i+l

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibhographiques

395, rue Wellngton

Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.

Every effort has been made to

ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Ottawa (Ontaro)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiguer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

A COMPUTATIONAL STUDY OF THE LATERAL DISCHARGE
CHARACTERISTICS OF TRANSIENT COMPOUND CHANNEL FLOW

BY

MANAS LAL SHOME

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in

WATER RESOURCES ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA
SPRING 1995



I * l National Library Bibliothéque nationale
du Canada

of Canada

Acquisitions and Direction des © isitions et
Bibliographic Services Branch  des servicest  graphicues
335 Wellington Street 395, rue Wellington

Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THL AUTHOR HAS GRANTED AN
IRRLCVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL

Your s Yolre relétence

Our e Notre reldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE

LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA

ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01760-5

Canadi

THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTwE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITiON DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



UNIVERSITY OF ALBERTA

RELEASY FORM

NAME OF AUTHOR: MANAS LAL SHOME

TITLE OF THESIS: A COMPUTATIONAL STUDY OF THE LATERAL
DISCHARGE CHARACTERISTICS OF TRANSIENT
COMPOUND CHANNEL FLOW

DEGREE: DOCTOR OF PHILOSOPHY

YEAR THIS DEGREE GRANTED: SPRING 1995

Permission is hereby granted to the University of Albena Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly, or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereol may be printed or otherwise reproduced in any material form

whatever without the author's prior written permission.

‘j’(wa/) /Zﬁu{ S’{\W

PERMANENT ADDRESS:
Village: Uttarsur

Post Office: Srimangal
District: Moulvibazar

Bangladesh.
Dated: Mogeh V7 1995,



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitted A COMPUTATIONAL STUDY
OF THE LATERAL DISCHARGE CHARACTERISTICS OF TRANSIENT
COMPOUND CHANNEL FLOW submitted by MANAS LAL SHOME in partial
fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in

5

P.M. STEFFL(. SUPERVISOR

Al gLz
J

N. RAJARATNAM

15 Yot

F. E. HICKS

Z§. M. ROGOWSKY

Water Resources Engineering.

i

p Ny FENG

T
V. M. PONCE, EXTERNAL EXAMINER

pATE: M lnc 4 /43 /1975




To the memory of my father



ABSTRACT

During a flood event, the volume of a flood plain reach is filled up by lateral
flow from the main channcl and by longitudinal flow from the upstream end of the flood
plain. A comprehensive investigation of the hydraulic characteristics of this lateral flow
may lead to some estimates of the transfer of materials from the main channel o the
flood plain. An order of magnitude analysis of the governing two-dimensional depth-
averaged shallow water equations shows that the inertial terms can be neglected for most
flood flows. A zcro-inertia computational model is then developed based on a control
volume method with an alternating direction implicit scheme. The numerical stability
and accuracy of the scheme are investigated by using Fourier Stability Analysis. The
model is tested against experimental duta and  good agreement is found. Also, the
relative performance of the model and the FESWMS-2DH (Finite Element Surface
Water Modeling System) for hypothetical floods shows that the zero-inertia model
produces comparable results with much less computational effort.

A pseudo-steady statc form of the zero-inertia model is then applied to
investigate the characteristics of lateral flows for two-dimensional monoclinal waves. A
theoretical equation is derived to relate the contribution of the lateral flows in filling up
the flood plain with the properties of the compound channel and the monoclinal flood
wave. Extensive numerical experiments are conducted for straight, prismatic, and
symmetric compound channels and the analysis of data produces a similarity profile of
the distribution of lateral flows. The scales are the peak lateral discharge and two length
scales chosen such that the magnitude of the lateral discharge on each side of the profile
is half of the peak discharge. Analysis of the various scales and empirical regression

equations for practical purposes are presented.



Finally, two theoretical equations arc derived for flow exchange between the
main channel and the flood plain in terms of the local channel and flood plain flow
depths for fully and partially flooded flood plains. Data from numerical experiments
support the trend of these equations reasonably well and empirical regression equations

arc proposcd for practical purposes.
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v time averaged lateral velocity at a point
v, lateral velocity at surface

v, lateral velocity at the bed

1% depth-averaged lateral velocity at a point
v non-dimensional lateral velocity

v lateral velocity fluctuation

v’ lateral kinematic wave velocity

Vv lateral uniform flow velocity

wave velocity

V, resultant flow velocity

Vol volume of flood plain per unit length

Vol9 percentage of the volume of flood plain per unit length.

W length scale for the lateral direction



W_ half-width of the main channel

W,  width of the flood plain
W,  ratio of the flood plain width to the half-main channel width
W, vertical velocity at water surface

w, vertical velocity at the bed

w’ vertical velocity {luctuation

x longitudinal coordinate

x non-dimensional longitudinal distance
y lateral coordinate

a non-dimensional lateral distance

y distance from the wall

vertical coordinate

]

2 bed clevation

o angle of the bed in the longitudinal direction
o’ constant

a, rcal part of the numerical amplification factor

a, real part of the analytical amplification factor

B diffusion flow number

B’ constant

B, imaginary part of the numerical amplification factor
B, imaginary part of the analytical amplification factor
p fluid density

v kinematic viscosity of the fluid

O..0.. normal stresses

»wrrm

oxt'
VoV, V..V, eddy viscosity coefficients
Yy numerical amplification factor for the first half time step

¥l numerical amplification factor for the second half time step



Y numerical amplification factor for the complete one time step

y? analytical amplification factor

6 angle between total bed shear stress and the longitudinal component of bed shear
stress

6" numerical wave celerity

6° analytical wave celerity

T, wall shear stress

component of bed shear stress in the longitudinal direction

(T component of bed shear stress in the lateral direction

T longitudinal shcar stress

T, lateral shear stress

T, resultant bed shear stress

' convergence criteria

£ turbulent encrgy dissipation rate
n variable

w weighting tactor

Ah  change in stage

AUl velocity difference across the shear layer
L grid size in the longitudinal direction

Ay  grid size in the lateral direction

At time step

{Ah} stage correction vector

A length of the rcach of interest



1 INTRODUCTION

1.1 BACKGROIND AND OBJECTIVES OF THE PRESENT STUDY

A compounc. channel is comprised of a relatively deep channel and one or more
flood plains. Many natural rivers and man made drainage and irrigation canals fall under
the category of compound channels. During natural and man-made floods, the adjacent
flood plain arcas get inundated, resulting in serious damage into agricultural fields,
propertics and lives. As a result, an adequate knowledge of the hydraulics of compound
channel flows is required for the proper design and management of rivers, drainage and
irrigation canals. Consequently, extensive numerical and experimental investigations
have been carried out to study the various aspects of compound channel flows. It has
been established that a strong interaction between the faster moving main channel flow
and the slower moving flood plain flow takes place (Sellin, 1964; Ahmadi, 1979;
Bhowmik and Demissie, 1982). This interaction results in a lateral transfer of a
significant amount of longitudinal momentum which affects the velocity, discharge, and
bed shear stress distribution. These hydraulic parameters, in turn, affect the transport of

sediments and poliutants through the compound channel system.
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Geomorphological, environmental and ecological concerns are also associated

with floods. As the volume of flow in the flood plain is filled up by the lateral flows

from the main channel as well as by the longitudinal flows from the upstream end of a

flood plain reach during a flood, suspended sediments, nutrients, and contaminants are

transferred from the main channel and get deposited on the flood plain. An adequate

knowledge and understanding of the transfer mechanism, quantification of the total

volume of the laterally transferred materials, and their distribution is needed to assess the
potential risk of environmental and ecological hazards resulting from this process.

As pointed out by Walling, Quine, and He (1989), the dearth of field data on
this particular aspect clearly demonstrates the practical problems and difficultics
associated with ** ~ techniques for measuring the deposition and the distribution of such
materials. Walliv - et al. (1989) discussed the commonly adopted techniques used to
measure the deposition rates in the ficld. These approaches can be broadly classified into
two groups based on the time scale involved. Onc group of approaches measures the
deposition rate for an individual flood and the other approaches estimate the deposition
rates averaged over a number of years. Among the many other investigators, Leopold
(1973), Kesel, Dunne, Mcdonald, Allison and Spicer (1974), Walling and Lambert
(1986), attempted to measure the deposition rates of sediments on the flood plains,
Investigations of Walling and Lambert (1986) showed that a significant amount of
suspended scdiment gets deposited on the flood plain during a flood. Walling et al.
(1989) discussed the limitations and difficulties involved in implementing the traditional
techniques and the reliability of the sampled data. They also proposed a new technique
to mcasure the rate as well as the distribution of the sediments using Caesium-137, a
man- made radio nuclide. According to their opinion, this technique seems to be more
usable than the other methods but it is also not free from limitations and problems. It is
very time consuming and sometimes may underestimate the deposition of coarse

sediment or overestimate the fine sediment. The above discussion clearly demonstrates
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that to make an attempt to quantify the volume and the distribution of the transferred
materials which are highly variable in space and time directly in the field is a very
difficult and complicated task.

Apart from these field studics, James (1985, 1987) applied a finite difference
model to quantify the transfer of sediments from the main channel to the flood plain for
steady uniform flow. Pizzuto (1987) developed an analytical model based on a sediment
diffusion equation to quantify the deposition of sediment and its distribution in the flood
plain. By comparing the ficld observations, he concluded that suspended sediments are
transported hy lateral convection as well as by diffusion.

In the present rescarch, attention is devoted to examine and analyze the
hydraulic characteristics of the lateral flows that take place between the main channcl
and the flood plain during floods. A comprehensive investigation of the characteristics
of such flow may lcad to some simple estimates of the quantity and the distribution of
the laterally transferred materials. As it is prohibitively difficult to study this aspect by
laboratory experiments, numerical experiments are needed. Solving the full dynamic
two-dimensional shallow water egnations numerically, however, requires considerable
computational time and effort and also special tech. iques are needed for the dry bed
situation. Therefore, simplified equations which are relatively easier to implement but
produce comparable results under some conditions are often used. Hence, one of the
objectives of this study is to develop a two-dimensional zero-inertia computational
model for simulating unsteady compound channel flows. The second objective is to
examine the hydraulic characteristics of the lateral discharge component in the flood
plain and the contribution of the lateral discharge from the main channel 1o the flood
plain in the “illing process. The third objective of the present study is to develop a
relationsh. 1or flow exchange between the main channel and the flood plain in terms of

the local channel and flood plain flow depths.
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In order to accomplish these objectives, this study begins with an order of
magnitude analysis of the governing two-dimensional depth-azveraged shallow water
equations. This analysis shows that the inertial terms can be neglected for most flood
flows. A two-dimensional zero-inertia computational model is then developed based on
the control volume method which is simple, easy to understand, and follows from a
dircct physical interpretation. The computational domain is discretized into a finite
number of non-overlapping control volumes. The depth and all other scalar variables are
defined in the center of each control volume. The velocity or the discharge components
ar¢ defined at the interfaces of cach control volume. Consistent flow approximations
between control volumes lead to mass conservation at the discrete level. The model
solution uses an alternating direction implicit scheme which is robust and
computationally very efficient.

The zero-inertia model is then used to develop a methodology to quantify the
volume of the lateral flows from the main channel to the flood plain and its distribution
along the flood wave and across the flood plain. A pseudo-stcady state form of the zero-
inertia model (monoclinal wave model) is applied to investigate the hydraulic
characteristics of the lateral flows for a two-dimensional monoclinal wave. Application
of the monoclinal wave approximation from the point of view of a moving observer
makes it possible to analyze the characteristics of the lateral discharge within the wave
instcad of investigating through the whole length of the compound channel system. It is

also possible to use large time steps for numerical experiments.

1.2 PRESENTATION OF THE RESEARCH WORK

The derivation of the depth-averaged shallow water equations and the underlying
assumptions are presented in Chapter 2. As the effect of momentum transfer mechanism
will be taken into account through the use of an eddy viscosity, the literature on the

modeling of the eddy viscosity in the compound channel is reviewed. By order of



5
magnitude analysis, the simplified, zero-inertia model equations arc obtained and their
propertics and limitations are discussed. The terms, ' diffusion . diffusive ', and ' zero-
incrtia ' will be used interchangeably in this thesis. The formation and the derivations of
the varicus propertics of the two-dimensional monoclinal wave are provided. A
theoretical analysis of this wave produces a simple cquation which relates the
contribution of the lateral flows in filling up the flood plain with the propertics of the
compound channel and the flood wave. This theoretical analysis is supported by data
obtained through extensive numerical experiments conducted for straight, prismatic and
symmetric compound channels. The pertinent non-dimensional variables are obtained by
non-dimensionalizing the simplificd cquations and these variables will be used for
designing numerical experiments.

In Chapter 3, the description of the development of the proposed model is
provided. While doing so, the existing literature on the modeling of compound channel
and overland fTows is reviewed.

In Chapter 4, the results of linear stability and acc.. .y analyses for the zero-
inertia scheme are presented. These analyses are carried out to examine the amplification
and phase portraits of the numerical scheme employed. The purpose of these analyses is
also to make effective use of the model by determining discretization parameters which
give aceeptable accuracy with minimum effort.

In Chapter 5, the performance of the present model is verified. The zero-inertia
modcl is tested against experimental data. The relative performance of the model is also
compared with the results obtained from one of the commonly used models in the
professional domain, namely, FESWMS-2DH (Finite Element Surface Water Modeling
System) developed by U. S. Federal Highways Administration (1989) for two

hypothetical flood events to investigate the effect of neglect of inertial terms.
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Chapter 6 presents the application of the monoclinal wave model and the analysis
of the data obtained through this model. The effects of various physical parameters and
flood properties on the hydraulic characteristics of lateral discharge arc critically
investigated. The data is also analyzed to produce a similarity profile of the distribution
of the lateral flows. The scales are the peak lateral discharge and two length scales
chosen such that the magnitude of (he lateral discharge on each side of the profilc is half
of the peak discharge. An analysis of the various scalcs is presented and empirical
regression equations are proposed for practical purposes. The spatial distributions of the
lateral discharges along the flood wave can be transferred to the lateral discharge
hydrographs using the average flood wave velocity as seen by a stationary observer.
These findings could be used for an approximate estimate of the volume and the
distribution of suspended sediment or other substances transferred from the main
channel to the flood plain during a flood.

Finally, a theoretical analysis is carried out to derive a relationship for flow
exchange between the main channel and the flood plain in terms of the local channel and
flood plain flow depths. Two theoretical equations are derived for different flood plain
flow situations, namely, for fully flooded and partially flooded plains. Numerical
experimental data support the trend of these theoretical cquations reasonably well.
Empirical equations obtained through regression analysis are proposed for practical
purposes. These equations may be useful for specifying the lateral flow exchange
between the main channel and the flood plain flows presently handled by weir type
equations in one-dimensional compound channel flow models.

Based on the above mentioned studies, genceral conclusions and

recommendations arc provided in Chapter 7.



2 GOVERNING EQUATIONS AND THEORETICAL
ANALYSIS

2.1 INTRODUCTION

For many practical open channel flow problems and particularly where the
depth of flow is small compared with the horizontal length scales of the area concemned,
knowledge of the full three-dimensional flow structure is not always necessary; rather,
mean flow variables in two orthogonal horizontal directions are sufficient (Leendertse,
1967; Ponce and Yabusaki, 1981; and Rijn, 1990). For the study under consideration,
flow in a compound channel can be investigated from this point of view. The flow is
predominantly two-dimensional in plan and the three- dimensional governing equations
of flow can be simplified to the depth- averaged flow equations (Jenkins and Keller,
1990). In this chapter, these depth-averaged two-dimensiona! flow equations are derived
from the continuity and Reynolas equations for mean turbulent flow which are
introduced in Section 2.2, Having derived the depth-averaged full dynamic flow
equations in Section 2.3, the evaluation of bed shear stresses and the representation and
the modeling of effective stresses are discussed in Sections 2.3.1 and 2.3.2 respectively.

An order of magnitude analysis of the governing equations is carried out in Section 2.4.

7
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Using ihe information obtained from this scaling process, the full dynamic equations are
simplified to zero-inertia approximations and their propertics are discussed in Scctions
2.4.3. The propertics of monoclinal waves and the theoretical analysis of the lateral
discharge are then discussed in Section 2.5. Finally, non-dimensional variables are
obtained by performing dimensional analysis to the simplified equations in Section 2.6

and these will be used for numerical experiments.

2.2 CONTINUITY AND REYNOLDS EQUATIONS FOR TURBULENT FLOW

The derivations of the continuity and the three dimensional Reynolds equations
for an incompressible fluid element can be found in any open channel {low text such as
Rijn (1990) or Chaudhry (1993). They arc reproduced here as follows. A Cartesian
coordinate system, with x,y, and z are the longitudinal, lateral, and vertical directions,
respectively, is considered.

The continuity equation for a fluid element in a turbulent flow can he written as:

Ju ov ow
—_—

=0 2.1
ox dy oz 211

and the Reynolds equations for a fluid element in a turbulent flow in the x,y, andz

directions, respectively, are written as:

Ou  duu duv duw  ldp 1 (80’ Jt,,  oJt )

- =—— - = = 2.2
8r+3x+8y+az p8x+p 8x+o'?y+3z 2.2}
dv odw oJw odw lop 1(dt, do, Jr,

4 S P ” Sl A’ 23
o ox oy % pa_y+p(ax+ay+az 1231
ow odwu owv oww ldp 1(9r, 01, do )

—_— e =——— | —X e B Whudhudt ~3 JEPN 24
81*8x+8y+32 p oz pk3x+8y+az 6 1241
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where u, v, and w are the time averaged longitudinal, lateral, and vertical velocities,
respectively; 2 is the density of fluid, and g is the acceleration due to gravity. The

stresses can be expanded as:

G, = 2;)1)-(:)11i —pu'u’ [2.5]
0x
G, = 2pvg—: -pvV’ [2.6]
9 ()w —_—
G, = ..pU—,)— —-pw'w [2.7]
N
T, =pu(ﬂ'—+-(,—)-‘j’)—pl—:_’\7 [2.8]
dy dx
T, = pv(% + (;l) - pu'w’ [2.9]
T ox
T, = pv[gﬁ + 'Z;l) - pvw’ [2.10]
' oy

where «’, v/, and w” are the fluctuating part of the instantaneous longitudinal, lateral,
and vertical velocities at a point, respectively: and v is the kinematic viscosity of the
fluid.

In equations [2.5] to [2.10], each stress term is comprised of a viscous and
turbulent part. The turbulent stresses are known as Reynolds stresses and they appear as
additional unknown variables. Experimental investigations have shown that these
stresses are much larger than their laminar counterparts except in the viscous sub-layer

near a smooth bed surface. For engineering purposes, viscous effects can be neglected
for shear Reynolds number, Ry, greater than 30 or 40 (Adeff, 1988). The shear Reynolds

number, Ry, is defined by the following:
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R, =%Y [2.11]

v’ s the distance from the wall,
,r ) .
u,(=.[—=) isthe shear velocity, and
p

T, is the wall shear stress.

In the present study, the viscous stresses are thus neglected.

2.3 DERIVATION OF THE DEPTH-AVERAGED EQUATIONS

The depth averaged flow equations are derived by integrating the continuity and
the Reynolds equations over the flow depth as described in this section. The derivation
of these flow equations are also found in Jansen, Bendegom, Berg, deVrices, and Zanen
(1979), Samuels (1985), and Rijn (1990).

The following assumptions arc made in order to derive the governing depth

averaged flow equations:

1. The flow is incompressible.

2. The fluid is homogencous i.e., density is uniform across the depth.

3. The stream bed does not change with time.

4. The channel bed slope is small so that sin o= tan o where, o is the angle the hed

makes with longitudinal direction.

S. The effect of the rotation of the earth can be neglected.
6. The spatial variation of atmospheric pressure can be neglected.
7 The vertical acceleration is negligible compared with the acceleration due to

aravity (g).
8. The frictional resistance formulae for unsteady non-uniform flow are the same as

that for steady uniform flow.



11
9. The momentum correction coefficient is 1.
10.  No scepage inflow/outflows, evaporation, or rainfall inflows occur.
11. There are no tangential stresses on the water/ air interface.
The following kinematic boundary condition is applied at the surface. Jt implies

that no flow occurs across the specified boundary (Rijn, 1990 ):

dh oh oh
gy == = 2.12
at “ ox £ ay ‘ ! :

at the bed, no slip condition,
u,=v, =w, =10, [2.13]
is applied where «,v,, and w are the longitudinal, lateral, and vertical velocities at the
walter surface, respectively and w,,v,, and w,are the longitudinal, lateral, and vertical
velocities at the bed, respectively.

The depth-averaged velocity components in the horizontal x and y directions,

respectively, are defined as:

h
U= -;7:{:«1; (2.14)
and
l h
V= j vz [2.15])

where h =z, + H is the water surface elevation, z, is the bed elevation, and H is the
water depth.

