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Abstract 

Paleoecology researchers have employed an array of methods for collecting, counting, 

and identifying fossil data; no standard protocol exists for conducting community 

paleoecological research. The lack of a standard protocol could lead to inaccurate conclusions. In 

addition, paleocommunity research is labor- and time-intensive, as it requires expertise in 

multiple taxonomic groups and geological sub-disciplines. Therefore, it is important not to over-

sample (individuals per sample or number of total samples), because an increasingly large 

sample size and number of samples will eventually result in diminishing returns in terms of 

improving any pattern revealed by the data. Resources should be allocated appropriately to learn 

as much as possible about the Earth’s history. 

Here, I examined (1) the spatial and temporal resolution of fossil sample collection, (2) 

the counting methods most appropriate for community paleoecological research (abundance or 

biomass), (3) the groups of fossil organisms that should be examined in order to gain an accurate 

picture of past ecosystems, (4) the taxonomic level of identification, and (5) sample size (number 

of individual fossil specimens collected per sample). The ultimate goal of this research is to 

provide a set of “best” or most accurate methods for use in community paleoecological research. 

I found that a sample size of 50 is sufficient for community paleoecological research 

that employs multivariate statistical techniques. This value is supported more definitively when 

using fossils (30 datasets), but is still supported using 44 modern datasets. In addition, I 

demonstrate that fewer lateral samples are required when conducting community paleoecological 

research at relatively greater temporal scales. These data could potentially allow researchers to 

save time and money. Research efforts and resources can be focused gaining a greater number of 

samples per study or conducting additional studies. 

There are areas where greater paleontological resources should be allocated. (1) Genus 

(or species) identification is required for an accurate representation of paleocommunities. (2) 

Whenever possible, researchers should tally the abundance of fossil taxa in concert with a 

biomass proxy (i.e., point counts). (3) In addition, researchers should examine all available taxa, 

as opposed to single taxonomic groups, such as only brachiopods.
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Chapter 1. Introduction 
Ecological research is important for gaining a complete understanding of biological and 

environmental systems. However, modern ecological research is limited to human time scales 

(tens to thousands of years). The fossil record is rich with information about past environmental 

and biological events (Sepkoski, 1981; Raup and Sepkoski, 1982; Bambach, 1993; McGhee, 

1996; Bambach et al., 2004; Clapham and Bottjer, 2007; Stafford and Leighton, 2011; Tyler and 

Leighton, 2011). Due to the current biodiversity crisis and extinction event, it is important to be 

able to fully understand the changes occurring to the world’s ecosystems (Hughes et al., 1997; 

Ceballos and Ehrlich, 2002; Dirzo and Rave, 2003; Pereira, 2010). Studying events from 

throughout the Phanerozoic can provide unique insight into changes that are currently occurring 

or that may occur in the near future (Barnosky et al., 2011). 

By assessing ecosystem variation using complete communities of organisms (groups of 

organisms that directly or indirectly interact for resources), researchers can obtain higher-

resolution examinations of environmental and ecological changes through time and space 

because the characteristic and niche overlaps among taxa are often more finely resolved than 

each individual taxon’s characteristic or niche. Community paleoecology utilizes complete fossil 

assemblages to determine the mechanisms of spatiotemporal ecological and environmental 

variation, aiding in the pursuit of the processes that structure ecosystems and the causes of 

ecosystem collapse and extinction (Jablonski, 1998; Olszewski and Patzkowsky, 2001; Bonelli et 

al., 2006; Clapham et al., 2006; Clapham and James, 2008; Heim, 2009). Paleocommunities 

(herein referring to marine invertebrate fossil assemblages used to infer environmental or 

ecological gradients) provide a wealth of information regarding taxonomic interactions and 

environmental tolerances on local scales, and elucidate how these processes scale up to regional, 

continental, and global scales (Bambach, 1993; Kowalewski et al., 2002; Bambach et al., 2004; 

Clapham and Bottjer, 2007). 

Researchers of community paleoecology have employed an array of methods for 

collecting, counting, and identifying fossil data; there is no standard protocol for conducting 

community paleoecological research. It is important to ensure that the methods in any particular 

study are producing the most accurate results. Furthermore, if researchers wish to combine data 

to conduct larger-scale studies and meta-analyses, standardized collecting protocols are needed. 

In addition, paleocommunity research is labor- and time-intensive, as it requires expertise in 

multiple taxonomic groups and sub-disciplines of geology to develop a stratigraphic and 

biological framework (Kowalewski et al., 2002; Forcino et al., 2010a). Therefore, it is important 

not to over-collect, because an increasingly large sample size or number of samples will 

eventually result in diminishing returns in terms of improving any pattern revealed by the fossil 

data. A paleoecologist’s time and resources may be better spent acquiring additional samples to 

supplement other types of statistical power (Bennington, 2003; Zambito et al., 2008). 
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The specific methodological protocols I examine here are (1) the spatial and temporal 

resolution of sample collection, (2) counting methods (abundance versus biomass), (3) the 

groups of organisms that should be examined, (4) the taxonomic level of identification, and (5) 

sample size (number of individual fossils specimens collected per sample). The ultimate goal of 

this research is to provide a set of “best” methods for use in paleocommunity research. Even if a 

“best” set of methods cannot be determined (or does not exist), it is important for researchers to 

know whether two sets of methods can produce different paleocommunity results. If two sets of 

methods applied to the same series of paleocommunities produce different paleocommunity 

results, researchers may want to explore all possible methods and base any conclusions on the 

methods that are most suitable to the specific type of question being explored. 

Throughout all of the research in this thesis, to compare the results of the various 

methods, I use statistical techniques that are commonly used in ecology, specifically for 

inspecting and analyzing a series of samples that each contains some number of taxa. Below, I 

describe these statistical methods and why they are employed. 

1. Statistics 

To extract the most information from analyses of the changes in life through time, 

paleobiologists often employ advanced statistical techniques (Olszewski and Patzkowsky, 2001; 

Kowalewski et al., 2002; Bonelli et al., 2006; Clapham et al., 2006; Clapham and James, 2008; 

Heim, 2009). These statistical techniques give researchers insight into the ecological intricacies 

that have typified the history of life (Maurer, 1999; Leibold et al., 2004). Univariate statistical 

methods (e.g., correlations), visual assessments (e.g., comparing graphs of the relative 

proportions of taxa), and other ecological measures (e.g., evenness) of the taxonomic 

compositions of fossil assemblages are important means of comparing multiple samples (Staff 

and Powel, 1999; Bennington, 2003). However, these types of comparisons are difficult when 

examining a large number of fossil samples with varying abundances of many different taxa, as 

is typical of the fossil datasets. Multivariate statistics overcome these limitations by providing 

efficient means of assessing similarities, differences, and changes among a large number of fossil 

samples through time and across space (Mantel, 1967; Jackson, 1995; Legendre and Legendre, 

1998; McCune and Grace, 2002; Legendre, 2005; Vinatier et al., 2011). 

The term “community” can be used in a number of ways. In general, a community is a 

group of organisms that live together and interact ecologically. In the literature, “community” is 

often used as a shorthand referring to a smaller sampled portion of a full community: a 

“community” may be a sampled plot of grasses within a larger prairie sample area, or a 

collection of fossil marine invertebrates from one stratigraphic bed within a larger span of a few 

million years (Olszewski and Patzkowsky, 2001; Leibold et al., 2004; Ricklefs, 2008; Forcino et 

al., 2010). A paleocommunity refers to a collection of fossils that, although time averaged to 

some degree, are believed to have interacted directly or indirectly during life. Paleocommunities 
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are used for a number of paleontological inferences, from paleoecological interpretations to 

depth gradient recreation to high-resolution biostratigraphy (Holland and Patzkowsky, 2007; 

Redman et al., 2007; Forcino et al., 2012a; Schneider et al., 2012). Multivariate statistics enable 

researchers to visualize and statistically evaluate the variation among paleocommunities. Without 

multivariate statistical tools, it would be an arduous task to fully characterize the often complex 

relationships among paleocommunity samples within large paleocommunity datasets. 

The most commonly used multivariate technique is ordination (Green, 1979; Clarke, 

1993; Legendre and Legendre, 1998; Anderson, 2001; Hendy et al., 2007; Forcino et al., 2010; 

Jardine et al., 2012; Yasuhara et al., 2012). Ordination is an exploratory multivariate 

visualization tool that allows researchers to examine the multidimensional relationships among 

samples in fewer dimensions (Clarke and Ainsworth, 1993; McCune and Grace, 2002). Because 

of the manner in which ecological data is constructed—a series of samples containing taxonomic 

objects, each object having a particular abundance value—ordination is the standard way to 

visualize the similarities and differences among samples. Samples that have more similar 

taxonomic distributions plot closer together in the ordination space. A researcher can then 

examine an ordination plot for a pattern or grouping of samples that correlate with independent 

variables. For example, samples may separate within ordination space based on the lithology of 

the rocks from which each sample was obtained (Schneider et al., 2012; Forcino et al., in 

review). However, ordination alone is not a statistical test. 

Multivariate goodness-of-fit tests are used for comparing two paleocommunity datasets, 

for exploring how a dataset of environmental variables compares to a paleocommunity dataset, 

or for testing for spatial or temporal autocorrelation (Mantel, 1967; Judas et al., 2002; Fall and 

Olszewski, 2010; Forcino, 2012; Forcino et al., 2012b). Two primary methods for conducting 

these goodness-of-fit comparisons are the Mantel test (Mantel, 1967; Jackson and Harvey, 1989; 

Manly, 1997; Dutilleul et al., 2000; Legendre, 2000; Legendre et al., 2005; Legendre and Fortin, 

2010) and the Procrustes randomization test (PROTEST; Jackson, 1995; Peres-Neto and Jackson, 

2001). 

The Mantel test assesses the goodness-of-fit between two multivariate datasets by 

permuting each of the elements in a calculated matrix of dissimilarity indices (values that 

quantify the dissimilarity between each object in a taxon-sample matrix) to derive a distribution 

of correlation values (Mantel, 1967; Clark and Ainsworth, 1993; Legendre and Legendre, 1998; 

Legendre, 2000; Fall and Olszewski, 2010). This allows for comparisons between a number of 

types of datasets: (1) two paleocommunity datasets, (2) a paleocommunity dataset and a dataset 

of environmental variables, or (3) a paleocommunity dataset and an a priori predicted or modeled 

dataset. The next step then tests whether the distribution of correlation values differs 

significantly from that expected due to chance. The resulting R-statistic is similar to the 

Pearson’s Product Moment Correlation Coefficient (r); with increasingly similar datasets, the 
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Mantel R-statistic will approach 1. 

The PROTEST, a more recently developed method, is based on the procrustes 

transformation, which has long been popular in the morphometrics field (Gower, 1975; 

Bookstein, 1985; Rohlf and Slice, 1990; Chapman, 1990) and has also been employed by 

ecologists (Gower, 1971). The PROTEST bases its results on data drawn from ordination of the 

dataset. Ordination, specifically non-metric multidimensional scaling (NMDS), may not always 

assign the maximum variation in ordination space to the first axis. Moreover, two similar 

ordinations may appear superficially dissimilar because one ordination may consist of samples 

that are reflected or rotated compared to the second ordination. To address these possibilities, the 

first step in PROTEST is to perform a Procrustes transformation, which minimizes the sum-of-

squares deviations between the two ordination results through translation, reflection, rotation, 

and dilation. Thus, the two ordinations are reoriented such that they are aligned as closely as 

possible in ordination space, which permits a more accurate assessment of similarity. The 

residuals between the two ordinations post-transformation are calculated and produce an m2-

value. Like the R-statistic for the Mantel test, the PROTEST m2-value is similar to the r-value 

resulting from a Pearson’s Product Moment Correlation; the closer m2 is to 1, the more similar 

the two ordinations. After the Procrustes transformation, PROTEST randomly permutes the 

ordination scores for all samples for 999 iterations, and an m2-value is calculated for each 

iteration. A realized p-value, indicating the significance of the m2-value, is then calculated by 

determining the percentage of iterations in which the m2-values from the randomized iterations 

are greater than the m2-value of the actual dataset. 

One advantage of the PROTEST compared to the Mantel Test is that it can statistically 

evaluate the goodness-of-fit between two ordination results. This is important because 

researchers often compare communities by examining the ordinations, not by looking at the raw 

data. Conversely, there is a point to be made that the underlying data structure, prior to being 

manipulated by the ordination, is more important to evaluate statistically. Both of these methods 

are used throughout the research of this thesis. 
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Chapter 2. The sensitivity of paleocommunity sampling strategy at different 

spatiotemporal scales* 

1. Introduction 

Community paleoecology utilizes complete fossil assemblages to determine the 

mechanisms of spatiotemporal ecological and environmental variation, aiding in the pursuit of 

the processes that structure ecosystems and the causes of ecosystem collapse and extinction 

(Jablonski, 1998; Olszewski and Patzkowsky, 2001; Bonelli et al., 2006; Clapham et al., 2006; 

Clapham and James, 2008; Heim, 2009). Paleocommunities (herein referring to marine 

invertebrate fossil assemblages used to infer environmental or ecological gradients) provide a 

wealth of information regarding taxonomic interactions and environmental tolerances on local 

scales and how these processes scale up to regional, continental, and global scales (Bambach, 

1993; Kowalewski et al., 2002; Bambach et al., 2004; Clapham and Bottjer, 2007). 

Because modern ecological research is limited to human time scales (i.e., years to 

thousands of years), modern ecologists usually examine community relationships through space 

(Downes et al., 1993; Rosenzweig, 1995; Bustamante and Branche, 1996; Boström and 

Bonsdorff, 1997; Broitman et al., 2001; Harte et al., 2005; Hereu et al., 2008). A primary 

difference between paleoecological studies and modern ecological studies is that paleoecological 

studies have the added dimension of deep geologic time, which enables examinations of 

ecological persistence, turnover, and extinction effects through time (Pandolfi, 1996; Boyer et 

al., 2004; Clapham and James, 2008; Heim, 2009; Layou, 2009; Olszewski and Erwin, 2009). 

However, having to take into account both temporal and spatial dimensions also leads to 

complications when determining the most appropriate sampling and analytical methods required 

for conducting paleocommunity research. 

 Forcino et al. (2010) examined marine invertebrate paleocommunity variation through a 

5 meter stratigraphic section of the Virgilian (Gzhelian) Finis Shale of Texas and identified two 

distinct paleocommunities, one occupying the lower portions of the section (older) and one the 

upper (younger). Although this temporal change in paleocommunity structure was clear at this 

one stratigraphic section, this result does not provide any evidence for the distribution of 

communities over broader spatial scales of the Finis Shale. Thus, additional sampling of the Finis 

Shale laterally would add the supplementary dimension that might lead to a different result. 

 Recent studies examining the spatial sampling procedures required for studying 

paleocommunities have demonstrated that smaller, replicate (within bed or unit) samples produce 

more robust community patterns than one large bulk sample (Lafferty et al., 1994; Bennington, 

2003; Webber, 2005; Zuschin et al., 2006; Zambito et al., 2008). The argument of the above 

                                                             
* A version of this chapter has been published. Forcino, F.L., Richards, E.J, Leighton, L.R., Chojnacki, N. 
and Stafford, E.S. (2012) The sensitivity of paleocommunity sampling strategy at different spatiotemporal 
scales. Palaeogeography, Palaeoclimatology, Palaeoecology 313:246-253. 
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studies is that large, single samples do not recover the complete diversity of a paleocommunity 

because such samples fail to capture variation caused by faunal patchiness and the sparse 

distribution of rare taxa. Based on the results of these studies, Forcino et al. (2010) may not have 

fully captured the structure of the Finis Shale paleocommunities because only one stratigraphic 

section was examined. 

Here, to capture possible community changes through time in the Finis Shale more 

completely, I explore the lateral variation of the Finis Shale communities. Because the Finis 

Shale outcrops at easily accessible locations that also occur along strike at approximately regular 

intervals, the exposures provide an opportunity to examine how, and if, the temporal change in 

paleocommunities within the Finis Shale varied through space. For the present study, I collected 

29 samples from six localities of the Finis Shale and conducted multivariate paleocommunity 

analyses in order to determine if additional lateral sampling leads to a change in the 

paleocommunity signal (the information and patterns produced based on the taxonomic 

distribution within and among samples) determined by Forcino et al. (2010). A difference in 

paleocommunity signal would be evidence of the importance of spatial sampling; any ecological 

conclusions based on only the original section would be based on incomplete data. In contrast, a 

consistent and laterally persistent paleocommunity signal would serve as evidence that complete 

spatial sampling may not always be necessary for all paleocommunity studies. However, such a 

result would not be very informative, as it would not be clear to a researcher whether lateral 

sampling was necessary a priori. Thus, it would be of additional interest to determine under what 

circumstances extensive spatial sampling might no longer be essential. One possibility may be 

the scale of the study, especially the temporal extent of sampling. 

Paleocommunity studies examining faunal persistence, coordinated stasis, and high-

resolution environmental variables (e.g., within-stratigraphic-unit depth gradient) often are 

examining communities within only a few stratigraphic horizons, beds, or units (Zambito et al., 

2008). Often such studies limit themselves to one stratigraphic formation. The influence of the 

processes operating at these finer scales is inherently different (or at least less averaged by 

spatiotemporal variables) than those at larger scales (multiple stratigraphic formations). At small 

spatial scales, fine-scale controls on community composition may include microhabitat or biotic 

interactions, while at coarser scales water depth is often perceived as a primary controlling factor 

because it takes into account many other oceanographic parameters (Holland, 2005; Redman et 

al., 2007). Therefore, the types of ecological explorations and hypotheses examined are often 

quite different between smaller and larger scales. 

Communities ordinated along a gradient reflect changes in taxonomic composition 

driven by some environmental variable or variables. Although the variables driving the gradient 

may be unknown (and cannot be identified based on the ordination alone without independent 
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data), the processes underlying the gradient may operate on different scales, such that a change in 

sampling or analytical scale would alter the paleocommunity signal. For example, would 

communities sampled at a greater temporal scale be more likely to reveal a gradient indicative of 

a change in environment through time, rather than through space?  In other words, would the 

spatial signal be obscured at greater temporal scales? If so, then there would be some temporal 

scale at which spatial variation within a single point in time would be reduced to noise in 

comparison to the overriding signal through time. As the choice of operational scale is dictated 

by the question of interest, scale considerations of this sort could affect decisions regarding 

sampling strategy. 

Because Forcino et al. (2010) found two distinct paleocommunity sets separated by the 

approximate mid-point of the stratigraphic extent of the Finis Shale, there is the potential for a 

test of the hypothesis that the importance of lateral sampling may vary with the temporal scale 

under study. The stratigraphic section can be divided into two halves, and the multivariate 

analysis repeated only on one half. This second analysis would examine how changing the 

temporal scale (reducing it to approximately one half of the previous analysis) might affect any 

signal derived from lateral variation. 

2. Methods 

2.1 Geologic Background 

The Finis Shale was deposited along the paleoequator on the Eastern Shelf of the 

Midland Basin in what is now Texas, USA (Figure 2-1). During the Virgilian (Gzhelian), 

tectonic activity was occurring paleonorth, paleoeast, and paleosouth of the Midland Basin 

(Brown, 1973; Heckel, 1977). The Amarillo-Wichita Uplift separated the Midcontinent and the 

Midland Basin and was active during the Late Pennsylvanian, leading to massive amounts of fine 

siliciclastic input into the smaller Midland basin (Algeo and Heckel, 2008). However, the Finis 

Shale lacked coarse siliciclastic input; rather, terrigenous mud settled out of suspension in a 

calm, low-energy environment over approximately two million years (Cheney, 1940; Brown, 

1973). As a result, sediment grain size remains relatively constant, both laterally (> 10 km) and 

vertically (> 5 m), within the Finis Shale. Finis Shale strata are essentially flat-lying over great 

distances, with only local variations in dip attributed to either syndepositional topographic 

variation or post-burial sediment compaction. Within the Finis Shale, I chose outcrops on a 

transect paralleling the shoreline of the shallow Eastern Shelf. Thus, I am able to compare spatial 

and temporal variation at multiple scales within a system in which sedimentary regime and water 

depth is a relatively controlled factor. 

Each stratigraphic section sampled ranged in vertical extent from ~4 m to 6 m. The base 

of each stratigraphic section was the lowest exposed point of the Finis Shale. The contact 

between the Finis Shale and the underlying Homecreek Limestone was not exposed at any of the 

sampled stratigraphic sections. At the Jacksboro Spillway locality, the lower bound of the three 
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stratigraphic sections sampled was a sandstone lens within the Finis Shale. The upper contact at 

each stratigraphic section between the Finis Shale and the Jacksboro Limestone was highly 

weathered. The limestone often slumped down into portions of the Finis Shale. Due to these two 

factors, samples are identified stratigraphically by their position in meters above the base of each 

outcrop. Each stratigraphic section was ~5 m in horizontal height. For additional information 

about the Finis Shale see Forcino et al. (2010). 

2.2 Sampling 

Samples were collected from four localities of the Finis Shale in North Central Texas 

(Figure 2-1; Table 2-1; Schindel et al., 1982; Grossman et al., 1991). The four localities were 

selected along a ~10 km northeast-southwest transect of the Finis Shale. Within the extensive 

Jacksboro Spillway locality, I sampled three vertical sections (West, Middle, and East Jacksboro 

Spillway) along outcrop to quantify within-outcrop (< 1 km) lateral variation (Figure 2-1), for a 

total of six sampled stratigraphic sections. 

At each of the sampled stratigraphic section, ~4 L (one gallon Ziploc bag) bulk 

sediment samples were collected vertically every ~0.5 to 1 meter in an attempt to capture the full 

range of temporal variability that may exist at each locality. Shale units were bulk sampled in 

order to obtain representative abundances of the communities.  

A sample size of 4 L was chosen because a pilot study demonstrated that at the Finis 

Shale Spillway West locality, 2 L of bulk sediment per sample produced the same ordination-

based community signal (the information and patterns revealed based on the taxonomic 

distribution through and among samples) as a 13 L bulk sediment sample (Forcino and Leighton, 

2010a). In addition, Forcino (in press)—in which two Finis Shale paleocommunity datasets were 

included as a portion of the study—found that a sample size of 25 to 50 specimens is sufficient 

for multivariate analyses of paleocommunities. Based on these results, 2 L samples would be 

sufficient for the aims of the present study, but to be conservative, 4 L samples were collected.  

Samples were soaked in water with a mild detergent for one to seven days to 

disaggregate the sediment. Samples for which detergent was ineffective were soaked in a three 

percent hydrogen peroxide solution for 24 hours. If water and detergent were ineffective, 

samples were sonicated for 30 to 60 minutes. All samples were wet-sieved and the fossil 

specimens were sorted into large- (> 2.8 mm) and small- (< 2.8 mm) size-fractions. Only the > 

2.8 mm size-fraction was considered in subsequent analyses in order to simulate the collection 

protocols of most field-collection-based macro-invertebrate paleoecological community studies; 

this is also consistent with the protocol of Forcino et al., (2010). All brachiopod, mollusk, 

echinoid, bryozoan and coral specimens were sorted and identified to genera. Because I found 

only disarticulated columnals of crinoids (no parts of the cup were in any samples), crinoids were 

differentiated based on the morphology of the columnal, and so represent morphotaxa.  
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Abundance counts were completed using the minimum number of individuals (MNI) 

technique described by Gilinsky and Bennington (1994). This technique gives a count of one to 

all articulated brachiopod or bivalve specimens and a count of one to the most abundant valve 

(either the pedicle or brachial and either the left or right) of all disarticulated specimens. For a 

brachiopod the cardinal process had to be present on the brachial value or the umbo or pedicle 

foramen had to be present on the pedicle value.  For a bivalve specimen to be counted, the umbo 

had to be present. However, if there was any identifiable fragment of a single specimen of a 

single taxon within a sample, even if there was not a complete specimen in that sample, an 

abundance count of one was assigned to that taxon for that sample. For example, if a given 

sample contained only fragments of the bivalve Astartella without any evidence of the umbo, 

then this genus was still given an abundance count of one; the taxon does exist in the sample and 

counting it as absent would be incorrect. For colonial taxa (bryozoans and tabulate corals) and 

easily disarticulated taxa (crinoids), one individual was counted for every 1 cm of length using 

the maximum length of each fossil fragment. This technique has been used in previous studies 

(Patzkowsky and Holland, 1999; Holland and Patzkowsky, 2004) as a means of equating the 

abundances of colonial and easily disarticulated taxa to those of solitary taxa (brachiopods and 

mollusks). A length of 1 cm was used because that was approximately the mean length of 

solitary individuals in most samples of the Finis Shale. Forcino and Leighton (2010b) found that, 

in the Finis Shale, the paleocommunity signal produced by the taxon-sample matrix using the 

technique of equating 1 cm of length to one individual solitary specimen is significantly 

correlated with the paleocommunity signal obtained when using presence or absence of colonial 

and easily disarticulated taxa in the taxon-sample matrix (p < 0.001). 

Paleocommunity variation was examined using ordination and analysis of similarity 

(ANOSIM). Ordination analyses were performed using the vegan package (Oksanen et al., 2010) 

in R 2.11.1 (R Development Core Team, 2010). Ordination analysis is an effective means of 

expressing multidimensional relationships among objects by identifying the primary variation in 

the dataset and expressing that variation within a few axes. The resulting ordination plot orders 

the objects along axes according to their similarity, with more similar objects plotting closer in 

space (Beals, 1984; Ludwig and Reynolds, 1988). In the present study, objects are samples 

ordinated based on the abundances of their constituent taxa using Non-metric multidimensional 

scaling (NMDS) ordination. NMDS is a popular ordination technique in both ecology (Minchin, 

1986; Clarke and Ainsworth, 1993; Laughlin and Abella, 2007) and paleoecology (Bonelli et al., 

2006; Clapham and James, 2008; Layou, 2009). Several authors have argued that NMDS is the 

most effective ordination technique for capturing community gradients (Minchin, 1986; McCune 

and Grace, 2002; Bush and Brame, 2010).  

Ordinations were performed using the Sorenson (Bray-Curtis) dissimilarity 

measurement between samples. Because bulk-sediment shale samples contained the same 
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sediment volume, the analyses did not require any standardizations or percent transformations. 

Therefore, the Sorenson dissimilarity measurement was used to retain absolute abundance 

information. Comparing absolute abundances may retain more ecological information (e.g., 

similarities and differences among communities) about the once-living community (Finnegan 

and Droser, 2005) and should be utilized when comparing communities collected with a 

consistent sample size and protocol (Clarke and Warwick, 1994). In contrast, when multiple 

lithologies or sample sizes are examined, abundances are often converted to percentages or 

presence/absence of taxa (Clarke and Warwick, 1994; Zuschin et al., 2006).  

2.3 Statistical Analysis 

 In addition to analysis of the dataset containing all 29 samples collected from the Finis 

Shale, a subset of 19 samples from the lower half of each stratigraphic section (the 

stratigraphically older samples) was ordinated separately. I wanted to compare this finer 

temporal scale of the subset to the coarser temporal scale of the full data set to determine if a 

change in scale caused the paleocommunity signal to change. I did not examine the upper 

stratigraphic samples alone because there were only 10 samples. Conducting a multivariate 

analysis using only 10 samples may not yield statistically strong results. If paleocommunity 

signals of the complete 29 samples demonstrated a gradient or pattern through time, while the 

paleocommunity signal of just the lower-stratigraphic-half samples demonstrated a gradient or 

pattern through space, this would be evidence to support our hypothesis that the lateral extent of 

sampling required for paleocommunity research is sensitive to the scale under study. However, if 

the paleocommunity signal between both the complete set of 29 samples and the subset of the 

lower-stratigraphic-half samples demonstrates a gradient or pattern through just time or just 

space, then this would be evidence against our hypothesis. 

Sample localities and relative stratigraphic position were mapped onto the ordination 

results and examined for any groupings (clouds) based on either spatial or temporal variation 

(Figures 2-2 and 2-3). Locality-based clouds or gradients would indicate a strong spatial control 

on the distribution of communities; the primary environmental variable driving the ordination, 

whatever that variable happens to be, is changing through space more so than through time. If 

clouds or gradients are based on a non-geographic variable (i.e., stratigraphic position), a 

temporal variable (a variable that is changing mostly through time rather than space) may be 

controlling the distribution of communities. The other possible outcome may be a lack of data 

clouds or gradients in ordination space, which would provide no evidence for a strong spatial or 

temporal signal. 

