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Abstract 

Wind energy is an important renewable resource to meet the continually increasing global 

energy demand. The high wind power potential in the sea has led to the development of 

wind farms in the sea, referred to as offshore wind farms (OWFs). OWFs are an array of 

wind turbines built in the sea to generate electricity from the abundant wind energy in the 

sea. In addition to high productivity, OWFs do not produce any noise pollution to human 

life and do not affect wildlife (especially birds). These advantages have made OWFs, a 

reliable renewable option to meet future energy demand through green energy.  

 

On the downside, the cost of energy produced by OWFs is high when compared to the cost 

of energy from wind farms in the land. Almost one-third of the cost of energy produced by 

OWFs is due to operation and maintenance (O&M) activities and is twice expensive as the 

wind farms in the land. The high O&M cost of OWFs is mainly due to its operating 

environment. The marine environment affects the reliability of offshore wind turbines 

(OWTs), creates uncertainty in turbine component lifetimes, and thereby increases the 

number of maintenance activities, effort, and costs. Also, the uncertain weather conditions 

and sea-state conditions limit accessibility to OWF for maintenance activities and increase 

downtime and production losses.  

 

The high O&M cost at OWFs creates a necessity to better analyze the situation in OWF 

maintenance and the associated uncertainties, identify maintenance problems, and come up 

with cost-effective solutions. This thesis aims to model the uncertainties in OWF 
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maintenance and their effects on O&M costs, and identify critical maintenance decision 

problems and propose solutions for the identified problems through decision models 

considering uncertainties.  

 

Firstly, an O&M model for the next future trip to the OWF is proposed to study the seasonal 

effects of the uncertainties on the O&M costs of OWFs. The proposed O&M model is a 

function of stochastic time elements of maintenance. Using the proposed model, the 

seasonal variations of offshore O&M costs, considering uncertainties are obtained. The 

results show that the O&M costs are lower in summer and higher in winter. Secondly, a 

resource decision problem for corrective maintenance of OWT, considering uncertainty in 

turbine failure information is studied. The problem situation is described, and a decision 

model is proposed to find a cost-effective resource option to address the described problem. 

Also, the use of the proposed model is demonstrated through a case study. The results of 

the case study show that the proposed model is mainly dependent on the probability of 

occurrence of different failure classifications of OWT. Finally, a decision problem related 

to maintenance technicians for corrective maintenance of OWT is studied. The uncertainty 

in maintenance technicians for OWF maintenance is modeled, and a mathematical model 

is proposed to find the appropriate/optimal number of technicians to send for corrective 

maintenance of OWT. A simple case study demonstrates the use of the mathematical model 

and figures out the appropriate number of technicians to send for two corrective 

maintenance categories. 
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This thesis study would promote the state of the art of research on OWF maintenance. The 

knowledge generated from this thesis will help the offshore O&M team better plan 

maintenance activities and make cost-effective resource decisions to reduce the overall 

O&M costs and the cost of energy of OWFs. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Background 

 
The global energy demand is increasing rapidly with the growth in human population and 

economic activities, as most of the day-to-day activities such as communication, 

transportation, healthcare, etc., are dependent on energy. The use of conventional energy 

sources (minerals, fossil fuels, etc.) results in greenhouse gas emissions and global 

warming. To meet the growing energy needs of the global population while minimizing 

the greenhouse gas emissions, effective utilization of all the renewable energy sources 

(wind, solar, biomass, geothermal, hydro, nuclear, etc.) is required. 

 

Among the renewables, wind energy is one of the most important sources and has been 

continuously utilized since the 20th century for electricity generation [1, 2]. Though 

onshore wind energy (energy that is generated on land) has been utilized, the limited land 

area and the need to reduce noise pollution are forcing the wind energy sector to expand 

into offshore regions [3, 4]. The advantages of high productivity, having no visual impact 

or noise impact on human life, and not needing to control the impact on wildlife (especially 

birds) has paved the way for the continual development of Offshore Wind Farms (OWFs) 

from 20 MW to 18000 MW of global cumulative installed capacity between 2004 and 2018 

[3-5].  
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The high cost of energy, which is the major disadvantage of OWFs, remains a hindrance 

to their future growth and expansion. About 25% - 30% of the cost of energy produced by 

OWFs is due to the Operation and Maintenance (O&M) activities, which is twice as 

expensive as onshore installations [6]. The remote location, harsh marine environment, and 

the lack of adapting access equipment make the O&M of OWFs complicated and expensive 

due to high repair costs, repair crew and spare parts transportation costs, and production 

losses [7]. Therefore, OWFs are very expensive assets, not only to design and build but 

also to operate and maintain. As the Offshore Wind Turbines (OWTs) are being installed 

in water depths up to 40 m and as far as 80 km from shore, the cost and complexity of 

O&M are continually increasing. The success of the offshore wind technology and its 

future growth mainly depends on how the stakeholders work towards reducing the O&M 

costs. 

 

1.2 Wind Turbines 

 
Wind energy is a special form of kinetic energy in the air. It varies with the geographical 

locations, time of day, season, and height above the earth’s surface, weather, and local 

landforms. The available energy in the wind can be converted into electrical energy using 

wind turbines. Wind turbines are power generating machines that are driven by the kinetic 

energy of the wind. Most of the modern large wind turbines have three blades, and the wind 

turns these blades (kinetic energy into mechanical energy), which in turn spins a generator 

to generate electricity (mechanical energy into electrical energy).  

 

The classification of wind turbines may be based on the rotating axis of the turbines. With 

this classification, there are two types of turbines, namely horizontal axis wind turbines 

(rotating axis of the turbine is parallel to the ground) and vertical axis wind turbines 

(rotating axis of the turbine is perpendicular to the ground) [2, 8]. Horizontal axis and 

vertical axis wind turbine configurations are given in Figure 1.1. 
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Figure 1.1: Horizontal and vertical axis wind turbine configurations [8] 

 

Horizontal axis wind turbines dominate the wind industry and may be further classified 

into two categories based on drive train configurations, i.e., gearbox-operated turbines and 

direct drive turbines [9]. In gearbox-operated wind turbines, the blades spin a shaft that is 

connected through a gearbox to the generator. The gearbox is a mechanical device that 

converts the turning speed of the blades into the significantly higher speed required by the 

generator to generate electricity from wind energy. Gearbox-operated wind turbines 

dominate the wind industry, and a typical horizontal axis wind turbine with a gearbox is 

given in Figure 1.2. Gearbox-operated wind turbines generally require more maintenance 

as the failure of any part of the gearbox may lead to a turbine halt. Direct drive wind 

turbines use direct drive generators with no gearbox requirements. The direct drive turbines 

have better performance and reliability over gearbox-operated wind turbines [8]. A typical 

horizontal axis wind turbine with a direct drive is shown in Figure 1.3. 
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Figure 1.2: Horizontal axis gearbox-operated wind turbine [8] 

 

 

Figure 1.3: Horizontal axis direct drive wind turbine [8] 

 

Wind turbines need to be installed in locations where there is enough wind available to 

generate electricity. The wind is the result of the movement of air due to atmospheric 

pressure gradients, and it flows from regions of high pressure to the regions of low pressure. 

The generation and movement of the wind are also affected by uneven solar heating, 
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Coriolis force (the force that is generated due to earth’s self-rotation), and local geography 

[2]. Wind resource at a site is evaluated using a comprehensive index called “wind power 

density.” Wind power density is defined as “the available wind power in airflow through a 

perpendicular cross-sectional unit area in a unit time period” [2]. The available power in 

the wind is proportional to the cubic power of the mean wind speed, air density, and blade 

swept area. In order to obtain a high wind power, higher wind speed, higher air density and 

longer length of blades are required. Once a site is selected based on wind resource 

availability, arrays of wind turbines are constructed and installed to generate electricity and 

are called “wind farms.” 

 

Wind farms installed in the land to generate power from wind energy are referred to as 

“onshore wind farms.” The world’s first-ever wind farm was established in land in 1980 

with a total capacity of 0.6 MW and is shown in Figure 1.4. 

 

 

Figure 1.4: World’s first-ever wind farm at Crotched Mountain, N.H., USA [10] 

 

In recent years, the growth of the wind industry has been phenomenal, and the global wind 

power capacity stood at a huge 597 GW in 2019.With this total installed capacity, wind 

energy still currently contributes only 5% of the world electricity generation. The wind 

industry is continually looking to expand the wind power capacity by developing more 

wind farms. However, limited land area “onshore,” environmental impacts, noise pollution, 
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and the remote areas far away from the electricity demand center have motivated the wind 

industry to develop wind farms in the sea. Wind farms installed in the sea to generate power 

from wind energy are referred to as “offshore wind farms.”  

 

1.3 Offshore Wind Farms 
 

The amount of wind energy available in the sea is much greater than that is available in the 

land. As many of the world’s largest cities that demand a lot of electricity are located near 

the sea and/or oceans, OWFs adjacent to these cities could potentially meet the energy 

demand with locally generated renewable power. According to the Global Wind Energy 

Council, the energy available from European offshore wind energy sites could provide 

seven times the current energy demand and so most of the OWFs are in European waters 

[8]. For example, the London Array wind farm located 20 km off the coast from North 

Foreland, Kent coast, UK with a total capacity of 630 MW supplies its power to London, 

the capital city of England and the largest city of the United Kingdom [11]. London Array 

wind farm is shown in Figure 1.5. 

 

 

Figure 1.5: London Array Wind Farm [11] 
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The technology for offshore wind turbines is similar to that of onshore wind turbines [8]. 

Offshore wind turbines are horizontal axis wind turbines with three-bladed rotors, drive 

trains, and towers like onshore wind turbines but have different foundations. Major 

offshore wind turbine foundations are monopiles, tripods, space frames, and floating 

turbine foundations [8]. The type of foundation to be used is dependent on the offshore 

location, water depth, and seabed geology. In shallow waters, up to a depth of 30 m, 

monopiles (a single pile driven into the seabed onto which the turbine tower is bolted) are 

used. In transitional waters with a depth range of 30 m to 60 m, tripods or multiple piles 

are used. Deep waters with a depth of more than 60 m require floating structures [8]. 

Different types of offshore turbine foundations are shown in Figure 1.6. 

 

 

Figure 1.6: Offshore turbine foundations [8] 

 

Offshore wind turbines must be installed and operated in the marine environment. Marine 

technologies used to prevent seawater damage to offshore oil and gas installations have 

been adapted for use by the wind turbine industry. In addition, special access vessels/ships, 

helicopters, and trained technicians are utilized to overcome the complexity involved in 

construction, installation, and O&M of wind turbines in the sea. 
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The offshore operating environment has both advantages and disadvantages. The wind 

regime at sea is better than land and results in the more reliable wind with higher wind 

speed and less turbulence. Higher average wind speeds in the sea result in increased power 

potential and efficiency. Another advantage is that there is no noise pollution and 

environmental impacts. On the downside, the offshore turbines experience excessive 

force/load due to heavy winds and high waves in the sea. The marine environment affects 

the reliability of offshore wind turbines, creates uncertainty in turbine component lifetimes, 

and thereby increases the number of maintenance activities, effort, and costs. 

 

Whenever an offshore wind turbine fails, there is a need to initiate and execute maintenance 

to repair or replace the failed turbine. If the turbine failure is unexpected, then the required 

resources to perform maintenance may not be available. Depending on the type of failure, 

it may take a considerable time to get the access vessels, technicians, and spare parts to 

address the failed turbine. Once all the resources are in place and ready for maintenance 

execution, there is a chance that the maintenance could be delayed due to adverse wind and 

wave conditions in the sea. Such conditions are referred to as the “harsh marine 

environment,” and their occurrence is uncertain. The harsh marine environment limits the 

accessibility to the OWF, affects maintenance execution, and increases the downtime. 

Therefore, the successful execution of any maintenance activity with minimal downtime at 

OWF is entirely dependent on the decisions taken by the O&M team on maintenance 

planning and execution. 

 

Maintenance planning and execution at OWFs involves three types of decisions, namely 

strategic, tactical, and operational. Strategic decisions are decisions that influence the 

O&M over the life cycle of the wind turbine/farm (e.g., where should the maintenance base 

be located?).All decisions that influence O&M for more than five years are considered as 

strategic decisions in this thesis. Tactical decisions are decisions that influence O&M for a 

period of at least one and at most five years (e.g., Should the helicopter be purchased or 

chartered?). Operational decisions are decisions that influence O&M for a short period, 

i.e., days, weeks, and months (e.g., Which turbine should be visited tomorrow?). All 

decisions that influence the O&M for less than a year are referred to as short-term decisions 
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in this thesis. The marine environment affects all three types of maintenance decisions and 

makes maintenance decision-making a challenging task for the O&M team. These 

challenges must be addressed through research and development so that we can fully utilize 

the advantages of OWFs.  

 

1.4 Motivation and Research Objectives 
 

Numerous research studies have been carried out in OWF maintenance, and many models 

were developed to assist the offshore O&M team in maintenance decision-making [12]. 

Though there are many models in the literature to assist maintenance decision-making at 

OWFs, the cost of O&M remains high. The high O&M cost at OWFs creates a necessity 

to better analyze and model the situation in OWFs, motivates to identify maintenance 

decision problems, and come up with better solutions through decision models.  

 

This thesis aims to focus on maintenance decision problems at OWFs, propose decision 

models considering uncertainties to assist the OWF stakeholders in decision-making and 

to demonstrate the use of the decision models through simple case studies. 

 

The objectives of this research are: 

 

(i) To model the uncertainties in OWF maintenance and to study the seasonal 

variations of O&M costs considering uncertainties.  

 

(ii) To identify critical maintenance decision problems and propose decision 

models for maintenance decision-making at OWFs considering 

uncertainties. 

 

1.5 Organization of Thesis 

 
The thesis is organized as follows. Chapter 2providesthe fundamentals of O&M and a 

comprehensive literature review of recent studies of O&M on OWFs. The uncertainties 

encountered by the OWFs and the existing decision models for offshore wind farm 
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maintenance are summarized in Chapter 2.Chapter 3 presents the investigation on the effect 

of the uncertainties on the O&M costs of OWFs using time elements of maintenance 

execution for four different seasons, namely spring, summer, autumn, and winter. The 

stochastic time elements are modeled for the next maintenance trip scenario to figure out 

the seasonal variations of O&M costs at OWFs. Chapter 4 presents a decision model for a 

future corrective maintenance trip to an offshore wind turbine. The situation of random 

turbine failure with uncertainty in turbine failure information is investigated, and a 

mathematical model is proposed to assist resource decision-making. Also, a case study is 

done to demonstrate the use of the proposed model. Chapter 5 presents a short-term 

maintenance-staffing model for OWFs, considering various uncertainties. Chapter 6, the 

final chapter, presents the summary and conclusions of this thesis and suggests possible 

areas for future research. 
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CHAPTER 2 
 

LITERATURE REVIEW 

 
This chapter aims to introduce the fundamental concepts useful for the theme of this 

research. Types of uncertainties and the types of decision models reported in the literature 

will be summarized. Finally, the specific research topics of this study will be outlined.  

 

2.1 Terms and Definitions 

 

As mentioned in Section 1.4, our study object is an offshore wind farm. The wind farm 

consists of multiple wind turbines. In this section, the technical terms facilitating our study 

of offshore wind farms are introduced.  

 

Components are functionally independent elements and are building blocks in the design 

of machines and software [13]. For example, gearbox, blades, and generator are some of 

the components of a gearbox-operated horizontal axis wind turbine shown in Figure 1.2. 

The many wind turbines may be regarded as components of the offshore wind farm shown 

in Figure 1.5.  

 

A system is a collection of items (subsystems, components, software, human operators, 

etc.) whose proper, coordinated operation leads to its proper functioning [13]. For example, 

a wind turbine may be a system of many electrical and mechanical components. A wind 

farm may be a system consisting of many wind turbines as subsystems.  
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Failure is an event or state in which a component (or system) cannot perform one or more 

of its required functions within the specified time duration under specified conditions. A 

failure often requires equipment to be shut down and repaired or replaced [15]. For 

example, the function of a gearbox is to convert the turning speed of the blades into a 

relatively higher speed required by the generator to produce electricity. A sudden fracture 

or bending of a gear tooth in a gearbox prevents the gearbox from performing its function 

and is considered as a gearbox failure.  

 

The reliability of an asset or item (e.g., component, complex system, computer program, 

human being, etc.) is defined as the probability of performing its purpose adequately for 

the period intended under the encountered operating and environmental conditions [14].For 

example, the reliability of a wind turbine for 1,000 hours of operation is 99.8%. This means 

that there is a 99.8% probability that the wind turbine will operate for 1000 operational 

hours without a failure. 

