procedure in an

environment that binds its formal arguments to the values within the EXEC frame, and with

the continuation from top of which EXEC is popped.

59

Dynamic join points are originally defined as the “principled points in the execu-

tion” [32]. The key idea behind the continuation-passing semantics is that by using con-

tinuations and specialized continuation frames, the meaningful states in the interpreter are

exposed. Join points in this interpreter are the activations of non-auxiliary continuation

frames in the CPS interpreter. In other words, join points are points in the execution (in

the interpreter) where values are to be consumed by continuation frames. Therefore, there

is four kinds of join points in the interpreter: CALL, EXEC, SET, and GET join points,

corresponding to the state in the interpreter where a procedure call continuation frame is

activated (and provided a list of values), the state where anexecution frame is activated and

provided with a procedure to evaluate, the state where a global variable is being set, and the

state where the value of a global variable is being retrieved, respectively. For brevity, from

now on, we focus on the most important continuation frames (join points),i.e. CALL and

EXEC. The following notation is used in [18] to represent these two kinds of join points1:

• CALL (id ⊢ ¬ val ...), which means that a call join point expects/consumes a list of

values and carries an id (the name of the procedure.)

• EXEC (val...⊢ ¬ proc), which means that an execution join point expects/consumes

a procedure and carries a list of values (the value of the parameters.)

Pointcuts are “means of identifying join points” [32]. In [18], they are predicates over

the value provided to a continuation frame and the fields in the frame. A pointcut is a

syntactic construct that examines the interpreter’s state, that is, the activated continuation

frame and the available value to the continuation, to determine whether it matches a given

continuation frame with desired attributes. Therefore, a pointcut returns true if the current

join point matches the given criteria.

For the above interpreter, there are two pointcut constructs, CALLPC (pname, ids),

and EXECPC (pname, ids)that can match two major kinds of join points: CALL and

EXEC, respectively. The CALLPC pointcut returns true if thecurrent continuation frame

is a procedure call (CALL) that holds a procedure name equivalent to pname. Similarly,

the EXECPC pointcut returns true if the top continuation frame is a procedure execution

(EXEC) and that the supplied value is a procedure whose name is equivalent topname.

A combinational pointcut is also defined, ORPC, that given two sub-pointcuts, matches

the first pointcut and if that fails the second one is matched.If there is a match in any case

1Join points are the activation of continuation frames not the frames themselves; however, because a con-
tinuation frame represents a join point, they are used interchangeably in the text depending on context.

60

of the above pointcuts, the list of id’s (ids) in the pointcut will be returned. If there is no

match, false is returned. It is emphasized in this semanticsthat 0 matching does not alter

the current continuation or values. Pointcuts identify dynamic join points and do not have

computational effects; that is, they do not change the behaviour at those join points.

Advice is “a means of affecting semantics at those join points” [32]. In the continuation-

passing interpreter, this is implemented as procedures that operate on continuation frames

(in order to affect the rest of the computation.) Syntactically, advice has two parts: a point-

cut and an advice body. The advice is semantically similar toa procedure that is invoked

at the join points matched by the pointcut, and runs in an environment augmented with the

matched pointcut’s identifiers bound to the current join point’s relevant values, and a special

proceedidentifier, denoting the original join point.

Consider the definition of a procedure,pick that takes a boolean argument and returns a

integer (from [18]:)

(define (pick x) (if x 1 2))

Now, consider the expression

(+ (pick #t) 3)

where the procedurepick is applied to value #t to have the result 1, and the overall result

of the computation becomes 4. In fact,pick transforms the continuation of the procedure

application from

(lambda (n) ;await number

(+ n 3)) ; add three; halt.

to

(lambda (b) ; await boolean

(let ([n (if b 1 2)]) ;select number

((lambda (n) (+ n 3)) ; original continuation

n))) ; given the selected number.

61

pick()extends the original continuation from¬ integer(consumes integer) to¬ boolean

(consumes boolean). That is,pick can be viewed in two different modes: as a value trans-

former, it has the typeboolean→ integerand as a continuation transformer it has the type

¬ integer→¬ boolean. Advice, in the continuation-passing interpreter, behaves like a pro-

cedure application to continuations; that is, it is appliedto continuations and can extend or

specialize them.

Here is a summary of the weaving steps in the interpreter. When a continuation frame

is activated (i.e. a value is ready to be sent to it), a matching process collectsall the advice

whose pointcuts match the current continuation frame. If there is not such a match, the

interpreter continues to run the operation corresponding to the current frame (i.e. the orig-

inal join point.) If there is any match, the weaving procedure runs as follows. The advice

body of the first match is evaluated in an environment extended with the list of id’s from

the matched pointcut, theproceedsymbol, and the remaining matched advice.

Theproceedis a closure that is created when a match is found. It containseverything

needed to continue the original computation (i.e. the matched continuation frame and the

value applied to it.) The remaining matched advice are also kept in a special environment

variable. In the body of the advice, when aproceed()expression (if any) is evaluated, the

list of remaining advice is retrieved from the environment and the next advice is evaluated.

If there is no more advice to evaluate, aproceed()activates the original continuation frame

potentially with values changed by advice.

In summary, in a defunctionalized continuation-passing interpreter, the activation of

non-auxiliary continuation frames are considered as meaningful points in execution, or join

points, that can be identified through predicates based on their type and run-time values.

Special procedures (advice) can then be executed to specialize the behaviour of these con-

tinuation frames. The importance of this continuation-based semantics is that it does not

rely on a vague or intuitive definition of join points; instead, join points arise naturally in

the semantics of the programming language as the activationof continuation frames [19].

4.2 Extending the Continuation-based Semantics to Support
Transcuts

In this section, the function of a CPS interpreter is explained through an example; then it

is shown how weaving is added to the interpreter to enable join point matching and advice.

Finally, transcut matching and advice is explained within the continuation-based semantic

framework.

62

4.2.1 Defunctionalized CPS Interpreter: a Running Example

Consider the expressione: b(a()), in a simple procedural language. To compute the value

of b(a()), first methoda() is executed, then methodb(), sending the returned value of

a() to b() as an argument. To better achieve our goal in this section, wefirst step through

the evaluation of this expression in the continuation-passing interpreter without weaving

support. Then, it is shown how weaving is integrated for traditional join point matching and

advice2. Finally, it is shown how transcuts fit in.

Assume thate is evaluated with a continuationk. As described in the previous section,

in the defunctionalized CPS interpreter, evaluation is an interplay between aneval (expr,

env, cont)function and anapply (cont, val)function. Theeval() function evaluates an

expression (expr) in an environment (env) and with a continuation (cont), which means

when the evaluation ofexpr is finished and its result is available as a value, it should be

sent to the awaiting continuationcont. The function that sends an available value (val) to a

continuation (cont) is apply(). A continuation in this interpreter is represented by a listof

continuation frames each of which represents a kind of operation that needs to be done on

the available value. For instance, when an expression is a procedure application (method

call), first, the arguments need to be evaluated, then the procedure is evaluated provided

with the value of the arguments.

To demonstrate how the list of continuation frames changes in the course of evaluation,

we use a list notation which extends from left to right, withk (the initial continuation await-

ing the evaluation ofe) represented as(...). The evaluation starts with callingeval (“b(a())”,

r, k), in whichr is the current environment in whiche is evaluated. When recognizing that

the expression is a procedure application, theeval()function recursively and indirectly calls

itself to evaluate the arguments of the application first in the same environment,r, but with

the following extended continuation:

(..., callF [b])

callF [id] is a continuation frame that contains the name of a procedure; when activated,

it looks up the procedure and consumes a list of evaluated arguments. Theeval() function

extends the current continuation (k) with a callF continuation frame before moving on to

evaluate the arguments. In other words, when the evaluationof the arguments is finished,

2Note that we use Dutchyn [18]’s implementation to step through this evaluation. Details are omitted when
appropriate for simplicity.

63

the list of evaluated values is sent to a continuation whose top frame is acallF. This is how

the CPS interpreter sequences the steps in a computation.

To support multiple procedure arguments, two auxiliary continuation frames are used to

evaluate the arguments one by one and add each evaluated value to a list. This is a recursive

operation andeval()calls a recursive procedure to create the necessary continuation frames

and add them to the continuation list. For each argument expression, arandF [exp env]

is created that contains the argument expression (exp) and the current environment (env);

then the procedure is repeated for the rest of the arguments with the continuation extended

with the newly createdrandF. For the above example, the continuation list would look like

the following after the procedure reaches the end of the listof argument:

(..., callF [b], randF ["a()", r])

Note that “a()” inside therandF is an expression andr is the environment in whiche

is evaluated. When there is no more arguments, the interpreter applies the empty list’()

(which is a value) to the continuation by callingapply (cont, ’()). This means that the top

frame in the current continuation (cont) needs to be activated to consume the given value.

In the example, the top frame is arandF containing the expression representing the first

argument. Theapply()procedure pops the top frame and recognizes its type and, similar to

theeval()procedure, sequences the actions that need to be taken to process it, which in this

case is to evaluate an argument expression and append it to the final list of arguments. It first

extends the continuation with a framekonsF [vals], which is an auxiliary frame that holds

the evaluated list of arguments and consumes the next evaluated argument to be appended

to its list of values, initialized with the value provided torandF (which is ’() in the first

invocation); then, the argument is recursively evaluated in the extended continuation, by

calling3

eval (randF.expr, randF.env, extend(cont, konsF [’()]))

after which, the continuation looks like the following:

(..., callF [b], konsF [’()])

The argument is a procedure call itself, therefore a similarevaluation takes place that

will once again sequence the operations needed to evaluatea(); that is, a newcallF contin-

3Note that the pseudo code is intended to be simple to understand and it might not follow the syntax of any
specific language.

64

uation frame is created and pushed into the current continuation. At this point, the continu-

ation looks like the following:

(..., callF [b], konsF [’()], callF [a])

Similar to the evaluation ofb(), the list of arguments need to be evaluated in the new

extended continuation. When the list is (or becomes) empty,theapply()procedure is called

to process the top-most continuation frame provided with anempty list (’()) as the value.

In other words, the interpreter callsapply(cont, ’()), which in turn, activates (removes and

processes) thecallF [a] continuation frame; it creates and adds a new continuation frame of

typeexecF [args]that contains the list of argument values and loads the procedure whose

name is in thecallF frame, in this case,a; then, once again, theapply(cont, v)is called

wherecont is the extended continuation (below) andv is the procedure corresponding toa.

(..., callF [b], konsF [’()], execF [’()])

The top frame in the continuation is anexecF, therefore the call toapply(cont, v)will

recursively evaluate the body of the procedure passed inv by calling

eval (v.body, r1, k1)

wherev.bodyis the body of the procedure corresponding toa, r1 is a new environment in

which the names of the parameters of the procedure are bound to the values embedded in

theexecF [args](args is the list of argument values, empty list in this case), andk1 is the

following:

(..., callF [b], konsF [’()])

The CPS interpreter relies on the continuation to decide what the next action should be

after an expression is evaluated. The evaluation of the bodyof the procedurea(), in turn,

creates the relevant continuation frames and recursive calls to eval() the result of which is

a value available to the rest of the computation (i.e. the current continuation). For the sake

of our example, let us assume that the result of evaluatinga() is the integer 0. When the

continuation is applied to the returned value, the top framein the continuation is akonsF

that contains a list of argument values. When the frame is activated, the list of arguments is

extracted and the provided value (0 in this case) is appendedto it; then,apply (cont, args)

is called, whereargs is the list of arguments with one element (0) andcont is the following

continuation:

65

(..., callF [b])

This call activates thecallF continuation frame which, in turn, results in the creation

of anexecFframe and the evaluation ofb()’s body. In the end, the result of the expression

b(a()) will be sent to the awaiting continuationk, i.e. (...).

4.2.2 AOP-Enabled CPS Interpreter

Dynamic join points correspond to the activation of non-auxiliary continuation frames in

the CPS interpreter; that is, when the interpreter calls theapply(cont, v)procedure, a join

point is reached. Therefore, to enable join point matching and advice in the CPS interpreter,

theapply()procedure is replaced by another procedure that, at each invocation, matches the

pointcut of each advice against the current join point by calling amatch(pc, v, f)procedure,

in which pc is the pointcut of the current advice,v is the value sent to the continuation,

andf is the continuation frame at the top of the continuation (i.e., active frame.)f andv

together form the current join point.