Using the Bray-Curtis dissimilarity matrix, analysis of similarity (ANOSIM) was used 

to test for significant differences between localities and stratigraphic units (Clarke and Warwick, 

1994). ANOSIM is a non-parametric multivariate form of an analysis of variance that tests for 

differences between groups of dissimilarity values. ANOSIM converts the Bray-Curtis 



 

15 
 

dissimilarity values into ranks and compares the distributions of the ranks of various groups of 

dissimilarity values by permuting the dissimilarity values. The groups are significantly different 

(greater r-values) if there is limited overlap in the rankings between dissimilarity values. 

One set of spatial samples was tested using ANOSIM: the six sample localities were 

used as six different groups of samples. Two different sets of stratigraphic samples were also 

tested using ANOSIM: (1) the upper stratigraphic samples versus the lower stratigraphic 

samples, and (2) the relative stratigraphic position of samples. Set (1) consists of two groups of 

samples, a lower and upper stratigraphic grouping. The division line of the two groups was the 

vertical midway point of each outcrop. Set (2) consists of seven groups of samples defined by 

their relative stratigraphic position (Table 2-2). 

3. Results 

The coarser-scale taxon-sample abundance matrix consisted of 29 samples totaling 5143 

specimens from 70 genera with a mean sample size of 177 specimens, a minimum sample size of 

36 specimens, and a maximum samples size of 404 specimens. These samples separated into two 

clouds in the NMDS ordination (Figure 2-2). The two clouds separated at approximately NMDS 

axis one scores of zero. Using ANOSIM, there is a significant difference between the two 

stratigraphic groupings (upper and lower half) of samples (R = 0.56, p < 0.001; Table 2-2) and a 

significant difference between at least one of the seven relative stratigraphic position groupings 

(R = 0.26, p = 0.005). However, there is no significant difference between the six locality-based 

groupings (R = 0.06, p = 0.208). Within the cluster containing the lower-stratigraphic samples 

(NMDS axis-one score less than 0), these 19 samples display a spatial pattern. The samples from 

the southeastern two localities (Pankey Property and Causeway Road) plot at the highest NMDS 

axis-two scores of the cluster. The samples from the Jacksboro Spillway plot at slightly lower 

NMDS axis-two scores. The samples from Cemetery Road plot at the lowest NMDS axis-two 

scores of this cluster (Figure 2-2A). 

The 19 lower-stratigraphic samples were ordinated to examine the community signal on 

the finer temporal scale (Figure 2-3). This dataset contained samples from the lower half of each 

stratigraphic section. This dataset consisted of 2947 specimens from 55 genera with a mean 

sample size of 155 specimens, a minimum sample size of 36 specimens, and a maximum sample 

size of 404 specimens. These samples separate based on sample location along the northeast-

southwest transect. Samples from the Cemetery Road, Spillway, and the southwestern (the 

Causeway and Pankey localities combined) localities form distinct clusters in the NMDS 

ordination. Using ANOSIM, there is a significant difference between at least one of the six 

locality-based groupings of lower stratigraphic samples (R = 0.29, p = 0.007; Table 2-2). There 

is no significant difference between the seven relative stratigraphic position groupings (R = 0.01, 

p = 0.43). 

4. Discussion 
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4.1 Lateral Variation of the Finis Shale paleocommunities 

 Forcino et al. (2010) examined paleocommunity variation through the stratigraphic 

section at the Spillway West locality. Their 13 samples produced the same general separation in 

ordination space as the 29 samples from the present study. The samples from the lower portions 

of the section (~the lower half) were dominated by the brachiopod Crurithyris, and plotted along 

lower ordination axis-one scores. The samples from the upper portions of the section (~the upper 

half) were dominated by the brachiopod Rhipidomella, and plotted along higher ordination axis-

one scores. The two sets of communities identified in Forcino et al. (2010) were laterally 

persistent, and the two communities were separated in time. Multivariate results demonstrate 

strong and consistent separation between these communities (Figure 2-2). 

In the present study, extensive lateral sampling at the coarser temporal interval 

produced the same community separation at any single section as any other section and as found 

by Forcino et al. (2010). There was a separation of samples in the lower-stratigraphic cluster—

the cluster along lower NMDS one-one scores—based on location; this is the same separation 

demonstrated when those samples are ordinated separately (Figure 2-3). However, this minor 

spatial pattern is still obscured by the strong temporal signal (Table 2-2; Figure 2-2). This 

consistent community signal with the addition of lateral sampling, both within and among 

outcrops, appears to contradict earlier research that suggests multiple lateral samples are required 

within any stratigraphic unit in order to precisely capture the paleocommunity variation (Lafferty 

et al., 1994; Bennington, 2003; Webber, 2005; Bonelli et al., 2006; Zuschin et al., 2006; Zambito 

et al., 2008; Hendy et al.,. 2009). So, why is there a discrepancy between the bulk of previous 

published research and the present study? One hypothesis is that the difference in temporal scale 

(specifically the extent of the sampling through time) between this study and previous studies 

caused the difference; the temporal scale influences the relative importance of spatial signal. 

4.2 Sensitivity of the Finis Shale paleocommunity signal depending on scale 

 Because the two distinct Finis Shale communities (older-Crurithyris-dominated and 

younger-Rhipidomella-dominated) found by Forcino et al. (2010) consistently separate at the 

half-way point of each of the stratigraphic sections sampled, this provided the means to test our 

hypothesis that the importance of lateral sampling for paleocommunity research may vary with 

the temporal scale under study. After dividing the stratigraphic section in two halves, I examined 

the paleocommunity signal of the samples collected from just the lower half of the Finis Shale at 

all six sections and compared this to the paleocommunity signal of all 29 samples from the 

complete stratigraphic section of the Finis Shale. 

The primary controls of the Finis Shale paleocommunities signal vary between the 

analyses of the two different stratigraphic scales. At the finer temporal scale containing 19 

samples from the lower-Crurithyris-dominated half of each stratigraphic interval, the community 

signal varies along a gradient through space. Evidence for the strong spatial signal at the fine-
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scale includes (1) sample separation in ordination space based on the sample’s location (from the 

lower left to the top right of the ordination, there is a gradient representing change from the 

northeast to the southwest; Figure 2-3) and (2) a significant difference between locality-based 

groupings using ANOSIM, with no significant difference between stratigraphic-based groupings 

(Table 2-2). 

The 29 Finis Shale samples from the complete stratigraphic section of each of the six 

outcrop locations represent a larger temporal scale. These communities vary from older-

Crurithyris-dominated samples to younger-Rhipidomella-dominated samples and a few coral- 

and bryozoan-dominated samples. With the addition of this one set of 12 samples from an 

additional ~2.5 m of stratigraphic section, there is a change from a spatial factor to a temporal 

factor controlling the primary distribution of communities. This is not to suggest that whatever 

unknown environmental variable influencing the distribution of lower Finis Shale 

paleocommunities is not operational at the larger temporal scale. However, when additional 

samples through time are included in the analysis, the paleocommunity signal from this unknown 

environmental variable is overwhelmed by another variable that changes through time. The 

samples with lower axis-one scores are all from lower stratigraphic portions of each outcrop, 

while the samples with higher axis-one scores are from upper stratigraphic portions of each 

outcrop, with a clear division of sample clouds (Figure 2-2). Although the minor spatial gradient 

is visually evident in the ordination of the complete 29 sample dataset, the pattern is much more 

difficult to discern than the primary temporal pattern. In addition, no statistically significant 

pattern was found through space (Table 2-2). The minor variation in the temporal scale of the 

study, leading to a major change in the potential interpretation of a primary factor controlling the 

community distribution in ordination space, is evidence that the results of a paleocommunity 

study are extremely sensitive to the temporal extent of sampling. 

If examining one outcrop alone (e.g., Spillway Middle), the stratigraphic ordering of 

samples is the same (Figure 2-4). The same temporal pattern can be discovered even with very 

limited lateral sampling. The three lower stratigraphic samples all group together closely 

followed by sample 4 from the Spillway Middle. Samples 5 and 6 are clearly different and plot 

much higher along axis two. This demonstrates the strong stratigraphic signal even with only one 

outcrop’s samples. 

The results here do not necessarily disagree with those of previous studies arguing for 

extensive lateral sampling (Lafferty et al., 1994, Bonelli et al., 2006; Zuschin et al., 2006; 

Zambito et al., 2008). These studies demonstrated that on fine temporal scales, lateral sampling 

is essential. However, if the temporal extent of these studies were expanded, fewer lateral 

samples may be required. 

Lafferty et al. (1994), Bonelli et al. (2006), and Zambito et al. (2008) examined spatial 

variation of marine invertebrate communities of the Devonian Hamilton Group of New York. 
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Lafferty et al. (1994) demonstrated a strong spatial trend among temporally equivalent 

communities. They found greater variation in communities between localities than laterally 

equivalent samples within a single locality. Zambito et al. (2008) discovered both fine-scale 

(within outcrop) and regional scale (50 km to 100 km) community variation along one 

stratigraphic horizon. Bonelli e al. (2006) also reported significant spatial community variation 

among local and regional scales. Although there are some minor methodological differences 

between these three studies, they all similarly discovered within-locality lateral variation in 

communities and concluded that paleoecological studies must collect several bulk sediment 

samples per fossil horizon in order to completely describe the community variation. 

Zambito et al. (2008) presented ordination-based results that clustered based on the 

collection location of samples along one stratigraphic horizon, a result similar to the Finis Shale 

results when only one temporal interval, the lower samples of the Finis Shale, were analyzed 

(Figure 2-3). However, as Zambito et al. (2008) did not examine samples from different 

horizons, it was impossible to determine the importance of the temporal signal relative to the 

spatial signal. Therefore, the conclusions of Zambito et al. (2008) may be specific to studies at a 

higher spatial resolution, and smaller temporal scale, than the present study. 

Lafferty et al. (1994) used polar ordination to examine differences in community 

composition through ~200 km. Although the samples from each horizon strongly clustered in 

ordination space based on locality, spatial variation in each of the two stratigraphic horizons was 

analyzed separately. Lafferty et al. (1994) did not combine all samples collected from the two 

beds into a single ordination to analyze temporal variation. Such ordinations may reveal similar 

results to the present study, in which temporal variation obscures the presence of any spatial 

pattern.  

Although this was not the goal of their studies, the data of Bonelli et al. (2006) support 

the hypothesis that the relative influence of temporal and spatial community signals are scale 

dependent. Bonelli et al. (2006) examined two stratigraphic horizons from six localities in New 

York and three in Pennsylvania. Their results are similar to those of the present study. The 

samples from Bonelli et al. (2006) clustered based on spatial distribution only when each horizon 

was ordinated separately. However, when their ordination was scaled-up to include both 

stratigraphic horizons, the samples displayed equal or greater separation based on a temporal, 

rather than a spatial, trend. 

Zuschin et al. (2006) also determined that multiple lateral samples are required per 

fossil horizon to capture the full richness and evenness of a unit in the middle Miocene Grund 

Formation of Austria. Furthermore, they also acknowledged the scale- and time-dependent nature 

of their conclusions. Although they explored community variation using NMDS ordinations, 

their emphasis was placed on diversity metrics. Their ordinations resulted in similar patterns to 
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that of Bonelli et al. (2006) and the present study; Zuschin and others’ (2006) five stratigraphic 

horizons formed three stratigraphic-driven clusters in ordination space. 

The consistency between the present study and the studies discussed above may also be 

due to the fact that all use multivariate analytical techniques (e.g., ordination, ANOSIM). 

Although the complete diversity may not be obtained from fewer samples per stratigraphic 

horizon, multivariate analytical methods of quantifying community variation may not require the 

full taxonomic diversity to capture the relative similarities and order of the communities (Forcino 

et al., 2010; Forcino, in press). Thus, if the intent of the study is primarily to capture an 

environmental gradient through time using multivariate analytical techniques, then concerns 

about spatial heterogeneity and a complete sampling of diversity may be unwarranted. 

There is certainly information to be gained from sampling the complete lateral extent of 

the Finis Shale, or any fossiliferous unit, in outcrop (e.g., the complete fossil diversity of the 

Finis Shale); however, if the purpose of the study were to determine the primary factor 

controlling any gradients or ordination results, sampling just one outcrop would have been 

sufficient for an accurate analysis of the Finis Shale through time. Thus, the case study presented 

here raises the possibility that fewer lateral-equivalent samples are required per stratigraphic bed 

when examining coarser-scale community patterns. 

This is not a comprehensive determination of how many samples are required per 

horizon, bed, unit, or formation. It is evidence that the current standard practice of 

paleocommunity researchers can possibly be modified when examining paleoecological variation 

over larger time scales. This may aid in research that requires a great number of samples over a 

larger temporal and spatial extent. However, further research is required to determine specific 

numbers of samples required per horizon, bed, unit, or formation based on the particular scale of 

interest in any particular study. 

5. Conclusion 

I found no difference between the Finis Shale paleocommunity signals from a single 

section (Forcino et al. 2010) and those signals obtained by additional lateral sampling across 10 

km. This is in contrast to previous research that found that multiple lateral samples per 

stratigraphic horizon, bed, or unit are required to obtain a precise paleocommunity signal. The 

primary cause for this difference is the difference in temporal scale between the present study 

and the previous research, specifically the increase in the temporal extent of sampling. At the 

finer temporal scale containing 19 samples from the lower half of each stratigraphic interval, the 

primary pattern of community distribution reveals a spatial pattern. At the larger scale containing 

29 samples from the complete stratigraphic extent at six localities of the Finis Shale, a pattern of 

community distribution through time is manifested and appears to overwhelm any spatial signal. 

This minor variation in temporal scale, leading to a major change in the primary factor driving 

the pattern in ordination space, is evidence that patterns revealed at different scales are extremely 
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sensitive to the temporal extent of sampling. In addition, reevaluation of multivariate data from 

Lafferty et al. (1994), Zuschin et al. (2006), and Zambito et al. (2008) confirms that variation in 

temporal scale can cause variation in the paleocommunity signal. 

I am not suggesting that the use of multiple lateral samples is in any way detrimental to 

paleocommunity studies. Our results provide evidence that increasing the number of lateral 

samples per stratigraphic unit does not increase the accuracy of results when larger temporal 

scales are studied using multivariate methods. Thus, when examining coarser-scale community 

variation, sampling effort is better-spent collecting samples from a greater number of 

stratigraphic units rather than replicating samples laterally. 

Although further work and additional case studies on this hypothesis are definitely in 

order, this serves as evidence that there is some temporal scale at which the temporal community 

signal will overwhelm that of the spatial scale. Thus, since the question of interest dictates the 

temporal and spatial scale of the study, if the question requires a broader temporal scale, the 

problem of lateral variation is probably not as serious as has been thought; community 

paleoecology examinations at larger scales require fewer samples per stratigraphic horizon, bed, 

or unit. 
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Table 2-1. List of the six localities sampled with corresponding distance from the northeastern-

most locality (Cemetery Road) and latitude and longitude coordinates. 

 

Locality Distance from NW Latitude Longitude 

Cemetery Road 0 km 33° 16.1’ N 98° 6.4’ W 

Jacksboro Spillway West 3.7 km 33° 14.3’ N 98° 7.3’ W 

Jacksboro Spillway Middle 3.8 km 33° 14.3’ N 98° 7.3’ W 

Jacksboro Spillway East 3.9 km 33° 14.3’ N 98° 7.3’ W 

Causeway Road 6.5 km 33° 13.3’ N 98° 8.8’ W 

Pankey Property 10.5 km 33° 10.8’ N 98° 9.1’ W 
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Table 2-2. Analysis of similarity (ANOSIM) results (R-statistics and p-values) for spatial 

(locality) and temporal (stratigraphic division and relative stratigraphic position) comparisons for 

the complete dataset and the subset of lower stratigraphic samples. 

 All 29 samples Lower 19 samples 

 R-statistic p-value R-statistic p-value 

 

Locality 

 

0.06 0.208 0.29 0.009 

Stratigraphic 

Division 
0.56 < 0.001 — — 

Relative 

Stratigraphic 

Position 

0.26 0.005 0.01 0.43 
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Figure 2-1. The four sampled localities and specific sample collection spots within and around 

the area of Jacksboro Texas represented by large circles with stars inside. The small grey circles 

at the Jacksboro Spillway locality are the three within-outcrop locations sampled at that one 

locality. Dark grey lines represent roadways, and the light grey area represents water. 
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Figure 2-2. Non-metric multidimensional scaling (NMDS) ordination of the 29 Finis Shale 

samples. (A) The sample locality is mapped over the ordination plot. (B) The relative 

stratigraphic position is mapped over the ordination plot. Stress = 11.5% within two dimensions. 
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Figure 2-3. Non-metric multidimensional scaling (NMDS) ordination of the 19 Finis Shale 

samples from the lower portions of the stratigraphic sections. The sample locality is mapped over 

the ordination plot. Stress = 5.4% within two dimensions. 
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Figure 2-4. Non-metric multidimensional scaling (NMDS) ordination of the six samples from 

the Spillway Middle outcrop of the Finis Shale. Each number (1 to 6) represents the six samples 

in stratigraphic order. Stress < 1% within two dimensions. 
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Chapter 3. The influence of dataset decisions on ecological conclusions: 

comparison of paleocommunity results between different categorizations of 

two datasets from Devonian carbonate units† 
1. Introduction 

Community paleoecology examines fossil assemblages to study ecological and 

environmental variation over space and time, yielding insights into the processes that structure 

ecosystems (Olszewski and Patzkowsky, 2001; Kowalewski et al., 2002; Bonelli et al., 2006; 

Clapham et al., 2006; Clapham and James, 2008; Heim, 2009). Researchers of community 

paleoecology have employed an array of methods for collecting, counting, and identifying fossil 

data. Few studies have quantified the differences that result when various methods are used to 

examine a single stratigraphic series of communities (see Forcino et al., 2010; Visaggi and Ivany, 

2010 for exceptions). Here, I examined fossil assemblages collected from the Rapid Member of 

the Little Cedar Formation of Coralville, Iowa, USA and from the Waterways Formation of 

northern Alberta, Canada to compare the paleocommunity results obtained between (1) the use of 

abundance versus point counts as a counting method and (2) inclusion of all taxa in the 

paleocommunity versus only the brachiopods. Our goal is to detect any discrepancies between 

different methods in order to determine when one method may be more appropriate than another 

in producing accurate representations of the paleocommunities. If two different sets of methods 

capture different paleocommunity representations, it is paramount to discover the most 

appropriate methods, which may vary depending upon the type of research. If two different 

methods produce different paleocommunity results, paleocommunity researchers could base their 

ecological, environmental, and evolutionary conclusions on flawed results if only using one set 

of methods; often in past studies, the assumption is made that different methods would not affect 

the outcome of the study. If a most accurate set of methods can be discovered, relative to a given 

problem, paleocommunity studies will have increased efficiency, and subsequently, more robust 

results. 

Even if a “best” set of methods cannot be determined (or does not exist), it is important 

for researchers to know if two sets of methods could produce different paleocommunity results. 

If applying two sets of methods to the same series of paleocommunities produce different 

paleocommunity results, researchers may want to explore all possible methods and base any 

conclusions on the methods that are most suitable to the specific type of question being explored. 

Forcino et al. (2010) examined various data categorizations—a subset or restructured 

dataset to be analyzed based on specific set of parameters of methods—of a paleocommunity 

                                                             
† A version of this chapter is in review for publication. Forcino, F.L., Barclay, K., Schneider, C.L., Linge-
Johnsen, S. and Leighton, L.R. (in review) Comparison of the multivariate paleocommunity results from 
different categorizations of two fossil datasets from carbonate units. Palaeogeography, 
Palaeoclimatology, Palaeoecology. 
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dataset consisting of 13 stratigraphic samples from the late Pennsylvanian Finis Shale of Texas. 

Here, I use the term “paleocommunity” to refer to a group of fossil assemblages, specifically of 

marine macroinvertebrates, that in life shared ecological resources. In this sense, a 

paleocommunity is defined by consistent characteristics (e.g., a similar, common set of 

constituent taxa) among samples after analysis. The data categorizations compared by Forcino et 

al. (2010) were calcified biomass (as a proxy for live biomass) versus abundance counts, genus 

identification versus higher clade identification, and all-taxa versus brachiopod-only analyses. 

Forcino et al. (2010) obtained the same paleocommunity results (i.e., the same samples 

consistently grouped together as an identifiable paleocommunity through time) regardless of data 

categorization method. Two possible conclusions were stated: (1) the use of multivariate 

methods is sufficiently robust that the choices of collecting, counting, and identifying methods 

are arbitrary. (2) The results were specific to the Finis Shale, possibly due to lithology, 

environment, time period, or the dominance of a few brachiopod taxa throughout Finis Shale 

strata. Here, I continue the efforts of Forcino et al. (2010) by comparing the results derived from 

the use of various data categorizations on two datasets from a different time (Devonian) and 

lithology (carbonate) than the Finis Shale. Although Forcino et al. (2010) compared 

paleocommunity results tallied at the generic level and at a higher clade level, I did not compare 

paleocommunity analyses at different taxonomic levels in this study as a more complete meta-

analysis of this issue was conducted separately (Forcino et al., 2012). 

1.1. Abundance versus point counts 

A multitude of methods have been used to count fossil material, including point counts 

(Ausich, 1981; Watkins, 1996; Schneider, 2003), in situ abundance counts (Patzkowsky and 

Holland, 1999; Holland and Patzkowsky, 2004, 2007; Redman et al., 2007), disaggregated 

abundance counts (Ausich, 1981; Lobza et al., 1994; Olszewski and West 1997), biomass 

calculations (Staff et al, 1985), biomass measurements (McKinney and Hageman, 2006), 

calcified biomass (Forcino et al., 2010), and biovolume calculations (Ausich, 1981). The most 

common methods of counting fossils encased in carbonate units are abundance counts and point 

counts. In abundance counts, every visible specimen on a surface is counted as one individual, 

regardless of its size or degree of exposure from the rock. Point counting involves counting only 

those specimens that are in contact with the intersection points on an overlain grid, and is used as 

a proxy for biomass as it allows for greater weighting of larger individuals (Watkins, 1988). 

Larger specimens are likely to touch more points than smaller specimens; therefore, specimens 

are included in analyses proportionally to their live biomass. However, point counting can result 

in the omission of taxa, if no individual happens to lie directly under a point. Here, I compared 

the use of abundance and point counts as a means of quantifying the paleocommunities within 

the Rapid Member of the Little Cedar Formation and Calumet and Moberly Members of the 
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Waterways Formation. I then compared the multivariate results (the information and patterns 

produced based on the taxonomic distributions through and among samples, using multivariate 

statistical techniques) produced by each counting method. 

1.2 All-taxa versus brachiopods-only 

Using the Rapid Member dataset, I compared brachiopod-only categorizations to 

categorizations including all taxa, for two reasons: (1) Many paleocommunity studies examine 

only one taxonomic group—often the taxonomic group on which the individual researchers are 

experts—to test hypotheses and determine environmental and ecological conditions of the past. 

Comparing the paleocommunity signal of brachiopods alone to that of all taxa is one means of 

evaluating whether ecological and environmental conclusions are accurate when drawn from a 

limited subset of the assemblage. (2) Because of their abundance and diversity throughout the 

Paleozoic, brachiopods are often the single taxonomic group used to examine paleocommunity 

variation (Peters and Bork, 1999; Fall and Olszewski, 2010). If brachiopods alone are sufficient 

for demonstrating the paleocommunity structure, taxa that are difficult and time-consuming to 

identify (e.g., crinoids and bryozoans) would not need to be sampled, identified, or counted. If 

brachiopods alone do not provide sufficient environmental or ecological information, it is 

important for researchers to know that they need to examine every possible fossil taxonomic 

group.  

2. Geologic Background 

2.1 Rapid Member 

Samples were collected from the Givetian Rapid Member of the Little Cedar Formation 

at the Devonian Fossil Gorge in Coralville, Iowa (N 41° 43.3’, W 91° 31.9’; Figures 3-1 to 3-2). 

The Rapid Member was deposited at approximately 20° S latitude during the Givetian as part of 

transgressive-regressive cycle IIa (Johnson et al., 1985). This transgressive-regressive cycle and 

others throughout the middle Late Devonian of Iowa can be correlated across North America and 

Eurasia, suggesting a global eustatic sea level control (Day et al., 2008). The lithology of the 

Rapid Member at the Devonian Fossil Gorge alternates between argillaceous mudstone to 

grainstone and massive floatstone (Bunker and Witzke, 1992). Transgression reached its 

maximum in T-R cycle IIa during the deposition of the lower to middle Rapid Member followed 

by a regression during upper Rapid Member deposition (Johnson et al., 1985; Day et al., 2008). 

The lower and middle Rapid Member varies from sparsely to highly fossiliferous, containing a 

non-reef fauna of brachiopods, crinoids, and bryozoans. During the regression of the upper Rapid 

Member, corals and stromatoporoids built reefs. These lower and middle intervals range from 

highly to sparsely fossiliferous. In the upper portions of the Rapid Member that represent 

relatively low sea level, patch reefs are prevalent, as evident by a biostromal cap at the top of the 

Rapid Member stratigraphic beds (Bunker and Witzke, 1992). 

2.2 Waterways Formation 
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Samples were collected from the lower Frasnian Calumet and Moberly Members of the 

Waterways Formation north and east of Fort McMurray, Alberta, Canada from outcrops along 

the Athabasca and Clearwater rivers (Table 3-1; Figures 3-1 to 3-2). Shale and argillaceous 

limestone of the Waterways Formation accumulated as prograding clinoforms that filled the 

eastern portions of the Alberta Basin. Along the shallow, northeastern margins of the basin, the 

clinoform tops formed an extensive carbonate platform that was interrupted by periods of 

increased shale deposition. The Calumet Member, which is in the lower Waterways Formation, 

is an argillaceous and fossiliferous limestone (Norris, 1963). The Moberly Member in the upper 

Waterways Formation contains predominantly fossiliferous argillaceous to non-argillaceous 

limestone (Norris, 1963; Buschkuehle, 2003) and is heavily bioturbated in some units. 

A primary difference between the Rapid Member and the Waterways Formation is the 

relative rarity of bryozoans and corals in the communities collected in the Waterways Formation 

in the present study. Samples used herein were from the level-bottom communities common in 

the Calumet and lower Moberly, rather than from the biostromes present in the upper Moberly. 

This difference in taxonomic composition allows an additional test of the effect that abundant 

colonial and easily disarticulated taxa may have on the resulting correlations between abundance 

and point count categorizations in samples of similar lithology and age. 

3. Methods 

3.1 Rapid Member sample collection 

The Devonian Fossil Gorge in Coralville Iowa consists of a 300 meter-long outcrop of 

terraced limestone beds. Samples were collected in-place from the 15 least weathered horizons, 

spanning 8.7 m from the contact between the Rapid Member and the underlying Solon Member. 

On each surface, fossils were counted using two methods: (1) abundance counts were tallied to a 

minimum of 200 specimens per sample and (2) point counts were conducted using a 605 cm2 

grid with lines 1 cm apart. At each intersection of the grid, a count of one was tallied for the 

particular taxon occupying the intersection point; if two different taxa were under the same 

intersection point (i.e., one specimen is on top of the other), each taxon received a count of one. 

If there was no specimen under the intersection, nothing was added to the count. In addition, all 

specimens within the total grid space were counted to get both abundance and point counts 

within a constant surface area. The abundance data categorization taxon-sample matrix consisted 

of 3124 specimens from 39 genera. The point count data categorization taxon-sample matrix 

consisted of 803 point counts from 39 genera. 

3.2 Waterways Formation sample collection 

Samples were collected from 13 outcrops located along the Athabasca and Clearwater 

Rivers near Fort McMurray, Alberta, Canada (Table 3-1; Figures 3-1 to 3-2). At each outcrop, 

one to eight limestone slabs were collected for fossil identification and counting in the 

laboratory. A total of 22 limestone slab samples were collected. All fossils specimens were 
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identified to the genus level and all visible specimens were counted for the abundance dataset. 