 

The non-repairable system is a system that is discarded after a failure. An example of a 

non-repairable system is light bulbs. The reliability of a non-repairable component (or 

system) is characterized by Mean Time to Failure (MTTF). In the lifetime of a non-

repairable device, the device fails once, and MTTF represents the average time until this 

failure occurs. 

 

The repairable system is a system that, when a failure occurs, can be restored into 

operational condition after a certain action of repair (addition of a new part, exchange of 

parts, removal of a damaged part, changes or adjustment to settings, software update, etc.), 

other than replacement of the entire system. Examples of repairable systems are wind 

turbines, car engines, electrical generators, and computers. The reliability of repairable 

component (or system) is characterized by Mean Time Between Failures (MTBF). MTBF 

is calculated by dividing the total operating time of the system by the number of failures 

experienced by the system during the operating period. 
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A series system is a configuration of all components of a system such that the failure of 

any one component leads to the failure of the system [13]. For example, the major 

components of a wind turbine, including the blades, pitch control system, brake system, 

gearbox, yaw system, generator, and controller, are connected in a series configuration, as 

shown in Figure 1.2. Failure of any one of these components leads to the failure of the wind 

turbine. For a series system, reliability increases if the number of components in the system 

decreases. 

 

A parallel system is a configuration of having all the components of a system linked to 

each other such that failure of all the components leads to the failure of the system [13]. 

For example, in a four-cylinder engine, which is a parallel system, the engine fails only if 

all four cylinders fail to run. For a parallel system, reliability decreases if the number of 

components decreases. 

 

Maintainability is the probability that a given maintenance action for an item under given 

conditions of use can be carried out within a stated time interval, and this is when the 

maintenance is performed under stated conditions and using stated procedures and 

resources [14]. Maintainability is a function of equipment design and usually is measured 

by Mean Time to Repair (MTTR). MTTR is the average time needed to restore the 

component (or system) to its full operational condition upon failure. It is calculated by 

dividing the total repair time of the asset by the number of failures over a given operating 

period. For any component (or system), the lower the MTTR, the easier the maintenance. 

 

Availability is the ability of an item to be in a state to perform a required function under 

given conditions at a given instant of time or over a given time interval if the required 

external resources are provided [14]. In simple terms, availability may be stated as the 

probability that an asset will be in operating condition when needed. The time during which 

a component (or system) is either fully operational or ready to perform its intended function 

is called as uptime. The time during which a component (or system) is inoperable or cannot 

perform its intended function is called as downtime. For example, a wind turbine with an 

availability of 95% indicates that the turbine is in operating condition for 9.5 hours out of 
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10 hours. The turbine has an average downtime of 0.5 hour and an average uptime of 9.5 

hours.  

 

Maintenance is the combination of all technical and associated administrative actions, 

including supervision actions intended to retain an item or to restore it to a state in which 

it can perform its required function [14]. Maintenance of a wind turbine includes but is not 

limited to inspection at regular intervals, proper cleaning and lubrication, and replacement 

of a component after a specified number of hours of operation. 

 

Proactive maintenance is the maintenance carried out at predetermined intervals or 

depending on prescribed criteria intended to reduce the probability of failure or the 

degradation of the functioning of an item [14]. Proactive maintenance action on a wind 

turbine is to inspect the turbine periodically to make sure that it is functioning properly and 

to take necessary actions (e.g., cleaning, lubrication, etc.) if needed. 

 

Corrective maintenance is the maintenance carried out after failure and intended to put 

an item into a state in which it can perform a required function [14]. For example, the 

replacement of a failed gearbox of a wind turbine using a new identical gearbox is a 

corrective maintenance action. 

 

Lifecycle is defined as the consecutive and interlinked stages of a product system, from 

the raw material acquisition or generation from natural resources to final disposal [15]. The 

typical stages involved in a lifecycle of a wind farm include Planning and Design, 

Acquisition, Construction and Installation, Commissioning, Operation and Maintenance, 

and Decommissioning.  

 

Accessibility is a qualitative or quantitative measure of the ease of gaining access to a 

component (e.g., offshore wind turbine) for maintenance [14]. 
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2.2 Fundamentals of Operation and Maintenance of Offshore 

Wind Farms 

 

In this section, a brief overview of maintenance strategies, maintenance optimization 

techniques, and the needed resources in the Operation and Maintenance (O&M) of 

Offshore Wind Farms (OWFs) are provided.  

 

2.2.1 Maintenance Strategies for Offshore Wind Farms 

 

The two maintenance strategies that are generally used for the maintenance of OWFs are 

proactive maintenance and corrective maintenance. 

 

2.2.1.1 Proactive Maintenance 

 

As described earlier in Section 2.1, proactive maintenance aims to reduce the probability 

of occurrence of unexpected failures and to bring a degrading component either to an “as 

good as new” state or to a state where the degradation is lowered by a certain amount. 

Proactive maintenance strategy involves systematic inspection, detection, and correction 

of minor faults either before they occur or before they develop into major faults [13, 16]. 

The proactive maintenance strategy may be divided into two types, namely, preventive 

maintenance and predictive maintenance.  

 

Preventive Maintenance is a kind of maintenance that is conducted after a specific period 

of the component (or system) utilization [17, 18]. It is a planned/scheduled maintenance 

that is performed based on the age or time of operation of the component (or system) with 

the help of statistical reliability analysis (the estimated probability that the component will 

fail in a specified period). Preventive maintenance activities include inspection, 

lubrication, parts replacement, cleaning, and adjustment [17, 18].  
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Predictive maintenance, also known as condition-based maintenance, is the kind of 

maintenance that is initiated as a response for a deteriorating component (or system) 

condition based on the indicators that measure the physical condition of the component (or 

system) [17, 19]. The commonly used indicators to measure the condition of the component 

(or system) are temperature, vibration, noise, lubrication, and corrosion [20]. When such 

an indicator reaches a specified system deterioration level, the maintenance work is 

initiated to prevent system failure.  

 

2.2.1.2 Corrective Maintenance 

 

As described earlier in Section 2.1, corrective maintenance is a strategy, which involves 

maintenance actions that are performed to restore a failed component. The corrective 

maintenance actions could be broadly classified as “repair” and “replacement.” The 

process of bringing a failed component (or system) back to the operating state to perform 

its intended function is generally known as repair. For a wind turbine, the repair is further 

classified as minor repair and major repair. Repair actions for failures caused by minor 

faults, typically involving sensor or instrumentation failure, are considered as minor 

repairs. Repair actions for failures that require more extensive maintenance work are 

considered as major repairs. For example, repair actions to resolve the failure of major 

mechanical components such as gearbox and shaft are major repairs. The process of 

replacing a failed component (or system) with a new identical component (or system) is 

known as a replacement.  

 

2.2.2 Maintenance Optimization 

 

An OWF O&M team may select all or a combination of a few or any one of the 

maintenance strategies based on their requirements. Regardless of the chosen maintenance 

strategy, the amount of maintenance to be executed plays an important role in determining 

the success of the O&M. Insufficient maintenance decreases the component (or system) 

reliability, and excessive maintenance increases the cost of maintenance. Therefore, it is 

very important to figure out the best balance between the cost of maintenance and system 



 
 

17 
 

reliability, and this is achieved through maintenance optimization [21-23]. Maintenance 

optimization is defined as “a method aimed at determining the most effective and efficient 

maintenance plan (i.e., inspection time and frequency, work preparation, required 

maintenance resources) so that the best possible balance between direct maintenance costs 

(e.g., manpower cost, logistics, and transportation costs) and indirect maintenance costs 

(e.g., loss of power production and assets) is achieved” [7]. Two techniques that are widely 

used for maintenance optimization are reliability centered maintenance and risk-based 

maintenance [16].  

 

Reliability Centered Maintenance (RCM) is a technique used to optimize the practices of 

the maintenance strategy in order to prevent the reliability level of the system from 

dropping below a certain specified value [13, 24]. In simple terms, the RCM technique 

establishes the appropriate maintenance plan for the component (or system) to minimize 

the probability of failures at the lowest cost. For wind turbines, RCM is generally applied 

to critical components and subsystems whose failures could result in catastrophic system 

failures or high loss of power production. 

 

Risk-Based Maintenance (RBM) aims at reducing the overall risk of failure of the operating 

facilities by minimizing the overall maintenance effort, scope of the maintenance work, 

and cost of the maintenance program in a structured and justifiable way [16]. The risk of a 

component/system failure is evaluated (or quantified) as the probability of failure and the 

consequence of a failure of the system/component under consideration. In RBM, the 

inspection and maintenance schedule is optimized based on quantified risks caused by the 

failure of components (or systems). For wind turbines, the high-risk components (e.g., rotor 

blades, gearbox, and generator) are inspected and maintained with greater frequency. In 

contrast, low-risk components (e.g., brake) the inspection and maintenance frequency are 

minimized to reduce the total scope of work and cost of maintenance program.The 

optimality criteria for maintenance optimization at OWFs are O&M cost, production loss, 

power output, availability, and reliability. In general, we aim to minimize the O&M costs 

and production losses and to maximize power output, availability, and reliability. 
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2.2.3 Resources Required for Offshore Wind Farm Maintenance 

 

Regardless of the maintenance strategy, various resources are required to perform 

maintenance activities at OWFs. The resources required to perform the maintenance 

activities include spare parts, maintenance technicians, vessels, and helicopters [25].  

 

The spare parts are maintained in the onshore maintenance facility for replacement 

purposes. Maintenance technicians are classified into three major types: turbine technicians 

(onshore and offshore), foundation technicians, and electrical technicians [25]. Turbine 

technicians are responsible for the maintenance of the turbines. Foundation technicians 

work on the maintenance of the turbine foundation, whereas the electrical technicians work 

on substations and cables. Vessels (also known as access vessels) are ships that are 

specifically designed and manufactured for marine transportation. The access vessels are 

used for the transportation of maintenance technicians and spare parts from the onshore 

maintenance facility to the offshore wind turbine to perform maintenance. Helicopters are 

also used to access the offshore wind turbine for maintenance. The typical layout of an 

OWF with all its associated O&M elements (including vessels and helicopters) is shown 

in figure 2.1. 

 

 

Figure 2.1: Layout of an OWF with the O&M elements [26] 
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2.3 Uncertainties in Offshore Wind Farm Maintenance 

 

As stated in Section 1.3, OWF maintenance is exposed to uncertainties, and these 

uncertainties may be categorized into two types, namely, natural uncertainties and 

epistemic uncertainties. 

 

2.3.1 Natural Uncertainties 

 

The marine environment of OWFs is characterized by wind speed and wave height. Wind 

speed and wave height differ greatly throughout a year, and these variations occur naturally 

[6]. The wind speed and wave height highly influence the accessibility to an OWF. Gaining 

access to an offshore wind turbine for maintenance is difficult or impossible in harsh 

weather conditions due to wave heights and wind speeds exceeding the operational limit 

of the vessels and helicopters. During certain months, the wave height may remain above 

the operational limit of vessels and helicopters for the whole month. During this period, 

there is no accessibility to OWF for maintenance. Therefore, the uncertainty in wind speed 

and wave height delays maintenance and increases downtime and O&M costs [6].  

 

The reported works [27-35] investigated wind speed and wave height conditions at OWFs. 

Douard et al. [27] modeled the meteorological and marine scenarios at OWFs using the 

Hidden Markov model. The marine parameters considered by Douard et al. [27] in the 

model are wind speed and wave height and are assumed as independent parameters. They 

utilize the historical data of wind speed and wave height in the model to develop future 

meteorological scenarios and to compute waiting times for each failure instance of the 

OWF elements. Scheu et al. [28] used the significant wave height parameter to model 

weather conditions at OWFs, as it is the most important limiting factor for maintenance 

execution at OWFs in terms of both magnitude and persistence. Scheu et al. [28] obtained 

the time series of significant wave height (every 6 hours) using the Markov process based 

on the historical wave height data for a given site. Scheu et al. [28] utilized the wind-wave 

correlation data to generate corresponding wind speeds. 
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Feuchtwang and Infield [29] developed a probabilistic model to calculate the expected 

delay caused by the wind and wave conditions for maintenance execution at OWFs. 

Feuchtwang and Infield [29] developed an event tree for offshore O&M to calculate 

expected delays directly from probabilities assigned to the branches of the event tree. 

Feuchtwang and Infield [29] considered access limits of vessels (also known as limiting 

operational conditions), required access times for maintenance work execution, and site 

wind and wave data as inputs to their “statistical model of access” which gives the expected 

delay as output.  

 

Dowell et al. [30] analyzed the wind and wave data collected from an OWF in the North 

Sea and computed waiting times for maintenance execution at OWFs. Dowell et al. [30] 

developed empirical waiting time distributions for major maintenance (maintenance that 

requires a jack-up vessel) and minor maintenance (maintenance that requires a Crew 

Transfer Vessel) activities at OWFs. The waiting times developed by Dowell et al. [30] 

will be used in this thesis. Dinwoodie et al. [31] presented a wave height prediction model 

based on historical data for improved maintenance scheduling at OWFs. Dinwoodie et al. 

[31] collected wave data from the FINO 1 offshore research platform located 45km off the 

German coast. Dinwoodie et al. [31] used both auto-regression (AR) and artificial neural 

networks (ANNs) to predict the wave height. 

 

Wilson and McMillan [32, 33] investigated the relationship between weather and wind 

turbine failures in [32] and then developed a wind speed dependent failure rate model in 

[33]. Wilson and McMillan [32] developed wind distributions corresponding to each sub-

assembly failure in a wind turbine. Wilson and McMillan [32] used non-parametric 

distributions to fit the wind data recorded on the day when a failure has occurred to a sub-

assembly in the wind turbine. Wilson and McMillan [33] used Bayes Theorem to calculate 

the wind speed dependent failure rates. Richter et al. [34] used the wind speed data from 

FINO 3 research platform, which is placed in the North Sea, about 80 km away from the 

German island Sylt, and modeled wind speed. The wind speed data from FINO 3 was fitted 

to a Weibull distribution using maximum likelihood estimation.  
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The model developed in [35] considered uncertainties in the weather forecast, repair time, 

and Operational Range Limitations (ORL) of vessels and investigated the effects of 

uncertainties on O&M costs. The model in [35] expressed the O&M cost as a function of 

these uncertainties, estimated the total maintenance expenses for the turbine lifetime of 20 

years, and compared the variations in maintenance expenses with and without considering 

uncertainties. The uncertainty model developed in [35] for weather considers only the delay 

in accessing the target wind farm and does not consider the delay when performing the 

repair/maintenance at the target turbine. Also, the weather uncertainty model in [35] does 

not consider seasonal weather uncertainty changes. Reiterating the first objective of this 

thesis stated in Section 1.4, that is, to model the uncertainties on OWF maintenance, the 

seasonal variations of O&M costs considering both delay in accessing the turbine and delay 

at the turbine will be studied in this thesis.  

 

2.3.2 Epistemic Uncertainties 

 

The uncertainties that arise due to limited data and knowledge of the system, process, or 

mechanism are referred to as epistemic uncertainties. In OWFs, the expected lifetime of 

the offshore turbine and its components is considered as the epistemic uncertainty. The 

details on the uncertainty in turbine/component lifetimes and its quantification are given in 

the following paragraphs. 

 

As stated earlier in Section 1.3, offshore wind turbines are installed and operated in the 

marine environment. Offshore turbines experience excessively more load than onshore 

turbines, and so the expected life of offshore turbines is different from that of onshore 

turbines. The challenge to offshore wind maintenance teams is that the expected lifetime 

of the offshore turbine components could not be evaluated accurately because of data 

inaccuracy, data incompleteness, and the unavailability of data from OWFs. Data 

limitations from OWFs make lifetimes of offshore turbines and its components an 

epistemic uncertainty. 
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Uncertainty in component lifetimes affects the number of corrective maintenance activities 

and, eventually, the availability and power output of the wind turbine/farm. Scheu et al. 

[36] analyzed the effect of uncertainty in component reliability estimations on OWF 

availability and figured out that the change in distributions of failure patterns might affect 

the wind farm availability up to 20%. Therefore, the uncertainty in components lifetime 

must be quantified to achieve the desired level of wind farm availability. The reported 

works [16, 37, 38, 39, and 40] addressed the quantification of uncertainty in components 

lifetime. The reported works [37] addressed data accuracy problem, [38] addressed data 

incompleteness issue, and [16, 39, and 40] addressed data unavailability issues for offshore 

turbine failure data. The details on the reported works [16, 37, 38, 39, and 40] are given in 

the following paragraphs.  

