
Improving API Documentation Quality Through
Identifying Missing Code Examples

by

Afiya Fahmida Sarah

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Afiya Fahmida Sarah, 2024

Abstract

Software libraries often provide documentation to describe the Application

Programming Interfaces (APIs) they offer. Such API documentation helps

potential users understand how to use the library. Studies have shown that

having code examples is one of the key criteria of good software documentation

quality and that lack of examples is one of the reasons why API documentation

becomes difficult to understand for library users. Thus, in this thesis, our goal

is to improve API documentation quality by identifying missed opportunities

for code examples.

Specifically, we propose a methodology to identify APIs from library API

documentation websites that require code examples for improving documenta-

tion quality. We use web scraping and heuristics to identify APIs with missing

code examples (APIsnoeg) from a library’s documentation website. We then

look for Stack Overflow questions about the APIsnoeg. Next, we use a large

language model (LLM) to determine if the post discusses the author’s struggle

with using those APIsnoeg. If it does, then we mark that apinoeg as a potential

API that may need a code example. Finally, we identify a list of APIs, for

which, adding code examples can improve the documentation quality. We can

then encourage library authors to add code examples for the APIs in this list.

Based on our methodology, we create a prototype tool. We evaluate the

intermediate steps of our tool for the API documentation of 3 libraries and

then analyze the API documentation of 12 libraries using the tool. We find

that although there are Stack Overflow posts where authors discuss an apinoeg,

ii

it is not always an indicator that having code examples would resolve the

authors’ issues.

iii

Preface

This thesis is an original work by Afiya Fahmida Sarah. The research project,

of which this thesis is a part, received research ethics approval from the Uni-

versity of Alberta Research Ethics Board, Project Name “Task-based Code

Recommender Systems”, No. Pro00074107-AME7, Oct 19, 2023. .

iv

To my amazing husband, Rafid

Whose endless support, love, and patience has been my strength throughout

this journey

And to my beautiful son, Rayan

v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my su-

pervisor, Dr. Sarah Nadi, for her continuous guidance, support, and patience

throughout my graduate studies. She has always given me the best advice

and constant motivation throughout this research journey, without which, this

would not have been possible.

I would also like to thank Dr. Christoph Treude from Singapore Manage-

ment University, for his insightful feedback, suggestions, and help with data

annotation, which greatly helped my work.

Lastly, my heartfelt thanks to my husband and colleague, Muhtasim Fuad

Rafid, for his unwavering support, encouragement, and constructive feedback

throughout my research. I would also like to thank him for assisting me in

data annotation.

vi

Contents

1 Introduction 1
1.1 Thesis overview . 4

2 Literature Review 6
2.1 Why Good Software Documentation is Important 6
2.2 Types of Software Documentation 7
2.3 Software Documentation Quality Aspects 8
2.4 Using Stack Overflow for Detecting Software Documentation

Issues . 10
2.5 Using LLMs to analyze Stack Overflow data 13

3 Methodology 16
3.1 Finding APIsdoc: FILTERAPIdoc 18
3.2 Finding APIsnoeg: FILTERAPInoeg 22
3.3 Finding Stack Overflow posts that mention the APIsnoeg:

FILTERhasAPI . 23
3.4 Finding Stack Overflow posts that discuss the APIsnoeg:

FILTERdiscussAPI . 27
3.4.1 Heuristic Based Approach 27
3.4.2 LLM Based Approach 29

3.5 Prioritize APIsnoeg: FILTERprioritize 31

4 Evaluation of Intermediate Pipeline Steps 35
4.1 Detecting APIsdoc from a documentation website: FILTERAPIdoc 35
4.2 Detecting APIsnoeg from a documentation website: FILTERAPInoeg 37
4.3 Detecting Stack Overflow posts that discuss the APIsnoeg:

FILTERdiscussAPI . 38

5 Pipeline Evaluation 42
5.1 Evaluation Setup . 42
5.2 Result . 43
5.3 Manual Verification of Result 44

6 Discussion 50

7 Threats to validity 54
7.1 Internal Validity . 54
7.2 Construct Validity . 55
7.3 External Validity . 55

8 Conclusion 57

References 58

vii

Appendix A LLM Query Prompt 63
A.1 Template of the Few-shot Query Prompt With Real Example

Posts . 63
A.2 Template of the Chain-of-Thought Query Prompt With Real

Example Posts . 65

Appendix B Non-determinism and Mean Error of LLM Model 68

viii

List of Tables

4.1 Performance scores (Medians) of the different approaches for
FILTERdiscussAPI . 39

5.1 Library statistics and results of running our pipeline 43
5.2 Result of FILTERprioritize . 44

B.1 Error and Non-determinism of LLM model 68

ix

List of Figures

1.1 Examples of an API documentation page of an apinoeg and a SO
post discussing the API . 3

3.1 The architecture of our system. Colored rectangles are the dif-
ferent processing components of our pipeline and the white rect-
angles show the input/output of each component. 17

3.2 Example of a SO post that mentions but not discusses the API
function requests.head . 18

3.3 Different layouts of documentation websites 19
3.4 Example of an API reference page and its corresponding HTML 21
3.5 Example of different ways of calling APIs 22
3.6 A flowchart of FILTERhasAPI 24
3.7 Examples of SO posts . 28
3.8 Zero-shot prompt template . 30
3.9 Few-shot prompt template . 33
3.10 Chain-of-Thought prompt template 34

4.1 Comparison of performance scores across the different approaches
for FILTERdiscussAPI, each data point in the box plot represents
an API and each box represents 19 APIs from the three libraries 40

5.1 Code example of numpy.random.Generator.random 46
5.2 Code example of requests.auth.AuthBase 46
5.3 A Stack Overflow post, where a developer is asking about a

performance issue while using the boto3.session.client from the
boto3 Python library . 47

5.4 SO posts discussing APIsnoeg 48
5.5 Result explanation of numpy.ndarray.clip 49

6.1 Example of a SO post where the user discusses their issue with
API parameter . 51

6.2 An SO post that discusses an API but does not imply the need
of an example . 51

x

Chapter 1

Introduction

Software libraries are collections of pre-written code that solve common prob-

lems of software development, making code more efficient, modular, and reusable.

To make use of these libraries, developers use the offered Application Pro-

gramming Interfaces (APIs) to interact with the library code. Developers

learn about how to properly use these APIs from the documentation of these

libraries, making software documentation an important part of a software li-

brary. However, the effectiveness of API documentation in communicating the

proper use of APIs highly depends on the quality of the documentation. Good

documentation can attract developers to use a particular library as under-

standing the usage of APIs becomes easy if documentation has all the needed

information [1].

Specifically, previous research shows that if the documentation has enough

example code showing how the APIs should be used, it becomes easier for the

developers to work with a software library as they do not have to delve deep

into the documentation to find out how to properly use the API, saving their

time and effort [2]. However, if the software documentation does not have

enough code examples, it makes the library APIs more difficult to use [3].

Thus, the existence of code examples is seen as one of the main positive qual-

ity attributes of software documentation. However, library authors may not

consider updating the documentation a priority. Additionally, adding exam-

ples of all APIs may be tedious and/or infeasible. Thus, the thesis statement

of this dissertation is as follows:

1

• Thesis Statement: A system that notifies library authors about po-

tential places for adding code examples to their API documentation can

encourage the library authors to improve the library’s documentation

quality.

The first part of this thesis statement requires us to devise a technique that

can identify potential places for adding code examples. The literature shows

that when faced with difficulty in using APIs, developers often explore other

sources of information to get more clarification about API usage, like Question

and Answer (Q&A) websites, such as Stack Overflow. Hence, Stack Overflow

is often considered an alternate source of API documentation when the doc-

umentation itself is insufficient [4]. Based on these assumptions, researchers

have even proposed methods to augment API documentation by using code

samples from Stack Overflow [5], [6].

Figure 1.1 shows an example of a Stack Overflow post, where the user

discusses their struggle to understand an API. Figure 1.1a shows the API docu-

mentation page of the pandas.core.window.ewm.ExponentialMovingWindow.

var API. The documentation page does not have any examples of the API.

The Stack Overflow post shows that the user is facing issues while trying to

use this API, which suggests that having a code example for this API in the

API documentation might have helped the user understand the API better.

Specifically, to operationalize the first part of our thesis statement, we

use Stack Overflow as a proxy for identifying the problematic APIs that need

code example(s). We hypothesize that if an API is missing examples and is

frequently discussed on Stack Overflow, it signifies the need for code examples

of that API. Based on this hypothesis, we design a technique that analyzes the

API documentation of a given library to detect which APIs are missing code

examples in their documentation. We then search for questions about these

APIs in Stack Overflow. We use a Large Language Model (LLM) to detect

if these questions discuss the usage of a particular API. We mark the APIs

that have at least 3 posts that discuss that API and identify the opportunity

of potentially improving the documentation quality by adding an example for

2

(a) API documentation of pandas.core.window.ewm.

ExponentialMovingWindow.var

(b) SO post discussing the API shows the need for an example

Figure 1.1: Examples of an API documentation page of an apinoeg and a SO
post discussing the API

these APIs.

After verifying our technique using some manually annotated ground truth

data, we proceed to operationalize the second part of our thesis statement.

Specifically, our goal is to use our technique to identify potential improve-

ments to documentation and then contact the corresponding library authors

to notify them about these potential improvements. Our hypothesis is that

when provided with a backup from Stack Overflow about how users are strug-

gling with a given API, library authors may be more willing to update their

documentation. Accordingly, we analyze the API documentation of 12 Python

3

software libraries to detect which APIs are missing code examples in their doc-

umentation to contact the corresponding library authors with our findings.

Analyzing the 12 Python libraries using our technique, we did not find

sufficient Stack Overflow posts for the APIs that are missing code examples

that would lead us to contact the library authors. We therefore could not

complete the second part of our thesis statement. We show the results of our

technique in the later chapters of this thesis and discuss the possible reasons

for these results in our findings.

1.1 Thesis overview

The thesis is divided into 6 chapters. Chapter 2 discusses the related literature,

and establishes the importance of code examples in software documentation.

We talk about previous studies that show the importance of documentation

quality and how a lack of examples can make using library APIs difficult. We

also talk about how Stack Overflow data is used in detecting and augmenting

issues in API documentation, establishing the premise of our methodology.

In Chapter 3, we describe our proposed methodology. We propose a pipeline

that detects all the APIs in a Python library, identifies the ones that do not

have code examples, and uses Stack Overflow to detect which of these APIs

are causing difficulties for software developers. In Chapter 4, we verify the

intermediate steps of our pipeline using a manually created ground truth. In

Chapter 5, we evaluate the results obtained from analyzing 12 Python libraries

using our prototype tool. We discuss future work and the limitations of our

work in Chapter 6, followed by the threats to validity in Chapter 7. Finally,

we conclude the thesis in Chapter 8.

The main contributions of this thesis are:

• A proposed methodology that can identify APIs from the documentation

that are missing code examples

• A method to determine which APIs without code examples are creating

difficulties for developers, by using data from Stack Overflow. We com-

4

pare a heuristic-based approach and an LLM-based approach for this

step.

• A tool written in Python that uses our proposed methodology to de-

termine problematic library APIs of Python libraries from their API

documentation.

• Evaluation of our prototype tool using manually created ground truth

value to determine its performance.

• Evaluation of the results of our prototype tool when applied to 12 Python

libraries.

5

Chapter 2

Literature Review

In this chapter, we discuss different research areas that are related to our the-

sis topics. First, we discuss the importance of good software documentation

in the software documentation life-cycle. We then talk about the different

documentation types and the type of documentation we focus on in this thesis

(i.e., API documentation). Next, we discuss different quality aspects of soft-

ware documentation based on previous studies, and establish the motivation

behind our choice of focusing on the ‘existence of code examples’ aspect of

API documentation quality in our thesis. Next, we discuss the use of Stack

Overflow data to identify API usability problems. Finally, we discuss the us-

age of large language models (LLMs) to analyze Stack Overflow data. All

these directions help to provide the necessary background and to motivate the

design choices we make in this thesis.

