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Abstract

In dynamic pointcut-advice join point models of Aspect€ted Programming (AOP),
join points are typically selected and advised indepengeafteach other. That is, the
relationships between join points are not considered mpaoint selection and advice. But
these inter-relationships are key to the designation arit@df arbitrary pieces of code
when modularizing concerns such as exception handling gnchsonization. Without
a mechanism for associating join points, one must instefaattar (if possible) into one
method the two or more related join points that are to be advisgether. In practice, join
points are often not independent. Instead, they form paat lmfjher-level operation that
implements the intent of the developerd. managing a resource). This relationship should
be made more explicit.

We extend the dynamic pointcut-advice join point model tkenpossible the desig-
nation, reification, and advice of interrelated join poinfsie Transactional Pointcut (tran-
scut), which is a realization of this extended model, is asbgoin point designator that
selects sets of interrelated join points. Each match ofrestnat is a set of join points that
are related through control flow, dataflow, or both. Thisvafidranscuts to define new types
of join points (pieces of computation) by capturing the keyngs of a computation and to
provide effectiveaccess for their manipulationd. advice). Essentially, transcuts almost
eliminate the need for refactoring to expose join pointsictviis shown by others to have a
significant negative effect on software quality.

The transcut construct was implemented as an extensioretdgpectJ language and
integrated into thé\spectBencltompiler. We used transcuts to modularize the concern of
exception handling in two real-world software systems. fidseilts show that transcuts are
effective in designating target join points without unresaey refactorings, even when the

target code is written obliviously to the potential aspzatibn.
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Chapter 1

Introduction

Almost all software development methodologies and prognarg paradigms have tried
to address the problem of software complexity by decomoairsoftware system into
manageable units that can be handled in isolation, whicteiei@lly referred to as the
separation of concerfsand it is achieved through modularization. All importanttaare
quality attributes are, directly or indirectly, influencbkyg the way the software is modu-
larized; that is, the criteria that are used to decomposestmsyand the modularization
constructs provided by the programming language used fpleimentation. In the early
years of programming, programs were small and machine &ggwas the primary pro-
gramming tool. Flowcharts were used to model the processims in programs and these
processing steps were the main factor in decomposing sgstAmsystems became more
complex, the old decomposition criteria and techniqueswapractical. Parnas is his clas-
sic paper shows that “information hiding” is the right crite to be used in decomposing
systems into modules [44]. Information hiding means thaheaodule should hide a de-
sign decision (that is most likely to change) and exposetés dif that decision as possible
to other modules through an interface. Therefore, when esigd decision changes, other
parts of the system will most probably not be affected.

The advances in software development and programming daygguhave always been
mutually dependent. New programming abstractions andticans were needed to real-
ize ideas such as Parnas’s information hiding. In fact, angdcsay that Object-Oriented
Programming (OOP) is a well-known realization of many idease of which is informa-
tion hiding. OOP brought in abstraction and composition ma@éisms that enabled the

development of very large systems with reasonable costibald otherwise be very hard

lInformally, a concern is anything that any stakeholder kkiof at any given time [31]. Examples of
typical concerns in a software system include security,mgding a mathematical function, printing status of
an operation, and so on.



to achieve. OOP was a major evolutionary step of programnanguages; yet, not long
after its wide acceptance, as demands for larger and morplermoftware were rising,

researchers and engineers noticed new problems, thatsis-catting concerns, that could
not be elegantly dealt with using the object-oriented tempines.

Kiczaleset al.[32] target these problems and propose yet another abstrastd com-
position mechanism that is fully compliant to the previoustinods (.e. OOP), but supports
the modularization of concerns that could not be cleanly utasized using the previous
methods. These concerns are referred torass-cutting concernand the new program-
ming model is calledhspect-Oriented Programming (AQP)

AOP mechanisms are characterized by their join point modeislefined in [32], a join
point model has three components: join points, which ammetds of language semantics;
“a means of identifying join points”; and “a means of affactithe behaviour at those
join points.” In dynamic join point models [56, 41], join pus are well-defined points in
the execution. AspectJ, which is the state-of-practiceetspriented language, supports a
dynamic join point model that is referred to as fPaintcut-Advicenodel? Pointcutsselect

a set of join points of interest aratlviceaffects the semantics of the selected join points.

1.1 Motivation

In a pointcut-advice model, each join point is selected ahdsad individually and inde-
pendently. That is, the relationships between join poinésnat taken into account in join
point selection and advice, except in limited predefinedsyvaych as theflowpointcut in
AspectJ. For example, one cannot designate a call join pdinte target object is returned
by another join point in the same control flow region.

In fact, AspectJ designers made a decision to make join paimtcontext-insensitive
as possible so as to make pointcuts more predictable to trgrgmnmer. Consequently,
there are two things that are not well supported. First, pmimts cannot be selected based
on their relationship to other join points (context). Fostance, one can designate all the
calls to method(), but not the subset of those that are preceded and succegadechlh to
methodg(). Secondly, join point types are predefined (by the targegfuage) and therefore
computation patterns that are in fact formed by a set ofiel@ed join points cannot be

designated and advised together. This limitation forcegnammers to refactor the target

2AspectJ also supports a static join point model which is déuhe scope of this work. We work with the
AspectJ’s pointcut-advice model as a real-world realaratif dynamic join point model; however, the concepts
in this work are not specific to AspectJ.



code into methods to make them selectable by pointcuts higighown to negatively affect
software quality [8].

Other researchers have recognized the above limitatichp@avided languages or ex-
tensions to address them. Region pointcut [2] is an indeg@ngork that addresses the
same problems as we do even though important differencet &xace-based aspect mech-
anisms €.g.[3]) aim at addressing the first limitation€., join point selection based on their
relationship with other join points), to some extent, tiglhunaking past contexts accessible
to the programmer but suffer from inherent limitations @round/beforeadvice and low
performance) of trace-based models. Phelemylanguage addresses the second limitation
by allowing the programmer to explicitly specify arbitrgngces of code as instances of de-
clared typed events [46]. The main problem is that the evenbdancement mechanism in
Ptolemy is explicit; that is, the events are announced irbtse code (see Section 6 for

details of related work).

1.2 Thesis

We claim that the dynamic pointcut-advice join point modah de extended to take join
point interrelationships into account and to allow the geation, abstraction, and advice
of arbitrary but well-formed pieces of computation as jowmings. This extended model
simplifies the separation of extended concerns (such asatdons). It also helps avoid
refactorings that are primarily aimed at exposing join ®ithat can be handled by the

original dynamic pointcut-advice join point model.

1.3 Contributions

We proposg, design, and implement Transactional Pointcuts (tras$¢g0] as a realiza-
tion of the new model in the Aspect] language. A transcut igegial join point desig-
nator that selects sets of interrelated join points. Eactcimaf a transcut is a set of join
points that are related through control flow, dataflow, ohbdte basic observation behind
transactional pointcuts is that join points do not occursimlation, but rather, are parts of
a higher-level computation that can in turn be regarded asnapjpint. Transcuts define
new kinds of join points by capturing the key points of targetmputations and providing
effectiveaccess for their manipulation.

We present a new join point representation based on the &moBependence Graph

3First presented in [49] and later in [50].



(PDG). PDG is a program representation that incorporatds damtrol flow and data flow,

as well as region hierarchies that are necessary for impigngetranscutslooped() condi-

tional(), anddependent(pointcuts have been added to transcuts to allow expressimg c

plex join point dependencies. Also, nested transcuts amid ititeraction with other ele-

ments of transcuts are presented.

The major contributions of this thesis are as follows:

1.4

A new join point model, based on the pointcut-advice modetjdfined. This new

model makes designation and advice of interrelated jointpgiossible.

A new construct (transcut) is designed and implementednstuat is a (partial) re-
alization of the above model and can seamlessly be intebveith the existing lan-

guages, specifically AspectJ.

A join point representation based on the Program Depend@nagh (PDG) is pre-

sented. This representation is the backbone of the transaiching algorithm.

Some pseudo pointcuts that can be used in transcuts areéésigoped() condi-

tional(), anddependent()
Some applications of transcuts are presented.
A continuation-based semantics for transcuts is presented

The results of modularizing exception handling using tcats in two real-world

software systems are reported.

An implementation of PDG that can deal with non-normativetoa flow, such as
exceptional flow and loop continuation/exit, contributedthe Soot [53] compiler

optimization framework.

Weaknesses and limitations of transcuts, whether in tlwiceptual grounds or in
the design and implementation, are examined and possit@etidins are proposed

for resolving them.

Organization

The rest of the thesis is organized as follows: Chapter 22ptsssome background mate-

rial on AOP, and AspectJ in particular. We present the new jmint model along with

transcuts in Chapter 3. Also, more specifically in that cbapbection 3.3 presents the

4



necessary program representations and concepts to lametsinscuts’ semantics and the
join point model. A set of applications are presented in i8acB.4 to show how tran-
scuts can be utilized. The implementation details are égdiain Section 3.5 and some of
the limitations are presented in Section 3.6. The semaatitsinscuts is explained based
on the continuation-based semantics in Chapter 4. Chapteschsses the concern of ex-
ception handling and the results of applying transcuts énnttodularization of exception
handling in two real-world systems. The important relatentkniis discussed in Chapter 6,
and, finally, we conclude the thesis in Chapter 7.



Chapter 2

Background: Aspect-Oriented
Programming

Aspect-Oriented Programming (AOP) [32] introduces theessary concepts and mecha-
nisms that allow modularizing cross-cutting concerns.cPdaral programming introduced
functional abstraction and composition and OOP introdwidgdct abstraction on top of it.
OOP enabled programmers to handle the complexity of latgkessoftware systems and
has been the dominant programming model for the last twoddscadowever, OOP cannot
help in the modularization of those concerns (behaviourg)system that span many mod-
ules (the implementation of other concerns.) As it will b@lained in this chapter, using
OOP to implement such concerns resultsade scatteringandcode tanglingwhich imply

low-quality code [34]. AOP allows abstraction and composibf cross-cutting concerns.

2.1 Modularizing Cross-Cutting Concerns

Most of software development methodologies rely on decaitipo techniques to break a
system into smaller and more manageable functional uniadiffonal programming lan-
guage models provide the facilities needed to abstrace thagtional units and compose
them in different ways in different contexts. These unitsevealled procedures in pro-
cedural programming and objects in object-oriented prognang (OOP) both of which
are considered to be some formsganeralized proceduréGP) [32]. The programming
language models whose main abstraction and compositicstroots are generalized pro-
cedures are referred to as GP languages. In fact, in all GRdayes units of decomposition
are usually units of functionality. Therefore, the featutigat are not functional.€., do not
fit well in the decomposition hierarchy) cannot be put in ayj@mmodule; the result is an

implementation code that is tangled up and hard to maintaishould be mentioned that



there are also functional units that cannot elegantly beutaoided. Some of the common
features that might not be easy to modularize are secundising, profiling, performance,
and so on.

Informally, a concern is anything that any stakeholderkbiaf at any given time [31].
Two different concerns, when implemented, crosscut edofr dt they must compose dif-
ferently and yet be coordinated [32]. GP languages onlyigeoene composition mech-
anism, hence, only those concerns that can be abstractezbemmbsed using generalized
procedures can be cleanly modularized. The implementafitime other concerns is scat-
tered over other modules because they need to coordindteh&ibther concerns at various
points in the code.

Several methodologies have been developed to addressdahlemps related to cross-
cutting concernsdg.g. Adaptive Programming [42], [35], Composition Filters [Hubject-
Oriented Programming [26], Intentional Software [51], kikdl Separation of Concerns [43],
Metaobject Protocols [33], and Generative Programming. ) ¥spect-Oriented Program-
ming has become the most widespread methodology to deatwasis-cutting concerris.

In order to illustrate some of AOP concepts, we present alsimample of a cross-
cutting concern. We consider an online e-tailer applicatidough which users can search
for and purchase products, as well as manage their accolmsich applications, there
is usually a data-tier that consists of classes that achesdatabase for retrieving or mod-
ifying information. The classes and their methods could tnectired in various ways,
however, for the purposes of this example, we assume thanhatiyod in any class that has

a name starting with “db” is a method that accesses the dagBagure 2.1, on the left.)

class UserAccount { 1| aspect Security{
2
3 pointcut dbaccess ():
4 execution poolean
public boolean dbChangeAddress (Address| a5 UserAccount .dbk(..));
/«get db connection 6)
make a query 7/  boolean around () : dbaccess (X
execute the query 8 /xcheck user login status
return true if successful, 9 if signed in, continue with
false otherwise %/ 10 method execution. else do
} 11 not execute and simply return
12 false .x/
public boolean dbAdd2Wishlst(Product pj| 13 }
141
}
}

Figure 2.1: A class from the database layer (left) and theesponding security aspect
(right)

IMany of these methodologies can be considered to be “aspiectted”, if they have a join point model.




Each one of these methods implements part @drectionality Assume that a new
feature is requested that requires all database methodsetik dogin status of the user
before accessing the database. One way of accommodatighinge is to go through
all the code and find and change all the methods that accesatfigase. Not only is this
approach cumbersome and error-prone but it would also telad$ maintainable code.(,
imagine a system with 40 classes in a data-tier, each camjeam average 10 methods, that
access the database.) To make things worse, this new gdeatiire might change (evolve)
as other features evolve in the system. What makes addisgnéiw feature difficult is its
cross-cutting nature: the implementation of this featuising traditional modularization
techniques, requires change in various places in the codghér words, the feature’s code
cannot be packaged in one place and is scattered throudtecode.

To resolve this situation a mechanism is needed that notdwdyg allow expressing the
new cross-cutting features without breaking the existingotnposition, but also helps to
do it in a modularized fashion. Figure 2.1 (right) shows a oledhat can implement the
added security feature in the above exanfplédhe Securityaspect implements the required
security feature in a modularized way. It first gives a naire (dbaccegsto the points
in the execution that correspond to teecutionof the methods in th&/serAccountlass,
whose names begin with “db” and returtaolean(lines 3-4.) These points are the places
where security should be checked (join points) dbdccess()s a pointcut that identifies
them.

Having identified the points in the executidre(, join points) where the security should
be checked, the only thing that remains is to bind the sgchdhaviour to the join points
so that it is executed when the join points are activated rtime (.e., when the control
enters the corresponding methods.) This behaviour can pketinented using aaround
advice which is a construct that can change the behaviour of a ssgletted join points:
it runs instead of its target join points and can executedhrepgoints once, or 1 (if at all.)
The security aspect, in the example, takes the control frentarget methods and does the
necessary operations.§. check if the current user is authenticated) and then, it lban t
either continue with the original execution or dismiss tlgatiase access.§. in case the
user has not signed in yet.)

Figure 2.2 shows how a module may look like in a system in which crossiraut

concerns are not modularized. The module is implementingnational feature in the

This is Aspectd syntax, which is a popular aspect-orierdaduage based on Java.
3adapted from [34].



business logic, however, there are pieces of code thatdpdasther concerns in the system,
such as security and tracing. In other words, the moduleemphts pieces of multiple

concerns. This presence of pieces of implementation ofiptelltoncerns in a module is

referred to agode tangling.

Module X

Business logic

S/
SIS

Securit W Tracing

7 7

VP IIIIIIIIa

Figure 2.2: Code tangling in a module

Code scattering is illustrated in Figure 2.3. The impleragon of a cross-cutting con-
cern like security can be present in many other modules, ievether cross-cutting mod-
ules. Code scattering can occur in two different ways. ltuogavhen a piece of imple-
mentation repeatedly appears in many modules (like in tlaengle in previous section.)
It can also be the result of complementary pieces of impleatiem (of a single concern)
appearing in various modules. For instance, security conoeludes user authentication

and authorization which are checked and enforced in differ@dules in a system.

Account Shopping Cart

Security

Persistenc

Figure 2.3: Code scattering of security concern

Code tangling and code scattering negatively affect soéivd@sign and development
by causing poor traceability, lower productivity, lowerdeoreuse, poor quality, and harder

evolution [34].



2.2 Join Point Model

AOP mechanisms are characterized by their join point mo#lgbin point modeldefines
three elementsjoin points pointcuts andadvice Join points are meaningful elements of
the programming language semantics. Pointcuts are pteditizat select join points based
on their properties and context. Advice is a way of changimggemantics at the selected
join points. In the above example, join points are methodcettens. dbaccess(js a
pointcut that selects those join points (method execuliast®se signature pattern matches
boolean *.db*(..) (i.e. all methods that start with “db”, take any number parameietis
any type, belong to any class, and return a boolean value.)

There are various join point models in AOP. AspectJ, foranse, supports two join
point models:introductionsand pointcut-adviceoin point model. Thentroductionsjoin
point model handles static cross-cutting: join points das< declarations to which new
member variables and methods can be added; also, the artegrihierarchy can be changed
through adding new parent classes and interfaces. This jstiatpoint model complements
the pointcut-advicgoin point model in which join points are points in the execntof a
program.

Contrary to the common mentality, cross-cutting is a thpagy relationship [40]. a
base program (in languagé), an aspect program (in languad®, and a common repre-
sentation &). The base program and the aspect program cross-cut eamtwath regard
to X, that is the common representation, which can be (but nassacily) a lower-level
code: neither contains the other, and they are not disjoitié common representation.
Join points are element iX; and A and B have constructs to refer to the join points in
some way to express some behaviour about them. A weaverdkesX, A, B, the join
point description, the base 0, and the aspect program, angases the base program and
aspect program at the common join points to get a single septation inX. X does not
have to be different thad and B.

In this work our focus is the dynamjmointcut-advicgoin point model, as realized in

AspectJ, however, the concepts introduced in this thesisairlimited to AspectJ.

2.3 Pointcut-Advice Dynamic Join Point Model

The dynamic pointcut-advice join point model is a join paimadel in which join points are

run-time entities and not static elements in a program. Nmess, a specific implementa-

“It should be noted that there is no generally-agreed definiif cross-cutting concerns.
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tion of a dynamic join point model might transform the stagpresentations of these join
points to affect their semanticsd. weave advice.) Therefore, in the semantical sense, it is
not correct to use verbs such as “injecting”, “insertingtc. to refer to weaving; however,
these words might be used in the context of a specific impléatien of weaving. In this
section, we introduce the AspectJ’s pointcut-advice jaimpmodel which is used in the

rest of this thesis.

2.3.1 Join Points

A dynamic join point in AspectJ is any identifiable point irethrogram execution, such as
a method call, a method execution. Not all join points, haveare exposed by AspectJ to
prevent unreliable and fragile aspects. For instance, ¢ive pvhere a local variable is set
is not a join point; nor is a loop inside a method. There ared\kinds of exposed join

points in AspectJ:

e Method call: this is a point in execution where a method isdalispatched.
e Method execution: this is when the body of a method is to beuteel.
e Field access: when a field of a class is read or written.

e Constructor call and execution: these join points are sintd method call and exe-

cution but represent the creation of an object.

e Object initialization and pre-initialization: object tralization join point starts from
the return of a parent class’s constructor until the end effitist called constructor.
Object pre-initialization, which is rarely used, is the eddom the beginning of the

first called constructor to the beginning of its parent carcor.

e Exception handler execution: represents the executionhainaler block of an ex-

ception type in an exception-handling block.

Method call and execution are the most important kinds of jmoints because they
represent the points in execution where some meaningfavialr (which a designer has
abstracted) occurs. These join points are referred to amt§jcbut some of them are
represented by not just a point but a block of coelg.(method execution, handler.)

Join points can have some related context available to besexipto aspect programs.
For example, a call join point can have a corresponding targject, executing object, and

list of arguments.

11



2.3.2 Pointcuts

Pointcuts are constructs that select and abstract a sét @igimts and expose their contexts.
There is a pointcut designator corresponding to each kifoiropoint. For instancegall(*

** (..)) selects all the call join points amkecution(* *.* (..)) selects all the execution join

points in a program. Pointcuts can be named to make it easi@use them at multiple

places. Figure 2.4 shows the general form of a named poiatwitTable 2.1 shows the

pointcuts used to identify various join point categories.

AccesI modifier Pointcut name Signature patter

v y
public pointcut dbAccess(): execution(boolean UserAccount.db*(.

T !

Keyword Pointcut type

Figure 2.4: General form of a named pointcut.

Join Point Category Pointcut Syntax
Method call call(MethodSignature)
Method execution execution(MethodSignature)
Constructor call call(ConstructorSignature)
Constructor 0 execution(ConstructorSignature)
Field read access get(FieldSignature)
Field write access set(FieldSignature)
Class initialization staticinitialization(TypeSignature)
Obiject initialization initialization(ConstructorSignature)
Object pre-initialization | preinitialization(ConstructorSignature)
Exception handler execution handler(TypeSignature)
Advice execution adviceexecution()

Table 2.1: Pointcuts corresponding to various kinds of pmimts (adapted from [34].)

TypeSignaturés a pattern that identifies a set of types. For instajas,. util.* identifies
all types directly defined undgava.util package|JserAccounidentifies the type with the
nameUserAccount andjava..*Statement+specifies all the types in java package and its
direct or indirect sub-packages (the “..” operator) thateha name ending in “Statement”
(the “*" operator) and their subtypes (the “+” operator.)nBiy operators can be used, as
set union and intersection, on type signatures to combjpe $ignaturese(g. “java.util.*
|| java.io.*”.)

MethodSignaturés a pattern that identifies a set of methods. For exampldoliogving

pattern identifies all the methods in class Model whose ndragim with “get” and take a
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single argument with any type:
* Mbdel . get *(*)

To identify only those methods that take an argument of t§peing and return a

boolean one can write:

bool ean Model . *(Stri ng)

Similarly, to identify all the methods in Model and its suis$es that take any number

of arguments with any type one can write:
* Model +. (. .)

Other signature properties, such as access modifiers amd tleown exceptions, can
also be specified in method patterns.

ConstructorSignaturés similar toMethodSignaturavith the exception that instead of
a method namepew is used and no return type is specified. For instance, thewoip

pattern specifies all the constructors of clagsdel:

Model . new(. .)

FieldSignature is used to identify a set of member fields is just like a fieldlaeation
with the possibility to use wild card characters in placehef filed type, the declaring type,
and the field’s name. For example, to select all the publidgiéh classiM odel with any

type and a name that starts with “parent”, one can write theviing:

public * Model . parent*

Lexical Pointcuts

within() andwithincode()pointcuts can be used to restrict join point selection ta¢hiat
lexically occur in a specific class (set of classes) or a $ipetiethod (set of methods),
respectively. For exampleayithin(Model) selects all the join points that lexically occur in
the Model class, which when combined with other pointcuts, can be tse@rrow join
point selection to a desired set. For example, to seledtalirtethod call join points within

the Model class, one can write:

call (+ *.+(..)) && within(Mdel)
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The other lexical pointcut iwithincode()which is similar towithin() but takes a method/0
signature instead. For instance, to select all Mdedel’s field-write join points in the

Model's load() method the following can be used:

set (+ Model .*) && withincode(* Model .l oad())

Control-flow Pointcuts

Control-flow-based pointcuts select join points based erctintrol flow of the join points
selected by another pointcut. For example, if one desiradewtify all the join points
that do not occur as a result of the execution of the advicespe& ErrorHandler , a

control-flow pointcut can be used:

cf |l owbel ow( execution(* ErrorHandler.*(..)))