 

Sainz et al. [37] identified that the real measurements obtained from OWFs may contain 

wrong data and proposed an automatic filtering technique to eliminate the wrong data from 

the overall data set. Sainz et al. [31] proposed a robust statistical technique by combining 

the least median of squares (LMedS) and a random search to filter the poor-quality RAM 

data in wind farms. Sainz et al. [37] compared the proposed technique with least mean 

squares, a classical technique for data elimination. The comparison showed that the 

proposed technique is more robust, eliminates various filtering steps, and reduce the time 

and costs required for the process.  

 

Guo et al. [38] proposed a three-parameter Weibull failure rate function to quantify the 

failure rates of wind turbines with incomplete field failure data. Also, a comparative 

analysis of the proposed model with the traditional Weibull failure rate function was 

performed using the German and Danish wind farm data, and the effectiveness of the 

proposed three-parameter Weibull failure rate function is proved. 

 

Karyotakis [16], in his doctoral thesis, proposed a model to quantify the offshore turbine 

failure rates using the available onshore failure data. To consider the effect of weather and 

sea-state conditions on the reliability of the offshore wind turbine, Karyotakis [16] included 

the “environmental stress factor” in the model. Utilization of offshore wind turbines is 
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higher compared to equivalent onshore wind turbines due to the higher winds offshore, and 

to consider this utilization effect on the reliability of offshore turbines, Karyotakis [16] 

included “power rating stress factor” in the model. With appropriate values for both the 

factors and onshore turbine failure data, the failure rates for offshore wind turbines can be 

calculated using the model proposed by Karyotakis [16]. 

 

Carroll et al. [39] collected and analyzed the failure data of 350 offshore turbines 

throughout Europe and proposed failure rates for offshore wind turbine and its sub-

assemblies. Carroll et al. [39] developed failure rates by year of operation, cost category, 

and failure modes for the components/sub-assemblies that are the highest contributor to the 

overall failure rate. Also, information on repair times, average repair costs, and the average 

number of technicians required for repair are also provided by Carroll et al. [39]. The 

failure rates and repair time, repair costs reported in [39] will be used in this thesis.  

 

Zhang et al. [40] performed a dynamic fault tree analysis on floating offshore wind 

turbines, discussed the sequentially dependent failures and redundant failures and, 

evaluated the overall turbine reliability. Zhang et al. [40] used the failure data of wind 

turbines and towers on land to estimate the failure rate of floating offshore wind turbines. 

Zhang et al. [40] employed the failure data of offshore structures and devices to evaluate 

the failure rate of floating offshore wind turbines’ floating foundation system. 
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2.4 Reported Decision Models for Offshore Wind Farm 

Maintenance 

 

In this section, the decision models [42-73] for OWF maintenance in the literature are 

summarized. 

 

2.4.1 Long-term Decision Models 

 

As stated in Section 1.3, decisions that influence O&M for more than five years are referred 

to as strategic decisions in this thesis. Models that address strategic O&M decisions are 

referred to as long-term decision models in this thesis. The long-term decision models [42-

60] addressed the strategic decisions related to wind farm design for reliability, location 

and capacity of maintenance accommodations, selection of wind farm maintenance 

strategy, spare parts inventory management, and outsourcing of repair services [41]. 

 

The design of an OWF, that is, the layout and the location of installations of wind turbines, 

has a great influence on the later O&M decisions as these factors determine the distance of 

wind turbines from the onshore maintenance facility and also the distance between the 

turbines. When wind turbines go far into the sea, O&M becomes expensive and difficult 

because of the harsh environment of the sea. Therefore, the design of wind farms must take 

into account not only the reliability and power production issues but also O&M 

implementation issues.  Afanasyeva et al. [42] presented a Net Present Value model for the 

optimization of wind farm design, considering uncertainty in different input parameters. 

The model [42] considered the O&M costs in the optimization of wind farm design. 

Samorani [43] studied the effect of the design of the wind farm layout on energy production 

and maintenance costs. Chen and MacDonald [44] proposed a system-level cost of energy 

(COE) optimization model incorporating the maintenance, replacement, and overhaul costs 

to determine the optimal placement of wind turbines. In our study in this thesis, we focus 

on an offshore wind farm with given distances and locations. 
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For a given offshore wind farm, whenever maintenance is initiated upon a random turbine 

failure, the repair activity of the failed turbine component may be performed either on-site 

or on the onshore maintenance facility. The location and the capacity of the on-site and off-

site maintenance accommodations play a major role in determining the O&M costs. The 

decision on location and capacity of maintenance accommodations are considered as 

strategic decisions as these decisions will influence the O&M costs throughout the lifecycle 

of the windfarms. The factors that could be considered when dealing with this decision 

problem include but not limited to [41], 

 

(i) Distance between the turbine platform and the maintenance accommodations. 

(ii) Travel time between the OWF and the maintenance accommodations. 

(iii) Installation and operating costs of each maintenance accommodation. 

(iv) Wind farm reliability, which determines the expected demand for repair. 

 

De Regt [45] optimized the location of offshore maintenance accommodations by treating 

the location problem as a “Weber” problem. Besnard et al. [46] proposed a mathematical 

model to determine the optimal location of maintenance accommodations, the number of 

technicians, choice of transfer vessels, and the possibility of using a helicopter in OWFs. 

Again, in this thesis work, we assume that such accommodations are already in place for 

our O&M problems to be addressed.  

 

For an existing OWF, the selection of an optimal maintenance strategy from the available 

maintenance strategies is a strategic decision [41] if the time duration considered is more 

than five years. Andrawus et al. [47] identified and assessed the condition-based 

maintenance activities over the logistics life cycle of wind turbines, i.e., 18 years, to 

maximize the return on investment. Utne [48] proposed an efficient maintenance execution 

framework for the offshore wind turbines located in deep-sea for the turbine lifetime of 20 

years. Ramírez and Sørensen [49] presented an optimal risk-based inspection (RBI) 

planning for offshore wind turbines for the turbine lifetime of 20 years. Sarker et al. [50] 

considered corrective maintenance as an opportunity to perform preventive repair and 

replacements, proposed an opportunistic preventive maintenance optimization model for 
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the turbine lifetime based on the age of turbine components. Kerres et al. [51] evaluated 

the economic worthiness of different maintenance strategies on the critical components of 

a Vestas V44-600 kW wind turbine for the turbine lifetime of 20 years and concluded that 

the corrective maintenance strategy is the most cost-efficient maintenance strategy for the 

gearbox and generator of V44 turbine. May et al. [52] studied the economic worthiness of 

condition monitoring systems for offshore wind turbines by simulating the O&M 

operations incorporating condition monitoring systems for 20 years and concluded that 

usage of multiple condition monitoring systems on the same sub-system has a great 

potential for O&M cost savings. 

 

If the O&M team at an OWF runs out of spares during a random turbine component failure, 

there will be a substantial increase in downtime and production losses, and the availability 

of the wind farm is affected. Therefore, it is very important to maintain a good number of 

spares to achieve the desired availability. The area of maintenance that figures out the best 

balance between the numbers of turbine component spares kept in stock, and the cost of 

handling and storage of all the spares to achieve maximum availability is known as the 

“spare parts inventory management” [41]. With the knowledge of the reliability of turbine 

components and the accessibility to the wind farm, the spare parts inventory optimization 

is performed.  

 

Nnadili [53] investigated the logistics planning and inventory management of floating 

offshore wind turbine components for the turbine lifetime of 20 years. Lindqvist and 

Lundin [54] studied the spare parts inventory management of wind farms to determine the 

optimal stock levels, and the reorder size for critical components for the turbine lifetime of 

20 years. Jin et al. [55] developed a mixed-integer non-linear optimization model to 

determine the optimal maintenance strategy and spare parts inventory policy for OWFs 

over the turbine lifetime of 20 years. Tracht et al. [56] proposed a spare parts planning 

model for OWFs considering the availability of vessels and the variations in meteorological 

conditions for the lifespan of wind turbines. In this thesis, we assume that the optimal level 

of spare parts is maintained for maintenance execution, and all the spare parts are always 

available. 
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After the turbine manufacturer service contract period (which is generally in the range of 

2-5 years), the wind farm owner is responsible for the O&M activities [57]. To reduce the 

O&M costs and to obtain high-quality services, the OWF stakeholders decide to outsource 

the maintenance activities to external service providers [58] for the remaining lifetime of 

the turbines, and this is a strategic decision. The two types of outsourcing contracts are 

[41], 

 

(i) The wind farm owner pays a lump sum to the external service provider/contractor 

to take care of the O&M activities for a fixed period. 

(ii) The wind farm owner pays a fixed amount to the contractor for each failure. 

 

Poore and Walford [59] studied the maintenance outsourcing for OWFs for the turbine 

lifetime of 20 years and concluded that it is an efficient policy to reduce the O&M costs, 

especially during the early years of operation of turbines. Jin et al. [60] proposed a 

mathematical model to minimize the O&M costs of wind turbines under a performance-

based service contract, that is, the wind farm owner defines an availability goal and signs 

a contract with the service provider. Jin et al. [60] performed a comparative study on 

outsourcing O&M for gearbox for ten years and twenty years and concluded that a twenty-

year contract has better cost savings in comparison to a ten-year contract. In this thesis, we 

assume that cost-effective O&M contracts are already in place for OWF maintenance. 

 

2.4.2 Medium-term Decision Models 

 

As stated in Section 1.3, tactical decisions influence O&M for a period of at least one and 

at most five years. Models that address tactical O&M decisions are referred to as medium-

term decision models in this thesis. The medium-term decision models [61-65] addressed 

tactical decisions related to maintenance support organizations, such as the location of 

warehouses and vessel fleet size and mix.  
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Gallo et al. [61] proposed a maintenance model to investigate the impacts of the location 

of warehouses on the profitability of OWFs for two years. Van de Pieterman et al. [62] 

determined the optimum number of access vessels for an OWF consisting of 130 wind 

turbines in the Netherlands using a simulation tool that best projects O&M aspects for 1 to 

5 years. Halvorsen-Weare et al. [63] proposed an optimization model to determine the 

annual vessel fleet size for the maintenance of OWFs. Li et al. [64] proposed a decision 

support tool to determine the annual requirements of vessel and maintenance technicians 

for the optimal maintenance planning at OWFs. The decision support tool in [64] 

incorporated two optimization models: a deterministic model for known accurate failure 

rates and a stochastic model for uncertain failure rates. Dalgic et al. [65] investigated the 

optimal jack-up vessel chartering strategy using a time-domain Monte Carlo approach 

considering the charter period, vessel characteristics, climate parameters, and failure 

characteristics of turbine components. Dalgic et al. [65] also established annual charter 

rates for the jack-up vessel. In this thesis work, we assume that an optimal number of 

technicians and vessel fleet size and the mix is maintained at OWFs for maintenance.  

 

All the assumptions stated in Section 2.4.1 and 2.4.2 ensure that this thesis work will focus 

on an OWF with cost-effective maintenance accommodations, O&M contracts, spare parts 

inventory, and maintenance support organization (warehouses, maintenance technicians, 

and fleet size and mix of vessels). The strategic and tactical maintenance decisions have 

already been made for the OWF to be analyzed in this thesis. So, this thesis work will focus 

on short-term maintenance decisions. 

 

2.4.3 Short-term Decision Models 

 

As stated in Section 1.3, decisions that influence O&M for less than a year are short-term 

decisions.  Models that address short-term decisions are referred to as short-term decision 

models in this thesis. The short-term decision models [66-73] addressed decisions related 

to scheduling of maintenance tasks and resources and routing of maintenance vessels. [41]. 
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Scheduling of maintenance activities for an OWF is generally done for a period of 3 days 

– 7 days and is a challenging task as it is dependent on multiple factors such as the 

availability of vessels and maintenance technicians, availability of spare parts, weather, 

and sea-state conditions [41]. Zhang et al. [66] proposed a maintenance-scheduling model 

for preventive maintenance at OWFs to minimize the overall downtime and production 

losses. The scheduling optimization model by Zhang et al. [66] considered both wake 

effects and wind effects on maintenance. Zhang et al. [66] used a genetic algorithm to solve 

the optimization model. Zhang et al. [66] studied the maintenance schedule optimization 

problem for a utility-scale OWF with 25 turbines and concluded that their proposed 

approach results in a significant reduction in downtime energy losses. 

 

Besnard et al. [67] developed an opportunistic short-term maintenance model for 

opportunistic preventive maintenance during corrective maintenance execution, 

considering production and weather forecasts. The model is developed for two different 

time horizons (a day and a week) and for wind farms that follow flexible maintenance 

schedules. The model proposed by Besnard et al. [67] gives a set of preventive and 

corrective maintenance activities to be performed on the current day and maintenance plan 

forecast for the following days. Besnard et al. [67] studied the model for five 3MW wind 

turbines for a period of 60 days. The results of the work showed that 43% of the total 

preventive maintenance cost could be saved if this opportunistic maintenance with flexible 

everyday schedule optimization is adopted at the OWFs. Besnard et al. [68] also presented 

a stochastic optimization model for performing service maintenance activities during 

corrective maintenance execution, considering the probabilistic variations in production 

forecasts and weather forecasts. Besnard et al. [68] used data from Lillgrund, an offshore 

wind farm located in the southwest of Sweden, to study the model. The results show that 

the approach could save 32% of the transportation and production losses.  

 

Ravindranath [69] developed a short-term decision-making model for scheduling 

maintenance tasks and resources (vessels and maintenance technicians) at the OWFs, 

considering constraints in weather, energy prices, vessel characteristics, and maintenance 

technician’s skills. The time horizon considered in this model is a day, and it helps the 
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OWF maintenance managers and planners to make better maintenance tasks and resource 

scheduling decisions each day. The model in [69] developed a maintenance schedule for 

four days and studied two different scenarios of maintenance execution at OWF on a given 

day. The first scenario had twelve maintenance technicians available for maintenance 

execution, with seven to eight technicians, work on average per day, whereas the second 

scenario had seven technicians available. Both the scenarios performed the corrective 

maintenance activities within the given 4-day period.  

 

Once the maintenance activities are scheduled, the vessels then travel to the desired turbine 

for maintenance. During the travel to the turbine, a collision between the vessels and the 

offshore structures such as turbines and grid infrastructure may result in structural damages 

to both vessels and wind turbines. Dai et al. [70] proposed a risk assessment framework for 

offshore collisions, investigated the risk magnitude of such collisions between maintenance 

vessels and wind turbines, and concluded that the collisions even at low speed might cause 

serious structural damages. Therefore, along with scheduling, better routing of vessels must 

also be considered to avoid the offshore collision. In the case of multiple random turbine 

failures, the optimal routing and scheduling could reduce the downtime largely. 

 

Stalhane et al. [71] proposed an arc-flow model and a path-flow model to find the optimal 

routing and scheduling of maintenance activities for a given fleet of vessels at OWFs. 

Irawan et al. [72] proposed a mixed-integer linear programming model for the routing and 

scheduling of maintenance activities at OWFs considering multiple vessels, multiple 

periods, multiple bases, and multiple wind farms. The model [72] also figures out the 

number of technicians required for each vessel. Raknes et al. [73] proposed a mathematical 

model for optimal maintenance scheduling and routing of vessels considering the multiple 

work shifts and the option of staying offshore. 

 

It is observed that the works [67 and 68] on maintenance task scheduling assumed that the 

information about turbine failure is always available and known for corrective maintenance 

of offshore turbines. With this assumption, the kind of needed repair is known, the resource 

decisions are certain, and the maintenance team easily picks the desired resources for 



 
 

31 
 

maintenance. The short-term models [67 and 68] then focused on their objectives, such as 

opportunistic preventive maintenance to minimize the total maintenance costs. Though 

today’s turbines are usually equipped with condition monitoring (CM) systems, there may 

arise scenarios that such condition monitoring systems are unable to indicate the exact 

failure classification upon failure. That is, no information on the kind of needed 

repair/failure classification and spare parts requirements are obtained from the CM 

systems. Such scenarios arise when natural events, including but not limited to storms, 

icing, and waves, occur, and these natural events account for 60% of offshore turbine 

failures [16]. The occurrence of these natural events is unpredictable and leads to failure 

of both turbine components and the CM systems, respectively. When turbine failure 

information becomes unavailable, resource decision-making turns out to be uncertain, and 

the short-term models [67 and 68] are inapplicable to address this maintenance problem 

situation. The resource decision-making problem for a corrective maintenance trip to OWF, 

considering uncertainty in turbine failure information, will be studied in this thesis.  

 

Though the model [69] pointed out the importance of assigning an optimal number of 

maintenance technicians for corrective maintenance, the model did not study the impact of 

insufficient maintenance technicians on energy loss/production loss. In this thesis, we will 

investigate the possibilities of having insufficient maintenance technicians at the turbine 

for corrective maintenance and the decision problem of assigning an appropriate number 

of maintenance technicians for corrective maintenance.  