2.1 Why Good Software Documentation is Im-

portant

Software documentation is an integral part of the software development and

maintenance life cycle [7]–[9]. There have been several studies in the litera-

ture that highlight the importance of good software documentation. Parnas

[10] discussed different scenarios stating the need for precise software docu-

mentation for program developers and maintainers. Parnas [10] argued that

if a software is developed to be used by anyone other than a solo developer

(i.e., other developers, maintainers, or client users), it needs documentation.

6

For developing trustworthy software, he mentioned easier reuse of old designs,

better communication about requirements, more useful design reviews, eas-

ier integration of separately written modules, more effective code inspection,

more effective testing, more efficient corrections and improvements, and ease

of maintenance as the benefits of good documentation.

Lethbridge et al. [11] ran a survey with 48 software engineers, and con-

cluded that software engineers use software documentation for (1) learning a

software system, (2) testing a software system, (3) working with a new soft-

ware, (4) solving problems when other developers are unavailable to answer

questions and (5) looking for big-picture information about a software system.

Moreover, documentation serves as a means of communication between the

individuals involved in the production of a software, and also between library

developers and client developers [12]. Hence, software documentation has im-

portant use cases in the software development process, and it should be of

good quality for it to be useful for all stakeholders.

2.2 Types of Software Documentation

There can be different types of software documentation for the various stages

of software development [13]. Among the different types of documentation are

requirements, specifications, architectural/design, testing/quality, technical,

and user documentation [13], [14]. Each documentation type can target a

different audience and can be useful in different situations [10].

In our thesis, we narrow our scope to a software library’s documentation,

which targets the end users of the software library, i.e., the developers who

are going to use the different publicly exposed APIs of the library (a.k.a client

developers). Such library documentation is normally hosted on external web-

sites, which are easily accessible and can provide information that helps a

client developer understand and learn a library [8]. However, we focus on the

parts of the documentation with respect to how their APIs are used, rather

than other parts such as installation guide, updates of a library, etc.

Moreover, we limit ourselves to Python libraries and their documentation

7

in this thesis. Documentation of a Python library can be written manually by

the developers or can be generated. To make documentation easier, there are

different documentation generation tools for Python libraries, such as Sphinx

[15], pdoc [16], pydoctor [17], Doxygen [18], etc. Among these generation

tools, Sphinx is the most popular and recommended generation tool that can

convert reStructuredText [19] markup language into various output formats

including HTML, LaTeX, etc. In this thesis, we focus on the Python library

documentation that are generated by Sphinx.

2.3 Software Documentation Quality Aspects

Identifying ‘good’ vs ‘bad’ characteristics of documentation quality is a diffi-

cult task. However, several studies looked at what developers find useful in

documentation and concluded several quality aspects of good documentation

and issues in bad documentation.

In this thesis, our main focus is to improve documentation quality. We

present the findings of previous studies that summarized the different quality

aspects of documentation and also state the findings of different studies on

the issues of software documentation. Finally, we show our motivation behind

choosing one quality aspect that we focus on improving in this thesis.

Truede et al. [20] summarized 10 dimensions of software documentation

quality based on previous studies through which one can assess documentation

quality:

1. Quality - The spelling, grammar, and overall correctness of the docu-

mentation

2. Appeal - If the documentation is interesting to read

3. Readability - If the documentation is easy to read

4. Understandability - If the language of the documentation is under-

standable

5. Structure - If the documentation is well structured and easily navigable

8

6. Cohesion - If the text in the documentation makes sense when put

together

7. Conciseness - The terseness of the information in the documentation

8. Effectiveness - If the vocabulary in the text is used effectively

9. Consistency - If the terminologies used in the text are consistent and

do not vary

10. Clarity - There is no ambiguity in the text

Tang and Nadi [21] also summarized documentation quality aspects in

their literature review and from the different aspects, they focused on (1) The

existence of code examples, (2) Completeness, (3) Ease of Use, (4) Readability,

and (5) Up-to-date in their study to evaluate software documentation quality.

While good documentation helps a client developer to better understand

and learn a software, incorrect or inadequate documentation may lead to mis-

communication and result in wrong decisions in the software development

process. Uddin et al. [22] surveyed 69 employees related to software de-

velopment (47 developers, 15 architects, three consultants, three managers,

and one tester) and determined that incompleteness, ambiguity, obsoleteness,

incorrectness, inconsistency, and unexplained examples were blockers when it

came to understanding software documentation.

In another study [3], Robillard surveyed 83 software developers from Mi-

crosoft, Redmond, Washington to find out what aspects of documentation

cause hindrance to learning APIs, and different API learning strategies. For

the first part, he found that (1) lack of good examples, (2) incompleteness

(3) lack of support for complex usage scenarios (4) bad organization, and (5)

lack of relevant design elements were the main causes that make APIs hard

to learn. The absence of code examples was an obstacle for more than 25%

of the respondents. Also, for the second part of the survey on API learning

strategies, of 80 respondents, 55% used code examples to learn APIs.

Aghajani et al. [23], discussed different issues in software documentation

and mentioned wrong, outdated, and missing code examples as a few of the

9

issues. The same issue was also identified by Sohan et al. [24] where they

conducted a controlled study with 26 experienced software engineers to under-

stand the problems faced by the client developers of REST APIs face while

using APIs that lack code examples. They concluded that having code exam-

ples leads to higher satisfaction of the client developers while those APIs, with

less development time and better success rate.

McLellan et al. [2] observed 20 programmers from Schlumberger, having

several years to 20 years of experience, to determine how they use API docu-

mentation and interviewed them to understand what makes APIs more usable.

One of the interviewed programmers found code examples as an important part

of API documentation to show the context and the different ways an API can

be used. They also found that the programmer uses the given code examples

while using the APIs as a means of getting started.

All these studies highlight the importance of code examples in API doc-

umentation and show that lack of code examples makes an API less usable.

This motivates us to focus on the ‘existence of code examples’ quality aspect

of API documentation in our thesis.

2.4 Using Stack Overflow for Detecting Soft-

ware Documentation Issues

In this section, we first mention the studies that showed how data from Stack

Overflow can be an alternative source of documentation where people seek

solutions for API-related problems and how studies used that data to improve

documentation. We then present related work that looked at Stack Overflow

to identify API usability problems. These served as a motivation for us to use

Stack Overflow data in our study.

API documentation provides code examples to show how to use a certain

API. Often when developers do not find the examples they are looking for

in API documentation, they seek solutions elsewhere. A study by Treude et

al. [25] described Stack Overflow as a good source of ‘how-to’ documentation,

where answers to ‘how-to’ questions can be easily found. They also stated that

10

Stack Overflow would often become a substitute for official documentation if

the documentation itself is inadequate. Beyer et al. [26] classified these ‘how-

to’ questions as questions related to API usage which includes questions like

‘how to use an API’. This motivates us to also look into Stack Overflow to

find questions related to API usability.

Another study by Parnin and Treude [27] analyzed different documentation

on the web to find out the extent to which the web resources (Blog posts, Q&A

websites, forums, official doc, etc) cover the different methods of the API -

‘jQuery’. They searched each API method on Google, e.g., ‘jquery add’, and

analyzed the first 10 search results. They analyzed 1,730 search results and

concluded that, among different web resources, Stack Overflow covered 84.4%

of the API methods.

Multiple studies have used Stack Overflow posts for augmenting software

documentation. A study by Treude and Robillard [6] extracted important

sentences from Stack Overflow posts and used them to augment software doc-

umentation. They used a machine-learning approach to detect ‘insight sen-

tences’ from Stack Overflow and surveyed GitHub users to verify if the sen-

tences indeed add more meaning to the documentation. The results indicated

that 47.5% of the participants found the detected sentences meaningful and

that they added new information to the documentation.

Another study by Zhang et al. [5] used code examples from Stack Overflow

to enrich API documentation. They point out how there is a scarcity of code

examples in a lot of API documentation, and how Stack Overflow answers with

a very high count of upvotes can be used to mitigate this scarcity. They intro-

duced a new algorithm called ADECK (API Documentation Enrichment with

Crowd Knowledge) which would detect code examples from Stack Overflow,

cluster similar code examples, and embed the example clusters to the rele-

vant API in the documentation. They designed a collection of programming

tasks in which 21 developers participated to complete those tasks. The results

showed that ADECK-enriched API documentation increased the productivity

of developers. Similar to their work, Subramanian et al. [28] developed a

method called Baker that can enhance API documentation by linking source

11

code examples from Stack Overflow to the API in the documentation.

These studies show that Stack Overflow is used as an alternative source

of documentation when the documentation does not have enough examples or

developers fail to get adequate information on API from the documentation.

There are many studies that look into Stack Overflow to identify discussions

about API-related aspects. Liu et al. [29] looked into API-related Stack

Overflow posts to identify fine-grained developer needs expressed in sentences.

They performed an empirical study on 266 Stack Overflow posts to create a

taxonomy of developer needs in Stack Overflow posts, the information needed

to express them (relevant information), and the different roles of the APIs in

the post’s questions and answers. They identified eight developer need types,

which are (1) functionality implementation, (2) Non-Functional Improvement,

(3) Functional Improvement, (4) Error Handling, (5) Rationale Analysis, (6)

API Comparison, (7) Alternative Solution, and (8) API Usage Learning.

They also developed an approach that automatically identifies developer

needs in Stack Overflow posts. They defined this task as a sentence classifier

and trained multiple binary classifiers, one for each type of developer needs,

and each type of relevant information. Each classifier classifies an input Stack

Overflow question into two classes: ‘Yes’ or ‘No’, which determines if the

sentence contains any of the types or not. To identify developer needs, they

first identify API using their own implementation of Baker [28] for Java APIs.

We use some of their techniques of API identification in our methodology.

However, instead of training binary classifiers, we use an LLM to detect if a

Stack Overflow post discusses an API.

Uddin et al. [4] proposed a framework that automatically mines API usage

scenarios from Stack Overflow. The framework links code examples from the

forum to the API mentioned in the textual contents of the forum post and

generates a task description of the code example.

Another study by Wang et al. [30] mentions Stack Overflow as a source

of information that could help API developers to design APIs according to

developer needs. They present an approach that, among various other tasks,

that recommends Stack Overflow posts related to API design issues. Similar

12

to the Wang et al., Ahasanuzzaman et al. [31] also mentioned that Stack

Overflow posts concerning API issues can help API developers/designers in

both learning about the issues in their APIs and in solving those issues faster.

To identify and separate the posts that discuss API issues from the other posts,

they modeled the problem as a binary classification problem. They build a

supervised learning technique that can identify API issue-related sentences

from Stack Overflow posts. In addition to that, they used other Stack Overflow

data to build a technique called CAPS that can classify Stack Overflow posts

related to API issues.

Uddin and Khomh [32] studied API-related opinions of developers in Stack

Overflow and concluded that Stack Overflow provides opinions about different

aspects of an API. These opinions can affect other developers’ perception of

the API and the choices they make, such as, whether to use that API or not,

how to use the API, etc. They developed a tool called Opiner that can detect

opinionated sentences and associate those to the mentioned APIs. It can also

detect API aspects, such as usability, and performance, that are discussed in

the reviews of the posts.

All these studies show the vast usage of Stack Overflow data in identifying

API-related aspects or issues. This motivated us to look into Stack Overflow

data to find API usability-related posts to determine if developers struggle

with using APIs that do not have examples in the documentation.