This taxon-sample matrix, based on the abundance categorization, consisted of 2365 specimens 

from 20 genera. 

Only 11 of the 22 limestone slabs were point counted. The other 11 samples could not 

be point counted because the fossils were too sparse on the limestone surface (< 20 per slab). The 

typical area point counted was 605 cm2. However, if the fossils were abundant enough for 

analysis, but were sparsely distributed across the surface, the grid area was increased to capture a 

sufficient abundance of fossils. The point count data categorization taxon-sample matrix 

consisted of 670 point counts of 13 genera. 

For both the Rapid Member and the Waterways Formation abundance count datasets, 

colonial taxa (bryozoans and tabulate corals) and easily disarticulated taxa (crinoids) were 

included as one individual for every 1 cm of length, using the maximum length of each fossil 

fragment. This technique has been used in previous studies (Patzkowsky and Holland, 1999; 

Forcino and Leighton, 2010) as a means of equating the abundances of colonial and easily 

disarticulated taxa to those of solitary taxa (brachiopods and mollusks). Since I did not find any 

crinoid calyx material or any other means to distinguish different genera of any echinoderm 

group, I classified all echinoderm fossils based on morphology and distinguishing characteristics 

(e.g., columnal shape, size and shape of the lumen). Although these features may not always 

indicate a distinct genus, I made the assumption that they were different enough to represent 

different portions of a paleocommunity. 

3.3 Analytical methods 

I divided the Rapid Member dataset into four data categorizations: (1) abundance of all-

taxa, (2) point counts of all-taxa, (3) abundance of brachiopod taxa, and (4) point counts of 

brachiopod taxa. The Waterways Formation dataset produced two data categorizations: (1) 

abundance of all-taxa and (2) point counts of all-taxa (there were no brachiopod-only versus all-

taxa categorizations because the dataset was comprised almost exclusively of brachiopods). 

Paleoecological studies often transform or standardize community data in order to 

account for differences in sample size or collection methods. Here, I conducted statistical 

analyses on non-transformed, absolute abundance data and on percent-transformed community 

data. Percent transformation is a means of accounting for differences and biases in collection 

methods or sample size. It is often done when studies consist of both bulk-collected shale 

samples and surface-counted carbonate samples. The results for the analyses conducted on 

percent transformed datasets are included in the results section for completeness. However, I 

focused on the non-standardized results for our interpretation for two reasons: (1) I followed a 

consistent sampling protocol with sample sizes that were relatively similar, especially the Rapid 

Member dataset (from 203 to 219; and 18 to 390 for the Waterways Formation dataset). Point 

count surface areas were held constant for the Rapid Member dataset, and the differences in 
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surface area of the point count samples within the Waterways Formation dataset did not cause 

any noticeable differences between standardized and non-standardized ordination results. (2) 

Since the purpose of this paper was to compare differences that may arise from different 

methodological choices, I did not want to base our interpretations on results from methods that 

may smooth out differences, as standardizing may. 

For both datasets, taxa or samples with low numbers (total sample abundance or rare 

taxa with < 5 total specimens) were retained because I did not want to alter the data prior to 

comparisons. If rare taxa and low-abundance samples were removed, the abundance and point 

count categorizations would be more similar and possibly artificially increase the correlation 

statistics between the two categorizations. 

3.4 Statistical methods 

The comparisons of data categorizations were conducted using three multivariate 

statistical methods: 

(1) Using the vegan package in R 2.14 (Oksanen et al., 2011; R Development Core 

Team, 2011), Mantel Tests of correlation were performed between the Bray-Curtis dissimilarity 

matrices (measures of the differences between each object in a taxon-sample matrix) for each of 

the data categorization comparisons. The Mantel Test tests the similarity of two matrices of 

dissimilarity indices by permuting each of the elements in the dissimilarity matrix 999 times, to 

derive a distribution of correlation values (Mantel, 1967; Fall and Olszewski, 2010). The 

resulting R-statistic is analogous to the Pearson’s Product Moment Correlation Coefficient (r); 

with increasingly similar data matrices, the Mantel R-statistic will approach 1. 

(2) For each of the data categorization datasets, non-metric multidimensional scaling 

(NMDS) ordinations of the samples were performed using the Bray-Curtis dissimilarity index 

(Clarke and Ainsworth, 1993; Bush and Brame, 2010; Figures 3-3 to 3-4). Specifically, the 

“metaMDS()” function in R was used with two dimensions and autotransformation off. For each 

of the categorization comparisons, the Pearson’s Product Moment Correlation was conducted 

between NMDS axis-one scores. 

All ordinations were run examining the taxonomic distributions among samples. 

Ordination is an exploratory multivariate visualization tool that allows multidimensional 

relationships of samples to be examined in a low number of dimensions (Legendre and Legendre, 

1998; McCune and Grace, 2002). Because ecological datasets contain samples with taxonomic 

objects, each with some abundance, ordination is the standard way to visualize the similarities 

and differences among samples or taxa. Samples that have more similar taxonomic distributions 

plot closer together in the ordination space. 

NMDS ordination iteratively searches for a best-fit solution between the rank 

dissimilarity indices and the distribution of samples in a low dimension ordination space. This 

non-parametric approach is appropriate for community data, which are typically non-normally 
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and non-linearly distributed (Bush and Brame, 2010). The best-fit solution is assessed by the 

stress of the ordination; low stress represents a better NMDS solution (Kruskal, 1964). All 

ordination methods have advantages and disadvantages. NMDS was used here because it is 

widely accepted among ecologists and paleoecologists, it uses a fixed number of dimensions, and 

it is non-parametric (Bush and Brame, 2010). 

(3) Procrustean Randomization Tests (PROTEST) were performed comparing 

procrustes transformed ordinations of higher- and lower-taxonomic levels (Jackson, 1995; Peres-

Neto and Jackson, 2001). NMDS does not always assign the maximum explanation of variation 

in the ordination space to the first axis. Moreover, two different ordinations might not appear to 

be similar at first because they are close reflections to each other in ordination space. To address 

these possibilities, the first step in PROTEST is to perform a Procrustes transformation, which 

minimizes the sum-of-squares deviations between the two ordination results through translation, 

reflection, rotation, and dilation. Thus, the two ordination results are reoriented such that they are 

aligned as closely as possible in ordination space, which permits a more accurate assessment of 

similarity. The residuals between the two ordinations post-transformation are calculated and 

produce the m2-value. The m2-value is similar to the r-value resulting from a Pearson’s Product 

Moment Correlation; the closer m2 is to 1, the more similar the two ordinations. Subsequent to 

the Procrustes transformation, PROTEST randomly permutes the ordination scores for all 

samples for 999 iterations, and the m2-value is calculated for each iteration; a realized p-value, 

indicating the significance of the m2-value, is then calculated by determining the percentage of 

iterations in which the m2-values from the randomized iterations is greater than the m2-value for 

the actual dataset. 

3.5 Visual assessment 

I also visually examined each of the ordination results for all of the categorization 

comparisons to assess the similarity of the multivariate results of all the dataset comparisons in a 

completely different manner from the statistical tests. Although this comparison method is less 

quantitative, and potentially subjective, visual examination of each individual ordination 

comparison provides an independent approach that may potentially capture details that would not 

be recognizable by the Mantel Test, NMDS axis-one, or PROTEST goodness-of-fit tests alone. 

Although a p < 0.05 may indicate a significant level of overall similarity between two 

paleocommunity results when using these goodness-of-fit tests, the resulting goodness-of-fit 

value does not necessarily indicate whether two results would be interpreted the same way by a 

researcher. Most community paleoecologists are not interested so much in the exact position of a 

sample, or the distance between two samples, in ordination space. In many cases, the 

interpretation of an ordination plot hinges on the identification of discreet clusters of samples in 

ordination space or of a gradient of samples. While two ordinations may be statistically similar, 

these sorts of details (e.g., membership within a specific cluster of points) are not explicitly 



 

38 
 

evaluated by any of the more sophisticated statistical methods. Thus, it is possible for a test to 

produce a significant result, but a few key samples may change position radically, which would 

be identified when examined visually. Similarly, an insignificant result might still reveal a 

critical pattern. Changes in the position of a few samples in ordination space may be sufficient to 

result in a different interpretation of ecological controls on sample distribution. The situation is 

analogous to visually inspecting a scatterplot when performing correlation statistics. Most 

workers have observed that a relatively weak correlation may still be associated with a 

significant p-value, partly because of the size of the dataset, thus emphasizing the need to 

examine the associated graphic result. 

Although each categorization comparison was visually assessed based on the unique 

differences that arose in each set of ordinations, I attempted to adhere to a set of standards when 

deciding if two ordination results are the “same” or “different”. I interpreted two ordination 

results to be the same if fewer than ~10 % of the sampling units show change in position (less 

than 50 % the length of one or both axes). When two ordinations are classified as the same, I 

infer that the groupings and patterns of the sampling units within the ordinations do not change 

enough to lead to different paleocommunity interpretations and conclusions. I interpreted two 

ordinations results as different if greater than 10 % of the sampling units show change in 

position. This infers that there was sufficient movement in samples within ordination space to 

potentially lead to different paleocommunity interpretations and conclusions. This assessment 

was conservative; if I were unsure whether researchers would interpret the ordination results as 

the same, I labeled the comparisons as not the same. 

The above visual assessment technique does not take into account possible independent 

data that a researcher may map onto the ordination. Ordination itself is not a statistical test. 

Researchers examine the distribution of samples in ordination space and compare the 

independent variables (e.g., geochemical or sedimentological data) of each of the ordination 

samples by mapping these variables onto the ordinations. For example, if a researcher collects 10 

fossil community samples from two depths, the researcher may want to ordinate the 10 samples 

and map on the two depths. If there is strong separation of the samples in ordination space based 

on depth, this is evidence that depth is controlling the taxonomic composition and abundance of 

the samples. 

In order to examine the effect that different categorizations may have on the 

interpretation of mapped independent variables, I created a series of each of the different 

ordinations of the categorization comparisons with various selected groupings of points (Figures 

3-5 to 3-10). The different groups of points selected in each of the comparisons are meant to 

represent various independent data that may be mapped onto the ordinations. For each of the six 

data categorization comparisons (four for the Rapid Member dataset and two for the Waterways 

Formation dataset), I selected three different hypothetical independent variable schemes. These 
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groupings were selected based on locations where there was apparent separation of points. For 

example, if there was a group of four points that grouped in the upper half of the ordination, 

these four points would be selected as one group and the other points would be a different group. 

I mapped the same two variables on each of the two ordinations that were being compared and 

then examined whether the same clusters, groupings, or patterns exist within both of the 

categorizations (Figures 3-5 to 3-10). If the same clusters, groupings, or patterns exist in all three 

of the mapped independent data visual examinations, this would be evidence that the 

categorizations are producing the same paleocommunity results; the same interpretations would 

be made regardless of the independent variable mapped. Conversely, if the clusters, groupings, or 

patterns differ between categorization comparisons, this would be evidence that the 

categorizations are producing different paleocommunity results; different interpretations would 

result between the different categorizations based on the independent variables. 

I did not compare the results of the various categorizations with measured independent 

environmental or ecological data (e.g., lithology or geochemical data) mapped onto the 

ordinations. The ordination comparisons are meant to examine the results of the categorizations 

without regard to how the results specific to the Waterways Formation or Rapid Member would 

be interpreted. This study is meant to help others examine data in other studies without regards to 

the particulars or questions under investigation in any one study. So, I wanted to take an 

approach that did not required ecological or environmental interpretation of our fossil data. 

Those data will be presented in subsequent publications. In addition, any interpretation I may 

have based on independent variables within the Waterways Formation or Rapid Member may 

differ from other researchers. 

4. Results 

4.1 Abundance versus point counts 

Among the Rapid Member comparisons of abundance and point count categorizations 

(raw data and percent transformed data, complete abundance area versus point count area, and 

within the point count area comparisons), the three different multivariate correlation methods 

(i.e., Mantel Test, NMDS axis-one correlation, and PROTEST) produced a range of goodness-of-

fit statistics (i.e., Mantel Test R-statistics, NMDS axis-one correlation r-values, and PROTEST 

m2-values) from 0.61 to 0.78 (p < 0.01; Table 3-2). Because results between the transformed and 

non-transformed datasets were the same, and to limit confusion (e.g., the number of different 

types of categorizations discussed that have similar sounding labels), the results and discussion 

will only address goodness-of-fit statistics for non-standardized categorizations. I visually 

assessed the two ordinations as different due to changes in position of most sample points 

(Figure 3-3A). In addition, points that were close to one another do not stay constant between the 

two ordinations; different pairings and clusters exist between the two ordinations. Specifically, 

within the exercise of examining the effect of mapped independent data, the three different 
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examples resulted in three slightly varying levels of difference between the categorizations 

(Figure 3-5). The first grouping example had similar separation between the two variables within 

both categorization comparisons (Figures 3-5A and 3-5D). The second two grouping led to some 

ambiguity in the separation of the mapped variables (Figures 3-5B, 3-5C, 3-5E, and 3-5F). 

Among the Rapid Member comparisons of abundance and point count categorizations 

for brachiopods-only, goodness-of-fit statistics ranged from 0.63 to 0.84 (p < 0.01; Table 3-2). 

The brachiopod-only ordinations of the Rapid Member categorizations were more similar to one 

another than the ordinations of the categorizations that included all taxa (Figure 3-3C). However, 

I visually assessed the two ordinations as different. All points, except for two, change position 

along axis two, and two points change along axis one. This contrary motion is the reason these 

two ordinations were assessed as different. Within the examination of mapped independent data, 

one of the three sets of comparisons had the same cluster separations (Figure 3-6A and 3-6D). 

However, the remaining two comparisons resulted in differences in the separation and clustering 

of the two mapped variables (Figure 3-6). 

Among the Waterways Formation dataset, comparisons of abundance and point count 

categorizations resulted in goodness-of-fit statistics ranging from 0.73 to 0.90 (p < 0.001; Table 

3-3). I visually assessed the two ordinations as different because all but one point changes 

position (Figure 3-4A). Seven points change along axis two, and two points change along axis 

one. Within the examination of mapped independent data, two of the three example clusters 

remain fairly separated in both categorizations (Figure 3-7). However, one of the examples leads 

to changes in the clustering (Figures 3-7C and 3-7F). 

Among the Waterways Formation comparisons of abundance and point count 

categorizations without crinoids, goodness-of-fit statistics range from 0.85 to 0.93 (p < 0.001; 

Table 3-3). Although there is less difference between these two ordinations than the Waterways 

dataset abundance versus point counts with crinoids, I visually assessed the two ordinations as 

different (Figure 3-4B). All sample points change position. Within the examination of mapped 

independent data, all three examples resulted in some difference in the clustering separation of 

the two mapped variables (Figure 3-8). 

4.2 All-taxa versus brachiopods-only 

The goodness-of-fit statistics for the non-standardized Rapid Member comparisons of 

all-taxa versus brachiopods-only, when abundance was used to measure fossil material, ranged 

from 0.59 to 0.88 (p = 0.02 to p < 0.001; Table 3-3). I visually assessed the two ordinations as 

different because the samples displayed variation between corresponding sample points along 

axis-one, axis-two, and diagonally, with no consistent direction of change (Figure 3-3B). Within 

the examination of mapped independent data, the clusters remain similar within all of the 

comparisons (Figure 3-9). However, one point does change clusters in each of the three 

examples.  
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The correlation statistics for the Rapid Member comparisons of all-taxa versus 

brachiopods-only, when abundance was used to measure fossil material, ranged from 0.30 to 

0.64 (p = 0.18 to p < 0.001; Table 3-3). This comparison led to the most variation between two 

ordinations. I visually assessed the two ordinations as different because all points change along 

axis-one or axis-two, and many change diagonally, with no consistent direction of change 

(Figure 3-3D). Within the examination of mapped independent data, all three examples resulted 

in different clusters and patterns of the mapped independent variables (Figure 3-10). 

5. Discussion 

5.1 Interpreting multivariate results 

The goodness-of-fit statistics for the comparisons of abundance versus point counts 

ranged from 0.61 to 0.88 (p < 0.01; Tables 3-2 and 3-3). Although the p-values were less than 

0.001 and 0.01 for all of the Mantel Tests and PROTESTS, respectively, these p-values may not 

directly address the question of interest (would these ordinations be interpreted in the same 

way?) in the same manner as a p-value for a bivariate Pearson’s Product Moment Correlation. 

While a p < 0.05 combined with a moderate (0.5 to 0.8) PROTEST m2-value or Mantel R-

statistic indicates significant overall similarity of data categorizations (in the sense that there is a 

95% confidence that the result is not obtained by chance), it does not necessarily indicate 

similarity of details that would lead workers to a consistent interpretation of two ordinations. In 

this regard, even a moderate goodness of fit statistic may be too low for two ordinations to be 

interpreted as the same. The p-values in both of these tests are calculated by determining if the 

goodness-of-fit values differ significantly from randomized permutated values. So, both the 

goodness-of-fit statistics and the p-values for both the Mantel Test and the PROTEST do not 

have a definitive value that can be considered a threshold between two datasets being interpreted 

as the same or different. 

Because of the lack of a known threshold value, these tests provide important 

information, but they may not provide information about how researchers would interpret the 

two results being compared. Further information is needed fully to understand the similarity 

between two categorizations. I conducted a complementary visual assessment to further evaluate 

the various categorization comparisons. I interpreted all of the categorization comparisons to be 

different; the patterns and groupings within the raw ordination results differ (Figures 3-3 and 3-

4). 

In some cases, the two categorizations produce the same separation of the samples 

representative of two different mapped variables (Figures 3-5 to 3-10). However, since there are 

one or two examples that result in different clusters and patterns for each of the six 

categorization comparisons, I interpret these changes in the clustering and patterns of the mapped 

independent variables as differences arising between the different data categorizations. This 
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further supports our claim that the different categorizations examined produce paleocommunity 

results that would be interpreted differently. 

The ultimate purpose of multivariate statistical techniques such as ordination is to use 

the ordination results to test independent variables (e.g., water depth, predation intensity) that 

may be controlling community distribution or composition. Based on the differences found 

between the pairs of categorizations, the interpretation of the primary controlling variable could 

vary greatly between the use of the two methods. The patterns and groupings of samples change 

drastically enough that the same independent variable would be unlikely to correlate with the 

multivariate results from all categorizations. 

I recognize that our visual assessment, and even our choice of criteria for identifying 

“same” or “different”, is subjective and that other workers might potentially interpret pairs of 

ordinations differently. However, the very fact that there are multiple cases in which I might 

interpret two ordinations very differently, despite a low p-value indicating great significance, 

also must raise some questions about how researchers use and interpret these multivariate tests; 

the results suggest that low p-values for the multivariate tests do not inherently imply 

consistency of interpretation. Our visual examination suggests that goodness of fit statistics may 

need to be very high (i.e., > 0.85) to ensure that two ordinations would be interpreted in the same 

way – even if they display general similarity (Figure 3-3C). Further research on this problem 

needs to be done (Forcino et al., in review; Forcino and Leighton, 2012), but for the moment, 

caution must be used when interpreting the quantitative multivariate results. 

5.2 Abundance versus point counts of all taxa 

The paleocommunity patterns resulting from using abundance as a means of counting 

fossils produces consistently different paleocommunity patterns than those resulting from the use 

of point counts. This was consistent between both the Waterways Formation and the Rapid 

Member datasets using multivariate goodness-of-fit tests as well as a visual assessment. The 

goodness-of-fit statistics for the comparisons of abundance versus point counts ranged from 0.61 

to 0.88 (p < 0.01; Tables 3-2 and 3-3). The PROTEST m2-values ranged from 0.62 to 0.88, and 

the Mantel R-statistics ranged from 0.59 to 0.85.  

Forcino et al. (2010), examining the Finis Shale, found a strong correlation of NMDS 

axis-one scores between ordination results of abundance counts and ordination results of 

calcified biomass. Forcino et al. (2010) did not employ the other methods used in the present 

study, so the only direct comparison of results is for correlation of NMDS axis-one scores (Table 

3-4). In contrast, within the two carbonate units, abundance and point count categorizations 

produced different results. Within all of the correlations of NMDS axis-one scores for the three 

different units (Finis Shale, Waterways Formation, Rapid Member), the Finis Shale had greater 

r-values than the two carbonate units (Table 3-4). 
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One possible cause for the difference between counting methods observed in the present 

study could be that the present study used point counts as a biomass proxy whereas Forcino et al. 

(2010) examined calcified biomass as a proxy for biomass, an approach that is not feasible for 

specimens in limestones. Fossils encased in limestone are difficult to impossible to extract 

without destruction of details required for identification. Furthermore, it is not possible to 

conduct point counts in siliciclastic shale units such as the Finis Shale. Any one surface is not 

nearly as fossiliferous as the limestone surfaces examined in the Waterways Formation and 

Rapid Member. Fossils within the shale must be disaggregated and tallied. The process of 

weighing all of the fossils in the Finis Shale to determine calcified biomass may have more 

completely represented the communities, similar to the abundance counts, because all of the taxa 

are included completely; the complete mass of every specimen was included. Conversely, point 

counts may be less similar to abundance because each specimen is only included based upon the 

number of points it happens to intersect. There is always a chance that larger taxa may only lay 

within one intersection. In this manner, point counts are not as all inclusive as abundance and 

biomass. So, this difference in the selection of the biomass-proxy could have led to stronger 

correlations in the Forcino et al. (2010) study compared to the present study. 

The difference in lithology between the present study and Forcino et al. (2010) is 

another possible cause for the differences that arose between counting methods. Both the 

Waterways Formation and the Rapid Member are carbonate units. Forcino et al. (2010) found 

strong similarity among counting methods within the siliciclastic Finis Shale. Environmental or 

taphonomic factors that differ between carbonate and siliciclastic units may have ultimately led 

to the differences found between these two studies. For example, there may be differences in the 

taxa that are able to survive in a more turbid environment (such as those in which shale would be 

deposited) compared with an environment with lower clastic sediment input, such as those that 

form a limestone. Corals and many suspension feeders are not able to filter out large amounts of 

sediment and may not be found in environments that are represented by shale in the rock record. 

Although previous research demonstrated low similarity between community results using 

abundance and biomass within siliciclastic units (Morris, 1985; Bush et al., 2007), these studies 

do not definitely refute the possibility that lithology has some control on the required methods 

for paleocommunity research. Since these studies do not examine any carbonate units, they do 

not provide information regarding factors that may consistently lead to differences among 

counting methods. 

The stratigraphic section of the Finis Shale examined by Forcino et al. (2010) was 

homogeneous, particularly compared to the Waterways Formation and Rapid Member 

stratigraphic sections examined for the present study. Within the Finis Shale, it is not visually 

obvious that any of the stratigraphic horizons from which fossils were sampled are any different 

from any other, except for some minor variation in silt content. The entire stratigraphic extent of 
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the Finis Shale is dark grey to black, non-fissile shale. However, the Rapid Member varies in 

lithology from argillaceous, recessive limestone to more massive, resistant units to some thin 

fissile units. Similarly, the Waterways has some very thin, argillaceous, recessive beds as well as 

some massive beds, along with a few thin shale units. Moreover, there was greater community 

homogeneity within the Finis Shale as well. There are only two different communities within the 

entire Finis Shale (Forcino et al., 2010; Forcino et al., 2012). Here, there are at least three 

different communities within the Waterways Formation, and perhaps even more within the Rapid 

Member (Figures 3-3 and 3-4; Schneider et al., 2012). Whether this homogeneity was caused by 

environmental stability or some other factor, there is less variation throughout the Finis Shale 

depositional environment than in the Rapid Member and the Waterways Formation carbonate 

settings. This heterogeneity within the Waterways Formation and Rapid Member may have led 

to the differences between the abundance and point count categorizations. 

If the taxonomic or lithological (environmental) factors do not account for the 

differences between abundance and point count results, it is possible that biological factors 

caused these differences. If this is the case, which counting method is the more accurate means 

of assessing the paleocommunity signal? Many workers view proxies of biomass or biovolume 

such as point counts as more biologically meaningful indicators of community structure 

(Watkins, 1996). Abundance counts exhaustively include all whole or nearly whole fossil 

specimens. However, there is no definitive means of equating colonial and easily disarticulated 

taxa with solitary taxa. Although several methods have been employed (e.g., equating 2 cm 

length to 1 individual), no single technique is universally accepted to cover questions of 

taxonomic comparisons. If a method of equating colonial and easily disarticulated taxa to solitary 

taxa is found and deemed appropriate for the research question under investigation, this may lead 

to more similar results between abundance and point counts. However, until that method is 

determined, it may be best to conduct both abundance and point counts. When under resource 

constraints, point counts are recommended. When both methods (abundance and point counts) 

yield different results, I recommend that the point count results be given more weight, based on 

the more equitable inclusion of solitary, colonial, and easily disarticulated taxa. However, 

abundance counts are recommended if the communities in carbonate units are to be compared 

with communities for which point counts cannot be obtained (e.g., communities in highly friable 

sandstones or shale, where bedding surfaces are most often destroyed before examination). 

If different results are obtained when using two or more methods, there may be an 

inherent problem with the data. Although point counting may provide a more biologically 

meaningful result, if the results obtained by point counting are inconsistent with results obtained 

by a different method (e.g., abundance counts), this may mean that the samples are not 

representative of either the complete fossil community or the once living community. In this 

manner, abundance counts are important to examine in addition to point counts because if the 
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analyses based on abundance counts and the analyses based on point counts are consistent with 

one another, the paleocommunity results are more robust. Thus, a researcher can be more certain 

of their paleocommunity interpretations and ecological conclusions. 

5.2.1 Colonial and easily disarticulated taxa effect 

Crinoids made up a greater percentage in the point count categorization compared to the 

abundance categorization (Figure 3-5). This possibly led to differences between the ordinations, 

similar to that seen in Watkins (1996), where differing paleocommunity results were attributed to 

the high percentage of crinoids and bryozoans in the dataset. As described previously, to test the 

negative effect of colonial and easily disarticulating taxa on the goodness-of-fit between the 

abundance and point count categorizations, I culled bryozoans and crinoids (same categorization 

as brachiopods-only for the Rapid Member dataset), and re-ran multivariate comparison analyses 

(Figures 3-3D and 3-4C). If the bryozoan-crinoid component of the abundance and point count 

datasets caused the differences between the paleocommunity results, the goodness-of-fit statistics 

should increase when these groups are culled. As expected, omission of bryozoans and crinoids 

increased the mean goodness-of-fit statistic (the average of all goodness-of-fit statistics from all 

the different comparison methods) from 0.61 to 0.78 (Tables 3-2 and 3-3; Figures 3-3 and 3-4). 

Thus, when crinoids and bryozoans were culled from the analyses of the Rapid Member and 

Waterways Formation datasets, the abundance and point count paleocommunity results became 

more similar. 

The fact that our abundance and point count multivariate results were more similar 

when colonial and easily disarticulated taxa were culled demonstrates the importance of 

including colonial and easy disarticulated taxa in analyses along with solitary taxa. When taxa 

such as crinoids and bryozoans are included in the data, point counts capture a paleocommunity 

that differs markedly from that based on abundance counts because the colonial and easily 

disarticulated taxa have an effect on how the paleocommunity is perceived. Furthermore, 

although there were limited differences among categorizations of the Finis Shale examined by 

Forcino et al. (2010), a minor difference that arose was between abundance and biomass 

categorizations of higher stratigraphic samples. These samples contained a greater amount of 

crinoids and bryozoans. Since the biomass measurement allowed for a means of including all 

taxa equally, the presences of the bryozoans and crinoids in the higher stratigraphic samples most 

likely caused the differences between the categorizations of the samples. Therefore, depending 

upon the question the researcher is exploring and the availability of fossil material, for the most 

accurate representation of a community, researchers should use methods that include colonial 

and easily disarticulated taxa. Even if researchers are interested in examining ecological variation 

of a single taxon or one taxonomic group, it is important also to examine the complete picture of 

what is occurring in the system. The researchers and the paleontological community would 

benefit from an understanding of how taxonomic groups align with the ecological patterns 
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revealed by all fossil taxa. Studies about how brachiopod communities change through an 

environment perturbance are interesting, but if these data were different from the overall 

understanding and patterns of analyses including all organisms through that same perturbance, 

this would be useful information for examining alternate hypotheses and interpretations. All 

paleontological endeavors provide useful and interesting information. However, for these 

reasons, I recommend a consistent, all-encompassing approach that includes all fossil taxa. 