If the current pointcut-advice does not match, then the normal apply() procedure is

called, as in the non-AOP interpreter; otherwise, the body of the matched advice is eval-

uated, similar to a procedure, with a difference: the environment is extended with these

special identifiers:proceed, which points to a representation of the matched join point,and

advs, which keeps the list of remaining pointcut-advice to be matched against the current

join point. During the evaluation of the advice’s body, if theeval()encounters anyproceed()

expression, it uses the environment to retrieve the list of the remaining advice as well as the

original join point. If the list of the remaining advice becomes empty, then the evaluation of

proceed()results in the original join point (continuation frame and value) being evaluated;

otherwise, the next pointcut-advice is considered for matching.

Thematch(pc, v, f)procedure decides, based on the type of the pointcut (pc), whether

the current join point matches or not. For instance, ifpc is acallC [pid ids] pointcut, then the

procedure first checks the type of the current join point and if it is a CALL join point; then,

its embedded procedure name is matched againstpid and if it matches then the procedure

creates a match structure as the successful result. A match structure contains a list of the

identifiers of the pointcut, a list of values bound to the identifiers, and a function abstraction

that representsproceed. This function takes a parameter to allow passing changed values

down to the original join point. For example, if a method calljoin point is designated and,

in the corresponding advice, its proceed is called with different arguments than the original

66

arguments, then the original join point should be activatedand receive the new arguments;

therefore,proceedis represented as a function that receives a parameter to allow this.

Consider the following pointcut-advice:

around(arg): call(a()) { proceed();}

This simply identifies join points of type CALL that contain “a” as the name of the

called procedure. It binds the argument of any matched join point to v. The advice directly

callsproceed()which results in the original CALL join point to be activated. Revisiting the

steps of the evaluation of expressionb(a()), there is a state in the interpreter when the empty

list of arguments (’()) is applied to the following continuation:

(..., callF [b], konsF [’()], callF [a])

The AOP-enabled interpreter calls thematch(pc, v, f)procedure wherepc is callC [”a”

arg], v is the empty list ’(), andf is the active continuation frame,callF [a] . The type of

the pointcut matches the type of the active frame (both are procedure calls) and the name

of the called procedure in the active frame matches the desired name given in the pointcut

(i.e., “a”); therefore the match is successful and a match structure is created. The structure

will look like

(’(), ’(), (lambda (nv) (values nv callF [a])))

As described before, the first field is the list of identifiers bound by the pointcut, the

second field is the list of bound values, and the third field is alambda abstraction that

represents the original join point by packaging the active value and continuation frame.

Note that the reason thenv is used instead ofv is that, as explained earlier, whenproceed()

is called, whatever parameter value is passed to it is sent tothe original join point; hence,

nv is used in the proceed package4.

After the interpreter finds a match and makes the match structure, it recursively evalu-

ates the body of the corresponding advice ({ proceed()}, in this case) with a new environ-

ment that binds the specialproceedandadvssymbols to the packaged proceed in the match

structure, and the list of remaining advice, respectively.Also, in the new environment, the

identifiers in the match structure (first field) are bound to the values in the match (second

field.) This evaluation is done with the continuation(..., callF [b], konsF [’()]) (because

the callF at the top is now processed.) If there were no calls to proceed()in the body of the

4Different kinds of join points need different packaging. For brevity, we avoid discussing all kinds of join
points here. The CALL join point alone serves the purpose of the discussion.

67

advice, then the advice would be evaluated just like a procedure and the original join point

would never be executed. In the above example, however, theproceed()is called with a new

value for the argument. The interpreter retrieves the valueof proceedin the environment

which should, in this case, be a lambda abstraction that receives a parameter. The lambda

abstraction is applied to the current value (proceed()’s argument) which results in the tuple

(’() callF [a]) . The interpreter uses the value and the frame in this tuple tocall the basic

(non-AOP)apply()procedure to process the original call with the new argument.

4.2.3 Enabling Transcuts in CPS Interpreter

As described in the previous section, dynamic join points are the states in the defunction-

alized continuation-passing style interpreter where a non-auxiliary continuation frame is

applied to a value. The main observation that helps understand the meaning of transcuts (in

the continuation-based semantic framework) is that the activation of a continuation frame is

not usually isolated but related to other frames in the continuation waiting to be activated.

In other words, the activation of a continuation frame can beconsidered in the context of

(related to) the activation of other continuation frames.

Intuitively, various operations (continuation frames) within a computation (part of a

continuation) relate to each other in the context of that computation; hence, the activation

of such interrelated operations can be regarded as the activation of the computation itself.

For instance, consider two different sequences of method calls a(); b(); anda(); c(). In

the traditional model, the join points corresponding to theactivation ofa() in these two

sequences cannot be differentiated because join point matching and advice occurs at the

level of individual continuation frames. In our model, not only do individual activations

define join points (i.e., can be identified and advised), but also the activation of a sequence

of related continuation frames can, together, define a join point as well. That is, in the

above example, the sequence of activations ofa(); b() can be designated and advised as a

join point, individuated from the sequence ofa();c().

Continuing with the example in the previous section, the following continuation is ac-

tive when the arguments ofa() are evaluated (empty in this case) and the procedure is to be

called:

(..., callF [b], konsF [’()], callF [a])

At this state (join point) in the interpreter, when theapply() procedure is called to ac-

tivate the top continuation frame, a matching procedure canselect the join point (as pre-

68

viously explained) if there is any pointcut that designatesa call toa(). Transcuts identify

join points that are composed of a sequence of join points; the designated join points are

activated when the first constituent join point in the sequence is activated. Intuitively, the re-

maining join points in such a sequence identify the elementsof the remaining computation,

or continuation. Consequently, to identify join points that match a transcut, the matching

procedure should be extended to look at the whole (part of) continuation not just the top

continuation frame.

Consider the following transcut that identifies states in the interpreter where a procedure

a() is about to be called, with a continuation that contains a call to b().

1 t r a n s c u t ab () {
2
3 c a l l (a ()) ,
4 c a l l (b ()) ;
5 }

The enhanced matching procedure would first match the head pointcut in the transcut

against the top frame in the continuation. Upon successful match, the procedure moves to

the next pointcut in the transcut and looks further down the list of continuation frames, and

in this case, it matches a frame that represents a call tob(). There is no more pointcuts in

the transcut to match, therefore the matching procedure returns successfully with a match,

similar to the old matching procedure, with one major difference. In the old matching pro-

cedure only the top continuation frame would be considered for matching and, upon suc-

cessful matching, would be removed and packaged in aproceedstructure for later potential

use; however, in the enhanced matching, the top sequence of frames in the list of continu-

ation frames, starting with the current active frame down tothe frame matched against the

last pointcut in the target transcut would be removed and packaged for later retrieval (i.e.,

if proceed()is ever called.)

Back to the example, aftercallF [a] andcallF [b] are successfully matched against

call(a()) andcall(b()) pointcuts, respectively, the top section of the continuation starting

from callF [a] and ending with callF [b] is chopped off and saved in aproceedstructure.

Then, the interpreter moves on to execute the body of the matched advice with the con-

tinuation (...) and in an environment that bindsproceedto the packaged section of the

continuation. If aproceed()is encountered in the body of the advice, the saved chunk of

continuation is retrieved and activated, which, in turn, pushes the sequence of frames on top

of the continuation and start activating them.

The above semantics leads to more powerful transcuts than what was presented in Chap-

ter 3. Consider the above transcut for the following example.

69

1 c () {
2 d (a ()) ;
3 }
4
5 main () {
6 b (c ()) ;
7 }

When a callF [a] is activated the continuation looks as follows:

(..., callF[b], konsF[’()], callF[d], konsF[’()], callF[a])

The first pointcut matchescallF [a] (corresponding to the call expressiona() at line 2),

and the last pointcut in the transcut matchescallF [b] (corresponding to the call expression

at line 6). Consequently, the top chunk of the continuation from callF [a] to callF [b] is

removed from the continuation and put in aproceedstructure. The intriguing result, in this

example, is that the matched interval of continuation frames transcends procedure bound-

aries: callF [a] is in procedurec() andcallF [b] is in proceduremain(). This would not

happen if the matching scope was limited to regions of control dependency in the control

flow graph (which is the case in transcut realization forAspectJ). The main concern, then, is

whether this leads to meaningless matching/advice. It appears that this concern originates

form a tendency to think of weaving as a code transformation:how can one weave around

advice for a join point whose one end is in one procedure and the other in another? This is a

valid concern for static weaving (compile-time weaving), however, in a CPS interpreter, the

rest of computation is represented and controlled explicitly and, hence, can be manipulated.

In other words, it does not matter if the rest of the computation is the result of code in the

same procedure or from multiple ones; what is known is that itis the “remaining computa-

tion” and it can be manipulated. Nevertheless, the matching/advice can always be restricted,

or controlled, to prevent manipulations that are regarded as radical for a language.

One might think that transcuts are language-dependent concepts; however, this is not the

case. The idea of transcuts is based on the principles of dynamic join points, and therefore,

is independent of any particular programming language. Nevertheless, when it comes to

implementation, the semantics of the target language as well as practicality dictates the

extent to which dynamic join points, and transcuts for that matter, can be realized.

70

Chapter 5

Evaluation

We have chosen the cross-cutting concern of handling exceptions as a suitable modular-

ization target for the purpose of evaluation of our new construct. The reason behind this

choice is that separation of exception handling was the initial motivation behind this work;

besides, it is easy to spot the implementation of this concern in a system and observe how

it is scattered all over the system and tangled up with the code of other concerns.

Several researchers have investigated the possibility andpotential impact of modulariz-

ing exception handing using aspect-oriented techniques, and have called for more powerful

designation mechanisms to better achieve it (e.g. [36], [37], [8], [29], [10]).

Exception handling concern cross-cuts the implementationof the normal behaviour of

a system. In Java, and many other languages, repetitive exception handling code is tangled

with the code of other concerns. Consequently, its modularization can result in higher qual-

ity software. Additionally, there are other reasons why onemight be interested in separating

exception handling code into a module. Some studies show that the number of reactions to

different exceptions is considerably lower than the numberof places exceptions are caught,

therefore there is opportunity for reuse of the handling patterns [36], [37].

Also, writing flawless exception-handling code is hard. As reported in [57], many pro-

grams fail to properly release acquired resources along allexecution paths in the presence

of run-time errors. Many programmers that are aware of exceptions and use proper con-

structs to catch and handle them, still write faulty exception-handling code. Writing correct

exception-handling code becomes even more difficult when the number of resources that

need to be handled increases (e.g. a database connection, a query statement, and a query

result set are three resources typically involved in a database operation). Correctly dealing

with N resources typically requiresN nested try-finally statements or a number of run-time

checks to track if resources are still allocated. These handling can result in badly-tangled

71

code.

Still, whether the modularization of exception handling results in better code is not

definite and is dependent on the side effects of the modularization as well as other design-

specific factors. Castoret al. [8] have done an extensive study on the modularization of

exception handling using aspects. They refactor some existing systems to modularize ex-

ception handling and compare them with the original versionbased on four software quality

attributes, namely, separation of concerns, coupling, cohesion, and conciseness. Their gen-

eral conclusion is that“AOP does not fix poor designs”[8]. In other words, in systems

with poorly-structured or complex exception handling, there is little AOP can do to help the

quality. They present scenarios where aspectization can bebeneficial or harmful.

They also show that AOP improved the separation of concerns between exception han-

dling code and normal application code. They also observe that even though aspects can

help reuse exception handler code, it is sometimes difficultto achieve this kind of reuse

without careful planning. The other relatively counterintuitive result of their study is that

in systems with application-specific exception handling strategies, using aspects does not

result in smaller number of lines of code. In terms of the measured quality attributes, they

show that separation of concerns improved in the refactoredsystems; coupling was not

affected much; cohesion was affected negatively, and size was not affected significantly.

As far as software quality is concerned, a careful design of the original system which

is not oblivious to the potential use of aspects could significantly improve the results. As-

pectization as above resulted in reduced cohesion in components, expressed in in terms of

the number of method and advice pairs that do not access the same field. It turns out that

the main reason of the poor results in cohesion is the large number of methods that were

created to expose join points that AspectJ can target. In other words, their study confirms

one of our observations that doing refactoring [22] to expose join points can be harmful and

can compromise the original design. The authors reiterate this result a few times in their

paper and point out the need for improvement in join point designation:

“... the increase caused by refactored operations, albeit small, is negative in most

situations ... These new operations are not part of the system and possibly do not clearly

state the intent of the developer. In some cases, the refactored operations comprises just a

few lines that do not make sense when separated from their original context. This suggests

that there is still room for improving AspectJ in order to more precisely select join points of

interest” [8].