2.5 Using LLMs to analyze Stack Overflow data

Large language models (LLMs) are a category of foundation models trained

on immense amounts of data making them capable of understanding and gen-

erating natural language and other types of content to perform a wide range

of tasks [33]. Since the introduction of LLMs, they have been used in soft-

ware engineering research in various ways. Studies have pitted Stack Overflow

against LLMs to determine which can assist software developers better. Kabir

et al. [34] collected ChatGPT answers to 517 Stack Overflow questions. They

manually analyzed the answers given by ChatGPT and compared them with

13

the human answers for those questions from Stack Overflow. They found that

52% of ChatGPT answers contained misinformation, 77% of the answers were

more verbose than human answers, and 78% of them had different degrees of

inconsistencies.

Another study by Liu et al. [35] compared the performance of Stack Over-

flow and ChatGPT in assisting programmers and increasing their productivity

in solving different programming-related tasks, such as algorithmic challenges,

library usage, debugging, etc. Studies have also used ChatGPT API to create

IDE plugins to assist software developers with code explanations. Chen et

al. [36] introduced GPTutor, a Visual Studio Code extension that can help

developers by providing code explanations. Similar to their work, Nam et al.

[37] developed an IDE plugin that can explain programming code without any

explicit prompts by the user. They used OpenAI’s GPT-3.5-turbo model to

build the plugin and answer API-related questions from a code snippet. These

studies show the different ways LLMs have been used in research along with

Stack Overflow data and also show the capability of LLMs in comprehending

code snippets.

LLMs such as the different models of OpenAI have exceptional capabili-

ties in understanding natural language from different contexts [38], [39]. As

Stack Overflow posts are unstructured and written in natural language, we

use OpenAI’s GPT-3.5-turbo model [40] to comprehend and analyze the core

topic of Stack Overflow posts. Studies have shown that the performance of

LLMs can be improved by following different prompting techniques and giv-

ing proper instructions and examples [41]. Accordingly, we use the model

off-the-shelf without any fine-tuning but experiment and evaluate its response

by using different prompting techniques [42]. We finally select one prompting

technique to build our methodology.

A study by Kocoń et al. [43] showed that ChatGPT is particularly good at

binary classification tasks. They tested ChatGPT on 25 tasks that included

simple binary classification of texts like spam, humor, sarcasm, aggression de-

tection, or grammatical correctness of text. Moreover, they generate prompts

to force ChatGPT to answer with a specified value. Similar to their work, we

14

ask our model a binary question and create our prompt in a way that forces

the model to answer either yes or no. More details of our methodology and

prompt generation are described in Chapter 3.

15

Chapter 3

Methodology

Our goal is to (1) find library APIs that do not have code examples in the

documentation and (2) determine which of these APIs users struggle to use,

and as such, adding a code example for this API would improve the API

documentation quality.

Below are some of the terms that we define for the APIs listed in a library’s

documentation.

• An API that is listed in the documentation: apidoc

• All the APIs that are listed in the documentation: APIsdoc

• An apidoc that does not have any code example: apinoeg

• All the APIsdoc that do not have any code example: APIsnoeg

• An apinoeg that would benefit from additional code example(s):

apineedeg

• All the APIsnoeg that would benefit from additional code example(s):

APIsneedeg

Our full pipeline, shown in Figure 3.1, follows the pipe and filter architec-

ture. It is divided into 5 components. Each colored box represents each com-

ponent with its name written on top. We name the components FILTERAPIdoc,

FILTERAPInoeg, FILTERhasAPI, FILTERdiscussAPI, and FILTERprioritize and will

refer to them by these names in the rest of the thesis.

16

Figure 3.1: The architecture of our system. Colored rectangles are the differ-
ent processing components of our pipeline and the white rectangles show the
input/output of each component.

We achieve our first goal through FILTERAPIdoc and FILTERAPInoeg. For

achieving the second goal, our intuition is that if a user struggles with an

apinoeg, it indicates that having a code example for that apinoeg would benefit

the user. Often when the documentation of an API is not sufficient, developers

depend on online forums to learn an API [44]. Stack Overflow is a question-

answering website where people ask questions about different programming-

related problems that they face. We, therefore, look at Stack Overflow to find

the posts related to the APIsnoeg and assume that an apinoeg with more posts

that discuss it suggests that more users struggle with that apinoeg. We use this

assumption to prioritize the APIsnoeg using FILTERprioritize.

A user can mention an API in a Stack Overflow post for different reasons.

An API can be a part of a code snippet, or it can be mentioned as a part of

17

Figure 3.2: Example of a SO post that mentions but not discusses the API
function requests.head

the steps that a user performs to achieve a different goal, where the main topic

of the post is not the API of interest. When the main topic of discussion of a

post is not the API of interest, we cannot use it as evidence that developers

struggle with this API. Figure 3.2 is an example of a post where the user

mentions requests.head as a part of the steps that they tried, but the main

topic of discussion of this post is not requests.head. Accordingly, to find the

posts where users discuss their struggles with using an API, we first find the

Stack Overflow threads that mention that API using FILTERhasAPI and then

find out if the core topic of the post is that API using FILTERdiscussAPI.

Figure 3.1 shows the full pipeline of our technique. In the rest of this

chapter, we explain the 5 parts of our pipeline in detail.

3.1 Finding APIsdoc: FILTERAPIdoc

Our goal in this step is to find all the listed APIs from a library’s documenta-

tion website. The input of this filter is a library documentation URL, and the

output is a list of APIsdoc.

In this section, we first describe the different features of library docu-

mentation websites that we consider and then describe the different steps of

18

(a) API Documentation of Collections1 (b) Documentation of Pandas2

(c) API Documentation of Requests3 (d) API Documentation of Numpy4

Figure 3.3: Different layouts of documentation websites

FILTERAPIdoc.

Most software libraries have a documentation URL, which is usually the

landing page of the library, which we refer to as the documentation homepage.

A library documentation usually has API reference page(s), where they specif-

ically list their APIs, their parameters, and other information related to the

APIs. There can be other pages, such as example page(s), getting started page,

etc. Moreover, there can be different layouts for each library’s documentation

page. Some libraries have all the information in one single webpage, such as

Python’s collections1 library (Figure 3.3a), and some libraries can have other

page references linked in the homepage, such as a user guide page, getting

started page, API reference page, etc. The pandas2 library (Figure 3.3b) is an

example of such a library. Moreover, some libraries have a single webpage as

their API reference page, such as the requests3 library (Figure 3.3c), whereas

some libraries document their API references in multiple webpages, such as

1https://docs.python.org/3/library/collections.html
2https://pandas.pydata.org/docs/
3https://requests.readthedocs.io/en/latest/api/

19

the numpy4 library (Figure 3.3d). For extracting APIsdoc, we are mainly inter-

ested in the API reference page of a library’s documentation. However, while

looking for APIsnoeg, we look across the other pages of the documentation too.

Since libraries have different documentation layouts and URL formats, it is

challenging to find a generalized way to automatically detect the URL for the

API reference page(s). Going through the documentation websites of different

libraries, we observe that there are certain keywords in the URL of most

libraries’ API reference pages, such as, ‘api’, ‘reference’, etc. We make a list of

those keywords such that we can search for those words in a URL to determine

if that URL belongs to the API reference section of a library’s documentation.

We also make a list of some stop words to look for in the URL so that we do

not consider the URLs that contain one of those words, such as ‘releasenotes’,

‘deprecated’, ‘updates’, etc.

For this research, we limit ourselves to the documentation of Python li-

braries. As we discussed in the previous paragraph, different library docu-

mentation websites might have different layouts and it is hard to generalize

all of them to extract necessary information from the websites. Sphinx [45] is

a documentation generation tool for Python code. We find that the library

documentation pages generated by Sphinx usually maintain a specific HTML

format while documenting their APIs, so we focus on the documentation gen-

erated by Sphinx in this study. To explain the HTML format, we show an

example of an API reference page and its corresponding HTML structure in

Figure 3.4. We find that the API signature and its details are generally writ-

ten inside a <dl> tag, which has a ‘class’ attribute that specifies the type of

the API, such as function, method, class, attribute, or property. The yellow

highlighted box in Figure 3.4b shows the <dl> tag. The <dl> tag has a <dt>

tag inside of it with the attribute ‘id’ which contains the fully qualified name

(FQN) of the API, shown in the green highlighted box in Figure 3.4b. We now

describe how FILTERAPIdoc uses the information in these tags to extract the

list of APIs in the documentation, APIsdoc.

4https://numpy.org/doc/stable/reference/index.html

20

(a) A portion of an API reference page

(b) A part of the corresponding HTML

Figure 3.4: Example of an API reference page and its corresponding HTML

• FILTERAPIdoc takes the URL of the homepage of a library’s documenta-

tion website. As described above, the homepage may contain references

to the links of the other pages, such as the API reference page, user

guide page, etc. FILTERAPIdoc uses the Python library BeautifulSoup

[46] to identify the URLs and only visits the URLs that contain one of

the keywords identifying API reference pages and does not contain any

of the stop words.

• For each API reference page, FILTERAPIdoc looks for the <dl> tag to

identify the type of the API. FILTERAPIdoc only considers ‘method’,

‘function’, ‘class’, and ‘exception’ APIs. To retrieve the FQN of the

API, it looks for the <dt> tag inside the <dl>.

• For extracting the different parameters of the API, it then uses Python’s

‘ast’ (Abstract Syntax Trees) module to parse the API’s signature, shown

by the green highlighted box in Figure 3.4a. The ast module cannot

parse some special characters like asterisk (*), and slash (/), which are

sometimes present in the parameters of some APIs. FILTERAPIdoc pre-

processes the API signature to remove such characters and then parses

the API signature to get the API’s simple name, package name, and the

required and optional parameters.

21

(a) A code example from Scipy documentation
[V1.13.1]5

(b) Mapping of the variables to
their FQN

Figure 3.5: Example of different ways of calling APIs

At the end of these steps, we have a list of all the APIs that appear in the

library’s API documentation, APIsdoc, along with their signature.

3.2 Finding APIsnoeg: FILTERAPInoeg

The input of this filter is the URL of the library’s documentation website and

the list of APIsdoc that we get from the previous filter, and the output is a list

of APIsnoeg.

To find APIs that appear in a library’s documentation but do not have code

examples, i.e., APIsnoeg, we first find all the code examples in the documen-

tation pages, and then find which of APIsdoc appear in those code examples.

The APIsdoc that do not appear in any code example are the APIsnoeg. Below

we describe the steps of FILTERAPInoeg in detail.

• Unlike FILTERAPIdoc, FILTERAPInoeg considers all the URLs of a li-

brary’s documentation to look for code examples, except the ones that

have any of the stop words in them. Although code examples can be

written in different styles in different library documentation websites,

we find that the documentation generated by Sphinx usually has each

block of code examples inside a <pre> HTML tag. Similar to the ap-

proach of Zhong and Su [47] and Tang and Nadi [21], FILTERAPInoeg

looks for the <pre> tag to collect all the code examples.

• To identify an API call within a code block, FILTERAPInoeg uses a sim-

ple heuristic of searching for open round parenthesis (”(”) in each code

block. However, an API is not always called using the FQN of the API.

22

There are different ways a function or class constructor can be called.

For example, it can be called using a variable declared in a previous

line of the code block or in the import statements. It can also be called

using its simple name which was imported from a package of a library.

For example, in Figure 3.5a5, the class cKDTree is called in line number

5 using the simple name of the API that was imported in line num-

ber 2 from the package scipy.spatial. So cKDTree refers to the API

scipy.spatial.cKDTree. Similarly, the variables ‘np’ and ‘tree’ are de-

clared in lines 1 and 5 respectively. So, in line 4, np.mgrid actually

refers to the API numpy.mgrid and in line 6, tree.query actually refers

to the API scipy.spatial.cKDTree.query. To determine these APIs,

FILTERAPInoeg parses each code block and constructs a mapping be-

tween each variable that appears in the code and its FQN. Figure 3.5b

show an example of the mapping constructed from the code block.