The cflowbelow(pc)pointcut takes another pointcutd) as argument and selects the
join points that occur in the control flow of the join pointdesg#ed bypc excluding the join
points selected byc.

cflow(pc)is similar tocflowbelow(pc)with the exception that it selects the join points

selected byc as well.

Context Exposure Pointcuts

Join points might have some relevant context that can be lngedlvice. For example, a
method call join point may have a target object, an execuibjgct, and a list of arguments.
Context exposure pointcuts are used to bind the contexlalaiat identified join points

and expose them to advice. For example, the following potrégposes all the above val-

ues at all call join points:

pointcut AllCalls (Object thisobj, Object targetobj, Odgt argobj):
call(* =.x(..)) & this(thisobj) & target(targetobj) & args(argobj);

2.3.3 Advice

There are three kinds of dynamic advice:

e before() which executes before the execution of the target jointgoin

e after(): which executes after the execution of the target join moint

14



e around() executes in place of the target join points and can call tiggnal join point
(using proceed()expression) with a possibly modified context, call them ipldt

times, or not call them at all.

2.3.4 Aspect Association

By default, only one instance of an aspect exist per virtuatimme which is shared by all
the advised join points. There are situations, howeveraha desires to associate an aspect
with each object or method execution in such a way that a nstarnce of the aspect is cre-
ated and used per object or per execution of a method. Fanicet thelrackStatusAspect
aspect below is associated with each object executing aodhetfith signature pattert
*.execute*(..) This association is necessary becasfggus member variable needs to be
associated with one single object so that different objeditanot overwrite other object’s

status

aspect TrackStatusAspect perthis (excuteCommand{))
private int status;
pointcut executeCommand (): execution (x.executex(..));
[ *
set status based on the results of command execution

*/
}

In addition toperthis(pc) pertarget(pc) percflow(pc) andpercflowbelow(pcassocia-
tion pointcuts can be used, all of which take a pointcut agraemt.pertarget(pclassociates
an aspect instance with each target object of the join psglected byc. percflow(pcland
percflowbelow(pcassociate an aspect instance with each control flow (exejutiatching
the pointcut. The following shows an example of gegcflow(pc)association:

aspect TransactionManager percflow(transacted())

pointcut transacted(): execution(* DataObject+.updade(

/* Manage transactions */

2.4 Inter-Type Declarations (Static Cross-Cutting)

In addition to the dynamic pointcut-advice join point mqd&$pect] supports a static join
point model that makes it possible to introduce new membéisfiand methods associ-

ated with a class in an aspect. It also allows changing clizsarbhies by declaring new

5Once could use a hash table to implement aspect association.
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parent-child relationships among classes and interfdeasexample, the following exam-

ple shows how to add a new fietdime and its access method to cla&&del:

aspect Naming{
private String Model.name;

public String getName () {
return name;
}
}

When the access modifier in a member introductioprigate, the field will only be
visible to the defining aspect.
To change the class hierarchy ttleclare pareni@advice can be used. For instance, to

make theM odel class implement th&iewable interface, the following advice can be used:
decl are parent: Model inplenents Viewabl e;

There are two other useful static advice that deelare pattern,i.e. declare error
anddeclare warning They can be used to generate compile-time error and wamasy
sages when the presence of some identified join points istdete For example, to issue
a compile-time error when some kind of factory pattern stidnd enforced, the following

can be used:

aspect EnforceFactory
pointcut newlnClass () : within(SomeClass) & calf(new(..));
declare error : newlnClass (): "Must only use factory medBoto create objects!”

}

2.5 An Example

To put everything together, an example is presented, frath [2 show how aspects can
be used to modularize and reuse the observer design pa@nThe observer pattern is
used when a list of observer entities are notified to be updaten a subject entity’s state
changes. For details about this example and its desigmed¢icee [24].

Figure 2.5 shows th®bserverProtocolaspect. The design is based on two roles:
Observer and Subject realized by two interfaces that only help in adding strongjry
to the related methods. The aspect keeps a mapping betwaeswggect and its observers.
Also, the aspect has methods to add and remove an observet fimen the list of observers
of a subject.

The more interesting part of the aspect is the abstract @distbjectChange(dhat is

to be an abstraction of all the join points that are consifléoebe (causing) a “change”
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public abstract aspect ObserverProtoco{
protected interface Subject { }
protected interface Observer { }

private WeakHashMap perSubjectObservers;

protected List getObservers(Subject sj
if (perSubjectObservers ==xull)
perSubjectObservers new WeakHashMap ();

List observers = (List)perSubjectObservers.get(s);
if ( observers ==null ) {

observers =new LinkedList();

perSubjectObservers .put(s, observers);

return observers;

}

public void addObserver(Subject s, Observer ()
getObservers(s).add(o);

public void removeObserver(Subject s, Observer ¢q)
getObservers(s).remove(0);
}
abstract protected pointcut: subjectChange (Subject s);
abstract protected void updateObserver (Subject s, Observer 0);
after (Subject s): subjectChange (¥)
Iterator iter = getObservers(s).iterator ();

while ( iter.hasNext() )
updateObserver (s, ((Observer)iter.next()));

Figure 2.5: ObserverProtocol aspect (from [24])

O ONOUD WN
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public aspect ColorObserverxtends ObserverProtocol{
declare parents: Pointmplements Subject;
declare parents: Linemplements Subject;
declare parents: Screemmplements Observer;

protected pointcut subjectChange (Subject s):
(call(void Point.setColor (Color)) || call(void Line.setColor (Color))
& target(s);
protected void updateObserver (Subject s, Observer ¢)
((Screen)o). display ("Color change.”);

Figure 2.6: Observer instance: ColorObserver (from [24])
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1| public aspect CoordinateObserveextends ObserverProtocol{
2 declare parents: Pointmplements Subject;
3 declare parents: Linemplements Subject;
4 declare parents: Screemmplements Observer;
5
6) protected pointcut subjectChange (Subject s):
7] (call(void Point.setX(nt))
8 || call(void Point.setY(int))
9 || call(void Line.setP1(Point))
0 || call(void Line.setP2(Point)) ) & target(s);
1
2l protected void updateObserver (Subject s, Observer §)
3 ((Screen)o).display ("Coordinate change.”);
4 }
51
Figure 2.7: Observer instance: CoordinateObserver (fiof) [
1| public aspect ScreenObserveextends ObserverProtocol{
2 declare parents: Screeimplements Subject;
3 declare parents: Screemmplements Observer;
4|
5 protected pointcut subjectChange (Subject s): caMdid Screen.display(String))
6) &% target(s);
7
8 protected void updateObserver (Subject s, Observer §¢)
9 ((Screen)o). display (”"Screen updated.”);
o }
1}

Figure 2.8: Observer instance: ScreenObserver (from [24])
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in the subject; it is abstract and protected because it ig tdefined by concrete observer
patterns. However, nothing prevents one from advising tigdract pointcut. Arafter()
advice is used to implement the update behaviour for thefisbservers of the changed
subject (lines 30-35.)

Figures 2.6, 2.7, and 2.8 show three different concretaiitsts of the observer pattern
in the context of a figure package, with clasg&snt, Line (as subjects), anfcreen (as

both subject and observer.)
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Chapter 3

Transactional Pointcuts

3.1 Motivating Example

In this section, we present a natural situation that thetiagisonstructs either cannot ad-
dress or where they are a hassle in practice. The examplangpesout important appli-
cation of transcuts to a problem that was described on A3passer mailing list. These
examples compile and run with our extension to AspectJ; wegmt these examples in full
detail so as to leave little to the reader’s imagination.

In dynamic join point models, a method-call join point does include the evaluation
of the method parameters: all the parameters in a call alaated first, then the corre-
sponding call join point is activated. Consider the follogiscenario, adapted from the
AspectJ users mailing list:

An application contains 5000+ calls to a logging metkod Logger.log(Level, String)
whose first parameter is the level of importance of the log thedsecond parameter is a
log string formed by several string concatenations. Thadsted Logger class provides
methods for getting and setting the current level of loggmmgne of several severity levels
(e.g. SEVERE, ERROR, INFCetc). A message and its severity are passed to the logger,
which logs the message only if its severity level is highamntkhe logger’s current severity
level. Figure 3.1 shows a simple Java program that uses dasthhogger to log a severe
(lines 23-26) as well as an informational message (line211)8-

In the application scenario, most of the log messages ayeimiormational messages
that are formed by assembling various strings. String denedions are expensive, there-
fore a large number of logging calls degrades performanage @ight think that perfor-
mance could be boosted by setting the severity level to Eordisable the logging of in-

formational messages. The problem is that the severity ¢évemessage is checked inside

http://dev.eclipse.org/mhonarc/lists/aspectj-usesg06225.html and the follow-ups.
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class LoggingExampl¢g
Logger mlogger = null;

public static void main(String[] args){
LoggingExample logExample =ew LoggingExample ();
logExample .doSomeOperation ();

}

public LoggingExample () {
m_logger = Logger.getLogger("”);
m_logger . setLevel (Level .SEVERE);

public void doSomeOperation (){
/+ Assume that ‘‘getStatus()” is a
method that returns status string/

m_logger .log(Level .INFO,
"this should NOT be logged:” +
getStatus () +
(new Date ()).toString ());

m_logger .log(Level .SEVERE,
"this should be logged: " +
getStatus () +
(new Date ()).toString ());

Figure 3.1: A simple program that uses the standard Loggsstb log messages.

thelog() method and, as a consequence, the expensive correspotrifiggcencatenations
(caused by eager parameter evaluation) are executedriRarfoe still degrades regardless
of whether the message is logged or not.

The first solution that comes to mind is to guard ekog{) call with a conditional that
checks the logging level and calls tlog() only if the message is worth logging. However,
that requires placing guards at all 5000+ places in the dbdegfore the obvious tactic is to
use an Aspectdroundto implement the guard at calls to the logger methaad around():
call(* Logger.log(Level, String)) But in AspectJ, a call tdog() excludes the respective
parameter evaluation. Therefore, any around advice wailekkcuted after the expensive
string concatenations. In other words, one incurs the pricthe parameter evaluation
regardless of advice. AspectJ exposes only the most imygjpaincipled) points in the
control flow of a program as join points. In cases such as thfactoring is required to
restructure the code into exposable join points.

How transactional pointcuts (transcuts) can help in thigasion is shown in Figure 3.2.
ThelogCuttranscut is essentially a pointcut that matches only whaofals constituent
pointcuts match sequentially against a well-defined regibrode (see Section 3.2 for

precise definitions). The transcut designates the regiaodé that begins with creating
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aspect LoggingAdapterAspeét

transcut logCut(Logger logger,
Level level,
StringBuffer sb,
String s) {

pointcut createbuf: call(StringBuffemew(..))
& return (sb);

pointcut append: call({ StringBuffer.append(..))
&% target(sb);

pointcut tostring: call(String StringBuffer.toString)
&% target(sb)
& return (s);

pointcut logcall: call¢ Logger.log(Level, String))
& target(logger)
&% args(level , s);

}

void around(Logger logger,
Level level,
StringBuffer sb,
String s): logCut(l, level, sb, s)X

if (logger.getLevel().intValue ()<= level.intValue ())
proceed(logger, level, shb, s);

Figure 3.2: An aspect that guards the log calls and theimaegu evaluation code

a StringBufferfollowed by at least on&tringBuffer.append(inethod call, followed by at
least oneStringBuffer.toString(nethod call, and ends withlabgger.log()method calf

The pointcuts that form the transcut are traditional Asp@cintcuts, but their param-
eters are shared — the union of the context parameters forpactcut forms the shared
context parameter list of the transcut. Also, the semarfdhe pointcuts that rely on
run-time type informationd.g. args(), target(), etr.has changed to rely on data flow in-
formation instead. For instance, tB&ringBufferobject that was created, in the example, is
tracked to the point where its embedded string is retrielealugh a call taoString The
logCuttranscut matches the log calls in Figure 3.1, lines 18-212@6. Lines 21-28 in
Figure 3.2 show the advice aroutmdyCutthat checks the level of the logger against that of
the message to decide whether or not to evaluate the paranaeie proceed. Therefore,

the informational log call and its parameter expressiorqat evaluated at all.

2In Java, String objects are immutable, therefore, to dagtoncatenatiorStringBuffer which is a muta-
ble string, should be used. Strings can be appended to tfer bnfl in the end, the result can be retrieved by a
call totoString() Java provides the + operator to make things easier.

22



3.2 Transactional Pointcuts

The basic observation behind transactional pointcutsas jhin points do not occur in
isolation, but rather, are parts of a higher-level compaiathat can in turn be regarded as
a join point. For instance, when a file object is acquired airestructor-call join point it is
most probably going to be used for data input/output and telerased by closing. This file
operation pattern consists of a set of key related join pdimit can define the operation at
some abstraction level. The traditional dynamic join poirttidel cannot elegantly define,
designate, and advise a set of interrelated join points.

AspectJ designers made a decision to make join points asxtdénsensitive as possible
to make pointcuts more predictable to the programmer. Weugethat in some situations
suitably managed contexts can deliver more powerful aspegith an acceptable loss of

reliability, hence, transcuts bring some context into the point model.

CFG of method 1

S A non-contiguous JP

Figure 3.3: An example of three different join pointsll andexecutiorjoin points as well
as a region join point that could potentially be a match fiprd() sequence.

To specify a dynamic join point model, three elements neduktdefined: join points,
pointcuts, and advice. Join points in our new model are ramyitpieces of computation
whose shadows belong to well-defined single-entry-siegleregions of the control flow
graph (see Section 3.3.1 for the definition of region). FégiB shows a control flow graph
that contains calls to method§ andg() along with other nodescall and executionjoin
points are probably the most important and well-undersjoodpoints in a dynamic join
point model. As it is annotated in the figure, tball join point is a “point” in the CFG;
however, the execution join point is not a point but a set @fifgsobetween the entry of the

CFG to the exit. This observation is interesting becauseastt the idea of extending the

3Dynamic join points are execution-time concepts, whiledbmpiler works with join point shadows [28].
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definition of join point to arbitrary (single-entry-singéxit) regions of a control flow graph
seemed a little controversial. However, the existaxgcutionjoin point is one realization
of this notion. In Figure 3.3, the region that begins with httamethodf() and ends with
a call to methody() can be designated and advised as a join point. We refer tdoétreay
(possibly) non-contiguous segment of a region in the cofib graph as &egion Shadow
and the corresponding join point afkagion Join Point

A transcut is a special join point designator that seledis @kinterrelated join points.
Each match of a transcut is a set of join points that are ektht@ugh control flow, dataflow,
or both. The transcut definition begins with tlhenscutkeyword followed by the transcut
identifier and a list of parameters. A transcut is defined gaisnce (or pattern in general)
of pointcuts that match individually almost similar to aditéonal pointcut. A transcut only
matches a piece of computation when all of its constituemtpots match some corre-
sponding key join point in the computation. When a transoutains only one pointcut, it
does exactly what the contained pointcut does. Transceitssaful when they contain more
than one pointcut, the simplest form of which is a linear seqe of pointcuts. Figure 3.4
shows a transcut that would match computations that areaaeaeby regions of code that

have a call ta() followed by a call tob() followed by a call toc():

OB WN -

transcut abc(){
pointcut a: call¢ *x.a());
pointcut b: callé *.b());
pointcut c: callé *.c())

}

Figure 3.4: A simple transcut composed of 3 pointcuts.

This is a very simple transcut that only captures the imiptiontrol-flow relationship
among the join points. It might seem that the transcut matetigen a trace of events
matches am(), b(), c()sequence. That is the behaviour expected from trace-baseldam
nisms (see Section 6 for comparison), but that is not the mganf this transcut.

Theabc() transcut identifies pieces of computation that are knowmeégorogrammer
with three points of reference: the beginning of the comaniaa(), its end,c() and some
point in betweenp(). A piece of computation is a match only if it is possible to fimat
(at the beginning of its execution, at least) that its keyntsoof reference (join points) will
occur. Consequently, there can be a computation that haes jbi@ points in it but is not a

match. For example, consider the following piece of code:

“Most of the examples in this section are simple and theirgeeps to illustrate the concepts or function of
the constructs. More realistic examples and applicatioapeesented in Section 3.4.
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a();
if(c()) {
b();

c();

In some control flow paths, the generated computation haadndil three key join
points in it, however, it will not be known until the contrd inside the computation, at
which point, onlyafter() advice can be applied, which is basically what trace-basechm
anisms can do. Transcuts match a piece of computation orteadn be determined, by
looking at the continuation of the head join point of the camagion, that the rest of the
join points will be present in the continuation.

The transcut reifies these identified computations as jamgoand consequently, can
be advised in the same way as traditional join points (aééhmajor types of advice are
supported). The points of reference in computations, warehjoin points themselves, are
in reality related. In the current design, these join poiretee to be in the same control flow
graph (method) to be visible to the matching algorithm.

Transcuts do not match against the source code; neitheregantatch against the ex-
ecution trace. Transcuts match at the level of the contrel §icaph. Understanding the
semantics of transcuts requires the concept of a regionrdfalalependence which is ex-
plained in Section 3.3.

The pointcuts that constitute the transcut are defined alsosdlar to AspectJ pointcuts
with one difference: they do not have separate parametstftis exposing context but all
share the transcut’s list of parameters.

This shared context is used to establish dataflow relatipastmong various join points.
For example, thabc() transcut would capture a sequencead), b(), c()even if they are
called on different objects. While this behaviour might Iseful in some cases, many situ-
ations require that the target of the designated join pdiathe same object. This modified
version captures tha(), b(), andc() call join points only when they have the same target
(Figure 3.5.)

OB WN -

transcut objabc (Object obj){
pointcut a: call¢ *x.a()) & target(obj);
pointcut b: callé *.b()) & target(obj);
pointcut c: callé *x.c()) & target(obj);

}

Figure 3.5: A transcut that relates the join points basedein target object.
The context variabl®bj establishes a dataflow relationship between the three-desig
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nated join points. Thearget() pointcut in the context of transcuts does two things: expose
the context values (which is what it does in AspectJ) andreefba must-alias relation on
the target object of the participating join points.

From another perspective, transcuts make it possible toale®w join point types.
Traditionally, the set of selectable join points is prededitby the languagee(g. method
call, field get/setetc. in pointcut-advice join point model.) Transcuts define ngpet of
join points by composing them. In some sense, transcutsadeéiw interfaces into code

which advice can affect.

3.2.1 Nested Transcuts

A transcut can be used within another transcut which maleesdimposition and reuse of

transcuts possible. Figure 3.6 shows an example.

1l transcut openClose (X

2 pointcut open: call{ x.open(..));
3 pointcut rw: readWrite ();

4 pointcut close: call{ x.close (..));
5[ }

6| transcut readWrite (){

7] pointcut read: call{ x.read (..));
8 pointcut write: callé =*.write (..));
9}

Figure 3.6: An example of transcut nesting

3.2.2 Looped and Conditional Pointcuts

There are situations in which a transcut should be sengiiveoped or conditional join
points. For instance, if one needs to capture join pointstibgin with anopen() contain a

loop in which aread()is called, and end inlose() the transcut in Figure 3.7 can be used.

transcut readloop (){
pointcut open: callf x.open(..));
pointcut read: looped(calk( x.read (..)));
pointcut close: call{ x.close (..));

O D WN

}

Figure 3.7: Usindooped()pointcut in a transcut

looped()is a new pointcut that matches a sub-region in a region ofrabftow if the
sub-region is a loop and the given pointcut matches somewhéhe body of the loop. The
above transcut matches the join point shadow in Figure 3Beteft but does not match

the one on the right becausmped() pointcut finds the first loop and looks into its body
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for a shadow that matchesll(* *.read(..)) but finds another loop. If ones requires a deep
matching behaviour, thdnoped *(pc)should be used instead, whereis the pointcut that

should be matched inside a loop at some level down the tag-tegion.

1 open (); 1 open();

2| while (cond ()) 2| while (c1())

3 read (); 3 while (c2())

4 close (); 4 read ();
5 close ();

Figure 3.8: A match foreadloop()(left) and a non-match (right).

Similarly, theconditional() pointcut can be used to express interest in join points that
may (conditionally) occur. An example is shown in Figure, 3vich matches the shadow
on the left in Figure 3.10 but does not match the one on the.righ match a join point
conditionally at any levelgonditional *(pc)should be used, whege is the pointcut that

should match conditionally.

1l transcut readConditionally (¥
2 pointcut open: call{ x.open(..));
3 pointcut read: conditional(calk( x.read (..)));
4}

Figure 3.9: Usingonditional() pointcut in a transcut
1 open (); 1 open();
2 if (success ()) 2 if (success ())
3 read (); 3 if(cl())

4 read ();

Figure 3.10: A match foreadConditionally()(left) and a non-match (right).

Looped()andconditional() pointcuts can be composed to create new transcuts that can
express various composite join point relationships, asvehio Figure 3.11, which can
potentially matches the code in Figure 3.12 (if the callsadiren the same object.)

Figure 3.13 shows an advice that targets the transcut inré-iguL1l and simply exe-
cutes the original join point. The purpose of this examples teashow the composition of

looped()andconditional()and does not have any special purpose.

3.2.3 Dependent Pointcut

Dependent pointcujependent()is the generalized form of matching join points that exe-

cute conditionally, that is, either in a loop body or in a citiodal, at any regional depth.
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transcut loopedConditionalRead (Object obf)
pointcut open: call{ x.open(..)) & target(obj);
pointcut loopedRead: looped(conditional (readData (ppj;
pointcut condRead: conditionalReadLoop (obj);
pointcut close: call{ x.close (..));

}

transcut readData(Object objj
pointcut a: call¢ *.readA(..)) & target(obj);
pointcut b: callé *x.readB(..)) & target(obj);

=
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}

11} transcut conditionalReadLoop (Object obj)

12 pointcut read: conditional (looped (cal(x.read (..))
13 & target(obj)));
14 }

Figure 3.11: Composition afonditional()andlooped()pointcuts.

open ();
while (running ()) {

if (ready()) {

1]
2
3
4 readA ();
5 readB ();
o 1
7}
8 if (success ()){
9 while (ready ())
10 read ();
11}
12 close ();
Figure 3.12: A match foloopedConditionalRead
1l void around(Object obj): loopedConditionalRead (obj)
2 proceed(obj);
3}

Figure 3.13: An advice that targets a transcut and simplgwgrs the original join point.
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This pointcut is a powerful and syntax-independent way @regsing conditional execu-
tion of a join point. For instance, consider the differentyg/a read operation can occur in

a program in Figure 3.14, all of which can be designated wighttanscut in Figure 3.15.