Other researchers have come to the same conclusion in their efforts in modularizing

72

other cross-cutting concerns, not just exception handling. For instance, Zhang [58] has de-

signed an AOP synchronization library called FlexSync to achieve customizability through

decoupling synchronization intentions and mechanism; however, FlexSync requires refac-

toring to convert blocks into methods so that they can be picked out by pointcuts, which as

explained, would negatively affect software quality.

5.0.4 Evaluation Strategy

To evaluate transcuts, it is necessary to realize what it is that transcuts enable developers

to do. Transcuts remove the need for refactoring to expose join points (which is the major

source of quality degradation when using aspects to modularize cross-cutting concerns);

therefore, the right question to ask in the evaluation is “dotranscuts significantly reduce the

need for refactoring to expose join points in real existing software?”

To answer the above question, we considered two real-world software systems from two

different domains. We modularized exception handling in these systems using aspects in the

following fashion: for each exception handling block (identified by atry {}), we determined

whether the piece of code within thetry {} can be identified using a conventional AspectJ

pointcut; if so, a pointcut was composed to select the targetjoin point and an advice added

to handle the exceptions of the target code. Basically, the handler blocks (i.e. catch{},

finally{} were moved to the corresponding advice. If the target piece of code could not be

designated by a conventional pointcut, then a transcut would be composed for it (without

having to do refactoring the target code into a method.)

1 . . .
2 t r y {
3 x
4 }
5 catch (E xcep t ion e) {
6 y
7 }
8 . . .

1 . . .
2 x
3 . . .

1 p o i n t c u t X () : s e l e c t t h e d e s i r e d x ;
2 / / or t r a n s c u t . . .
3
4 vo id around () : X() {
5 t r y {
6 proceed () ;
7 }
8 catch (E xcep t ion e) {
9 / / hand le e x c e p t i o n

10 }
11 }

Figure 5.1: Original code (left), after removing exceptionhandling code (middle), possible
handler aspect (right).

Figure 5.1 shows abstractly what would happen to each piece of exception handling

code. Note that in some cases, a combination of pointcuts andtranscuts was needed to

implement the desired handling behaviour.

We divided the exception handling cases in each system into four categories, as shown

73

Treatment (Technique) Description
Conventional i.e. pointcuts
Unreliably Conventional With minor refactoring; or no refactoring, but minor

change would require transcuts
Transcuts Occasionally in concert with pointcuts
Complex cases Not treated; usually need complicated workaround,

careful refactoring; examples include unsupported
join point boundary and return from handler

Table 5.1: Four different treatments of exception handlingcases in the experiment.

in Table 5.1. The first category includes the cases that can behandled conventionally, that

is, using AspectJ pointcut/advice. For example, if the codewithin a try{} block is a single

method call, then it is selectable by acall() pointcut; so is the whole body of a method.

The second category includes the cases that can be handled using traditional pointcuts

with the help of very minor refactorings (excluding extraction into method) or redesigns.

Also, in this category are the cases that can be handled usingpointcuts but could potentially

break with minor future changes. Consider the following example:

1 t r y {
2 / / may throw MyExcept ion , which i s no t an IOE xcep t ion (nor i ts s u b c l a s s)
3 a () ;
4 b () ; / / may throw IOE xcep t ion
5 }
6 catch (IOExcept ion e) {
7 }

Only b() needs to be guarded for IOException becausea() (line 3) cannot throw IOEx-

ception. In case any other exception is thrown bya(), the next containing handler would

catch it and that is not the concern of the shown handler. Therefore, one could write a

pointcut to selectb() (line 4) and handle the IOException in an advice, without changing

the run-time behaviour of the above code. However, imagine afuture change that requires

MyException be handled at the same location as IOException:the pointcut has to be re-

placed by a transcut that can designate the whole composite join point beginning ata() and

ending atb(). These cases form the grey area between pointcut-designatable and transcut-

designatable1 cases, to which we refer as “unreliably conventional”.

The third category includes the cases that could only be handled using transcuts, pos-

sibly in concert with other AspectJ constructs. Without using transcuts, these cases would

have required refactoring some target piece of code into a method to be selectable by con-

ventional pointcuts.

1It should be noted that a transcut that only has a single constituent pointcut selects the same join points as
the constituent pointcut.

74

Exception Handling Modularization: TSafe (classes: 123, LOC: 10556)
Technique # of cases (try blocks)
Conventional 20
Unreliably Conventional 6
Transcuts 41
Complex cases 9
Total 76

Table 5.2: Results of the exception handling modularization in TSAFE system.

Lastly, there were cases that we could not handle even using transcuts. For example, if

the boundary of a region of code is formed by statements that are not join point in AspectJ,

then neither pointcuts nor transcuts could select them. Examples of these statements are

arithmetic operators and assignment into local variables.Also, as realized and reported in

[8], there are complex cases of exception handling that are not worth the effort of separation.

Examples include handlers that change local context variables, or return from the containing

method, or affect the control flow of a containing loop. Whiletranscuts could handle some

of such cases, there were others that needed careful redesign/refactoring to allow reliable

application of transcuts.

We should mention that in this experiment, the original codewas oblivious to the whole

aspectization, which explains some of the complex cases that had to be handled. The obliv-

iousness factor in our experiment only shows how powerful transcuts can be; however, we

do not believe that aspects can be used very reliably in a system without prior careful archi-

tectural and design consideration and provisions (Note that one can be “not oblivious” and

“not intrusive” at the same time.)

In the rest of this section, we present the results of our experiment with the two systems

and an example case of separation of exception handling formeach.

5.0.5 Case Study 1: Tactical Separation Assisted Flight Environment

TSAFE (Tactical Separation Assisted Flight Environment) system is “a new tool to aid air-

traffic controllers in detecting and resolving short-term conflicts between aircraft”2. Con-

ceived at NASA and developed at MIT, it is usually used as a testbed for software verifica-

tion experiments. It is a relatively high-quality piece of software with around 10,500 lines

of code and 123 classes.

Table 5.2 shows the summary of cases we identified in this system. 41 out of total 76

exception handling cases were dealt with using transcuts. Without using transcuts, all of

2http://sdg.csail.mit.edu/tsafe/

75

these cases had to be refactored into new methods to be selectable by conventional point-

cuts. That means 41 new methods would have had to be created most of which would not

have had any meaning outside of their original context. As explained before, these would

have been the source of a significant decrease in cohesion in the system.

There were cases where once single transcut was used to handle multiple cases of ex-

ception handling. Figure 5.2 shows the original code of a method responsible for loading

data inside TSAFE. There are 6try-catchblocks that areabstractlydoing the same thing;

that is, create aFileReaderobject for a file and reading data from the object (e.g. lines 8-9.)

The first operation (creating aFileReaderobject) may throw aFileNotFoundException. The

second operation may throw an IOException.

We composed a transcut to capture all 6 instances of these operations and an advice to

handle the exceptions. Figure 5.3 shows the new method afterremoving exception handling

code.

Figure 5.4 shows the corresponding exception handling aspect. Note that the handlers

in the original code is accessing a local context variable (errorMessages); therefore, the

aspect should capture a reference to the referenced object for use in the advice. Line 3 in

the aspect code declares a reference which is set in theafter() advice in lines 18-21. This

advice is executed after successful execution of theVectorcreation join point corresponding

to line 3 in Figure 5.3, and saves a reference to the created list.

TranscutreadData() is defined in lines 23-28 to select all instances of the described

operations. Note that data flow pointcuts are used to establish a relation between two join

points, which requires that the returned value of the first join point be the first argument of

the second join point.

An around()advice is written to handle the exceptions thrown by the designated tran-

scut. The original exception handlers add a different errormessage to the list of error in

case of an exception. In order to write one single handler forall the join points selected by

readData(), we stored the error messages in a static string array (lines4-11) to be indexed

using a variable (line 12) that is incremented after the execution of each join point (line 36.)

Note that this indexing is not reliable and could probably have been done better. These

kinds of workarounds are reduced when the client code is not totally oblivious to the aspects.

For instance, the static array of error messages could have been defined somewhere else to

be accessible by anyone interested using a relevant key (e.g. the name of the source file that

is being read.)

The next complication is that in the original code, if an exception occurs, it is handled

76

1 L i s t r e a d S t a t i c D a t a (S t r i n g [] d a t a F i l e s){
2 j a v a . u t i l . L i s t e r ro rMessages =new Vector () ;
3
4 / / Read f i x e s i n t o da tabase .
5 t r y {
6 / / th rows F i leNo tF oundE xcep t ion
7 Reader r e a d e r =new F i l e R e a d e r (d a t a F i l e s [0]) ;
8 / / th rows IOE xcep t ion
9 t h i s . r e a d F i x e s (reader , tsafeDB) ;

10 }
11 catch (j a v a . io . IOExcept ion e){
12 er ro rMessages . add (” Unable to read f i x f i l e . ”) ;
13 re tu rn er ro rMessages ;
14 }
15
16 / / Read a i r p o r t s i n t o da tabase .
17 t r y {
18 Reader r e a d e r 1 =new F i l e R e a d e r (d a t a F i l e s [1]) ;
19 t h i s . r e a d F i x e s (reader1 , tsafeDB) ;
20 }
21 catch (j a v a . io . IOExcept ion e){
22 er ro rMessages . add (” Unable to read a i r p o r t f i l e . ”) ;
23 re tu rn er ro rMessages ;
24 }
25
26 / / Read nava ids i n t o da tabase .
27 t r y {
28 Reader r e a d e r 2 =new F i l e R e a d e r (d a t a F i l e s [2]) ;
29 t h i s . r e a d F i x e s (reader2 , tsafeDB) ;
30 }
31 catch (j a v a . io . IOExcept ion e){
32 er ro rMessages . add (” Unable to read nava id f i l e . ”) ;
33 re tu rn er ro rMessages ;
34 }
35
36 / / Read a i rways i n t o da tabase .
37 t r y {
38 Reader r e a d e r 3 =new F i l e R e a d e r (d a t a F i l e s [3]) ;
39 t h i s . readAi rways (reader3 , tsafeDB) ;
40 }
41 catch (j a v a . io . IOExcept ion e){
42 er ro rMessages . add (” Unable to read ai rway f i l e . ”) ;
43 re tu rn er ro rMessages ;
44 }
45
46 / / Read a i rways i n t o da tabase .
47 t r y {
48 Reader r e a d e r 4 =new F i l e R e a d e r (d a t a F i l e s [4]) ;
49 t h i s . r e a d S i d s (reader4 , tsafeDB) ;
50 }
51 catch (j a v a . io . IOExcept ion e){
52 er ro rMessages . add (” Unable to read s i d f i l e . ”) ;
53 re tu rn er ro rMessages ;
54 }
55
56 / / Read s t a r s i n t o da tabase .
57 t r y {
58 Reader r e a d e r 5 =new F i l e R e a d e r (d a t a F i l e s [5]) ;
59 t h i s . r e a d S t a r s (reader5 , tsafeDB) ;
60 }
61 catch (j a v a . io . IOExcept ion e){
62 er ro rMessages . add (” Unable to read s t a r f i l e . ”) ;
63 re tu rn er ro rMessages ;
64 }
65 re tu rn er ro rMessage s ;
66 }

Figure 5.2: The original code of a method from TSAFE.

77

1 L i s t r e a d S t a t i c D a t a (S t r i n g [] d a t a F i l e s){
2
3 j a v a . u t i l . L i s t e r ro rMessages =new Vector () ;
4
5 / / Read f i x e s i n t o da tabase .
6
7 Reader r e a d e r =new F i l e R e a d e r (d a t a F i l e s [0]) ;
8 t h i s . r e a d F i x e s (reader , tsafeDB) ;
9

10 / / Read a i r p o r t s i n t o da tabase .
11
12 r e a d e r =new F i l e R e a d e r (d a t a F i l e s [1]) ;
13 t h i s . r e a d F i x e s (reader1 , tsafeDB) ;
14
15 / / Read nava ids i n t o da tabase .
16
17 r e a d e r =new F i l e R e a d e r (d a t a F i l e s [2]) ;
18 t h i s . r e a d F i x e s (reader2 , tsafeDB) ;
19
20 / / Read a i rways i n t o da tabase .
21
22 r e a d e r =new F i l e R e a d e r (d a t a F i l e s [3]) ;
23 t h i s . readAi rways (reader3 , tsafeDB) ;
24
25 / / Read a i rways i n t o da tabase .
26
27 r e a d e r =new F i l e R e a d e r (d a t a F i l e s [4]) ;
28 t h i s . r e a d S i d s (reader4 , tsafeDB) ;
29
30 / / Read s t a r s i n t o da tabase .
31
32 Reader r e a d e r 5 =new F i l e R e a d e r (d a t a F i l e s [5]) ;
33 t h i s . r e a d S t a r s (reader5 , tsafeDB) ;
34
35 re tu rn er ro rMessage s ;
36 }

Figure 5.3: After removing exception handling code.