Variation in biovolume among different taxa may cause differences in the 

paleocommunity signals when conducting point counts (specifically for the Rapid Member 

dataset). In contrast with abundance counts, point-counts allow larger taxa, which might be 

expected to play a greater role in acquisition of resources within the community, to carry greater 

weight in the the analysis than smaller taxa. Determining a taxonomic size effect is outside the 

scope of the present study, but it will be a part of future work for the authors. 

5.3 All-taxa versus brachiopods-only 

The correlations between the use of all-taxa versus brachiopods-only for the abundance 

counts of the Rapid Member dataset ranged from 0.59 to 0.88 (p < 0.02). When using point 

counts, there was a marked difference between the brachiopod-only and all-taxa categorizations, 

with correlation statistics ranging from 0.30 to 0.64 (p < 0.18; Table 3-2; Figure 3-3). I interpret 

these weaker correlations, as well as the visual differences, to indicate probable different 

paleocommunity results. Therefore, taxa other than brachiopods can drastically influence the 

community structure of a dataset. Many factors may have influenced the poor goodness-of-fit 

between the Rapid Member brachiopod-only and all-taxa categorizations. The Rapid Member 

does contain corals and stromatoporoids. Hexagonaria, a colonial coral, achieves great 

abundance higher in the Rapid Member. This may indicate a narrow range of environments 

represented by the Rapid Member. Non-brachiopod taxa may have a greater influence on the 

community signal because these taxa have the most influence on the apparent differences of the 

communities in ordination space. 

Although brachiopods are often easier to identify, other taxa should be collected and 

included in analyses in order to ensure a more complete community characterization and 

interpretation. One could argue that brachiopods alone can be collected when the study is solely 

focused on the brachiopod assemblage; the brachiopods alone may track some ecological or 

environmental variable that is obscured when the community is examined as a whole. However, 

brachiopods usually represent only a portion of a broader paleocommunity. The information 

provided by other fossil taxa within a community may be necessary for understanding variation 

in the brachiopod-only component of the community. Moreover, the brachiopod-only ordination 

pattern is not necessarily a subset of the pattern from the full community; it could be completely 

different. I recommend using the most complete fossil community as possible when conducting 
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paleocommunity research, recognizing that logistic difficulties may sometimes make such 

research impossible. 

6. Conclusions 

Although Forcino et al. (2010) found a strong correlation in the paleocommunity results 

between those obtained using abundance counts and those using calcified biomass, the 

comparison of abundance and point counts within the Rapid Member and the Waterways 

Formations, and from numerous other studies (Ausich, 1981; Staff et al., 1985; Morris, 1986, 

Watkins, 1996; Bush et al., 2007), demonstrate strong differences between paleocommunity 

results obtained using abundance and those using point counts (or other proxies for biomass). 

Using NMDS axis-one score correlations, the Finis Shale had consistently greater r-values than 

the Waterways Formation and Rapid Member (Table 3-4). As evident from the increased 

correlation statistics of the paleocommunity results between the abundance and point counts of 

the Waterways Formation dataset when crinoids were culled, colonial and easily disarticulated 

taxa can have a strong effect on the ordination results obtained from point counts. In 

communities that consist of mostly solitary taxa, like brachiopods, abundance counts may be 

sufficient for counting fossil material. However, because abundance and point counts result in 

different ordination results, conducting point counts in concert with abundance counts is 

recommended when resources permit. If the same result is found with both methods, it verifies 

that the interpretations derived from the paleocommunity analysis are valid. If the results differ, 

as long as the point count grid sufficiently includes taxa of all sizes, I recommend using the point 

count result, as it takes into account the calcified biovolume of fossilized taxa and allows equal 

inclusion of non-solitary taxa. 

Brachiopods alone do not produce the same paleocommunity result as when all taxa are 

included in the analyses. There is a poor correlation between the paleocommunity results of the 

Rapid Member dataset categorizations using all-taxa and using brachiopod taxa only – 

brachiopods are not automatically good indicator taxa. Restricting analysis to a single clade, 

largely for logistic rather than biological reasons, is not recommended. In order to get a full and 

accurate view of the paleocommunity under study, I recommend the identification and 

quantification of all taxa for environmental, ecological, and evolutionary interpretations drawn 

from paleocommunities. 
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Table 3-1. Latitude and longitude of all collections sites along with the number of samples 

collected at each site. 

Formation Member Latitude Longitude No. of 
Samples 

Cedar Valley Rapid N 41.721° W 91.532° 15 
Waterways Moberly N 56.775° W 111.397° 2 
Waterways Moberly N 56.783° W 111.404° 2 
Waterways Moberly N 56.793° W 111.404° 3 
Waterways Moberly N 56.804° W 111.406° 1 
Waterways Moberly N 57.164° W 111.627° 1 
Waterways Moberly N 56.853° W 111.421° 1 
Waterways Moberly N 56.637° W 111.626° 1 
Waterways Moberly N 56.615° W 111.716° 1 
Waterways Moberly N 56.613° W 111.731° 2 
Waterways Moberly N 56.656° W 111.594° 1 
Waterways Moberly N 56.671° W 111.528° 1 
Waterways Calumet N 56.666° W 110.872° 1 
Waterways Calumet N 56.675° W 110.841° 5 
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Table 3-2. Mantel R-statistics, NMDS axis-one correlation r-values, and PROTEST m2-values 

along with corresponding p-values for the Rapid Member dataset categorization comparisons. 

“g-o-f” = goodness-of-fit statistic, “p” = p-value. 

Categorization Comparison  Mantel R-
statistic 

Ordination 
PROTEST m2 

NMDS axis-
one r-value 

     

Abundance vs. PC (same area) g-o-f 0.61 0.61 0.65 
 p < 0.001 0.01 0.008 
Abundance vs. PC (the entire 
abundance sample) g-o-f 0.71 0.78 0.78 

 p < 0.001 < 0.001 < 0.001 
Abundance vs. PC (same area 
brachiopods only) 

g-o-f 0.78 0.84 0.63 
p < 0.001 < 0.001 0.01 

Abundance vs. PC (the entire 
abundance sample brachiopods only) 

g-o-f 0.76 0.81 0.74 
p < 0.001 < 0.001 0.002 

Abundance vs. PC (standardized) g-o-f 0.59 0.70 0.69 
 p < 0.001 < 0.001 0.005 
Abundance All vs. Abundance Brach g-o-f 0.83 0.82 0.59 
 p < 0.001 < 0.001 0.02 
Abundance All vs. Abundance Brach 
(standardized) 

g-o-f 0.85 0.88 0.76 
p < 0.001 < 0.001 < 0.001 

PC All vs. PC Brach g-o-f 0.35 0.41 0.43 
 p 0.09 0.18 0.11 
PC All vs. PC Brach (standardized) g-o-f 0.30 0.49 0.64 
 p 0.02 0.04 0.01 
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Table 3-3. Mantel R-statistics, NMDS axis-one correlation r-values, and PROTEST m2-values 

along with corresponding p-values for the Waterways Formation dataset categorization 

comparisons. “g-o-f” = goodness-of-fit statistic, “p” = p-value. 

Categorization Comparison  Mantel R-
statistic 

Ordination 
PROTEST m2 

NMDS axis-
one r-value 

     

PC vs. Abundance (same area) g-o-f 0.73 0.73 0.90 
 p < 0.001 < 0.001 < 0.001 
PC vs. Abundance (the entire 
abundance sample) g-o-f 0.74 0.73 0.90 

 p < 0.001 < 0.001 < 0.001 
PC vs. Abundance of the entire 
sample (the entire abundance 
sample with no crinoids) 

g-o-f 0.85 0.92 0.93 

p < 0.001 < 0.001 < 0.001 

PC vs. Abundance of the entire 
sample (standardized)  

g-o-f 0.78 0.88 0.89 
p < 0.001 < 0.001 < 0.001 
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Table 3-4. Pearson Product Moment correlation r- and p-values of NMDS axis-one scores for the 

same comparisons for both units examined in the present study as well as the Finis Shale from 

Forcino et al. (2010). The r- and p-values for the Finis Shale are slightly different than those in 

Forcino et al. (2010) because the analyses were conducted using R instead of PCOrd, as 

originally done in Forcino et al. (2010). 

 Waterways 
Formation 

Rapid 
Member 

Forcino et 
al. (2010) 

All-taxa, abundance vs. biomass proxy r = 0.90 

p < 0.001 

r = 0.65 

p = 0.008 

r = 0.96 

p < 0.001 

All-taxa vs. brachiopods-only, 
abundance — 

r = 0.59 

p = 0.02 

r = 0.95 

p < 0.001 

All-taxa vs. brachiopods-only, 
abundance, biomass proxy — 

r = 0.43 

p = 0.11 

r = 0.99 

p < 0.001 
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Figure 3-1. General paleogeography of the Middle and Upper Devonian with the sample 

locations marked (Rp = Rapid Member of Coralville, Iowa and Waterways = Waterways 

Formations of northern Alberta). The grey areas denote land and the white areas denote water. 
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Figure 3-2. Middle and Upper Devonian formations of sample locations in Iowa and northern 

Alberta. The sampled members are shaded in gray. 

M
id

dl
e 

D
ev

on
ia

n
U

pp
er

 D
ev

on
ia

n

G
iv

et
ia

n
Fr

as
ni

an

M
id

dl
e

U
pp

er
Lo

w
er

M
id

dl
e

W
at

er
w

ay
s 

Fm
.

Firebag Mb.

Calumet Mb.

Christina Mb.

Moberly Mb.

Duvernay Fm.

Wapsipinicon Gp.

C
ed

ar
 V

al
le

y 
G

ro
up

Li
ttl

e 
C

ed
ar

 F
m

.

Solon Mb.

Rapid Mb.

Coralville Fm.

Lithograph
City Fm.

Shell Rock Fm.

S
er

ie
s

S
ta

ge

S
ub

st
ag

e
Northeastern 

Alberta
Southeastern

Iowa

Slave Point Fm.

Fort Vermilion 
Fm.

Elk Pount Group



 

58 
 

Figure 3-3. Non-metric multidimensional scaling ordination plots for the Rapid Member dataset 

of (A) abundance of all-taxa versus point counts of all-taxa, (B) abundance of all-taxa versus 

abundance of brachiopod taxa (C) abundance with bryozoans and crinoids culled versus point 

counts with bryozoans and crinoids culled, and (D) point counts of all-taxa versus point counts of 

brachiopod taxa. The dashed grey arrows connect points representing the same samples in each 

categorization. The black points represent abundance-based categorizations, and the gray points 

represent point count-based categorizations. Circles denote all-taxa, squares denote brachiopods-

only, and diamonds denote all-taxa with bryozoans and crinoids culled. All ordinations were run 

with two dimensions. NMDS stress values are 6.4% for the abundance ordination, 8.7% for the 

point count ordination, 9.4% for abundance at the MEI level, 8.2% for point counts at the MEI 

level, 16.3% for abundance without crinoids and bryozoans, 17.2% for point counts without 

crinoids and bryozoans, 11.7% for abundance of brachiopods, and 15.3% for point counts of 

brachiopods. 
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Figure 3-4. Non-metric multidimensional scaling ordination plots for the Waterways Formation 

dataset of (A) abundance of all-taxa versus point counts of all-taxa and (B) abundance with 

bryozoans and crinoids culled versus point counts with bryozoans and crinoids culled. The 

dashed grey arrows connect points representing the same samples in each categorization. The 

black points represent abundance-based categorizations, and the gray points represent point 

count-based categorizations. Circles denote all-taxa and diamonds denote all-taxa with bryozoans 

and crinoids culled. All ordinations were run with two dimensions. NMDS stress values are 7.5% 

for the abundance ordination, 11.3% for the point count ordination, 12.0% for abundance at the 

MEI level, 10.3% for point counts at the MEI level, 8.4% for abundance without crinoids, and 

8.9% for point counts without. 
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Figure 3-5. Three example comparisons of mapped independent variables for categorization 

comparisons of abundance and points counts of all taxa for the Rapid Member dataset. A, B, and 

C, are the abundance categorization, and D, E, and F, are the point count categorization. The 

open gray circles and the closed black circles represent two different groups of independent 

variables. 
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Figure 3-6. Three example comparisons of mapped independent variables for categorization 

comparisons of abundance and points counts of brachiopod-only taxa for the Rapid Member 

dataset. A, B, and C, are the abundance categorization, and D, E, and F, are the point count 

categorization. The open gray diamonds and the closed black diamonds represent two different 

groups of independent variables. 
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Figure 3-7. Three example comparisons of mapped independent variables for categorization 

comparisons of abundance and points counts of all taxa for the Waterways Formation dataset. A, 

B, and C, are the abundance categorization, and D, E, and F, are the point count categorization. 

The open gray circles and the closed black circles represent two different groups of independent 

variables. 
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Figure 3-8. Three example comparisons of mapped independent variables for categorization 

comparisons of abundance and points counts of brachiopod-only taxa for the Waterways 

Formation dataset. A, B, and C, are the abundance categorization, and D, E, and F, are the point 

count categorization. The open gray diamonds and the closed black diamonds represent two 

different groups of independent variables. 
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Figure 3-9. Three example comparisons of mapped independent variables for categorization 

comparisons of abundance of all taxa and brachiopod-only taxa for the Rapid Member dataset. 

A, B, and C, are the abundance categorization, and D, E, and F, are the point count 

categorization. The open gray points and the closed black points represent two different groups 

of independent variables. 
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Figure 3-10. Three example comparisons of mapped independent variables for categorization 

comparisons of point counts of all taxa and brachiopod-only taxa for the Rapid Member dataset. 

A, B, and C, are the abundance categorization, and D, E, and F, are the point count 

categorization. The open gray points and the closed black points represent two different groups 

of independent variables. 
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Figure 3-11. Relative taxonomic composition of abundance and point count categorizations 

(both at the generic level) for both the Rapid Member and Waterways Formations datasets. 
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Chapter 4. Perception of paleocommunities at different taxonomic levels: 

how low must you go?‡ 

1. Introduction 

Community paleoecology utilizes fossil assemblages to examine the mechanisms of 

ecological and environmental variation through space and time. Such data provide insight into 

the processes that structure ecosystems and the causes of ecosystem collapse and extinction 

(Olszewski and Patzkowsky, 2001; Kowalewski et al., 2002; Bonelli et al., 2006; Redman et al., 

2007; Clapham and James, 2008; Leighton and Schneider, 2008; Heim, 2009). In addition, 

paleocommunity data provide a wealth of information about ecological interactions and 

environmental tolerances on local scales and help researchers understand how these processes 

scale up to regional, continental, and global scales (Bambach, 1993; Kowalewski et al., 2002; 

Bambach et al., 2004; Clapham and Bottjer, 2007). Furthermore, in the face of the rapid tempo of 

the current biodiversity crisis, conservation science will benefit from increased productivity by 

paleoecological researchers and quick dissemination of their findings (Bennington and Aronson, 

2012). Conducting examinations of how ecosystems were affected by events of rapid warming in 

the past can lead to predictions regarding how current ecosystems will change (Louys, 2012). 

This could provide information important to preserving the natural world and counteracting 

anthropogenic influence. 

To obtain meaningful information, researchers must collect samples of fossil 

assemblages that are sufficiently complete to be accurately representative and large enough to 

produce statistically robust results (Forcino et al., 2010; Forcino, 2012). Most community 

paleontological research is resource-intensive, both in terms of travel and in time spent collecting 

and analyzing data. Therefore, researchers must strike a balance between economy of collection 

and quantity of data. 

A key decision in community paleoecological research is the level of taxonomic 

identification. Most studies identify specimens to the genus (Olszewski and Patzkowsky, 2001; 

Forcino et al., 2012) or species (Schneider, 2003). However, some studies use taxonomic 

families, or non-Linnaean clades or guilds (Kowalewski 2002; Lebold and Kammer, 2006; 

Forcino et al., 2012). Here, I conducted a meta-analysis of 28 datasets from the Paleobiology 

Database (PBDB) to determine whether paleocommunity analyses at higher taxonomic levels 

produce similar results to those analyzed at the genus level. For each dataset, I composed taxon-

sample matrices (series of samples containing multiple taxa of varying abundances) at the genus-

, family-, order-, and class-levels. Species were not examined, as genus is the lowest taxonomic 

level included in the PBDB. Genus is also the lowest taxonomic level to which paleocommunity 

                                                             
‡ A version of this chapter has been published. Forcino, F.L., Stafford, E.S. and Leighton, L.R. (2012) 
Perception of paleocommunities at different taxonomic levels: how low must you go? Palaeogeography, 
Palaeoclimatology, Palaeoecology 365:48-56. 
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researchers typically identify specimens. I then compared the multivariate paleocommunity 

results of each of the three higher taxonomic levels (family, order, and class) to the genus-level 

result. If the higher-level identifications produce the same multivariate results as those at the 

genus-level, such higher-level classification may be sufficient for community paleoecological 

research. Simplification of the identification process would conserve resources for researchers. 

On the other hand, if higher-level identifications do not produce the same multivariate results as 

the genus-level, then researchers should invest time and effort into lower-level identification in 

order to produce the most accurate paleocommunity results from the available material. 

Identification of fossil specimens to taxonomic levels above genus may provide 

information as meaningful as information derived from genus- or species-level identification. 

More closely related organisms tend to be ecologically similar (Darwin, 1859; Cadotte et al., 

2008, Cavender-Bares et al., 2009; however, see Cahill et al., 2008 for a counter-argument); two 

genera of rhynchonellate brachiopods have more in common in terms of natural history, feeding 

strategy, and environmental preferences than either have with two genera of fish, and vice versa. 

In addition, identification of specimens at lower taxonomic levels requires much more 

specialized knowledge than identification to higher levels; a paleocommunity assemblage can 

contain dozens of genera in several families within multiple phyla, while a typical paleontologist 

may specialize in only one or two taxonomic groups. When non-specialists attempt to identify 

specimens to genus or species, identifications may take longer and are more likely to be 

incorrect. If higher-level classification is sufficient for paleocommunity research, researchers 

could save significant resources on research projects and reduce inaccurate identification. 

Conversely, the taxonomic resolution of paleocommunity data may affect the quality of 

the paleoecological information derived from the assemblage. While more closely related 

organisms may tend to be more ecologically similar, even closely related genera can have 

different ecological functions within a community (Cahill et al., 2008). Lumping these separate 

genera within a single higher taxon would mask any effect their differing ecologies may have 

had on the community composition as a whole. The result would be a loss of ability to resolve 

paleoecological parameters and to detect ecological differences between samples, regions, and 

formations, degrading the value of the paleocommunity data, and therefore, any conclusions 

based on those data. Ultimately, the issue is to determine which taxonomic level is more likely to 

provide the most reliable ecological signal. 

Forcino et al. (2010) examined the effect of taxonomic level of identification in 

paleocommunities from the Finis Shale of Texas, finding a strong correlation between results 

derived from genus-level identification and results derived from higher-level identifications. 

Greffard et al. (2011) compared the results of community analyses of chironomid flies (Class 

Insecta) identified at different taxonomic levels. Although Greffard et al. (2011) concluded that 
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finer taxonomic resolutions should be employed, the multivariate results of the fine- and coarse-

taxonomic resolutions were strongly correlated (PROTEST m2 = 0.93, p < 0.001). De Biasi et al. 

(2003) found similar community results among species-, genus-, and family-level identifications, 

and a somewhat similar result at the level of taxonomic order. Warwick (1988) found no loss of 

information (i.e., the same multivariate community results) among species-, genus-, and family-

level identifications for five modern marine benthic community datasets. 

Alternatively, if a study were to examine a wider range of paleoecological data than 

those studies described above, it may be discovered that community resolution is lowered when 

taxa are identified to higher taxonomic levels (e.g., family, order). Combining taxonomic units 

that may represent different ecological aspects of a community may mask a paleocommunity 

signal that would be clear when conducting analyses at the genus- or species-level. If the meta-

analysis I conduct here finds that higher taxonomic resolution leads to different paleocommunity 

results, this may reassure researchers that the current paradigm (identifying fossil taxa to genus 

or species) is necessary to obtain meaningful ecological information from paleocommunities. 

2. Methods 

Twenty-eight datasets were acquired from the PBDB (Table 4-1). The datasets 

contained a range of numbers of samples (16 to 162 samples) and generic richness (21 to 244 

genera). The datasets represented a wide range of time periods and featured a diversity of 

taxonomic groups. Each dataset was used to create four taxon-sample matrices—one for each of 

the taxonomic levels: genus, family, order, and class. The higher-level groupings (family, order, 

and class) were based on the most up-to-date classifications in the PBDB. Two datasets (Crame, 

1981; Budd et al., 1999) contained only one taxonomic order, so no order-level taxon-sample 

matrices were created from these datasets. Three datasets (Ruzhencev and Bogoslovskaya, 1978; 

Crame, 1981; Budd et al., 1999) contained only one taxonomic class, so no class-level taxon-

sample matrices were created from these datasets. 

For each taxonomic-level comparison (family-genus, order-genus, and class-genus) of 

each dataset, three multivariate statistical comparisons were conducted (Table 4-2):  

(1) Using the vegan package in R 2.4 (Oksanen et al., 2011; R Development Core 

Team, 2011), I performed Mantel Tests of correlation between Bray-Curtis dissimilarity indices 

(values that quantify the dissimilarity between each object in a taxon-sample matrix). The Mantel 

Test tests the similarity of two matrices of dissimilarity indices by permuting each of the 

elements in the dissimilarity matrix 999 times to derive a distribution of correlation values 

(Mantel, 1967; Fall and Olszewski, 2010). The resulting R-statistic is similar to the Pearson’s 

Product Moment Correlation Coefficient (r); with increasingly similar dissimilarity matrices, the 

Mantel R-statistic will approach 1. The Mantel Test evaluates the goodness-of-fit of two datasets 

of non-ordinated data. The remaining two methods evaluate the goodness-of-fit of ordinated 

data. 
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(2) I produced non-metric multidimensional scaling (NMDS) ordinations of the samples 

using the Bray-Curtis dissimilarity index (Clarke and Ainsworth, 1993; Legendre and Legendre, 

1998; Bush and Brame, 2010). The NMDS axis-one ordination scores of each taxonomic level 

were compared to each other pairwise using a Pearson’s product-moment correlation. 

All NMDS ordinations were run examining the taxonomic distributions among samples. 

Ordination is an exploratory multivariate visualization tool that allows multidimensional 

relationships of samples to be examined in fewer dimensions (McCune and Grace, 2002). 

Because ecological datasets contain samples with taxonomic objects, each with some abundance, 

ordination is the standard way to visualize the similarities and differences among samples or 

taxa. Samples that have more similar taxonomic distributions plot closer together in the 

ordination space. 

NMDS ordination iteratively searches for a best-fit solution between the rank 

dissimilarity indices and the distribution of samples in a low-dimension ordination space. This 

non-parametric approach is appropriate for community data, which are typically non-normally 

and non-linearly distributed (Bush and Brame, 2010). The best-fit solution is assessed by the 

“stress” of the ordination; low stress represents a better NMDS solution (Kruskal, 1964). Stress 

levels varied from dataset to dataset and from sample size to sample size. NMDS ordinations 

were run with only two dimensions, which produced stress levels less than 0.20 in all cases. 

I used NMDS because it is widely accepted and used among ecologists and 

paleoecologists, it uses a fixed number of dimensions, and it is non-parametric (Bush and Brame, 

2010). I conducted Pearson’s Product Moment correlations of NMDS axis-one scores only as 

means of comparing the ordination results. A more realistic and informative method of 

comparing NMDS results is the procrustes transformation method (see next paragraph). 

(3) Procrustean Randomization Tests (PROTEST) were performed comparing 

procrustes transformed ordinations of higher- and lower-taxonomic levels (Jackson, 1995; Peres-

Neto and Jackson, 2001). The procrustes transformation minimizes the sum-of-squares 

deviations between the two ordination results through translation, reflection, rotation, and 

dilation. The PROTEST produced two values: an m2-value, the goodness-of-fit statistic, and a p-

value. The residuals between the original solution and the procrustes solution are calculated and 

produce the m2-value. The m2-value is similar to the r-value resulting from a Pearson’s Product 

Moment Correlation; the closer m2 is to 1, the more similar the two ordinations. The p-value 

evaluating the significance of the m2-value is calculated by randomly permutating the ordination 

scores and comparing the randomized values to the original to determine whether they differ 

significantly from what would be expected by chance. 

Goodness-of-fit statistics (i.e., Mantel R-statistics, NMDS axis-one r-values, and 

PROTEST m2-values) quantify the overall similarity between ordinations, but do not necessarily 

indicate whether two ordinations would lead a paleoecological researcher to draw the same 
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conclusions. Many workers interpret ordination results based on details such as identification of 

clusters of points (samples) in ordination space, often relative to an independent variable. 

Consistent membership within a cluster, or even identification of a discrete cluster, is not 

evaluated by any of the multivariate tests described here. The situation is analogous to 

performing a correlation analysis without subsequently examining the scatterplot. To address this 

problem, I visually examined each of the results from the procrustes analysis (the translation, 

reflection, rotation, and dilation portion of the PROTEST) for the 28 genus-family, 26 genus-

order, and 25 genus-class comparisons. This not only mimics the process by which many 

researchers would examine their ordinations for patterns, and so evaluates the importance of 

details within an ordination plot, but it also provides  a means of judging whether the goodness-

of-fit statistic values reflect whether the two ordinations would be interpreted in the same way by 

a paleocommunity researcher. For example, would two ordinations with a PROTEST m2-value 

of 0.80 be interpreted the same way by paleocommunity researchers? Would PROTEST m2-

values of 0.90 or 0.99 indicate sufficient similarity? By examining each ordination comparison 

individually, I attempted to determine threshold goodness-of-fit statistics for two ordination 

results to be considered sufficiently similar to be interpreted similarly. 

I interpreted two ordination results to be sufficiently similar if fewer than ~10 % of the 

sample points show a change in position less than 50 % the length of one or both axes. Under 

these circumstances, I infered that the groupings and patterns of the sample points within the 

ordinations do not change enough to lead to different paleocommunity interpretations and 

conclusions (Figures 4-1A and 4-1B). I interpreted two ordinations results as different if greater 

than 10 % of the sample points show change in position. The sampling units may move 

considerably along one or both ordination axes. In this case, the changes in the groupings and 

patterns of the points within the ordinations may lead to different paleocommunity 

interpretations and conclusions (Figures 4-1C and 4-1D). This assessment was conservative; if I 

was unsure whether researchers would interpret the ordination results similarly, I labeled the 

comparisons as different. 

In addition to the unmodified analyses described above, I conducted an analysis using 

the same procedure on manipulated versions of each of the datasets. Within each dataset, all taxa 

containing fewer than six individuals throughout all samples were culled from the genus-level 

taxon-sample matrix. Additionally, all samples with fewer than 20 individuals total were culled. 

The family-, order-, and class-level taxon-sample matrices were then recreated in the same 

manner as before. Small samples and rare taxa can lead to strong differences in the multivariate 

analysis of a dataset. By creating culled versions of the datasets, I removed possible outliers from 

the analyses that may have disproportionately influenced the results. Such culling is a common 

method in many community paleoecological studies (Redman and Leighton, 2009; Visaggi and 

Ivany, 2010). Because the results of these analyses were the same as the unmodified and non-
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culled dataset analyses, the results and discussion will only address the analyses of the 

unmodified, non-culled datasets. 