Integrating the continuity equation over the depth,

h
j(a_‘f+i+i}z=() [2.16]



Considering each term and applying Liebnitz rule,

h h -
J‘(&“)'z=ijudz—vﬁ+t a””=w— o

N o)
s\ox) " oaxy Ox "x T ox “ox 2.17]
'L ’ = —a—-(H—‘/)- -V @ +v éﬁ.
zJ Y "oy oy

_ Jd(HV) ah
oy 8\
[2.18]
jfi)b—v T EN 1219}

Adding all the terms, rearranging, and applying equation [2.12], the following

depth-averaged continuity equat’ n is obtained:

oh  J(HU) J(HV) _
8t+ Ew + £ =0 12.20]

Using assumption (3) that the bed elevation does not change with time, the water
surface elevation, h may be substituted by the water depth, H in the above equation.
Applying assumption (7) that vertical acceleration is negligible,

the z —momentum equaiion becomes:

£€-+pg=() [2.21]

<

Integrating the z — momentum equation over the depth

h
f(—wg)d [2.22)

which results in

p(z)+- pgz = constant [2.23)
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The boundary condition at the water surface, i.e., at z=h, p=P,where, P, is

the atmospheric pressure at the water surface, results in

p=P,+pglh-z)
which shows the hydrostatic distribution of pressure across the depth.
Integrating the x — momentum equation over the depth gives
u duu r7uv duw
-——1¢ + lz=——|—=—|P, +pglh-2z)|dz
J- J( a). 0= } J. [ p&( Z)]
+l h adn + aTn a 1-
pi\ dx  dy 3‘
Integrating each term and applying Liebnitz rule,
J-(7u e = (7 udz -, 2L oh tu 9z _ _ H(UH)_U dh
o or “or " or or o
duu ar, 20h L0z,
——dz=— | wdz~u] —+u, =+
;‘:(7\( a_\-i“‘ "o T G
h 2
=-a%;[[U—(U—u)] dz—ufg—i
= —?—-‘I’Luzd" +i‘l’:(u —u) d-v _u ﬁ (Since _a"jU(U_U)d' _ O)
a\‘ W - a.x o ax ax : =
NU"H
=L (ax )+—J'(U u)’ dz—uS gi;

[2.24]

[2.25)

[2.26]

[2.27]



ha , ()~
zb%—dx=¢% Juvd~—(u\ )— +(:,, ) 3;
2 +H
== J'[U WU =)V =(V =)z - (v, )—
ay j UVdz + e j U ~u)V = v)dz = (u,v, )—
HNUVH) 9 | _ o
= = J WU =)V =vydz = (u,v, ) — 2.28

X +8_\>;[( 1) vid (“"")ay [2.28)
I uw)
J a,t ITUW —UW, = W [2.29]

Now adding all the terms on the L.H.S. of the x — momentum cquatic n, the

following is obtained:

a(UH) a(U H) : ()(UVH) a _ o
or ax ox J(U “dz+ Jy +- I(U u}V —v)d:

—u —8-1-1—+u Q’-+v§ﬁ—w
Nar “ox oy °

_8(UH) AU? H), LOWVH) 9 f _ o
== o (9 J(U N +3y;[(U u)(V —v)dz [2.30]

Since the last two terms are zero according to boundary conditions, [2.12] and [2.1 3.
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Considering the first term on the R.H.S. of the x — momentum equation,

h

—j—lP +P&’(h—z)]dz=% f%—d j —-dz=pg j—]dv [2.31])

Using assumption (6) that the spatial variation of atmospheric pressurc is

negligible, the first term is zero. Since z is an independent variable, the third term is

also rero.

Herce,

| oh oh

;J——[P +pg(h-~)m-=gj-—d-= gH 5 [2.32]

Integrating the second term on the RH.S. of x — momentum equation over the depth

and applying the Lichnitz rule,
h

1 f o, , 9% , 9T, "

pi\ ox  dy ()\.

=l[ij:0' (1.~+-i}r dz+| 1, -0 2,3—7 oh ’(r -0 ﬁ—r 95
pL()\' : E3 Shind (}_V : A Sk X ,uax yxay A ; b2 x h

Using assumption (11) that the shear stress at wind-water interface is negligible,

the second term on the R.H.S. of the x — momentum equation becomes:

J 1t 24 ‘
= g,;_f%d: +§_j Tydz - ‘f,,_.J [2.34]



where 7, is the component of bed shear stress acting along the v-direction,

Defining the following:

i
T, = LIO'“(I:, 2.35]
. H.o
1 k {
T =—|71_dz RIRYS
Hf o 12.30]
l k
T, = J' oz [2.37]
l h U '11 B
K =-— ~-nu)yd: 23N
H:{p( ) 12 38]
I h
K, =——]pU-u)V-v)dz 12.39]
v H:
and
1 h ,‘1 2
K =-— V-v)d: 2.40)
w =g IV o) [2.40

ip

T Ty, and T, arc effective stresses due to turbulence and K, K, and K, are

effective stresses due to the depth-averaging of the non-un:“rm distributions of velocity
in the vertical.
Finally, using the continuity equation and simplifying, the depth-averaged

X —momentum equation takes the following form:

oU +U9_U+Vgg+g____(7(z"+h') =_1ﬁL

= 1 d(HT,) N 1 JHT )
or ox dv

ox pH pH odx pH oy

[2.41)
1 d(HK_) 1 d(HK )
+— +— -
pH  ox pH oy
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In a similar fashion, the depth-averaged y- momentum equation takes the following

form:

z T
.(2.Z+U.(_)K+ V(_)!+g———-——a('¢" + H) = __rb’_.’._l_a(HT”) +_]-a(H )")
ot ox dy dy pH pH ox pH oy
[2.42]
| AHK,) 1 d(HK,)

YOH ox  pH oy

Equations [2.41] and [2.42] arc known as the full dynamic equations.

Rastogi and Rodi (1978) have demonstrated that the effective stresses resulting
from the depth-averaging process are much smaller compared to the other terms in
boundary layer type tlows. While studying the near field of a side discharge into open
channel tflow, McGuirk and Rodi (1978) also showed that the effect of these terms is
negligible. However, Flokstra (1977) showed that lhesé terms can be significant in
circulating flows and flows with strong stream line curvatures. Lean and Weare (1979),
and Ponce and Yabusaki (1981) also drew similar conclusions by performing numerical
experiments on a circulating flow using a two-dimensional depth-averaged flow model.
In the case of compound channel flows, these terms are, however, neglected by Keller
and Rodi (1984, 1988), and Djordjevic (1993). In the present study, these terms will

also be neglected.

2.3.1 EVALUATION OF BED STRESSES

The resultant bed  stress generated by friction at the boundary between the
flowing fluid and the fixed boundary can be evaluated using several empirical resistance
formulac (Henderson, 1966). This bed stress can be evaluated by using dimensional

Chezy coefficient and the local depth-averaged resultant velocity written as follows:

I, = PC-’*- v (Rijn, 1990) [2.43]
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where the resultant velocity is given by
V, =4 +V?) [2.44]

and C is the dimensional Chezy coefficient.

The bed stress acting along the x-direction is given by:

T, = T,c0s0 = —’é%v,u (Rijn, 1990) [2.45]

where @ is the angle between 7,and 7, .

Similarly, the bed stress acting along the y-direction can be expressed as:

T, = T,sin6 = % V.V (Rijn, 1990) 12.46]

The dimensional Chezy coefficient, C can be expressed by the following (Jansen et al.,

1979)
C= 1810g(1i—H) 12.47]

S
where &, is the equivalent sand roughness of Nikuradsc.
The above equation can also be written in terms of non-dimensional Chezy cocfficient,

C.. which is related to, C by the following expression:

c=£ [2.48]
=T .

The bed shear stress can also be evaluated by estimating friction slope using Manning
equation which can be written as:

Manning equation, U =~ R*v/S (for Slunits)  (Chow, 1959) [2.49)]
n

where n is the Manning roughness coefficient, R is the hydraulic radius, and § is the

friction slope.
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The following relationships can be used for relating various paramcters (Henderson,

1966):
|

c=Lp [2.50]

n

¥

n—g—z%f [2.51]
RAVEY

c= |8 [2.52]

where f s the friction factor.

The values of equivalent sand roughness of Nikuradse, k. and the Manning
roughness, n, are to be estimated from the field observations. Typical values of Manning
roughness cocfficient for artificial and natural channels |, as well as for flood plains,
can be found in Chow (1959) and Henderson (1966). and Barnes (1987). Typical values

of &, can be found in Rijn (1990) and Chaudhry (1993).

2.3.2 MODELING OF EFFECTIVE SHEAR STRESSES
In order to evaluate the effective stresses resulting from time and depth averaging
processes, the Boussinesq approximation is normally uscd. In this approximation,
turbulent stresses, similar to viscous stresses, wre assumed to be proportional to the
gradients of the local depth-averaged velocities. Using this concept, the following
expressions can be used for the effective shear stresses:
Y

T.,=2pv,— 2.53
w =PV [2.53]

WV QU
T =T =pv(il+ZZ 2.54
ay iy p‘l(()\' + ()\') [ }



20
where v, is the eddy viscosity coefficient which is a property of flow instead of the
property of the fluid. In the above expressions, it is also assumed that this coefficient is
isotropic. Various turbulence models have i.cen used to estimate the eddy viscosity.
These models can be classified into following categories:

I. Zero equation models
I1. One equation models
I1I. Two equation models
IV Stress models

Models belonging to classes 1 to I use the Boussinnesy eddy viscosity concept
and the models under class IV utilize a differential equation for determining Reynolds
stresses. A brief description is given herein. A detail review of turbulence models and

their applications can be found in Rodi (1984) and the ASCE Task Committee (1988).

I ZERO EQUATION MODELS
In these types of models, eddy viscosity is related to the local gradient of flow
velocity following Prandtl's mixing length hypothesis. Using this hypothesis, an equation
for logarithmic velocity distribution can be derived. Applying this distribution, an
expression for the vertical distribution of eddy viscosity can be obtained. Then, depth-
averaging this distribution, the depth-averaged eddy viscosity coefficient can be obtained
as:
v, =0.067u.H [2.55]
Fischer, List, Koh, Imberger and Brooks (1979) have shown that expression for

lateral distribution of the eddy viscosity resulti1g from bed generated wrbulence can be

given by

Vv
——=c, [2.56]
wH

where ¢, is the non-dimensional eddy viscosity coefficient and its value is given by
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€, =0.15 £50% [2.57]

Lean and Weare (1979) used this formulation with, ¢,= 0.16, 1o determine eddy
viscosity for circulating flow in a rectangular channel. Wark, Samuels and Ervine
(1990) used equation [2.56] to determine the distribution of longitudinal velocity in a
compound channcel. They found that the stage-discharge relationship is more sensitive to
the roughness coefficient rather than to the non-dimensional eddy viscosity. They
showed that ¢, lies in the range of 0.1€¢ + 0.08 for the cases studied. They also
concluded that the eddy viscosity can be modeled with reasonable accuracy using only
this bed gencerated turbulence.

Vreugdenhil and Wijbenga (1982) suggested that the eddy viscosity 1or the

compound channel he estimated by using  either of the following two equations:

v, =0.014b AU [2.58]

du

'5;’ [2.59]

a2

v, = 0.014A

where b, is the width of the shear layer and AU is the velocity difference across the
shear layer. The limitation of this equation is that it gives a constant eddy viscosity in
the shear layer whercas Rajaratnam and Ahmadi (1981) showed that this viscosity
varics strongly across the shear layer. They also proposed an expression for eddy
viscosity based on the experimental investigation of compound channel flows. They
derived an equation for estimating the width of the mixing zone as:

b, =5.97D [2.60]
where D is the depth of the main channel below the flood plain level. This mixing
width is measured from the location where U begins to decrease laterally in the main

channel to the location in the flood plain where U reaches the steady vniform value.
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Ogink (1985) investigated the effect of eddy viscosity on flood plain flows for a
branch of the river Rhine and concluded that the eddy viscosity estimated by equation
[2.58] using equation [2.60] is a reasonable first estimate.

Mckeogh, Kiely, and Javan (1989) postulated that the lateral eddy viscosity can
be expressed by the following:
v,=v, +v, +V, [2.61]
where
v, is the total eddy viscosity,

v, i$ the contribution from bed generated shear given by v, =0.16 u.H {2.62]
V,, 1s the contribution from lateral velocity gradient , given by v, =0.013 LU, [2.63]

vV

s is the contribution from the secondary current ( not considered ),

[, is the characteristic length scale for lateral velocity gradient generated shear and it is

calculated from the variance of the velocity gradient, and

U, is the mean velocity in each sub-region, i. e., in the flood plain and main channcl.
Mckeogh ct al. (1989) also proposed a relations!*p relating the wrbulence

intensity and the eddy viscosity as follows:
Vv, =cVu"l, [2.64]

where ¢ is an empirical constant and I, is the length scale. Using equations [2.61] to
[2.64], they determined the average values of ¢ for the main channel and the flood plain
as (.28 and 0.33 respectively.

Kiely, Javan, and McKeogh (1990) adopted the following equation for the eddy

viscosity in order to predict the lateral distribution of longitudinal velocity.

v.(y) = U() i;llﬂ [2.65]
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where f(y) is the friction factor determined from the Colebrook-White equation.

Equation [2.65] can be expressed in the form of the equation [2.56] with ¢, =1.

I1 ONE EQUATION MODELS

In these types of models, the eddy viscosity is related to the locally available
turbulent kinetic encrgy (&) and a length scale (L,). An equation governing the temporal
and the spatial variation of k is introduced and the variation of a length scale is used.
The eddy viscosity is then calculated as:
v, =)k, [2.66)

where ¢, is an empirical constant.

HI TWO EQUATIONS MODELS

In this group of turbulence models, the eddy viscosity coefficient is expressed
as a function of the locally available depth-averaged turbulent kinetic energy (k) and the
local depth-averaged dissipation rate of turbulent energy ( ). Consequently, in addition
to the governing flow equations, two additional equations governing the temporal and

spatial variation of k and & are introduced. Then, the expression for eddy viscosity

becomes:
k 2
v, =¢, ? [2.67]

where, ¢, is a constant.

Rastogi and Rodi (1978) used the depth-averaged version of this relationship for
depth-averaged flow and transport in open channels. Moreover, Keller and Rodi (1984,
1988) applied this model in the steady uniform compound channel flow. They found
that the velocity distribution was predicted well but the boundary shear stress was

overestimated.
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Radojkovic and Djordjevic (1985) compared the two-equation models and the
zero equation model for compound channel flow using the experimental data of Knight
and Demetriou (1983). They demonstrated that in some cases of flows, the non-
dimensional eddy viscosity model (equation 2.55) with varying ¢, may give better
agreement with the experimental data than does the depth-averaged & — € model with its
standard coefficients.
Pasche, Rouve, and Evers (1985) also investigated the adequacy of the k — ¢
modcl with its standard cuoefficients for hydraulically smooth and rough compound
channels. They concluded that the coefficients have to be calibrated to get better

agreement with the experimental data.

IV STRESS MODELS
In all the above cascs, isotropic turbulence has been assumed. In order to consider the
anisotropic naturc of turbulence, higher order models are anplicd. These are called
Reynolds stress models and the turbulent transport terms are determine directly. There
are differential transport cquations for each of the Reynolds stress components along
with the equation for dissipation rate, €. In order to minimize the complicity and
computational effort, Rodi (1984) proposed an algebraic relationship, whereby, the
transport of stresses are assumed to be proportional to the transport of kinetic energy.

For the case of compound channel flows, among many other rescarchers,
Krishnappan, and Lau (1986), Tominaga, Nezu, and Kobatake (1989), and Prinos
(1989) applied these kinds of models for steady three dimensional flood plain flows.

As seen from the above discussion, no conclusive results has been found
regarding the estimation of the eddy viscosity coefficient. However, the dimensionless
eddy viscosity model, equation [2.55] is simpler than the popular k — € model. Hence, it

is decided that in the present study, the eddy viscosity coefficient will be determined
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using equation [2.55} which is simple and no additional equations are required to solve it

numcrically.

2.4 APPROXIMATIONS TO THE FULL DYNAMIC EQUATIONS
2.4.1 INTRODUCTION

The derived full dynamic equations represent the combined effects of inertial,
gravity, pressure and friction forces on open channel flow. Various approximations to
these governing equations for solving open channel flow problems can be obtained by
considering the relative magnitude of each of the terms. These simplified forms of the

equations represent many physical flow phenomena (Henderson ,1966).

2.4.2 ORDER OF MAGNITUDE ANALYSIS

The various flow approximations can be derived from the continuity and the full
dynamic cquations by applying a scaling process to non-dimensionalize the equations.
Hicks(1990) and many otheis performed similar analysis for one dimensional flood
wave approximations. A detailed description of the procedure for the two-dimensional
case will be presented here. The governing equations are reproduced below for easy

reference.

Qﬁ+ d(HU) N I(HY) _ 0
ot ox dy

[2.20]

1 0 U 1 2 av  dU
—l2 Z == A AL 2.4
+ x( pv.H 8x)+pH ay[pv,H( En + ay)] [2.41]
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Vv v oH ,
Ny oy g g _Tn
o o T8y T8 T oy

1 0 oV dU 1 d A%
LI S CLAC120 | TR S POl 2.42
* pH dx [pv, (8.): ¥ Ay ):|+ pH dv(zp"H r?y) 12421

In the present analysis, the followine non-dimensional variables are used.

) V4
x*:%,y*=%.H*=7_lfi.r*=TL.U*=-lljj—.andv*=—‘—- [2.68]

(g o [ o

L, is the length scale for the longitudinal direction which could represent the wave
length of a disturbance or the length of the reach of interest or natural lenath scale of the
channel, H%" . The depth scale, H, could represent the normal depth, critical depih, or
some other imposed depth condition. The velocity scale, U, could represent the uniform
flow velocity in the 1ongitudinal direction, or it could be derived from the discharge and
depth scale, H, or it could also be wave velocity \/ZvH_" . The lateral length scale, W can
be represented by any relevant length in the lateral direction such as the flood plain
width o1 the channel width. For the present analysis, however, two different Iength scales
are chosen for the lateral direction. The depth of flow below the flood plain level can be
taken as the appropriate Iength scale for the shear layer region and the width of the flood
plain as the length scale for the region outside the shear layer. Scale approximations of
the various derivative terms of the governing equations arc shown in Figure 2.1. The
approximate ranges of various hydraulic variables are necessary for a scaling analysis.
Samuels (1985) presented ranges of some hydraulic variables for British rivers and they
are reproduced herein:

Width of the channel ~ 5 to 200 m; typical 30 m.

Width of the flood plain ~ 0 to 2000 m; typical 500 m.
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Depth of flow in the channel ~ 1 to 10 m; typical 5 m.,
Depth of flow in the flood plain ~ {} to 4 m; typical 1 m.
Velocity in the channel ~ 0.5 to 3 m/s; typical 1 m/s.
Velocity in the flood plain ~ () to 2 m/s; typical 0.3 m/s.
The typical wave length of a flood wave ~ 100 km ( Rijn, 1990).
The non-dimensional Chezy coefficient, C.=10 ( Rijn, 1990).
It is scen that if the length of the flood wave is taken as the longitudinal length
scale and the width of the flood plain as the lateral length scale, then W<< L .

The time scale, T

o*

could be evaluated from hydrologic consideration, such as
time of concentration for a basin or storm duration (Linsley, Kohler and Paulhus, 1982).
The time scale could also be obtained by applying the response time of the channel

(Linsley et al, 1982),

T . =— [2.69]

The remaining velocity scale in the lateral direction, V,, could be obtained

fromH,. U,, and W using continuity equation as described in the sequel.

[¢

Considering cach term of the continuity equation,

OH H. OH'
L [2.70]
JUH) _UH, dU'H")

ox L ox’ 271]
d(VH) _V.H, A(V'H") [2.72]

oy 14 dv



Substituting in the continuity equation,

H, Ol | U,H, 3 H') | V.H,OV'H) 273
T, o L ox W oy

- UH . . . . . Lo
Dividing through by ——= | the following non-dimensional continuity cquation is

(2]

obtained:

L,_OH OWH) VL AVH)_
TU, o o WU, oy

rJ
~3
da

0 l

Using equation [2.69], equation [2.73] can be written as:

- . .) * *
T.oH (OWH” VL IVH)_ |, [2.75)
T, or dx WU, dy

a

o T . L
Hence, if ?‘<<], then the time derivative term can be neglected and

[d

. V.L
consequently, steady flow can be assumed. Furthermore, if -LV"_”<<1' then one-

o

dimensional steady flow can be assumed.

On the other hand, if, Lr— 1, and —% =1, then all of the three terms in

4 o
equation [2.75] are equally significant. In this case, the flow can he considered as an

unsteady two-dimensional flow.

From the above discussion, a scale for V, can be obtained as:

V =KU [2.76]
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Using this scale velocity, the resultant velocity, V. can be expressed as:

v=U \/,:U'Z +( -L“iJ v'zJ [2.77)

g 2
It is seen that the second term is sinaller than the first term by [ W, . Hence,
y L,

the resultant velocity can be approximated by
V. =U [2.78]
The various ierms in the x-momentum equation [2.41] can be non

dimensionalized in a similar way and the following is obtained:

U,ou” U - 9U° g JU” [ gH,OH _ o UUZ
T,or 'L, ar L v L ow S THEe
U, 1 o .au‘) Uu 1 9 LU U1 9 LoV
G| 2VH == [t S| VH — |+ | vH
I H (9x( ox" | W'H By( ay ) L H o (V ox )
[2.79]

2

- U : .
D:viding through by T this equation becomes

(7]

auT L. oU” oU"  gH,0H _glLS, LU™
. + U L) v » 9 - = ]‘) = - - - i
or dx ay U] ox U, HHC
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Comparing the coctficients of the effective shear stress terms with those of the other

terms, as long as W << L, the above equation can be simplificd as:

r?U‘ U HU‘ RV (7U. N QH 81-1. - L:IS B LU ) ‘
or dx 2 U: o U, HHC:
, , ) [2.81]
L 1 14 cAl
t == VH —
W-UL H ov 7
The above cquation can also be further simplified as:
r)U' + U ('7[/‘ I (7U' +‘ir(7H. L C
i ox N F ox F
[2.82]
LL v af U
—— | v, —
M UL oL, ()\ ().'

where

Scale Froude number, F, = —2— 12.83)

©4JeH,

and

L

N 2.84
P HC: | |

If L, is defined as the length of the reach, ther B is known as the kinematic fTow
number (Liggett, 1975). It U, and/7, are deficed in terms of uniform tlow, then the

above cquation can be further simplified as:

W U U 11911 ﬁ( l}/{ J

ar’ ox’ AN

[2.85]
L 1 9 ( U’
+— |y T
W UL dy oy

O
d o
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Considering the y - momentum equation, [2.42] and using a similar procedure,

the following non-dimensionalized form is obtauined:

V' WU .9V'  gH, oH" wu: UV’
+ 1 + = —_—

L o Waor o LHCG H

] [

U

WUZ OV WU
L or L

WU, | a[ VY U 19 U U, a( .av‘]
t—r—z| VH — e ——0| VH — - — H —
T H e\ o )+ . (V EY )+ TR GG

w .
Multiplying through by o7 equation [2.86] becomes

wY(av' .oV . av') eH OH WgS, W UV
— —+ U -+ V - [+ === — - - -
L ot adx ov U: dv v, LHC  H

wY 1 b o vy L 1 af auY 1 1 af .oV
| — | —— == VH = |+ ——=| VH + — 5| Vi ==
L ) UL H ox dx UL, H dx UL, H dv ov
(2.87]

Equation [2.87] shows that the coefficients of the effective shear stress terms are

much smaller in comparison to the other terms and hence these terms can be neglected.