78

1 a s p e c t P a r s e r R e a d S t a t i c D a t a A s p e c t pe rc f l ow (read ()){
2
3 p r i v a t e j a v a . u t i l . L i s t e r ro rMessages =n u l l ;
4 p r i v a t e f i n a l s t a t i c S t r i n g [] msgs =
5 { ” Unable to read f i x f i l e . ” ,
6 ” Unable to read a i r p o r t f i l e . ” ,
7 ” Unable to read nava id f i l e . ” ,
8 ” Unable to read ai rway f i l e . ” ,
9 ” Unable to read s i d f i l e . ” ,

10 ” Unable to read s t a r f i l e . ”
11 } ;
12 p r i v a t e i n t i ndex = −1;
13 p r i v a t e boolean e r r o r = f a l s e ;
14
15 d e c l a r e s o f t : IOExcept ion :
16 e x e c u t i o n (L i s t P a r s e r I n t e r f a c e . r e a d S t a t i c D a t a (. .));
17
18 a f t e r () r e t u r n i n g (j a v a . u t i l . L i s t e r r o r s) : c a l l (Vector . new ())
19 && w i th incode (L i s t P a r s e r I n t e r f a c e . r e a d S t a t i c D a t a (..)) {
20 er ro rMessages = e r r o r s ;
21 }
22
23 t r a n s c u t readData (Reader r e a d e r){
24 p o i n t c u t c r e a t e R e a d e r : c a l l (F i l e R e a d e r .new (. .))
25 && re tu rn (r e a d e r) ;
26 p o i n t c u t r e a d i t : c a l l (∗ P a r s e r I n t e r f a c e + . read∗ (. .))
27 && a r g s (reader , . .) ;
28 }
29
30 vo id around (Reader r e a d e r) : r eadData (r e a d e r)
31 && w i th incode (L i s t P a r s e r I n t e r f a c e . r e a d S t a t i c D a t a (..)) {
32 / / s k i p a l l o t h e r reads in case o f e r r o r
33 / / (t h i s s i m u l a t e s ” r e t u r n ” in ca tch .)
34 i f (e r r o r) re tu rn ;
35
36 index ++;
37 t r y {
38 proceed (r e a d e r) ;
39 }
40 catch (IOExcept ion e) {
41 e r r o r = t rue ;
42 e r ro rMessage s . add (msgs [index]) ;
43 }}}

Figure 5.4: Exception handling aspect for method in Figure 5.3.

79

Exception Handling Modularization: EIMP (classes: 120, LOC: 9000)
Technique # of cases (try blocks)
Conventional (Pointcuts) 34
Unreliably Conventional 20
Transcuts 22
Complex cases 0
Total 76

Table 5.3: Results of the exception handling modularization in EIMP system.

and then the handler returns from the containing method. When the exceptions are handled

in an aspect, there is no way to return from the method containing the corresponding join

point without using extra variables and logic; however, in this specific case, we worked

around this limitation by using a boolean variable (line 13)that indicates whether an error

has occurred. This error flag is set in the handler in the around advice (line 41) and is

checked at the beginning of the advice so that the execution of the rest of the join points is

skipped if the previous one ended with an error. This behaviour simulates the behaviour of

the original code.

5.0.6 Case Study 2: Eclipse Instant Messenger Plugin

EIMP (Eclipse Instant Messenger Plugin) is an open-source Eclipse plugin that allows re-

mote collaboration in a project by integrating popular instant messaging protocols3. This

plugin has about 120 classes and 9000 lines of code.

Table 5.3 shows the summary of cases we identified in this plugin. 22 out of 76 cases

of exception handling had to be modularized using transcutswhich is still significant. Fig-

ure 5.5 shows the original code of a case that was handled using a transcut. In this case, the

piece of code from line 7 to line 10 needs to be designated.

Figure 5.6 shows the code after removing the exception handling code and the corre-

sponding aspect is depicted in Figure 5.7. Note that the transcutexecCmd()(lines 5-10)

does not establish any data flow relations because it was not necessary; in fact, even the two

pointcuts at lines 7 and 8 are redundant because the desired join point can be designated by

the first and last pointcuts (i.e. getEnvandappend.)

As it is evident from this case, there is not always a decreasein the number of lines of

code (LOC) when it comes to aspectizing exception handling.This observation has been

reported in [8] as well. However, the changes in LOC could vary from system to system

and can be improved by an aspect-aware design (as opposed to oblivious design.)

3http://eimp.sourceforge.net

80

1 pub l i c vo id run () {
2 i f (s s == n u l l)
3 re tu rn ;
4
5 S t r i n g B u f f e r buf=new S t r i n g B u f f e r () ;
6 t r y {
7 P r o c e s s p = Runtime . getRunt ime () . exec (cmd) ;
8 buf . append (getOut (p . g e t I n p u t S t r e a m ())) ;
9 buf . append (”\ r \n”) ;

10 buf . append (getOut (p . g e t E r r o r S t r e a m ())) ;
11 }
12 catch (E xcep t ion e) {
13 buf . append (”\ r \n”) ;
14 buf . append (e . getMessage ()) ;
15 S t r i n g W r i t e r s = new S t r i n g W r i t e r () ;
16 P r i n t W r i t e r p = new P r i n t W r i t e r (s) ;
17 e . p r i n t S t a c k T r a c e (p) ;
18 buf . append (s . g e t B u f f e r ()) ;
19 }
20
21 ss . sendMessage (new MimeMessage (buf . t o S t r i n g ())) ;
22 }

Figure 5.5: A sample case in EIMP system before separating exception handling.

1 pub l i c vo id run () {
2 i f (s s == n u l l)
3 re tu rn ;
4
5 S t r i n g B u f f e r buf=new S t r i n g B u f f e r () ;
6
7 P r o c e s s p = Runtime . getRunt ime () . exec (cmd) ;
8 buf . append (getOut (p . g e t I n p u t S t r e a m ())) ;
9 buf . append (”\ r \n”) ;

10 buf . append (getOut (p . g e t E r r o r S t r e a m ())) ;
11
12 ss . sendMessage (new MimeMessage (buf . t o S t r i n g ())) ;
13 }

Figure 5.6: Sample code after removing exception handling concern code.

81

1 p r i v i l e g e d a s p e c t Scr ip tEHAspec t{
2
3 d e c l a r e s o f t : E xcep t ion : e x e c u t i o n (∗ ImCommandServer . RespCmd . run ()) ;
4
5 t r a n s c u t execCmd (S t r i n g B u f f e r buf){
6 p o i n t c u t getEnv : c a l l (∗ Runtime . getRunt ime ()) ;
7 p o i n t c u t s t a r t : c a l l (∗ Runtime . exec (. .)) ;
8 p o i n t c u t g e t E r r : c a l l (∗ P r o c e s s . g e t E r r o r S t r e a m ()) ;
9 p o i n t c u t append : c a l l (∗ S t r i n g B u f f e r . append (. .)) && t a r g e t (buf) ;

10 }
11
12 Ob jec t around (S t r i n g B u f f e r buf) : execCmd (buf){
13 Ob jec t r e s = n u l l ;
14 t r y {
15 r e s = p roceed (buf) ;
16 }
17 catch (E xcep t ion e) {
18 buf . append (”\ r \n”) ;
19 buf . append (e . getMessage ()) ;
20 S t r i n g W r i t e r s = new S t r i n g W r i t e r () ;
21 P r i n t W r i t e r p = new P r i n t W r i t e r (s) ;
22 e . p r i n t S t a c k T r a c e (p) ;
23 buf . append (s . g e t B u f f e r ()) ;
24 }
25 re tu rn r e s ;
26 }
27 }

Figure 5.7: Exception handling aspect corresponding to code in Figure 5.6.

5.0.7 Weaknesses of Transcuts

Our effort to use transcuts in modularizing exception handling in the EIMP and TSAFE

systems better clarified some of the weaknesses of transcuts. Some of these weakness areas

pertain to incomplete design and implementation while others are more intrinsic to the idea

of transactional pointcuts. In this section, we show some ofthe cases from the TSAFE

system where transcuts could not be applied, required auxiliary refactoring, or design-time

a priori knowledge.

Consider the code depicted in Figure 5.8. This is a case from TSAFE that we catego-

rized as “complex” because the desired target piece of code ends with an unsupported join

point, in this case an arithmetic operator. The primitive join points supported by transcuts

are inherited from AspectJ, therefore, this probably is nota transcut limitation per se; nev-

ertheless, these cases make it harder for transcuts to do what they were originally designed

to do.

Even though, in this case,NumberFormatExceptioncan only be thrown by thepar-

seInt()method call, it is necessary to guard the whole region for theexception to achieve

the correct behaviour; that is, line 6 should not execute if an exception is raised in the

guarded block. There can be cases where this behaviour is notneeded, and therefore, the

82

1 t r y {
2 S t r i n g [] c o n s t r a i n t s = TSAFEProper t ies . g e t L a t i t u d e C o ns t r a i n t s () ;
3 i n t minLatDegrees = I n t e g e r . p a r s e I n t (c o n s t r a i n t s [0]) ;
4 . . .
5
6 maxLon = maxLonSign∗ (maxLonDegrees + (maxLonMinutes / 6 0 . 0)) ;
7 }
8 catch (NumberFormatExcept ion e){
9 }

Figure 5.8: Unsupported boundary join point

tight boundaries can be relaxed.

Another complex case that is a result of limitations inherited from AspectJ occurs as

follows: inside an advice procedure one cannot “return” from the containing method. For

instance, if anaround()advice is executed when join pointjp is activated within method

m(), then one cannot return the control to the caller of methodm() to simulate a “return”

statement insidem(). This limitation implies that in Figure 5.9, we cannot straightforwardly

extract exception handling behaviour because then the handling advice would have to return

from the containing method (getFixLatLon()) if an exception is raised.

1 F ix ge tF ixL a tL on (S t r i n g f i x D e s c r i p t i o n){
2 / / E x t r a c t t h e l a t i t u d e and l o n g i t u d e s t r i n g s
3 S t r i n g l a t S t r i n g = . . . ;
4 S t r i n g l o n S t r i n g = . . . ;
5 . . .
6
7 / / Get t h e l a t i t u d e in dec ima l form
8 t r y {
9 l a t = s i g n ∗ ge tDec im a lC oo rd i na t e (l a t S t r i n g) ;

10 }
11 catch (NumberFormatExcept ion e){
12 re tu rn n u l l ;
13 }
14 . . .
15
16 / / Get l o n g i t u d e in dec ima l form
17 t r y {
18 lon = s i g n ∗ ge tDec im a lC oo rd i na t e (l o n S t r i n g) ;
19 }
20 catch (NumberFormatExcept ion e){
21 re tu rn n u l l ;
22 }
23 / / Return t h e parsed f i x
24 re tu rn new Fix (f i x D e s c r i p t i o n , l a t , l on) ;
25 }

Figure 5.9: Exception handling advice would need to “return” from the method containing
the target join point.

Figure 5.10 shows another complex case that only looks similar to the previous case but

is of a completely different nature. This is one of the situations where the lexical (text-based

83

language-level) characteristic of exception handling constructs conflicts with the control-

flow-based semantics of transcuts. As explained in Section 3.3, transcuts operate within

regions of control dependency; that is, the matching beginsat the beginning of regions

and scans to the end while trying to match constituent pointcuts (some of which can be

dependent pointcuts that take the matching into the nested regions.) This single entry single

exit (SESE) property is essential in our join point model.