To test for autocorrelation (correlation between the different taxonomic levels is due to 

each higher taxonomic level containing only one representative of the lower taxonomic level), 

the difference between the number of genera and number of families in each dataset was 

correlated with three goodness-of-fit statistics (Table 4-3). Twenty-eight values were 

calculated—the 28 differences between the number of genera and the number of families for 

each of the 28 datasets. It is possible that the differences in number of taxa between levels is a 

function of sample sizes (increased size may lead to greater number of genera etc.), but our 

approach provides a first-order approximation of whether the number of taxa at different levels is 

driving the goodness-of-fit of the datasets at various taxonomic levels. Pearson’s Product 

Moment correlations were calculated between this set of 28 values and the 28 goodness-of-fit 

statistics (three times, one for each of the sets of goodness-of-fit statistics). Correlation 

coefficients closer to one would indicate stronger auto-correlation effects. For completeness, the 

same correlations were examined using the difference between the numbers of genera and orders 

as well as between the genera and classes (Table 4-3). 

I also conducted Pearson’s Product Moment Correlations between the resulting 

goodness-of-fit statistics and additional dataset variables to determine whether any of these 

dataset parameters tend to drive similarities between the multivariate results at different 

taxonomic levels (Table 4-4). The variables I examined were median sample size, median 

Pielou’s J, evenness (Legendre and Legendre, 1998), sample-size-standardized Hurlbert PIE 

Evenness (Hurlbert, 1971), number of genera, number of families, number of orders, and number 

of classes. 

It is important to note that the basis for taxonomic classification varies among phyla. 

For example, a family of brachiopods is not automatically equivalent to a family of gastropods in 

terms of ecological significance, number of genera etc. Some phyla may have different 

taxonomic levels (e.g. suborders, subfamilies). To determine whether classification system had 

an effect on how well higher-level results matched with genus-level results, I conducted t-tests 

on the goodness-of-fit statistics (Table 4-5) for datasets with different dominant phyla: 15 

datasets consisting primarily of brachiopods and 10 consisting primarily of mollusks. Three 

remaining datasets were omitted, two predominantly coral datasets and one predominantly 

foraminifera dataset. I conducted t-tests between the goodness-of-fit statistics for each 

brachiopod- and mollusk-dominated dataset for each of the three taxonomic level comparisons 

(genus-family, genus-class, and genus-order) and for each of the three multivariate comparison 

methods (Mantel Test, NMDS axis-one correlation, and PROTEST). If the differing 

classification systems of the two phyla have an effect on the goodness-of-fit statistics, I would 

expect significant differences between the brachiopod and mollusk groupings. 
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3. Results 

The comparisons of family-genus for the 28 paleocommunity datasets resulted in high 

goodness-of-fit statistics (Table 4-2; Figure 4-2A). All of the goodness-of-fit statistics for each of 

the 28 datasets were greater than 0.60 (25 of 28, 89%), with the exception of one Mantel R-

statistic and two PROTEST m2-values. Twenty-four Mantel R-statistics, 21 NMDS axis-one r-

values, and 16 PROTEST m2-values (61 of 84 goodness-of-fit statistics, 73%) were greater than 

0.80. Among the 84 comparisons, 80 (95%) had p-values lower than 0.001, 83 (99%) produced 

p-values lower than 0.05, and only one (1%) was greater than 0.05. All of the p-values greater 

than 0.001 resulted from the PROTEST comparisons. Based on the qualitative-visual assessment 

of the ordination comparisons, 13 genus-family comparisons (13 of 28, 46%) were interpreted as 

sufficiently similar; the points do not noticeably change position or only a few points change 

position (Table 4-2). The Mantel R-statistics range from 0.94 to 0.99 for datasets that were 

interpreted as similar and from 0.62 to 0.94 for those that were interpreted as different. The 

NMDS r-values range from 0.62 to 0.99 for datasets that were interpreted as similar and from 

0.57 to 0.97 for those that were interpreted as different. The PROTEST m2-values range from 

(0.32) 0.87 to 0.99 for datasets that were interpreted as similar and from 0.35 to 0.92 for those 

that were interpreted as different. The m2-value of 0.32 is listed as parenthetical because it is a 

statistical outlier much lower than all of the other values. 

The comparisons of order-genus and class-genus for the 28 datasets resulted in 

moderate to low goodness-of-fit statistics (Table 4-2; Figures 4-2B and 4-2C). Five Mantel R-

statistics, eight NMDS axis-one r-values, and five PROTEST m2-values (18 of 78 goodness-of-

fit statistics, 23%) were greater than 0.80. Of the 78 comparisons, 66 (85%) produced p-values 

lower than 0.001. Of the 12 p-values greater than 0.001, one was from the Mantel Tests, five 

were from the NMDS axis-one correlations, and six were from the PROTEST. Of the 78 

comparisons, 75 (96%) produced p-values lower than 0.05; one NMDS axis-one correlation and 

two PROTEST comparisons were greater than 0.05. Based on the qualitative-visual assessment 

of the ordination comparisons, 3 genus-family comparisons were interpreted as the same (Table 

4-2). 

Among class-genus comparisons, two Mantel R-statistics, four NMDS axis-one r-

values, and two PROTEST m2-values (8 of the 75 goodness-of-fit statistics, 11%) were greater 

than 0.80. Of the 75 comparisons, 57 (73%) produced p-values lower than 0.001. Of the 18 p-

values greater than 0.001, one was from the Mantel Tests, nine were from the NMDS axis-one 

correlations, and eight were from the PROTEST. Of the 75 comparisons, 72 (96%) produced p-

values lower than 0.05; one NMDS axis-one correlation and two PROTEST comparisons were 

greater than 0.05. Based on the qualitative-visual assessment of the ordination comparisons, all 

class-genus comparisons were interpreted as different (Table 4-2). 

Using Pearson’s Product Moment Correlations of the three goodness-of-fit statistics 
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versus the difference between the numbers of genera and families (as well as the differences 

between the numbers of genera and orders and between the numbers of genera and classes), I 

found no significant correlation for any of the three goodness-of-fit statistics for any of the three 

different taxonomic level comparisons (Table 4-3), indicating no autocorrelation between 

number of genera and of families. I also ran correlations between the goodness-of-fit statistics 

and several other dataset variables, including the number of samples, two measures of taxonomic 

evenness (one sample size dependent, one sample size independent), and the absolute numbers of 

genera, of families, of orders, and of classes (Table 4-4). Out of 54 (3 tests× 3 taxonomic 

comparisons× 6 variables) total comparisons, only four correlations were significant at a p < 

0.05. The r-statistics associated with these four significant correlations were weak, ranging from 

0.4-0.5. None of the correlations were significant at p < 0.001. 

I conducted t-tests between the goodness-of-fit statistics for each brachiopod- and 

mollusk-dominated dataset for each of the three taxonomic level comparisons (genus-family, 

genus-class, and genus-order) and for each of the three multivariate comparison methods (Mantel 

Test, NMDS axis-one correlation, and PROTEST). All of the nine t-tests (one for each 

combination of taxonomic level comparison and multivariate comparison method) produced non-

significant differences between the brachiopod and mollusk groupings (lowest p = 0.33; Table 4-

5). 

4. Discussion 

Because the genus- and family-level identifications led to the same paleocommunity 

results approximately half of the time (46%), it is possible that paleoecological researchers may 

acquire accurate and meaningful results using family-level identifications when the alternative 

choice is genus-level identification (Table 4-2; Figure 4-2). However, many differences arose 

between genus- and family-level ordinations within many of the datasets; based on our visual 

inspection, I considered 15 of the 28 genus-family comparisons to be different (Table 4-2; 

Figures 4-1 and 4-2). In multiple cases, samples moved dramatically in position from one 

ordination to the next, enough to change membership within clusters of samples, even when the 

two associated data matrices were evaluated as significantly similar by the multivariate tests. 

Thus, I recommend using caution when using taxonomic levels higher than genus. To ensure 

consistent and accurate paleocommunity interpretations and conclusions, genus-level 

identification of specimens is probably the best choice. 

I was conservative in judging whether two ordinations were the same or different; other 

researchers may consider some of the 15 different comparisons to be similar, as seven of these 15 

are borderline-similar. However, these data cast doubt on the similarity between genus- and 

family-level identifications and suggest that family is not a sufficient substitute for genus 

identifications in paleocommunity research. 
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Even if the family-level is sufficient for most paleocommunity research, it is likely that 

identification to the genus, or even species, level would result in additional ecological insight. 

Particularly, if the primary goal of a study is to determine the maximum diversity of an 

ecosystem, or to examine communities where closely-related genera or species are known to 

differ ecologically, identification of specimens to genus or species would almost certainly yield 

better information. Therefore, researchers should consider the goals of individual projects to 

determine whether the time and resources spent identifying specimens to low taxonomic levels 

may be better spent collecting more samples or embarking on additional projects. Furthermore, 

some paleontologists argue that conducting analyses using any taxonomic level higher than 

species leads to uninformative results. In cases where multiple species within a genus are present 

in a community, these species may differ enough ecologically to consider the community distinct 

from one containing only one species of the genus. Combining the two species into the single 

genus may reduce the accuracy of the paleocommunity signal. Regardless, most paleocommunity 

research is conducted at the genus level, and it is not uncommon for most genera to include only 

a single species within a given paleocommunity. 

The results derived from the order- and class-level identifications clearly and 

consistently did not produce the same results as genus-level identifications (Table 4-2; Figures 4-

1 and 4-2). This suggests that higher-level taxonomic identifications (i.e., order and class) do not 

reliably reproduce the multivariate community results found with genus-level identification. 

Auto-correlation is one possible explanation for the strong similarities between the 

genus- and family-level results of half of the datasets: if each family in an assemblage is 

represented by only a single genus (i.e., each genus has its own separate family), the data 

matrices at each level are essentially identical, despite the different names applied to the 

specimens within the matrix. If the family-genus comparisons in our study are auto-correlated, 

our conclusion (that family-level identification sometimes yields results as accurate as genus-

level identification) may not extend to datasets with multiple genera within single families. To 

test for autocorrelation, the difference between the number of genera and number of families in 

each dataset was correlated with three goodness-of-fit statistics. Pearson’s Product Moment 

Correlations were calculated between this set of 28 values and the 28 goodness-of-fit statistics 

(three times, one for each of the sets of goodness-of-fit statistics). I found no significant 

correlation for any of the three goodness-of-fit statistics for any of the three different taxonomic 

level comparisons (Table 4-3). Based on theses analyses, auto-correlation does not appear to be 

driving our results. 

It is also possible that other community variables may make certain datasets more prone 

to high or low similarity between genus-level and higher-level results. For example, datasets 

consisting of samples with highly even taxonomic distributions may behave differently than 

datasets consisting of samples with low taxonomic evenness. I ran correlations between the 
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goodness-of-fit statistics and various dataset variables (number of samples, two measures of 

taxonomic evenness, number of genera, number of families, number of orders, and number of 

classes). Out of 63 total correlations, only four were significant at p < 0.05 and zero were 

significant at p < 0.001 (Table 4-4). No correlations within a given dataset variable were 

significant for all three goodness-of-fit tests, and significant correlations did not consistently 

appear for any taxonomic-level comparison. Furthermore, the r-statistics associated with the four 

significant correlations were weak, ranging from 0.4 to 0.5. Thus, the data do not support any 

influence from sample size, evenness, number of genera, number of families, number of orders, 

or number of classes on the amount of similarity between genus-level and higher-level 

multivariate results. 

Another possible reason that genus- and family-level identifications produced similar 

results for some cases (especially compared to the order- and class-level identifications) is that 

the genera within each family led ecologically similar lifestyles (Darwin, 1859; Cadotte et al., 

2008, Cavender-Bares et al., 2009; however, see Cahill et al., 2008 for a counter-argument). In 

other words, most genera within a family are functionally similar. While this is not the case for 

all genera, it may be a reasonable generalization for many paleocommunities. Taxa that perform 

similar ecological functions may not need to be individually identified for multivariate 

paleocommunity analyses. The differences between samples may be strongly influenced by the 

primary ecological functions of the taxa within the communities. Therefore, a similar 

multivariate result may be produced even when these genera are grouped together as families or 

higher clades. This might explain the similar paleocommunity results between genus- and higher 

-level identifications in previous work (Lebold and Kammer, 2002; Forcino et al., 2010). Order- 

and class-level results may differ from genus-level results because of fundamentally different 

ecological processes operating at higher taxonomic levels. It may be that paleocommunity 

signals produced using higher-level identifications obscure the signal of the processes that 

control the generic (or family) composition of communities. 

If I could determine the circumstances under which families act as adequate proxies for 

genera, this knowledge would be extremely useful for future paleocommunity research. 

However, given the present results, it would seem that if there is a single common cause, it is not 

any of the variables (e.g., evenness, number of samples) explored herein. 

Although genus-level identification may be required within the range of parameters 

represented by the 28 datasets I obtained and analyzed from the PBDB, there may be datasets for 

which family- or higher-level taxonomic identifications are more appropriate. In other words, the 

required range of paleocommunity variables and the subsequent required taxonomic level might 

depend on the particular research questions being explored. The use of finer taxonomic 

resolution (genus or species) may add noise to an otherwise precise result. For example, if 

examining continental-scale processes using paleocommunities, identifying taxa to the generic 
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level may only add variation that represents local scale processes. In fact, it may not be possible 

to evaluate broad-scale processes using the genus-level because individual genera may not have a 

sufficient environmental range to compare across such large geographic scales, while families or 

orders would be more likely to be geographically widespread. 

It is important to note that the basis for taxonomic classification varies among phyla; an 

order within one phylum is not necessarily equivalent (in terms of number of genera, 

morphological and genetic disparity, evolutionary history, etc.) to an order within another 

phylum. To determine whether differing classification systems had an effect on how well higher-

level results matched with genus-level results, I conducted t-tests between the goodness-of-fit 

statistics for each brachiopod- and mollusk-dominated dataset for each of the three taxonomic 

level comparisons (genus-family, genus-class, and genus-order) and for each of the three 

multivariate comparison methods (Mantel Test, NMDS axis-one correlation, and PROTEST). If 

classification system has an effect on the goodness-of-fit statistics, I would expect significant 

differences between the brachiopod and mollusk groupings. All of the nine t-tests (one for each 

combination of taxonomic level comparison and multivariate comparison method) produced non-

significant differences between the brachiopod and mollusk groupings (lowest p = 0.33; Table 4-

5). Thus, differences between the classification systems did not affect the comparisons of 

paleocommunity results. Note, however, that this comparison is only between brachiopod and 

mollusk classification; both phyla are similar in that they are solitary, benthic, 

macroinvertebrates with external shells. Phyla that tend to be colonial (e.g., corals and 

bryozoans), microscopic or very small (e.g., foraminiferans), or composed of numerous skeletal 

pieces (e.g., crinoids, vertebrates) may have significantly different classification systems. Many 

of the datasets used few datasets dominated by organisms other than brachiopods or mollusks, I 

was not able to examine any effects the classification systems of other phyla may have on 

comparisons among taxonomic levels. However, the datasets used here were not chosen at 

random; many of the datasets used by paleocommunity researchers primarily consist of 

brachiopods and mollusks. 

Further, there may be differences between higher and lower taxonomic groupings of 

colonial organisms, such as corals or bryozoans compared to higher and lower groupings of 

solitary brachiopods and mollusks. There are more ecological and morphological differences 

between corals and brachiopods or mollusks than between brachiopods and mollusks. So, 

colonial animals may be a case where higher and lower taxonomic levels may produce more 

similar results. For example, colonial morphology is often very plastic, and it is often difficult to 

identify colonial animals to species or genus. So, if colonial animals did produce the same 

multivariate results between higher and lower taxonomic levels, this information could be even 

more useful than when examining solitary taxa. However, it is also possible that higher 

taxa better capture the colonial morphology, which presumably is an important ecological 
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indicator. In either case, there is not enough information in the present study to provide any 

robust insight into this issue. I only had two datasets dominated by corals; the PBDB does not 

contain many community datasets of corals along with abundance information. Future research 

on the subject of the appropriate taxonomic level for identifying colonial organisms could be 

extremely useful for paleocommunity studies. 

5. Conclusion 

High goodness-of-fit statistics resulted between comparisons (using three different 

statistical comparison methods) of genus- and family-level taxonomic identifications for 28 

paleocommunity datasets. However, 15 of the 28 genus-family comparisons were determined to 

produce different paleocommunity results based on qualitative-visual comparisons. Thus, family-

level identification of specimens can lead to the same paleocommunity conclusions as genus-

level identification, but inconsistencies generate enough uncertainty that paleocommunity 

research would benefit from genus-level identification of specimens. Due to the moderate-to-low 

goodness-of-fit statistics between genus-order and genus-class comparisons of 

paleocommunities, as well as the clear differences found in the qualitative-visual comparisons, 

order and class did not reliably reproduce genus-level results. Thus, while family-level 

identifications may be sufficient at times for studies employing multivariate statistical methods 

to compare paleocommunities that would otherwise use the genus level, order- and class-level 

identifications were never sufficient within the meta-analysis. If the similarity that was found 

between some of the genus- and family-level comparisons is due to the ecological similarity 

among the genera within a family, higher clade-level identification may be sufficient if justified 

by ecological similarity among clade members. The idea of ecological similarity is supported by 

additional studies that have found strong correlations between the paleocommunity results of 

genus- and higher clade-level identification of specimens (Lebold and Kammer, 2002; Forcino et 

al., 2010). Autocorrelation, evenness, and number of samples, genera, families, orders, or classes 

did not affect the level of similarity between any of the comparisons of any of the three 

taxonomic levels. Furthermore, possible differences in classification system between 

brachiopods and mollusks did not produce differences in the level of similarity between any of 

the comparisons of any of the three taxonomic levels. 
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Table 4-1. Listing of all 28 datasets used for the taxonomic-level comparisons, with attributes. 

Brach = brachiopod, Cam = Cambrian, Ord = Ordovician, Miss = Mississippian, Penn = 

Pennsylvanian. 

Reference PBDB 
ref # 

Time 
Periods 

Primary 
Lithology 

Primary 
Group 

# of 
Genera 

# of 
Families 

# of 
Orders 

# of 
Classes 

# of 
Samples 

Median 
Sample 

Size 
Scott, 1970 52 Cretaceous Sandstone Mollusk 53 41 23 10 74 27 
Williams, 1974 11552 Ord Shale Brach 62 37 11 4 25 6 
Fürsich and Wendt, 
1977 

23366 Triassic Limestone Mollusk 161 101 37 10 51 61 

Ruzhencev and  
Bogoslovskaya, 
1978 

19354 Penn Limestone Mollusk 42 12 3 NA 66 95 

Crame. 1981 18189 Neogene Limestone Coral 28 11 NA NA 38 9 
Williams, et al., 
1981 

162 Ord Sandstone Brach 29 26 13 7 75 78 

Sohl and Koch, 
1984 

282 Cretaceous Sandstone Mollusk 216 112 35 9 104 53 

Waterhouse, 1987 11597 Permian Sandstone Brach 130 61 31 11 162 47 
Hogler, 1992 8769 Triassic Limestone Mollusk 31 25 14 7 85 37 
Watkins, 1994 4161 Silurian Limestone Brach 30 24 15 9 19 99 
Patzkowsky, 1995 401 Ord Limestone Brach 25 18 7 3 43 47 
Schubert and 
Bottjer, 1995 

8833 Triassic Limestone Mollusk 27 21 14 6 34 69 

Wienrich, 1997 18176 Paleogene Sandstone Foram 255 146 28 9 62 219 
Ahmad, 1998 9529 Jurassic Limestone Brach 50 30 15 5 52 575 
Holzapfel, 1998 6119 Jurassic Limestone Mollusk 107 61 27 8 96 66 
Budd et al., 1999 24129 Neogene Limestone Coral 31 12 NA NA 112 15 
Gahr, 2002 7068 Jurassic Limestone Brach 103 62 25 7 144 67 
Popov et al., 2002 26964 Ord Sandstone Brach 87 50 22 12 41 21 
Schneider, 2003 11551 Penn Shale Brach 34 26 15 6 72 40 
Peters, 2003 13544 Cam-Ord Limestone Brach 122 72 28 14 30 166 
Holland and 
Patzkowsky, 2004 

9838 Ord Limestone Brach 46 31 23 13 94 45 

Stilwell et al., 2004  19080 Paleogene Sandstone Mollusk 70 40 16 2 38 10 
Clapham, 2006 13431 Permian Limestone Brach 148 89 31 13 16 43 
Taylor et al., 2006 18152 Triassic Limestone Brach 42 26 19 9 58 18 
Tomasovych, 2006 17562 Triassic Limestone Mollusk 21 18 10 2 20 47 
Bulinski, 2007 24916 Ord Limestone Brach 24 19 12 8 139 27 
Dominici and 
Kowalke, 2007 

25442 Paleogene Shale Mollusk 68 43 17 5 98 103 

Heim, 2009 26838 Miss-Penn Limestone Brach 45 31 10 3 61 28 
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Table 4-2. Listing of all 28 datasets used for the taxonomic-level comparisons, with goodness-

of-fit statistics and p-values. All p-values listed as 0.001 are < 0.001. The portions highlighted in 

gray are the comparisons I interpreted as the same based on visual comparison of the procrustes 

transformed ordination results. 

Reference Genus-Family Genus-Order Genus-Class 
R p r p m2 p R p r p m2 p R p r p m2 p 

Scott, 1970 0.93 0.001 0.80 0.001 0.67 0.001 0.79 0.001 0.49 0.001 0.46 0.001 0.55 0.001 0.47 0.001 0.30 0.003 
Williams, 1974 0.85 0.001 0.85 0.001 0.78 0.001 0.54 0.001 0.70 0.001 0.59 0.001 0.52 0.001 0.68 0.001 0.59 0.001 
Fürsich and Wendt, 
1977 0.99 0.001 0.97 0.001 0.95 0.001 0.77 0.001 0.51 0.001 0.42 0.001 0.52 0.001 0.38 0.005 0.45 0.001 

Ruzhencev and  
Bogoslovskaya, 
1978 

0.70 0.001 0.57 0.001 0.35 0.003 0.34 0.001 0.15 0.24 0.12 0.43 NA NA NA NA NA NA 

Crame. 1981 0.81 0.001 0.73 0.001 0.62 0.001 NA NA NA NA NA NA NA NA NA NA NA NA 
Williams, et al., 
1981 0.99 0.001 0.99 0.001 0.99 0.001 0.78 0.001 0.79 0.001 0.78 0.001 0.77 0.001 0.79 0.001 0.77 0.001 

Sohl and Koch, 
1984 0.92 0.001 0.85 0.001 0.72 0.001 0.69 0.001 0.67 0.001 0.61 0.001 0.39 0.001 0.48 0.001 0.38 0.001 

Waterhouse, 1987 0.73 0.001 0.80 0.001 0.70 0.01 0.49 0.001 0.71 0.001 0.64 0.002 0.45 0.001 0.40 0.001 0.34 0.007 
Hogler, 1992 0.99 0.001 0.97 0.001 0.92 0.001 0.77 0.001 0.69 0.001 0.63 0.001 0.60 0.001 0.71 0.001 0.62 0.001 
Watkins, 1994 0.62 0.001 0.79 0.001 0.71 0.001 0.33 0.002 0.65 0.002 0.52 0.005 0.30 0.002 0.67 0.002 0.60 0.001 
Patzkowsky, 1995 0.86 0.001 0.93 0.001 0.85 0.001 0.51 0.001 0.59 0.001 0.49 0.001 0.44 0.001 0.62 0.001 0.48 0.001 
Schubert and 
Bottjer, 1995 0.98 0.001 0.97 0.001 0.98 0.001 0.89 0.001 0.86 0.001 0.87 0.001 0.62 0.001 0.52 0.002 0.75 0.001 

Wienrich, 1997 0.97 0.001 0.99 0.001 0.98 0.001 0.90 0.001 0.99 0.001 0.92 0.001 0.90 0.001 0.99 0.001 0.92 0.001 
Ahmad, 1998 0.99 0.001 0.94 0.001 0.92 0.001 0.73 0.001 0.83 0.001 0.82 0.001 0.65 0.001 0.78 0.001 0.78 0.001 
Holzapfel, 1998 0.94 0.001 0.79 0.001 0.87 0.001 0.68 0.001 0.74 0.001 0.63 0.001 0.37 0.001 0.24 0.02 0.21 0.028 
Budd et al., 1999 0.95 0.001 0.98 0.001 0.98 0.001 NA NA NA NA NA NA NA NA NA NA NA NA 
Gahr. 2002 0.92 0.001 0.97 0.001 0.92 0.001 0.75 0.001 0.33 0.001 0.39 0.001 0.43 0.001 0.30 0.001 0.31 0.001 
Popov et al., 2002 0.65 0.001 0.88 0.001 0.83 0.001 0.43 0.001 0.74 0.001 0.68 0.001 0.39 0.001 0.59 0.001 0.62 0.001 
Schneider, 2003 0.98 0.001 0.97 0.001 0.99 0.001 0.88 0.001 0.93 0.001 0.92 0.001 0.74 0.001 0.89 0.001 0.90 0.001 
Peters, 2003 0.95 0.001 0.62 0.001 0.32 0.115 0.68 0.001 0.45 0.012 0.44 0.006 0.56 0.001 0.45 0.01 0.40 0.007 
Holland and 
Patzkowsky, 2004 0.94 0.001 0.92 0.001 0.74 0.001 0.72 0.001 0.33 0.002 0.31 0.001 0.45 0.001 0.10 0.37 0.21 0.031 

Stilwell et al., 2004  0.99 0.001 0.90 0.001 0.92 0.001 0.79 0.001 0.86 0.001 0.80 0.001 0.64 0.001 0.41 0.01 0.50 0.001 
Clapham, 2006 0.89 0.001 0.79 0.001 0.60 0.012 0.74 0.001 0.78 0.001 0.49 0.06 0.64 0.001 0.67 0.004 0.45 0.092 
Taylor et al., 2006 0.96 0.001 0.94 0.001 0.89 0.001 0.93 0.001 0.93 0.001 0.79 0.001 0.71 0.001 0.74 0.001 0.75 0.001 
Tomasovych, 2006 0.80 0.001 0.95 0.001 0.90 0.001 0.57 0.001 0.73 0.001 0.63 0.001 0.44 0.001 0.67 0.001 0.59 0.002 
Bulinski, 2007 0.95 0.001 0.97 0.001 0.96 0.001 0.85 0.001 0.89 0.001 0.59 0.001 0.81 0.001 0.95 0.001 0.73 0.001 
Dominici and 
Kowalke, 2007 0.84 0.001 0.95 0.001 0.61 0.001 0.60 0.001 0.87 0.001 0.66 0.001 0.57 0.001 0.85 0.001 0.68 0.001 

Heim, 2009 0.80 0.001 0.60 0.001 0.60 0.001 0.49 0.001 0.64 0.15 0.33 0.002 0.45 0.001 0.22 0.09 0.31 0.005 
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Table 4-3. Correlation coefficients and p-values for Pearson’s Product Moment Correlations for 

the auto-correlation tests. The difference between the number of taxonomic groups was 

calculated, then correlated with the corresponding goodness-of-fit statistics. 

 Mantel Test NMDS axis-one PROTEST 
Genus to 
Family 

r = 0.04 p = 0.83 r = 0.11 p = 0.56 r = 0.14 p = 0.47 

Genus to 
Order 

r = 0.06 p = 0.78 r = 0.10 p = 0.63 r = 0.14 p = 0.51 

Genus to 
Class 

r = 0.13 p = 0.52 r = 0.06 p = 0.78 r = 0.07 p = 0.72 
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Table 4-4. Correlation coefficients and p-values for Pearson’s Product Moment Correlations for 

the correlations between the goodness-of-fit statistics and six additional variables. Fam = 

comparisons of genus to family, Order = comparisons of genus to order, and Class = 

comparisons of genus to class. 