Making further simplifications, the following non-dimensional form of the y —

momentum cquation is obtained:

wY(av: .av. .ov'\ 1 o (wY(CS. L UV
re -+l —+V — |+ ——=0| — i N4 2 88
(Lu] ( or N o ) F o B (L J[ F'W H J [2.88]

(4

where F and B are defined before.

The scaling analysis results in three non-dimensional parameters, namely, F,,

B. and WL . Depending on the magnitude of the each of these parameters, various

approximations to the governing equations can be developed. In doing so, the scale
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variables need to be defined. In the present analysis, L, is considered as the wave length
and T, as the wave period. The depth below the flood plain level is considered as the
lateral length scale for the shear layer region and the width of the flood plain as a scale
for the region outside the shear layer. Hence, in the present analysis, the term, § is
defined as the diffusion flow number,

By comparing the relative magnitudes of the various terms of the equations

[2.85] and [2.88], it is apparent that the inertial terms in the y- momentum equation,
2

[2.88] are smaller by (%{) . If the magnitudes of B and %:3 arc much larger than |

and the magnitude of the ratio % is much less than 1, then it is apparent from [2.85]

and [2.88] that the inertial terms are much smaller than the pressure, gravity | and

friction terms. Considering the range of values of the various hydraulic varables as cited

earlier, the magnitude of each of the non-dimensional parameters can be estimated as:

F, = 0.1 ~0.3; typical .15;
B =200 ~ 1000, typical 500;
%V- =0.001 ~ 0.02, typical 0.005;

Considering the magnitudes of these parameters, it can casily be concluded that
the inertial terms are much smaller than the other terms for some flood {lows and
consequently, the two - dimensional zero-inertia approximation to the full dynamic
equations can be applied for simulating most {flood flows.

Ponce, Li, and Simons (1978) investigated and assessed the applicability of the
one-dimensional zero-inertia wave approximation by comparing its celerity and wave
attenuation with those of the full dynamic equations. They proposed the following

criteria for practical purposes:

TS, /i >30) [2.89)]
H,



where T is the wave period.
This criteria can be expressed using the non-dimensional parameters, ¥, and
as follows:
BF,6 245 [2.90]
From the cited typical values of various parameters, it is evident that this criteria
is also satisficd. Therefore, it can be concluded thet the two - dimensional zero-inertia
modcl can be confidently applied for simvlating flood flows with magnitudes of the

non-dimensional parameters lying in the "bove mentioned ranges.

243 THE TWO-DIMENSIONAL ZERO-INERTIA MODEL AND ITS
MATHEMATICAL CHARACTERISTICS
As the scaling analysis shows that the zero-inertia approximation can be applied

to some flood flows, the governing flow equations reduce to the following forms:

oh | dq,  dq,

—+—"+—=0 291
or ¥ ox * oy (2.91]
oh T, 1 d oU .
S L A Y e 2.92
A (?.\' pH pH ay (pvl av ) [ J

Ty,
S [2.93]

& pH

g4, and g, are the longitudinal and the lateral discharge components respectively.
In order to investigate the mathematical characteristics of these partial
differential equations, the effective stress term is neglected for simplicity. The continuity

and momentum equations can be written as:



dH oH U . dH aVv
7[—+U—a—;+H—é—;+VE+H5\——()

Substitution of the expression for 7, in equation [2.92] results in

c?H:S U-

ox " LHC?

then,

O°H___2U oUu, U &
ox* gHC.) dx gH'C’

for constant §,, and C,

Rearranging and simplifying . this reduces to

JU _ gHC: &H U 9H

ox 2U ox* 2H ox

Similarly , substitution of the expression for 7, in cquation [2.93] yiclds

oH uv
=5, -
dy * gHC”
then,

IH_ (U oV, _V U, VU JH
gHC? dy gHC? dy gHC.? dy

Rearranging and simplifying, cquation [2.99] gives

dV _ gHC) H VU VIH

ady U ' Ud Hay

34

12.94]

[2.95]

[2.90]

[2.98)

[2.99]

[2.100]
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Again, differentiating equation [2.95] with respect toy and simplifying, the

following is obtained:

g/ __gHC’ O°H U dH [2.101]

Ay 2U  odxdy -ZE-E)—

An order of magnitude analysis shows that the first term on tl.e R.H.S. is much smaller

than the second term and thus can be neglected. Hence,

U U dH
—_— = ———— 2.102
dv  2H ody [ ]

Substituting equations {2.97}, {2.100], and [2.102] in the continuity equation

[2.94], the following is obtained:

oH JH ¢HC 'H U oH oH
U+ H| - |+ V—
ar ox ( 2U ox° 2H ox )+ dy
gHC? *H V 0H V JH

+H| - - T =0 103

( U o ¥ TH [2.103]

After simplifying, this can be reduced to

22 a2 242 2
_@I_l_'__.'iu_r?_ii__*_ivé_li_gHC.aH_gHC.BH_

o 2 dx 2 dy 2 U3 =0 [2.104]
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Therefore, after rearranging, the following equation for two-dimensional open channel

flow 1s obtained:

oH oH oH d°H J°H
—+a'U—+pB'V—=D — + D —= 2108
o ox p dy Yy Yoo | l
where
, 3
o' == [2.100]
2
, 3
s =3 [2.107]
p, =8¢ [2.108]
' 2U
and
QF& [2.100]
‘ U

The longitudinal diffusion coeflicient, D, can also be expressed as ‘//m S )

originally derived by Hayami (1951) for a one-dimensional diffusive wave formulation.
From cquation [2.105], it can be noticed that the zero-inertia approximation to the full
dynamic equations results in a two-dimensional convection-diffusion equation for open
channel flow in a wide rectangular prismai:c channel. It is also scen that the effective
diffusion coetTicient in the lateral direction is twice the coctlicient in the longitudinal

direction.

2.5 THEGRETICAL ANALYSIS OF MONOCLINAL WAVES
The movement of floods in the natural rivers has been a great concern to the
rescarchers. Among the many investigators, Seddon (1900) discussed the movement of

flood waves in detail on the Mississippi river and showed that the major portion of the
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flood moves with a kincriatic wave velocity. Later, Lighthill and Whitham (1955)
studied theoretically the preperties of kinematic waves and their role in the movement
of floods in a long river. They showed that the kinematic wave velocity depends on the
depth of flow, and that successive kinematic waves may lead to the formation of a steep
front. However, as the wave front becomes  cper the roles of other slope terms in the
governing momentum cquat’sns decome prominent introducing attenuation and
dispersion to the waves and thereny retarding the steepening tendency of the wave front.
Lighthill and Whitham (1955) described the resulting flood wave as a kinematic shock
wive or monoclinal wave which moves with the kinematic wave velocity but retains its
shape unchanged as it moves downstream. A monoclinal wave approximation is
applicable to a long river where the length of the reach should be greater than the natural

Iength scale of the channel, D/S,, (Lighthill and Whitham, 1955). The various

properties of this wave are discussed in the sequel.

2.5.1 AVERAGE WAVE VELOCITY

A detailed analysis of the properties of the kinematic wave velocity for the case
of a rectangular channel is available in the literature (Chow, 1959; and Henderson,
1966). Dingman (1984) discussed the properties of the kinematic wave velocity for the
case of a compound channel by considering only the storage effects of the flood plain
arcas. Following a similar theoretical concept, a detailed analysis of the movement of a
monoclinal wave in a compound channel considering both the storage and the
conveyance of the flood plains is presented herein. In pursuing this analysis for the
monoclinal wave, the flood wave can be considered as steady from the point of view of

an observer moving with the wave velocity, V, instead of analyzing an unsteady

phenomena. This can be achieved by the superposition of a velocity equal and opposite

to the wave velocity, V,. Two further assumptions are also used to analyze the
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properties of a monoclinal flood wave. One of them is that the flood plain is initially dry
and the second is that the compound channel system is straight, symmetric, and
prismatic.

Figure 2.2 shows the monoclinal flood hydrograph. The plan view of the half of
the compound channel along with other useful sections are shown in Figure 2.3. The
initial and the final condition of the flood events are also shown.

In order to desive an expression for the average wave velocity, a one-dimensional
flow condition is assumed to prevail. To satisfy the criteria for the stationary  steady
wave, the total discharge at every compound channel section must be constant,
Mathematically, this can be expressed as follows:

W W,

}[(U_V“,)Hd_\mconslam [2.110a]

where W is one half of the main channel width and W, is the width of the 1lood plain.
Applying this equation between Section 1 and Section 2 as shown in Figure 2.3,

this can be written as:

W+H M+H

J‘(U V )Hd\ = J'(U W)Hd-vlscc’l [2.110b]

Using th2 ninatsns of the Figure 2.3, neglecting lateral momentum transfer, and

simplifying, the ¢ x5rus-.on for average wave velocity can be derived as:

Uc.,+U,,.(HH D)W -U, :
V. = ' c : [2.117}
H - D)(W +1)
. H

\ c
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where U, is the longitudinal main channel flow velocity at the final stage of the flood,
U,, is the longitudinal initial main channc? flow velocity, U,, is the longitudinal flood
plain flow velocity at the final stage of a flood, H, is the main channel flow depth at the
final stage of a flood, D is the main channel flow depth at the beginn . of a flood, w,

is the width ratio (: W%V ) W, is the width of the flood plain, and W, i¢ ¢cne ha' of

the main channel width.

The average flow velocity at the peak stage of a flood can be expresscd as:

U, + Uw( H-D Jw,
H
U = < [2.112]

14| A =D W,
H

-

Hence, the ratio of the wave velocity 1o the average flow velocity can be expressed by

the following:

3
- C -D)\?
Lo[Hm Yy ), G B=D Yy, _Cuf D
y H Cc.\ H C.\H.

12w

cu [3

U"' = 3 [2.113]
(H“ _D)(W, +1) l+i(H“ _D)- W,
C . cu H('
where Y U is the ratio of the average wave velocity to the average flow velocity,
(H.- D)

s the ratio of the flood plain depth to the total depth in the channel at the

peak stage of a flood and it is denoted as the depth ratio hereafter, C,, is the dimensional

Chezy coefficient for the flood plain at the peak stage of a flood, C., is the dimensional
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Chezy coefficient for the main channel at the peak stage of a flood, and C., is the
dimensional Chezy coefficient in the main channel for the initial stage of a flood.

Equation [2.113] shows that the velocity ratio is a function of depth rat  width
ratio, and roughness ratio. Figure 2.4 shows the variation of the velocity ratio with depth
ratio for different width ratios (W, =1, 2, 10, and 20) and a particular roughness ratio of
1. It is seen that as the width of the flood plain increasces, the velocity decreases for a
particular depth ratio. However, it is also seen that the effect of width increase on the
velocity raiio becomes less prenounced for larger depth ratios. The effects of depth ratio
on the velocity ratio for a rectangular channel with constant Chezy cocfticient is also
shown. It is noticed that the velocity ratio varies from 1.5 to 1.

Figure 2.5 shows the variation of veiocity ratio with depth ratio for different
roughness . itios (ratio = 1, 10, 20) and a particular width ratio of 1. It appears that the
effect of roughness ratio is similar to that of width ratio. In all cases, for low flood plain
depths, the velocity ratio is significantly less than 1. Similar phenomera were also

observed in the field ( Henderson, 1963).

2.5.2 VOLUME OF LATERAL FLOWS AND THEORETICAL ANALYSIS
Application of conservation of mass in the flood plain portion of the
compound channel results in a simple equation for determining the volume of flow
entering from the main channel to the flood plain. This equation is derived in this section
using the control volume shown in Figure 2.6. This figure shows the plan view of a flood
plain on which the distributions of the steady longitudinal and lateral velocitics as will
be seen by a moving observer are indicated. For this part of the stationary wave, the
total longitudinal discharge across the upstream section of the flood plain which appears
as an outflow must be equal to the totai lateral inflow from the main channel to the

flood plain. Mathematically, this can be expressed as:



41

W W, L

0, =- [W, —V.)XH-D)dy=q,dx [2.114]
w, 0

where @, is the total stcady discharge across the flood plain as seen by the moving
obscrver, g, is the lateral discharge per unit length, U, is the longitudinal flood plain
flow velocity at the final stage of a flood, V,, is the average wave velocity, and L is the
leizth of the wave along the channel.

From the point of view of a stationary observer, the volume of the flood plain per

unit length filled up by the lateral discharge in time is given by:

Vol = [ gdr [2.115]
]
and also, dx=V dr [2.116]
L (/ Q
Hence, Vol = j—‘;dx == [2.117]
1 " Vw

Therefore, equation [2.117] gives a very simple relationship between the volume
of flood plain per unit length filled up by the lateral inflow, the wave velocity and the
total steady  state discharge across the flood plain as seen by a moving  iserver.

Assuming a constant longitudinal velocity across the flood plain at the final stage
of a flood ., neglecung the momentum transfer phenomena, the total flood plain

dischanyge can be caleulated as:

o =AU, =V, )XH, ~DW, [2.118]

pu
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Substituting equation [2.118] into equation [2.117], the volume per unit length

filled up by lateral discharge can be expressed in the following non-dimensional form.,

U YH -
AT s J(%TB]W' 12.119)

w c [ w ¢

The percemtage of the volume of the flood plain filled up by the lateral inflow can

also be determined ‘ollowing:
U
Vol = — Q. : =(1— N ESTI) [2.120]
V.H -D)W,  V,

Substituting the expressions for U, and V,, the above expression can be simplified as:

i

3 3
{_Cu(H. =D 5_q,(£)2
C H cC \H
Vol% = wl e /. —alTe) _xq 12.121]
1+ pu H( —D N Wr — Ccd _l_)_ -
Cz‘u Hr Cru H

From the above equation, it is scen that the percentage of volume is a function of’
the depth ratio of the final flood plam depth to the total main channel depth, the ratio of
the initial depth to the final depth of the main channel, the width ratio, and the roughness

: . \H.-D .
ratio. For a depth ratio of (H, % =1, the compound channel becomes a single

rectangular channel with an initially dry bed. The variation of the volume per unit length
in non-dimensional form [equatinn 2.119] with the depth ratio for different width ratios
and a particular roughness ratio of 1 is plotted in Figure 2.7. It is clearly noticed that the
contribution increases from zero to a maximum at a certain depth ratio and then

decreases again to zer:. The variation of the percentage of volume filled up by the
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lateral discharge with depth ratio for different width ratios for a particuiar roughness
ratio of 1 is also shown in Figure 2.8. It is revealed that the contribution of the lateral
inflow in filling the flood plain decreases as the width ratio increases. It is also seen thai
at very low flood plain depth, the contribution is almost 100 %. This is because of the
division by small flood plain depth as seen from equation [2.12()]. Figure 2.9 shows the
variation of the percentage of volume filled up with depth ratio for different roughness
ratios (ratio = 1, 10, and 20) and a particular width ratio of 1. It can be inferred that the
rougher the flood plain, the more the contribution of lateral flow in the filling process

of the flood plain.

2.6 NON-DIMENSIONAL FORM OF THE GOVERNING FLOW EQUATIONS

Dimensional analysis of the governing equations leads to the non-dimensional
forms of these equations with non-dimensional variables. As such, the number of the
dimensional variables is reduced. The monoclinal wave approximation results in a
further reduction in the number of non-dimensicnal variables as discussed herein. The
obtained non-dimensional variables will be used in designing numerical experiments.
Dimensional variables are defined as the product of a constant reference variable and a
dimensionless ratio as follows:

»

= X v
. L“,_

»

o=

L [2.122]
uD" T,

X
L’
The reference variables can be defined as: U, is the uniform flow velocity, D is

the depth of the main chanrel below the flood plain level,

L, 1s the natural length scale of the channel given by L, =§D—, (Ponce and Simons,

ox

1977) [2.123]
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and T, is the response time of the channel given by

L
T, === [2.124]
U

It

The governing equations are reproduced below:

oH dq. 0Jq,

e 7 2.125

dr ox oy [ I
ﬂ1—=Sm _S/x =Sn.x - U’ M l2]2()l
ox ! gHC:

9H s, -5, =5, - U 12.127]
Iy ' ' " gHCT gHC:

where S, and S, are the longitudinal bed slope and the friction slope respectively. S
and S, are the lateral bed slope and the lateral friction slope respectively. The value of
the lateral bed slope is taken as zero for simplicity.

Substitution of the non-dimensional variables into cquations [2.125] to [2.127]

results in the following:

L, oH  Jq g,
— ey
UT, or ox dy

[

=() [2.128]

B.gizsm_g‘-gDL:u“{_zsm_SM_ l2~]29]
L, odx gDH C: H

DoH __SU [2.130]
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Using [2.123] and [2.124], the above equations can be written in the following

non-dimensional forms:

_(.)_{Lﬁ..iq'..{.._()_(/_:“

dit dx oy

UV
N’ H

The initial low condition 1s given as the following non-dimensional form:

at 1 =0, U™ =0 in the flood plain.

Vi =0.

H' =0 in the flood plain.

The inflow boundary condition at x* =0 is given as follows:

q,.1)

UD

q,

=] in the main channel.

= ] in the main channel.

[2.131]

[2.132]

[2.133]

{2.134]

The peak flow condition can bhe expressed in the following non-dimensional form:

. T,y
at = e

"T'UD WUD

[2.136]

where ¢, is the peak longitudinal discharge per unit width, Q, is the total peak

longitudinal discharge. W_is the half-width of the main channel, ai.d 7', is the time to

peak.

The outflow boundary condition at x’

is given as follows:
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)

q.=H" 12.137]
where A is the length of the reach of interest.

The lateral side boundary conditions are given as follows:

. W .
at y'=—£ ¢ =0and
LW
at y =L—F, g, =0 [Z.138]

(4]
Hence, from the above dimensional analysis, it is revealed that equations [2.137)

t0 [2.133] are to be solved for g,.q,.H",U", and V" as functions of x",y".r" and

W,/ W/ 0 T / ' C./
% /L /W{_UHD)‘ /T and N

where €. and C., are the dimensional Chezy roughness coefficients in the flood plain
and the main channel, respectively.
The non-dimensional governing parameters can also be grouped as:

W / W - : '
% . W%) or ’/’a,(, Ky D - A%) or l\% ond S, .

where &, and » . are the roughness height in the flood plain and the main channel
respectively.

As the pseudo-steady state form of the monoclinal wave approximation is
adopted in the present analysis, the non-dimensional time parameter is e¢liminated. Also,
the non-dimensional peak discharge parameter can be replaced by the non-dimensional
ratio of the flood plain depth to the total main channel depth at the peak leved,

(

H -D . . . . .
‘ )H . Hence, in the present study, extensive numerical experiments will be
c

carried out to investigate the characteristics of lateral flows by utilizing the following

non-dimensional variables:

(H. —D%K‘SWW%‘W%)’&%‘ o k,%.
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3 NUMERICAL MODEL

3.1 INTRODUCTION

The governing equations for open channel flow are nonlinear and it is not
possible te solve them analytically for generalized boundary conditions. Therefore,
numerical techniques are used to solve these equations. A number of numerical
methods, namely, the method of characteristics, the finite difference method, the finite
element method, and the control volume method have been developed and applied to
solve unsteady open chanpel flow problems. Detailed descriptions of the various
methods are available in many texts, such as Abbott (1979), Celia and Gray (1992), and
Chaudhry (1993). In this chapter, a brief review of several models for compound
channel flow will be presented in Section 3.2 with special emphasis on zero-inertia
modcls. A brief review of several numerical models for overland flow will also be
provided in Section 3.3. The development of the present zero-inertia  scheme will be

described in detail in Section 3.4.
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3.2 REVIEW OF NUMERICAL MODELING OF COMPOUND CHANNEL
FLOWS
A great deal of numerical modeling of compound channel flows has been
reported in the literature. These models vary from estimating the distribution of steady
uniform  discharge to the movement of unsteady flood flows through a compound
channel system. Applications of these models also range from one to three-dimensional.
Some of the models take momentum transfer phenomena into account and some of them

do not. A brief review of them is given below.

3.2.1 MODELING OF STEADY FLOW IN COMPOUND CHANNELS

Various one-dimensional models have been developed and applied to compute
the velocity and discharge distribution in compound channels. Among the many other
investigators, Ervine and Baird (1982), Prinos and Townsend (1984), Dracos and
Hardegger (1987), Wark, Samucls, and Ervine (1990), Wormleaton and Merrett (1990),
and Martin and Myers (1991) proposed various numerical models by taking the lateral
momentum transfer process into account.

Keller and Rodi (1984, 1988), Pasche, Rouve, and Evers (1985), and Djordjevic
(1993) developed several two-dimensional models for sieady flow. All of them used
boundary layer approximation in deriving the parabolic forms of the governing
cquations.  As a result, the water surface is horizontal across the channel leading h 1o be
a function of x only and the streamwise variation of the water surface elevation is
normally obtained from one-dimensional backwater profile calculation, All these works
included the effect of lateral momentum transfer phenomena.

Urban and Ziclke (1985) presented a steady state two-dimensional finite element
model for compound channel flows. The model did not consider the effect of momentum

transter phenomena. They applied the model to a river section of 1.5 km long with a



SN
water depth of § - 6 m in the main channel and 0-2 m in the flood plains, They compared
the results obtained with and without considering convective acceleration terms and
concluded that these terms can be neglected in friction-dominated flood plain flows.

Krishnappan and Lau (1986) and Tominaga, Nezu, and Kobatake ( 1989) studicd
the flow structure of steady flood plain flows by applying three-dimensional  low
models on the basis of algebraic stress models, adopting the full three dimensional fTow
equations. Prinos (1989) studicd the flow structure adopting the two-dimensional depth-
averaged and three-dimensional models using  experimental data, He coacluded that
hoth types of models overestimated the mean velociites and boundary shear stresses in
the main channel while these are underestimated in the flood plain for low relative
depths. For high relative depths, however, hoth types of models reproduce the Tlow

characteristics properly. Recently, Pezzinga (1994) applied a three dimensional flow

model along v - = odel to predict the distribution of the primary velocity
component, the dischione -+ ribution and the secondary circulation. He also used the
numerical resul. mpare different subdivision methods for determining the

discharge distribution. He  concluded that the better subdivisions are the diagonal
surface that leaves from the corner hetween the flood plain and the main channel to the
free surface on the symmetry planc and the bisector surface of the corner hetween the

main chunnel and the flood plain.

