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Abstract

Separation processes are the heart of the chemical industry and are used for product
purification. Distillation, absorption and stripping are some of the basic types of
separation processes encountered in the industry. The operations are carried out in
columns containing trays or packings. Packed columns have become popular in the
industry because of the advantages associated with them. There are many types of
packings available in the market and research is on going to find better packings. In the

present study, we deal exclusively with random packings.

The existing models calculate the mass transfer efficiency and other performance
parameters depending on the properties of the fluids being handled, the geometrical area,
porosity and the shape of the random packing. The shape of the packing is generally
characterized using a packing specific shape constant. Though these models cover a wide
variety of random packings, one cannot predict the performance of newly developed
packing elements without experimentation. In this work, we investigate the relation

between the performance and the shape of the random packings.

Since geometric parameters like surface area and porosity do not define the shape of the
packing uniquely, we attempt to define the shape of the packing using the porosity
distribution characteristics. The porosity distribution was computed using an algorithm
developed for packing random packings. Higher order statistics were used to define the
porosity distribution and Partial Least Squares (PLS) modeling was used to develop a

linear relationship between the shape defining parameters and the performance



characteristics of random packings. New packings were developed by selecting various
shapes available in geometry and the mass transfer efficiency and pressure drop were

predicted for these packings using the model.
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Chapter 1

Introduction

Distillation, absorption and stripping are the basic unit operations used in the chemical
industry for clean up or separation of a wide variety of process streams. Product
purification after a unit process is generally achieved in distillation columns and
separation of lighter and harmful vapors and gases is usually accomplished in absorbers
and strippers in most chemical industries. There are two types of separation columns used
widely in the chemical industry, viz., tray columns and packed columns. Each type of
column has its own advantages and replacement of one with the other is of great interest
to many researchers. It cannot be concluded without detailed study that the performance
of one type of column is better than the other in all cases. Tray towers are still widely
used and not replaced with packed towers for some services. The comparison between
trays and columns can be detailed as follows:

» Packing has a significant inherent advantage when it comes to pressure drop,
because the interfacial area for packed columns is generated through liquid
spreading on the packing surface - this is a low pressure drop phenomenon
compared to the mechanism required to generate high mass transfer efficiency
within a tray column.

» Packing has the disadvantage of requiring re-distributors if the height of the
column required is large.

> Packed columns often can be designed with greater stable operating range than

sieve trays. Some type of trays such as valve and bubble cap trays can have a



stable operating range equal to or even greater than that packed columns. The
design of internals, such as distributors, for a stable operating capacity variation

of more than two or three is much more difficult for packings than for trays.

In spite of the advantages and disadvantages of packed columns, there are certain
applications which demand packed columns for separation. Packings can be divided into
two different types — structured and random. Structured packing is of a definite shape
designed to enhance contact between the vapor and liquid phases and random packing is
of any shape, generally ranging from a nominal size of 1 inch to 3 inches. These packing
elements come in different shapes and are dumped randomly into a cylindrical column
thus locating themselves in different random orientations in the packed bed. Though there
are packings like the Cascade Mini Ring that have a preferential orientation when
dumped into a column, other packings have an aspect ratio (defined as the ratio of the
diameter of the packing to the height) of one and can be in any possible orientation. This
leads to overall randomness in the bed and this property aids in better distribution of the
liquid and gaseous phases. Structured packings are manufactured in blocks of different
sizes and generally have sheets of corrugated metal of different configurations and are
arranged in particular geometries. Currently, packings are available in numerous shapes
and sizes and are applied to different types of separation process. The efficiency of mass
transfer depends on the geometry, size and texture of the packing. Two important
geometric parameters or properties that influence the mass transfer intensity and pressure
drop are the geometric surface area and the overall porosity (or void volume). Porosity is

a measure of the empty space in the column when filled with different kinds of packing



elements. Figure 1.1 shows random packings and structured packing assembled in
different sections of a separation column. The top portion of the packing contains random
packings of two different types and the bottom portion consists of structured packing.
This arrangement of mixing the types packing is generally employed for better

performance.

Figure 1.1: Separation column packed with Random packings in the top section and

structured packing in the bottom sections



A greater surface area almost always gives a better mass transfer intensity but the
pressure drop across the bed also increases due to decreased porosity. These parameters
are bulk parameters and there can be two different types of packings having the same
surface area and porosity but entirely different mass transfer and hydraulic properties.
The porosity and the geometrical area of a packed bed give qualitative information about
the mass transfer efficiency, capacity and pressure drop. Other parameters are required to
evaluate the performance and they should allow for the geometry and texture of the
packing material. One type of packing does not give an optimum performance in each

and every application which explains the numerous designs available in the market.

In spite of the progress made in understanding the performance of both random and
structured packings in distillation, it is quite difficult to predict from first principles, the
efficiency, capacity and pressure drop of a tower packing using thermodynamic and
thermo-physical properties of the chemical system. Selection of physical parameters of
the packing to aid mass transfer is also based on empirical relationships and experience.
The predictive methods that are available in literature have limited accuracy when
applied to a wide variety of chemical systems or outside the database. The older models
were based on a few packings available at that time and did not include the recently
developed packings. Recent models are semi-empirical and are based on physically

proven conditions of fluid dynamics in columns and include a wide variety of packings.

The number of stages required for a given separation is obtained from the application of

equilibrium thermodynamics. The actual number of stages obtained from a packed tower



either in a laboratory, pilot plant, or an industrial plant is divided by the equilibrium
stages predicted by vapor-liquid equilibrium thermodynamics to obtain efficiency for the
packed tower. Attempts have been made to generate semi-empirical correlations for
packed tower efficiency from experimental data. The mass transfer capability of packing
is typically expressed as Height Equivalent to a Theoretical Plate (HETP) or Height of
Transfer Unit (HTU) etc., which are rate-dependent quantities. Attempts to derive
generalized predictive methods for the mass transfer efficiency of packings using the
two-film theory and dimensionless groups, and for the pressure drop and capacity using

mechanistic models, have met with varying degrees of success.

Published results of these attempts are the works of Cornell et al. (1960), Onda et al.
(1968), Bravo and Fair (1982), Bolles and Fair (1982), Billet and Schultes (1991; 1993 a,
b; 1995; 1999) and Bornhiitter and Mersmann (1993). Barring the models of Cornell et
al. and Onda et al., the models used in these predictive methods were checked against
many sources of pilot plant data, especially those made by Fractionation Research, Inc.
(FRI) and the Separation Research Program (SRP) of the University of Texas at Austin.
Most of the recent models include some sort of empirical constant that accounts for the

shape of the packing element.

The drawback of all the above-mentioned models is that they cannot be used to predict
the properties for a new shape of packing element under development. Experiments are
generally required to ascertain the performance of the packing. If direct or indirect

theoretical methods were available to predict the performance of packing based on the



shape, they would give an insight into these properties much before the packing is put to
the experimentation stage. It would also allow one to correlate the shape of the packing
with the performance. The term correlation has been used in a very loose sense in this
work except when mentioned in the subsection describing the Partial Least Squares
modeling theory. Correlation is used at times to describe the regression equation that

equates the dependent and independent variables.

1.1 Objectives

The objectives of the thesis are two fold. First, to investigate and select characteristics
that define the shape of random packings. And for existing packings, develop a model
that describes the relationship between the shape defining and geometric characteristics
and performance parameters like pressure drop and mass transfer. Second, develop new
packings and use the model developed from existing packings to predict the performance

of new packings using their shape-defining and geometric characteristics.

The following steps show the approach to the problem:
1. Geometric surface area, mean porosity and statistical parameters describing the
porosity distribution are used to define the shape
2. Packing algorithm developed by Nandakumar et al. (1999) is used to extract the
porosity distribution across the volume of the bed for existing random packings.
3. Performance parameters, viz., mass transfer coefficient and pressure drop for a
common operating system (carbon dioxide-air-water) are calculated using Billet

and Schultes model (1999) for the existing random packings



4. Partial Least Squares (PLS) modeling is used to develop a regression equation in
the predictive form between the performance parameters and the shape defining
characteristics

5. New packings are developed from various geometrical shapes available in
literature.

6. Model for relating surface area of the new packings as a function of size is
developed using Design of Experiments and Response Surface Methodology. This
is done since the area for new packings in a packed bed is a function of the
number of elements packing and this is can be ascertained only after packing the
elements.

7. Area and porosity are selected to be within the range of the PLS model developed
for he purpose. The size of the packing is then selected from the least squares
model mentioned in Step 6.

8. The porosity distribution across the volume of the bed for these new packings is
extracted using the Packing Algorithm.

9. The PLS model mentioned in Step 4 is used to predict the performance of the new
packings.

10. Best possible shape and future directions for research are then concluded from the

study.

1.2  Overview of the thesis
The main focus of this work is to establish a relation between the performance

characteristics of the system such as mass transfer and pressure drop and geometric



parameters such as surface area, porosity and the shape of the packing element. A
relationship of this sort would help one in determining the optimal shape for suiting the
performance characteristics. An attempt to relate these characteristics with the shape has
been made in this thesis. For this purpose, the packing program developed by
Nandakumar et al. (1999) has been used. The shape of the packing element within a
packed bed can be distinguished using the distribution of the empty space within the bed.
Statistical parameters were used to define the distribution and the relationship between
the performance and these statistical parameters was developed using a regression
methods. The subsequent paragraphs describe the overview of each chapter presented in

the thesis.

Chapter Two discusses the previous work done in this area to ascertain and select the
models available for mass transfer and fluid dynamics. These were used to relate the
transport behavior to the shape of the packing element and to develop new types of
elements. Different shape analysis techniques available in literature and the characteristic

properties of a non-normal distribution using higher order moments are also discussed.

Chapter Three describes the algorithm developed by Nandakumar et al. (1999) and how it
is used in the present work to develop a model for a packed bed with new random
packings designed for the purpose. It discusses the requisite inputs for the program to
simulate the packing process and the capability of the program to extract geometric
parameters such as the porosity distribution. The chapter also describes the basis of

sample size selection for measuring the porosity distribution and methods for testing the



normality of a distribution using statistical tests. If the distribution is found to deviate
from normality, it defines statistical parameters that can be used to characterize the non-

normal distribution. The methods for estimating these parameters are also discussed here.

Chapter Four describes the new packing shapes that were developed for this study and
reasons why these specific shapes were looked into. The properties of these shapes and
the mathematical models that define them are also discussed in the chapter. This chapter
explores the modeling methods used for predicting the area and porosity as a function of
the size for each of the shapes. Techniques like Design of Experiments and Response
Surface Methodology used to select the size based on the area are described in this
chapter. The best possible fits with the minimum number of experiments required and

models relating the area to the dimensional aspects are discussed.

Chapter Five describes the mass transfer and pressure drop model developed by Billet
and Schultes (1999) to predict the properties of a large number of random packings that
exist in the market and explains reasons why this model was preferred over other models
in the literature. The system used to arrive at the mass transfer coefficients and pressure
drop is also outlined in the chapter. The theory of Partial Least Squares (PLS) and the use
of this modeling technique to develop a regression equation relating these parameters
with shape defining characteristics are also discussed here. The application of the

relations developed for the new packings are outlined.

Chapter Six summarizes the contributions of this thesis with respect to modeling of



random packings and relationship developed between the shape of the packing and the
performance using statistical techniques. The potential of this study as a tool for the

development of new shapes is discussed as an area of future work in Chapter Seven.