 Mantel Test NMDS axis-one PROTEST 
r-statistic p-value r-statistic p-value r-statistic p-value 

Fam 
Number of 
Samples 

0.11 0.58 0.21 0.28 0.08 0.69 
Order 0.05 0.80 0.10 0.63 0.05 0.79 
Class 0.13 0.55 0.50 0.01 0.25 0.22 
Fam 

Pielou’s J 
Evenness 

0.13 0.49 0.02 0.91 0.08 0.68 
Order 0.21 0.31 0.07 0.75 0.10 0.64 
Class 0.21 0.32 0.18 0.38 0.10 0.63 
Fam 

Hurlbert PIE 
Evenness 

0.09 0.63 0.06 0.76 0.06 0.78 
Order 0.32 0.12 0.01 0.97 0.06 0.78 
Class 0.21 0.30 0.18 0.37 0.17 0.41 
Fam 

Number of 
Genera 

0.13 0.52 0.27 0.17 0.08 0.69 
Order 0.16 0.45 0.03 0.90 0.07 0.74 
Class 0.06 0.79 0.31 0.13 0.15 0.48 
Fam 

Number of 
Families 

0.19 0.32 0.23 0.25 0.02 0.92 
Order 0.23 0.25 0.03 0.90 0.09 0.65 
Class 0.10 0.64 0.24 0.25 0.13 0.55 
Fam 

Number of 
Orders 

0.21 0.29 0.32 0.11 0.03 0.89 
Order 0.28 0.17 0.19 0.37 0.02 0.91 
Class 0.12 0.56 0.46 0.02 0.40 0.05 
Fam 

Number of 
Classes 

0.07 0.75 0.21 0.31 0.40 0.05 
Order 0.07 0.75 0.29 0.15 0.28 0.17 
Class 0.04 0.85 0.16 0.44 0.26 0.21 
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Table 4-5. T-test results for comparisons of goodness-of-fit statistics between predominantly 

mollusk datasets and predominantly brachiopod datasets. 

 Mantel Test NMDS axis-one PROTEST 
Genus to 
Family t = 0.767 p = 0.45 t = 0.071 p = 0.95 t = 0.005 p = 0.99 

Genus to 
Class t = 0.455 p = 0.65 t = 0.370 p = 0.72 t = 0.030 p = 0.98 

Genus to 
Order t = 0.602 p = 0.55 t = 0.999 p = 0.33 t = 0.659 p = 0.52 
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Figure 4-1. Examples of ordination comparisons that were interpreted to be the same (A and B), 

and different (C and D). The black points represent the ordination result based on genus-level 

identifications, and the gray points represent the ordination result based on higher-level 

identifications. The dashed lines connect corresponding sampling units. 
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Figure 4-2. All goodness-of-fit statistics for the (A) family-genus, (B) order-genus, and (C) 

class-genus comparisons of the 28 datasets for (from left to right within each plot) Mantel Test 

R-statistics, NMDS axis-one correlation coefficients, and PROTEST m2-values. 
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Chapter 5. Multivariate assessment of the required sample size for 

community paleoecological research§ 
1. Introduction 

Community paleoecology utilizes complete fossil assemblages to study spatiotemporal 

ecological and environmental variation, leading to insights into the processes that structure 

ecosystems (Olszewski and Patzkowsky, 2001; Kowalewski et al., 2002; Bonelli et al., 2006; 

Clapham et al., 2006; Clapham and James, 2008; Heim, 2009). To be able to determine the most 

accurate information about paleocommunities, paleoecologists must collect statistically 

representative samples (Hayek and Buzas, 1997; Bennington and Rutherford, 1999; Visaggi and 

Ivany, 2010). An important component of the statistical viability of a paleocommunity sample is 

the number of individuals per sample (i.e., sample size). Without a sample size large enough to 

be representative of the complete fossil assemblage, erroneous ecological conclusions can be 

reached.  

Paleocommunity research is labor- and time-intensive, as it requires expertise in 

multiple taxonomic groups and sub-disciplines of geology to develop a stratigraphic and 

biological framework (Kowalewski et al., 2002; Forcino et al., 2010a). Therefore, it is important 

to not over-sample, because an increasingly larger sample size will eventually result in 

diminishing returns in terms of improving any pattern revealed by the fossil data. A 

paleoecologist’s time may be better-spent acquiring additional samples to supplement other types 

of statistical power (Bennington, 2003; Zambito et al., 2008). 

Previous studies estimated sample size requirements to be 300 or more individuals per 

sample based on the probability of acquiring species that makeup 1% of a sample with 95% 

confidence (Phleger, 1960; Chang, 1967; Patterson and Fishbein, 1989; Fatela and Taborda, 

2002). However, examining probability does not take into account relationships between 

sampling units or taxa (e.g., the interaction of taxa within a community or evolutionary changes 

of taxa through time). Studying a range of datasets that have been used to study 

paleocommunities is one manner to account for these relationships. 

Rarefaction has been used to determine whether a sample is sufficiently large to 

represent taxonomic richness (Heck et al., 1975; Caron and Jackson, 2008). If a rarefaction curve 

plateaus above a certain sample size, it is determined that the sample size is sufficient. 

Rarefaction is also used to standardize for inconsistent sample sizes (Raup, 1975; Miller and 

Foote, 1996). In these cases, a smaller sample size is simulated by drawing random samples from 

the original population. 

                                                             
§ A version of this chapter has been published. Forcino, F.L. (2012) Multivariate assessment of the 
required sample size for paleocommunity research. Palaeogeography, Palaeoclimatology, Palaeoecology 
315:134-141. 

 



 

92 
 

Although some researchers have used the above studies or subsampling procedures to 

establish a sample size for a particular research project, currently there is no standard protocol 

for determining the required sample size for paleocommunity studies. For example, individual 

samples in three typical community studies ranged from 7 to 213 with a median of 28 individuals 

(Heim, 2009), 113 to 1059 with a median of 43 individuals (Clapham, 2006), and 110 to 883 

with a median of 323 individuals (Forcino et al., 2010a). One of the primary goals herein is to 

develop a recommended sampling protocol for paleocommunity research. If an evidence-based 

recommended protocol is established, the data from various studies will be more compatible. 

This will aid meta-studies (Wagner, 2006; Alroy et al., 2008), which are becoming more 

common due to the use of the Paleobiology Database (PBDB) and other databases (e.g., 

Integrated Ocean Drilling Program). 

The majority of paleocommunity research examines patterns of communities using 

multivariate statistical techniques such as cluster analyses and ordination (e.g., Olszewski and 

Patzkowsky, 2001; Holland, 2005; Tomasovych, 2006; Redman et al., 2007; Bonelli and 

Patzkowsky, 2008; Clapham and James, 2008; Forcino et al., 2010a). Although using theoretical 

considerations (e.g., probability, rarefaction) to estimate sufficient sample size is a valid method, 

comparing community datasets at different sample sizes using multivariate techniques is a 

practical means of ascertaining the effect of sample size on paleocommunity research. Here, I 

subsampled 30 datasets from the Paleobiology Database and the literature from a wide range of 

time periods, taxonomic groups, scales, lithologies, numbers of samples (13–124), and numbers 

of taxa (21–167), and initial median sample sizes (9–2441). I compared each subsample to its 

corresponding complete dataset in order to determine the smallest sample sizes that produced the 

same overall pattern of relationships between component samples. 

2. Methods 

2.1 Dataset Acquisition 

A typical dataset used for multivariate analysis of paleocommunities consists of a 

number of taxa contained within a series of samples, distributed either stratigraphically or 

spatially. A dataset used for multivariate analysis is organized as a taxon-sample matrix. Taxon-

sample matrices were obtained from the PBDB, from the author’s collections, and from the 

literature (Table 5-1). These matrices all contain marine invertebrate assemblages and represent a 

broad range of time periods, taxonomic groups, geographic scales, and lithologies and contain 

various numbers of samples and taxa. 

2.2 Subsampling Protocol 

Using R 2.11.1 (R Development Core Team, 2010), each sample within each taxon-

sample matrix was randomly subsampled without replacement to five proportional sizes: 50%, 

25%, 10%, 5%, and 2.5% of the total number of individuals. For example, if sample A contained 

24 individuals and sample B contained 14 individuals, the 50% subsampled taxon-sample matrix 
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would consist of 12 individuals from sample A and 7 individuals from sample B. Because the 

total number of individuals from each sample is randomly selected from a pool of all individuals 

from the full taxonomic distribution of each sample, the abundance of each taxon is not 

necessarily 50% of its original value; rather, its abundance has a hypergeometric error 

distribution around the expected value. 

2.2.1 Multivariate Analysis 

For each of the subsampled proportions (e.g. 50%, 25%, etc.) of each taxon-sample 

matrix (dataset), 1000 subsampled matrices were constructed for a total of 5000 subsampled 

matrices for each dataset. Each of the 5000 subsampled matrices were statistically compared to 

the original 100% taxon-sample matrix using three multivariate methods: 

(1) Using the vegan package in R (Oksanen et al., 2010), Mantel Tests of correlation 

were performed between the Bray-Curtis dissimilarity indices (values that quantify the 

dissimilarity between each object in a taxon-sample matrix; McCune and Grace, 2002) of each of 

the 5000 taxon-sample matrices and the corresponding Bray-Curtis dissimilarity indices of the 

100% matrix. No transformations or standardizations were performed on any of the datasets (in 

order to be consistent throughout the subsampling process). The Mantel Test tests the similarity 

of two matrices of dissimilarity indices by permuting each of the elements in the dissimilarity 

matrix 999 times to derive a distribution of correlation values (Mantel, 1967; Fall and Olszewski, 

2010). The resulting R-statistic is similar to the Pearson’s Product Moment Correlation 

Coefficient (r); with increasingly similar dissimilarity matrices, the Mantel R-statistic will 

approach 1. 

(2) For each of the 5000 dissimilarity matrices, non-metric multidimensional scaling 

(NMDS) ordinations of the samples were performed using the Bray-Curtis dissimilarity index 

(Clarke and Ainsworth, 1993; Bush and Brame, 2010). For each of the 5000 NMDS ordinations 

performed for each dataset, the axis-one score was correlated with the axis-one score of the 

NMDS ordination of the 100% dataset. 

Here, all ordinations were run examining the taxonomic distributions among samples. 

Ordination is an exploratory multivariate visualization tool that allows multidimensional 

relationships of samples to be examined in a low number of dimensions (McCune and Grace, 

2002). Because ecological datasets contain samples with taxonomic objects, each with some 

abundance, ordination is the standard way to visualize the similarities and differences among 

samples or taxa. Samples that have more similar taxonomic distributions plot closer together in 

the ordination space. 

NMDS ordination iteratively searches for a best-fit solution is reached between the rank 

dissimilarity indices and the distribution of samples in a low dimension ordination space. This 

non-parametric approach is appropriate for community data, which are typically non-normally 

and non-linearly distributed (Bush and Brame, 2010). The best-fit solution is assessed by the 
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stress of the ordination; low stress represents a better NMDS solution (Kruskal, 1964). Stress 

levels varied from dataset to dataset and from sample size to sample size. Most stress levels were 

less than 0.20, but were sometimes higher because all NMDS ordinations were run with only two 

dimensions in order to be consistent and conservative. 

A false “best” placement of the samples in ordination space can occur that is different 

than the actual best result if a local minimum of stress is found. The NMDS algorithm may 

mistakenly interpret a relative low stress as the absolutely lowest stress. These types of variation 

in NMDS results, that might not be an issue when using a different ordination method or a 

greater number of dimensions, can cause type II error: improper rejection of the hypothesis that 

there is no significant difference between the subsampled axis-one score and the 100% dataset 

axis-one score. Thus, for the purposes of the present study, using NMDS axis-one scores, rather 

than other ordination method axis-one scores, is a conservative approach, in that NMDS may be 

more likely to fail to identify a proportional subset as similar to its 100% dataset. Other 

ordination methods that are not random may have more of a chance for repeating the same result 

based on the user-chosen parameters. However, all ordination methods have advantages and 

disadvantages. NMDS was used here because it is a widely accepted and used ordination method 

among ecologists and paleoecologists, it uses a fixed number of dimensions, and it is non-

parametric (Bush and Brame, 2010). 

To assess the effect a dissimilarity measure of 1 would have on the results of NMDS 

comparisons, five datasets were subsampled using the flexible shortest path adjustment (FSPA) 

of ecological distances used by Bush and Brame (2010). These results were the same as those not 

using the FSPA method. Thus, there was no detrimental effect to the subsampling protocol when 

there is a dissimilarity measure of 1 in a dataset. 

(3) A procrustes transformation was performed between each of the NMDS 

comparisons (i.e., complete dataset versus each of the subsampled dataset NMDS) and the 

similarity was assessed using Procrustean Randomization Test (PROTEST; Jackson, 1995, 

Peres-Neto and Jackson, 2001). The procrustes analysis minimizes the sum-of-square deviations 

between the two ordination results through translation, reflection rotation, and dilation. The 

PROTEST compares randomized values to the procrustes result and determines if it differs 

significantly from what would be expected by chance. The resulting m2-value is similar to the r-

value resulting from the Pearson’s Product Moment Correlation; the closer m2 is to 1, the more 

similar the two ordinations. 

2.2.2 Graphical Representation 

For each of the five subsample proportions for each dataset, the mean Mantel test R-

statistic, the mean correlation coefficient, and the mean m2-value of the 1000 dissimilarity 

matrices, NMDS axis-one scores, and NMDS ordinations, respectively, were plotted versus the 

corresponding median sample size (Figure 5-1). Sample sizes that produce the same 
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paleocommunity results will all have the same general R-statistics, r-values, and m2-values. 

Lower R-statistics, r-values, and m2-values represent a sample size that is too small to produce 

the same paleocommunity result as that of larger sizes. This area on the plot will display lower 

correlation statistics. If there is a breaking point on the curve where there is a clear difference 

between the higher and lower correlation statistics, this may be interpreted as a sample size 

threshold at which subsample results are representative of the 100% sample. The mean 

correlation statistic of each set of subsamples is used to produce the figures because these results 

were normally distributed, while median sample sizes are used because sample size distributions 

for all of the complete taxon-sample matrices were right-skewed.  

Any independent variables (e.g., lithology or time period) that produce consistently 

different correlation statistics represent important information for determining the appropriate 

samples size when conducting studies where these variables are known. To determine any 

potential lithologic, temporal, richness, or initial median sample size trends in R-statistics, r-

values, and m2-values, the corresponding time period and lithology of each dataset were mapped 

onto the plots of all 30 complete datasets comparing median sample sizes versus mean R-

statistics, r-values, and m2-values (Table 5-2; Figure 5-2). If there were a consistent separation 

between correlation statistics based on lithology, time periods, richness bins (i.e., high and low), 

or complete dataset median sample size bins (i.e., large and small) this would be evidence that 

lithology or time period affects the sample size required for multivariate paleocommunity 

research. To test for any differences between the bins of each of the four variables, t-tests were 

performed between the correlation statistics for all median sample sizes greater than 50 (Table 5-

3). 

2.3 Diversity Metrics 

In addition to multivariate methods of examining how community samples vary through 

time or space, diversity metrics are often used as an additional means of quantifying differences 

between samples and communities (Bennington, 2003; Heim, 2009). Richness (S), Pielou’s 

Evenness (J), and Shannon’s Enthalpy (H) were calculated for each sample within each of the 

1000 subsample matrices for all five subsample sizes for each of the 30 datasets (Magurran, 

2004). Richness is the number of taxa in a sample, evenness is a measure of how evenly 

distributed the taxa are within each sample, and Shannon’s H is a measure of diversity that takes 

into account both richness and evenness. For each of the 30 datasets, the mean S, J, and H were 

calculated for each sample within all 1000 subsampled datasets for all five proportions. These 

mean values were then correlated with the corresponding S, J, and H of each of the 

corresponding samples in the 100% matrix. The mean correlation coefficients of S, J, and H for 

the five proportions of each dataset were plotted against the corresponding median sample sizes 

to determine the effect of sample size on S, J, and H (Figure 5-3). 

2.4 Devonian Rapid Member of Iowa 
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To assess the degree to which gregariousness (i.e., congeneric clustering in a sample) 

may influence the results of the subsampling protocol used herein, a paleocommunity dataset 

collected for this study was included in the analysis for two purposes: (1) it was used as one of 

the 30 datasets included in the subsampling program, and (2) it was used as a case study 

examining how samples collected at various sample sizes in the field compared to the computer 

generated simulated subsampling results. These samples from the Givetian Rapid Member of the 

Little Cedar Formation at the Devonian Fossil Gorge in Coralville, Iowa (N 41° 43.3’, W 91° 

31.9’) demonstrated strong gregariousness among some fossil taxa within Rapid Member 

paleocommunities (Leighton and Schneider, 2004). The Devonian Fossil Gorge consists of 300 

horizontal meters of multiple terraced limestone platforms alternating between argillaceous 

micrite to biosparite and massive floatstone (Bunker and Witzke, 1992). Samples were collected 

from the 15 least weathered platform surfaces; the total sampled section from the base of the 

Rapid Member was 8.7 m. 

At each surface, a sampling location was selected randomly and six samples were 

collected at six different sample sizes (5, 10, 20, 50, 100, and 200 individuals). Subsampling was 

nested; individuals contained within each smaller sample size were included as a portion of the 

next larger sample size. Only one of each sample size was collected. For example, only one 

sample size containing 10 individuals was collected as opposed to 20 making up the complete 

200-individual sample size. Each of the six datasets produced by each of the different sample 

sizes were run through the same multivariate analyses as described above for use in the 

subsampling protocol. Multivariate results of the smaller sample sizes were correlated with the 

multivariate results of the dataset containing 200 individuals per sample. 

This produced two sets of Mantel R-statistics, two sets of NMDS axis-one r-values, and 

two sets of PROTEST m2-values. One set resulted from the mean R-statistics, r-values, and m2-

values produced by the simulated subsampling of the complete 200-specimen dataset. The other 

set resulted from a statistical comparison of the five nested, collected sample sizes (100, 50, 20, 

10, 5) with the complete 200-specimen dataset. 

3. Results 

The Mantel Test R-statistics for each dataset are greater than 0.93 (p < 0.001) for all 

subsample proportions with a median sample size greater than 50 individuals (Figure 5-1A). The 

Pearson’s Product Moment correlation coefficients (r-value) between the subsampled and 

complete datasets’ NMDS axis-one scores are greater than 0.86 (p < 0.001) for all subsample 

proportions with a median sample size greater than 50 individuals (Figure 5-1B). The 

Procrustean Randomization Test (PROTEST) m2-values for each dataset are greater than 0.82 (p 

< 0.001) for all subsample proportions with a median sample size greater than 50 individuals 

(Figure 5-1C). When the median sample size is less than 50 individuals, the R-statistics, r-values, 

and m2-values begin to decrease, and then rapidly decrease at median sample sizes smaller than 
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25 individuals. Between sample sizes of 25 to 50 individuals, the correlation statistics are still 

significant for most datasets. 

There are no patterns or separation among Mantel Test R-statistics, NMDS axis-one 

score r-values, or PROTEST m2-values among datasets at any sample size based on lithology, 

time period, initial median sample size, or richness (Tables 5-2 and 5-3; Figure 5-2). There was 

no significant difference between the mean correlation statistics (R-statistics, r-values, and m2-

values) of the two bins of lithology, time periods, complete dataset median sample size, or 

complete dataset richness at a median sample size of > 50 with two exceptions:  NMDS axis-one 

correlations for the two bins of time periods (p = 0.02) and PROTEST for the two bins of 

complete dataset richness (p = 0.01;Table 5-3). 

The Rapid Member dataset, which was included to examine the effect of 

gregariousness, produced results similar to the other 29 datasets when run through the simulation 

protocol (Figure 5-1). The Mantel R-statistics at a sample size of 50 is R= 0.95, which is greater 

than that of the lowest of all 30 datasets, R = 0.93. The NMDS axis-one r-value is r = 0.94, 

which is greater than that of the minimum value out of all 30 datasets, R = 0.86. The PROTEST 

m2-value is m2 = 0.93, which is greater than that of the minimum value out of all 30 datasets, m2 

= 0.82. The nested sampling comparisons of the Rapid Member dataset produce similar results to 

the 30 datasets run through the simulation protocol with the NMDS axis-one (r = 0.95) and 

PROTEST (m2 = 0.90) comparisons. However, the Mantel R-statistics at a sample size of 50 was 

lower than the 30 simulated dataset comparisons (R = 0.84). All of the correlation statistics for 

both analyses of the Rapid Member dataset subsequently plummet when the sample size is less 

than 50 individuals (Figure 5-1). 

 Richness, Pielou’s Evenness, and Shannon’s H values for subsampled taxon-sample 

matrices correlate significantly (p < 0.001) with their corresponding 100% taxon-sample matrix 

when the median sample size is greater than 50 individuals. The r-values of the correlation 

between the richness, Pielou’s Evenness, and Shannon’s H of the complete dataset and 

subsample datasets decrease rapidly when the median sample size is less than 25 individuals 

(Figure 5-3). Between sample sizes of 25 to 50 individuals, the correlation statistics are still 

significant for most datasets. 

4. Discussion 

A median sample size of 50 individuals produced the same paleocommunity signal (the 

information and patterns produced from the taxonomic distribution through and among samples) 

as all larger sample sizes for all 30 datasets (Figures 5-1 and 5-2). This is evidence that the 

median required sample size for paleocommunity studies employing multivariate techniques to 

examine patterns among samples is 50 individuals. It should be noted that this result is 

specifically geared toward community ecologists attempting to discern paleocommunity 

differences or gradients using multivariate statistical techniques, and it may not be appropriate 
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for studies examining trophic interactions or other areas of ecology that require an estimate of the 

complete diversity of a community. 

The Mantel Test comparing dissimilarity matrices produced consistently higher R-

statistics than the r-values of the NMDS axis-one scores correlations. This may be due to the 

conservative nature of the subsampling protocol (i.e., the subsampling protocol was logistically 

constrained to two-dimensional NMDS ordination and NMDS axis-one correlations alone). The 

use of a less conservative protocol more appropriate for specific datasets may increase the 

NMDS correlation statistics closer to that of the Mantel Test. 

Lithology, time period, number of taxa, or number of samples did not influence the 

correlation statistics (Tables 5-2 and 5-3; Figure 5-2). There was no separation based on any of 

these four parameters when they were mapped onto the plots of the 30 datasets (Figure 5-2). 

Although two of the 12 t-tests did demonstrate a significant difference between bins of mean 

correlation statistics, there were no consistent significant differences across two or all three 

multivariate comparison methods. Thus, the lack of separation based on these four sets of 

parameters demonstrates that the results for all sample sizes greater than 50 individuals are 

consistent across all of Phanerozoic time, carbonate and siliciclastic lithologies, all median 

sample sizes, and all levels of richness. This suggests that none of these variables will affect the 

required sample size for multivariate paleocommunity research. 

4.1 Gregariousness 

The method of the subsampling simulation protocol used herein assumed random spatial 

distribution of taxa throughout each sample. However, gregariousness is prevalent among marine 

invertebrates (Zuschin et al., 1999; Leighton and Schneider, 2004) and may lead to a non-random 

distribution of taxa in a sampled stratigraphic horizon (Bennington and Rutherford, 1999; 

Holland, 2005). In contrast, there is growing evidence that the distribution of taxa within 

paleocommunities is more random than gregarious (Zuschin et al., 2006) in part due to time 

averaging (Flessa and Kowalewski, 1994; Kidwell, 2001). 

As a test of the effect of gregariousness, both the nested-collected and subsampled 

results of the Rapid Member dataset demonstrate the same trends (R-statistics, r-values, and m2-

values) as one another and as the other 29 datasets (Figure 5-1). , The collected dataset has some 

of the highest r-values from NMDS axis-one score correlations (Figure 5-1B) and moderate m2-

values from the PROTEST analyses (Figure 5-1C). However, the nested-collected dataset has 

lower Mantel R-statistic values than all of the other datasets (Figure 5-1A). Two possible reasons 

for this discrepancy between the performance of the nested-collected and the subsampled results 

when using the Mantel Test are (1) the Mantel subsampled results performed so well that any 

gregarious real dataset cannot perform as well as the randomized nature of the subsampling 

protocol. (2) The gregariousness effect may be averaged out, and therefore, not as evident after 

the data is run through the ordinations. The underlying dataset structure that is used for the 
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Mantel Test—dissimilarity measures—is more sensitive to the level of gregariousness than are 

the ordination results (i.e., NMDS axis-one and PROTEST). 

Although the gregarious nested-collected dataset did produced lower Mantel Test R-

statistics than the subsampled results, the R-statistic at a sample size of 50 is R = 0.84, This is 

still higher than some of the PROTEST m2-values for median sample sizes > 50. Thus, even 

when taxa are demonstrated to be gregarious, it may be possible to assess paleocommunity 

variation using a median sample size of 50 individuals. 

Gregarious patches (patchiness) of fossils may lead to inconsistencies in an otherwise 

consistent environmental or ecological gradient or system. Particularly, if only 50 individuals 

were collected, there would be no way to assess whether the sample was from a fine-scale patchy 

distribution or from a coarse-scale heterogeneous population. Therefore, depending on the scale 

and scope of a study (Forcino et al., 2010b), collecting multiple samples from different positions 

along each sampled stratigraphic horizon decreases the likelihood of collecting only from fine-

scale patches of taxa (Bennington and Rutherford, 1999; Bennington, 2003; Zambito et al., 

2008). However, based on the results herein, the required sampling effort at each of these 

multiple within-stratigraphic-horizon samples is less than the previous recommendations of 200 

or more individuals per sample. 

4.3 Diversity 

The present study demonstrates the same diversity metric patterns and trends among 

samples in a dataset at all median sample sizes greater than 25 to 50 specimens (Figure 5-3). At a 

median sample size of 25 to 50 individuals, one may argue diversity metrics (i.e., richness, 

Pielou’s Evenness, and Shannon’s H) could be imprecise and lead to erroneous ecological 

conclusions. However, due to taphonomic processes, the paleocommunity diversity is inherently 

different than that of the once-living community it represents. Most soft-bodied organisms and 

many shelled taxa do not end up in the paleocommunity analysis (Cherns and Wright, 2009). 

However, examining comparable skeletonized taxa, the relative patterns of diversity (i.e., the 

variation and the relative ranking in richness, Pielou’s Evenness, and Shannon’s H through 

samples) are the same as the once-living community (Kidwell, 2002; Olszewski and Kidwell, 

2007). Because the patterns are the same, the multivariate-based paleocommunity gradients and 

patterns can still be obtained with reasonable certainty. 

5. Conclusion 

 Thirty paleocommunity datasets from various time periods, taxonomic groups, scales, 

and lithologies, containing a wide range of numbers of samples, taxa, and initial median sample 

sizes were subsampled to five smaller proportional sample sizes. For all 30 datasets, effectively 

the same multivariate paleocommunity result was found between the complete dataset and 

proportional subsamples with a median sample size greater than 50 individuals. In addition, the 

subsampled datasets with a median sample size greater than 50 individuals produce the same 
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patterns of richness, Pielou’s Evenness, and Shannon’s H as the corresponding complete dataset. 

To provide evidence that the gregariousness of taxa does not affect the subsample protocol, one 

of the 30 datasets subsampled was from the Devonian Rapid Member of Iowa, which is known 

from previous work to contain gregarious taxonomic communities. The subsampled datasets 

produced by the Rapid dataset produced the same multivariate result as all sample sizes greater 

than 50 individuals. This dataset was also collected in a nested fashion, with all smaller sample 

size included as portions of the larger sample sizes. The multivariate results of the nested 

collection from the Rapid Member were similar to the 30 subsampled datasets. This 

demonstrates that in a practical collection for paleocommunity research, a sample size of 50 

produces the same multivariate result as all greater sample sizes. Thus, this is evidence that a 

sample size of 50 individuals is the median required sample size for multivariate 

paleocommunity research. 
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Table 5-1. Listing of the 30 datasets to which the subsampling code was applied. Provided is the 

reference citation, PBDB reference number when applicable, time period, primary lithology, 

number of genera, number of samples, and median sample size of the complete dataset. 