3.2.2 MODELING OF UNSTEADY FLOW IN COMPOUND CHANNELS

One- and two-dimensional modeling of unsteady flows in compound channels
has been carried out by many rescarchers. Investigations of the movement of flood
waves in compound channcls by applying the one-dimensional St. Venant cquations
include Fread (1976, 1988), Radojkovic(1976), Ervine and Ellis (1987), Tingsanchali
and Kumar (1988), Stephensen and Kolovopoulos (1990), Rashid and Chaudhry (1993),

and Abida and Townsend (1994). Recently, the CSCE Task Committee on River Models
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(1993) reviewed the performance of a few one-dimensiona! full dynamic models by
simulating experimental data on compound channeis. Among all these models, only
Stephensen et al. (1990)  considered the momentum transfer phenomena. In these
modcels, the whole cross-section of the channel is treated either as a single unit or divided
into a main channcl, left flood plain and right flood plain sections. At every time step,
the water surface is assumed to be horizontal across the channel. These models give a
reasonable estimate of the various featurcs of flood waves but are unable to provide the
distribution of flow patterns in a compound channel.

Quasi-2-D modeling or ' Cell Type ' modeling of compound channel tlows
have been carried out by many investigators. Inciuded among these models are Cunge
(1975). Grijsen and Meijer (1979), Cunge, Holly. and Verwey (1980), Lesleighter
(1983), and Tingsanchali and Chaiwat (1984). In these models, the computational
domain is divided into irregular grids or computational cells based on the physical
boundaries. "The cells are connected by one-dimensional links. Although, a good
approximation of the flows can be achieved by these models, a detailed study of the fiow
patterns is not possible.

Two-dimensional modeling of compound channel flow, have also been carried
out by many researchers. These models include either the full dynamic equations or
simplified cquaiions. Katopodes and Strelkoff (1978), as well as Sch:aitz, Seus, and
Crzirwitzky (1983) adopted the method of characteristics te solve the full dynamic
cquations. Samuels (1985), Katopodes (1987), Akanbi and Katopodes (1988), and Gee,
Anderson, and Baird (1990 j also used these equations but in a finite element method.
Vreugdenhil and Wijbenga (1982) applied a finite difference method to model the flow.
Jenkins and Keller (1990) also adopted a finite difference method but in curvilinear
coordinate system. Popovska (1989), Soulis (1992) and Lai and Yen (1993) adopted a
control volume method to study the propagation of flood waves. Among ais these

studics, only Vregdenhil and Wijbenga (1982 ), Gee et al. (1990) and Lai and Yen
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(1993) took the effective shear stress or lateral momentum transfer into account. The
major limitation of the full dvnamic models is that they are not easily applicable to the
dry bed situation. Special techniques have to be adopted to handle this situation (Cunge
et al., 1980; Akanbi and Katopodes, 1988; and Mesclhe and Holly, 1993). Morcover. all
these models need significant amounts of computational time and effort to simlate the
flood events. Also, it is worth mentioning that the finite element methed requires more
computational storage and time in solving the two-dimensional depth-averaged full
dynamic equations than the finite difference method (Thaker, 1978). Recently, Naaim
and Brugnot (1994) compared the performances of the two-dimensional finite element
model based on Gaierkin formulation and the control volume formulation. They
concluded that the control volume method is much taster <han the other while producing
results of the same accuracy.

Apart from all of these full dynamic models, several investigators adopted
simplified models. Xanthopoulos and Koutitas (1976) applied the zero-inertia wave
model using an explicit finite difference scheme to compute the velocity components
and water depth. Hromadka 11, Berenbrock, and Freckleton (1985), Hromadka 1T and
Durbin (1+'86) adopted such models to simulate the inundation of flood piains. De Vries,
Hromadka II, and Nestlinger (1986) adopted a hybrid model to study such phenomena.
They coupled the one-dimensional main channel model with the two-dimensional flood
plain model through an tnterface model. Giammarco, Todini, Consuegra, Joerin, and
Vitalini (1994) adopted a hybrid model by linking river and flood plain flows by weir
type links. All these models adopted Nodal Domain Inteeration (NDI) method with an
explicit scheme. Description of the NDI method is available in Hromadka 11 and
Guymon (1982).

Gallati and Braschi (1989) applied a control volume method to simulate the
flooding of urban areas due to a levee breach. They excluded the convective inertial

terms and effective shear stress terms but included the local inertial terms in the
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momentum cquations. They adopted a fully implicit scheme with a Gauss-Seidel
iteration technigue to solve the governing equations. However, Ponce (1990) has
demonstrated that the complete non-inertial model is a better approximation to the full

dynamic model than cither the convective or the local inertial models.

3.3 REVIEW OF UNSTEADY FLOW MODELS IN OVERLAND FLOW

Some rescarchers have adopted zero-inertia wave models for overland flows.
Chow and Ben-Zvi (1973) developed a two-dimensional explicit model for simulating
overland flow in a watershed. Hromadka I1, McCuen, and Yen (1985) applied their zero-
inertia model for analyzing overland flows. Ponce (1986) applied diffusive, kinematic
and full dynamic flow models for modeling catchment dynamics and demonstrated the
advantage of the zero-inertia model over the kinematic models. He also showed that
there was no significant difference in the results obtained by full dynamic and zero-
inertia models for the case studied. Tayfur, Kavvas, Govindaraju, and Storm (1993)
compared the performance of the two-dimensional kinematic and diffusive wave models
with the full dynamic models for overland flow with rough infiltrating surfaces. They
used an implicit centered finite difference method to solve these equations numerically.
They compared the performance of the simplified models and the full dynamic models
by simulating the experimental data wnd concluded that both types of models gave good
agreement with the data. Recently, Giammarco and Todini (1994) developed a iwo-
dimensional zero-inertia wave model using control volume finite element method wiih

an tmplicit scheme.



..4 DEVELOPMENT OF THE TWO-DIMENSIONAL ZERO-INERTIA
MGODEL

Onc of the objectives of the present research is to develop a numerical model for
sunulating compound channcl flows. As such, autention is paid to the development of a
. 2merical scheme which is simple, relatively casy w0 implement but produces results
with reasonable accuracy under certain conditions. An order of magnitude analysis of the
governing flow cquations has shown that inertial terms can be neglected for most flood
flows. As a result, the present work is concerned with the development and the
application of a two-dimensional depth-averaged zero-inertia model. Among the many
investigators, Akan and Yen (1981) and Sabur (1990) applied a one-dimensional zero-
inertia model to simulate river flows. Sabur (1990) adopted a control volume method
with a semi-implicit time discretization in his model.

The zero-inertia model has several advantages over the full dynamic models. It
solves for one dependent variablz instead of three as will be shown in the sequel.
Naturailly, it needs less computational time and effort. The salient feawres of the
proposed model differ from the zero-inertia mod - - =« 4 the literature review
mainly on three distinctive points. Firstly, the proposes mosicr mcludes the momentum
transfer mechanism which plays a significant role in various hydraulic aspects of
compound channel flows. Secondly, the approximation of the resultant bed shear stress
yields an expression for lateral velocity (equation 2.93) which is different than the
conventional onc-dimensional Manning or Chezy equation. Thirdly, the proposed
scheme employs the control volunie formulation which is , simple, easy t¢ understand,
and it follows from a direct physical inierpretation (Patankar,!9&{j). Morcover, the model
solution uses an alternating direction implicit (ADI) algoriihin: which is robust and

co.nputationally very efficient (Gerald and Wheatly, 1985).
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3.4.1 MODEL EQUATIONS:
The model cquations are based on the depth-averaged continuity and simplified
forms of the momentum cquations as presented in Chapter 2. The basic equations are

reproduced here as follows:

M, %, %,

ey =0 3.1
dt dx dy (3.1]
g.{?ﬁ:_i"__.,}.Li(ple.{Z(_i [32]
ox pH pH (7.\’ Ay
(—)h T”v
Y —— ———‘- 3.3
g dy pH (3]

3.4.2 INITIAL AND BOUNDARY FLOW CONDITIONS:

In order 1o solve the governing equations, the problem must be well-defined with
an appropriate specification of the initial and the boundary conditions. The boundary
conditions at the upstream and the downstream ends of the computational flow field
must be known.

I INITIAL FLOW CONDITION

Inttially, eny realistic combination of flow distributions in the main channel and
the flood plain can be used.

I UPSTREAM FLOW BOUNDARY

At the upstream scction of the computational flow field, the boundary condition
can be provided either by an inflow discharge hydrograph or by a stage hydrograph.

I DOWNSTREAM FLOW BOUNDARY
At the downstream section of the dor:ain, a stage-discharge relationship, a stage

hydrograph, or a fixed stage can be specifi~ .
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v SOL'D BOUNDARIES
Atthe flood plain side boundarics, the condition of no flow across cach of the
boundarics has to be specified. This condition implics that the velocity or the discharge

component normal to the solid boundaries is zero.

3.4.3 CONTROL VOLUME FORMULATION AND NUMERICAL SCHEME
The flow equations are discretized using a control volume method, which is
brictly discussed herein. Details of this method can be found in Patankar (1980). The
computational domain is subdivided into a finite number of non-overlapping control
volumes. The depth and all other scalar variables are defined in the center of cach
control volume. The velocity or the discharge components are defined at the interfaces of
each control volume. Consistent flow approximations between control volumes lead o
mass conservation at the discrete I
Considering a typical com-- volume as shown in Figure 3.1, the continuity
equation can be integrated over this volume and the following is obtained:
Ah

~ AvAy=(q, —q, )Ar+(q, —q, )Ax [3.4)

where Ah is the change in stage in time Ar, ¢, is the inflow longitudinal discharge per
unit width, g, is the inflow lateral discharge per unit length, g, 1s the outflow
longitudinal discharge per unit width, ¢, is the outflow laieral discharge per unit
length, Ax is the grid size in the longitu_inal direction, and Ay is the grid size in the
lateral direction.

Deriving expressions for g, and ¢, from equations [3.2] and [3.3], respectively,
and substituting in equation [3.4] rzsults in an equation which contains only onc

dependent variable, A.
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In order to solve this ¢quation numerically, either explicit or implicit schemes
can be used. In the explicit schemes. the unknown variaole at a computational node is
expressed as function of other known variables obtained from an old time step. These
methods are simple but the time step size is limited from stability point of view. In the
fully implicit schemes, however, the value of an unknown variable at any instant
depends on the unknown values of other variables at several other computational nodes,
as well as known values from an old time step. Consequently, a system of algebraic
cquations has to be solved simultancously. It implies that both large computer storage
and computational time are needed to achieve the desired solution. The implicit methods
have no restrictions on time step size from a stability point of view but accuracy criteria
sets a limit on it (Fread, 1976).

In order to reduce the computational storage and time, a modified implicit
method known as the Alternating Direction Implicit (ADI) scheme can be used. The
ADI scheme  divides cach time step into two stages of equal half time step. In this
method, a tridiagonal cocflicient matrix is obtained by alternately writing the finite
difference equations, first implicitly along columns and explicitly along rows and then
vice versa. As a result, it significantly saves computational storage and time (Gerald and
Wheatley, 1985). In the present study, the ADI scheme has been adopted. Ponce and
Yabusaki (1981) also used an ADI scheme for solving the full dynamic depth-averaged
equations in order to model circulation in depth-averaged flow.

For the first half time step, considering the y — direction implicit and the x —

dircction expiicit, equation [3.4] can be written as follows:

h 2 =h"

] 1
N ﬂ o A,\'A'\' = ((/.:-'m _ q;lM )A'\' + (qym 2 qym'l )Ax [35]
2

where n is the nth time step.
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This can be writen as:

[3.6]

For the sec

ond hall time step, the x— direction becomes implicit and the
y —direction becomes explicit and equation [3.4) can be written as tollow

1 1 1
n+— A[ At n+— nt—
W =hyt =y (q*ﬁf T )+2A ( o ]
2Ax it 3 v )

13.7]
The grid sizes , Ax and Ay can be varied in the computational code. Howeve
they are treated as constants here for simplicity

In order to solve cquations [3.6] and [3.7}, expressions for ¢, andg  are

required. The expression for a typical g, can be obuined from equation {3.3] as

/
g, =K, [3.8]
" Ay
ZH'.’
where K| = C—— [3.9]
g
At the outtlow face of the control volume, equation [3.8] can be written as
C2 H2
'}4‘% i,j+1 (h: Jj+1 hr} J
q) - - .
v | Ay [3.10}
r,j+-’-
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H [ =0.5H +H
1 ( 1) '-)H) [3.11]

t.[*;

Cm% =0.5(C,,+C,.,) C.12]

=0.25
U =02 (U .t U'_%‘M + UH%J + UH%M) (3.13]
The expression fur a typical ¢, can be derived from equation [3.2] as follows:

dh ulu| . d dU
H-— = —p 14 | Hy — 3.14
o™ 8 r)\‘( A G- 14]

Solving this quadratic equation, treating the last term as a constant, an

expression for U can be obtained as:

WU |, >0, then

3 ]
U, =0 -4+ - 44,)] (3.15]

U , <0, then

i+5./

U, =0 S[Al — (A 4@] [3.16]

Y,

where

i+%.] .
A=A [E.A_,-A *E ] [3.17]



b
14—
2

Ay

yE oL U
gAy ”5‘;+5 x+3,;+|

oy
l+:,}
A, E

=E—=Lc U
gAy e e O

H. =()5(H,J+H,+],)
JJ ’

C, =05C,+C,, )

141,

H, ,=025H +H, , +H

(Rt o
5

-+ H

1+1,j l+l.j+l)

and

[3.18]

[3.19]

13.20]

[3.21]

[3.23]

[3.24]

13.26]
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U ,=u.5(u_, +U J [3.28]

Hence, determining the longitudinal velocity at any face of the control volume,

the corresponding discharge can be calculated as:

Without considering the effective stress term in the longitudinal direction, the

expression for a typical ¢, can be written as:

g, = 1\’,\/%’—' [3.30]
X

k)

where K, = CH? [3.31]
In order to solve the continuity equation for the first half time step, equation [3.6]

is rewritten as follows:

1 I 1
Foo=h, =l - -2%;( G, ~di, j - Q_AA’—\_((]— - qy J [3.32]
where, F; is the residual.

Substitution of the expressions for ¢,'s and ¢,'s in the equation [3.32] results in
three unknowns and three known nodal values of water surface elevation at each control
volume at one nalf time step. If N is the total number of control volumes along a
particular columis, then the application of the continuity equation and two boundary
conditions for lateral discharge resul's in a system of N nonlinear equations with N
unknowas. These equations are nonlincar as the coefficients in equation [3.32] are

funzaens of the unknown h's. In the present study, the generalized Newton-Raphson

technique 18 used to solve these equations.
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In the Newton-Raphson method, at a new time step, the unknown nodal values
are estimated and substituted in equation [3.32]. This substitution results in N residuals.
New values are calculated in the next iteration so that the residuals approach sero. These

new values ¢on he cbiained by solving the following functional relationship:

OF, ml OF.  wl 9F . b
— ARG A AR E==F . j=1230 . N [3.33]
oh, ;3 oh,;? oh,

In matrix notation, this system of lincar algebraic equations can be expressed as:

1
|Al(aR)"? = ~(F, ) 13.34]
where [A] is the Jacobian mauix, {Ah} is the stage ¢ rrection vector, and {F, ) is the
residual vector,
The coefficients of dus tridiagonal matrix arc comprised of partial derivatives
which have to be evaluated. This can be accompiished either analytically or numerically.

The analytical approach has been adopied herein and such that:

1
()(1"+?
F. . Yol
OF, _ & , 13.35]
oh, ;_, 2Ay dh;
rH»l n-i-l
g, * dq, *
oF. . ¢ Y1 , Yo
iy B + 8 [3.36)
oh; ; 2Ay dh,;  2Ay oh,
dq, *
oF, _ A 7 [3.37)
ahi.j+l 2Ay ah,.m

The typical derivatives of ¢,'s with respect to A's are given as follows:
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"ot H C: H
()qyr.r ! “% L”% hl.‘l - hr./ﬂ A A [—% "8]
oh,, U], .1 Ay Ul 1Ay o
n4—l— ;
2w H C’ H’
My ot n, <, St (339)
(7I’l J+1 B IUII,/4—- A.V |Ull_j+% Ay o

Having obtained the corrections, Ak, |, by solving equation [3.34] using the
Thowmas Algorithm (Wang and Anderson, 1982), the unknown n ual values are corrected
in the next iteration by the following:

n+-l-.m+l n+—]'.m 1,«4»l
h, : =h, T+ Ah,, : [3.40]

where m is the number of iterations.
Following this procedure, the corrections, Ah, ; are obtained for all the columr-

(i=1,23..... M) in the computational domain in each iteration. Here, M is the tota!

number ol control volumes in a particular row. The iteration is then terminated when the

maximum nodal changes in h. i.c., A, ; between two consecutive iterations is less than

some tolerance limit (&) which can be given as:

1
Ab I < [3.41]

mnax

When this convergence criteria is satisfied for the first half time .tep, the
computational procedure proceeds to the second half time step and solves equation

[3.7). The cquation [3.7] can be expressed as:



1 i 1

ne— Al At ne~ nt—

— Jntl 2= n+l o n+l _ 2 2
Gi.j - hl.] hl./ 2 ! \_(q.(‘_;“ (Ix‘;" ] L‘lvh}% q\' ] l}""'-’l

where, G,

is the residual.
In a similar fashion, applying the Newton-Raphson technique, the correcticas for
the nodal values of A's for all the M control volumes alorg a particular row can be

obtained by solving the following equation:

")Gi.j n+l aG:../’ n+l aGi., nel . "
S A7, + ETE AR+ PR AR =-G L i= 123 M [3.43]
=17 1 1+l

In matrix notation, this system of lincar algebraic equations can be expressed as:

[BJ{ah}™' = (G, ;} 13.44]
where [B] is the Jacobian matrix, {Ah} is the stage correction vector and {G, |} is the

residual vector and

oG A aq""

o= o2l [3.45]
oh_, 2A5
ai'\/_ =]- A [3.40]
(717,_} 2Ax iy

oq""!

o0, A 3.47)
oh,,, 2Axdh,,,

The typical derivatives of ¢,'s with respect to A's are given as follows:

Itu > 1)

i
NS-.]
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H c’ ', H
oL wl wiih, —=h, RN
— 7 = (.5U - : 7 Ry, oo "3 > 13.48]
o, oA -aa)| 2 A& Ax
g H C C, H |
‘Alf 4= 1+ hn+l.j —h,] RS AL SN
3 =05U |, - - 5 - — 13.49]
Iy Y \/( AT -44,)| 2 Ax Ax
v , <0
x+—5.)
aq‘ ! Hi»- C'vll ih —h ('ll }H'*l J
= = _ N b r+l.g N )
h ().SUH: \/(A: +4A ) ) Ax Av [3.50]
I i 2 )
Ay H , c?, c,H
x‘ : =) = hiﬂ.] -h'l (2% L S¥
=050 e 5 —h [3.51)
iy w1 J(ATwaa)| 20 A Ax

Applying similar procedures as described in the first half time step, all the nodal

unknown values are obtained at the second half time sicp along the rows of the
computational domain. The computations are then repeated for subsequent time steps
until the desired level of time is achieved.

3.4.4 SMALL DEPTH PROBLEMS

In certain numerical computations, computational Jifficulties are encountered
when the depth of flow in the computational av.~ain is small. Cunge, et al. (1975, 19%0)

and Meselhe et al. (1993) discussed this problem in detail. The numcrical problem
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associated with the small depth or dry bed situation can be explained in the following

way. The simplificd x- momentum equation can he rewritten as:

4, = ¢[h,+l‘, )\/‘;:;_,:l—/—! [3.52]

where
v €, 2
] -
(p(hHEIJ: = ( hH% *m,] [3.53]
( b=, J =wlh, -z, J+U-o)fh. -z, | (3.54]

where, 0sw<Tand h,,  <h<h,
Taking the derivative of the equation [3.52] with respect to the downstream water

surface elevauon, A

4+l

dq,

ey

e, | - [3.55]
Mo, BNV N

t+1.f

The sign of this derivative is normally negative ensuring that the discharge
increases as the downstream water surface elevation decreases. A downstream water
surface elevation exists for which the derivative is zero and the discharge is maximum. If
this clevation falls further, discharge starts decreasing and the sign of the derivative
becomes positive. This relationship is shown in Figure 3.2. As a non unique solution
exists (two water surface elevations for a particular discharge), the computation becomes
unstable. To avoid this problem, a test is required to check the sign of the derivative. If
the sign is positive, the value of @ is to be estimated such that the derivative is zero.

Equation 13.55] can be s. ived it wvely by putting the left hand side equal to zero for
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the estimation of . Another way of ensuring that the derivative is always negative s o
use a fully upstream weighted cocfficient, i.e., @ =1. This latter approach was used by
Mesclhe et al. (1993) for simulating unstcady flow in an irrigation canal with a dry bed
and is used in the present study.

In addition to the above mentioned difficulty, negative depths are sometimes
encountered in the numerical computation. To overcome these difficulties, the following
discharge flux limiter is adopted in the present study. At any instant of time, the
maximum outflow from a control volume is such that the control volume is completely
empticd. An expression for the maximum longitudinal outflow discharge from a control
volume can he computed using equation {3.7] and that for the taieral direction can be

computed using equation [3.6]. These are written as follows:

Ar n+% n+—]_‘- ) n«ré
g, ° —q, ° V+h; =z

b
2Ay\ ol s " &
l B 2 2 +1
g9, = A +ql [3.56]
1emy oz
2Ax
Ar
4% , —4\ +h! -z, 1
n+= 2A i nlzj Y nt— ‘
v °\ = Al +q, [3.57]
hivg = -3



76

JWNIOA JoNu0Y jeardAy |¢ angdig

TN+ I+

ARSI B!