 

2.5 Summary 

 

In this chapter, the fundamentals of OWF O&M relevant to the theme of this research have 

been described. The types of uncertainties in OWF maintenance are reviewed, and the 

existing literature is summarized. Seasonal variations of O&M costs at OWFs will be 

studied using the stochastic time element of maintenance execution in chapter 3 of this 

thesis. 
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The need to reduce high O&M costs at OWFs has motivated the research community to 

identify maintenance decision problems at OWFs and provide solutions through decision 

models. The decision models for OWF maintenance in the literature have been reviewed 

and summarized. Though the long-term and mid-term decision models presented in 

sections 2.2.1 and 2.2.2 have issues to address, the scope of this thesis is limited to short-

term decisions, i.e., maintenance decisions that influence O&M for less than one year. As 

stated in section 2.4.3, there are situations (e.g., corrective maintenance of an offshore wind 

turbine) during which the turbine failure information becomes unavailable at OWFs, and 

the decision on resource combination becomes uncertain. A decision model to find a cost-

effective resource combination for a corrective maintenance trip to an offshore wind 

turbine, considering uncertainty in turbine failure information, will be proposed in chapter 

4. 

 

Whenever turbine failure information becomes unavailable, resource decision making 

turns out to be uncertain. The possibilities of having insufficient maintenance technicians 

at the turbine for corrective maintenance will be investigated, and a model to assign the 

appropriate number of maintenance technicians for corrective maintenance will be 

proposed in chapter 5 of this thesis. Finally, some concluding remarks and possible future 

work will be given in chapter 6. 
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CHAPTER 3 
 

MODELING OF UNCERTAINTY IN OFFSHORE 

OPERATION AND MAINTENANCE 

 

 
In this chapter, the concept of capturing the uncertainties in O&M of OWFs using the time 

elements of maintenance execution is introduced, and the uncertainties are modeled as 

stochastic time elements for the next future trip. Also, the O&M cost model for the next 

future trip is proposed, and the seasonal variations of the O&M costs at the OWFs are 

studied using the proposed model. A version of this chapter has been published as a 

conference paper in [74]. The symbols used in this chapter are specific to and applicable 

only to this chapter. The $ values in this chapter are US dollars unless otherwise specified. 

 

3.1 Problem Description 

 

As stated in section 1.3 of chapter 1, the increased O&M cost for offshore wind farms is 

mainly caused by uncertainty factors including but are not limited to weather, sea-state 

conditions, and component lifetimes. The weather and sea-state conditions limit 

accessibility to OWF and increase downtime and production losses. Uncertainty in 

component lifetime affects the number of corrective maintenance activities and thereby 

increases maintenance effort and costs. 
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Very few studies in the literature have represented the O&M cost as a function of different 

uncertainties. Three such studies have been carried out for OWFs. The model developed in 

[35] considered the uncertainties in wind speed, wave height, repair time, and Operational 

Range Limitations (ORL) of vessels and investigated the effects of uncertainties on O&M 

costs. The model in [35] expressed the O&M cost as a function of these uncertainties, 

estimated the total maintenance expenses for the turbine lifetime of 20 years, and compared 

the variations in maintenance expenses with and without considering uncertainties. The 

weather forecast uncertainty model in [35] represents the uncertainty in wind speed and 

significant wave height and uses an error term to describe the difference between the 

forecasted value and the actual value. The error terms for both wind speed and significant 

wave height take a mean value of zero and a standard deviation of 0.005 t , where t  denotes 

time in hours. The farther the forecast is, the larger the uncertainty in the forecast. This 

means, for a forecast of 24 hours the standard deviation is 0.12 and for a forecast of 48 

hours the standard deviation is 0.24. The repair time uncertainty is modeled as an error 

term to describe the difference between actual repair time and expected repair time. The 

error term for the repair time uncertainty is assumed lognormal distributed and has a mean 

greater than or equal to one. The uncertainty in ORL of vessels represents access 

uncertainty. There is a possibility that the wave conditions exceed the deterministic 

threshold value of the operational range of vessels when the vessel is in the sea. This 

uncertainty is modeled using an error term to describe the difference between the actual 

value at the site and the deterministic threshold value of having access by the vessel. The 

error term is assumed normally distributed with a mean of one and the standard deviation 

of  , due to lack of data and knowledge on ORL of vessels. The uncertainty model 

developed in [35] for wind speed and wave height considers only the delay in accessing 

the target wind farm and does not consider the delay when performing the 

repair/maintenance at the target turbine. In addition, the weather uncertainty model in [35] 

does not consider seasonal weather uncertainty changes. The main aim of this chapter is to 

investigate the effect of uncertainties in OWF maintenance execution using stochastic time 

factors for the next future trip. The objectives are to propose a model that represents the 

O&M cost as a function of various uncertainties for the next future trip and to study the 

seasonal variations of O&M costs considering uncertainties. 
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The failure cost categories are classified into three types, namely minor repair, major 

repair, and replacement. According to [39], any failure with a total repair material cost up 

to €1000 is considered as a minor repair, between €1000 and €10,000 is considered as a 

major repair and over €10,000 is considered as a replacement. This type of categorization 

based on material cost ensures that the repair costs are independent of the distance from 

shore. The failure rate of minor repair is taken to be 6.81/turbine/year, of a major repair is 

1.17/turbine/year, and of replacement is 0.29/turbine/year [39]. Irrespective of the type of 

the wind farm, the number of turbines and the distance from the shore, the probability that 

the immediate next future trip to the OWF will result in a minor repair is 0.82, a major 

repair is 0.14, and a replacement is 0.04 [39]. Since the failure cost categories have different 

probabilities of occurrence and different repair characteristics (repair cost and repair time), 

all three categories are included in our analysis to find the maintenance cost for the next 

future trip. In our study, both major repair and replacement are considered as major 

maintenance, and minor repair is considered as minor maintenance. 

 

3.2 Stochastic Time Variables 

 

The components of wind turbines may experience unforeseen failures during their 

operation (uncertainty in the component lifetime). Now, the maintenance team does not 

know whether it is minor or major maintenance. However, the maintenance team is ought 

to attend the failed component and needs to travel to the target wind farm to fix the problem. 

Natural variations of weather and sea-state conditions highly influence the accessibility 

(using vessels) to OWF. For example, vessels can access the wind farm only if wave 

heights are less than 2 m [16]. During certain months wave heights are more than 2 m and 

accessibility to OWF is almost impossible. This uncertainty in weather and sea-state 

conditions delays the execution of maintenance activity and thereby increases downtime 

and O&M costs. After arriving at the target turbine, the crew carries out the required 

maintenance on the turbine component, and this completes a maintenance execution 

activity. From the interpretation of the complete maintenance execution activity, we 
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believe that three time variables are involved in maintenance execution, namely waiting 

time, repair time, and travel time. 

 

The hypothesis here is to employ the time variables involved in a maintenance execution 

to capture the uncertainties for OWF maintenance by treating them as stochastic factors. 

The amount of time a maintenance operation is delayed due to constraints on sea state and 

wind speed is termed as waiting time [30]. The time it takes to travel back and forth, the 

wind farm is the travel time. Repair time is defined as the amount of time the maintenance 

technicians spend in carrying out the repair [39]. All three stochastic time factors are treated 

as independent of each other. The waiting time model developed in [30] is selected in our 

study as it captures all the delays due to weather and sea-state uncertainties. The travel time 

is treated as a random variable and is modeled using probability theory. To consider the 

uncertainty in repair time, the model developed in [75] is selected in our study. This study 

is concerned only with time variables involved in executing the maintenance and does not 

consider time variables such as logistic time for spare parts and lead-time for maintenance 

vessels that are involved in preparing and planning maintenance and hence the sum of 

waiting time, repair time and travel time is considered as “Failure Restore Time” (FRT) 

[30]. 

 

The model in [35] expresses O&M cost for the turbine lifetime of 20 years as a function of 

various uncertainties, namely weather forecast uncertainty, repair time uncertainty, and 

ORL of vessels. The model proposed in this chapter expresses the O&M cost for the next 

future trip as a function of stochastic time factors (waiting time, travel time, and repair 

time). Our proposed model using stochastic time factors will calculate the total 

maintenance expenses for the next future trip. The proposed model serves as an 

improvement of the existing model reported in [35], as it considers the delay when 

performing a repair at the turbine and is capable of studying the seasonal O&M cost 

variations. The reported model from [35] is given in equation (3.1), and our proposed 

model is given in equation (3.2). 
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O & M cost for turbine lifetime of  20 years = f  (weather forecast, 

                                                                                     repair time, ORL of  vessels)
  (3.1) 

 

O & M cost for the next future trip = f  (waiting time, repair time, travel time)  (3.2) 

 

In the following sub-sections, we analyzeeach of the three stochastic time variables. 

 

3.2.1 Waiting Time  

 

The waiting time represents the total delay in maintenance execution due to weather and 

sea-state conditions. The waiting time includes two time elements: delay time before travel 

can start and delay time while the maintenance crew is at the target wind turbine. 

 

Crew Transfer Vessels (CTVs) are used in our model, and they are capable of carrying the 

needed equipment for any of the three types of possible maintenances. When there is a 

need to travel to the OWF to perform maintenance, there might be a delay in the start due 

to sea-state conditions. CTVs have an operational range limit based on wave heights up to

1.5 m  [76]. If the wave height exceeds 1.5 m , the maintenance crew has to wait onshore 

until the sea-state conditions come under the operational limit of the CTV. This delay 

before the travel can start is the first element of the waiting time. The waiting time before 

travel can start is the time the maintenance crew has to wait onshore until weather and sea-

state conditions become accessible to complete the entire maintenance execution activity, 

which includes the travel to the turbine and the repair activity at the turbine. The waiting 

time with respect to the maximum wave limit of CTV corresponding to 1.5 m wave limit 

can be used in modeling the waiting before travel can start. Since our analysis is focused 

on the next future trip, at this point of time, the crew does not know which type of 

maintenance that they are going to perform. Therefore, the waiting time before travel can 

start is the same for all three maintenance categories, and it is denoted by before travel startsWT . 

During the entire travel, the wind speed and wave height will be within the operational 

range of the vessels, and travel will not be interrupted, i.e., no delay during the travel. 
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Once the crew has arrived at the target turbine, there may be a waiting time due to 

uncertainty in weather and according to the type of maintenance executed. This second 

element of waiting time is denoted by at the turbineWT . This second element of the waiting 

time includes all the delays due to the sudden change of weather conditions when the crew 

is already at the turbine. Once this waiting time is over, one of the three maintenance types 

(minor repair, major repair and, replacement) will be executed. Cranes that are carried on 

all CTVs are needed only for major repair and replacement, and they are not needed for 

minor repairs. Thus, the waiting time at the target turbine is zero for a minor repair. The 

waiting times for major repair and replacement are affected by both wind speed and wave 

height [30]. Cranes are designed for use up to a certain maximum in-service wind speed at 

offshore. If the wind speed exceeds the in-service speed of cranes, the crew has to wait 

until the wind speed decreases to the operational limit of the cranes to execute maintenance. 

The model developed in [30] for waiting time at the turbine is selected for this study as it 

used both hourly mean wind speeds and hourly mean significant wave height data from the 

FINO1 research platform in the North Sea. FINO1 is one of the German research platforms 

in the North and Baltic Seas for investigation of environmental conditions that might be 

conducive to the exploitation of wind power offshore. It is situated in the North Sea about 

40km north of Borkum and was brought into service in 2003. The FINO1 research platform 

is instrumented with a large suite of meteorological and oceanographic instruments where 

comprehensive measurements and analyses are undertaken for the determination of 

ambient conditions (meteorology, hydrology, oceanography, etc.) [77]. It is assumed that 

the maximum in-service wind speed for the cranes used for maintenance is 10 m / s .  

 

The total waiting time, including waiting time before travel and waiting time at the turbine 

for the next future trip, is given in equation (3.3).  

 

next future trip before travel starts at the turbineWT = WT + WT                (3.3) 

 

at the turbine minor major replacementWT = α × WT + β × WT + γ × WT     (3.4) 
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where  denotes the probability that the needed repair is minor,  is the probability that 

the needed repair is major,  is the probability that the needed repair is a replacement, 

1  + + = , and WT represents waiting time. The parameters  ,   and   can be 

estimated from past repair records. From the data analyzed in [39], α = 0.82, β = 0.14, and 

γ = 0.04. We will use these numbers in our illustrating calculations later in this chapter. 

 

The results from [30] provide CDF of waiting times ( before travel starts at the turbineWT + WT )  for 

minor repair, major repair, and replacement for a whole year and all the four seasons, 

namely spring, summer, autumn, and winter. The mean values of Gamma distributed 

waiting times from [30] for minor repair, major repair, and replacement for the whole year 

and for different seasons are given in Table 3.1. The numbers for major repair and 

replacement are the same in their study. 

 

Table 3.1: Expected Values of Gamma distributed waiting times [30] 

Year/Season Minor repair 

minorWT  

Major repair 

majorWT  

Replacement 

replacementWT  

Whole year 186.55 1247.00 1247.00 

Spring 52.25 212.48 212.48 

Summer 34.80 68.00 68.00 

Autumn 49.47 170.46 170.46 

Winter 102.50 356.91 356.91 

 

 

3.2.2 Repair Time  

 

The repair time is treated as a stochastic variable because there may be a difference between 

the expected repair time and actual repair time on site [35]. The repair time model presented 

in [75] is selected for our study. Repair time is assumed lognormal distributed with a mean 

value of 160.08 hours for a minor repair, 423.36 hours for a major repair, and 2788.56 
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hours for a replacement [39, 75]. The repair time for the next future trip is given in equation 

(3.5).  

 

next future trip minor major replacementRT = α × RT + β× RT + γ × RT          (3.5) 

where   denotes the probability that the needed repair is minor,   is the probability that 

the needed repair is major,   is the probability that the needed repair is a replacement, 

1  + + = , and RT denotes repair time. 

 

3.2.3 Travel Time  

 

The travel time to the OWF is varying because it depends on the experience and risk 

willingness of the vessel skipper or helicopter pilot, and hence it is a random variable. None 

of the studies in the literature has considered travel time as a stochastic variable in modeling 

O&M costs for OWFs. The travel time is an important stochastic time variable involved in 

maintenance execution because the travel time not only affects the downtime but also 

affects the number of hours the maintenance technicians spend on the vessel during the 

travel to the wind farm. This uncertainty in travel time affects the wages paid for the 

maintenance technicians and total O&M costs. This is the reason to consider travel time in 

our O&M model. To avoid the use of a helicopter in our study and to get same travel time 

for various types of repairs, it is assumed that the same type of CTV from the same 

manufacturer is used to access the OWF. A wind farm with a distance of 150 km from 

shore and a CTV with a speed of 20 knots is used in [78] to calculate the travel time. The 

calculated travel time of 8.1 hours for a round trip is considered as the mean travel time 

and is assumed lognormal distributed [78]. The travel time for the next future trip is denoted 

as next future tripTT . The travel time might get affected due to varying wave heights and wind 

speeds. Wind speed directly influences the wave height. The wave height variations in the 

sea affect the travel speed, which in turn affects the travel time. To simplify our analysis 

and exclude the hydrodynamics of the sea, the travel time is assumed to be independent of 
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the wave height and wind speed in this chapter. This dependence will be considered in 

future work.  

 

3.2.4 O&M Cost Model 

 

Our proposed model expresses O&M cost for the next future trip as a function of three 

stochastic time variables involved in maintenance execution as given below,  

 

next future trip next future trip next future tripO & Mcost for the next future trip = a × WT + b × RT + c ×TT  (3.6)  

where next future tripWT is the waiting time, next future tripRT is the repair time, next future tripTT is the 

travel time, a is the cost per hour of waiting time, b is the cost per hour of repair time, and 

c is the cost per hour of travel time. The cost per hour of the respective time variables 

affects the cost of maintenance technicians and the cost of the vessel, provided both 

maintenance technicians and vessel rentals for maintenance are paid on an hourly basis. To 

simplify our analysis, the set-up time, which is also uncertain, is not considered in this 

study. Set-up time is the total time it takes to get spare parts in place, lower crane legs to 

establish a stable platform, assemble crew, transfer technicians, and reach the target turbine 

component before starting the actual repair work. 

 

3.3 Seasonal Variations of O&M Cost 

 

To study the seasonal variations of O&M cost considering uncertainties for the next future 

trip, the values of the stochastic time factors in the models given in Section 2 are needed. 