• After determining the called APIs, FILTERAPInoeg matches the APIs

from each code block with the FQN of the APIsdoc. If there are multiple

matches, it compares the number of parameters to find the correct match

of each called API.

• Lastly, FILTERAPInoeg collects any APIsdoc that do not appear in any of

the code blocks as the APIsnoeg.

3.3 Finding Stack Overflow posts that men-

tion the APIsnoeg: FILTERhasAPI

The input of this filter is the list of APIsnoeg of a given library, and the Stack

Overflow posts related to that library. The output is a map of APIsnoeg with

the Stack Overflow posts that mention those APIsnoeg.

FILTERhasAPI uses a matching heuristic to find if a Stack Overflow post

mentions a certain API. It first fetches the posts from Stack Overflow using

StackAPI [48]. We arbitrarily choose to get posts from the last 6 years (Jan

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.query.html

23

Figure 3.6: A flowchart of FILTERhasAPI

2018 - June 2024) so that we do not get old posts that are no longer valid.

We do not choose a smaller number so that we get enough posts per API for

our pipeline to process. FILTERhasAPI uses a filter to get posts from the last

6 years and the ones that use the library-specific tags. We select the tags for

each library by manually looking at the tags of several Stack Overflow posts

related to each library. We select the most common tag that the users use

for a library. For example, for the pandas library, we find that ‘python’ and

‘pandas’ are the two most common tags that users use, so we use the tag

‘pandas;python’ to fetch the posts related to the pandas library. StackAPI by

default returns 500 Stack Overflow posts using its default parameter values. To

get more data, FILTERhasAPI sets the parameters ‘page size’ and ‘max pages’

for the StackAPI endpoint to 100 and 400 respectively.

After fetching all the Stack Overflow posts for a library, FILTERhasAPI

determines if any of the APIsnoeg are mentioned in the posts. For each post, it

only looks at the title and question body along with any code snippet provided

in the question body. Figure 3.6 shows the flowchart of FILTERhasAPI, and

below we describe each step in detail. Note that each API has a fully qualified

name (FQN). We refer to each part of the FQN as the components of the API,

and the last part of the FQN as the simple name of the API. For example,

24

pandas.read csv is the fully qualified name, pandas and read csv are the

two components of the FQN and read csv is the simple name.

FILTERhasAPI uses the following heuristics to determine if an API is men-

tioned in a post:

• If a post has a question title and question body, and does not have any

code snippet, FILTERhasAPI first looks for any mention of the API in the

post title; if not found there, it looks into the post’s question body:

– Search in post title:

∗ If FILTERhasAPI finds the API’s FQN in the post title, it con-

cludes that the post mentions that API.

∗ The FQN of an API can have multiple components. We find

that SO post titles often mention APIs in a sentence with a

space or other words in between each component. For example,

‘how to get pandas get dummies to emit N-1 variables to avoid

collinearity?’, here pandas.get dummies is referred to with a

space between the two components. Another example is ‘Differ-

ence between groupby and pivot table for pandas dataframes’,

here two APIs are mentioned, pandas.DataFrame.groupby and

pandas.DataFrame.pivot table. To identify such mentions,

FILTERhasAPI splits the FQN into components and looks for

all the components of an FQN in the title.

∗ If an API has 2 or 3 components, FILTERhasAPI will look for all

these components in the post. However, there are many APIs

that have more than 3 components in their FQN. We design

FILTERhasAPI such that that if an FQN has more than 3 com-

ponents, it will conclude there is a match if there are at least 2

matched components. This is because, looking through multi-

ple posts, we find that users often do not write all the compo-

nent names for longer FQN. However, we find many examples

where removing one component from a FQN that consists of 3

25

components gives false results. For example, we want to distin-

guish between pandas.DataFrame.pivot and pandas.pivot.

If FILTERhasAPI finds a match according to these heuristics, it

says the post mentions the API.

– Search in post question body:

∗ FILTERhasAPI looks for the whole FQN either in the question

body’s text or in any of the ïcodeð tags in the question body.

It marks that the post mentions the API if it finds any such

match.

• If one or more code snippets exist in the post body, then the API

should be mentioned both in the paragraph and the code snippet for

FILTERhasAPI to conclude that the post mentions that API. In this case,

if the simple name appears in ïcodeð tag or ïhrefð tag in the paragraph,

and it also appears in the code snippet, FILTERhasAPI marks it as a

match. It uses regular expressions to look for the simple name of the

API followed by the opening bracket (“(”) to find the API call inside the

code snippets.

We note that our above methodology for detecting if an API is mentioned

in a Stack Overflow post is similar to a previous study by Liu et al. [29] that

also detected APIs from SO posts. However, they look for any API mentions in

a Stack Overflow post’s question and answer, but in our case, we have a fixed

list of APIs to search for in a Stack Overflow post’s question, which makes our

scope smaller. In their work, they look for Java APIs in text using (1) regular

expressions to identify FQN, and method name (e.g., String.split()), (2)

they look for texts wrapped in ïcodeð tag. However, as we are not looking

for generalized API names, we are not using regular expressions, but rather

looking for a direct match of the API names.

26

3.4 Finding Stack Overflow posts that discuss

the APIsnoeg: FILTERdiscussAPI

The input of this filter is a map of APIsnoeg with the Stack Overflow posts

that mention those APIsnoeg, and the output is a map of the APIsnoeg with the

Stack Overflow posts that discuss those APIsnoeg.

At this point, we have a list of posts that we know mention one of the

APIsnoeg. Recall that we want to identify posts that may suggest that users

struggle with using an API. However, as we discussed earlier, just because

a post mentions an apinoeg does not necessarily mean that the core topic of

the post is that API; it can be a part of a code snippet and might not be

directly relevant to the main issue of the post. In such a case, we cannot say

that the post discusses that apinoeg or conclude that users had problems using

the API. Figure 3.7 shows examples of two Stack Overflow posts, where both

posts mention the API: pandas.get dummies, but the API is the core topic of

the post in Figure 3.7a, whereas in Figure 3.7b, the main topic is something

else, and the API is mentioned as a part of reproducing the problem that

the user is facing. Given a Stack Overflow post and an apinoeg, the goal of

FILTERdiscussAPI is to find if the user is struggling with the API of interest.

To find if a Stack Overflow post discusses a certain API, we explore two dif-

ferent methods: (1) a heuristic-based method and (2) an LLM-based method.

In this section, we describe the details of these two methods. We later empir-

ically compare the two methods in Section 4.3 to decide which one to use for

our experiment on the 12 libraries.

3.4.1 Heuristic Based Approach

A text summary conveys the main ideas and important information from the

original text in significantly less space [49]. With that in mind, our key insight

in this method is that if we summarize the content of a Stack Overflow post,

the summary should contain the core topic of the discussion. Therefore, if we

find the API of interest (apinoeg) in the summary of the post, we can say that

the core topic of the post is the apinoeg.

27

(a) Core topic is pandas.get dummies

(b) Core topic is not pandas.get dummies

Figure 3.7: Examples of SO posts

Extractive summarization and abstractive summarization are two text-

summarization techniques. Extractive summarization picks the most impor-

tant/relevant sentences and organizes them to form the summary, whereas

abstractive summarization generates new sentences to convey the vital infor-

mation from the text and forms the summary [50] [51]. In our case, we need to

have the exact API in the summarized paragraph if that API is the core topic

of the post, making extractive summarization more fit for our purpose. We

chose one of the most popular extractive summarization algorithms - LexRank

[52], from the Python library ‘sumy’, to create a summary of the post and look

for the API of interest in the summary. We follow the following steps:

• For each post, we merge the post title and the text of the question body

and create a summary.

• In the summary, we look for the fully qualified name of the API. If found,

we conclude that the post discussed that API.

28

3.4.2 LLM Based Approach

We aim to find if a certain API is the key topic of discussion in a Stack Overflow

post. Data on Stack Overflow is unstructured, so to find out the main topic

of discussion of a Stack Overflow post, we not only need to process the text,

but we also need to understand the semantics of the post, which is tedious to

automate using regular expressions and heuristics. On the other hand, different

large language models now have exceptional capabilities in natural language

understanding (NLU) and can recognize semantic information from different

contexts [38], [39]. We can use this capability of large language models (LLMs)

to understand the semantics of Stack Overflow posts to find if a certain API

is the core topic of discussion of the post.

Pre-trained LLMs such as GPT models [53] take instruction in natural lan-

guage as a prompt or input. We can give them instructions, or ask them any

question in natural language, and the models, understanding the question,

provide a suitable answer to the question, which we can say is the model’s

response or output. The quality of the response highly depends on the quality

of the prompt. We can improve their response by following different prompt-

ing techniques and giving proper examples and instructions [41]. Among the

different LLMs, we choose to use OpenAI’s GPT-3.5-Turbo [40] model for this

study as this is fast and cost-efficient [54]. We use the OpenAI API from

the openai Python package with temperature 0 to get more deterministic and

focused results. We ask the model whether the core topic of a certain post is

a certain API through a prompt, and process the model’s response to get the

result. Note that, all the results from the LLM model presented in this thesis

were obtained by querying the GPT-3.5-Turbo model from January 2024 to

June 2024.

To attain the best response from the model, we try three different prompt-

ing techniques:

• Zero-shot Prompting : This is a prompting technique to query the LLM

without giving any labeled learning example [55]. In this technique,

without giving any context, we give the post title followed by the post

29

Figure 3.8: Zero-shot prompt template

question body within quotes to the model and ask if a certain API (FQN

of the API) is the core topic of the given Stack Overflow post. Figure 3.8

shows the zero-shot prompt template that we use. Here, $api fqn is

the placeholder for the FQN of the API of interest, and $post body

placeholder contains the post title followed by the question body.

• Few-shot Prompting : This is a prompting technique to query the LLM

by giving a few labeled examples to steer the model to perform better

[56]. In this technique, we provide the model with two examples - first,

we give one post (title plus question body) and the FQN of the API

of interest, which is mentioned in the post but is not the core topic of

the post. In this case, we ask the question - “Is the main topic of this

post this API?”, and also provide the answer - “no”. Second, we give

another post (title plus question body) and a certain API of interest, in

this case, the API of interest is the core topic of the post. We ask the

same question - “Is the main topic of this post this API?”, and provide

the answer - “yes”. After giving these two examples, we ask the model

to answer the same question for a new post, similar to the query of the

zero-shot prompt. Figure 3.9 shows the template of the few-shot-prompt,

and a template with the real example posts that we use in this thesis is

shown in Section A.1. As we are asking a binary yes/no question, we

aim to get better results from the model by providing one example from

each case.

30

• Chain-of-Thought Prompting [57]: This is a prompting technique that

rather than giving a straight answer as an example, describes the rea-

soning of the answer in steps [58]. Similar to few-shot prompting, we

provide the model with two examples, but rather than giving their an-

swers as a straight yes or no, we give a reason for each example, i.e -

why we say the post discusses the API of interest for the first example,

and why we say that the post does not discuss the API of interest for

the second example. Lastly, we ask a similar question to the model with

the new post body and API of interest like in the last two prompts. Fig-

ure 3.10 shows the prompt template for this prompting technique, and a

template with the real post example that we use in this study is shown

in Section A.2.

At the end of this step, for each APIsnoeg, FILTERdiscussAPI gives a list of

Stack Overflow posts that discuss that API ({API1, {P11, P12, ... P1n }}).

When we evaluate the intermediate steps of our pipeline in Section 4.3, we

evaluate the above four approaches and compare their results.

3.5 Prioritize APIsnoeg: FILTERprioritize

The input of this filter is a map of APIsnoeg with the Stack Overflow posts

that discuss those APIsnoeg, and the output is a list of APIsneedeg.