1) open (); 1 open(); 1 open ();

2l while (running ()) 2 if (ready ()) 2 if (ready ())
3 if (ready()) 3 while (running ()) 3 read ();
4 read (); 4 read (); 4 close ();

5 } 5 close ();

6| close ();

Figure 3.14: Three different matches for the same transcut.

gD WN =

transcut read (){
pointcut open: callf *x.open(..));
pointcut read: dependent(cald(x.read (..)));
pointcut close: call{ x.close (..));

}

Figure 3.15: A transcut usindependent(pointcut.

3.2.4 Dataflow Pointcuts and Context Exposure

The traditional context-binding dynamic pointcutse( this(), target(), argsj)bind their
variables to the corresponding values exposed by join pokur instance, when args()
pointcut is matched against a method-call join point, itsiits variables to the respective
arguments of the method call (which are already evaluatddiaailable). Therefore, if the
join point matches, the exposed context can be used (artéced) in advice.

The context variables exposed by a transcut, however, dmildound by a context-
binding pointcut at any point within the transcut. The pesblis that not all the join points
designated in a transcut are activated at the time the waisbeing matched and advised,
therefore, their context values might not be available gdie exposed; in other words, an
exposed context variable might not have any meaningfuleveilits value is being defined
within the join point. Transcut parameters are dual purptisey are used both for context
exposure (as in traditional pointcuts) and for establighiata-flow relations between join
points (there might be opportunity for improvement heredgyssating the two roles.) In the
latter case, the transcut binds its variable to the contpile-representation of the context
value (a local variable in the intermediate code) and maksssisible to track the data-flow
using a must-alias analysis.

In general, it is meaningful to expose a context value onlihé value is generated

outside of and used inside the region join point and remainthanged throughout the

29



join point. This definition of context ensures that the exqabsontext value makes sense
right at the time the region join point is activated (whictthie beginning of the designated
computation). An example iegger context variable in Figure 3.2, which is bound by the
target(logger)pointcut at line 17.

Thereturn() pointcut, which is similar to the one defined in [39], bindsparameter to

the returned value of a join point, which does not exist befbe join point execution.

3.2.5 Overlapping Transcuts

The designated join points of multiple transcuts can opentihout any restriction because
pointcuts do not have computation effects [18] and trassatg no exception. However,
two transcuts can simultaneously recesveund()advice only if their designated join point
shadows are disjoint or one is contained in the other (thd begails of the shadows can

overlap).Before()andafter() advice are applicable even when the transcuts overlap.

transcut abc(){

pointcut a: call¢ *x.a(..
pointcut b: callé *.b(..
pointcut c: callé *.c(..

—— —
~— — —

transcut be(){
pointcut a: call¢ *x.b(..
pointcut b: callé *.e(..

©CO~NOOADLWNPE
—
NN
— —

}

Figure 3.16: Two overlapping transcuts

The transcuts in Figure 3.16 match two overlapping regidniseofollowing code:
l‘a(): b(); ¢c(; e(); [

Therefore,around() advice is not allowed, if both are advised. Howevmfore()and
after() advice can be applied.
It it worth mentioning that these kinds of situations canmethandled through refactor-

ing because two different views of the target computati@nr@eded simultaneously.

3.3 Program Dependence Graph: the Join Point Representatio

Program Dependence Graph (PDG) [21] is a program reprégenta which both control

flow and data flow relationships among program operationsrede explicit. PDG has
successfully been used for program optimization, para#lgbn, slicing, automatic testing,
etc. all of which require that dependencies among program staitstbe easily accessi-

ble. Nodes in PDG are the same as the nodes in Control FlowhGirapbasic blocks, or
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at a lower level, instructions). Edges in PDG denote cormteglendency and data depen-
dency between two nodes. Control flow information is imgliycavailable in PDG through
ordering, but it can also be explicitly represented throoghtrol flow edges.

As explained in the previous section, transcuts capturedghtol flow and data flow re-
lationships among join points; therefore, PDG, quite radlyris the most suitable program
representation for realizing transcuts because it maktstippes of relationships explicit
and readily available. In this section, we illustrate a PO@ simple program and explain
how it is constructed.

Figure 3.17 shows a program and its CFG, Figure 3.18 shova®itinator and post-
dominator trees, and Figure 3.19 shows the correspondir(g. Edly control flow depen-
dencies are shown in the PDG because we currently do not plieiedata flow edges in
PDG.

}’Oid m0 ENTR
a();
while(c1())
{
b();
while(c2())
dQ;
if(c3())
e();
else
e2();
f0;
g(); EXIT
) e

Figure 3.17: A program and its CFG

Informally, nodeB is control dependent on nodé¢ if the execution ofA determines
whetherB executes or not. The formal definition from [21] is as followst G be a control

flow graph. LetX andY be nodes irGG. Y is control dependent oX iff

1. there exists a directed pathfrom X to Y with any Z in P (excludingX andY)
post-dominated by and

2. X is not post-dominated by .

For instance, method cdll) is dependent ool() because there is a path frarh() to b()
that only contain$() andcl() (therefore the first condition holds because there ignp

the path), ana1() is not post-dominated biy() (see Figure 3.18). Intuitivelyy() is control
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dependent omrl() because the execution bf) depends on the result of the execution of
c1(). Butcl()is not control dependent ax() becausey() is post-dominated bgl().

Intuitively, c1()'s execution is not dependent af)’'s execution.

Figure 3.18: Dominator (left) and post-dominator (righéets

Nodes in a PDG can be CFG nodes or region nodes and there igarfrech A to B if
B is control-dependent od. A region node summarizes and factors out the set of control
dependences of a set of nodes in a PDG. For instance, all thes mathin the body of the
top-level loop in Figure 3.17 are control dependent(); so, a region node can represent
this shared dependence set: region nB&in Figure 3.19 is created and made control
dependent orl() and all the nodes in the body of the loop are made control+ukpe on
R2 This dependence set summarization is performed for atragbdependences and the
created region nodes are added to the PDG. At each level ¢t nodes are ordered
from left to right according to the flow of control. In other wis, control flow in each
region in PDG {.e. the child nodes of the region) is from left to right.

Initially, we used weak regions (defined in the next sectiam)}he basis of transcut
matching, however, we did not have a PDG as the program medion, therefore, the
relationships between regions were not available to themirag algorithm® PDG makes
the region hierarchy explicit and available for matchingr iRstance, inner loops can easily
be identified €.g.regionR3is the inner loop in regioRkl).

Various algorithms have been proposed to efficiently compie PDG of a program
(e.g.[21], [12], [27], [6]). We reuse the region analysis machynthat we initially imple-
mented to build weak regions (based on the algorithm in [6§) @onstruct the PDG based

on the algorithm given in [21].

SFor example, the region corresponding to a loop body andahenp region that contained the whole loop
were considered independently for matching.
6Some only compute the Control Dependence Graph and soméhendet of regions.
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Weak regions:
{a, c1, g},
{b, c2, c3, f},
{d}, {e}, {e2}.

Strong regions:
{a, g}, {c1},
{b, c3, f}, {c2},
{d}, {e}, {e2}.

Figure 3.19: PDG of the program in Figure 3.17

3.3.1 Region Analysis

In any execution path from the beginning of the flow graph toehd, either all the nodes in
a region execute or none of them do. Regions are, therefeedtural extension of basic
blocks (the control enters through the header of a block &itsl tarough the end). Regions
can beweakor strong We use these definitions from [45], which result in sligldifferent

regions than the ones defined in [1].

e Weak Region verticesv andw are in the same weak region iff for any complete

control-flow pathp andw are both in the path or are both absent from the path.

e Strong Region verticesv andw are in the same strong region iffandw occur the

same number of times in any complete control-flow path.

We used an algorithm presented in [6] which finds weak redi@s®d on the observa-

tion that

e v andw are in the same weak region iff dominatesy andw post-dominates) or

(w dominates andv post-dominates).

Strong regions would be the same as weak regions if there meeleops in the CFG.

Distinct verticesv andw are in the same strong region iff
e they are in the same weak regiand

e (visin every cycle containing) and  is in every cycle containing.)
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The weak and strong regions of the CFG in Figure 3.17 are slmowigure 3.19. Note
that the regions in the PDG correspond to the strong regibimslinear algorithm given in
[6] is based on the key observation that for any CFG the \estif each weak region form
a chain in the post-dominator tree that is the reverse of and¢hahe dominator tree (see
Figure 3.18 for the chains corresponding to the weak re§iorel, g ).

After computing the weak regions, we compute the strongoregand construct the
PDG at the same time. The outline of the algorithm is as falo@iven the list of weak
regions, PDG can be constructed by finding the inter-regeeddencies. Starting from
the top-level weak region, a top-level PDG nodig,is created and for each (CFG) node
in the region, first, a PDG node is created to repregemt the PDG, then, a dependency
edge is added fronk to the PDG node representing

Then the set of nodes that are dependentdcare found: for each edged(B) in the
CFG such thaf3 does not post-dominatd, let L be the least common ancestor4fand
B in the post-dominator tree. Eithéris A or L is the parent ofd in the post-dominator
tree (see [21] for proof). I is the parent ofd, then all nodes in the post-dominator tree
on the path fromL to B, including B but not L, are control dependent of. If L is A,
then all nodes in the post-dominator tree on the path froto B, including A and B, are
control dependent oA (this case captures loop dependence.) Both cases can heaove
by traversing backwards from® in the post-dominator tree until we reaets parent (if
it exists, or A otherwise) and adding all visited nodes to a list as nodeisréhaontrol
dependent o.

The A’s PDG node is changed to be a “Conditional” PDG node to repethe fact
that there are nodes that depend on it; then, for each of fendants of4, the containing
(weak) region is looked Upand a PDG node is created to represent it; a dependency edge
is then added from thd’s PDG node to the region’s PDG node. This step is repeated for
all the nodes in the list of dependants that are in a diffenergtk region than the previously
processed dependantsAf Loops that contain abrupt exit or continuation statemeatse
some conditions that need to be checked in the above stepsn Wturns out that a loop
header is being processed, a new strong region is creatad alith its corresponding
PDG node which is added to the graph and the appropriate depey edges are added.
It is worthwhile to mention that loops create circular degemcies in the PDG. For more
details on how PDG is constructed and also how we handle naonative control flow see

Appendix A.

"This information is available from the region analysis ghas
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Regions have an important property that makes them verylusefealizing transac-
tional pointcuts: if the normal flow of control enters theiosg(which occurs only through
the head node of the region), it will go through all the nodethe region, and eventually
exit through the tail node of the region; this property isifamto the property of basic
blocks [1] with the difference that regions can consist af4contiguous pieces of code. In
other words, while the control is within a region, other et might be activated but the

control would eventually return to the original region.

3.3.2 Join Point Shadows

Join points in our model are either
e traditional call, constructor, or set/get join points, or
e aset of related join points that occur in the same region nfrobdependency.

The above definition is recursive, in the sense that, onogjoints are selected using a
transcut in our model, they can be used in other transcutsdigidate other composite join
points.

We match a transcut against all the potential join point stvad A join point shadow in
our model is a Single-Entry-Single-Exit (SESE) segment adrirol dependence region in
the PDG. For example, the segment of code that beginsagjtand ends irg() is a SESE
sub-region oR0Oin the PDG in Figure 3.19. Similarly, the sub-region thatibegvith c3()
and ends iri() is a SESE sub-region &2, and so on. To instantiate all the potential region
shadows in a method, we consider all the regions in the PDGeke a linear list of nodes,
ordered based on control flow, in that regi@ng; [a(), c1(), g()]in RO. Each sub-region
of such a linear list is a SESE sub-region and should be cereida join point shadow and
be checked for potential matches. There could be differaysvof instantiating these sub-
regions and each approach might affect the semantics ohingtdn our current approach,
each node in the region is the start of a shadow and the en@ shiddow is determined at
matching time. Figure 3.20 shows a SESE region and its patetiadows.

The matching is aware of the PDG structure, that is, regienanthy, loop structure,
conditional regions. In fact, without PDG it would not be pitde to support nested, looped,

and conditional transcuts.
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region shadows

,,,,,,,,,

Figure 3.20: A region and its potential shadows

3.3.3 PDG-based Matching Algorithm

Figures 3.21, 3.22, and 3.23 show a simplified version of A& Mased matching algo-
rithm. For brevity and readability, many details (types,gmaeters, context variable track-
ing, etc) are omitted. Also, only the conditional pointcut matchisgresented as the loop
and dependent pointcuts are similar. Some comments ard adtlee algorithm to make it
easier to understand. A more narrative description follows

The algorithm is divided into three procedures to make iiggds present. The top-level
proceduramatch(tc, rsm)matches the transctdagainst the region shadasmand returns
a residue that can be eith&lwaysMatchNeverMatchor primitive operation such as bind-
ing a variable to a value, or a combination thereof. A resigdyesents the code that need
to be inserted before a join point to be executed at runtinemdiess to saylwaysMatch
andNeverMatchrepresent no code but are used to determine if there is ddfistmatch
or no match.

After some initialization (explained inside the figure),cap iterates through the or-
dered list of pointcuts that constitute the transcut; eachtput is matched against potential
positions in the region starting at locationvhich is the head of the current shadowm
(line 29, matchPointcutinRegion) If a match cannot be found, then the transcut matching
returns with no matching; otherwise, the returned residummbined with the residues of
the previous constituent pointcuts’ residues (line 40}héf loop reaches to the end of the
list of pointcuts, that means there is a match and the acatauilesidue is returned.

The index of the current matching target within the regiomhich represents the index
of the current matching target within the region, is boxefblk® being passed to other
matching procedures so that it can retain applied chandeseTis another boxed variable
of type boolean that is used to track when the head of the shsdmatched. This variable
is necessary because, in our implementation, each inistnustthe head of a new shadow,

as discussed previously, and it has to match the currentquoiii the current pointcut is
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Residue match (Transcut tc, RegionShadowMatch rsfn)

Residue res = AlwaysMatch ;
pointcuts = ordered list of constituent pointcuts in tc;

if (pointcuts is empty)
return NeverMatch;

region = the region containing the shadow, rsm;
units = the ordered list of instructions in the region;

/l'boxed integer to keep track of the current position in thegion
i = index of the head of the shadow in the region;

/I boxed boolean, set to true when the head of the shadow ischeat
headMatched =false;
[ *
Iterate through the constituent pointcuts and match one Imeo
There is a match if the last pointcut matches within this séwvad
*/
while (not reached the end of the list of pointcuts{)

currentPC = next pointcut in the list;

If (reached the end of the shadow)
return NeverMatch;

// Match the current pointcut in the region from the currentogition
r = matchPointcutinRegion (tc, currentPC, region, i, HbBatched);

if (r == NeverMatch)
return r;

[ *
At this point, the current pointcut has matched the current
position in the region; combine the new residue and the
previous one; continue to the next pointcut and position.
*/

res = combine (res, r);

}

I/« At this point, a match has been found/
return res;

Figure 3.21: Transcut Matching Algorithm
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the first pointcut in the transcut.

Figure 3.22 shows the algorithm for procedunatchPointcutinRegion(@alled from
match() At the beginning of the procedure, after some initializatithe current index;
(which is copied toj), is checked to see if it is the end of the current region, inctvh
case the matching fails. This check is done at the beginriirdnost all of the matching
procedures because these procedures might be called musgairsively form within other
procedures.

From line 10 to 17, depending on the type of the current patntbe proper matching
procedure is called. For example, if the pointcut é®aditional() pointcut, thermatchCon-
ditionallnRegion()is called whose algorithm is depicted in Figure 3.23. If tlenfrut is
none of the dependent pseudo pointciies. (ooped(), conditional(), or dependent(dhen
the matching continues in the same procedure by iteratrogigiin all instructions from the
current index,j, to the end of the current region (line 17.)

Each instruction can be the beginning of different kinds eftimd positions, such as
statement position and region position, for each of whichescil position object is created
(line 20, which, for simplicity, is showing only one positimbject;) then a procedure is
called doShadows})that goes through all different kinds of shadows to seedfgbsition
can be a candidate for any of them. If so, a shadow object &emiefor that position and
matched against the currentPC pointcut. If a match is fothelcorresponding residue is
returned. For brevity, details have been omitted.

After a match is is found, if currentPC is a transcut itse#.(a nested transcut, which
has matched), then the newly-bound context variables dhmithecked to be compatible
with the previously-bound ones (line 29.) The context \[@ga are the variables that are
declared by the transcut definition and bound within it. A trali@s analysis is used to find
out whether the new bindings are compatible with the old ofi&e bindings are saved in
the transcut that is being matched (lines 37, 48NéverMatchis returned if the bindings
are not compatible.

Whether the current pointcut is a transcut or a traditiooaifeut (all()), upon success-
ful matching, the current matching index is adjusted adaogid (line 36, 47), the context is
saved (lines 37, 48), theeadMatchedlag and the box are set if needed (lines 39-42, 50-
53), and finally, the residue is returned (line 43, 54.) Otlise, if the current position does
not match the current pointcut, then the accumulated cohiexlings in the transcut are
cleared (line 60), and if this match was supposed to be a heachrbut theheadMatched

flag is false, then the matching fails; otherwise, the loamtiooies with the next instruction.
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Residue matchPointcutinRegion (tc, currentPC, region,, ieadMatched){

units = the ordered list of instructions in the region;
/I Note that i is a boxed integer and j is a normal integer
j =i

If (reached the end of the shadow)
return NeverMatch;

if (currentPC is a Loop pointcut)// looped ()

return matchLooplnRegion (tc, currentPC, region, i, headMatched
else if(currentPC is a Conditional pointcut)//conditional ()

return matchConditionallnRegion (tc, currentPC, region, i, .;.)
else if(currentPC a Dependent pointcut)/dependent()

return matchDependentinRegion(tc, currentPC, region, i, ...);

else for(all instructions from j to the end of region}

current = the j’'th instruction in the region;
pos = the position of the current instruction in the method
r = doShadows (currentPC , pos);

if (r '= NeverMatch) {

/x If currentPC is a transcut, check the newlgound context
variables to be compatible with the previousipound onesx/

if (currentPC is a Transcut)
r = checkBoundContextVars(tc, currentPC, r);

if(r '= NeverMatch) {

/x Matched nested transcut... moving on to the
next pointcut/statement«/

j = the index of the last matched instruction + 1;
save bound context in tc;

if ('headMatched)
headMatched.setValue (true);

i.setValue(j);
return r;

}

else {
j = the index of the last matched instruction + 1;
save bound context in tc;

if ('headMatched)
headMatched . setValue (true);

i.setValue(j);
1r;
}

/I Not matched
Il clear the temporary bound variables in the last try
clear bound context in tc;

/x1f this was supposed to be a head match but the flag still
is false, then it is a no match «/

if ('headMatched)
return NeverMatch;

/x Reached the end of the region without matching all the poiunttc;
so, return no match .x/
return NeverMatch;
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If the loop reaches the end of the region while trying to matwh current pointcut, the
matching returndleverMatch(line 74.)

Figure 3.23 shows the procedure for matching a conditiopaitput in a region. Es-
sentially, the PDG nodes in the region are iterated, staftom the node corresponding to
the current instruction:), until a conditional PDG node that is not a loop header isiébu
Then, for each PDG node dependent on the conditional nodeprétviously discussed
matchPointcutinRegion(s called to match the inner pointcut of the conditional pair
(currentPC) within the dependent region represented bgdpendent PDG region; that is,
for a conditional pointcut, which has the forronditional(pc) matchPointcutinRegions
called to matchpc in the dependent region.

The matching index and the boolean flag indicating a headhmeged to be created,
set to their default values, and passed in the matching guwedlines 28-31) because this
matching is in a new region. If the inner pointcut does notamatithin the dependent re-
gion, then if the conditional pointcut is in deep matchingd®d.e. conditional *(pc), an-
other matching effort is made: this timmatchConditionallnRegion(} recursively called
to match for the current conditional pointcut (currentPGthim the dependent region, to
give a chance to all the regions that are nested deep in tlanr@imes 34-38.)

In any case, when a match is found, then the next instructimmn fvhere the matching
should continue is determined and thendex is adjusted accordingly. It is worth men-
tioning that when a match is found, the tail of the shadow maieed to be adjusted due
to different way dependent pointcuts match. Basically,fitgt and last point of the con-
ditional shadow match should be adjusted in such a way tmainitics a reduction of the
conditional node in the program. The intuition is that, & tthadow is not executed, itis as
if the conditional was never there. The same goes with loogimea. When constructing
the PDG, the flow relationships between the PDG nodes arewmietd as well; therefore,
once the current conditional PDG node (cnode) is found obeta match for the current
conditional pointcut, then next PDG node in the flow is reek whose head instruction
will be the next matching index (44-46.) The rest of the meghs similar to the previous

procedure.

3.4 Applications

In this section we present a few examples to show the poweaonétuts to address some

familiar problems.
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Residue matchConditionallnRegion (tc, currentPC, regjoi, headMatched){

units = the ordered list of instructions in the region;
jo=i

If (reached the end of the shadow)

O ONOUD WN

return NeverMatch;

pdgNodes = ordered list of PDG nodes in the region;

curPDGNode = the PDGNode corresponding to the currenttinstion;

If this is supposed to be a head match/

if ('headMatched){

if (curPDGNode is not a Conditional node
or the current instruction at index i is
not a branching instruction)
return NeverMatch;

//from the current PDG node to the end of the list
while (there is a node (cnode))

if (cnode is Conditional and not a loop headeK)
foreach (dependent node (depNode) of cnodg)

dependentRegion = the region corresponding to the depahdnode
createNewBoxes: i2box = 0, headMatched2false;

r = matchPointcutlnRegion (tc, currentPC.getDependaaintcut (),
dependentRegion, i2box, headMatched2);

//Go deep in the conditional regions?
if ((r == NeverMatch) and (currentPC is a deep pointcuf)
create and initialize boxes (as above);
r = matchConditionallnRegion (tc, currentPC, dependedion ,
i2box , headMatched2);

if (r '= NeverMatch) {

/x find the next instruction from where matching should
continuesx/

nextinFlow = the PDG node next in the control flow of cnode
firstOfNex = the first instruction in nextlnFlow

j = index of firstOfNext in the region + 1;
tc.saveBoundContext ();

if (headMatched)
headMatched . setValuernue );

i.setValue(j);
return r;

I/« 1f this was supposed to be a head match but did not match
the first node, then this cannot be a matchx/

if (lheadMatched. getValue ())
return NeverMatch;

}

return NeverMatch;

Figure 3.23: Transcut Matching Algorithm (matchConditiinRegion)
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3.4.1 Modularizing Exception Handling

Exception handling concerns cross-cut the implementatdfoiine normal behaviour of a
system. In Java and many other languages repetitive eroepéindling code is tangled
with the normal code. But some studies [36] show that the murabreactions to different
exceptions is considerably lower than the number of placesions are caught, therefore
there is the opportunity for reuse of the handling patterns.

Writing flawless exception-handling code is hard. As regmrin [57], many pro-
grams fail to properly release acquired resources alongxaltution paths in the presence
of run-time errors. Many programmers that are aware of eimepand use proper con-
structs to catch and handle them, still write faulty exaapthandling code. Writing correct
exception-handling code becomes even more difficult whemtimber of resources that
need to be handled increasesg a database connection, a query statement, and a query
result set are three resources typically involved in a detaloperation). Correctly dealing
with IV resources typically requird$ nested try-finally statements or a number of run-time
checks to track if resources are still allocated.