The degree of uncertainty is denoted by the coefficient of variation (CV) of a random 

variable. CV is the ratio of the standard deviation to the expected value of the random 

variable expressed in percentage. The larger the coefficient of variation, the larger the 

uncertainty in the random variable. The time values are calculated for the same mean and 

10% CV and 90% CV. To simplify our analysis, a, b, and c in equation (3.6) are assumed 

to be the same and all equal to $199, which is the sum of the per hour maintenance labor 

cost ($125) and per hour vessel cost ($74) as given in Table 3.2. We have used the values 
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of α = 0.82, β = 0.14, and γ = 0.04, as stated before. The mean values of waiting times for 

various types of repairs are given in Table 3.1. The mean values of the repair times are 

taken to be 160.08 hours for a minor repair, 423.36 hours for a major repair, 2788.56 hours 

for a replacement. The mean value of travel time is taken to be 8.1 hours. Other data given 

in Table 3.2 are not used in this study. The repair times and the travel times are assumed 

to be the same for each of the four seasons considered.  

 

Using the data described above, we have calculated the total O&M cost for each of the four 

seasons when the coefficient of variation is equal to 10% and 90%. The calculated O&M 

costs are given in Table 3.3 and plotted in Figure 3.1. From the results in Table 3.3 and 

Figure 3.1, we can see that the O&M cost is very high during the winter season and the 

lowest during the summer season. In addition, the autumn season is better than the spring 

season by a considerable amount of savings in O&M costs. Therefore, the summer and 

autumn season are the better picks to plan and execute inspections and preventive 

maintenance activities at OWFs, to reduce both the O&M costs and the cost of energy.  

 

Table 3.2: Inputs to calculate O&M costs [30, 39, 78, and 79] 

O&M cost model inputs Minor repair Major repair Replacement 

Average number of technicians 2.61  3.44  9.14 
 

Maintenance technician cost/hour $ 125 $ 125 $ 125 

Repair cost $ 186  $ 2296 $ 54347  

Vessel cost/hour $ 74 $ 74 $ 74 

Fixed vessel trip cost $ 118.50  $ 118.50  $ 118.50  

 

Table 3.3: OWF O&M costs for the next trip from this study 

Season 10% Coefficient of Variation 90% Coefficient of Variation 

Spring $82,763 $142,954 

Summer $74,033 $127,876 

Autumn $80,638 $139,284 

Winter $97,402 $168,241 
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Figure 3.1: OWF O&M Costs for different seasons 

 

3.4 Summary 

 

This chapter expresses the uncertainties in OWF maintenance execution through stochastic 

time variables for the next future trip and demonstrates the effects of the uncertainty factors 

on total O&M costs for different seasons. The model developed in this chapter would help 

to assess the seasonal O&M cost for a specific OWF location and would aid in planning 

both inspection and preventive maintenance activities to minimize the O&M cost. This 

conceptual approach of time variable analysis for capturing the effect of uncertainties could 

also consider the uncertainty in the logistic time of spare parts and uncertainty in the lead-

time of vessels. Possible future work includes lead-time and logistic time in the O&M 

model, the number of maintenance technicians to assign to a trip, and other types of cost 

in Table 3.2.  

 

In this chapter, we have got a better understanding of the seasonal variations of O&M costs 

at OWFs. As stated in section 1.4 of chapter 1, our next objective is to identify and solve 

short-term maintenance decision problems at OWFs. In the next chapter, i.e., chapter 4, a 

decision model for corrective maintenance at OWFs, considering uncertainty in turbine 

failure information, will be presented. 
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CHAPTER 4 
 

DECISION MODEL FOR CORRECTIVE 

MAINTENANCE OF OFFSHORE WIND 

TURBINE 

 

 
Through the literature review in Section 2.3.1 and Section 2.3.2 of chapter 2, a better 

understanding and knowledge of uncertainties in OWF maintenance is obtained. In chapter 

3, the uncertainties in OWF maintenance are modeled using stochastic time elements of 

maintenance execution, and the seasonal variations of O&M costs of OWFs are studied for 

the next future trip. With a better understanding of the effect of uncertainties on offshore 

O&M costs as documented in Chapter 3, our next objective is to identify critical 

maintenance decision problems at OWFs and propose decision models to aid decision-

making at OWFs.  

 

In this chapter, the different types of resource combination to address an offshore wind 

turbine failure is discussed and a short-term resource decision-making model is proposed 

for the next corrective maintenance trip for offshore wind turbines, considering the 

uncertainty in turbine failure information. Also, a case study is presented to demonstrate 

the use of the proposed model. A version of this chapter has been published as a journal 

paper in [81]. The symbols used in this chapter are specific to and applicable only to this 

chapter. The $ values in this chapter are US dollars unless otherwise specified. 
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4.1 Problem Description 

 

As stated in Section 1.3, the accessibility limitations of vessels and helicopters imposed by 

the weather and sea-state conditions combined with the unavailability of failure data make 

maintenance decision-making at OWFs, a complex and challenging task for the O&M 

team. The high O&M costs at OWFs creates a necessity to identify maintenance decision 

problems (either long term or short term) that have a significant effect on the life cycle 

O&M costs and to provide solutions to one decision problem at a time through simple 

maintenance models. The corrective maintenance and its associated resource decisions 

(both short-term and long-term) contribute more than 60% to the life cycle O&M costs and 

are the highest cost driver of OWF O&M [80]. The high cost associated with the corrective 

maintenance resource decisions was the motivation to identify short-term resource decision 

problems for corrective maintenance of the OWFs. 

 

Few models [67, 69] in the literature have addressed the short-term maintenance problems 

at OWFs. As described in Section 2.4.3, both the short-term models [67, 69] reported in 

the literature assumed that the information about turbine failure is always available and 

known for offshore turbine maintenance. With this assumption, the kind of needed repair 

is known, the resource decisions are certain, and the maintenance team easily picks the 

desired resources for maintenance. The short-term models [67, 69] then focused on 

different objectives such as opportunistic preventive maintenance [67] and resource-

scheduling [69] to minimize the total maintenance costs. When the turbine failure 

information becomes unavailable, the resource decision-making turns out to be uncertain, 

and the short-term models [67, 69] are inapplicable to address this maintenance problem 

situation. In the following paragraphs, we describe the problem to be dealt with in this 

chapter in detail. 

 

Each component failure of a wind turbine has different maintenance/repair severities, i.e., 

the effort needed from the maintenance technicians, the cost associated with the 

maintenance work, and the time needed to perform the repair vary for each component 
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failure. It is reported in [82] that the grouping of turbine component failures with similar 

maintenance severity is done to develop failure classifications, and the reported 

methodology will be followed in our study. The offshore turbine component failures may 

be classified into a finite set of failure classifications, and each failure classification has a 

maintenance rank and a probability of occurrence. The “maintenance rank” of a failure 

classification is defined as “the natural number assigned to each failure classification based 

on the severity of maintenance involved in solving component failures, with 1  assigned to 

the failure classification of lowest maintenance severity and N assigned to the failure 

classification of highest maintenance severity.” As each failure classification is assigned a 

maintenance rank, the total number of ranks is the same as the total number of failure 

classifications. The “probability of occurrence of a failure classification” is defined as “the 

sum of all the individual failure probabilities of turbine components under a specific failure 

classification.” 

 

Irrespective of the type of maintenance, certain resources are required to perform the 

intended maintenance task. Resources needed to complete a maintenance activity are an 

access vessel, maintenance technicians, and spare parts. The right combination of 

maintenance technicians, access vessels, and spare parts to address the offshore turbine 

failure is termed as “resource combination.” In the case of an offshore wind turbine, 

different resource combinations are required to solve component failures under different 

failure classifications. For example, to solve the failure of a gearbox under a given failure 

classification, more number of maintenance technicians, expensive vessel and spare 

gearbox parts (assembled or individual spare parts) are required, whereas to solve the 

failure of a brake shoe falls under another failure classification, and less number of 

maintenance technicians, inexpensive vessels and brake shoe spare parts are required. 

Hence, two failure classifications could potentially result in two resource combinations. 

The failure of both the brake shoe and gearbox could also be addressed using one resource 

combination.  

 

This provides us an intuitive understanding that there may exist two types of resource 

combinations to address the offshore turbine failure. We assume that the first type is 
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resource combinations that are dedicated to addressing component failures under only one 

specific failure classification and are referred to as “A-type Resource Combinations” or 

simply “A-type RC’s” throughout the chapter.  A-type RC is defined as “the combination 

of maintenance technicians, spare parts and vessels which can identify and solve 

component failures under single failure classification.” A-type RC’s cannot solve the 

failures that occurred in turbine components under other failure classifications. We assume 

that the second type is the resource combinations that are capable of solving turbine 

component failures under multiple failure classifications within a specified maintenance 

rank and are referred to as “B-type Resource Combinations” or simply “B-type RC’s” 

throughout the chapter. The B-type RC for the nth ranked failure classification is defined 

as “the combination of maintenance technicians, spare parts and vessels which can solve 

component failures under the rank “1 to n” failure classifications.” From the definition, it 

is understood that if a B-type RC is sent to address the nth ranked failure classification, it 

cannot solve component failures under rank “n+1 to N” failure classifications. 

 

Though today’s turbines are usually equipped with condition monitoring (CM) systems, 

we consider the scenario that such condition monitoring systems are unable to indicate the 

exact failure classification upon a turbine failure. That is, no information on the kind of 

needed repair/failure classification and spare parts requirements are obtained from the CM 

systems. Such scenarios arise when natural events, including but not limited to storms, 

icing, and waves, occur, and these natural events account for 60% of the offshore turbine 

failures [83]. The occurrence of these natural events is unpredictable and leads to the failure 

of both the turbine components and the CM systems, respectively. The human-influenced 

events are generally reliability related issues of the CM systems. It is reported in [84] that 

the reliability of the CM system is not 100%, and the CM systems sometimes fail to 

produce an alarm when the turbine component requires immediate attention for 

maintenance. The event of the CM systems not producing an alarm leads to component 

failure and apparently turbine failure. During this CM system unreliability event, the 

information failed turbine component is not obtained from the CM systems. Hence, these 

random natural and human-influenced events (of failure) leads to a situation where the 

O&M team will have no direct information from the CM systems to make resource related 
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maintenance decisions. In this chapter, we focus on this scenario of corrective maintenance 

where the information on the failed turbine component and its failure classification is not 

known. 

 

A wind farm may have many turbines in operation, which may fail anytime in the future. 

If any wind turbine at an offshore wind farm failed suddenly and no information on the 

failed turbine component and its failure classification could be obtained from the CM 

systems, the O&M team do not know the exact resource combination to address the failed 

turbine. In this situation, the O&M team is unsure about which type of vessel to use, how 

many maintenance technicians to send, whether to take spare parts or not and which spare 

parts to take. This creates uncertainty in making decision on the resource combination for 

maintenance execution. The hypothesized problem situation is “a corrective maintenance 

trip to an offshore wind turbine with unknown turbine failure information.” The aim of our 

study is “to find a cost-effective resource combination for the hypothesized problem 

situation.” In this problem, the failure classification is not known at the time of 

maintenance initiation, and all the resource combinations that are available in the onshore 

port turn out to be decision choices for the O&M team. The resource combination to be 

selected by the O&M team might solve the unknown failure in one trip or might not solve 

the unknown failure in one trip and necessitate an additional trip to solve the identified 

failure known from the first trip. Therefore, the O&M team is put into a situation to select 

only one resource combination among all the available resource combinations considering 

the two possible results of their decision. In order to make a decision, the cost associated 

with each decision choice must be evaluated, taking into account the probability of 

occurrences of different failure classifications. Then, the resource combination with the 

least cost could be selected as a cost-effective resource combination to address the 

unknown turbine failure. The objectives are to propose a simple and useful mathematical 

model to aid decision-making and to demonstrate the use of the proposed model through a 

case study. The proposed model will assist multiple OWF stakeholders in making critical 

resource decisions for a corrective maintenance trip. The proposed model addresses the 

maintenance problem situation for which the information on turbine failure is not available 

and so it cannot be compared with the short-term models [67, 69] in the literature. 
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4.2 Mathematical Model 

 

In this section, the mathematical model for the described problem is proposed. If the 

offshore wind turbine has a finite number of failure classifications and each classification 

has a probability of occurrence, then:  

 


N

i

i=1

P = 1
 

(4.1) 

 

where Pi denotes the probability of occurrence of the ith failure classification. The 

probabilities of occurrences of all the failure classifications are assumed known.  

 

To address the component failures under respective failure classifications of offshore wind 

turbine, two different types of resource combinations are described earlier in Section 4.1. 

In our model, both types of resource combinations are considered as decision choices. 

Therefore, the selection of one resource combination among the available resource 

combinations (both A-type and B-type) is the only decision for the described problem. The 

decision is represented as a finite set of binary variables in our model: 

  





ij

1, use type j RC for failure classification i
S =

0, don't use type j RC for failure classification i
 

 

(4.2) 


N 2

ij

i=1 j=1

S = 1

 

(4.3) 

 

where Sij denotes the type j RC for the ith ranked failure classification. The above constraint 

ensures that only one Sij is selected among the available N number of Sij’s, to solve the 
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unknown failure. All the type j RC’s that are dedicated to addressing their respective ith 

ranked failure classifications are assumed known. 

 

The uncertainty in turbine failure information brings in two possible situations, namely trip 

success and trip failure. The “trip success” is defined as the situation where the unknown 

turbine failure is solved in a single maintenance trip using either an A-type RC or a B-type 

RC. The “trip failure” is defined as the situation where the unknown turbine failure cannot 

be solved in a single maintenance trip and necessitates an additional trip to solve the 

identified known failure using an appropriate A-type RC. Both the probability of trip 

success and trip failure depends on the decision and the probability of occurrences of the 

failure classifications. The trip success and failure situations, along with their probabilities, 

are considered in the model. 

 

When an A-type RC, which is dedicated to the ith failure classification, is sent to address 

the unknown failure, the trip is successful when the failure classification is i and the trip is 

a failure when the failure classification is not i. For A-type RC, the probability of the 

maintenance trip to be a success is Pi, and the probability of the maintenance trip to be a 

failure is 1–Pi. If the failure classification is not i, we are able to identify that the failure is 

k, and a single next trip with an A-type RC for k will solve the failure. When a B-type RC 

that is dedicated to the nth failure classification is sent to address the unknown failure, the 

trip is successful when the failure classification is1,2,3,..., n, and, the trip is a failure when 

the failure classification is k (k>n). For B-type RC, the probability of the maintenance trip 

to be a success is
1 2 3 n

P + P + P + ... + P , and the probability of the maintenance trip to be a failure 

is
n+1 n+ 2 n+ 3 N

P + P + P + ... + P . A single next trip with an A-type RC for k will solve the failure.  

 

The objective is to find the expected total maintenance cost of the decision, to figure out 

the cost- effective decision and solve the unknown turbine failure. The total maintenance 

cost in our model includes the maintenance technicians cost, access vessel cost, special 

maintenance vessel cost (jack-up, crane, etc.), spare parts cost and, production losses due 

to downtime. The maintenance technicians and vessels are in use from the point of time 

they get ready to execute maintenance to the point of time they get back to shore after the 
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maintenance activity. In addition, the turbine is unavailable until the maintenance crew gets 

the turbine back to operation. Therefore, the mathematical model formulation involves 

various deterministic time elements of maintenance, namely lead-time, logistic time, 

waiting time, travel time, failure identification time, and repair time. 

 

The time to get the vessel ready for maintenance is the lead-time and, the time to get the 

spare parts is the logistics time. It is assumed that all the resources (the vessels, the 

technicians, and the spare parts) are always available in the onshore port for maintenance 

execution. This assumption eliminates the lead-time of vessels and the logistic time of 

spare parts in our model. The total delay in maintenance execution due to weather and sea-

state conditions is the waiting time and is the sum of “the delay before travel starts” and 

“the delay at the turbine” [30]. It is dependent on the weather and does not depend on the 

decision. Hence, the waiting time is a constant in our model. The time to identify the failure 

occurred at the turbine and figure out the component that requires maintenance is the failure 

identification time. The failure identification time does not depend on the decision and is a 

constant in our model. The time taken to travel back and forth the turbine using vessels is 

called the “travel time” and is the sum of the “travel time to the turbine” and “travel time 

from the turbine.” The travel time is dependent on the decision, as the vessel speed may 

differ for different resource combinations. To calculate the travel time, the average distance 

of the turbines from the shore is considered in our model. The wind speed and wave height 

variations in the sea may affect the travel speed, which in turn affects the travel time. To 

simplify our analysis and exclude the hydrodynamics of the sea, the travel time is assumed 

to be independent of the wave height and wind speed in this chapter.  