AR



71

. (2661 I8 110 JYJASTY ) SAluUIWY
T3IT [BUONIDS $S04D Julseald3( "q sareutwop adoys Juiseasou] ‘e tuonenys yidap :nEm
Ut UOKBAJ3 OOBLINS J9TEw WEBLISUMOP pue 233BYdSIP U3am1aq diysuoneoy z'¢ aundig

2312yosid
-

N ST T e e S = = -

= S

< ~—

. A WEANSUMO(]

{10TBAD[9 9JELNS

-



78

4 THE LINEAR STABILITY AND ACCURACY
ANALYSES OF THE NUMERICAL MODEL

4.1 INTRODUCTION

A Targe number of numerical methods and schemes have been developed and
applied tor solving unsteady open channel flow, In order to assess the adequacy of the
computed results obtained through these numerical models, knowledge of the propertics
of the numerical scheme is essential. In doing so, con-istency, convergence and stability
of the scheme are nornaatly investigated. Sabur(1990) performed detailed stability and
accuracy analyses for a onc dimensional zero-inertia model. As the present study
employs a two-dimensional zero-inertia model, the linear stability and accuracy analyses
of this type of flow model are carried out. A brief description of consistency and
convergence is given in Section 4.2 and the detailed discussion on the stability and the

accuracy analyses is presented in Section 4.3,
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4.2 CONSISTENCY AND CONVERGENCE

A fimite ditference scheme 1s said to be consistent when this approximation
approaches the ortginal partial difterential equation in the limit that cach of the grid sizes
approaches zero. The consistency of a numerical scheme can be determined by
cvaluating the functionai form of the truncation error. This error is found by applying a
Taylor Series expansion to cach term of the difference equation about the point at which
the differential equation is computed. Detailed procedures are found in several books
such as Jansen ctal. (1979) and Cunge ctal. (198(0).

If the sequence of solutions approaches  the true solution as ¢ach oi the grid sizes
tends 1o zero, then the solution of the difference scheme is said to be convergent. No
analytical tools are readily available to directly analyze the convergence of a numerical
scheme (Celia and Gray, 1992). Consistency and stability analyses, however, determine
the convergence of a scheme as stated in the Lax Equivalence Theorem (Richtmyer and
Morton, 1967):

"Given a properly posed initial value problem and a finite difference approximation to it
that satisfics the consistency condition, stability is the necessary and sufficient condition

"

for convergence.” The stability of a numerical scheme does not depend on the nature of
the governing differential equation to be solved but does depend on the difference
cquations. Consistency deals with equations whereas convergence deals with the

solutions (Richtmyer and Morton, 1967).
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43 STABILITY AND ACCURACY
The solution of a numerical scheme requires that the numerical errors introduced
in the computational method not be amplified in an unlimited manner as time advances.
».i1s can be investigated by numerical experiments ( Fread, 1973) or by detailed
analysis of the numerical properties of the scheme (Katopodes, 1984). In the present
study, the latter approach is adopted as this gives a clear picture how error grows with
time.
Once of the most commonly used techniques for stability analysis is the Fourier
Series method (Roache, 1972). This method is, however, only applicable to lincar
cquations with constant coefficients with periodic boundary conditions. Hence, the
nonlinear partial differential equations used in the present study are linearized in order
to apply this method. Although, the results obtained through this process are valid for
lincar equations, the information obtained can be used to gain valuable insights about the
accuracy of the scheme. This information can also be used to compare different
numerical mcthods as well as to determine appropriate tempoiral and spatial

“discretization sizes of a problem for a particular scheme.

4.3.7 LINEARIZATION OF THE GOVERNING EQUATION

Lincarization procedure of the present non-linear difference equation can be

explained in the following way. At instants of time nAr and (n+1)Ar , the following

can be defined:

h' = 5, + H, +h' ; [4.1]
W=z, +H 4R [4.2]

where H, is the normal depth, %, is the perturbation at time, ", and I;f}“‘ is the

n+l

perturbation at time, ¢
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Considering the yv-direction implicit and the x-direction explicit, the mass

balance in a control volume is,

n 4 Vou

n 1 H
— i AxAy = (g7 —q" )Av+ {‘1_ -a, )L‘" 4.3]

Substituting the expressions for g, and ¢, , the following is obtained:

n+% N ; nt= n+7‘7- . ; n+s } n+
- - . n+— 1.5 = - n+— ! L
" T AxAv = K FEECNEES PNV S N RV RN
At . =z Ay Yij4o Ay
2
h' . —h h' —h'
- ~1. . . N
+l\." . t ] ”'A\’—K" Y} + LAV l44l
T % Ax . J“':_J Ax A

The cffect of lateral momentum transfer is neglected from the expressions for

longitudinal discharges for simplicity.

By applying Taylor serics expansion , the foliowings can be ebtained:

K,"‘_%J =K, +0.5a(h., ; + ;) (4.5]
K,"“%J =K, +0.5a(i", + i}, ,) 14.6]
where

K, = CH? (4.7]
a= oK, =§C H [4.8]



| I
K=K, +0. Sb(h,,,_zl +h, - ]

1y

yr.ﬂ:

| 1 A"+l \
k' =K, +().5b(h,., 2 +h,,,31J

where
K = CH -
U,
I JK, d (CH/
) = = —_——
dH oH,\ U,

This can be written as:

:
pec| 2y o oL 20
U U’ oH,

o

Now, éyi:().SC §—’L
JH, H,

After some manipulation the following is obtained:
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[4.9]

i4.10]

[4.11]

[4.12]

[4.13]

[4.14]

14.15}
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To illustrate the linearization process. the first term and third term on the right

hand side of equation {4.4] arc considered. The first term can be writien as:

Aﬂ#é An+%
+l z, +H, + h,J:l -z, —H, - h,*
K, +0.5b h 1,2 '1 + h — A = Ax
) \?

l ) An+.’ nn+-_l;
_ 5 e -I( TR LSRR
=| K, +.5b h +h '+ Ax

U Ay

- _
<
~I:w I "'./

This expression can be simplified by neglecting the product of smaller terms as:

|
Ant=

l— ~n+-l- K n+ 1
=\ K,S,, +0.50§ ( _31+h,j3J + = (h, a+h, 2)A\'
. A) ]

Similarly, the second term becomes
( l An+é ) Knv An+l An+-1-
=K S, +C.5b§ k T+ h ] J+z—— h,*+h JAx

oy™Moy oy g+l y f J-H

Now, considering the third term, it can be written as:

R 2, +H +h," 2 +Hu+1;i".
X

-h"
[K +0.5a(R, ; + i) H hisy Ay
-—-Zbl.l

(2]
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. :h‘ o - :h, . . . . .
Evidently |, the term (————A = J in the above expression is the longitudinal
X
A’l — '-;ﬂ
slope of the channel. Assuming that absolute value of | <=L lig Jess than 1, then,
Z”:—I./ - z”:./

the exponentiation can be expanded binomially. After multiplying and neglecting the

terms containing higher powers of A | the first term takes the following form:

[KM/S ”\/r(h". +I;,’_'})+:)Xf"‘T(/;,"_,'j—l;,'_'j)]Ay

- 0x

Similarly, the 4th term becomes

e \J (l 5‘0.\ All An K,n An Y
[A:n| V‘Sm + ) (hl.j +h:+l /)+ 5 j S (hi.j —hn-bl ])}Av

Substituting in cquation [4.4] and simplifying, the following lincar form of the

difference equation is obtained:

i
ANt

h,_, - hi’j/ 1\“‘ Sm I)S‘" An+;- A"-.-% Kov A”"’% ,.,H-:_ i
At - Ay 2A hr; 1 +h,-_j + Z—z hi.j—'l - hi.j -
2 - -
[ Kn\'Sn\ 1 S‘m A""‘; A""'% KO\' A’I+-’l; ,\,,+% N .
- ___Av Ay h,;*+h 5 |+ Ay hij?=h,3 [4.16]

K .AfS. - A N -
* [ A Y (‘2 Ai‘ ("vn-x.j “"hi'.’j)‘*'z"——"‘“mvf/—f (h:"il‘j -k ):’

'K,.S,. Sox (7 o (fn _ in
[ Ax I2A\ (’ '*")+2Ax7ﬁ—(lli’ h"")]
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Equation [4.16] can be further simplified as:

1 1
IanAE _ IA" IA" _ IA" }Arﬂ? }an-&E , f!l ')I‘“ "\':
':} l:,j _ }U ,l—l.j ’r+l.j 3 v ,n./—l - It,j+l 1\”\ l1~l./ - ,n.r + }nl.]
I vV + ]
ar 2 2Ax 2 2Ax 248, Ax
2

1 1 !

lAn+-7 ’)IAI[""; + I‘"H:

- 7:,,—-1 - Il.l B 11.]+_1

+K, |~ - [4.17]
' Ay

Finally the lincarized difference equation for the first half time step takes the following

form:

1
A'H’: }AII I‘\!I All IA,H-: A’”: L »-)IAH An
hl.j - Ii.j +U’ ]I+l.j —hl—l.j + ‘// 'I.j+l - Il.j-l — [) el o= ,I_/ +hl4l.;

At 2Ax 2Ax ) Ax’

1 H
RN TN N
+ ‘ 1=l i) 1 f+l l4lxl
Ay
where
3
U'==U, [4.19]
2
3
V==V 14.20]
2
D, =Kx _CH’ [4.21]
2+/S.. 2U,
and

D =k, =——t 14.22)
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Following a similar procedure, the Lincarized difference equation for the second

halt time step can be derived as:

ynel Y ] n+l A"*E [y
h"'—h - h™V —h h 2 —h
1) + l./ 14l =10 + ‘/) 1.)+] [y .
At 2Ax 2Ax

-1, i} i+l,)
Ax?

an+— nn+% an+=

h ;53 =2h;° +h .}
Ay’

[4.23]

From cquations [4.18] and [4.23], it can be concluded that the control volume

formulation leads to a discrete form of convection-diffusion equation with a centered

difference in space. Each cquation is forward difference in time with respect to one

space direction and backward with respect to the other. The overall effect is a centered

(Crank-Nicolson) time discretization. It is also revealed that the apparent diffusion

cocfficient in the lateral direction is twice as that in the longitudinal direction. This

relationship has also been derived in Chapter 2 by applying an ' Order of Magnitude

Analysis'.

4.3.2 NUMERICAL AMPLIFICATION FACTOR

In this subsection, the Fourier method is applied to obtain an expression for the

amplification factor tor an error growth or decay as time progresses. Equation [4.18] can

be written as:

1
A"‘-— n I’]’Ar n n
ho*-h +_4A\-("”’ i,

V'A An+—
) d hr +l
BAx|

-D ,1,—2h +h,+1]
* 2Ax°

n l l l

+D hlj 21 I +hl]+]

{4.24]



This equation can be simplificd as:

| i
r. ~n+ Ant— Cr‘. r. Ants
_(_"+ ?))”..,-'1 + (1 + ,-‘.)h, T 1 ~ 7‘ h i
C\ rr [n n Cr n
=(T'+-2— e+ =r il = == [4.25])
where
U'Ar . . o
C. = A is the Courant number in the x direction, [4.20]
X
V'Ar . . . o
C.= A is the Courant number in the y direction, {4.27]
. ¥
D At . . cr = o . .
r,= o is the non- dimensional diffusion cocfficient in the x direction, [4.28]
N
and
D At . . cop s e o
r,= A — is the non-dimensional diffusion coefficient in the vy direction. 14.29]
v

Applying the Fourier . :chnique to the lincarized equation and considering one

Fouricr component and defining the following:
[4.30]

+ Ak, jAY

o
where I =+/-1 and A is a Fourier coefficient and a function of time,
k, = — is the wave number in the x direction,

X
is the wave number in the y direction,

ky ===
=T

L, is the wave Iength in the x direction, and

L, is the wave length in the y direction.



Then

1
al4—

h,*t= }’y"l;

n
ty

where y,” is the amplification factor for first half time step.

Similarly,

o n — Tkyidnk; (f--1)Ay
h',,, = Ae

IA’”? — nlAn

’:.jH - Y\' ’l.j+|

o _ 'lklleL:(}—l)/\\
h'; = Ac

I
PN

o npn
hl./—l - Yy hl.}—l

v _ S G=1AK, jAy
h,, =Ae™
" — S U DA, jAY
h,, = Ae™
Substituting the above expressions in
obtained:
, | '
1=r,(1-cosk,Ax) - =IC, sink,Ax
= 2
¥y

1+ r,(1-cosk,Ay)+ %ICW sink,Ay
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[4.31]

[4.32]

{4.33]

[4.34]

{4.35]

[4.36]

[4.37]

[4.25], and simplifying, the following is

{4.38]
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Following a similar procedure, the amplification factor for the lincarized

difference equation for the second half time step can be obtained as:

- r.\'(l —Cosk,Ay) -lIC,). sink,Ay
‘yx" = % l43()l
I+r,(1-coskAv) +~1C, sink Ax

Hence, the combined amplification factor for onc complete time step is given by

Yy = 7Y [4.40]

This can be expressed as:

1 —=r, (I —coskAx) - %IC,X sin k Ax 1=r (1-cosk,Ay) -~ —,l; IC, sink,Ay
7' = * i
I+ r (1-cosk,Ay) + —;— IC, sink,Ay L+r (I-coskAx)+ —;— IC, sink,Ax

[4.41]

Let
. L,
Wave length ratio, L, =—L— [4.42]
Grid aspect ratio, «a, = % {4.43)
A

r,=2ra’ [4.44]
L
L _ L,a,-!’—‘— [4.45)
Ay Ax



Ry=1-r (l-cosl,Ay)=1- 2r.a’| —cos(

La —

Ax
R,=1+r (1-coskAx)=1+r|l-cos 2T7£
Ax

X

R, =1-r (I-coskAv)=1~r|] _COSL%—‘E
Ax

|

T
La, L J
Ax

R, =1+r (I-cosk,Ay)=142ra’|1-cos

1, =lC ,sink,Ayle sin z
2 M 2 " L,
< < La, —

Ax
"
A =lC sink,Ar=lC sin| ==
2 2 n 2 rx _ll
Ax
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[4.46)

[4.47)

[4.48]

[4.49]

[4.50]

[4.51]

Substitution of all the above expressions in the equation [4.41] yields the following:

. _ (R =LD(R - LI)
(R, + LI)R, + 1,1

Here, I1=+/-1

[4.52]



. _[RR,=LIL —I(IR +1,R)]
(R.R,- &I, + IU,R, + I,R)]

After simplifying, the following can be obtained:

Y=o +1f

where

_ (RIRJ _]11:)(R2R4 - p"z)“'(llR; +12R|)(]|R2 +]2R4)

I

(R,R,) +(1,1,Y +(,R,)’ +(L,R,Y

(LI, ~RR)I R, +L,R)+(1, -~ RR)I,R +1,R)
(R,R,)* +(L,) +(1R,)* +(L,R,)’

B, =

91

{4.53]

[4.54]

[4.55]

[4.56]

As the amplification factor is a complex variable, its magnitude can be determined by

7| = (e +B7)

and the numerical celerity can be determined by

6" =tan™ (-E‘—)
al

[4.57]

[4.58]

In ordcr to get a stable numerical scheme, the amplification factor derived above

must satisfv the following condition:

<

{4.59]
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The L.H.S. of {4.59] is too complicated to simplify in order to show that the
magnitude of the amplification factor is always “ess than 1 for the present scheme.
Hence, the magnitude of this factor has been studied graphically. The amplification
factor is a function of the wave length ratio, L, grid size ratio, a,, non-dimensional
diffusion cocfficient, r and non-dimensional wave length (number of nodes per wave

length), i‘- Figures 4.1 to 4.8 show the variation of its magnitude for different C, ., r,
X

and a,. For all these cases, the magnitude is always less than 1. Therefore, it can be

concluded that the present numerical scheme is unconditionally stable.

4.3.3 ANALYTICAL AMPLIFICATION FACTOR

The comparison of the r:tio of the magnitude of the numerical and analytical
amplification factors and the ratio of the numerical wave celerity to the analytical wave
celerity provides a mceasure of how closely a numerical snlution appreximates the
analytical solution. The model cquation is linear, an analytical solution to such equation
can bhe obtained in the followin: way:

dh L oh_ Fh

—_—t U —+V D -+ D — 4.60
or ox dy o Yoy’ (4.60]
Let, h(x, vonAr) = Ae™ [4.61]
o Alk "> [4.62]
dx

oh = Alkze"‘"‘k:" [4.63]
oy

I Ak [4.64)
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i gy s
o )

ah dA e"'lxk:.\"

4.60
drdt 14.66]

Substituting in the Convection-Diffusion equation, [4.58], the following is obtained:

(IA H , - oxkay ’ 'S 9 b 3 . ) !
Q—e""‘ﬂ +U'ATke™™ + V'AIk,e" ™' = =D Ak’ e™™ — D Ak, e™™ [4.67]
- : LAk,

This can be simplified as:

%‘A U'Alk, + V'Alk, = =D Ak’ — D Ak, [4.68]
dr ’

This equation can be written as:

.“Aﬁ =[-1U% +V'k) = (D& + D3 ar [4.69]
Integrating,
A=e ~[ U %y + VR (D k) 4D,k 7 )l l47“|

Hence, the general solution is

o ~( 1k AV (DA DK ey ks
h(x,y,1) = A e T OLTEADN plhiskay [4.71)

where A is a coefficient.

Now, the analytical solution at time level nAt is given by
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¢ SR AV (DG Dk} )]myeulxk:y [4.72]

l;(x.y.nAr) =A,
and the analytical solution at time lovel (n + 1)Ar is given by

[H Rk AV R (DG DA+ )AL Tk <k,
[1¢7. % + V%, )+ (D Ky WP ) n+) ell,xl.y [473]

h(x,y.(n+1)Ar)= A ¢
Hence, the analytical amplification factor is given by

Xy (DAL . (ke v oD D
" h(lA y.(n+1)Ar) = 10Uk, + Vs )+ (D& + D k37 )]ar (4.74]
h(x, y,nAt)

Using the previously used notations, equation [4.74] can be written as:

. 2r . 2=z e 2E i
-1 (,nz+(nl ” I_‘ n .L:.. +2r,a, [L "'ll]
,ya = Ax T A ¢ v Ax [475]

Hence, the magnitude of the analytical factor can be given as:

r, ;_—’.t +2r‘41,2[ ; jniz.}
|y"| =¢ Ax Ax
[4.76]
and the analytical celerity can be expressed by the following:
6'=-C, 2z +C, 2 [4.77]
L, - L,
La —

Ax "7 Ax
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4.3.4 AMPLITUDE AND PHASE PORTRAITS ANALYSIS

Having obtained the expressions for numerical and analytical amplification

factors and the celerities, the amplification ratio and the celerity ratio, respectively, can

be obtained as follows:

" 4.78
Ra' = 27 I I
0"
R, =— (
Y {4.79]

These expressions show that these two ratios are functions of the wave length

ratio, L, grid size ratio, «,, non-dimensional diffusion cocfficient, »r . and non-

re 1
. . R L
dimensional wave length ( number of nodes per wave length ), ™/, . When R, and R,
are cqual to unity, the numerical representation of the amplitude and celerity of a wave
component are identical to the analytical behavior. The plots of R, and R, as functions
of T/p, are known as amplitude and phase portraits respectively. These portraits
provide a valuable indication of the accuracy of the numerical scheme employed (Fread,
1976). Scveral portraits are presented in the figures that follow for wave length ratio,
L., of 1 and the reference Courant number in the lateral direction, C,, of zero. Figures
4.9 to 4.14 show the cffects of grid size ratio on the amplitude and phase crrors for
certain C,. and r_. Itis evident that grid size ratio has no effect on the phase errors but
it has influence on the amplitude errors. For a particular C, and r_, as the «, increases,
L . - . .

the value of ™ Ax required for the same level of accuracy increases. However, for
higher values of a,, for example, @,= 10 and 1({) in the present case, no change in
hehavior is observed.

It is worth mentioning that the parameter, @, has a significant role in the present

study. The present study considers a compound channel where the length of the reach is
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many times greater than the width of the channel. Consequently, in order to get a better
resolution in the lateral direction, a very fine discretization size in the lateral direction
and a relatively large discretization size in the longitudinal direction are economically
and computationally feasible. Hence a higher aspect ratio is usually desirable. The
present analysis clearly shows that a reasonable accuracy can be obtained even for very
large values of a, such as 100. This finding will be utilized in numerical experiments
conducted for the present study.

Figures 4.15a and 4.15b represent the effects of r, on the accuracy for a
particular grid size ratio, @, of 100. In general, it is noticed that for a desired accuracy
level, phase error portraits require more nodes per wave length than the amplitude
portraits do. From all these plots, it appears that for an accuracy level of 1% or better,
L%M > 20 should be used. Utilizing these plots, the computational grid sizes, Ar, Ax,
and Av can be determine  as described below. For a desired accuracy level, the Lygx ,

C

rx?

and r_ are chosen from the Figures 4.9 to 4.14. When L,, a,, and LAx are

known, Ax and Ay can casily be determined. Then two values of time step can be
calculated from the reference Courant number, C,, and the non-dimensional diffusion
cocfficient, r,. The smaller of these two values will provide the time step increment. At

for the desired accuracy level.



97

001

"CTO="4 pue ‘¢ =" 10§ 1010€j uonedyndwy eouswny |y Andig

MMV uonnosay reneds

ol

(

(A) 101584 uoneoyndwy [EouAWINN



98

001

"§'Q="4 pue ‘¢’ )="7 10y 1010e] uoneoydwy JEILISWNN Z'p AL

xy

Aﬂﬂv uonnjosay [eneds
ot

_ﬁoc_ =

M 0= - — —

|

w 1= D

| S

W
o
(A) 10198) voneoyIdury [eoLRUINN

-~



00

001

' [="4 pur ‘g =" 10} Jo1oej uonedyIdury [eoudwnY ¢4 Andig

Xy

—) uonnjosay [eneds
7

ol I

(

S0

(,A) 10108 uonesyidury [esUOWNN




100

001

‘0°6="4 pue‘¢g="9 10§ 10108) Uonedyy

v
Aﬂv uonnjosay renedg
0l

dwy [esuowny pp angiy

(,A) 10198] voneoyndwry [eoudwny



101

00t

'gz'0="4 pue ‘g [="D 10j 1015¢] uonedydwy [e3uawnN ¢y andig

Awldv uonnjosay [eneds
1 ot

I

S0

(,4) 10108) uonesyndury [EOLIOWNN



102

00t

"6°0="4 pue ‘0"[=") Joj 10108] uonesydwy [EoudWNN 9 AnJ1g

xy
1

(==) uonnsoy feneds

ot

S0

(,A) 10108y UOnESYIdUy [EOLISWNN



103

001

‘0’ 1= "4 pue *p'[="D 10§ 3013¢j uonesyydwy [edLRAWNN L'} aundrg

P
I\ n‘N

) uonnjosay [eneds
a1

S'0

(A) 10198] uonedjidwy [BOLDWNN



104

0

0

'0°$="4 pue ‘9°'1="9 10j 10198} uoneoyrdwy [eouswny gy angig

xy
T

(5=) uonnjosay renedg

ot

chqn\c
_ O0l="p
.