10



Chapter 2

Literature Review

2.1 Models for predicting mass transfer and pressure drop

Prediction of the mass transfer efficiency of beds packed with random packings is not
straightforward because of the complex two-phase flow that exists in these packings. For
random packings, four methods have been developed in the past that merit serious
consideration. The method of Cornell et al. (1960) utilizes the two-film model and
empirical parameters specific to each packing type and size. The data set considered for
this study was small and did not include the modern through-flow type packings. Onda et
al. (1968) developed a random packing model based on a data set using the two-film
model that included traditional packings like ceramic rings and saddles. Bolles and Fair
(1982) expanded the Cornell et al. database and adapted the model to new experimental
results. They included only the Pall ring as the through-flow packing. Bravo and Fair
(1982) used the Onda model and the Bolles-Fair database for correlating the packing type

and the effective interfacial area.

2.2 Mass transfer model by Wagner et al.

A new model was developed by Wagner et al. (1997) for correlating the mass transfer
rates in distillation columns packed with newer random packings where emphasis is
placed on the newer through-flow packings. In their work, the pressure drop and hold up

model developed by Stichlmair e al. (1989) is used as it includes the determination of

11



liquid hold up above and below the loading point. In building the model, experimental
data from the laboratories of Fractionation Research, Inc., and the Separations Research

Program (SRP) at the University of Texas at Austin was used.

In their model, the liquid hold up in the column is defined as the volume of liquid held
under operating conditions per volume of packed bed. The hold up can be divided into
two components, the static and the dynamic hold up. The static holdup consists of the
liquid present in the voids of the packing. The dynamic portion of the hold up flows
through the column and is a strong function of the liquid load. The hold up relation of
Stichlmair ez al. (1989) does not account for the physical properties and has been
validated for air-water system only, but the equation is applicable for viscosities up to

5%107 Pa.s.

Above the loading point, the correlation for liquid hold up of Stichlmair et al. (1989) is
dependent upon the irrigated pressure drop. Since the hold up is required for the

calculation of irrigated pressure drop, iteration is necessary.

In this model a packing parameter specific to the packing called the ‘“packing
characteristic” is needed for the correlation for mass transfer. This parameter has been
retrofitted from the available data for all types of packings. The model has been found to
fit 95% of the 326 experimental values and the height equivalent to theoretical plate

(HETP) to within = 25%.

12



2.3 Models for predicting interfacial area

The amount of the existing effective interfacial area in a packed column is the basic
factor that affects the mass transfer. Since all the available area is not utilized for mass
transfer, the effective area is less than the total area except for high liquid loads when the
area becomes equal to or higher than the geometrical area. The effective interfacial area
is also reduced because of a shielding effect (Hanley et al., 1994). This is because of the
gas maldistribution caused by liquid filled voids which block vapor flow. A large part of

the effective interfacial area also results from the drops (Bornhiitter, 1993).

The interfacial area in a packed column is closely related to the hydrodynamics. The fluid
conditions are described through irrigated pressure drop and hold up. The amount of
vapor-liquid surface area is directly linked to the operating hold up (Bravo and Fair,
1982). Relationships between actual and and the effective interfacial area have been
developed by a number of researchers (Onda ef al., 1968; Puranik and Vogelpohl, 1974;
Billet and Schultes, 1993; Bravo and Fair, 1982). These models serve as a tool for
developing correlations for mass transfer for open packings but cannot be applied outside

the database.

24 Model for prediction of mass transfer coefficients for new
packings
While developing new packings, it becomes necessary to predict the mass transfer

coefficient and pressure drop for the new shapes based on their geometrical properties.

13



The “cylinder model” by Bornhiitter and Mersmann (1993) allows one to predict the

mass transfer coefficient based on an empirical model.

This model takes into account two different types of flow behavior for random packings.
The first type describes the flow of liquid exclusively in the form of films and rivulets.
This behavior is more pronounced in case of small packing elements, good wetting
characteristic of the packing, low surface tension and very small openings in the surface
of the packing elements. Onda et al. (1968) and Puranik and Vogelpohl (1974) based
their equations on this type of liquid flow. The second type of liquid flow, in the form of
drops, is more predominant in large packings with lattice structure, liquid of high surface

tension and poor wetting conditions.

A decrease in the specific packing surface area is always accompanied by a decrease in
the volumetric mass transfer coefficient. It has been shown in the work that there is no
decrease in the mass transfer coefficient for large Hi-flow ring packing elements. It has
been shown that the 50 mm and 90-0 mm packing elements have essentially the same
mass transfer coefficients at all liquid velocities. But the mass transfer coefficient of 90-6
mm element is lower than both the 50 mm and the 90-0 mm packings. Since the only
difference between the 90-0 mm element and the 90-6 element is the presence of pins at
the edges of the element it was concluded that the pins are the reason for better liquid
dispersion. This increases the drop-forming tendency which in turn increases the mass

transfer coefficient.

14



An empirical model was built by Bornhiitter and Mersmann (1993), which has size of the
element among other physical and geometrical properties. The geometrical properties
included the area, porosity and the number of elements per unit volume while the

physical properties were the surface tension, viscosity and density.

Constants have been included to take care of the neglected influences such as impact,
liquid jets and the texture of the packing (plastic or metal). The texture is important since
the wetting tendencies and contact angles differ based on the construction material of the
packing. The cylinder model can be used for prediction of mass transfer coefficients for
existing packings and due to the general structure; the equations can be applied to small

compact elements as well as new packings to be developed in the future.

The shortcomings of this model are that the mass transfer characteristics are correlated to
geometrical properties such as area, porosity and the number of elements per unit
volume. These variables are not sufficient to describe the shape of the packing. It is quite
possible that two packings having different shape can be identical in these characteristics.
The effect of the shape is not taken into account in the model. Since the present study
concentrates on developing a relationship that takes shape into account, the “cylinder

model” was not used in the present work for predicting the properties of new packings.
2.5 Combined particle-pipe model for predicting pressure drop

Stein (1998) used a combined particle-pipe model for predicting the pressure drop of gas

flow in dumped and structured sphere packings. To calculate the pressure drop of any
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packing, the theoretically developed particle-pipe model for sphere packings is adjusted
with a parameter called the tortuosity factor. It is defined as the ratio of the mean length
of the streaming way (actual path followed by the liquid or gas) to the shortest length of
the streaming way (i.e., the height of the packing). The maximum tortuosity factor of 2.0
was found for the Raschig ring and the value diminishes for increasingly open packing
like the Pall rings. The lowest tortuosity factor among random packings was found to be

for the Raschig Super ring.

2.6 Model by Billet and Schultes
The approach by Billet and Schultes (1999) is semi-empirical and is based on physically
proven conditions of fluid dynamics. This model takes into account the kinetic laws of

mass transfer in packed columns with dumped or arranged packings.

The Billet and Schultes model is a physically proven model for calculation of the
performance parameters of columns with dumped or arranged packings. It is possible to
determine the mass transfer efficiency, the pressure drop, the column hold up and the
load limits based on a uniform theory. The results agree with one of the largest databases
compiled under the supervision of Billet and includes over 3500 measured data points,
more than 50 test systems and is based on measurements of over 70 types of dumped and

arranged packings.

The basis of their approach is a model, which assumes that the empty spaces between the

packed elements can be replaced for theoretical purposes by vertical flow channels,
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through which the liquid trickles down. The deviation from this vertical flow channels is
expressed by a packing specific shape constant. Since the geometrical shape cannot be
expressed in terms of surface area and porosity alone, this packing specific accounts for

the shape of the element.

The model takes into account the thermodynamic properties of the system while
calculating the mass transfer efficiency. The loading capacity of the dumped packing
determines the column diameter and thus the flow velocity and residence time of the

phases in the mass transfer apparatus.

The geometric surface area of the column packing and its ability to create a turbulent
flow of phases also decides the effectiveness of mass transfer between phases. Since this
is directly dependent on the shape of the packing, the model accounts for the shape in the

form of a packing specific shape constant.

The volumetric mass transfer coefficients are dependent on the densities of phases,
viscosities and the surface tension, the phase flow velocities, the specific surface area of
the packing and the void fraction as well as the packing specific constants. Different
correlations are used for conditions above and below the loading conditions and take into
account the interfacial area above the loading point and near the flooding point.

On the basis of the theoretical model, the dry pressure drop across the packing can also
be calculated. It is dependent on the geometric surface and the void volume of the column

packings, the gas load factor and the wall factor that takes into account the increased void
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fraction at the column wall. For dry pressure drop, the resistance coefficient is dependent

upon the Reynolds number of the gas stream.

When packings are irrigated, the free cross section for the gas flow is reduced by the
column holdup, and the surface structure is changed. The column holdup is taken into
account while calculating the irrigated pressure drop and the resistance coefficient of the

two-phase flow is dependent on the Froude number of the liquid flow.

In an earlier model by Billet and Schultes (1991), the dependence of the resistance
coefficient on the liquid load was expressed as a function of the Reynolds number. In the
present model, it has been suggested that the Froude number describes the dependency of

pressure drop on the liquid load better at high pressures and low liquid viscosities.

The model also allows the calculation of the load limits and the flooding conditions. The
basis of the calculation is that below the loading point the liquid film trickles from top to
bottom without the influenced of the gas counter flow. The column holdup is then a
function of merely the liquid load. With increasing gas velocity, the shearing stress at the
surface of the liquid increases so that the velocity at the phase boundary drops to zero.

Again allowance is made for the packing type using a packing specific shape constant.
The average relative deviation for calculating the loading and flooding points in this

model is 5% and for the column hold up it is 6.7%. The deviations for the pressure drop

and the mass transfer efficiency are 9.1% and 12.4% respectively.
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Because of the small deviations between actual and predicted data, this model was

selected for calculating the mass transfer and pressure drop for existing packings

2.7 Defining phase distribution using properties of packed beds

The porosity distribution in the packings is dependent upon the shape and size of the
packing. Recently models have been developed for prediction of pressure drop based on
the porosity distribution rather than the porosity itself. Giese et al. (1998) obtained the
superficial velocity profiles for liquid flow for monodisperse packings of spheres,
deformed spheres, cylinders and Raschig rings by averaging the axial flow components
within a cross section. Porosity distribution functions along the radial direction were also

evaluated experimentally.

Giese et al. (1998) then extended the modified Brinkman equation by replacing the mean
porosity with the porosity distribution function along the radial direction. This model was
then used to predict the pressure drop and the average velocity profiles across a cross

section of the bed.

Crine et al. (1992) introduced the concept of statistical hydrodynamics, in which all the
local hydrodynamic quantities were considered as random variables (such as packing
properties like porosity distribution). It is suggested in the work that the global
hydrodynamics could be described by the local hydrodynamic parameters through a
proper probability density function. The probability density function takes into account

the structure of the bed which is defined using porosity distribution
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The porosity and its distribution in a packed bed are important parameters that determine
the flow distribution. To achieve a quantitative understanding of the porosity distribution
in packed beds, efforts have been made in the past and correlations to this effect have
been developed. It has been found that the mean porosity and the porosity distribution are
determined largely by particle size, shape and particle surface properties (i.e., roughness

and hardness) as well as the method of packing the bed.

To implement the complex geometry of the packed bed in the flow equations earlier
researchers used the mean porosity or the longitudinally averaged porosity profile or
empirical quantities. The exact porosity structure is completely changed with re-packing
even with the same packing elements and the same packing method. However, one could
obtain similar statistical quantities of the bed porosity distribution even after re-packing.
One could generate a porosity distribution with the same statistical characteristics under

certain constraints and use such a distribution for further calculations.