 

The time it takes to perform the actual maintenance work is the repair time. In the case of 

trip success, the repair activity is completed successfully, and the turbine failure is solved 

in one trip. In our model, the trip success situation includes repair time. In the case of trip 

failure, the component failure is only identified and is not repaired on the first trip. The 

certain amount of time spent to identify the failure in the first trip (waiting time, failure 

identification time, and travel time) along with the fixed cost for an additional trip to solve 

the known failure using an A-type RC is considered for trip failure. The fixed cost/purchase 
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cost of spare parts is not considered in our model; instead, the cargo handling costs of spare 

parts are considered as the spare parts cost in our model. The spare parts cost is the total 

tonnage of spare parts in a resource combination times the cargo handling cost per tonnage. 

To simplify our analysis, the weight of the spare parts is considered the only cargo weight 

in our model. Other weights, such as the weight of the maintenance tools, technicians are 

not considered. The mathematical model for the described problem is given in Equation 

(4.4) as: 

 

 

  

N 2 N 2

ij ij ij ij

i=1 j=1 i=1 j=1

N 2 N 2 N 2

ij ij ij ij ij ij ij ij ij

i=1 j=1 i=1 j=1 i=1 j=1

Z = S × g × D + S × H +

      S × t × C + S × α × r × C + S × β × A
(4.4) 

 

ij ij ijC = V + (n × M) + R                                                (4.5) 

  for j=1ij iα = P                                                      (4.6) 

   for j=2
i

ij k

k=1

α = P                                                   (4.7) 

     for j=1ij iβ = 1 - P                                                (4.8) 

   for j=2
N

ij k

k=i+1

β = P                                                 (4.9) 

 

Z  Expected total maintenance cost for Sij 

gij  Weight of spares for Sij in tons 

D  Cost per tonnage of spares 

Hij  Cost of special vessel for Sij 

tij  Travel time for Sijin hours 

Cij  Cost of vessel, maintenance technicians, and revenue loss per hour for Sij 

Vij  Vessel cost per hour for Sij 

nij  Number of maintenance technicians for Sij 

M  Maintenance technician cost per hour 
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R  Revenue loss per hour 

rij  Repair time for Sij in hours 

ij  Probability of trip success for Sij 

Bij  Probability of trip failure for Sij 

Pi  Probability that the failure is of classification i 

A Fixed additional trip cost of sending an A-type RC to solve known failure, 

which includes vessel cost, technicians cost, spare parts cost, and revenue 

loss due to downtime 

 

The above mathematical model describes the expected total maintenance cost of sending 

Sij to address the unknown failure. The first two terms in the model are the sum of the spare 

parts cost and fixed special vessel cost of Sij. The third term in the model is the total cost, 

including vessel cost, technicians cost, and revenue loss incurred because of the travel to 

and from the turbine using Sij. The fourth term in the model is the trip success using Sij. 

The trip success considers the total cost, including the vessel cost, technicians cost ad 

revenue loss incurred because of the repair activity at the turbine using Sij and the 

probability that the turbine failure could be solved by Sij. The fifth term in the model is the 

trip failure using Sij. The trip failure considers the total cost, including the vessel cost, 

technician cost, and revenue loss, to solve the known failure using an appropriate A-type 

RC and the probability that the turbine failure could not be solved by Sij. The waiting time 

and failure identification time are constants in our proposed model, and both the time 

elements do not affect the decision and the results. Therefore, the waiting time and failure 

identification time are not included in the model. In the equations (4.6), (4.7), (4.8) and 

(4.9), j = 1 represents the A-type RC and j = 2 represents the B-type RC. 

 

With appropriate inputs, the proposed model is capable of calculating the expected cost of 

each decision choice. Utilizing the enumeration method, the expected total cost of all the 

resource combinations is evaluated and, the resource combination with the minimum 

expected cost is selected as the cost-effective option to address the unknown turbine failure. 

The mathematical model formulated above includes both types of resource combinations 

described earlier in Section 4.1, as decision choices, and this allows the decision makers to 
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consider all the available resource combinations for decision-making. In addition, the 

simplicity of the model ensures that it takes less time and less technical effort to solve the 

model. Hence, all the OWF stakeholders could use the model anytime. Given the failure 

classifications, their probabilities, and resource combinations (decision choices) and, using 

the proposed model, the O&M team at any OWF would be able to figure out the cost-

effective resource combination to address the unknown turbine failure. 

 

4.3 Case Study 

 

The objective of the case study is to demonstrate the use of the proposed model for offshore 

wind turbine maintenance. To simplify our analysis, a wind farm model with identical 

turbines is selected for our case study.  

 

4.3.1 Wind Farm Models 

 

The OWEZ wind farm model reported in [82] is selected for the study. The OWEZ wind 

farm has 36 identical VESTAS 3 MW wind turbines with a total capacity of 108 MW. The 

wind farm is in the North Sea at 10 km - 18 km distance from the harbor, and the turbines 

are installed to a maximum depth of 20 m. Four failure classifications for corrective 

maintenance reported in [82] for a 3 MW wind turbine is applicable for the selected OWEZ 

wind farm model and is given in Table 4.1.  

 

In accordance with the vessel characteristics reported in [39] and the weight of spares under 

each failure classification reported in [82], the A-type RC’s and B-type RC’s for corrective 

maintenance is given in Table 4.2. From Table 4.2, it could be observed that 
11S and 

12S

have identical resource elements, which means both A-type and B-type RC’s are identical 

for imperfect maintenance in this study. 
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Table 4.1: Failure classifications for a 3 MW offshore wind turbine [82] 

Maintenance 

rank 

Failure 

Classification 
Definition 

1 Imperfect 

maintenance 

An imperfect maintenance operation where there 

is no requirement for spare parts. 

2 Minimal replacement A minimal replacement of small sized sub-

components with a maximum weight of 1 tonne. 

3 Perfect replacement I A perfect replacement of medium weight sub-

components with a maximum weight of 50 

tonnes. 

4 Perfect replacement 

II 

A perfect replacement of medium or large sized 

sub-components, with weight 50 tonnes to 100 

tonnes. 

 

 

The probabilities of different failure classifications reported in [82] are applied to the 

OWEZ wind farm model. The reported probabilities are considered as the base case model 

in the study.  It can be observed that the majority of the corrective maintenance for the base 

case model is imperfect maintenance. Thus, the base case model is interpreted as OWF in 

which the turbines are relatively new, and their operating age is less than five years, that 

is, the turbines are operating in its first 5-year service period.  

 

As the base case model is interpreted as OWF with turbines that have operational years 

less than five years old, three other models are established for OWFs with increasing age 

of turbines with appropriate assumptions to demonstrate the powerfulness of the proposed 

model for different OWFs. The model 1 represents the OWF in which the turbines in 

operation are five to ten years old. For the wind farm model 1, it is assumed that the 

majority of corrective maintenance corresponds to a minimal replacement, and it has the 

highest probability of occurrence. The probability of other failure classifications is then 

descended in the order of imperfect maintenance, perfect replacement I, and perfect 

replacement II. The model 2 represents the OWF in which the turbines in operation are ten 
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to twenty years old. For the wind farm model 2, it is assumed that the majority of corrective 

maintenance corresponds to perfect replacement I, and it has the highest probability of 

occurrence. The probability of other failure classifications is then descended in the order 

of perfect replacement II, minimal replacement, and imperfect maintenance.  

 

Table 4.2: Decision Choices [39, 82] 

Resource 

Combination 
Resource Elements 

11S
 

No Spare part + Access Vessel (Crew Transfer Vessel -small) + 2 

maintenance technicians 

21S
 

Required Spare part + Access Vessel (Crew Transfer Vessel -small) 

+ 3 maintenance technicians. (Use of permanent internal crane for 

replacement). 

31S
 

Required Spare part + Crane Vessel + Access Vessel (Crew 

Transfer Vessel small) + 6 maintenance technicians. 

41S
 

Required Spare part + Access Vessel (Crew Transfer Vessel -small) 

+ Access Vessel (Jack- Up Vessel) + 6 maintenance technicians. 

12S
 

No Spare part + Access Vessel (Crew Transfer Vessel - small) + 2 

maintenance technicians 

22S
 

All Class B Spare parts + Access Vessel (Crew Transfer Vessel-

Large) + 3 maintenance technicians (Use of permanent internal 

crane for replacement). 

32S
 

All Class B and C Spare parts + build-up crane with a vessel + 

Access Vessel (SUVs) + 6 maintenance technicians. 

42S
 

All Class B, C and D spare parts + Access Vessel (SUVs) + Access 

Vessel (Jack- Up barge) + 6 maintenance technicians 

 

The model 3 represents the OWF in which the turbines are either more than twenty years 

old or affected by storms or other natural disasters. For the wind farm model 3, it is assumed 

that the majority of corrective maintenance corresponds to perfect replacement II and it has 

the highest probability of occurrence. The probability of other failure classifications is then 
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descended in the order of perfect replacement I, minimal replacement, and imperfect 

maintenance. The reported probabilities for the base case are changed for different failure 

classifications to represent the wind farm models 1, 2, and 3. The probabilities of failure 

classifications of the base case model and the three different wind farm models are given 

in Table 4.3. The probability numbers in Table 4.3 are absolute values and are not in 

percentages. 

 

Table 4.3: Probabilities of failure classifications for different OWF models [82] 

Failure 

Classification 

Probability 

Base Case 

Model 

Wind Farm 

Model 1 

Wind Farm 

Model 2 

Wind Farm 

Model 3 

Imperfect 

maintenance 

0.9952 0.0023 0.0010 0.0010 

Minimal 

replacement 

0.0023 0.9952 0.0015 0.0015 

Perfect 

replacement I 

0.0010 0.0015 0.9952 0.0023 

Perfect 

replacement II 

0.0015 0.0010 0.0023 0.9952 

 

4.3.2 Time and Cost Inputs 

 

The values of time elements are essential inputs to find the expected total maintenance cost. 

Travel time is calculated using a 14 km average distance of the wind turbines from the 

shore and average speed of different access vessels. The repair time for rank 1 failure 

classification is assumed to be 4 hours in our study. It is reported in [30] that it will take 

48 hours to switch out the component in question and replace a working unit for major 

maintenance. This time reported in [30] is the repair time for rank 2, 3, and 4 failure 

classifications in our study. The cost per tonnage of spares is a standard metric to find the 

cargo handling costs [85], and we will use the same metric in our case study. The reported 

work in [82], which defined the failure classifications, did not provide any weight data for 
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individual spare parts. Based on the turbine components listed under each failure 

classification reported in [82], the maximum cargo weight of spare parts for a failure 

classification is considered as the cargo weight of a resource combination. The fixed cost 

for corrective maintenance trip from [39] is the additional trip cost in this case study.  All 

the time and cost inputs required to find the expected total maintenance cost are given in 

Tables 4.4 and 4.5.  

 

Table 4.4: Inputs to calculate expected total maintenance cost [30, 39, 78 and 82] 

Resource 

Combination 

Travel 

Speed 

(km/hr) 

Travel 

Time 

(hours) 

Repair 

Time 

(hours) 

Access 

Vessel 

Cost/hour 

Crane/Jack 

up Vessel 

cost 

Weight 

of Spare 

Parts 

(tonnes) 

11S
 

37.04 0.76 4 $62.50 N/A 0 

21S
 

37.04 0.76 48 $62.50 N/A 1 

31S
 

37.04 0.76 48 $62.50 $105,259 50 

41S
 

37.04 0.76 48 $62.50 $119,294 100 

12S
 

37.04 0.76 4 $62.50 N/A 0 

22S
 

46.30 0.60 48 $93.75 N/A 11 

32S
 

18.52 1.50 48 $93.75 $105,259 600 

42S
 

18.52 1.50 48 $93.75 $119,294 600 

 

Table 4.5: Inputs to calculate expected total maintenance cost [79, 85 and 86] 

Parameter Values 

Maintenance Technician cost/hour 70 

Cost/tonnage of spares $29.72 

Revenue Loss/hour $18,684 

Fixed cost for corrective maintenance trip for offshore wind 

turbine 

$500,000 
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4.3.3 Results 

 

The expected total maintenance cost of each decision choice for a specific wind farm model 

is represented as a 42 matrix (there are eight decision choices in this study): 

 

 
 
 
 
 
 

11 12

21 22

n

31 32

41 42

z z

z z
Z =

z z

z z
 

 

Where
nZ is the cost matrix of the wind farm model n. The elements ijz 's of the matrix

nZ  

represent the expected total maintenance cost values (in $’s) of sending respective Sij’s for 

a specific wind farm model n. That is, the element 
11z  represents the expected total 

maintenance cost of sending 
11S , the element

21z  represents the expected total maintenance 

cost of sending 
21S , and so on. It is earlier stated in Section 4.3.1 that both A-type and B-

type RC’s have identical resource elements for imperfect maintenance, which indicates, 

the elements 
11z  and 

12z  of the matrix will have identical values. The minimum of the ijz 's

in the matrix 
nZ is selected as the optimal solution, and the corresponding resource 

combination is identified to be the cost-effective resource combination. 

 

Using the model in Section 4.2, the model inputs in Section 4.3.1 and 4.3.2, and using the 

explicit enumeration method, the expected total maintenance cost is calculated for all the 

available resource combinations (decision choices) for the different wind farm models of 

Table 4.3 and the results are shown in matrix form. 

 

The cost matrix for the base case model (
0

Z ) is: 
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 
 
 
 
 
 

0

91951 91951

515401 922110
Z =

621730 1072754

637456 1087414
 

The cost matrix for the wind farm model 1 (
1

Z ) is: 

 
 
 
 
 
 

1

513354 513354

922366 922110
Z =

621935 1072960

637250 1087414
 

The cost matrix for the wind farm model 2 (
2

Z ) is, 

 
 
 
 
 
 

2

513931 513931

515045 512740
Z =

1039273 1072388

637821 1087414
 

The cost matrix for the wind farm model 3 (
3

Z ) is: 

 
 
 
 
 
 

3

513931 513931

515045 512740
Z =

622300 653925

1054794 1087414
 

 

The minimum value of the cost matrix 
nZ for the wind farm model n represents the optimal 

solution; that is, the corresponding resource combination is identified to be the cost-

effective resource combination.  

 

To prove the effectiveness of the proposed model, it is appropriate to compare the results 

of the proposed model with the traditional practice of solving the described problem. When 

no information on the failed turbine is obtained from the CM systems, generally, the 

offshore O&M team sends technicians to inspect the failed turbine in a small Crew Transfer 

Vessel, identify the failure classification and then send the required resource combination 

to solve the turbine failure. To compare the results of the proposed model with the general 

practice, the cost of the general practice is assumed as the sum of the inspection activity 

cost using 
11S and the fixed cost of corrective maintenance trip for an offshore wind turbine. 
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All the inputs presented in Section 4.3.1 and 4.3.2 are used to calculate this cost of 

traditional practice and is found to be $514,353. The estimated cost of traditional practice 

is used to compare the results of the proposed model and to find the cost savings if any.  

 

The cost-effective resource combination for each wind farm model considered in this study 

with the total expected maintenance cost and the cost savings in comparison with the 

traditional practice are given in Table 4.6.   

 

Table 4.6: Cost-effective resource combination for different wind farm models given in 

Table 4.3 

Wind farm model Cost-effective 

resource 

combination 

Expected total 

maintenance cost 

(in $’s) 

Cost savings (in 

comparison with 

traditional practice) 

Base case 
11S

 

91591 82.12% 

Model 1 
11S

 

513354 0.19% 

Model 2 
22S

 

512740 0.31% 

Model 3 
22S

 

512740 0.31% 

 

The optimal resource combination can be directly selected from Table 4.6. From the 

results, it could be observed that 
11S (which is the same as 

12S in this study) is the cost-

effective option to address the corrective maintenance for turbines that are in operation for 

less than ten years (base case model and wind farm model 1). In addition, 
22S  is the cost-

effective option to address the corrective maintenance for turbines that are in operation for 

more than ten years (wind farm model 2 and 3). Comparing the results of the proposed 

model with the traditional practice, the proposed model produces very high cost savings of 

82.12% for the base case model and considerable cost savings for the other three different 

wind farm models. It has to be noted that the proposed model is for one corrective 

maintenance trip and when there are multiple corrective maintenance problem instances 
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with no information from CM systems, the cost savings will be more for the wind farm 

models 1, 2, and 3.  