Reference PBDB 
ref # 

Time Periods Primary 
Lithology 

# of 
Gen
era 

# of 
Sam
ples 

100% 
Median 
Sample 

Size 
Forcino et al., 2010 N/A Pennsylvanian Shale 51 13 323 
Forcino et al., in review N/A Pennsylvanian Shale 81 33 145 
Johnson and Klapper, 1990 N/A Devonian Sandstone 167 24 2441 
Forcino et al., in 
preparation 

N/A Devonian Limestone 39 15 200 

Ausich, personal data. N/A Mississippian Shale 101 15 366 
Popov et al., 2002 26964 Ordovician Sandstone 72 41 21 
Heim, 2009 26838 Miss-Penn Limestone 45 61 28 
Bulinski, 2007 24916 Ordovician Limestone 24 140 26.5 
Holland and Patzkowsky, 
2004 

9838 Ordovician Limestone 37 93 45 

Budd et al., 1999 24129 Neogene Limestone 31 112 15 
Fürsich and Wendt, 1977 23366 Triassic Limestone 159 51 61 
Peters, 2003 13544 Cam-Ord Limestone 120 30 166 
Schneider, 2003 11551 Pennsylvanian Shale 34 72 39.5 
Boomer, et al., 1998 8881 Jurassic Limestone 24 31 161 
Gahr. 2002 7068 Jurassic Limestone 100 144 67 
Holzapfel, 1998 6119 Jurassic Limestone 107 96 65.5 
Patzkowsky, 1995 401 Ordovician Limestone 25 44 47 
Williams, et al., 1981 162 Ordovician Sandstone 29 76 78 
Scott, 1970 52 Cretaceous Sandstone 60 75 27 
Schubert and Bottjer, 1995 8833 Triassic Limestone 31 34 69 
Watkins, 1994 4161 Silurian Limestone 32 19 99 
Waterhouse, 1987 11597 Permian Sandstone 71 74 46.5 
Dominici and Kowalke. 
2007 

25442 Paleogene Shale 72 99 103 

Clapham, 2006 13431 Permian Limestone 133 15 43 
Ahmad, 1998 9529 Jurassic Limestone 50 52 575 
Crame. 1981 18189 Neogene Limestone 28 38 9 
Hogler, 1992 8769 Triassic Limestone 38 85 37 
Etter, 1990 9638 Jurassic Shale 36 124 182 
Tomasovych, 2006 17562 Triassic Limestone 21 20 46.5 
Stilwell et al., 2004  19080 Paleogene Sandstone 38 38 10 
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Table 5-2. Mean, minimum (min), and maximum (max) correlations statistics (R-statistics for 

Mantel Test, r-values for NMDS axis-one correlations, and m2-values for PROTEST) for four 

groupings: lithology (carbonate versus siliciclastic), time, complete dataset median sample size, 

and complete dataset richness. The shading separates the pairs of values that are compared. 

 Mantel NMDS Axis-one PROTEST 
 Mean Min Max Mean Min Max Mean Min Max 

Carbonate 0.98 0.95 0.99 0.95 0.88 0.98 0.89 0.82 0.96 
Siliciclastic 0.99 0.96 0.99 0.97 0.92 0.97 0.93 0.82 0.99 

Paleo 0.98 0.95 0.99 0.95 088 0.99 0.92 0.82 0.99 
Post-Paleo 0.99 0.98 0.99 0.98 0.96 0.99 0.89 0.83 0.99 
Small Sam 0.97 0.96 0.99 0.91 0.88 0.95 0.88 0.82 0.93 
Large Sam 0.98 0.95 0.99 0.96 0.88 0.99 0.92 0.83 0.99 

Low S 0.98 0.96 0.99 0.97 0.94 0.99 0.96 0.93 0.99 
High S 0.99 0.96 0.99 0.95 0.88 0.99 0.90 0.82 0.99 
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Table 5-3. T-test p-values for comparisons of the two groups of correlation statistics from 

median sample sizes greater than 50 individuals for each of the four sets of parameters. 

 Lithology Time Sample Size Richness 
Mantel p = 0.51 p = 0.32 p  = 0.52 p = 0.65 

NMDS axis 1 p = 0.23 p = 0.02 p = 0.44 p = 0.35 
PROTEST p = 0.10 p = 0.41 p = 0.58 p = 0.01 
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Figure 5-1. The solid black line is the median sample size (number of individual fossil 

specimens per sample) for each proportion of each dataset versus [A] the corresponding mean 

Mantel R-statistic, [B] the corresponding mean Pearson’s Product Moment correlation 

coefficient (r-value) for NMDS axis-one scores, and [C] the corresponding mean PROTEST m2-

value. The dashed grey lines are the 95% confidence extremes (plus and minus two standard 

deviations). The vertical grey bar in the background of the plots marks the location of median 

samples sizes 25 to 50. The arrow in each plot is pointing to the Iowa Rapid Member dataset 

(circle points) that was field sampled at various sample sizes. 
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Figure 5-2. Median sample size (number of individual fossil specimens per sample) for each 

proportion of each dataset versus the corresponding mean Pearson’s Product Moment correlation 

coefficient (r-value) for NMDS axis-one scores for each of the 30 datasets plotted individually. 

[A] Each line is shaded based on lithology, with the black line representing siliciclastics and the 

grey line representing carbonates. [B] Each line is shaded based on time with the black line 

representing the Cambrian through Permian (Paleozoic) and the gray line representing Triassic 

through Neogene (Post-Paleozoic). [C] Each line is shaded based on the median sample size of 

the complete dataset with the black line representing the 15 datasets with the larger median 

sample and the grey line representing the 15 datasets with the smaller median sample size. [D] . 

Each line is shaded based on the richness of the complete dataset with the black line representing 

the 15 datasets with the higher richness and the grey line representing the 15 datasets with the 

lower richness. For all four plots, the vertical grey bar in the background of the plots marks the 

location of median samples sizes 25 to 50. 
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Figure 5-3. Median sample size for each proportion of each dataset versus corresponding r-

values between the 100% matrix for all five proportions and [A] mean richness (R), [B] mean 

Buzas and Gibson’s evenness (E), and [C] mean Shannon’s Enthalpy (H) of each of the 1000 

subset taxon-sample matrices. The vertical grey bar in the background of the plots marks the 

location of median samples sizes 25 to 50. 
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Chapter 6. Sample size requirements for multivariate abundance-based 

community research: meta-analysis and model-based approach** 
1. Introduction 

Many ecological studies use multivariate techniques (e.g., ordination, analysis of 

similarity) to assess patterns and gradients of taxonomic variation (Warwick and Clarke 1993, 

Legendre and Legendre 1998, McCune and Grace 2002, Forcino et al. 2010). To obtain the most 

accurate and statistically viable information from a taxonomic series of samples, ecologists must 

ensure they are collecting a representative sample of the community or series of samples in 

question (Hayek and Buzas 1997, Jalonen 1998, Bennington and Rutherford 1999, Cao et al. 

2002, Schloss 2008). An important component of the statistical viability of an ecological sample 

is the number of individuals per sample—sample size. A sample size, for our purposes, is the 

total number of individual specimens comprising one row of data in a taxon-sample matrix used 

for multivariate community analysis; in many studies, the sample is presumed to represent a 

community. Without a sample size large enough to be representative of the entire community, 

erroneous ecological conclusions can be reached. However, it is important not to over-sample, 

because an increasingly larger sample size will eventually result in diminishing returns in terms 

of improving any pattern or gradient revealed by the data; resources and effort would be wasted. 

Here, I compare the multivariate statistical results of subsampled datasets to corresponding 

complete datasets with the goals of determining (1) if smaller sample sizes produce the same 

results as larger sample sizes and (2) the types of datasets (the structure and parameters) that 

require larger sample sizes. Although smaller sample sizes may result in a probability of not 

collecting rare taxa, one of the strengths of using multidimensional analyses of communities is 

that they may still retain relative taxonomic information among communities; even with smaller 

samples, individual communities may still plot in the same relative positions in ordination space, 

allowing for identification of the same community trends and patterns. 

Previous research has determined appropriate sample sizes for ecological research by 

examining the probability of acquiring species that comprise some proportion of a sample with 

95% confidence (Phleger 1960, Chang 1967, Patterson and Fishbein 1989, Fatela and Taborda 

2002, Choa et al. 2005, Schloss and Handelman 2007). In other words, how likely is a sample to 

contain taxon Z if a sample size of 300 individuals is collected? Examining probability in this 

manner does not take into account relationships between sampling units or taxa (e.g., the 

interaction of taxa within a community). Others have compared multivariate results of plots or 

samples collected at different sample sizes to determine which sample size captures the most 

information (Goff and Mitchell 1975, Cao et al. 2002, Ranjard 2003, Kang and Mills 2006, 

                                                             
** A version of this chapter has been submitted for publication. Forcino, F.L., Twerdy, P., and 
Leighton, L.R. (in review) Sample size requirements for multivariate abundance-based community 
research: meta-analysis and model-based approach. Methods in Ecology and Evolution. 
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Zdenka and Milan 2006). Although these case studies take a more practical approach than the 

probability estimates, too few exist to lead to the creation of a standard sampling protocol that 

encompasses multiple different types of ecological research. 

Forcino (2012) conducted a meta-analysis of 30 fossil community datasets from a wide 

range of time periods, taxonomic groups, spatial and temporal scales, lithologies, number of 

samples (13–124), and number of taxa (21–167), and median sample sizes (9–2441). He 

randomly subsampled without replacement each sample within each dataset and compared the 

multivariate result (ordination or other multivariate technique) of the subsample to that of its 

corresponding complete dataset. This procedure was repeated 1000 times to five proportional 

sizes (50%, 25%, 10%, 5%, 2.5%) for each dataset. The results demonstrated that a median 

sample size of 50 individuals per collected sample (or per fossil community) produced the same 

multivariate results as those of all larger sample sizes. This method of comparing the results of 

multivariate techniques applied to community datasets at different sample sizes has the greatest 

practical utility because the use of multivariate techniques is so prevalent in the literature. 

Here, using similar methods as Forcino (2012), I examined 396 datasets and statistically 

compared the multivariate results of subsamples to the multivariate results of the corresponding 

complete datasets using three different types of ecological data: 44 real datasets (from a range of 

taxonomic groups, geographic locations, spatial scales, and environments), 220 simulated-

created datasets, and 132 selected-created datasets (see Methods). The two goals of this research 

are to (1) test further the hypothesis of Forcino (2012) that smaller samples sizes (as few as 50 

individuals per sample) produce the same multivariate results as larger sample sizes and (2) 

determine the dataset parameters (e.g., number of taxa, number of samples) that lead to a lack of 

correlation between subsampled and complete datasets, and therefore, require larger sample 

sizes. Additional evidence to support goal (1) will provide community ecologists with a more 

accurate representative sample size for multivariate research, and lead to a better use of 

resources. Accomplishing goal (2) will inform ecologists when greater resources are necessary to 

obtain a statistically viable sample of a community. 

2. Methods 

2.1 Real datasets 

Forty-four real datasets were acquired from the ecological literature (Table 6-1). These 

datasets consist of various numbers of taxa (3 to 421), numbers of samples (4 to 445), were from 

different taxonomic groups, different geographic locations, and different environments (Table 6-

1). Real datasets were used in order to determine if datasets used in previous studies would 

produce the same multivariate community results if fewer individuals were sampled. Six of the 

44 datasets selected were from publications in Ecology from the years 2008 to 2011. In addition, 

18 datasets were gathered from one meta-analysis in Ecology (Ulrich and Gotelli, 2010). These 
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18 datasets are cited from each original study, and not the meta-analysis. Twenty studies from 

other journals were also used to increase the number of datasets (Table 6-1). By selecting from 

recent issues of Ecology I was able to gain a representation of various types of communities from 

various taxonomic groups and authors. I randomly selected and subsampled the first 44 datasets 

that I could find that had median sample sizes of at least 20 individuals. 

2.2 Simulated-created dataset construction 

I created 220 simulated-created datasets that were similar to real datasets. However, 

there is an additional random component to the simulated-created datasets (see below) along with 

some control on the parameters compared to the real dataset where I controlled none of the 

parameters or values. Furthermore, I wanted to examine the values within the sets of parameters 

(e.g., sample sizes larger than 1000 individuals per sample) that did not exist within the 44 real 

datasets. Similar to the real datasets, these datasets contained a range of numbers of taxa and 

samples (Table 6-2). 

The total number of 220 simulated-created datasets and 44 real datasets was arbitrary. I 

could have added additional datasets if I thought it would reveal additional insight into sample 

size requirements. However, I stopped at 220 and 44 in order to balance the amount of time it 

would take to gather and subsample the datasets versus the amount of information that would be 

provided by each dataset. 

Datasets were simulated by first randomly creating a normal distribution of abundances 

for each taxon across a hypothetical gradient (Figure 6-1). Each normal distribution for each 

taxon was created based on a randomly chosen mean, randomly chosen standard deviation, and 

randomly chosen maximum frequency. The resulting distribution represents the range along an 

ecological or environmental gradient within which each simulated taxon is located. Each 

simulated taxon has a peak value (maximum frequency) where its abundance is at its maximum 

(located at the mean of the normal distribution), and areas where the taxon is less likely to be 

found (the tails of the normal distribution). For example, if the ecological gradient represents 

water depth, the randomly selected mean of the normal distribution for Taxon A represents the 

optimal depth at which Taxon A lives, and therefore, maximum peak of abundance. The tails of 

the normal distribution represent the most extreme conditions (shallowest and deepest depths) in 

which Taxon A lives, with abundances declining from the peak to each tail. 

Each normal distribution was randomly generated then placed along the simulated-

environmental gradient for each taxon in that particular simulation; subsequently, sample 

locations were randomly selected along the environmental gradient (Figure 6-1), simulating 

random sampling of a gradient in the field under circumstances where continuous or interval 

sampling is not possible. For example, if the gradient was 100 units long (the unit length is an 

arbitrary value representing the complete gradient length), a unique number from 1 to 100 was 

randomly selected for each sample, which represents the sampling locations along the created 
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environmental gradient. At each sampled point along the gradient, all of the taxonomic 

distributions that cross that point are included in that sample. Taxon abundances equal the height 

of the curve of each taxon’s normal distribution at that point along the gradient (Figure 6-1). 

2.3 Selected-created dataset construction 

Lastly, 132 selected-created datasets were constructed with the intention of deliberately 

generating more extreme differences among complete and subsampled datasets. In each dataset, 

the authors selected the abundances (as opposed to simulated the abundances) for each taxon in 

each sample, and parameters were varied systematically to test for differences in the number of 

samples (i.e., the number of collected samples in a dataset that would equate to one row in a 

taxon by sample matrix), numbers of taxa, and evenness. These three variables were selected 

because they commonly vary from study to study, they are the some of the most basic ecological 

measures (i.e., number of taxa and evenness), and they are easy to control in analyses. 

This selected, systematic creation of datasets often led to datasets with rank abundance 

distribution and absolute abundances that are rare in the literature, but which might facilitate 

identification of the conditions under which larger sample sizes would be necessary to capture a 

representative dataset. 

Each sample of each selected-created dataset contained 200 individuals. A sample size 

of 200 was chosen so that the five subsample proportion sizes (i.e., 100, 50, 20, 10, 5) could be 

produced that represent a range of sample sizes. These sample sizes of 5 to 200 are commonly 

used in ecological research. 

I systematically varied the number of samples, richness, and evenness when creating the 

132 selected-created datasets in order to examine these three parameters as possible influences 

on the required sample size for community research. By varying the number of samples in each 

dataset, I defined 81 datasets containing 5 samples and 51 datasets containing 10 samples. Five 

and 10 were chosen in order to keep the datasets simple while still being able to evaluate whether 

the number of samples had an effect on the required sample size. The 5- or 10-sample datasets 

represent real datasets of 5 or 10 different communities, respectively. In some community 

studies, some samples will have a similar enough taxonomic makeup to be indistinguishable in a 

multivariate analyses; these samples would be considered the same community. Because all 5 or 

10 samples in the 132 constructed datasets have a different taxonomic makeup and are designed 

to be distinguishable in multivariate analyses, each of the 5 or 10 samples represents a distinct 

community. 

The second parameter that was varied among the 132 datasets was taxonomic richness 

within each sample. Within the datasets of 5 samples, 27 have a richness of 10, 27 have a 

richness of 20, and 27 have a richness of 50. Within the datasets of 10 samples, 24 have a 

richness of 10 and 27 have a richness of 20. 
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The third parameter varied among the 132 datasets was the evenness. There were three 

evenness categories: (1) the 44 low evenness datasets, with individual-sample evenness values 

ranging from 0.14 to 0.98 and a mean evenness of 0.58 (Pielou’s J Evenness; Magurran 1998); 

(2) the 44 high evenness datasets with individual-sample evenness values from 0.18 to 1.0, with 

a mean of 0.79; and (3) the 44 mixed evenness datasets, with each dataset containing individual 

samples of both high and low evenness, with individual-sample evenness values from 0.13 to 

1.0, with a mean of 0.69. Each sample in each dataset had its evenness varied by starting with 

one taxon with the greatest abundance while the remaining taxa all had an abundance of 1. For 

example, a dataset with 5 samples and 10 taxa would have one sample with one taxon having a 

sample of 191 while the remaining taxa all had an abundance of 1. This example would have 

been an extreme case of low evenness. Each abundance distribution in each sample of each 

dataset systematically varied until a dataset contained one sample with every taxon having the 

same abundance. This example would have been an extreme case of high evenness. 

A set of parameters incorporates the three controlled parameters (samples, richness, and 

evenness). An example set of parameters is 5 samples, a richness of 10, and low evenness. The 

two sample parameters (5 and 10), the three richness parameters (10, 20, and 50), and the three 

evenness parameters (high, low, and mixed) combined to create 16 unique sets of parameters. 

These 16 sets lead to 16 primary datasets. Each primary dataset was set up as a typical 

community ecology dataset, with a series of samples each containing a number of taxa with 

varying abundances. The 16 primary datasets do not contain any taxonomic abundances of zero 

in any of the samples. No datasets with zero were included in order to keep the dataset variants 

relatively simple; once an abundance of zero was added for any taxon in any sample, it would 

have had to be systematically varied throughout. This would have led to an exponentially greater 

number of datasets requiring subsampling, and therefore, an exponentially greater amount of 

time added to the study. 

Various dataset structures were created in order to examine the effect that changing a 

particular dataset with respect to a certain set of parameters has on the required sample size. A 

dataset structure, for the purposes of this study, refers to the variation of the 16 sets of parameters 

created by varying taxonomic placement within a sample. Each of these structures creates a 

variant of the 16 primary datasets, to produce 8 to 9 different variations of the 16 primary 

datasets equaling 132 total datasets. The first dataset structure was simply the primary dataset of 

each of the 16 sets of parameters. Each of the remaining 7 or 8 dataset structures manipulated the 

primary dataset structure in some manner. 

The second structure was created by varying the presence or absence of the single most 

abundant taxon within each sample of the first structure (primary dataset). For example, within 

the primary dataset that consists of 5 samples, a richness of 10, and low evenness, the same taxon 

is the most abundant taxon in all five samples. To create the second structure, an additional four 
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taxa are added to the dataset of the first structure. For each of the four new taxa, an abundance of 

zero is added to four samples, while in the fifth sample, the value of the highest taxonomic 

abundance of that sample is added. The result is four new samples, each with one new taxon 

replacing the original most abundant taxon, and one unchanged sample (with an abundance of 

zero for all four new taxa). 

For the next two structures (the third and fourth), the remaining taxa in each sample—

all but the most abundant taxon—were divided into thirds. The first third contained the 

moderately abundant taxa, and the second two-thirds contained the rare taxa. 

For the third structure, the moderately abundant taxa were varied in the same manner as 

the most abundant taxon in the second structure. The difference between the second and third 

structures is all of the taxa varied in concert, as opposed to one taxon at a time; each group of 

three taxonomic abundances was either present or absent in the remaining samples. The most 

abundant taxon and the rare taxa remained constant through all the samples in the datasets with 

this structure. 

For the fourth structure, the rare taxa were varied in the same manner as the most 

abundant taxon in the second structure and the moderately abundant taxa of the third structure. 

The most abundant taxon and moderately abundant taxa remained constant through all the 

samples in the datasets with this structure. 

The fifth and sixth structures changed the position of the most abundant taxon through 

the five or 10 samples. The most abundant taxon would change from taxon A to taxon B from 

sample 1 to sample 2 and from taxon A to taxon C from sample 1 to sample 3. The reason this 

manipulation was occasionally done to two different structures (fifth and sixth or just fifth) was 

because datasets with only 5 samples and 10 taxa could only have the most abundant taxon vary 

through 5 different locations. The sixth structure placed the most abundant taxa in the position 

once occupied by taxa with lower abundances. The sixth structure is the one structure that was 

not possible to create for all the different parameters. When there were 10 samples and 10 taxa, 

switching the most abundant taxa would take up all of the taxa with just one structure. 

The final three structures were all randomized dataset constructions. The position of 

each taxon’s abundance from the primary dataset (the first structure) was randomly placed in any 

one of the taxonomic positions. The difference between the three structures was the number of 

zeros available to add and the total number of taxa. Structure seven contained no zeros with the 

same number of taxa as the first six structures. Structure eight added an additional possible 5, 10, 

or 15 zeros for the 10, 20, and 50 taxa datasets, respectively, with the same number of taxa as the 

first six structures. The ninth and final structure added an additional possible 5, 10, or 15 zeros 

for the 10, 20, and 50 taxa datasets, respectively, and also added that number of taxa to the 

dataset so no abundance was unused. 

2.4 Subsampling protocol 
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Using R 2.14 (R Development Core Team 2012), each sample within each taxon-

sample matrix (simulated-created, selected-created, and real) was randomly subsampled without 

replacement to five proportional sizes: 50%, 25%, 10%, 5%, and 2.5% of the total number of 

individuals in the original sample. For each of the subsampled proportions of each taxon-sample 

matrix, 1000 subsampled matrices were constructed for a total of 5000 subsampled matrices for 

each dataset. Each of the 5000 subsampled matrices was statistically compared to the original 

100% taxon-sample matrix using two multivariate statistical methods. 

(1) Using the vegan package in R 2.14 (Oksanen et al. 2012), Mantel Tests of 

correlation were performed between the Bray-Curtis dissimilarity matrices (measures of the 

differences between each object in a taxon-sample matrix) of subsamples and corresponding 

complete datasets. The Mantel Test tests the similarity of two matrices of dissimilarity indices by 

permuting each of the elements in the dissimilarity matrix 999 times, to derive a distribution of 

correlation values (Mantel 1967; Fall and Olszewski 2010). The resulting R-statistic is analogous 

to the Pearson’s Product Moment Correlation Coefficient (r); with increasingly similar data 

matrices, the Mantel R-statistic will approach 1. 

(2) For each of the datasets and subsamples, non-metric multidimensional scaling 

(NMDS) ordinations of the samples were performed using the Bray-Curtis dissimilarity index 

(Clarke and Ainsworth 1993; Legendre and Legendre 1998; McCune and Grace 2002; Bush and 

Brame 2010). All ordinations were run examining the taxonomic distributions among samples 

with two dimensions with “autotransform =  alse” in the vegan package in R, specifically using 

the function “metaMDS()”. 

Procrustean Randomization Tests (PROTEST) were performed comparing procrustes 

transformed ordinations of the subsampled and corresponding complete datasets (Jackson 1995; 

Peres-Neto and Jackson 2001). NMDS does not always assign the maximum explanation of 

variation in the ordination space to the first axis. Moreover, two different ordinations might not 

appear to be similar at first because they are close reflections to each other in ordination space. 

To address these possibilities, the first step in PROTEST is to perform a Procrustes 

transformation, which minimizes the sum-of-squares deviations between the two ordination 

results through translation, reflection, rotation, and dilation. Thus, the two ordination results are 

reoriented such that they are aligned as closely as possible in ordination space, which permits a 

more accurate assessment of similarity. The residuals between the two ordinations post-

transformation are calculated and produce the m2-value. The m2-value is similar to the r-value 

resulting from a Pearson’s Product Moment Correlation; the closer m2 is to 1, the more similar 

the two ordinations. Subsequent to the Procrustes transformation, PROTEST randomly permutes 

the ordination scores for all samples for 999 iterations, and the m2-value is calculated for each 

iteration; a realized p-value, indicating the significance of the m2-value, is then calculated by 
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determining the percentage of iterations in which the m2-values from the randomized iterations is 

greater than the m2-value for the actual dataset. 

2.5 Qualitative Assessment 

Goodness-of-fit statistics (i.e., Mantel R-statistics and PROTEST m2-values) quantify 

the similarity between multivariate datasets, but do not indicate whether two ordinations would 

lead a researcher to draw the same ecological conclusions between both ordination results. While 

a goodness-of-fit statistic value of 0.8 clearly indicates greater similarity than 0.6, it is not 

immediately evident just from the number whether a result of 0.8 indicates sufficient similarity 

that the result would lead a researcher to conclude the two ordinations are “the same”. Two 

ordinations’ plots may overall be mathematically similar but important details may differ. For 

example, do the exact same samples form a recognizably discrete grouping in both ordinations? 

Are trends within the ordination plot non-linear? Evaluating the patterns visually is an important 

check, analogous to a visual inspection of any data plot. 

Similarly, the p-values derived from the Mantel Test and PROTEST do not necessarily 

indicate statistical significance in the same manner as a p-value for a classical statistical test such 

as a Pearson Product Moment Correlation. Specifically, a p < 0.05 does not necessarily indicate 

significant similarity of a subsampled and corresponding complete dataset, in the sense that the 

two datasets would be interpreted similarly. The p-values in both of these tests are calculated by 

determining if the observed goodness-of-fit values differ significantly from those generated by 

comparing ordinations produced by the randomized permuted values. So, neither the goodness-

of-fit statistics nor the p-values for either the Mantel Test and the PROTEST have a definitive 

value that can be considered a threshold between two ordinations that may be considered the 

same or different. Because the subsampled portion is derived from the complete dataset, there is 

almost by definition a degree of similarity between the two datasets, and so a high likelihood that 

they will produce low p-values. 

Because there are no known thresholds between goodness-of-fit values (Mantel R-

statistics and PROTEST m2-values) that indicate a complete dataset result is the same as the 

subsampled dataset result, I conducted a visual comparison of 6,000 ordination pairs to estimate 

a threshold of goodness-of-fit values, i.e. at what goodness-of-fit value did I consistently 

interpret the two ordinations similarly? Only 6,000 were examined because it would be too time 

consuming to visually inspect all comparisons for all subsamples for all types of datasets 

(1,985,000 total). The datasets used for each of the 6,000 ordination comparisons were simulated 

in the same manner as the simulated-created datasets and thus constitute a representative sample. 

Three different methods of modifying that initial dataset were conducted. 

The first modification, for the first 2,000 comparisons, was a 50% subsample of the 

initial dataset. The ordination of the initial dataset was compared with the ordination of the 50% 

subsample of that initial dataset. This was repeated 2,000 times, changing various parameters of 
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the simulated-created datasets. For the second modification method, I switched the position of 

one sample in the dataset. For example, sample 1 became sample 20, and all the remaining 

samples shifted position down by one (i.e., sample 2 became sample 1, and so on). If the samples 

were already arranged in discrete clusters, sample 1 would move to a different cluster for the 

Mantel Test and PROTEST analyses. For the third modification method, a “complementary 

environmental” dataset was created based on the same simulated-gradient as the primary dataset. 

This dataset modification represents a set of environmental or ecological variables to compare 

with the primary dataset. The two additional modifications were conducted to explore if different 

types of dataset comparison led to different thresholds. 

For each of the 6,000 ordination comparisons, I gave a ranking of 1, 2, or 3 

corresponding to the degree of similarity between ordinations, with rank 1 indicating that the two 

ordinations would be interpreted as having essentially the same result. Even though some 

researchers may disagree with whether or not two ordinations were the same (for those I ranked 

1), any possible differences that may arise between our ranking and how other researchers may 

interpret the similarity of two ordination results would not likely change the relative patterns 

between the qualitative and quantitative comparison methods, especially averaged over 6,000 

ordination comparisons. 

A rank of 1 was given to two ordinations that were almost indistinguishable. Fewer than 

50% of the sample points differ in position, and those sample points that do change position do 

not change the groupings or rank order of the samples. I assumed most researchers would agree 

that the two ordination results were the same and would lead to the same paleoecological 

interpretations Because I cannot be certain of how other researchers would assess and interpret 

ordination results, I was conservative in our ranking system. If there was doubt that researchers 

would interpret the two ordination results differently, I ranked the comparisons as a 2 or 3. 

A rank of 2 was given if two or more samples differ in position radically through the 

ordination, if one cluster divided into multiple clusters, or if greater then 50% of sample points 

changed position. In the case of a rank of 2, the two ordinations may be considered different to 

some researchers. 