Gamma ray tomography experiments have been conducted in the recent past to provide
the 3-D structure of packed beds and to detect any spatial patterns (Wang et al., 2001). It
was found that the type of porosity distribution depends on the size of the voxel. The

porosity distribution is Gaussian if the voxel size is larger than the particle diameter.

In the present thesis, the porosity distribution for different types of packings was found

using the Sutherland-Hodgman polygon clipper algorithm applied in the work by
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Nandakumar ef al. (1999). Computer simulations are used for the prediction of

geometrical properties.

Jiang et al. (2001) used the statistical nature of the porosity distribution in which the beds
have been characterized by a psuedo-Gaussian function and provided a correlation
between the standard deviation of the liquid hold-up and the standard deviation of the
porosity distribution. Extensive use has been made of the statistical properties such as
skewness and kurtosis (for defining the distribution), which are different for different
type of packings. It was also shown in this work that the skewness and kurtosis are

different for packed beds having the same mean porosity but having different shape.

2.8 Statistical quantities

Since the porosity distribution in a packed bed is random or pseudorandom in nature
statistical quantities can be used to determine the distribution. As pointed out by Jiang et
al. (2001) four parameters can be used for defining a distribution. The probability density
function has been characterized by moments such as mean, variance, skewness and
kurtosis. The definitions of these quantities are available in literature. Richmond (1964)
defines these moments in a physical sense. In mechanics, the moment represents a torque
computed by summing the product of rotation producing force times their respective
distances from the fulcrum. In statistics, the distances correspond to the deviations from

mean and the forces to the weights or frequencies.

Mean and variance are well-defined quantities. Skewness is defined as the shape or lean
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of the distribution towards the negative or positive side of the mean. A negative value of
skewness means that the distribution is skewed towards the left hand side and a positive
value indicates that the distribution is skewed towards the right. The fourth moment,
kurtosis, is a measure of the “peakedness” of the distribution. Peakedness refers to the
shape of a curve and a measure of peakedness describes the degree to which the curve
tends to be pointed or peaked. It has a high value when the curve is peaked and a low
value when it is flat topped. Thus it has a high value when the there is a large
concentration of observations in the center and a low value when the curve is more
spread out. Peakedness and variation are closely related but since the measure of
peakedness is a relative measure, i.e., normalized over variance, kurtosis defines how

peaked a curve is for a given amount of variation.

2.9 Other shape defining techniques

Shape description refers to methods that result in a numeric descriptor of the shape. A
shape description method generates a shape description vector. The goal of the
description is to uniquely characterize the shape using its description vector. The required
properties of the scheme are invariance to rotation, translation and scale. Shape
descriptions have been done using Fourier transforms and are based on the well-
developed theory of Fourier analysis. Stochastic methods and autoregressive models have
also been used in shape description and for representing the boundary of a two
dimensional shape. These techniques can be used for describing and modeling the

individual shape. However, most of these shape-defining techniques have been confined
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to two-dimensional shapes. These techniques have been discussed in the review paper by

Loncaric (1998).

In the current thesis, parameters like the statistical distribution functions discussed earlier
have been used for prediction of properties for new elements. These parameters describe
a bed of number of elements that have been packed randomly and contain information

that can be repeated even after repacking the bed.
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Chapter 3
Packing Algorithm and the Extraction of

Geometrical and Statistical Properties

3.1 Packing Algorithm

3.1.1 Features of the packing algorithm

Packings are designed with the objective of maximizing the effective area and
minimizing the resistance offered to the flow. The packing objects are then dumped into a
column in a random manner and the mean properties of packed bed such as number of
pieces per unit volume, specific surface area and the mean porosity are measured. These
quantities are then used in prediction of the transport properties using empirical

correlations.

Pall Ring Raschig Super Ring

Figure 3.1: Triangulation of packing shapes for input into the packing program
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The algorithm developed by Nandakumar et al (1999) allows one to pack elements of any
arbitrary shape into a container. The surface of the packing object is converted to a three-
dimensional polygonal object presented by a set of triangular surfaces (Figure 3.1). The
dynamics of the element falling into the container are not captured but the final

equilibrium position of each element is made available.

The algorithm places the elements such that the center of gravity of the elements is at its
lowest and avoids collision between objects and yet places it close to its neighbors. The

orientation of the object is selected in a random manner and this becomes the local co-

ordinate system for the element.

The element is then lowered into the global co-ordinate system and the lowest position in
the z direction of the global co-ordinate system is found. This objective of finding the
lowest position z for a given initial position and orientation (x, y, a, f) is accomplished by
the binary search algorithm and finding the overall lowest position possible (x, y, a, f) is
accomplished with the modified conjugate-gradient method. The details are shown in

Figure 3.2.

Since only z is varied in the search step for a randomly selected (x, y, a, f), it does not
guarantee closeness of packing objects in the (x, y) plane. The single objective function
cannot lead to a closest packing object set in the container. This problem is addressed
using a multiple-objective optimization algorithm. It is accomplished by starting with N

packing elements with random but conflict free initial positions and orientations and

25



finding the lowest position. After this set of packing elements is created, the points with
greatest value of » (where #? = x? + y?) are retained. This procedure packs the packing

elements at a given layer from the container wall to the center.

(b) Global coordinate system

| ~

(¢} Comtainer'’s polygonal model

Figure 3.2: Local and global co-ordinate systems for packing element
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To eliminate the combinatorial explosion of the possible positions only the top two layers
are considered for conflict resolution and packing the elements close to one another. The
outcome of the simulation set is the elements’ final orientation and position which can be
used in subsequent analysis such as porosity (distribution), surface area and other

geometrical and statistical properties.

3.1.2 Calculation of geometrical quantities

Porosity is defined as the ratio of the void volume inside a three dimensional
measurement space to the total volume of the space. If the measurement space is taken as
the total volume occupied by the packing, it gives the mean porosity of the bed. This
along with the number of packing elements per unit volume and the specific surface area

(surface area per unit volume) are the volume-averaged quantities generally reported.

Since the packing algorithm generates the details on the location and orientation of each
element from the simulation, the variations can be reconstructed by choosing the
measurement volume in the form of a cuboid as depicted in Figure 3.3. This requires

a) defining the location (, 8, z) and the size dr, 6, dz of the measurement space

b) locating and clipping the packing elements that lie within the measurement space

c) measuring the solid volume and the surface area of the packing elements that lie

within the volume.

Since the cube shape is not well suited for porosity measurement in a cylindrical

container it will introduce an error, especially towards the wall of the container. In
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experimental measurements, the sample space is typically circular rings, which provide
circumferentially averaged values of geometrical properties. The center point location of
this sample volume (r, 6, z) is varied over re(r; rd, 0€[ 0 ; 0 4, z€[z;, z]. The
measurement subspace is still approximated by a cuboid and thus it is essential to have a

fine resolution in the & direction.
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Figure 3.3: Measurement volume in the form of a cuboid for porosity distribution

The volume of material inside the sample volume is estimated by identifying the
elements or parts of elements that are inside the measurement volume. The parts of the

element that lie outside the measurement subspace are clipped (or cut off).
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Packing elemeant

(a) Clipped polygons

!
'

\ N

Measurement subspace

) P

b)
hY

(©

d)

Figure 3.4: Clipping Algorithm to measure the amount of solid volume in the

measurement sub-space
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Since the general geometrical problem of clipping curved surfaces in three-dimensional
space is difficult, the triangulated data structure of the packing elements comes in handy
to construct the polygonal model of the element/s in the measurement subspace. The

clipping methodology is shown in Figure 3.4a.

The Sutherland-Hodgman Polygon-Clipper Algorithm, which is a three-dimensional
algorithm that clips a general convex polygon with any number of planes, is used for the
purpose of generating the solid volume inside a measurement space. From the algorithm,
the most important step in porosity calculation is the determination of total solid space of
packing elements inside the porosity measurement subspace. The Clipper Algorithm can

be represented as follows:

For each edge of a triangular plane, § is the starting point of the edge and P is the end

point of the edge —

> If § is inside and P is inside append the edge SP for computing the solid volume
inside the measurement subspace (Figure 3.4b)

> If § is inside and P is outside compute and append the intersection point of the
edge SP with the clipping plane for computing the solid volume inside the
measurement subspace (Figure 3.4¢)

» If § is outside and P is inside compute and append the intersection point of the
edge SP with the clipping plane, then append the second node P for measurement

(Figure 3.4d)
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The clipped polygons are decomposed to sets of triangles and the surface area is
computed. Since most of the modern packings and the new packings dealt with here are

open type packings, thickness of the element needs to be provided for the estimation of

the solid volume.

3.2 Basis of selection of the sample size

To extract the variations in the structural changes in these properties within the bed on a
scale comparable to the pore scale, measurement volumes of the same order of magnitude
as the packing object size should be considered. Thus for each of the packing element,
the sample size was selected to be same as the major dimension of the packing which
would ensure two things. First, within the same element shape, it would allow one to
extract the variations in porosity distribution for different sizes. Second, any porosity
variation in the radial, axial and circumferential directions can be attributed to the
characteristics other than the just the size within the shape. As pointed out by Bornhutter
and Mersmann (1993), the mass transfer efficiency is not the function of the geometrical
area alone. There are other factors that influence the effective area available for mass
transfer, one of them being the number and orientation of pins on the packing element. It
is expected that the defining parameters of the porosity distribution would capture this

aspect.

The sample size has been selected to be of the same order of magnitude as the packing

element size but the increment in the (, 6, z) directions is the same in all the cases. As the
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sample volume moves in these directions, it would encounter different solid volumes for
difference in packing element sizes. This ensures that the distribution is different even if
the shape of the packing element is same. This would in essence capture the differences

in the distribution that would influence the liquid and vapor flow behavior.

The effect of sampling at different packing element sizes is shown in the Figures 3.5, 3.6,
3.7 and 3.8. The figures show the distribution in the radial direction for Raschig Rings,
Pall Rings of nominal size 1” for two different sample sizes. The variation in porosity for
a smaller sample size is wave-like since the sample volume will encounter empty spaces
between packing elements because the volume of sampling element is small when
compared to the packing size. This is not the case when the sample volume is equal to the
size of the element. The sample volume would always encounter some solid volume for

all increments in the three directions.

0.994

0.992 -

0.99

0.988 ¢

0.986 -

0.984 1

0.9821

0.98F -

0.978
0
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Increment: z = 0.5", r=0.1", a=5°

Figure 3.5: Porosity distribution for 1” Raschig Ring in the radial direction
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Figure 3.6: Porosity distribution for 1” Raschig Ring in the radial direction
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Figure 3.7: Porosity distribution for 1” Pall Ring in the radial direction
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Figure 3.8: Porosity distribution for 1 Pall Ring in the radial direction

3.3 Porosity distribution and the properties of the statistical

distribution

Random variation of porosity is an important feature of the random packed column. The
porosity distribution has a significant effect on the liquid flow distribution within a
packed column. Non-uniform distribution of porosity results in liquid flow
maldistribution and a reduced separation efficiency. Since the flow and porosity are
random in nature in packed bed, one can use statistical quantities to characterize such
randomness or lack there-of of the system. A fundamental task in statistical analysis is to
characterize the location and variability of a distribution. A further characterization of the

data includes higher order statistical measures such as skewness and kurtosis.
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3.3.1 Statistical quantities

The relevant statistical quantities can be described by the probability density function
characterized by its moments such as mean (p), variance (o), skewness (y1) and kurtosis
(y2). The higher order moments, skewness and kurtosis, would indicate the changes

caused by a non-Gaussian probability density function.