 

The results that are generated from the model are not only dependent on the probability of 

failure classifications (given in Table 4.3) but also on the cost estimates (given in Table 4.4 

and Table 4.5). The value of the “fixed cost for corrective maintenance trip for an offshore 

wind turbine” in Table 4.5 is assumed to be the same for all types of corrective maintenance 

because of insufficient data, and this affects both the estimated cost of the general practice 

and also the results generated from the models. This assumption on the fixed cost for 

corrective maintenance is a key reason that the base case has a huge amount of savings in 

comparison with the other three wind farm models. More accurate fixed costs for different 

types of corrective maintenance will result in better estimates for the general practice and, 

more accurate results for the wind farm models 1, 2, and 3. Accurate cost data in 

maintenance decision-making and sensitivity analysis of the proposed model to the cost 

estimates (in Table 4.4 and Table 4.5) will be studied in our future work. 

 

The case study provides a better understanding of the use of the proposed model to address 

a corrective maintenance situation when there is no information on the turbine failure type. 

Three different wind farm models are considered in addition to the base case, and the 

powerfulness of the model for different OWFs is demonstrated. The case study also gives 

us an understanding that when the number of failure classifications for an OWT/OWF 

increase, then the complexity in finding the cost-effective resource combination also 

increases. 

 

4.4 Summary 

 

In this chapter 4, a short-term resource decision problem for corrective maintenance at 

offshore wind turbine is identified and described. A simple mathematical model is 

proposed to solve the decision problem. The model is proposed in such a way that the 

expected cost of the decision is mainly dependent on the probabilities of occurrences of 

failure classifications. The maintenance team at all offshore wind farm will have their own 
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failure classifications, resource combinations, and access to accurate failure data and, this 

model will assist the maintenance team in making resource decisions to address the 

corrective maintenance problem stated in this chapter.  

 

As described in Section 2.2.3 and Section 4.1, the three elements, namely vessel, spare 

parts, and maintenance technicians, constitute a resource combination. As stated in Section 

2.4.3, the effect of insufficient maintenance technicians on production loss of offshore wind 

turbines/farms has not been studied by the model reported in [69]. In the next chapter, i.e., 

chapter 5, we will investigate the possibilities of having insufficient maintenance 

technicians at the turbine for corrective maintenance and propose a model to assign 

appropriate number of maintenance technicians for corrective maintenance of offshore 

turbines. 
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CHAPTER 5 
 

MAINTENANCE STAFFING MODEL FOR 

CORRECTIVE MAINTENANCE OF OFFSHORE 

WIND TURBINE 

 

 
As mentioned in Chapter 4, maintenance staffing problem for corrective maintenance of 

offshore wind turbine is the principal focus of this chapter.  In this chapter, the possibilities 

of having insufficient maintenance technicians at the offshore wind turbine for needed 

maintenance is studied. Also, a simple mathematical model is proposed to figure out the 

appropriate number of technicians for a corrective maintenance trip to an offshore wind 

turbine. The symbols used in this chapter are specific to and applicable only to this chapter. 

The $ values in this chapter are US dollars unless otherwise specified. 

 

5.1 Problem description 

 

As stated in section 2.2.3 of chapter 2, the resources that are required to perform 

maintenance at offshore wind farms (OWFs) are spare parts, maintenance technicians, and 

vessels. If anyone of the resources is not available, then the maintenance cannot be initiated 

at OWFs. Two important assumptions related to the availability of maintenance resources 

that are earlier stated in section 2.4.1 and section 2.4.2 of chapter 2 must be recollected.  

They are, 
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(i) An optimal level of spare parts is maintained for maintenance execution, and all 

the spare parts are always available. 

(ii) An optimal number of technicians and vessel fleet size and the mix is maintained 

at OWFs for maintenance. 

 

The above-stated assumptions ensure that all the resources are available for all maintenance 

activities at OWFs. Therefore, in this study, whenever an offshore wind turbine experiences 

an unforeseen failure, corrective maintenance could be initiated as all the resources are 

always available. The reported work in [87] studied the influence of multiple working shifts 

(day shifts and night shifts) on the O&M costs of OWFs. The work in [87] reported that 

multiple working shifts (day shifts and night shifts) bring considerable advantage over a 

single working shift (day shift) in minimizing the overall O&M costs at OWFs. From work 

reported in [87], it is intuitively understood that OWFs established/capable of establishing 

facilities and resources to execute maintenance at both day shifts and night shifts. In this 

study, we assume that the OWF has all the facilities to execute maintenance in multiple 

working shifts, that is, corrective maintenance is executed in both day shits and night shifts 

[87]. Also, we assume that the O&M has a mixed fleet of technicians and vessels for day 

shifts, night shifts, and rotating shifts (day and night shifts) [87, 88]. It is reported in [76, 

78] that all corrective maintenance activities at OWFs could be executed using Crew 

Transfer Vessels (CTVs). Therefore, this study assumes that all corrective maintenance 

activities are executed using CTVs. 

 

In the scenario of corrective maintenance execution, the offshore O&M team will have 

information on the type/category of corrective maintenance (minor or major) required at 

the turbine. Based on the type/category of maintenance required, the appropriate vessel is 

selected for maintenance execution. Once the weather and sea-state conditions become 

accessible for maintenance, the required number of spare parts are moved from onshore 

maintenance facility/onshore inventory and placed in the vessel selected for maintenance 

execution. Then, the required technicians board the vessel (with spare parts) and travel to 

the turbine using the vessel to perform the needed maintenance.  
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Some of the maintenance technicians reaching the turbine may not be able to perform the 

needed maintenance activity due to “seasickness”[89]. Seasickness is the reaction of the 

human body's inner ear balance system to the unfamiliar motion of the ship. This 

unfamiliar motion is mainly caused by wind and wave conditions in the sea. OWFs located 

far away from the shore/coast (with a distance of at least 150 km from the coast/shore) are 

exposed to adverse wind and wave conditions, and there are high chances that the 

maintenance technicians who travel to these OWFs may get seasickness [78, 89]. The 

maintenance activities at OWFs ought to be precise and error-free. When the technicians 

sent to address the offshore turbine failure become seasick, they are not 100% fit to 

perform the required precise maintenance. Therefore, seasickness may result in a shortage 

of maintenance technicians for needed maintenance. This shortage of maintenance 

technicians at the turbine due to seasickness is the uncertainty in maintenance technicians 

for corrective maintenance of offshore wind turbines.  

 

The shortage of maintenance technicians at the turbine increases downtime and 

availability. The cost associated with downtime is significantly large when compared to 

the cost of maintenance technicians and vessels [79, 86]. The offshore O&M team must 

aim to complete the corrective maintenance activity as quickly as possible by sending an 

optimal/appropriate number of technicians to the offshore turbine in a vessel with the 

required spare parts. 

 

Very few works [39, 69] in the literature has investigated the maintenance technicians’ 

factor in OWF maintenance. The reported work in [39] analyzed a total of 350 offshore 

wind turbines between 5-10 OWFs throughout Europe. With a data set of 1768 turbine 

years of operational data, the reported work in [39] analyzed the offshore turbine failures 

and categorized the failures into three types, namely minor repair, major repair, and 

replacement. The analysis in [39] established failure rates, failure costs, average repair 

time, and the average number of technicians required for all three failure categories. The 

reported work in [39] considered maintenance technicians as a deterministic factor in the 

modeling of offshore O&M costs.  



 
 

67 
 

 

As stated earlier in Section 2.4.3, the reported work in [69] developed a short-term 

decision-making model for scheduling maintenance tasks and resources (vessels and 

technicians) at the OWFs, considering constraints in weather, energy prices, vessel 

characteristics, and maintenance technician’s skills. The time horizon considered in that 

model is a day, and it helps the OWF maintenance managers and planners to make better 

maintenance tasks and resource scheduling decisions each day. The model in [69] also 

developed a maintenance schedule for four days and studied two different scenarios of 

maintenance execution at OWF on each given day. The first scenario had twelve 

technicians available for maintenance execution, with seven to eight technicians, work on 

average per day, whereas the second scenario had seven technicians available. Both the 

scenarios performed the corrective maintenance activities within the given 4-day period. 

The reported work in [69] assumed the maintenance technicians as a deterministic factor 

and pointed out the importance of assigning an optimal number of technicians for 

corrective maintenance.  

 

Both the reported works [39, 69], assumed maintenance technicians to be a deterministic 

factor and did not study the uncertainty in the number of technicians for corrective 

maintenance. Therefore, any valuable information on the uncertainty in maintenance 

technicians will help the offshore O&M to better plan and execute corrective maintenance 

activities, and this was the motivation to study the uncertainty in maintenance technicians 

in this chapter. 

 

When a certain number of technicians are sent to the offshore turbine for corrective 

maintenance, the uncertainty in technicians brings in two possible situations, namely trip 

success and trip failure. The trip success is defined as the situation where enough number 

of technicians are available for maintenance at the turbine. Trip failure is defined as a 

situation where there are not enough technicians available for maintenance at the turbine. 

In the trip success situation, the maintenance crew completes the required maintenance and 

return to the shore.  
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In the trip failure situation, the maintenance team at the turbine may need additional 

technicians to execute the maintenance. Though there is a possibility that the maintenance 

team could wait at the turbine and ask for additional technicians from the onshore port, this 

study focuses on the situation that the maintenance team at the turbine returns immediately 

to the shore to get a completely different group of technicians for the required maintenance. 

Therefore, the technicians on the first trip are not involved in the second trip. Once different 

group of technicians are onboard, the maintenance crew travels again to the offshore 

turbine irrespective of the time of the day (day or night) and completes the maintenance on 

the second trip.  

 

The objectives of this chapter are to model the uncertainty in maintenance technicians for 

OWF maintenance and to propose a simple mathematical model to assign an appropriate 

number of technicians for the described corrective maintenance situation of the offshore 

wind turbine. The failure cost categories, namely minor repair and major repair [39], which 

is described earlier in section 3.1 of chapter 3 will be used later in this chapter for 

illustrating the use of the proposed model. The reported values from [39] on the number of 

technicians required for minor repair is 2.61 and for major repair is 3.44. We will use these 

values in our illustrating calculations later in this chapter. 

 

5.2 Uncertainty in maintenance technicians 

 

The offshore O&M team sends a certain number of technicians to the offshore turbine for 

corrective maintenance execution. In a marine environment, both ships and maintenance 

technicians are exposed to a multitude of motions because of weather and sea-state 

conditions. Ship motions limit maintenance technicians’ ability to perform maintenance 

tasks and result in seasickness (also known as motion sickness), which symptoms include 

but are not limited to mental fatigue, physical fatigue, headache, sleepy, dizziness, anxiety 

and nausea [90]. As precision maintenance is required for the offshore wind turbine, in this 

study, we assume that the maintenance technicians who get seasick during travel to the 

offshore turbine and lose body balance are not allowed to perform any maintenance at the 
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offshore turbine. Therefore, the number of technicians available for maintenance at the 

turbine is the difference between the number of technicians sent to the turbine and the 

number of technicians who get seasickness. The number of technicians sent to the turbine 

is a certain factor, but the number of technicians who get seasick during travel is uncertain.  

 

At OWFs, there would be multiple corrective maintenance trips to the multiple offshore 

turbines of the farm, and the number of technicians who get seasickness may vary with 

each corrective maintenance trip, and these variations are random. As a result, the ratio of 

the number of technicians who get seasickness to the number of technicians sent to the 

turbine is also random.  Therefore, the ratio of technicians who get seasickness to the 

technicians sent to the turbine is the random variable that represents the uncertainty in 

maintenance technicians due to seasickness in this study. When this ratio is expressed in 

percentages or absolute decimal values, the random variable can take any value in the 

interval [0%, 100%] or an equivalent [0, 1]. The random variable cannot take values more 

than 100% because the number of technicians who can get seasickness cannot be greater 

than the number of technicians sent to the turbine. As the outcomes of the random variable 

are percentages ranging from 0% to 100% and can take absolute values only in the interval 

[0, 1], the random variable is assumed to follow a beta distribution with two positive shape 

parameters α and β. If a random variable x follows beta distribution, the probability density 

function (pdf) of the beta distribution, for 0≤x≤1 and shape parameters α>0 and β>0, is 

given as [91], 

 

𝑓(𝑥) =
Γ(α + β)

Γ(α)Γ(β)
𝑥𝛼−1(1 − 𝑥)𝛽−1 

(5.1) 

 

The Gamma function is given as [91], 

 

Γ(z) = ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡
∞

0
            z≠-1, -2, -3, … (5.2) 

 

The mean (µ) and variance (σ2) of the beta distribution is given as, 
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𝜇 =
𝛼

𝛼 + 𝛽
 (5.3) 

𝜎2 =
𝛼𝛽

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)2
 

(5.4) 

 

The pdf plots of beta distribution with different shape parameters are shown in Figure 5.1, 

Figure 5.2, Figure 5.3, and Figure 5.4. 

 

 

Figure 5.1: Pdf of beta distribution for 0≤x≤1 and shape parameters α=0.5 and β=0.5 
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Figure 5.2: Pdf of beta distribution for 0≤x≤1 and shape parameters α=5 and β=1 

 

 

 

Figure 5.3: Pdf of beta distribution for 0≤x≤1 and shape parameters α=2 and β=2 
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Figure 5.4: Pdf of beta distribution for 0≤x≤1 and shape parameters α=2 and β=5 

 

5.3 Mathematical model 

 

If an offshore wind turbine has a finite number of corrective maintenance categories, then 

each category requires a predetermined number of technicians to send to the turbine to 

execute the needed maintenance. Upon a turbine failure, the O&M team knows the 

type/category of corrective maintenance required at the failed turbine, and they ought to 

send at least the predetermined number of technicians required for that specific corrective 

maintenance category. As corrective maintenance activities are executed using CTVs [92], 

the maximum limit of maintenance technicians a CTV can carry is the maximum 

technicians that the offshore O&M team could be sent at the most for a corrective 

maintenance trip. Therefore, the decision variable (z), that is, the number of technicians to 

send to the turbine for corrective maintenance, is represented as a finite set of positive 

integers and is given in equation 5.5. 

 

𝑧 = [𝐿, 𝐿 + 1, 𝐿 + 2, … , 𝑈] (5.5) 
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The lower limit of the set (L) is the predetermined number of technicians for a given 

corrective maintenance category, and the upper limit of the set(U) is the maximum limit of 

technicians a CTV can carry. The selection of the number of technicians to send to the 

turbine(z)among the available choices in equation 5.5 is the only decision in our model.  

 

If z technicians are sent to the turbine for corrective maintenance, then the ratio of the 

number of technicians who get seasickness to the number of technicians sent to the turbine 

is given as, 

 

𝑦

𝑧
 = 𝑝 (5.6) 

 

where z is the number of technicians sent to the turbine, y is the number of technicians who 

get seasickness, and p is the beta distributed random variable.  

 

The ratio of the minimum number of technicians required at the turbine for maintenance 

execution to the number of technicians sent to the turbine is given as, 

 

𝐿

𝑧
 = 𝑞 

(5.7) 

 

where L is the predetermined number of technicians required at the turbine for corrective 

maintenance execution, and z is the number of technicians sent to the turbine. 

 

The probability of having enough technicians at the turbine for corrective maintenance, 

that is, the probability of trip success is given as,    

 

𝛾 = 𝑃[(𝑝 ≤ (1 − 𝑞))] (5.8) 

 

where γ is the probability of trip success, and p is the beta distributed random variable. 
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The probability of not having enough technicians at the turbine for corrective maintenance, 

that is, the probability of trip failure is given as, 

 

1 − 𝛾 = 𝑃[(𝑝 > (1 − 𝑞))] 

 

(5.9) 

Both the probability of trip success and trip failure depend on the decision, the number of 

technicians who get seasickness, and the minimum number of technicians required at the 

turbine for maintenance execution. The trip success and failure situations, along with their 

probabilities, are considered in the model. 

 

The objective is to minimize the expected total maintenance cost of the decision, to figure 

out the cost-effective decision on the number of technicians to send on a trip for successful 

corrective maintenance execution. The total maintenance cost in our model includes the 

technicians' cost, access vessel cost, and production losses due to downtime. The 

technicians and vessels are in use from the point of time they get ready to board the vessel 

to the point of time they get back to shore after the maintenance activity. In addition, the 

turbine is unavailable until the maintenance crew gets the turbine back to operation. 

Therefore, the mathematical model formulation involves various deterministic time 

elements of maintenance, namely lead-time, logistic time, waiting time, travel time, and 

repair time. 