1 t r y {
2 / / E x t r a c t f i x from d e s c r i p t i o n
3 . . .
4 r e l a t i v e F i x = getFixNamed (fixName , tsafeDB) ;
5 i f (r e l a t i v e F i x == n u l l) {
6 re tu rn n u l l ;
7 }
8 . . .
9 m ete rs = METERSPER MILE ∗ I n t e g e r . p a r s e I n t (d i s t a n c e D e s c) ;

10 }
11 catch (IndexOutOfBoundsExcept ion e){
12 / / hand le t h e e x c e p t i o n
13 }
14 catch (NumberFormatExcept ion e){
15 / / hand le t h e e x c e p t i o n
16 }

Figure 5.10: The complex case of “return” from region

If the returnstatement in line 6 did not exist, the control flow would mergeback into the

SESE region that is guarded by thetry block. In other words, the desired piece of code could

be identifiable by a transcut; however, thereturn statement is a (second) exit path from the

otherwise SESE region, which in turn, makes all the following statements dependent on the

containing conditional (line 5.)

Consequently, what is perceived as a (textual) region at thelanguage level is not a

candidate SESE region for our matching algorithm, but is instead composed of multiple

regions that are separately considered for matching. Figure 5.11 shows a simplified version

of this case and the corresponding CFG and PDG.

The return node causes the control flow to merge into the exit node of the method.

This can be compared with the case in Figure 5.12 wherereturn is replaced with a simple

statement that flows the control into nodeb. This in turn makesb part of the same region as

a andc, and therefore, would not have the same issue as the above case.

Although this behaviour is a limitation when refactoring existing exception handling

code into aspects, it is the correct behaviour based on the definition of transcuts. The match-

ing algorithm relies on the dependency information to choose the next potential match for

its constituent pointcuts. If a node is not in the current dependence region where matching

84

return

a;
if(c)
 return;
b;

EXIT

a

c

returnb

R0

a c EXIT

R1 R2

b

Figure 5.11: The complex case of “return” from region (left), its corresponding CFG (mid-
dle), and PDG (right)

d

EXIT

a

c

b

R0

a c

a;
if(c)
 d;
b;

d

b EXIT

R1

Figure 5.12: A simple case (left), its corresponding CFG (middle), and PDG (right)

takes place, then it should not be considered for matching because it may not execute at all4.

This can also be considered a strong point of transcuts because it makes them independent

of the language-level (source code level) constructs.

There are also other issues such as bugs and boundary cases that are typical in software

systems and can be fixed given more time. For example, local variables within a designated

region (join point) do not retain their changes if the join point is advised by anaround()that

calls proceed(). This is a bug and a result of the way around advice is implemented, and

can be fixed by boxing the local variables before calling the advice in the compiler.

Also, the compiler should detect and report potentially erroneous transcut usage and

help the programmer to understand and resolve the issue (Currently, most of such cases are

detected through runtime exceptions and extensive debugging.)

4A dependent()pointcut can be used to capture such cases, however, when areturn statement exists in the
inner regions of the designated area, some special treatment is needed to produce correct behaviour for the
around()advice.

85

5.0.8 Summary of Results

The above experiments showed that transcuts can in fact reduce the need for potentially

harmful refactorings in cross-cutting concern modularization. The degree to which they

can positively influence software quality can vary from system to system; if aspect-oriented

techniques are chosen to modularize cross-cutting concerns, then transcuts can be a power-

ful tool in the toolbox. It is the designer of the system who should decide when the use of

transcuts is worth the effort.

The aspect-oriented community recognizes that obliviousness of the base code to the

(potential) presence of aspects can result in difficulty in designation and advice of desired

join points (e.g.complex cases in our experiment), which would in turn lead tolow quality

and unreliable aspect code. Transcuts are no exception; however, transcuts can sometimes

help reduce the negative effects of oblivious code by providing more designation power.

86

Chapter 6

Related Work

Region pointcut [2] is an independent work that addresses almost the same limitations as

our work. A region pointcut can be used to specify a region in code that can be then advised.

However, their technique and the concepts used are at the language-level whereas ours is at

the level of control flow and the intermediate language. Thischoice of abstraction level has

implications both in the semantics of region pointcuts and applications. Semantically, it is

not clear what a region is and concepts like block and statements make it very dependent

on the format of the written code. Also, existing applications in binary format cannot be

targeted because the source code might not be available.

Region pointcuts do not have the data-flow relation semantics and constructs that tran-

scuts provide. For example, you might designate the sequence a(); b(); with a region point-

cut but you cannot express the requirement that botha() andb() must be called on the same

object. Also, transcuts can be embedded which allows modularization and reuse that is not

supported in region pointcuts. Loops and conditional pointcuts within transcuts provides

more control on what can be in a region.

Perhaps the most relevant previous work to this research is trace-based aspect mecha-

nisms in which join points are run-time execution events andpointcuts consist of patterns

of events (Tracematch [3], Declarative Event Patterns [55], and Trace-based Aspects [16]).

Among these mechanisms, Tracematch seems to be the most developed and has been added

as an extension to theabccompiler.

A tracematch is a module that includes three parts: an event definition part that defines

the run-time events of interest using pointcuts; a regular pattern on the defined events; and

advice to be executed when the pattern is matched at runtime.An automaton is used at

runtime to recognize the specified event pattern. Tracematches use temporal relationships

in join point selection and advice. Run-time events are monitored and once a specified

87

pattern of events is matched, an advice can be executed.

There are some differences between trace-based mechanismsand our work. Trace-

based mechanisms use an execution-time event-based join point model which naturally

falls back on run-time event monitoring to determine when advice should apply. These

models are inherently unable to take potential future events into account and can only ex-

press past and current events. Consequently, onlyafter-typed advice is feasible. Transcuts,

on the other hand, providearound, before,andafter advice . Run-time performance will

not be affected much in our model because transcuts do not rely on run-time event mon-

itoring. Trace-based approaches, specifically tracematches, are on the path toward more

context-aware join point matching; however, they are inherently limited in effectiveness

and performance because of their event-based model.

Ptolemy[46] is a language designed to address some of the existing concerns (in aspect-

oriented languages), such as dependency on syntactic structure and limited predefined types

of events(join points). Ptolemy allows explicit declaration of event types that have a name

and a set of variables used to expose context. Arbitrary sequences of expressions can be

annotated as having a specific event type. Objects can register to be able to advise the event

types they are interested in. When an event of a specific type is fired, all the relevant ad-

vice is executed. The designers of Ptolemy also recognize the need for arbitrary pieces of

code to be treated as typed events (join points). In Ptolemy,the events have to be explicitly

announced in the target code (a.k.a. base) while implicitness (non-invasiveness) is one of

our design goals. That is, transcuts allow arbitrary event type declarations in an implicit

manner. Also, the transcut designation and advice model complies with the existing dy-

namic pointcut-advice model which made it possible for integration and interaction with a

language such as AspectJ. Similarly, in [29] Explicit Join Points (EJP) are used to announce

join points in the base code explicitly, hence, their work differs from our approach in the

same way Ptolemy does. Typed join point [52] is a similar workthat reduces some of the

explicitness in the explicit join point mechanisms but not in the case of arbitrary blocks of

code.

A dataflow pointcut is introduced in [39] which allows selecting join points only if there

is a dataflow relation between the current join point and a previous one. They introduce a

return pointcut, similar to ours, that binds its variable to the return value of the target join

point. Although the join point model they use is different than the join point model we

introduce (arbitrary computation cannot be designated as join points,which results in less

effectiveness), by harnessing the dataflow relation between join points, their work follows

88

part of the same goals as our work. Similarly, extra control-flow pointcut operators are

provided in [17] which make it possible to more selectively designate join points, how-

ever, because they rely on the traditional join point model,they inherit the aforementioned

shortcomings.

A loop()pointcut is defined in [25] to designate and advise loops, which is in essence, a

special case of transcuts since loops are composed of other join points. Transcuts generalize

the notion of arbitrary computations as join points that arereferenced to through their key

constituent join points. Although loops are an instance of such computations, theloop()

pointcut cannot select loops based on what they do, instead,all found loops are exposed.

LogicAJ [48], provides three basic pointcuts to match against three main elements in the

target language structure,i.e. statements, expressions, and declarations. The use of logic

meta-variables that bind to elements in code makes it possible to designate and interrelate

various elements in the code, which makes it similar to transcuts that interrelate join points.

The major differences between our work and LogicAJ is that transcuts match at the level

of the control flow graph whereas LogicAJ works at the level ofthe language structure

(code). Also, we define a join point model that emphasizes thenotion of “arbitrary pieces

of computation” whose shadows appear as regions in the CFG; the transcut is designed to

realize this model. On the other hand, LogicAJ does not definea join point model or what

the designated structures represent.

Program Query Language, PQL [38], is a query language that allows programmers to

express design rules and find application errors. PQL queries are patterns that match on the

execution trace; when a pattern matches, an action can be taken. The query pattern connects

a set of primitive events (method call, field load/store, etc.) using sequencing, alternation,

negation, and sub-query constructs. The query variables are objects in the target program

and the query expresses a relationship between the objects.PQL is fundamentally differ-

ent than our work in the same way as tracematches: queries arematched on the program

execution events. PQL’s main goal is to detect program errors and design rules violations.

The types of reactions to a match are limited (which is an inherent property of trace-based

approaches). Also, PQL is a stand-alone language and not a language extension, therefore,

its designers had more freedom in the design of its structure.

Java Tools Language, JTL [11], is another logic-based querylanguage for Java. It has

a very powerful pattern language which hides the underlyinglogic-based concepts from

the programmer. Similar to other program query languages that work with the program

static structure (code), JTL is fundamentally different from our work, which is based on the

89

dynamic join point model.

90

Chapter 7

Conclusions

In this chapter, we review the contributions of this thesis and present some of the possible

directions for future work.

7.1 Contributions

We presented a more liberal definition of join points in dynamic pointcut-advice model that

allows join points that are composed of other join points in an arbitrary but controlled way,

instead of limiting the kinds of identifiable join points to aprimitive “well-defined” set.

This new view of join points paves the way for new constructs that make designation and

advice more flexible and powerful. Join points in this model can now be identified as part

of a bigger context and in relation to other join points. Also, it is no longer necessary to

create artificial method boundaries (refactoring) to expose join points.

We presented the transactional pointcuts, or transcuts, asa realization of this new model

based on the AspectJ language. Program dependence graph (PDG) was used as the main

program representation so that the control dependencies and region hierarchies are available

to the new matching algorithm. Also, this representation makes binary code (byte code), in

addition to source code, accessible for matching and weaving.

Example applications were presented to demonstrate how transcuts can work along with

traditional aspect-oriented constructs to solve real problems. While some of theses appli-

cation areas, such as exception handling, transaction management, and parallelization, are

easily recognizable as potential targets for transcuts, there could be many other situations

that transcuts can help. Similar to any other programming construct, the power of transcuts

comes from abstraction and composition, which allows transcuts to be applied in new ways

to solve new problems.

We showed what transcuts mean in the continuation-based semantics of dynamic join

91

points. The continuation-based semantics of dynamic join points is a step forward in un-

derstanding the meaning of dynamic join points.

The effectiveness of transcuts was evaluated in modularizing the concern of exception

handling in two real-world systems. The results show that transcuts can significantly im-

prove the quality in aspect-oriented software systems, especially its cohesion.

One of the important design decisions in this work has been easy integration of transcuts

with AspectJ and eventually adoption by programmers, whichhas affected the construct

both syntactically and semantically. The transcut is a realization of the ideas presented in

this thesis but not the only possible one. There is room for improvement in this realization

in different directions, from structure to semantics, to matching algorithms, and so on.

7.2 Future Work

One possible future direction is to address the limitationsin the design of transcuts, most of

which are related to the expressiveness of transcuts (as discussed in Chapter 3.) It would be

interesting to see how transcuts would perform when extended with more auxiliary point-

cuts, operators, and modifiers to help designers better capture their intended join points.

For example, the data flow relations are currently limited tomust-alias relations; it would

potentially be useful to enable may-alias relations and expose them through a proper in-

terface. In addition, the pattern language can be enriched to allow better control over the

matching algorithm. For instance, anot(x)pseudo pointcut can be implemented to control

the non-contiguous matching behaviour in a way that it failsif it comes across a join point

that matchesx. Additionally, the lexicalwithincode()pointcut should be enabled to work

with transcuts because it would be very effective in selecting join points based on their

presence within a specific lexical context. Also, making it possible to advise constituent

pointcuts within a transcut would significantly increase the power of transcuts and allow

writing more succinct aspects.

Transcut construct is implemented inAspectBench compiler (abc)[5], which is an As-

pectJ compiler developed mainly to simplify language extensions and experiments. Al-

thoughabc is a full AspectJ compiler,ajc1 is the one mostly used in industry. Therefore,

the next step toward possible adoption of the construct is tomake it available experimen-

tally within ajc so that people can easily try it and eventually use it to address their existing

problems. With the heavy and frequent trial, new application areas would emerge as well

1http://www.eclipse.org/aspectj/

92

as new ways to improve the transcut construct.