The word moment is used in this application because of the similarity to the moments
used in mechanics. In mechanics, a moment which represents a torque is computed by
summing up the rotation producing force times the distance from the fulcrum or center of
gravity. In this application in statistics, the distances correspond to the deviations from
the mean, and the forces to the ‘weights’ or frequencies. Thus the first moment about the
arithmetic mean measures the net rotational torque about the mean. Since, the arithmetic
mean may be regarded as the balance point, this ‘net moment’ must be equal to zero. The
first moment is always zero because the deviations about the arithmetic mean always
cancel. The second moment, the variance, can never be zero (except when all the
observations are identical) because of the squaring process, which eliminates all the
negative signs. The third moment preserves the signs by using the cubes of the
deviations; and is equal to zero when the distribution is symmetrical. In the cubing
process the longer tail of the distribution is heavily weighted because although it has
fewer elements in it, the deviations are large, and because they are cubed they have more
importance than the same total deviation made up of a larger number of smaller
deviations, as in the shorter tail.

The third moment is an absolute measure; and to reduce it to a relative measure, as is
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desirable for a measure of skewness, it is divided by the cube of the standard deviation.
Skewness is a measure of the lack of symmetry. A distribution is symmetric if it is
distributed equally on the both sides of the mean. Peakedness refers to the shape of the
curve, and a measure of peakedness describes the degree to which the curve tends to be
pointed or peaked. It has a high value when the curve is peaked and a low value when it
is flat-topped. It might seem that the peakedness and variation are closely related but
since the measure of peakedness is made a relative measure by using standard deviation
as the divisor, the measure of peakedness really describes the shape of the curve. It tells
how peaked the curve is for a given amount of variation. The common measure of
peakedness is called kurtosis. Data sets with high kurtosis tend to have a distinct peak
near the mean, decline rapidly and have heavy tails. Data sets with low kurtosis tend to
have a flat top near the mean. A distribution which is considered to be neutral with
respect to the peakedness is referred to as mesokurtic, while a more peaked curve is

called leptokurtic and a flatter curve is called platykurtic.

Statistical distribution measures for Pall rings of nominal sizes 1” and 2” are shown in
Table 3.1 and in Figures 3.9 and 3.10. The distributions are peaked when compared to a
normal distribution. It is evident that the 1> Pall ring has a heavy tail towards the right
hand side and is skewed towards the right and has a higher value of skewness than the

Pall ring of size 2”.

Nominal Size Skewness Kurtosis
1” 0.87 7.76
2”7 0.83 3.48

Table 3.1: Higher order cumulants for the porosity distribution of Pall Ring
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Since the distribution for the 1 Pall ring is more peaked than the 2” ring, the value of
kurtosis for the 1” Pall ring is much higher.

Porasity Distribution for 1" Pall Ring
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Figure 3.9: Porosity distribution for 1” Pall Ring (overall bed volume)

Porosity Distribution for 2° Pall Ring
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Figure 3.10: Porosity distribution for 2” Pall Ring (overall bed volume)
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Nominal Size Skewness Kurtosis
Casc. Ring (1) -0.09 0.51
Super Ring (27) -0.19 5.43

Table 3.2: Higher order cumulants for the porosity distribution of Cascade Ring and

Super Ring

Statistical distribution measures for the 1” Cascade Ring and 2” Super Ring are shown in
Table 3.2 and in Figures 3.11 and 3.12. The distribution for the Cascade Ring is close to
normal as shown in the figure which explains the values of skewness and kurtosis. But
the 2 Super Ring is peaked when compared to a normal distribution. This explains the

higher value of kurtosis. The figures for the distributions are shown in the following

page.
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Figure 3.11: Porosity distribution for 1 Cascade Ring (overall bed volume)
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Porosity Distribution for 2" Super Ring
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Figure 3.12: Porosity distribution for 2” Super Ring (overall bed volume)

3.3.2 Estimation of statistical quantities

The first order cumulant of a stationary process is the mean,
C,, = Efx(n)}

The second, third and fourth order cumulants are defined as
C,, = E{x(n) x(n +k)}
C,, = E{x(n) x(n+k)x(n+ l)}

C, = E{x(n) x(n+k)x(n+1)x(n+ m)}-— C, (k)C,.(I—m)
Co, ) Co (b —m) M, (m)M,, (k —1)

where M,, = E{x(n) x(n + m)}

The zero lag second, third and fourth order cumulants are called the variance, skewness

and kurtosis. Skewness and kurtosis are normalized over standard deviation and are both
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shift and scale invariant. For univariate data x;, x;... x, the unbiased estimate of

skewness is expressed as

Zn: (x, —X)’
— i=1
" e’
where X is the mean, ¢ is the standard deviation and n is the number of data points. The
skewness for a normal distribution is zero and any symmetric data would have skewness
near zero. Negative values for skewness indicate data that are skewed left and positive
values indicate that the data are skewed right. The expression for the unbiased estimate
of kurtosis is
> (x5
— =l
Y2 = ————(n o
The fourth moment about an arithmetic mean is a measure of peakedness because if two
distributions have the same variance, the distribution that is more peaked must have
longer tails to compensate for this concentration around the mean and equalize the

variances. Thus the more peaked distribution will have more large deviations and also

more small deviations (and fewer intermediate deviations) than the less peaked curve.

When these deviations are raised to the fourth power, the larger deviations assume more
importance. Therefore the more peaked curve has a higher fourth order moment than the
flatter curve. Thus it is the longer tails rather than the actual concentration around the

mean which make the kurtosis a measure of peakedness.

If the distribution of x(n) is symmetrically distributed, its skewness is zero (but not vice-
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versa) and if the distribution x(n) is Gaussian distributed, its kurtosis is zero (but not vice-

versa).

3.4 Testing for Normality

Normality of the porosity distribution has been tested using the Jarque-Bera statistic. The
Jarque-Bera test evaluates the hypothesis that an input data vector has a normal
distribution with unspecified mean and variance, against the alternative that it does not
have a normal distribution. The test is based on the sample skewness and kurtosis of a
distribution. For a true normal distribution, the sample skewness should be near O and the
sample kurtosis should be near 3. The Jarque-Bera test determines whether the sample
skewness and kurtosis are unusually different than their expected values, as measured by

a chi-square statistic.

The test calculates the skewness coefficient to determine if the distribution is symmetric
and then measures the kurtosis of the distribution. The Jarque-Bera statistic (JB) is

estimated as follows

2 2
JB=n|:%+————(Y2 —3) }
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where n is the number of observations in the sample, y; is the skewness and v, is the
kurtosis of the distribution. This statistic has a Chi-squared distribution under the null
hypothesis of normality. A symmetric distribution has a skewness coefficient of zero and

the kurtosis of a normal distribution is three.
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This test is implemented in Matlab in the routine jbtest. The routine performs the Jarque-
Bera test on the input data vector and returns H, the result of the hypothesis test. The
result is: A =1 if the null hypothesis, that the data set has a normal distribution, can be
rejected. If the statistic /=0, then null hypothesis cannot be rejected and the data tends to
have a normal distribution. The hypothesis is rejected if the test is significant at the 5%
level. The Jarque-Bera test is an asymptotic test, and should not be used with small
samples. For checking the non-normality of the porosity distribution, the packed column
was sampled with a sample size in the same range as the packing element size. Since the
increment in the @ direction was small for improving the resolution, the data were
resampled and the normality test was applied on the filtered data. Filtering was essential
as the data tends to have a normal distribution in the 6 direction and masks the existing
non-normal behavior in the z and r directions. The H-value is shown in Table 3.3 for
eight different types of packings, where a value of 1 indicates that the normality
assumption can be rejected. This statistic suggests that the porosity distribution for all the

types of packings is non-normal.

Strictly speaking the non-normality test is not essential as the normal distribution also has
values for skewness and kurtosis. The value of skewness for a normal distribution is 0
and for the kurtosis it is 3. Since the shape of the distribution is affected by the type of
packing which in turn affects the flow behavior of the gas and liquid, the test was
conducted to see if the data deviated significantly from normality. Very high values of
skewness and kurtosis may indicate that the liquid and vapor phases might not be

distributed uniformly thus affecting performance. The Jarque-Bera test was used for
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checking non-normality since it is an asymptotic test and can be used for a large sample

size. The sample size in this case was over 5000 data points.

Type of
packing Nominal size | H-Value |Mean porosity
inch m’/m’
Super Ring 0.3 1.00 0.960
Super Ring 0.5 1.00 0.975
Super Ring 1.0 1.00 0.980
Super Ring 2.0 1.00 0.985
Super Ring 3.0 1.00 0.982
Pall Ring 1.0 1.00 0.954
Pall Ring 1.5 1.00 0.965
Pall Ring 2.0 1.00 0.951
Hiflow Ring 1.0 1.00 0.962
Cascade Ring 1.0 1.00 0.971

Table 3.3: The hypothesis testing for normality for all of the above packings suggests that

the distribution is not normal

The skewness and the kurtosis for the existing random packings are given in Table 3.4.

The skewness and kurtosis are different for different packings even though the values of

the geometrical area are close to each other (for example 1 Cascade and 1> Pall rings).
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Hence these characteristic properties can be exploited to develop a relationship between

the mass transfer and pressure drop and shape of the packing.

Type of Nominal|Geometrical Mean |Standard
packing size area porosity |Deviation| Skewness | Kurtosis
Inch m¥m® | m*’m® | (*100)

Super Ring 0.3 315 0.960 0.55 -0.19 5.43
Super Ring 0.5 250 0.975 0.30 0.26 2.08
Super Ring 1.0 160 0.980 0.25 0.21 1.27
Super Ring 2.0 98 0.985 0.18 0.47 2.99
Super Ring 3.0 80 0.982 0.22 0.30 2.05
Pall Ring 1.0 224 0.954 0.28 0.87 7.76
Pall Ring 1.5 139 0.965 0.29 0.94 3.97
Pall Ring 2.0 113 0.951 0.35 0.84 3.48
Hiflow Ring 1.0 203 0.962 0.38 0.99 3.09
Cascade Ring 1.0 233 0.971 0.37 -0.09 0.51

Table 3.4: Higher order cumulants for various random packings

For developing a relationship between the performance parameters and the statistical
quantities, the first 9 packings were considered. The Cascade Ring was excluded from

building the model because the packing constant for mass transfer was not listed in the
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Billet and Schultes (1993) work. Pressure drop for the Cascade Ring was computed and

was later used as a validation data point for the Partial Least Squares model developed

for the purpose.
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Chapter 4

Geometric Properties for New Packings and

Response Surface Modeling

4.1 New Packings and mathematical models

Different shapes were considered for the development of new types of packings. The
relationship developed between the performance parameters and the shape-based
properties was done using all carbon steel packings. The interfacial area available for
mass transfer changes with the type of material because wettability characteristics for
different materials are different. Contact angles for the liquid are a strong function of the
type of the material along with the surface tension of the liquid. The affinity of liquid is
different for different types of materials. For this reason, only steel packings were
considered so that the model is not affected by this aspect. A general statistical model
including the type of material would be too far fetched in this case because there would
be an extra factor (material of construction of the packing) to be taken into account. The
type of relationship would have to include logical regression parameters. It would make
more sense to develop the model for the same type of material than try to generalize

every aspect with one regression model.