1=

N
o
(,A) 301085 uoneoyndury [eouSWNN



105

00t

'ST0 =" puE 'g'0="D 10 Sueniod dpunidwiy vy undlg

xy
7

(
0l

) uonnjosay [eneds

L 001="p
Ol="p
I="p

(%y) oney uoneoyrdwy



106

0014

'$T0="4 PUE ‘c"g="D 10] SueNI0g Feyd Q6 oI

(

bavs
T

) uonnjosay feneds
ot

(°y) oney K1u[3)



107

00!}

'S°0="4 pue ‘¢'p="7 10 sirensug apmuydury 201t aundig

Xy
( J

) uonnjosay [eneds
ot

(Py) oney uonesyrdwy



108

'§'0="4 pue ‘g’0="D 10j SIeIO] 3SeYd qQ1'y N1

A»MIM.V uonnjosay [eneds

004 ot
Wi=v_
Ol="v. _ _ _ _
I="
I\\\

(°y) oney Liwa)



109

00 - -

0°'1="4 pue ‘'g°'0=") Joj siensod spmudwy ey amdiyg

w
(==

) uonnjosay [eneds
1

ol

(Py) oney uonesyijdury



110

00l

0’ 1="4 pue ‘c’)="7 1oj sueniod aseyqd q[[ undig

xy

,_Tq

) uonnjosay reneds

(%y) oney K1vra)



111

00l

670 =74 pue ¢'1= "D J0j sireniod opnujdury ezlp aundig

Amv uonnjosay [eueds
Ol

_ 8# = gB .......
|
| 0l="p ————|
| #
“ v 4
=" /

/

P

(y) oney uoneoydury



112

00!

'ST°0 ="4 pue ‘('[="D I0] sienIog aseyqd qzp 2mndig

AMMV uonnjosay [enedg
7
ol

(%) oney fiugpa)



R

00t

() ="4 pue ‘(' [="D 10J sireinod spmjdwy egpp undig

?QV uonn[osay feneds

7
ot

("y) oney uonesydwy



114

00t

¢'0="4 pue ‘0'1=") 10} syeniod aseyqd qg¢[y andig

AMMV uonn[osay [eneds
ol
» _
.o - v

(°y) oney Liwafa)



115

00l

(1= "4 pue (y [="D Jo) SHenloy 10j spmiydwy epl ' Sy

Y
= ) uonnjosdy jeneds

0t

(

wi=v. ... .. : w
0l=-———— 4
M u /
[=p _ /
|

(y) oney uonesyidury



116

00t

‘0 1="4 pue ‘() 1="D Joj suvnlod aseyd Qyrl'y andiy

Xy
Aﬂv uonnjosay [eneds

ot

<N

(5y) oney Aiudd)



117

"001="p pue ¢'=") 10J sueniod 10§ aprrjdwy e andig

AMQV uonnjosay [enedg
00!} I Ol
P x , /
(o= : !
m - Ty v ‘ \
mmgl .. /
| . J /
sz0="4 _ )
: ] \\ \
\.l\!\ \\ —_— -

(%y) oney uoneoyndwy




118

00I="p pue (y[=") I0j sies0d 3seyd qg]'y InSig

AMMV uonnjosay feneds

001 01
01="4..____
¢o="d-———
czo="4

(%y) oney Liuspa)




5 VALIDATION OF THE NUMERICAL MODEL

5.1 INTRODUCTION

Validation of any numerical model is a vital part of the development of the
numerical code. As little experimantal data on unsteady flow in compound chaancls is
available in the literature, the relative performance of the zero-inertia model is validated
and critically examined by performing numerical experiments. Two experimental data
sets are available in the literature, Treske (1980), and Rashid and Chaudhry (1993). In
both experiments, longitudinal total discharges and stages were measurcd. The present
model is, however, tesied only against Treske's data. The model is also applied to
simulate hypothetical floods and the data are compared with those obtained by a full
dynamic numerical model, FESWMS-2DH (Finite Element Surface Water Modeling
System) developed and applied by U.S. Federal Highway Administration (1989} as

described in the sequel.

5.2 NUMERICAL SIMULATION OF FLOODS

In this section, four cases of hypothetical floods and one experimental flood are
simulated by the zero-inertia model. Hypothetical floods belonging to Cases 4 and S arc
also simulated by FESWMS-2DH for the purpose of comparison. As the zero-inertia

model is only applicable for flows with low Froude number, experiments are carried

119
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out for sub-critical flow only. The analysis of the simulated results for various cases arc
described below.

Casel One -dimensional problem

This case demonstrates the ability of the zero-inertia model to handle the dry bed
situation for a onc-dimensional unsteady flow. This problem considers a rectangular
canal 1 km long and 5 m wide with a gate structure at the upstream end and a weir with
a free overfall at the downstream end. The slope of the bed is 0.003 and the roughness
height is 0.2 m. The weir crest is 0.3 m above the canal invert. Meselhe et al. (1993)
used a similar hypothetical problem to validate their one-dimensional model for
simulating flow in a dry canal. The computational domain is discretized into 50 control
volumes with cach control volume of size 100 m by 1 m. The key parameters arc
approximately as follows: L%h =90, B =135, and F, = 0.5. A variable time step is
computed by satisfying the criteria, r, =0.5 which gives approximately C,. =0.6.
During the simulation of the dry period, a constant time step increment ol 10 seconds is
used. The total discharge hydrograph as shown in Figure 5.1 is given as the inflow
boundary condition and the downstream boundary condition is given as critical flow
over the weir. Figure 5.2 shows the simulated variation of water surface elevation with
time at the upstream boundary of the computational reach. It is noticed that a dry period
is involved in this simulation. The simulated longitudinal water surface profiles at the
various stages of the unsteady flow are shown in Figure 5.3. It can be inferred from these
figures that the zero-inertia model handles a dry bed situation without any computational

difficulty.

Case 2 Simulation of the Experimental Data
This case is studied to test the performance of the zero-inertia model in

simulating unsteady flow against available experimental data. Treske's experimental
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data (1980), reported by the CSCE task committee on river models (1993) obtained for a
straight compound channel are used in this case study. The cross-section and the
longitudinal profile of the experimental set up are shown in Figure 5.4. The length of the
experimental reach was 210 m. The depth and the width of the main channel were (.39
m and 1.25 m respcctively. The width of the left flood plain was 3.0 m and that of the
right flood plain was i.§ m. The bed slope of the main channel and the two flood plains
was 0.019% and the Manning roughness coefficient for the compound channel was
0.012. Both the discharge and stage hydrographs were measured at the upstream and the
downstream ends of the experimental reach. Figures 5.5 and 5.6 show the measured
discharge hydrograph at the upstream end and the stage hydrograph at the downstream
end, respectively. In order to simulate the experimental result numerically, the measured
discharge hydrograph at the upstream end is taken as the inflow boundary condition and
the measured stage hydrograph at the downstream end is taken as the downstream
boundary condition. Moreover, the rectangular cross-section of the experimental sctup is
approximated as a trapezoidal section for numerical simulation. The simulated stage
hydrograph at the upstream end and the discharge hydrograph at the downstream end are
compared with the corresponding cxperimental data. The experimental domain is
discretized into 483 control volumes with each of size 10 m by (.25 m. The key
parameters arc approximately as follows: LA,(: 625, =75, and F, = 0.28. A
constant time step of 1 second which gives approximately r, = 2.0 and C,, =0.03 is uscd
for the numerical simulation. From the given initial condition, the equivalent roughness
height is estimated as 0.001 m. The non-dimensional eddy viscosity cocfficients of 0.15
and 0.23 are used but no significant difference is observed. Figure 5.7 compares the
measured and the simulated downstrcam discharge hydrographs along with the
percentage of relative error. It is clearly noticeable that the zero-inertia model produces
the comparable results with reasonable accuracy. Figure 5.8 compares the measured and

the simulated upstream depth hydrographs along with the percentage of relative error. It
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is noticed that the computational model produces almost identical results for the in-bank
flow but slightly underestimates the out of bank flow. This discrepancy can be attributed
to the fact that the accurate estimation of the roughness height is not possible.
Nonetheless, it is worth mentioning that the zero-inertia model produces comparable

results with similar trends as observed in the experiment.

Case 3 Hypothetical flood routing in a river with and without flood plain

This case study is carricd out to route a hypothetical flood wave through a river
with and without flood plains. This will demonstrate the effects of the flood plains on
the various hydraulic features of a flood wave. The length of a hypothetical compound
channel reach is taken as 1(X) km and the width of the main channel is 100 m. The half
of the cross-section of the symmetric and prismatic comjpound channel is shown in
Figure 5.9. For modeling the case of a river without flood plains, imaginary walls are
introduced at the main channel boundaries and the same flood wave is routed. The flood
plain level is 5 m above the bed of the main channel. The slope of the compound channel
is 0.0005. The initial depth of flow in the main channel is 1m and the flood plain is dry.
The roughness height is 0.52 m for both the channel and the flood plain. The
computational domain is divided into 500 control volumes with a size of 2000 m by 20
m cach for the case of river with flood plain and 250 control volumes for the case of
river without tlood plain. The following inflow discharge hydrograph is introduced as

the upstream houndary condition:

2mt 3
Ooanow = 5.0+ 1500(1 ~ cos—}—) (m [sec) [5.1]

where T = duration ot flood = 48 hours, and ¢ = time.
A uniform flow rating curve is provided as the downstream boundary condition.

The flow perpendicular to the each of the side boundaries is zero and a perfect slip
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condition along each of the side boundarics is assumed to prevail. The key parameters
arc approximately as follows: LA‘. = 240, B =700, %x = 0.0002, and F, =0.26. A
variable time step increment is calculated by satistying the criteria, r. = 1.0 which gives
approximately C, =0.6 for the numerical simulation.

Figurc 5.10 shows scveral discharge hydrographs simulated at 50 km
downstream from the upstream boundary alone with the inflow discharge hydrograph.
For the case of a river with a flood plain, as the flood wave moves with different speeds
as it goes to the over bank arca, two kinks are easily noticeable at the time of flow
entering and exiting the flood plain. In comparison to the case of a river without a flood
plain, it is seen that main channel discharge decreases significantly. Figure 5.11 shows
the depth hydrographs at 50 km downstream from the upstream end and 50 m off the
center line for river with and without flood plains. The effect of the flood plain in
reducing the stage of a flood wave at a location is clearly noticed. The depth-discharge
relationship at the same computational node is also shown in Figure 5.12. It is seen that

the loop rating curve is diffcrent for the two cases which is expected.

Cases4and 5 Comparison with FESWMS-2DH

These two cases are carried out to compare the relative performance of the zero-
inertia model with a full dynamic finite element model. Numerical experiments are
performed with the zero-inertia model. The computed results are compared with the
results obtained by a well-recognized hydraulic model, FESWMS-2DH (Finite Element
Surface Water Modeling System) developed and applicd by U.S. Federal Highway
Administration (1989). This model utilizes the depth-averaged continuity and full
dynamic momentum ecquations to simulate surface-water flows. The comparative

performance of these two models is examined for two hypothetical flood cvenis.
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Different bed slopes, roughness, length of the reach, and flood duration are considered in
these two cases. Since the FESWMS model cannot handle a dry bed situation easily,
only numerical tests considering an initially wet bed are investigated. This means that
the flood plain is initially flooded.

Depth and discharge comparisons are carried out for these cases. Figure 5.13
shows the cross-sectional geometry of the half of the symmetric and prismatic
compound channel along with the initial flow conditicn used for the numerical
experiments, The tlow in the compound channel is assumed initially uniform with a
main channel depth of 6m and flood plain depth of 1 m for both cases. The total inflow
discharge hydrograph is used as an upstream boundary condition. The constant main
channel depth of 6 m and flood plain depth of 1 m is used as the downstream boundary
condition. The flow perpendicular to the each of the side boundaries is zero and a perfect

slip condition along cach of the side boundaries is assumed.

Cased
This case describes the simulation of an unsteady flow phenomena by the two
models. The following physical parameters are used: Length of the Compound Channel,

A =30 km, Slope, §, = 0.0005, Manning roughncss coefficient, n = 0.035. The inflow

hydrogriph is given by the following equation:

0. = 4375+ 2500(1 — cosi;f—’) (m’ / sec) [5.2]

where T = duration of flood = 14 hours.

The following discretization sizes are used: Ax =2km, At =180 seconds, and
Av = variable

To apply the finite element model, the computational domain is discretized into

135 clements with 8 - node quadrilaterals resulting in total 454 nodes. For the
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application of the zero-inertia model, the domain is diseretized into 135 control volumes.
The key parameters arc approximately as follows: Lj/m. =70, f= 200, ‘%' = (.002,
and F, = 0.28. A constant time step increment ol (80 seconds gives approximately
r.=0.4 and C,,=0.25 for the numerical simulation.

The simulated hydrographs of longitudinal discharge per unit width at a
computational node located at 16 km  downstream from the inflow section and 150 m
off-center (as shown in Figure 5.14, point a) are compared at Figure 5.15. The
hydrographs of longitudinal discharge per unit width for a computational node in the
flood plain located at 16 km downstream trom the inflow scetion and SO0 m off-center
(as shown in Figure 5.14, point ¢) are compared in Figure 5.16. The variations of the
depths with time for the nodes a and ¢ of Figure S5.14 are compared in Figures 5.17 and
5.18 respectively. In all these figures, the percentage of rejative ditferences with respect
to FESWMS are also provided. Also, the hydrographs of the lateral discharge per unit
length at 350 m and 550 m off the center line and 15 km from the inflow seet o (points
b and d in Figure 5.14) arc compared in Figures 5.19 and 5.20 respecuvely, Itis clearly
evident that the two madels produce almost identical depths. However, a little difference
in discharge hydrographs can be obscrved. In the case of lateral discharge hydrographs,
significant differences can be noticed. This can also be attributed to the fact that the
discharge is very sensitive to the difference in water levels and a litde difference
produces a large difference in discharge. Besides this, as the FESWMS usces the full
dynamic equations, the inertial terms may have some contributions to these

discrepancics.



Case 5

This case simulates the hypothetical! flood event with the following parameters:
The following physical parameters are used: Length of the Channel, A =120 km, Slope,
S, = 0.00005, Manning roughness cocfficient, n = 0.03. The inflow hydrograph is given

hy the following equation:

2 N
Qe = 1600+ 100001 —c<)s—77~) {(m /sce) [5.3]

where T = Duration of flood = 24 hours.

The following discretization sizes are used: Ax =4km, Ar=270 seconds, and
Ay = variable.

Figure 5.21 shows the half of the cross-scction of the symmetric and prismatic
compound channel along with the initial flow condition. For this case, the computational
domain has been discretized into 270 elements with 8 - node quadrilaterals resulting in
total 889 nodes for the finite element model. For the application of the zero-inertia
model, t+ 1in has been discretized into 270 control volumes. The key parameters
are app ma Ly as follows: L%h. = 23, fB= 90, %t = (0.0045, and F, = 0.1. A
constant time step of 270 seconds gives approximately r_ =0.6 and C _=0.07 for the

numes ‘cal simulation.

The simulated hydrographs of longitudinal discharge per unit width at a
computational node located at 6() km downstream from the inflow section and 150 m
off-center (as shown in Figure 5.22, point a) arc compared at Figurc 5.23. The
hydrographs of longitudinal discharge per unit width for a computational node in the
{lood plain located at 60 km downstream from the inflow section and 500 m off-center
(as shown point ¢ in Figure 5.22) are compared in Figure 5.24. The variations of the
depths with time for the nodes a and ¢ as shown in Figure 5.22 are compared in Figures
5.25 and 5.26 respectively. In all these figures, the percentage of relative differences

with respect to FESWMS are also provided. The comparisons of the lateral variation of
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water depth and longitudinal flow velocity  at 60 km downstream from the inflow
boundary at 24 hours are shown in Figures 5.27 and 5.28 respectively, Also, the
hydrographs of the lateral discharge per unit length at 350 m and 550 m oft the center
line and 60 km from the inflow section (points b and d in Figure 5.22) are compared in
Figures 5.29 and 5.30 respectively. These figures clearly show a very good agreement in

results obtained by two models with little discrepancy in lateral discharges.

5.3 CONCLUSION

From the above case studies, 1t1s revealed that the proposced two-dimensional
zero-inertia wave model predicts discharge and stage for non-dynamic tlood events with
reasonable accuracy both for data from laboratory cexperiments as well as in a
comparison to a fully dynamic wave model. The zoio-inertia model s simple,
straightforward and relatively casy to implement. While the more sophisticated
numerical models such as FESWMS requires several hours (about 24 hours Tor the case
4) to run on IBM Pr-486 DX with 50 MHz, comparable results are obtained by the
present zero-inertia model in about 20 rrinutes. Within the applicable range of its use,
the zero-inertia model may replace the complicated fuily dynamic model for some flood

predicaons.
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6 APPLICATION OF THE MONOCLINAL WAVE MODEL

6.1 INTRODUCTION

In this chapter, an cffort is made to examine and analyze the hydraulic
characiceristics of the lateral flows that take place between the main channel and the flood
plain during the propagation of a monoclinal flood wave in a straight, symmetric, and
prismatic compound channel. A pscudo-steady state form of the zero-inertia model is
applicd for this purpose. This modificd model will be referred to as the two-dimensional
maonoclinal wave model hereafter. Accordingly, the rising part of a natural flood wave is
emphasized in the present analysis. Application of the monoclonal wave approximaticn
from the point of view of a moving observer makes it possible to analyze the
characteristics of the lateral discharge within the flood wave instead of investigating
through the whole length of the channel. It is also possible to use large time steps for
numerical experiments. A brief description of the monoclinal wave model and various
boundary conditions and the range of non-dimensional variables used in the numerical
experiments are presented in Section 6.2. Extensive numerical experiments are then
carricd out and the characteristics of the lateral discharges are discussed in Section 6.3.
Finally, a theoretical analysis is carrizd out to derive relationship(s) for lateral flow
exchange between the main channel and the flood plain in terms of the local depths of
the main channel and the flood plain. The numerical experimental data are ther used to
verify the simplified analyses. The theoretical and the numerical analyses are
presented in Section 6.4,

158
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6.2 MODEL EQUATIONS
In order to study the characteristics of the lateral inflows in the compound
c¢hannel, the unsteady two-dimensional zero-inertia model developed in the present
1dy is adopted. However, as the pseudo-steady staie form of the  monoclinal wave is
considered in this study, the continuity equation hias been modified from the point of

view of a moving observer and written as follows:

ah + 3((1( — va) + aq" () l( 1 l
—_— = A I
ot ox ay
The simplified x- and y- momentum cquations remain as presented in Chapter
2. No modification to these equations is necessary as the inertial terms are neglected in

the zero-inertia model.

6.2.1 INITIAL AND BOUNDARY FLOW CONDITIONS

As the unstcady zero-inertia flow model is o vio o he pseudo-steady state
profile of the menoclinal wave, the flow depth at the fina: siqge of flood event was
given as the upstream {low boundary and the depth of the main channel below the fTood
plain level was given as the downstream flow boundary. A lincar longitudinal variation

of water surface profile was assumed as the initial condition.

6.2.2 NUMERICAL EXPERIMENTS

Several numerical experiments were conductea for diftereat fiood events. In ail
th.e experiments, the main channel was initially full and the flood plain was dry. The
numerical runs were terminated when the flow became steady. Numerical experiments

were conducted for the following conditions:
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1. Depth ratio, H——H_-—D- varies from ().1 to (0.8,

«

k
2. Relative flood plain roughness, % varies from 0.0001 t0 0.3

'

. . k . :
. Relative main channel roughness D‘ varics from (.0001 to 0.1

4. 8, varics from (0.0001 to 0.001.

6.3 ANALYSIS OF RESULTS

An extensive analysis of the data obtained from the numeric::l experiments was
carried out in this study. The eftects of various physical parameters on the movement of
the flood waves are discussed and the characteristics of the lateral discharge in

particular are examined in detail.

6.3.1 GENERAL DISCUSSION

Figure 6.1 shows a final water surface profile of a monoclinal wave along the
center line of the main channel along with the initially assumed water surface profile.
The effects of the ratio of the tlood plain roughness and the main channel roughness on
the water surface profile along the center hine of the main channel are graphically shown
in Figure 6.2. The corresponding depth hydrographs as seen by a stationary observer
arc plotted in Figure 6.3. It is scen that as the flood plain roughness increases, main
channel flow depths arrive sooner at a particular location. Similar effects on the flood
plain flow depthe are noticed as shown in Figure 6.4. The spatial distribution of the
longitudinal main channel and tlood plain flow velncities along the wave are shown in
Figures 6.5 and 6.6, rcspectively. Also shown in each of these figures is the distribution
of th - longitudinal velocity calculated using uniform flow formula. It is inferred that the

use of uniform tlow formula results in erroneous results for the iastial stage of the flood
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for the case of main channel out less error is introduced for the flood plain veloeity. For
all the cases discussed above, the main channel was {ull.

In order to examine the shape of the total longitudinal discharge hydrograph of a
monoclinal wave, a numerical experiment was conducted for the condition that the munn
channel was not full. The physical parameters were as follows: H =6m, D=3 m,
k, =k, = 0.2 m, and §, =0.0005. Also, the initial flow depth in the main channel was
1 m. The spatial distribution of the total longitudinal discharge along the wave is shown
in Figure 6.7. This distribution is transferred to a discharge hydrograph as scen by a
stationary observer and is shown in Figure 6.8. The feature that the in-bank and out of
bank flows move with different velocities is clearly noticed in these figures.