Pointcut fragility is a well-known issue in AOP and transcuts appear to exacerbate it.

Pointcuts in AspectJ rely on signature patterns to select join points, and therefore, even mi-

nor changes to a method/field signature (including name) canbreak the existing pointcuts.

Transcuts are also composed of traditional pointcuts; consequently, they suffer from the

same issue. Additionally, transcuts deal with not just signatures but code patterns, which

in turn, adds to their fragility. It seems that interactive tool support for transcuts may help

deal with the fragility to a good extent. Therefore, design,implementation, and integration

of such tools is a fruitful future direction.

We evaluated transcuts only with respect to a single cross-cutting concern in real-world

systems. It is necessary to evaluate transcuts with respectto other well-known cross-cutting

concerns in real systems, which will help to understand their utility and limitations to a

greater extent.

93

Bibliography

[1] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. Compilers: Prin-
ciples, Techniques, and Tools. Pearson Education, Inc, second edition, 2006.

[2] Shumpei Akai and Shigeru Chiba. Extending AspectJ for separating regions. InGen-
erative Programming and Component Engineering (GPCE’09), pages 45–54, Denver,
Colorado, October 2009. ACM.

[3] Chris Allan, Pavel Avgustinov, Aske Simon Christensen,Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables toaspectj.SIGPLAN Not.,
40(10):345–364, 2005.

[4] Andrew W. Appel.Compiling with Continuations. Cambridge University Press, 1992.

[5] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: an extensible aspectj compiler. InAOSD ’05: Proceedings of the
4th international conference on Aspect-oriented softwaredevelopment, pages 87–98,
New York, NY, USA, 2005. ACM.

[6] Thomas Ball. What’s in a region? or computing control dependence regions in near-
linear time for reducible control flow.ACM Lett. Program. Lang. Syst., 2(1-4):1–16,
1993.

[7] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using com-
position filters.Commun. ACM, 44(10):51–57, 2001.

[8] Fernando Castor, Nélio Cacho, Eduardo Figueiredo, Alessandro Garcia, Cecı́lia M. F.
Rubira, Jefferson Silva de Amorim, and Hı́talo Oliveira da Silva. On the modulariza-
tion and reuse of exception handling with aspects.Softw. Pract. Exper., 39(17):1377–
1417, 2009.

[9] Curtis Clifton, Gary Leavens, and James Noble. MAO: Ownership and effects for
more effective reasoning about aspects.ECOOP 2007 –Object-Oriented Program-
ming, pages 451–475, 2007.

[10] Roberta Coelho, Awais Rashid, Arndt von Staa, James Noble, Uirá Kulesza, and Car-
los Lucena. A catalogue of bug patterns for exception handling in aspect-oriented
programs. InPLoP ’08: Proceedings of the 15th Conference on Pattern Languages of
Programs, pages 1–13, New York, NY, USA, 2008. ACM.

[11] Tal Cohen, Joseph Gil, and Itay Maman. JTL - the java tools language. InOOPSLA’06
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 89–108, 2006.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph.ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

94

[13] Krzysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming: Methods,
Tools, and Applications. Addison Wesley, 2000.

[14] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computa-
tion. In Hayo Thielecke, editor,The Fourth ACM SIGPLAN Continuations Workshop
(CW’04), Birmingham B15 2TT, United Kingdom, 2004. School of Computer Sci-
ence, University of Birmingham.

[15] Robert Deline and Manuel Fahndrich. Typestates for objects. In18th ECOOP, pages
465–490. Springer, 2004.

[16] Remi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects.Aspect-
Oriented Software Development, pages 201–217, 2005.

[17] Remi Douence and Luc Teboul. A pointcut language for control-flow. In 3rd ACM
SIGPLAN/SIGSOFT Conference on Generative Programming andComponent Engi-
neering, pages 95–114. Springer, 2004.

[18] Christopher Dutchyn.Dynamic Join Points: Model and Interactions. PhD thesis,
University of British Columbia, November 2006.

[19] Christopher J. Dutchyn. Specializing continuations amodel for dynamic join points.
In FOAL ’07: Proceedings of the 6th workshop on Foundations of aspect-oriented
languages, pages 45–57, New York, NY, USA, 2007. ACM.

[20] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. InOOP-
SLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, pages 1–18, New York, NY, USA,
2007. ACM.

[21] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.The program dependence
graph and its use in optimization.ACM Trans. Program. Lang. Syst., 9(3):319–349,
1987.

[22] Martin Fowler, Kent Beck, John Brant, and William Opdyke. Refactoring: Improving
the Design of Existing Code. Addison-Wesley, 1999.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, 1995.

[24] Jan Hannemann and Gregor Kiczales. Design pattern implementation in java and
aspectj.SIGPLAN Not., 37(11):161–173, 2002.

[25] Bruno Harbulot and John R. Gurd. A join point for loops inaspectj. InAOSD ’06:
Proceedings of the 5th international conference on Aspect-oriented software develop-
ment, pages 63–74, New York, NY, USA, 2006. ACM.

[26] William Harrison and Harold Ossher. Subject-orientedprogramming: a critique of
pure objects.SIGPLAN Not., 28(10):411–428, 1993.

[27] Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. Efficient construction of
program dependence graphs.SIGSOFT Softw. Eng. Notes, 18(3):160–170, 1993.

[28] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In AOSD ’04: Proceed-
ings of the 3rd international conference on Aspect-oriented software development,
pages 26–35, New York, NY, USA, 2004. ACM.

[29] Kevin Hoffman and Patrick Eugster. Towards reusable components with aspects: an
empirical study on modularity and obliviousness. InICSE ’08: Proceedings of the
30th international conference on Software engineering, pages 91–100, New York,
NY, USA, 2008. ACM.

95

[30] Daqing Hou and H. James Hoover. Using scl to specify and check design intent in
source code.IEEE Trans. Softw. Eng., 32(6):404–423, 2006.

[31] G. Kiczales. What is a concern? Speaking at Working sessions on Comprehending
Aspect-Oriented Programs: Challenges and Open Issues. co-located with International
Conference of Software Comprehension ICPC’07, 2007.

[32] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, and
J. Irwin. Aspect-oriented programming. InEuropean Conference on Object-Oriented
Programming (ECOOP), pages 220–242, June 1997.

[33] Gregor Kiczales and Jim Des Rivieres.The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, USA, 1991.

[34] Ramnivas Laddad.AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications, 2003.

[35] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-oriented programming
with adaptive methods.Commun. ACM, 44(10):39–41, 2001.

[36] Martin Lippert and Cristina V. Lopes. A study on exception detection and handling
using aspect-oriented programming. Technical Report CSL-99-1, 1999.

[37] Cristina Lopes, Jim Hugunin, Mik Kersten, Martin Lippert, Erik Hilsdale, and Gregor
Kiczales. Using aspectj for programming the detection and handling of exceptions.

[38] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
and security flaws using PQL: a program query language.SIGPLAN Not., 40(10):365–
383, 2005.

[39] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented
programming. In1st Asian Symposium on Programming Languages and Systems,
pages 105–121. Springer, 2003.

[40] Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in aspect-oriented
mechanisms.ECOOP 2003 – Object-Oriented Programming, pages 219–233, 2003.

[41] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Compilation semantics of
aspect-oriented programs. In G. T. Leavens and R. Cytron, editors,FOAL’02 Founda-
tions of Aspect-Oriented Languages Workshop at AOSD’02, 2002.

[42] Doug Orleans and Karl Lieberherr. Dj: Dynamic adaptiveprogramming in java. In
Reflection 2001: Meta-level Architectures and Separation of Crosscutting Concerns,
Kyoto, Japan, September 2001. Springer Verlag.

[43] Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. InArchitectures and Component Technology: The State-of-the-Art in
Software Development, January 2000.

[44] D. L. Parnas. On the criteria to be used in decomposing systems into modules.Com-
mun. ACM, 15(12):1053–1058, 1972.

[45] Andy Podgurski. Forward control dependence, chain equivalence, and their preser-
vation by reordering transformations. Technical Report CES-91-18, Case Western
Reserve University, August 1991.

[46] Hridesh Rajan and Gary Leavens. Ptolemy: A language with quantified, typed events.
ECOOP 2008 –Object-Oriented Programming, pages 155–179, 2008.

[47] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363 – 397, December 1998.

96

[48] Tobias Rho, Günter Kniesel, and Malte Appeltauer. Fine-grained generic aspects. In
(FOAL’06) Foundations of Aspect-Oriented Languages, 2006.

[49] Hossein Sadat-Mohtasham. Arbitrary non-contiguous pieces of computation: a new
join point model for aspect-oriented programming. InOOPSLA Companion ’08:
Companion to the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications, pages 757–758, New York, NY, USA, 2008.
ACM.

[50] Hossein Sadat-Mohtasham and H. James Hoover. Transactional pointcuts: Designa-
tion, reification, and advice of interrelated join points. In Generative Programming
and Component Engineering (GPCE’09), pages 35–44, Denver, Colorado, October
2009. ACM.

[51] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional software.SIG-
PLAN Not., 41(10):451–464, 2006.

[52] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. Types and
modularity for implicit invocation with implicit announcement. ACM Trans. Softw.
Eng. Methodol., 20(1):1–43, 2010.

[53] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java optimization framework. InProceedings of CASCON
1999, pages 125–135, 1999.

[54] Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analy-
ses and transformations. Technical report, Sable ResearchGroup, McGill University,
1998.

[55] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event
patterns. InSIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth in-
ternational symposium on Foundations of software engineering, pages 159–169, New
York, NY, USA, 2004. ACM.

[56] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming.ACM Trans. Program. Lang.
Syst., 26(5):890–910, 2004.

[57] Westley Weimer and George C. Necula. Finding and preventing run-time error han-
dling mistakes. InOOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 419–431, New York, NY, USA, 2004. ACM.

[58] Charles Zhang. Flexsync: An aspect-oriented approachto java synchronization. In
ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Software
Engineering, pages 375–385, Washington, DC, USA, 2009. IEEE Computer Society.

97

Appendix A

Construction of the Program
Dependence Graph in the Presence of
non-Normative Control Flow

A Program Dependence Graph (PDG) is a digraph whose nodes areprogram units (e.g. in-

structions, or basic blocks) and whose edges denote dependencies between the nodes. The

PDG representation has been shown to have a variety of applications in compiler optimiza-

tion, slicing, and parallelization, as well as other more specialized areas (e.g. in Transcut

matching in AOP.) The original paper that introduces PDG presents an algorithm to com-

pute it, which not only is hard to comprehend but also ignoresthe exceptional control flow

constructs. Other papers present faster algorithms but areeither harder to implement or

do not cover exception-handling constructs. Here, we report how we combined two algo-

rithms to compute PDG and how we deal with exceptional control flow using our newly

added control flow graph representation. Also, some parts ofthe implementation and some

examples are explained. Java is our target language although most of the arguments and

algorithms are applicable to other imperative languages. Also, we use Soot framework for

its support for intermediate 3-address code (Jimple) and flow analysis utilities.

Program Dependence Graph (PDG) [21] is a program representation that makes explicit

the control dependencies between the program elements. Here, we report the way we build

PDGs for Java programs using the Soot [53] analysis and optimization framework.

PDG can represent both control and data dependencies; however, here we mainly focus

on control dependencies because specific data dependenciesare usually application-specific

and can always be added on top the PDG. In the original paper, also, the control dependen-

cies are the focus.

There are some algorithms and implementations (e.g. [12, 6]) that compute control

98

dependencies and generate a control dependence graph; however, few of them generate the

complete PDG, that is, one that contains regions of control dependencies. Others might

need the source code to do the 0 at parse time (e.g. [27]).

Our current implementation is the outcome of an incrementaldevelopment in the fol-

lowing way. Initially, we needed to compute the set of control dependence regions in a

method1. We used the algorithm given in [6] to compute the regions because it was fast and

intuitive. Subsequently, we realized that we needed the hierarchy of the regions (i.e. the

dependencies among them as well as other nodes.) Therefore,we used part of the origi-

nal algorithm given in [21] to construct the complete PDG given the set of regions and the

control flow graph. We do not claim that our algorithm is better in any way (we have not

investigated it), which is understandable because this algorithm is a by-product of our main

research work.