To find the APIsnoeg that can benefit from additional code examples in

their documentation, our intuition is that it should be frequently discussed

in Stack Overflow. Stack Overflow contains many posts from newcomers [25],

where the user might not know how to use an API. We want to filter out the

one-off cases. While analyzing our pipeline for multiple libraries in the wild,

we find that there are many APIsnoeg that do not have any posts discussing

them. For the remainder, it varies from 1 post per API to 100 posts per API,

with a median of 2 posts per API. We choose to consider 1 more post per API

than the median, that is, at least 3 posts discussing per API so that we can

get rid of one-off cases and also have a sufficient number of posts to analyze

of pipeline.

31

FILTERprioritize filters the APIsnoeg that has at least 3 posts discussing them

and gives a sorted list of APIsneedeg by number of posts per API.

We create a prototype tool in Python implementing each step of the pipeline

we describe here that we evaluate in the next two chapters.

32

Figure 3.9: Few-shot prompt template

33

Figure 3.10: Chain-of-Thought prompt template

34

Chapter 4

Evaluation of Intermediate

Pipeline Steps

In this chapter, we evaluate the intermediate steps of our pipeline described in

Section 3 by running each step of our prototype tool. We answer the following

research questions in this chapter:

• RQ1: How effectively can we detect APIsdoc from a library’s documen-

tation?

• RQ2: How effectively can we detect APIsnoeg from a library’s documen-

tation?

• RQ3: How effectively can we detect if an apinoeg is the core topic of

discussion of a Stack Overflow post?

4.1 Detecting APIsdoc from a documentation

website: FILTERAPIdoc

In this section, we evaluate FILTERAPIdoc. Given an API reference page URL

from a library’s documentation website, the goal of this step is to extract all

the APIs mentioned in that webpage.

Evaluation Setup

To evaluate FILTERAPIdoc, we first create a ground truth manually from a

few pages of a library’s documentation website and then run FILTERAPIdoc

35

for the same pages to evaluate the recall, precision, and f-measure score for its

result. In this case, given a documentation page, a recall score tells us how

many APIs the method correctly extracts from all the APIs that appear on

the documentation page. A precision score tells us among all the APIs that

our method extracts from the documentation page, how many of them are

correct.

To evaluate this step, we choose one module from the API reference section

of the Pandas library documentation (V2.31.0). Pandas has a large number

of APIs in their API reference section (more than 1400), and API references

of library documentation typically contain thousands of pages [47]. To get a

feasible number of APIs for manual evaluation, we choose the module pandas.

Series. Note that, the first page of this module, https://pandas.pydata.

org/docs/reference/series.html, has the reference to all the API reference

pages of the pandas.Series module. We analyze all these pages both for

collecting APIs for the ground truth and running FILTERAPIdoc.

For the ground truth, we find 344 unique APIs from the different pages

of the module pandas.Series. These 344 APIs include ‘method’, ‘class’,

and ‘property’ type APIs. However, recall, FILTERAPIdoc is designed to only

consider methods and classes, so while manually collecting APIs for the ground

truth, we discard the property APIs. We find 271 total APIs for our ground

truth considering only methods and classes.

Evaluation Result: RQ1

We run FILTERAPIdoc for all documentation pages from pandas.Series mod-

ule. We find that FILTERAPIdoc detects 270 APIs correctly out of the 271

total APIs. The recall, precision, and f-measure of FILTERAPIdoc are 0.996, 1,

and 0.998 respectively.

The only API that our algorithm fails to detect is pandas.Series.to dict.

Its signature in the documentation is as such: Series.to dict(*, into=<class

‘dict’>). Our algorithm fails to parse the signature of this API as it includes

the angle brackets.

36

4.2 Detecting APIsnoeg from a documentation

website: FILTERAPInoeg

In this section, we evaluate FILTERAPInoeg. Given a library’s documentation

page(s) that has code examples and a list of APIsdoc, the goal of this step

is to extract all the APIsdoc that do not appear in any of the code examples

(APIsnoeg).

Evaluation Setup

To evaluate FILTERAPInoeg, we first create a ground truth manually from a

library’s documentation website page(s), which is the list of APIsnoeg, and run

FILTERAPInoeg for the same page(s) to evaluate the recall, precision, and f-

measure for its result. In this case, given a library’s documentation page(s),

and a list of APIsdoc, a recall score tells us how many apinoeg the method

correctly identifies from the actual list of APIsnoeg. A precision score tells us

among all the APIsnoeg that the method identified, how many of them are

correct.

To construct the ground truth for this step, we need to manually go through

all the code examples of all the API documentation page(s). Accordingly, we

choose a smaller documentation page to evaluate this step. We choose the API

reference page from the request library’s documentation website (V2.32.3) 6,

which has all its API references on one page, which makes it feasible to evaluate

manually. Additionally, evaluating another library gives us diversity showing

that our pipeline steps work for different libraries.

We first use FILTERAPIdoc to get the list of APIsdoc from the above-

mentioned page and then we manually go through the code examples of the

page to find which of the APIsdoc appear in the code examples. This gives us

a list of APIsnoeg for our ground truth. For the API reference page of the re-

quests library, we get 112 APIsdoc from the output of FILTERAPIdoc. We then

manually identify 13 code examples and manually find 101 APIsnoeg among

the 112 APIsdoc. This serves as the ground truth for this step.

6https://requests.readthedocs.io/en/latest/api/

37

To evaluate FILTERAPInoeg, we provide it with the list of the 112 APIsdoc

and the API reference page. We expect a list of APIsnoeg as the result, which

we compare to the manually constructed ground truth above.

Evaluation Result: RQ2

We find that FILTERAPInoeg detects 101 APIsnoeg. The recall, precision, and

f-measure of FILTERAPInoeg are 1, 1, 1 respectively.

4.3 Detecting Stack Overflow posts that dis-

cuss the APIsnoeg: FILTERdiscussAPI

Evaluation Setup

In this section, we evaluate the four approaches that we described in Section 3.4

for FILTERdiscussAPI. Given a Stack Overflow post, and an apinoeg, the goal of

this step is to determine if the post discusses the APIsnoeg. To evaluate this, we

first create a ground truth for a set of APIs and a set of Stack Overflow posts

per API ({API1, {P11, P12, ... P1n }}, ...). For each data point (API, P),

we determine if the post discusses that API, with a binary true/false answer.

We then get the results for the same data points from FILTERdiscussAPI and

calculate recall, precision, and f-measure for its results. In this case, given an

API, recall is the number of posts a method identifies as discussing the API

over the total posts in the ground truth that discuss the API. Precision is the

number of posts a method correctly identifies as discussing the API over the

total posts that the method identifies as discussing the API. Accuracy is the

number of posts a method correctly identifies as discussing or not discussing

the API over the total number of posts in the ground truth.

To create the ground truth for evaluating FILTERdiscussAPI, we choose 10

APIs from the pandas library, 4 APIs from the requests library, and 5 APIs

from the NumPy library. We choose the APIs in such a way that we have sim-

ple names of the APIs of both one-word (like pandas.cut, pandas.merge), and

multiple-word (like pandas.get dummies). Having a one-word simple name

can be ambiguous with natural language, so to evaluate the effectiveness of

38

Heuristic Zero-shot Few-shot Chain-of-Thought

Recall 0.5 0.87 0.87 0.93
Accuracy 0.63 0.71 0.74 0.76
Precision 0.57 0.59 0.61 0.6
F-measure 0.53 0.67 0.73 0.72

Table 4.1: Performance scores (Medians) of the different approaches for
FILTERdiscussAPI

our techniques in mitigating the ambiguities, we choose to add those to our

list.

We select a few Stack Overflow posts per API for our ground truth. For

each API, we have an almost equal number of posts where the API appears

and does not appear. We do this to reduce bias. To build our ground truth, we

manually go through each of those posts and determine if the post discusses

the API of interest.

We first select a subset of the data set and distribute it between the thesis

author, the thesis author supervisor, and two external collaborators (a pro-

fessor and an MSc student). Each data point is manually reviewed by two

annotators We then calculate the agreement between the annotators and find

that our Cohen’s Kappa agreement coefficient is 0.84, which is nearly perfect

agreement [59]. Accordingly, the thesis author proceeds to manually review

the rest of the ground truth herself.

Evaluation Result: RQ3

We evaluate the heuristic-based approach and the LLM-based approach us-

ing three different prompting techniques by comparing their results with the

ground truth that we created.

To evaluate, we calculate recall, accuracy, precision, and F-measure for

the four approaches. Note that our goal is to determine if a Stack Overflow

post discusses the API of interest so that we can consider that post as an

indication that developers are struggling with that API. We want to choose a

method that gives fewer false-positive values so that we can be confident that

the posts we get per apinoeg in fact discuss the API. Therefore, in our case,

having a good precision and accuracy score is more important than having a

39

Figure 4.1: Comparison of performance scores across the different approaches
for FILTERdiscussAPI, each data point in the box plot represents an API and
each box represents 19 APIs from the three libraries

good recall value.

We run the heuristic-based approach described in Section 3.4.1 and the

LLM-based approaches described in Section 3.4.2 separately for FILTERdiscussAPI

and evaluate their performance. For the LLM-based approach, we try the three

prompting techniques for FILTERdiscussAPI that we discussed in the previous

chapter. For the LLM-based approach, for each data point, FILTERdiscussAPI

queries our prompt to the LLM eleven times and then chooses the majority

answer from the eleven responses as the final answer. We chose to query the

LLM eleven times because we wanted to minimize the non-determinism of the

LLM model, and an odd number of queries makes it easy to determine the

majority response. Later we see that for our scenario, the non-determinism

of LLM is not very high (refer to the Appendix B), and only 3 queries to

the LLM would be sufficient. Figure 4.1 shows a box plot of the performance

scores for the 19 APIs in our ground truth across the four different approaches,

and Table 4.1 shows the median scores of each metric. Looking at the scores,

we see that the Few-shot Prompting technique of the LLM-based approach

40

outweighs the other three techniques for precision and f-measure with median

values of 0.61 and 0.73 respectively. We thus choose to use the LLM-based

approach with few-shot learning for FILTERdiscussAPI.

41

Chapter 5

Pipeline Evaluation

In this chapter, we apply our complete pipeline in the wild and analyze the

results. A flowchart of our pipeline is shown in Figure 3.1. Recall, that given a

library’s API documentation, our pipeline determines which APIs of a library

can benefit from adding code examples to their documentation. We want to

run our pipeline on a few libraries and identify if any of the APIs need examples

so that we can contact the library developers. To do so, we manually verify the

results that our pipeline flagged as APIsneedeg before contacting the developers.

5.1 Evaluation Setup

To evaluate our pipeline, we first choose libraries that we will analyze using our

tool. We select libraries from a monthly dump of 80000 most downloaded PyPI

packages [60]. The criteria we consider for choosing the libraries are: (1) the

library has API documentation, (2) the documentation is of a specific format

(the format of Sphynx generated documentation described in Section 3.1) and

(3) it is actively maintained (has commits in at least last 3 months). The dump

contained libraries with varying download counts from 1136326177 to 46921.

We want to choose a stratified sample of this data from the top, mid, and

lower ranges of download count so that we get libraries that are more popular

and also the ones that are less popular. Our intuition behind this is that more

popular libraries have greater chances to have good quality documentation

than less popular ones. As the goal of our work is to find APIs for which we

can improve library documentation quality, the chances of finding such APIs

42

Libraries Download count APIsdoc APIsnoeg

APIsnoeg
that have

at least 1 SO post

APIsneedeg

boto3 1136326177 88 76 0 0
botocore 522672231 38 35 1 0
urllib3 464629985 165 150 8 0
requests 385781127 110 84 9 2
typing-extensions 344505419 74 70 2 0
charset-normalizer 328506796 3 3 0 0
numpy 224195925 727 215 1 0
pandas 162319310 1436 776 14 1
scipy 82547255 622 306 3 1
opencensus 47059 70 67 1 0
desert 47055 8 3 0 0
dagster 46980 1071 859 1 0
Total 40 4

Table 5.1: Library statistics and results of running our pipeline

might differ for libraries of varying popularity. We start by selecting 5 libraries

from each of those strata, if the libraries meet our criteria, we include them, if

not, we do another iteration of the next 5 from each strata. We eventually did

3 iterations of the selections to get 12 libraries. The first column of Table 5.1

lists these 12 libraries.