The distributions of lateral discharge along the tlood wave at various locations
across the flood plain are showr in Figure 6.9. Tt is scen that the lateral discharge
profile at the interface erseleps all ~1' -0 wodfiles. An interesting feature can be seen in
Figure 6.10 which shows the variatic .+ peak lateral discharge across the flood plain. It
is found that the peak discharge varies lincarly across the flood plain. Figure 6.11 shows
the effect of the ratio of the flood plain roughness to the main channel roughness on the
spatial distribution of the lateral discharge at the interface. These distributions are also
transferred to the lateral discharge hydrographs as shown in Figure 6.12. 1t is scen that
as the flood plain roughnes: increascs, the contribution from the lateral inflow increases
with a reduction in the peak. This is attributed to the fact that a» the flood plain
roughncss increases, longitudin: flow in the flcod plain slows down and consequently,
the faster moving main channel flow has to make up the deficit. The effects of the
longitndinal bed slopes on the spatial distribution of the lateral discharge are plotted in

gure 6.13. It is noticed that as the slope increases. the peak lateral discharge and the
overall volume of lateral flow increase. Similar effects are observed for the effects of
the width ratic on the spatial distribution of ihe laieral discharge at the interface as

shown in Figure 6.14.
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6.3.2 NON-DIMENSIONAL ANALY SIS OF LATERAL DISCHARGE

DISTRIBUTIONS

As similar results are obtained from all the experiments, a non-dimensional plot
oi the distribution of lateral discharge could be possible. With this point of view, each
oi the lateral discharge is non-dimensionalized by the peak value of the corresponding
lateral discharge profile and two length scales are chosen such that they represent the
distances from the peak where the discharge is half of the peak value. Figure 6.15
shows the obtained distribution and it is obvious that the lateral discharge profiles are
similar. In order to make use of this universal graph, the estimations of the peak values
of all the tateral discharge profiles and the magnitudes of the two lengih scales are
required. Hence, a relationship between all the peaks and the maximum lateral
discharge which corresponds to the peak value of the interface , denoted by g, 18
required. In doing so, the peak values of all the discharge profiles across the flood plain
arc non-dimensionalized by ¢,.,... and the distance across the flood plain is non-
dimensionalized by the width of the flood plain. This linear non-dimensional plot is

shown in Figurc 6.16. This lincar distribution can be expressed by the following

cquation:

( YRl V

 ypeik =12 [6.2]
q\'wlgr w I

where v is an arbitrary lateral distance across the flood plain.

The next task is to determine  cach of the length scales. The variation of the non-
dimensional  left and right length scaic s with the depth ratios are shown in Figures 6.17
and 6.18 respectively. By performing multiple regression analysis, the distributions

shown in these figures can also be approximated by the following two equations:

¢ c

‘ ~2.33 017
> L \SU\ Hl‘ - D x 2
For the leftscale, -17;—:1—) =(.1 81(_,‘075(— I ) » R =0.80 [6.3])
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REIRRNIT
For the right scale, -5’—2—— =015, 0 H=D : R7 =081 16.4]
H —-D - H

where R* is the cocfficient of determination and the values specificd as subscripts are
the tolerance limits of the coefficients.

Hence |, knowing the depth ratio for a particular flood event and the slope of the
channel, length scales can be determined from these equations. The final step is to find
an expression for ¢, . It can be shown that ¢, .. is a function of the following
variables:

H -D
Groter = f( W,,,W( Tg‘ ,k.\l,,k'\(_,gj [6.5]

4

In non-dimensional form, it can be written as:

D W, Wk, k
Gt =ﬁ{H,. Do ,‘%‘_L‘ii) 16.6]

3.
Vi’

By performing a multiple regression analysis on the numerical experimental data, the

following equation is obtained for practical purposes:

q_w_'dge' _
————

VeD?

247 40 097
_ B0 W 10.07
13.18,, ., * ﬁ_r___p_ Sml-”,o.w(_l'_) ( W, )
o H. D D

~0.24,01) RALSTT

D D
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The coefficient of determination is 0.97 and the relationship is shown in Figure 6.19.
Hence, by knowing the channel and flood properties, the maximum lateral discharge
can be determined by the above regression equation.

It should be mentioned that the determination of the location of the peak lateral
discharge within the wave is not required. This is because of the fact that in the
similarity profile, the position of the peak is used as a reference point. However, an
attempt is made in this study to examine the position of the peak and it is found that it
occurs in the vicinity of the point of inflection of the longitudinal water surface profile
where the maximum longitudinal frict:on slope occurs.

Therefore, Figures 6.15 10 6.19 +ay be applied to determine the distribution and
the volume of the lateral discharge for » flood event keeping their limitations in mind.
This finding can then be used to quantify the distribution of transferred material by

knowing its concentration in the flood flows.

6.4 EXPRESSIONS FOR LATERAL FLOW EXCHANGE

During the propagation of flood wave in a compound channel, flow exchange
takes place between the main channel and the flood plain. To quantify this lateral flow
exchange in the application of one-dimensional models, weir type equations are
normally used ( Cunge et al., 1980; Tuitoek, 1995). In the present study, however, an
effort is made to derive a theoretical expression for the lateral flow exchange in terms
of the local main channel and flood plain flow depths based on the physical processes
involved. Two different flood plain flow situations, namely, fully flooded (entire flood
plain width inundated) and partially flooded plains are considered as described herein.
The numerical experimental results are then used to verify the simplified theoretical

analyscs.
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6.4.1 FLOW INTO FULLY FLOODED PLAINS
In order to derive an expression to estimate the lateral flow exchange for the fully
inundated flood plains, a control volume per unit length as shown in Figure 6.20 is
considered. This control volume extends from the interface of the main channel and the
flood plain to the outer wall of the fiood plain. Balancing the lateral forces »cting on

this control volume results in:

P—-P,+M =F, [6.8]
where P, is the hydrostatic pressure force acting at the interface between the main
channel and the flood plain, P, is the hydrostatic pressure force acting at the outer edge
of the flood plain, M, is the convective momentum transfer, and F, is the boundary
shear force on the flood plain.
Neglecting convective momentum, equation [6.8 ] can be rewritten as:
P-P, =F, 16.9]
Assuming the water surface varies lincarly across the flood plain, then the
average depth in the flood plain can be expressed as:

y < HtH,

6.10
J 5 [6.10]

where H, is the average depth of flow in the flood plain, H, is the average depth of
flow in the main channel above the flood plain level, and H, is the depth of flow at the

outer edge of the flood plain.

The above cquation can be rearranged as:

H,=2H,~H, (6.11]

Now,
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P = )_”2’_1 [6.12]

p =M [6.13]
- 2

Therefore,

P P, =-§(Hf—H5‘) [6.14]

This equation can be further simplified by using equation [6.10] as:

P,—P2=2}/H,(Hl -H,) [6.15]

Bed shear stress can be defined as:

[, = gé/_‘ﬁ [6.16]

where 7, is the boundary shear stress on the flood plain, U and V are the longitudinal
and the lateral velocitics, respectively.

Assuming a lincar variation of the lateral discharge across the flood plain, as
discussed carlier in this chapter, and uniform flow conditions in the longitudinal

direion (G 16) can be expressed as:

I,_,_j__ ' , Y
7 - PVg ,,.J{,.!{l__.\_ [6.17]
: CH, . W

P

where p s sle density of fluid, £, is the non-dimensional Chezy coefficient, H, is the

average depih of flow in the flood plain, g, is the lateral flow exchange, W, is the
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width of the flood plain ena v is 2n arbitrary lateral distance from the interface between
the flood plain and the main channel.

Hence, the total boundary shear foree can be calculated as:

“”'
Fo={ "1y [6.18]

Substituting equation [6.17] into eqeation [6.18]) and integrating, the following is

obtained:
A W
F, =P84 70 [6.19]

© C.H, 2
Substitution of the cquations [6.15] and 16.19} into equation [6.9] yiclds:

JeS.q W
201 41, —Hj)zi’—ci[“—H‘:i'——ﬁi 16.201
P / 4

Equation [6.20] can be rearranged in a non-dimensional form as follows:

3

W /S H-H, H, )
g, W,/ . =4( i /j(#j 16.21]
C‘-J;’;H]:, ] 1
The above equation can be further simplified as:

3

W /S H -H H ~-H,

q, p (;x =4 ! / 1 ! ! ‘().223'
H, H,
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Therefore, by knowing the width, the slope, and the local depth in the main
channel above the flood plain level as well as the local depth in the flood plain, equation
[6.22a]) can be used o quantify the lateral flow exchange between the -vain channel and

H -H
the flood plain for the ranges ()S—‘—H—’S (.5. In order to use cquation [6.22a] for
1

flows leaving the flood plain to the main channel, this equation is modified as follows:

l] [6.22b]

t2 ]

quW/: ‘S‘ux - 4( I.ll - fl/ )[1 _ |Hl - H[
3

= 1
CoAfgH; H, A,

6.4.2 FLOW INTO PARTIALLY FLOODED PLAINS
In the preceding subsection, 6.4.1, a theoretical equation is derived for the lateral

flow cxchange between the main channel and the flood plain for the ranges

H -H . . : L .
0< IH L <().5. In this subsection another theoretical equation is derived for the
1

H-H
partially floeded flood plain valid for the ranges 0.5 ——L <1.0. Balancing the
1

lateral forces acting on the control volume per unit length as shown in Figure 6.21 by

neglecting the convective momentum yields:

P =F, [6.23]
where Py and F are defined as before.

Boundary shear force is defined as:

w,
Fo=["rudy [6.24]

where W is the effective lateral distance flooded by flow.
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Using the equation [6.15], »n expression for boundary shear stress can be written as

P+/8S.. ( v
| ——— 6.25
T ‘\/—_ ”K ‘V'I ] l ] l

where H is the depth in the tlood plain at any lateral distance from the interface.

Assuming a lincar variation of depth across the inundaied {lood plain i.c.,

Y ] [6.26]

H=H(1——
W

Equation [6.25 } can be simplified as:

i
pJeS.. (1—L) 16.27)

e CAH, W

Substituting cquation {6.27" "~ juation [6.24) results in:

jp\/qS(,,a [6.28]

Define, n =" 16.29]
Then
dv=-W.dn [6.30)]
Substituting equations [6.29 ] and {6.30 ] into equation [6.28 |yiclds:
_ 1
F.=pV ox nJ'r' , lr’—p‘\/é nxqow _z_ng {()’;}l
' C.\H, - C.\/H, 3



170

The above cquation can be further simplified as:

ro=22y W, 16.32]
3 C.4/H,

Now, in order to estimate the inundaied width of the flood plain, W, an

cquivalent average depth which gives the same water volume is used:

I
SWH =W, H, 6.33]

where H, is the average depth ot flow in the flood plain.
Then, the following relationship can be obtained:

W, =2 —1-1— W, 16.34]

!

Substituting equations [6.12] and [6.32] into equation [6.23] and using cqu:.tion
[6.34], and simplifying, the following non-dimensional form can be obtained:

qnwp Sox — 3 H

or =20 [6.35]
C.+JgH} /

The above cquation can he further simplified as the following:

g WS, 3
a.Vii%e 3

C.\[gH} l__—_HT_j

Hence, by knowing the width, the slope, the local average depth in the main

channel as well as in the flood plain, the equation [6.36] can be used to quantify the
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lateral flow exchange between the main channel and the flood plain for the ranges

H -H . .
0).§<———L <[.(). This equation is only applicable for flow leaving the main
1

channel to the partially dry flood plain.

6.4.3 REGRESSION EQUATIONS FOR LATERAL FLOW EXCHANGE
Having derived the theoretical equations for different flood plain flow situations,
namely, fully and partially inundated flood plains, these equations were verified by
numecrically simulated dulu.\Dulu obtained by the monoclinal wave model were used for
lateral flows from the main channel to the flood plain and data obtained by the unsteady
zero-inertia model were used for flows leaving and entering the flood plain. The
theoretical variation of the non-dimensional variable M with the other non-

C.\[gH?
-H

dimensional variable —-;;—L is shown in Figure 6.22. The relationship between these
1

two variables for numerically simulated data are also shown in the same figure. It is
clearly noticed that those data support the trend of the theoretical relationships
rcasonably well. By performing a regression analysis on the numerical experimental

data, the following cquation is obtained:

q. I'{_';‘ =3.58,, (.—l—f—l——]_) -6.84 [__1_;1___1_) + 8'01.61(-)_—Lj
C‘ﬁle \ I 1

[6.37a]

In order to be appacable wo oth flow leaving and entering the main channel, the

above cquation is moditicd as follows:



[6.37b]

The coefficient of determination is (.97 and the tolerance limit of cach of the
coefficients is given as subscript in the above equation. This relationship along with the

simulated data is shown in Figure 6.23. It is alse found from the numerical experiments
L3 -

that most of the lateral flow exchange data lie in the range of 0< - - L<0.5and a

5
lincar relationship between the two non-dimensional variables is noticed in Figure 6.31.

Hence, the tollowing lincur regression equation is proposed for practical purposes:

H -H,
=2.21ﬂ,m: ——H—— l(";x]
1

The coefficient of determination is .97  and the tolerance limit of the
coefficient is shown as subscript in the above equation and the relationship is provided
in Figure 6.32.

Equation [6.37] or [6.38] may be uscful for specifying the lateral flow exchange
between the main channel and the flood plain flows presently handled by weir type

equations in one-dimensional compound channel flow modcls.
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7 CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

The purpose of the present work was to perform a computational study of the
hydraulic characteristics of the lateral discharges that take place between the main
channel and the flood plain of a compound channel system during floods. This kind of
study has many practical applications. As floods occur in the river-flood plain areas, the
volume of a flood plain rcach is filled up by the lateral flows from the main channel and
by the longitudinal flows from the upstream end of the flood plain. An effort was made
to investigate and analyze the characteristics of this lateral discharge in detail which
might enable some simple estimates of the lateral transfer of materials and their
distribution on the flood plains. These transferred materials could be the suspended
sediments or the contaminants which normally remain confined in the river channel.
Contaminants, in part‘cular, may cause environmental aad ecological hazards to the
flood plain areas. Therefore, an adequate knowledge of the quantity and the distribution
of these substances may provide some guidelines for preventive measures. As it is
almost impossit v study this aspect by laboratory experiments, numerical experiments
were conducted.

A two-dimensional zero-inertia computational model for simulating unsteady
compound channel flows was developed to undertake these numerical experiments. A
pscudo-steady state form of the model was then used to develop a methodology to
quantify the volume of lateral flows from the main channel to the flood plain and their

197



108
distribution along the flood wave as well as across the flood plain. The present study
was also concerned with the theoretical analysis of flow exchange between the main
channel and the tlood plain and o derive relationships for flow exchange in terms of the
local main channel and flood plain depths. The conclusions drawn from the studics
discussed in the preceding chapters in detail are presented in Section 7.2 and the specific

recommendations for further rescarch are provided in Section 7.3.

7.2 CONCLUSIONS

The following conclusions are drawn from the present research:

1) An order of magnitude analysis of the governing flow cquations provides three
non-dimensional parameters. These are diffusion flow number, B, scale Froude number,
F,, and aspect ratio, W 7 - Depending on the relative magnitudes of these variables for
different floods, inertial terms can be neglected for some flood predictions.

2) The zero-inertia model developed in the present study is simple, robust and
relatively easy to exccute. It can simulate a dry bed situation without any computational
difficulty, whereas special techniques are needed for full dynamic models to simulate
such a case. The model was tested against the experimental data of Treske (1980) and
reasonable agrcement was found. Applications of this model to hypothetical cascs
showed that it is capable of simulating various features of floods which arc normally
observed in the ficld.

3) Comparison of the relative performance of the present model and a full
dynamic model FESWMS-2DH for non-dynamic situations showed that the proposed
model produced comparable results with much less computational time and effort. As an
example, approximately 24 hours were required for FESWMS-2DH 10 simulate a

hypothetical flood in IBM PC 486 DX with 50 MHz, whercas the present model needed
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only about 20 minutes. Within the applicable range of its use, the zero-inertia modcl
may replace the complicated full dynamic model for most flood predictions.

4) The theoretical analysis of a two-dimensional monoclinal wave provided a
valuable insight into the cffects of the various parameters of a compound channel and a
flood on the ratio of average flood wave velocity to average flow velocity and on the
filling process of the flood plain by lateral flows. These parameters are the width ratio,
the roughness ratio, and the depth ratio. It was found that the ratio of velocities decreases
as the width or the roughness ratio increases. A simple equation was derived to quantify
the volume of lateral flow. It was found that the rougher or the shallower the flood plain,
the more the volume of flow leaving the main chaviucl and filling up the flood plain.

5) An analysis of lateral discharge data of monoclinal waves obtained through
numerical experiments supported the theoretical analysis and also explored the hydraulic
characteristics of such flows. It was found that the maximum lac. . .1 discharge per unit
length varics lincarly across the flood plain. The effects of the width ratio, the roughness
ratio, and the bed slope on the water surface and the lateral discharge profiles of the
monoclinal waves were also critically examined. As the roughness of the flood plain
increases, the maximum lateral discharge per unit length decreases; however, the total
volume of lateral flow increases. Moreover, the maximum lateral discharge and the total
volume of flow from the main channel increase as the slope or the width of the flood
plain increases.

6) Further analysis of data produced & similarity profile of the distribution of
lateral flows. The scales are the peak lateral discharge and the two length scales chosen
such that the magnitude of the lateral discharge on each side of the profile is half of the
peak discharge. An analysis of the various scales is presented and empirical regression
equations are proposed for practical purposes. The spatial distribution of the lateral
discharge along the flood wave could be transferred to the lateral discharge hydrographs

using the average {lood wave velocity as seen by a stationary observer.



200

7) The methodology developed in this study provides detailed information on
the volume and the distribution of the lateral discharge along the wave as well as across
the flood plain. This may provide useful guidelines for the investigation and the analysis
of the volume and the distribution of e transferred materials.

8) Two theoretical equations were derived for different flood plain flow
situations, namely, for fully tlooded and partially flooded plains to obtain a relationship
for flow exchange between the main channel and the flood plain in terms of the focal
channel and flood plain flow depths. Data obtained through numerical experiments
supported the trend of these theoretical equations reasonably well. Empirical equations
are proposed for practical purposes. These equations may be useful for specifying the
lateral flow exchange between the main channel and the flood plain flows presently

handled by weir type equations in one-dimensional compound channel flow models.

7.3 RECOMMENDATIONS

The present research work demonstrates the development and the application of
a simple two-dimensional zero-inertia model for simulating unsteady compound channcl
flow. It also represents the first step in developing a simple methodology to quantify the
volume and the distribution of lateral flows and to obtain an approximate estimate of the
quantity and the distribution of laterally transferred materials. The limitations of this
work must also be recognized. The following recommendations for further rescarch are

suggested with a view to improving the ultimate utility of the present research.

1) The proposed regression equations should be applied only within the range of
the non-dimensional variables used in the study. Hence, more numerical experiments
may be undertaken for a wider range of variables which may be useful for ficld

conditions.
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2) Quantitative results obtained through the proposed methodology need to be
verified. A computational model for lateral transport and deposition of suspended
sediment needs to be developed and applied. Then the obtained results can initially be
verified by undertaking laboratory experiments for floods in a compound channel. After
performing several experiments, the quantity and the depositional pattern of suspended
sediments on the flood plain will then be examined and quantified after the passage of
cach flood. The results obtained through the proposed methodology will then be
compared with experimental data. If reasonable agreement is obtained, then this
methodology may be applied to the field data. Having gained enough confidence about
the accuracy and the reliability oi this simple methodology, further analysis may be
carried out for the natural rivers.

3) The proposcd model is presently limited to straight prismatic channels. This
model may be modified by probably adopting body fitted coordinaltes so that it can
casily be applied to natural meandering rivers. The model is also only applicable to a

fixed bed. This model may be modified to incorporate the mobile bed condition.



202

REFERENCES

Abbott, M. B., 1979, "Compurational Hydraulics: Elements of the Theory of Free

Surfuce Flows." Pitman Publishing Company. London, England, 324 pp.

Abida, H. and Townsend, R. D., 1994, "A Maodel for Routing Unsteady Flows in
Compound Channels." JAHR Journal of Hydraulic Research. Vol. 32, No. 1, pp.

145 - 153.

Adetl, S. E., 1988, "A Sediment -laden Three -Dimiensional -Fiow Numerical Model.”
Thesis presented to the University of Towa, USA in partial fulfitiment of the

requirements for the degree of Doctor of Prilosophy.

Ahmadi R.. 1979, "An Experimental Study of the Interaction Between Main Channel and
Flood plain Flows." Thesis presented to the University off Alberta, Edmonton,
Alberta, Canada in partial fuifillment of the requirement for the degree of Doctor

of Philosophy.

Akan, A. O. and Yen, B. C., 1981, "Diffusive-Wave Flood Routing in Channel
Networks." ASCE Journal of Hvdraulic Engineering. Vol. 107, (HY 6), pp. 719-
732.

Akanbi, A. A. and Katopodes, N. D., 1988, "Model for Flood Propagation on Initially
Dry Land." ASCE Journal of Hydraulic Engineering. Vol. 114, (HY7), pp. 689 -
706.

ASCE Task Committee on Turbulence Models in Hydraulic Computations, 198§,
"Turbulence Modeling of Surface Water Flow and Transport.” Parts | to §.

ASCE Journal of Hydraulic Division. Vol. 114, (HY9), pp. 970 - 1073.



203

REFERENCES (continued)

Barnes. H. H., 1987, "Roughness characteristics of Natural Channels.” U.S. Geological

Survey Water Supply Paper, No. 1849. 213 pp.

Bhowmik, N. G. and Demissie, M., 1982, "Carrying Capacity of Flood Plains.” ASCE

Journal of Hydraulic Engineering. Vol. 108, (HY3), pp. 443 - 452.

Celia, M. A. and Gray, W. G., 1992, "Numerical Methods for Differential Equations:
Fundamental Concepts for Scientific and Engineering Applicarions.” Prentice

Hall Publishing Company. New Jersey. 436 pp.

Chaudhry, M. H., 1993, "Open Channel Flow." Prentice Hall, New Jersey. 483 pp.

Chow, V. T., 1959, "Open Channel Hydraulics." McGraw- Hill Book Company, New

York. N. Y., pp. 680.

Chow, Ven Te and Zvi, Arie, Ben , 1973, "Hydrodynamic Modeling of Two
Dimensional Watershed Flow." ASCE Journal of Hydraulic Engineering. Vol.
99, (HY11), pp. 2023 - 2040.

CSCE Task Committec on River Models, 1993, "Evaluation of Dynomic Models for

"

Rivers with Flood plains." CSCE annual conference, 11th Canadian

Hydrotechnical conference, June, 8-11, 1993, Fredericton, N. B., pp. 389-398.

Cunge. ). A.. 1975, "Two Dimensional Modeling of Flood Plains.” Chapter 17, of
Unsteady Flow in Open Channels, K. Mahmood and V. Yevjevich, Eds., Vol. 2,

Water Resources Publications, Fort Collins, Colorado, pp. 705 - 762.