We use Soot framework and, especially, the Jimple [54] intermediate language which

allows our approach to work with Java bytecode as well as source code. Soot provides

a few kinds of control flow graphs, which support both unit graphs (graphs whose nodes

are Jimple instructions) and block graphs (graphs whose nodes are basic blocks); however,

in order to deal with exceptional control flow in a way compatible with the rest of our

application, we had to add a new kind of control flow graph on top of what Soot provides.

This graph and the rationale behind it will be explained in this report.

The rest of this report is as follows. Section A.1 presents some of the background

material on control flow graphs (CFG) and dominator trees. InSection A.2, after presenting

the definition of dependence in a CFG, region analysis and PDGconstruction are explained;

also some parts of the implementation and an example usage are presented. We explain

some of the situations that make a CFG (and in turn the corresponding PDG) complicated

and our approach to addressing them in Section A.3. Finally,we conclude in Section A.4.

A.1 Background

A.1.1 Control Flow Graph

A control flow graph (CFG) is a directional graph in which nodes represent basic blocks

(or instructions) and edges indicate flow of execution from asource node to a target node

(see [1] for the precise definition and algorithms for computing CFG.) Figure A.1 shows a

program and its CFG. TheSTART/EXITnodes are traditionally added to a CFG to simplify

1This was needed in the matching phase of Transcut [50] which is an AOP construct.

99

the implementation of graph algorithms (for instance, by making the graph single-headed).

STARTrepresents whatever condition that leads to the execution of the method body, and

is, in our implementation, a dummynop instruction (so is an EXIT node). Nevertheless, we

do not add them unless necessary.

} e

c3

f

e2

ENTRY

EXIT

c2

a

c1

g

b

d

void m()
{
 a();
 while(c1())
 {
 b();
 while(c2())
 d();
 if(c3())
 e();
 else
 e2();
 f();
 }
 g();

Figure A.1: A program and its CFG

Soot provides interfaces and implementation for a few kindsof CFGs.UnitGraphand

BlockGraphrepresent CFGs whose nodes areUnits and Blocks2, respectively. BriefU-

nitGraph (BriefBlockGraph) andExceptionalUnitGraph(ExceptionalBlockGraph) extend

UnitGraph (BlockGraph). An “exceptional” graph includes potential exceptional flow

in program whereas a “brief” graph only includes normal flow edges between the nodes.

Therefore, depending on the application at hand, the appropriate implementation should be

used.

In our case, neither brief nor exceptional version was adequate. In a brief graph, each

catch or finally block starts a head in the graph. A head in a CFGis a node that does not have

a predecessor. So, such CFG can potentially be multi-headed, which makes the dominator

tree a forest, which in turn leads to problems in computing the program dependence graph.

The multi-headedness can be solved by adding aSTARTnode to the CFG (as done tradi-

tionally), and an edge from theSTARTto all heads in the graph; however, the graph would

still be incomplete because the hierarchy information of the exceptional blocks would be

lost and the dependencies would be inaccurate.

Exceptional graph, on the other hand, includes exceptionalflow, and consequently, the

multi-headedness would not be an issue because there would be an edge from potentially

2In Soot,Unit is an interface representing a program instruction, andBlock is a basic block.

100

exceptional nodes to the catch/finally blocks; however, every node can potentially throw an

exception which results in graph that has an extra exceptional edge from almost every node

to the visible catch blocks. Again, for some cases this CFG could be appropriate but in our

application this representation was not precise enough; therefore, we implemented our own

CFG.

We implemented theEnhancedUnitGraph(EnhancedBlockGraph) which is a Unit-

Graph (BlockGraph) very similar to aBriefUnitGraph (BriefBlockGraph) with a proper

representation of exception handling behaviour3. the details of how the exceptional flow is

represented in the graph and the observation behind it are explained in Section A.3.2.

A.1.2 Dominator and Post-Dominator Trees

Nodex dominatesy (x is a dominator ofy) in a CFG if every path from the START node

to y goes throughx. Similarly, x post-dominatesy (x is a post-dominator ofy) in a CFG

if every path from y to the EXIT node passes throughx. A dominator (post-dominator)

tree is used to represent the dominance (post-dominance) relation in a CFG. Each node

in a dominator (post-dominator) tree dominates (post-dominates) only its descendants in

the tree. Figure A.2 shows the dominator and post-dominatortrees for the program in

Figure A.1 (ignore the dotted selection for now.)

c2

bg

d c3

e e2 f

c1

a

e2

fa

g

c1

d b

c2 e c3

Figure A.2: Dominator (left) and post-dominator (right) trees

Dominator and post-dominator trees are used in various flow analysis algorithms; here,

we used them for computing the regions of control dependenceas well as the program

dependence graph itself.

3In the absence of exception handling constructs (try-catch-finally), enhanced graph, brief graph, and ex-
ceptional graph are all the same.

101

A.2 Program Dependence Graph

Program Dependence Graph (PDG) [21] is a program representation in which the control

dependencies between nodes in a CFG are made explicit and also region nodes are added

to represent the common set of dependencies for a set of nodes. PDG has successfully

been used for program optimization, parallelization, slicing, automatic testing,etc. all of

which require that dependencies among program statements be easily accessible. Nodes in

PDG are the same as the nodes in Control Flow Graph, though in our implementation, we

use a wrapper class to carry some information about nodes. Edges in PDG denote control

dependency between two nodes. Control flow information is implicitly available in PDG

through ordering, but it can also be explicitly representedthrough control flow edges. In

this section, we illustrate a PDG of a simple program and explain how it is constructed.

Figure A.3 shows the PDG corresponding to the program in previous section. Only

control flow dependencies are shown in the PDG because we currently do not use explicit

data flow edges in PDG.

Informally, nodeB is control dependent on nodeA if the execution ofA determines

whetherB executes or not. The formal definition from [21] is as follows. LetG be a control

flow graph. LetX andY be nodes inG. Y is control dependent onX iff

1. there exists a directed pathP from X to Y with anyZ in P (excludingX andY)

post-dominated byY and

2. X is not post-dominated byY .

For instance,b() method call is dependent onc1()because there is a path fromc1() to b()

that only containsb() andc1() (so the first condition holds because there is noZ in the path),

andc1() is not post-dominated byb() (see Figure A.2). Intuitively,b() is control dependent

onc1()because the execution ofb() depends on the result of the execution ofc1(). But c1()

is not control dependent ona() becausea() is post-dominated byc1(). Intuitively, c1()’s

execution is not dependent ona()’s execution.

There are generally two kinds of nodes in a PDG: CFG nodes (i.e. basic blocks or in-

structions) and region nodes; and there is an edge fromA to B if B is control-dependent

on A. A region node summarizes and factors out the set of control dependences of a set

of nodes in a PDG. For instance, all the nodes within the body of the top-level loop in

Figure A.1 are control dependent onc1(); so, a region node can represent this shared de-

pendence set: region nodeR2 in Figure A.3 is created and made control dependent onc1()

102

and all the nodes in the body of the loop are made control-dependent onR2. This depen-

dence set summarization is performed for all control dependences and the created region

nodes are added to the PDG. At each level of the PDG, nodes are (either implicitly or ex-

plicitly) connected by control-flow edges. Throughout thisthesis, the reader can assume

that the control flow in each region in PDG (i.e. the child nodes of the region) is from left

to right, unless the flow is explicitly shown in the graph. PDGmakes the region hierarchy

explicit and available for matching. For instance, inner loops can easily be identified (e.g.

regionR3 is the inner loop in regionR1).

n

R0

a R1 g

c1

R2

b f

e2e

R3

R5 R6

c3

c2

R4

d

Weak regions:
 {a, c1, g},
 {b, c2, c3, f},
 {d}, {e}, {e2}.

Strong regions:
 {a, g}, {c1},
 {b, c3, f}, {c2},
 {d}, {e}, {e2}.

y

Figure A.3: PDG of the program in Figure A.1

Various algorithms have been proposed to efficiently compute the PDG4 of a program

(e.g. [21], [12], [27], [6]). We reuse the region analysis machinery that we initially imple-

mented to build weak regions (based on the algorithm in [6]) and construct the PDG based

on the algorithm given in [21].

A.2.1 Region Analysis

In any execution path from the beginning of the flow graph to the end, either all the nodes

in a region execute or none of them do. Regions are, therefore, the natural extension of

basic blocks (the control enters through the header of a block and STOPs through the end).

Regions can beweakor strong. We use these definitions from [45], which result in slightly

different regions than the ones defined in [1].

• Weak Region: verticesv andw are in the same weak region iff for any complete

4Some only compute the Control Dependence Graph or the set of regions.

103

control-flow path,v andw are both in the path or are both absent from the path.

• Strong Region: verticesv andw are in the same strong region iffv andw occur the

same number of times in any complete control-flow path.

We used an algorithm presented in [6] which finds weak regionsbased on the observa-

tion that

• v andw are in the same weak region iff (v dominatesw andw post-dominatesv) or

(w dominatesv andv post-dominatesw).

Strong regions would be the same as weak regions if there wereno loops in the CFG.

Distinct verticesv andw are in the same strong region iff

• they are in the same weak regionand

• (v is in every cycle containingw) and (w is in every cycle containingv.)

The weak and strong regions of the CFG in Figure A.1 are shown in Figure A.3. The

regions in the PDG correspond to the strong regions. The linear algorithm given in [6] is

based on the key observation that, for any CFG, the vertices of each weak region form a

chain in the post-dominator tree that is the reverse of a chain in the dominator tree (see

Figure A.2 for the chains corresponding to the weak region{a, c1, g}).

A.2.2 Constructing the Region Hierarchy

As mentioned before, nodes in a PDG are either region nodes orCFG nodes (i.e. basic

blocks.) A region node in the PDG represents a strong region that has dependency edges to

its immediate dependent nodes. In the implementation, there are slight differences between

weak regions, strong regions, and regions in the PDG, but conceptually, they are all the

same: they represent a region of control dependence in a control flow graph. Consequently,

in the code,IRegionis an interface andRegionandPDGRegionare weak/strong regions and

PDG region nodes, respectively. Design-wise, the latter two could probably have been con-

solidated but we had to keep the back-compatibility with ourpast implementation; hence,

the current design.

After computing the weak regions, we compute the strong regions and construct the

PDG at the same time. The outline of the algorithm is as follows. Given the list of weak

regions, PDG can be constructed by finding the inter-region dependencies. Starting from

the top-level weak region, a top-level PDG node,R, is created and for each (CFG) nodeA

104

in the region, first, a PDG node is created to representA in the PDG, then, a dependency

edge is added fromR to the PDG node representingA.

Then the set of nodes that are dependent onA are found: for each edge (A,B) in the

CFG such thatB does not post-dominateA, let L be the least common ancestor ofA and

B in the post-dominator tree. EitherL is A or L is the parent ofA in the post-dominator

tree (see [21] for proof). IfL is the parent ofA, then all nodes in the post-dominator tree

on the path fromL to B, including B but notL, are control dependent onA. If L is A,

then all nodes in the post-dominator tree on the path fromA to B, includingA andB, are

control dependent onA (this case captures loop dependence.) Both cases can be covered

by traversing backwards fromB in the post-dominator tree until we reachA’s parent (if

it exists, orA otherwise) and adding all visited nodes to a list as nodes that re control

dependent onA.

The A’s PDG node is changed to be a “Conditional” PDG node to represent the fact

that there are nodes that depend on it; then, for each of the dependants ofA, the containing

(weak) region is looked up5 and a PDG node is created to represent it; a dependency edge

is then added from theA’s PDG node to the region’s PDG node. This is repeated for all

the nodes in the list of dependants that are in a different weak region than the previously

processed dependants ofA. Loops that contain abrupt exit or continuation statementscause

some conditions that need to be checked in the above steps. When it turns out that a loop

header is being processed, a new strong region is created along with its corresponding PDG

node which is added to the graph and the appropriate dependency edges are added. It is

worthwhile to mention that loops create circular dependencies in the PDG and we label the

back dependency edges in the PDG as “dependency-back” so that clients be aware of them.

A.2.3 Implementation and Usage

Our PDG is a graph that extends theHashMutableEdgeLabelledDirectedGraphclass in

Soot, which is a directed graph whose edges are 0, and implements the expected interface

of a program dependence graph,i.e., ProgramDependenceGraph. The PDG classes can be

used in any project that is properly set up to use Soot, and that imports the PDG package.

Figure A.4 shows how this interface can be used:

The list of the PDG regions is created by doing a post-order traversal of the PDG and

adding the PDGNodes with the same dependency (that is, the same parent), to the region.