Therefore, it makes sense to factor exception handling audea separate module.
However, traditional programming languages, such as C+tJama, do not support such
separation. AOP languages.g. AspectJ) provide facilities to achieve this separation to
some extent. As an example, Figure 3.24 shows an Aspectdapnatpat captureBFOEXx-
ceptioris that are raised inside the methodsLafader® With the help of this aspect, the
original code is shorter and more readable. Tangible restiipplying aspects for handling
exceptions in a real code base are reported in [36].

The limitations in AspectJ’s join point model prevent usnirdully separating excep-
tion handling code from the base code. If the target pieceodéds a single join point,
then it can be handled in AspectJ. But if it consists of moesntbne join point, its excep-
tion handling cannot be modularized in AspectJ withoutatefidang, because there is no
join point corresponding to the execution of an arbitraryckl of code. This limitation,
that AspectJ does not provide the necessary means to capiditeandle exceptions inside
method boundaries, is mentioned in [36] but no solution leentproposed. [8] shows that
refactoring these target blocks to expose them as join po@sults in low cohesion among

other things.

8In Java, potential checked exceptions must be either harai¢hrown; to get around this problem and
handle exceptions in an aspect, AspectJ provides a workadrand that is taleclarethat a checked exception
is soft When an exception is softenedSaftExceptionwhich is an unchecked exception, is thrown instead of
the original exception.
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aspect ExceptionHandlingAspec{
pointcut loadMethods ():
execution ¢ Loader.loadx(..));
declare soft: I0Exception: loadMethods ();
void around (): loadMethods (){
try {
proceed ();
catch(lOException e) {
System .out. println (e.getMessage ());
}
}
}

Figure 3.24: Handling an exception is an aspect

Figure 3.25 shows an example program that performs an iqgaraton within a method
(from [50].) During the execution cfomeMethod()anlOExceptioncould be raised some-
where between the creation of the file input reader up to tir@ fwat the reader is closed
(lines 12-16). Although in AspectJ one can wrip-catch block around captured join
points, there is no join point corresponding to the executiban arbitrary block of code.

Transactional pointcuts provide a solution; Figure 3.26nshan aspect that implements

the recommended practice for handling resources in thepcesof exceptions.
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public class BufferedReaderExample{
public static void main(String[] args){
BufferedReaderExample example mew BufferedReaderExample ();
example.someMethod ();
}
public void someMethod () throws IOException {
doSomeWork () ;
/Inow read some data
BufferedReader reader new BufferedReaderrfew FileReader ("out.txt”));
String str =null;
while ((str = reader.readLine ()) !=null)
process (str);
reader .close ();
doSomeOtherWork ();
}
}

Figure 3.25: A file operation within method boundaries ttatld throw exceptions

The transactional pointcdtlelnputOp (lines 7-12) designates the target piece of file
opening-processing-closing code, which could leak thdaeeesource if an exception oc-
curs and is not properly handled. The aspect contains afiellifReaderof typeBuffere-

dReaderto keep track of the actu&ufferedReadeobbject from the creation point to the
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aspect ExceptionAspect percflow (execution BufferedReaderExamplex.(..))) {
declare soft: I0OException: calk( BufferedReaderExamplex.());
private BufferedReader mbufReader =null;

transcut filelnputOp (BufferedReader bufReader, FileRer fileReader){
pointcut create: call(FileReademnew(..)) & return (fileReader);
pointcut bufCreate: call(BufferedReadarew(..)) & args(fileReader)
&% return (bufReader);
pointcut close: call{ BufferedReader.close ()) & target(bufReader);

}

pointcut bufferCreate (): call(BufferedReadewew(..))
& cflow (execution (void BufferedReaderExamplex.()));

after () returning (BufferedReader bf): bufferCreate ()
m_bufReader = bf;
}

void around (BufferedReader bf, FileReader fr): filelnputOg(bfr) {
try {
proceed(bf, fr);
m_bufReader =null;

}
catch(lOException e) {
//Handle 10Exception if possible
}
finally {
//resource created and not released?
if (m_bufReader !=null)
try { m_bufReader.close ()}
catch(Exception e) //Handle it}

Figure 3.26: An aspect that implements recommended pesafciichandling resources

release point. Thafter() advice at lines 17-19, seta bufReaderto the returned object
of the successful constructor call. Theound() advice at lines 21-35, which intercepts
the execution of the target file operation (designatedilbinputOp, wraps the operation
inside atry-catch-finallyto capture any exception; if the target file operation finsskiec-
cessfully {.e. the execution gets to line 231 bufReadeis set tonull because, at this point,
one can be sure that the BufferedReader.close(), in thettfilg operation, has executed
successfully.lOExceptionis handled at lines 26-28, and then in fir@ally block (that is,
regardless of whether an exception is thrown or nothufReadelis checked to see if the
object has been created and not released, in which casd| ienieleased (lines 31-34).
If other types of exceptionse(g. NullPointerException, e)care thrown somewhere in the
operationm_bufReademill still be properly handled and the unhandled exceptiath lve
propagated.

One might wonder why in thbufferCreatepointcut (lines 14-15) we keep track of the
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targetBufferedReadeobject using a member field in the aspect, while the transicutsb
one of its parameters to the object (Line 10). This is necgdsecause it only makes sense
to expose the context values that do not change within timegoint; the BufferedReader
object is created within the join point, therefore its vabamnot be exposed before the join
point has even executed. In such cases, he context variatilleact as data flow variables
which are used to establish data flow relations among jointpoHence, the aspect keeps

track of the created object manually through another vigiab

3.4.2 Transaction Management

The program in Figure 3.27 connects to a database and upaldittsof old values in a
table with new ones. There are at least three important cosdkat a programmer should
have and handle when writing this code. First, most of thee@idtements can potentially
throw checked exceptions, which need to be handled, bedavwseenforces the handling
of checked exceptions unless the containing method’s tigmas explicitly annotated to
throw them. Secondly, there are two resources in this cagtestiould be released properly.

If the code executes normally, tlibose()statements release the resources. But if an ex-
ception is raised anywhere and not properly handled, therootwo of the resources can
leak. Finally, it might be required by the specificationst tthee values should be updated
altogether and if not all of them can be updated(because of an error) then none of them

should be changed. That is, the updates should be transactio
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Connection conn = DriverManager.getConnection (...);
PreparedStatement update =
conn.prepareStatement ("UPDATE names SET name = ? WHERRena ?");
Iterator<String> itr = old2newMap . keySet (). iterator ();
while (itr .hasNext())
{
String oldvalue = itr.next();
String newvalue = old2newMap .get(oldvalue);

update.setString (1, newvalue);
update.setString (2, oldvalue);
update.executeUpdate ();

update.close ();
conn.close ();

Figure 3.27: A typical database client code

These three concerns could be implemented by insertingeitessary code in the client
code, resulting in tangled code that is hard to maintainthieamore, in applications that
work with databases there are many instances of code thiatilarsin pattern to the code

in Figure 3.27.
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aspect TransactionAspect percflow (dbcut(Connection{))
private Connection mcon = null;
declare precedence: ResourceHandlerAspect, Transadispect;
transcut dbUpdate(Connection con, PreparedStatement {st
pointcut createStmt: calk( Connection.prepareStatement (..)) & target(con)
&% return (st);
pointcut rsClose: call{ Statement+.close ()) & target(st);
}
transcut dbcut(Connection conj
pointcut createCon: calk( DriverManager.getConnection (..)) &eturn (con);
pointcut rsClose: call{ Connection.close ()) & target(con);
}
after () returning (Connection con)hrows SQLException:
call(x DriverManager.getConnection (..)) & cflow(dbcut(Conatéon)) {
m.con = con;
m.con . setAutoCommitfalse);
}
void around(Connection con, PreparedStatement st): dbUpdate( st) {
boolean success =false;
try {
proceed(con, st);
success =true;
}
finally {
if (success){
try {con.commit()}
catch(Exception el){}
else {
try {con.rollback ();}
catch(Exception e2){}
}
}
}
}

Figure 3.28: Transaction handling transcut

Figure 3.28 shows an aspect that implements the transaotmagement for instances
of database code that match the expressed behaviour. Thasiber, in this specific ex-
ample, is captured by two transcuthUpdate()(lines 5-9) anddbcut (lines 11-14). The
former captures pieces of computation beginning with tleation of a databas&tatement
(query) object and ending with the statement releasing Itfec; and the latter does the
same for theConnectionobject. An aspect instance is associated with each flow ofra co
putation designated lgbcut()(i.e. instances of code similar to Figure 3.27).

The aspect uses an instance variabiec6n) to keep track of the associat€bnnection
object, and also disables automatic commit on the conmestidhat the aspect can commit
when appropriate (lines 16-20). Then around() advice wraps the designated database

query executiond.g. for code in Figure 3.27, this corresponds to the executidmes$ 2-

°In AspectJ, “Statement+” means the “Statement” type anslitslasses.
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13) in atry-finally block and uses a flag to keep track of the success of the quecytion.

If the proceed()at line 25 returns successfully (that is, the target questestent is
executed with no error) then the success flag is sétu® Otherwise, if an exception is
raised, the flag will béalse In thefinally block, the transaction will be committed if the flag
is true (query execution successful) or rolled back otherwise. ratrsed exceptions will still
be propagated up froffransactionAspeco that theResourceHandlerAspe(Eigure 3.29)

can handle the exception and resources.
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aspect ResourceHandlerAspect percflow (dbcut(Conmat)i) {
declare soft: SQLException: calk( DBConnectionExamplex(..));
Connection mcon = null;
Statement mstmt = null;
I
dbQuery () and dbcut() are the same as before ...
*/
after () returning(Statement stmt): cakl (Connection .prepareStatement (..))
&% cflow (dbcut(Connection)) {
m_stmt = stmt;

void around(Connection con, PreparedStatement st): dbQuery(cst) {
try {
proceed(con, st);
m.stmt = null ;

}
finally {
if (m_stmt !'= null) {
try {
m.stmt. close ();
m_stmt = null;

catch(Exception e) {}

}
}
}
void around(Connection con): dbcut(conj
try {
proceed(con);
m.con = null;

}
finally {
if (m.con !'= null) {
try {
m_con. close ();
m.con = null;

}
catch(Exception el){}

}
}
}
}

Figure 3.29: Transcut to handle resources

The exceptions and resources are handled in one singletasggmwn in Figure 3.29.

This aspect captures any exceptions raised for the wholgutation fromConnectiorcre-

1%0bviously, there is opportunity for reuse between these agpects, but that was not the point in this
example.
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ation, query execution, t€onnectionrelease. In this specific example, the only special
handling occurs in th&nally blocks, by checking the instance variable that tracks tie co
responding resource and releases the resource if notedlesready. Note that at line 15

and 30, the instance variables are setut to indicate that the target code has successfully

executed to the end and that the corresponding resourdeaseel.

3.4.3 Synchronization

Concurrent systems designers often desire customizabtghynization mechanisms be-
cause different composition and deployment contexts ddnafififerent synchronization
policies. An AOP synchronization library like FlexSync [58chieves customizability
through decoupling synchronization intentions and meisias (three mechanisms are sup-
ported: JavaynchronizedAtomic BlocksandSoftware Transactional MemaryFlexSync
requires refactoring to convert blocks into methods sottiet can be picked out by point-
cuts. Transcuts can be used to designate the pieces of aideréhtargets of synchroniza-
tion without refactoring:

Even if one single synchronization mechanism is used, migta policies for differ-
ent contexts may still be desirable. For instance, the dmaity of synchronization can
affect performance. If large blocks of code are synchrahitecked) other threads might
be blocked for long periods of time waiting for the threadtthxns the lock to release it.
On the other hand, if the granularity is too low, the overhefthe lock/unlock mecha-
nism might affect performance, and ensuring consistencgrbnes tricky. Transcuts can be
used to separate demarcation of the boundaries of a crézdiion from the code so that
different boundaries could be used for different synctratibn granularities (This cannot
be accomplished by FlexSync because the critical secti@etactored into methods and
hence are fixed.) The synchronization mechanism itself lsan be customized once the
transcuts designate the critical section.

Consider a typical shardduffer object that is used by a number of reader and writer
threads. One way of synchronizing the buffer is to make alitofread/write methods
synchronized. The problem is that, if the buffer must be kbddyy the writers to make
sure it is not full before writing (and similarly not emptyfbes reading) then the buffer
needs to be locked before checking and released after thel aatite (read) operation, in

order to make the buffer update atomic.

"The designer of FlexSync confirmed in a private conversattd@SE’09 that transcuts can be very useful
in FlexSync.
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Transcuts can be used to express the synchronizationiongthat is, the boundaries
of the critical sections) as well as applying different dymomization mechanisms to the
designated critical sections. Figure 3.30 shows partseotdde of two types of threads:
a writer and a reader which write to and read from a sharecghutéspectively. Multiple
threads of both types could be running simultaneously. Waldvbike to have lines 2-3
of the writers and lines 2-5 of the readers execute atoryi@éth respect to other threads.
Figure 3.31 shows a transcut that captures the criticaloseof the reader threads and the
advice that synchronizes the section. A similar transdutéz pair is used (not shown) to

synchronize the writer threads.

1| while (running) { 1| while (running) {
2 if ('buf.isFull()) 2 if ('buf.isEmpty ()) {
3 buf.write (data); 3 Object d = buf.read ();
4} 4 process(d);
5 1}
6 }

Figure 3.30: Critical sections in writer (left) and readeglit) threads.

transcut readbuf(Buffer buf){
pointcut test: call{ Buffer.isEmpty()) & target(buf);
pointcut read: conditional (calk( Buffer.read ()) & target (buf));

void around (Buffer buf): readbuf(buf){
synchronized(buf) {
proceed (buf);

}
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}

Figure 3.31: Transcut to synchronizes reader’s criticetige.

3.4.4 Parallelization

Can aspects be used on existing single-threaded code tathiamtage of increasingly
common multi-core systems? AOP can help, to some extentletttify the desired join
points and run them in a thread. However, the dynamic pdiretduice AOP is stuck at the
limits that were discussed before. Consider the followicgnsirio.

Imagine a game engine that uses typed messages for comtmmiaad coordination
among its components, such as graphics subsystem, phuybisgstem, sound subsystem,
and Al. For instance, of a missile is fired,PdaySoundEffectMessagnessage needs to
be created, configured with the proper values, and sent teailned subsystem to play the

missile sound. The general form of a message creation afdijaaation is as below:

l| SpecificMessage msg mew SpecificMessage (); (
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2l msg.setFieldl (...);

3 /1 ...

4 msg.setFieldN (...);

5 someEntity.send(msg);

There are tens of different message types and, obviousty, lave different field
names, and consequently, setter method names. When thageessent, it is processed
by the destination entity synchronously and the procegsing varies with the type of the
message.

One might want to write an aspect to parallelize the exenuwifeuch message creations
and dispatch so that the main thread can continue withoundgaw wait for the message to
be processéd; however, the overhead of advice and thread creation migtiieworth the
parallelization of a single message creation and disp&uahif there are cases in the code
where a list of messages are dispatched together in a loep,ttie parallelization might
well be worth the effort.

The pattern of message creation and dispatch can be exgresisg transcuts and a
loop that contains instances of such transcuts can be figehtising alooped() pseudo
pointcut. Once designated, around()advice can be written to intercept the whole loop

and executes it on a newly created and launched thread:

void around (): messageLoop (X
Thread t =new Thread () {
public void run() {

proceed ();

t.start ();
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3.4.5 Data and Control Context Designation

Transcuts can be used to define a control flow and dataflowxddhtg can be used to more
selectively target join points. For example, consider auese that is created and used
within a method. Resource objects usually have a well-defusage pattern (interface
protocol) that captures the correct way of using the resuli@danscuts can capture such
patterns and be used to filter illegal or useless uses of foeiree.

The example of Figure 3.32 shows how to skip any redundal# iwetlose() and skip
any method call on a resource before a cabbpen()and after a call telose(). That is, in

the following example, method calls in lines 1 and 3 shouldlkipped:

120f course, some messages might have to be processed befonaitihthread can continue.
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1 resource .read ();// skip this call

2 resource .open(); resource.read (); resource.close ();
3 resource .read ();// skip this call

1| aspect FilterRedundantCallg

2| transcut closeAndAfter (Resource f

3 pointcut cl: call¢ Resource.close ()) & target(f);
4 pointcut c2: call¢ Resourcex()) & target(f);

5 )

6) pointcut anyUseAfterClose(Resource f, Resource f2):
7] call(x Resource=x())

8 & !'call(* Resource.close ())

9 & target(f)

10 & cflow (closeAndAfter (f2))

11 & if (f == f2);

12

13 around (Resource f, Resource f2): anyUseAfterClose(R,) f{}
14

15 transcut openAndBefore(Resource f)

16 pointcut cl: call¢ Resourcex()) & target(f);

17 pointcut c2: call¢ Resource.open()) & target(f);
18 }

19 pointcut anyUseBeforeOpen(Resource f, Resource f2):
20 call(*x Resourcex())

21 & !call(* Resource.open())

22 & target(f)

23 & cflow (openAndBefore(f2))

24 & if (f == f2);

25

26 around (Resource f, Resource f2): anyUseBeforeOpen(2){}
27 }

Figure 3.32: Transcut for open/close usage

The same behaviour could be achieved in Aspectd by intradusvo flags that track
whetheropen()andclose()have been called, and skip the useless calls accordingiy- Tr
scuts should be able to do this more declaratively; howagawe discuss it in Section 3.6,
the pinpointing mechanism needed for doing the above exampte declaratively has not

been implemented yet, therefore, we rely on traditionahjooits to express the intent.

3.4.6 Static Verification of APl Usage

The programming interfaces of application frameworks aofthvare libraries do not usu-
ally enforce (statically) their usage protocol. For ins&@na file system interface might
provide methods for initialization and finalization of thederlying system but it cannot
specify, in a checkable manner, that a programmer must H@rgaservices before initial-

ization and after finalization method calls. These desidesrare usually communicated
to the application programmers through code comments andiddmentation. The sys-
tematic process of making sure that the use of an Applic&mgramming Interface (API)

complies with the designer’s intent is referred to as APIlgeseonformance and design
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intent verification. Many techniques have been developestatcally check such design

rules and interface protocols [15], [30].

In Aspectd, theleclare error/warningadvice can be used to statically check some kinds

of design rules. Figure 3.33 shows a very simple example asaect that can stop compi-

lation with an error whenever thewoperator is used to explicitly create an object in some

class.

aspect EnforceFactory
pointcut newlnSomeClass () : within(SomeClass) & cakl.aew(..));
declare error : newlnSomecClass ():
"Must only use factory methods to instantiate objects!”;

Figure 3.33:declare erroradvice in Aspect]

Transcuts can also be used as the targetie€lare error/warningand therefore can
capture and verify some object protocols and design rules.ekample, consider the file
system initialization and finalization example and assuhat the file system object is a

singleton. Figure 3.34 shows an aspect that enforces thenaémtioned interface protocol.

aspect EnforceProtocof
transcut useBeforelnit ()
pointcut someservice: calk( FileSystem «(..));
pointcut init: callé& FileSystem.initialize (..));
}
transcut useAfterFini (){
pointcut someservice: calk( FileSystem . finalize (..));
pointcut init: call¢& FileSystem «(..));
}
declare warning: useBeforelnit(): "FileSystem shoul& bnitialized before use!”
declare warning: useAfterFini (): "FileSystem cannot besed after finalization!”
}

Figure 3.34: Static API usage verification using transcuts.

Currently, transcuts that use dataflow relations betweingoints cannot be used in
declareadvice because the AspectJ language requires a staticyioad the target ale-
clare and our dataflow pointcuts are used both for context expdsyreamic) and dataflow
relations (static). In the future, we would like to allow thse of transcuts with dataflow
pointcuts as the target declareadvice to enable powerful static checking for objects and
resources. Consider a resource that should be used in dicpeanner. For instance, a
file object that needs to be first opened, then read, thendtldses possible to inform the

programmer at compile time if a file object is used after cigsir before opening.
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3.5 Implementation

We have implementéd transactional pointcuts as an extension to the AspectBeoch
piler (abg [5]. The AspectBench compiler is an implementation of Agpealeveloped to
make it easier to add language extensions and optimizafidresback-end oébcis based
on the Soot framework [53], which we used to implement regioalysis.

The abc compiler supports two front-ends one of which is based obAdEs[20], a
compiler framework, which we chose to use for the transaustfend implementation.
Jimple [54] is the underlying intermediate 3-address cosledufor code generation and
weaving. We used Aspect] to implement some parts of the sgten The binary for
the transcut extension and the examples presented in #sssthre available online for
download!*

Jimple intermediate representation has been designedniifsi the implementation
of analysis and optimization algorithms for Java. While snaristing optimization and
transformation algorithms work with 3-address code (inalhan instruction operates on
named operands), Java bytecode is stack-based and itgtisis have implicit effects on

the evaluation stack. The following is a piece of bytecodenff54]:
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iload 1 // load variable 1, and push it onto the stack

iload 2 // load variable 22, and push it onto the stack

iadd /l pop two values, and push the sum of the two onto the stack

istore 1// pop a value from the stack, and push it onto the stack
whose Jimple translation looks like:

int x, vy, z;

zZ =X +Yy;

In Jimple, all operands have to be explicitly-typed localiatles. The Jimple frame-
work can translate Java bytecode to Jimple and vice versa.

We extended thebc compiler through its provided extension points. Whenever a
invasive code modification in trebcs code base seemed necessary, we used aspects instead
to implicitly extend and adapt the behaviour. The use of etspessentially helped to create

more extension interfaces and allowed us to avoid modifpmse codé®

3The implementation is not perfect; for instance, there isablfie bug which causes changes to local variable
within an around-advised join point to be lost; or many sreathancement that could improve the usability of
transcut to a good extent but were not implemented due todonstraints.

Yhttp://bit.ly/cSLKIN

5The use of aspects in extendiagcwas originally inspired by [25].
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3.6 Limitations

The expressive power of transcuts can be improved by addixiisay pointcuts, operators,
and modifiers to help designers better capture their intkjoi@ points. For example,
the data flow relations are currently limited to must-alielations; it would potentially be
useful to enable may-alias relations and expose them thrapgoper interface. In addition,
the pattern language can be enriched to allow better coowenl the matching algorithm.
For instance, aot(x) pseudo pointcut can be implemented to control the non-gootis
matching behaviour in a way that it fails if it comes acros®ia point that matches.
Additionally, the lexicalwithincode()pointcut should be enabled to work with transcuts.
It will be very effective in selecting join points based orithpresence within a specific
context.

Perhaps the most useful future enhancement is a direct iptimgp mechanism that
allows targeting a segment of a transcut directly. Curyemthe has to work around this

limitation, as seen in some of the examples, which does matyas work as desired.