A ranking of 3 was given if there was noticeable change in the position of many points. 

The points may move considerably along one or both ordination axes. In this case, the changes in 

the groupings and patterns of the points within the ordinations would clearly lead to different 

paleocommunity interpretations and conclusions. 

2.6 Testing for differences between parameters 

To examine if any variables had an effect on required sample sizes, I statistically 

compared (using either t-tests or ANOVAs) groups of goodness-of-fit statistics (Tables 6-3 and 

6-4). All of the groups were gathered from the goodness-of-fit statistics that resulted from the 

comparison of datasets with a sample size of 50 to the complete sample size of 200. The 
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groupings of variables were based on richness (10, 20, and 50), evenness (low and high), and 

number of samples (5 and 10). By conducting these tests, I am able to determine if datasets with 

higher richness, evenness, or a greater number of samples may have influenced the goodness-of-

fit between subsamples and complete datasets. I conducted these tests only at a sample size of 50 

(and not 100, 50, 25 or 10) because this was the most similar value to the minimum required 

sample size of Forcino (2012) as well as most similar to the post hoc value determined herein 

(see below). 

3. Results 

3.1 Qualitative Assessment 

The lowest values that indicated visual results that would be interpreted as the same 

(rank of 1) for the Mantel Test and PROTEST, were respectively R = 0.86 and m2 = 0.89, at the 

95% confidence interval (Figure 6-2). These values serve as estimates of the threshold between 

interpreting two datasets as different and the same. The 95% confidence interval of the rank of 2 

would considerably lower the two threshold values, particularly because there was a much larger 

standard deviation. However, there was uncertainty if those comparisons given a rank of 2 would 

be interpreted as the same; using only a rank of 1 is more conservative. 

3.2 Real datasets 

With the exception of one dataset, the Mantel Test R-statistics were greater than the 

threshold of R = 0.86 for all sample sizes greater than 28 individuals (Figure 6-3a). When the 

median sample size is less than 28 individuals the R-statistics rapidly decrease. The one dataset 

that is below the threshold was Ryu et al. (2011), which contained primarily ostracods with an 

initial median sample size of 4939. 

The Procrustean Randomization Test (PROTEST) m2-values were not consistently 

above the threshold of m2 = 0.89 (Figure 6-3b). The m2-values were greater than 0.76 at median 

sample sizes greater than 58; the m2-values then decrease rapidly. 

3.3. Simulated-created datasets 

The Mantel Test R-statistics are greater than the threshold of R = 0.86 for all sample 

sizes greater than 100 individuals (Figure 6-4a). The R-statistic values are consistently large as 

sample size decreases, until the median sample size is 54 individuals. When the median sample 

size is less than 54 individuals the R-statistics rapidly decrease. The PROTEST m2-values are 

greater than the threshold of R = 0.89 for all sample sizes greater than 68 individuals (Figure 6-

4b). The m2-values above or slightly below the threshold value of 0.89 above a median sample 

size of 50 individuals. At a median sample size less than 50 individuals the m2-values rapidly 

decrease. No pattern or separation in the goodness-of-fit statistics (both the Mantel Test R-

statistics and the PROTEST m2-values) was found among the variables: numbers of taxa, 

numbers of samples, or initial median sample size (Table 6-4). 

3.4 Selected-created datasets 
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There was greater variation in the goodness-of-fit statistics among the selected-created 

dataset comparisons than the other two dataset types (Figure 6-5). There was no clear plateau or 

rapid decrease of goodness-of-fit statistics. Eighty-eight of the datasets were specifically 

constructed to have either low or high evenness. The 44 low evenness datasets had individual-

sample evenness values ranging from 0.14 to 0.98 and a mean evenness of 0.58 (Pielou’s J 

Evenness; Magurran 1998), and the 44 high evenness datasets with individual-sample evenness 

values from 0.18 to 1.0, with a mean of 0.79. Of these 88 datasets, the low evenness datasets 

consistently led to greater goodness-of-fit statistic values (Table 6-3). The mixed evenness 

datasets, those in which the dataset included some high-evenness samples and some low-

evenness samples, produced the greatest goodness-of-fit statistics out of all selected-created 

datasets (Table 6-3; Figure 6-5). One difference between the PROTEST m2-values and the 

Mantel Test R-statistics was that the mixed evenness datasets’ goodness-of-fit values from the 

PROTEST were similar to those of the low evenness datasets (Figure 6-6b). 

 The ranges and significant differences among the different parameters (evenness and 

numbers and samples and taxa) vary depending on the parameters and between the Mantel Test 

and PROTEST (Table 6-3 and 6-4). Of the nine various dataset structures within each set of 

parameters, there is no consistent dataset structure that led to higher goodness-of-fit statistics. 

4. Discussion 

4.1 Sample size requirements 

Both the 44 real datasets and the 220 simulated-created datasets demonstrate that 

smaller sample sizes produce the same multivariate, abundance-based community results as 

larger sample sizes, in the sense that the results are similar enough that they would be interpreted 

the same (Figures 6-3 and 6-4). Although there were some outliers below the respective 

estimated threshold values (the goodness-of-fit statistics separating results that would be 

interpreted as the same from those that would be interpreted as different), the vast majority of the 

subsample results were above the thresholds for sample sizes greater than 54 and 58 for the 

Mantel Test and PROTEST, respectively. Furthermore, the mean subsample goodness-of-fit 

statistics for all datasets are at or close to the threshold values (R = 0.86 and m2 = 0.89) for 

sample sizes greater than 54 and 58, indicating that all the median sample sizes greater than these 

values produced the same results as larger sample sizes. The point at which the mean subsample 

goodness-of-fit statistics rapidly decrease is an additional metric with which to gauge when the 

subsamples do not produce the same results as larger sample sizes. As these results are based on 

median sample sizes within the dataset, a minimum sample-size of 58 individuals per sample 

would almost certainly be representative for use with these types of multivariate analyses, and as 

such, 58 individuals is a conservative recommendation for a minimum sample-size to be 

collected in the field. This sample size estimate is smaller than previous research that used 

different methods (i.e., probability estimates) to determine that 300 individuals per community 
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are required for ecological research (Phleger 1960, Chang 1967, Patterson and Fishbein 1989, 

Fatela and Taborda 2002, Choa et al. 2005, Schloss and Handelman 2007). However, the 

approach of comparing multivariate results is a more practical approach; most community 

research applies multivariate techniques. While a smaller sample size may not capture the exact 

diversity of a community, the smaller sample size would still maintain the general position and 

order of samples in ordination space as well as the identification of related groupings or gradients 

of communities. 

Furthermore, a median sample size of 58 individuals is less than the median sample 

sizes of the 44 real datasets employed, which was 146 individuals with a range of 10 to 24,812. 

These 44 datasets are representative of community studies in the recent literature, and therefore, 

represent the range of typical median sample sizes collected by ecologists. Community studies 

can collect fewer individuals per sample and still obtain the same meaningful results. 

I examined real datasets from a range of environments, geographic locations, and 

containing a range of taxonomic groups as well as both terrestrial and marine taxa (Figure 6-3; 

Table 6-1). In addition, the real and simulated-created datasets contain a range of numbers of 

samples, numbers of taxa, and evenness, resulting in datasets spanning an extremely broad range 

of possible communities. The results were consistent across this broad range of real or realistic 

communities. However, I did not examine methods of tallying taxa other than abundance counts 

and only multivariate analytical methods were used. So, if community researchers use methods 

other than abundance counts and multivariate statistics employed herein, the present study cannot 

provide insight into the sample size requirements. 

Based on statistical significance, the majority of the comparisons using either the 

Mantel Test and PROTEST were significantly similar (p < 0.01). However, it is not clear 

whether a given Mantel Test or PROTEST goodness-of-fit value would actually indicate 

similarity of interpretation. The situation is somewhat analogous to a simple correlation where it 

is possible to have an extremely significant, but still weak correlation. There were numerous 

cases of m2-values or R-statistics greater than 0.6 that were associated with p-values less than 

0.01. This raises two important points: first, a visual assessment, and consequent identification of 

a threshold-value at which similarity is more certain, is necessary (Figure 6-2). In the majority of 

cases, I observed that pairs of ordination plots assigned a rank of 2, indicative of questionable 

similarity, would still have a p-value less than 0.01. The result may be significant but is not 

indicative of a strong similarity. Second, had I relied entirely on significance as a means of 

assessment, the general result would be that sample-sizes between ~ 20 and 30 individuals per 

sample would be deemed sufficient. Thus, the use of the visual assessment and derived m2-

values and R-statistics thresholds, and the resulting conclusion that the requisite minimum 

sample-size is approximately 58, is conservative. 

4.2 When are larger sample sizes required? 
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The range of the goodness-of-fit statistics produced by the subsample comparisons of 

the 132 selected-created datasets was almost double the range of the goodness-of-fit statistics 

from the real and simulated-created datasets (Tables 6-3 and 6-4). Thus, there are circumstances 

where larger median sample sizes (> 58 individuals) are required for multivariate, abundance-

based ecological research. 

4.2.1 Evenness 

Of the three parameters (number of samples, number of taxa, and evenness) that were 

systematically varied among the 132 created datasets, evenness had the greatest effect on 

whether or not the subsamples of a dataset produced the same multivariate result as the complete 

dataset. The low evenness datasets had consistently greater goodness-of-fit statistics than the 

high evenness datasets (Tables 6-3 and 6-4; Figure 6-5). There is a significant difference between 

the low and high evenness datasets for both the R-statistics and m2-values (Table 6-4); datasets 

containing samples with consistently high evenness may require larger sample sizes. 

However, the mixed evenness datasets have greater R-statistics than the low or high 

evenness datasets (Table 6-3). Although the low evenness datasets did have consistently greater 

R-statistics than the high evenness datasets, the range of low evenness R-statistics was still much 

greater than that of the mixed evenness datasets (Table 6-1). The PROTEST m2-values for the 

mixed evenness datasets were not as consistently large as the Mantel R-statistics (Table 6-3; 

Figure 6-5b). Furthermore, the m2-values for the mixed evenness datasets overlap with the low 

evenness dataset m2-values. 

A possible reason the mixed evenness datasets produced consistently greater R-statistics 

when compared with other dataset parameters (among the 132 selected-created datasets) is 

because of the two different groups of samples within each dataset—one group with higher 

evenness and one group with lower evenness. This produces a strong gradient or two clusters of 

communities, based on dissimilarity measures that are strongly different from one another. Such 

strong within-dataset differences manifest even with smaller sample sizes; the strong difference 

in evenness between groups of samples was clear even when fewer individuals per sample are 

collected. It should be noted that the mixed evenness datasets are probably much more likely to 

be found in nature than the extreme cases of uniformly high- or low-evenness across 

communities. While consistently high evenness communities may require larger sample sizes, 

such systems would appear to be rare in nature; none of the real datasets used in this study had 

mean evenness values as great as those of the selected-created high evenness datasets. 

4.2.2 Number of taxa 

There were differences found between the different numbers of taxa, specifically 

datasets with more taxa leading to lower goodness-of-fit statistics (Tables 6-3 and 6-4). 

However, these differences were not consistent throughout all numbers of taxa and the two 

comparison methods (Tables 6-3 and 6-4). Overall, this effect of the number of taxa on the 



 

124 
 

required sample size is minor relative to the complete analysis of all 396 datasets. In addition to 

the effect of the number of taxa on selected-created dataset, eleven of the real datasets and 50 of 

the simulated-created datasets had more than 50 taxa, and all of these datasets produced 

consistently high goodness-of-fit statistics between subsampled and corresponding complete 

datasets (Tables 6-3 and 6-4). So, the majority of datasets, even those with a larger number of 

taxa, still demonstrate that smaller samples sizes are sufficient for multivariate community 

research. 

4.2.3 Number of samples 

There was a significant difference found between selected-created datasets with 5 and 

10 samples (Tables 6-3 and 6-4; Figure 6-5). The datasets were constructed so that each sample 

within the selected-created datasets represents a different community. With a greater number of 

communities (10 versus 5), the multivariate analysis is more likely to distinguish between most 

of the communities even with fewer individuals per sample. This is similar to the mixed 

evenness datasets; the multivariate analyses are better able to distinguish between the two 

dichotomous groups of samples even at smaller sample sizes, which was likely the cause for the 

high goodness-of-fit statistics. When the datasets are limited to 5 communities, there is less of a 

chance that the community gradient will still be apparent when sample sizes decrease. When 

there are 10 communities, there is a higher probability that one or two communities will remain 

intact even at smaller sample sizes, producing the community gradient in ordination space. This 

is additional evidence that homogeneity of communities within a dataset may require larger 

sample sizes. However, it should be noted that community researchers are often attempting to 

find out what is driving community structure or community change, and many, if not most, 

studies deliberately sample along suspected gradients or between environmental conditions 

known to be different. Environmental homogeneity among sampled communities is not a 

common goal. So, this issue of larger sample size requirements among homogeneous 

communities should not have a grave impact on community research. 

5. Conclusion 

The primary goal of this study was to determine if smaller sample sizes produce the 

same results as larger, more typically collected sample sizes. Examining 44 real datasets and 220 

simulated-created datasets, I found evidence that smaller sample sizes (i.e., 58 individuals) 

produce the same community results as larger sample sizes. To detect possible dataset 

parameters that require larger sample sizes, I subsampled 132 selected-created datasets in which 

the number of samples, number of taxa, and evenness were systematically altered to test for an 

effect on the required sample size. I found evenness strongly influenced the goodness-of-fit 

between subsamples and corresponding complete datasets; high evenness datasets produced 

lower goodness-of-fit statistics than low evenness and mixed evenness datasets. Although high 

evenness datasets may have led to lower a goodness-of-fit, few community studies would consist 
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entirely of uniformly high-evenness communities. In addition, the number of taxa had a minor 

influence on the goodness-of-fit between subsamples and corresponding complete datasets; 

datasets with more taxa produced lower goodness-of-fit statistics than datasets with fewer taxa. 

However, this effect caused by the number of taxa was not consistent among all 396 datasets, 

and indeed many of the taxonomically richest datasets had very large goodness-of-fit values. 

Also, homogeneity among communities within a dataset produced lower goodness-of-fit 

statistics. This finding that smaller sample sizes are sufficient for multivariate community 

research could fundamentally change sampling protocols for community studies; smaller sample-

sizes would save resources and enable researchers to collect more samples instead of fewer, 

larger samples. In addition, sample size-limited communities, which might previously have been 

ignored, can be used with statistical confidence that the research is using a representative sample. 
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Table 6-1. Characteristic of the 44 real datasets (some of the citations contain multiple datasets). 

Citation 
Median 
Sample 

Size 

Number 
of 

Samples 

Number 
of Taxa 

Mean 
Even
ness 

Environ
ment 

Primary 
Taxonomic 

Group 

Geographic 
Location 

Beehler 1983 97 8 31 0.72 Forest Birds and 
plants 

Papua New 
Guinea 

Arthur et al. 
1976 85 38 17 0.74 Lake Parasites Yukon, 

Canada 

Cause et al. 
2011 20 43 53 0.74 Subtidal 

marine Parasites 

Dumont 
d’Urville 
Sea (East 

Antarctica) 

Wong et al. 
2004 24812 12 13 0.46 

Fresh 
water 

streams 

Invertebrat
es 

Kent, Uk, 
and 

Mississippi
, USA 

VanNimwegen 
et al. 2008 75 4 7 0.69 Grassla

nds 
Prairie 
dogs 

Kansas, 
USA 

Ieno and 
Bastido 1998 853 7 13 0.75 Benthic 

marine 

Bivalves 
and 

ploychaetes 

Samborom
bon Bay, 
Argentina 

Kinnunen and 
Tiainen 1999 147 40 7 0.59 Farmlan

d Beetles Finland 

Nicolaidou et 
al. 2006 890 18 48 0.64 Benthic 

lagoon Bivalves Ionian Sea, 
Greece 

Arai and 
Budry 1983 114 17 53 0.83 River Fish and 

parasites 

British 
Columbia, 

Canada 
Peres 1997 110 12 12 0.94 Forest Primates Brazil 

Dahle et al. 
1998 944 15 421 0.70 Benthic 

brackish 

Marine 
invertebrat

es 

Pechora 
Sea, Russia 

Repecka and 
Mileriene 

1991 
511 19 20 0.95 Marine Fish 

Kursia 
Bay, 

Lithuania 

Hughes and 
Thomas 1971 94 16 16 0.69 Benthic 

Estuary Bivalves 

Prince 
Edward 
Island, 
Canada 

Hughes and 
Thomas 1971 76 21 18 0.67 Benthic 

Estuary Bivalves 

Prince 
Edward 
Island, 
Canada 

Hughes and 
Thomas 1971 235.5 14 14 0.51 Benthic 

Estuary Bivalves 

Prince 
Edward 
Island, 
Canada 

Hughes and 
Thomas 1971 648 51 51 0.72 Benthic 

Estuary Bivalves 

Prince 
Edward 
Island, 
Canada 

Ryu et al. 2011 4939 7 36 0.53 
Benthic 
marine 

to 

Benthic 
animals 

Incheon 
North 

Harbor, 
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brackish Korea 
Skrodowski 

and Porowski 
2000 

210 25 22 0.73 Pine 
forest Beetles Poland 

Snow and 
Snow 1971 146 13 65 0.76 

Neotrop
ical 

forest 
Birds Trinadad 

Snow and 
Snow 1988 234 7 12 0.50 

Mixed 
terrestri

al 

Birds and 
plants England 

Snow and 
Snow 1971 1674 9 35 0.70 

Neotrop
ical 

forest 
Birds Trinadad 

Ulrich and 
Zalewski 2006 145 11 17 0.76 Lake 

Islands Beetles Multiple 

Dechitar 1972 338 31 144 0.93 Lake Parasites Ontario, 
Canada 

Anderson et al. 
2011 850.5 42 39 0.52 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 9.5 10 6 0.80 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 261 25 15 0.50 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 52 29 14 0.50 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 29 42 31 0.55 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 35 39 17 0.44 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 29 42 41 0.63 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 118 37 46 0.50 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 30 37 43 0.67 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 248 41 46 0.60 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 573 42 37 0.47 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 53 41 27 0.71 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 

Anderson et al. 
2011 20 41 30 0.72 

Norther
n mixed 
prairie 

Grassland 
plants 

Montana, 
USA 
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Miller et al. 
2011 6431 68 117 0.66 Marine Fish Pacific 

coast, USA 
Petraitis et al. 

2009 301 60 3 0.67 Intertida
l 

Bivalves 
and algae 

Maine, 
USA 

Ramesh et al. 
2010 132 95 334 0.77 

Tropical 
terrestri

al 
Plants Karnataka, 

India 

Stevens et al. 
2011 33 280 155 0.90 Grassla

nds 
Plants and 
bryophytes 

Atlantic 
coast, 

Europe 

Stevens et al. 
2011 51 40 100 0.93 Grassla

nds 
Plants and 
bryophytes 

Atlantic 
coast, 

Europe 

Stevens et al. 
2011 52 445 355 0.95 Grassla

nds 
Plants and 
bryophytes 

Atlantic 
coast, 

Europe 

Ulrich and 
Gotelli 2010 248 6 25 0.77 River Fish 

British 
Columbia, 

Canada 
Ulrich and 

Gotelli 2010 495 8 99 0.88 Lake 
Islands Beetles Multiple 
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Table 6-2. Characteristics of the 220 simulated created dataset 

Datasets Number of 
samples 

Number 
of taxa 

Gradient 
Size 

Median 
sample size 

1-10 15 15 1000 8418 
11-20 15 15 5000 41528 
21-30 20 20 100 178 
31-40 20 20 5000 58014 
41-50 20 30 100 278 
51-60 20 40 100 256 
61-70 20 40 100 356 
71-80 20 50 100 255 
81-90 20 50 100 493 
91-100 25 100 100 936 
101-110 30 20 100 194 
111-120 30 60 100 376 
121-130 40 20 100 169 
131-140 50 20 100 181 
141-150 50 50 100 474 
151-160 50 50 5000 151434 
161-170 50 75 100 761 
171-180 50 100 100 982 
181-190 50 200 100 2037 
191-200 75 50 100 484 
201-210 100 50 100 468 
211-220 200 50 100 462 
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Table 6-3. Minimum and maximum goodness-of-fit statistics for the different parameters at a 

sample size of 50 for the selected-created datasets 

 Mantel Test PROTEST 
 Min Max Min Max 
All 132 0.53 0.98 0.56 0.98 
High Evenness 0.53 0.92 0.65 0.98 
Low Evenness 0.74 0.97 0.56 0.91 
Mixed Evenness 0.92 0.98 0.62 0.98 
5 Samples 0.53 0.98 0.70 0.98 
10 Samples 0.64 0.97 0.56 0.98 
Richness = 10 0.58 0.98 0.65 0.98 
Richness = 20 0.53 0.97 0.56 0.97 
Richness = 50 0.59 0.97 0.75 0.97 
Richness = 10 (mixed 
evenness) 

0.92 0.98 0.65 0.98 

Richness = 50 (mixed 
evenness) 

0.92 0.97 0.89 0.98 
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Table 6-4. Tests for significant differences in groupings of goodness-of-fit statistics at a sample 

size 50 for the selected-created datasets 

Type of test Groups being tested p-value 
T-test High and low evenness dataset R-statistics p < 0.001 
T-test High and low evenness datasets m2-values p = 0.003 

T-test R-statistics for the datasets with 5 samples and 
10 sample p = 0.03 

T-test m2-values for the datasets with 5 samples and 
10 sample p < 0.001 

ANOVA R-statistics for the datasets with a richness of 
10, 20, and 50 p = 0.006 

Bonferroni corrected 
T-test 

R-statistics for the datasets with a richness of 
20 and 50 p = 0.009 

Bonferroni corrected 
T-test 

R-statistics for the datasets with a richness of 
10 and 20 p = 0.053 

Bonferroni corrected 
T-test 

R-statistics for the datasets with a richness of 
10 and 50 p = 0.94 

ANOVA m2-values for the datasets with a richness of 
10, 20, and 50 p = 0.53 

T-test R-statistics the datasets with a richness of 10 
and 50 (mixed evenness datasets) p = 0.09 

T-test m2-values the datasets with a richness of 10 
and 50 (mixed evenness datasets) p = 0.04 
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Figure 6-1. Simplified visual representation of the dataset simulation process using 5 taxa and 5 

samples. 
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Figure 6-2. Box plots of the (a) Mantel Test R-statistics and (b) PROTEST m2-values for the 

three qualitative visual rankings of the 6,000 ordination comparisons. 
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Figure 6-3. Box plots of the (a) Mantel Test R-statistics and (b) PROTEST m2-values for the 

three qualitative visual rankings of the 6,000 ordination comparisons. 
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Figure 6-4. Mean (black circles) and standard deviations (black confidence lines) of the (a) 

Mantel Test R-statistics and (b) PROTEST m2-values for the 1000 subsamples for each 

subsample size for the 220 simulated-created datasets plotted versus median sample size. The 

horizontal dashed grey line is the goodness-of-fit threshold value determined from the qualitative 

visual assessment. 
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Figure 6-5. Mean of the (a) Mantel Test R-statistics and (b) PROTEST m2-values for the 1000 

subsamples for each subsample size for the 132 selected-created datasets plotted versus median 

sample size. The horizontal dashed grey line is the goodness-of-fit threshold value determined 

from the qualitative visual assessment. 
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Chapter 7. Conclusions 
The overall goal of the research of this thesis was to determine a standardized protocol 

for paleocommunity research. I attempted this by comparing the results and interpretations of 

different methods using a series of real and simulated community datasets. Although this 

approach is the most practical, it still can not be all encompassing to include all types of data and 

types of questions that may be of interest to a researcher. In other words, there may always be 

exceptions to a “best” paleocommunity set of methods. With that in mind, it is still important to 

determine if a certain set of methods produces a more accurate picture of past ecosystems or if 

there are certain techniques that skew results in one direction or another. 

Of the five different methodological comparisons examined (the spatial and temporal 

resolution of sample collection, counting methods (abundance or biomass), the groups of 

organisms that should be examined, the taxonomic level of identification, and sample size), 

varying levels of certainty can be ascribed to the accuracy of the results produced. Below I 

discuss a few concluding remarks about each of these five different comparisons ordered from 

strongest evidence to weakest. 

1. Sample size 

Chapters 5 and 6 entail subsampling of 426 community datasets (real and simulated, 

modern and fossil) with the goal of examining whether smaller sample sizes produce the same 

multivariate statistical results as larger sample sizes. Although there are a few exceptions, sample 

sizes of 50 to 58 individuals (for fossil and modern datasets, respectively) generally produce the 

same multivariate community results as all larger sample sizes. This sample size of 50 to 58 is 

lower than previous research that determined 300 or more individuals per sample are required. 

However, these previous studies used completely different methods. Here, a more practical 

approach is taken by comparing real statistical results of real communities. 

 This finding that smaller sample sizes are sufficient for multivariate community 

research could fundamentally change sampling protocols for community studies; smaller sample 

sizes would save resources and enable researchers to collect more samples instead of fewer, 

larger samples. In addition, sample size-limited communities, which might previously have been 

ignored, can be used with statistical confidence that the research is using a representative sample. 

2. Taxonomic level 

Chapter 3 contained a meta-analysis of 28 datasets in which the multivariate statistical 

results of each dataset tallied at various taxonomic levels were compared. Family-level 

identification of specimens can lead to the same paleocommunity conclusions as genus-level 

identification, but inconsistencies generate enough uncertainty that paleocommunity research 

would benefit from genus-level identification of specimens. Due to the moderate-to-low 

goodness-of-fit statistics between genus-order and genus-class comparisons of 

paleocommunities, as well as the clear differences found in the qualitative-visual comparisons, 
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order and class did not reliably reproduce genus-level results. So, with moderate to high 

certainty, paleocommunity research should be conducted at the genus or species level. 

3. Counting Methods 

 The two means of tallying fossil material examined here, abundance and point counts, 

produced different multivariate statistical results. However, previous research has demonstrated 

that abundance and biomass proxies can produce the same results. Although both methods may 

produce accurate representations of paleocommunities when using multivariate techniques, there 

may be some cases where one method or the other is more appropriate. So, whenever possible, I 

recommend examining both abundance and point counts (or some other biomass proxy) when 

conducting research on paleocommunities. 

 Additional data will shed more definitive light on which method may be most accurate, 

and which method may be better suited for a particular study. Hopefully, if this recommendation 

of using multiple counting methods is applied to future paleocommunity research efforts, 

additional case studies can be compiled. With an ample number of case studies, a more definitive 

conclusion about when to use abundance and when to use point counts can be provided. 

4. Including all taxa versus brachiopod-only   

Single taxonomic groups are often used for examining ecological and environmental 

variation through time. Here, I found different multivariate statistical results between the use of 

all taxa and brachiopod taxa only. Although more research is warranted prior to any definitive 

conclusions being stated, the evidence here demonstrates that taxa other than brachiopods can 

influence the community structure of a dataset. So, I recommend examining the greatest possible 

range of organisms that can be collected when conducting paleocommunity research. 

5. Spatial versus temporal sampling resolution 

I found that a minor variation in temporal scale led to a major change in the primary 

factor driving multivariate statistical results of paleocommunities. This suggests that patterns 

revealed at different scales are extremely sensitive to the temporal extent of sampling. This 

provides evidence that increasing the number of lateral samples per stratigraphic unit does not 

increase the accuracy of results when larger temporal scales are studied. Thus, when examining 

coarser-scale community variation, sampling effort is better-spent collecting samples from a 

greater number of stratigraphic units rather than replicating samples laterally. 

Although further work and additional case studies on this hypothesis are definitely in 

order, this serves as evidence that there is some temporal scale at which the temporal community 

signal will overwhelm that of the spatial scale. Thus, since the question of interest dictates the 

temporal and spatial scale of the study, if the question requires a broader temporal scale, the 

problem of lateral variation is probably not as serious as has been thought; community 

paleoecology examinations at larger scales require fewer samples per stratigraphic horizon, bed, 

or unit. If further evidence supports this conclusion, this could save a great deal of resources and 
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time for paleontology researchers. 