When developing the new packings, one of the main aspects that was taken into account
is the ease of manufacturing these new packings. The existing packings are manufactured

from sheet metal (mainly carbon steel) by punching the projections in a specific pattern
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and then rolling it into the cylindrical shape. All the new packings with the exception of

the helicoid can be manufactured in the same way.

Variations in the cylindrical shape of the Pall ring were considered to generate new
shapes. Three different kinds of packings were studied under this category. The two-

dimensional curves were projected in the z-direction to give three-dimensional shapes.

4.1.1 Rhodonea shaped element

The shape shown in Figure 4.1 is the projection of the curve called rhodonea in the z-

direction.

Figure 4.1: Rhodonea shape open type packing
The mathematical representation of the curve in two-dimensions is given by:

= sin(20)
= arsin@®)

r
x
y = brcos(0)
z
0

c
<0 <xn
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The curve was projected in the z direction and the figure was discretized in the form of
triangles and the structure made open. The quantities ¢, b and ¢ can be varied to obtain
different sizes for the packing element. Triangulation was required for input into the

packing algorithm and the open structure would ensure lower pressure drop which is a

feature in all modern packings.

4.1.2 Eight shaped element
The eight-shaped curve shown in Figure 4.2, is a projection of the eight shaped curve in

the z direction.

e

Figure 4.2: Eight shaped open type packing

The mathematical representation of the curve is as follows

x =basin®)

y = casin@®)cos®)
z=d

- <0 <7
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a, b and ¢ would decide the size of the packing in the x and y directions and the projection

in the z-direction, d, would decide the height.

4.1.3 Spiral shaped element
The final shape in these types of packings is the spiral shape shown in Figure 4.3. This is

a spiral projected in the z direction to enclose a greater surface area than an open

cylindrical shape.

60

40

N— >

20

Figure 4.3: Spiral shaped open type packing

The mathematical representation of the shape is given as follows:
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a, b and ¢ would decide the dimension of the element in the x, y and z directions

respectively.

4.1.4 Mobius Strip.

The packing being discussed as well as the one in the next section were selected because
the shape would allow recurrent contact points within the element. The enhanced contact
would result in an increased mass transfer coefficient. The effect of the shape on the

pressure drop would be predicted from the model.

Figure 4.4: Mobius Strip

The shape shown in Figure 4.4 is known as the Mobius strip. It is very similar to a

Raschig ring but one end is rotated by 90° before joining the other end.

The parametric equations for the Mobius surface are given by
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x =a(cos® +vcos(®4)cosd)
y =b(sinO +vcos(®5)sin0)
z =c vsin(%4)

00 <2n,-15v<1

a, b and ¢ would decide the dimension of the element in the x, y and z directions

respectively.

4.1.5 Helicoid
Another shape in this type of objects is the helicoid shape which is shown in Figure 4.5

below

VY[]
y " 0 N
\50 -EE/

Figure 4.5: Helicoid

50

7

The parametric equations for the helicoid are given by

X =avcosd
y =avsind
z=cO/n

0<0 <4m, —1<v<l
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Parameter a decides the dimension in the x and y directions and ¢ would decide the
dimension of the element in the z direction.

The last two packings would allow for the liquid rivulet to travel a greater distance on the
surface when compared to a simple cylindrical shaped element. This may enhance the

residence time and may increase the effective area available for mass transfer.

Different sizes of the packings mentioned in the previous sections were considered to
arrive at a packing size equivalent to the existing ones used in the model. For selecting
the size of the packing, different sizes of the new packing were considered together with
the dependence of the surface area and porosity on the dimensions of the packing in
cartesian co-ordinates. These studies were done using Response Surface Methodology

(RSM) which is discussed in the subsequent sections.

4.2 Features of Response Surface Methodology

Response surface methodology (RSM) was developed by Box and Wilson to aid in the
improvement of the manufacturing processes in the chemical industry. The response is a
continuous variable (e.g., cost, yield and in this work area), and the mean response is a
smooth but unknown function of the levels of factors (e.g., temperature, pressure and in
the current work the dimensions of the packing). Factors are the independent variables
that control the response (a dependent variable) and the levels are the high and low values
- of the factors which are varied to study the effect on the response. The mean response

when plotted as a function of the treatment combinations (or various levels of factors) is
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called the response surface. Figure 4.6 shows the response surface of area of the rhodonea

shaped packing versus the varying length and breadth of the packing.

Surface Plot of Area

120

Area 7

Figure 4.6: Effect of the dimensions on the area of the Rhodonea type packing

4.2.1 Designs for RSM

First order designs are used for fitting models linear in the independent variables and the
models are called first order models. These designs consist of 7y factorial points and
center points. The factorial points consist of the treatment combinations of a 2P factorial
experiment run as a completely randomized design. The center points are observations
collected at the center of the local region under study. The observations at the center
points are repeated to ascertain the experimental error (or pure error) and provide
adequate power for a test of lack of fit of the model. The first order models can be
represented as follows:

Y, = Bo+PBix, +tK +B,x, +e,
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where Y, denotes the observed response for the uth trail, x,; represents the level of factor
i at the uth trail, B, and B,,i=1,2,.....k are unknown parameters and the error variables

g, are assumed to be independent with N(0,6%) distribution. The parameter B, is a

measure of the local linear effect of the ith factor.

For higher order models, second order designs are required which can detect the
curvature in the response surface. In the current work second order designs have been
used exclusively to fit second order models. The response was expected to have curvature
which necessitates second order models and thus second order designs. The standard

second order model is represented as:
k k , k
Y, = B, +Z Bx; +Z Bix; +Z Byx;x; +€,
i=1 i=1 i=1

where Y, denotes the observed response for the uth trail, x,, represents the level of factor
i at the uth trail, B, and B,,i=1,2,.....k are unknown parameters and the error variables

g, are assumed to be independent with N(0,c°) distribution. The parameter B

u

represents the quadratic effect of the ith factor and {3, represents the interaction effect

between the ith and jth factors.

The second order design should allow for efficient estimation of the response surface;
allow for a test of lack of fit for the second order model and also allow for efficient
estimation of all model parameters. Second order designs must have at least (p+1)(p+2)/2
distinct design points (p is the number of parameters) otherwise not all the parameters can

be estimated.
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Central composite designs consist of a standard first order design with ny orthogonal
factorial points and n, center points, augmented by n, axial points. Axial points are points
located at a specified distance o from the design center in each direction on each axis
defined by the coded factor levels. This is pictorially represented in Figure 4.7. +1

represents the high level and —1 represents the low level.

0,a
’
-1,1 L1

-1,-1 1,-1

0,-a

Figure 4.7: Experimental points for Central Composite Design

Two axial points are located at a specified distance o from the design center in each
direction on each axis defined by the coded factor levels. The above figure shows four
axial points for two factors. The value of a is chosen as

o = Fi
where F is the number of points in the factorial region of design. In the above example
the number of points in the factorial region is 4. So the value of a for two factors is J2.

This value of o allows the design to be rotatable. The rotatability property of a design
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allows equal variance in all directions and provides the direction of subsequent
experimentation. The central composite design (CCD) was used to generate experimental

points.

4.2.2 Analysis of variance for a design
The total variation in a set of data is called the total sum of squares (SST). The quantity

SST is computed by summing the squares of deviations of the observed Y, ’s (the

observed variables at different levels of factors) about their average value.

SST = i(yu -Y)?

u=l
where Y is the mean.
The quantity SS7 is associated with N-1 degrees of freedom where N is the total number
of observations. It can be partitioned into two parts; the sum of squares due to regression
(sum of squares accounted by the fitted model) and the sum of squares unaccounted by

the fitted model. The sum of squares due to regression is computed by

SSR =§N:(Y(xu)—17)2

u=1

The deviation (¥ (x,)-Y) is the difference between the value predicted by the fitted

model for the uth observation and the overall average. The degrees of freedom for SSR

are p-1 where p is the number of parameters.

The sum of squares unaccounted by the fitted model is given by
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SSE:f(Yu ~Y(x,))*

This quantity is called the sum of squares due to error (SSE) or the residual sum of

squares. The degrees of freedom associated with it is N-p.

The residual sum of squares (SSE) is partitioned into the sum of squares due to pure error

(SSpr) and sum of squares due to lack of fit (SSroF).

The sum of squares due to pure error is represented as

S8 pi =ZZ(Yul '"YI)2

1=l u=l

where Y, is the uth observation at the /th design point, where u = 1,2,...,n; [ = 1,2,...,m

and Y, is the average of n observations at the /th design point.

The sum of squares due to lack of fit is found by subtraction

SS,,p = SSE — 88,

The test of the null hypothesis on the adequacy of fit (or lack of fit is zero) involves
calculating the F-ratio
SS LOF ( )
n—-p
F=— /"8
SS oz
(N—-n)

and comparing the value in the above equation with a table value of F. Lack of fit can be

detected at the o level of signiﬁcénce if the value of F in the above equation exceeds the
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table value, Fo, . n.n, Where the latter quantity is the upper 1000, percentage point of the
central F-distribution.. If the F-statistic in the above equation possesses a central F-

distribution, then the model used is the true model.

4.2.3 Response surface methodology for decision on the size of new packings

Response surface methodology was used for fitting the geometrical area as a function of
the dimensions of the packing. For each of the new elements, packing was carried out
using the packing program for different aspect ratios. Aspect ratio is defined as the ratio
of height to the diameter. The Central composite design was used to determine the high,
low and axial point values for the dimensions (Details of this type of design are given in
Section 4.2.1). Least squares fit was constructed from the data points with area as the
response variable and the dimensions (diameter and height of the packing element) of the
packing element as the factors. For each case, the probability of the lack of fit (LOF)
statistic was checked and the factors were changed to increase the probability associated
with the lack of fit statistic above the significance level. From the least squares fit an area
was selected for each of the packing and the corresponding packing element dimension
was calculated. The aspect ratio of the packings was maintained as 1. The linear-fit
equation correlating the area to the dimensions of the new packings and the Analysis of
Variance (ANOVA) table depicting the lack of fit are given in the subsequent paragraphs.
The definitions for the ‘sum of squares’ statistic shown in Tables 4.1 to 4.5 have been
described in Section 4.2.2. The ANOVA table and the Lack of Fit statistic aid in
determining if the fitted equation is an adequate representation of the actual relation

between the dependent and independent variables or not. The probability associated with
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the F-statistic for the Lack of Fit indicates the level of confidence one can have in the

fitted equation.

4.2.3.1 Rhodonea shaped element

The fitted equation is of the form:
a=308.397-4.469*]—0.832*b+0.026 *]*
where a is the area and / is the dimension in the x-direction and b is the dimension in the

y-direction as shown in Figure 4.1.

Source DF Seq SS | AdjSS | Adj MS F P
Regression 3 30230.6 | 30230.6 | 10076.9 | 39.72 0
Linear 2 26669.9 | 13912.2 | 6956.08 | 27.42 0
Square 1 3560.7 | 3560.7 | 3560.68 | 14.03 0.002
Residual Error 13 3298.4 | 3298.4 | 253.72
Lack-of-Fit 5 24142 | 24142 | 482.84 4.37 0.032
Pure Error 8 884.2 884.2 110.52
Total 16 33528.9

Table 4.1: ANOVA table for fitting the geometric area of the Rhodonea element as a
function of the dimensions

The ANOVA for the fit shown in Table 4.1 for the Rhodonea element shows that the lack

of fit is significant. The fit has been used despite this fact because the predicted area does

not deviate very much from the actual geometric area. For selecting the dimension of the
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element, an area of 180 m%m> was considered and for an aspect ratio of 1 the packing

element dimension is 28.1 mm. For subsequent analysis a size of 30 mm was used.