3.6.1 Fragility

Pointcuts, in non-invasive pointcut-advice models, retytlee properties of join points to
select them; this implicit dependency on join points implikat the evolution of the base
code may break the existing pointcuts; that is, a simple ghan the code can prevent a
previously selected join point from being selected, and,gi®intcuts may now pick out
the join points that were not intended to be selected. Thipgmty of pointcuts is referred
to as pointcufragility and is inherent in pointcut-advice mechanisms as they aitlglrely
on properties of join points.

Transcuts appear to be making fragility worse because afigér reliance on structural
and behavioural information of the target code. Transchtilsl be carefully designed
along with the target system to minimize such negative tffe@t the same time, the
designer should have a rich set of constructs to be able adylexpress her intent.

From another perspective, transcuts can help in someisitisab remove dangerous de-
pendency on method names. Traditional pointcuts can beshrbk a simple name change
of a method if they rely on the method’s name. If instead ohiifging the target method
using its name, a transcut can be used to directly identdyogberation of interest, then the
method’s name can freely be changed without breaking tihedta.

Whether the dependency on method name is worse or the deymyriethe structure of
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the actual target operation is something that needs to bstigated; however, it seems that
in the context of framework design where carefully-desiwell-written code is frequently

reused, transcuts can be used with the fairly safe assumibiid the designated pieces of
code will not change frequently. This assumption would piw not be a safe assumption

in the context of application code written by inexperienpedgrammers.

3.6.2 Interaprocedural Limits, Escaping Objects, and Bured Effects

One important criticism against transcuts can be explaasdbliows. Consider a read

operation on a file in the following form:

file .open();
data = file.read ();
file.close ();

wherefile is an object representing a file. This pattern of 1/O is versnown and a
transcut can be composed to identify the set of such file ipasaby relating three key
join points,i.e. open(), read()andclose() all on the same target objectk. file however,
the identified pattern is not the only way a file operation carcbded. For instance, the

same behaviour can be coded in the following form:

file .open();
data = readand.close (file);

whereread.and close()is a procedure that reads some data from a file and then closes

the file. This example is a case from a more general scenavidiich the objects within
a target join point escape the current matching scope andsagkwithin a called method
(e.g. filepassed in toead.and close(). Consequently, current matching algorithm cannot
determine what methods are called on the escaped objedndtance, in the above exam-
ple, the matching algorithm does not consider the bodwafl and close()when looking
for aread() method call; therefore, no match is found.

This issue is closely related to the fragility problem andhgneases can be avoided if
a system is designed with aspects in mind. In cases wheretaspged to be added to an
existing design, one can still write a few transcuts to captlifferent code patterns that
perform the same operation with respect to the key join poamd the involved objects.
This approach addresses almost all of this issue becausthadmeame is an abstraction of
the code within its body and therefore can be used in ideatifin of the abstracted code.

There is another add-in feature that can help partially egfdthe above limitation. An
effect() pointcut can be designed that takes a set of desirable catignal effects €.9.

method calls) and matches a join point if the execution df jihia point emits that effect;
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that is, a call join point can mataffect(read())f read()is potentially called at some point

within the execution of the method corresponding to the paimtte.

3.6.3 Continuation vs. History Semantics

One of the conceptual criticisms to our work is that we basenoodel on the dynamic
pointcut-advice join point model while the matching al¢fom uses static program repre-
sentation. This is not an issue becaus#() pointcut in AspectJ is also a static pointcut
matched based on the static representation of join poitills,itss defined within the dy-
namic join point model because it matches runtime join gofdynamic join points.)

In a similar fashion, transcuts are static in the sense Heattatching algorithm uses
static program representation to identify whether a seaiaode can generate the desired
dynamic join points. What complicates the semantics ofsicats is the fact that, the dy-
namic join points that are identified as matches for a trars@iidentified conservatively;
that is, if the matching algorithm cannot predict that tHa jmoints generated by a piece of
code match with the key pointcuts in a transcut, then thatepod code is not chosen as a
match even if it actually generates the desired join points.

For instance, consider the following transcut:

B WN

transcut ab(){
pointcut a: call¢ a());
pointcut b: callé b());
}

In trace-based approaches, the semantics of such a seqfgpaiatcuts is clear be-
cause they are based on the history of runtime events; buirimodel, in which predicting
future events is necessary to alldgfore()and around() advice, the semantics is not as
intuitive anymore. The reason is that it is not possible terine whether a sequence (or
any other pattern for that matter) of dynamic join pointswedefore all of its join points
are executed, at which point only a history of the target astaipon is at hand which can
only be affected usingfter() advice.

Therefore, transcuts make available to the programmer istpafictically possible and
obviously cannot do any magic. In fact, in the thesis staténvee had to qualify the target
“pieces of computation” with “well-formed” to capture thésibtlety that a target piece of
computation is matched if it can be determined staticali thwill be a match at runtime.
In a way, when a join point that can potentially be the begigrif a match for a transcut is

activated at runtime, its (partial) continuation shouldchahe rest of the transcut in order

18A simple semantic pointcut that matches join points baseithein effect on heap is introduced in [9].
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to have a complete match for the transcut. In other wordsptaghing algorithm does
not wait until a history of execution is available at the efi@@mputation, but acts on the
available continuation of the beginning of candidate cotation (join point).

Consequently, there will be pieces of computation at ruatthat generate the same
event (join point) pattern but could not be identified as eschefore runtime. For exam-
ple, in the codg a(); b(); }, there is a match for thab() transcut, whereas in the codg
a(); c(); } wherec() is defined as{ b(); ... }, there is no match because the current matching
algorithm does not look into the body of the called methodemvimatching within another
method. Even{a(); if(...) then b();} is not a match because whetl) is executed or not
depends on the guarding condittén

It might be easier to think of transcuts as static patterncheat that act on program
text, which is not correct. Transcuts act on control flow amatiol dependence graphs and
that separates them from language-level and text-levimpatatching and transformation
techniques.

It is fair to say that, according to the above argument, theaseics of transcuts is
confusing and counter-intuitive. That said, the usefidnaefstranscuts pushes us to find

better ways to give meaning to them and think about them.

This case can be captured usiigpendenpointcuts, which is not the point of this argument.
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Chapter 4

The Semantics of Transcuts

In this chapter, it is shown that transcuts and the assakjabe point model are compatible
and can be explained in the existing semantic accounts @rdygnjoint points. The seman-
tics framework that is used here is the Dutchyn’s contirmmetiemantics for dynamic joint
points [18] explained in Section 4.1. It is shown, in Sec#od, that this semantics can be

extended to allow transcut matching.

4.1 Continuation-based Semantics for Dynamic Join Points

Dutchyn [18] gives a continuation-based semantics to dymamn points, pointcut, and
advice for a simple procedural language with first-orderually recursive procedures and
a top-level expression. Following Reynolds definitionaérpreters [47] style of semantic
specification, he defines an interpreter for the languagettae augments it to support
aspect-oriented constructs. The interpreter is impleatki continuation passing style
(CPS) [4] to make the continuations explicit in the intetpre Continuations in such an
interpreter are regarded as “the rest of the computatiod], [Which basically sequence
the remaining steps of a computation. Continuations arellystepresented as closures
and, therefore, demand higher-order interpreter impleatiem; however, there are tech-
nigues that can be used to defunctionalize a continuatidraesid higher-order procedures.
Dutchyn, specifically, linearizes the continuations argtesents the entire continuation as
a list (stack) of continuation frames.

Each continuation frame represents a single step in the atatign and is represented
as a data structure that contains the relevant fields forctiraputation. The top frame in
the list is the immediate action that is taken if the conttimrais activatedi(e., provided a
value to continue with.) For instance GALL continuation frame has a field that contains

the procedure name to be called, and it expects (consumeést)cd Values (evaluated ar-
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guments). ArEXEC continuation frame keeps a list of values (evaluated argishend
expects a procedur&ETandGET continuation frames represent setting and getting global
variables, respectively. There are a few auxiliary corgdtimn frames that are not essential
but help in sequencing multiple argument evaluation angipgs as well as conditional
constructs.

In the unmodified interpreter (non-AOP), the evaluation nsirgterplay between an
eval(expr, env, confunction and arapply(cont, valfunction; theeval() function evaluates
the trivial expressions and sequences the ones that argiviah{e.g.function application)
by creating continuation frames and pushing them on theragmtion frame stack. When
a value is availablei.e. computed), thepply() function is called to send the value to the
continuation: if the continuation stack is empty, the comfian is halted; otherwise, the
top-most frame is popped and processed. For instance, wipeession “a()” is evaluated,
theeval()function determines that this expression is a functioniapfibn, therefore, it first
evaluates its arguments with a continuation extended wigvaCALL continuation frame
(callF [id] ; CALL id :: Ival). That is, after the argumentd @ny) are evaluated, the values
are sent to the awaiting continuation, which now has a CAlmfe at the top. The CALL
continuation frame contains the name of the function thataging for the values of its
arguments. (The arguments are also evaluated using twieayixiontinuation frames: one
is used to hold an expression and environment and to conslisti@fevaluated arguments;
the other is used to hold a list of evaluated values and coesumawly evaluated arguments
to be added to its list. In the end of argument evaluationstaofi evaluated arguments are
sent to the top-most continuation frame which is going to BA&L.)

When the empty list (of arguments) is applied to the CALL cardtion frame (which
contains “a” as the name of the function), the proceduresspoonding to the name is looked
up and a new EXEC continuation frame is created (execF [aEgXEC val... :: !proc) and
pushed on the continuation stack and at the sameappby()is called to send the looked-up
procedure to the continuation (which has now an EXEC frantkeatop.)

When a continuation that has an EXEC frame at the top is appdie procedure, the
procedure is examined and if it is a primitive procedure tiés invoked with the values
held within the EXEC frame (the evaluated arguments) as agethe continuation (which
does not contain the top EXEC anymore), as arguments. Ifribmedure is a user-defined
procedure then theval() function is called to evaluate the body of the procedure in an
environment that binds its formal arguments to the valugsimthe EXEC frame, and with

the continuation from top of which EXEC is popped.
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Dynamic join points are originally defined as the “principled points in the execu
tion” [32]. The key idea behind the continuation-passingaatics is that by using con-
tinuations and specialized continuation frames, the nmggdnli states in the interpreter are
exposed. Join points in this interpreter are the activatiohnon-auxiliary continuation
frames in the CPS interpreter. In other words, join poings @oints in the execution (in
the interpreter) where values are to be consumed by cotitimuiames. Therefore, there
is four kinds of join points in the interpreter. CALL, EXECES, and GET join points,
corresponding to the state in the interpreter where a prweeckll continuation frame is
activated (and provided a list of values), the state whemxanution frame is activated and
provided with a procedure to evaluate, the state where abl@iable is being set, and the
state where the value of a global variable is being retriexespectively. For brevity, from
now on, we focus on the most important continuation framais (points),i.e. CALL and

EXEC. The following notation is used in [18] to representséaéwo kinds of join points

e CALL (id - —val ...), which means that a call join point expects/consuimést of

values and carries an id (the name of the procedure.)

e EXEC (val... — proc), which means that an execution join point expectsiaores

a procedure and carries a list of values (the value of thenpetexs.)

Pointcuts are “means of identifying join points” [32]. In [18], theyepredicates over
the value provided to a continuation frame and the fields enftame. A pointcut is a
syntactic construct that examines the interpreter’'s sthtd is, the activated continuation
frame and the available value to the continuation, to daterrwhether it matches a given
continuation frame with desired attributes. Thereforepimfgut returns true if the current
join point matches the given criteria.

For the above interpreter, there are two pointcut constr@@ALLPC (pname, ids)
and EXECPC (pname, idshat can match two major kinds of join points: CALL and
EXEC, respectively. The CALLPC pointcut returns true if therent continuation frame
is a procedure call (CALL) that holds a procedure name etprivdao pname Similarly,
the EXECPC pointcut returns true if the top continuatiomfeais a procedure execution
(EXEC) and that the supplied value is a procedure whose naegivalent tgppname

A combinational pointcut is also defined, ORPC, that given $wb-pointcuts, matches

the first pointcut and if that fails the second one is matclietthere is a match in any case

LJoin points are the activation of continuation frames netftames themselves; however, because a con-
tinuation frame represents a join point, they are useddhtergeably in the text depending on context.

60



of the above pointcuts, the list of id'&d§) in the pointcut will be returned. If there is no
match, false is returned. It is emphasized in this sematitamisO matching does not alter
the current continuation or values. Pointcuts identify aiyic join points and do not have
computational effects; that is, they do not change the betimat those join points.

Adviceis “a means of affecting semantics at those join points”.[B2the continuation-
passing interpreter, this is implemented as proceduréoffeate on continuation frames
(in order to affect the rest of the computation.) Syntadliicadvice has two parts: a point-
cut and an advice body. The advice is semantically similar ppocedure that is invoked
at the join points matched by the pointcut, and runs in anrenaent augmented with the
matched pointcut’s identifiers bound to the current joimpsirelevant values, and a special
proceedidentifier, denoting the original join point.

Consider the definition of a procedupack that takes a boolean argument and returns a

integer (from [18]:)

(define (pick x) (if x 1 2))
Now, consider the expression
(+ (pick #t) 3)

where the procedungickis applied to value #t to have the result 1, and the overalltres
of the computation becomes 4. In fapick transforms the continuation of the procedure

application from

(I anbda (n) ;awai t nunber
(+n 3)) ; add three; halt.

to

(lanbda (b) ; await bool ean
(let ([n (if b1 2)]) ;select nunber
((lambda (n) (+ n 3)) ; original continuation

n))) ; given the sel ected nunber.
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pick() extends the original continuation frominteger(consumes integer) te boolean
(consumes boolean). That Eick can be viewed in two different modes: as a value trans-
former, it has the typéoolean— integerand as a continuation transformer it has the type
- integer— — boolean Advice, in the continuation-passing interpreter, bekdike a pro-
cedure application to continuations; that is, it is apptiedontinuations and can extend or
specialize them.

Here is a summary of the weaving steps in the interpreter. néheontinuation frame
is activated i(e. a value is ready to be sent to it), a matching process colédictise advice
whose pointcuts match the current continuation frame. dfdhis not such a match, the
interpreter continues to run the operation correspondrtfe current framei.g. the orig-
inal join point.) If there is any match, the weaving procedtuns as follows. The advice
body of the first match is evaluated in an environment exténdi¢h the list of id’s from
the matched pointcut, thoceedsymbol, and the remaining matched advice.

The proceedis a closure that is created when a match is found. It conwiagything
needed to continue the original computatioe.(the matched continuation frame and the
value applied to it.) The remaining matched advice are atgat i a special environment
variable. In the body of the advice, whermpeceed()expression (if any) is evaluated, the
list of remaining advice is retrieved from the environmemd éhe next advice is evaluated.
If there is no more advice to evaluatep@ceed()activates the original continuation frame
potentially with values changed by advice.

In summary, in a defunctionalized continuation-passingrpreter, the activation of
non-auxiliary continuation frames are considered as nmgduli points in execution, or join
points, that can be identified through predicates based @ntifpe and run-time values.
Special procedures (advice) can then be executed to Spediaé behaviour of these con-
tinuation frames. The importance of this continuationdohsemantics is that it does not
rely on a vague or intuitive definition of join points; instkgoin points arise naturally in

the semantics of the programming language as the activatioontinuation frames [19].

4.2 Extending the Continuation-based Semantics to Support
Transcuts

In this section, the function of a CPS interpreter is exmdithrough an example; then it
is shown how weaving is added to the interpreter to enalbfegoint matching and advice.
Finally, transcut matching and advice is explained witlia ¢ontinuation-based semantic

framework.
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4.2.1 Defunctionalized CPS Interpreter: a Running Example

Consider the expressian b( a() ), in a simple procedural language. To compute the value
of b( a() ), first methoda() is executed, then methdul), sending the returned value of
a() to b() as an argument. To better achieve our goal in this sectiorfirstestep through
the evaluation of this expression in the continuation-pgsiterpreter without weaving
support. Then, itis shown how weaving is integrated foritiackl join point matching and
advicé. Finally, it is shown how transcuts fit in.

Assume that is evaluated with a continuatidn As described in the previous section,
in the defunctionalized CPS interpreter, evaluation isrderplay between aaval (expr,
env, cont)function and arapply (cont, val)function. Theeval() function evaluates an
expression €xpn in an environmentdny and with a continuationcpnf), which means
when the evaluation agxpr is finished and its result is available as a value, it should be
sent to the awaiting continuatia@ont The function that sends an available valual)to a
continuation ¢oni) is apply(). A continuation in this interpreter is represented by adist
continuation frames each of which represents a kind of ¢jperghat needs to be done on
the available value. For instance, when an expression is@gdure application (method
call), first, the arguments need to be evaluated, then theedtme is evaluated provided
with the value of the arguments.

To demonstrate how the list of continuation frames changésa course of evaluation,
we use a list notation which extends from left to right, witfthe initial continuation await-
ing the evaluation of) represented &s..). The evaluation starts with callireyal (“b(a())”,

r, k), in whichr is the current environment in whiahis evaluated. When recognizing that
the expression is a procedure application,etal() function recursively and indirectly calls
itself to evaluate the arguments of the application firshsmsame environment, but with

the following extended continuation:
(..., callF [b])

callF [id] is a continuation frame that contains the name of a procedtren activated,
it looks up the procedure and consumes a list of evaluatagreegts. Thesval() function
extends the current continuatioh) (with a callF continuation frame before moving on to

evaluate the arguments. In other words, when the evaluafitine arguments is finished,

Note that we use Dutchyn [18]'s implementation to step thtothis evaluation. Details are omitted when
appropriate for simplicity.
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the list of evaluated values is sent to a continuation whogdrame is acallF. This is how
the CPS interpreter sequences the steps in a computation.

To support multiple procedure arguments, two auxiliaryticmration frames are used to
evaluate the arguments one by one and add each evaluatedwallist. This is a recursive
operation anaval() calls a recursive procedure to create the necessary catiinidframes
and add them to the continuation list. For each argumentessmn, aandF [exp env]
is created that contains the argument expressiop)(and the current environmentr(v);
then the procedure is repeated for the rest of the argumaettitshe continuation extended
with the newly createdandF. For the above example, the continuation list would look lik

the following after the procedure reaches the end of theliatgument:
(..., callF [Db], randF ["a()", r])

Note that “a()” inside theandF is an expression andis the environment in whicle
is evaluated. When there is no more arguments, the interpagplies the empty lis{)
(which is a value) to the continuation by calliagply (cont, '()) This means that the top
frame in the current continuatiordpt) needs to be activated to consume the given value.
In the example, the top frame israndF containing the expression representing the first
argument. Thapply() procedure pops the top frame and recognizes its type antiastom
theeval() procedure, sequences the actions that need to be takercasgiit, which in this
case is to evaluate an argument expression and appendetfiadhlist of arguments. It first
extends the continuation with a frarkensF [vals] which is an auxiliary frame that holds
the evaluated list of arguments and consumes the next ésdlaeggument to be appended
to its list of values, initialized with the value provided tandF (which is '() in the first
invocation); then, the argument is recursively evaluatethe extended continuation, by
calling?

eval (randF.expr, randF.env, extend(cont, konsF ['()]))
after which, the continuation looks like the following:
(..., callF [b], konsF ["()])

The argument is a procedure call itself, therefore a singlaluation takes place that

will once again sequence the operations needed to eva(jatbat is, a newcallF contin-

3Note that the pseudo code is intended to be simple to underatzd it might not follow the syntax of any
specific language.
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uation frame is created and pushed into the current coritoruaAt this point, the continu-

ation looks like the following:
(..., callF[b], konsF ['()], callF [a])

Similar to the evaluation db(), the list of arguments need to be evaluated in the new
extended continuation. When the list is (or becomes) entimyapply() procedure is called
to process the top-most continuation frame provided witlerpty list (()) as the value.
In other words, the interpreter cabigply(cont, ’()) which in turn, activates (removes and
processes) theallF [a] continuation frame; it creates and adds a new continuatane of
type execF [args]that contains the list of argument values and loads the puveewvhose
name is in thecallF frame, in this caseg; then, once again, thapply(cont, v)is called

wherecontis the extended continuation (below) ami the procedure correspondingao

(..., callF [b], konsF ['"()], execF ['()])

The top frame in the continuation is ameck therefore the call tapply(cont, v)will

recursively evaluate the body of the procedure passedincalling
eval (v.body, r1, ki)

wherev.bodyis the body of the procedure correspondingtel is a new environment in
which the names of the parameters of the procedure are bouheé values embedded in
the execF [args](argsis the list of argument values, empty list in this case), Ahds the

following:
(..., callF [b], konsF ["()])

The CPS interpreter relies on the continuation to decide trteanext action should be
after an expression is evaluated. The evaluation of the bbdye procedure(), in turn,
creates the relevant continuation frames and recursive toedval() the result of which is
a value available to the rest of the computatioe. the current continuation). For the sake
of our example, let us assume that the result of evaluat{hgs the integer 0. When the
continuation is applied to the returned value, the top framthe continuation is &onsF
that contains a list of argument values. When the frame igadet, the list of arguments is
extracted and the provided value (0 in this case) is appetadigdthen,apply (cont, args)
is called, wherargsis the list of arguments with one element (0) ahtis the following

continuation:
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(..., callF [b])

This call activates theallF continuation frame which, in turn, results in the creation
of anexecFframe and the evaluation of)'s body. In the end, the result of the expression

b(a()) will be sent to the awaiting continuatidn i.e. (...)

4.2.2 AOP-Enabled CPS Interpreter

Dynamic join points correspond to the activation of noniary continuation frames in
the CPS interpreter; that is, when the interpreter callsafi@y(cont, v)procedure, a join
point is reached. Therefore, to enable join point matchimyadvice in the CPS interpreter,
theapply() procedure is replaced by another procedure that, at eagbation, matches the
pointcut of each advice against the current join point blirgua match(pc, v, fprocedure,
in which pc is the pointcut of the current advice,is the value sent to the continuation,
and f is the continuation frame at the top of the continuatibe. (active frame.)f andv
together form the current join point.

If the current pointcut-advice does not match, then the abrpply() procedure is
called, as in the non-AOP interpreter; otherwise, the bddyh® matched advice is eval-
uated, similar to a procedure, with a difference: the emrirent is extended with these
special identifiersproceed which points to a representation of the matched join paind
advs which keeps the list of remaining pointcut-advice to beahat against the current
join point. During the evaluation of the advice’s body, iéttwval()encounters angroceed()
expression, it uses the environment to retrieve the ligst@rémaining advice as well as the
original join point. If the list of the remaining advice benes empty, then the evaluation of
proceed()results in the original join point (continuation frame aralue) being evaluated;
otherwise, the next pointcut-advice is considered for hiate

The match(pc, v, fprocedure decides, based on the type of the pointelt whether
the current join point matches or not. For instancg¢ik acallC [pid ids] pointcut, then the
procedure first checks the type of the current join point &itds a CALL join point; then,
its embedded procedure name is matched agaidsind if it matches then the procedure
creates a match structure as the successful result. A miatchuse contains a list of the
identifiers of the pointcut, a list of values bound to the tifears, and a function abstraction
that representproceed This function takes a parameter to allow passing changkeya
down to the original join point. For example, if a method ¢aih point is designated and,

in the corresponding advice, its proceed is called withedéit arguments than the original
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arguments, then the original join point should be activated receive the new arguments;
therefore proceedis represented as a function that receives a parametepto tiis.