5.2 Result

The first two columns of Table 5.1 show the names of the libraries and the

download count of each library. The rest of the columns show the results of

each step in our pipeline. Specifically, the number of APIs detected from their

API documentation (APIsdoc), the number of APIsdoc that do not have code

examples in their documentation (APIsnoeg), the number of APIsnoeg that have

at least 1 Stack Overflow post that discusses them, and lastly, the number of

APIsneedeg. After analyzing the 12 libraries, we find a total of 40 APIsnoeg that

have at least 1 SO post discussing them, and from FILTERprioritize we get 4

APIsneedeg, shown in the last column Table 5.2. We now manually go through

the posts from the last two columns of Table 5.1 to critically judge our results.

43

APIsneedeg SO Post IDs

pandas.pivot

77319901, 78159962, 77917091, 75901676, 75324700,
74172484, 73920596, 77331982, 76449353, 75554436,
74137744, 73966649, 73802333, 73691260, 73603656,
73347379, 73196573, 78052480, 75143012

requests.Response
67281120, 56442782, 68039452, 57312396, 70554533,
64773690

scipy.odr.odr
70406964, 55796398, 62460399, 71139423, 53048524,
62722907, 60889680, 77873145, 68370533

requests.ConnectionError
74253820, 64658898, 66137200, 28627162, 75720088,
76434691, 74613109, 70404894, 63933816, 62307838,
60200016, 74601518, 70272732

Table 5.2: Result of FILTERprioritize

5.3 Manual Verification of Result

In this section, we manually analyze the results that we get for the 12 li-

braries. First, we go through all the Stack Overflow posts identified for the

four APIsneedeg and verify if any of those APIs actually need an example before

contacting the library developers. We show the IDs of the corresponding Stack

Overflow posts for each API in Table 5.2.

For the API pandas.pivot, we find that none of the identified posts actu-

ally discuss the API. The posts either discuss pandas.pivot table or pandas.

DataFrame.pivot table or discuss pandas.DataFrame.pivot. The case for

scipy.odr.odr is similar. The API scipy.odr.odr is a low-level API. The

posts that we got from our pipeline discuss the APIs that belong to the pack-

age scipy.odr and our system could not distinguish between the two. The

API requests.Response is a class, and it has multiple functions and prop-

erties. The posts that we find either discuss a property/function of the class,

or talk about transforming the Response object into a different format. None

of the posts particularly discuss having difficulty using the class requests.

Response. Lastly, requests.ConnectionError is an error class. We find that

the posts that our pipeline marks as discussing the error classes are mostly

about an error that the user faced while using some other API, or how-to-

resolve type questions. Having code examples is not really a solution for those

error classes per se.

44

We thus conclude that none of the posts discussing the APIsneedeg that our

pipeline flagged indicates the need for a code example.

Since the final result of our pipeline was not promising, we want to take

a step back and manually go through the results of FILTERdiscussAPI. Recall

that we get a list of APIsnoeg and a list of Stack Overflow posts per API that

discuss the APIsnoeg from FILTERdiscussAPI. We analyze the two parts of our

results in two steps. First, we look at the APIsnoeg and make sure that these

do not have any code examples in their documentation that our pipeline failed

to detect. Second, we verify the posts per APIsnoeg.

Validating that the APIs do not have any code examples

As we can see from the flowchart of our pipeline in Figure 3.1, the APIsnoeg we

find from FILTERAPInoeg is passed to the next steps. Therefore, if FILTERAPInoeg

falsely marks an apinoeg, it will give a false-positive result at the end of the

pipeline.

After manually analyzing the 40 APIsnoeg that we got from FILTERdiscussAPI,

we see that 4 of them actually have code examples in their documentation that

FILTERAPInoeg could not detect. For example, numpy.random.Generator.

random is one of the APIsnoeg that our pipeline detected. However, it has a code

example in the documentation shown in Figure 5.1. Here, the function np.

random.default rng returns numpy.random.Generator, which is mentioned

in the API reference page of numpy.random.Generator. As FILTERAPInoeg is

not designed to consider that information, it fails to identify this API from

the given code example.

Another example is the API requests.auth.AuthBase. It is a base class

that all authentication classes derive from. Figure 5.2 shows the example of

this API, where this base class was inherited. As our implementation only

looks for a direct call of the API of interest and does not take the inheritance

chain into account, it could not identify this API from the example.

45

Figure 5.1: Code example of numpy.random.Generator.random

Figure 5.2: Code example of requests.auth.AuthBase

Validating the detected posts

Among the 40 APIsnoeg that we get from FILTERdiscussAPI, 4 actually have

code examples, we already discussed the posts that discuss the 4 APIsneedeg

(prioritized APIs) at the beginning of this section, and 11 of these APIsnoeg are

error or exception classes. As we mentioned before, we conclude that the error

class APIs would not benefit from additional code examples. For the remaining

21 APIs, we get a total of 24 Stack Overflow posts from FILTERdiscussAPI. We

manually go through these 24 Stack Overflow posts to determine (1) if they

discuss the APIsnoeg and (2) if they indicate that having a code example would

benefit that user.

(1) We find 8 among the total 60 posts that actually discuss an APIsnoeg.

(2) Among the 8 posts, we found only 2 posts that we think discuss the

user’s struggle to use the API and having an appropriate code example would

help them understand the API better. Figure 5.4 shows the 2 posts. The

remaining 6 posts, although they discuss the API, going through them does

not seem that having a code example for them would help the developers solve

46

Figure 5.3: A Stack Overflow post, where a developer is asking about a perfor-
mance issue while using the boto3.session.client from the boto3 Python library

their issues.

Going through those 6 posts, we find two types of results.

1. The post discusses the APIsnoeg, but the documentation of the API men-

tions looking at another alternate API from a different package. The

alternate API has code example(s). Figure 5.5 shows an example of this

scenario, where numpy.ndarray.clip was one of the APIsneedeg. (Fig-

ure 5.5a). The documentation page of numpy.ndarray.clip mentions

to refer to numpy.clip, which is an alternate API for numpy.ndarray.

clip, where it has examples of numpy.clip (Figure 5.5b and 5.5c)

2. The post discusses the API, but, we do not think that having a code

example would help the user solve their issue. For example, Figure 5.3 is

a post that discusses the API boto3.session.Session.client. How-

ever, the post suggests that the user knows how to use the API, but

faced a performance issue while using the API. Having a code example

of the API might not help to resolve this issue.

47

(a) Post discussing numpy.char.rjust

(b) Post discussing requests.Session.post

Figure 5.4: SO posts discussing APIsnoeg

48

(a) Post discussing numpy.ndarray.clip

(b) numpy.ndarray.clip documentation

(c) Code example of numpy.clip

Figure 5.5: Result explanation of numpy.ndarray.clip

49

Chapter 6

Discussion

In this chapter, we discuss the implications of our results, the possible short-

comings of our approach and implementation, and potential future work to

improve the results.

The goal of our work was to find the places in a library’s API documen-

tation that can be improved by adding code examples. To find the poorly

documented APIs, we chose to look for the APIs that do not have any code

examples in the documentation (APIsnoeg), and then we looked at Stack Over-

flow data to find posts discussing those APIsnoeg. We wanted to finally convey

the results that we got from our pipeline to the respective library’s authors so

they can use them to update their documentation. We created a prototype tool

implementing our approach and evaluated the intermediate steps of our tool

using our manually created ground truth and had good performance scores.

However, when we ran our pipeline on 12 libraries, we could not identify any

APIs that we would want to contact the library authors about.

Below we point out the possible reasons for our negative results:

• To find places to improve, we only look at APIsnoeg. We do not consider

the APIs that already have examples and do not consider the possibil-

ity that the already documented code examples might not cover all the

possible ways the API could be used. For example, Figure 6.1 shows a

Stack Overflow post where the user is facing issues understanding the

parameters ‘name’ and ‘fastpath’ of the API pandas.Series that are

not well documented. Although the API has code examples, it does not

50

Figure 6.1: Example of a SO post where the user discusses their issue with
API parameter

Figure 6.2: An SO post that discusses an API but does not imply the need of
an example

have code examples showing all the optional parameters of the function.

• While looking for Stack Overflow posts for a certain API, our pipeline

found some posts that do not imply the need for a code example. Fig-

ure 6.2 shows an example of such a post, where the user discusses the

API requests.Response. Some users are new to or exploring certain

libraries and ask questions regarding their confusion or to better under-

stand an API. Such posts, though they are discussing a certain API, do

not indicate that having code examples would benefit them. Therefore

we decided not to contact the authors with such posts. This also shows

that a post discussing an API does not always imply that the API needs

code example(s).

• We assumed in our study that if a Stack Overflow post discusses an

API, it indicates there is an API usability problem. We thus ask the

51

LLM if a given post is discussing a certain API. (Full prompt is shown

in Figure 3.9). However, as we discussed in the previous point, there

are Stack Overflow posts that discuss certain APIs but do not imply the

need for a code example. It shows that discussing a certain post does

not always indicate an API usability problem, and thus does not always

indicate that adding a code example for that API would be beneficial.

• We designed our approach to consider the APIsnoeg that have at least 3

posts. Therefore, although we found one Stack Overflow post for some

of the APIsnoeg, we did not include those APIs in the list of APIsneedeg,

for which we got a negative result. We still think that prioritizing APIs

was a good design choice as in that way we can filter the one-off cases.

Future opportunities

We analyzed our tool on a small dataset and for only 12 libraries. In the

future, this tool could be used to analyze more libraries with more Stack

Overflow posts which might give more positive results.

We chose the libraries such that we have libraries of varying popularity in

our list. However, we observed that most of the more popular libraries in our

list are already well-documented with less opportunity for improvement. On

the other hand, less popular libraries do not have many questions in Stack

Overflow discussing their APIs. Work can be done to find libraries that are

popular but not well documented.

Our current implementation is limited to Sphinx-generated documenta-

tion of Python libraries. In the future, work can be done to generalize the

implementation so that it can analyze other different layouts of API documen-

tation, and also the documentation of libraries from other languages. In that

way, more diverse library documentation can be analyzed using our approach.

Moreover, we designed our study under the hypothesis that if a Stack Over-

flow post discusses an API, it implies the need for a code example. However,

our results show that it is not always true. Therefore, an area of improvement

would be to redesign the prompt to ask the LLM a more specific question to

52

identify if a Stack Overflow post is about an API’s usability problem.

53

Chapter 7

Threats to validity

7.1 Internal Validity

In our prototype tool, we limit ourselves to only Python library API docu-

mentation generated by Sphinx. This limits the number of libraries that can

be assessed using our tool. Our tool is not designed to identify decorator

functions, which might yield wrong results for APIsnoeg.

We use a StackAPI endpoint to fetch Stack Overflow data. We set the

parameter values for page size and max page to 100 and 400 respectively,

which can give us a maximum of 40000 Stack Overflow posts for each library.

So, our pipeline will not get all Stack Overflow data for any library that has

more than 40000 Stack Overflow posts, which might affect the result.

In this study, we try different prompting techniques and different prompts

to get better results from the LLM. However, there is always potential to en-

gineer a better prompt that can give better results from the LLM. Also, LLMs

can be inconsistent in their results [61]. Although we query our LLM model

multiple times and use the majority answer to overcome non-determinism,

there is a chance that the results may vary between multiple runs of the tool

for the same library.