4.2.3.2 Eight shaped element

The fitted equation is of the form:
a=273.563-3.778* ] —0.545*b+0.022 * |
where a is the area and [ is the dimension in the x-direction and b is the dimension in the

y-direction as shown in Figure 4.2.

Source DF SeqSS | AdjSS | AdjMS F P
Regression 3 20705.1 | 20705.1 | 6901.7 | 25.92 0
Linear 2 18538.4 | 7645.2 | 3822.6 14.36 0.001
Square 1 2166.7 | 2166.71 | 2166.71 8.14 0.016
Residual Error 11 2929 | 2929.03 | 266.28
Lack-of-Fit 5 1555.3 | 1555.31 | 311.06 1.36 0.356
Pure Error 6 1373.7 | 1373.73 | 228.95
Total 14 23634.1

Table 4.2: ANOVA table for fitting the geometric area of Eight shaped element as a

function of the dimensions

4.2.3.3 Spiral element

In Table 4.3 the Lack of Fit statistic is very significant. An appropriate fit could not be
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found for any combination of the variables. So tentatively a size of 30 mm was used for

further calculations.

Source DF SeqSS | AdjSS | Adj MS F P
Regression 2 257.153 | 257.153 | 128577 | 4.06 0.051
Linear 2 257.153 | 257.153 | 128.577 4.06 0.051
Residual Error 10 316.956 | 316.956 | 31.696
Lack-of-Fit 6 311.061 | 311.061 | 51.844 | 35.18 0.002
Pure Error 4 5.895 5.895 1.474
Total 12 574.11

Table 4.3: ANOVA table for fitting the geometric area of the Spiral element as a function

of the dimensions

4.2.3.4 Mobius Strip
The fitted equation is of the form:
a=400.372—-8.509 *d +0.054 *d*

where a is the area and d is the dimension in the x-direction as shown in Figure 4.4. The
least squares fit predicts that the height is insignificant. The reason for this is that the
geometric surface area is approximately the same even though the height of the packing
is different. The lower surface area of a smaller element is compensated by the fact that
more elements can be packed within a given volume and thus give the same overall

surface area per unit volume. The surface area is relatively insensitive to the aspect ratio
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of the packing. The linear model is being used only to give an indication of the value of
geometric surface area. For example if the selected size is 29 mm as in this case, the
dimension is being rounded off to 30 mm (or the nearest multiple of 5). This is because
the area would still be within the range that was used for building the predictive Partial
Least Squares model (described in the next chapter) with the existing packings. ANOVA

table (Table 4.4) shows that the equation predicts the relationship between the area and

the dimensions well.

Source DF Seq SS | AdjSS | AdjMS F P
Regression 2 56697.7 | 56697.7 | 28348.8 | 31.36 0
Linear 1 47205.8 | 20071.5 | 20071.5 222 0.002
Square 1 9491.9 | 94919 | 94919 10.5 0.014
Residual Error 7 6327.5 | 6327.5 903.9
Lack-of-Fit 2 1461.1 | 1461.1 730.6 0.75 0.519
Pure Error 5 4866.4 | 4866.4 | 973.3
Total 9 63025.2

Table 4.4: ANOVA table for fitting the geometric area of the Mobius Strip as a function

of the dimensions

For a geometrical surface area of 200 m*/m>, keeping the aspect ratio as 1, the packing

element size calculated was 29 mm. A packing element size of 30 mm was used for

subsequent calculations.
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4.2.3.5 Helicoid

The fitted equation is of the form:
a=249.4-1383*h +23.1*% A’

where a is the area and 4 is the dimension in the z-direction as shown in Figure 4.5.

Source DF SeqSS | AdjSS | AdjMS F P
Regression 2 20719.6 | 20719.6 | 10359.8 | 107.65 0
Linear 1 16952.3 | 8019.45 | 8019.45 | 83.33 0
Square 1 3767.4 | 3767.37 | 3767.37 | 39.15 0
Residual Error 10 962.4 962.35 96.24
Lack-of-Fit 2 379.5 | 379.52 | 189.76 2.6 0.135
Pure Error 8 582.8 | 582.83 | 72.85
Total 12 21682

Table 4.5: ANOVA table for fitting the geometric area of the Helicoid as a function of

the dimensions

The least squares fit predicts that the diameter is insignificant. The reasoning is the same
as given in Section 4.2.3.4. Elements with smaller diameter have a smaller surface area
per element but the number of elements packed per unit volume is more. So the
geometric surface area is approximately the same for different diameters. As mentioned
before, an indication of the area is sufficient so that the packing size can be selected

accordingly. The Lack of Fit statistic shows that the predicted equation depicts the
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relationship well. For a geometrical surface area of 150 m*m?, keeping the aspect ratio as
1, the packing element size calculated was 21 mm. A packing element size of 25 mm was

used for subsequent calculations.

Having an approximate fit to relate the area to the dimensions allows one to decide on the
size of the packing that would give a specified area. Though the area of an individual
packing element is known, the overall surface area when the elements are packed is
difficult to determine because one cannot estimate the number of elements per unit
volume. In such cases tools like Response surface methodology allow one to predict
approximate relationship for interpolation. As shown in this chapter the use of statistical
methods is a better alternative than choosing the size of the packing element randomly. A

trial and error procedure is not advised when better methods are available.
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Chapter 5

Correlating Performance to Geometric and
Statistical Parameters

5.1 Mass Transfer and Pressure Drop model

Mass transfer models in the past years have been designed on the basis of empirical
calculation approaches which were based on experimental data, but could not be traced
back to any physical context. These relations always resulted in unproven design when
extrapolated outside the experimental database. Recent calculations are based on
physically proven conditions of fluid mechanics and mass transfer. One such model is by
Billet and Schultes (1999) for the prediction of mass transfer efficiency, pressure drop,
column hold-up and load limits. This model has been exclusively used in this work to
predict the physical properties of existing packings (like Pall rings, Super ring, Cascade
ring etc.). Physical properties are used to build a model based on the statistical properties
of the porosity distribution. The model was built using Partial Least Squares which is

discussed in the next section.

The Billet and Schultes model assumes that the empty space of the dumped packings can
be replaced for theoretical considerations by vertical flow channels, through which the
liquid trickles evenly downwards while the gas flows upwards. In reality the flow
channels deviate from the vertical direction, and the actual direction is determined by the
shape of the dumped packing. These flow channels are a function exclusively of the

shape of the packing element. The shape and structure of a packing element cannot be
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defined by the geometrical surface area and void volume (or porosity) alone. To take this
factor into account, the model assumes that the deviation of the real flow behavior of the
phases from the vertical flow channels in a column can be expressed by a packing

specific shape constant. The packing specific shape constants are different for different

physical properties.

5.1.1 Mass transfer efficiency

For a given separation task, the height of a mass transfer column is calculated according
to the HTU-NTU model, where HTU is the height of a transfer unit and NTU is the
number of transfer units. The number of mass transfer units is defined by the
concentrations of the incoming and outgoing flows of the material and by the phase
equilibrium. It is therefore dependent only on the separation task and the thermodynamic
properties. The height of a mass transfer unit is determined by the actual design of the
column and the load of the internals. The geometric surface area of the packing decides
the effective contact area between the phases and the ability of the packing to create a
turbulent flow of the phases decides the effectiveness of mass transfer. If the transfer
resistance is mainly situated in the liquid phase, the HTU of the liquid phase is the
deciding factor in the mass transfer efficiency of the packing. In the present study,
desorption of carbon dioxide from air with water was used for calculating the physical

properties, and the mass transfer resistance is mainly in the liquid phase.

The height of a transfer unit (HTU) is a function of the volumetric mass transfer

coefficient which is given as
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p, is the density of the liquid phase, kg/m®

v, is the kinematic viscosity, m*/s

o , is the surface tension, kg/s’

1, is the dynamic viscosity, kg/ms

C, is packing specific shape constant, dimensionless

D, is the diffusion coefficient, m?/s

u is the mean effective velocity, m/s

a is the geometrical surface area, m*/m>

¢ is the porosity, m*/m>

a,, is the specific interface area between the phases

d, is the hydraulic diameter, m

u, is the velocity with reference to the free column cross section, m/s

g is the gravitational acceleration, m/s*
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h, is the column holdup, m*/m’

5.1.2 Pressure Drop Model

The pressure drop in a packed column is dependent on the geometric surface, the void
volume and the gas load factor Fy (given below). The model contains a wall factor (K)
which takes into account the increased porosity at the column wall. The resistance
coefficient for the packings is dependent on the Reynolds number (Rey, defined in the
equations given below). On the basis of the theoretical model, the pressure drop of dry

packing can be calculated as follows

1,2 1 de
K 3(1-¢)d;

_c [64 18
Vo =Cpo Ee?JrW
ReV=__1:l_V_6_Z.P_

(-g),
dP=6(1—€)
a

For irrigated pressure drop, the dependency of the resistance coefficient () on the liquid
load has been described by the Froude number. The model for the irrigated pressure drop

is given as
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AP, . .
372 is the dry pressure drop in Pa per m of the height of the packing

% is the irrigated pressure drop in Pa per m of the height of the packing

Y, andy, are the resistance coefficients for dry packing and irrigated packing

respectively, dimensionless.

K is the wall factor, dimensionless

v, is the kinematic viscosity of the vapor, m%/s

C, is packing specific shape constant, dimensionless

u, is the mean effective velocity of liquid, m/s

d, is the packing element diameter, m

u, is the gas velocity with reference to the free column cross section, m/s
g is the gravitational acceleration, m/s>

h, is the column holdup, m*/m’

h, s1is the column holdup at loading point, m’/m?
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Fr, is the Froude number, dimensionless

The above relations were used to determine the volumetric mass transfer coefficient and
the pressure drop. The system for calculating these parameters consisted of desorption of
carbon dioxide from water with air at a temperature of 25°C in a column packed with
various existing packings has been considered. The mass transfer resistance for this
system exists mainly in the liquid phase. An air flow rate of 1500 m’/h and the molar
flow ratio of liquid and gas was fixed at 1.2 and the column was designed to operate at
80% of the capacity at flood point. The physical properties for the liquid and vapor

phases were obtained from Billet and Schultes (1993).

Nine different kinds of packing were considered for developing a relation between the
porosity distribution and geometric parameters and the performance. These packings
were selected from the publication by Billet and Schultes (1999) which has more than 30
different types of packings with the relations to calculate the pressure drop and mass

transfer efficiency.