Consider the following pointcut-advice:

around(arg): call(a()) { proceed();}

This simply identifies join points of type CALL that contaia™as the name of the
called procedure. It binds the argument of any matched jointppo v. The advice directly
callsproceed(which results in the original CALL join point to be activatedevisiting the
steps of the evaluation of expressiofa()), there is a state in the interpreter when the empty

list of arguments (’()) is applied to the following contirtican:
(..., callF[b], konsF ['()], callF [a])

The AOP-enabled interpreter calls tmatch(pc, v, fprocedure whergc is callC ["a”
arg], v is the empty list ’(), andf is the active continuation frameallF [a]. The type of
the pointcut matches the type of the active frame (both aveguure calls) and the name
of the called procedure in the active frame matches theatksiame given in the pointcut
(i.e., “a"); therefore the match is successful and a match strectucreated. The structure

will look like
0, "0, (lanbda (nv) (values nv callF [a])))

As described before, the first field is the list of identifiemubd by the pointcut, the
second field is the list of bound values, and the third field lamabda abstraction that
represents the original join point by packaging the actigkie and continuation frame.
Note that the reason the is used instead af is that, as explained earlier, whproceed()
is called, whatever parameter value is passed to it is sahetoriginal join point; hence,
nv is used in the proceed packége

After the interpreter finds a match and makes the match steidt recursively evalu-
ates the body of the corresponding advi¢efoceed(}, in this case) with a new environ-
ment that binds the specipfoceedandadvssymbols to the packaged proceed in the match
structure, and the list of remaining advice, respectivAlgo, in the new environment, the
identifiers in the match structure (first field) are bound @ ¥hlues in the match (second
field.) This evaluation is done with the continuation, callF [b], konsF ['()]) (because

the callF at the top is now processed.) If there were no aallsaceed()in the body of the

“Different kinds of join points need different packaging.r Boevity, we avoid discussing all kinds of join
points here. The CALL join point alone serves the purposéefliscussion.
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advice, then the advice would be evaluated just like a pragednd the original join point
would never be executed. In the above example, howeveprtieeed()is called with a new
value for the argument. The interpreter retrieves the vafygroceedin the environment
which should, in this case, be a lambda abstraction thaivexa parameter. The lambda
abstraction is applied to the current valpeoceed(s argument) which results in the tuple
((Q callF [a]) . The interpreter uses the value and the frame in this tuptaliahe basic

(non-AOP)apply() procedure to process the original call with the new argument

4.2.3 Enabling Transcuts in CPS Interpreter

As described in the previous section, dynamic join poinésthe states in the defunction-
alized continuation-passing style interpreter where aaoxiliary continuation frame is
applied to a value. The main observation that helps undetttee meaning of transcuts (in
the continuation-based semantic framework) is that theadixin of a continuation frame is
not usually isolated but related to other frames in the ooratiion waiting to be activated.
In other words, the activation of a continuation frame carcdsesidered in the context of
(related to) the activation of other continuation frames.

Intuitively, various operations (continuation frames)him a computation (part of a
continuation) relate to each other in the context of that matation; hence, the activation
of such interrelated operations can be regarded as the@ativof the computation itself.
For instance, consider two different sequences of methtisl @; b(); anda(); c(). In
the traditional model, the join points corresponding to #leivation ofa() in these two
sequences cannot be differentiated because join pointhmgtend advice occurs at the
level of individual continuation frames. In our model, natlypdo individual activations
define join pointsi(e., can be identified and advised), but also the activation eqaance
of related continuation frames can, together, define a jointpas well. That is, in the
above example, the sequence of activationa(ifb() can be designated and advised as a
join point, individuated from the sequenceat);c().

Continuing with the example in the previous section, théofing continuation is ac-
tive when the arguments af) are evaluated (empty in this case) and the procedure is to be

called:
(..., callF[b], konsF ['()], callF [a])

At this state (join point) in the interpreter, when thpply() procedure is called to ac-

tivate the top continuation frame, a matching proceduresgdect the join point (as pre-
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viously explained) if there is any pointcut that designaesall toa(). Transcuts identify
join points that are composed of a sequence of join pointsd#signated join points are
activated when the first constituent join point in the segeds activated. Intuitively, the re-
maining join points in such a sequence identify the elemeiise remaining computation,
or continuation. Consequently, to identify join pointstthaatch a transcut, the matching
procedure should be extended to look at the whole (part ofjirmeation not just the top
continuation frame.

Consider the following transcut that identifies states @ititerpreter where a procedure

a() is about to be called, with a continuation that contains btodd().

gD WN

transcut ab(){
call( a() ),
call( b() );
}

The enhanced matching procedure would first match the heattpbin the transcut
against the top frame in the continuation. Upon successéitim the procedure moves to
the next pointcut in the transcut and looks further down isteof continuation frames, and
in this case, it matches a frame that represents a chll)tol here is no more pointcuts in
the transcut to match, therefore the matching procedunengsuccessfully with a match,
similar to the old matching procedure, with one major défege. In the old matching pro-
cedure only the top continuation frame would be consideogdrfatching and, upon suc-
cessful matching, would be removed and packagedomoeeedstructure for later potential
use; however, in the enhanced matching, the top sequencanaoés$ in the list of continu-
ation frames, starting with the current active frame dowthtoframe matched against the
last pointcut in the target transcut would be removed an#agged for later retrievali.g.,
if proceed()is ever called.)

Back to the example, aftarallF [a] andcallF [b] are successfully matched against
call(a()) andcall(b()) pointcuts, respectively, the top section of the contirarattarting
from callF [a] and ending with callF [b] is chopped off and sdvn aproceedstructure.
Then, the interpreter moves on to execute the body of thehedtadvice with the con-
tinuation (...) and in an environment that bingsoceedto the packaged section of the
continuation. If aproceed()is encountered in the body of the advice, the saved chunk of
continuation is retrieved and activated, which, in turrstpes the sequence of frames on top
of the continuation and start activating them.

The above semantics leads to more powerful transcuts thabwes presented in Chap-

ter 3. Consider the above transcut for the following example
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c() {
d(a());

main () {

b(c());
}

When a callF [a] is activated the continuation looks as fedio

(..., callF[b], konsF[' ()], callF[d], konsF[' ()], callF[a])

The first pointcut matchesallF [a] (corresponding to the call expressiaf) at line 2),
and the last pointcut in the transcut matchabF [b] (corresponding to the call expression
at line 6). Consequently, the top chunk of the continuatimmfcallF [a] to callF [b] is
removed from the continuation and put ip@ceedstructure. The intriguing result, in this
example, is that the matched interval of continuation frautnenscends procedure bound-
aries: callF [a] is in procedurec() andcallF [b] is in proceduranain() This would not
happen if the matching scope was limited to regions of cbmependency in the control
flow graph (which is the case in transcut realization4spect). The main concern, then, is
whether this leads to meaningless matching/advice. Itagpdat this concern originates
form a tendency to think of weaving as a code transformatimw can one weave around
advice for a join point whose one end is in one procedure aadttier in another? This is a
valid concern for static weaving (compile-time weavingwever, in a CPS interpreter, the
rest of computation is represented and controlled exjyliaitd, hence, can be manipulated.
In other words, it does not matter if the rest of the compatais the result of code in the
same procedure or from multiple ones; what is known is thatthe “remaining computa-
tion” and it can be manipulated. Nevertheless, the matc¢héhice can always be restricted,
or controlled, to prevent manipulations that are regardgaddical for a language.

One might think that transcuts are language-dependeneptsidiowever, this is not the
case. The idea of transcuts is based on the principles ofwigrjain points, and therefore,
is independent of any particular programming language. eNbgless, when it comes to
implementation, the semantics of the target language alsasgbracticality dictates the

extent to which dynamic join points, and transcuts for thatter, can be realized.
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Chapter 5

Evaluation

We have chosen the cross-cutting concern of handling ercspas a suitable modular-
ization target for the purpose of evaluation of our new care$t The reason behind this
choice is that separation of exception handling was th&initotivation behind this work;
besides, it is easy to spot the implementation of this canitea system and observe how
it is scattered all over the system and tangled up with the cdather concerns.

Several researchers have investigated the possibilitpatahtial impact of modulariz-
ing exception handing using aspect-oriented techniqueshave called for more powerful
designation mechanisms to better achieve.iy.(36], [37], [8], [29], [10]).

Exception handling concern cross-cuts the implementatfahe normal behaviour of
a system. In Java, and many other languages, repetitivptixednandling code is tangled
with the code of other concerns. Consequently, its modidtidn can result in higher qual-
ity software. Additionally, there are other reasons why amght be interested in separating
exception handling code into a module. Some studies shaviitbaaumber of reactions to
different exceptions is considerably lower than the nundbg@laces exceptions are caught,
therefore there is opportunity for reuse of the handlinggpas [36], [37].

Also, writing flawless exception-handling code is hard. Agarted in [57], many pro-
grams fail to properly release acquired resources alongxaltution paths in the presence
of run-time errors. Many programmers that are aware of eimepand use proper con-
structs to catch and handle them, still write faulty exaapthandling code. Writing correct
exception-handling code becomes even more difficult whemtimber of resources that
need to be handled increasesg a database connection, a query statement, and a query
result set are three resources typically involved in a det@loperation). Correctly dealing
with IV resources typically require$ nested try-finally statements or a number of run-time

checks to track if resources are still allocated. These lmandan result in badly-tangled
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code.

Still, whether the modularization of exception handlinguks in better code is not
definite and is dependent on the side effects of the modat#iz as well as other design-
specific factors. Castagt al. [8] have done an extensive study on the modularization of
exception handling using aspects. They refactor someirxisystems to modularize ex-
ception handling and compare them with the original verbiased on four software quality
attributes, namely, separation of concerns, couplingesioim, and conciseness. Their gen-
eral conclusion is thatAOP does not fix poor designs[8]. In other words, in systems
with poorly-structured or complex exception handling rénis little AOP can do to help the
quality. They present scenarios where aspectization caemeficial or harmful.

They also show that AOP improved the separation of concertveden exception han-
dling code and normal application code. They also obser@edben though aspects can
help reuse exception handler code, it is sometimes difftouichieve this kind of reuse
without careful planning. The other relatively counteuitive result of their study is that
in systems with application-specific exception handlingtsgies, using aspects does not
result in smaller number of lines of code. In terms of the mess quality attributes, they
show that separation of concerns improved in the refacteystems; coupling was not
affected much; cohesion was affected negatively, and sizenet affected significantly.

As far as software quality is concerned, a careful desigmefariginal system which
is not oblivious to the potential use of aspects could sigaifily improve the results. As-
pectization as above resulted in reduced cohesion in coempenexpressed in in terms of
the number of method and advice pairs that do not access e fégld. It turns out that
the main reason of the poor results in cohesion is the larggeu of methods that were
created to expose join points that AspectJ can target. ler atlords, their study confirms
one of our observations that doing refactoring [22] to erjom points can be harmful and
can compromise the original design. The authors reitetaserésult a few times in their
paper and point out the need for improvement in join poinigiegion:

“... the increase caused by refactored operations, albeialf, is negative in most
situations ... These new operations are not part of the systed possibly do not clearly
state the intent of the developer. In some cases, the regalctperations comprises just a
few lines that do not make sense when separated from thginaticontext. This suggests
that there is still room for improving AspectJ in order to raqrecisely select join points of
interest” [8].

Other researchers have come to the same conclusion in ffaisen modularizing
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other cross-cutting concerns, not just exception handlgg instance, Zhang [58] has de-
signed an AOP synchronization library called FlexSync tniexe customizability through

decoupling synchronization intentions and mechanism;dvew FlexSync requires refac-
toring to convert blocks into methods so that they can beguia@ut by pointcuts, which as

explained, would negatively affect software quality.

5.0.4 Evaluation Strategy

To evaluate transcuts, it is necessary to realize what lastranscuts enable developers
to do. Transcuts remove the need for refactoring to expasepjuints (which is the major
source of quality degradation when using aspects to mddelaross-cutting concerns);
therefore, the right question to ask in the evaluation istfdascuts significantly reduce the
need for refactoring to expose join points in real existiofivgare?”

To answer the above question, we considered two real-woftdare systems from two
different domains. We modularized exception handling @sthsystems using aspects in the
following fashion: for each exception handling block (itiéad by atry {}), we determined
whether the piece of code within they {} can be identified using a conventional AspectJ
pointcut; if so, a pointcut was composed to select the tgogeipoint and an advice added
to handle the exceptions of the target code. Basically, t#reller blocksi(e. catcH},
finally{} were moved to the corresponding advice. If the target piécede could not be
designated by a conventional pointcut, then a transcutdvoelcomposed for it (without

having to do refactoring the target code into a method.)

1 ... 1 ... 1 pointcut X(): select the desired x

2l try { 2| x 2| /lor transcut

3 x 3 3

4} — 4 void around (): X() {

5/ catch(Exception e){ 5 try {

6 vy 6) proceed ();

71} 7

8 ... 8 catch(Exception e) {
9 /' handle exception
10 }
11 }

Figure 5.1: Original code (left), after removing exceptlandling code (middle), possible
handler aspect (right).

Figure 5.1 shows abstractly what would happen to each pieesaeption handling
code. Note that in some cases, a combination of pointcutsrandcuts was needed to
implement the desired handling behaviour.

We divided the exception handling cases in each system dntiodategories, as shown
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Treatment (Technigue) | Description
Conventional i.e. pointcuts
Unreliably Conventional With minor refactoring; or no refactoring, but minor
change would require transcuts
Transcuts Occasionally in concert with pointcuts
Complex cases Not treated; usually need complicated workaround,
careful refactoring; examples include unsupported
join point boundary and return from handler

Table 5.1: Four different treatments of exception handtiages in the experiment.

in Table 5.1. The first category includes the cases that cdrabdled conventionally, that
is, using AspectJ pointcut/advice. For example, if the aeidkin atry{} block is a single
method call, then it is selectable byall() pointcut; so is the whole body of a method.
The second category includes the cases that can be handtgdnaslitional pointcuts
with the help of very minor refactorings (excluding extiantinto method) or redesigns.
Also, in this category are the cases that can be handled psintguts but could potentially

break with minor future changes. Consider the followingregke:

~NoO s WN P
—

try {
/I'may throw MyException, which is not an IOException (norsitsubclass)

a();
b(); //may throw IOException

catch(lIOException e) {
}

Only b() needs to be guarded for IOException becaa@<€line 3) cannot throw I0OEXx-
ception. In case any other exception is thrownagy the next containing handler would
catch it and that is not the concern of the shown handler. efbex, one could write a
pointcut to selecb() (line 4) and handle the IOException in an advice, withoutnfiag
the run-time behaviour of the above code. However, imagifuguase change that requires
MyException be handled at the same location as IOExceptioa:pointcut has to be re-
placed by a transcut that can designate the whole compogitpgint beginning a&() and
ending at(). These cases form the grey area between pointcut-dedijmatad transcut-
designatabfecases, to which we refer as “unreliably conventional”.

The third category includes the cases that could only belbdngsing transcuts, pos-
sibly in concert with other AspectJ constructs. Withoungsiranscuts, these cases would
have required refactoring some target piece of code intotaoddo be selectable by con-

ventional pointcuts.

11t should be noted that a transcut that only has a single itoest pointcut selects the same join points as
the constituent pointcut.
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Exception Handling Modularization: TSafe (classes: 1231 10556)
Technique # of casest(y blocks)
Conventional 20

Unreliably Conventional 6

Transcuts 41

Complex cases 9

Total 76

Table 5.2: Results of the exception handling modularizaitioT SAFE system.

Lastly, there were cases that we could not handle even usingduts. For example, if
the boundary of a region of code is formed by statements teaiat join point in AspectJ,
then neither pointcuts nor transcuts could select them.mples of these statements are
arithmetic operators and assignment into local variab¥so, as realized and reported in
[8], there are complex cases of exception handling thatatrevarth the effort of separation.
Examples include handlers that change local context viagabr return from the containing
method, or affect the control flow of a containing loop. WHikenscuts could handle some
of such cases, there were others that needed careful retiefagtoring to allow reliable
application of transcuts.

We should mention that in this experiment, the original ceds oblivious to the whole
aspectization, which explains some of the complex cas¢$#ubto be handled. The obliv-
iousness factor in our experiment only shows how poweréuigcuts can be; however, we
do not believe that aspects can be used very reliably in asysithout prior careful archi-
tectural and design consideration and provisions (Notedha can be “not oblivious” and
“not intrusive” at the same time.)

In the rest of this section, we present the results of ourmxeat with the two systems

and an example case of separation of exception handling éaah.

5.0.5 Case Study 1: Tactical Separation Assisted Flight Emonment

TSAFE (Tactical Separation Assisted Flight Environmegttem is “a new tool to aid air-
traffic controllers in detecting and resolving short-teramfticts between aircraft. Con-
ceived at NASA and developed at MIT, it is usually used as theéekfor software verifica-
tion experiments. It is a relatively high-quality piece oftsvare with around 10,500 lines
of code and 123 classes.

Table 5.2 shows the summary of cases we identified in thigsysttl out of total 76

exception handling cases were dealt with using transcuti$hodt using transcuts, all of

2http://sdg.csail.mit.edu/tsafe/
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these cases had to be refactored into new methods to beakddeblyy conventional point-
cuts. That means 41 new methods would have had to be creatdfrwehich would not
have had any meaning outside of their original context. Adared before, these would
have been the source of a significant decrease in cohesiba system.

There were cases where once single transcut was used tehmaaliple cases of ex-
ception handling. Figure 5.2 shows the original code of ahogtresponsible for loading
data inside TSAFE. There arety-catchblocks that arabstractlydoing the same thing;
that is, create &ileReaderobject for a file and reading data from the objexg(lines 8-9.)
The first operation (creatingrileReaderobject) may throw &ileNotFoundExceptionThe
second operation may throw an IOException.

We composed a transcut to capture all 6 instances of thesatigms and an advice to
handle the exceptions. Figure 5.3 shows the new methodraftesving exception handling
code.

Figure 5.4 shows the corresponding exception handlingcaspiote that the handlers
in the original code is accessing a local context variableo(Messages therefore, the
aspect should capture a reference to the referenced objeasé in the advice. Line 3 in
the aspect code declares a reference which is set iafteg) advice in lines 18-21. This
advice is executed after successful execution ofwtorcreation join point corresponding
to line 3 in Figure 5.3, and saves a reference to the created li

TranscutreadData()is defined in lines 23-28 to select all instances of the deedri
operations. Note that data flow pointcuts are used to eskablrelation between two join
points, which requires that the returned value of the firist jmint be the first argument of
the second join point.

An around() advice is written to handle the exceptions thrown by thegiedied tran-
scut. The original exception handlers add a different emessage to the list of error in
case of an exception. In order to write one single handlealfdhe join points selected by
readData() we stored the error messages in a static string array @iriel to be indexed
using a variable (line 12) that is incremented after the ette of each join point (line 36.)

Note that this indexing is not reliable and could probablyehbeen done better. These
kinds of workarounds are reduced when the client code istaityt oblivious to the aspects.
For instance, the static array of error messages could heem defined somewhere else to
be accessible by anyone interested using a relevanekgyttie name of the source file that
is being read.)

The next complication is that in the original code, if an gxem occurs, it is handled
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List readStaticData(String[] dataFiles]
java.util.List errorMessages =new Vector ();

I/l Read fixes into database.
try {
//throws FileNotFoundException
Reader reader =mew FileReader(dataFiles[0]);
//throws |OException
this.readFixes (reader , tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read fix file.”);
return errorMessages;

}
/!l Read airports into database.
try {

Reader readerl mew FileReader(dataFiles[1]);
this.readFixes (readerl , tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read airport file.”);
return errorMessages ;

}
/!l Read navaids into database.
try {

Reader reader2 mew FileReader(dataFiles[2]);
this.readFixes (reader2 , tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read navaid file.”);
return errorMessages;

}
/!l Read airways into database.
try {

Reader reader3 mew FileReader(dataFiles[3]);
this.readAirways (reader3, tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read airway file.");
return errorMessages;

}
I/l Read airways into database.
try {

Reader reader4 mew FileReader(dataFiles [4]);
this.readSids (reader4 , tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read sid file.");
return errorMessages ;

}
/l Read stars into database.
try {

Reader reader5 mew FileReader(dataFiles[5]);
this.readStars(reader5, tsafeDB);

catch (java.io.lOException e){
errorMessages .add("Unable to read star file.”);
return errorMessages;

}

return errorMessages;

Figure 5.2: The original code of a method from TSAFE.
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List readStaticData(String[] dataFiles]
java.util.List errorMessages =new Vector ();
I/l Read fixes into database.

Reader reader =mew FileReader(dataFiles[0]);
this.readFixes (reader, tsafeDB);

/!l Read airports into database.

reader =new FileReader(dataFiles[1]);
this.readFixes (readerl , tsafeDB);

/!l Read navaids into database.

reader =new FileReader(dataFiles[2]);
this.readFixes (reader2 , tsafeDB);

/!l Read airways into database.

reader =new FileReader(dataFiles[3]);
this.readAirways (reader3 , tsafeDB);

I/l Read airways into database.

reader =new FileReader(dataFiles[4]);
this.readSids (reader4 , tsafeDB);

/l Read stars into database.

Reader reader5 mew FileReader(dataFiles[5]);
this.readStars(reader5, tsafeDB);

return errorMessages;

Figure 5.3: After removing exception handling code.
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aspect ParserReadStaticDataAspect percflow (read{))

private java.util.List errorMessages =null;

private final static String[] msgs =
{"Unable to read fix file.",
"Unable to read airport file.”,
"Unable to read navaid file.”,
"Unable to read airway file.”,
"Unable to read sid file.”,
"Unable to read star file.”

s
private int index = —1;
private boolean error = false;

declare soft: IOException:
execution (List Parserlnterface.readStaticData (,.))

after () returning(java.util.List errors): call(Vectonew())
&% withincode (List Parserinterface.readStaticData)) {
errorMessages = errors;

}

transcut readData(Reader readef)
pointcut createReader: call(FileReadeew(..))
&% return (reader);
pointcut readit: call{ Parserinterface+.read(..))
& args(reader, ..);
}

void around(Reader reader): readData(reader)
&% withincode (List Parserinterface.readStaticData)) {
I/ skip all other reads in case of error
Il (this simulates "return” in catch.)
if (error) return;

index ++;

try {
proceed(reader);

catch(lOException e) {
error =true;
errorMessages .add(msgs[index]);

138

Figure 5.4: Exception handling aspect for method in Figue 5
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Exception Handling Modularization: EIMP (classes: 120,0:®000)
Technique # of casest(y blocks)
Conventional (Pointcuts 34

Unreliably Conventional 20

Transcuts 22

Complex cases 0

Total 76

Table 5.3: Results of the exception handling modularizeitioEIMP system.

and then the handler returns from the containing method.reexceptions are handled
in an aspect, there is no way to return from the method cadntaitihe corresponding join
point without using extra variables and logic; however, his tspecific case, we worked
around this limitation by using a boolean variable (line &t indicates whether an error
has occurred. This error flag is set in the handler in the af@dvice (line 41) and is
checked at the beginning of the advice so that the execufitreaest of the join points is
skipped if the previous one ended with an error. This behmdanulates the behaviour of

the original code.