The reason we call them “PDG regions” is to avoid confusing them with strong and weak

5This information is available from the region analysis phase.

105

1
2 /∗ Body body = . . .
3
4 body r e p r e s e n t s t h e body o f any method
5 whose PDG i s d e s i r e d . I t may be acqu i r ed th rough
6 d i f f e r e n t ways (e . g . i n t e r n a l T r a n s f o r m method , e t c .) .
7 ∗ /
8
9 / / Create t h e CFG of t h e method

10 EnhancedUnitGraph c fg =new EnhancedUnitGraph (body) ;
11
12 / / Create t h e PDG f o r t h e g iven CFG
13 ProgramDependenceGraph pdg =new HashMutablePDG (c fg) ;
14
15 / / P r i n t a t e x t u a l r e p r e s e n t a t i o n o f t h e graph .
16 System . ou t . p r i n t l n (pdg) ;
17
18 / / Get a l i s t o f t h e r e g i o n s in t h e PDG
19 L is t<PDGRegion> pdgRegions = ((HashMutablePDG2) pdg) . getPDGRegions () ;
20
21 / / The a l l t h e 1 o f t h e top−l e v e l r eg ion
22 PDGNode head = pdg . GetS ta r tNode () ;
23 L is t<PDGNode> deps = pdg . ge tDependen ts (head) ;

Figure A.4: An example of construction and usage of a PDG

regions, even though they are almost the same (The type of nodes are different because they

belong to different program representations).

Figure A.5 shows part of the class diagram of the PDG package.A PDGNoderepresents

a node in the PDG, which can be either a region node or a CFG node. A LoopedPDGNode

is aPDGNodethat represents a loop and has a header node and a body node, both of which

are of typePDGNode. Similarly, ConditionalPDGNoderepresents a node in the PDG that

has two 1, first of which runs when the corresponding condition is true, and second of which

runs when the condition is false6. Many classes and relationships are not shown for brevity.

Edges in our PDG implementation are either “dependency”, “dependency-back” (rep-

resenting loop dependency), or “controlflow”.

A.3 Non-Normative Control Flow

Non-normative flow occurs when an instruction alters the flowof control in the code in such

a way that it changes the normal, expected, frequent flow of the code. It should be noted

that this is not a precise definition in the sense that an alteration of flow might be completely

normal and still (in our definition) a non-normative. Fortunately, there are only a few known

instructions that cause such behaviour:breakandcontinuestatements in loops,throw, and

6In our implementation, we do not explicitly specify which dependent is associated with which the condition
being true but this information can be added based on the predefined Jimple code generation rules in Soot.

106

HashMutableEdgeLabeledDirectedGraph

IRegion

<<Interface>> <<Interface>>

ProgramDependenceGraph
HashMutablePDG

PDGNode

LoopedPDGNode ConditionalPDGNode

Region

PDGRegion

soot.toolkit.graph.pdg

MutableEdgeLabeledDirectedGraph

<<Interface>>

Figure A.5: UML class diagram for part of the PDG package

return (in the middle of methods.) In the following sections, we explain how these affect

the CFG and how we deal with them in the enhanced CFG.

A.3.1 Abrupt Loop Exit and Continuation

The presence ofbreakandcontinuestatements in loops affects the PDG in tricky ways. In

this section, we present an example to show how the PDG of a method with a loop that

contains another loop looks like. The matters get worse whenthe target of abreak/continue

statement is an outer loop. Consider the method shown in Figure A.6, along its CFG (it

does not do anything meaningful, so, do not try to understandthe function but its structure).

Figures A.7 and A.8 show the dominator/post-dominator trees and the corresponding

PDG for the method, respectively.7

A.3.2 Exceptional Flow

Figure A.9 shows two different kinds of flow out of a node (unitor block) in a CFG (if the

node is a return or throw statement, then there is no flow out ofit.) In fact, X represents

7In our implementation, we do not add ENTRY/EXIT (START/STOP) nodes to the CFG if not necessary.
In fact, we know what nodes in the CFG are heads and tails; If the head and tail nodes are unique, they can play
the role of ENTRY/EXIT nodes. Otherwise, we add the ENTRY/EXIT nodes.

107

}

 int i = 0;
 int j = 0;

outer:
 while(j < 10) {
 i = j + 2;

 while(condition2()) {
 i+=2;

 if(i < 3)
 continue;

 if(i > 4)
 break outer;

 i −=1;
 }

 if(i == j)
 i −= 1;

 if(i == 3)
 continue;

 if(i == 4)
 break;

 j++;
 }
 return i;

public int f() {

13

0

15

1

16

7

8 2

3 4

5 6

9

10

11 12

14

Figure A.6: A program and its CFG

14

0

15

1 16

7

2 8

9 103 4

5 6 11 12

13 14

16

2 4 5 7 10 12 13 15

1 3 6 8 9 10 11

Figure A.7: Dominator (left) and Post-dominator (right) trees

108

Dependency

R0

0 R13 16

15

R1

1 R14

7

R7 R2

8 10 2

R8 R9 R10 R3 R4

9 11 12 3 4

R5 R6R11 R12

13 14 5 6

Control Flow

Figure A.8: The PDG of program in Figure A.6

any well-structured portion of the program: a single unit, abasic block, a whole loop, or

a try-catch-block; the important property that all of them have is that the (normal) flow of

execution enters at the beginning and exits at the end, no matter how complex the flow is

within them.

X
exceptional flow

normal flow

Figure A.9: Control flow out of a node

If X is not guarded by a try block, the exceptional flow causes the method to exit (ex-

ceptionally.) It is the presence of exception-handling constructs, however, that necessitates

our introduction of theEnhancedUnitGraph. Figure A.10 shows the flow of control when

X is guarded by a try-catch-finally (X is defined recursively.)X represents any well-

structured segment of code and C and F represent catch and finally blocks, respectively.

Also, one thing that should be mentioned is that, in Soot, thefinally block is triplicated: for

exceptional flow, for normal flow when no exception is raised,and for normal flow when an

exception is raised but handled. It appears that there is no need to duplicate the finally code

109

for the normal flow cases, however, we wanted to be consistentwith the way Soot generates

Jimple code.

 F

X

F F

FC

try {

}
catch() {

}
finally {

}

 X

 C

Figure A.10: Control flow inside a try-catch-finally

The important observation is that, well-structured segments of code, no matter how

complex they are, can be abstracted and treated similar toX in the above figures; that is,

either the execution reaches the end of the segment normally, or an exception occurs at

some point in the execution. In our use cases, it does not matter at what specific point in

X did the exception occur; after all, at analysis time, every point in X would be a potential

source of exceptional flow; therefore, we only keep track of the exceptional flow at the level

of X, and only ifX is guarded in a try block.

We would like to have a CFG that is not as crowded as an ExceptionalUnitGraph but,

at the same time, represents the exceptional flow behaviour at a higher level,i.e. the level

of the exception-handling constructs. In order to do this, we enhance the brief CFG so that

one exceptional control flow edge is added fromX to the corresponding catch and finally

blocks, representing the potential exceptional flow from within X to the exception handler

blocks. This all is a little confusing, but it will perhaps become clear why it is needed when

the brief graph corresponding to the program in Figure A.10 is presented in Figure A.11.

X

FC

FF

Figure A.11: Brief CFG

The catch and finally blocks in a brief CFG are heads in the graph because the graph

110

does not include exceptional edges; even the nesting information of try-catch-finally struc-

tures is lost. The goal is to enhance such a brief CFG so that the exceptional flow informa-

tion is added to the graph not at the level of individual nodesbut at the level ofX as shown

in Figure A.10, whereX is a well-structured segment of code guarded by a try block. This

representation preserves the hierarchy of exception-handling blocks without making the

graph too crowded to be useful. The enhancement takes into account the control depen-

dence relation among the elements of the target structure; that is, the execution of the catch

and finally blocks are all dependent on whether the executionof X raises an exception or

not. We choose to insert a dummy node right beforeX and add an edge from that node to

all corresponding handlers (catch/finally) to encode the dependence of the handler blocks

onX becauseX itself might not necessarily be a single node in the CFG.

Figure A.12 shows the CFG after adding the dummy node and the corresponding ex-

ceptional flow to the brief CFG in Figure A.11.

nop

FC

FF

X

Figure A.12: Adding a dummy node to the brief CFG

There is one additional complexity with the exceptional finally block8: at the level

of Jimple code, the exceptional finally block ends with a throw instruction and such an

instruction, similar to a return instruction, is an exit point in the CFG of a method. If the

control reaches this point, it means thatX did not finish normally and the flow is exiting out

of it exceptionally. Two cases arise: either the finally block (along with the corresponding

try block) is guarded by a try-catch-finally or not. In the latter case, the throw at the end of

the finally causes the method to exit, hence, it is treated similar to any other instruction in

a method that can potentially and implicitly throw an exception (i.e. no explicit flow edge

is needed.) However, in the former case, the exception couldpotentially be handled by the

outer exception handler, and therefore, the flow would stay within the method and should
8By “exceptional finally block” we mean the execution of the finally block when an exception occurs but

not handled, or when an exception occurs within the corresponding catch blocks and not handled within them.

111

be represented in the CFG. Interestingly, we do not need to worry about where exactly such

a flow would go in the outer context because, as we explained, we represent all exceptional

flow within anx with a single edge from the beginning ofx to the corresponding handler

block. x in here is another segment of program that contains a try-catch-finally, which

containedX.

The only problem that remains is to somehow suppress the tailin the CFG generated

by this throw in thefinally block. If not treated, these tails create a forest, instead of a

tree, for the post-dominator relation. The logical solution is to add an edge from the end

of thefinally to the merge point of the corresponding try-catch-finally block. This edge is

harmless because the operational behaviour of the program is achieved by the execution

of the code (which is not altered by the addition of this edge.) This enhanced CFG is

a useful representation because it can make the graph represent the exceptional control

dependencies in the presence of exception handling constructs, which is necessary to create

a correct program dependence graph. It is not easy to find the merge point to which the

auxiliary edge fromthrow should be added. To get around this problem, we transform the

code so that eachthrow instruction is replaced by a method call that throws the samevalue

as the original expression; however, because a method call merges back to its call site, an

edge is automatically present from it to the next node in the flow.

Figure A.13 shows the enhanced CFG corresponding to the brief CFG in Figure A.11.

For presentation purposes, in this figure, the exceptional flow out of the exceptional finally

block is changed, midway, to a normal flow to indicate that, regardless of the operational

behaviour of this finally block (which is throwing an exception), the enhanced CFG con-

siders it as a piece of code, dependent on the execution ofX, that merges into the end of

the corresponding try-catch-block as explained before. Also, we ignore the exceptional flow

from a catch block to the exceptional finally block because incorporating it makes the graph

too complex and is not essential for our use case. That said, in theEnhancedUnitGraph,

which is used to create program dependence graph, we do not differentiate between excep-

tional flow and normal flow.

Figure A.14 shows an enhanced CFG corresponding to a typicalblock of code with

exceptional control flow constructs.A, B, C, F , andE represent chunks of code that map

to the basic blocks in the CFG. As it can be seen, this generated CFG follows the given

model for exceptional code. The corresponding PDG is shown in Figure A.15.

112

nop

FC

FF

X

Figure A.13: The enhanced CFG corresponding to the brief CFG

E

A

B

F

FC, F

E

A
try {
 B
}
catch(){
 C
}
finally {
 F
}

Figure A.14: The enhanced CFG of typical exception-handling code

F

R0

A E

R1 R2 R3

B F C,F

Figure A.15: The PDG for program in Figure A.14

113

A.3.3 Multiple Exits

Multiple return (or unhandled throw) statements in a CFG result in a post-dominator forest

instead of tree. The reason is that the nodes that are considered to be exit nodes do not have

any successor, and therefore, do not have any post-dominator. A forest causes some of our

algorithms to break or not work correctly. In the construction of theEnhancedUnitGraph

(and after taking care of the throw statements that can potentially be handled within the

same method) a STOP node is added, if it does not already exist, and if there are more than

one exit (tail) in the CFG; then, an edge is added from each tail node to the STOP node so

that the post-dominator relation can be represented by a tree (instead of a forest.)

A.4 Conclusion

We presented the construction mechanism, observations, and usage of the program depen-

dence graph representation, implemented in Soot. Also, we explained how we deal with

exceptional control flow with a the introduction of a new control flow graph representation.

Some parts of the implementation as well as an example usage were presented.

114