The reason for considering only nine packings was due to the unavailability of the exact
shape and size of the rest of the packings. Hence, this database can be improved by
including the existing packings. The liquid side mass transfer coefficient and the pressure
drop are tabulated in Table 5.1. The relationship of these parameters with the statistical

variables is discussed in the next section.
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Packing Type | Nominal Size | Mass Transfer Pressure
Coefficient Drop
inch Pa/m
Super Ring 0.3 0.0096 474.15
Super Ring 2.0 0.0079 134.10
Pall Ring 2.0 0.0055 115.72
Pall Ring 1.5 0.0064 165.22
Pall Ring 1.0 0.0084 368.96
Hiflow Ring 1.0 0.0099 312.38
Super Ring 0.5 0.0092 324.88
Super Ring 1.0 0.0077 178.08
Super Ring 3.0 0.0051 103.33

5.2.1 PLS Theory and Algorithm

expressed in the following form:

parameters and performance characteristics

Y=b,+b X +b,X,+K +b, X,
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Table 5.1: Volumetric mass transfer coefficients and pressure drop for selected packings

5.2 Partial Least Squares (PLS) model for relating statistical

Partial least squares regression is an extension of the multiple linear regression model.
The linear model in its simple form specifies the linear relationship between a dependent

(response) variable Y, and a set of predictor variables, X’s so that the relation can be




In the above equation by is the regression coefficient for the intercept and the b; values
are the regression coefficients for the independent variables, 1 through p, computed from
the data. The same approach has been used in the previous section for building models
for packings using Response Surface Methodology. The linear regression model is useful
when the predictor variables are uncorrelated. In case they are correlated, then X'X (the
regressor matrix) will not be of full rank and as a result the variance of the regression

parameter estimates will be high, indicating low confidence in these estimates.

The multiple linear regression model has been extended in a number of ways to address
the more sophisticated data analysis problems. It serves as a model for multivariate
methods such as discriminant analysis, principal components regression and canonical
correlation. These methods have two important properties in common. They impose
restrictions such that
1. factors underlying the ¥ and X variables are extracted from Y'Y and X X matrices,
respectively, and never from cross-product matrices involving both the ¥ and X
variables
2. the number of the prediction functions can never exceed the minimum of the Y
variables and the X variables
Partial least squares (PLS) regression extends the multiple linear regression without
imposing the restrictions employed by the above methods. In PLS regression, prediction
functions are represented by factors extracted from the Y’XX'’Y matrix. The number of
such prediction functions that can be extracted exceed the maximum number of ¥ and X

variables. PLS regression is the least restrictive of the various extensions of the linear

72



regression model. It can be used in situations where the use of traditional multivariate
methods is severely limited, such as when there are fewer observations than the predictor
variables and when the predictor variables are correlated. The data set considered for the
predictor variable has two columns which are known to be correlated, the geometric

surface area and the porosity. The correlation between other variables is not known.

5.2.1.1 Basic Model

The main purpose of the partial least squares regression is to build a linear model
Y=XB+E

where Y is an n by m variables response matrix, X is an n by p variables predictor matrix,

B is a p by m regression coefficient matrix and E is a noise term for the model which has

the same dimensions as Y. The variables in X and Y are centered by subtracting their

respective means and scaled by dividing by their respective standard deviations.

PLS regression produces factor scores as linear combinations of the original predictor
variables, so that there is no correlation between the factor score variables used in
predictive regression model. A regression using factor extraction for this type of data
computes the factor score matrix, T, where,

T=XW
for an appropriate weight matrix W of dimension p by ¢. The columns of W are the
weight vectors for the X columns producing the corresponding n by ¢ factor score matrix

T. These weights are computed so that each of them maximizes the covariance between
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the responses and the corresponding factor scores. Ordinary linear regression is
performed to produce Q, such that

Y =TQ+E
where Q is a matrix of regression coefficients for T and E is the noise term. Once the
loadings are computed the above regression model is equivalent to the linear regression
model

Y=XB+E

where B = WQ. In this form the model can be used as a predictive regression model.

PLS regression produces the weight matrix ¥ reflecting the covariance structure between
the predictor and response variables. An additional matrix which is necessary for the
complete description of the PLS regression procedures is the p by ¢ factor loading matrix
P which gives a factor model

X=TP+F

where F is the unexplained part of the X scores.

5.2.1.2 Algorithm

There are two types of algorithms for computing PLS regression components viz.,
nonlinear iterative partial least squares (NIPALS) and SIMPLS algorithm. The SIMPLS
algorithm has been used for in the current work and the algorithm is given as follows:
Foreachh=1,2,...,c, where 49 = XY, My = X'X, Cp = I, and ¢ given

1. compute g, the dominant eigenvector of 4,4,
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w )
2. w,=4,q,, c,=w,'M,w,, w, =—"__ and store wy into W as a column
VECh

3. p,=M,w,, and store p, into P as a column

4. g,=A4,"'w,, and store g5 into Q as a column

5. v,=C,'p,, and v, =
4]

6. Cpy=C,—v,v,"and M,,, =M, —p,p,’

1. 4,,=C,A4,

In the present work PLS has been used to develop a model relating the pressure drop to
the statistical properties of the porosity distribution. The variables in the present work are
the statistical properties of the porosity distribution like skewness and kurtosis which
have been explained in Chapter 3, Section 3.3.1. These along with the area and the
porosity are used to develop a relationship with the performance parameters. If one is
faced with many variables and ill-understood relationships, multiple linear regression
might be inappropriate (as in the case when predictor variables are correlated). In such a
case, the approach of using empirical latent variable models is a good alternative to the

classical multiple linear regression.
PLS provides a tool for the analysis of the relationship and is used for finding a

regressive equation between the performance parameters like mass transfer coefficient

and pressure drop and the variables mentioned earlier.
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5.2.2 Partial Least squares model for existing packings

The type of packing, size and the independent variables, viz., geometric area, porosity
and standard deviation, skewness and kurtosis of the porosity distribution are shown in
Table 5.2. A relationship between the variables shown in Table 5.1 and the performance
characteristics (mass transfer and pressure drop) was developed for 9 different type of

packings. The size of the predictor block (X) is 9*5 and the of size response matrix is

9%2.
Porosity Distribution
P'}cyl::g Size Get;n::ltric plzlll'f):iliy Dexsfit:t.ion Skewness | Kurtosis
inch m’/m’ m’/m’ (*100)

Super Ring | 0.3 315 0.960 0.55 -0.19 5.43
Super Ring | 2.0 98 0.985 0.18 0.47 2.99
Pall Ring 2.0 113 0.951 0.35 0.84 3.48
Pall Ring 1.5 139 0.965 0.29 0.94 3.97
Pall Ring 1.0 224 0.954 0.28 0.87 7.76
Hiflow Ring | 1.0 203 0.962 0.38 0.99 3.09
Super Ring | 0.5 250 0.975 0.30 0.26 2.08
Super Ring | 1.0 160 0.980 0.25 0.21 1.27
Super Ring | 3.0 80 0.982 0.22 0.30 2.05

Table 5.2: Statistical parameters defining the porosity distribution and geometric

quantities for existing packings
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5.2.2.1 PLS model building

In this study, the X block or the predictor block contains the five variable mentioned
above. To ensure that the results are invariant to the choice of measurement units, all
variables are auto-scaled (zero mean and unit variance). Cross validation is used to
determine the number of latent variables in the PLS model. The cumulative PRESS plot

given in Figures 5.1 and 5.2 indicates that 4 latent variables is the ideal choice.

14
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Cumulative PRESS
0

Nao. of Latent Variables

Figure 5.1: CUMPRESS Plot for pressure drop
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o

—_—
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-
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Cumulative PRESS
=

No. of Latent variables

Figure 5.2: CUMPRESS Plot for mass transfer coefficient
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Table 5.3: Variance captured by Latent Variables in PLS Model for Pressure Drop

X Block ¥ Block
LV# | ThisLV | Tetal | ThisLV | 1.1.1 Total
1 5124 | 51.24 | 83.24 83.24
2 28.56 79.8 7.62 90.86
3 11.67 91.48 6.3 97.16
4 7.28 98.75 0.96 98.12

X Block Y Block
LV# | ThisLV | Total | ThisLV | 1.1.2 Total
1 48.53 48.53 46.3 46.30
2 28.17 76.70 18.06 64.36
3 12.75 89.45 18.99 83.34
4 8.80 98.24 1.16 84.50

Table 5.4: Variance captured by Latent Variables in PLS Model for Mass Transfer

Tables 5.3 and 5.4 list the variance explained by each latent variable. It can be seen that

increase in the variance explained is minor when the number of latent variables increase

from 3 to 4.

The coefficient vector for using the PLS model in the predictive form can be found by
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superimposing the weight vectors (used for projecting the regressor matrix into the latent

space) on the matrix of regression coefficients in the latent subspace.

Pressure Drop | Pressure Drop
Packing Type | Nominal (From the (predicted
Size Model) using PLS) % Error
inch Pa/m Pa/m
Super Ring 0.3 474 473 0.2
Super Ring 2.0 134 131 2.5
Pall Ring 2.0 116 122 5.8
Pall Ring 1.5 165 196 18.9
Pall Ring 1.0 369 363 1.6
Hiflow Ring 1.0 312 284 9.1
Super Ring 0.5 325 337 3.7
Super Ring 1.0 178 189 5.9
Super Ring 3.0 103 82 213

Table 5.5: Comparison between the actual values based on Billet Schultes model and

predicted values by the PLS model for Pressure drop

For the pressure drop, the Billet and Schultes model has an error of 9% when compared
to the experimental database for different kinds of random packings. The error predicted
by the PLS model is within that range except for two data points. This discrepancy can be
attributed to the smaller size of the model and the error in the Billet and Schultes model

itself. The predictions would improve if the size of the data set is increased and by
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applying the experimental results directly to the system.

Mass Transfer | Mass Transfer
Coefficient Coefficient
Packing Type | Nominal (from the (predicted
Size model) using PLS) % Error
inch (*100) (*100)
Super Ring 0.3 0.96 0.94 2.1
Super Ring 2.0 0.79 0.67 15.1
Pall Ring 2.0 0.55 0.54 1.8
Pall Ring 1.5 0.64 0.74 15.6
Pall Ring 1.0 0.84 0.84 0.0
Hiflow Ring 1.0 0.99 0.92 7.1
Super Ring 0.5 0.92 0.99 7.6
Super Ring 1.0 0.77 0.77 0.0
Super Ring 3.0 0.51 0.57 11.8

Table 5.6: Comparison between the actual values based on Billet Schultes model and

predicted values by the PLS model for Mass Transfer Coefficient

For the mass transfer coefficient, the Billet and Schultes model has an error of 12% when
compared to the experimental database for different kinds of random packings. The error
predicted by the PLS model is very close to this range of error. As in the case of pressure

drop prediction using the PLS model, this discrepancy can be attributed to the smaller
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size of the model and the error in the Billet and Schultes model itself. The predictions
would improve if the size of the data set is increased and by applying the experimental
results directly to the system. It must be kept in mind that the model has been developed

from a semi-empirical fit of the mass transfer coefficients and pressure drops.

The relationships in the predictive form for mass transfer coefficient and pressure drop
are given in the following equations.

m, =—0.0752c +0.4377y, +0.0098y , +1.2415a+0.5239%
AP, =0.0366 —0.0155y, +0.3457y, +0.8305a +0.153%
where m, is the volumetric mass transfer coefficient, AP, is the irrigated pressure drop,

o is the standard deviation of the porosity distribution, y, is the skewness, v, is the
kurtosis, a is the area and ¢ is the mean porosity. The independent variables for Cascade
Ring were not used in building the PLS model. It was used as a validation point for the
model. The pressure drop predicted from the model is 262 Pa/m as against the value of
294 Pa/m obtained from the semi empirical equation of Billet-Schultes model. This
translates to an error of 11%. Since the error between the experimental values and the

Billet and Schultes model is 9%, the prediction by the PLS model is comparable.