5.0.6 Case Study 2: Eclipse Instant Messenger Plugin

EIMP (Eclipse Instant Messenger Plugin) is an open-soudt@ge plugin that allows re-
mote collaboration in a project by integrating popular amstmessaging protocdls This
plugin has about 120 classes and 9000 lines of code.

Table 5.3 shows the summary of cases we identified in thisml®& out of 76 cases
of exception handling had to be modularized using transehish is still significant. Fig-
ure 5.5 shows the original code of a case that was handled agnanscut. In this case, the
piece of code from line 7 to line 10 needs to be designated.

Figure 5.6 shows the code after removing the exception imapdbde and the corre-
sponding aspect is depicted in Figure 5.7. Note that thes¢rtgexecCmd()lines 5-10)
does not establish any data flow relations because it wasaesgary; in fact, even the two
pointcuts at lines 7 and 8 are redundant because the desingabjnt can be designated by
the first and last pointcut$.€¢. getEnvandappend)

As it is evident from this case, there is not always a decrgatee number of lines of
code (LOC) when it comes to aspectizing exception handlifigs observation has been
reported in [8] as well. However, the changes in LOC could/¥esm system to system

and can be improved by an aspect-aware design (as opposklivtous design.)

3http://eimp.sourceforge.net
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public void run() {

if (ss ==null)
return ;

StringBuffer bufsew StringBuffer ();

try {
Process p = Runtime.getRuntime (). exec(cmd);
buf.append(getOut(p.getinputStream ()));
buf.append(Xr\n”);
buf.append(getOut(p.getErrorStream ()));

catch (Exception e) {
buf.append(Xr\n”);
buf.append(e.getMessage ());
StringWriter s =new StringWriter ();
PrintWriter p =new PrintWriter(s);
e.printStackTrace (p);
buf.append(s.getBuffer ());

}

ss.sendMessagedw MimeMessage (buf.toString ()));

Figure 5.5: A sample case in EIMP system before separatiogption handling.
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public void run() {

if (ss ==null)
return ;

StringBuffer bufsew StringBuffer ();

Process p = Runtime.getRuntime (). exec(cmd);
buf.append(getOut(p.getlnputStream ()));
buf.append(Xr\n”);
buf.append(getOut(p.getErrorStream ()));

ss.sendMessagedw MimeMessage (buf.toString ()));

Figure 5.6: Sample code after removing exception handlomgern code.
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privileged aspect ScriptEHAspec{
declare soft: Exception: executiom (ImCommandServer.RespCmd.run ());

transcut execCmd(StringBuffer buf]
pointcut getEnv: call{ Runtime.getRuntime ());
pointcut start: call¢ Runtime.exec(..));
pointcut getErr: call{ Process.getErrorStream());
pointcut append: call{ StringBuffer.append (..)) & target (buf);

}

Object around(StringBuffer buf): execCmd(buf{
Object res =null;

try {
res = proceed(buf);

catch (Exception e) {
buf.append(Xr\n”);
buf.append(e.getMessage ());
StringWriter s =new StringWriter ();
PrintWriter p =new PrintWriter(s);
e.printStackTrace (p);
buf.append(s.getBuffer ());

}

return res;

}
}

Figure 5.7: Exception handling aspect corresponding te aodrigure 5.6.

5.0.7 Weaknesses of Transcuts

Our effort to use transcuts in modularizing exception hiaigdin the EIMP and TSAFE
systems better clarified some of the weaknesses of tranSwnse of these weakness areas
pertain to incomplete design and implementation while i@tlage more intrinsic to the idea
of transactional pointcuts. In this section, we show somthefcases from the TSAFE
system where transcuts could not be applied, requiredianxilefactoring, or design-time
a priori knowledge.

Consider the code depicted in Figure 5.8. This is a case frBAFE that we catego-
rized as “complex” because the desired target piece of code with an unsupported join
point, in this case an arithmetic operator. The primitiva jooints supported by transcuts
are inherited from AspectJ, therefore, this probably isaxtsnscut limitation per se; nev-
ertheless, these cases make it harder for transcuts to ddtvelyavere originally designed
to do.

Even though, in this casé&yumberFormatExceptioman only be thrown by thear-
selnt() method call, it is necessary to guard the whole region foretteeption to achieve
the correct behaviour; that is, line 6 should not executenieaception is raised in the

guarded block. There can be cases where this behaviour rseedied, and therefore, the
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try {
String[] constraints = TSAFEProperties. getLatitudeGdnaints ();
int minLatDegrees = Integer.parselnt(constraints[0]);

maxLon = maxLonSignx (maxLonDegrees + (maxLonMinutes / 60.0));

catch (NumberFormatException e)

}

Figure 5.8: Unsupported boundary join point

tight boundaries can be relaxed.

Another complex case that is a result of limitations inteetrifrom AspectJ occurs as
follows: inside an advice procedure one cannot “returnirfrime containing method. For
instance, if araround() advice is executed when join poigp is activated within method
m(), then one cannot return the control to the caller of metmgyto simulate a “return”
statement insiden(). This limitation implies that in Figure 5.9, we cannot siiatforwardly
extract exception handling behaviour because then thdihgratlvice would have to return

from the containing methodyétFixLatLon() if an exception is raised.

Fix getFixLatLon(String fixDescription){
I/l Extract the latitude and longitude strings
String latString = ... ;
String lonString = ... ;

I/l Get the latitude in decimal form

try {
lat = sign x getDecimalCoordinate (latString);

catch (NumberFormatException e)
return null ;

}

I/l Get longitude in decimal form

try {
lon = sign x getDecimalCoordinate (lonString);

catch (NumberFormatException e)
return null ;
) .
/I Return the parsed fix
return new Fix(fixDescription, lat, lon);

Figure 5.9: Exception handling advice would need to “retdirom the method containing
the target join point.

Figure 5.10 shows another complex case that only looksairnailthe previous case but

is of a completely different nature. This is one of the situzd where the lexical (text-based
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language-level) characteristic of exception handlingstrarcts conflicts with the control-
flow-based semantics of transcuts. As explained in Secti8ntBanscuts operate within
regions of control dependency; that is, the matching begirthe beginning of regions
and scans to the end while trying to match constituent poist(some of which can be
dependent pointcuts that take the matching into the nestggdns.) This single entry single

exit (SESE) property is essential in our join point model.

el el
OO WN
—

1 try {

2 /1 Extract fix from description

3

4 relativeFix = getFixNamed (fixName , tsafeDB);

5 if (relativeFix == null) {

6 return null ;

7 3}

8

9 meters = METER®ERMILE x Integer.parselnt(distanceDesc);
10 }

catch (IndexOutOfBoundsException eY
/' handle the exception

catch (NumberFormatException e)
/' handle the exception
}

Figure 5.10: The complex case of “return” from region

If the return statement in line 6 did not exist, the control flow would mesgek into the
SESE region that is guarded by tingblock. In other words, the desired piece of code could
be identifiable by a transcut; however, tieturn statement is a (second) exit path from the
otherwise SESE region, which in turn, makes all the follaystatements dependent on the
containing conditional (line 5.)

Consequently, what is perceived as a (textual) region atahguage level is not a
candidate SESE region for our matching algorithm, but iseexd composed of multiple
regions that are separately considered for matching. €igurl shows a simplified version
of this case and the corresponding CFG and PDG.

The return node causes the control flow to merge into the exit node of ththoal.
This can be compared with the case in Figure 5.12 wtedten is replaced with a simple
statement that flows the control into na@eThis in turn make$ part of the same region as
a andc, and therefore, would not have the same issue as the abawe cas

Although this behaviour is a limitation when refactoringstixg exception handling
code into aspects, itis the correct behaviour based on fiétibs of transcuts. The match-
ing algorithm relies on the dependency information to cledibe next potential match for

its constituent pointcuts. If a node is not in the currentatejence region where matching
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a,
if(c) %}

return;
b;

@) [

Figure 5.11: The complex case of “return” from region (let9 corresponding CFG (mid-
dle), and PDG (right)

a,
if(c)
d;

b;

Figure 5.12: A simple case (left), its corresponding CFGd@ite), and PDG (right)

takes place, then it should not be considered for matchinguse it may not execute at“all
This can also be considered a strong point of transcuts bedamakes them independent
of the language-level (source code level) constructs.

There are also other issues such as bugs and boundary catsa®ttypical in software
systems and can be fixed given more time. For example, lodabkes within a designated
region (join point) do not retain their changes if the joinmias advised by aaround()that
calls proceed() This is a bug and a result of the way around advice is impléederand
can be fixed by boxing the local variables before calling théae in the compiler.

Also, the compiler should detect and report potentiallypeeous transcut usage and
help the programmer to understand and resolve the issuesf@lyr most of such cases are

detected through runtime exceptions and extensive dehgggi

“A dependent(pointcut can be used to capture such cases, however, wistara statement exists in the
inner regions of the designated area, some special treaimaneded to produce correct behaviour for the
around()advice.
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5.0.8 Summary of Results

The above experiments showed that transcuts can in facteeithe need for potentially
harmful refactorings in cross-cutting concern moduldiiza The degree to which they
can positively influence software quality can vary from eysto system; if aspect-oriented
techniques are chosen to modularize cross-cutting cosiciren transcuts can be a power-
ful tool in the toolbox. It is the designer of the system whowdd decide when the use of
transcuts is worth the effort.

The aspect-oriented community recognizes that obliviessrof the base code to the
(potential) presence of aspects can result in difficulty@signation and advice of desired
join points €.g.complex cases in our experiment), which would in turn lealdwoquality
and unreliable aspect code. Transcuts are no exceptioreveoytranscuts can sometimes

help reduce the negative effects of oblivious code by piingidnore designation power.
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Chapter 6

Related Work

Region pointcut [2] is an independent work that addressesstlthe same limitations as
our work. A region pointcut can be used to specify a regioroutecthat can be then advised.
However, their technique and the concepts used are at thedge-level whereas ours is at
the level of control flow and the intermediate language. Thizice of abstraction level has
implications both in the semantics of region pointcuts gpliaations. Semantically, it is
not clear what a region is and concepts like block and staiesmaake it very dependent
on the format of the written code. Also, existing applicaidn binary format cannot be
targeted because the source code might not be available.

Region pointcuts do not have the data-flow relation semsuaind constructs that tran-
scuts provide. For example, you might designate the seew&id(); with a region point-
cut but you cannot express the requirement that Bftandb() must be called on the same
object. Also, transcuts can be embedded which allows madateon and reuse that is not
supported in region pointcuts. Loops and conditional moits within transcuts provides
more control on what can be in a region.

Perhaps the most relevant previous work to this researchde-based aspect mecha-
nisms in which join points are run-time execution events jpoititcuts consist of patterns
of events (Tracematch [3], Declarative Event Patterns, @3l Trace-based Aspects [16]).
Among these mechanisms, Tracematch seems to be the mostl/and has been added
as an extension to trebccompiler.

A tracematch is a module that includes three parts: an edimitibn part that defines
the run-time events of interest using pointcuts; a regudditepn on the defined events; and
advice to be executed when the pattern is matched at runthneautomaton is used at
runtime to recognize the specified event pattern. Tracdreatase temporal relationships

in join point selection and advice. Run-time events are toogid and once a specified
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pattern of events is matched, an advice can be executed.

There are some differences between trace-based mechaaiginsur work. Trace-
based mechanisms use an execution-time event-based jminmodel which naturally
falls back on run-time event monitoring to determine whewui@s should apply. These
models are inherently unable to take potential future evero account and can only ex-
press past and current events. Consequently, aftdy-typed advice is feasible. Transcuts,
on the other hand, providaround, beforeandafter advice . Run-time performance will
not be affected much in our model because transcuts do npobretun-time event mon-
itoring. Trace-based approaches, specifically traceraajclre on the path toward more
context-aware join point matching; however, they are iahty limited in effectiveness
and performance because of their event-based model.

Ptolemy{46] is a language designed to address some of the existmgeoos (in aspect-
oriented languages), such as dependency on syntactitlsgrand limited predefined types
of eventdjoin points). Ptolemy allows explicit declaration of evéypes that have a name
and a set of variables used to expose context. Arbitraryesemps of expressions can be
annotated as having a specific event type. Objects caneetpdbe able to advise the event
types they are interested in. When an event of a specific §/fieed, all the relevant ad-
vice is executed. The designers of Ptolemy also recogneedld for arbitrary pieces of
code to be treated as typed events (join points). In Ptolémygevents have to be explicitly
announced in the target codaK.a. base) while implicitness (non-invasiveness) is one of
our design goals. That is, transcuts allow arbitrary evegpé teclarations in an implicit
manner. Also, the transcut designation and advice modepliesnwith the existing dy-
namic pointcut-advice model which made it possible forgné¢ion and interaction with a
language such as AspectJ. Similarly, in [29] Explicit Joiir®s (EJP) are used to announce
join points in the base code explicitly, hence, their worleds from our approach in the
same way Ptolemy does. Typed join point [52] is a similar wibikt reduces some of the
explicitness in the explicit join point mechanisms but nottie case of arbitrary blocks of
code.

A dataflow pointcut is introduced in [39] which allows selagtjoin points only if there
is a dataflow relation between the current join point and &ipus one. They introduce a
return pointcut, similar to ours, that binds its variable to thauratvalue of the target join
point. Although the join point model they use is differenaiththe join point model we
introduce érbitrary computation cannot be designated as join pointsich results in less

effectivenegs by harnessing the dataflow relation between join poisir twork follows

88



part of the same goals as our work. Similarly, extra corftas+ pointcut operators are
provided in [17] which make it possible to more selectivebsiginate join points, how-
ever, because they rely on the traditional join point motihaly inherit the aforementioned
shortcomings.

A loop() pointcut is defined in [25] to designate and advise loopscivts in essence, a
special case of transcuts since loops are composed of othgrgints. Transcuts generalize
the notion of arbitrary computations as join points thatraferenced to through their key
constituent join points. Although loops are an instanceushscomputations, thiop()
pointcut cannot select loops based on what they do, insédlefdund loops are exposed.

LogicAJ [48], provides three basic pointcuts to match agfeiiree main elements in the
target language structuree. statements, expressions, and declarations. The use of logi
meta-variables that bind to elements in code makes it pdeswldesignate and interrelate
various elements in the code, which makes it similar to tatssthat interrelate join points.
The major differences between our work and LogicAJ is thetidcuts match at the level
of the control flow graph whereas LogicAJ works at the levett® language structure
(code). Also, we define a join point model that emphasizesithion of “arbitrary pieces
of computation” whose shadows appear as regions in the GfeGrdnscut is designed to
realize this model. On the other hand, LogicAJ does not defijoén point model or what
the designated structures represent.

Program Query Language, PQL [38], is a query language tlatslprogrammers to
express design rules and find application errors. PQL qaiare patterns that match on the
execution trace; when a pattern matches, an action can &e. tike query pattern connects
a set of primitive events (method call, field load/store,)etsing sequencing, alternation,
negation, and sub-query constructs. The query variabieslgects in the target program
and the query expresses a relationship between the ob@k.is fundamentally differ-
ent than our work in the same way as tracematches: querieaaohed on the program
execution events. PQL's main goal is to detect program gad design rules violations.
The types of reactions to a match are limited (which is anrieigproperty of trace-based
approaches). Also, PQL is a stand-alone language and nogadge extension, therefore,
its designers had more freedom in the design of its structure

Java Tools Language, JTL [11], is another logic-based dlagryuage for Java. It has
a very powerful pattern language which hides the underlyagic-based concepts from
the programmer. Similar to other program query languagaswiork with the program

static structure (code), JTL is fundamentally differenfrour work, which is based on the
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dynamic join point model.
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Chapter 7

Conclusions

In this chapter, we review the contributions of this thesid present some of the possible

directions for future work.

7.1 Contributions

We presented a more liberal definition of join points in dymapointcut-advice model that
allows join points that are composed of other join pointsriragbitrary but controlled way,
instead of limiting the kinds of identifiable join points topaimitive “well-defined” set.
This new view of join points paves the way for new construbts tnake designation and
advice more flexible and powerful. Join points in this modei aow be identified as part
of a bigger context and in relation to other join points. Algas no longer necessary to
create artificial method boundaries (refactoring) to eggo points.

We presented the transactional pointcuts, or transcuésteadization of this new model
based on the AspectJ language. Program dependence graf) (RDB used as the main
program representation so that the control dependencibiegion hierarchies are available
to the new matching algorithm. Also, this representatiokesainary code (byte code), in
addition to source code, accessible for matching and wgavin

Example applications were presented to demonstrate hogdugs can work along with
traditional aspect-oriented constructs to solve real lprab. While some of theses appli-
cation areas, such as exception handling, transactiongearent, and parallelization, are
easily recognizable as potential targets for transcuesethould be many other situations
that transcuts can help. Similar to any other programmimgsictact, the power of transcuts
comes from abstraction and composition, which allows tatssto be applied in new ways
to solve new problems.

We showed what transcuts mean in the continuation-basedrgiEs of dynamic join
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points. The continuation-based semantics of dynamic jointp is a step forward in un-
derstanding the meaning of dynamic join points.

The effectiveness of transcuts was evaluated in modubgritie concern of exception
handling in two real-world systems. The results show thaigcuts can significantly im-
prove the quality in aspect-oriented software systemsa@ally its cohesion.

One of the important design decisions in this work has besyiaeéegration of transcuts
with AspectJ and eventually adoption by programmers, whiah affected the construct
both syntactically and semantically. The transcut is aizatin of the ideas presented in
this thesis but not the only possible one. There is room faravement in this realization

in different directions, from structure to semantics, tdechang algorithms, and so on.

7.2 Future Work

One possible future direction is to address the limitatiarthe design of transcuts, most of
which are related to the expressiveness of transcuts (@ssdisd in Chapter 3.) It would be
interesting to see how transcuts would perform when extémdth more auxiliary point-
cuts, operators, and modifiers to help designers betteti@aftteir intended join points.
For example, the data flow relations are currently limitednigst-alias relations; it would
potentially be useful to enable may-alias relations andsgghem through a proper in-
terface. In addition, the pattern language can be enriochedlaw better control over the
matching algorithm. For instance hat(x) pseudo pointcut can be implemented to control
the non-contiguous matching behaviour in a way that it féilscomes across a join point
that matches:.. Additionally, the lexicalwithincode()pointcut should be enabled to work
with transcuts because it would be very effective in sabgcipin points based on their
presence within a specific lexical context. Also, makingdsgible to advise constituent
pointcuts within a transcut would significantly increase gower of transcuts and allow
writing more succinct aspects.

Transcut construct is implementedAspectBench compiler (abfj], which is an As-
pect] compiler developed mainly to simplify language esitams and experiments. Al-
thoughabcis a full Aspect) compilerajct is the one mostly used in industry. Therefore,
the next step toward possible adoption of the construct mdke it available experimen-
tally within ajc so that people can easily try it and eventually use it to agiditeeir existing

problems. With the heavy and frequent trial, new applicaioeas would emerge as well

http://www.eclipse.org/aspectj/

92



as new ways to improve the transcut construct.

Pointcut fragility is a well-known issue in AOP and transcappear to exacerbate it.
Pointcuts in AspectJ rely on signature patterns to sel@tijoints, and therefore, even mi-
nor changes to a method/field signature (including namehoaak the existing pointcuts.
Transcuts are also composed of traditional pointcuts; exunently, they suffer from the
same issue. Additionally, transcuts deal with not just aigres but code patterns, which
in turn, adds to their fragility. It seems that interactieeltsupport for transcuts may help
deal with the fragility to a good extent. Therefore, desigmplementation, and integration
of such tools is a fruitful future direction.

We evaluated transcuts only with respect to a single crossig concern in real-world
systems. It is necessary to evaluate transcuts with regpetiter well-known cross-cutting
concerns in real systems, which will help to understandr thglity and limitations to a

greater extent.
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Appendix A

Construction of the Program
Dependence Graph in the Presence of
non-Normative Control Flow

A Program Dependence Graph (PDG) is a digraph whose nodesagem units (e.g. in-
structions, or basic blocks) and whose edges denote depaaddetween the nodes. The
PDG representation has been shown to have a variety of applis in compiler optimiza-
tion, slicing, and parallelization, as well as other morecéglized areas (e.g. in Transcut
matching in AOP.) The original paper that introduces PDG@nés an algorithm to com-
pute it, which not only is hard to comprehend but also igntihesexceptional control flow
constructs. Other papers present faster algorithms butitiver harder to implement or
do not cover exception-handling constructs. Here, we tepmw we combined two algo-
rithms to compute PDG and how we deal with exceptional cofimav using our newly
added control flow graph representation. Also, some paittisedimplementation and some
examples are explained. Java is our target language atlihmagt of the arguments and
algorithms are applicable to other imperative languagdso,Ave use Soot framework for
its support for intermediate 3-address code (Jimple) anddlmalysis utilities.

Program Dependence Graph (PDG) [21] is a program repregemthat makes explicit
the control dependencies between the program elements, Wereport the way we build
PDGs for Java programs using the Soot [53] analysis and atiion framework.

PDG can represent both control and data dependencies; Bpweve we mainly focus
on control dependencies because specific data dependareigsually application-specific
and can always be added on top the PDG. In the original paper,the control dependen-
cies are the focus.

There are some algorithms and implementatiang.([12, 6]) that compute control
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dependencies and generate a control dependence graptvenoiees of them generate the
complete PDG, that is, one that contains regions of congpkeddencies. Others might
need the source code to do the 0 at parse targ [27]).

Our current implementation is the outcome of an incremeséaelopment in the fol-
lowing way. Initially, we needed to compute the set of cohttependence regions in a
method. We used the algorithm given in [6] to compute the regionsbse it was fast and
intuitive. Subsequently, we realized that we needed theatdby of the regionsi.g. the
dependencies among them as well as other nodes.) Thereferesed part of the origi-
nal algorithm given in [21] to construct the complete PDCGegithe set of regions and the
control flow graph. We do not claim that our algorithm is betteany way (we have not
investigated it), which is understandable because th@idihgn is a by-product of our main
research work.

We use Soot framework and, especially, the Jimple [54] inégliate language which
allows our approach to work with Java bytecode as well asceocode. Soot provides
a few kinds of control flow graphs, which support both unitgyra (graphs whose nodes
are Jimple instructions) and block graphs (graphs whosesatk basic blocks); however,
in order to deal with exceptional control flow in a way compkgiwith the rest of our
application, we had to add a new kind of control flow graph gndabwhat Soot provides.
This graph and the rationale behind it will be explained is teport.