We prepare a ground truth for evaluating FILTERdiscussAPI where we man-

ually annotate Stack Overflow posts whether they discuss a certain API or

not. As manual annotations are subjective, the evaluation results might have

varied if more annotators were involved.

54

7.2 Construct Validity

In this thesis, we focus on APIs that do not have code examples and try to

find if a lack of examples is causing developers to struggle while using those

APIs. However, there might be scenarios where the code example might not be

adequate or does not cover particular scenarios that the users are struggling

with. For example, an API might have optional parameters that were not

shown in the code example. There might be users who struggle with using

those parameters. So, the assumption that lack of code examples is causing

developers to struggle might not be sufficient, as bad code examples might

also cause the same issue.

Another assumption we make is that if a Stack Overflow post discusses

a particular API, it indicates that the developer who posted it is struggling

with that API. This assumption might not always be true, as the post might

talk about some different aspects of the API e.g. performance. Figure 5.3

shows an example where the user is facing a performance issue while using

the boto3.session.client API from the boto3 Python library. In this case,

the user is not struggling to use the API itself, but rather with inconsistent

behavior of the API when it is being used in a different setting. This issue

cannot be addressed properly by adding a code example in the documentation

for this particular API.

7.3 External Validity

As different API documentation websites have different layouts, it is difficult

to generalize our tool to detect APIs from all types of API documentation.

We therefore limit ourselves to Sphinx-generated API documentation for the

prototype tool that we created. However, the concept of our approach is

applicable to any API documentation. So this is an implementation limitation

rather than a conceptual limitation.

Also, we have analyzed only 12 Python libraries using our tool. If we

analyze more libraries with our tools and verify the results attained, we can get

55

a clearer picture of how our proposed method performs in a more generalized

scenario.

We used the OpenAI’s GPT-3.5-Turbo [40] model for this study as this

is fast and cost-efficient. However, there are newer and bigger models avail-

able, with higher parameter counts, such as OpenAI’s GPT-4 [62] [63]. They

are trained with more data and have improved capabilities. Using the latest

models might yield different or better results.

56

Chapter 8

Conclusion

The lack of code examples in API documentation has been established as an

obstacle to learning and using APIs. Using this premise, our goal in this

thesis was to design a technique to determine which APIs in a library’s API

documentation require code examples to improve the documentation quality.

We proposed a pipeline to determine missing examples in API documentation

that cause difficulty for software developers to use these APIs. We determine

which APIs are missing examples from the API documentation. We then ex-

plore an LLM-based method along with data from Stack Overflow to determine

if developers are struggling with those APIs. Lastly, we prioritize those APIs

according to the number of detected posts. We indicate the APIs that have at

least 3 Stack Overflow posts discussing them as the potential APIs that need

code examples to improve their documentation quality.

Based on our proposed pipeline, we built a tool in Python. We evaluated

all the intermediate steps of our tool and presented their performance scores.

We analyzed 12 Python libraries using our tool and presented our results.

Although the overall result of our tool is not promising, we believe there are

improvement opportunities such as engineering better prompts and analyzing

more libraries. We discussed different potential opportunities to improve this

work in the future. We believe that with future improvements, our proposed

pipeline may be able to identify places in the API documentation that require

examples, and library authors can be warned about these places to improve

their API documentation quality.

57

References

[1] B. Dagenais and M. P. Robillard, “Creating and evolving developer docu-
mentation: Understanding the decisions of open source contributors,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, 2010, pp. 127–136.

[2] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi, “Build-
ing more usable APIs,” IEEE software, vol. 15, no. 3, pp. 78–86, 1998.

[3] M. P. Robillard, “What makes APIs hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[4] G. Uddin, F. Khomh, and C. K. Roy, “Mining API usage scenarios
from stack overflow,” Information and Software Technology, vol. 122,
p. 106 277, 2020.

[5] J. Zhang, H. Jiang, Z. Ren, T. Zhang, and Z. Huang, “Enriching API
documentation with code samples and usage scenarios from crowd knowl-
edge,” IEEE Transactions on Software Engineering, vol. 47, no. 6, pp. 1299–
1314, 2019.

[6] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 392–403.

[7] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1287, 1988.

[8] A. S. M. Venigalla and S. Chimalakonda, “Understanding emotions of de-
veloper community towards software documentation,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engi-
neering in Society (ICSE-SEIS), IEEE, 2021, pp. 87–91.

[9] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” in Pro-
ceedings of the 28th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering,
2020, pp. 245–256.

[10] D. L. Parnas, “Precise documentation: The key to better software,” in
The future of software engineering, Springer, 2010, pp. 125–148.

58

[11] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35–39, 2003.

[12] A. Forward and T. C. Lethbridge, “The relevance of software documenta-
tion, tools and technologies: A survey,” in Proceedings of the 2002 ACM
symposium on Document engineering, 2002, pp. 26–33.

[13] E. Aghajani, C. Nagy, M. Linares-Vásquez, et al., “Software documenta-
tion: The practitioners’ perspective,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 590–
601.

[14] A. Synko and A. Peleshchyshyn, “Software development documenting–
documentation types and standards,”, vol. 98, no. 2, pp. 120–128, 2020.

[15] A. Turner, B. Tran, and C. Sewell, Sphinx, 2024. [Online]. Available:
https://www.sphinx-doc.org/en/master/index.html.

[16] A. Gallant, Pdoc, 2024. [Online]. Available: https://github.com/
mitmproxy/pdoc.

[17] M. Hudson-Doyle, Pydoctor, 2024. [Online]. Available: https://github.
com/twisted/pydoctor.

[18] D. v. Heesch, Doxygen, 2024. [Online]. Available: http://www.stack.
nl/~dimitri/doxygen/index.html.

[19] D. Goodger, Restructuredtext, 2024. [Online]. Available: https://docutils.
sourceforge.io/rst.html.

[20] C. Treude, J. Middleton, and T. Atapattu, “Beyond accuracy: Assessing
software documentation quality,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1509–1512.

[21] H. Tang and S. Nadi, “Evaluating software documentation quality,” in
2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), IEEE, 2023, pp. 67–78.

[22] G. Uddin and M. P. Robillard, “How API documentation fails,” Ieee
software, vol. 32, no. 4, pp. 68–75, 2015.

[23] E. Aghajani, C. Nagy, O. L. Vega-Márquez, et al., “Software documenta-
tion issues unveiled,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), IEEE, 2019, pp. 1199–1210.

[24] S. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of
the effectiveness of usage examples in REST API documentation,” in
2017 IEEE symposium on visual languages and human-centric comput-
ing (VL/HCC), IEEE, 2017, pp. 53–61.

[25] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?(nier track),” in Proceedings of the 33rd
international conference on software engineering, 2011, pp. 804–807.

59

[26] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically clas-
sifying posts into question categories on stack overflow,” in Proceedings
of the 26th Conference on Program Comprehension, 2018, pp. 211–221.

[27] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proceedings of the 2nd international workshop on Web 2.0 for software
engineering, 2011, pp. 25–30.

[28] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documen-
tation,” in Proceedings of the 36th international conference on software
engineering, 2014, pp. 643–652.

[29] M. Liu, X. Peng, A. Marcus, S. Xing, C. Treude, and C. Zhao, “API-
related developer information needs in stack overflow,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 11, pp. 4485–4500, 2021.

[30] W. Wang, H. Malik, and M. W. Godfrey, “Recommending posts concern-
ing API issues in developer q&a sites,” in 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories, IEEE, 2015, pp. 224–
234.

[31] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Classifying stack overflow posts on API issues,” in 2018 IEEE 25th in-
ternational conference on software analysis, evolution and reengineering
(SANER), IEEE, 2018, pp. 244–254.

[32] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about
APIs in stack overflow,” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 522–559, 2019.

[33] IBM, What are llms? 2024. [Online]. Available: https://www.ibm.com/
topics/large-language-models.

[34] S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang, “Is stack overflow
obsolete? an empirical study of the characteristics of chatgpt answers
to stack overflow questions,” in Proceedings of the CHI Conference on
Human Factors in Computing Systems, 2024, pp. 1–17.

[35] J. Liu, X. Tang, L. Li, P. Chen, and Y. Liu, “Chatgpt vs. stack overflow:
An exploratory comparison of programming assistance tools,” in 2023
IEEE 23rd International Conference on Software Quality, Reliability,
and Security Companion (QRS-C), IEEE, 2023, pp. 364–373.

[36] E. Chen, R. Huang, H.-S. Chen, Y.-H. Tseng, and L.-Y. Li, “Gptutor:
A chatgpt-powered programming tool for code explanation,” in Interna-
tional Conference on Artificial Intelligence in Education, Springer, 2023,
pp. 321–327.

[37] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an llm to help with code understanding,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, 2024,
pp. 1–13.

60

[38] J. Ye, X. Chen, N. Xu, et al., “A comprehensive capability analysis of
gpt-3 and gpt-3.5 series models,” arXiv preprint arXiv:2303.10420, 2023.

[39] L. Zhang, M. Wang, L. Chen, and W. Zhang, “Probing gpt-3’s linguis-
tic knowledge on semantic tasks,” in Proceedings of the Fifth Black-
boxNLP Workshop on Analyzing and Interpreting Neural Networks for
NLP, 2022, pp. 297–304.

[40] OpenAI, Gpt-3.5-turbo, 2023. [Online]. Available: https://platform.
openai.com/docs/models/gpt-3-5-turbo.

[41] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
johnny can’t prompt: How non-ai experts try (and fail) to design llm
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–21.

[42] DAIR.AI, Prompting techniques, 2024. [Online]. Available: https://
www.promptingguide.ai/techniques.

[43] J. Kocoń, I. Cichecki, O. Kaszyca, et al., “Chatgpt: Jack of all trades,
master of none,” Information Fusion, vol. 99, p. 101 861, 2023.

[44] G. Uddin, O. Baysal, L. Guerrouj, and F. Khomh, “Understanding how
and why developers seek and analyze API-related opinions,” IEEE Trans-
actions on Software Engineering, vol. 47, no. 4, pp. 694–735, 2019.

[45] G. Brandl, “Sphinx documentation,” URL http://sphinx-doc. org/sphinx.
pdf, 2021.

[46] L. Richardson, “Beautiful soup documentation,” April, 2007.

[47] H. Zhong and Z. Su, “Detecting API documentation errors,” in Pro-
ceedings of the 2013 ACM SIGPLAN international conference on Object
oriented programming systems languages & applications, 2013, pp. 803–
816.

[48] A. Wegner, StackAPI documentation, 2016. [Online]. Available: https:
//stackapi.readthedocs.io/en/latest/index.html.

[49] D. Radev, E. Hovy, and K. McKeown, “Introduction to the special issue
on summarization,” Computational linguistics, vol. 28, no. 4, pp. 399–
408, 2002.

[50] M. Allahyari, S. Pouriyeh, M. Assefi, et al., “Text summarization tech-
niques: A brief survey,” arXiv preprint arXiv:1707.02268, 2017.

[51] A. Payong, Introduction to extractive and abstractive summarization
techniques, 2024. [Online]. Available: https://blog.paperspace.com/
extractive-and-abstractive-summarization-techniques/.

[52] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,” Journal of artificial intelligence re-
search, vol. 22, pp. 457–479, 2004.

61

[53] OpenAI, Gpt models, 2023. [Online]. Available: https://platform.
openai.com/docs/models.

[54] OpenAI,Openai API pricing, 2023. [Online]. Available: https://openai.
com/api/pricing/.

[55] DAIR.AI, Zero-shot prompting, 2024. [Online]. Available: https://www.
promptingguide.ai/techniques/zeroshot.

[56] DAIR.AI, Few-shot prompting, 2024. [Online]. Available: https://www.
promptingguide.ai/techniques/fewshot.