5.3 Statistical properties for new packings

From the size selected from the least squares model developed using Response Surface
Methodology, the elements were repacked and the porosity distribution was obtained for
the five new shapes. For the new packings the packed bed was sampled with a sample

size same as the packing element size. Since the increment in the 6 direction was small
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for improving the resolution, the data were resampled and the normality test was applied
on the filtered data. Filtering was essential as the data tends to have a normal distribution
in the 0 direction and masks the existing non-normal behavior in the z and  directions.
Jarque-Bera normality test was applied on the porosity distribution. The results of the test
are given in Table 5.7. As mentioned in Chapter 3, Section 3.4, an H value of 1 indicates
that the distribution is not normal. Since the shape of the distribution is affected by the
type of packing which in turn affects the flow behavior of the gas and liquid, the test was
conducted to see if the data deviated significantly from normality. Very high values of
skewness and kurtosis may indicate that the liquid and vapor phases might not be

distributed uniformly thus affecting performance.

Type of

packing Size H-Value |Mean porosity

mm m’/m’

Mobius 25 1.00 0.955

Eight shape 30 1.00 0.929

Rhodonea 30 1.00 0.923

Spiral 30 1.00 0.909

Helicoid 25 1.00 0.907

Table 5.7: The hypothesis testing for normality for new packings suggests that the

distribution is not normal

The skewness and the kurtosis along with the variance and other geometrical properties

are tabulated in Table 5.8.

82



Type of Geometrical Mean |Standard
packing Size area porosity |Deviation| Skewness | Kurtosis
mm m*m® | m’m’ | (*100)

Mobius 25 112 0.955 0.19 1.16 7.12

Eight shape 30 179 0.929 0.47 0.27 1.94

Rhodonea 30 194 0.923 0.49 -0.05 0.10

Spiral 30 230 0.909 0.63 0.01 3.22

Helicoid 25 229 0.907 0.47 1.15 2.26

Table 5.8: Higher order cumulants for new packings

For all the new packings the skewness and the kurtosis are in the range developed using

the regression equation given in Section 5.2.2.1 of this chapter.

5.4 Prediction of performance parameters for new packings

Using the PLS model in its predictive form, the mass transfer coefficients and pressure
drop for the five new packings were predicted. As discussed in the PLS modeling theory,
the data used for predicting the PLS model should be of zero mean and unit variance.
When predicting the dependent variables from the independent ones, the data needs to be
scaled. The mean and standard deviation of the new packings was used for scaling
purpose since the mean and variance of the new packings differ significantly from the
existing ones. The standardized values for the dependent variables were predicted using

these scaled values.
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Type of Mass Transfer | Irrigated

packing Size Coefficient | Pressure Dro
mm Pa/m

Mobius 25 0.006843 167.1487

Eight shape 30 0.007187 202.3062

Rhodonea 30 0.007184 214.9879

Spiral 30 0.008171 328.8627

Helicoid 25 0.009615 296.038

Table 5.9: Predicted volumetric mass transfer coefficients and pressure drop for new

packings

The predicted values for mass transfer coefficient and pressure drop for new packings

were rescaled with the mean and the variance used in building the PLS model. The data

for the new packings is tabulated in Table 5.9.

The performance parameters for the new packings have been predicted from geometrical

and statistical properties. This study provides a technique for selecting the type of

packings on which further experimentation can be done.
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Chapter 6

Summary and Conclusions

This study proposes a technique to relate the shape of a particle along with other
geometric parameters to the performance of a column in terms of mass transfer
coefficient and pressure drop. The shape here is defined by the porosity distribution of
the bed packed with elements of any given shape. Simulation of existing packings to
extract these geometrical properties was done using the packing algorithm. The algorithm
perceives the shapes as a set of triangles and packs these elements so that the clearance is
as minimal as possible. All the existing shapes and new shapes were presented as a set of
triangles to the packing program. This capability, that allows the algorithm to pack an
element of any arbitrary shape into a container, has been used to generate geometric

characteristics for packings in a cylindrical bed.

Using the packing program, the porosity distribution for each type of packed bed was
extracted. Since sample size plays an important part in defining the distribution, it was
selected to be same as the size of the particle. However, the increment along each of the
co-ordinate direction was the same in all the cases. This ensures that within a given
shape, the effect of size is captured. It has been shown in this study that the sample size
affects the porosity distribution. Finer resolution almost always gives a smooth wave-like
function, which is explained by the fact that smaller volume encounters more void space

and more solid metal as it is moved along the co-ordinate directions.
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The increment in the azimuthal (6) direction was selected to be small for improving the
resolution. Filtering this set of data is essential because the data tends to have a normal
distribution in the @ direction and masks the non-normal behavior in the z and »
directions. This is very similar to the ‘noise’ that one encounters in data sets. The data
was filtered so that the noise from the data set is minimized. For this reason the data were

resampled to check for any non-normal behavior in the data set.

Jarque-Bera normality test was performed on the distribution for each type of packing
and it was found that for all the packings considered in the study, the distribution is non-
normal. Higher order moments like skewness and kurtosis were estimated and used to
define the distribution. It was found that these statistical parameters vary by a factor of 2
to 3 for packings with similar area and porosity. From these observations it can be
concluded with a reasonable degree of certainty that higher order statistical parameters
such as skewness and kurtosis can be added to the geometrical area and porosity to define

the packing shape.

Five different element shapes were developed in the present work. The material
considered for these new packings is carbon steel. For developing the PLS model, all the
packings used were steel packings. The interfacial area available for mass transfer
changes with the type of material (since the contact angles for the liquid are a strong
function of the type of the material). So to have a common denominator in this regard

only steel packings were considered. Three different kinds of packing were developed as
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variations to the cylindrical shape of the Pall ring. The new two-dimensional curves were
projected in the z-direction to give three-dimensional shapes. Rhodonea, Eight shape and
Spiral are among these shapes. Two other shapes, the Mobius Strip and the Helicoid,
were selected because the shapes would allow recurrent contact points within the
element. The enhanced contact would result in an increased mass transfer coefficient. The
effect of the shape on the pressure drop can predicted from the PLS model developed

with existing packings.

The prediction of geometric surface area and porosity for each of the element as a
function of the size, when in a packed bed, was estimated using Response Surface
Methodology. Central Composite Design (CCD) was used to design the experiments for
fitting the least squares model. CCD is a second order design which captures the
curvature in the set of data. The data was predicted to be non-linear and hence the second

order model was used.

Least squares fit was used to arrive at the best possible relation between the dimensional
aspects of the packing element and its geometric properties (like surface area and
porosity). The probability associated with the Lack of Fit statistic ranges from 0.002 to
0.519. For all the shapes other than the Spiral shape, the probability associated with the
lack of fit suggests that the least squares model explains the variance in the data. The size
of the packing was selected so that the independent variables such as area and porosity lie
within the range of the data set used for developing the PLS model. Thus the size was

selected from the least squares fit mentioned above. The selected size of the packing
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varied from 25 mm to 30mm, and the elements were packed to extract the geometrical

and statistical properties.

For estimating the mass transfer coefficient and pressure drop of existing packings (Pall
Rings, Hiflow Ring and Super Ring), the Billet and Schultes model was used. The reason
for selecting this model is that the error in the estimated quantities is the least among all
the available models for random packings. In the Billet and Schultes model, the error is
12-14% for mass transfer coefficient and 9.1% for pressure drop. The thermo-physical
and fluid dynamic properties were estimated using the system of absorption of carbon
dioxide from air with water at a temperature of 25°C. The mass transfer resistance for this
system exists mainly in the liquid phase, and the liquid side mass transfer coefficient is
sufficient for determining the overall mass transfer efficiency. The mass transfer
coefficients for the existing packing elements ranged from 0.0051 to 0.0096 and the

pressure drop ranged from 103 Pa/m to 474 Pa/m.

The Partial Least Squares (PLS) technique was used to develop a regression relation
between the performance parameters and porosity distribution and geometric
characteristics of the packed bed. The rationale for using the PLS technique can be
explained by the fact that the relation between the independent variables is not very clear.
Some of these variables are known to be collinear (like geometric area and porosity,
generally higher surface area is associated with reduced porosity) and the relationship
between the other variables is not clearly known. Also the PLS method gives a better

prediction when compared to the ordinary least squares. Three latent variables were used
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for the model prediction in the latent variable subspace although the cumulative
prediction sum of squares (PRESS) is the least for four variables. The increase in the
variance explained by fourth variable is very minimal. For the given set of data, the
amount of variance captured by the model is around 98% for the pressure drop model.
This signifies that the model explains the correlation between the pressure drop and the
packed bed parameters very well. For the mass transfer coefficient the variance captured
by the model is 84% which is sufficient to say that the model captures the relationship

very well.

The values predicted from the model were compared to the actual data for both the
dependent variables. For the pressure drop the prediction error ranged from 0.2% to 9.1%
except in two cases where the error was 18% for the 1.5” Pall ring and 21% for the 3”
Super Ring. For the mass transfer coefficient the error ranged from 0% to 11% except in

two cases where it was 15% for the 1.5” Pall ring and the 2” Super Ring.

For the Cascade Ring the pressure drop predicted from the model is 262 Pa/m as against
the calculated value of 294 Pa/m from the Billet-Schultes model, which translates to an
error of 11%. The Cascade Ring was not used in building the PLS model. It provides a
validation point for the PLS model. The error suggests that the model is good enough

although more data is needed for confirming the accuracy of the model.

For the new packings, porosity distribution for the packed beds was not confirming to

normality. The mass transfer coefficient and pressure drop values for these new packings
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were estimated from the PLS model developed using existing packings. It was found that
although the geometrical area was almost the same as in case of the 30 mm Spiral
element and 25 mm Helicoid, the mass transfer coefficient is higher for the Helicoid. This
suggests that the model captures the effect of the shape of the particle. In case of the

predicted value of the pressure drop, a similar tendency has been observed.

In summary, it can be concluded that the proposed technique appears to be promising and
warrants further study. If this technique can be established, it can be used for generating
an optimized shape that would help in better overall performance characteristics for mass

transfer operations.
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Chapter 7

Recommendations

The present study has attempted to relate the shape defining parameters of random
packings to the mass transfer and hydraulics in a column. The characteristics of a
statistical distribution were used to define the empty spaces between packed beds. Since
these spaces are caused by randomly packed elements, it is suggested that the effect of
the shape is inherent in the distribution. Higher order moments can be used to define the
distribution. The shape of the packing element along with the geometrical surface area
and bulk porosity provide a comprehensive way to investigate the dependency of the
packing shape on the performance. If this technique can be established with further
studies, it would provide means for theoretical studies before actually manufacturing the

packing.
For future studies it is suggested that the focus be along the following lines:

»> The size of the database for building the model be increased to improve the
accuracy of the model. There exist other types of random packings which have
not been studied by Billet and Schultes. If these can be included in the future
studies, one can have a better model for the prediction of the performance.

» In this study only the mass transfer coefficient and pressure drop have been

estimated. Other parameters such as hold up and capacity can be included to
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increase the prediction capabilities of the model.

» Most of the current models include packing constants that take into account the
shape of the packing element. If this constant can be related to the shape defining
parameters a direct relationship can be established. An effort in this direction was
made but a proper fit was lacking.

» New packings have been developed as a part of this study. Further
experimentation can be performed on these shapes to ascertain the theoretical
findings.

» Other shapes can be studied by applying this model. The only drawback seems to
be that one-to-one relation between the dependent variables (mass transfer
coefficient and pressure drop) and some of the independent variables (higher

order moments) is not easily apparent from the model.

The future thrust should mainly be in the direction of improving prediction capability of
the model and experimental studies on the new shapes that have been developed as a part
of this work. This technique would be very much useful in filtering out shapes and

selecting those that have better performance characteristics.
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