The rest of this report is as follows. Section A.1 presentaesof the background
material on control flow graphs (CFG) and dominator tree§dation A.2, after presenting
the definition of dependence in a CFG, region analysis and &»&truction are explained;
also some parts of the implementation and an example usagaresented. We explain
some of the situations that make a CFG (and in turn the canelipg PDG) complicated

and our approach to addressing them in Section A.3. Finaéygonclude in Section A.4.

A.1 Background

A.1.1 Control Flow Graph

A control flow graph (CFG) is a directional graph in which nedepresent basic blocks
(or instructions) and edges indicate flow of execution froeoarce node to a target node
(see [1] for the precise definition and algorithms for conmCFG.) Figure A.1 shows a
program and its CFG. TReTART/EXIThodes are traditionally added to a CFG to simplify

1This was needed in the matching phase of Transcut [50] wkieln iAOP construct.
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the implementation of graph algorithms (for instance, bkimgthe graph single-headed).
STARTrepresents whatever condition that leads to the execufitibeanethod body, and
is, in our implementation, a dummmopinstruction (so is an EXIT node). Nevertheless, we

do not add them unless necessary.

}’Oid mO ENTR

a();
while(c1())
{
b();
while(c2())
do;
if(c3())
e();

else

e2();
f0;
50; EXIT

Figure A.1: A program and its CFG

Soot provides interfaces and implementation for a few kimfdSFGs. UnitGraph and
BlockGraphrepresent CFGs whose nodes &heits and Block$, respectively. BriefU-
nitGraph (BriefBlockGraph and ExceptionalUnitGraphExceptionalBlockGraphextend
UnitGraph ( BlockGrapl). An “exceptional” graph includes potential exceptionawfl
in program whereas a “brief” graph only includes normal fladges between the nodes.
Therefore, depending on the application at hand, the apptepmplementation should be
used.

In our case, neither brief nor exceptional version was aafequn a brief graph, each
catch or finally block starts a head in the graph. A head in a S8E®ode that does not have
a predecessor. So, such CFG can potentially be multi-headddh makes the dominator
tree a forest, which in turn leads to problems in computirgifogram dependence graph.
The multi-headedness can be solved by addigFARTnode to the CFG (as done tradi-
tionally), and an edge from tH&TARTto all heads in the graph; however, the graph would
still be incomplete because the hierarchy information ef élxceptional blocks would be
lost and the dependencies would be inaccurate.

Exceptional graph, on the other hand, includes exceptitoa and consequently, the

multi-headedness would not be an issue because there wewd bdge from potentially

2In Soot,Unit is an interface representing a program instruction, Blodkis a basic block.
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exceptional nodes to the catch/finally blocks; howevemyerede can potentially throw an
exception which results in graph that has an extra excegdtieuige from almost every node
to the visible catch blocks. Again, for some cases this CR@dcoe appropriate but in our
application this representation was not precise enoughetbre, we implemented our own
CFG.
We implemented thé&enhancedUnitGraphEnhancedBlockGraghwhich is a Unit-

Graph ( BlockGraph very similar to aBriefUnitGraph (BriefBlockGraph with a proper
representation of exception handling behaviotine details of how the exceptional flow is

represented in the graph and the observation behind it afaie®d in Section A.3.2.

A.1.2 Dominator and Post-Dominator Trees

Nodex dominateg, (x is a dominator ofy) in a CFG if every path from the START node
to y goes through:. Similarly, z post-dominatey (z is a post-dominator of) in a CFG

if every path from y to the EXIT node passes throughA dominator (post-dominator)

tree is used to represent the dominance (post-dominanizjorein a CFG. Each node

in a dominator (post-dominator) tree dominates (post-datess) only its descendants in
the tree. Figure A.2 shows the dominator and post-dominaéas for the program in

Figure A.1 (ignore the dotted selection for now.)

Figure A.2: Dominator (left) and post-dominator (righBes

Dominator and post-dominator trees are used in various fiadyais algorithms; here,
we used them for computing the regions of control dependesceell as the program

dependence graph itself.

3In the absence of exception handling constructs (try-cfitatily), enhanced graph, brief graph, and ex-
ceptional graph are all the same.
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A.2 Program Dependence Graph

Program Dependence Graph (PDG) [21] is a program reprdégenia which the control
dependencies between nodes in a CFG are made explicit andegisn nodes are added
to represent the common set of dependencies for a set of .n&ie& has successfully
been used for program optimization, parallelization,istjc automatic testingetc. all of
which require that dependencies among program statemermiadily accessible. Nodes in
PDG are the same as the nodes in Control Flow Graph, thoughr implementation, we
use a wrapper class to carry some information about nodegessid PDG denote control
dependency between two nodes. Control flow information iglioitly available in PDG
through ordering, but it can also be explicitly represerttedugh control flow edges. In
this section, we illustrate a PDG of a simple program andamgiow it is constructed.

Figure A.3 shows the PDG corresponding to the program iniquevsection. Only
control flow dependencies are shown in the PDG because wentlyrdo not use explicit
data flow edges in PDG.

Informally, nodeB is control dependent on nod¢ if the execution ofA determines
whetherB executes or not. The formal definition from [21] is as followst G be a control

flow graph. LetX andY be nodes irG. Y is control dependent oX iff

1. there exists a directed pathfrom X to Y with any Z in P (excludingX andY)
post-dominated by and

2. X is not post-dominated by .

For instanceb() method call is dependent @i () because there is a path frarh() to b()
that only contain®() andc1() (so the first condition holds because there isria the path),
andcl()is not post-dominated biy() (see Figure A.2). Intuitivelyb() is control dependent
oncl() because the execution lof) depends on the result of the executiorcdf). Butcl()
is not control dependent ca() becausea() is post-dominated bgl(). Intuitively, c1()'s
execution is not dependent af)’s execution.

There are generally two kinds of nodes in a PDG: CFG noteskasic blocks or in-
structions) and region nodes; and there is an edge #am B if B is control-dependent
on A. A region node summarizes and factors out the set of contrardkgmces of a set
of nodes in a PDG. For instance, all the nodes within the bddfe top-level loop in
Figure A.1 are control dependent ofi(); so, a region node can represent this shared de-

pendence set: region no&2in Figure A.3 is created and made control dependerdigh
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and all the nodes in the body of the loop are made control+ogpe onR2 This depen-
dence set summarization is performed for all control depeoes and the created region
nodes are added to the PDG. At each level of the PDG, nodegittier(implicitly or ex-
plicitly) connected by control-flow edges. Throughout ttiissis, the reader can assume
that the control flow in each region in PDGe( the child nodes of the region) is from left
to right, unless the flow is explicitly shown in the graph. PBiakes the region hierarchy
explicit and available for matching. For instance, innape can easily be identifie@.Q.

regionR3is the inner loop in regioR1).

Weak regions:
{a, c1, g},
{b, c2, c3, f},
{d}. {e}. {e2}.

Strong regions:
{a, g}, {c1},
{b, c3, f}, {c2},
{d}, {e}, {e2}.

Figure A.3: PDG of the program in Figure A.1

Various algorithms have been proposed to efficiently complug PDG of a program
(e.g.[21], [12], [27], [6]). We reuse the region analysis machynthat we initially imple-
mented to build weak regions (based on the algorithm in [B63) @onstruct the PDG based

on the algorithm given in [21].

A.2.1 Region Analysis

In any execution path from the beginning of the flow graph wehd, either all the nodes
in a region execute or none of them do. Regions are, thereffoeenatural extension of
basic blocks (the control enters through the header of &ldod STOPs through the end).
Regions can baveakor strong We use these definitions from [45], which result in slightly

different regions than the ones defined in [1].

e Weak Region verticesv andw are in the same weak region iff for any complete

4Some only compute the Control Dependence Graph or the segjiafis.
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control-flow pathp andw are both in the path or are both absent from the path.

e Strong Region verticesv andw are in the same strong region iffandw occur the

same number of times in any complete control-flow path.

We used an algorithm presented in [6] which finds weak redgi@s®d on the observa-

tion that

e v andw are in the same weak region iff dominatesv andw post-dominates) or

(w dominates andv post-dominates).

Strong regions would be the same as weak regions if there meeleops in the CFG.

Distinct verticesv andw are in the same strong region iff
e they are in the same weak regiand
e (visin every cycle containingy) and  is in every cycle containing.)

The weak and strong regions of the CFG in Figure A.1 are shawkigure A.3. The
regions in the PDG correspond to the strong regions. Thardiakjorithm given in [6] is
based on the key observation that, for any CFG, the vertitesah weak region form a
chain in the post-dominator tree that is the reverse of ancimthe dominator tree (see

Figure A.2 for the chains corresponding to the weak regemrcl, g).

A.2.2 Constructing the Region Hierarchy

As mentioned before, nodes in a PDG are either region nod€$-6 nodesi(e. basic
blocks.) A region node in the PDG represents a strong regainhias dependency edges to
its immediate dependent nodes. In the implementatione ther slight differences between
weak regions, strong regions, and regions in the PDG, butegmnally, they are all the
same: they represent a region of control dependence in eotfiotv graph. Consequently,
in the code]Regionis an interface anBegionandPDGRegiorare weak/strong regions and
PDG region nodes, respectively. Design-wise, the latterdewld probably have been con-
solidated but we had to keep the back-compatibility with past implementation; hence,
the current design.

After computing the weak regions, we compute the strongoregand construct the
PDG at the same time. The outline of the algorithm is as faglo@iven the list of weak
regions, PDG can be constructed by finding the inter-regipeddencies. Starting from

the top-level weak region, a top-level PDG nodig,is created and for each (CFG) node
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in the region, first, a PDG node is created to repregemt the PDG, then, a dependency
edge is added fronk to the PDG node representing

Then the set of nodes that are dependentdcare found: for each edged(B) in the
CFG such tha3 does not post-dominatd, let L be the least common ancestor4fand
B in the post-dominator tree. Eithéris A or L is the parent ofd in the post-dominator
tree (see [21] for proof). I is the parent of4, then all nodes in the post-dominator tree
on the path fromL to B, including B but not L, are control dependent of. If L is A,
then all nodes in the post-dominator tree on the path froto B, including A and B, are
control dependent oA (this case captures loop dependence.) Both cases can heaove
by traversing backwards from® in the post-dominator tree until we reaets parent (if
it exists, or A otherwise) and adding all visited nodes to a list as nodeisréhaontrol
dependent o.

The A’s PDG node is changed to be a “Conditional” PDG node to repethe fact
that there are nodes that depend on it; then, for each of fendants of4, the containing
(weak) region is looked pand a PDG node is created to represent it; a dependency edge
is then added from thel’'s PDG node to the region’s PDG node. This is repeated for all
the nodes in the list of dependants that are in a differenkwegion than the previously
processed dependantsAf Loops that contain abrupt exit or continuation statemeatse
some conditions that need to be checked in the above stepsn Wturns out that a loop
header is being processed, a new strong region is createglaith its corresponding PDG
node which is added to the graph and the appropriate depenéelges are added. It is
worthwhile to mention that loops create circular depenigenin the PDG and we label the

back dependency edges in the PDG as “dependency-back’tsdiémis be aware of them.

A.2.3 Implementation and Usage

Our PDG is a graph that extends thashMutableEdgelLabelledDirectedGragfass in
Soot, which is a directed graph whose edges are 0, and imptsrtie expected interface
of a program dependence grapk,, ProgramDependenceGrapihe PDG classes can be
used in any project that is properly set up to use Soot, artdrtiports the PDG package.
Figure A.4 shows how this interface can be used:

The list of the PDG regions is created by doing a post-ordesetsal of the PDG and
adding the PDGNodes with the same dependency (that is, the garent), to the region.

The reason we call them “PDG regions” is to avoid confusirggrttwith strong and weak

5This information is available from the region analysis ghas
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/x Body body = ...

body represents the body of any method

whose PDG is desired. It may be acquired through

different ways (e.g. internalTransform method, etc.).
*/

/I Create the CFG of the method
EnhancedUnitGraph cfg sew EnhancedUnitGraph (body);

/I Create the PDG for the given CFG
ProgramDependenceGraph pdgnew HashMutablePDG (cfg);

/I Print a textual representation of the graph.
System . out. printin (pdg);

/I Get a list of the regions in the PDG
List<PDGRegion- pdgRegions = ((HashMutablePDG2)pdg).getPDGRegions ();

/I The all the 1 of the toplevel region
PDGNode head = pdg.GetStartNode ();
List<PDGNode- deps = pdg.getDependents (head);

Figure A.4: An example of construction and usage of a PDG

regions, even though they are almost the same (The type ebravé different because they
belong to different program representations).
Figure A.5 shows part of the class diagram of the PDG packadgDGNodeepresents
a node in the PDG, which can be either a region node or a CFG rodeopedPDGNode
is aPDGNodethat represents a loop and has a header node and a body nttdef Wwhich
are of typePDGNode Similarly, ConditionalPDGNodeepresents a node in the PDG that
has two 1, first of which runs when the corresponding comtlisdrue, and second of which
runs when the condition is fal&eMany classes and relationships are not shown for brevity.
Edges in our PDG implementation are either “dependencyépémdency-back” (rep-

resenting loop dependency), or “controlflow”.

A.3 Non-Normative Control Flow

Non-normative flow occurs when an instruction alters the tbaontrol in the code in such
a way that it changes the normal, expected, frequent floweottde. It should be noted
that this is not a precise definition in the sense that anediter of flow might be completely
normal and still (in our definition) a non-normative. Fordtely, there are only a few known

instructions that cause such behavidomreakandcontinuestatements in loopshrow, and

®In our implementation, we do not explicitly specify whichpgadent is associated with which the condition
being true but this information can be added based on thefined Jimple code generation rules in Soot.
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<<Interface>>

MutableEdgeLabeledDirectedGraph HashMutableEdgeLabeledDirectedGra,

A A
soot.toolkit.graph.pdg
<<Interface>> <<Interface>>
. < - -1 HashMutablePDG

IRegion ProgramDependenceGraph

A A | |

; 1 v

! PDGRegion |<------- PDGNode

\ !

Region

LoopedPDGNode | ConditionalPDGNode

Figure A.5: UML class diagram for part of the PDG package

return (in the middle of methods.) In the following sections, we laxp how these affect

the CFG and how we deal with them in the enhanced CFG.

A.3.1 Abrupt Loop Exit and Continuation

The presence dfreakandcontinuestatements in loops affects the PDG in tricky ways. In
this section, we present an example to show how the PDG of hatietith a loop that
contains another loop looks like. The matters get worse vilnvettarget of dreak/continue
statement is an outer loop. Consider the method shown inré&igu6, along its CFG (it
does not do anything meaningful, so, do not try to understiamdunction but its structure).
Figures A.7 and A.8 show the dominator/post-dominatorstiaed the corresponding

PDG for the method, respectively.

A.3.2 Exceptional Flow

Figure A.9 shows two different kinds of flow out of a node (umitblock) in a CFG (if the

node is a return or throw statement, then there is no flow otit)ofn fact, X represents

’In our implementation, we do not add ENTRY/EXIT (START/STd®des to the CFG if not necessary.
In fact, we know what nodes in the CFG are heads and tailselidad and tail nodes are unique, they can play
the role of ENTRY/EXIT nodes. Otherwise, we add the ENTRY/EXodes.
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public int f() {
inti=0;
intj=0;
outer:

while(j < 10) {
i :j +2;

while(condition2()) {
i+=2;

if(i < 3)
continue;

if(i > 4)
break outer;
i—=1;
}

if(i == j)
i-=1,

if(i == 3)
continue;

if(i == 4)
break;

i+
}

return i;

}

Figure A.6: A program and its CFG

Figure A.7: Dominator (left) and Post-dominator (righds
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Figure A.8: The PDG of program in Figure A.6

any well-structured portion of the program: a single unibasic block, a whole loop, or
a try-catch-block; the important property that all of theavé is that the (normal) flow of
execution enters at the beginning and exits at the end, ntemnaiw complex the flow is

within them.

exceptional flow---->

normal flow —

Figure A.9: Control flow out of a node

If X is not guarded by a try block, the exceptional flow causes thnod to exit (ex-
ceptionally.) It is the presence of exception-handlingstarcts, however, that necessitates
our introduction of theEnhancedUnitGraphFigure A.10 shows the flow of control when
X is guarded by a try-catch-finallyX( is defined recursively.) X represents any well-
structured segment of code and C and F represent catch ailg Bluecks, respectively.
Also, one thing that should be mentioned is that, in Sootfittadly block is triplicated: for
exceptional flow, for normal flow when no exception is raissd] for normal flow when an

exception is raised but handled. It appears that there igad to duplicate the finally code
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for the normal flow cases, however, we wanted to be consigiémthe way Soot generates

Jimple code.

try {
X

}
catch() {
C

finally {
=

Figure A.10: Control flow inside a try-catch-finally

The important observation is that, well-structured segseh code, no matter how
complex they are, can be abstracted and treated similAr itothe above figures; that is,
either the execution reaches the end of the segment nornoalgn exception occurs at
some point in the execution. In our use cases, it does noenwtivhat specific point in
X did the exception occur; after all, at analysis time, eveiynpin X would be a potential
source of exceptional flow; therefore, we only keep traclefaxceptional flow at the level
of X, and only if X is guarded in a try block.

We would like to have a CFG that is not as crowded as an ExcegtimitGraph but,
at the same time, represents the exceptional flow behaviaihigher levelj.e. the level
of the exception-handling constructs. In order to do this,emhance the brief CFG so that
one exceptional control flow edge is added frafrto the corresponding catch and finally
blocks, representing the potential exceptional flow frorthimi X to the exception handler
blocks. This all is a little confusing, but it will perhapsdmene clear why it is needed when

the brief graph corresponding to the program in Figure Asliresented in Figure A.11.

Figure A.11: Brief CFG

The catch and finally blocks in a brief CFG are heads in thelgkmzause the graph
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does not include exceptional edges; even the nesting ifitwmof try-catch-finally struc-
tures is lost. The goal is to enhance such a brief CFG so teatxtteptional flow informa-
tion is added to the graph not at the level of individual ndoigsat the level ofX as shown
in Figure A.10, whereX is a well-structured segment of code guarded by a try blotlis T
representation preserves the hierarchy of exceptiontingntilocks without making the
graph too crowded to be useful. The enhancement takes intatthe control depen-
dence relation among the elements of the target struchaikid, the execution of the catch
and finally blocks are all dependent on whether the executioX raises an exception or
not. We choose to insert a dummy node right befS§rand add an edge from that node to
all corresponding handlers (catch/finally) to encode thgeddence of the handler blocks
on X becauseX itself might not necessarily be a single node in the CFG.

Figure A.12 shows the CFG after adding the dummy node anddiresponding ex-
ceptional flow to the brief CFG in Figure A.11.

Figure A.12: Adding a dummy node to the brief CFG

There is one additional complexity with the exceptional lfindlock®: at the level
of Jimple code, the exceptional finally block ends with awhinstruction and such an
instruction, similar to a return instruction, is an exit pioin the CFG of a method. If the
control reaches this point, it means ttadid not finish normally and the flow is exiting out
of it exceptionally. Two cases arise: either the finally kl¢along with the corresponding
try block) is guarded by a try-catch-finally or not. In thetdéatcase, the throw at the end of
the finally causes the method to exit, hence, it is treatedasitio any other instruction in
a method that can potentially and implicitly throw an excapti.e. no explicit flow edge
is needed.) However, in the former case, the exception quatkehtially be handled by the

outer exception handler, and therefore, the flow would stélyimvthe method and should

8By “exceptional finally block” we mean the execution of theafly block when an exception occurs but
not handled, or when an exception occurs within the cormedipg catch blocks and not handled within them.
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be represented in the CFG. Interestingly, we do not need toppabout where exactly such
a flow would go in the outer context because, as we explainedepresent all exceptional
flow within anx with a single edge from the beginning @ofto the corresponding handler
block. x in here is another segment of program that contains a tohdatally, which
containedX .

The only problem that remains is to somehow suppress thentthe CFG generated
by this throw in thefinally block. If not treated, these tails create a forest, instdfaa o
tree, for the post-dominator relation. The logical solntis to add an edge from the end
of thefinally to the merge point of the corresponding try-catch-finallgckl This edge is
harmless because the operational behaviour of the prograohieved by the execution
of the code (which is not altered by the addition of this efig€his enhanced CFG is
a useful representation because it can make the graph eepri® exceptional control
dependencies in the presence of exception handling cotstmhich is necessary to create
a correct program dependence graph. It is not easy to find #igarpoint to which the
auxiliary edge fronthrow should be added. To get around this problem, we transform the
code so that eacthrow instruction is replaced by a method call that throws the semhes
as the original expression; however, because a method eadja® back to its call site, an
edge is automatically present from it to the next node in the.fl

Figure A.13 shows the enhanced CFG corresponding to thE@¥F& in Figure A.11.
For presentation purposes, in this figure, the exceptioaad dut of the exceptional finally
block is changed, midway, to a normal flow to indicate thagardless of the operational
behaviour of this finally block (which is throwing an except), the enhanced CFG con-
siders it as a piece of code, dependent on the executioh, tfiat merges into the end of
the corresponding try-catch-block as explained beforeo Alve ignore the exceptional flow
from a catch block to the exceptional finally block becauseiiporating it makes the graph
too complex and is not essential for our use case. That setdeFnhancedUnitGraph,
which is used to create program dependence graph, we doffestdtiate between excep-
tional flow and normal flow.

Figure A.14 shows an enhanced CFG corresponding to a typioek of code with
exceptional control flow constructs!, B, C, F', andE represent chunks of code that map
to the basic blocks in the CFG. As it can be seen, this gertef@ES follows the given
model for exceptional code. The corresponding PDG is shaviAigure A.15.
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Figure A.13: The enhanced CFG corresponding to the brief CFG

A A
try {
B
‘ B ‘ ‘ C’ F1 ‘ F ‘ E:atch(){
C
E:j iinally{
F
e E

Figure A.14: The enhanced CFG of typical exception-hagdtiode

Figure A.15: The PDG for program in Figure A.14
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A.3.3 Multiple Exits

Multiple return (or unhandled throw) statements in a CFGiltés a post-dominator forest
instead of tree. The reason is that the nodes that are coedittebe exit nodes do not have
any successor, and therefore, do not have any post-domidaforest causes some of our
algorithms to break or not work correctly. In the constroictof theEnhancedUnitGraph
(and after taking care of the throw statements that can palignbe handled within the
same method) a STOP node is added, if it does not already ancif there are more than
one exit (tail) in the CFG; then, an edge is added from eatindalie to the STOP node so

that the post-dominator relation can be represented byeditrstead of a forest.)

A.4 Conclusion

We presented the construction mechanism, observatiodsjsage of the program depen-
dence graph representation, implemented in Soot. Also,xpkieed how we deal with
exceptional control flow with a the introduction of a new agohflow graph representation.

Some parts of the implementation as well as an example usagepresented.
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