204

REFERENCES (continued)

Cunge, J. A., Holly, F. M. and Verwey, AL, 1980, "Practical Aspects of Computational

River Hvdraulics." Pitman Publishing Company, London, England, 420 pp.

DeVrices, J. D., Hromadka, T. V., and Nestlinger, A. J.. 1986, "Applications of & Two
Dimensional Diffusion Hydrodynamic Model.” International Conference,

Hydrosoft 86, pp. 393-411.

Dingman, S. L., 1984, "Fluvial Hydrology." Freeman Publishing Company, Newyork.
383 pp.

Dijordjevic, S., 1993, "Mathematical Model of Unsteady Transport and its Experimental
Verification in a Compound Channel Flow." JAHR Journal of Hydraulic

Research. Vol. 31, No. 2, pp. 229 - 248.

Dracos, T. and Hardegger, P., 1987, "Stcady Uniform Flow in Prismatic Channels with

Flood plains.” IAHR Journal of Hydraulic Research. Vol. 25, No. 2, pp. 16Y-185.

Ervine, D. A. and Baird, J. 1., 1982, "Rating Curves for Rivers with Overbank Flow.”
Proceedings of Institute of Civil Engineers, London, England, PL.2. Vol. 73, pp.
465 - 472.

Ervine, D. A. and Ellis, J., 1987, "Experimental and Cemputational Aspects of
Overbank Flood plain Flow." Transactions of the Royal Society of Edinburgh,

Earth Sciences. Vol. 78, pp. 315 - 325.

Federal Highway Administration, 1989, "Finite Element Surface Water Modcling
System: Two-Dimensional Flow in a Horizontal Plan (FESWMS-2DH)."
Publication No. FHWA - Rd - 88 - 177.



205

REFERENCES (continued)

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N, H., 1978, "Mixing

in Inland and Coastal Waters." Academic Press, 483 pp.

Flokstra, C.. 1977, "The Closure Problem for Depth-Averaged 2D-Horizontal Flow."
Proceedings of the 17th IAHR Congress. Baden - Baden, Germany, Vol. 2, pp.

247- 256.

Fread. D. L.. 1973, "Effccts of Time Step Size in Implicit Dynamic Routing.” Warer

Resources Bulletin. Vol. 9, No. 2, pp. 338 - 351.

Fread, D. L., 1976, "Flood Routing in Mecandering Rivers With Flood Plains.”
Proceedings of the Symposium on Inland Waterways for Navigarion, Flood
Control, and Water Diversions, Waterwavs Harbors and Coastal Engineering

Div., ASCE. pp. 16-35.

Fread. D. L., 1988, The NWS DAMBRK Model: Theoretical Background / User
Documentation.” Office of Hydrology, National Weather Service ( NWS ),
Maryland, USA.

Gallati, M. and Braschi, G., 1989, "Simulation of a Levee - Breaking Submersion of
Plancs and Urban arcas." Computational Modeling and Experimental methods in
Hydraulics ( Hydrocomp ' 89). C. Maksimovic, and the late M. Radojkovic.
Eds.. pp. 117 - 126.

Gee, D. M., Anderson, M. G. and Baird, L., 1990, " Large Scale Flood Plzin Modeling."
Earth Sirfuce Processes and Land forms. Vol. 15, pp. 513 - 523.

Gerald, F. C., and Wheatley, P. O., 1985, "Applied Numerical Analvsis.” 3rd edition,

Addison-Wesley Publishing Company, S79pp.



2006

REFERENCES (continued)

Giammarco, P. D. and Todini, E., 1994, "A Control Volume Finite Element Method for
the Solution of 2-D Overland Flow Problems." In Modeling of Flocd
Propagation Over Initially Dry Areas. Proceedings of the Specialty ceaference
Co -sponsored by ASCE - CNR / GNDCI - ENEL spa. Paolo Molinaro and Luigi
Natalc Eds. pp. 82 - 101.

Giammarco, P. D. and Todini, E., Consucgra, D., Joerin. F.. and Vitalini, £, 1994,
"Combining a 2-D Flood Plain Model with GIS for Fiood Delincation and
Damage Assessment.” In Modeling of Flood Propagation Over Initially Dry
Areas. Proceedings of the Specialty conference co -sponsored by ASCE - CNR /

GNDCI - ENEL spa. Paole Molinaro and Luigi Natale Eds. pp. 171 - 185,

Grijsen, J. G. and Meijer, Th. J. G. P. , 1979, "On the Modeling of Flood Plain Flow in
Large River Systems with Flood Plains.” Proceedings of the 18th  JAHK

Congress, Papcr No. D.d.8, pp. 227 - 235.

Hayami, S., 1951, "On the Propagation of Flood Waves." . Bulletin 1, Disaster

Prevention Research Institute, Kyoto University, Japan.

Henderson, F. M., 1963, "Flood Wave in  Prismatic Channels." ASCE Journal of
Hydraulic Engineering. Vol. 89, (HY4), pp. 39 - 67.

Henderson, F. M., 1966, "Open Channel Flow." Mcgraw Hill Publishing, Newyork,
522 pp.

Hicks, F., 1990, "Finite Element Modeling of Open Channel Flow." Thesis pre. aed to
the University of Alberta, Edmonton, Alherta, Canada in partial fulfillment of the

requirements for the degree of Doctor ot Philosophy.



207

REFERENCES (continued)

Hromadka II, T. V. and Guymon, G. L., 1982, "Nodal Domain Integration model of onc-
dimensional advection-diffusion.” Advances in Water Resources. Vol. 5, pp. 9-

16.

Hromadka II, T. V., Bercnbrock, C. E., and Freckleton, J. R., 1985, "A Two-
Cimensional Dam-Break Flood Plain Model." Advances in Water Resources.

Vol. 8, pp. 7 - 14,

Hromadka II, T. V. and Durbin, T. J., 1986. "Two-Ddimensional Dam-Break Flood
Flow Analysis for Orange County Reservoir." Water Resources Bulletin,

American Water Resources Association. Vol. 22, No. 2, pp. 249 - 254.

Hromadka II, T. V., McCuen, R. H., and Yen, C. C., 1987, "Comparison of Overland
Flow Hydrograph Models." ASCE Journal of Hydraulic Engineering. Vol. 113,
(HY11), pp. 1422 - 1440.

James, C. S., 1985, "Sediment Transfer to Overbank Sections.” JAHR Journal of

Hydraulic Research. Vol. 23, pp. 435 - 452.

James, C. S., 1987, "The Distribution of Fine Sediment Deposits in Compound

systems." Water SA. Vol. 13, No. 1, pp. 7 - 14.

Jansen, P. P, van Bendegom, L., van den Berg, J., deVries, M., and Zanen, A., 1979,
"Principles of River Engineering - The Non-Tidal Alluvial River.” Pitman
Publishing Company, London, England. 509 pp.



208

REFERENCES (continued)

Jenkins, G. A. and Keller, R. J., 1990, "Numerical Modcling of Flows in Natural
Rivers." Preprints of the conference on Hydraulics in Civil Engineering.
Sponsored by the National Commitiee on Water Engincering of the College of
Civil Enginecrs, The Institute of Engineers, Australia and co-sponsored by

IAHR, Sydney, Australia. pp. 22-27.

Katopodes, N. D. and Strelkoff, T., 1978, "Computing Two-Dimensional Dam-Break
Flood Waves." ASCE Journal of Hydraulic Engineering. Vol. 104, ( HYY), pp.
1269 - 1288.

Katopodes, N, D., 1984, "Fourier Analysis of Dissipative Finite Element Mcthod
Channel Flow Model." ASCE Journal of Hydraulic Engineering. Vol. 110,
(HY7), pp. 927 - 944.

Katopodes, N. D., 1987, "Analysis of Transicnt Flow Through Broken Levees.”
Turbulence Measurements and Flow Modeling. C. J. Chen, L. D. Chen and F. M.
Holly Jr. Eds. pp. 301 - 310.

Keller, R. J. and Rodi, W., 1984, "Prediction of Two-Dimensional Flow Characteristics
in Complex Channel Cross-Sections." Hydrosoft'84, Hydraulic Engineering

Software. Proceedings of the Int. Conf. Portoroz, Yugoslavia. pp.3-3-3-14.

Keller, R. J. and Rodi, W., 1988, "Prediction of Flow Characteristics in Main Channel /
Flood Plain Flows." IAHR Journal of Hydraulic Research. Vol. 26, No. 4, pp.
425- 441,



209

REFERENCES (continued)

Kesel, R. H., Dunne, K. C., Mcdonald, R. C,, Allison, K. R., and Spicer, B. E., 1974,
"Lateral Erosion and Over bank Deposition on the Mississippi River in Lovisiana

Caused by 1973 Flooding." Geology. Vol. 1, pp. 461-464.

Kicly, G. K., Javan, M., McKcogh, E. J., 1990, "Prediction of Flow in Compound
Channels." Preprints of the Conference on Hydraulics in Civil Engineering.
Snonsored by the National Committee on Water Engineering of the College of
Civil Engincers, The Institute of Engineers, Australia and co-sponsored by

IAHR, Sydney, Australia, pp. 16 - 21.

Knighi, D.W. and Demetriou, J. D., 1983, "Flood Plain and Main Channel Flow
Interaction.” ASCE Journal of Hydraulic Engineering. Vol. 109, (HY8), pp. 1073
- 1091.

Krishnappan, B. G. and Lau, Y. L., 1986, "Turbulence Modeling of Flood Plain Flows."
ASCE Journal of Hydraulic Engineering. Vol. 112, (HY4), pp. 251 - 266.

Lai, Chan Ji and Yen, Chic Wei, 1993, "Propagation of Flood Wave in Compound
Channcel." Proceedings of the 25th Congress of IAHR. Tokyo, Japan. Vol. I, A-
5-4 pp. 169-176.

Lcan, G. H. and Weare, T. 1., 1979, "Modeling Two-Dimensional Circulating Flow."
ASCE Journal of Hvdraulic Engineering. Vol. 105, (HY1), pp. 17 - 26.

Leendertse, J. J., 1967, "Aspects of a Computational Model for Long-Period Water

Wave Propagation.” RM-5294-PR, The Rand Corporation, Santa Monica, Calif.

Leopold, L. B., 1973, "River Channel Changes with Time: an Example." Geological
Sociery of America Bulletin. Vol. 84, pp. 1845-1860.



210

REFERENCES (continued)

Leslcighter, E. J., 1983, "Flood Plain Flow using a Two-Dimensional Numerical
Solution." Proceedings of the Int. Conf. on the hydraulic Aspects of Floods and

Flood Control, London, UK. Paper No. G2, pp. 207 - 215.

Liggeut, A. J., 1975, "Basic Equation of the Unsteady Flow." Unsteady Flow in Open
Channels, K. Mahmood and V. Yevjevich, Eds., Vol. 1, Water Resources

Publications, Fort Collins, Colorado, pp. 29 - 62.

Lighthill, M. J. and Whitham, G. B., 1955, "On Kinematic Waves: I-Flood Movements
in Long Rivers." Proceedings of the Royal Society of London, ( A'), Vol. 229
(1178), pp. 281-316.

Linsley, R. K., Kohler, M. A. and Paulhus, J. L. H., 1982, "Hydrology for Engincers.”
4rd ed. McGraw-Hill Book company, New York, NY. 482 pp.

Martin, L. A. and Myers, W.R.C., 1991, "Measurements of Overbank Flows in a
Compound River Channel." Proceeding of the Institute of Engineers. Part 2,

Vol. 91, pp. 645, 657.

McGuirk , Lj, and Rodi , W., 1978, "A Depth-Averaged Matk..natical Model for the
near field of side discharges into Open Channel Flow." Journal of Fluid

Mechanics. Vol. 86, part 4, pp. 761 - 781.

McKeogh, E. and Kiely G. K. 1989. "Experimental Study of the Mechanisms of Flood
Flow in Mecandering Channels." Proceedings of the 23rd IAHR Congress,
Ottawa, pp. B491 - 498.






211

REFERENCES (continued)

Meselhe, A. and Holly Jr., F. M., 1993, "Simulation of Unsteady Flow in Irrigation
Canals with Dry Bed." ASCE Journal of Hydraulic Engineering. Vol. 119,
(HYY), pp. 1021-1039.

Naaim, M. and Brugnot, G., 1994, "Free surface modeling on a complex topography.” In
Moadeling of Flood Propagation Over Initially Dry Areas. Proceedings of the
Specialty conference co -sponsored by ASCE - CNR / GNDCI - ENEL spa.

Paolo Molinaro and Luigi Natale Eds. pp. 298 - 308.

Ogink, H. J. M. 1985, "The Effective Viscosity Coefficient in 2-D Depth Averaged Flow
Models." Proceedings of the 21st IAHR Congress, Melbourne, Australia, Vol. 3,

pp. 474-479.

Pasche, E.. Rouve, G. and Evers, P., 1985, "Flow in Compound Channels with Extreme
Flood Plain Roughness.” Proceedings of the 21st IAHR Congress. Melbourne,

Australia, Vol. 3, pp. 383 - 389.

Patankar, S. V., 1980, "Numerical Heatr Transfer and Fluid Flow." Hemisphere

Publishing Company, 1980, 197 pp.

Pezzinga, G., 1994, "Velocity Distribution in Compound Channel Flows by Numerical
Modeling." ASCE Journal of Hydraulic Engineering. Vol. 120, (HY10), pp.
1176-1197.

Pizzuto, J. E., 1987, "Sediment Diffusion during Overbank Flows." Sedimentology, Vol.

34, pp. 301-317.



ro
t9

REFERENCES (continued)

Ponce, V. M. and Simons, D. B., 1977, "Shallow Wave Propagatior: in Open Channcl
Flow." ASCE Journal of Hydraulic Engineering. Vol. 103, (HY 12), pp. 1461 -
1476.

Ponce, V. M., Li, R. M., and Simons, D. B., 1978, "Applicability of Kincmatic and
Diffusion Modcls." ASCE Journal of Hvdraulic Engineering. Vol. 104, (HY3),
pp- 353 - 360.

Ponce, V. M., and Yabusaki, S. B., 1981, "Modeling Circulation in Depth-Averaged
Flow." ASCE Journal of Hvdrav!ic Engineering. Vol. 107, (HY11), pp. 1501 -
1518.

Ponce, V. M., 1986, "Diffusion Wave Modeling of Catchment Dynamics." ASCE
Journal of Hydraulic Engineering. Vol. 103, (HY8), pp. 716-727.

Ponce, V. M., 1990, "Generalized Diffusive Wave Model with Inertial Effects.” Water

Resources Research. Vol. 26, No. S, pp. 1099 - 1101.

Popovska, C, 1989, "Mathematical Model for two dimensional dam-break propagation.”
Computational Modeling and Experimental methods in Hydraulics ( Hydrocomp

'89). C.Maksimovic and the late M. Radojkovic Eds. pp. 127 - 136.

Prinos, P. and Townsend, R. D., 1984, "Comparison of Mecthods for Predicting
Discharge in Compound Open Channels.” Advances in Water Resources. Vol. 7,

pp- 180 - 187.



REFERENCES (continued)

Prinos, P., 1989, "Experiments and Numerical Modeling in Compound Open Channel
and Duct Flows." Computational Modeling and Experimental methods in
Hydraulics (Hydrocomp ' 89). C. Maksimovic and the late M. Radojkovic Eds.

pp. 255 -268

Radojkovic, M., 1976, "Mathematical Modeling of Rivers with Flood plains.”
Proceedings of the Symposium on Inland Waterways for Navigation, Flood
Control, and Water Diversions, Warerwavs Harbors and Coastal Engineering

Div. ASCE, Vol. 1, pp. 56-.64

Radojkovic, M. and Djordjevic, S., 1985, "Computation of Discharge Distribution in
Compound Channcls." Proceedings of the 21st IAHR Congress. Melbourne,
Australia, Vol. 3, pp. 367 - 371.

Rajaratnam, N. and Ahmadi, M, 1981, "Hydraulics of Channels with Flood Plains.”

IAHR Journal of Hydraulic Research. Vol. 19, No. 1, pp. 43 - 60).

Rashid, R. S. M. M., and Chaudhry, M. H., 1993, "Numerical Modeling of Unsteady
Compound Channel Flow." Proceedings of the ASCE Conference. H. W. Shen,
S. T. Su.. and F. Wen Eds., San Frascisco, USA, pp. 1254, 1259.

Rastogi. A. K. and Rodi, W., 1978, "Prediction of Heat and Mass Transfer in Open
Channels." ASCE Journal of Hydraulic Engineering. Vol. 104, (HY3), pp. 397 -

420

Richtmyer, R. D. and Morton, K. W., 1967, "Difference Mcthods for Initial value

problems." 2nd ed. Interscience Publishers Inc. New York, NY. 450 pp.



REFERENCES: (continued)

Rijn, L. C. van, 1990, "Principles of Fluid Flow and Surface Waves in Rivers, Estuaries
Seas and Oceans." AQUA Publications, Netherlands, 335 pp.

Roache, P. J., 1972, "Computational Fluid Dynamics." Hermosa Publishers, P. O. Box.

8172, Albuguerque, New Mexico, N. M. 87108. 434 pp.

Rodi, W., 1984, "Turbulence Models and Their Applications in Hydraulics” -A State of
the Art Review, 2nd ed. IAHR, Delft. 104 pp.

Sabur, M. A, 1990, "A Distributed Numerical Model for Watershed Hvdrology." Thesis
presented to the University of Alberta, Edmonton, Alberta, Canada in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Samucls, P. G., 1985, "Modeling of river and flood plain flow using the finite element

method." Hydraulic Rescarch, Tech. Report No. SR61, Wallingford, U. K.

Schmitz, G., Seus, G. J., and Czirwitzky, H. J., 1983, "Simulating Two Dimensional
Flood Flow." Proceedings of the Int. Conf. on the Hydraulic Aspects of Floods
and Flood Control, 13-15 september, 1983, London, England. Paper No. G1, pp.
195-206.

Seddon, J. A., 1900, " River Hydraulics." ASCE Trans., Vol. 43, pp. 179-229.

Sellin, R. J. H., 1964. "A Laboratory Investigation into the Interaction between Flow in
the Channel of a River and that of its Flood Plain." La Houille Blanche. Vol. 7,
pp- 793 - 801.

Soulis, J. V., 1992, "Computation of Two-dimensional Dam-brcak flood flows.” Int.

Journal for Num. Methods in Fluids. Vol. 14, pp. 631 - 664.



215

REFERENCES (continued)

Stephenson, D. and Kolovopoulos , P., 1990, "Effects of Momentum Transfer in
Compound Channcels." ASCE Journal of Hydraulic Engineering. Vol. 116,
(HY12), pp. 1512 -1522.

Tayfur, G., Kavvas, M. L., Govindaraju, R.S., and Storm, D. E., 1993, "Applicability of
St. Venant Equations for Two-dimensional Overland flows over Rough
Infiltrating Surfaces.” ASCE Journal of Hydraulic Engineering. Vol 119, (HY1),
pp. S1-63.

Thacker, W. C., 1978, "Comparison of finite element and finite difference schemes."
Part 11 : Two - Dimensional Gravity Wave Motion. Journal of Oceanography.

Vol. 8, No. 4, pp. 680 - 689.

Tingsanchali, T. and Chaiwat, C., 1984, " Two-Dimensional Flood Plain Modeling for
Eastern Bangkok Plain." Proceedings of the fourth Congress - Asian and Pacific

Division, IAHR, Thailand, pp. 29 - 44.

Tingsanchali, T. and Lal, N. K., 1988, " Subsidence of Flood Waves in Overbank
Arcas." IAHR Journal of Hydraulic Research. Vol. 26, NO. 5, PP. 585 - 597.

Tominaga, A. Nezu, 1., and Ezaki, K., 1989 , " Experimental Study on Secondary
Currents in Compound Channel Flows." Proceedings of the 23rd IAHR
Congress. Otawa, Canada, pp. A-15- A 22.

Tuitock, D. K., 1995, "Coupled Equations for Modeling unsteady Flow in Open
Channels with Flood Plains.” Thesis presented to the University of Alberta,
Edmonton, Alberta, Canada ir partial fulfillment of the requirement for the

degree of Doctor of Philosophy.



216

REFERENCES (continued)

Urban, C. and Ziclke, W., 1985, "Steady State Solution for Two Dimensional Flows in
Rivers with Flood Plains." The Hydraulics of Flood and Flood Control,
Proceedings of 2nd Imi. Conf. Cambridge, pp. 389 - 398.

Vreugdenhil, C. B. and Wijbenga, J. H. A, 1982, "Computation of Flow Patterns in
Rivers." ASCE Journal of Hvdraulic Engineering. Vol. 108, (HY 11), pp. 1296 -
1309.

Walling, D. E., Bradley, S. B. and Lambert, C., 1986, "Conveyance Losses of
Suspended Sediment within a Flood Plain System."” In :Drainage Basin Sediment

Delivery , R. F. Hadley Eds, LAH.S. publication No.159. pp. 119-131.

Walling, D. E., Quine, T. A,, and He, Q., 1989, "Investigating Contemporary Rates of
Flood Plain Scdimentation.” Low Land Flood Plain Rivers: Geomorphological

perspectives. P. A. Carling and G. E. Petts Eds., pp. 165-184.

Wang, H. F. and Andcrson, M. P., 1982, "Introduction to Ground Water Modeling:
Finite Difference and Finite Element Methods." Freeman Publishing Company,

San Francisco, USA. 237 pp.

Wark, J. B., Samuels, P. G., and Ervine, 1990, "A pratical Mcthod of Estimating
Velocity and Discharge in Compound Channes." Proceedings of the int. Conf. on
River Flood Hydraulics, W. R. White Eds., Hydraulic Research Limited,
Wallingford, U.K., 17-20 September, pp. 163-171.

Wormleaton, P. R. and Merret, D. J., 1990, "An Improved Method of Calculation for
Steady Uniform Flow in Prismatic Main Channel / Flood Plain sections.” JAHR

Journal of Hydraulic Research. Vol. 32, No.1, pp. 145-153.



ro
<)

REFERENCES (continued)

Xanthopoulos, Th., and Koutitas, Ch., 1976, "Numerical Simulation of Two-
Dimensional Flood Wave Propagation due to Dam failure." JAHR Journal of

Hvdraulic research. Vol. 14, No. 4, pp. 321 - 331.