 

The time to get the vessel ready for maintenance is the lead-time and, the time to get the 

spare parts is the logistics time. As mentioned earlier in section 5.1, all the resources (the 

vessels, the technicians, and the spare parts) are always available in the onshore port for 

maintenance execution and so the lead-time of vessels and the logistic time of spare parts 

are eliminated in our model. The total delay in maintenance execution due to weather and 

sea-state conditions is the waiting time and is the sum of “the delay before travel starts” 

and “the delay at the turbine” [30]. It is dependent on the weather and does not depend on 

the decision on the number of technicians to send. Hence, the waiting time is a constant in 

our model. 
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The time taken to travel back and forth the turbine using vessels is called the “travel time” 

and is the sum of the “travel time to the turbine” and “travel time from the turbine.” The 

travel time depends on the vessel speed and does not depend on the decision on the number 

of technicians to send, and so is a constant in our model. As the travel cost depends on the 

number of technicians sent to the turbine, the cost associated with travel is included in the 

model. The time it takes to perform the actual maintenance work is the repair time. In the 

case of trip success, there will be enough technicians at the turbine, and the maintenance 

will be executed. In our model, the trip success situation includes repair time. In the case 

of trip failure, there will not be enough technicians at the turbine, and so additional 

technicians are needed to execute the maintenance. As described in section 5.1, in the trip 

failure situation, the maintenance crew at the turbine return to the shore. Then, a completely 

different group of technicians execute the maintenance on the second trip. Therefore, the 

certain amount of time spent on the first trip and additional wait time (the time spent at the 

shore to get a different group of technicians onboard) before the start of the second trip 

along with the cost of the second trip is considered for trip failure. The mathematical model 

for the described problem is given as, 

 

𝑍 = [𝑇 ∙ ((𝑧 ∙ 𝑎) + 𝑏 + 𝑐)] + [𝛾 ∙ (𝑅 ∙ ((𝑧 ∙ 𝑎) + 𝑏 + 𝑐))] + 

 [(1 − 𝛾) ∙ (𝑍 + 𝑊 ∙ 𝑐)] 

(5.10) 

Z Expected total maintenance cost 

z number of technicians sent for corrective maintenance 

T Travel time 

a technicians’ cost per hour 

b vessel cost per hour 

c revenue loss per hour 

γ Probability of trip success 

R Repair time 

1-γ Probability of trip failure 

W Wait time (the time spent at the shore to get a different group of technicians 

onboard) before the start of the second trip 

 



 
 

76 
 

The above mathematical model describes the expected total maintenance cost of sending z 

number of technicians for the corrective maintenance of the offshore turbine. The first 

square bracket term in the model is the cost associated with travel to the turbine and travel 

from the turbine irrespective of trip success or trip failure using z. The travel cost includes 

the technicians' cost, vessel cost, and revenue loss. The second square bracket term in the 

model is the trip success cost using z. The trip success cost includes the technicians' cost, 

vessel cost, and revenue loss incurred because of corrective maintenance execution using 

z, and the probability that the maintenance will be successfully executed using z. The third 

square bracket term in the model is the trip failure cost using z. The trip failure considers 

the cost incurred because of the wait time at the shore to get a different group of technicians 

onboard, the total cost including the vessel cost, technicians cost, and revenue loss to 

complete the corrective maintenance using a different group of technicians in the second 

trip, and, the probability that the maintenance will not be successfully executed using z. 

The model in equation 5.10 is simplified as, 

 

𝑍 =
[𝑇 ∙ ((𝑧 ∙ 𝑎) + 𝑏 + 𝑐)] + [𝛾 ∙ (𝑅 ∙ ((𝑧 ∙ 𝑎) + 𝑏 + 𝑐))] + [(1 − 𝛾) ∙ 𝑊 ∙ 𝑐]

𝛾
 

(5.11) 

  

𝑍 =
(𝑧 ∙ 𝑎 + 𝑏 + 𝑐) ∙ (𝑇 + 𝛾𝑅) + (1 − 𝛾) ∙ 𝑊 ∙ 𝑐

𝛾
 

(5.12) 

  

With appropriate inputs, the proposed model in equation 5.12 can calculate the expected 

cost of each decision choice. Utilizing the enumeration method, the expected total cost for 

each value of z is calculated, and the z with minimum expected total maintenance cost is 

selected as the cost-effective option to send for corrective maintenance. Given, the shape 

parameters of the beta distributed random variable p (which represents uncertainty in 

technicians), the minimum number of technicians required for corrective maintenance, the 

maximum limit of CTV, and the decision choices of the number of technicians to send for 

corrective maintenance, and, using the proposed model, the O&M team at OWF would be 

able to figure out the optimal number of technicians to send for any category of corrective 

maintenance of offshore wind turbine. 
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5.4 Case study 

 

To demonstrate the use of the proposed model, we select a corrective maintenance category 

of offshore wind turbines earlier stated in section 5.1, that is, major repair, and two 

scenarios of the offshore marine environment, namely low motion and high motion 

scenarios [90].  The low motion scenario is a marine environment with a moderate breeze 

and smaller waves, and the high motion scenario is a marine environment with a strong 

breeze and larger waves [90, 93, and 94]. The marine characteristics for the low motion 

and high motion scenarios are given in Table 5.1. 

 

Table 5.1: Characteristics for low motion and high motion scenarios [90, 93, 94, 95] 

Marine Parameter Low Motion Scenario High Motion 

Scenario 

Mean Wind Speed 11-16 knots 22-27 knots 

Beaufort Wind Scale 4 6 

Sea State 3-4 5 

Significant Wave Height 0.5 m - 1 m 1.5 m – 2 m 

Maximum Probable Wave Height 1.5 4 

 

The significant wave height in Table 5.1 is a visual estimate of the average wave height in 

the sea. It is a standardized statistic to denote the characteristic height of the random waves 

in a sea state [96].In the time-domain analysis, the significant wave height is defined as the 

average height of the highest one-third of all waves [97]. For example, for a significant 

wave height of 10 m, 1 wave height in 100 wave heights will be larger than 15.1 m, and 1 

wave height in 1000 wave heights will be larger than 18.6 m. It is understood that when 

experiencing a significant wave height of 2 m, waves close to double this height can be 

expected to occur [96].  From Table 5.1, it is observed that the maximum probable wave 

height is 4 m for a high motion scenario. Therefore, a CTV with an operational limit of 2 

m significant wave height can execute the major repair for both low motion and high 

motion scenarios [92].  
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It is reported in [39] that for offshore wind turbines, the average number of technicians 

required for major repair is 3.44, and so at the least four technicians are sent to the offshore 

turbine for a major repair. We will use this number to represent the pre-determined number 

of technicians (L) for a major repair. The maximum limit of technicians that the CTV can 

carry (U) is twelve [78]. The finite set of values, also the decision choices for the offshore 

O&M team for major repair is,  

 

𝑧𝑚𝑎𝑗𝑜𝑟 𝑟𝑒𝑝𝑎𝑖𝑟 = [4,5,6,7,8,9,10,11,12] (5.13) 

 

It is reported in [90] that, irrespective of the distance from shore, on average, 20% of 

technicians get seasickness during travel and lose body balance at the turbine for the sea 

state of 3-4. The values reported in [90] for sea state 3-4 corresponds to the low motion 

scenario of Table 5.1. Therefore, the beta distributed random variable that represents 

uncertainty in seasickness is assigned a mean of 0.20 and a standard deviation of 0.05 for 

low motion scenario. The pdf of the beta distributed random variable with shape parameters 

(α=12.60 and β=50.40) for a low motion scenario is given in Figure 5.5.   

 

It is also reported in [90] that, irrespective of the distance from shore, on average, 46.2% 

of technicians get seasickness during travel and lose body balance at the turbine for the sea 

state 5. The values reported in [90] for sea state 5 corresponds to the high motion scenario 

of Table 5.1. Therefore, the beta distributed random variable that represents uncertainty in 

seasickness is assigned a mean of 0.46 and a standard deviation of 0.10 for high motion 

scenario. The pdf of the beta distributed random variable with shape parameters (α=11.02 

and β=12.83) for a high motion scenario is given in Figure 5.6. 
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Figure 5.5: Pdf of beta distribution with shape parametersα=12.60 and β=50.40  

for low motion scenario 

 

 

Figure 5.6: Pdf of beta distribution with shape parametersα=11.02 and β=12.83 

for high motion scenario 
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The CTV travel at a speed of 23 knots in low motion scenario and 15 knots in high motion 

scenario [92]. For 150 km turbine from shore [78], we get the round-trip travel time (T) for 

low motion scenario as 7.04 hours and high motion scenario as 10.8 hours. The repair time 

for major repair is the same for low motion and high motion scenarios and is 423.36 hours 

[30, 39]. All other required inputs to calculate the expected maintenance cost (Z) is given 

in Table 5.2. 

 

Table 5.2: Input parameters to calculate the expected O&M cost [78, 79, 85, 86]  

Parameter Value 

Cost of technicians/hour (a) $125 

Cost of vessel/hour (b) $74 

Revenue loss/hour (c) $18,684 

Additional wait time to get a different maintenance 

crew onboard for the second trip (W) 

2 hours 

 

Using  equations 5.8 and 5.9, the probability of trip success and probability of trip failure 

for each decision choice of equation 5.13 is calculated for the low motion scenario and 

high motion scenario. Using equation 5.12 and using the enumeration method, the expected 

total maintenance cost is calculated for each decision choice (in equation 5.13) for low 

motion scenario and high motion scenario, and the results are given in Table 5.3.  

 

From the above table, it could be seen that the minimum expected total maintenance cost 

is achieved by selecting six technicians for the low motion scenario and nine technicians 

for the high motion scenario. Therefore, for major repair of the offshore wind turbine, the 

optimal number of technicians to send for the low motion scenario is six, and the high 

motion scenario is nine.  
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Table 5.3: Expected total maintenance cost of major repair  

in low and high motion scenarios 

Decision 

choice 

(z) 

Expected total maintenance cost of major repair 

Low motion scenario High motion scenario 

Probability of Trip 

Success (γ) 

Expected total 

maintenance 

cost (Z) 

Probability of Trip 

Success (γ) 

Expected total 

maintenance 

cost (Z) 

4 0 N/A 0 N/A 

5 0.5252 $8,499,591 0.0023 $116,426,511  

6 0.9918 $8,397,696 0.1008  $10,681,743  

7 0.9999 $8,450,052 0.3762  $8,937,494  

8 1 $8,503,843 0.6471  $8,714,911  

9 1 $8,557,643 0.8202  $8,687,668  

10 1 $8,611,443 0.9122  $8,711,060  

11 1 $8,665,243 0.9575  $8,752,244  

12 1 $8,719,043 0.9793  $8,800,635  

 

 

5.5 Summary 

 

In this chapter, the effect of seasickness on OWF maintenance technicians is described. 

The uncertainty in maintenance technicians due to seasickness is modeled. Then, a 

mathematical model is proposed to find the optimal number of technicians to send for 

corrective maintenance of an offshore wind turbine. Also, the use of the proposed model 

is illustrated using a simple case study with two different offshore marine environment 

scenarios. The model proposed in this chapter would assist the offshore O&M team in 

making cost-effective decisions on the number of technicians to send for corrective 

maintenance of offshore turbine considering uncertainty in seasickness, and help reduce 

the overall O&M costs and the cost of energy at OWFs. Future work involves the 
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investigation of different CTV configurations and their influence on the maintenance 

technician’s seasickness. 
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CHAPTER 6 

 

SUMMARY AND FUTURE WORK 

 
The main contributions of this thesis are summarized in section 6.1. Suggestions for future 

research are provided in section 6.2.  

 

6.1 Summary 

 
OWF is among important renewable energy sources to meet the global energy demand 

through clean energy. As OWFs are installed and operated in the sea, they are continually 

exposed to the marine environment and associated uncertainties throughout their lifecycle. 

The uncertainties encountered by OWFs result in high costs of O&M and energy. This 

study aimed to model the uncertainties in OWF maintenance and their effects on OWF 

O&M cost and, to propose decision models considering uncertainties to assist the O&M 

team in making optimal/cost-effective maintenance decisions.  

 

OWFs are exposed to uncertainties that include but are not limited to weather conditions, 

sea-state conditions, and component lifetimes. In chapter 3, an O&M cost model was 

proposed for the next maintenance trip using stochastics time elements to study the 

seasonal effects of uncertainties on offshore O&M costs. The seasonal variations of O&M 

costs at OWFs considering uncertainties were obtained in chapter 3, and the results showed 

that O&M costs were the lowest in summer and highest in winter. The model developed in 

chapter 3 would help to assess the seasonal O&M cost for a specific OWF location and 

plan both inspection and preventive maintenance activities to minimize the O&M cost. 
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The cost associated with the corrective maintenance of OWFs is very high because of their 

high downtime costs. The decisions related to corrective maintenance must be cost-

effective to minimize the overall O&M costs. At OWFs, the turbine failure information 

could be unavailable for corrective maintenance, and so resource decision-making becomes 

a challenging task. In chapter 4, the resource combinations to address the offshore wind 

turbine failure classifications were described. A decision model was proposed for resource 

decision-making of corrective maintenance, considering uncertainty in turbine failure 

information. The case study presented in chapter 4 demonstrated the use of the proposed 

decision model. The results showed that the model was mainly dependent on the 

probability of occurrence of offshore turbine failure classifications. The O&M team at all 

OWFs have their own failure classifications, resource combinations, and access to accurate 

failure data. With this information, the model proposed in chapter 4 assist the offshore 

O&M teams in making cost-effective resource decisions for corrective maintenance, 

considering uncertainty in turbine failure information. 

 

OWFs’ high downtime cost requires that appropriate resources (spare parts, vessel, 

maintenance technicians) are always sent for corrective maintenance of offshore wind 

turbines. The offshore O&M team determines the resources required for different 

categories of corrective maintenance. As a result, a predetermined number of technicians 

are sent in a vessel with spare parts to address a specific corrective maintenance category. 

Because of the marine environment, there could be situations where few of the maintenance 

technicians arrive at the turbine but are not able to perform the required maintenance due 

to seasickness. In chapter 5, the possibilities of having insufficient maintenance technicians 

at the turbine for corrective maintenance of offshore wind turbine was studied. The 

uncertainty in maintenance technicians for OWF maintenance was modeled. A 

mathematical model was proposed to aid decision-making on the number of maintenance 

technicians to send for corrective maintenance of offshore wind turbines. The case study 

presented in chapter 5 demonstrated the use of the proposed decision model. The O&M 

team at OWFs has information on the number of technicians required for different 

corrective maintenance categories and the historical data on the number of technicians who 
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get seasickness during travel to the turbine. With this information, the proposed model 

assists the offshore O&M teams in deciding the appropriate/optimal number of 

maintenance technicians to send to the turbine for corrective maintenance. 

 

Overall, with the generated knowledge, this state-of-the-art study advances research on 

OWF maintenance and associated decisions considering uncertainties. An improved 

understanding of the seasonal effects of uncertainties on offshore O&M costs helps the 

offshore O&M teams better plan the maintenance activities. The proposed models on 

corrective maintenance resource decisions help offshore O&M teams to make 

appropriate/optimal resource decisions and, thus, minimize the overall O&M costs at 

OWFs. 

 

6.2 Future Work 

 

Although the O&M model for the next maintenance trip in chapter 3 and decision models 

of chapters 4 and 5 proposed in this thesis has addressed the shortcomings of the relevant 

reported work on OWF maintenance, there are a few challenges that are suggested for 

further consideration.  

 

In this study, the vessels and spare parts are assumed to be always available in the onshore 

maintenance facility for the maintenance of OWFs. As a result, the O&M model for the 

next maintenance trip in chapter 3 treated the lead time of the vessels and logistic time of 

spare parts to be zero. If the vessels and spare parts are not available, the O&M cost model 

must include the lead time and logistic time. As the O&M cost model aims to study 

seasonal variations, it would be interesting to study if there are any seasonal variations in 

the lead time of vessels and logistic time of spare parts for OWF maintenance. 

 

In the resource decision model proposed in chapter 4 for corrective maintenance of offshore 

wind turbines, the time elements of maintenance are lead time, logistic time, waiting time, 

travel time, and repair time. The time elements are treated deterministic in the proposed 

model. The future work is to consider the time elements of maintenance as stochastic time 
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variables and propose a resource decision model for corrective maintenance of offshore 

wind turbines. 

 

In the model proposed in chapter 5 for making appropriate decisions on the number of 

maintenance personnel to send for corrective maintenance, it is assumed that all the 

corrective maintenance categories are executed using crew transfer vessels (CTV). It will 

be interesting to study the use of the helicopter for corrective maintenance at OWFs, its 

associated costs, travel time, and the allocation of maintenance personnel in a mixed fleet 

of CTV and helicopter for corrective maintenance.  

 

Overall, it is expected that through this thesis and the suggested research, the O&M team 

of OWFs can benefit from cost-effective maintenance planning and maintenance decision-

making. The improved maintenance planning and cost-effective decision-making will 

reduce the operation and maintenance costs and the cost of energy of OWFs. 
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