[57] DAIR.AI, Chain-of-thought prompting, 2024. [Online]. Available: https:
//www.promptingguide.ai/techniques/cot.

[58] L. Craig, Chain-of-thought prompting, 2024. [Online]. Available: https:
//www.techtarget.com/searchenterpriseai/definition/chain-

of-thought-prompting.

[59] M. L. McHugh, “Interrater reliability: The kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276–282, 2012.

[60] H. v. Kemenade, M. Thoma, R. Si, and Z. Dollenstein. “Top pypi pack-
ages.” (), [Online]. Available: https://hugovk.github.io/top-pypi-
packages/ (visited on 03/06/2024).

[61] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence: The
threats of using llms in software engineering,” in Proceedings of the
2024 ACM/IEEE 44th International Conference on Software Engineer-
ing: New Ideas and Emerging Results, 2024, pp. 102–106.

[62] OpenAI, Gpt-4, 2023. [Online]. Available: https://platform.openai.
com/docs/models/gpt-4-turbo-and-gpt-4.

[63] C. Emmanuel, Gpt-3.5 and gpt-4 comparison, 2023. [Online]. Available:
https://medium.com/@chudeemmanuel3/gpt- 3- 5- and- gpt- 4-

comparison-47d837de2226.

62

Appendix A

LLM Query Prompt

A.1 Template of the Few-shot Query Prompt

With Real Example Posts

This i s a s tack over f l ow post :

Post :
”””
pandas p i v o t t a b l e column names :

For a dataframe l i k e t h i s :

d = { ’ id ’ : [1 , 1 , 1 , 2 , 2] , ’Month ’ : [1 , 2 , 3 , 1 , 3] , ’ Value
’ : [1 2 , 2 3 , 1 5 , 4 5 , 3 4] , ’ Cost ’ : [1 24 , 2 14 , 1234 , 1324 , 2 34]}

df = pd . DataFrame (d)

Cost Month Value id
0 124 1 12 1
1 214 2 23 1
2 1234 3 15 1
3 1324 1 45 2
4 234 3 34 2
to which I apply p i v o t t a b l e

df2 = pd . p i v o t t a b l e (df ,
va lue s =[’Value ’ , ’ Cost ’] ,
index =[’ id ’] ,
columns=[’Month ’] ,
aggfunc=np . sum ,
f i l l v a l u e =0)

to get df2 :

Cost Value
Month 1 2 3 1 2 3
id
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34

63

i s the re an easy way to format r e s u l t i n g dataframe column names
l i k e

id Cost1 Cost2 Cost3 Value1 Value2 Value3
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34
I f I do :

df2 . columns =[s1 + s t r (s2) f o r (s1 , s2) in df2 . columns . t o l i s t ()]
I get :

Cost1 Cost2 Cost3 Value1 Value2 Value3
id
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34
How to get r i d o f the ext ra l e v e l ?

thanks !
”””

I s the main top i c o f t h i s post t h i s API : pandas . p i v o t t a b l e ?
Answer only in ” yes ” or ”no”

Answer :
No

This i s a s tack over f l ow post :

Post :
”””
d e f i n e aggfunc f o r each va lue s column in pandas p ivot t ab l e :

Was t ry ing to generate a p ivot t ab l e with mu l t ip l e ” va lue s ”
columns . I know I can use aggfunc to aggregate va lue s the way
I want to , but what i f I don ’ t want to sum or avg both columns
but in s t ead I want sum of one column whi l e mean o f the other

one . So i s i t p o s s i b l e to do so us ing pandas ?

df = pd . DataFrame ({
’A’ : [’ one ’ , ’ one ’ , ’ two ’ , ’ three ’] ∗ 6 ,
’B’ : [’A’ , ’B’ , ’C ’] ∗ 8 ,
’C’ : [’ foo ’ , ’ foo ’ , ’ foo ’ , ’ bar ’ , ’ bar ’ , ’ bar ’] ∗ 4 ,
’D’ : np . random . randn (24) ,
’E’ : np . random . randn (24)

})
Now th i s w i l l get a p ivot t ab l e with sum :

pd . p i v o t t a b l e (df , va lue s =[’D’ , ’E ’] , rows=[’B’] , aggfunc=np . sum)
And t h i s f o r mean :

pd . p i v o t t a b l e (df , va lue s =[’D’ , ’E ’] , rows=[’B’] , aggfunc=np .mean)
How can I get sum f o r D and mean f o r E?

64

Hope my ques t i on i s c l e a r enough .
”””

I s the main top i c o f t h i s post t h i s API : pandas . p i v o t t a b l e ?
Answer only in ” yes ” or ”no”

Answer :
Yes

This i s a s tack over f l ow post :

Post : ”””
$post body
”””

I s the main top i c o f t h i s post t h i s API : ’ $ap i fqn ’ ?
Answer in ” yes ” or ”no”

A.2 Template of the Chain-of-Thought Query

Prompt With Real Example Posts

This i s a s tack over f l ow post :

Post :
”””
pandas p i v o t t a b l e column names :

For a dataframe l i k e t h i s :

d = { ’ id ’ : [1 , 1 , 1 , 2 , 2] , ’Month ’ : [1 , 2 , 3 , 1 , 3] , ’ Value
’ : [1 2 , 2 3 , 1 5 , 4 5 , 3 4] , ’ Cost ’ : [1 24 , 2 14 , 1234 , 1324 , 2 34]}

df = pd . DataFrame (d)

Cost Month Value id
0 124 1 12 1
1 214 2 23 1
2 1234 3 15 1
3 1324 1 45 2
4 234 3 34 2
to which I apply p i v o t t a b l e

df2 = pd . p i v o t t a b l e (df ,
va lue s =[’Value ’ , ’ Cost ’] ,
index =[’ id ’] ,
columns=[’Month ’] ,
aggfunc=np . sum ,
f i l l v a l u e =0)

to get df2 :

Cost Value

65

Month 1 2 3 1 2 3
id
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34
i s the re an easy way to format r e s u l t i n g dataframe column names

l i k e

id Cost1 Cost2 Cost3 Value1 Value2 Value3
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34
I f I do :

df2 . columns =[s1 + s t r (s2) f o r (s1 , s2) in df2 . columns . t o l i s t ()]
I get :

Cost1 Cost2 Cost3 Value1 Value2 Value3
id
1 124 214 1234 12 23 15
2 1324 0 234 45 0 34
How to get r i d o f the ext ra l e v e l ?

thanks !
”””

I s the main top i c o f t h i s post t h i s API : pandas . p i v o t t a b l e ?

Thought :
No . Because the user asked the ques t i on about formatt ing the

column names .
The main ques t i on i s not r egard ing the API pandas . p i v o t t a b l e .

This i s a s tack over f l ow post :

Post :
”””
d e f i n e aggfunc f o r each va lue s column in pandas p ivot t ab l e :

Was t ry ing to generate a p ivot t ab l e with mu l t ip l e ” va lue s ”
columns . I know I can use aggfunc to aggregate va lue s the way
I want to , but what i f I don ’ t want to sum or avg both columns
but in s t ead I want sum of one column whi l e mean o f the other

one . So i s i t p o s s i b l e to do so us ing pandas ?

df = pd . DataFrame ({
’A’ : [’ one ’ , ’ one ’ , ’ two ’ , ’ three ’] ∗ 6 ,
’B’ : [’A’ , ’B’ , ’C ’] ∗ 8 ,
’C’ : [’ foo ’ , ’ foo ’ , ’ foo ’ , ’ bar ’ , ’ bar ’ , ’ bar ’] ∗ 4 ,
’D’ : np . random . randn (24) ,
’E’ : np . random . randn (24)

})
Now th i s w i l l get a p ivot t ab l e with sum :

pd . p i v o t t a b l e (df , va lue s =[’D’ , ’E ’] , rows=[’B’] , aggfunc=np . sum)

66

And th i s f o r mean :

pd . p i v o t t a b l e (df , va lue s =[’D’ , ’E ’] , rows=[’B’] , aggfunc=np .mean)
How can I get sum f o r D and mean f o r E?

Hope my ques t i on i s c l e a r enough .
”””

I s the main top i c o f t h i s post t h i s API : pandas . p i v o t t a b l e ?

Thought :
Yes . Because the user i s t a l k i n g about a s p e c i f i c usage o f the

aggfunc
parameter o f the API pandas . p i v o t t a b l e that they are s t r u g g l i n g

with .

This i s a s tack over f l ow post :

Post :
”””
$post body
”””

I s the main top i c o f t h i s post t h i s API : ’ $ap i fqn ’ ?
Answer in yes or no

67

Appendix B

Non-determinism and Mean

Error of LLM Model

Prompting

Technique

Error Count vs No. of Data Point

<No. of error response, No. of Data Point>

Mean

Error

No. of Data Points

for which LLM Gave

Same Results

No. of Data Points

for which LLM Gave

Different Results

chain-of-thought
<0: 458>, <11: 139>, <10: 8>,
<1: 6>, <8: 4>, <5: 4>, <7: 4>,
<6: 3>, <9: 3>, <3: 3>, <4: 3>, <2: 2>

0.252 597 40

few-shot
<0: 443>, <11: 138>, <8: 13>,
<3: 10>, <1: 7>, <10: 6>, <2: 5>,
<6: 4>, <9: 4>, <4: 3>, <7: 2>, <5: 2>

0.261 581 56

zero-shot
<0: 404>, <11: 164>, <3: 10>,
<1: 9>, <8: 9>, <10: 8>, <2: 7>,
<9: 7>, <5: 6>, <6: 5>, <7: 5>, <4: 3>

0.311 568 69

Total data point: 637

Table B.1: Error and Non-determinism of LLM model

To overcome the non-determinism of the LLM, we queried each data point

(API, post) to the LLM 11 times for each prompting technique and chose the

majority answer. We found that, for the total 637 data points, LLM gave

a deterministic answer for most of the cases. The second last column of the

table B.1 shows the number of data points for which LLM gave the same result

(11 times), and the last column indicates the number of data points for which

the LLM gave different responses (out of 11 times).

To determine the error, we compare the results of the LLM with our ground

truth. The second column of the table B.1 shows the number of wrong re-

sponses among the 11 queries and the corresponding number of data points

for which LLM gave that many wrong responses. For example, <11: 139> in-

dicates that for 139 data points, LLM gave 11 wrong responses (errors) among

the 11 queries, i.e., all wrong responses. The mean errors for each of the

68

prompting techniques are shown in the third column of the table.

69

	Introduction
	Thesis overview

	Literature Review
	Why Good Software Documentation is Important
	Types of Software Documentation
	Software Documentation Quality Aspects
	Using Stack Overflow for Detecting Software Documentation Issues
	Using LLMs to analyze Stack Overflow data

	Methodology
	Finding APIsdoc: FILTERAPIdoc
	Finding APIsnoeg: FILTERAPInoeg
	Finding Stack Overflow posts that mention the APIsnoeg:FILTERhasAPI
	Finding Stack Overflow posts that discuss the APIsnoeg:FILTERdiscussAPI
	Heuristic Based Approach
	LLM Based Approach

	Prioritize APIsnoeg: FILTERprioritize

	Evaluation of Intermediate Pipeline Steps
	Detecting APIsdoc from a documentation website: FILTERAPIdoc
	Detecting APIsnoeg from a documentation website: FILTERAPInoeg
	Detecting Stack Overflow posts that discuss the APIsnoeg:FILTERdiscussAPI

	Pipeline Evaluation
	Evaluation Setup
	Result
	Manual Verification of Result

	Discussion
	Threats to validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	References
	Appendix LLM Query Prompt
	Template of the Few-shot Query Prompt With Real Example Posts
	Template of the Chain-of-Thought Query Prompt With Real Example Posts

	Appendix Non-determinism and Mean Error of LLM Model

